
Geometric kth Shortest Paths∗

Sylvester Eriksson-Bique† John Hershberger‡ Valentin Polishchuk§

Bettina Speckmann¶ Subhash Suri‖ Topi Talvitie§ Kevin Verbeek‖

Hakan Yıldız‖

Abstract1

This paper studies algorithmic and combinatorial properties of shortest paths of different homo-2

topy types in a polygonal domain with holes. We define the “second shortest path” to be the shortest3

path that is homotopically different from the (first) shortest path; the kth shortest path for an arbitrary4

integer k is defined analogously. We introduce the “kth shortest path map”—a structure to answer5

kth shortest path queries. Given a polygonal domain with n vertices and h holes, we show that the6

complexity of the kth shortest path map is O(k2h + kn), which is tight. Furthermore, we show7

how to build the kth shortest path map in O((k3h + k2n) log (kn)) time. We also present a simple8

visibility-based algorithm to compute the kth shortest path between two points in O(m log n + k)9

time, where m is the complexity of the visibility graph. This last approach can be extended to com-10

pute the kth simple (i.e., without self-intersections) shortest path in O(k2m(m+ kn) log kn) time.11

walls of 1-SPM: walls of 2-SPM:

walls of 3-SPM: walls of 4-SPM:
12

We invite the reader to play with our applet demonstrating k-SPMs at13

http://www.cs.helsinki.fi/group/compgeom/kpath_slides/visualize/.14

∗B. Speckmann and K. Verbeek were supported by the Netherlands’ Organisation for Scientific Research (NWO) under
project no. 639.022.707. Sylvester E-B was supported as a Graduate Student Fellow by the National Science Foundation grant
no. DGE-1342536.
†Courant Institute, NYU ebs@cims.nyu.edu
‡Mentor Graphics Corporation john hershberger@mentor.com
§Helsinki Institute for IT, CS Dept, University of Helsinki firstname.lastname@helsinki.fi
¶Dept. of Mathematics and Computer Science, TU Eindhoven b.speckmann@tue.nl
‖Computer Science, University of California Santa Barbara [suri|kverbeek|hakan]@cs.ucsb.edu

1 Introduction15

Computing shortest paths in polygonal domains is one of the oldest and most studied problems in com-16

putational geometry. Given a planar domain with polygonal holes and two points in this domain (a17

source and a target), the problem is to compute a path in the domain that connects the source to the tar-18

get and has the shortest length possible. Due to its natural formulation and practical applications (such19

as in robotics) the problem has drawn interest of many computational geometers.20

In this paper, we study a variation of the geometric shortest path problem in which the goal is to21

compute, for a given k, the first k shortest paths between two points, rather than a single shortest path. A22

similar variation has been studied for shortest paths on graphs. In addition to its theoretical interest, the23

geometric kth shortest path problem is also motivated by some real-world applications. One particular24

application is air traffic management (ATM), in which the airspace at a given flight level is modeled25

by a polygonal domain with holes corresponding to hazardous weather cells, no-fly zones, and other26

obstacles for traffic. Because it is impossible to capture formally all nuances of ATM route design, it27

seems natural to present an air traffic controller with a set of options, leaving the final choice of the28

flight path to human judgment. More generally, various applications of kth shortest paths in graphs are29

relevant also in geometric domains; one example is multiple object tracking [1].30

The reader may have noticed that the concept of kth shortest paths, in its exact meaning, is not for-31

mally well-defined in the geometric setting. Unlike paths in graphs, the paths in a polygonal domain do32

s
tπ1

π2

π3

π4
π5

Figure 1: |π1|<|π2|=|π3|<|π4|<|π5|. π1 is
the shortest path to t (a 1-path; cf. Def. 2.2),
each of π2 and π3 is a 2-path, π4 is a 4-path,
π5 is a 5-path (π5 is nonsimple—it is equal
to π4 plus the loop around the hole).

not form a countable set and thus one cannot talk about a kth33

shortest path without additional restrictions. (In the geomet-34

ric setting, new paths can be created by infinitesimal devia-35

tions.) In order to establish a well-defined problem, we con-36

sider homotopically different paths only. In other words, we37

define the second shortest path as the shortest path that is ho-38

motopically different from the (first) shortest path. Similarly,39

the third shortest path is homotopically different from the first40

two, and so on. This leads to the following problem:41

Given a polygonal domain P , two points s, t ∈ P42

and a number k, find k homotopically different43

shortest s–t paths (Fig. 1).44

Since any homotopy type can be associated with the length of the shortest path of the type, our problem45

can be viewed as that of listing homotopy types in order of increasing length.46

Related work Finding shortest paths is also a central problem in the study of graph algorithms. Apart47

from finding the shortest path itself, considerable attention has been paid to computing its various al-48

ternatives including the second, third, and in general kth shortest path between two nodes in a graph;49

see, e.g., [9, 11] and references therein. On the other hand, geometric kth shortest paths have not been50

explored before. (One problem for which both the graph and the geometric versions were considered is51

finding the k smallest spanning trees [7, 8].)52

In [17] Mitchell surveys many variations of the geometric shortest path problem; for some recent53

work see [4, 5]. In addition to computing one shortest path to a single target point, a lot of attention in the54

literature has been devoted to building shortest path maps—structures supporting efficient shortest-path55

queries. A shortest path map can be viewed as the Voronoi diagram of vertices of the domain, where each56

vertex is (additively) weighted by the shortest-path distance from the source s [12]. Our study of “kth57

shortest path maps” benefits from notions introduced by Lee [14] for higher-order Voronoi diagrams:58

when bounding the complexity of the maps in Section 4.2, we employ Lee’s ideas to define “old” and59

”new” features of the map and to derive relationships between them. Higher-order Voronoi diagrams60

have been recently reexamined in [2, 15, 16, 18]; in particular, [15] considered geodesic diagrams in61

polygonal domains. Perhaps unsurprisingly, the complexity of our kth shortest path map differs from62

that of an order-k geodesic Voronoi diagram; the major difference is that homotopies are irrelevant for63

Voronoi diagrams, but are central in our work.64

1

Results In Section 3 we give a simple algorithm for finding the kth shortest path. If n is the number65

of vertices of P and m is the size of its visibility graph, the algorithm runs in O(m log n + k) time66

and O(m + k) space. Note that m = Ω(n), and in the worst case m = O(n2). We also study the67

query version of the problem: report (the lengths of) k shortest paths from a query point to a fixed68

source s. In Section 4 we present our main contribution—an O(k2h + kn)-size data structure (for a69

domain with h holes) that can be built in O((k3h + k2n) log(kn)) time and answers kth shortest path70

queries in O(log(kn)) time apiece. If we want to report all k shortest paths from a query point, the71

preprocessing time remains the same, but the storage and query time both increase by a factor of k.72

Finally, in Section 5 we present an O(k2m(m+ kn) log kn)-time algorithm to find the kth simple (i.e.,73

without self-intersections) shortest path. Omitted proofs can be found in Appendix B.74

2 Preliminaries75

We are given a polygonal domain P with n vertices and h holes; the holes are also called “obstacles”76

and the domain is called the “free space.” We assume that no three vertices of P are collinear and77

make other general position assumptions below, as needed. We are also given a source point s ∈ P ;78

unless otherwise stated, all paths will have s as an endpoint. For a point p ∈ P , two paths to p are79

homotopically equivalent if one can be continuously deformed to the other while staying within P .80

Homotopically equivalent paths form an equivalence class (the homotopy class) in the set of s–p paths.81

The unique shortest path in a homotopy class (i.e., a pulled taut path) is called locally shortest.82

Observation 2.1. All bends of a locally shortest path π are at vertices of P and turn toward the corre-83

sponding obstacles.84

Let d(p) denote the shortest-path (geodesic) distance from s to p. A vertex v of P is a predecessor85

of p if segment vp is in free space and d(p) = d(v) + |vp|. The shortest path map of P (or SPM for86

short) is the partitioning of P such that all points within the same cell of the SPM have the same unique87

predecessor. The edges of the partition are called bisectors; points on bisectors have more than one88

predecessor. We distinguish between two types of bisectors: walls and windows. A bisector is a wall89

if, for a point p on the bisector, there exist two homotopically different paths to p with length d(p). If90

there is a unique shortest path to a point p on a bisector, then this bisector is a window; any point p on91

a window has two predecessors that are collinear with p. We assume that there is a unique shortest path92

to each vertex of P , and that there are at most three homotopically different shortest paths to each point93

in P . The former assumption implies that walls are 1-dimensional curves. The endpoints of a wall are94

either at an obstacle or at a triple point, where three walls meet. Windows start at vertices of P and95

extend until an obstacle or wall is hit. Intuitively, windows can mostly be ignored as far as homotopy96

types are concerned; walls, by contrast, are central to our study. Fig. “1-SPM” on the title page shows97

an example of walls in the SPM. By using standard point location structures on the SPM of P , one can98

query the shortest path length to any point in P in O(log n) time and, in addition, report the path in99

linear output sensitive time [12]. Our goal is to compute a similar structure for kth shortest paths.100

We now introduce the subject of our study. For a point p ∈ P , let H(p) denote the set of locally101

shortest paths from s to p of all possible homotopy types.102

Definition 2.2. A path π ∈ H(p) is a kth shortest path (or is a k-path) to p if there are exactly k − 1103

shorter paths in H(p) (see Fig. 1).104

We denote the length of the k-path(s) to p by dk(p). Notice that, under these definitions, the term105

1-path is synonymous with “shortest path” and d(p) = d1(p).106

In order to extend the map concept to k-paths, we first generalize the definition of a predecessor. Let107

v be an obstacle vertex and i be an integer between 1 and k. For a point p on the plane, the pair (v, i)108

is a k-predecessor of p if the segment vp is in free space and dk(p) = di(v) + |vp|. This implies that a109

k-path to p can be obtained by concatenating the segment vp with the i-path to v. As with the SPM, we110

assume that each obstacle vertex has a unique i-path for any i, and that there are at most three i-paths111

in H(p) for each point p ∈ P . Interestingly, for i > 1, the former assumption does not follow from a112

general position assumption. We discuss this issue in Appendix A. For the sake of simplicity, we will113

ignore the issue in the main body of the paper and stick to the assumption above.114

2

Observe that, given the k-predecessors of all points in the plane and the i-predecessors of all obstacle115

vertices for 1 ≤ i ≤ k, one can construct the k-path to any given point p. The kth shortest path map116

(or k-SPM for short) of P is a subdivision of P into cells such that all points within the same cell have117

the same unique k-predecessor. In order to construct k-paths from the k-SPM, we also assume that it118

stores the i-predecessors of all vertices, for all 1 ≤ i ≤ k. As with the SPM, one can use standard119

point location structures to report the k-path length of a query point in O(logCk) time, where Ck is the120

complexity of the k-SPM.121

To distinguish the different types of bisectors that form the boundaries of the k-SPM, we generalize122

the definitions of walls and windows as follows:123

Definition 2.3. A point p is on a k-wall if H(p) contains at least two k-paths.124

Definition 2.4. A point p is on a k-window if H(p) contains exactly one k-path and p has two k-125

predecessors.126

Note that the two predecessors of a point p on a k-window must be collinear with p. Furthermore,127

by the definition of k-paths, a point cannot be on a k-wall and a (k + 1)-wall at the same time (if a128

point has two k-paths, then it has no (k + 1)-path). Similarly to walls in the SPM, k-walls have their129

endpoints either on obstacles or at triple points, where three k-walls meet. In Section 4.1, we show that130

edges of the k-SPM are (k − 1)-walls, k-walls and k-windows. We also show that our assumption that131

a k-predecessor is of the form (v, i) with 1 ≤ i ≤ k is indeed correct.132

3 A simple visibility-based algorithm133

In this section we present a simple visibility-based algorithm to compute the k-path from s to some fixed134

target t ∈ P . For large k, this algorithm is faster than the k-SPM approach of Section 4. Moreover, this135

algorithm is relatively easy to implement and may therefore be of more practical interest.136

We first compute the visibility graph (VG) of P in O(n log n + m) time [19], where m = O(n2)137

is the size of VG. We also include visibility edges to s and t. The graph contains every locally shortest138

path from s to t and hence also the k-path to t. However, we cannot simply compute the kth shortest139

path in VG, since different paths in the graph may be homotopic. We therefore modify VG so that140

locally shortest paths are in one-to-one correspondence with paths in the modified graph—this ensures141

that different paths in the graph belong to different homotopy classes. First, we make the graph directed142

by doubling each edge. Then we expand each vertex v as illustrated in Fig. 2: Draw the two lines143

supporting the two obstacle edges incident to v; the lines partition the relevant visibility edges at v into144

two sets A and B (the visibility edges between the lines opposite the obstacle are irrelevant, because145

they cannot be used by shortest paths). Radially sweep a line through v, initially aligned with one of the146

obstacle edges, until it is aligned with the other obstacle edge. For each encountered visibility edge e,147

create a node with an incoming edge if e∈A, and an outgoing edge if e∈B. Connect all created nodes148

with a directed path. Also make a copy of this construction with all edges reversed. The expansion of149

v is connected with other expansions in the obvious way, as dictated by the visibility graph. Finally,150

remove edges directed toward s and away from t. The constructed graph—which we call the taut graph151

~G(P)—has O(m) vertices and O(m) edges and can be built in O(m) time. Note that, by construction,152

every path in ~G(P) must be locally shortest and every locally shortest path from s to t exists in ~G(P).153

We can now use the algorithm by Eppstein [9] to compute the kth shortest path from s to t in ~G(P),154

which corresponds to the k-path from s to t in P . This algorithm computes the k-path from s to t in155

O(m log n+ k) time. It also simultaneously computes all i-paths from s to t for 1 ≤ i ≤ k.156

`
a1

a2

a3
b1

b2

b3

v

a1 a2 a3

b1 b2 b3

Figure 2: Vertex expansion for the taut graph.

3

4 The k-SPM157

In this section we discuss the main contribution of this paper: the k-SPM. We first study the behavior158

of k-paths with respect to k-walls to derive the structure of the k-SPM. We then analyze the worst-case159

complexity of the k-SPM. Finally we show how to compute the k-SPM efficiently.160

4.1 Structural results161

Consider a path π from s to some target t ∈ P . This path crosses several walls (1-walls, 2-walls, etc.)162

in P . We define the crossing sequence of π as the sequence of positive integers that represents all the163

k-walls crossed by this path going back from t to s. That is, if π crosses an i-wall, we add i to the164

sequence. Although it is not strictly necessary, we generally assume an upper bound on the sequence165

values (the maximum wall class), so that the sequence is finite. We call a sequence a k-sequence if it166

adheres to the following inductive definition:167

• A 1-sequence does not contain 1.168

• A k-sequence contains (k−1), the first (k−1) occurs before the first k, and the tail of the sequence169

after the first (k − 1) is a (k − 1)-sequence.170

We need the following property of k-sequences.171

Lemma 4.1. A sequence σ cannot be both a k-sequence and an `-sequence if k 6= `.172

The relation between k-sequences and k-paths is summarized in the following lemma.173

Lemma 4.2. A locally shortest path π is a k-path if and only if its crossing sequence is a k-sequence.174

Proof. We first show that the crossing sequence of a k-path π is a k-sequence. Let us assume that175

distances have been scaled so that the length of π is 1. Define p(x) for 0 ≤ x ≤ 1 as the point on π such176

that the distance from t to p(x) along π is x. Let γ(x) be the subpath of π from p(x) to t. For any i ≥ 1,177

let πi denote the i-path to t (π = πk). (We assume that t is not on an i-wall, for any 1 ≤ i ≤ k.) The178

concatenation of πi and γ(x) is a path from s to p(x), via t; let π′i(x) denote the shortest path of this179

homotopy class (Fig. 3, left). All paths π′i(x) must have different homotopy classes for different i.180

Let li(x) be the length of π′i(x); clearly li is continuous. By the definition of k-paths, li(0) ≤ lj(0)181

for i < j. On the other hand, lk(1) = 0 and li(1) > 0 for i 6= k. Note that as x grows from 0 to 1, lk(x)182

decreases not slower than any other li(x), i 6= k. Thus, the graph of lk(x) crosses the graphs of all li(x)183

for i < k, but no other graphs (Fig. 3, right).184

The proof proceeds by induction. A point p(x) is on a j-wall if two graphs cross at x, and there185

are exactly j − 1 graphs that pass below this intersection. Clearly, if k = 1, the path πk cannot cross186

a 1-wall, since l1(x) cannot intersect anything. For k > 1, the first intersection of lk(x) must be with187

a graph li(x) with i < k, as described above. This means that p(x) must cross a (k − 1)-wall before188

crossing a k-wall. After the (k − 1)-wall at x = x∗, the path π′k(x∗) is the (k − 1)-path to p(x). By189

induction, the remainder of the crossing sequence must be a (k − 1)-sequence.190

Finally note that a locally shortest path π must be an i-path for some i ≥ 1. If the crossing sequence191

of π is a k-sequence, then it cannot be an i-sequence for i 6= k by Lemma 4.1. Thus i= k, and π is a192

k-path.193

s
t

πk(x)

π′
3(x)

π′
1(x)

π′
2(x)

π′
4(x)

xx∗

lk = l4

l3

l2

l1

Figure 3: k = 4. Left: π′i(x) is the shortest path from πk(x), homotopically equivalent to πk(x)–t–πi–s. Right:
lk is kth smallest at x = 0 and decreases faster than any other li.

4

Lemma 4.2 means that a k-path from s to t crosses walls “in order”: it crosses a 1-wall, then a194

2-wall, etc., until it crosses a (k− 1)-wall, after which it reaches t. Also, any prefix of the k−path is an195

i-path if it crosses the (i− 1)-wall and not the i-wall. This property of k-paths inspires the construction196

of a “parking garage” obtained by “stacking” k copies (or floors) of P on top of each other and gluing197

them along i-walls, for 1 ≤ i ≤ k. To be precise, the k-garage is inductively defined as follows:198

The 1-garage is simply P . The (k + 1)-garage can be obtained by adding a copy of P199

(the (k + 1)-floor) on top of the k-garage. We cut both the k-floor of the k-garage and the200

(k+ 1)-floor along k-walls. We then glue one side of a k-wall on the k-floor to the opposite201

side of the same k-wall on the (k + 1)-floor, and vice versa, to obtain the (k + 1)-garage.202

The k-garage resembles a covering space of P . However, due to the triple points formed by the i-walls203

(i< k), the k-garage is technically not a covering space, but something that is known as a ramified cover.204

Nonetheless, each path π in the garage can be projected down to a unique path π↓ in P . The next lemma205

relates the k-SPM of P to the SPM of the k-garage.206

Lemma 4.3. If π is the shortest path in the k-garage from s on the 1-floor to some t on the k-floor, then207

π↓ is a k-path to t.208

Lemma 4.3 directly implies that the SPM on the k-floor of the k-garage is exactly the k-SPM of209

P . Thus, as claimed before, the edges of the k-SPM consist of (k − 1)-walls, k-walls, and k-windows.210

Furthermore, the k-predecessor of a point p ∈ P must be (v, i) for some i between 1 and k.211

4.2 The complexity of the k-SPM212

s

ω1 ω2

ω3

q

p1 p2

p3

Figure 4: Lower bound construction.

Lower Bound. For a lower bound on the complexity of the k-SPM,213

consider the example shown in Fig. 4. We construct the example in214

such a way that the shortest paths from the source s to the vertices215

p1, p2, and p3 have the same length. Let q be the unique point such216

that |q−p1| = |q−p2| = |q−p3|. Furthermore, let πij (i ∈ {1, 2, 3}217

and 1 ≤ j ≤ k) be the j-path from s to pi, and let lij be the length218

of πij . If the obstacle ωi is small enough, then πij simply loops219

around ωi zero or more times in a clockwise or counterclockwise220

direction. Hence, for any ε > 0, we can ensure that |lik − li1| ≤ ε221

for i ∈ {1, 2, 3} by making the obstacles ωi small enough. Now222

define qabc as the unique point such that |qabc − p1|+ l1a = |qabc −223

p2| + l2b = |qabc − p3| + l3c. This point must exist, since it is the224

vertex of an additively weighted Voronoi diagram of p1, p2, and p3.225

Lemma 4.4. If ε < |q − pi| for i ∈ {1, 2, 3}, then |qabc − q| < ε.226

By Lemma 4.4, qabc must lie in the free space (in the circle of Fig. 4), if ε is small enough. By227

construction there are three paths with equal length from s to qabc, and there are exactly a + b + c − 3228

shorter paths from s to qabc. This means that qabc is a triple point of the (a+ b+ c− 2)-SPM. Thus, the229

number of triple points of the k-SPM is exactly the number of triples (a, b, c) with 1 ≤ a, b, c ≤ k for230

which a + b + c − 2 = k. It is easy to see that there are Ω(k2) triples that satisfy these conditions. By231

connecting several copies of the construction together, we get a domain with h holes. Finally, we can232

replace p3 in one copy by a convex chain of n vertices v1, . . . , vn, such that the line through vi and vi+1233

is very close to q for 1 ≤ i < n. This way each vertex vi contributes k k-windows to the k-SPM.234

Theorem 4.5. The k-SPM of a polygonal domain with n vertices and h holes can have Ω(k2h) k-walls235

and Ω(kn) k-windows.236

Upper Bound. To obtain an upper bound on the complexity of the k-SPM, we consider a sparser237

partitioning of P . We define the (≤k)-SPM of P as the partitioning induced by only the k-walls of238

P . Let Hk(p) be the set of the k shortest homotopy classes to p ∈ P . We refer to Hk(p) as the239

k-homotopy set of p. We would like to claim that the set Hk(p) is constant within each cell of the (≤k)-240

SPM. Unfortunately we cannot claim this, since the homotopy classes of paths with different endpoints241

cannot be compared. To overcome this technicality, we define Hk(p)⊕π as the set of homotopy classes242

5

obtained by concatenating each path in Hk(p) with π. If π is a path between p and p′, then we can243

directly compare Hk(p)⊕ π and Hk(p′).244

Lemma 4.6. If p and p′ lie in the same cell of the (≤k)-SPM, and π is a path between p and p′ that does245

not cross a k-wall, then Hk(p)⊕ π = Hk(p′).246

To keep the notation simple, we simply compare Hk(p) and Hk(p′) directly, in which case we really247

mean that we compare Hk(p)⊕ π and Hk(p′), where π is the shortest path in P between p and p′. Note248

that π can cross a k-wall. We need the following property of the (≤k)-SPM.249

Lemma 4.7. The cells of the (≤k)-SPM are simply connected.250

We now count the number of k-walls, starting with the case k = 1. Let F1, V1, andB1 be the number251

of faces, triple points, and 1-walls of the (≤1)-SPM, respectively. It is easy to see that the (≤1)-SPM is252

simply connected, hence F1 = 1. Now consider the graph G in which each node corresponds to either253

a hole (including the outer polygon) or a triple point, and there is an edge between two nodes if there254

is a 1-wall between the corresponding holes/triple points. Since the (≤1)-SPM is simply connected, G255

must be a tree. Hence B1 = h+ V1. (The number of polygons bounding P is h+ 1.) Furthermore note256

that the degree of a triple point in G is three, and every node in G has degree at least one. So, by double257

counting, 2B1 ≥ 3V1 + h+ 1 or V1 ≤ h− 1. To summarize, F1 = 1, V1 ≤ h− 1, and B1 = h+ V1.258

To bound the complexity of the (≤k)-SPM for k > 1, we consider the k-homotopy sets Hk(p). We259

use lower-case letters a, b, c, . . . to denote the members of Hk(p). Each k-wall of the (≤k)-SPM locally260

separates regions of P that differ in exactly one of their k shortest path homotopy classes. Note that261

a k-wall e of the (≤k)-SPM is not present in the (≤k + 1)-SPM: if the k-homotopy sets belonging to262

the two sides of e are H ∪ a and H ∪ b, with a 6= b, then the (k + 1)-homotopy set of points in the263

neighborhood of e is uniformly H ∪ {a, b}.264

a b
c

ab
ac bc

abc

Figure 5: Life
cycle of a triple
point.

The triple points of the (≤k)-SPM fall into two classes, which we call new and265

old (borrowing the terms from [14]). If the three k-homotopy sets in the vicinity of a266

triple point p are H ∪ a, H ∪ b, and H ∪ c, with a, b, and c all distinct, then p is a new267

triple point. On the other hand, if the three k-homotopy sets areH∪{a, b},H∪{b, c},268

and H ∪ {a, c}, with a, b, and c all distinct, then p is an old triple point. These names269

highlight the difference between what happens in the vicinity of p in the (≤k + 1)-270

SPM. If p is a new triple point in the (≤k)-SPM, then it becomes an old triple point in271

the (≤k+1)-SPM. The three (k+1)-walls incident to p in the (≤k+1)-SPM separate272

points with (k + 1)-homotopy sets (H ∪ a) ∪ b from (H ∪ a) ∪ c, (H ∪ b) ∪ a from273

(H ∪ b) ∪ c, and (H ∪ c) ∪ a from (H ∪ c) ∪ b. If p is an old triple point in the (≤k)-274

SPM, then the (k + 1)-homotopy set of points in the neighborhood of e is uniformly275

H ∪ {a, b, c}, and hence p is in the interior of a face of the (≤k+ 1)-SPM. See Fig. 5.276

To transform the (≤k)-SPM to the (≤k + 1)-SPM, we consider shortest distances to points in each277

face f of the (≤k)-SPM from its k-walls. The distances from a particular k-wall e are measured ac-278

cording to the homotopy class belonging to the face on the opposite side of e from f . More concretely,279

let p ∈ f be a point close to e, and let p′ be on the other side of f . Then the shortest paths measured280

from e use the homotopy class hf (e) = Hk(p′) \Hk(p). For every point q ∈ f , we identify the k-wall281

e whose homotopy class hf (e) gives the shortest path to q. Hence Hk+1(q) = Hk(q) ∪ hf (e), and282

this partitions the face f into subfaces, one for each k-wall e, separated by (k + 1)-walls. To finish the283

construction of the (≤k + 1)-SPM, we erase the k-walls on the boundary of f (recall that their neigh-284

borhoods have uniform (k + 1)-homotopy sets), delete any old triple points whose neighborhoods have285

uniform (k + 1)-homotopy sets, and erase any newly added (k + 1)-walls incident to deleted old triple286

points on the boundary of f . (These “walls” are actually just windows generated by the triple points;287

they separate regions with equal (k + 1)-homotopy sets).288

If a face f of the (≤k)-SPM is bounded by B k-walls, it is initially partitioned into B subfaces.289

Every pair of subfaces incident to a common old triple point will be merged, so the final number of290

subfaces is F ′ = B−W , where W is the number of old triple points of the (≤k)-SPM on the boundary291

of f . Since f is simply connected by Lemma 4.7, and every subface corresponding to a k-wall e must292

be adjacent to e, the dual graph of the subfaces inside f must be an outerplanar graph. The number of293

6

triple points V ′ added inside f (all of them new) corresponds to the number of (triangular) faces of this294

outerplanar graph, and hence 0 ≤ V ′ ≤ max(F ′−2, 0). By Euler’s formula, the number of (k+1)-walls295

created inside f (duals to the edges of the outerplanar graph) is B′ = F ′ − 1 + V ′.296

During the iterative construction of the (≤k)-SPM, we track the number of features of the (≤k)-297

SPM at each step. Let Fi and Bi be the number of faces and i walls in the (≤i)-SPM. To distinguish298

between new and old triple points, let Vi andWi be the number of new and old triple points of (≤i)-SPM,299

respectively. Note that W1 = 0.300

The description above considers what happens within a single face of the (≤k)-SPM during the301

transformation to the (≤k + 1)-SPM. To account for what happens in all the faces simultaneously, we302

note that each i-wall is shared between two faces, and each triple point is shared between three faces.303

Thus, if we count just the features added inside faces of (≤i)-SPM, using primed notation, we have304

F ′i+1 = 2Bi − 3Wi

B′i+1 = 2Bi − 3Wi − Fi + V ′i+1

V ′i+1 ≤ 2Bi − 3Wi − 2Fi

W ′i+1 = 0

305

Now let us take into account the deletion of previous i-walls and triple points. All the i-walls and old306

triple points are deleted between one phase and the next. All new triple points turn into old ones. All307

subfaces incident to an old triple point merge into one. Thus we obtain the following recurrence relations.308

Fi+1 = F ′i+1 −Bi +Wi = Bi − 2Wi F1 = 1
Bi+1 = B′i+1 = 2Bi − 3Wi − Fi + Vi+1 V1 ≤ h− 1
Vi+1 = V ′i+1 ≤ 2Bi − 3Wi − 2Fi B1 = h+ V1
Wi+1 = Vi W1 = 0

309

Lemma 4.8. The number of faces, walls, and triple points of the (≤k)-SPM is O(k2h).310

We now return to the complexity of the k-SPM. The number of k-walls and (k − 1)-walls can be311

bounded by Lemma 4.8. Each k-wall consists of one or more hyperbolic arcs. Note that the number312

of hyperbolic arcs for a single k-wall is exactly one more than the number of k-windows that end on313

the k-wall (and a k-window can end on only one k-wall). Hence it is sufficient to count the number of314

k-windows. Each k-window is an extension of the edge between a vertex v of P and its i-predecessor315

for i ≤ k. Thus there can be at most O(kn) k-windows.316

Theorem 4.9. The k-SPM of a polygonal domain with n vertices and h holes has complexity O(k2h+317

kn).318

4.3 Computing the k-SPM319

We now describe how to compute the k-SPM inO((k3h+k2n) log (kn)) time. Inspired by the structure320

of the k-garage and Lemma 4.3, our algorithm iteratively computes the k-SPM for increasing values of321

k, starting from k = 1. Essentially we compute the SPM on the k-garage, one floor at a time. To322

compute the k-SPM at each iteration, we apply the “continuous Dijkstra” method, which Hershberger323

and Suri [12] used to compute the shortest path map among polygonal obstacles. We adopt most of the324

details of the Hershberger–Suri algorithm unchanged; however, we also introduce several modifications325

to the algorithm to support k-SPM computation.326

We begin our description with a brief overview of the continuous Dijkstra method. The main idea is327

to simulate the progress of a wavefront that emerges from the source and expands through the free space328

with unit speed. If the wavefront reaches a point p at time t, then the shortest path distance between p329

and the source is t. At any time, the wavefront consists of circular arc wavelets, each of which emanates330

from an obstacle vertex called a generator, which serves as an intermediate source with a delay (see331

Fig. 6a). In particular, a generator γ is represented as a pair (v, w), where v is an obstacle vertex and332

w is a positive real weight, equal to the shortest path distance from the source to v. For a generator333

γ = (v, w) and a point p such that the segment vp is contained in free space, the (weighted) distance334

between γ and p, denoted d(p, γ), is defined as w + |vp|; it represents the length of the shortest path335

from the source to p that passes through v.336

Points in the wavelet corresponding to a generator γ at time t satisfy the equation d(p, γ) = t. We337

7

source

1

(a)

e
U(e)

1

(b)

Figure 6: (a) An expanding wavefront. (b) The well-covering region U(e) (light gray) for an edge e in the
conforming subdivision.

say that a point p is claimed by γ if γ is the generator whose wavelet first reaches p; this implies that338

the shortest path to p passes through v and has length d(p, γ). The points where adjacent wavelets on339

the wavefront meet trace out the bisectors that form the walls and the windows of the shortest path map.340

Each bisector separates two cells of the shortest path map, each of which consists of points claimed by341

a particular generator. The bisector curve separating the regions claimed by two generators γ and γ′342

satisfies the equation d(p, γ) = d(p, γ′). Because |vp| − |v′p| = w′ − w, the curve is a hyperbolic arc.343

The Hershberger–Suri algorithm simulates the wavefront expansion on a “conforming subdivision”344

of the free space. Each internal (free-space) edge e of this subdivision is contained in a set of cells whose345

union is called the “well-covering region” of e and denoted by U(e). (See Fig. 6b.) Briefly, the wavefront346

simulation computes the wavefront passing through each internal subdivision edge. The wavefront for347

a subdivision edge e is computed by propagating and combining the already computed wavefronts on348

the edges bounding U(e).1 Once the wavefronts for all edges have been computed, the shortest path349

map in each subdivision cell is constructed locally by computing a weighted Voronoi diagram for the350

generators that claim the boundaries of the cell or are inside the cell. These cell-wide maps are then351

easily combined into a global shortest path map.352

The Hershberger–Suri algorithm also works for shortest paths from multiple sources with delays.353

This is summarized in the following lemma, which was proved in [12].354

Lemma 4.10 ([12]). Given a set of polygonal obstacles with n vertices and a set of O(n) sources with355

delays, one can compute the corresponding shortest path map in O(n log n) time.356

Within the framework of the Hershberger–Suri method, we can now explain our algorithm for com-357

puting the k-SPM. Conceptually, we apply the continuous Dijkstra framework on multiple floors of the358

k-garage. Imagine that we start a wavefront expansion from the source. When a wavelet collides with359

another wavelet during propagation (and thus forms a 1-wall), the portion of the wavelet that is claimed360

by the other wavelet continues to expand on the 2-floor (see Fig. 7a). Since this portion of the wavelet361

has passed through a 1-wall, it represents a set of 2-paths by Lemma 4.3. Any bisectors formed by adja-362

cent wavelets on the 2-floor belong to the 2-SPM. Similarly to the 1-floor, when two wavelets collide on363

the 2-floor, they form a 2-wall and continue to expand on the 3-floor. We continue to push the colliding364

wavelets up to higher floors until they reach the k-floor, which will correspond to the k-SPM.365

Notice that the wavefront expansion on a single floor is not affected by the expansion on another366

floor, with the exception of wavelet collisions on the previous floor. As the key step of our algorithm,367

we now describe a method that exploits this fact to compute the k-SPM once the (k − 1)-SPM has368

been computed. This implies that we can construct the k-SPM by first running the Hershberger–Suri369

algorithm to compute the 1-SPM and then iteratively applying this step to compute higher floor SPMs.370

We compute the k-SPM from (k − 1)-SPM as follows. The boundaries of the (k − 1)-SPM are371

formed by (k − 1)-windows, (k − 1)-walls and (k − 2)-walls. The (k − 1)-windows and (k − 2)-walls372

do not appear in the k-SPM, so we simply remove them from the map. The (k − 1)-walls remain in the373

map and they subdivide the free space into simply connected regions (by Lemma 4.7). To complete the374

k-SPM, in each such region we compute a special shortest path map whose walls and windows form the375

k-windows and k-walls of the k-SPM.376

The shortest path map computed in each region R is drawn with respect to multiple “restricted”377

1Well covering regions have special properties ensuring an acyclic propagation order between the edges of the subdivision.

8

⇒

1

(a)

γ5
γ4

γ1

γ2

γ3

1

(b)

γ

1

(c)

Figure 7: (a) Two colliding wavelets. After the collision, a wall is formed and both wavelets continue to grow on
the next floor. (b) A shortest path map is computed by propagating outside generators into the region R. (c) The
set of subdivision edges in the vicinity of the (k − 1)-walls through which a generator γ is propagated.

sources with delays, which are determined as follows. Consider a (k − 1)-wall W bounding R in the378

(k− 1)-SPM and let γ = (v, w) be the generator that claims the region outside R in the vicinity of379

W . (It is possible that both sides of W are contained in R. In this case, our description applies to the380

generators claiming both sides.) Note that W is formed by the collision of the wavelet of γ with another381

wavelet, and the wavelet of γ is pushed up to the k-floor inside R. Conceptually, we want to continue382

expanding the wavelet of γ insideR. To do this, we introduce γ as a source at v with delayw and impose383

the additional restriction that all paths from γ to the interior of R pass through W .2 In other words, we384

do not allow any paths from v that do not pass through W . We create sources in this manner for each385

(k − 1)-wall bounding R and draw the shortest path map with respect to these sources (see Fig. 7b).386

We can compute the shortest path map inside each region by running a single instance of the387

Hershberger–Suri algorithm for delayed sources; however, our restrictions necessitate some modifica-388

tions. First, in order to divide the free space into the separate regions of interest, we treat the (k−1)-walls389

as obstacles. The original subdivision construction algorithm given in [12] assumes that the obstacles390

have straight boundaries, which may not hold for the (k − 1)-walls. (Each (k − 1)-wall consists of391

hyperbolic arcs.) We can easily overcome this issue by using a slightly modified algorithm that creates392

conforming subdivisions for “curved” obstacles (within the same complexity bounds). This modified393

algorithm was described in [13], where it was used to compute shortest paths among curved obstacles;394

we omit its details. Note that even though we are using a subdivision that may have curved edges, we395

still apply the wavefront propagation algorithm for polygons on this subdivision, because each curved396

edge resides on a (k − 1)-wall whose claiming generator is already known. Thus, the curved edges do397

not take part in the wavefront propagation or yield additional generators, as they do in [13].398

Our second modification to the shortest path algorithm is the initialization of wavefront propagation399

in the subdivision. The original algorithm of Hershberger and Suri starts the propagation by passing the400

wavefront directly from each source point s to all edges e whose well covering region U(e) contains s.401

The sources that we use are generators to be propagated into certain regions through certain (k − 1)-402

walls, and thus we need a different way to initialize the wavefront. To meet our requirements, we initiate403

the wavefront propagation in the vicinity of the (k − 1)-walls rather than the generators. In particular,404

the wavefront for a single generator γ is directly propagated to405

(1) All edges e that bound a cell into which γ is to be propagated through a (k−1)-wall (see Fig. 7c).406

(2) All edges e such that e contains an edge from (1) in its well-covering region U(e).407

Note that propagating a generator’s wavefront to an edge does not mean that the wavefront claims the408

edge, because some or all of the wavefront may be eliminated by other propagated wavefronts when409

they are merged to compute the final wavefront.410

These modifications suffice to enable the Hershberger–Suri algorithm to compute the wavefronts411

passing through every edge in the conforming subdivision and the shortest path map in each region412

bounded by (k − 1)-walls. Since the paths used to compute the map in each region are k-paths by413

Lemma 4.3, the walls and windows of the map form the k-walls and k-windows of the k-SPM. This414

completes the construction of the k-SPM.415

2We also require that the the subpath between v and W is a straight line.

9

Theorem 4.11. Given a source point in a polygonal domain with n vertices and h holes, the corre-416

sponding k-SPM can be computed in O((k3h+ k2n) log (kn)) time.417

5 Simple paths418

Our definition of k-path allows the path to be self-crossing. This may be undesirable for many applica-419

tions. In this section we show how to compute the kth shortest simple path (simple k-path) in polynomial420

time, albeit slower than when we allow self-crossing paths. Here we define a simple path as a path that421

does not cross itself, although repeated vertices and segments are allowed. Note that we cannot use one422

of our previous methods to solve this problem: the simple 3-path may be a k-path for arbitrarily high k.423

As in Section 3, we consider only the most basic form of the problem, in which we are given a fixed424

target t ∈ P . For simple paths we need to treat s and t as point obstacles (otherwise pulling a path taut425

may introduce self-crossings), but this either trivializes the problem (the path may wind around s or t for426

free) or makes the algorithm more complex; therefore, for ease of presentation, we limit our attention to427

the case in which s and t are located on the boundaries of obstacles.428

We again use the taut graph ~G(P) to reduce the problem to a graph problem. The taut graph ensures429

that every path between s and t is locally shortest, but it still allows crossings. To avoid crossings, we430

adapt Yen’s algorithm [20] for simple k-paths in directed graphs (here “simple” means free of repeated431

nodes). Yen’s algorithm first computes the shortest path, which must be simple; the same is true in our432

geometric setting. Next, the algorithm “expands” the shortest path π in the following way: It considers433

every possible prefix of π and chooses a next edge e that is different from the next edge in π. It then434

finds the shortest path starting from the endpoint of e that avoids the prefix including e; this ensures that435

the resulting path is simple and different from π. Such paths are computed for every possible prefix and436

edge e; the shortest such path is the simple 2-path. The algorithm continues by expanding the simple437

2-path and repeats this process until the simple k-path is found.438

Note that we cannot use Yen’s algorithm directly on ~G(P), since a simple path in ~G(P) is not439

necessarily simple in the geometric sense. To make this algorithm work in our setting, we need to make440

one small modification. Before we compute the shortest path with a given prefix πp (including e), we441

add πp as an obstacle to P , obtaining a new polygon P ′. We then work with the taut graph ~G(P ′) of the442

new polygon (we separate each vertex of πp and the corresponding obstacle vertex by an infinitesimal443

amount to allow paths that abut πp but do not cross it). We need to show that the locally shortest path444

with a given prefix, i.e., the shortest path in ~G(P ′) starting after e, is simple. Clearly πp is simple, and445

the suffix cannot cross πp, but it is not clear that the suffix itself is simple. Although it is not obvious446

due to the geometric nature of our paths, we can prove the following.447

Lemma 5.1. The shortest path in ~G(P ′) that starts with a fixed (simple) prefix πp must be simple in P .448

Thus, if we compute ~G(P ′) before every shortest path computation, every path obtained by our449

adaptation of Yen’s algorithm must be simple. We now obtain the following result.450

Theorem 5.2. The simple k-path between s and t can be computed in O(k2m(m + kn) log kn) time,451

where m is the number of edges of the visibility graph of P .452

6 Concluding remarks453

We have introduced the k-SPM, a data structure that can efficiently answer k-path queries. We provided454

a tight bound for the complexity of the k-SPM, and presented an algorithm to compute the k-SPM455

efficiently. Our algorithm simultaneously computes all the i-SPMs for i ≤ k. Whether there is a more456

direct algorithm to compute the k-SPM is an interesting open problem. We also provided a simple457

visibility-based algorithm to compute k-paths, which may be of practical interest, and is more efficient458

for large values of k. This latter approach can be extended to compute simple k-paths. Unfortunately,459

we do not know how to extend the k-SPM to simple k-paths. It seems that simple k-paths lack the460

useful property that a subpath of a simple k-path is a simple i-path for i ≤ k. This makes finding a more461

efficient algorithm to compute simple k-paths a challenging open problem.462

10

References463

[1] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking using k-shortest paths464

optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(9):1806–1819,465

2011.466

[2] C. Bohler, P. Cheilaris, R. Klein, C.-H. Liu, E. Papadopoulou, and M. Zavershynskyi. On the467

complexity of higher order abstract Voronoi diagrams. In ICALP (1), volume 7965 of Lecture468

Notes in Computer Science, pages 208–219. Springer, 2013.469

[3] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing homotopy for paths in the plane. Discrete470

& Computational Geometry, 31:61–81, 2004.471

[4] D. Z. Chen, J. Hershberger, and H. Wang. Computing shortest paths amid convex pseudodisks.472

SIAM J. Comput., 42(3):1158–1184, 2013.473

[5] D. Z. Chen and H. Wang. L1 shortest path queries among polygonal obstacles in the plane. In474

STACS, volume 20 of LIPIcs, pages 293–304. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,475

2013.476

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,477

2nd edition, 2001.478

[7] D. Eppstein. Finding the k smallest spanning trees. BIT, 32(2):237–248, 1992.479

[8] D. Eppstein. Tree-weighted neighbors and geometric k smallest spanning trees. Int. J. Comput.480

Geometry Appl., 4(2):229–238, 1994.481

[9] D. Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, 1999.482

[10] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading,483

Massachusetts, second edition, 1994.484

[11] J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new algorithm and485

its implementation. ACM Trans. Algorithms, 3(4):45, 2007.486

[12] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane. SIAM487

J. Comput., 28(6):2215–2256, 1999.488

[13] J. Hershberger, S. Suri, and H. Yıldız. A near-optimal algorithm for shortest paths among curved489

obstacles in the plane. In Proceedings of the Twenty-Ninth Annual Symposium on Computational490

Geometry, SoCG ’13, pages 359–368. ACM, 2013.491

[14] D.-T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Computers,492

31(6):478–487, 1982.493

[15] C.-H. Liu and D. T. Lee. Higher-order geodesic Voronoi diagrams in a polygonal domain with494

holes. In SODA, pages 1633–1645. SIAM, 2013.495

[16] C.-H. Liu, E. Papadopoulou, and D. T. Lee. The k-nearest-neighbor Voronoi diagram revisited.496

Algorithmica, 2014. To appear.497

[17] J. S. B. Mitchell. Geometric shortest paths and network optimization. In J.-R. Sack and J. Urru-498

tia, editors, Handbook of Computational Geometry, pages 633–701. Elsevier Science B.V. North-499

Holland, Amsterdam, 2000.500

[18] E. Papadopoulou and M. Zavershynskyi. On higher order Voronoi diagrams of line segments. In501

ISAAC, volume 7676 of Lecture Notes in Computer Science, pages 177–186. Springer, 2012.502

11

[19] M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via pseudotriangulations.503

Discrete & Computational Geometry, 16(4):419–453, 1996.504

[20] J. Y. Yen. Finding the K shortest loopless paths in a network. Management Science, 17:712–716,505

1971.506

12

A Handling Degeneracies and Tie-Breaking507

For simplicity of analysis we assumed that P satisfies the following conditions:508

1. No three of the vertices of P , including the source s, are collinear.509

2. There are at most three homotopically different i-paths to a single point in P , for 1 ≤ i ≤ k.510

Equivalently, no four i-walls meet at a single point.511

3. There is a unique i-path to each vertex of P , for 1 ≤ i ≤ k. Equivalently, no i-wall goes through512

a vertex of P .513

With these assumptions all walls are one-dimensional curves that meet only at triple points.514

We now describe briefly how to adapt our analysis if these assumptions are false. If we are dealing515

with first shortest paths only, then we can simply apply the standard technique of (symbolic) perturbation516

to the input (i.e., perturb the positions of the vertices) so that the input is in general position and satisfies517

all of the assumptions. However, for k-paths with k ≥ 2, we need more than perturbation to enforce all518

assumptions. In particular, Assumption 3 cannot be enforced by perturbation because it can be violated519

even when the input is non-degenerate. For an example see Fig. 8: The 1-path from s to v is a straight520

line. There are two 2-paths from s to v, labeled π1 and π2. The paths π1 and π2 are homotopically521

different; they pass through v first and then loop around the same obstacle in different directions to522

return to v. Both π1 and π2 have the same length, and thus v is on the 2-wall. This implies that v and all523

of the points to its left below ray r have two distinct 2-paths and thus belong to a 2-wall; the 2-wall is524

thus a region, not a curve.525

In order to avoid this issue, we introduce a tie-breaking mechanism between the paths so that all526

paths to an obstacle vertex are strictly ordered by length and thus each obstacle vertex has a unique527

i-path. In particular, suppose that π1 and π2 are two i-paths from s to a vertex v with the same length.528

We break the tie between π1 and π2 by arbitrarily assuming that one of the two paths is infinitesimally529

shorter than the other. Conceptually, this mechanism perturbs the i-wall by moving it slightly to one530

side. As a result, the i-wall does not go through v and Assumption 3 is satisfied. Once the tie is broken,531

we assume that all paths that are obtained by extending π1 and π2 with the same subpath preserve this532

order, maintaining consistency.3533

By applying (symbolic) perturbation and enforcing a strict virtual order between the paths via tie-534

breaking, we guarantee all our assumptions.535

v

s

r

π2

π1

1
Figure 8: The equal-length paths π1 and π2 are both 2-paths to v. The 2-wall is shown with a dashed line.

3This still applies even if there are other tie-breakings in the extending subpath.

13

B Omitted Proofs536

Lemma 4.1. A sequence σ cannot be both a k-sequence and an `-sequence if k 6= `.537

Proof. Assume without loss of generality that ` < k. The definition of a k-sequence directly implies538

the following properties: (i) A k-sequence contains all integers in {1, . . . , k− 1}, and (ii) every tail of a539

k-sequence is an i-sequence for some i ≤ k.540

Let k be the smallest number for which the lemma does not hold; clearly k > 1. If ` = 1, then σ541

does not contain 1 while a k-sequence must contain 1 (property (i)); so assume ` > 1. Since k > `, σ542

must contain ` (property (i) again). By definition, the tail of σ after one of the occurrences of ` is an543

`-sequence. Since σ is also an `-sequence, it must contain (`− 1) before `, and the tail of σ after (`− 1)544

is an (` − 1)-sequence. In particular, the tail of σ after the occurrence of ` mentioned above must also545

be an i-sequence for some i ≤ `− 1 (property (ii)). But then the lemma does not hold for k = `, ` = i,546

contradicting our choice of k.547

Lemma 4.3. If π is the shortest path in the k-garage from s on the 1-floor to some t on the k-floor, then548

π↓ is a k-path to t.549

Proof. We show that the crossing sequence of π↓ is a k-sequence. Then, by Lemma 4.2, π↓ is a k-path.550

We again use the property that every tail of a k-sequence is an i-sequence for some i ≤ k. If, going back551

from t to s, π only goes “down” in the k-garage, then it is easy to see that the crossing sequence of π↓ is552

a k-sequence. (Because regions on the i-floor are bounded by (i − 1)- and i-walls, π enters the i-floor553

by crossing an i-wall and does not cross any i-wall before it exits the i-floor by crossing an (i− 1)-wall.554

Thus the tail of π’s crossing sequence that starts from any point on the i-floor is an i-sequence.) For555

the sake of contradiction, assume that π also goes up in the k-garage. Then there must be a point where556

π goes up to some i-floor, and then goes monotonically down to the 1-floor. The crossing sequence of557

the corresponding subpath of π↓ must be of the form σ = (i − 1, σi), where σi is an i-sequence. If σ558

is a j-sequence for j 6= i, then σi must be a j-sequence, which is not possible by Lemma 4.1. If σ is559

an i-sequence, then σi must be an (i− 1)-sequence, which again is not possible by Lemma 4.1. Finally560

note that σ must be a j-sequence for some j, since π↓ is locally shortest. Thus, π only goes down in the561

k-garage, and the crossing sequence of π↓ must be a k-sequence.562

Lemma 4.4. If ε < |q − pi| for i ∈ {1, 2, 3}, then |qabc − q| < ε.563

Proof. Points p1, p2, and p3 are the vertices of an equilateral triangle, with q at its center. Define
L = |q − p1|. By assumption, L > ε. Since 0 ≤ lij − li1 ≤ ε for i ∈ {1, 2, 3} and any 1 ≤ j ≤ k, and

|qabc − p1|+ l1a = |qabc − p2|+ l2b = |qabc − p3|+ l3c,

we have |qabc − pi| ≤ |qabc − pj | + ε for any i and j. The locus of points satisfying these inequalities564

is bounded by six hyperbolic arcs, as shown in Fig. 9. Each arc bulges toward the center, so putting qabc565

at a vertex of the region maximizes |qabc − q|. There are two classes of vertices of the region. They566

are defined by intersections of hyperbolae arranged in three pairs along the three angle bisectors at p1,567

p1 p2

p3

ε

L

q

Figure 9: qabc lies in the region around q.

14

p1

q

√
3L

d

π/6

d+ ε

p1

q

√
3L

d

π/6

d− ε

Figure 10: Extreme locations of qabc.

p2, and p3. By symmetry we can solve for points lying on an angle bisector satisfying the difference568

relations shown in Fig. 10. We apply the law of cosines to find minimum and maximum values of d, the569

distance from any of the pi to the intersections of hyperbolae on the angle bisector at pi. Solving for the570

lower bound on d (Fig. 10(left)), we have571

d2 + 3L2 − 2d
√

3L cos
π

6
= (d+ ε)2

3L2 − 3dL = 2dε+ ε2

d =
3L2 − ε2
3L+ 2ε

= L− 2

3
ε+

ε2

3(3L+ 2ε)

> L− 2

3
ε.

Solving for the upper bound (Fig. 10(right)), we have572

d2 + 3L2 − 2d
√

3L cos
π

6
= (d− ε)2

3L2 − 3dL = −2dε+ ε2

d =
3L2 − ε2
3L− 2ε

= L+
2

3
ε+

ε2

3(3L− 2ε)

< L+ ε

since L > ε. Because qabc is constrained to lie in this hyperbolically bounded region, and the maximum573

distance from q to the boundary of the region is less than ε, we have |qabc − q| < ε.574

Theorem 4.5. The k-SPM of a polygonal domain with n vertices and h holes can have Ω(k2h) k-walls575

and Ω(kn) k-windows.576

Proof. From the discussion in Section 4.2 it directly follows that the k-SPM of the example has Ω(k2h)577

k-walls. Hence we only need to show that the k-SPM can have Ω(kn) k-windows. Since we can make578

the number of vertices in the convex chain at p3 arbitrarily large, it is sufficient to show that each vertex579

in the chain (except the first) contributes k k-windows to the k-SPM. Let ej be the edge formed by580

extending the edge between vj and vj+1 toward q until it hits the boundary of P . We claim that, for581

every i ≤ k, there must be a point t ∈ ej such that the path π consisting of the i-path to vj followed by582

the segment vjt is the k-path from s to t. If t is at vj , then π is an i-path by definition. If t is the other583

endpoint of ej and ej is sufficiently close to q, then π must be an `-path for ` > k. Lemma 4.2 now584

implies that there must be a t ∈ ej such that π is the k-path from s to t. Thus, each vertex in the convex585

chain (except the first) contributes k k-windows, and the k-SPM has Ω(kn) k-windows.586

Lemma 4.6. If p and p′ lie in the same cell of the (≤k)-SPM, and π is a path between p and p′ that587

does not cross a k-wall, then Hk(p)⊕ π = Hk(p′).588

15

Proof. We reuse ideas from the proof of Lemma 4.2. Let us assume that distances have been scaled so589

that the length of π is 1. Define p(x) (0 ≤ x ≤ 1) as the point on π such that the distance from p to590

p(x) along π is x. Let γ(x) be the subpath of π from p to p(x). Furthermore, let πi be the i-path to p,591

and let π′i(x) be the locally shortest path homotopic to the concatenation of πi and γ(x). The length of592

π′i(x) is denoted by li(x) for 0 ≤ x ≤ 1. Note that li(0) < lj(0) for i < j. If li(x) 6= lj(x) for all593

0 ≤ x ≤ 1 and i ≤ k < j, then it is clear that Hk(p)⊕π = Hk(p′). For the sake of contradiction, let x∗594

be the smallest x such that li(x∗) = lj(x
∗) for some i ≤ k < j. Let r be the number of graphs that pass595

below this intersection. If r = k − 1, then p(x∗) is on a k-wall, which is a contradiction. If r < k − 1,596

then there must be an m ≤ k such that lm(x∗) > lj(x
∗). But that means that lm(x) = lj(x) for some597

x < x∗, contradicting the choice of x∗. Similarly, if r > k − 1, then there must be an m > k such that598

lm(x∗) < li(x
∗). But that means that lm(x) = li(x) for some x < x∗, again contradicting the choice of599

x∗.600

Lemma 4.7. The cells of the (≤k)-SPM are simply connected.601

Proof. For the sake of contradiction, assume there is a cell of the (≤k)-SPM that is not simply con-602

nected. Let C be a cycle in this cell that is not contractible. If C contains only k-walls, then there must603

be a triple point with an angle larger than 180 degrees, which is not possible (a triple point is a Voronoi604

vertex of an additively weighted Voronoi diagram). Hence there must be an obstacle ω in C. Let p ∈ C605

and let the largest winding number of any path in Hk(p) with respect to ω be r. By Lemma 4.6 we have606

Hk(p) ⊕ C = Hk(p), where C is followed in counterclockwise direction. However, Hk(p) ⊕ C must607

contain a path with winding number r + 1. This is a contradiction.608

Lemma 4.8. The number of faces, walls, and triple points of the (≤k)-SPM is O(k2h).609

Proof. We express the recurrence relations and the initial values using generating functions, which are
formal power series with the sequence values as coefficients [10]. In general, for a sequence of values
gi, the generating function g(z) is

g(z) =
∑
i≥0

giz
i.

For our sequences, we have610

F (z) = zB(z)− 2zW (z) + z

B(z) = z (2B(z)− 3W (z)− F (z)) + V (z) + zh

V (z) ≤ z (2B(z)− 3W (z)− 2F (z)) + z(h− 1)

W (z) = zV (z)

Note that the constant term is zero, because we assume F0 = V0 = B0 = W0 = 0.611

For convenience we will leave the “z” argument of the functions implicit during our manipulations.612

We can immediately eliminate the function W = zV :613

F = zB − 2z2V + z

B = z(2B − 3zV − F) + V + zh

V ≤ z(2B − 3zV − 2F) + z(h− 1)

Next we substitute F = zB − 2z2V + z into the last two relations to obtain614

B = z(2B − 3zV − (zB − 2z2V + z)) + V + zh

V ≤ z(2B − 3zV − 2(zB − 2z2V + z)) + z(h− 1)

or, combining terms,615

(1− 2z + z2)B = (1− 3z2 + 2z3)V + z(h− z)
(1 + 3z2 − 4z3)V ≤ (2z − 2z2)B − 2z2 + z(h− 1)

16

Substituting

B = V
(1− 3z2 + 2z3)

(1− z)2 +
z(h− z)
(1− z)2

into the inequality for V , we obtain616

(1 + 3z2 − 4z3)V ≤ V
2z(1− z)(1− 3z2 + 2z3)

(1− z)2

+
2z2(1− z)(h− z)

(1− z)2 − 2z2 + z(h− 1)

= 2z(1 + z − 2z2)V +
2z2(h− z)

1− z − 2z2 + z(h− 1)

Rearranging terms and simplifying, we obtain

V ≤ z(1 + z)(h− 1)

(1− z)3 .

Recall that (1− z)−3 =
∑

i≥0
(
i+2
2

)
zi, and hence617

V ≤ z(1 + z)(h− 1)

(1− z)3

=
∑
i≥1

zi(h− 1)

[(
i+ 1

2

)
+

(
i

2

)]
=

∑
i≥0

zi(h− 1)i2.

Returning from the domain of generating functions to our original recurrence relations, we have

Vi ≤ (h− 1)i2,

which immediately implies
Wi = Vi−1 ≤ (h− 1)(i− 1)2.

Solving for B(z) instead of V (z) gives

Bi ≤ (h− 1)(3i2 − 3i+ 2) + 1.

Finally, using Fi = Bi−1 − 2Wi−1 ≤ Bi−1, we get

Fi ≤ (h− 1)(3i2 − 9i+ 8) + 1.

618

Theorem 4.11. Given a source point in a polygonal domain with n vertices and h holes, the corre-619

sponding k-SPM can be computed in O((k3h+ k2n) log (kn)) time.620

Proof. We construct the k-SPM iteratively for increasing values of k as described. We argue that at each621

iteration, the time spent to construct the k-SPM from a given (k − 1)-SPM is O((k2h+ kn) log (kn)).622

This implies the total time spent is O((k3h+ k2n) log (kn)).623

By Theorem 4.9, the complexity of the (k − 1)-SPM is O(k2h + kn). We construct the k-SPM by624

running the modified Hershberger–Suri algorithm as described above. The algorithm is run on a set of625

obstacles with O(k2h + kn) vertices (including the original obstacle vertices and the endpoints of the626

hyperbolic arcs forming the (k − 1)-walls) with O(k2h + kn) delayed sources (at most two sources627

per hyperbolic arc). By Lemma 4.10 (which applies also to our modified algorithm), the algorithm628

completes in O((k2h+ kn) log (k2h+ kn)) = O((k2h+ kn) log (kn)). This completes the proof.629

17

Before we can prove Lemma 5.1, we need some additional results.630

Let πpq denote the subpath of a path π between two points p, q ∈ π. We can apply a shortcut to a631

path π by replacing πpq by the straight segment pq, so long as pq lies in free space. A shortcut is valid632

if it does not change the homotopy class of the path. We assume that a valid shortcut pq does not cross633

πpq, for otherwise we can cut up the shortcut into multiple smaller shortcuts. A shortcut is valid if and634

only if the cycle formed by πpq and pq does not contain an obstacle. Note that a locally shortest path635

has no valid shortcuts. Furthermore, we can make a path locally shortest by repeatedly applying valid636

shortcuts until no more valid shortcuts exist.637

A path π is x-monotone if every vertical line crosses π only once. Given a path π in P , we can638

obtain π′ by repeatedly applying valid vertical shortcuts to π until no more valid vertical shortcuts exist.639

We call π′ the vertical reduction of π. We can then find the smallest set S of vertices of P along π′ such640

that the subpath of π′ between two adjacent (along π′) vertices in S is x-monotone. We call the vertices641

in S the extremal vertices of π′.642

Now consider two homotopic paths π1 and π2 and their vertical reductions π′1 and π′2. As was shown643

in [3, Lemmas 1 and 7], the set of extremal vertices of π′1 and π′2 must be the same. Hence the set of644

extremal vertices depends only on the homotopy class of π1, and we can also speak of the extremal645

vertices of π1. Finally note that a locally shortest path is its own vertical reduction. Thus the locally646

shortest path homotopic to a path π must pass through the extremal vertices of π.647

Lemma 5.1. The shortest path in ~G(P ′) that starts with a fixed (simple) prefix πp must be simple in P .648

Proof. For the sake of contradiction, assume that the shortest path π with fixed prefix πp crosses itself at649

the point x ∈ π on edge e∗, where e∗ is the first crossing edge after πp. (See Fig. 11a.) Assume w.l.o.g.650

that the bend at the vertex v before e∗ makes a right turn. We can rotate the polygonal domain so that651

the direction of e∗ is infinitesimally clockwise from vertically up. As a result, v is an extremal vertex of652

π.653

We will show that there is a locally shortest path π′ that is shorter than π and also makes a right turn654

at v. Since a locally shortest path must turn toward obstacles, it is sufficient to show that π′ is shorter655

and passes through v. We first construct a path π′′ that is not longer than π, and then let π′ be the locally656

shortest path homotopic to π′′, which is shorter than π.657

The path π (from s to t) crosses e∗ either (i) from left to right (as in Fig. 11a) or (ii) from right to658

left (as in Fig. 11c). Let π∗ be the subpath of π between the two occurrences of the crossing. In case659

(i) π′′ is obtained by eliminating π∗. (See Fig. 11b.) In case (ii) π′′ is obtained by reversing π∗. (See660

Fig. 11d.) In case (i) π′′ is clearly shorter than π. In case (ii) π′′ has the same length as π, but note that661

π′ must then be shorter.662

In both cases π′′ makes a right turn at x. Now note that every vertical shortcut of π′′ must also exist663

in π. To see that, notice that the only shortcuts of π′ we need to consider are those that span π∗ in case (i)664

or span or touch π∗ in case (ii); any other shortcut also exists in π. A vertical shortcut that connects any665

point before π∗ to a point on or after π∗ is blocked by v (i.e., the shortcut is not valid). A shortcut of π′666

within π∗ must also exist in π. A shortcut from a point on π∗ to point after π∗ (in case (ii)) is blocked by667

the first extremal vertex after π∗. Since every vertical shortcut of π′′ exists in π and π is locally shortest668

πps
πp

v

s

t

s

e∗

s

v
πp

v

t

πp

x

v

t t
e∗x x

1

(a)

πps
πp

v

s

t

s

e∗

s

v
πp

v

t

πp

x

v

t t
e∗x x

1

(b)

πps
πp

v

s

t

s

e∗

s

v
πp

v

t

πp

x

v

t t
e∗x x

1

(c)

πps
πp

v

s

t

s

e∗

s

v
πp

v

t

πp

x

v

t t
e∗x x

1

(d)

Figure 11: (a) π crosses e∗ from left to right. (b) π′′ is obtained by eliminating π∗. (c) π crosses e∗ from right to
left. (d) π′′ is obtained by reversing π∗.

18

(i.e. has no valid shortcuts), π′′ must be its own vertical reduction. Thus, v is an extremal vertex of π′′,669

and π′ must pass through v.670

Finally we need to show that π′ is actually a path in ~G(P ′). Note that ~G(P ′) contains all locally671

shortest paths in P that do not cross the fixed prefix πp. So it is sufficient to show that π′ does not cross672

πp. Since π did not cross πp, the same is true for π′′. We can obtain π′ from π′′ by repeatedly applying673

valid shortcuts. It is now sufficient to show that any valid shortcut pq between p, q ∈ π′′ cannot cross674

πp. For the sake of contradiction, assume that pq crosses πp. That means that some part of πp must go675

inside the cycle C formed by pq and π′′pq. Note that s is outside C since we assumed that s belongs to676

an obstacle. If πp ends inside C, then there must be an obstacle inside C, which means that the shortcut677

was not valid. Otherwise, πp must also leave C. It cannot leave through π′′pq, since π′′ did not cross678

πp. If it leaves C through pq, then there must be a bend inside C. But this again means that there is an679

obstacle inside C, which contradicts the validity of the shortcut.680

Thus, the path π′ contains πp, it exists in ~G(P ′), and it is shorter than π. This contradicts the choice681

of π.682

Theorem 5.2. The simple k-path between s and t can be computed in O(k2m(m + kn) log kn) time,683

where m is the number of edges of the visibility graph of P .684

Proof. The simple k-path has at most kn edges since each vertex of P can be visited at most k times.685

This means that a simple k-path can have at mostO(km) prefixes (including e). To compute ~G(P ′), note686

that every visibility edge of P ′ is also a visibility edge of P , although some edges may occur multiple687

times in P ′ (edges of P in the prefix are duplicated). Hence, to compute P ′, we need to understand688

which visibility edges of P still exist in P ′. By considering the prefixes in order of increasing length689

(one edge at a time), we only need to check which visibility edges of P cross the last edge of the prefix,690

which can be computed in O(m) time per prefix. Since the prefix can have at most kn edges, the691

visibility graph of P ′ can have at most O(m + kn) edges. We can then compute ~G(P ′) in O(m+ kn)692

time. Finally, we can use Dijkstra’s algorithm [6] to compute the shortest path in ~G(P ′) after the prefix693

in O((m + kn) log kn) time. To obtain the simple k-path, we need to expand k − 1 paths. Each path694

may haveO(km) prefixes, and the shortest path for each prefix can be computed inO((m+kn) log kn)695

time. Thus, we can compute the simple k-path in O(k2m(m+ kn) log kn) time.696

19

