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Introduction. Computing shortest paths in a polygonal do-
main is a classic problem in computational geometry. Efficient
algorithms for computing such paths use the continuous Dijk-
stra paradigm [2], which not only allows one to find the short-
est path between two points but also computes the “shortest
path map” from a given source—a structure enabling efficient
queries of shortest paths to points in the domain.

The applet. This note accompanies an applet that illus-
trates how the continuous Dijkstra approach can be “taken to
the next level” and used to compute the “kth shortest path
map’.’ We briefly outline the relevant notions below; for for-
mal definitions and proofs please refer to [1].

Shortest path map. Let P be a
polygonal domain with holes and
let s be a point in P (indicated
by a green dot); all paths are as-
sumed to start from s. Two paths
to a point q ∈ P are homotopically
different (or have different homo-
topy types) if one cannot be con-
tinuously deformed to the other
without intersecting holes. The 1st
shortest path (or the 1-path) to q is just the shortest path from
s to q. Say that q is on a 1-wall if there exist two (necessarily
homotopically different) 1-paths to it. The homotopic shortest
path map of P (or 1-map) cuts P along 1-walls (the map is
simply connected—there is a unique 1-path to every point in
its interior). The figure shows a 1-map; 1-walls are red.

k-paths. The 2nd shortest path (or the 2-path) is the short-
est path homotopically different from the 1-path. The kth
shortest path (the k-path) is defined recursively. Fig. 1 shows
k-paths for k = 1, . . . , 5 (the 5-path is nonsimple—it is equal
to the 4-path plus the loop around the hole).
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Figure 1: k-paths for k = 1, . . . , 5.

Continuous Dijkstra. Imag-
ine that a wave starts propagating
from s at unit speed. At any time t
the wavefront consists of the points
at geodesic distance t from s. The
wavefront is composed of circular-
arc wavelets. When wavelets col-
lide their intersection point traces
a 1-wall. The wavelets do not
propagate past the walls; i.e., the part of any wavelet on the
other side of the wall dies. The figure shows a snapshot of the
propagation; the area claimed by the wave is gray.

2-garage and partial wavelet
resurrection. We allow wavelets
to propagate beyond the walls;
however, the propagation contin-
ues not in the domain P but on the
“next floor.” We define “parking
garages” as follows: The 1-garage
is just P . Recall that the 1-map is
P sliced along 1-walls. The 1-map
will be the 1st floor (or 1-floor) of
the 2-garage. Take a copy of the 1-floor and put it on top
of itself; the copy will be the 2-floor—the last floor of the
2-garage. The 1- and 2-floors are glued along 1-walls; each
side of any wall on the 1-floor is glued to the opposite side
of the wall on the 2-floor. This way, when two wavelets meet
at a 1-wall on the 1-floor, each continues propagating on the
2-floor (where the wavelets actually diverge, since they prop-
agate into different sides of the wall). When wavelets collide
on the 2-floor, their meeting point traces a 2-wall. The figure
shows wavelets on the 2-floor in the instance from the previous
figure. The 1-walls are now blue, and the 2-walls are red.



k-garage. The k-garage for arbi-
trary k is defined recursively: Take
a copy of P , slice it along (k − 1)-
walls, put the sliced copy on top
of the (k − 1)-garage, and glue
the copy to the (k − 1)-floor along
(k−1)-walls, identifying the oppo-
site sides of every wall. The copy
is the k-floor—the top floor of the
k-garage. When two wavelets meet at a (k − 1)-wall on the
(k − 1)-floor, both wavelets continue propagating on the k-
floor. When wavelets collide on the k-floor, their meeting
point traces a k-wall. The next figure shows a snapshot of
wave propagation on three floors. On a k-floor, the k-walls
are red and the (k − 1)-walls are blue:

k-floor as kth homotopic shortest path map. Note that
k-walls and (k − 1)-walls are comprised of the points that
have two homotopically different k-paths. That is, if we cut
P into cells along the walls, then k-paths to any point within
one cell “have the same homotopy type” (homotopy types are
originally defined only for paths with the same endpoint, but
in [1] we extend the definition to compare homotopy types
also for paths ending at different points). In this sense the
cells define the homotopic kth shortest path map (or k-SPM),
a generalization of the 1-SPM from 1-paths to k-paths for
arbitrary k > 1. The figure below shows k-paths (in green) to
a point, for k = 1, 2, 3:

The next figure shows the k-paths to a point on the other side
of the 1-wall; it can be seen that the 1-path and 2-path have
“changed” their homotopy types:

The next figure shows the k-paths to a point on the other side
of the 2-wall; it can be seen that the 2-path and 3-path have
“changed” their homotopy types:

k-path as 1-path in the garage. By construction, no
wavelet collision happens in the garage until the top floor;

the wavelets collide and trace walls only at the k-floor (these
walls are 1-walls for the garage and k-walls for P ). Hence, the
shortest path map (1-map) in the garage is obtained simply
by slicing the top floor along the k-walls. The most interest-
ing structural property of the k-paths and the garage is the
following: For any point q in P , let q′ be the copy of q on
the k-floor and let p′ be the shortest path from q′ to s in the
garage; then the k-path to q in P is obtained by projecting p′

onto the base sheet, P . That is, the path from q′ to s starts
on the k-floor, goes to a (k−1)-wall, uses it to get down to the
(k−1)-floor, then uses the (k−1)-floor to reach a (k−2)-wall,
uses it as a ramp down to the (k − 2)-floor, and so on, until
crossing a 1-wall to reach the 1-floor, on which the path goes
to s. For example, the first canvas in the figure below shows
the 3-floor and a 3-path; the path crosses a 2-wall (blue) on
the 3-floor. The subpath after the crossing point is a 2-path,
and the next canvas shows the 2-floor and the subpath; the
subpath crosses a 1-wall (blue) on the 2-floor to reach the 1-
floor. The rest of the path (shown in the last canvas) is just
the shortest path (1-path) to s.

The applet: details. Using these definitions, we can state
more precisely what the applet does: it shows how the con-
tinuous Dijkstra wavefront propagates in floors of the garage.
Several canvases are shown; each is a floor. The 1st canvas
shows wave propagation on the 1st floor of the garage (equiv-
alently, wave propagation in P ), the 2nd on the 2nd floor, etc.
On the j-floor, for any j, the j-walls are red and the (j − 1)-
walls are blue. Hovering the mouse over a point shows the
k-paths to it (green); a white worm moves along the path to
signify how the path loops around holes. A slider is included
to go back and forth in the wave propagation.

The applet can be found at
http://www.cs.helsinki.fi/group/compgeom/ksp/applet/.
The user can edit the domain, and when done, press Propa-
gate! to start wave propagation. There is also a demo mode.

In the applet, the k-paths to the vertices of the domain are
computed using the “simple visibility-based algorithm” in [1].
By casting beams toward the possible continuation paths from
every vertex, the k-paths are computed for each pixel in a
grid. The k-walls can be drawn approximately between pixels
where k- and (k + 1)-paths exchange identities. The wave
propagation is shown by drawing the continuation beams of
limited radius from every vertex and using the nonzero-filling
rule of HTML5 canvas to draw the areas that have winding
number of at least k on the kth level canvas.
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