
Young Reseachers Forum: Book of Abstracts

Computational Geometry Week 2014, Kyoto, Japan

CG:YRF, Kyoto, Japan, June 8-11, 2014

Quickly Placing a Point to Maximize Angles

Boris Aronov∗

aronov@poly.edu
Mark Yagnatinsky†

myag@cis.poly.edu

Polytechnic School of Engineering, NYU, Brooklyn, New York

Abstract

Given a set P of n points in the plane in general position,
and a set of non-crossing segments with endpoints in P ,
we seek to place a new point q such that the constrained
Delaunay triangulation of P∪{q} has the largest possible
minimum angle. The expected running time of our
(randomized) algorithm is O(n2 log2 n) on any input,
improving the cubic time of the best previously known
algorithm. Our algorithm is somewhat complex, and
along the way we develop a simpler cubic-time algorithm
quite different from the ones already known.

1 Introduction

Often in applications one needs a triangulation (or more
generally a mesh) of a point set in the plane, and the tri-
angulation should be as “nice” as possible. What counts
as “nice” varies with the application, but one common
desire is for the triangles produced to be fat, instead
of long and skinny. The ideal in this case is equilateral
triangles, but this is usually impossible. However, it is
also overkill, since it often suffices that all angles are in a
Goldilocks range of “not too big and not too small”; say
between 30 and 120 degrees. One common way to for-
malize the wish for fat triangles is to ask for the smallest
angle in the triangulation to be as big as possible. It is
well known that the Delaunay triangulation of a planar
point set has precisely this property. Unfortunately, the
smallest angle in a Delaunay triangulation can be arbi-
trarily small. Sometimes, it is acceptable to introduce
extra points, known as Steiner points, so as to get a
better triangulation. However, it is desirable to avoid
introducing too many, because they increase the memory
and time requirements of all algorithms that operate on
the triangulation. There are two natural approaches
this problem. One is: given that we want all angles to
measure at least x degrees, how many additional points
do we need? The other is: given a budget of k points,
how large can we force the smallest angle to be? The
fixed-budget question was actually addressed in [AAF10],

∗Research supported by NSF grants CCF-11-17336 and CCF-
12-18791.
†Research supported by GAANN Grant P200A090157 from the

US Department of Education and by NSF grant CCF-11-17336.

which presented an algorithm that, given a point set P ,
finds the best placement of k additional points q1 . . . qk,
so that the minimum angle in the Delaunay triangula-
tion of P ∪{q1 . . . qk} is maximized. In fact, the problem
they solved was slightly more general, in that the input
also included a set E of non-crossing edges (that is, line
segments connecting points of P), which must be in the
final triangulation. (These are sometimes called con-
strained edges, or simply constraints, and the resulting
triangulation is called a constrained Delaunay triangu-
lation.) This generalization allows one to triangulate a
simple polygon, by specifying the polygon boundary as
the set of mandatory edges, and more generally handle
real-world applications with boundary conditions.

Unfortunately, the running time of the algorithm
in [AAF10] is nO(k), because it relies on explicit con-
struction of high-dimensional arrangements. They also
present an algorithm for the case k = 1, which runs
in time O(n4+ε). In [AY13], we present a slightly
super-cubic algorithm for the same problem. Finally,
in [AY13fw], a very simple algorithm was presented for
the case where E is empty, running in O(n2+ε) time. A
slight tweak handles the non-empty case, slowing the
running time down to O(n3+ε). In this paper we present
yet another near-cubic time algorithm to this problem,
and then improve it to O(n2 log2 n) by removing the
main bottleneck.

2 The algorithm

We first describe a decision procedure, which takes as
input a point set P , an edge set E, and a number z rep-
resenting an angle measurement. It determines whether
there is a placement of a new point q such that all angles
in Tq, the Delaunay triangulation of P ∪ {q}, have mea-
sure at least z. It does this by actually computing the
locus Vz of all such placements, and reporting whether
it is empty. This decision procedure is used as a black
box by a search procedure, which uses it to implicitly
search a space of O(n3) critical values of z in a manner
somewhat similar to parametric search.

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

2

3rd Computational Geometry Young Researchers Forum, 2014

r

s

t

r

s

Figure 1: left: G∠rst, right: Brs, where z is 45 degrees.

2.1 Decision procedure

Let T be the constrained Delaunay triangulation of P ,
and let Tq be the triangulation after point q is added.
The decision procedure works by computing two types
of regions: “bad” regions, and “good” regions. Each
angle a of T is associated with a good region, Ga. If
the measure of a is at least z, then Ga is the entire
plane. Otherwise, it is the locus of points such that
placing q there will eliminate at least one of a’s two
bounding edges from Tq. (Intuitively, if a is small, we
want to merge it with a neighboring angle.) Each edge
e = rs of T is associated with an existence region. This
is the locus Ee of points such that placing the new point
q there will result in 4qrs being a part of Tq. For
a fixed value of z, the bad region Be, is simply that
part of Ee where some angle of 4qrs has measure less
than z (see Figure 1). All angles in Tq have measure at
least z if and only if q is in all good regions and no bad
regions. The decision procedure explicitly computes the
locus Vz of such placements for q, and reports whether
it is empty. It computes Vz by constructing the good
and bad regions, building the arrangement induced by
their boundaries, and then traversing this arrangement
to label each arrangement feature (face, edge, vertex) as
in Vz or not in Vz, in time O(n2 log n).

We note that this is already enough to numerically
approximate the best achievable angle. We know that it
must be between zero and sixty degrees, so we simply do
a binary search on that interval, looking for the largest
value of z for which Vz is not empty.

2.2 Search procedure

We seek the highest value of z such that Vz contains at
least one point. Observe that as z changes, the curves
defining good and bad regions also change: some lines
rotate, some circles grow, etc. We visualize the depen-
dence on z by letting it represent the third dimension.
Note that the arcs delimiting good and bad regions are
contained in low-degree algebraic surfaces (after suitable
re-parametrization). Let A be the arrangement of the
set S of the O(n) surfaces that arise in this way.

Viewed in this manner, the curves defining Vz become
unions of two-dimensional faces of A and the regions
they bound are now solid; they correspond to unions
of some three-dimensional cells in A. Two surfaces of

S intersect in a curve, and intersecting a third gives a
set of discrete points, which are vertices of A. Since
these are bounded-degree algebraic surfaces, this set of
vertices has a size which is upper-bounded by a constant.
If the optimum z is determined by three objects, it must
occur at one of these vertices, otherwise, it is defined by
one or two objects and can be found using brute force.
(It can be shown that the optimum can not be defined
by more than three objects.) This is enough to achieve
a running time of O(n3 log n): compute all vertices, and
then sort them by z coordinate. After that, do binary
search using the decision procedure.

To speed this up, we need to avoid enumerating all
vertices of A, which means we can’t afford to find all
intersections. Instead, we wish to do a binary-like search
on the z values that we would obtain from the enu-
meration of triples of surfaces of S, without actually
enumerating them all. We first pick a random subset of
all of those triples: each triple is picked with probabil-
ity 1/n, so the expected sample size is quadratic. For
each chosen triple, we compute the relevant arrangement
vertices and collect their z values. This gives us a set Z
of z values, whose expected size is quadratic. Thus, Z
partitions the set of O(n3) candidate z values into O(n2)
intervals, with the largest interval containing O(n log n)
values in expectation. We can afford to do a binary
search on Z, which will narrow it down to a single inter-
val I = [z0, z1], and then enumerate all vertices within
that interval.

We now sketch how to enumerate every vertex in I.
Pick a surface s from S. Intersecting s with all other
surfaces in S produces a collection of curves in s forming
an arrangement. We find the vertices of this arrangement
whose z coordinate lie in [z0, z1] by using a “plane” sweep
from z0 to z1, in O((ks + n) log n) time, where ks is
the number of vertices found. Repeating this for all
surfaces s produces the list of all the vertices of A lying
in the slab [z0, z1] in time O((n2+

∑
ks) log n), where we

already observed that
∑

ks is O(n log n), in expectation.
Performing a binary search on this set identifies the
critical value of z in time O(n2 log2 n), as claimed.

References

[AAF10] B. Aronov, T. Asano, and S. Funke. Optimal
triangulations of points and segments with Steiner
points. Int. J. Comput. Geom. Appl., 20(1) 89–104, ’10

[AY13] B. Aronov and M. Yagnatinsky. How to place a
point to maximize angles. CCCG 2013, pp. 259–263;
see also http://arxiv.org/abs/1310.6413.

[AY13fw] B. Aronov and M. Yagnatinsky. A simple way
to place a point to maximize angles; presented at
FWCG ’13 ; http://www-cs.engr.ccny.cuny.edu/

~peter/fwcg13/abstracts/m_yagnatinski.pdf.

3

CG:YRF, Kyoto, Japan, June 8-11, 2014

Linear Space Adaptive Data Structure for Planar Range Reporting

Ananda Swarup Das ∗ Prosenjit Gupta†

Abstract

Let S be a set of n points on an n×n integer grid. The
maximal layer of S is a set of points in S that are not
dominated by any other point in S. Considering Q as
an axes-parallel query rectangle, we design an adaptive
space efficient data structure using layers of maxima
(iterative maximal layers) for reporting the points in
Q ∩ S. Our data structure needs linear space and can
be queried in time O(logε n + A logε n + k). Here A
is the number of layers of maxima with points in the
query rectangle, k the size of the output and ε is a small
arbitrary constant in the range of (0, 1). Also, A ≤ k.
In the worst case, the query time of our data structure is
O(k logε n + k). Our model of computation is the word
RAM with size of each word being Θ(log n).

1 Introduction

In this work, we study the problem of orthogonal
range searching for planar points. As stated in [4],
intuitively, an adaptive algorithm is the one which
enforces its running time to be small for easier instances
of the problem while allowing the run time to be large
for difficult instances. Thus, an adaptive algorithm
focuses on the special instances (say sortedness of the
data for example) and performs better for the special
cases. For a concrete example, consider the problem of
computing the maximal layer for a planar point set. Let
p = (px, py) and q = (qx, qy) be two points in R2 with
distinct coordinates. The point p dominates q if qx < px
and qy < py. Given a point set, the maximal layer is
the subset of the points that are not dominated by any
other point in the set. It is known that the maximal
layer for a point set can be computed in O(n log n)
time. However, if the points are already sorted in
non-increasing order of their x-coordinates, then one
can traverse the point set from left to right. The first
point (the one with the maximum x-coordinate) is
sure to be a maximal point. The next point (the one
with the second most maximum x-coordinate) will
also be a maximal point if its y-coordinate is greater
than the y-coordinate of the last discovered maximal

∗Defended Ph.D. thesis on 13th November 2013 at Interna-
tional Institute of Information Technology, Hyderabad, India,
anandaswarup@gmail.com
†Department of Computer Science and Engg. Heritage Insti-

tute of Technology Kolkata, India, prosenjit gupta@acm.org

point. Thus, if the data is already sorted, the maximal
layer for the data set can be found in O(n) time.The
previous and the only known adaptive data structure
for the problem of orthogonal planar range searching
[1] solve the problem in pointer machine model. Our
model of computation is the word RAM with size of
each word equal to Θ(log n). Our proposed algorithm
decomposes the point set into maximal layers and can
be queried in time O((1 + A) logε n + k) where A is the
number of layers of maxima with points in the query
rectangle, k the size of the output and ε is a small
arbitrary constant in the range of (0, 1). Also, A ≤ k.
Thus, if A = O(k

logε n), our algorithm has a query time

of O(logε n + k). The proposed data structure needs
linear space. In the worst case that is when A = O(k),
our query algorithm has a run time of O(k logε n + k)
which is at par with the performance of the best known
linear space data structure of [3].

1.1 Layers of Maxima

p(3)

p(4)
p

S
i+1

Si
S

i−1

p(2)

p(1)

Figure 1: The staircase like chains are the maximal lay-
ers. For any point p in a layer, we maintain four pointers
for the point. We call them navigational pointers.

Layers of maxima as defined in [2] is the iterative
lists of maximal points discovered as follows: Find the
maximal points for the set S. Denote the set of these
maximal points as S1. Remove these maximal points
from S and then find the maximal points in the remain-
ing set. Denote the new set of maximal points as S2.
Iterate until the set S is empty. The iteration index i
at which a point p becomes a maximum point is defined
to be its layer. See Figure 1. It should be noted that
for each layer, the points can be arranged in increasing
order of their x-coordinates and can be joined by using
alternate horizontal and vertical segments such that the

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

4

3rd Computational Geometry Young Researchers Forum, 2014

layers are disjoint as shown in Figure 1. We will use the
iteration indices to distinctly denote the layer indices.

1.2 The Range Successor Problem

The range successor problem is defined as “Given a set
S of n points in R2, preprocess it into a data structure
such that given a query Q = (−∞, a] × [c, d], we can
report the point with the largest x coordinate in S ∩Q”.
It is known from Theorem 1 of [5] that the points of the
S can be preprocessed into a data structure of size O(n)
to answer range successor queries in time O(logε n).

2 The Data Structure and the Query Algorithm

p

p1

p2

S Sii+1

Figure 2: The navigational pointers for the point p in
Si will point to the points p1 and p2 of the layer Si+1.
Both these points are outside the query rectangle. Yet
the layer Si+1 intersects the query rectangle and has a
point in the query rectangle.

Intuitively, our algorithm for reporting the points in
Q is as simple as scanning some arrays that store the
points of the maximal layers for the point set S. The
details follow. We compute the points of S in layers of
maxima. For each point p in Si, we maintain four nav-
igational pointers respectively pointing to (i) the point
p1 which is the first point above p in Si+1; (ii) the point
p2 which is the first point below p in Si+1; (iii) the
point p3 which is just above p in Si−1 and (iv) the point
p4 which is just below p in Si−1. See Figure 1. We
then construct four range successor data structures of
[5] to report the extreme point in any three sided or-
thogonal query rectangle. It must be noted that each
layer of maxima is stored as an array and the points
are stored in decreasing order of their y-coordinates.
The layer index m of a layer Sm is used to distinctly
denote the corresponding array Am storing its points.
Any layer of maxima can enter a query rectangle by
intersecting the upper horizontal boundary or the left
vertical boundary. Similarly, it can exit a query rect-
angle by intersecting the lower horizontal boundary or
the right vertical boundary. Given a query rectangle
Q = [a, b] × [c, d], we find the point with maximum x-
coordinate in (−∞, b]× [c, d]. Let the point p reported
in previous step belong to the layer Si. In this paper,
we explain our algorithm assuming the layer Si enters

Q by intersecting the upper horizontal boundary and
exits by intersecting the lower horizontal boundary of
Q. The other cases can be handled similarly. Traverse
the layer Si starting from p and report the points that
are in Q. Next, we will traverse the layers that are in-
tersecting Q and are to the left and right of Si. Since
the traversals are analogous, we will elaborate on how
to traverse the layers Sj : j > i. For each point p of the
layer Si, we check the points p1, p2 in Si+1. See Figure
1. If p1 ∈ S ∩Q or p2 ∈ S ∩Q for any point p of Si, we
visit the layer Si+1. Else we have either encountered a
bad layer which crosses q but do not have any point in
q or the scene is similar to the one depicted in Figure
2. Thus, when while considering the navigational point-
ers for the each point p in the layer Si, we check if the
vertical segment abutting at the point intersects the up-
per horizontal boundary of Q. If “Yes”, then this layer
is a bad layer and hence we find the point with max-
imum x-coordinate in (−∞, p1(x)] × [c, d] and traverse
the corresponding chain. Else, we find the rightmost
point p = (p(x), p(y)) in Q for the current layer. We
then find the topmost point in [a, p(x)]× (−∞, p(y)]. It
should be noted that the first point of Si+1 in Q has to
be below the point p as p has a navigational pointer to
p2 in the layer Si+1. We stop when we encounter the
first chain Sj′ : j′ > i such that j′ does not intersect
Q. Thus, we conclude:

Theorem 1 For any 0 < ε < 1, there exists a linear
space data structure for a static data set of n points
on an n× n grid such that given an axes-parallel query
rectangle q, we can report in time O(logε n+A logε n+
k), the points in S ∩Q.

References

[1] D. Arroyuelo, F. Claude, R. Dorrigiv, S. Durocher,
M. He, A. López-Ortiz, J. I. Munro, P. K. Nicholson,
A. Salinger, and M. Skala. Untangled monotonic
chains and adaptive range search. Theor. Comput.
Sci., 412(32):4200–4211, 2011.

[2] A. L. Buchsbaum and M. T. Goodrich. Three-
dimensional layers of maxima. In ESA, volume 2461
of Lecture Notes in Computer Science, pages 257–
269. Springer, 2002.

[3] T. Chan. Persistent predecessor search and orthog-
onal point location on the word RAM. In SODA,
pages 657–666, 2002.

[4] E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Adaptive set intersections, unions, and differences.
In SODA, pages 743–752, 2000.

[5] Y. Nekrich and G. Navarro. Sorted range reporting.
In SWAT, pages 271–282, 2012.

5

CG:YRF, Kyoto, Japan, June 8-11, 2014

Steiner Point Reduction in Planar Delaunay Meshes

Ahmed Abdelkader∗ Scott A. Mitchell† Mohamed S. Ebeida†

Abstract

We develop a mesh simplification strategy that pre-
serves angle bounds. Preliminary results for a sample of
planar Delaunay meshes are then presented. We demon-
strate significant improvements of Triangle output, in
terms of the number of Steiner points needed for a re-
quired angle bound, specially for large bounds where
Triangle is known to possibly perform poorly.

1 Introduction

Given an input Delaunay mesh, one goal of many mesh
improvement algorithms is to reduce the number of
points while preserving angle bounds, e.g., [1]. In
this paper, we develop a sampling-based technique that
achieves this goal by replacing a pair of neighboring
points with one point. We introduce a set of constraints
for the location of the new point based on the desired
minimum angle and compute an explicit representation
of the solution region, which we then sample from to
find the replacement point, as shown in Figure 1. This
strategy generalizes edge collapse, as it possibly com-
bines edge swaps to update the mesh after replacement.

The simplification concept we adopt is called sifting
and was first presented in [2]. While in this paper we
deal with arbitrary Delaunay meshes, e.g., output of
Delaunay Refinement (DR) [3], the study in [2] focused
mainly on explicit sizing functions and used constraints
based on separation of points and maximal coverage of
the domain. Thanks to the angle bounds, the number of
constraints is bounded by a constant and all updates are
local. With the sampling region defined, a replacement
sample can be found in constant time [4]. In the same
spirit, we call our method Delaunay Sifting (DS).

We develop the sift algorithm in Section 2. Then,
in Section 3, we show improvement of several Delaunay
meshes generated by Triangle [3]. Finally, we conclude
and highlight ongoing work in Section 4.

2 The Delaunay Sifting Algorithm

We define the sampling region as the set of valid re-
placement points that preserve the minimum angle con-
straints. We denote the minimum angle by α.

∗University of Maryland, College Park, akader@cs.umd.edu
†Sandia National Laboratories, : msebeid@sandia.gov

Figure 1: Sifting example (orange: candidate, purple:
neighbors, green: sampling region, blue: replacement
point, dashed lines: retriangulation, other: constraints).

Given an edge, removing all edges incident on its two
end points creates a gap in the mesh. The gap is a
polygonal region that can be partitioned into triangles
by connecting all vertices on the boundary to the re-
placement of the removed pair of points. Shrinking the
gap, by creating ear triangles when possible, can also
help make sifting possible. Below, we list the constraints
that limit the location of valid replacement points.

2.1 Constraint(1) - Neighboring Circumcircles

Neighboring triangular faces surrounding the gap each
gives rise to a circumcircle. By definition of the Delau-
nay triangulation, such circumcircles should be empty.

2.2 Constraint(2) - No Thin Triangles

If we think of any given gap edge as the base of a new
triangle and the sample as its apex, then we need to
enforce the lower bound for both the apex angle and
base angles. For the apex angle, we can simply require
the sample point to fall within a circle having the edge
as a chord with a central angle of 2α. As for the base
angles, the sample point has to fall in the intersection
of two half-planes, each making an angle of α with the
base.

2.3 Constraint(3) - Boundary Segments

If the candidate edge is incident on a boundary segment,
sifting must ensure the boundary face remains the same.

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

6

3rd Computational Geometry Young Researchers Forum, 2014

If only one end of the edge is a boundary vertex, it
cannot be a corner on the boundary. If the edge as a
whole is a boundary segment, it must be on a larger
segment with boundary neighbors on both sides. In
both cases, the new sample will be constrained to lie on
the larger boundary segment.

2.4 Putting It All Together

Applying all constraints simultaneously to all gap edges,
we compute the desired sampling region, as in Figure
1. We further classify these constraints into two types:
inclusive and exclusive constraints. From 2.1, we get a
set of exclusive circles and from 2.2 and 2.3, we get two
inclusive sets of arc-gons and possibly a line segment.
This reduces to a set of boolean conditions that can be
easily checked to test any candidate replacement point.

3 Implementation and Results

We opt for a maximal random sifting strategy and ap-
ply the DS operation in a uniformly random manner.
At each iteration, we generate a random permutation of
edges and attempt to sift them in that order. Whenever
sifting is successful, we start a new iteration. Otherwise,
no more sifting is possible. Other execution strategies
can be considered as future work, e.g., smallest-angles
first. Random order allows us to explore different evolu-
tion paths in our experiments, as we seek the minimum
possible number of points, and it also has proven ad-
vantages, from an efficiency standpoint. In addition,
choosing replacement points randomly preserves desir-
able spectral properties of the mesh, e.g., blue noise.

In Figure 2, we show a sample of results for our exper-
iments with planar meshes. For each model, we show
the input domain, the output of triangle -q351 and
the sifted mesh. For each mesh, we indicate the num-
ber of sample points and the sifting ratio achieved. The
sifting ratio is defined as the ratio between the reduced
number of points and the original number of points. Ta-
ble 1 shows a summary of more settings.

4 Conclusions and Future Work

Our current implementation can perform a few thou-
sand DS attempts per second. The total number of at-
tempts for a given mesh was observed to be linear in the
number of edges. Equivalently, it is linear in the number
of vertices when taking into account the minimum angle
constraints, which bound the degree of vertex connectiv-
ity. A slight decrease in the median of angles was also
observed. Currently, we are working on extensions to
curved surfaces and the derivation of analytical models
of both improvement and convergence.

1Generate a Delaunay mesh with angles no less than 35 ◦.

./triangle -q 20 30 35
B5 71 139 17% 197 29% 326 43%
Spiky 229 330 54% 505 59% 715 56%
Dolphin 260 471 31% 865 49% 3409 78%

Table 1: Size of Triangle outputs and achievable sifting.

(a) B5 (71) (b) Triangle (326) (c) Sifted (43%)

(d) Spiky (229) (e) Triangle (715) (f) Sifted (56%)

(g) Dolphin (260) (h) Triangle (3409) (i) Sifted (78%)

Figure 2: Model, triangle -q35 and sifted meshes.

References

[1] Alper Üngör. Off-centers: A new type of steiner points
for computing size-optimal quality-guaranteed delaunay
triangulations. In LATIN 2004: Theoretical Informatics,
pages 152–161. Springer, 2004.

[2] Mohamed S Ebeida, Ahmed H Mahmoud, Muhammad A
Awad, Mohammed A Mohammed, Scott A Mitchell,
Alexander Rand, and John D Owens. Sifted disks. In
Computer Graphics Forum, volume 32, pages 509–518.
Wiley Online Library, 2013.

[3] Jonathan R Shewchuk. Delaunay refinement algorithms
for triangular mesh generation. Computational geometry,
22(1):21–74, 2002.

[4] Mohamed S Ebeida, Andrew A Davidson, Anjul Patney,
Patrick M Knupp, Scott A Mitchell, and John D Owens.
Efficient maximal poisson-disk sampling. In ACM Trans-
actions on Graphics (TOG), volume 30, page 49. ACM,
2011.

7

CG:YRF, Kyoto, Japan, June 8-11, 2014

Constraint-based surface mapping via hyperbolic orbifold metrics

Alex Tsui∗

Abstract

We present a novel method for constructing a min-
imally distorting surface-to-surface map that is con-
strained by open curve landmarks with distinguished
endpoints. The method is based on harmonic relaxation
over a hyperbolic metric in which an optimal diffeomor-
phism uniquely exists, and the resulting maps are able
to match point landmark and curve landmark endpoints
exactly while interior curve points are configured in an
optimal way. We apply our method to three diverse
datasets of biological manifolds, including human faces,
human cortical surfaces, and monkey skulls, and we an-
alyze the behavior of the maps in terms of overall geo-
metric distortion, accuracy of landmark matching, and
ability to discriminate between classes of surfaces.

1 Introduction

In biomedical imaging, an important application is the
analysis of anatomical manifolds. For example, we ex-
tract brain meshes from different MRI head scans and
compare their geometry. To compare meshes, we need
a map that assigns points on one surface to correspond-
ing points on the other. In addition, there are sets of
points on each mesh called anatomical landmarks that
should be respected by the map. Our goal is to com-
pute this constrained map in a distortion-minimizing
manner. Suppose your input is two topologically equiva-
lent triangulated surfaces with landmark curves and the
problem is to build a map between them that respects
the landmarks yet minimizes distortion. One prior ap-
proach [7] treats each surface as if it had boundaries
at the landmark curves and then map these secondary
surfaces. The surfaces are identified, and the vertices
are diffused to reduce distortion, with landmark points
being constrained to slide along the boundary. Our ap-
proach improves on this by enforcing that curve land-
mark endpoints are mapped exactly.

2 Method

Our method for mapping between surfaces S1 and S2 ex-
tends prior work [9]. We compute a discrete conformal
map of the surface with landmark curves to hyperbolic

∗Department of Computer Science, University of California
Davis, atsui@ucdavis.edu

Figure 1: Brains have anatomical landmarks which
must be mapped in correspondence (the frontal, central,
and temporal sulci are major brain landmarks shown
in red, green, and blue, respectively). We conformally
map them to orbifolds (i.e. hyperbolic surfaces with
cone singularities at landmark endpoints). The pants
above show half of the doubled surface that forms this
orbifold. An initial map between orbifolds keeps land-
marks in correspondence (white points indicate curve
landmark endpoints that are mapped exactly), and min-
imizing Dirichlet energy obtains a minimum distorting
map that maintains correspondence.

orbifold by solving an instance of the discrete conformal
mapping problem given in [1]. The orbifold is formed by
cutting the mesh along the landmark curves and gluing
two copies of the surface along the boundaries, result-
ing in a high-genus surface that admits the prescribed
hyperbolic orbifold metric with cone singularities at the
curve landmark endpoints. We then compute an arbi-
trary continuous, bijective initial map from S1 to S2.
Finally, we apply the theory [3] that there is a unique
map that minimizes Dirichlet energy, approximated by

E(f) =
1

2

∑

eij

wij(f(vj)− f(vi))
2, (1)

diffusing the vertex positions by gradient descent to
minimize this energy. The gain from this method is
in the added control of this diffusion: landmark curve
endpoints must correspond precisely, landmark curves

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

8

3rd Computational Geometry Young Researchers Forum, 2014

correspond with landmark curves with freedom to slide
between endpoints, and surface interior points can move
freely on the surface to reduce distortion.

3 Results

We have a dataset of 100 brain meshes extracted from
MRI, 20 scanned monkey skulls, and 900 scanned faces.
We ran initial experiments on the brains and faces and
plan future work with skulls. We compare our method,
HyperbolicOrbifold which fixes curve landmark end-
points, with the HyperbolicPants method [7], which
does not, and the ConformalLeastSquares method [5],
which computes an optimal spherical conformal map.
We compare how much distortion each method produces
in the maps (see Table 1) and how well landmarks are
matched (see Table 2). Dilatation, defined by the ratio
of the large and small singular values of of the Jaco-
bian of the map from original to hyperbolic surface Γ/γ
(see [6] for equations), estimates local angle distortion
(1 being ideal/conformal). Elastic energy [5], defined as

L(f) =
∑

eij∈E

(||f(vj)− f(vi)||
||vj − vi||

− 1

)2

, (2)

estimates deviation from isometry (0 being ideal). This
suggests that the hyperbolic methods induce greater dis-
tortion but have greater landmark accuracy than the
conformal method, and with fixed endpoints, landmark
matching can be improved with slightly more distortion.

Method Dilatation Elastic energy

HyperbolicOrbifold 1.761 (0.41) 198297 (48032)
HyperbolicPants 1.726 (0.37) 165031 (52379)
ConformalLeastSquares 1 45764 (13565)

Table 1: Average brain distortion behavior across meth-
ods (standard deviation in parentheses).

Method Min Mean Max
HyperbolicOrbifold 0.0 0.0 0.0
HyperbolicPants 0.072 1.14 12.9
ConformalLeastSquares 2.95 12.8 60.8

Table 2: Average brain endpoint mismatch behavior.
Units are in millimeters.

We tried to use distortion as an index of shape dif-
ference to perform clustering on the mesh datasets. For
instance, do maps from young brains to old brains on
average induce more distortion than maps between two
young brains? Table 3 gives an initial look at brains.

3.1 Issues

The method for computing hyperbolic metrics is highly
dependent on condition of the mesh. Prior work [8]

Group Dilatation Elastic energy
Young 1.747693 (0.55) 197462 (87909)
Old 1.77486 (0.44) 199206 (79258)

Table 3: Average distortions (with standard deviations
in parentheses) for maps from a representative young
brain to other young and old brains.

notes that near-singular obtuse triangles and can be
handled by flipping edges, but this does not address
boundary edges. To some extent, we can perform edge
flips to fair the mesh [2], but in more extreme cases,
mesh points must be manually adjusted. This can be
time-consuming as landmarks are specified as sequences
of vertices and care must be taken to preserve their in-
tegrity between edits. We note that an alternate formu-
lation of discrete conformality [4] attempts to address
the need to perform such ad-hoc edge flips.

References

[1] A. Bobenko, U. Pinkall, and B. Springborn. Discrete
conformal maps and ideal hyperbolic polyhedra. pages
1–49, 2010.

[2] N. Dyn, K. Hormann, S.-J. Kim, and D. Levin. Opti-
mizing 3d triangulations using discrete curvature analy-
sis. Mathematical methods for curves and surfaces, pages
135–146, 2001.

[3] J. Eells and J. Sampson. Harmonic mappings of rie-
mannian manifolds. American journal of mathematics,
86:109–160, 1964.

[4] X. Gu, F. Luo, J. Sun, and T. Wu. A discrete uniformiza-
tion theorem for polyhedral surfaces. 2013. preprint,
arXiv:1309.4175 [math.GT].

[5] P. Koehl and J. Hass. Automatic alignment of genus-
zero surfaces. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(3):466–478, 2014.

[6] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe.
Texture mapping progressive meshes. Proceedings of the
28th annual conference on Computer graphics and inter-
active techniques, pages 409–416, 2001.

[7] R. Shi, W. Zeng, Z. Su, Y. Wang, H. Damasio, Z. Lu, S.-
T. Yau, and X. Gu. Hyperbolic harmonic brain surface
registration with curvature-based landmark matching. In
IPMI, pages 159–170, 2013.

[8] B. Springborn, P. Schrder, and U. Pinkall. Conformal
equivalence of triangle meshes. ACM Transactions on
Graphics, 27(3), 2008.

[9] A. Tsui, D. Fenton, P. Vuong, J. Hass, P. Koehl,
N. Amenta, D. Coeurjolly, C. DeCarli, and
O. Carmichael. Globally optimal cortical surface
matching with exact landmark correspondence. In
Information Processing in Medical Imaging, pages
487–498. Springer, 2013.

9

CG:YRF, Kyoto, Japan, June 8-11, 2014

Efficient and Robust Persistent Homology for Measures

Mickaël Buchet∗ Frédéric Chazal† Steve Y. Oudotl‡ Donald R. Sheehy§

Abstract

A new paradigm for point cloud data analysis has
emerged recently, where point clouds are no longer
treated as mere compact sets but rather as empirical
measures. A notion of distance to such measures has
been defined and shown to be stable with respect to
perturbations of the measure. This distance can easily
be computed pointwise in the case of a point cloud, but
its sublevel-sets, i.e., the regions where the measure is
below a specified value, which carry the geometric infor-
mation about the measure, remain hard to compute or
approximate. This makes it challenging to adapt many
powerful techniques based on the Euclidean distance to
a point cloud to the more general setting of the distance
to a measure on a metric space.

We propose an efficient and reliable scheme to approx-
imate the topological structure of the family of sublevel-
sets of the distance to a measure. We obtain an algo-
rithm for approximating the persistent homology of the
distance to an empirical measure that works in arbitrary
metric spaces. Precise quality and complexity guaran-
tees are given with a discussion on the behavior of our
approach in practice.

1 Introduction

Given a sample of points P from a metric space X, the
distance function dP maps each x ∈ X to the distance
from x to the nearest point of P . The related fields of
geometric inference and topological data analysis have
provided a host of theorems about what information
can be extracted from the distance function, with a
particular focus on discovering and quantifying intrin-
sic properties of the shape underlying a data set [3, 8].
An essential tool in topological data analysis is persis-
tent homology, and the most common goal is to apply
the persistence algorithm to distance functions, either in
Euclidean space or in metric spaces [2, 6, 11]. From the
very beginning, this line of work encountered two major
challenges. First, distance functions are very sensitive
to noise and outliers (Fig. 1 left). Second, the repre-
sentations of the sublevel sets of a distance function
become prohibitively large even for moderately sized

∗Inria Saclay Île-de-France, mickael.buchet@inria.fr
†Inria Saclay Île-de-France, frederic.chazal@inria.fr
‡Inria Saclay Île-de-France, steve.oudot@inria.fr
§University of Connecticut, don.r.sheehy@gmail.com

data. These two challenges led to two distinct research
directions. First, the distance to the data set was re-
placed with a distance to a measure induced by that
data set [4]. The resulting theory is provably more ro-
bust to outliers, but the sublevel sets become even more
complex to represent (Fig. 1 center). Towards more
efficient representations, several advances in sparse fil-
trations have led to linear-size constructions [5, 9, 10],
but all of these methods exploit the specific structure
of the distance function and do not obviously general-
ize. In this work, we bring these two research directions
together by showing how to combine the robustness of
the distance to a measure, with the efficiency of sparse
filtrations.

2 Contributions

Originally introduced in Euclidean spaces [4], the dis-
tance to a measure can be defined on any metric space
X and for any mass m ∈ [0, 1]. In practice, the data is
given as a finite point set P , and we use the empirical
measure on this space µP , which gives (1) where k = mn
is an integer and pi(x) is the ith nearest neighbor of x
in P . The more general definition can be found in [1].

dµP ,m(x) =

√√√√1

k

k∑

i=1

dX(x, pi(x))2 (1)

The distance to a measure is known to be stable with
respect to the Wasserstein distance in Euclidean spaces.
This can be generalised to any metric space and for µ
and ν two probability measures.

||dµ,m − dν,m||∞ ≤
1√
m
W2(µ, ν) (2)

The stability makes the distance to a measure usable
for inference purposes. However, the computation of
persistence diagrams requires the use of sublevel sets
filtrations. While the sublevel sets of the distance to an
empirical measure can be described by a union of nΘ(d)

balls in Euclidean spaces and approximation using the
witnessed k-distance dWµP ,m is possible [7], this can not
be extended to other metric spaces. We provide a new
approximation function dPµP ,m:

dPµP ,m(x) = min
p∈P

√
dµP ,m(p)2 + dX(x, p)2 (3)

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

10

3rd Computational Geometry Young Researchers Forum, 2014

Figure 1: From left to right, two sublevel sets for dP , dµP ,m, and dPµP ,m with m = 3
|P | . The first is too sensitive to noise

and outliers. The second is smoother, but substantially more difficult to compute. The third is our approximation,
which is robust to noise, efficient to compute, and compact to represent.

The sublevel sets of this function are a union of O(|P |)
balls, the same size as the witnessed k-distance. More-
over, the approximation guarantees, independent of the
input, are the same when both functions are defined.

1√
2
dµP ,m ≤ dPµP ,m ≤

√
3dµP ,m if X is Euclidean (4)

1√
2
dµP ,m ≤ dPµP ,m ≤

√
5dµP ,m otherwise (5)

The result of the approximation is a power distance.
Its sub-level sets are unions of balls with different radii.
The persistence of these kinds of functions can be com-
puted using a weighted variant of the usual Vietoris-
Rips filtration. However, the complexity problem is
the same as the one of the Vietoris-Rips complex. We
propose a linear-size approximation to the weighted
Vietoris-Rips filtration for intrinsically low-dimensional
metric spaces that comes with quality guarantees.

As long as the weights in the power distance are t-
Lipschitz with respect to the ambient metric, it gives
a multiplicative interleaving between the two Vietoris-
Rips complexes and thus a stability result for the per-
sistence diagrams in logarithmic scale. Writing dlnB the
bottleneck-distance in loragithmic scale and D,D′ the
persistence diagrams of the weighted Vietoris-Rips fil-
tration and its sparsification respectively, we obtain for
an arbitrary sparsification factor ε < 1,

dlnB (D,D′) ≤ ln

(
1 +
√

1 + t2ε

1− ε

)
(6)

The combination of the approximation of the dis-
tance to a measure and the sparsification of the weighted
Vietoris-Rips complex provides a complete approxima-
tion scheme for computing the persistence diagram of
the distance to an empirical measure. Along with the

theoretical guarantees, it provides the first practical al-
gorithm to infer the persistence from a point cloud using
the distance to a measure and real data in a reasonable
time complexity. Experimentation provide good results
and a significant reduction of computation time.

References

[1] Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Don-
ald R. Sheehy. Efficient and robust topological data analysis
on metric spaces. arXiv preprint arXiv:1306.0039, 2013.

[2] Gunnar Carlsson. Topology and data. Bull. Amer. Math.
Soc., 46:255–308, 2009.

[3] Frédéric Chazal, David Cohen-Steiner, and André Lieutier.
A sampling theory for compact sets in euclidean space. Dis-
crete & Computational Geometry, 41(3):461–479, 2009.

[4] Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot.
Geometric inference for probability measures. Foundations
of Computational Mathematics, 11(6):733–751, 2011.

[5] Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing
topological persistence for simplicial maps. arXiv preprint
arXiv:1208.5018, 2012.

[6] Herbert Edelsbrunner, David Letscher, and Afra Zomoro-
dian. Topological persistence and simplification. In Founda-
tions of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 454–463. IEEE, 2000.

[7] Leonidas Guibas, Dmitriy Morozov, and Quentin Mérigot.
Witnessed k-distance. Discrete & Computational Geometry,
49(1):22–45, 2013.

[8] Partha Niyogi, Stephen Smale, and Shmuel Weinberger.
Finding the homology of submanifolds with high confidence
from random samples. Discrete & Computational Geometry,
39(1-3):419–441, 2008.

[9] Steve Y. Oudot and Donald R. Sheehy. Zigzag zoology: Rips
zigzags for homology inference. In Proceedings of the 29th
annual Symposium on Computational Geometry, pages 387–
396, 2013.

[10] Donald R. Sheehy. Linear-size approximations to the
Vietoris-Rips filtration. Discrete & Computational Geom-
etry, 49(4):778–796, 2013.

[11] Afra Zomorodian and Gunnar Carlsson. Computing per-
sistent homology. Discrete & Computational Geometry,
33(2):249–274, 2005.

11

CG:YRF, Kyoto, Japan, June 8-11, 2014

Handling column accumulation in persistent homology computations.

Hubert Wagner∗

Abstract

Persistent homology is one of the most practical tools in
computational topology. However, to be widely applied
in real world situations, it must handle large amounts
of data, counted in billions (109) of cells and more. We
outline a new technique which significantly enhances
practical efficiency of the standard matrix reduction al-
gorithm for computing persistent homology and its re-
cent variations. To this end we engineered a new data-
structure an to efficiently perform column accumula-
tion. Our method is validated experimentally using the
PHAT library.

Introduction. Persistent homology is becoming one of
the most widely applicable tools in the emerging field of
computational topology. For an introduction to the the-
ory and applications, please see a recent survey [5] and
the references within. Persistent studies the evolution of
homology, or holes, of sublevel sets of a function defined
on this object. Intuitively, we observe how these holes
are born and consecutively die. The longer the lifetime,
the more persistent a given feature is.

Contribution. We focus on column accumulation in
matrix reduction algorithm for computing persistent ho-
mology. In particular, we show that careful implemen-
tation of this operation can yield significant speedups
in practice. The technique we propose is based on our
new data-structure, called a BitTree. It was engineered
specifically for this task, but in fact it is a general-
purpose bitset implementation. The details of this data-
structure will be published separately.

Unlike usual bitset implementations, BitTree sup-
ports fast insertion, deletion, iteration as well as max-
imum and emptiness queries in worst case O(log64N)
time, for subsets of {0, 1 . . . N−1}. Importantly, it only
requires ≈ 2N bits of memory. While van Emde Boas
trees [3] achieve sub-logarithmic times of crucial oper-
ations, our synthetic test show that solution is faster
in most practical situations. In this extended abstract,
we show that incorporating BitTree into a state-of-the-
art library for persistent homology computations yields
significant efficiency improvement.

∗Jagiellonian University, Krakow, Poland, hub.wag@gmail.com.
Research supported by the Foundation for Polish Science IPP
Programme ”Geometry and Topology in Physical Models”.

Algorithm. The standard algorithm for persistent ho-
mology reduces an ordered boundary matrix of the input
complex [4]. The matrix encodes the boundary relations
between cells of different dimensions, which build the
complex. This boundary matrix is usually sparse and
stored as an array of lists. Each list contains the indices
of non-zero entries of a single column.

The matrix is reduced by performing left-to-right col-
umn additions, to remove all collisions. A collision oc-
curs if two columns have the same lowest nonzero posi-
tion, called lowest-ones. By definition, a reduced matrix
has no collisions. Lowest ones of a reduced matrix fully
encode the information about persistent homology.

Recently, a number of modifications were introduced,
aiming at improving the efficiency of the original algo-
rithm [2, 1]. The various, orthogonal, techniques are
listed below.

1. Column storage and accumulation:

• list: uses parallel scan to merge two linked-
lists in linear time [4]. The non-zero entries of
each column of a matrix are stored in a linked-
list.

• vector: same as above, but uses automatically
growing vectors [3] for efficiency [6] which are
faster in practice.

• BST: uses a binary search tree such as red-
black tree [3] to accumulate columns [2]. Un-
like [2], we store columns as vectors.

• BitTree: same as above but uses the BitTree
data-structure. See Alg. 1, especially lines 9
to 15 and 21.

2. Twist:

• Y: performs the twist optimization [2]. The
columns are reduced in decreasing order of di-
mension (of the corresponding cell), see Alg. 1,
line 4. Moreover, at line 18 point we know that
the column with index I.max() represent the
boundary of a cycle. Therefore, we can set this
column to zero, and avoid reducing it later.

• N: standard algorithm [4]. All columns are
explicitly reduced, which can be costly.

3. Dualization: computing persistent cohomology is
equivalent in practice. However, it can be more ef-
ficient, especially for so-called Rips complexes with

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

12

3rd Computational Geometry Young Researchers Forum, 2014

dimension cap [1]. This is done as a preprocessing,
essentially transposing the input matrix. The last
example in Table 1 uses this technique.

Implementation. Algorithm 1 uses the twist optimiza-
tion and BitTree to handle column additions. Impor-
tantly, directly translating the pseudo-code to a lan-
guage like C++ yields an efficient solution.

Experiments. To assess performance, we use the
PHAT (Persistent Homology Algorithm Toolkit) li-
brary [7], which is a state-of-the-art C++ library for
persistent homology computations and implements var-
ious techniques. Most of the used datasets are available
as part of the library. Table 1 shows experimental re-
sults of the matrix reduction for a range of examples.
Different combinations of techniques the used.

While the twist technique is not our contribution, we
note that it can increase the efficiency a hundred times
and is very simple to implement. The dualization tech-
nique is very useful in certain cases. Importantly, it im-
proved the scaling of the last example from quadratic
to roughly linear in the number of cell of the complex.

As for our contribution, using the proposed BitTree
technique is always the most efficient choice. The
speedup factor ranged from 1.3 to 12.1. We suspect that
it would be more significant for more complicated exam-
ples. Apart from the performance gains, using BitTree
reduces the number of control parameters to be tuned
by a user. For this reason, it was incorporated into the
PHAT library as the default column addition strategy.
Using all the techniques in conjunction gives a speedup

Table 1: Comparison of reduction time for different
strategies.

dataset nr cells column twist time[s]

mixed 16M

BitTree Y 1.1
BST Y 1.5
list Y 23.1

BitTree N 72.1
list N 2523.6

neptune 56M
BitTree Y 15.6

BST Y 21.6
vector Y 3354.3

high-genus 2.7M
BitTree Y 35.6

BST Y 165.0
vector Y 413.7

text-cohom 1.4M
BitTree Y 1.6

BST Y 19.4
vector Y 24.6
any N > 105

reaching the order of thousands, compared to the stan-
dard implementation. While none of these techniques
improves the theoretical worst-case complexity, they are
important in practical applications of persistent homol-
ogy.

References

[1] U. Bauer, M. Kerber, J. Reininghaus, Clear and Com-
press: Computing Persistent Homology in Chunks,
TopoInVis, 2013.

[2] C. Chen, M. Kerber, Persistent homology computation
with a twist, 27th European Workshop on Computa-
tional Geometry (EuroCG 2011), 2011.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,
Introduction to Algorithms, Third Edition, MIT Press,
2009.

[4] H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification, Discrete &
Computational Geometry, 28(4):511–533, 2002.

[5] H. Edelsbrunner, D. Morozov, Persistent Homology:
Theory and Practice, Congress of Mathematics Krakow,
27 July 2012, preprint

[6] H. Wagner, C. Chen, E. Vuçini, Efficient computa-
tion of persistent homology for cubical data, Topological
Methods in Data Analysis and Visualization II, pp. 91–
106, 2012.

[7] PHAT: Persistent Homology Algorithm Toolkit,
https://code.google.com/p/phat/

Algorithm 1 Compute reduced matrix using BitTree.

Input: Ordered binary matrix M of size N ×N , maximum
dimension D

Output: Reduced binary matrix R
1: L = zero array of size N
2: R = vector of N empty columns
3: I = BitTree representing an empty column of size N
4: for d = D to 1 do
5: for i = 1 to N do
6: if M [i] has dimension d then
7: copy M [i] to I
8: while I 6= ∅ and L[I.max()] 6= 0 do
9: lowest-one = I.max()

10: colliding-column = R[L[lowest-one]]
11: for e in colliding-column do
12: if I.member(e) then
13: I.erase(e)
14: else
15: I.insert(e)
16: if I 6= ∅ then
17: L[I.max()] = i
18: R[I.max()] = zero column
19: for e in I do
20: R[i].add(e)
21: I.clear()
22: return R

13

CG:YRF, Kyoto, Japan, June 8-11, 2014

Inverse-Beacon Guarding

Michael Biro∗

Abstract

We consider an extension of beacon guarding, called
inverse-beacon guarding. Beacons are points in a given
polygon P that can be activated to effect a “magnetic
pull” on objects in the polygon. Upon activation of a
beacon b, an object p in P moves in order to greedily
minimize its Euclidean distance to b. We say that b
attracts p if p’s greedy movement will eventually cause
it to reach b. An inverse-beacon guard is a point in a
polygon that guards with the notion of “inverse attrac-
tion”, that is, a point b in a polygon P is inverse-beacon
guarded by a point p if a beacon placed at b attracts p.
We show that inverse-beacon guarding is computation-
ally difficult and give art gallery type bounds on the
number of guards sometimes necessary and always suf-
ficient to inverse-beacon guard a polygon.

1 Introduction

The beacon model in this paper has been studied in a
number of previous works. In previous papers the focus
was on using beacons to aid routing between any two
given points of P , as well as guarding a polygon with
beacons. Biro et. al. [1] studied the combinatorics of
beacon coverage, i.e. the minimum number of beacons
that attract all of P . In this paper we discuss the related
notion of the combinatorics of inverse-beacon coverage,
i.e. the minimum number of guards in P so that at least
one may be attracted by any beacon placement in P .

First we recall the description of beacon attraction
from [1]. In our model, a beacon can occupy a point
location in the interior or on the boundary of a polygon
P . When a beacon is activated, an object p in P moves
along a straight line toward b until either it reaches b
or makes contact with the boundary of P , ∂P . If con-
tact is made with ∂P , p will follow along ∂P as long
as its Euclidean distance to b decreases monotonically.
p may alternate between moving in a straight line path
toward b in the interior of P and following along ∂P . If
p is unable to move so that its distance to b decreases
monotonically, we say p is ‘stuck’ and has reached a lo-
cal minimum at a dead point. If p gets stuck and doesn’t
reach b, we say that b does not attract p, and we say
that a beacon b attracts p if p will eventually reach b.

∗Department of Mathematics and Statistics, Williams College
michael.j.biro@williams.edu

For the related idea of inverse-beacon coverage, we
take a polygon P , and points p and b in P . We say that
p inverse-beacon guards b if p is attracted by a beacon
placed at b.

In the sensor network view of beacon attraction, (i.e.
greedy routing of messages) guarding with beacons cor-
responds to placing stations such that at least one of
them can receive a greedily routed message from any
point in P . On the other hand, inverse-beacon guard-
ing corresponds to placing stations such that any point
can receive a greedily routed message from at least one
station.

2 Results

We begin by stating that, like many other art gallery
type problems [2, 3], inverse-beacon guarding is APX-
hard. The reduction is from the Minimum Line Cov-
ering Problem [4], and the proof may be found in [5].

Theorem 1 The Inverse-Beacon Art Gallery
Problem is APX-hard.

Next, we show bounds on the number of guards some-
times necessary and always sufficient to inverse-beacon
guard a given polygon, for simple polygons, polygons
with holes, and orthogonal polygons. Note that the
portion of the polygon that is inverse-beacon guarded
by a point is a superset of the portion of the polygon
that is guarded by the point with standard visibility
(i.e p sees q if the line segment pq lies in P). There-
fore, bounds on the number of points that are always
sufficient to visibility guard a polygon (as in [6, 7, 8])
automatically apply to inverse-beacon guards. While it
might seem that this containment would mean inverse-
beacons are significantly stronger than standard visibil-
ity, this is not the case with simple polygons where the
sometimes necessary and always sufficient bounds are
exactly bn3 c. However, the strength of inverse-beacons
appears to show in polygons with holes and orthogonal
polygons, where the best sometimes necessary bounds
found are lower than the always sufficient bounds given
by traditional visibility.

We modify the classic Chvátal comb polygon, creating
internal angles greater than 270◦, to construct a polygon
with many witness beacons that must be inverse-beacon
guarded independently. See Figure 1.

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

14

3rd Computational Geometry Young Researchers Forum, 2014

Figure 1: bn3 c = b 213 c = 7 points are necessary. The
disjoint shaded regions correspond to the points that
are attracted to beacons at the tip of each spike.

Theorem 2 bn3 c points are sometimes necessary and
always sufficient to inverse-beacon guard a simple poly-
gon with n vertices.

In previous work [1] it was conjectured that adding
holes to a polygon was actually beneficial in terms of
beacon guarding, in the sense that holes decrease the
worst-case number of guards necessary for polygons
with n vertices. The same pattern appears for inverse-
beacon guarding. We construct a polygon with n ver-
tices and a collection of double-wedge shaped holes to
show a lower bound of bn3 c − 1 guards, see Figure 2.

Figure 2: bn3 c − 1 points are sometimes necessary. The
disjoint shaded regions correspond to the points that
are attracted to beacons at the reflex vertices of each
hole.

By appending two of the modified Chvátal comb poly-
gons in Figure 1 to the polygon with holes in Figure 2,
this bound can be improved to bn−1

3 c guards.

Theorem 3 Given a polygon P with n vertices and
h ≥ 1 holes, bn−1

3 c points are sometimes necessary to

inverse-beacon guard P , while bn+h
3 c points are always

sufficient to inverse-beacon guard P .

For orthogonal polygons, we construct a two-sided
comb of ‘T’ spikes, see Figure 3. Ignoring end effects,
each spike has 12 vertices and adds an additional two
independent witness beacons. However, when n is small
there are not enough vertices to properly construct the
comb. A case analysis shows that bn+4

6 c are sometimes
necessary for all n > 14.

Figure 3: bn+4
6 c points are sometimes necessary. The

disjoint shaded regions correspond to the points that are
attracted to beacons at the far vertices of each spike.

Theorem 4 Given an orthogonal polygon P with n >
14 vertices, bn+4

6 c guards are sometimes necessary to
inverse-beacon guard P while bn4 c are always sufficient.

For orthogonal polygons and polygons with holes, we
conjecture that our sometimes necessary bounds are also
always sufficient.

References

[1] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S.
Mitchell, “Combinatorics of beacon-based routing
and coverage,” in Proc. of the 25th Canadian Con-
ference on Computational Geometry (CCCG 2013).

[2] D. Lee and A. Lin, “Computational complexity of
art gallery problems,” IEEE Transactions on Infor-
mation Theory, vol. 32, no. 2, pp. 276–282, 1986.

[3] D. Schuchardt and H. Hecker, “Two NP-hard art-
gallery problems for ortho-polygons,” Mathematical
Logic Quarterly, vol. 41, no. 2, pp. 261–267, 1995.

[4] B. Brodén, M. Hammar, and B. Nilsson, “Guarding
lines and 2-link polygons is APX-hard,” in Proceed-
ings of the 13th Canadian Conference on Computa-
tional Geometry (CCCG 2001).

[5] M. Biro, “Beacon-based routing and guarding,” Dis-
sertation, Stony Brook University, 2013.

[6] V. Chvátal, “A combinatorial theorem in plane ge-
ometry,” Journal of Combinatorial Theory, Series
B, vol. 18, no. 1, pp. 39–41, 1975.

[7] F. Hoffmann, M. Kaufmann, and K. Kriegel, “The
art gallery theorem for polygons with holes,” in Pro-
ceedings of the 32nd Annual Symposium on Founda-
tions of Computer Science (FOCS 1991).

[8] J. Kahn, M. Klawe, and D. Kleitman, “Traditional
galleries require fewer watchmen,” SIAM Journal on
Algebraic Discrete Methods, vol. 4, no. 2, pp. 194–
206, 1983.

15

CG:YRF, Kyoto, Japan, June 8-11, 2014

Hierarchical distance-based aggregation

Mukulika Ghosh∗ Nancy M. Amato∗

Abstract

Approximation is one of the key techniques used in ma-
nipulating geometric objects. Aggregation is a form of
approximation that groups objects together as a single
entity. This can improve the efficiency of future pro-
cessing, reduce complexity and generate levels of detail.
We present a general framework to aggregate nearby ob-
jects together. Grouped objects are approximated into
shapes similar to alpha shapes and reduce the space cov-
ered as compared to a convex hull approximation. As
traditional alpha shapes fail to adapt to non-uniform
inputs, we use a function to adaptively determine the
value of alpha. By varying the threshold distance that
determines object groups, an aggregation hierarchy can
be created for any environment. Our experiment shows
that the aggregates created by our method have less
approximation error than either convex hulls or typical
alpha shapes.

1 Introduction

Approximation is one of the key techniques used in ma-
nipulating geometric objects. Various approximation
methods such as decomposition [6], simplification [4]
and clustering [7] are used to improve efficiency and
reduce complexity for future applications [2, 8]. Most
approximation methods simplify large complex geomet-
ric objects.
Aggregation is a form of approximation that groups

objects together as a single entity. In this work, we
group nearby disjoint objects into a single object. Our
goal is that the structure of the aggregated object should
be as similar as possible to the original. This can be
important in applications such as motion planning in
which corridors in the space are important but would be
removed by a convex hull computation (Fig. 1). Hence,
instead of using a convex hull, we approximate the ag-
gregated shape in a manner similar to alpha shapes [3].
Traditional alpha shapes do not adapt to local varia-
tions in point density. Therefore, we use a function de-

∗Parasol Labarotory, Department of Computer Science & En-
gineering, Texas A&M University, {mghosh,amato}@cs.tamu.edu.
This research is supported in part by NSF awards CNS-0551685,
CCF-0833199, CCF-0830753, IIS-0916053, IIS-0917266, EFRI-
1240483, RI-1217991, by NIH NCI R25 CA090301-11, by DOE
awards DE-AC02-06CH11357, B575363, by Samsung, Chevron,
IBM, Intel, Oracle/Sun and by Award KUS-C1-016-04, made by
King Abdullah University of Science and Technology (KAUST).

(a) Alpha shape aggregation (b) Our aggregation

Figure 1: Aggregation of objects (shown in blue) using a
distance threshold of 30. Aggregated objects are shown
in green and the convex hulls as black boundaries.

fined on the objects’ properties to determine the alpha
adaptively for bridging the disconnected objects.
By varying the threshold distance δ that determines

object groups in the input environment, an aggregation
hierarchy can be created for the environment. This also
provides an insight how the free space is evolved in the
environment as shown in Fig. 3.
As shown in Fig. 1 (a room plan with furnitures as ob-

jects), our method (Fig. 1(b)) generates more compact
aggregated shapes with less approximation error (mea-
sured in terms of volume of free space consumed in cre-
ation of the approximates) than alpha shapes (Fig. 1(a))
or convex hulls (black boundaries). More examples may
be found in our website [1] and technical report [5].

2 Our Approach

Our hierarchical distance-based aggregation consists of
two major steps: (1) identifying the groups of nearby
objects and (2) creating an approximate shape that cov-
ers each group of objects. We present an overview of
these steps here. Algorithmic details can be found in
our technical report [5] and our website [1].
To identify the groups of nearby objects, we abstract

the environment in a graph called a neighborhood graph
where the objects correspond to vertices and weighted
edges connect neighboring objects and have weights
equal to the shortest distance between the objects. For
the implementation details of our neighborhood graph
construction method refer [5, 1]. Fig. 2(b) shows an ex-
ample of the neighborhood graph for the environment
in Fig. 2(a). For a given threshold distance δ that de-
termines proximity of the objects, the edges with weight
less than δ are collapsed such that the end-vertices are
merged to a single vertex. The resulting neighborhood
graph (Fig. 2(c)) contains the vertices that represent
the aggregated groups of models (Fig. 2(d)).

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

16

3rd Computational Geometry Young Researchers Forum, 2014

A B

C D

E

(a) Original Envi-
ronment

A B

C
D

E

1

4

8 10 7

18

9

11

(b) Original Neighborhood
Graph

A,B

E
C,D

18

11

7

10

9

8

(c) Aggregated Neighbor-
hood Graph

A B

C D

E

(d) Aggregated En-
vironment

Figure 2: An environment and corresponding neighbor-
hood graph before and after aggregation.

We use method similar to alpha shape construction
to build the approximated shapes of the aggregated ob-
jects. Instead of using a constant α throughout the
environment, we adapt α as returned by a function
called aggregate function. Aggregate function balances
the threshold distance δ with the variation in width of
the free passage between the objects bridged by the ap-
proximated shape. Hence, α is adjusted considering the
local topological variation. (For details refer [5, 1].)

3 Results

We evaluated our approach in terms of quality. For
quality we use the circularity measure that states how
close the resulting model is to a circle. It is the ratio of
the total area to the square of the total perimeter of all
objects in the environment. The circularity measure is
then normalized to that of the original environment.

As shown in Fig. 1 (the room plan), using the convex
hull as the shape descriptor of the aggregated objects re-
quires more space and sometimes results in intersection
of the resulting shapes (black boundaries in Fig. 1). The
traditional alpha shape approximation (Fig. 1(a)) fails
to include topological variation of the free space bound-
aries and creates more approximation error or wider
connections than our method (Fig. 1(b)). The blocked
space between the chairs in the dining area (right part
of room plan) in Fig. 1(a) is opened in Fig. 1(b). The
circularity measure for the environment using convex
hull approximation is 5.31, using alpha approximation is
3.40 and using our method is 2.97. More results are pro-
vided in [1, 5]. Hence our method creates more compact
connections with less approximation error as compared
to convex hull or alpha shapes.

Varying the distance threshold, creates a hierarchy of

(a) δ=40 (b) δ=50 (c) δ=60

Figure 3: Evolution of free space using hierarchy of ag-
gregation by varying distance threshold

aggregates (Fig. 3) which shows the evolution of free-
space in the environment.

4 Conclusion

This work provides a general framework to aggregate a
set of nearby disjoint objects. The algorithm includes
grouping of nearby objects based on a threshold dis-
tance and approximating the shape of the aggregated
models as determined by a function of the objects to be
merged and the threshold distance. The results validate
the algorithm and show better quality aggregation than
traditional alpha shapes and convex hulls.
This aggregation framework can be used along with

an object decomposition algorithm to manipulate envi-
ronments used in various applications including motion
planning, computer graphics and video games.

References

[1] https://parasol.tamu.edu/groups/amatogroup/research/app-
cd/aggregate/.

[2] T. Brinkhoff and H.-P. Kriegel. Approximations for a
multi-step processing of spatial joins. In IGIS’94, pages
25–34. Springer, 1994.

[3] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the
shape of a set of points in the plane. IEEE Transactions
on Information Theory, 29(4):551–559, 1983.

[4] M. Garland and P. S. Heckbert. Surface simplification us-
ing quadric error metrics. In SIGGRAPH ’97, pages 209–
216. ACM Press/Addison-Wesley Publishing Co., 1997.

[5] M. Ghosh and N. Amato. Distance-based aggregation.
Technical Report TR14-006, Parasol Lab., Dept. Comp.
Sc. & Engg., Texas A&M University, College Station,
Apr. 2014.

[6] A. Golovinskiy and T. Funkhouser. Randomized cuts
for 3d mesh analysis. In SIGGRAPH Asia 2008, pages
145:1–145:12, 2008.

[7] R. Liu and H. Zhang. Segmentation of 3d meshes through
spectral clustering. In PG 2004, pages 298–305, 2004.

[8] J. Rossignac and P. Borrel. Multi-resolution 3D approx-
imations for rendering complex scenes. Springer, 1993.

17

CG:YRF, Kyoto, Japan, June 8-11, 2014

Flipping Edge-Labelled Triangulations∗

Prosenjit Bose Anna Lubiw Vinayak Pathak Sander Verdonschot

Abstract

We initiate the study of the flip distance between two
edge-labelled triangulations of a point set or graph.
During a flip, one edge is removed and one new edge is
added. With edge labels, the new edge inherits the label
of the removed edge. We give tight worst case bounds
of Θ(n log n) on the flip distance between edge-labelled
triangulations of a convex polygon, and edge-labelled
combinatorial triangulations, in contrast to the Θ(n)
bounds for the unlabelled cases. We also prove bounds
for simultaneous flips on edge-labelled triangulations.

1 Introduction

Our paper is about reconfiguration of triangulations.
The basic operation for reconfiguring triangulations,
both in the combinatorial and the geometric setting,
is the flip operation that removes one edge of the tri-
angulation and adds the other diagonal of the resulting
quadrilateral. In order to obtain a new triangulation,
there is a constraint on the removed edge. In the geo-
metric setting a triangulation of a point set is a max-
imal set of non-crossing edges joining pairs of points.
The constraint on a flip is that the two faces incident to
the removed edge must form a convex quadrilateral. In
the combinatorial setting a triangulation is a maximal
planar graph with the clockwise order of edges around
each vertex specified. The constraint on a flip is that the
other diagonal of the quadrilateral should not already
be an edge of the triangulation.

The fundamental property of flips is that they can be
used to reconfigure any triangulation to any other tri-
angulation that has the same size and, in the geometric
case, the same point set—this last result follows from
the fact that every triangulation can be flipped to the
Delaunay triangulation.

Flips in triangulations of a convex polygon (equiva-
lently, a set of points in convex position) are especially
interesting because they correspond exactly to rotations
in a binary tree [11] and flip distance corresponds ex-
actly to rotation distance [4].

In this paper we initiate the study of edge-labelled
flips. If the edges of a triangulation are labelled and
we perform a flip, the newly added edge is assigned the

∗A full version of the paper can be found at
http://arxiv.org/abs/1310.1166.

label of the removed edge. In particular, this means
that the set of edge labels is preserved throughout any
flip sequence. In general (for point sets) it is not possi-
ble to flip between any two edge-labelled triangulations,
but this is possible for combinatorial triangulations and
for triangulations of convex polygons, the settings that
we consider in this paper. Our initial motivation was
to understand the complexity of computing the flip dis-
tance between two triangulations of a convex polygon, a
problem which is not known to be NP-complete or in P.
Is the problem difficult because we do not know which
edge flips to which edge? Having this information is the
same as having a labelling of the edges.

Background: The flip distance—the minimum num-
ber of flips to transform one triangulation to another—
is at most 6n for combinatorial triangulations [3]. For
point sets the worst case bound is Θ(n2) in general [7]
and 2n−10 for convex polygons [11]. The complexity of
computing the exact flip distance between two given tri-
angulations is open in the combinatorial setting and for
convex polygons, but was recently proved NP-hard [8, 9]
(even APX hard [9]) for general point sets and for simple
polygons [1].

The idea of performing flips in parallel was introduced
by Hurtado et al. [6], see also [5]. In the geometric set-
ting, a set of edges may be simultaneously flipped if each
edge may be flipped and no two of the edges are inci-
dent to the same face. O(log n) simultaneous flips are
sufficient and sometimes necessary to reconfigure one
triangulation of a convex polygon to another. Bose et
al. [2] explored simultaneous flips in the combinatorial
setting—in this case a simultaneous flip may be per-
formed even if some edges in the set cannot be individ-
ually flipped.

2 Our Results

We prove tight Θ(n log n) bounds on the worst-case flip
distance.

Theorem 1 Any edge-labelled triangulation of a con-
vex polygon can be flipped to any other using O(n log n)
flips and there exist two edge-labelled triangulations
that require Ω(n log n) flips to be transformed into one
another.

This contrasts with the Θ(n) bounds for unlabelled
flips [3, 11]. The extra log n factor arises from sorting-

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

18

3rd Computational Geometry Young Researchers Forum, 2014

related issues. We prove the upper bound by reducing
to the problem of sorting a list using an operation that
reverses a (possibly non-contiguous) subsequence at a
cost proportional to the minimum length of a contigu-
ous sublist containing the subsequence. Then, given two
edge-labelled triangulations, we first ignore their labels
and transform both of them using O(n) flips to a canon-
ical triangulation where all diagonals share an endpoint.
Imagining the shared endpoint to be the topmost vertex
of the polygon and reading out the labels of the diag-
onals from left to right, we get a permutation of the
labels; using our reduction on this permutation gives us
the desired flip sequence.

A special case of our model of sorting has been con-
sidered before. In particular, if we constrain the sub-
sequence we want reversed to be contiguous we get the
“length-weighted” reversals model introduced by Pin-
ter and Skiena [10], which has applications in com-
parative genomics. Our model seems more powerful
since the best-known bound for sorting in their model
is O(n log2 n). Our Ω(n log n) lower bound generalizes
theirs. Our result provides an efficient O(log n)-factor
approximation algorithm to compute the flip distance
between edge-labelled triangulations of a point set in
convex position.

Finally, we consider simultaneous flips. We prove the
following bounds.

Theorem 2 Any edge-labelled triangulation of a con-
vex polygon can be transformed into any other using
O(log2 n) simultaneous flips and there exist two trian-
gulations where Ω(log n) simultaneous flips are required.

Once again, it is interesting to contrast this with the
Θ(log n) [2] bound in the unlabelled case. This is the
most difficult result in the paper. Using ideas from the
non-simultaneous case and emulating quick sort only
gives us an upper bound of O(log3 n). To reduce it to
O(log2 n), we provide a sequence of O(log n) simulta-
neous flips for the “separation” step of quick sort, that
is, we show that given any edge-labelled triangulation,
there exists a sequence of O(log n) simultaneous flips
that puts all diagonals with a label less than n/2 on the
left half of the convex polygon and the other diagonals
on the right half. Recursing on both halves simultane-
ously gives us the desired bound.

The bounds in Theorem 1 also apply to edge-labelled
combinatorial triangulations. Once again, we first ig-
nore labels and use O(n) flips to convert both trian-
gulations into a canonical triangulation where we then
rearrange the labels. An obvious choice for the canoni-
cal triangulation is a Hamiltonian one since it can then
be treated as the union of two triangulations of a con-
vex polygon—the Hamiltonian cycle being the bound-
ary of the polygon and the diagonals inside and the di-
agonals outside forming the two triangulations. We use

a slightly different canonical triangulation, which we call
a double wheel, where we have better control over the
interactions between the boundary of the polygon and
its two sets of diagonals.

References

[1] O. Aichholzer, W. Mulzer, and A. Pilz. Flip dis-
tance between triangulations of a simple polygon
is NP-complete. In European Symposium on Algo-
rithms (ESA), volume 8125 of LNCS, pages 13–24.
Springer, 2013.

[2] P. Bose, J. Czyzowicz, Z. Gao, P. Morin, and D. R.
Wood. Simultaneous diagonal flips in plane trian-
gulations. In Proc. 17th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’06, pages
212–221, 2006.

[3] P. Bose, D. Jansens, A. van Renssen, M. Saumell,
and S. Verdonschot. Making triangulations 4-
connected using flips. Computational Geometry,
47:187197, 2014.

[4] K. Culik II and D. Wood. A note on some tree sim-
ilarity measures. Inform. Process. Lett., 15(1):39–
42, 1982.

[5] J. Galtier, F. Hurtado, M. Noy, S. Perennes, and
J. Urrutia. Simultaneous edge flipping in triangula-
tions. Int. J. Comput. Geometry Appl., 13(2):113–
133, 2003.

[6] F. Hurtado, M. Noy, and J. Urrutia. Parallel edge
flipping. In Canadian Conference on Computa-
tional Geometry, CCCG, pages 26–27, 1998.

[7] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges
in triangulations. Discrete and Computational Ge-
ometry, 22:333–346, 1999.

[8] A. Lubiw and V. Pathak. Flip distance between
two triangulations of a point set is NP-complete. In
Canadian Conference on Computational Geometry,
CCCG, pages 119–124, 2012.

[9] A. Pilz. Flip distance between triangulations of
a planar point set is APX-hard. Computational
Geometry, 14:589–604, 2014.

[10] R. Pinter and S. Skiena. Sorting with length-
weighted reversals. In Proc. 13th International
Conference on Genome Informatics, GIW ’02,
pages 173–182, 2002.

[11] D. D. Sleator, R. E. Tarjan, and W. P. Thurston.
Rotation distance, triangulations, and hyperbolic
geometry. J. Amer. Math. Soc, 1:647–681, 1988.

19

CG:YRF, Kyoto, Japan, June 8-11, 2014

Crossing numbers and characterizations of monotone drawings of Kn
∗

Martin Balko Radoslav Fulek Jan Kynčl

Abstract

In 1958, Hill conjectured that the minimum number
of crossings in a drawing of Kn is exactly Z(n) =
1
4⌊n

2 ⌋
⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
. Generalizing the result by

Ábrego et al. for 2-page book drawings, we prove this
conjecture for plane drawings in which edges are repre-
sented by x-monotone curves. We further generalize the
proof for a few other variants of the crossing number.
We also give a combinatorial characterization of several
classes of x-monotone drawings of complete graphs us-
ing a small set of forbidden configurations.

1 Introduction

In a drawing D of a graph G in the plane, the ver-
tices are represented by distinct points and each edge is
represented by a simple continuous arc connecting the
images of its endpoints. A crossing in D is a common
interior point of two edges where they properly cross
and the number cr(D) of crossings in D is called the
crossing number of a drawing D. The crossing number
cr(G) of a graph G is the minimum of cr(D), taken over
all drawings D of G. A drawing D is called simple if no
two adjacent edges cross and no two edges have more
than one common crossing. It is well known that ev-
ery drawing of G which minimizes the crossing number
is simple. We call a drawing of a graph semisimple if
adjacent edges do not cross but independent edges may
cross more than once.

According to the famous conjecture of Hill [5] (also
known as Guy’s conjecture), the crossing number of the
complete graph Kn on n vertices satisfies cr(Kn) =
Z(n), where Z(n) = 1

4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
. It has

been verified for n ≤ 12 and there are drawings of Kn

with exactly Z(n) crossings for each n. [4]

The proofs of all the results mentioned here can be
found in the full version of the paper [3].

∗The authors were supported by the grant GAČR
GIG/11/E023 GraDR in the framework of ESF EUROGIGA
program. The first and the third author were also supported by
the Grant Agency of the Charles University, GAUK 1262213,
and by the grant SVV-2013-267313 (Discrete Models and Algo-
rithms). The third author was also partially supported by ERC
Advanced Research Grant no 267165 (DISCONV). The second
author gratefully acknowledges support from the Swiss National
Science Foundation Grant PBELP2 146705.

2 Monotone crossing number of Kn

A curve in the plane is x-monotone if it is intersected
by every vertical line in at most one point. A draw-
ing of a graph G in which every edge is represented
by an x-monotone curve and no two vertices share the
same x-coordinate is called monotone. The monotone
crossing number mon-cr(G) of a graph G is the mini-
mum of cr(D), taken over all monotone drawings D of
G. The drawings of complete graphs with Z(n) cross-
ings obtained by Blažek and Koman [4] are 2-page book
drawings. In such drawings the vertices are placed on
a line l and each edge is fully contained in one of the
half-planes determined by l. Since 2-page drawings are
obviously monotone, we have mon-cr(Kn) ≤ Z(n).
Ábrego et al.[1] recently proved that Hill’s conjecture

holds for 2-page book drawings of complete graphs. We
generalize their techniques and show that Hill’s conjec-
ture holds for all monotone drawings of Kn.

Theorem 1 We have mon-cr(Kn) = Z(n) for all n.

Independently, the authors of [1] also achieved this
result [2] using the same techniques, i.e., generalizing
the proof for 2-page book drawings. The key idea of the
proof is to consider a generalized notion of k-edges, used
already in [1]. For a semisimple drawing D of Kn and
distinct vertices u and v of Kn, let γ be the oriented
arc representing the edge {u, v}. If w is a vertex of
Kn different from u and v, then we say that w is on
the left (right) side of γ if the topological triangle uvw
with vertices u, v and w traced in this order is oriented
counter-clockwise (clockwise, respectively). A k-edge,
0 ≤ k ≤ ⌊n/2⌋ − 1, is an edge {u, v} of D that has
exactly k points on the same side (left or right). Let
Ek(D) denote the number of k-edges in D.
Using a double-counting argument, it is possible to

express cr(D) in terms of Ek(D) so that, to find a lower
bound for cr(D), one can just use a lower bound for
Ek(D). However, bounds for Ek(D) which would guar-
antee cr(Kn) ≥ Z(n) do not have to hold in general.
Fortunately, it turns out that for simple monotone draw-
ings D one can find sufficiently strong bounds for the
weighted sum

∑k
i=0(k + 1 − i)Ei(D), which is usually

denoted as E≤≤k(D) [1, 2, 3]. Considering the expres-
sion of cr(D) in terms of E≤≤k(D), the following bound
implies Theorem 1.

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

20

3rd Computational Geometry Young Researchers Forum, 2014

Theorem 2 Let n ≥ 3 and let D be a semisimple
monotone drawing of Kn. Then for every k satisfying
0 ≤ k < n/2− 1, we have E≤≤k(D) ≥ 3

(
k+3
3

)
.

3 Combinatorial Characterization

We develop a combinatorial characterization of mono-
tone drawings as a generalization of order types of pla-
nar point sets. Let Tn be the set of ordered triples
(i, j, k), 1 ≤ i < j < k ≤ n, and let Σn be the set of
signatures σ : Tn → {−,+}.
Let D be a monotone drawing of the complete graph

Kn = (V,E) with vertices v1, v2, . . . , vn such that their
x-coordinates satisfy x(v1) < x(v2) < · · · < x(vn). We
assign a signature σ ∈ Σn to the drawing D according
to the following rule. For every edge e = vivk ∈ E
and every integer j, i < j < k, set σ(i, j, k) = − if the
point vj lies above the arc representing the edge e and
σ(i, j, k) = + otherwise. If σ ∈ Σn is obtained in this
way from a drawing D, then we say that σ is realized
by D.
Note that we can find a monotone drawing D realiz-

ing σ for every given σ ∈ Σn. However, this does not
have to hold if D is required to be simple or semisim-
ple. In Theorem 3 we give a full characterization of
signatures that can be realized by (semi)simple mono-
tone drawings. To prove the “if part” of Theorem 3, we
take a monotone drawing D that realizes σ and has the
minimum possible number of crossings.
For integers a, b, c, d, 1 ≤ a < b < c < d ≤ n,

signs ξ1, ξ2, ξ3, ξ4 ∈ {−,+} and a signature σ ∈ Σn, we
say that the 4-tuple (a, b, c, d) is of the form ξ1ξ2ξ3ξ4
in σ if σ(a, b, c) = ξ1, σ(a, b, d) = ξ2, σ(a, c, d) =
ξ3, and σ(b, c, d) = ξ4. For a sign ξ ∈ {−,+} we use ξ
to denote the opposite sign.

Theorem 3 A signature σ ∈ Σn can be realized
by a semisimple monotone drawing if and only if
every 4-tuple of indices from [n] is of one of the forms
++++,−−−−,++−−,−−++,−++−,+−−+,−−−+,
+++−,+−−−,−+++ in σ. The signature σ can be
realized by a simple monotone drawing if, in addition,
there is no 5-tuple (a, b, c, d, e) with a < b < c < d < e
such that σ(a, b, e) = σ(a, d, e) = σ(b, c, d) = σ(a, c, e).

Pseudolinear drawings of Kn can be characterized
similarly by further restricting the conditions on σ.

Theorem 4 A signature σ ∈ Σn can be realized by
a pseudolinear monotone drawing if and only if every
ordered 4-tuple of indices from [n] is of one of the forms
++++,+++−,++−−,+−−−,−−−−,−−−+,−−++,
−+++ in σ.

We have used Theorem 3 in a computer search to find
all simple monotone drawings of Kn, for n ≤ 10, with
minimum number of crossings. See [3].

4 Generalizations

We further strengthen Theorem 1 to more general draw-
ings of Kn. We show that mon-ocr+(Kn) = Z(n) where
mon-ocr+(Kn) denotes the smallest number of pairs of
edges that cross an odd number of times in a monotone
semisimple drawing of Kn. If we allow adjacent edges
to cross an even number of times, then the result still
remains true. The most general class of drawings for
which Theorem 1 is known to hold are so-called weakly
semisimple s-shellable drawings (see [2] and [3]).
It would be interesting to see if techniques similar to

those used in the proof of Theorem 1 can be used to
prove Hill’s conjecture for general drawings of Kn. The
same approach does not generalize to all drawings. For
example, a so-called cylindrical drawing of K10, with
crossing number Z(10), does not satisfy the lower bound
from Theorem 2.
Extrapolating the definition of E≤≤k(D), we de-

fine the number E≤≤≤k(D) :=
∑k

j=0 E≤≤j(D) =∑k
i=0

(
k+2−i

2

)
Ei(D). Then, similarly as before, we can

express cr(D) using E≤≤≤k(D). We conjecture that the
following lower bound on E≤≤≤k(D) is satisfied by all
simple drawings of complete graphs.

Conjecture 1 Let n ≥ 3 and letD be a simple drawing
of Kn. Then for every k satisfying 0 ≤ k < n/2− 1, we
have E≤≤≤k(D) ≥ 3

(
k+4
4

)
.

Conjecture 1 is stronger than Hill’s conjecture. Ac-
cording to Theorem 2 it is true for all simple monotone
drawings. All our examples of simple drawings of com-
plete graphs, including the cylindrical drawings, also
satisfy this conjecture. More details can be found in
the full version [3] of the paper.

References

[1] B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant,
P. Ramos and G. Salazar, The 2-page crossing number
of Kn, Discrete Comput. Geom. 49(4) (2013), 747–777.

[2] B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant,
P. Ramos and G. Salazar, Shellable drawings and the
cylindrical crossing number of Kn, arXiv:1309.3665v2,
2013.

[3] M. Balko, R. Fulek and J. Kynčl, Crossing numbers and
combinatorial characterization of monotone drawings of
Kn, submitted, arXiv:1312.3679v2, 2013.

[4] J. Blažek and M. Koman, A minimal problem concern-
ing complete plane graphs, in: Theory of Graphs and its
Applications, Proc. Sympos. Smolenice, 1963, 113–117,
Publ. House Czechoslovak Acad. Sci., Prague, 1964.

[5] R. K. Guy, A combinatorial problem, Nabla (Bulletin
of the Malayan Math. Soc.) 7 (1960), 68–72.

21

CG:YRF, Kyoto, Japan, June 8-11, 2014

Detecting Weakly Simple Polygons

Hsien-Chih Chang∗ Jeff Erickson∗ Chao Xu∗

Abstract

A closed curve in the plane is weakly simple if it is the
limit (in the Fréchet metric) of a sequence of simple closed
curves. We describe an algorithm to determine whether a
closed walk of length n in a simple plane graph is weakly
simple in O(n log n) time, improving an earlier O(n3)-time
algorithm of Cortese et al. [Discrete Math. 2009]. As an
immediate corollary, we obtain an algorithm to determine
whether a given n-vertex polygon is weakly simple in
O(n2 log n) time.

1 Introduction

Simple polygons in the plane have been standard objects
of study in computational geometry for decades (and in
the broader mathematical community for centuries). Many
algorithms designed for simple polygons continue to work
with little or no modification in degenerate cases, where
intuitively the polygon overlaps itself but does not cross
itself. We offer the first efficient algorithm to detect such
degenerate polygons.

Formally, a closed curve in the plane is a continuous
function P : S1 → R2. A closed curve is simple if it is
injective, and weakly simple if for any ε > 0, there is a
simple closed curve P̃ whose Fréchet distance from P is at
most ε. A recent nontrivial result of Ribó Mor [4, Theorem
3.1] (conjectured by Connelly et al. [1]) implies that a
polygon P with at least three vertices is weakly simple if
and only if, for any ε > 0, we can obtain a simple polygon
by perturbing each vertex of P within a ball of radius ε.
See Figure 1 for an example.

a

x

b c

Figure 1. ax bxcxa is weakly simple; ax bxcxax bxcxa is not.

Unfortunately, neither of these definitions imply efficient
algorithms to determine whether a given polygon is weakly
simple. Several authors have offered alternative charac-
terizations that suggest efficient algorithms; unfortunately,
none of these characterizations is consistent with the for-
mal definition. For example, Toussaint [6, 7] defined a

∗Department of Computer Science, University of Illinois at Urbana-
Champaign. {hchang17,jeffe,chaoxu3}@illinois.edu. Supported in
part by NSF grant CCF-0915519.

polygon P to be weakly simple if it has winding number ±1
and no pair of subpaths of P have a “proper crossing”. How-
ever, winding numbers are not well defined for polygons
with spurs: vertices whose two incident edges overlap. It is
not difficult to determine whether a polygon without spurs
is weakly simple in O(n) time, but determining the weak
simplicity of arbitrary polygons seems much more difficult.

In fact, we can detect weakly simple polygons (with or
without spurs) in polynomial time using an algorithm of
Cortese et al. [2] that checks whether a closed walk of
length n in a plane graph is weakly simple (in their ter-
minology, a rigid clustered cycle) in O(n3) time. If a given
polygon P contains two edges that cross, then P cannot be
weakly simple; we can detect this condition in O(n log n)
time using a standard sweep-line algorithm. Otherwise, the
image of P defines a planar straight-line graph G, whose
nodes are the distinct vertices of P, and whose edges are
maximal segments between nodes. A single node in G may
represent several coincident vertices of P. Again, G can be
computed in O(n log n) time using a standard sweep-line al-
gorithm. The polygon P coincides with a walk W of length
O(n2) in this graph; the complexity increase is caused by
vertices in the interior of many overlapping collinear edges.
It follows immediately that we can determine whether any
polygon is weakly simple in O(n6) time.

In this paper, we show that the running time of the
algorithm of Cortese et al. can be reduced from O(n3) to
O(n2) with more careful analysis, and then to O(n log n)
with more careful bookkeeping within the algorithm. It
then follows immediately that we can determine whether
a given polygon is weakly simple in O(n2 log n) time.

2 Edge Expansion

We now sketch the algorithm of Cortese et al. [2], neces-
sarily omitting many details due to space constraints.

Let W be a closed walk of length n in a plane graph G.
Let v be an arbitrary node in G and let uv be one of its
incident edges. We call uv a base of v if each occurrence
of v in the walk W is immediately preceded or followed
by the other endpoint u. The algorithm of Cortese et al.
begins with an O(n)-time preprocessing phase that either
modifies both the walk W and the graph G so that every
vertex has a base, or determines correctly that W is not
weakly simple.

The algorithm then repeatedly applies an operation we
call edge expansion, which again either determines cor-
rectly that W is not weakly simple or modifies both the

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather than a
formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

22

3rd Computational Geometry Young Researchers Forum, 2014

walk W and the underlying graph G, preserving the weak
simplicity of W and the invariant that every vertex has a
base. We call an edge uv of G expandable if (1) uv is a
base for both endpoints u and v, and (2) uv is the only
base for at least one of those two nodes. If no edges of G
are expandable, then either G has been reduced to nothing
(in which case the original walk W is weakly simple), or G
is a simple cycle and W has no spurs (in which case W is
weakly simple if and only if it traverses G exactly once).

The expansion of an expandable edge uv can be defined
geometrically as follows. Consider an ellipse C with u
and v inside and all other nodes outside, that intersects
precisely the edges incident to either u or v but not both.
Because edges of G are straight line segments, C intersects
each edge at most once. We subdivide each edge up (where
p 6= v) with a new node [up] at the intersection point
up ∩ C; we similarly subdivide edges incident to v. Finally,
we modify both G and W by replacing each subwalk of W
that lies within the region surrounded by C and starts and
ends on C with a straight line segment. In particular, we
contract any subwalk that starts and ends at the same
point of C to that point; otherwise, these new segments
become new edges of G. If any of these new edges cross,
the original walk W is not weakly simple; otherwise, all
necessary invariants are maintained. See Figure 2 for an
example.

x

y

z

vu

a

b

c

x

y

z

a

b

c

[ua]
[ub]

[uc]

[vx]
[vy]

[vz]

Figure 2. An example of edge expansion. An arrow leaving a node
indicates the base of that node.

3 Analysis

The running time of the algorithm is dominated by edge ex-
pansions, so it suffices to analyze their total running time.
Let w (uv) denote the number of times that W traverses
the edge uv in G. We represent the walk W itself as a circu-
lar doubly-linked list of edges; each edge uv also maintains
a circular doubly-linked list of the w(uv) edges of W that
traverse it. With this representation, any expandable edge
uv can be expanded in O(w(uv)) = O(n) time, essentially
by brute force. In an actual implementation, the entire
operation is performed combinatorially by querying and

modifying the rotation system of the embedding of G; it is
not necessary to compute an explicit ellipse C , or even to
compute coordinates for the new nodes [ux] and [v y].

Cortese et al. [2] use a potential argument to show that
the algorithm terminates after at most O(n2) edge expan-
sions, and therefore runs in O(n3) time. We can improve
their analysis by a factor of n by redefining the potential
Φ(W,G) to be the number of vertices of W minus the
number of nodes in G. We always have 0≤ Φ(W, G)≤ n,
because every edge of G is traversed at least once. Ex-
haustive case analysis implies that each edge expansion
decreases Φ(W, G) by at least 1.

To improve the running time further, we reuse the nodes
u and v and the edge uv instead of deleting them. Let
up∗ be a non-base edge incident to u with largest weight
w(up∗), breaking ties arbitrarily. Instead of creating a new
node [up∗], we simply move node u to the point up∗ ∩ C .
Similarly, instead of creating a new node [vq∗] for the heav-
iest non-base edge vq∗ incident to v, we simply move v to
the point vq∗ ∩ C . After these moves, subwalks of W from
up∗ to vq∗ either contain spurs (which can be removed in
O(1) time each) or are already single line segments and
therefore require no additional work. Spur removals can
be charged to the resulting decrease in potential Φ(W, G);
otherwise, with careful bookkeeping, the time for the edge
expansion is only O(w(uv)− w′(uv)), where w′(uv) de-
notes the number of times W traverses uv after the edge
expansion. A heavy-path decomposition argument [3, 5]
now implies that the total time spent on edge expansions
(except for spur removals) is only O(n log n). Again, this
dominates the overall running time of the algorithm.

References

[1] Robert Connelly, Erik D. Demaine, and Günter Rote. In-
finitesimally locked self-touching linkages with applications
to locked trees. Physical Knots: Knotting, Linking, and Fold-
ing of Geometric Objects in R3, 287–311, 2002. American
Mathematical Society.

[2] Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Pa-
trignani, and Maurizio Pizzonia. On embedding a cycle in a
plane graph. Discrete Mathematics 309(7):1856–1869, 2009.

[3] Dov Harel and Robert Endre Tarjan. Fast algorithms for find-
ing nearest common ancestors. SIAM J. Comput. 13(2):338–
355, 1984.

[4] Ares Ribó Mor. Realization and Counting Problems for Planar
Structures: Trees and Linkages, Polytopes and Polyominoes.
Ph.D. thesis, Freie Universität Berlin, 2006.

[5] Daniel D. Sleator and Robert Endre Tarjan. A data structure
for dynamic trees. J. Comput. Syst. Sci. 26(3):362–391, 1983.

[6] Godfried T. Toussaint. Computing geodesic properties inside
a simple polygon. Revue d’Intelligence Artificielle 3(2):9–42,
1989.

[7] Godfried T. Toussaint. On separating two simple polygons by
a single translation. Discrete Comput. Geom. 4(1):265–278,
1989.

23

CG:YRF, Kyoto, Japan, June 8-11, 2014

Unfolding k-Monotone Linear Trees

Ching-Hao Liu ∗ Sheung-Hung Poon ∗∗

Abstract

We study the problem of unfolding k-monotone linear
trees in 2D. In this paper, we show that a 3-monotone
linear tree can be flattened in O(n) time and O(n)
moves, and a 4-monotone linear tree can be flattened in
O(n log n) time and O(n) moves, where n is the number
of edges of the tree.

1 Introduction

A (planar) linkage is a graph in which every edge e is
assigned some positive real number `e so that in any em-
bedding in 2D (also called configuration) of the graph,
e is embedded as a straight line segment of length `e. A
configuration of a linkage L is called linear if all vertices
and all edges of L lie on a line. A k-monotone linear
tree T is a linear configuration of a tree linkage so that
any vertical line intersects T in at most k vertices and
edges. For linear linkages, we use the self-touching as-
sumption as the theoretical basis [3]. We allow linkage
edges to touch or overlap, but not cross. That is, if the
interiors of edges intersect, then they must be parallel.
A move is a continuous monotonic change of an angle
between two edges incident to some vertex. A motion is
composed of one move or several simultaneous moves.
A tree linkage T is said to be flattened if there exists a
series of motions on the plane to reconfigure any config-
uration of T to a linear tree with all root-to-leaf paths
going to the right; otherwise, T is called locked.

Now we survey related works for monotone or linear
tree linkages in 2D. Kusakari et al. [4] defined “mono-
tone trees”, where each chain from the root to any
leaf is 1-monotone with respect to the x-axis. They
showed that any monotone tree can be flattened in
O(n log n) time and O(n) moves. Later, Kusakari [5]
proved that “radial monotone trees” can lock, where ev-
ery directed chain from the root of the tree to a leaf is
radially monotone. Moreover, Poon [6] proved that any
2-monotone orthogonal tree can always be flattened in
O(n2) time and moves, and Ballinger et al. [2] showed
that 3-monotone orthogonal trees can lock. Thus the
minimal monotonicity of locked k-monotone orthogonal
trees is 3. Furthermore, Ballinger et al. [2] also showed

∗Department of Computer Science, National Tsing Hua Uni-
versity, chinghao.liu@gmail.com

∗∗Department of Computer Science & Institute of Information
Systems and Applications, spoon@cs.nthu.edu.tw

a locked 7-monotone linear tree of 8 edges and a locked
equilateral tree. Abel et al. [1] showed that any linear
equilateral tree can always be flattened in polynomial
time and moves. In this paper, we present efficient al-
gorithms to flatten 3-monotone and 4-monotone linear
trees.

2 Definitions

We give an example of a 4-monotone linear tree T in
Figure 1. The backbone K of T (see chain P [s, t]) is the

s

T1T2

T3
p

u
v

x
y

q

t

Figure 1: A 4-monotone linear tree T with a backbone
K = P [s, t] and a main subtree T1 rooted at u.

chain from the left end of T to the right end of T . The
components obtained from T subtracting K are called
the main subtrees of T (see subtree T1 in Figure 1). The
root of T1 (see u) is the common vertex of T1 and the
backbone of T . The main stem of T1 (see P [u, v]) is the
common part of two chains C and C ′ in T1, where C (see
P [u, p]) is the chain from the root of T1 to the left end of
T1 and C ′ (see P [u, q]) is the chain from the root of T1

to the right end of T1. The other end of the main stem
of T1 which is not the root is called the branching vertex
of T1 (see v). The main branches of T1 (see P [v, p] and
P [v, q]) are the two chains from the branching vertex of
T1 to the left and right ends of of T1, respectively.

A zigzag Z is a chain forming a Z-shape or a mirrored
Z-shape. The middle chain of Z is the straight chain
whose two endpoints are the two turn vertices of Z. In
the two remaining maximal straight chains of Z, the
one incident to the left turn vertex is called the right
chain of Z, and the other the left chain of Z. To bind
two overlapping edges lying on a line is to glue them
together to become one single edge. To verticalize a
straight chain C around the pivot u in the (+y)- or
(−y)-direction is to rotate C around u until it reaches
the corresponding vertical direction. A subtree rooted
at r is canonically verticalized in the (+y)- or (−y)-
direction if the chain from r to any other leaf of the
subtree is a straight chain lying in the direction. Note
that the motion of horizontalizing and the state of being
canonically horizontalized in the (+x)- or (−x)-direction
are defined in a similar fashion.

This is an abstract of a presentation given at CG:YRF 2014. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

24

3rd Computational Geometry Young Researchers Forum, 2014

3 Our Results

Theorem 1 A 3-monotone linear tree can be flattened
in O(n) time and O(n) moves.

We sketch the algorithm for flattening a 3-monotone lin-
ear tree T with backbone K as follows. First, we canon-
ically verticalize the main subtrees above K or below K
in the (+y) or (−y)-direction, respectively. Then we
make K a straight chain by straightening each zigzag Z
in K one by one from left to right. Finally, we canon-
ically horizontalize all main subtrees one by one from
right to left so that they finally all lie in (+x)-direction.
This completes the flattening of T .

In particular, to verticalize the main subtrees above
K, we make use of the covering structure of the main
branches. We show that there is always an uncovered
main branch, which can then be verticalized. Thus by
repeating the branch-verticalization procedure, we even-
tually can verticalize all main subtrees.

Since we obtain the verticalizing ordering according
to the tree structure, this algorithm runs in linear time.

Theorem 2 A 4-monotone linear tree can be flattened
in O(n log n) time and O(n) moves.

First, we sketch the procedure for flattening a particular
4-monotone linear tree T with straight backbone K. A
horizontal straight chain C in T is called one-end-free if
one endpoint v of C is a virtual leaf; that is, if we treat all
verticalized edges and all edges covered by C invisible,
then v is a leaf. The strategy of this algorithm is to
repeatedly verticalize a one-end-free horizontal straight
chain C where only vertical edges can cover C until all
main subtrees are canonically verticalized. Thus there
are three main tasks to verticalize all main subtrees T ′

above K as follows.
First, we select suitable disjoint horizontal straight

chains from each main subtree T ′ into a set C. Second,
we use a trapezoidal map to store the covering relations
between the chains in C, which is in fact a partially or-
dered set, and we apply a topological sort to the chains
in C to obtain a verticalizing ordering. Third, we verti-
calize the chains in C without edge crossings incremen-
tally according to the verticalizing ordering.

Next, we sketch the algorithm for flattening a gen-
eral 4-monotone linear tree T , which has a zigzagged
backbone K. The algorithm uses the above procedure
as a subroutine and we straighten the zigzags in K in-
crementally by considering covering relations as follows.
We search for the first zigzag Z in K from left to right
such that its middle chain, its right chain and the main
subtrees rooted on its right chain can be bound, and
then be verticalized without any edge crossing. Then
we apply an opening process to Z and other unstraight-
ened zigzags Z ′ in K on its left one by one from right

to left (see Figures 2(a–d)). We further apply another
straightening process to straighten these zigzags one by
one from left to right (see Figures 2(d–f)). Thus by

(a)

s

Z

t

t
s

Z

(c)(b)

(d) (e) (f)

t

t t

s

t

s s

s

Figure 2: (a–d) The opening process for a zigzag Z of
backbone K of T . (d–f) The straightening process for
zigzag Z.

repeating the above procedure, we eventually can ver-
ticalize all main subtrees and also straighten all zigzags
of K.

Since we use the trapezoidal map and the topological
sort, this algorithm runs in O(n log n) time.

References

[1] Z. Able, E.D. Demaine, M.L. Demaine, S. Eisenstat,
J. Lynch, T.B. Schardl and I. Shapiro-Ellowitz, Fold-
ing Equilateral Plane Graphs. In Proc. of the 22nd Int.
Conf. on Algorithms and Computation, 574–583, (2011)

[2] B. Ballinger, D. Charlton, E.D. Demaine, M.L. De-
maine, J. Iacono, C.-H. Liu and S.-H. Poon, Minimal
Locked Trees. In Proc. of the 11th Int. Symp. on Algo-
rithms and Data Structures, 61–73, (2009)

[3] R. Connelly, E.D. Demaine and G. Rote, Infinitesi-
mally Locked Self-Touching Linkages with Applications
to Locked Trees. Physical Knots: Knotting, Linking,
and Folding of Geometric Objects in R3, AMS, 287–
311, (2002)

[4] Y. Kusakari, M. Sato and T. Nishizeki, Planar Reconfig-
uration of Monotone Trees. IEICE Transactions, E85–
A, 938–943, (2002)

[5] Y. Kusakari, On Reconfiguring Radial Trees. IEICE
Transactions, 89–A, 1207–1214, (2006)

[6] S.-H. Poon, On Unfolding 3D Lattice Polygons and
2D Orthogonal Trees. In Proc. of the 14th Annual Int.
Conf. on Computing and Combinatorics Conference,
374–384, (2008)

25

