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2048 is NP-Complete
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Abstract

2048 is a single-player online puzzle game that went
viral in March 2014. The game is played on a 4 × 4
board by sliding around and merging equal valued tiles
to create tiles of higher value. The player wins by cre-
ating the 2048 valued tile, hence the name. We study
the complexity of a slightly adapted version and prove
that a number of natural decision problems turn out to
be NP-Complete. We reduce from 3SAT and implement
our reduction as an online game.

1 Introduction

Each turn, the player picks a move from {←,→, ↑, ↓} to
slide all tiles on the board. Tiles slide as far as possible
in the chosen direction until they hit either another tile
or an edge of the board. When a sliding tile runs into
a stationary one of equal value, they merge into a tile
of double that value. Trailing tiles following a tile that
just merged continue to slide uninterrupted and may
merge among themselves as they come to rest one after
the other. However, newly merged tiles cannot merge
further in the same move. After each move, a 2 or 4
tile is generated in one of the empty cells. The player
wins when a 2048 tile is created, hence the name of the
game. Otherwise, the player loses when the board is full
and no merges can be performed.

2048 combines features from two families of games:
Candy Crush Saga [1] and PushPush [2]. A more de-
tailed draft of this work appears in [3], where we also
discuss the attempt in [4]. The interactive gadgets and
playable reduction can be accessed at [5].

1.1 Adaptations and Problem Definition

We adapt the original 2048 as follows: (1) The input
encodes the complete board configuration and no new
tiles are generated. (2) The board is a rectangular grid
of arbitrary size. In this paper, we are primarily con-
cerned with the following decision problem:

Definition 1 (2048-GAME) Given a configuration of
tiles on an m×n board, is it possible to obtain a tile of
value 2048? (More generally, 2k with k ≥ 8.)
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[6] presented a proof of membership in NP , that ap-
plies to 2048-GAME. The crucial piece is to bound the
number of moves between two consecutive merges. Us-
ing a canonical orientation, all moves are interpreted as
flips of the board, which send tiles along orbits of O(mn)
length. A pair of tiles that end up merging requires no
more than LCM(O(mn), O(mn)) = O(m2n2) moves.

In this paper, we prove NP-hardness by a reduction
from 3SAT and obtain the main result.

Theorem 1 2048-GAME is NP-Complete.

2 Reduction from 3SAT

Given an instance of 3SAT with n variables and m
clauses, we produce an instance of 2048-GAME. The
board is filled using a 2-4 lattice to provide a rigid base
for placing gadgets and planning their movements. We
allow no merges using lattice tiles, which requires pre-
serving their parity. This confines all merges to multi-
ples of 2× 2 blocks. We use row and column to denote
a 2-row and a 2-column, respectively.

Displacers: These are the building blocks of all gad-
gets which allow us to communicate signals across the
board. They come in two main forms: horizontal D and
vertical DT . Typically, a displacer starts in an inactive
state where the middle 2×2 block, highlighted below, is
shifted perpendicularly to the displacer’s direction. An
inactive displacer cannot merge, by any move sequence,
before it is activated. The only way to activate it is
to use another properly aligned displacer to engage its
middle block. Collapsing tiles in a displacer shrinks it
to a 2×2 block, which results in a parity-preserving pull
in a row or a column.

D =

[
8 8 16 16
32 32 64 64

]

Variable Gadget: Each variable is represented by
two horizontal displacers on the same row. This enables
variables to move the portion of its row between their
two displacers to the right or left. We enforce the as-
signment of variables in the order of their indices. A
variable is assigned T or F using a → or ← move, re-
spectively. The displacers of x1 come activated in the
initial configuration to allow the game to start. No mat-
ter how variable xi is assigned, the connector displacers
in its row get activated and allow xi+1 on top of it to
be activated by a ↓ move in the following turn.

This is an abstract of a presentation given at CG:YRF 2015. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Annotated reduction. Only x0 is active. We apply log2 and hide paddings to help display a large board.

Clause Gadget: Literals are encoded using a similar
mechanism to the connectors in the variable gadget. but
are only activated by the appropriate assignment. When
a literal is activated, it allows a ↓ pull in the clause’s
column to effectively satisfy this clause. Each satisfied
clause eventually contributes one horizontal displacer by
providing its middle block.

Key-Lock Gadget: To check that all clauses are sat-
isfied, it helps to arrange for a special event to happen
only after all variables have been assigned. To achieve
this, an auxiliary variable xaux = xn+1 activates the
lock portion of this gadget. Satisfying all clauses corre-
sponds to using the correct key. Together, the activated
key-lock gadget is a sequence of displacers that can acti-
vate a unique displacer with two 1024 tiles. Collapsing
that unique displacer creates the desired 2048 tile.

2.1 Properties of the Reduction

Size: As variables are stacked on top of each other all
the way up to xaux and the key-lock gadget, the number
of rows is O(n). Then, each variable has to activate the
connectors to the next variable. We get a pyramid shape
with variable displacers on both sides and literals in the
middle, plus the unique displacer taking up 2(m + 1)
columns far to the right, for a total of O(m+n) columns.

Gaps and Padding: A gap is created iff two tiles
merge. The construction guarantees that gaps are only
created near the edges of the board and accumulate at
the corners. To make sure such gaps do not result in
undesired shifts within the core, it has to be surrounded
by enough padding. As the number of active gadgets
is O(m + n) and each gadget contributes a constant
number of gaps, a padding of O(m+n) thickness suffices.

Game Play: When no merges happen, two consec-
utive moves in opposite directions leave the board un-
changed e.g. [←,→,←] is effectively reduced to [←].
Effective moves alternate between horizontal and verti-
cal. The alternation accumulates newly created gaps,
resulting from the merge, at the corners so the decision
encoded by the previous move cannot be altered. Fur-
thermore, any row or column may witness merges during
at most one turn. In particular, clause columns cannot
experience more than one ↓ pull. This implies consis-
tent assignments. Finally, ↑moves are useless since they
must be canceled or otherwise the player cannot win.

Hardness: Aligning the two 1024 tiles requires a 2m
shift, which only satisfied clauses can provide with each
satisfied clause contributing 2. Hence, the 2048 tile can
be created iff the 3SAT instance is satisfiable.
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Abstract

Let P = {P1, P2, . . . , Pn} be a set of pairs of points.
We explore various covering problems in both one and
two dimensions where exactly one point from each
pair must be covered by an interval or an axis-aligned
square.

1 Introduction

Let P = {P1, P2, . . . , Pn} be a set of pairs of points.
We show that the following four problems are NP-hard;
the decision versions are easily seen to be in NP.

Problem 1. Let P be on a line. Find a minimum-
cardinality set I of unit length intervals (assuming a fea-
sible solution exists), such that exactly one point from
each pair is covered by an interval in I.

Problem 2. Let P be on a line. Decide whether or
not there exists a set of unit length intervals, I, such
that exactly one point from each pair is covered.

Problem 3. Let P be on a line. Find a minimum-
cardinality set I of intervals of arbitrary length, such
that exactly one point from each pair is covered by an
interval in I (a feasible solution always exists).

Problem 4. Let P be in the Euclidean plane. Find a
minimum-cardinality set S of axis-aligned unit squares
(assuming a feasible solution exists), such that exactly
one point from each pair is covered by a square in S.

We represent point pairs in Figures 1 - 3 as the tips
of a u shape or the tips of a t shape. Certain pairs in
these figures are drawn in color in order to help explain
the constructions.

2 Unit intervals

Theorem 1 Problem 1 is NP-hard.

Proof. The reduction is from boolean 3-satisfiability
(3-SAT). Given n variables {x1, x2, . . . , xn}, and m
clauses {c1, c2, . . . , cm}, we design the following gadgets.

A clause gadget, ci, contains 13 points. It contains
four consecutive pairs of points, dij , 1 ≤ j ≤ 4 (repre-
sented by a u shape in Figure 1) and another pair of

∗This work was supported by the US-Israel Binational Science
Foundation (project 2010074). A superset of these results has
been submitted (2015) for publication.
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‡Dept. of Computer Science, Ben-Gurion University, Israel.

{aritrabanik,carmip}@gmail.com, {matya, simakov}@cs.bgu.ac.il

variables

clause ci

di1 di2 di3 di4

di

Figure 1: Clause gadget.

clause contains xi clause contains ¬xiT F

qi
y
y

variable xi

Figure 2: Variable gadget.

points, di, one of which lies between di1 and di2 and
the other lies between di3 and di4. The remaining three
points (blue in Figure 1) lie between di1 and di, between
di2 and di3 and between di3 and di. Each of these three
blue points is paired to a blue point in a variable gadget
(blue pairs are represented by a t shape in Figure 1).
The Euclidean distance between the right point in dij
and the left point in dij+1, 1 ≤ j ≤ 3, is less than one,
ensuring that one unit interval can cover both dij and
dij+1. The points of dij are spaced unit distance apart.

Each variable gadget (Figure 2) consists of a consec-
utive pair of points, qi, surrounded by blue points on
each side. If variable xi (resp. ¬xi) appears in clause
ci, then one blue point will be placed to the right (resp.
left) of qi and this point will be paired to a blue point
in ci. The blue points that surround qi are placed a dis-
tance of y from their respective farthest points in qi. We
set y < 1, ensuring that any unit interval that covers a
point in qi must also cover either the surrounding blue
points to the left or right of qi. Setting xi to FALSE is
equivalent to covering the right point of qi. Setting xi

to TRUE is equivalent to covering the left point of qi.

We line up all of the variables, followed by all of the
clauses, so that each consecutive gadget is spaced far-
ther than unit distance apart. Note that if a clause
evaluates to FALSE, no blue point in a clause can be
covered. Therefore, four unit intervals are required to
cover this clause. If a clause evaluates to TRUE, then
three intervals (and no less) can cover the clause. Pair
di is vital to this being true.

A satisfying truth assignment in 3-SAT exists if and
only if a minimum cover uses n+ 3m unit intervals. �

Theorem 2 Problem 2 is NP-complete. [Proof is omit-

This is an abstract of a presentation given at CG:YRF 2015. It has been made public for the benefit of the community and should be considered a preprint rather
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ted in this abstract.]

3 Arbitrary length intervals

Theorem 3 Problem 3 is NP-hard.

Proof. The reduction is again from 3-SAT. In this case,
spacing of points is irrelevant. Variable gadgets are set
up very similarly to the unit interval version. This time,
in order to ensure that in a minimum-cardinality cover
the blue points (either to the left or to the right of qi)
in a variable gadget are covered with the same interval
that covers qi, we enclose pair qi with a “safety” pair
si (see Figure 3). We will see that covering a point in
qi and not using the same interval to cover a point in
si would be too costly. Clause gadgets are set up as
in the unit interval, optimization problem construction
(Figure 1).

We break the set of points in the construction into two
halves, H1, which contains the variable and clause gad-
gets, and H2, which contains another gadget described
below (see Figure 3). Surrounding each variable and
each clause we place a cluster of M >> n + 3m points.
Note that the points in a cluster are laid out side-by-
side (rather than on the same x-coordinate). In H2, we
create M groups of points, where each group is made
up of n + m + 1 points, one paired to each cluster in
H1. Surrounding these groups are pairs of consecutive
points, g1 and g2. Pair g1 lies to the left of the first
group and pair g2 lies to the right of the last group.
The gadget in H2 will help us isolate all of the variable
and clause gadgets in H1.

q1 q2 q3 qn

c1 c1 c3 cm

H1 H2

g1 g2
group Mgroup 1 group 2

cluster 1
cluster 2

cluster n+m+ 1

s1 s2 s3 sn

Figure 3: Arbitrary length intervals - the big picture.

First, we show that any feasible solution uses at least
n + 3m + 1 intervals.

Case 1: No cluster in H1 is completely covered. The
variable and clause gadgets are now isolated. We need
at least n intervals to cover the variable gadgets and
at least 3m intervals to cover the clause gadgets. At
least one more interval is needed to cover the remaining
points in H2.

Case 2: At least one cluster in H1 is completely
covered. If any cluster is completely uncovered then at
least M intervals will be needed in H2. If all clusters
are “touched” by an interval then at least n + 3m + 1
intervals will be used in H1 (at least n+m+ 1 intervals

touch a cluster and at least 2m intervals are needed to
finish covering the clauses). At least one more interval
is needed to cover points in H2. At least n + 3m + 2
intervals are used in total.

Now we claim that there exists a satisfying truth as-
signment in 3-SAT if and only if a minimum cover uses
n + 3m + 1 intervals.

Suppose there exists a satisfying truth assignment.
Any feasible solution must use at least n + 3m + 1 in-
tervals. We achieve this bound by covering pairs in H1

the same way as in the unit interval optimization ver-
sion and using one more interval in H2 to cover g1, all
groups, and g2.

Now suppose that a minimum cover uses n + 3m + 1
intervals. By Case 2, we know that no cluster in H1

can be completely covered. Thus, variable and clause
gadgets are isolated the same way they were in the unit
interval version. Recall that in the variable gadgets,
a “safety” pair si encloses the set of blue points that
extend to clause gadgets. If the interval used to cover
qi does not also cover pair si, then an extra interval will
be needed in the covering; this would be one interval too
many. Therefore, we now see that variable gadgets work
the same way as in the unit interval version. This means
that if any clause would have evaluated to FALSE then
at least n+3m+2 intervals would have been needed. �

4 Two dimensions

Theorem 4 Problem 4 is NP-hard, even for point pairs
that are horizontal/vertical at unit separation.

The proof (omitted here) relies on a reduction from
PLANAR 3-SAT [2] and a technique used by Fowler
et al. [1]. In contrast with the one-dimensional con-
structions, our proof uses unit separated pairs of points,
aligned horizontally or vertically. In one dimension,
with unit separated pairs and unit intervals, the opti-
mization problem is polynomial-time solvable with dy-
namic programming.

5 Conclusion

Our results show the hardness of solving exact one-
of-a-set coverage problems. In ongoing work, we are ex-
ploring approximation algorithms for the optimization
problems mentioned here; a summary of these results
will appear in the talk and the full paper. It is worth
noting that greedy strategies can perform very poorly.
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Automatic Proofs for Formulae Enumerating Proper Polycubes

Gill Barequet∗ Mira Shalah∗

Abstract

We develop a general framework for computing formu-
lae enumerating polycubes of size n which are proper in
n−k dimensions (spanning all n−k dimensions), for a
fixed value of k. We reaffirm the already-proven formu-
lae for k≤3, and give the first rigorous proof for k=4.

1 Introduction

A d-dimensional polycube of size n is a connected set of
n cubes in d dimensions, where connectivity is through
(d−1)-dimensional faces. Two fixed polycubes are con-
sidered distinct if they have different shapes or orienta-
tions. A polycube is proper in d dimensions if it spans all
the d dimensions. Following Lunnon [4], we let DX(n, d)
denote the number of fixed polycubes of size n that are
proper in d dimensions.

Enumeration of polycubes is a fundamental problem
in combinatorics and discrete geometry, originating in
statistical physics [3]. No formula is known for Ad(n),
the number of fixed polycubes of size n in d dimen-
sions. The main interest in DX stems from the formula
Ad(n)=

∑d
i=0

(
d
i

)
DX(n, i) [4]. In a matrix listing the

values of DX, the upper triangle and the main diagonal
contain only 0s, giving rise to the question whether a
pattern can be found in the diagonals DX(n, n−k).

In statistical physics, Peard and Gaunt [7] predicted
that for k>1, the diagonal formula DX(n, n−k) has the
pattern 2n−2k+1nn−2k−1(n−k)hk(n), where hk(n) is a
polynomial in n, and explicit formulae for hk(n) for k≤6
were conjectured. Luther and Mertens conjectured a
formula for k=7. Using Cayley trees, it can be shown
that DX(n, n−1) = 2n−1nn−3 (seq. A127670 in [6]).
Barequet et al. [2] gave the first rigorous proof that
DX(n, n − 2) = 2n−3nn−5(n − 2)(2n2 − 6n + 9) (seq.
A171860). The proof uses a case analysis of the possi-
ble structures of spanning trees of the polycubes, and
the various ways in which cycles can be formed in their
cell-adjacency graphs. Similarly, Asinowski et al. [1]
proved that DX(n, n−3) = 2n−6nn−7(n−3)(12n5 −
104n4 + 360n3 − 679n2 + 1122n − 1560)/3, again, by
counting spanning trees of polycubes, yet the reasoning
and calculations were significantly more involved. The
inclusion-exclusion principle was applied in the proof in
order to correctly count polycubes whose cell-adjacency
graphs contained so-called “distinguished structures.”

∗Dept. of Computer Science, The Technion, Haifa, Israel. E-
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Figure 1: A polycube P , γ(P ), spanning trees of γ(P ).

In comparison with k=2, the number of such structures
is substantially higher. This proof provided a better
understanding of the difficulties to be faced in apply-
ing this technique to higher values of k. The number
of distinguished structures grows rapidly, and the in-
clusion relations between them are much more compli-
cated. As anticipated [1], it is impractical to achieve a
similar proof manually for k>3.

In this work we create a theoretical set-up for proving
the formula for DX(n, n−k), for a fixed k. Our method
fully automates the manual method presented in [2, 1].
In this generalization, we give a few key observations
about polycubes proper in n−k dimensions. We also
give a general characterization of distinguished struc-
tures, and design algorithms that produce them auto-
matically. Using our implementation of this method, we
find the explicit formula (which has never been proven
before) for DX(n, n−4), stated in the following theorem,
confirming the formula conjectured in [7].

Theorem 1 DX(n, n − 4) = 2n−7nn−9(n − 4)(8n8 −
128n7 +828n6−2930n5 +7404n4−17523n3 +41527n2−
114302n+ 204960)/6.

2 Overview of the Method

Let Pn be the set of proper polycubes of size n in n−k
dimensions. Let P∈Pn, and let γ(P ) denote the adja-
cency graph of P . The vertices of γ(P ) correspond to
the cells of P ; two vertices are connected by an edge if
their corresponding cells are adjacent; an edge has label
i (1 ≤ i ≤ n − k) if the corresponding cells have dif-
ferent i-coordinate. The direction of the edge is from
the lower to the higher cell. See Figure 1. P 7→γ(P ) is
an injection. Therefore, we count the graphs obtained
from the members of Pn in this way. We count these
graphs by counting their spanning trees. Such a span-
ning tree has n−1 edges labeled by numbers from the
set {1, 2, . . . , n−k}; all these labels are present because
the polycube is proper in n−k dimensions. Hence, n−k

This is an abstract of a presentation given at CG:YRF 2015. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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edges of the spanning tree are labeled with the labels
1, 2, ..., n−k, and the remaining k−1 edges repeat labels
from the same set. There is a bijection between the pos-
sibilities of repeated edge labels and the partitions of the
integer k−1. Specifically, each partition p={a1, . . . , ah}
(
∑h
i=1 ai=k−1), corresponds to h repeated labels in the

spanning tree, such that the ith repeated label appears
ai+1 times. In such case, we say that the tree is “la-
beled according to p.” In a spanning tree of γ(P ),
we distinguish a repeated label i by i, i′, · · ·. However,
when considering γ(P ), repeated labels are not distin-
guished. The number and length of the cycles in γ(P )
are bounded due to the limited multiplicity of labels.

In order to compute |Pn|, we consider all possible di-
rected edge-labeled trees of size n with edge labels as
conjectured, and count only those that represent valid
polycubes. In this process two things might happen:
(a) cells may coincide (Figures 2(a,d)). A tree with
overlapping cells is invalid; and (b) two cells which are
not connected by a tree edge may be adjacent (Fig-
ures 2(b,e)). Such a tree corresponds to a polycube
P with cycles in γ(P ), hence, its spanning tree is not
unique. We consider several small structures which are
contained in these trees, and which cause the problems
above. A distinguished structure is the union of all
paths that connect two coinciding or adjacent cells. We
design an algorithm for producing DSk; the set of all
distinguished structures in n−k dimensions.

Lemma 2 Let σ∈DSk be composed of k∗≥1 trees
s1, . . ., sk∗ with n∗ vertices and distinct edge labels. The
number of occurrences of σ in trees of size n with dis-
tinct edge labels is (

∏k∗

i=1 |si|)
(n−n∗+k∗−1)!

(n−n∗)! nn−n
∗+k∗−2.

We build an inclusion-exclusion graph that contains
a vertex corresponding to each structure σ∈DSk and
an edge e=σ1→σ2 labeled with c if σ1 contains c oc-
currences of σ2. A simple bottom-up procedure imple-
ments Lemma 2, and computes, for every node u ∈ V,
Tp(s(u)); the number of directed trees labeled according
to p that contain only the structure s(u) as a subtree.

For P∈P, γ(P ) can be a tree (if P is a tree), or it
can contain cycles. Every tree polycube gives rise to a
unique spanning tree. For every possibility of repeated
labels p, let DTp(n) denote the number of spanning trees
of all tree polycubes that are labeled according to p. Let
also Tp denote the total number of directed trees with

n vertices labeled according to p. It can be shown that
Tp=constant∗poly(n)∗2n−1nn−3. Every such tree cor-
responds to a tree polycube unless it contains a struc-
ture σ ∈ DSk as a subtree. Thus, we exclude all the
trees that contain every σ ∈ DSk as a subtree.Therefore,
DT(n, n− k) =

∑
p DTp(n) =

∑
p Tp −

∑
σ∈DSk

Tp(σ).
Let C denote the set of all cycle structures of poly-

cubes proper in n−k dimensions. C can be found using
DSk. For any Ci∈C, let PCi denote the number of poly-
cubes P∈Pn that contain Ci in γ(P ). Let σ∈DSk have

c occurrences in Ci. Then, PCi =
∑
p∈Π(k−1)

Tp(σ)
c .

Finally, DX(n, n− k) = DT(n, n− k) +
∑|C|
i=1 PCi .

3 Results

The entire method was automated in a C++ program,
using Mathematica for simplifying the final formulae.
The program was run successfully for k ≤ 4, and our
results exactly match the formulae conjectured in the
literature of statistical physics. For k=4, the parallel
computation took about 15 minutes on a supercomputer
with 16 processors and 65 GB of RAM. The program
found 8,397 distinguished structures, and 179 cycles,
and produced data files which document the entire com-
putation, serving as a proof of Theorem 1.
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1-String B1-VPG Representations of Planar Partial 3-Trees

Therese Biedl Martin Derka∗

Abstract

Planar partial 3-trees are subgraphs of those planar
graphs obtained by repeatedly inserting a vertex of de-
gree 3 into a face. In this paper, we show that par-
tial 3-trees have a 1-string B1-VPG representation, i.e.,
a representation where every vertex is represented by
an orthogonal curve with at most one bend, every two
curves intersect at most once, and intersections of curves
correspond to edges in the graph.

1 Introduction

A string representation is a representation of a graph
where every vertex v is assigned a curve v. Vertices u, v
are connected by an edge if and only if curves u,v inter-
sect. A 1-string representation is a string representation
where every two curves intersect at most once.

Some previous papers (e.g. [1, 5, 6]) studied string
representations that use orthogonal curves, i.e., curves
consisting of vertical and horizontal segments. These
are called Bk-VPG representations1 if every curve has
at most k bends. See e.g. [2] for more related results.
Felsner et al. [6] showed that every planar 3-tree has a
B1-VPG representation. Moreover, every vertex-curve
has the shape of an L, which implies that vertex-curves
intersect at most once, so the result is a 1-string B1-
VPG representation. In this note, we sketch how to ex-
tend the result to more graphs, and in particular, show:

Theorem 1 Every planar partial 3-tree G has a 1-
string B1-VPG representation.

Planar partial 3-trees (defined in Section 2) are the
same as planar graphs of treewidth at most 3, and in-
clude outer-planar graphs, Apollonian networks, series-
parallel graphs, Halin graphs and IO-graphs.

The proof of this theorem (see Section 3) uses all 4
possible shapes of 1-bend orthogonal curves. For some
of the aforementioned subclasses of planar partial 3-
trees, we can show that Ls suffice for vertex-curves (de-
tails are omitted in this short note). Generalizing this
to all planar partial 3-trees remains an open problem.

∗David R. Cheriton School of Computer Science, University of
Waterloo, Canada. {biedl,mderka}@uwaterloo.ca. Research of
T.Biedl supported by NSERC. Research of M.Derka supported by
an NSERC Vanier CGS.

1VPG is an acronym for Vertex-Path-Grid since vertices are
represented by paths in a rectangular grid.

2 Definitions

A planar graph is a graph that can be drawn without
crossings. If one such drawing Γ is fixed, then a face is
a maximal connected region of R2 − Γ. The outer face
corresponds to the unbounded region; the interior faces
are all other faces.

A 3-tree is a graph that is either a triangle or has a
vertex order v1, . . . , vn such that for i ≥ 4, vertex vi is
adjacent to exactly three predecessors and they form a
triangle. A partial 3-tree is a subgraph of a 3-tree.

Our proof of Theorem 1 employs the method of “pri-
vate regions” used previously for various string represen-
tation constructions [2, 4, 6]. We define the following:

Definition 1 An F-shaped area is a region bounded by
a 10-sided polygon with CW or CCW sequence of inte-
rior angles 90◦, 270◦, 90◦, 90◦, 270◦, 270◦, 90◦, 90◦, 90◦

and 90◦. A rectangle-shaped area is a region bounded
by an axis-aligned rectangle.

Definition 2 Given a 1-string representation, a private
region of vertices {a, b, c} is an F-shaped or rectangle-
shaped area that intersects (up to permutation of
names) curves a,b, c in the way depicted in Figure 1(a),
and that intersects no other curves and private regions.

a

c

b

a

b

c

a

c b

b

(a) (b)

Figure 1: (a) An F-shaped (left) and rectangle-shaped
(right) private region of {a, b, c}. (b) The base case.
Intersections among {a,b, c} can be omitted as needed.

3 Proof of Theorem 1

Let G be a planar partial 3-tree. By definition, there
exists a 3-tree H for which G is a subgraph. One can
show [3] that we may assume H to be planar. Let
v1, . . . , vn be a vertex order of H such that for i ≥ 4
vertex vi is adjacent to 3 predecessors that form a tri-
angle. In particular, v4 is incident to a triangle formed
by {v1, v2, v3}. One can show (see e.g. [3]) that the ver-
tex order can be chosen in such a way that {v1, v2, v3}
is the outer face of H in some planar drawing.

This is an abstract of a presentation given at CG:YRF 2015. It has been made public for the benefit of the community and should be considered a preprint
rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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For i ≥ 3, let Gi and Hi be the subgraphs of G (re-
spectively H) induced by vertices v1, . . . , vi. We prove
Theorem 1 by showing by induction on i:

Gi has a 1-string B1-VPG representation with
a private region for every interior face of Hi.

In the base case, i = 3 and G ⊆ K3 ' H. Construct a
representation R and find a private region for the unique
interior face of H as depicted in Figure 1(b).

Now consider i ≥ 4. By induction, construct a repre-
sentation R0 of Gi−1 that contains a private region for
every interior face of Hi−1.

Let {a, b, c} be the predecessors of vi inH. Recall that
they form a triangle. Since H is planar, this triangle
must form a face in Hi−1. Since {v1, v2, v3} is the outer
face of H (and hence also of Hi−1), the face into which
vi is added must be an interior face, so there exists an
interior face {a, b, c} in Hi−1. Let P0 be a private region
that exists for {a, b, c} in R0; it can have the shape of
an F or a rectangle.

Observe that in G, vertex vi may be adjacent to any
possible subset of {a, b, c}. This gives 16 cases (two
possible shapes, up to rotation and reflection, and 8
possible adjacencies).

In each case, the goal is to place a curve vi inside R0

such that it intersects exactly the curves of the neigh-
bours of vi in {a, b, c} and none else. Furthermore, hav-
ing placed vi into R0, we need to find a private region
for the three new interior faces in Hi, that is, the three
faces formed by vi and two of {a, b, c}.

We omit detailed descriptions of the constructions
and refer the reader to Figure 2. In all cases we achieve
the goal, and Theorem 1 holds by induction.
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Flips in Edge-Labelled Pseudo-Triangulations∗

Prosenjit Bose§ Sander Verdonschot§

Abstract

We show that O(n2) flips suffice to transform any edge-
labelled pointed pseudo-triangulation into any other.

1 Introduction

A pseudo-k-gon is a weakly simple polygon with k con-
vex interior angles, called corners, that are connected
by reflex chains. Given a set of points P in the plane, a
pseudo-triangulation of P is a subdivision of its convex
hull into pseudo-triangles. A pseudo-k-gon or pseudo-
triangulation is pointed if all vertices are incident to a re-
flex angle in some face (including the outer face; see Fig-
ure 1b for an example). All pseudo-triangulations con-
sidered in this paper are pointed. Pseudo-triangulations
find applications in areas such as kinetic data struc-
tures [2] and rigidity theory [3].

A diagonal of a pseudo-k-gon is called a bitangent if
the pseudo-k-gon remains pointed after insertion of the
edge. Every internal edge of a pseudo-triangulation can
be flipped. A flip removes the edge, leaving a pseudo-
quadrilateral, and inserts the unique other bitangent
(see Figure 1a). Bereg [1] showed that O(n log n) flips
suffice to transform any pseudo-triangulation into any
other, where n is the number of vertices.

(a) (b)

Figure 1: (a) A flip in a pseudo-quadrilateral. (b) A
left-shelling pseudo-triangulation.

In this paper, we investigate flips in pseudo-
triangulations where each internal edge has a unique
label in {1, . . . , |E|}. After a flip, the new edge receives
the label of the flipped edge. We show that we can
transform any edge-labelled pseudo-triangulation into
any other with O(n2) flips. This is harder than the un-
labelled problem, since we no longer have the freedom to
choose the mapping between edges in the initial and fi-
nal pseudo-triangulation. Before we can start the proof,
we need a few more definitions.

∗This work was partially supported by NSERC.
§School of Computer Science, Carleton University, Ottawa

Given a set of points P in the plane, let v0 be the
point with the lowest y-coordinate, and let v1, . . . , vn be
the other points in clockwise order around v0. The left-
shelling pseudo-triangulation is the union of the convex
hulls of v0, . . . , vi, for all 2 ≤ i ≤ n (see Figure 1b).
Thus, every vertex is associated with two edges: a bot-
tom edge connecting it to v0 and a top edge that is
tangent to the convex hull of the earlier vertices. The
right-shelling pseudo-triangulation is similar, with the
vertices added in counter-clockwise order instead.

2 Tools

We first describe two tools, called a sweep and a shuffle,
that play a crucial role in the proof of the main result.

Lemma 1 We can interchange the labels of the edges
incident to a vertex v of degree 2 with 3 flips.

Proof Sketch. Removing v leaves a pseudo-triangle T .
There are three bitangents that connect v to T , each
corresponding to the geodesic between v and a corner
of T . Any choice of two of these bitangents results in
a pointed pseudo-triangulation. When one of them is
flipped, the only new edge that can be inserted so that
the result is still a pointed pseudo-triangulation is the
bitangent that was not there before the flip. Thus, we
can interchange the labels with 3 flips (see Figure 3). �

Figure 3: Interchanging the labels of the edges incident
to a vertex of degree 2.

Lemma 2 (Sweep) In the left-shelling pseudo-
triangulation, we can interchange the labels of any
number of internal top edges and their corresponding
bottom edges with O(n) flips.

Proof Sketch. Let S be the set of vertices whose inter-
nal top edge should have their label swapped with the
corresponding bottom edge. Consider a ray L from v0
that starts at the positive x-axis and sweeps through the
point set to the negative x-axis. We will maintain the
following invariant: the graph induced by the vertices
to the left of L is their left-shelling pseudo-triangulation

This is an abstract of a presentation given at CG:YRF 2015. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: Interchanging the labels of two bitangents of a pseudo-pentagon with five bitangents.

and the graph induced by the vertices to the right of L is
their right-shelling pseudo-triangulation. Furthermore,
the labels of the top edges of the vertices in S to the
right of L have been interchanged with their respective
bottom edges. This invariant is satisfied at the start.

Suppose that L is about to pass vertex vk. If vk is
on the convex hull, its top edge is not internal and no
action is required for the invariant to hold after passing
vk. If vk is not on the convex hull, it has degree 2
and flipping its top edge results in the tangent from
vk to the convex hull of the points to the right of L –
exactly the edge needed to add vk to their right-shelling
pseudo-triangulation. In addition, if vk ∈ S, we can use
Lemma 1 to swap the labels of its top and bottom edge
with 3 flips. Thus, with O(1) flips, the invariant still
holds after passing vk.

At the end, we have constructed the right-shelling
pseudo-triangulation and swapped the desired edges.
An analogous transformation without any swapping
can transform it back into the left-shelling pseudo-
triangulation with O(n) flips in total. �

Lemma 3 In the left-shelling pseudo-triangulation, we
can interchange the labels of two consecutive bottom
edges with O(1) flips.

Proof Sketch. When we remove the two consecutive
bottom edges (say a and b), we are left with a pseudo-
pentagon P , which can have up to five bitangents. If
P has exactly five bitangents, each geodesic between
two corners of P corresponds to exactly one bitangent,
which implies that the bitangents of P can be swapped
just like diagonals of a convex pentagon (see Figure 2).
If the pseudo-triangle to the right of b is a triangle, P
already has five bitangents. Otherwise, the top endpoint
of b is an internal vertex of degree 2 and we can flip its
top edge to obtain a new pseudo-pentagon that does
have five bitangents. After swapping the labels of a and
b, we can flip this top edge back. Thus, in either case we
can interchange the labels of a and b with O(1) flips. �

We can use Lemma 3 to reorder the labels of the
bottom edges with insertion or bubble sort, as these
algorithms only swap adjacent values.

Corollary 4 (Shuffle) In the left-shelling pseudo-
triangulation, we can reorder the labels of all bottom
edges with O(n2) flips.

3 Upper bound

Theorem 5 We can transform any edge-labelled
pseudo-triangulation with n vertices into any other with
O(n2) flips.

Proof Sketch. We show how to transform any edge-
labelled pseudo-triangulation into a canonical one with
O(n2) flips. The result follows by the reversibility of
flips. The canonical pseudo-triangulation is the left-
shelling pseudo-triangulation, with the bottom edges
labelled in clockwise order around v0, followed by the
top edges in the same order (based on their associated
vertex). We call the labels assigned to bottom edges
low, and the labels assigned to top edges high. We
first ignore the labels and transform the given pseudo-
triangulation into the left-shelling pseudo-triangulation
with O(n log n) flips.

In the first step, we use a shuffle (see Corollary 4)
to match every bottom edge with a high label with a
top edge with a low label. Then we exchange these
pairs of labels with a sweep (see Lemma 2). Now all
bottom edges have low labels and all top edges have
high labels, so all that is left is to sort the labels. We
can sort the low labels with a second shuffle. To sort
the high labels, we sweep them to the bottom edges,
shuffle to sort them there, then sweep them back. This
results in the canonical triangulation. Since we used a
constant number of shuffles and sweeps, it takes O(n2)
flips in total. �
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Realization of simply connected polygonal linkages∗

Clinton Bowen† Stephane Durocher‡ Maarten Löffler§ Anika Rounds¶ André Schulz‖ Csaba D. Tóth†¶

Abstract

We consider body-and-joint frameworks. We show that
it is strongly NP-hard to decide whether a given polyg-
onal linkage (body-and-bar framework) is realizable in
the plane when the bodies are convex polygons and their
contact graph is a tree; the problem is weakly NP-hard
already for a chain of rectangles; but efficiently decid-
able for a chain of triangles hinged at distinct vertices.

1 Introduction

Complex structures in nature are often composed of
elementary pieces that obey simple local composition
rules. Molecular biology, nanomanufacturing, and self-
assembly are prime examples. Mathematical models for
this phenomenon typically rely on rigidity theory and
formal languages. In this paper, we study the realiz-
ability of complex structures that are specified by their
local geometry.

A polygonal linkage is a set P of convex polygons and
a set H of hinges where each hinge h ∈ H corresponds
to two points on the boundaries of distinct polygons in
P. A realization of a polygonal linkage is an interior-
disjoint placement of congruent copies of the polygons
in P such that the points corresponding to each hinge
are identified. A realization with orientation uses only
translated or rotated copies of the polygons in P (no re-
flections) and for each hinge, the cyclic order of incident
polygons is given. The topology of a polygonal linkage
can be represented by the hinge graph, a bipartite graph
where the vertices correspond to polygons in P and the
hinges in H, and edges represent the polygon-hinge in-
cidences.

The Polygonal Linkage Realizability (PLR) problem
asks whether a given polygonal linkage admits a real-
ization; and PLR with fixed orientation asks whether it
admits a realization with a given orientation. PLR al-

∗Our results were developed at the First International Work-
shop on Drawing Algorithms for Networks of Changing Entities
(DANCE 2014), held in Langbroek, the Netherlands, and sup-
ported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 639.023.208. Research by Rounds and
Tóth was supported in part by the NSF awards NSF CCF-1422311
and CCF-1423615.
†California State University Northridge, Los Angeles, CA
‡University of Manitoba, Winnipeg, Canada
§Utrecht University, the Netherlands
¶Tufts University, Medford, MA, USA
‖Münster University, Germany

Figure 1: (a) A set of convex polygons and hinges. (b) A
realization of the polygonal linkage (with fixed orientation).

lows the use of reflections at hinges, whereas PLR with
fixed orientation only allows rotations and translations
of the polygons in P.

In general these problems are known to be NP-hard
(see details below). However, the hardness reductions
crucially rely on graphs with a large number of cycles.
In this paper we consider these problems for simply con-
nected topologies, where the hinge graph is a tree.

Summary of results. Our main result is that the re-
alizability problems remains NP-hard for simply con-
nected polygonal linkages. The only exceptions are
chains of triangles or rectangles hinged at distinct ver-
tices. Some variants are always realizable, some have
easy hardness reductions, and some reductions required
substantial new machinery.

Related Previous Work. Polygonal linkages are a
generalization of classical linkages (bar-and-joint frame-
works) in rigidity theory. A linkage is a graph G =
(V,E) with given edge lengths. A realization of a link-
age is a (crossing-free) straight-line embedding of G in
the plane. Bhatt and Cosmadakis [3] proved that the
realizability of linkages is NP-hard.

Note that every tree linkage can be realized in R2 with
almost collinear edges. According to the celebrated Car-
penter’s Rule Theorem [4, 6] every realization of a path
(or a cycle) linkage can be continuously moved (with-
out self-intersection) to any other realization. However,
there are trees of maximum degree 3 with as few as 8
edges whose realization space is disconnected [2]; and
deciding whether the realization space of a tree link-
age is connected is PSPACE-complete [1]. Connelly et
al. [5] showed that the Carpenter’s Rule Theorem gener-
alizes to certain polygonal linkages, which are obtained
by replacing the edges of a path linkage with special
polygons. For more details see the full version.

This is an abstract of a presentation given at CG:YRF 2015. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 PLR for Chains of Polygons

In this section we consider polygonal linkages whose
hinge graph is a path. We call such a linkage a chain
of polygons, given by a sequence of convex polygons
(P1, . . . , Pn) and n− 1 hinges, where the ith hinge cor-
responds to a pair of points on the boundaries of Pi and
Pi+1 for i = 1, . . . , n− 1. A line L is said to be tangent
to polygon P at a boundary point h ∈ P if L passes
through h but avoids the interior of P . We formulate a
simple sufficient condition for the realizability of a chain
of polygons.

Proposition 1 Consider a chain of convex polygons
(P1, . . . , Pn) with n − 1 hinges. If Pi admits parallel
tangent lines through all of its hinges for i = 1, . . . , n
then the chain of polygons is realizable with fixed ori-
entation. A realization can be computed in O(n) time.

Proof. Rotate the polygons P1, . . . , Pn such that they
each admit vertical tangents through their hinges; the
hinge of P1 is a rightmost point in P1; and for i =
2, . . . , n the common hinge of Pi−1 is a leftmost point of
Pi. (Refer to Fig. 2). Then translate the polygons such
that the corresponding hinges coincide. For the common
hinge hi between Pi and Pi+1, all polygons Pj , j ≤ i, lie
on the left of hi, and all polygons Pj′ , i + 1 ≤ j′, lie on
the right of hi. Consequently, the polygons have disjoint
interiors as required. We can compute the tangents of
Pi at both hinges, hence a suitable rotation angle, in
O(1) time, so the total time is O(n). �

a
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c d

a

Figure 2: (a) A chain of 5 polygons with 4 hinges. (b) A
realization of (a) where the parallel tangents are vertical.

Corollary 2 Every chain of triangles hinged at distinct
vertices is realizable with fixed orientation.

Surprisingly the realizability of a chain of arbitrary
polygons is already NP-hard, even if the polygons are
convex quadrilaterals hinged at vertices or triangles
hinged at arbitrary boundary points. We reduce the
problem from Partition, which is weakly NP-hard (i.e.,
NP-hard when the input is a sequence of n integers be-
tween 1 and 2n).

Theorem 3 It is weakly NP-hard to decide whether a
chain of rectangles is realizable.

Theorem 4 It is weakly NP-hard to decide whether a
chain of convex polygons is realizable with fixed orien-
tation.

We give NP-hardness proofs for these in the full paper.

3 PLR with Fixed Orientation

Theorem 5 It is strongly NP-hard to decide whether
a polygonal linkage whose hinge graph is a tree can be
realized with fixed orientation.

Our proof for Theorem 5 is a reduction from Planar-
3-SAT (P3SAT). See Fig. 3(left).
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Figure 3: Left: the associated graph A(Φ) for a Boolean
formula Φ. Right: the schematic layout of the variable,
clause, and transmitter gadgets in our construction.

The big picture. Given an instance Φ of P3SAT with
n variables and m clauses, we construct a simply con-
nected polygonal linkage (P, H) of polynomial size in n
and m such that Φ is satisfiable iff (P, H) admits a real-
ization with fixed orientation. We construct a polygonal
linkage in two main steps: First, we construct an aux-
iliary structure where some of the polygons have fixed
position in the plane (called obstacles), while other poly-
gons are flexible hinged to an obstacle. Second, we mod-
ify the auxiliary construction into a polygonal linkage
by allowing the obstacles to move freely, and by adding
new polygons and hinges as well as an exterior frame
that holds the obstacle polygons in place. All polygons
in our constructions are regular hexagons or long and
skinny rhombi because these are the polygons that we
can “simulate” with coin graphs. The details of our
construction can be found in the full version.
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Model-based Classification of Trajectories

Maike Buchin∗ Stef Sijben∗

Abstract

We present algorithms for classifying trajectories based on a
movement model parameterized by a single parameter. Clas-
sification is the problem of assigning trajectories to classes
of similar movement characteristics. We give an efficient al-
gorithm to compute an optimal classification for a discrete
set of parameter values. Although classification is NP-hard
if the parameter values are allowed to vary continuously, we
present an algorithm that solves the problem in polynomial
time under mild assumptions on the input.

1 Introduction

Advances in tracking technology lead to increasing amounts
of trajectory data, i.e., sequences of time-stamped positions
of a moving entity. We study the fundamental task of classi-
fying trajectory data. A classification of a set of trajectories
T is a partition of T into disjoint classes that cover T . In
movement ecology, the aim of classification is to discover
classes of similar movement behaviour [3]. For instance,
Figure 1 shows a classification of fisher (animal) data by our
algorithm. We tackle this problem by fitting a parameterized
movement model to the data. Taking such an approach is
essential for applications – such as ecology– that use move-
ment data in a statistical analysis.

Movement models are used to infer a continuous motion
from discrete samples of the movement path. In ecology,
mostly random movement models, like the Brownian bridge
movement model (BBMM) [1], are used. These models have
a parameter describing how quickly the probability distri-
bution of the position diffuses. To determine the optimal
value of this parameter, a maximum likelihood method is
used, which is based on the probability of observing the
given trajectories, conditioned on the parameter value. A
classification C has a log-likelihood, which is defined as
LC =

∑
C∈C

∑
τ∈C Lτ (x(C)). That is, the log-likelihood

of each class C is the sum over the log-likelihoods of its
trajectories τ , while the log-likelihoods of the classes are
summed to obtain the log-likelihood of C.

We could now define an optimal classification as one that
maximizes the log-likelihood, but then it would be opti-
mal to put each trajectory into its own class, resulting in
the largest possible number of degrees of freedom for the
model. To avoid this, an information criterion (IC) is fre-

∗Department of Mathematics, Ruhr-Universität Bochum, Germany,
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Figure 1: Example of a classification. Classes indicated by
colour.

quently used [2]. An IC assigns a value to each classification
based on its likelihood and the number of classes. In partic-
ular we consider ICs of the form IC(C) = −2LC + |C| · p,
where LC is the log-likelihood of the model instance and |C|
is the number of classes. The number p is a penalty factor
for adding complexity to the model that counteracts overfit-
ting. We now define an optimal classification to be one that
minimizes the value of the IC among all classifications and
parameter values for T .

We develop efficient algorithms to compute optimal clas-
sifications. We first consider a discrete case, where the pa-
rameter values x(Ci) are from a finite setX = {x1, . . . , xm}
(in sorted order). Then we consider the continuous case
where the x(Ci) come from an interval on the real line.

Preliminaries. When classifying a set of trajectories T ,
we use ` to denote the number of classes and C1, . . . , C` ⊆
T to denote the classes. A class Ci is assigned a value of
the model parameter x(Ci). Each trajectory τi ∈ T has
a log-likelihood function Li(x), which we assume to be
bitonic. We also assume w.l.o.g. that these functions are
given in increasing order by the parameter value at which
they reach their maximum. That is, if we define Mi :=
argmaxx(Li(x)), then i < j ⇒Mi ≤Mj .

Problem statement. Given a set of trajectories T , an op-
timal classification Copt is the classification {C1, . . . , C`}
and selection of model parameters for the classes x(Ci),
1 ≤ i ≤ `, that achieves the minimum value for the informa-
tion criterion among all classifications and parameter values
for T . Our goal is to compute optimal classifications.
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2 Discrete Classification

We compute the optimal classification in the discrete case by
dynamic programming. A natural approach would be to pro-
cess the trajectories in the order by their maximum. However
it is not necessarily the case that this order is reflected in the
classes they are associated with.

Observation 1 Assume an optimal classification assigns the
parameter values x(C1) < · · · < x(C`) to the classes. Then
a trajectory that reaches its maximum likelihood in the inter-
val [x(Cj), x(Cj+1)) will be either assigned to Cj or Cj+1

by the bitonicity of the likelihood function. In particular if
some x(Ci) is selected then x(Cj) with j < i does not de-
pend on any of the trajectories with maximum ≥ x(Ci).

Using this, we can compute an optimal classification by
dynamic programming as follows. Consider a set of log-
likelihood functions {L1, . . . , Lk} and candidate parameter
values {x1, . . . , xm}. We add dummy values x0 := −∞
and xm+1 := ∞. Let Li,j := {Ll | xi ≤ Ml < xj} with
0 ≤ i < j ≤ m + 1 denote the set of functions that reach
their maximum value between xi and xj . We define Opt i as
the optimal classification of L0,i, conditioned on the fact that
the last class C` of Opt i has parameter value x(C`) = xi.

We can iteratively construct Opt i for i = 1, 2, . . . ,m by
noting that the second to last class has a parameter value
xj ∈ {x1, x2, . . . , xi−1}. Thus, using Observation 1, Opt i
consists of Optj extended with a new class C` with x(C`) =
xi. The functions that were already classified in Optj stay
in the same class, and the functions in Lj,i are assigned to
either C`−1 or C`. Opt i is computed by trying all possible
values of j and selecting the one with the lowest IC. The
optimal classification of the whole input is one of the Opt i,
extended by adding the remaining functions to the last class.

Theorem 1 The optimal classification of k trajectories with
respect to an information criterion can be computed in
O(m2 + km(logm+ log k)) time and O(km) space, where
m is the number of candidate parameter values.

3 Continuous Classification

When the parameter values are taken from a continuous do-
main D, finding the optimal classification is NP-hard for ar-
bitrary bitonic functions, as we have shown using a reduction
from SET COVER. We now describe a polynomial time al-
gorithm for certain log-likelihood functions.

For a set of input functions L := {L1, . . . , Lk}, let Opt i
be the optimal classification having exactly i classes. Let Cij
denote the jth class in Opt i (by increasing parameter value)
with parameter value xij and let xi0 :=M1 and xii+1 :=Mk.

The algorithm iteratively computes Opt i+1 from Opt i, for
i ∈ {1, . . . , k− 1}. Observe that there is only one classifica-
tion with one class (up to changing the parameter value).

When constructing Opt i+1, we can show using Observa-
tion 1 that a function Ll is in one of only two classes of

xp q

L1

L2

(a) Log-likelihoods L1, L2.

x2
1

x2
2

p

q

P2

P1

(b) The arrangement
A induced by P1, P2.

Figure 2: Log-likelihood functions and their induced ar-
rangement. Both functions have L(p) = L(q), and thus A
has a vertex at (p, q). A has 5 faces, the shaded faces corre-
spond to the same classification C2

1 = {L1}, C2
2 = {L2}.

Opt i+1 and the parameter value xi+1
j for a class Ci+1

j lies
in [xij−1, x

i
j ]. A choice of parameter values for a pair of con-

secutive classes can be represented as a point in D2.
Let Pl := {(p, q) ∈ D2 | Ll(p) = Ll(q) ∧ p < q}

be the Jordan curve that separates the region with Ll in the
lower class from that with Ll in the higher class. The curves
P1, . . . , Pk define an arrangementA, where each face corre-
sponds to the combinatorial structure of a possible classifica-
tion. When constructing Opt2, one of the faces f in A rep-
resents Opt2, in the sense that C2

1 = {Ll | Pl lies below f}
and C2

2 = {Ll | Pl lies above f}. Opt2 is determined by
considering each face and optimizing x21 and x22 separately.

When computing Opt i+1 from Opt i (i ≥ 2), i faces of
A jointly define Opt i+1, and two faces contribute to each
class. The optimal classification is computed by computing
a longest path in a DAG Gi with source r and sink t. The
vertices of Gi represent the possible selections of faces. An
edge (u, v) of Gi fixes a set of functions ρu ∪ λv that is a
candidate for Ci+1

j . The edge weight is the maximum log-
likelihood for this class. An r–t path in Gi visits i internal
vertices and represents a classification, with each edge defin-
ing a class. The log-likelihood of the classification is the
path’s length. So, a longest r–t path in Gi represents Opt i.

Thus, if A can be computed in polynomial time, we can
compute an optimal classification in polynomial time. In
cases of practical interest like the BBMM, this is often true.
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Clustering time series under the Fréchet distance
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Abstract

The problem of clustering of time series under the
Fréchet distance is studied. The Fréchet distance is a
popular distance measure for curves that captures well
the similarities between the curves. We consider the
previously posed clustering algorithms k-center and k-
median and adapt them. We wish to find k cluster cen-
ters, each of complexity bounded by a constant `. We
give the first (1+ε)-approximation algorithms for these
problems. Their running time is near-linear in the input
size.

1 Introduction

A time series is a recording of a signal that changes over
time. It represents a sequence of discrete measurements
of a continuous signal. The signal/data can be mul-
tidimensional, but we limit ourselves to the univariate
case. Examples of such data are stock market values,
temperature and tide measurements, number of queries
on search engines, etc.

Formally, it is a series (w1, t1), . . . , (wm, tm) of mea-
surements wi of a signal taken at times ti. Without
loss of generality let 0 = t1 < . . . < tm = 1. A time
series may be viewed as a function τ : [0, 1] → IR by
linearly interpolating w1, . . . , wm in order of ti, i =
1, . . . ,m. We obtain a polygonal curve τ with vertices
w1 = τ(t1), . . . , wm = τ(tm), we simply refer to it as a
curve. We say that such a curve τ has complexity m.

Clustering is an important tool to analyze the curves.
For clustering in general metric spaces the k-center and
the k-median problems have been extensively studied.
For these problems the best known approximation ratio
and the approximation lower bound for any polynomial
time algorithm is 2 for the k-center problem [3], and
2.733 and 1.736 respectively for the k-median problem
[6, 8].

We want to study the following clustering problems
under the Fréchet distance: let ∆m be the set of all
univariate curves of complexity at most m. Given a
set of n curves P = τ1, . . . , τn ⊆ ∆m and parameters
k, ` ∈ IN, we define a (k, `)-clustering as a set of k curves
C = c1, . . . , ck taken from ∆` which minimize one of the

∗Department of Mathematics and Computer Science; TU
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†Department of Computer Science; TU Dortmund; Germany
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following cost functions:

cost∞(P,C) = max
i=1,...n

min
j=1,...k

dF (τi, cj) , (1)

cost1(P,C) =
∑

i=1,...n

min
j=1,...k

dF (τi, cj) , (2)

where dF is the Fréchet distance.
We refer to these clustering problems as (k, `)-center

and (k, `)-median respectively. We prove that these
problems are NP-hard and that the (k, `)-center prob-
lem is NP-hard to approximate within a factor of 2.

The Fréchet distance is formally defined as follows:
let H be the set of continuous and increasing functions
f : [0, 1] → [0, 1] with the property that f(0) = 0 and
f(1) = 1. For two given input curves τ : [0, 1]→ IR and
π : [0, 1]→ IR, their Fréchet distance is

dF (τ, π) = inf
f∈H

sup
t∈[0,1]

‖τ(f(t))− π(t)‖. (3)

The function f that realizes the Fréchet distance is
called a matching. The Fréchet distance over curves is a
metric (if we observe the space of the equivalence classes
of the curves with Fréchet distance 0). The Fréchet dis-
tance between two curves of complexity m1 and m2 can
be computed in O(m1m2 log(m1m2)) time using the al-
gorithm by Alt and Godau [2].

The only known algorithm to compute 1-center clus-
tering (minimum enclosing ball) under the (weak)
Fréchet distance is given by Har-Peled and Raichel [4],
whose running time is exponential in the number of in-
put curves. Indyk [5] studied the nearest neighbor prob-
lem via embeddings of the (discrete) Fréchet distance.

2 Main technique

A simplification of a curve is a curve which has lower
complexity than the original curve and which is similar
to the original curve. The δ-signature is a special type
of curve simplification, such that its Fréchet distance to
the original curve is at most δ. It captures the criti-
cal points of the original curve, while reducing its com-
plexity. Figure 1 shows an example of such δ-signature
defined by the subset of time stamps si, 1 ≤ i ≤ `.

We want to find low-complexity cluster centers that
well describe the input set. We show that the signa-
tures always exist and have a strict hierarchical struc-
ture, that enables us to calculate them efficiently, both
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Figure 1: Example of a δ-signature of a curve

in the case when the error δ or goal complexity ` is given
(in times O(m) and O(m logm) respectively), where m
is the complexity of the input curve.

Two important properties of δ-signatures are given in
the following lemma. It enables us to ignore the vertices
of the curves that are far from the signature vertices.

Lemma 1 Let σ = (v1, . . . , v`) be a δ-signature of τ =
(w1, . . . , wm). Let rj = [vj−δ, vj+δ] be ranges centered
at the vertices of σ ordered along σ, where r1 = [v1 −
4δ, v1 + 4δ] and r` = [v` − 4δ, v` + 4δ]. Let π be a curve
with dF (τ, π) ≤ δ. Then
(i) π has a vertex in each range rj , such that these

vertices appear on π in the order of j;
(ii) if π′ is a curve obtained by removing some vertex

u from π with u /∈ ⋃
1≤j≤` rj , then it holds that

dF (τ, π′) ≤ δ.

3 Main results

The (k, `)-center clustering algorithm works as follows.
We start by computing a constant factor approximation.
Using the approximated cost value δ as the range size
and the vertices of the δ-signatures of the input curves
as the centers of ranges, we can apply Lemma 1(ii) to
limit ourselves only to these ranges in the further search
for a solution. We compute the union U of the ranges.
We cover U ⊆ R with a grid and obtain a candidate
set V for vertices of cluster centers, such that (roughly)
∀x ∈ U ,∃y ∈ V : |x−y| ≤ εδ. The size of this candidate
set can be bounded using Lemma 1(i) and the fact that
an optimal solution can use at most k` vertices. Namely,
the size does not depend on m and n. We form the
candidate center curves by taking all possible `-tuples
from this set. We evaluate all solutions and find a (1+ε)-
approximation.

The result on (k, `)-median clustering uses the algo-
rithm of Kumar et al. [7] and the analysis of Acker-
mann et al. [1]. Their result could be directly applied
if the doubling dimension of the metric space (∆m, dF )
would be bounded. However, the doubling dimension
is unbounded, even if m is bounded. Instead, we prove
that the modified sampling property (Lemma 2) holds
for the Fréchet distance and our problem definition (2).

By the analysis of Ackermann et al., the modified sam-
pling property implies a near-linear time algorithm for
the (k, `)-median problem in our setting.

Lemma 2 There exist integer constants mε,λ,` and
tε,λ,` such that given a set of curves P = {τ1, . . . , τn}
for a uniform sample multiset S ⊆ P of size mε,λ,` we
can generate a candidate set Γ(S) ⊂ ∆` of size tε,λ,`
satisfying

Pr
[
∃q ∈ Γ(S) : cost1(P, q) ≤ (1 + ε) opt

(1)
1,`(P )

]
≥ 1−λ,

where opt
(1)
1,`(P ) is the cost of the optimal (1, `)-median

clustering of P . Furthermore, we can compute Γ(S) in
time depending on `, λ and ε only.

Theorem 3 Let ε, λ > 0 and k, ` ∈ N be given. For
a given set of curves P = {τ1, . . . , τn} ⊂ ∆m, we can
compute a (1 + ε)-approximation to the optimal (k, `)-
center (resp. (k, `)-median) clustering of P in time

O (tk,`,ε,λmn logm) ,

where tk,`,ε,λ is a constant depending only on ε, λ, k and
`. The result on (k, `)-median clustering is obtained
with constant probability.

References

[1] M. R. Ackermann, J. Blömer, and C. Sohler. Clus-
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Experiments on Parallel Polygon Triangulation Using Ear Clipping
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Abstract

We present an experimental study of different strate-
gies for triangulating polygons in parallel. As usual,
we call three consecutive vertices of a polygon an ear if
the triangle that is spanned by them is completely in-
side the polygon. Extensive tests on thousands of sam-
ple polygons indicate that about 50% of the vertices of
most polygons form ears, which suggests that polygon-
triangulation algorithms based on ear-clipping might be
well-suited for parallelization. We discuss three differ-
ent on-core approaches to parallelizing ear clipping and
report on our experimental findings. Extensive tests
show that the most promising method achieves an av-
erage speedup of about 3 on a quad-core processor.

1 Introduction

Three consecutive vertices (vi−1, vi, vi+1) form an ear
of a simple polygon P if vi−1, vi+1 is a diagonal of P .
Cutting along this diagonal removes the vertex vi, the
“base” of the ear, thus reducing the number of ver-
tices of P by one. The basic idea of ear clipping is
to iteratively cut off ears until the polygon has shrunk
to a triangle. The algorithm’s correctness hinges upon
Meisters’ two-ears theorem which states that every non-
trivial simple polygon has at least two non-overlapping
ears [3].

A typical ear-clipping algorithm operates in two
phases. Classification: iterate along P to determine all
instances of three consecutive vertices that form an ear
of P . These potential ears are stored in a queue. Clip-
ping: iteratively pick a candidate ear from the queue
and clip it if it is still valid. As an ear (vi, vj , vk) is
clipped and stored in a triangle list, its two outer ver-
tices vi and vk have to be checked to determine whether
they form the bases of new ears now. Every new ear is
added to the queue. The process ends for an n-vertex
polygon when n− 3 ears have been clipped.

Held’s fast industrial-strength triangulation tool
FIST [2] is a polygon triangulation framework based on
ear-clipping. While the basic ear-clipping algorithm has
an O(n2) worst-case complexity, FIST employs multi-
level geometric hashing to speed up the computation to
near-linear time for almost all inputs.

∗Universität Salzburg, FB Computerwissenschaften, 5020
Salzburg, Austria; supported by Austrian Science Fund (FWF)
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Surprisingly little work has been done on computing
triangulations of simple polygons in parallel. The lit-
erature focuses mostly on (Delaunay) triangulations of
point sets rather than polygons, see for instance Rong
et al. [5] and Xin et al. [7]. In 2013, Qi et al. [4] in-
troduced a primarily GPU-based algorithm to compute
constrained Delaunay triangulations.

We analyzed the prevalence of ears in our vast set of
test data and find that in most polygons about half the
vertices form the bases of ears. If we look only at convex
vertices then a vast majority (98 %) of them belong to
ears. This suggests that clipping many ears simultane-
ously is feasible. Our contribution are three algorithms
for parallelizing ear-clipping on a multi-core processor,
which we implemented and tested extensively.

2 Parallel Ear-Clipping Algorithms

We discuss three algorithms for extending the classic
FIST tool such that it can operate in parallel. The
algorithms differ in how they split the polygon and its
ears such that the subsequent ear clipping can be carried
out in parallel.

Divide and Conquer. The basic idea is to split the
polygon P into as many independent, equally sized sub-
polygons as CPU cores are available. Since it seems
costly to determine suitable diagonals that achieve bal-
anced splits, we simply use vertical lines to split the
polygon. Using a variant of the Sutherland-Hodgman
polygon clipping algorithm [6], we can split a polygon
along a line ` (which does not pass through a vertex of
P ) in timeO(n), at a cost of at mostO(n) Steiner points
caused by the number of intersections between ` and the
polygon boundary. In our tests, the number of Steiner
points seems to be bounded by

√
n for almost all but

contrived inputs. We then run one (sequential) FIST
instance per core to obtain a triangulation of each sub-
polygon. Glueing the triangulations of all sub-polygons
together yields a triangulation of P , albeit with Steiner
points which have to be removed.

So consider a pair of Steiner points sa, sb that are
consecutive along `: We create a hole H by removing
all triangles incident in sa, sb. Since sa, sb lie in the
interiors of edges of the boundary of H and since H is
“double-star-shaped”, the hole H can be triangulated
easily without re-creating triangles incident to sa or sb.
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Partition and Cut. In this approach, we pick k
equally-spaced vertices along the boundary of the poly-
gon and partition the boundary into k chains, one for
each thread. (Two adjacent chains then always share
one of these selected vertices.) In order to run parallel
classification steps, one for each chain, we use a per-
thread queue to store potential ears instead of a single
global queue. Then, in the clipping phase, each thread
processes all ears from its queue. As usual, clipping
the ear (vi−1, vi, vi+1) involves checking whether vi±1

has become the basis of a new ear. However it is only
added to the queue if it is not a vertex shared with a
neighboring chain. Since each thread only clips ears in
its own chain and care is taken to never remove vertices
shared between chains, both the classification and clip-
ping step of each thread can run independently of other
threads.

After all k queues are empty and the parallel clipping
threads have ended, some part of the original polygon
remains untriangulated. This part is then processed
using a final, sequential run of FIST which completes
the triangulation of the polygon.

Mark and Cut. The key observation of this approach
is the following: Every second ear along the polygon’s
boundary is non-overlapping. Therefore, we can pro-
cess every second ear and clip it independently from all
other ears. The phases used by this approach thus differ
slightly from the previous two algorithm: In the mark
phase, we walk along the polygon boundary and store
the index of every second vertex in an array A. In the
cut phase, which can be run by many threads in paral-
lel, we consider every vertex in A, and if it forms the
basis of an ear we clip it immediately.

One thread is tasked with running the mark phase.
As soon as it has processed half of the polygon bound-
ary, the remaining threads launch a cut phase on the in-
dices stored in A so far while the first thread continues
until it has processed the remainder of the boundary.

Once all threads are finished, the cutting threads are
re-launched on the vertices that have since been added
to A. The marking thread now revisits what remains
after the parallel ear-clipping on the first half of the
polygon boundary. This continues until only a small
number of ears are found in a cut phase. (In our tests
we switched to the sequential FIST once fewer than 20
new triangles were generated in one cutting phase.) We
then use one sequential run of FIST on the remaining
polygon to finish the triangulation.

3 Experimental Results

We implemented all three parallel variants of FIST as
an on-core parallelization by the use of OpenMP/C++.
Our test system runs CentOS 6.5 on an 2014 Intel Xeon

E5-2667 v3 CPU at 3.20 GHz with 8 cores and 132 GB
RAM.

Our implementations were tested on about 20 000
polygons with up to four million vertices per in-
put, consisting of both real-world and synthetic data
that exhibits various characteristics. The test data
was collected over the past 30 years by Martin Held
and includes proprietary CAD/CAM designs, sampled
printed-circuit board layouts, geographic maps, sam-
pled spline curves and font outlines, closed fractal and
space filling curves, as well as star-shaped and various
types of “random” polygons generated by RPG [1].

In our tests, we compare the runtime of our paral-
lel algorithms to the runtime of the sequential FIST
tool. With eight cores a speedup of about 3 is observed
with both the mark-and-cut and the partition-and-cut
variants; cf. Fig. 1. The speedup of the divide-and-
conquer approach is slightly lower. Most desktop com-
puters have four cores and in such a setting the mark-
and-cut variant produces a speedup of about 2–3. Our
implementations are not (yet) tuned and, likely, there
is room for further improvement.
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Figure 1: Speed-up obtained by Mark and Cut shown
as a function of input size for eight cores.
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The Offset Filtration of Convex Objects ∗

Dan Halperin†1, Michael Kerber‡2, and Doron Shaharabani§1

1Tel Aviv University, Tel Aviv, Israel
2Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract

We consider offsets of a union of convex objects. We aim
for a filtration, a sequence of nested cell complexes, that
captures the topological evolution of the offsets for in-
creasing radii. We describe methods to compute a filtra-
tion based on the Voronoi diagram of the given convex
objects. We prove that, in two and three dimensions,
the size of the filtration is proportional to the size of
the Voronoi diagram. Our algorithm runs in Θ(n log n)
time in R2 and in expected time O(n3+ε), for any ε > 0,
in R3. Our approach is inspired by alpha-complexes for
point sets, but requires a more involved analysis pri-
marily since Voronoi regions of general convex objects
do not form a good cover. We show by experiments that
our approach results in a similarly fast and topologically
more stable method for computing a filtration compared
to approximating the input by point samples.

1 Introduction

The theory of persistent homology [2] has led to a new
way of understanding data through its topological prop-
erties, commonly referred as topological data analysis.
In general, the theory studies the sublevel sets of func-
tions over an arbitrary space. One of the most common
specializations for geometric inputs is to consider offsets
(“thickenings”) of the input shapes with increasing off-
set parameter and to study the changes in the hole struc-
ture during this process. We refer to this sequence of
increasing shapes as the offset filtration. For any dimen-
sion p, persistent homology provides p-barcode which
constitutes a summary of the p-th homology of the off-
set shape for any offset parameter value. For instance,
the 0-barcode captures the evolution of connected com-
ponents; Figure 1 describes an example of a 1-barcode.

∗Work by D.H. and D.S. has been supported in part by the
Israel Science Foundation (grant no. 1102/11), by the German-
Israeli Foundation (grant no. 1150-82.6/2011), and by the Her-
mann Minkowski–Minerva Center for Geometry at Tel Aviv Uni-
versity. M.K. acknowledges support by the Max Planck Center of
Visual Computing and Communication.
†danha@post.tau.ac.il
‡mkerber@mpi-inf.mpg.de
§doron.s@hotmail.com
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Figure 1: An example shape, its offsets for increasing
radii r1 < r2 < r3 (top row), and its 1-barcode (bot-
tom). While the shape is simply-connected initially, two
holes have been formed at radius r1, one of which dis-
appears for a slightly larger offset value while the other
one persists for a large range of scales. At r2, we see
the formation of another rather short-lived hole. The
1-barcode summarizes these facts by displaying one bar
per (1-dimensional) hole, spanning over the range of off-
set radii for which the hole is present.

In computational setups, it is common to assume
point sets as input set. We pose the question of how
to generalize this default framework to the case where
the input consists of convex polytopes. While there is no
theoretical obstacle to consider distance functions from
shapes rather than points (at least for reasonably “nice”
shapes), it raises the question: How can the topological
information be represented in a combinatorial structure
of small size?

We design, analyze, implement, and experimentally
evaluate algorithms for computing persistence barcodes
of convex polytopes in 2- and 3- dimensions. More pre-
cisely, we concentrate on the problem of computing a
filtration, a sequence of nested combinatorial cell com-
plexes that undergoes the same topological changes as
the offset shapes. Due to lack of space, proofs and cer-
tain details are omitted. We refer the reader to the full
manuscript [3] for the complete description.

2 Barcodes of shapes in 2- and 3- dimensions

For a set of objects, the nerve describes their intersec-
tion patterns: it is a simplicial complex with one ver-
tex per object, where k vertices form a simplex if and

This is an abstract of a presentation given at CG:YRF 2015. It has been made public for the benefit of the community and should be considered a preprint rather
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only if the k objects have a common intersection. For
instance, the nerve of a collection of balls with same ra-
dius is called the Čech complex. A set of objects forms a
good cover if the intersection of any subset is empty or
contractible. The nerve theorem asserts that for good
covers, the union of the objects is homotopically equiv-
alent to their nerve.

Consider a set of convex polytopes and their offset
filtration as in Figure 1. The nerve filtration is obtained
by taking the nerves of the offset polytopes for every
offset parameter. While that parameter increases, we
obtain an increasing sequence of simplicial complexes
which only changes for finitely many offset values. Since
offsets of convex polytopes are convex, they form a good
cover for every offset parameter, and (an extension of)
the nerve theorem implies that offset filtration and nerve
filtration yield the same barcode.

The major disadvantage of the construction above is
the size of Θ(nd+1) for a nerve filtration of polytopes
in d dimensions. A restricted offset is the offset of a
polytope intersected with its Voronoi cell, that is, the
region of the space that is closest to the polytope. We
note that the union of restricted offsets and the union
of non-restricted offsets are equal, which implies that
their filtrations are the same. The restricted nerve fil-
tration is the filtration of nerves of restricted offsets.
Since restricted offsets intersect only at Voronoi cells,
the restricted nerve filtration is at most as large as the
size of the Voronoi diagram of the input polytopes.

Unlike for point sets, restricted offsets of convex poly-
topes are not convex nor do they form a good cover. As
a result, the nerve theorem does not hold, and the stan-
dard proof for barcode equivalence between restricted
offset and restricted nerve filtration fails. Our first (sur-
prising) result is that for d = 2, the barcodes are equal
nevertheless. We state this in the following theorem,
which implies that we can obtain a filtration of size O(n)
for the 2-dimensional case.

Theorem 1 For convex polygonal sites in R2, the 0-
and 1-barcode of the restricted nerve filtration are equal
to the 0- and 1-barcode of the offset filtration.

Theorem 1 does not generalize to
the 2-barcode: on the left, we see
four sites in R2 where every triple
of Voronoi regions intersects, but all
four of them do not. Therefore, the
nerve consists of the four boundary
triangles of a tetrahedron and there-
fore carries non-trivial 2-homology.

In the planar case, the offset filtration can clearly not
form any void (a 3-dimensional hole) and we can there-
fore safely ignore all such features. In R3, however, the
2-barcode carries information about the offset and such
features need to be distinguished from real ones.

Our second result yields an efficient filtration for the
case of convex polyhedra in R3. We build a cell com-
plex with a sweep-line approach that cuts the bi- and
trisectors of the Voronoi diagram of the polyhedra. The
details of the cutting are determined by analyzing the
critical points of the distance function restricted to a
Voronoi cell. We obtain the following result.

Theorem 2 A filtration that has the same barcode as
that of the offset filtration of convex, disjoint poly-
hedra in general position can be computed in time
O(π(n) log(π(n))), excluding the computation time of
the Voronoi diagram, and is of size O(π(n)), where π(n)
is the size of the Voronoi diagram.

π(n) is bounded from below by Ω(n2) (by a straight-
forward construction) and from above by O(n3+ε) [1, 5],
so that the obtained filtration is significantly smaller
than the unrestricted nerve filtration of size O(n4).

3 Experimental evaluation

Computing Voronoi diagrams of polyhedra in space is a
difficult problem. While implementation efforts are un-
derway, so far only restricted cases have been completed;
see e.g., [4]. We therefore restrict our experiments to the
planar case. Already in the plane the restricted nerve
approach is much faster than the unrestricted nerve ap-
proach which has a cubic running time complexity. In
addition, we compare our method with approximating
the shapes by point samples. We show that our method
is comparably fast, and has the advantage of obtaining
an exact barcode while the approximation yields a bar-
code that contains noise that is hard to distinguish from
real small features. For the complete results see [3].
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Generalized Offsetting Using a Variable-Radius Voronoi Diagram
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Abstract

We investigate ways to extend offsetting based on skele-
tal structures beyond the well-known constant-radius
and mitered offsets supported by Voronoi diagrams and
straight skeletons for which the orthogonal distance of
offset elements to their input elements is uniform. We
introduce a new geometric structure called the variable-
radius Voronoi diagram, which supports the computa-
tion of variable-radius offsets, i.e., offsets whose distance
to the input may vary along the input.

1 Introduction

Offsetting is an important task in diverse applications
in the manufacturing business. For a set C in the
Euclidean plane, the constant-radius offset with offset
distance r is the set of all points of the plane whose
minimum distance from C is exactly r. Formally, this
offset curve can be defined as the boundary of the set⋃
p∈C B(p, r), where B(p, r) denotes a disk with radius

r centered at the point p.
For polygons such an offset curve will consist of one

or more closed curves made up of line segments and cir-
cular arcs. Held [2] describes as algorithm using the
Voronoi diagram to compute such an offset efficiently
and reliably. Mitered offsets differ from constant-radius
offsets in the handling of non-convex vertices of an in-
put polygon: Instead of adding circular arcs to the offset
curve, the offset segments of the two edges incident to
a non-convex vertex get extended until they intersect.
This type of offset can be generated in linear time from
the straight skeleton [3]; see Figure 1. A common fea-
ture of these offsets is that the orthogonal distance of
each offset element from its defining contour element is
constant.

Several applications in industry, such as for garment
manufacture or shoe design, need to construct differ-
ently sized pieces from a single master design. The obvi-
ous method of scaling is not always desirable as it scales
all elements equally. An alternative is to use offsetting,
and a common practical requirement is creating non-
constant offsets, i.e., offset curves where the distance
of each point of the offset to the original input curve
changes along the input.

∗Universität Salzburg, FB Computerwissenschaften, Austria;
supported by Austrian Science Fund (FWF): P25816-N15.
†Institute of Science and Technology, Austria

Figure 1: The Voronoi-diagram (left) and the straight
skeleton (right) of a polygon enable efficient computa-
tion of constant-radius and mitered offsets (dashed).

Prior work on variable-distance offsets [4, 5, 6] seems
to concentrate on defining and comparing different off-
sets and is less concerned with robustly computing offset
curves.

2 Main Idea

Consider a planar straight-line graph S in the plane.
Let us denote by S ⊂ R2 the set of points covered by
all vertices and line segments of S. Furthermore, we
consider a weight function σ : S → R+ that assigns to
each vertex p of S a positive weight σ(p) and for each
point on a line segment pq of S we linearly interpolate
its weight along pq from σ(p) at p to σ(q) at q.

We now place a disk at each point p of S. In anal-
ogy to the so-called prairie fire model, all disks have
initially radius zero. As time increases, however, the ra-
dius of each disk grows proportional to the weight σ(p)
of its center point p ∈ S. The variable-radius offset for
a given time is the envelope of this set of disks. As
intended, input sites with small weight will induce an
offset that is closer to them, and input sites that were
assigned larger weights will cause their offsets to be far-
ther away. Formally, this offset is the boundary of the
set

⋃
p∈S B(p, σ(p) · t). Note that the term σ(p) · t re-

places the constant radius r of standard offsets.

Having used skeletal structures such as the Voronoi
diagram and the straight skeleton to construct constant-
radius and mitered offsets in the past, we are looking
for another Voronoi-like structure to facilitate the com-
putation of non-constant offsets. The variable-radius
Voronoi diagram introduced below and defined relative
to weighted points and variably-weighted line segments
is such a useful structure.

Preliminaries. The Voronoi diagram VD(S) of a set
S of points in the plane, called sites, tessellates the plane
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into interior-disjoint regions. Each Voronoi region be-
longs to exactly one site s and is the locus of all points
in the plane whose closest site is s.

We introduce the variable-radius Voronoi diagram
VDv(S) as a generalized Voronoi diagram with gener-
alizations into two directions: First, the set S of in-
put sites is a planar straight-line graph, i.e., a set of
both vertices and non-intersecting line segments be-
tween pairs of these vertices. Second, we assign mul-
tiplicative weights to these sites. As described above,
vertices s ∈ S are assigned positive weight σ(s), and
the weight of a point on a line segment pq changes lin-
early between its endpoints from σ(p) to σ(q).

The distance of a point u in the plane to a vertex
site s is defined as the Euclidean distance from u to s,

divided by the weight of that site: d(u, s) := ‖u−s‖
σ(s) .

The distance of u to a line-segment site pq is naturally
defined as the minimum distance of u to any point of

the line segment: d(u, pq) := minv∈pq
‖u−v‖
σ(v) .

As in the case of the standard Voronoi diagram, every
point in the plane is in the (generalized) Voronoi region
of the site that it is closest to. An arc that separates two
regions comprises all points that have the same distance
to two sites and a larger distance to all other sites.

The variable-radius Voronoi diagram inherits several
important properties from the multiplicatively weighted
Voronoi diagram of points. For instance, the region of
a given site need not be connected and bisectors be-
tween two vertices are circles or circular arcs [1]. Other
bisectors, however, are more complex curves in general.

The bisectors between a line segment pq and its two
incident vertices p and q exhibit an interesting property:
We can show that they are full circles whose diameters
on the line supporting pq are bounded by a common
point on one side and p and q, respectively, on the other;
see Figure 2, left.

Figure 2: (Left) The variable-radius Voronoi diagram
(blue, dotted) of a line segment and its two incident
vertices. A family of offset curves is shown in green and
dashed. (Right) The variable-radius Voronoi diagram
inside a polygonal input with weighted vertices.

Offsetting. While the bisectors of VDv(S) consist
also of non-trivial curves, it can be shown that the
variable-radius offset itself comprises line segments and
circular arcs only; see Figure 2, right.

We can compute the variable-radius offset of S for a
given time t from the variable-radius Voronoi diagram
VDv(S). The approach is identical to how constant-
distance offsets are computed based on Voronoi dia-
grams or straight skeletons [2, 3]. Roughly, we iterate
through all the arcs of VDv(S) and add offset elements
in each face that contains points at distance t · σ. The
topological information encoded in VDv(S) enables us
to do this in time linear in the size of the Voronoi di-
agram and in a single iteration, without the need to
compute all pair-wise self-intersections of offsets.

Construction. Similarly to the standard Voronoi di-
agram, the variable-radius Voronoi diagram can be ob-
tained from the lower envelope of surfaces in 3D. For
vertices, the corresponding surface in 3D is a cone whose
dihedral angle depends on the weight of the input ver-
tex. Input line segment induce ruled surfaces in 3D as
the offsets of line segments are also line segments. In
particular, the surfaces will be subsets of right conoids.

CGAL’s 3D envelope computation algorithm is
generic in the sense that it can deal with arbitrary ter-
rain surfaces so long as it has some means to learn
about certain geometric properties. We are working on
proof-of-concept code, based on CGAL, to compute the
variable-radius Voronoi diagram of planar straight-line
graphs and to compute variable-radius offsets.

3 Conclusion

We investigate one specific variant of a skeletal struc-
ture which we call the variable-radius Voronoi diagram.
While this structure is of particular interest in itself, we
demonstrate its applicability to robustly constructing
variable-radius offsets.

An open problem is to generalize the class of input
sites to include for instance circular arcs. We hope
that this would enable offsets that are G1 continuous
for some class of inputs. However, note that the off-
set of a variable-weighted circular arc is not a circular
arc. Hence, a better understanding of the mathematical
characteristics of the resulting offsets and of the corre-
sponding Voronoi bisectors is required.
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Drawing Planar Cubic 3-Connected Graphs with Minimal Visual Complexity∗

Alexander Igamberdiev† Wouter Meulemans† André Schulz†

1 Introduction

To assess the quality of network visualizations, many
criteria have been investigated, such as crossing min-
imization, bend minimization and angular resolution
(see [6] for an overview). The structural complexity
of a graph is often measured in terms of its number of
vertices or edges. This, however, does not necessarily
correspond to its cognitive load (mental effort needed
to interpret a drawing). Bends and crossings increase
the cognitive load, making it harder to interpret a graph
visualization, and should be avoided.

We consider the following measure of visual complex-
ity for planar graphs [5]: the number of basic geometric
objects that are needed to realize the drawing. For ex-
ample, if a path in the graph is placed along a line, then
we do not need one line segment for each edge in this
path; one line segment can represent the entire path.

Upper and lower bounds on the necessary visual com-
plexity of various graph classes are known [5]. A lower
bound for any graph is dn/2e, where n is the number of
odd-degree vertices: at least one geometric object must
have its endpoint at such a vertex.

We consider line-segment drawings for planar cubic 3-
connected graphs; unless mentioned otherwise, graph is
used to refer to a graph of this class. Any plane drawing
has at least three vertices of the same face on its convex
hull: such a vertex is the endpoint of the line segment
for each incident edge. Thus, we obtain a lower bound
of n/2 + 3 line segments, as n is even. An algorithm is
known which uses n + 2 line segments [2].1

To compute a plane drawing matching the lower
bound, we are given (or pick) three convex hull ver-
tices; these are referred to as the suspension vertices.
For all other internal vertices, we decide which two in-
cident edges lie on the same line segment, that is, which
of the three angles is flat. Hence, this corresponds to a
flat-angle assignment ; we refer to plane drawings that
match the lower bound as flat-angle drawings. Note that
any face in a flat-angle drawing is nonstrictly convex.

Aerts and Felsner [1] describe conditions for the
stretchability of flat-angle assignments. From a stretch-

∗This work was supported by DFG grant SCHU 2458-4/1.
†[alex.igamberdiev|w.meulemans|andre.schulz]@

uni-muenster.de, Westfälische Wilhelms-Universität Münster
1Another algorithm matching this lower bound is described [4],

but details are insufficient to verify its correctness.
2This is not the graph-theoretic notion of edge insertion.

able assignment, a layout can be obtained by solving
a system of harmonic (linear) equations with arbitrary
edge weights. How to efficiently compute stretchable
flat-angle assignments remains an open problem.

Contributions. We present the high-level ideas for two
different O(n2)-time algorithms (Sect. 2 and 3) to con-
struct a plane drawing matching the n/2+3 lower bound
for n ≥ 6. The algorithms produce drawings directly.
From a drawing, a flat-angle assignment can be derived
and thus they can also be used to set up a system of
harmonic equations [1]. We postprocess any drawing by
solving the set of equations using uniform edge weights.

2 Deconstruction algorithm

For the deconstruction algorithm, we define an opera-
tion called edge insertion2: pick two edges that belong
to one face, subdivide both edges and add a new edge
between the new degree-2 vertices. It is folklore that ev-
ery cubic 3-connected graph can be obtained from K4

by a sequence of edge insertions (e.g, [3], page 243).
We prove a slightly stronger version: any graph other
than K4 can be constructed from the triangular prism,
while not adding new edges in a given outer face (though
outer-face edges may be subdivided).

We compute a construction order by repeatedly ap-
plying the edge insertion’s inverse operation to the
desired graph, maintaining planarity, 3-regularity, 3-
connectivity and a chosen outer face. This procedure
always finishes on a triangular prism which has a trivial
flat-angle drawing with any outer face. With this con-
struction order, we reconstruct the desired graph from

(1)

(3)

(2)

Figure 1: Edge insertion that connects (1) noncollinear
edges of a face, (2) collinear edges separated by exactly
one vertex, and (3) collinear edges separated by two or
more vertices. In case 2 and 3, we reassign the flat angle
at the first and/or last separating vertex.
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the triangular prism, with a sequence of edge insertions
maintaining a flat-angle drawing (see Fig. 1).

3 Windmill algorithm

The windmill algorithm computes a flat-angle drawing,
working its way inward from the outer face. It does
so recursively, using as parameter a simple cycle C in
the graph. It assumes that C is drawn as a nonstrictly
convex polygon. Its convex corners correspond to sus-
pension vertices or vertices having an edge outside C;
any flat vertex has an edge inside C. Initially, C is the
outer face, drawn as an equilateral triangle with the sus-
pension vertices as corners (see Fig. 2(a)). A recursive
step for a cycle C is done using one of four cases, based
on the cyclic sequence F of faces along the inside of C.

1. If at most one vertex lies inside C, we draw all
chords as line segments. The one vertex (if present)
is positioned to lie on a line segment between two
of its neighbors. See Fig. 2(b-c,e-f).

2. If a face occurs more than once in F , we draw its
paths inside C as line segments and recurse on a
subcycle for each path. See Fig. 2(c-d).

(a) (b)

(c) (d)

(e) (f)

Figure 2: The windmill algorithm. Cycles are drawn
thick; unshaded cycles are processed in the next step.
(a) Initial call. (b-e) Consecutive states. (f) Final re-
sult. Two cycles are processed between (e) and (f). (a,c)
Hashures indicate faces revelant for case 2 and 3.

3. If two faces share an edge, but are not consecutive
in F , we draw three line segments to represent the
paths inside C along the two faces and recurse on
the two subcycles created. See Fig. 2(a-b).

4. Otherwise, we create a windmill pattern with the
sequence of faces along C. We recurse on the cycle
inside the windmill. See Fig. 2(d-e).

There is a subtlety for case 3: the faces must lie on
different sides of the polygon for C. Otherwise, case 4
handles this pattern using additional recursive calls.

4 Outlook

We presented two algorithms to compute graph layouts
for planar cubic 3-connected graphs, that achieve a vi-
sual complexity matching the lower bound. The algo-
rithms typically produce different layouts (Fig. 3). As
the visual complexity is the same, we need other cri-
teria to further assess the overall quality. We intend
to investigate which algorithm performs better in such
other criteria, or design another algorithm to explicitly
incorporate these. Moreover, user studies are needed to
investigate whether this definition of visual complexity
correlates to an observer’s cognitive load.

(a) (b)

Figure 3: Different layouts for the same graph using
uniform weights in the harmonic equations. (a) Decon-
struction algorithm. (b) Windmill algorithm.
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Randomized Incremental Construction for the Hausdorff Voronoi Diagram∗
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Abstract

We apply the randomized incremental construction
framework to the Hausdorff Voronoi diagram of a fam-
ily of k clusters of total n points, and obtain an al-
gorithm of expected O((m + n log k) log n) time and
O(m + n log k) space, where m is the number of cross-
ings between pairs of crossing clusters (m = O(n2)); the
complexity of the diagram is O(n+m). For non-crossing
clusters (m = 0), the algorithm simplifies to expected
O(n log n+ k log n log k) time and O(n) space.

1 Introduction

The Hausdorff Voronoi diagram of a family F of point
clusters in R2 (HVD(F ), for brevity HVD) is a subdi-
vision of R2 into maximal regions such that every point
within one region has the same nearest cluster, where
the distance from a point t to a cluster P is the maxi-
mum distance from t to any point in P . See Fig. 1(a).

We assume that no cluster contains another one inside
its convex hull, as such clusters would have no effect to
the diagram. We call two clusters non-crossing, if their
convex hulls admit two supporting segments, and cross-
ing otherwise (see Fig. 1(b)). The number of supporting
segments (divided by 2 minus 1) reflects the number of
crossings between the two clusters. Let k be the num-
ber of clusters in F , and n be the total number of points
in all clusters; let m be the total number of crossings
between pairs of crossing clusters (m = O(n2)).

The combinatorial complexity of the HVD is O(n +
m) [5, 7], and this is tight. The diagram can be com-
puted in time O(n2) [5], but faster algorithms exist for
non-crossing clusters where the diagram has complexity
O(n), see [3] and references therein. For non-crossing
clusters, we recently presented a randomized incremen-
tal construction (RIC) in expected O(n log n log k) time
and O(n) space [3]. The HVD of non-crossing clusters is
an instance of abstract Voronoi diagrams (AVDs) while
the HVD of arbitrary clusters is not.

In this abstract, we apply the standard RIC frame-
work to the construction of the HVD in all cases. The
algorithm for the HVD of arbitrary clusters requires
O((m+n log k) log n) expected time and O(m+n log k)
expected space. The simplified algorithm for non-

∗Research supported in part by the Swiss National Science
Foundation, project 20GG21-134355, under the ESF EURO-
CORES program EuroGIGA/VORONOI.
†Università della Svizzera italiana (USI), Lugano, Switzerland

(a) (b)

p

(c)

Figure 1: (a) HVD; (b) Non-crossing clusters and clus-
ters with 2 crossings; (c) visibility-based decomposition

crossing clusters runs in O(n log n + k log n log k) ex-
pected time and O(n) expected space. The latter is
a complimentary approach to [3] for the same problem,
which avoids the use of point location data structures,
and follows the RIC framework.

2 Overview of RIC and properties of HVD

RIC framework [4]. The RIC paradigm to compute
a Voronoi diagram incrementally, inserts sites one by
one, each time recomputing the target diagram. The
diagram is viewed as a collection of ranges, defined and
without conflicts w.r.t. the set of sites inserted so far.
To update the diagram efficiently, a conflict graph is
maintained. It is a bipartite graph whose nodes cor-
respond to (1) the ranges for the diagram of of the
sites inserted so far, and (2) the sites that are not yet
inserted. Edges of the graph correspond to conflicts
between the respective ranges and objects. The RIC
framework has been applied to a number of general-
ized Voronoi diagrams [2]. However, these diagrams do
not include the HVD, which has several features that
have not been considered by efficient applications of the
RIC paradigm before. These include: (1) sites of non-
constant complexity, (2) sites that are not enclosed in
their Voronoi regions, and (3) disconnected and empty
Voronoi regions. A recent work on AVDs with discon-
nected regions [1] does not apply to the HVD.
HVD. For a cluster C ∈ F , let hregF (C) denote the
region of C in HVD(F ), and T (C) denote the graph
structure of the farthest Voronoi diagram of C.

A C-mixed vertex of HVD(F ) is the point where
a Voronoi edge bounding hregF (C) meets T (C); it is
equidistant to two points of C and one point of another
cluster. In Fig. 1(a), a C-mixed vertex of the leftmost
cluster is marked by unfilled circle.

Observation 1 ([7]) Each face of hregF (C) intersects
T (C) in one non-empty connected component. This
component is delimited by C-mixed vertices.
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The components are shown dashed in Fig 1(a).
The faces of the HVD may be split into simple sub-

faces by the visibility-based decomposition [7] (while
maintaining the O(n+m) complexity of the diagram).
In Fig. 1(c), the visibility-based decomposition of (part
of) a single face of HVD is shown in bold.

3 The algorithms

We follow the RIC framework. First, we discuss arbi-
trary clusters, and then non-crossing clusters. The lat-
ter case is simpler, as each region of HVD has at most
one face.

For both settings we define a range to be a face of
the visibility-based decomposition of HVD. A conflict
is defined differently in each case.

RIC for HVD of arbitrary clusters. A conflict is de-
fined as follows. A range τ is in conflict with a cluster
C ∈ F \ S, if τ ∩ T (C) ∩ hregS∪{C}(C) 6= ∅. With
each conflict in the conflict graph we store a point in
this intersection as a witness and all C-mixed vertices
of HVD(S ∪ {C}) contained in τ .

Suppose that for some S ⊂ F , HVD(S) and the
conflict graph have been computed. To insert a clus-
ter C ∈ F \ S, we need to efficiently: (1) compute
HVD(S ∪ {C}); and (2) update the conflict graph. The
latter is especially difficult since the update condition
on the conflict graph [2] is violated. That is, we need to
bound the number of unsuccessful tests of ranges against
clusters. Note that one such test does not take constant
time as the clusters are of non-constant complexity.

Lemma 1 (1) HVD(S ∪ {C}) can be computed from
HVD(S) in time linear in the number of its structural
changes. (2) The conflict graph can be updated in time
O((AC +N(C)) log n), where AC is the number of con-
flicts created and deleted, and N(C) =

∑
Q∈F\S NQ

where NQ is the number of edges of T (Q) that were
conflicting with ranges of HVD(S) and do not conflict
with any range of HVD(S ∪ {C}).

Proof. (1). To obtain HVD(S ∪ {C}), we trace all
faces of hregS∪{C}(C) starting from the witness points
of conflicts of C. Each face of hregS∪{C}(C) has at least
one witness of a conflict in it, due to Observation 1 and
the fact that one range of HVD(S) intersects at most
one connected component of T (C) ∩ hregS∪{C}(C).

(2). For any range τ of HVD(S), and any cluster Q ∈
F \ S, τ ∩ hregS∪{Q}(Q) is connected and its boundary
inside τ is a convex chain, whose breakpoints are Q-
mixed vertices of HVD(S∪{Q}). Thus the new conflicts
of Q can be found by (a) tracing NQ edges of T (Q) to
find new Q-mixed vertices; and (b) tracing new ranges
conflicting with Q. A range τ can be tested against a
cluster Q ∈ F \ S by a constant number of segment
queries in the separator decomposition [3] of T (Q). �

The total number of Q-mixed vertices in HVD(S∪{Q})
for all clusters Q ∈ F and all S ⊂ F , is O(m+n). Thus,
by Lemma 1 and [2, Theorem 5.2.3], we conclude.

Theorem 2 HVD(F ) can be computed in O((m +
n log k) log n) expected time and O(m + n log k) ex-
pected space.

RIC for HVD of non-crossing clusters. If all clusters
in F are pairwise non-crossing, then all regions of HVD
are connected. Thus, we can modify the definition of a
conflict. To this aim, for each C ∈ F , let T (C) be rooted
at a point at infinity along an arbitrary unbounded edge.
A range τ of HVD(S) is in conflict with a cluster C ∈
F \S if and only if τ contains the highest point of T (C)∩
hregS∪{C}(C) (w.r.t. root of T (C)). This highest point
is the witness of the conflict, and a starting point for
tracing the region of C, when C is inserted in HVD.
Each cluster of F \S has at most one conflict, thus, the
conflict graph requires O(n) expected space. One test of
a cluster against a range is performed in O(log n) time
(see the separator decomposition [3]).

Theorem 3 If all clusters of F are pairwise non-
crossing, HVD(F ) can be computed in O(n log n +
k log k log n) expected time and O(n) expected space.

We plan to improve the space complexity of the first
algorithm and to investigate an output sensitive variant.

Acknowledgments. We thank Maria Saumell for use-
ful discussions.
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Recognizing Weighted and Seeded Disk Graphs

Boris Klemz∗ Martin Nöllenburg∗ Roman Prutkin∗

Abstract

A set of disks D in the plane is a disk intersection rep-
resentation (DIR) of a graph G = (V,E) if there is a
bijection between V and D such that two disks intersect
if and only if the corresponding vertices are adjacent. If
the disks are interior-disjoint, D is called disk contact
representation (DCR). We show that recognizing graphs
realizable as DCRs/DIRs in which the disks’ radii co-
incide with preassigned values and in which disks cover
preassigned points, called seeds, is NP-hard even if the
input graph is a path and even if a uniform radius is as-
signed to all disks. We also extend a previous reduction
and show that the seeded DCR case without preassigned
radii is NP-hard even for trees.

1 Introduction

Graphs that have a DIR/DCR are called disk intersec-
tion/contact graphs (DIG/DCG). Application areas for
such disk graphs include modeling physical problems
like wireless communication networks, covering prob-
lems like geometric facility location, visual represen-
tation problems like area cartograms and many more
(Clark et al. [4] provide an extensive overview). Often,
one is interested in recognizing disk graphs or gener-
ating disk representations that do not only realize the
input graph, but also satisfy additional requirements.
It might be desirable to generate a weighted DIR/DCR,
that is, a DIR/DCR in which the disks’ radii correspond
to predefined values. The corresponding recognition
problems are NP-hard, even if all vertices are weighted
uniformly [2]. One might also be interested in generat-
ing a seeded DIR/DCR in which each disk is required
to cover a point preassigned to its corresponding vertex.
Atienza et al. [1] showed that seeded DCG recognition
is NP-hard even if G is outerplanar.

We extend the result by Atienza et al. and show
that seeded DCG recognition remains NP-hard even for
trees. We also combine the two scenarios and show that
weighted, seeded DCG and DIG recognition are NP-
hard, even if all vertices are weighted uniformly and
even if the input graph is a path.

∗Institute of Theoretical Informatics, Karlsruhe Institute of
Technology (KIT), Germany. boris.klemz@student.kit.edu,

noellenburg@kit.edu, roman.prutkin@kit.edu

2 Weighted, Seeded Disk Representations

A planar 3SAT (P3SAT) formula ϕ is a Boolean 3SAT
formula with a set U of variables and a set C of clauses
such that its variable-clause-graph Gϕ = (U ∪ C, Eϕ)
is planar. The set Eϕ contains for each clause c ∈ C
the edge (c, x) if a literal of variable x occurs in c.
Deciding the satisfiability of a P3SAT formula is NP-
complete [7] and there exists a planar drawing of Gϕ

on a grid of polynomial size such that the variable ver-
tices are placed on a horizontal line and the clauses are
connected in a comb-shaped rectangular fashion from
above or below that line [6]. This drawing can further-
more be slanted such that all angles are multiples of
60 degrees [3]. We call this slanted drawing Gϕ. In
order to show that weighted, seeded DCG recognition
is NP-hard, we create a graph G = (V,E) and a seed
assignment s : V → R2, which encode Gϕ, such that
G can be realized as a uniformly weighted, seeded DCR
(USDCR) with respect to s if and only if ϕ is satisfiable.

If a graph and a seed assignment have an unique US-
DCR, we call this USDCR and its disks rigid. It is easy
to construct graphs with rigid USDCRs. Start by plac-
ing two touching disks and assign their seeds to the ex-
tremal points two unit diameters apart from each other.
More disks can be rigidly attached to this construction
using a similar approach.

A key idea for our reduction is placing a seed p be-
tween two rigid disks such that the disk covering p has
exactly two possible locations, see the close-up box in
the top part of Fig. 1. Note how the bottom white
disk has to be embedded towards the bottom if the top
disk is embedded towards the bottom. This idea can be
extended to create long chains that allow information
transfer. Furthermore, if a chain is closed it has exactly
two possible states, either all disks are embedded clock-
wise or anti-clockwise, see the gray highlighted section
of Fig. 1. This figure depicts a variable gadget, one of
which is created for each variable vertex of Gϕ. The two
states of the closed chain emulate the truth states of
the variable. The left/right sections are designed such
that adjacent variable gadget can be attached to each
other. The required number of middle sections depends
on the number of incident literal edges. These edges are
represented by chains attached to the middle sections
such that their disks are pushed away from the gadget
if the literal evaluates to false with respect to the gadget
state.
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middle section middle section

left section right section

true

false true

Fig. 1: A variable gadget. Gray disks are rigid.

At clause gadgets, three literal chains meet symmet-
rically at 120◦ angles, see Fig. 2. These gadgets are
designed such that disks of at most two literal chains
can be embedded towards it. This is achieved by three
junctions, see close-up in Fig. 2. A junction pushes disks
of at least one of two adjacent chains away if the literal
chain connected to the junction is embedded towards it.
Recalling that literal chains are pushed towards clauses
if they evaluate to false, we can conclude that G can
be realized with respect to s if and only if ϕ is satisfi-
able. Finally, on the left side of the left-most variable
gadget, we add two disks connecting the bottom and
the top part so that the constructed graph becomes a
path. The size of G is clearly polynomial. Computing
precise coordinates for s can take superpolynomial time,
however, by shifting the seeds onto a Cartesian grid of
appropriate acuteness (which does not depend on the
input) we obtain an equivalent instance allowing us to
carry out the reduction in polynomial time.

Fig. 3: USDIR.

It is straight-forward to adapt our
construction for USDIG recognition.
We shift seeds to provide a tiny
amount of “wiggle room” for disks
that had only two possible locations.
We also remove each edge (u, v) ∈ E
where u and/or v correspond to a
non-rigid disk, and add a vertex w with an appropri-
ately chosen seed to V and edges (u,w) and (w, v) to
E. Figure 3 illustrates the information transfer with
this adaption. We obtain:

Theorem 1 USDCG and USDIG recognition are NP-
hard, even if the input graph is a path.

3 Seeded Disk Contact Representations

Atienza et al. [1, Theorem 2.3] show that seeded DCG
recognition is NP-hard by creating a graph G and and a
seed assignment realizable if and only if a P3SAT ϕ for-
mula is satisfiable. We note that their graph G is out-

120◦120◦

120◦

no transfer
true

false

false

junction

Fig. 2: A clause gadget.

erplanar and non-connected. The different connected
components of G can easily be connected by adding
paths between literal chains and variable gadgets and
by slightly shifting all singleton seeds and connecting
them with edges to their respective chains. At both
ends of each literal chain we find a cycle. Each of these
cycles contains exactly one edge connecting two degree-
2 vertices. We remove these edges and observe that our
graph is now a tree which is still realiziable if and only
if ϕ is satisfiable. For more details we refer to [5].

Theorem 2 Seeded DCG recognition is NP-hard even
if the input graph is a tree.
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Grima, G. Hernández, A. Márquez, A. Moreno-González,
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Diamonds are a Quiver’s Best Friend∗

Clément Maria†

Abstract

Motivated by the theory of persistent homology and
its algorithmic aspects, new theorems, called diamond
principles, have been recently introduced to track the
changes in the algebraic decomposition of a quiver rep-
resentation under local transformations. We present in
this article a new proof of Gabriel’s theorem for An-
type quivers using these principles. The proof uses an
elementary recursive argument and leads to an efficient
algorithm for decomposing quiver representations.

1 Context

This work originated from the study of persistent ho-
mology in computational topology. In [1], Carlsson
and de Silva use the framework of quiver theory to ex-
plain and compute zigzag persistent homology. They
also introduce an exact diamond principle to trans-
form a zigzag module locally. More recently, Maria and
Oudot [3] introduced new diamond principles, called in-
jective and surjective diamond principles, to compute
more complex local changes in a module and deduce a
new algorithm for decomposing zigzag persistence mod-
ules.

In this article, we use these last principles to give a
new proof of Gabriel’s theorem for An-type quivers, a
fundamental decomposition theorem in quiver theory.
To do so, we introduce a dualized version of the injec-
tive and surjective diamond principles. Using these di-
amonds and their duals, we deduce a constructive proof
of Gabriel’s theorem for An-type quivers. This proof
may be turned directly into an efficient algorithm for
decomposing An-type quiver representations.

This work improves the results from [3] in two direc-
tions. Firstly, the use of dualized diamonds simplifies
the decomposition algorithm of [3], which requires injec-
tive and surjective diamonds as well as transposition di-
amonds, which are diamonds of a different nature. Sec-
ondly, this work presents a constructive approach in full
generality (i.e., at the level of quiver representations),
whereas [3] focuses on zigzag persistence modules. This
work in particular illustrates how results in computa-
tional topology may be used in a more general context
to solve problems in computational mathematics.

∗This work was supported by the Australian Research Council
(project DP140104246).
†c.maria@uq.edu.au The University of Queensland

2 Quiver Theory

Let (F,+, ·) be an arbitrary field. An An-type quiver Q
is a directed graph:

•1 oo // •2 oo // · · · oo // •n−1 oo // •n
where, by convention in this article, bidirectional arrows
are either forward or backward.

An F-representation of Q is an assignment of a finite
dimensional F-vector space Vi for every node •i and an
assignment of a linear map fi : Vi → Vi+1 for every for-
ward arrow •i → •i+1 or fi : Vi+1 → Vi for every back-
ward arrow •i ← •i+1. We denote such a representation
by V = (Vi, fi).

Let V = (Vi, fi) and W = (Wi, ri) be two F-
representations of a quiver Q. A morphism of repre-
sentations φ : V→W is a set of linear maps {φi : Vi →
Wi}i=1...n such that, for every arrow, one of the follow-
ing two diagrams commutes (depending on the orienta-
tion of arrow •i ↔ •i+1):

Vi
fi //

φi

��

Vi+1

φi+1

��

Vi oo
fi

φi

��

Vi+1

φi+1

��
Wi

ri // Wi+1 Wi
oo ri

Wi+1

The morphism is called an isomorphism, denoted by ∼=,
if every φi is bijective. Finally, the F-representations
of Q admit a direct sum denoted by ⊕. For any V =
(Vi, fi),W = (Wi, ri), define the F-representation V⊕W
to be the representation of Q with spaces Vi ⊕Wi, for
all i, and maps fi ⊕ ri =

(
fi 0
0 ri

)
for every arrow. An

F-representation V is decomposable if it is isomorphic to
the direct sum of two non-trivial representations. It is
otherwise indecomposable.

Finally, define an interval representation I[b; d], 1 ≤
b ≤ d ≤ n, of an An-type quiver to be the F-
representation:

0 oo
0 // · · · oo 0 // 0 oo 0 // F oo 1 // · · · oo 1 // F oo 0 // 0 oo 0 // · · · oo 0 // 0︸ ︷︷ ︸
[1;b−1]

︸ ︷︷ ︸
[b;d]

︸ ︷︷ ︸
[d+1;n]

where 0 and F stand respectively for the 0 and 1-
dimensional vector spaces, and the maps 0 and 1 stand
respectively for the null map and the identity map.

Theorem 1 states that the indecomposable represen-
tations of an An-type quiver are the interval represen-
tations:
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Theorem 1 (Gabriel [2]) Every F-representation V
of an An-type quiver is decomposable as a direct sum
of indecomposables:

V = V1 ⊕ V2 ⊕ · · · ⊕ VN ,

where each indecomposable Vj is isomorphic to some
interval representation I[bj ; dj ].

For an F-representation V = (Vi, fi)i=1...n of an An-
type quiver Q, we define V[b; d] to be the representation
(Vi, fi)i=b...d of the quiver Q[b; d] restricted to the ver-
tices (and arrows between them) of indices b ≤ i ≤ d.
We call V[b; d] a restriction of the representation V to
the range [b; d]. If b = 1, we call V[1; d] a prefix of V
and if d = n we call V[b;n] a suffix. The restriction
principle [1] states that the interval decomposition of
a representation V[i; j] restricted to indices between i
and j behaves naturally, i.e., is equal to the direct sums
of the intervals of the decomposition of V restricted, as
intervals, to [i; j].

3 Diamond Principles

Maria and Oudot [3] have recently introduced the sur-
jective and injective diamond principles, that relate the
change in the interval decomposition when passing from
the bottom to top representation in the following dia-
gram:

W := W

V1 · · ·//oo oo // V

f 88

ff
1

V

fff

88
1

· · ·//oo oo // Vn

V := V
(1)

where f is either surjective of nullity 1 or injective of
corank 1. The diagram can be “dualized” into:

W := W

V1 · · ·//oo oo // V
xx
g

1 &&
V
&&

g

1xx
· · ·//oo oo // Vn

V := V
(2)

and a similar diamond principle can be obtained 1. The
principles give an explicit transformation of the interval
decompositions.

4 Proofs of Gabriel’s Theorem for An-type Quivers

Consider an arbitrary representation V =

V1 · · ·//f1oo oo fn−1 // Vn of an An-type quiver. Ev-
ery map fi can be decomposed into a bijective map and
a sequence of surjective maps of nullity 1 and injective
maps of corank 1. Hence we assume w.l.o.g. that each
map fi is of one of these three types.

1Proof to appear in a longer version of this article.

The proof is inductive. We first notice that the rep-
resentation V1 of the quiver with one node Q[1; 1] = •1
admits an interval decomposition equal to the direct
sum of (dimV1) times the interval I[1; 1].

Suppose that at iteration i, we are given the repre-
sentation Vi :=

V1 · · ·//f1oo oo fi−1 // Vi oo
hi // Wi

oo hi+1 // · · · oo hm−1 // Wm

which is identical in its first i vector spaces and i − 1
maps to the prefix V[1; i]. Suppose this representation
admits an interval decomposition. We distinguish the
cases:
(i) If fi is bijective, the representation Vi+1 :=

V1 · · · Vi Vi+1 Vi

Wi · · · Wm

f1 fi−1 fi fi

hi

hi+1 hm−1

where the two arrows labeled fi have opposite orienta-
tions, admits naturally an interval decomposition. Now
suppose fi is not bijective.
(ii) If •i // •i+1 is forward, we apply the diamond

principle 1 to:

Vi+1 := Vi+1

V1 · · ·//oo oo // Vi

fi 77

ff
1

Vi

figg

88
1

· · ·//hioo oohm−1// Wm

Ṽi := Vi

where Ṽi admits an interval decomposition by virtue of
(i), as it is equal to Vi with two additional bijective
maps 1. Hence Vi+1 admits an interval decomposition.
(iii) If •i oo •i+1 is backward, we proceed similarly

by applying the dual diamond principle
In all three cases, the prefix Vi+1[1; i+ 1] of the rep-

resentation Vi+1 obtained is identical to V[1; i+ 1].
Consequently, at iteration n of the process described

above, we find that a representation Vn, whose prefix
Vn[1;n] is exactly V, admits an interval decomposition.
By virtue of the restriction principle, truncating a quiver
does not change the property of having an interval de-
composition. Hence, Vn[1;n] = V admits an interval de-
composition. �
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Pose Statistics for Eccentric Parts

Fatemeh Panahi∗ Aviv Adler † A. Frank van der Stappen∗

Abstract

In many contexts, it is very useful to have an estimate
of the final orientation, or pose, of an object which is
dropped onto a flat surface. In this paper, we consider
the final orientation of an object which starts with a ran-
dom orientation, and show how the shape of the object
relates to the distribution of its final orientation. We de-
fine a notion of geometric eccentricity for d-dimensional
objects, which takes into account both its shape and its
center-of-mass. We show that under quasi-static condi-
tions, the pose into which eccentric objects settle will be
with high probability in a cluster of poses which are very
close together. Furthermore, the probability of ending
up in this range of poses increases, and the size of the
range decreases, as the object gets more eccentric.

1 Introduction

Manufactured parts often have to be oriented with part
feeders before they are put through assembly lines; the
shape of the part is usually known, but its starting ori-
entation or location is not. The basic objective of part
feeders is to minimize the uncertainty on the orienta-
tion of the part before the next stage of the manufac-
turing process. There are various part feeding systems
which have been thoroughly studied. For such systems
it is important to consider how parts will arrive on the
supporting surface when their initial pose is unknown.
When a part arrives on the surface, it settles into an
orientation such that it does not topple over under the
influence of gravity; this is called a stable pose. Evaluat-
ing the stable poses of an object allows estimation of the
likelihood of what orientation it will arrive in, which can
result in faster and more effective design of part feed-
ers as well as many other automated tasks. There are a
number of works estimating the probability distribution
over a part’s stable poses when the part falls on a flat
worksurface in presence of gravity [1], [2].

For some parts, it is possible to predict that the pose
which they settle into will (with high probability) be in
a cluster of poses which are very close together. Con-
sidering these poses as the most probable initial orien-
tations of the part for feeding allows faster design for
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part feeding tasks. Observing the usefulness of bias in
pose distribution for part feeding, we consider a variant
of the notion of geometric eccentricity for objects and
show that there is a high probability for an eccentric ob-
ject being dropped on a flat surface to come to the rest
in a small range of stable orientations. Broadly, eccen-
tricity is the degree to which a part deviates from being
uniformly wide; generally, eccentric 3D objects are long
and thin like a pencil (longer in one dimension) or wide
and flat like a coin (longer in two dimensions). It is easy
to see that a pencil is more likely to rest at one of its
long sides and a coin will rest at one of its two larger
sides. Considering the set of final orientations where
these objects end up with high probability, they lie on
a single plane (for the pencil) or on a single line (for the
coin).

Fatness is a shape-related notion that has led to im-
proved bounds or better solutions to many problems in
the field of computational geometry (a fairly recent sur-
vey of the results can be found in [3].) We note that
eccentricity can be regarded as the opposite (or lack) of
fatness.

2 Geometric eccentricity

The definition of eccentricity that we propose applies to
d-dimensional objects and captures the property that
an object is a considerable factor, say k, bigger in b
of its dimensions than in any of the remaining d − b
dimensions. It generalizes an earlier strictly 2D notion
based on the aspect ratio of a bounding box [4] and
allows us to distinguish between 3D objects similar to
the pencil and similar to the coin.

Definition 1 ((b)-Eccentricity) Let P ⊂ Rd be a
bounded convex set with its center of mass at the origin
O. For any 1 ≤ b < d, the set P is said to be k-(b)-
eccentric for some k ≥ 1 if there exists a scaled and
rotated copy of P such that

• the projection of P onto the subspace spanned by b
of its dimensions contains the b-dimensional sphere
of radius k centered at O, and

• the projection of P onto the subspace spanned by
the remaining d− b dimensions is contained in the
(d − b)-dimensional sphere of unit radius centered
at O.
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O 

O 

Figure 1: Three types of orientations for (a) a k-(1)-
eccentric 3D object and (b) for a k-eccentric 3D object.

Using our definition for eccentricity, we show that for
3D objects similar to a pencil, there is a plane which
the final orientation is, with high probability, going to
end up near; for objects similar to a coin there is a line
which the final orientation is going to end up near.

3 Pose and Probabilities

We focus on 3D objects with eccentricity k > 2
√

2. We
assume that the only force acting on the object is gravity
and for simplicity we do not consider dynamics. When
an object is dropped onto a flat horizontal surface, it
moves downward until it contacts the surface. If the
center-of-mass is not directly over a point where the ob-
ject contacts the surface then it will rotate so the center-
of-mass descends as quickly as possible. We assume
without loss of generality that the longer dimention of
a 3D k-(1)-eccentric object is aligned with the x-axis
and the two longer dimensions of a 3D k-(2)-eccentric
object are aligned with the (x, z)-plane.

We use Sd−1 to refer to the set of orienta-
tions in d-dimensional space. We define three
types of orientations that decompose S1 and S2.
Let θk = arctan ((k +

√
k2 − 8)/2) and φk =

arctan ((k −
√
k2 − 8)/2). We first decompose S1. For

a direction u ∈ S1 let α ≤ π/2 be the angle between u
and the (positive or negative) y-axis. Then u is a type-
1 orientation, if α ≥ φk, u is a type-2 orientation, if
θk < α < φk, and u is a type-3 orientation, if φk ≤ α.
The orientation types in S2 associated with (1)-eccentric
parts are obtained by rotating the decomposition of S1

about the x-axis. The orientation types in S2 associ-
ated with (2)-eccentric parts are obtained by rotating
the decomposition of S1 about the y-axis. The type-
1, type-2, and type-3 orientations are displayed in blue,
yellow, and green (respectively) in Fig. 1.

Considering the object’s eccentricity, it can be shown
that a 3D k-(1)-eccentric or k-(2)-eccentric object that

is initially in a type-2 or type-3 pose always ends up in
a type-3 pose. The idea to prove this is as follows. We
first show that there is no type-2 pose is stable which
means that the final orientation cannot be a type-2 pose.
We define L to be the x-axis in the k-(1)-eccentric case
and the (x, z)-plane in the k-(2)-eccentric case. It can
be proven that as the part rotates, the minimum angle
between the current orientation and L cannot decrease;
this means that if it starts in a type-2 or type-3 ori-
entation, it cannot enter the set of type-1 orientations.
Thus, it must settle in a type-3 pose.

Theorem 1 Let P ⊂ R3 be a k-(1)-eccentric or k-(2)-
eccentric object (k > 2

√
2) in a uniformly random initial

orientation. If P is k-(1)-eccentric then it settles

• with probability at least sin θk in a spherical seg-
ment of orientations symmetrically surrounding a
plane that covers a fraction sinφk of S2,

• and in one of two antipodal spherical caps of ori-
entations surrounding a line that jointly cover a
fraction 1− sin θk of S2 otherwise.

If P is k-(2)-eccentric then it settles

• with probability at least 1−cos θk in one of two an-
tipodal spherical caps of orientations surrounding
a line that jointly cover a fraction 1− cosφk of S2

• and in one spherical segment of orientations sym-
metrically surrounding a plane that covers a frac-
tion cos θk of S2 otherwise.

The tight bounds of the theorem shows that there is a
smaller range of poses that the object always can settle
in and there is a higher probability for the object to
settle in again smaller range of poses.
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Abstract

We consider smoothed versions of geometric range
spaces, so an element of the ground set (e.g. a point) can
be contained in a range with a non-binary value in [0, 1].
Similar notions have been considered for kernels; we ex-
tend them to more general types of ranges. We then
consider approximation of these range spaces through ε-
nets and ε-samples (aka ε-approximations). We charac-
terize when size bounds for ε-samples on kernels can be
extended to these more general smoothed range spaces.
We also describe new generalizations for ε-nets to these
range spaces and show when results from binary range
spaces can carry over to the smoothed ones.

1 Introduction

Combinatorial range spaces play a central role in ge-
ometry and have important connections to many areas,
notably learning theory [6, 3], data structures, and re-
cently differential privacy. We will focus on geometric
range spaces where the ground set P is a point set in
Rd. The family of ranges A are typically defined by sets
of subsets contained in some geometric objects, e.g., a
disk, or a halfspace. The pair (P,A) is called a range
space.

An important consideration is how well we can ap-
proximate these objects through a subset Q ⊂ P , for-
malized as an ε-sample (aka ε-approximation, which
preserves density) and an ε-net (which perverse the ex-
istence of large subsets). Formally, an ε-sample for a
range space (P,A) is a subset Q ⊂ P s.t.

max
A∈A

∣∣∣∣
|A ∩ P |
|P | − |Q ∩A||Q|

∣∣∣∣ ≤ ε.

An ε-net of a range space (P,A) is a subset Q ⊂ P s.t.

for all A ∈ A such that |P∩A||P | ≥ ε then A ∩Q 6= ∅.
Through techniques ranging from discrepancy the-

ory to Fourier analysis to basic combinatorics, we now
largely understand these relationship of these bounds
to the size of the subsets Q, for geometrically de-
scribed ranges and with constructions; see a pair of great
books [4, 1]. However, at least at a high-level, many of
these size lower bounds are constructed with sets P so

∗Thanks to support by NSF CCF-1350888, IIS-1251019, and
ACI-1443046.

that problematic subsets A ∈ A have many elements
near the boundary. This leads to the question, what if
we smoothed out this boundary?

Background on Kernels and Kernel Range Spaces.
This question was studied in the context of ε-samples
for statistical kernels (e.g. Gaussians). A kernel is a
bivariate similarity function K : Rd × Rd → R+, which
can be normalized so K(x, x) = 1 (which we assume
through this paper). We focus on symmetric, shift in-
variant kernels which can be written as a single param-
eter function K(x, p) = k(‖x − p‖), so it usually de-
creases as ‖x−p‖ increases; these can be parameterized
by a single bandwidth (or just width) parameter w so
Kw(x, p) = kw(‖x − p‖) = k(‖x − p‖/w). Most com-
monly used kernels are Gaussian, Laplace, Triangular,
Epanechnikov, and Ball kernels.

A kernel range space [2, 5] (P,K) is an extension of
the combinatorial concept of a range space (P,A) (or to
distinguish it we refer to the classic notion as a binary
range space). It is defined by a point set P ⊂ Rd and
a set of kernels K. An element of K is a kernel K(x, ·)
applied at point x ∈ Rd; it assigns a value in [0, 1] to
each point p ∈ P as K(x, p).

Given a point set P of size n and a kernel K, a ker-
nel density estimate kdeP is the convolution of that
point set with K. For any x ∈ Rd we define kdeP (x) =
1
n

∑
p∈P K(x, p). The notion of ε-kernel sample [2] ex-

tends the definition of ε-sample. It is a subset Q ⊂ P
such that maxx∈Rd |kdeP (x)− kdeQ(x)| ≤ ε.

A binary range space (P,A) is linked to a kernel range
space (P,K) if the set {p ∈ P | K(x, p) ≥ τ} is equal to
P ∩A for some A ∈ A, for any threshold value τ .

Two main observations have been made in the ker-
nel range spaces. (1) An ε-sample for a (linked) range
space defined by balls, is also an ε-sample for kernels [2].
(2) Using a careful discrepancy-based approach, smaller
ε-samples (sometimes significantly smaller) can be con-
structed for kernels than for balls [5]. In this article we
extend this line of work in a few interesting directions.

Contributions.

• We define a general class of smoothed range spaces,
with application to density estimation.

• We define a notion of an (ε, τ)-net for a smoothed
range space. We show how this can inherit sam-
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pling complexity bounds from linked non-smooth
range spaces. We also relate this concept to a
smoothed hitting set problem.

• We provide discrepancy-based bounds and con-
structions for ε-samples on smooth range spaces
requiring significantly fewer points than uniform
sampling approaches and discrepancy-based ap-
proaches on the linked binary range spaces.

2 Smoothed Range Spaces

Let Hw denote the family of smoothed halfspaces with
width parameter w, and let (P,Hw) be the associated
smoothed range space where P ⊂ Rd. Given a point
p ∈ P , the smoothed halfspace h ∈ Hw maps p to a
value vh(p) ∈ [0, 1] (rather than the traditional {0, 1} in
a binary range space).

We first describe a specific mapping to the function
value vh(p). Let F be the (d − 1)-flat defining the
boundary of halfspace h. Given a point p ∈ Rd, let
pF = arg minq∈F ‖p − q‖ describe a point on F closest
to p. We make the definition more general using a shift-
invariant kernel kw(‖p− x‖) = k(‖p− x‖/w) such that
we define vh,w(p) as follows.

vh,w(p) =

{
1
2 + 1

2kw(‖p− pF ‖) p ∈ h
1
2 − 1

2kw(‖p− pF ‖) p /∈ h.

For brevity, we will omit the w and just use vh(p)
when clear. We can also further generalize this by re-
placing the flat F at the boundary of h with a poly-
nomial surface G. The point pG = arg minq∈G ‖p − q‖
replaces pF in the above definitions. Then the slab of
width 2w is replaced with a more curved volume in Rd;
see Figure 1. For concreteness and simplicity, the re-
mainder of this note will focus on halfspaces.

w w

2w

2w

p1

p3

p2

0 1

p1G

p3G

p2G

10

p2

p1
w w

p3

F G

p1F

p2F

p3F

Figure 1: Illustration of the smoothed halfspace F (left),
and smoothed polynomial surface G (middle).

We extend the notion of a kernel density estimate
to these smoothed range spaces. A smoothed density
estimate sdeP is defined for any h ∈ Hw as

sdeP (h) =
1

|P |
∑

p∈P
vh(p).

Then an ε-sample Q of a smoothed range space (P,Hw)
is a subset Q ⊂ P such that

max
h∈Hw

|sdeP (h)− sdeQ(h)| ≤ ε.

(ε, τ)-Net for smoothed range spaces. We introduce
two new definitions to generalize the definition of hit-
ting and ε-net. A subset Q ⊂ P is an (ε, τ)-net of
smoothed range space (P,Hw) if for any h ∈ Hw such
that sdeP (h) ≥ ε, there exists a point q ∈ Q such that
vh(q) ≥ τ . A subset Q ⊂ P is an (ε, τ)-hitting set of
smoothed range space (P,Hw) if for any h ∈ Hw such
that sdeP (h) ≥ ε, then sdeQ(h) ≥ τ . We can show that
both of these notions are implied by an (ε− τ)-sample.

Theorem 1 An (ε− τ)-sample Q in a smoothed range
space (P,Hw) is an (ε, τ)-hitting set in (P,Hw), and
thus also an (ε, τ)-net of (P,Hw).

Consider a smoothed range space (P,Hw), a linked
binary range space (P,A), and an ε-sample Q of (P,A).
Prior results for kernels [2] can be generalized to show
Q is an ε-sample of (P,Hw). We can further extend
this relation for (ε, τ)-nets; thus they can require signif-
icantly smaller size sets Q to satisfy.

Theorem 2 Consider a smoothed range space (P,Hw),
a linked binary range space (P,A), and an (ε − τ)-net
Q of (P,A). Then Q is an (ε, τ)-net of (P,Hw).

Discrepancy-based approaches. We improve on ran-
dom sample bounds using discrepancy [4, 1]. These re-
sults are restricted to when points P are contained in a
d-dimensional cube C`,d of side length `.

Theorem 3 In R2, for any P ⊂ C`,2, we can construct

an ε-sample of (P,Hw) of size O( 1
ε

√
`
w log `

wεδ ) with

probability at least 1− δ.
Theorem 4 In Rd, for any P ⊂ C`,d with d is con-
stant, we can construct an ε-sample of (P,Hw) of size

O
(

(`/w)2(d−1)/(d+2) ·
(

1
ε

√
log `

wεδ

)2d/(d+2))
with prob-

ability at least 1− δ,
We can improve some results if the data is “well-
clustered” under other specific conditions.
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Abstract

In this paper, we study the minimum diameter problem
with inexact data. First, we focus on data in the indeci-

sive model and present an O(2
1

εd ·ε−2d ·n2) time approxi-
mation algorithm of factor (1+O(ε)). Next, we consider
the problem in the imprecise model. In d-dimensional
space, we propose a polynomial time

√
d-approximation

algorithm for constant d. In addition, for d = 2, we de-
fine the notion of α-separability and then use our result
in the indecisive model to obtain an (1 +O(ε)) approx-
imation algorithm for α-separable regions. Time com-

plexity of our algorithm is O(2
1
ε2 · n2

ε8(sin α
2 )2 ).

1 Introduction

In computational geometry, there are various optimiza-
tion problems that measure the properties of given data
or compute structures on these data. In the design and
analysis of computer algorithms often, the assumption
is that the given data is precise. Thus, these algorithms
work based on the input data without any imprecision.
However, in most cases, the input data are imprecise.
This imprecision in input leads to inaccurate output.

Several models have been defined for dealing with in-
exact inputs. For example, in the indecisive model for
each point as an input data, there exist a finite number
of copies that show possible locations for that point.
Another example is the imprecise model in which for
an input point potential locations are restricted by a
region.

In this paper, we study the problem of finding the
minimum diameter in both above-mentioned models.
The formal definitions of these two problems are as fol-
lows.

MinDCS problem. Given a set P =
{p1, p2, . . . , pn} of n points in d dimensional Euclidean
space colored with m colors (meaning that P is a set
of indecisive points). Select one point of each color so
that the diameter of these points is smallest among all
options.

MinDiam problem. Given a set R =
{R1, R2, . . . , Rn}, where each Ri is a region. Select one
point from each region so that the diameter of these
points is smallest among all options.

∗Sharif University of Technology

We discuss on MinDiam, for the case when the re-
gions are convex with polynomial complexity.

Fleischer and Xu [3, 2] demonstrated that MinDCS
can be solved in polynomial time for the L1 and L∞
metrics, while it is NP-hard for all other Lp metrics,
even in two dimensions. They also gave an efficient
algorithm to compute a constant factor approxima-
tion. Consuegra et al. [1] by extending the definition
of ε-kernels to avatar ε-kernels (the notion of avatar
is the same as the indecisive points) in d-dimensional
Euclidean space proposed an (1 + ε) approximation
algorithm with running time O((n)(2d+3) · m

δd
· (2d)2

· 2 1

δd ( 2
δd−1 )b

d
2 c + ( 2

δd−1 )a) . δ is the side length of the
grid cells for constructing core-set.

For the special case, when the shapes of regions are
square, Loffler and van Kreveld proposed an O(n log n)
time algorithm for computing MinDiam. When the
shapes of regions are disk, they also proposed an (1 + ε)

approximation algorithm with running time O(ncε
− 1

2 ),
where c = 6.66 [4].

2 MinDCS

In this section, we present an O(2
1

εd · ε−2d ·n2) time ap-
proximation algorithm of factor (1+O(ε)) forMinDCS.

Definition 1 (C-legal) Given a set of colored points
P and a set C of colors. P is C-legal iff for each c ∈ C
there exists a point p ∈ P with color c.

Definition 2 (Possible Area) Consider two points p
and q. Draw two balls of radius |pq| + ε that one of
them centered at p and the other centered at q. We
name the intersection area of these two balls as possible
area (Cpq).

Note that, if p and q are the two points that define
the diameter of a point set, then all the points must lie
in Cpq.

Approximate minimum diameter. Let S =
{S1, S2, . . .} be the set of all pairs of points with differ-
ent colors in P . For each Si = {p, q}, let Pi be the set of
points in Cpq. For each C-legal Pi, according to |pq| we
can compute an approximation of minimum diameter of
Pi (based on finding an ε-coreset for the points in Cpq, as
analogous to that of the manner in [1]). Then between
all computation we choose the minimum of them (Dalg).
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Note that, since for some Pi we have Dmin = |pq| then
Dalg is an ε-approximation of Dmin.

Theorem 1 The MinDCS problem can be approxi-

mated in time O(2
1

εd · ε−2d · n2) of factor (1 +O(ε)) for
d-dimensions.

3 MinDiam

We discuss on MinDiam, for the case when the regions
are convex with polynomial complexity.

3.1
√
d-approximation

Our
√
d-approximation construction is based on linear

programming, which uses the rectilinear distances of the
points. Consider LP 3.1. In this LP , we want to select
the points S1, S2, . . . , Sn, such that Si ∈ Ri and the
rectilinear diameter of these points is minimized.

LP 3.1
minimize `
subject to

dl1(Si, Sj) ≤ ` ∀i, j
Si ∈ Ri ≤ ` ∀i, j

We argue that the expression dl1(Si, Sj) can
be described using 2d linear constraints (note that
dl1(Si, Sj) = |Si,1 − Sj,1|+ . . .+ |Si,d − Sj,d|).

Because of the convexity of regions, the constraint
Sj ∈ Ri can be described using |Ri| linear inequalities,
where |Ri| is the complexity of region Ri.

Theorem 2 LP 3.1 yields to a
√
d-approximation al-

gorithm for the MinDiam problem.

3.2 ε-approximation

In this section, we propose an ε-approximation algo-
rithm for MinDiam, when d = 2 and the regions in R
admit a special notion of separability.

Definition 3 Two intersecting lines, divide the plane
into four areas. Two regions A and B are separated by
these lines, if they completely belong to opposite areas.
Two regions X and Y are α-separable, if there exists two
intersecting lines separating these regions, with the de-
gree of separation equals to α. For example, see Fig. 1.
We also say a set R of regions is α-separable, if there
exists two regions X and Y in R, which are α-separable.

Theorem 3 Let R be an α-separable set of regions.
Then there exists an ε-approximation algorithm for

computing MinDiam for R with running time O(2
1
ε2 ·

n2

ε8(sin α
2 )2 ).

A
B

R

R
sin (α2 )

α

X Y

T Z

Figure 1: Regions are separated by two intersecting lines
and the optimal solution Smin, must be entirely within
the rectangle XY ZT .

Proof. (sketch) Suppose we have a constant factor ap-
proximation of Dmin based on LP 3.1 (say R). By con-
sidering the notion of separability of a set of regions, we
know that the points in the optimal solution, must be
entirely within the rectangle XY ZT (see Fig. 1). Tak-
ing this into account, we construct a uniform grid G on
the rectangle XY ZT . For each incidence between the
grid points and a region, we create a point colored with
a distinct color for each region. By applying the algo-
rithm described in sectoin 2, we can get an (1 + O(ε))
approximation of optimal solution. �

Remark. The notion of α-separability is not well de-
fined in the case, when all the regions have a nonempty
intersection. We can address this issue as follows. Let
R be the set of regions that can’t be α-separated for
any α. Then either the answer of MinDiam is zero,
or we can divide the problem into a constant number
of separable subproblems such that the best solution of
these subproblems equals to MinDiam of S.
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Abstract

The Reeb graph has become an increasingly common
tool in applied topology. Recently, several definitions of
a metric on Reeb graphs have been proposed, including
the interleaving distance (de Silva et al.). Here we give
a lower bound for the Reeb graph interleaving distance,
by the related join tree interleaving distance (Morozov
et al.) through the newly defined hom-tree construction.

1 Introduction

The Reeb graph is a construction which originated in
Morse theory to study a real valued function defined on
a topological space. Given a function f̃ : X→ R defined
on a space X, we construct the Reeb graph by collaps-
ing path connected components of level sets of X and
denote the resulting quotient space by Γf̃ or simply by
Γ. Because the Reeb graph inherits a function from the
original function, we denote this by f : Γ→ R, or (Γ, f).
The Reeb graph has been used widely in applications;
see [2] for a survey. Because real data has noise, we are
interested in methods for comparison of Reeb graphs
which provide stability results.

There are several methods that have already been
developed for defining a measure of similarity between
these structures, including the functional distortion dis-
tance [1] and the combinatorial edit distance [7]. In this
paper, we focus on the interleaving distance [6], which is
inspired by the persistence module interleaving distance
[5] and its equivalent definition in terms of category the-
ory [3]. Moreover, we use a version of the interleaving
distance for join trees (also called merge trees) [8], which
we view as a subcategory of Reeb graphs, to construct
a lower bound for the Reeb graph interleaving distance.

2 Related work

Reeb graphs can be identified with a particular kind of
category theory construction called a cosheaf. These
cosheaves may be compared using an interleaving dis-
tance of the kind studied in [3], which works by con-
structing almost-isomorphisms between the cosheaves
and measuring distance based on the parameter nec-
essary for this construction. This metric on cosheaves
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can be pulled back to a metric on the original topologi-
cal constructions, which is what we call the interleaving
distance [6]. Via a similar process, there is also an inter-
leaving distance on join trees [8], which is a construction
representing connected components of sublevel sets in-
stead of the level sets used by the Reeb graph [4]. Both
of these interleaving metrics come with bottleneck and
L∞ type stability results, making them especially useful
for data analysis.

3 Interleaving Distances

Category theory generalizes set theory by studying
morphisms between objects rather than just the ob-
jects themselves. Reeb graphs form a category which
is in fact equivalent to the category of constructible
cosheaves [6]. In this case, the cosheaves can be thought
of as functors Int→ Set from the category of open in-
tervals to the category of sets. Given the Reeb graph of
the function f : X→ R, this functor sends an interval I
to π0(f−1(I)), the set of path connected components of
the inverse image of the function. Likewise, we can store
the information of the join tree in a functor R → Set
which sends a real number a to π0(f−1(−∞, a]), the set
of path connected components of the sublevel sets of the
function.

The idea of an interleaving metric between two func-
tors F,G : P → Set (here, P is either R≥0 or Int), is
to measure how far F and G are from being equivalent.
This involves finding a pair of natural transformations
which use the shift functor and commute as much as
possible; this is called an ε-interleaving where ε is the
required amount of shift. Then one can define an inter-
leaving distance on cosheaves, as follows:

dI(F,G) = inf{ε ≥ 0 | there exists an ε-interleaving}.

4 The hom-tree construction

Given a Reeb graph (Γ, f), we consider its correspond-
ing constructible cosheaf, F : Int→ Set. The hom-tree
construction defines a join tree for F through the fol-
lowing process. Fix a test Reeb graph h : E → R with
associated cosheaf H : Int→ Set. This could be, for ex-
ample, a single line with a monotone function supported
on a finite range. Define for each δ ≥ 0 the shift functor
Tδ : Int → Int given by (a, b) 7→ (a − δ, b + δ). The
hom-tree is defined to be the functorH(F) : R≥0 → Set,
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Figure 1: The hom-tree construction

δ 7→ Hom(H,FTδ), where Hom(H,FTδ) is the set of nat-
ural transformations from the functor H to FTδ. There
is an equivalent geometric construction of this functor-
defined hom-tree which has the structure of a join tree;
we denote the functor hom-tree as H(F) and the corre-
sponding geometric object as H(f).

The motivation for studying hom-trees is to give a
lower bound for the Reeb graph interleaving distance by
the interleaving distance between the associated hom-
trees. For the comparison of hom-trees, we pull back
the interleaving distance of join trees, as studied in [8].

5 Example

We present the hom-tree construction, by a simple ex-
ample given in Figure 1. Let (Γ, f) be a Reeb graph
having a single hole of height 2ε as in the left of the
figure, and let F : Int → Set, I 7→ π0(f−1(I)) be the
corresponding constructible cosheaf. In this example,
we use the test space (E, h) which is the graph with
two vertices and one vertical edge of height equal to the
range of f . Let H be its associated cosheaf.

Consider the hom-tree H(F) : δ → Hom(H,FTδ). If
δ < ε, there are exactly two natural transformations
from H to FTδ: the ones that transform H to the blue
and purple colored curves after an δ-smoothing, respec-
tively. This is represented by the two legs of the hom-
tree, shown in the figure at right. Else, if δ ≥ ε, the
hole in the Reeb graph shrinks enough to disappear be-
cause of the smoothing process, and the images of the
blue and purple curves coincide. Hence, we get only
one natural transformation between H and FTδ, which
is the identity transformation. This is represented by
the straight line above the legs.

6 Comparing Reeb graphs with hom-trees

Our main result is the following theorem, proved using
the machinery of category theory and the definitions of

ε-interleavings on Reeb graphs and on join trees.

Theorem 6.1 The interleaving distance for a pair of
Reeb graphs f : Γ → R and g : ∆ → R, is bounded
below by the interleaving distance of the corresponding
hom-trees, i.e.

d̂I(H(f),H(g)) ≤ dI(f, g)

where d̂I denotes the join tree interleaving, dI denotes
Reeb graph interleaving, and both H(f) and H(g) use
the same test space h : E → R for the hom-tree con-
struction.

7 Conclusion

We have defined a construction, the hom-tree, which
can be used to define a lower bound on the Reeb graph
interleaving distance by the join tree interleaving dis-
tance with respect to a fixed test space. We expect that
this new result will allow for improved understanding of
the Reeb graph interleaving distance.
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On the Hardness of Unlabeled Multi-Robot Motion Planning

Kiril Solovey∗ Dan Halperin∗

Abstract

In unlabeled multi-robot motion planning several inter-
changeable robots operate in a common workspace. The
goal is to move the robots to a set of target positions
such that each position will be occupied by some robot.
In this paper, we study this problem for the specific
case of unit-square robots moving amidst polygonal ob-
stacles and show that it is PSPACE-hard. We also con-
sider three additional variants of this problem and show
that they are all PSPACE-hard as well. To the best of
our knowledge, this is the first hardness proof for the
unlabeled case. Furthermore, our proofs can be used to
show that the labeled variant (where each robot is as-
signed with a specific target position), again, for unit-
square robots, is PSPACE-hard as well, which sets an-
other precedence, as previous hardness results require
the robots to be of different shapes.

1 Introduction

Hopcroft et al. [3] were the first to consider the prob-
lem of multi-robot motion planning with an arbitrary
number of robots. Specifically, they studied the stan-
dard (labeled) case. They showed that this problem is
pspace-hard for the setting of rectangular robots bound
to translate in a rectangular workspace. Spirakis and
Yap [6] showed that the labeled problem is np-hard
for disc robots in a simple polygon. Hearn and De-
maine [2] improved the result of Hopcroft et al. by show-
ing that the robots can be restricted to only two types—
2× 1 and 1× 2 rectangles. Their work is more general:
They introduced the nondeterministic constraint logic
(NCL) model of computation, for which they describe
several pspace-hard problems, and from which they de-
rive hardness proofs for a variety of puzzle-like problems
that consist of sliding game pieces. Hardness results for
multi-robot motion planning are summarized in Table 1.

Recently, three polynomial-time algorithms for the
unlabeled problem have been introduced. However, in
one technique it is assumed that a certain portion of the
free space, surrounding each start or target position,
is star-shaped [7], while in the other two each pair of
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A1

A2 A3

(a) and vertex

O2 O3

O1

(b) or vertex

Figure 1: and and or vertices used in the NCL model.
Red (dashed) edges have a weight of 1 and blue (solid)
edges have a weight of 2. The blue (solid) vertex (circle)
represents a minimum flow constraint of 2. In (a) A1 can
be directed outward if and only if A2 and A3 are both
directed inward. In (b) O1 can be directed outward if and
only if any of the other two is directed inward.

start or target positions need to be well separated [1, 5].
A crucial question that follows from the latter work is
whether the efficient solution of the problem is possible
due to the separation constraints or the fact that the
robots are unlabeled.

Contribution. In this paper we study the problem of
unlabeled multi-robot motion planning for unit-square
robots translating amidst polygonal obstacles. We show
that deciding whether a solution exists is pspace-hard.
To the best of our knowledge, this is the first hardness
proof for the unlabeled case. Our construction also im-
plies that three other variants of the unlabeled problem
are pspace-hard, as well. A full version of this text,
including all four results, can be found in [4].

2 Preliminaries

We are given a collection of polygonal obstacles and two
sets of start and target configurations, S = {s1, . . . , sm}
and T = {t1, . . . , tm}, respectively. The unlabeled
multi-robot motion-planning problem consists of trans-
lating unit-square robots from S to T such that each
robot starts its motion in some s ∈ S and ends it in
some t ∈ T . We require that throughout the motion the
robots will not collide with the obstacles1, nor with each
other. (Notice that by definition at the end of a success-
ful motion each target is occupied by some robot.)

A key ingredient in our hardness proof for this prob-
lem is the NCL machine [2], which is defined by a con-
straint undirected graph G = (V,E), a weight function,
and a minimum-flow constraint. A machine configura-
tion assigns orientations to all the edges of G, such that

1Robots may touch, but not penetrate, obstacles or each other.
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Contributor Problem Complexity Robots Workspace

Hopcroft et al. [3] labeled pspace-hard rectangles rectangle
Spirakis, Yap [6] labeled strongly np-hard discs simple polygon

Hearn, Demaine [2] labeled pspace-complete 1× 2 rectangles rectangle
this paper, [4] unlabeled, labeled pspace-hard unit squares polygonal obstacles

Table 1: Hardness results related to the multi-robot problem.

minimum-flow constraint of every vertex is satisfied.
Hearn and Demaine [2] prove that deciding whether one
machine configuration can be transformed into another,
by a sequence of moves2, is pspace-hard. Moreover,
they show that this holds even if G consists only of and
and or vertices (Figure 1).

3 From NCL to multi-robot motion planning

Given a constraint graph G = (V,E) we construct a cor-
responding unlabeled scenario, which consists of unit-
square robots and polygonal obstacles. We use a grid
layout in which each cell functions as a placeholder for
a gadget that represents and emulates a specific vertex
of G. Between every two adjacent cells there is a door-
way so that an interaction between adjacent gadgets can
take place. When two vertices of G share an edge, the
corresponding gadgets share a robot (see Figure 2).

For the vertices of V we create and and or gad-
gets, each having three exits through which they connect
to other gadgets. Every gadget accommodates several
robots and contains polygonal obstacles; the robots are
drawn in orange, purple or green and the obstacles are
drawn in gray. Robots are placed such that they neither
overlap with the obstacles nor with each other. and
gadgets also have a point obstacle, illustrated in red.
The following theorem summarizes our main result.

Theorem 1 Given a set of start and target configu-
rations S, T , respectively, where |S|= |T |= m, and a
workspace W cluttered with polygonal obstacles, de-
ciding whether there exists a set of m collision-free
paths from S to T for m unlabeled unit-square robots
is pspace-hard.

4 Additional results

Our construction allows to show that three more vari-
ants of the unlabeled problem are pspace-hard [4]. In
particular, even the following seemingly simpler prob-
lem is pspace-hard: The robots are initially placed in S
and given some t ∈ F the problem is to decided whether
some robot can reach t.

The construction is so crafted that it can be used
for showing that the labeled problem for unit squares
is pspace-hard as well. Specifically, given S and T a
robot that is initially placed in s ∈ S can reach at most
one target position t ∈ T .

2A move consists of a reversal of the orientation of a single
edge, while maintaining the minimum-flow constrains.

A1

A2

A3 = O2

O3

O1

Figure 2: An example of an and gadget (left) and or
gadget (right) that are connected by sharing a robot A3 =
O2 (drawn in orange). In the and gadget, A1 can move a
half-step down only if A2 moves a half-step to the left, and
A3 stays put. In the or gadget O1 can move a half-step
down only if O2 moves a half-step to the left, or O3 moves
a half- step down.
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An Optimal Algorithm for Tiling the Plane with a Translated Polyomino

Andrew Winslow ∗

Abstract

We give a O(n)-time algorithm for determining whether
translations of a polyomino with n edges can tile the
plane. The algorithm is also a O(n)-time algorithm for
enumerating all such tilings that are also regular, and
we prove that at most Θ(n) such tilings exist.

1 Introduction

Motivated by applications in parallel computing,
Shapiro [9] asked whether it could be decided if trans-
lations of a given polyomino could tile the plane.
Beauquier and Nivat [1] proved that the problem was
not only decidable, but solvable in polynomial time by
testing a simple criterion called the BN criterion. In-
formally, a tile satisfies the BN criterion if it can be
surrounded by instances of itself (see Figure 1). Such a
surrounding corresponds to a regular or isohedral tiling
where all tiles share an identical neighborhood.

Figure 1: A polyomino tile (dark gray), a surrounding
of the tile (gray), and the induced regular tiling (white).

Using a naive algorithm, the BN criterion can be ap-
plied to a polyomino with n edges in O(n4) time. Gam-
bini and Vuillon [4] gave an improved O(n2)-time al-
gorithm and around the same time, Brlek, Provençal,
and Fédou [2] achieved O(n)-time algorithms for two
special cases: (1) the boundary contains no consecutive
repeated sections larger than O(

√
n), and (2) testing

a restricted version of the BN criterion (surroundable
by just four instances). Provençal [8] further improved
on the algorithm of Gambini and Vuillon for the gen-
eral case, obtaining O(n log3(n)) running time, and in a
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recent survey, Blondin Massé, Brlek, and Labbé [7] con-
jecture that a O(n)-time algorithm exists. In this work,
we confirm their conjecture by giving such an algorithm
(Theorem 5).

Our algorithm also doubles as an algorithm for enu-
merating all surroundings (regular tilings) of the poly-
omino. As part of the proof of the running time of the
algorithm, we prove a claim of Provençal [8] that the
number of surroundings of a tile with itself is O(n) (The-
orem 3), complementing other tight bounds by Blondin
Massé et al. [6] on a special class of surroundings.

2 Definitions

A letter is a symbol x ∈ {u,d, l, r}. The complement of
a letter x, written x, is defined by the bijection u = d,
r = l, d = u, and l = r. A word W is a sequence of let-
ters, and the ith letter of W is denoted W [i]. A bound-
ary word is a word corresponding to the sequence of edge
directions encountered during a clockwise traversal of a
polyomino’s boundary, e.g. the polyomino in Figure 1
has (circular) boundary word uru2rdr2dr(dl)2uldlul.

For a word W , Ŵ denotes the sequence of comple-
mented letters of W traversed in reverse order. A fac-
tor of W is a contiguous sequence X of letters in W .
A factor X is admissible provided W = XUX̂V with
|U | = |V |, non-complementary first and last letters of
U , and similarly of V . A factorization of W is a par-
tition of W into consecutive (possibly length-0) factors
F1 through Fk, written W = F1F2 . . . Fk.

3 BN Factorizations

Definition 1 A factorization of a boundary word W
is a BN factorization provided it is of the form W =
ABCÂB̂Ĉ.

Lemma 1 Let P be a polyomino with boundary word
W . There exists a regular tiling of P with clockwise
neighbor-shared boundary word factors F1, F2, . . . , Fk

if and only if F1F2 . . . Fk is a BN factorization.

Observe that this mapping between between tilings
and factorizations is a bijection.

Lemma 2 A boundary word W has O(|W |) BN fac-
torizations.
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Theorem 3 A polyomino with n sides hasO(n) regular
tilings.

Provençal [8] observed that polyominoes with Ω(n)
tilings exist, e.g. uridli with i ≥ 1 has i regular tilings.

4 An Algorithm for Enumerating Factorizations

Lemma 4 Let W be a polyomino boundary word. The
BN factorizations of W can be enumerated in O(|W |)
time.

Proof. Corollary 5 of [2] states that all factors of a BN
factorization are admissible. The algorithm first com-
putes all admissible factors, then enumerates factoriza-
tions consisting of them.

Computing admissible factors. Corollary 5 of [2]
implies that there are at most 2|W | admissible factors,
since admissible factor has a distinct center. For each
center W [i] or W [i]W [i + 1], the admissible factor with
this center is LR, where R is the longest common prefix
of WW starting at WW [i + 1] and ŴŴ starting at

ŴŴ [|W |/2− (i+ 1)]. Use a suffix-tree-based approach
(see Theorem 9.1.1 of [5]) to preprocess these words in
O(|W |) time so that the longest common prefixes can
be computed in O(1) time each and O(|W |) total time.
The word L is defined and computed similarly.

Enumerating factorizations. Let W = AY ÂZ
with A an admissible factor and |Y | = |Z|. Let
B1, B2, . . . , Bl be the admissible prefix factors of Y ,
with |B1| < |B2| < · · · < |Bl|. Similarly, let C1, . . . , Cm

be the suffix factors with |C1| < · · · < |Cm|. A variation
of Lemma C4 of [3] (omitted due to space) implies that
for fixed A, there exist intervals [b, l], [c,m] such that

the BN factorizations ABiCjÂB̂iĈj are exactly those
with i ∈ [b, l] or j ∈ [c,m].

First, construct a list of all admissible factors starting
at each W [k], sorted by length in O(|W |) time using
counting sort. Repeat for factors ending at each W [k].

Next, use a two-finger scan to find, for each fac-
tor A that ends at W [k], the longest factor Bl start-
ing at W [k + 1] such that |A| + |Bl| ≤ |W |/2. Then
check whether Cj , the factor following Bl such that
|ABlCj | = |W |/2, is admissible and report the factor-

ization ABlCjÂB̂lĈj if so. Checking whether Cj is ad-
missible takes O(1) time using an array mapping each
center to the unique admissible factor with this center.

Enumerated additional BN factorizations containing
A by checking factors Bi with i = l − 1, l − 2, . . . for
an admissible following factor Cj . If Cj is admissible,
report the factorization, otherwise stop the iteration,
since i = b− 1.

Finally, use a similar two-finger scan to find, for each
factor A that starts at W [k], the longest factor Cm that
ends at W [k+ |W |/2−1] such that |A|+ |Cm| ≤ |W |/2,
check whether Bi preceeding Cm such that |ABiCm| =

|W |/2 is admissible, and report the possible BN factor-
ization. Then check and report similar factorizations
with Cj for j = m− 1,m− 2, . . . until j = c− 1.

In total, the two-finger scans take O(|W |) time plus
O(1) time to report each factorization. Each factoriza-
tion is reported once per choice of A. Remove duplicate
factorizations with a canonical factor labeling (A con-
tains W [0]) and radix sorting the six-tuples of the first
letter indices of the factors. Then by Lemma 2, report-
ing factorizations also takes O(|W |) time. �

Theorem 5 Let P be a polyomino with n sides. The
regular tilings of P can be enumerated in O(n) time.
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