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Barycentric coordinate neighbourhoods in Riemannian manifolds

Ramsay Dyer⇤ Gert Vegter† Mathijs Wintraecken ‡

Abstract

We quantify conditions that ensure that a signed mea-
sure on a Riemannian manifold has a well defined centre
of mass. We then use this result to quantify the extent
of a neighbourhood on which the Riemannian barycen-
tric coordinates of a set of n+1 points on an n-manifold
provide a true coordinate chart, i.e., the barycentric co-
ordinates provide a di↵eomorphism between a neigh-
bourhood of a Euclidean simplex, and a neighbourhood
containing the points on the manifold.

1 Introduction and Preliminaries

In this work M is a smooth (C1) Riemannian manifold
(without boundary) of dimension n. A function defined
on a closed set A ⇢ M is smooth if it can be extended to
a smooth function on an open neighbourhood of A. The
geodesic distance between x, y 2 M is denoted d

M

(x, y),
and B

M

(c, r) = {x 2 M | d

M

(c, x) < r} is the open
geodesic ball of radius r centred at c 2 M . The topo-
logical closure of a set B ⇢ M is denoted B. A geodesic
is minimising if it is a shortest path between any two
of its points. The injectivity radius ◆

M

of M is the
supremum of the distances r such that any two points
x, y 2 M with d

M

(x, y) < r have a unique minimising
geodesic connecting them.

1.1 Convexity

A set B ✓ M is convex if for all x, y 2 B there is
a unique minimising geodesic in M connecting x to y

within B, and this geodesic is the only one connecting
x and y contained in B. If ⇤

u

is an upper bound on the
sectional curvatures of M , then for any point c 2 M the
ball B

M

(c, r) is convex if r < ⇢0 with

⇢0 = min

⇢
◆

M

2
,

⇡

2
p

⇤
u

�
, (1)

where we set ⇡

2
p
⇤u

= 1 if ⇤
u

 0 (see [1, Thm.

IX.6.1]). A function g : A ! R, with A ✓ M is con-

vex if for any p 2 A and geodesic � with �(0) = p, we

have d

2

dt

2 g(�(t))|t=0 � 0. We say g is strictly convex if
this inequality is strict.
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1.2 Riemannian centre of mass

Let µ be a (unsigned) measure whose support is con-
tained within a convex geodesic ball B

⇢

✓ M with ra-
dius ⇢, and assume µ(B

⇢

) = 1. Consider the energy
function E

µ

: B
⇢

! R defined by

E

µ

(x) =
1

2

Z
d

M

(x, y)2 dµ(y), (2)

where dµ(y) indicates that the integration is with re-
spect to the variable y, and the domain of integration
is understood to be M , or equivalently B

⇢

, since it con-
tains the support of µ. Karcher [4, Theorem 1.2] showed
that E

µ

has a unique minimum on B

⇢

, under the follow-
ing condition: If there are positive sectional curvatures
in B

⇢

, the radius satisfies ⇢ 

⇡

4
p


, where  is an upper

bound on the sectional curvatures in B

⇢

. This unique
minimum is called the Riemannian centre of mass of µ.

In the case of a discrete measure we write

E

�

(x) =
1

2

X

i

�

i

d

M

(x, p
i

)2,

and identify the �
i

with barycentric coordinates and call
the points p

i

vertices, see Section 3 and [2].

1.3 Contribution and previous work

This abstract is based in part on Section 3.4 of the PhD-
thesis [7], where the proof of Theorem 1 can be found.
This is an alternate proof of the existence and unique-
ness of Riemannian centres of mass. Our proof is based
on the Toponogov comparison theorem, which compares
geodesic triangles on manifolds to geodesic triangles on
spaces of constant curvature. It is elementary in the
sense that, if we take the Toponogov comparison theo-
rem for granted, it follows by applying Taylor’s theorem
to the cosine rules for spaces of constant curvature, see
[7, Section 3.4.3]. Our result can accommodate mass
distributions that include negative weights.

Sander [6] has recently published such a result. One
of the motivations for our new proof is that it allows us
to quantify the extent of barycentric coordinate neigh-
bourhoods on manifolds, which is not easily obtained
from Sander’s result.

Our work was inspired by questions regarding the in-
terconnection of Riemannian simplices, that are impor-
tant in manifold meshing. Here negative barycentric

This is an abstract of a presentation given at CG:YRF 2016. It has been made public for the benefit of the community and should be considered a preprint rather

than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



4th Computational Geometry Young Researchers Forum, 2016

coordinates simplify matters significantly. We also en-
vision applications in the study of intrinsic polytopes
and (mathematical) physics.

There are two traditional proofs for the existence and
uniqueness of Riemannian centres of mass with posi-
tive weights. A first one by Karcher [4] and a later one
by Kendall [5]. Karcher used comparison theorems of
Rauch type to prove that the energy function (2) has a
unique minimum. Comparison theorems of Rauch type
compare the behaviour of vector fields on spaces of ar-
bitrary curvature to the behaviour of vector fields on
spaces of constant curvature. Our conditions coincide
for positive weights. The proof by Kendall [5] is based
on the concept of ‘convex geometry’ used in the context
of Dirichlet problems. The definition of ‘convex geome-
try’ does not resemble the usual definition of convexity,
see [7, Section 3.4.1] for a discussion.

1.4 Signed measures

In this work we are only concerned with finite (i.e.,
bounded) Borel measures. We will be considering signed
measures µ on M . The Jordan decomposition theo-
rem [3, §29], states that there are unique unsigned mea-
sures µ+ and µ� such that µ = µ+ � µ�, and for our
purposes we can take this as a definition of a signed
measure. If ⌫ is an unsigned measure on M , then
the support (supp(⌫)) of ⌫ is the set of points in M

for which every open neighbourhood has positive mea-
sure. The support of a signed measure µ is defined by
supp(µ) = supp(µ+) [ supp(µ�).

2 Center of mass of signed measures

We consider a signed measure µ with support contained
in a convex ball B

⇢

⇢ M . In this section we give con-
ditions on µ and ⇢ that ensure that E

µ

has a unique
minimum.

Theorem 1 Let M be a manifold whose sectional cur-

vatures K are bounded by ⇤
`

 K  ⇤
u

, and let µ be

a signed measure on M , whose support is contained in

a geodesic ball B

M

(c, r). Suppose B

⇢

= B

M

(c, ⇢), with
r < ⇢ < ⇢0 as defined in (1).

Then E

µ

: B
⇢

! R has a unique minimum in B

⇢

if

(⇢� r)µ+(M)� (⇢+ r)µ�(M) > 0, and

#

u

tan#
u

µ+(M)� µ�(M) > 0 if 0  ⇤
`

 ⇤
u

,

#

u

tan#
u

µ+(M)�
#

`

tanh#
`

µ�(M) > 0 if ⇤
`

 0  ⇤
u

,

µ+(M)�
#

`

tanh#
`

µ�(M) > 0 if ⇤
`

 ⇤
u

 0,

where #

`

= 2⇢
p

|⇤
`

|, and #

u

= 2⇢
p
|⇤

u

|.

Which, under stronger conditions, simplifies to:

Corollary 2 If we strengthen the assumptions of The-

orem 1 to |K|  ⇤, and assume µ(M) = 1, the function

E

µ

has a unique minimum in B

⇢

if ⇢ > (1 + 2µ�(M))r,

and ⇢ <

⇡

4
p
⇤
(1 + 3µ�(M))�1

.

3 Barycentric coordinate neighbourhoods

Let M , in this section, be an n-dimensional Riemannian
manifold with sectional curvatures K bounded by |K| 

⇤, and let � ⇢ M be a set of n + 1 points such that
d

M

(p, q) < L for any p, q 2 �. Using � we can define an
Riemannian simplex �

M

by

B

�

n : � ! M : � 7! argmin
x2B⇢

E

�

(x),

where �

n is the standard n-simplex and � denotes its
barycentric coordinates. In [2, Prop. 29] we have given
conditions that ensure that the barycentric coordinate
map is non-degenerate, combining this with the result
from the previous section we can extend the barycentric
coordinates to a (large) neighbourhood of the simplex,
to be precise:

Theorem 3 (Barycentric coordinates) Given a

scale parameter s � 1, if � defines a Euclidean simplex

�̃ ⇢ En

with the same edge lengths -that is the geodesic

distances between the vertices of �-, and with thickness

t satisfying t

2
� 25s2L

p

⇤, then the barycentric

coordinate map b : BEn(ṽ, sL) ! B

⇢

, where ṽ is any

vertex of �̃, is an embedding. The ball B

⇢

is centred

on the vertex of � corresponding to ṽ, and the radius ⇢

can be chosen in the non-empty interval given by

✓
1 +

2s

t

◆
L < ⇢ <

⇡

4
p

⇤

⇣
1 + 3

s

t

⌘�1
.
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Spectral Properties of Distance Matrices of High Dimensional Mixtures
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Abstract

We use spectral analysis of distance matrices of high di-
mensional mixtures to learn a mixture of distributions
in Rn. Our approach focuses on high-dimensions and
uses concentration of measure. It applies to any distri-
bution with concentration properties.

1 Introduction

A mixture of k distributions F1, ..., Fk with mixing
weights w1, ..., wk, where

P
i wi = 1, is the distribu-

tion in which each sample is drawn from Fi with prob-
ability wi. Learning the mixture consists in identify-
ing the parameters of the distributions from the sam-
ple (e.g. the mean value µi and the covariance matrix
in the Gaussian case). Several approaches have been
proposed to solve this problem, most notably classifica-
tion methods, based on clustering data points, and mo-
ment based methods, whose aim is to find parameters
so that the mixture distribution has moments approxi-
mately matching the observed empirical moments. The
latter class is strongly tied to the Gaussian case and
usually leads to very hard computational problems.

2 Previous work

Our method focuses on the classification approach,
which led to many important theoretical results, most
notably for the class of isotropic Gaussians. The first
approach by Dasgupta used random projections onto a
low dimensional space [4]. He proved that a mixture of k
isotropic Gaussians in Rn, with weights ⌦( 1k ) and vari-
ances within a bounded range, can be correctly learned
under the separation condition (where the ⌦⇤ notation
suppresses the terms depending logarithmically on n),

|µi � µj | � (�i + �j)⌦
⇤(n

1
2 )

where µi and �2
i are respectively the mean and the vari-

ance of the components.
The result was later improved by Dasgupta and

Shulman [5] using a variant of the EM algorithm, for
isotropic Gaussians, and by Arora and Kannan [2], us-
ing a distance-based algorithm, for general Gaussians,
leading to separation bound ⌦⇤(n

1
4 ).
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Vempala and Wang [12] improved on this result, for
isotropic Gaussians, avoiding the dependency on the
dimension. They used spectral projection to obtain a
dimension-free separation bound :

|µi � µj | � (�i + �j)⌦
⇤(k

1
4 ).

Since k is usually much smaller than n, this is a sub-
stantial improvement. Kannan et al. [7] extended this
approach to a mixture of general Gaussians obtaining
a separation condition polynomial in k. Achlioptas and
McSherry further improved on the polynomial in k in
[1].

Finally, a method called Isotropic PCA has been pro-
posed by Brubaker and Vempala [3]. Their method uses
conditions much weaker then the previous ones and im-
proves on known results for general Gaussians.

3 Main result

We present a new approach for clustering mixtures of
distributions in high dimensional Euclidean spaces us-
ing spectral properties of the distance matrix of the
data. We exploit the concentration of measure phenom-
ena in a new way in order to analyze mixtures of dis-
tributions having concentration properties. This class
includes many high dimensional distributions, e.g. gen-
eral Gaussians with bounded anisotropy and, by the
thin-shell conjecture, uniform distributions on convex
isotropic bodies.

For a metric measure space (X, d, µ), concentration
of measure refers to the tendency of Lipschitz functions
to concentrate around their median [11],[10],[9],[6],[8].
A function f has �-concentration on X if, for some real
non negative parameters C and p

µX{x : |f(x)�M(f)| � ✏}  Ce�
✏p

�p .

A space (X, d, µ) has �-concentration if all 1-Lipschitz
functions have �-concentration. Levy’s lemma gives
concentration rates for the n-dimensional sphere and
the n-dimensional Gaussian space.

Our main technical result is the description of the fine
structure of the normalized distance matrix D(XN ), for
a sample XN from the mixture. By concentration of
distance functions, D(XN ) is known to have a k ⇥ k
block structure, with entries almost constant in each
block. We further characterize each block entry using
concentration properties of auxiliarily defined maps. In
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Figure 1: Projection of a sample from a mixture of two
isotropic Gaussians, with same centre and �1 = 10 and �2 =
15 for N = 1000 d = 100, on the first two top singular
vectors space of the distance matrix.

particular, we prove that each block is almost rank one
up to a small error. For the specific case of a mixture of
isotropic Guassians in Rn , the entries of each block in
D(XN ) are constant within a � range and we show that

each block is rank one up to O
⇣

�p
n

⌘
. Then, using this

structure, we are able to provide bounds on the singular
values of D(XN ).

Based on this result, we produce a simple algorithm to
cluster the data. Finally, we provide theoretical guar-
antees for the classification of the points, assuming a
gap condition on the singular spectrum of the distance
matrix. While these theoretical guarantees, as is, are
not comparable in general with the state of the art, the
approach contains new ingredients and may lead to new
improvements.

In fact, for some specific cases, we outperform exist-
ing spectral methods - that use PCA on the dataset -
and Isotropic PCA [3] - which requires that there exists
a hyperplane separating the components. Our method
is, for example, able to separate a mixture of two Gaus-
sians with di↵erent variances that have the same centre
(Figures 1, 2). The performance in this setting improves
as the ratio between the variances increases.

While remaining comparable to Arora and Kannan
[2], that improve on existing methods for a mixture of
Gaussians with di↵erent variances, our approach is dif-
ferent and extends spectral analysis to distance based
methods.
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Figure 2: Projection of the sample from Fig.1 on the first
two principal directions of the dataset.
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Recognition of the Spherical Laguerre Voronoi Diagram
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Abstract

We construct an algorithm for judging whether or not
a given tessellation on a sphere is a spherical Laguerre
Voronoi diagram. This algorithm is based on the prop-
erties of polyhedra corresponding to the spherical La-
guerre Voronoi diagram and their transformation in pro-
jective spaces.

1 Introduction

The inverse Voronoi diagram problem is to judge
whether a given tessellation is a Voronoi diagram and,
if not, find the best fit Voronoi diagram. This prob-
lem is useful for analyzing polygon-like patterns found
in the real world. We focus on the Laguerre Voronoi
diagram introduced by [4, 1], the weighted-Voronoi di-
agram whose edges are straight lines.
Not many studies focus on the inverse Laguerre

Voronoi diagram problem. The Laguerre recognition
problem in the plane was studied by Duan et al. [3],
and the Laguerre approximation problem using planar
tomographic image was done by [5].
The concept of the Laguerre Voronoi diagram was

extended to the diagram on the sphere called the spher-
ical Laguerre Voronoi diagram (SLVD) [6]. Let U be
a unit sphere of R3 centered at the origin. The spher-
ical circle centered at pi 2 U is defined by c̃i = {p 2
U | d̃(pi, p) = ri}, where d̃(pi, p) is the geodesic dis-
tance between pi and p, and ri is interpreted as the
weight of point pi. We define the Laguerre Proximity
by d̃L(p, c̃i) = cos d̃(p, pi)/ cos ri. The SLVD L is formed
by a set of circles G̃ = {c̃1, ..., c̃n} on U with bisector
of c̃i, c̃j defined by BL(c̃i, c̃j) = {p 2 U | d̃L(p, c̃i) =
d̃L(p, c̃j)}. The SLVD is constructed by the intersection
of all halfspaces H(c̃i), where H(c̃i) is a halfspace of the
plane ⇡(c̃i) passing through the circle c̃i including the
origin [6].
For the inverse problem of SLVD, recently, we con-

sidered SLVD approximation to tessellations where the
generators of tessellation are given [2]. The study mo-
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tivated us to investigate the structure of polyhedra cor-
responding to SLVD.

In this study, we define the transformation in pro-
jective space P 3(R) between two polyhedra which have
the same projection. Assume that we have a given 3-
regular spherical tessellation T = {T1, ..., Tn} consist-
ing of n cells, where n � 3 and Ti is a convex spherical
polygon. We give an algorithm for solving the inverse
problem, in which we construct a polyhedron and check
its consistency.

2 Polyhedron Transformation

Proposition 1 is directly implied from the SLVD con-
struction [6].

Proposition 1 L is a SLVD if and only if there is a

convex polyhedron P containing the center of the sphere

whose central projection coincides with L.

To find the class of the polyhedra which have the
same projection, we define a map f : P 3(R) ! P 3(R)
by f(v) = A · v, where v is a homogeneous coordinate
representation of a point, and

A =

Ü
↵ � � �
0 ⌘ 0 0
0 0 ⌘ 0
0 0 0 ⌘

ê

, ↵, �, �, �, ⌘ 2 R, ↵, ⌘ 6= 0.

This map follows the properties that f(O) = O, and
v and f(v) align on the same line passing through O,
which implies that the transformed polyhedron f(P)
preserves the projection. We use the projective trans-
formation because the class of transformation we need
is not included in the a�ne transformation.

3 Main Algorithm

Suppose that T is a given spherical tessellation and V
is the tessellation vertex set. Let Ûei,j be the tessellation
edge separating cells i and j, Pi,j be the plane passing
through the edge Ûei,j , vi,j,k the tessellation vertex
corresponding to cells i, j, k, and Pi := ⇡(c̃i). The line
of intersection of planes Pi and Pj is written as `i,j .
The line `i,j is also contained in the plane Pi,j , and
hence the projection of `i,j onto the sphere coincides
with the bisector. We construct a polyhedron whose
projection coincides with the given tessellation by the
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following procedures.

Algorithm 1 (Initial 3 planes construction)
Input: a tessellation vertex vi,j,k, edges Ûei,j , Ûej,k, Ûei,k
Output: planes Pi, Pj , Pk

Procedure: Choose c̃i and construct the Pi := ⇡(c̃i)
and planes Pi,j , Pi,k, Pj,k. Find `i,j from the intersec-
tion of Pi and Pi,j , and `i,k from the intersection of Pi

and Pi,k. Choose a point qj in polygon j in such a way
that Pj passes through `i,j and qj . Finally, find the
intersection `j,k of the Pj and Pj,k and construct Pk

passing through the `i,k and `j,k.

The next algorithm gives a method for the gener-
ation of n planes.

Algorithm 2 (Generation of n planes)
Input: the vertices set V with tessellation edges
Output: planes P1,..., Pn

Procedure: All vertices start unmarked. Choose an
arbitrary vertex vi,j,k 2 V and employ Algorithm 1
to construct Pi, Pj , Pk, and mark vi,j,k. Then choose
an unmarked vertex whose two planes were already
constructed. Construct the third plane of that vertex
using the constructed two planes in the same way as
described in Algorithm 1, and change the status to a
marked vertex. Repeat this process until all planes are
constructed.

The following theorem states about the property
of the polyhedron construction.

Theorem 2 There are four degrees of freedom of the

construction of planes composing a polyhedron P with

respect to the given SLVD.

Three degrees of freedom in Theorem 2 are fixed by
choosing the first circle c̃i, and the other degree of free-
dom is fixed by choosing the adjacent plane sharing the
line `i,j . Hence, there are at least four degress of free-
dom in the choice of a polyhedron whose projection
coincides with a given SLVD. This is also the upper
bound although we omit the proof. This means that if
T is SLVD, we start the processes from arbitrary first
and second planes which satisfy Algorithm 1 to get the
polyhedron whose projection coincides with T , which
means that Algorithm 2 gives the unique polyhedron up
to the choice of 4 degrees of freedom. We implemented
Algorithms 1, 2 using Wolfram Mathematicar10.3; ex-
amples of output are shown in Figure 1.

The SLVD judgement can be done using the unique-
ness of the polyhedron by the following Algorithm.

Algorithm 3 (Consistency Check)
Input: the output of Algorithm 2
Output: judgment “true” or “false”
Procedure: For each unmarked vertex vl,p,q, check
whether or not the plane Pl constructed in Algorithm
2 is the same as the plane P 0

l constructed by planes

Figure 1: The figures show the di↵erent polyhedra
whose projections coincide with the given SLVD.

Pp, Pq. If it is not, terminate and regard that T is not
SLVD. Otherwise, move to the next unmarked vertex. If
all the vertices are marked, report “true” and terminate.

The polyhedron constructed by Algorithm 2 does
not guarantee that the planes intersect the sphere.
However, if we shrink the polyhedron in such a way
that all planes intersect the sphere, Proposition 1 can
be applied directly, and we can conclude as follows. If
T is the SLVD, the central projection of the polyhedron
constructed in Algorithm 2 onto the sphere coincides
with T . Otherwise, the projection of the polyhedron
constructed by Algorithm 2 gives us a SLVD which is
di↵erent to T .

Using the priority queue for choosing the next un-
marked vertex in Algorithm 2, we get the theorem.

Theorem 3 For n cells tessellation, the complexity of

SLVD recognition problem is O(n log n).

4 Future Works

The properties of the polyhedron mentioned in the
recognition processes can be applied to the SLVD ap-
proximation problem which is our current study. The
halfspaces composing a polyhedron constructed in Algo-
rithm 2 can be adjusted in such a way whose projection
is close to the given tessellation using optimization.
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Computing the Expected Area of an Induced Triangle

Vissarion Fisikopoulos⇤ Frank Staals§ Constantinos Tsirogiannis§

1 Introduction

Consider the following problem: given a set P of n points in
the plane, compute the expected area of a triangle induced by

P , that is, a triangle whose vertices are selected uniformly at
random from the points in P . This problem is a special case
of computing the expected area of the convex hull of k points,
selected uniformly at random from P . These problems are
important in computing the functional diversity in Ecology [4].
In this setting, each point represents some characteristics of
a species, and the expected area of the convex hull provides
an estimate of the diversity of the species, given that only k
species exist in a geographic region.

We present a simple exact algorithm for the problem that
computes the expected triangle area in O(n2

log n) time, and
extends to the case of computing the area of the convex
hull of a size k subset. Additionally, we present a (1 ± ")-
approximation algorithm for the case in which the ratio ⇢
between the furthest pair distance and the closest pair dis-
tance of the points in P is bounded. With high probabil-
ity (whp.) our algorithm computes an answer in the range
[(1� ")A⇤, (1 + ")A], where A is the true expected triangle
area, in O(

1

"8/3
⇢4n5/3

log

4/3 n) expected time.
Notation. Let � denote the random variable corresponding
to a triangle induced by P , and let A(Q) denote the area
of a region Q ⇢ R2. We are thus interested in computing
E[A(�)]. We denote the probability of an event X by P[X].
Assume w.l.o.g. that the origin o lies outside of the convex
hull CH(P ) of P , and assume that P [ {o} is in general
position, i.e. no three points lie on a line.

2 An Exact Algorithm

For a simple polygon Q = v
0

, .., vn whose vertices are given
in counterclockwise (ccw) order the well-known shoelace
formula gives us that A(Q) =

1

2

Pn
i=0

A0
(

���������!vivi+1 mod n),
where A0

(

�!pq) = det

� p
x

q
x

p
y

q
y

�
denotes the area of the triangle

defined by the origin and the directed line segment from p to
q. See Fig. 1 for an illustration.

Let E
1

, E
2

, and E
3

be random indicator variables cor-
responding to the edges of � in ccw order. We then have
E[A(�)] =

E
"

3X

i=1

A0
(Ei)

#
=

3X

i=1

E[A0
(Ei)] =

3X

i=1

X

a

aP[A0
(Ei) = a].

⇤Département d’Informatique, Université Libre de Bruxelles,
fisikop@gmail.com

§MADALGO, Aarhus University, [f.staals|constant]@cs.au.dk

A0
(

�!pq)

o

�

q

p

t

Figure 1: A(�) is the sum of three “signed” areas, one of
which is shown in orange. The number of red points is npq .

We now observe that all areas a are realized by an ordered
pair of points (p, q), and thus

Pm
i=1

P
a aP[A0

(Ei) = a] =

3X

i=1

X

p,q2P

A0
(

�!pq)P[Ei =
�!pq] =

X

p,q2P

A0
(

�!pq)
3X

i=1

P[Ei =
�!pq].

An edge �!pq cannot be both the ith and the jth edge of
� (for i 6= j), and thus,

P
3

i=1

P[Ei =

�!pq] equals the
probability that �!pq is a ccw edge in �. For �!pq to be a
ccw edge in �, the remaining vertex t of � should lie
to the left of (the oriented line containing) �!pq, and thus
P[�!pq is a ccw edge in �] = npq/

�
n
3

�
, where npq is the num-

ber of points to (the oriented line containing) �!pq. This is
illustrated in Fig. 1. Thus, we have

E[A(�)] =

X

p,q2P

A0
(

�!pq)P[�!pq is a ccw edge in �]

=

1�
n
3

�
X

p,q2P

A0
(

�!pq)npq. (1)

As A0
(

�!pq) can be computed in O(1) time for every pair
p, q, all we need to do is compute all values npq. We can
easily do this in O(n2

log n) time, by fixing each point p and
sorting the remaining points around p. We conclude:

Theorem 1 We can compute E[A(�)] in O(n2

log n) time.

This approach directly extends to computing E[A(CH(S))]
of a randomly selected subset S ✓ P of size k.

3 A (1± ")-Approximation

We describe a (1±")-approximation algorithm for evaluating
Eq. 1, and thus for computing E[A(�)]. The basic idea is
to decompose the

�
n
2

�
pairs of points into few pairs of sets

{a}, B, such that all points b 2 B have roughly the same
triangle area A0

(

�!
ab), and to approximate the sum of the nab

values for b 2 B.

This is an abstract of a presentation given at CG:YRF 2016. It has been made public for the benefit of the community and should be considered a preprint rather than a

formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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3.1 Approximating the Areas

A well-separated pair decomposition (WSPD), with separa-
tion s = 4/�, of P is a partition of the

�
n
2

�
pairs of points into

m = O(s2n log n) pairs of well-separated sets ({ai}, Bi),
i.e. if Bi fits into a disk D(Bi) of radius r, the distance be-
tween ai and any point b 2 Bi is at least (s + 1)r [2]. It
follows that for any two points p, q 2 D(Bi), the distance
kaipk is a (1± �)-approximation of the distance kaiqk.

Assume w.l.o.g. that the distance from the origin o to any
point in P is at least the diameter d of P . It then follows that
for any set Bi, the pair ({o}, Bi) is well-separated.

Lemma 2 Let ({a}, B) be a well-separated pair with separa-

tion s = 4/�, where � =

"c2

40d2 , c is the distance between the

closest pair of points in P , and d is the distance between the

furthest pair of points in P , and finally let AaB = A0
(ap) for

the point p 2 D(B) furthest from the line containing ao. For

every b 2 B, AaB is a (1 + ")-approximation of A0
(

�!
ab).

Lemma 3 We can compute an oracle that gives an (1 + ")-
approximation of A0

(pq), for any p, q 2 P , in O(1) time,

using O((⇢4/"2)n log n) preprocessing time, where ⇢ is the

ratio between the furthest and the closest pair of points in P .

3.2 Approximating the Number of Points

Fix a point a 2 P and a subset B ✓ P of size z � 2. We
present a (1 ± ")-approximation for F ⇤

a (B) = F ⇤
(B) =P

b2B nb, where nb = nab. Our algorithm will compute
F (B) = (z/|B0|)Pb2B0 n0

b, where B0 ✓ B is a sample of
the points in B, and n0

b is a (1± �)-approximation of nb. Let
E = |F ⇤

(B)� F (B)| denote the error in our approximation.
Given a line(segment) s, we denote the half planes bounded

by the line containing s by s� and s+. Let H = {ab+ |
b 2 B} denote the set of half planes defined by a and B.
For a given point p 2 P , let Rp = {h | h 2 H ^ h 3 p}
denote half planes containing p, and let mp denote the number
of such half planes. We are thus interested in computing
F ⇤

(H) =

P
h2H nh =

P
p2P mp = G⇤

H(P ). To this end,
our algorithm distinguishes two cases, depending on z.
Case H is small. When z  t, for some, to be determined
t, we simply query each plane. Using a (1± ")-approximate
half-plane counting algorithm [1] we immediately get E P

h2H "np = "F ⇤
(H).

Case H is large. When z > t we take a (uniformly drawn)
random sample H of the half-planes, and query only the
half-planes in H . More precisely, we compute F (H) =

F (H) = (z/|H|)Ph2H n0
h, where n0

h denotes a (1 ± �)-
approximation of the number of points from P on half-plane
h. If we take a sample of size O(r2 log r), then whp. H is
an (1/r)-approximation for the range space (H,R), where
R = {Rp | p 2 P} [3]. That is, for all ranges R 2 R we
have that ����

|R|
|H| �

|R \H|
|H|

����  (1/r).

This allows us to show that the absolute error E is at most
nz/r + nz�. We now choose (1/r) = � = (z")/8n, which
gives us E  "z2/4. By ordering the points defining the
planes in H appropriately, we get F ⇤

(H) � z(z � 1)/2 �
z2/4. Thus, F (H) is a (1± ")-approximation for F ⇤.
Running time. We choose the threshold t to minimize the
running time. If H is small the running time to handle the
pair ({a}, B) is O(z log n). If H is large the running time
is O(r2 log r log n) = O(

n2

z2"2 log
2 n). These two quantities

balance out for t = z = (n/")2/3 log1/3 n. We conclude:

Lemma 4 After O(n log n) expected time preprocessing, we

can whp. compute a (1 ± ") approximation of F ⇤
a (B), for

any {a} [B ✓ P , in O((n/")2/3 log1/3 n) expected time.

3.3 Combining the Approximations

Straightforward calculations show that if we combine the
results from Lemmas 3 and 4, choosing both approximation
errors to be "/3, we get a (1± ")-approximation.

Theorem 5 Whp. we can compute a (1± ")-approximation

of E[A(�)] in O(

1

"8/3
⇢4n5/3

log

4/3 n) expected time.

4 Future Work

We would like to improve, or remove, the dependency on
⇢ in our approximation algorithm. A possible approach to
do so would be to replace the WSPD by a different decom-
position of the pairs of points that allows a better approxi-
mation of the triangle areas. We conjecture that computing
E[A(�)] exactly is 3SUM-hard. Proving this is another av-
enue for future work. Finally, we would like to investigate a
(1± ")-approximation algorithm for the general problem of
computing E[A(CH(S))] for a fixed size sample S.
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Transforming Hierarchical Trees on Metric Spaces⇤

Mahmoodreza Jahanseir† Donald R. Sheehy‡

Abstract

We show how a simple metric hierarchical tree called a
cover tree transforms into a more complex one called a
net-tree in linear time. We also propose two linear time
algorithms to make a trade-o↵ between depth and the
degree of nodes in cover trees.

1 Introduction

Cover trees are a popular data structure for (approxi-
mate) nearest neighbor search on metric spaces of low
intrinsic dimension [1]. They are superficially similar
to the net-trees of Har-Peled & Mendel [2] as both
structures may be interpreted as generalizations of com-
pressed quadtrees beyond the Euclidean setting. Cover
trees are the simplest of these data structures, requir-
ing linear space, independent of the ambient or intrinsic
dimension of the data set. An e�cient implementation
of cover trees is available. On the other hand, net-trees
have better theoretical guarantees for preprocessing and
query times. However, to achieve subquadratic prepro-
cessing time, they use complex techniques and large con-
stants which are not e�cient in practice.
We show how a slight modification to the definition of

a cover tree allows it to satisfy the stronger conditions
of a net-tree. Leveraging this structural result, we give
a simple algorithm to turn a given cover tree into a net-
tree in linear time. We also propose two linear time
algorithm to make a cover tree coarser or finer, which
establish a trade-o↵ between the height of the tree and
the degrees of nodes.

2 Definitions

The input is a set of n points P in a metric space. The
closed metric ball centered at p with radius r is denoted
B(p, r) := {q 2 P | d(p, q)  r}. The doubling constant

⇢ of P is the minimum ⇢ 2 R such that every ball B(p, r)
can be covered by ⇢ balls of radius r/2. We assume ⇢ is
constant.
Cover trees and net-trees are both examples of hier-

archical trees. Fig 1 shows an example of hierarchical
trees. Note that in this figure the tree is not either a

⇤Partially supported by the National Science Foundation under
grant numbers CCF-1464379 and CCF-1525978

†University of Connecticut reza@engr.uconn.edu
‡University of Connecticut don.r.sheehy@gmail.com

Figure 1: A hierarchical tree on P = {a, b, c, d, e, f}.
Squares and ovals illustrate points and nodes.

cover tree or a net-tree, because there are not any re-
strictions on the distance between points. In these trees,
the input points are leaves and each point p can be asso-
ciated with many internal nodes. Each node is uniquely
identified by its associated point and an integer called
its level. Leaves are in level �1 and the root is in +1.
The node in level ` associated with a point p is denoted
p`. Let par(p`) be the parent of a node p` 2 T . Also,
let ch(p`) be all children of node p`. Each non-leaf node
has a child with the same associated point. Similar to
compressed quadtrees, a node skips a level i↵ it is the
only child of its parent and it has only one child. Let L

`

be the points associated with nodes in level at least `.
Let P

p

` denote leaves of the subtree rooted at p`. The
levels of the tree represent the metric space at di↵erent
scales. The constant ⌧ > 1, called the scale factor of
the tree determines the change in scale between levels.

Cover Trees. A cover tree is defined by the fol-
lowing properties. (Packing) For all distinct p, q 2 L

`

,
d(p, q) > c

p

⌧ `. (Covering) For each rh 2 ch(p`),
d(p, r)  c

c

⌧ `. We call c
p

and c
c

the packing con-

stant and the covering constant, respectively, and c
c

�
c
p

> 0. We represent all cover trees with the same
scale factor, packing constant, and covering constant
with CT(⌧, c

p

, c
c

). Note that the cover tree definition
by Beygelzimer et al. [1] create a tree in CT(2, 1, 1).

Net-trees. A net-tree is a hierarchical tree. For
each node p` in a net-tree, the following invariants
hold. (Packing) B(p, c

p

⌧ `)
T
P ⇢ P

p

` . (Covering)
P
p

` ⇢ B(p, c
c

⌧ `). Here, c
p

and c
c

are defined similar
to cover trees. Also, we identify a set of net-trees with
NT(⌧, c

p

, c
c

). The net-tree definition in [2] constructs a
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tree in NT(11, ⌧�5
2(⌧�1) ,

2⌧
⌧�1 ). It is not hard to show that

a net-tree satisfies the cover tree properties.
A net-tree can be augmented to maintain a list of

nearby nodes with no additional cost. For each node p`,
Rel(p`) is the set of all nodes xh 2 T with yg = par(xh),
such that h  ` < g and d(p, x)  c

r

⌧ `. We call c
r

the
relative constant, and Har-Peled & Mendel set c

r

= 13.
We add a new, easy to implement condition on cover

trees. We require that children of a node p` are closer
to p than to any other point in L

`

.

3 From cover trees to net-trees

It is not hard to prove the following lemmas.

Lemma 1 For each node p` in T 2 CT(⌧, c
p

, c
c

),
|ch(p`)| = O(⇢lg cc⌧/cp) and |Rel(p`)| = O(⇢lg cr/cp).

Lemma 2 For each node xf

that is a descendant of p`

in T 2 CT(⌧, c
p

, c
c

), d(p, x) < cc⌧

⌧�1⌧
`

Theorem 3 For all ⌧ > 2cc
cp

+ 1, if T 2 CT(⌧, c
p

, c
c

),

then T 2 NT(⌧, cp(⌧�1)�2cc
2(⌧�1) , cc⌧

⌧�1 ).

Proof. From Lemma 2, for a node p` 2 T , P
p

` ⇢
B(p, cc⌧

⌧�1⌧
`). We prove the packing property by contra-

diction. Suppose for contradiction there exists a point
r 2 B(p, cp(⌧�1)�2cc

2(⌧�1) ⌧ `) such that r /2 P
p

` . Then, there

exists a node xf 2 T which is the lowest node with
f � ` and r 2 P

x

f . Let yg be the child of xf such that
r 2 P

y

g . It is clear that g < `. By the parent prop-
erty, d(y, p) > d(y, x). So, d(y, p) � d(p, x)�d(x, y) >
c
p

⌧ `�d(y, p) > c
p

⌧ `/2. Also, by the triangle inequality,

d(y, r) � d(y, p)�d(p, r) > cp

2 ⌧
`� cp(⌧�1)�2cc

2(⌧�1) ⌧ ` > cc⌧
`

⌧�1 .

On the other hand, d(y, r)  cc⌧

⌧�1⌧
g  cc⌧

`

⌧�1 , which re-
sults a contradiction. ⇤

Note that by the definition, a cover tree does not
maintain relative links. The following theorem shows
that a cover tree can be augmented with relatives in lin-
ear time. This algorithm is similar to the find relative
algorithm in [2]. However, it gives a smaller neighbor-
hood space.

Theorem 4 For a cover tree T 2 CT(⌧, c
p

, c
c

),
there is an algorithm to augment T with relatives in

O(⇢
lg( cc⌧

cp(⌧�1) )
2
⌧

n) time with c
r

= cc⌧
2

(⌧�1)2 .

For a cover tree, there is a trade-o↵ between the height
of the tree and the scale factor. In the following, we
define two operations to change scale factor of a given
tree. A coarsening algorithm modifies the tree to in-
crease the scale factor. Similarly, a refining algorithm
results a tree with smaller scale factor. Note that in

Theorem 3, we assumed that ⌧ > 2cc
cp

+ 1. However,

in many cases we may have ⌧  2cc
cp

+ 1. For exam-

ple, Beygelzimer et. al. [1] set ⌧ = 2, and they found
⌧ = 1.3 is even more e�cient in practice. In these sit-
uations, we can use the coarsening operation to get the
stronger packing and covering conditions of net-trees.

Theorem 5 Given a cover tree T 2 CT(⌧, c
p

, c
c

) and

a constant integer k > 1. There exists a coarsening

algorithm that turns T into T 0 2 CT(⌧k, c
p

, cc⌧

⌧�1 ) in

O(⇢
lg( cc⌧

cp(⌧�1) )
2
⌧

n log k) time.

Proof. This algorithm can be seen as combining every
k levels of T into one level in T 0. We define a mapping
between nodes of T and T 0. In this mapping, each node
p` in T maps to a node p`

0
= pb`/kc in T 0. Here, we use

prime as a function that indicates the level of the node
in T 0 that corresponds to p`, i.e. `0 = b`/kc

The algorithm starts with augmenting T with rela-

tives using Theorem 4 and c
r

= 3cc⌧
2

(⌧�1)2 . Then, we pro-
cess nodes of T level by level from the lowest to the
highest level. For a node p`, let qm be the lowest ances-
tor of it such that m0 > `0. If p = q, we assign p`

0
as a

child of p`
0+1. Otherwise, we search the relatives of qm

to find the right parent of p`
0
. For each xf 2 Rel(qm),

if f 0 = `0 + 1, then we do a nearest neighbor search on
the part of the subtree rooted at xf such that their cor-
responding levels in T 0 are greater that `0. In addition,
we store the closest node to p` in the search among rel-
atives of qm. Let re be the closest node to p` in the
previous search. Now, it only remains to assign r`

0
and

p`
0
as children of r`+1. Note that m0 can be greater

than `0 + 1. In this case, we find relatives of a dummy
node qk(b`/kc+2)�1 and we do the same search on this
list. Note that this computation needs to be done at
most O(n) times for coarsening of the entire tree, be-
cause the number of edges in T is O(n). Because of the
page limitation we omit proof of correctness and time
complexity for this algorithm. ⇤
Refining operation is the reverse of coarsening. In this
operation, each level of T is split into at most k levels.
The refining algorithm is similar to coarsening, and we
omit details due to lack of space.

Theorem 6 Given a cover tree T 2 CT(⌧, c
p

, c
c

) and

a constant integer k > 1. There exists a refining al-

gorithm that turns T into T 0 2 CT(⌧1/k, c
p

, c
c

) in

O((⇢
lg( cc⌧

cp(⌧�1) )
2
⌧

+ k)n) time.
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Approximate Range Counting Revisited⇤

Saladi Rahul†

1 Standard geometric intersection query (Standard
GIQ)

In a standard geometric intersection query (GIQ), a set
S of n geometric objects in Rd is preprocessed into an
e�cient data structure so that for any geometric query
object, q, all the objects in S intersected by q can be
reported (reporting query) or counted (counting query)
quickly. In an approximate counting query, an approxi-
mate value of the number of objects in S intersecting q
has to be reported; specifically, any value ⌧ which lies
in the range [(1 � ")k, (1 + ")k], where k = |S \ q| and
" 2 (0, 1). In an emptiness query, we want to decide if
|S\q| = 0 or not. Notice that the approximate counting
query is at least as hard as the emptiness query: When
k = 0, we do not tolerate any error. Therefore, a nat-
ural goal while solving an approximate counting query
is to match the space and the query time bounds of the
corresponding emptiness query.
Approximate counting queries is the focus of this pa-

per. Arguably, the three most popular types of GIQ
problems are (i) orthogonal range searching (S con-
tains points, q is an axes-parallel rectangle), (ii) rect-
angle stabbing (S contains axes-parallel rectangles, q is
a point), and (iii) halfspace range searching (S contains
points, q is a halfspace). While approximate counting
queries have been well studied for (i) and (iii), there has
been no concrete study of (ii). The full version presents
a comprehensive summary of the previously known re-
sults.

Our results for standard GIQ problems: In this
paper we study the halfspace range searching problem
and the rectangle stabbing problem.

Approximate Halfspace Range Counting in Rd, d �
4: We present a structure for halfspace range count-
ing which is sensitive to the value of k. The data
structure occupies O(n) space and solves the query in
Õ
�
(n/k)1�1/bd/2c� time. The answer is correct with

high probability. When k = ⇥(n), then the query time
is Õ(1), which is an attractive property to have. Pre-
viously, such sensitive data structures were known only
in d = 2, 3 [1]. In Rd, d � 4, existing structures occupy
Õ(n) space and solve the query in Õ

�
n1�1/bd/2c� time.

⇤
A full version of this paper has been posted on arXiv.org:

http://arxiv.org/pdf/1512.01713v1.pdf

†
Department of Computer Science and Engineering, University

of Minnesota, sala0198@umn.edu

Approximate Rectangle Stabbing Counting in R2: This
paper initiates the concrete study of approximate rect-
angle stabbing counting. This specific problem is stud-
ied in the word-RAM model of computation. Consider
the following two settings:

(1) S contains 2-sided rectangles of the form [x
1

,1) ⇥
[y

1

,1). It is easy to see that this is a 2D dominance
query. There is a gap between the 2D dominance count-
ing query and the 2D dominance emptiness query. For
2D dominance counting query, Patrascu [6] gave a lower

bound of ⌦
⇣

logn
log logn

⌘
query time for any data struc-

ture which uses O(n polylog n) space. On the other
hand, for 2D dominance emptiness query, there is a lin-
ear space structure with query time O(log log n).

(2) S contains 3-sided rectangles of the form [x
1

,1) ⇥
[y

1

, y
2

]. This problem also has a gap between the count-
ing query and the emptiness query. The bounds men-
tioned above for the counting query and the emptiness
query hold true for this setting as well.

Our first result is a solution for approximate 2D dom-
inance counting query and approximate 3-sided rectan-
gle stabbing counting query whose bounds match their
corresponding emptiness query: An O(n/") size data
structure for answering the query in O(log log(n/"k))
time. Adapting existing techniques (for e.g., Afshani,
Hamilton and Zeh [1]) leads to a solution for these prob-
lems with ⇥((log log n)2) query time, and with costlier
dependency on " in the space and the query time.

We do not study the case where S contains 4-sided
rectangles of the form [x

1

, x
2

] ⇥ [y
1

, y
2

]; because, this
problem does not have a gap between the counting query
and the emptiness query. For the emptiness query and
the counting query, Patrascu [7] and Patrascu [6], re-

spectively, gave a lower bound of ⌦
⇣

logn
log logn

⌘
query time

for any data structure which uses O(n polylog n) space.
JaJa, Mortensen and Shi [4] gave a linear space struc-
ture with matching query time for both the problems.

2 Colored-GIQ

Several practical applications have motivated the study
of a more general class of GIQ problems, known as
colored-GIQ problems [3, 5]. In this setting, the set
S of n geometric objects in Rd come aggregated in dis-
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joint groups. Each group is assigned a unique color.
Given a geometric query object, q, we are interested in
reporting (colored reporting query) or counting (colored
counting query) the colors which have at least one ob-
ject intersected by q. Note that a standard GIQ prob-
lem is a special case of its corresponding colored-GIQ
problem (assign each object in the standard GIQ prob-
lem a unique color). The most popular and well stud-
ied colored-GIQ problem is the orthogonal colored range
searching problem: S is a set of n points in Rd and q
is an axes-parallel rectangle in Rd. A motivating ex-
ample for this problem would be the following database
query: “How many countries have employees aged be-
tween 30 and 40 while earning more than 80,000 per
year”. Each employee can be represented as a point
(age, salary) and the query is represented as an axes-
parallel orthogonal rectangle (unbounded in one direc-
tion) [30, 40] ⇥ [80,000,1). Each employee is assigned
a color based on his nationality.

A general technique for hard counting problems: Un-
fortunately, for most colored counting queries the known
space and query time bounds are very expensive. For
example, for orthogonal colored range searching prob-
lem in Rd, existing structures use O(nd) space to achieve
polylogarithmic query time. Any substantial improve-
ment in these bounds would require improving the best
exponent of matrix multiplication [5]. Instead of an ex-
act count, if one is willing to settle for an approximate
count, then this paper presents a result with attractive
bounds: an O(n polylog n) space data structure and an
O(polylog n) query time algorithm.

In an approximate colored counting query, an approxi-
mate value of the number of colors in S intersecting q
has to be reported; specifically, any value ⌧ which lies
in the range [(1� ")k, (1 + ")k], where k is the number
of colors which have at least one object intersected by
q.

Is linear space and log n query time possible? There
are some instances of colored-GIQ problems which are
not “hard”. For example, for orthogonal colored range
searching, there are two settings for which exact count-
ing can be done using O(n polylog n) space and in
O(polylog n) query time: (a) points lying in R1 and
the query is an interval [x

1

, x
2

], and (b) points lying
in R2 and the query is a 3-sided rectangle of the form
[x

1

, x
2

] ⇥ [y,1). So, a natural question is whether by
allowing approximation a linear space data structure
and an O(log n) query time solution can be obtained
for these problems? In this paper we show that it is
indeed possible. Specifically, we study the setting in (b)
as it is more challenging.

3 Our techniques

This paper introduces some new ideas and also com-
bines previous techniques in a non-trivial manner . The
highlights are the following:

• A general technique for solving approximate count-
ing of standard GIQ and colored-GIQ problems.
Our technique can be viewed as an enhancement
of Aronov and Har-Peled’s approximate counting
technique [2]. We introduce the idea of perform-
ing random sampling on colors (instead of input
objects) to approximately count the colors inter-
secting the query object.

• The result for approximate rectangle stabbing
counting is obtained by a non-trivial reduction to
planar point location.

• The result for approximate orthogonal colored
range counting is obtained by a non-trivial com-
bination of two di↵erent types of random sampling
techniques and a reduction to non-colored range
searching problem.
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Abstract

In this abstract we show that, for any integer k ≥ 42,
the Yao-Yao graph YY2k is a tk-spanner, with stretch
factor tk = 4.27+O(k−1) when k tends to infinity. Our
result generalizes the best known result which asserts
that all YY6k are spanners for k large enough [Bauer
and Damian, SODA’13].

1 Introduction

A classic geometric spanner, Yao graph, was first in-
troduced by Andrew Yao in his seminal work on high-
dimensional Euclidean minimum spanning trees [3].
The construction of Yao graph Yk is described in the
following process.

Initially Yk is an empty graph.
For each point u:

For each j = 0, . . . , k − 1:
Take the cone C attached to u

with angle in range [2jπ/k, 2(j + 1)π/k);
Select v ∈ C ∩ P such that |uv| is the shortest;
Add edge −→uv into Yk.

The above process is usually referred to as a ‘Yao step’.
One may notice that a Yao graph may not have a

bounded degree, which was realized by Li et al. [2]. To
address the issue, they proposed a modified construction
with two Yao steps: the second step, which is called the
‘reverse Yao step’, eliminating a subset of edges of Yk

to ensure the maximum degree is bounded. It can be
described by the following procedure:

Initially YYk is an empty graph.
For each point u:

For each j = 0, . . . , k − 1:
Take the cone C attached to u

with angle in range [2jπ/k, 2(j + 1)π/k);
Select v ∈ C ∩ P , −→vu ∈ Yk

such that |uv| is the shortest;
Add edge −→vu into YYk.

The resulting graph, YYk, is named as ‘Yao-Yao
graph’. The degrees in YYk are upper-bounded by 2k
and it has long been conjectured that YYk are also
spanners when k is large [2, 1]:

∗Tsinghua University
†Tsinghua University

Conjecture 1 There exists a k0 such that for any in-
teger k > k0, YYk is a geometric spanner.

Our knowledge about the spanning properties of Yao-
Yao graphs is still quite limited. Recently substan-
tial progress was made by Bauer and Damian [1], who
showed that YY6k are spanners with stretch factor 11.76
for all integer k ≥ 6. In this abstract, we present a step
towards the resolution of Conjecture 1, by showing that
almost all Yao-Yao graphs with even k are geometric
spanners for k large enough. Formally, our results is as
follows:

Theorem 1 For any k ≥ 42, YY2k is a tk-spanner,
where tk = 4.27 +O(k−1).

2 Preliminaries

Our proof contains two major steps. We first introduce
a class of intermediate graphs, called trapezoidal Yao
graphs (denoted as TYk). We can show that TYk is a
geometric spanner; In step 2, we show that YY2k spans
TY2k (i.e., the shortest u-v path in YY2k is at most
a constant times the shortest u-v path in TY2k). The
definition of TYk is similar to Yao graphs, but takes
advantage of a shape called ‘curved trapezoid’.

Definition 1 A curved trapezoid is an open shape, re-
quiring the parameter θ ∈ [π/4,π/3):

Tθ = {u(x, y) | 0 < x < 1, 0 < y < sin θ, |ou| < 1, |pu| < 1}.

We regard Tθ as a shape attached to the origin o, and
the closed arc not incident on o is called the critical arc.
See Figure 1 for an example.

θ

o(0, 0) p(1, 0)

Tθ

T ′

θ

u

o p

v
R2

−

Figure 1: Left: The curved trapezoid. The critical arc
is shown in bold. Right: With strict requirements on
position, we have T ′

θ − Tθ ⊂ R2
−.
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We also introduce some geometric notations. P is the
underlying set of points in R2. A cone between polar
angles γ1 < γ2 with apex at the origin is denoted as
C(γ1, γ2). Some transformations are denoted by:

- (Dilation) λO = {λz | z ∈ O}.

- (Translation) u+O = {u+ z | z ∈ O}.

- (Rotation) If O is rotated an angle γ counterclock-
wise at the origin, the result is denoted by O!γ .

- (Reflection) If O is reflected through the x-axis, the
result is denoted by O−.

3 First Step

First we define another intermediate graph:

Definition 2 Let γ =
⌈
k
4

⌉
2π
k . For every u ∈ P

and j = 0, . . . , k − 1, select the shortest −→uv with v ∈
Cu(2jπ/k, 2jπ/k+γ). The chosen edges form the over-
lapping Yao graph OYk(P).

Lemma 2 If k > 24, then OYk is a τk-spanner where

τk =
(
1− 2 sin

(π
k
+
π

8

))−1
.

Definition 3 Let θ =
⌈
k
8

⌉
2π
k . For every u ∈ P and

j = 0, . . . , k − 1, define two curved trapezoids

Γj1 = (Tθ)
!2jπ/k and Γj2 = (T−

θ )
!2jπ/k

.

Note that their bottom sides lie on the ray of angle
2jπ/k. For each i = 1, 2, select −→uv satisfying: there is
a λ > 0 such that u + λΓji has empty interior, with v
on its critical arc. All the selected edges form the graph
TYk(P).

Since a sector in Definition 2 can be completely covered
by two curved trapezoids, it actually holds:

Lemma 3 For any integer k > 24, OYk is a subgraph
of TYk and thus TYk is a τk-spanner.

4 Second Step

Lemma 4 Suppose o ∈ P and Tθ has an empty inte-
rior. If there is a point a ∈ P such that 0 < xa < 1,
ya ≤ 0 and 0 < ϕ(ap) < π/6, then

dTY (oa) ≤ xa + (2τ2k + 1)|ya|.

Proof. (Sketch) We present an iterative algorithm for
finding a path from a to o, which calls the shortest path
in TY2k as a subroutine. We can bound its length as
desired, since intuitively the algorithm is trying to move
along a direction as close to the negative direction of x-
axis as possible.

Figure 2: Illustration of the proof of Lemma 4.

Let u be the current point in P; Initially u is set to be a.

While u ̸= o and ϕ(ou) > −π
6
:

Let ψ = min{jπ/k | jπ/k > ϕ(uo), j = 0, 1, . . . , 2k − 1};
If Cu(ψ − π

2
,ψ − θ) ∩ R2

− ∩ P is empty:

(i) TY2k must contain an edge −→uv for (T−
θ )

!ψ
.

We add −→uv to our path;
Otherwise:

Let v be an arbitrary point in

Cu(ψ − π

2
,ψ − θ) ∩ R2

− ∩ P ;

(ii) Add the shortest path from u to v in TY2k;
Set u to be v and proceed to the next iteration.

If now u = o, the path is already found. Otherwise
(iii) take the shortest path from u to o in TY2k at last.

!

With Lemma 4 we can prove:

Lemma 5 On a Yao-Yao graph YY2k(P) with k ≥ 42,
if −→uv ∈ TY2k, then dYY (uv) ≤ τ ′k|uv|, where τ ′k = 1 +
O(k−1) is a constant depending only on k.

Now combining Lemma 3 and 5, with the observation
that τk = (1− 2 sin(π/8))−1+O(k−1) = 4.27+O(k−1),
we can get our main result Theorem 1.
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Abstract

The planar slope number of a planar graph G is defined
as the minimum number of slopes that is required for a
crossing-free straight line drawing of G. We show that
determining the planar slope number is hard in the ex-

istential theory of the reals. We point out consequences
for drawings that minimize the planar slope number.

1 Introduction

The slope number of a non-degenerate straight line
drawing D of a graph G is defined to be the number
of distinct slopes that is used to draw the edges of G
in D. The minimum slope number over all straight line
drawings of G is the slope number of G. Similarly, the
planar slope number of a planar graph G is the mini-
mum slope number over all planar straight line drawing
of G.

In this paper, we consider the computational com-
plexity of computing the planar slope number. In Sec-
tion 2, we show that determining the planar slope num-
ber of a graph is hard in the existential theory of the re-

als. Afterwards, in Section 3, we point out consequences
for drawings that minimize the slope number: There are
planar graphs, such that each drawing that minimizes
the planar slope number requires irrational coordinates
for the vertices and slopes of the edges. Furthermore,
it is complete in the existential theory of the rationals

(9Q) (and thus possibly undecidable) to decide whether
a planar graph has a drawing on the grid that minimizes
the planar slope number.

1.1 The slope number

The slope number of a graph has mainly been studied
for the relation of the maximum degree to the slope
number: A simple lower bound for the slope number
of a graph G is d�(G)/2e, where �(G) denotes the
maximum degree of G, since at most two edges of the
same slope are incident to one vertex. The main work
in this area deals with the question whether the slope
number of a graph is also bounded from above by a
function in the maximum degree. This was answered
negatively [1, 10, 3] by examples of families of graphs

of maximum degree 5 with arbitrarily large slope num-
ber. In contrast, Keszegh, Pach, and Pálvölgyi have
shown that the planar slope number is bounded by an
exponential function in the maximum degree [7].

From the computational point of view, it is known
to be NP-complete to decide whether a graph has slope
number 2 [4], and it is NP-complete to decide whether
a planar graph has planar slope number 2 [5].

1.2 The existential theory of the reals

The existential theory of the reals (9R) is a complexity
class defined by the following complete problem: Given
a quantifier-free formula F (x1, . . . , xn) that consists of
logic connections of polynomial equalities and inequali-
ties in the variables x1, . . . , xn with integer coe�cients,
is there an assignment of real values to the variables,
such that the formula is satisfied? This problem can
be reduced to deciding the solvability of a polynomial
inequality system over the reals. Starting with Mnëv’s
universality theorem [9] many geometric problems have
been shown to be hard in 9R.

We focus on the problem of pseudoline stretchabil-

ity : Given a collection of curves in the plane, is there
a homeomorphism of the plane, that maps the curves
onto lines? For a good overview on the 9R-reduction
for the stretchability problem we refer to [8]. The class
9R is contained in PSPACE [2], and it is known to be
NP-hard. Solvability of an 9R instance with rational
numbers (9Q) is not known to be decidable (cf. [11]).

2 The reduction

We show that computing the planar slope number of a
graph is hard in 9R.

Theorem 1 Deciding if the planar slope number of a

planar graph with even maximum degree � is �/2 is

complete in 9R.

We reduce pseudoline stretchability to the problem of
computing the planar slope number. The general idea
of the proof is indicated in Figure 1: We consider the
arrangement graph GL, that is obtained by placing a
vertex (blue) on each intersection point of a pseudoline
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Figure 1: Constructing the planar graph from a
(pseudo)line arrangement (black).

arrangement L of n pseudolines and consider the pseu-
dosegments between two points as edges (black). We
modify GL to a graph G

0
L, such that each vertex of GL

has degree 4n in G

0
L. The graph G

0
L will be 3-connected

(up to some subdivisions of edges). Thus G

0
L has the

same rotation system of edges in each planar embed-
ding. We make sure that the edges originating from one
pseudoline are opposite in this rotation system. By the
following observation a drawing of G0

L with slope num-
ber 2n guarantees the stretchability of the pseudoline
arrangement.

Observation 1 Let G be a planar graph with even

maximum degree �, and let D be a planar straight line

drawing of G with slope number �/2. The opposite

edges of a vertex of degree � in D have the same slope.

We describe the construction of G

0
L from a line ar-

rangement. (The same construction can be obtained
from a pseudoline arrangement.) From a realization of
L we add edges to the arrangement graph, such that
each vertex of GL has two neighbors for each slope
used by the arrangement (brown edges). We add 2n
neighbors to each vertex of GL by using n intermediate
slopes, one slope between each slope of the arrangement
(gray edges); this step will ensure that the graph is 3-
connected. In each face (including the unbounded one)
we connect the vertices by a cycle (green). We subdi-
vide one edge of each cycle (red vertex) to ensure that
this cycle can be realized using a polygon that is par-
allel to the bounding edges of the face. Each drawing
of G0

L with 2n slopes contains a realization of L, which
concludes the proof.

3 Consequences

The fact that there are non-simple line arrangements
that have an irrational coordinates in each representa-

tion [6] directly translates into the following result.

Corollary 2 There are planar graphs, such that each

planar drawing that minimizes the slope number has at

least one vertex with an irrational coordinate.

We want to point out, that deciding the existence of
a drawing on the grid (equivalently by scaling: with
rational coordinates) is complete in 9Q (cf. [11]). If 9Q
is undecidable, this has an interesting consequence for
upper bounds on the grid size.

Theorem 3 Assume 9Q is undecidable. Then there

exists no computable function f , such that every graph

G, that has a slope minimizing drawing on the grid,

can be drawn with this slope number on a grid of size

f(|V (G)|)⇥ f(|V (G)|).

Proof. Assume there exists such a computable function
f . Then checking all possible drawings on f(|V (G)|)⇥
f(|V (G)|) leads to an algorithm that decides 9Q. ⇤
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[8] J. Matoušek. Intersection graphs of segments and 9R.
arXiv:1406.2636, 2014.
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Abstract

Given a set S =
Sn

i=1{pi, qi} of n pairs of
points in a metric space, we study the prob-
lem of computing, what we call, a feasible par-
tition S = S1 [ S2 such that pi 2 S1 if and
only qi 2 S2 8 i. The partition should opti-
mize the cost of a pair of networks, one built
on S1, and one built on S2. In this work we
consider the network structures to be match-
ings, minimum spanning trees (MSTs), travel-
ing salesman tours (TSP tours), or their bot-
tleneck equivalents. Let f(X) be some net-
work structure computed on point set X and
let �(f(X)) be the bottleneck edge of that net-
work. For each of the aforementioned net-
work structures we consider the objective of
(1) minimizing |f(S1)| + |f(S2)|, (2) minimiz-
ing max{|f(S1)|, |f(S2)|}, or (3) minimizing
max{|�(f(S1))|, |�(f(S2))|}. Here, | · | denotes
the sum of the edge lengths. We show sev-
eral hardness results and an O(1) approxima-
tion for every objective considered. Our results
are summarized in Table 1 and full details can
be found in [1].

1 Introduction

There is a large literature on generalized or
“one-of-a-set” network optimization problems.

⇤
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Objective: (1) (2) (3)
Matching 2 3 3
MST 3↵ 9 4↵
TSP tour 3� 18 6�

Table 1: O(1) approximation results for 3 ob-
jective functions. ↵ is the Steiner ratio, � is
the approximation factor for the TSP.

Here, one is given a point set S and subsets
Ui ✓ S and asked to select one, or at least
one, point from each subset such that the to-
tal weight of an MST, TSP tour, or other sin-
gle network structure computed over the cho-
sen subset of points is minimized; see [3] for a
survey.

As far as we know, the problem of partition-
ing points from pairs into two sets in order to
optimize a cost function over networks com-
puted on both sets has not been extensively
studied. One recent work of Arkin et al. [2]
does address the problem of partitioning points
from pairs in the plane into two sets so as to
minimize the sum or max of the radii of the
minimum enclosing disks for sets S1, and S2.

2 Matchings

Theorem 1 Let M(X) be the minimum

weight matching on point set X. There exists

a 2-approximation algorithm for the problem

of computing a feasible partition S = S1 [ S2

which minimizes |M(S1)|+ |M(S2)| in general

metric spaces.

Proof. Let S = S⇤
1 [ S⇤

2 be the optimal parti-
tion and OPT = |M(S⇤

1 )|+|M(S⇤
2 )| be the cost

of this solution. Let M(S) be the minimum
weight perfect matching on point set S (exclud-
ing edges (pi, qi)8i). Note that |M(S)|  OPT .

Let M̂(s) be the minimum weight one-of-
a-pair matching. That is, select exactly one
point from each input pair {pi, qi} such that
the weight of the minimum weight matching
over the chosen n points is as small as possible,
and call this matching M̂(S). As OPT is the

This is an abstract of a presentation given at CG:YRF 2016. It has been made public for the benefit of the community and should be considered a preprint rather
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sum of the weights of two such one-of-a-pair
matchings over point set S, |M̂(S)|  OPT

2 .
To obtain a 2-approximation to this problem,

compute M̂(S) and let S1 be the set of input
points which have an edge of this matching in-
cident on them and let S2 = S \S1. Return the
partition S = S1 [ S2.
Note |M(S1)| = |M̂(S)|  OPT

2 . To bound
|M(S2)| consider the multigraph G = (V =
S,E = M(S) [ M̂(S)). All v 2 S2 have degree
1, from M(S), and all u 2 S1 have degree 2
from M(S) [ M̂(S). For each vi 2 S2, either
vi is matched to vj 2 S2, or vi is matched to
ui 2 S1. In the former case one can consider
vi, vj matched and charge the weight of this
edge to |M(S)|. In the latter case, note that
each u 2 S1 is part of a unique cycle, or path.
If u 2 S1 is part of a cycle then no vertex in
that cycle belongs to S2 by degree constraints.
Thus, if vi 2 S2 is matched to ui 2 S1, ui

is part of a unique path whose other terminal
vertex x belongs to S2. One can consider vi, x
matched and charge this weight to the unique
path connecting them in G. Thus, |M(S2)| can
be charged entirely to edges of M(S) [ M̂(S)
and has weight at most |M(S)| + |M̂(S)| 
3
2OPT .
Therefore, the approximate partition S =

S1[S2 permits one to build a matching on each
set so that |M(S1)|+ |M(S2)|  2OPT . ⇤

3 Spanning Trees

Theorem 2 Let MST (X) be an MST on

point set X. Given S and k 2 R1
, deciding

if there exists a feasible partition S = S1 [S2 :
max{|MST (S1)|, |MST (S2)|}  k is weakly

NP-Complete.

Proof. The reduction is from Partition:
given a set S = {x1, x2, ..., xn} of n integers,
decide if there is a partition S = S1 [ S2 :
S1 \ S2 = ;, with

P
i2S1

xi =
P

j2S2
xj . Let

M =
P

i xi. Given any instance S of Parti-
tion, create a geometric instance of our prob-
lem, as shown in Figure 1.

x1

M

x2

x3
M

"

p1 p2 p3 pn

q1 q2 q3 qn

pn+1

qn+1 qn+2 qn+3

pn+2

pn+3

xn

q2n

p2n

M

MMM

Figure 1: Transformation from partition.

Create a “backbone” for each tree by plac-
ing n pairs of points {pi, qi}ni=1 along two par-
allel ✏-separated lines spaced M apart so that
pi, qi are vertically adjacent. For each integer
xi in the instance of partition place a point
pn+i at vertical distance xi from pi, and its
corresponding pair qn+i at distance ✏/2 from
qi and pi. One tree will incur an “extra cost”
of ✏/2 to pick up qn+i and the other will incur
an extra cost of xi to pick up pn+i. There-
fore, any algorithm that constructs a parti-
tion which minimizes the weight of the heavier
tree also minimizes max{

P
i2S1

xi,
P

j2S2
xj}.

Thus, for ✏ > 0 small enough the instance
of partition is solvable i↵ there exists a feasi-
ble partition such that both trees have weight
(n� 1)M +M/2 + o(1). ⇤
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A geometric approach to k-SUM

Jean Cardinal∗, John Iacono†, Aurélien Ooms‡

Abstract

It is known that k-SUM can be solved using Õ(nd k
2 e)

time and linear queries (here the notation Õ ignores
polylogarithmic factors). On the other hand, there is a
point location algorithm due to Meiser that shows the
existence of Õ(n4)-depth algebraic computation trees for
k-SUM. By streamlining Meiser’s algorithm, we prove k-
SUM can be solved using Õ(n3) expected linear queries in

Õ(nd k
2 e+8) expected time. Thus, we show that it is possi-

ble to have an algorithm with a runtime almost identical
(up to the +8) to the best known algorithm but for the
first time also with the number of queries on the input a
polynomial that is independent of k. The new algorithms
we present rely heavily on fundamental tools from com-
putational geometry: "-nets and cuttings. A preprint is
available at http://arxiv.org/abs/1512.06678.

1 Introduction

The k-SUM problem is defined as follows: given a collec-
tion of n real numbers, decide whether any k of them sum
to zero, where k is a constant. It is a fixed-parameter ver-
sion of the subset-sum problem, a standard NP -complete
problem. The k-SUM problem, and in particular the
special case of 3SUM, has proved to be a cornerstone
of the fine-grained complexity program aiming at the
construction of a complexity theory for problems in P .
In particular, there are deep connections between the
complexity of k-SUM, the Strong Exponential Time Hy-
pothesis [3, 10], and the complexity of many other major
problems in P [1, 4, 6, 7].

It has been long known that the k-SUM problem can
be solved in time O(n

k
2 log n) for even k, and O(n

k+1
2 ) for

odd k. Erickson [5] proved a near-matching lower bound
in the k-linear decision tree model. In this model, the
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complexity is measured by the depth of a decision tree,
every node of which corresponds to a query of the form
qi1 +qi2 + · · ·+qik ? 0, where q1, q2, . . . , qn are the input
numbers. In a recent breakthrough paper, Grønlund and
Pettie [7] showed that in the (2k� 2)-linear decision tree
model, where queries test the sign of weighted sums of up
to 2k � 2 input numbers, only O(n

k
2
p
log n) queries are

required for odd values of k. In particular, there exists
a 4-linear decision tree for 3SUM of depth Õ(n

3
2 ), while

every 3-linear decision tree has depth ⌦(n2) [5]. This
indicates that increasing the size of the queries, defined
as the maximum number of input numbers involved in a
query, can yield significant improvements on the depth of
the minimal-height decision tree. Ailon and Chazelle [2]
slightly extended the range of query sizes for which a
nontrivial lower bound could be established, elaborating
on Erickson’s technique.
It has been well-established that there exist nonuni-

form polynomial-time algorithms for the subset-sum
problem. One of them was described by Meiser [9], and
is derived from a data structure for point location in
arrangements of hyperplanes using the bottom vertex
decomposition.

2 Our results

Our first contribution is to show, through a careful
implementation of Meiser’s basic algorithm idea [9], the
existence of an n-linear decision tree of depth Õ(n3) for
k-SUM.
We use standard results on "-nets. Using a theorem

due to Haussler and Welzl [8], it is possible to construct
an "-net for the range space defined by hyperplanes and
simplices using random sampling. If no hyperplane in
this sample intersects a given simplex, then with high
probability at most a fraction of the hyperplanes will
intersect the simplex. We use this theorem to design
a prune and search algorithm for the problem of locat-
ing a point in an arrangement of hyperplanes. This
algorithm will perform linear queries about the coordi-
nates of the point to locate. The number of such queries
the algorithm will need to perform is polynomial in the
dimension and logarithmic in the number of hyperplanes.

Although the high-level algorithm itself is not new, we
refine the implementation and analysis for the k-SUM
problem. Meiser presented his algorithm as a general
method of point location in m given n-dimensional hy-
perplanes that yielded a Õ(n4 logm)-depth algebraic
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computation tree; when viewing the k-SUM problem as
a point location problem, m is O(nk) and thus Meiser’s
algorithm can be viewed as giving a Õ(n4)-depth alge-
braic computation tree.

Our first result shows that while the original algorithm
was cast as a nonuniform polynomial-time algorithm, it
can be implemented in the linear decision tree model
with an improved upper bound. Moreover, this result
implies the same improved upper bound on the depth of
algebraic computation trees for the k-SUM problem.

Theorem 1 There exist linear decision trees and alge-

braic computation trees of depth at most O(n3 log3 n)
solving the k-SUM problem.

There are two subtleties to this result. The first is
inherent to the chosen complexity model: even if the
number of queries to the input is small (in particular,
the degree of the polynomial complexity is invariant
on k), the time required to determine which queries
should be performed may be arbitrary. We present two
Las Vegas algorithms that implement those decision
trees e�ciently in the RAM model. With a first näıve
algorithm, we show the query determination time can
be trivially bounded by Õ(nk+2) on expectation. The
second algorithm builds on the first one and reduces this
time to Õ(nd k

2 e+8).

Theorem 2 There exists an Õ(nd k
2 e+8) Las Vegas

algorithm in the RAM model expected to perform

O(n3 log3 n) linear queries solving the k-SUM problem.

The second issue we address is that the linear queries
in the above algorithm may have size n, that is, they may
use all the components of the input. The lower bound of
Erickson shows that if the queries are of minimal size, the
number of queries cannot be a polynomial independent
of k such as what we obtain, so non-minimal query size
is clearly essential to a drastic reduction in the number
of queries needed. This gives rise to the natural question
concerning the relation between query size and number
of queries. In particular, one question is whether queries
of size less than n would still allow the problem to be
solved using a number of queries that is a polynomial
independent of k. We show that this is possible; we
introduce a range of algorithms exhibiting an explicit
tradeo↵ between the number of queries and their size.
Using a blocking scheme, we show that we can restrict
to o(n)-linear decision trees.

Theorem 3 There exists an o(n)-linear decision tree

of depth Õ(n3) solving the k-SUM problem. Moreover,

this decision tree can be implemented as an Õ(nd k
2 e+8)

Las Vegas algorithm.

We also give a range of tradeo↵s for O(n1�↵)-linear
decision trees.

Theorem 4 For any ↵ such that 0 < ↵ < 1, there exists
an O(n1�↵)-linear decision tree of depth Õ(n3+(k�4)↵)
solving the k-SUM problem. Moreover, this decision tree

can be implemented as an Õ(n(1+↵) k
2+8.5) Las Vegas

algorithm.

Although the proposed algorithms still involve
nonconstant-size queries, this is the first time such trade-
o↵s are explicitly tackled.
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Classification of Normal Curves on a Tetrahedron

Clément Maria⇤ Jonathan Spreer†

Abstract

In this article, we give a combinatorial classification of
all normal curves drawn on the boundary of a tetrahe-
dron. We characterise normal curves in terms of inter-
section numbers with the edges of the tetrahedron.

1 Introduction

Normal curves are a restricted family of loops drawn on
the boundary of a tetrahedron. They play a central role
in low dimensional topology through the Haken theory
of normal curves and surfaces, which is at the heart of
most of the algorithmic breakthroughs in low dimen-
sional topology over the past 25 years. This paper gives
an exhaustive classification of all possible normal curves
in terms of their intersection patterns with the edges of
the tetrahedron. A full version of this abstract [3] ap-
plies this work in the context of quantum topology.

Background: Let t be a tetrahedron and @t its bound-
ary. A normal curve L on @t is a simple closed loop that:

(i) is in general position w.r.t. t, i.e., does not pass
through the vertices of t and intersects the edges
of t transversally,

(ii) the intersection of L with any triangular face of t
is a collection of disjoint arcs joining two distinct
edges of the triangle.

We know [2] that, up to (normal) isotopy, normal
curves are entirely defined by the number of times they
intersect each edge of the tetrahedron. For a tetrahe-
dron t with edges {e0, . . . , e5}, and a normal curve L
on @t, we define �(ei) := |L \ ei|, i.e., the number
of times L crosses ei. The intersection symbol of L is
defined to be the 2⇥3 matrix of the values �(ei), where
the first row contains intersection numbers of the edges
of a triangle, and the intersection numbers of opposite
edges appear in the same column; see Figure 1 left.

2 Classification of normal curves by their intersec-

tion symbols

We characterise normal curves on the boundary of a
tetrahedron t in terms of their intersections symbols.

⇤
The University of Queensland, c.maria@uq.edu.au

†
The University of Queensland, j.spreer@uq.edu.au

To do so, we translate the problem into planar topology
and give an inductive argument based on intersection
symbols.

From tetrahedron to punctured disk: Topologi-
cally, studying normal curves on a tetrahedron with ver-
tices {a, b, c, d} is equivalent to studying simple closed
curves on the 3-punctured disk D3, i.e., the closed 2-
dimensional disk from which three arbitrary but fixed
points a, b and c in its interior have been removed (and
d is sent to @D); see Figure 1 left.

We say that a loop in D3 is reduced if it does not cross
a tetrahedron edge twice in a row. We define the inter-
section symbol of a reduced loop in D3 to be the 2 ⇥ 3
integer matrix of intersection numbers of the reduced
loop with the tetrahedron edges embedded in D3. Note
that reduced loops on the punctured disk are the equiv-
alent of the normal curves on the boundary of a tetra-
hedron. Naturally, the intersection symbol of a reduced
loop constitutes a valid tetrahedron intersection sym-
bol. We refer to the full version of this work [3] and [1]
for a more formal introduction to these concepts.

Classification of loops in the punctured disk: For
a loop L in D3, we denote its isotopy class by [L]; it
is the class of all loops isotopic to L in D3. We prove
that the “intersection symbol” is well-defined for isotopy
classes of loops.

Lemma 1 The following is true: (i) any isotopy class of

loops in D3 admits a reduced loop, (ii) any two isotopic

reduced loops have equal intersection symbols, (iii) any

two non-isotopic reduced loops have distinct intersec-

tion symbols.

The statements follow from an iterative reduction of
the loop (i), a simple construction using the fundamen-
tal group of D3 (ii), and the construction of a “canonical
loop” associated to an intersection symbol (iii). See the
full version [3] for details.

It follows that we can refer to the intersection symbol
of an isotopy class of loops [L] as the intersection symbol
of any reduced loop in [L]. By a small abuse of notation,
we also refer to the intersection symbol of a loop L as
the intersection symbol of [L].

By virtue of the Jordan-Schoenflies theorem [1]—that
says that a loop separates the disk into two regions, the
inside and the outside—we distinguish three types of
loops: (i) loops containing no puncture in the inside;
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Figure 1: Left: Tetrahedron with a normal curve formed by 8 normal arcs. Equivalent representation of the curve as a reduced

loop in the disk with punctures {a, b, c}, and d sent to the boundary. Middle: Reduced loop with symbol [i j i + j], j � i.

Blue and green domains represent respectively i and j parallel segments. Note in particular that the j segments, in the green

domain inside the central triangle, originating from edge bc and crossing edge ac, split into j � i segments crossing ad and i

segments crossing cd. Right: Action of �ab, with isotopic reduction, on a piece of loop and its neighbourhood (we call this

loop configuration O1).

(ii) loops separating one puncture from the three oth-
ers; and (iii) loops separating two punctures from the
two others. Note that here we call the outer boundary
of D3 “puncture” as well. Naturally, loops of type (i) are
trivial and have intersection symbol [0 0 0], and loops
of type (ii) can be isotoped to a circle in a small neigh-
bourhood of the puncture in their inside, and hence have
(2 ⇥ 3)-intersection symbol [1 0 1] ⇥ [0 1 0], up to
tetrahedron permutations. The case of loops of type
(iii) is more interesting; we call these loops balanced.
We prove:

Lemma 2 For any two loops L1 and L2 of same type

(i), (ii) or (iii), there exists a homeomorphism of D3,

constant on @D, sending L1 to L2.

This is a consequence of the Jordan-Schoenflies theo-
rem. See the full version [3] for details.

We finally prove the main theorem of this article.

Theorem 3 There is a bijection between isotopy

classes of balanced loops in D3 and intersection symbols

of the form [i j i+ j], up to tetrahedron permutation,

with i, j coprime non-negative integers.

Proof. Using Lemma 2, we know that any balanced
loop may be obtained by a homeomorphism on the bal-
anced loop L0 with intersection symbol [0 1 1], satisfy-
ing the theorem. Additionally, we know [1], via the iso-
morphism between mapping class group of D3 and braid
group, that any such homeomorphism may be simulated
by a sequence of the two homeomorphisms �ab and �bc,
exchanging punctures a and b, and punctures b and c.
The proof is inductive: we study the action of these
“braiding” homeomorphisms on a loop with intersec-
tion symbol [i j i+j]. This general loop is represented
in Figure 1 middle, where “parallel” curves are repre-
sented by rays. It can be shown that for each crossing of

the loop with, say, edge ab, a short loop segment around
this crossing may be considered independently. As an
example, assume we want to consider the action of �ab

on the loop [i j i+ j], and that in a neighbourhood of
each intersection of the loop with edge ab, we observe
the piece of loop O1 shown in Figure 1 right; there are
i such intersections. Figure 1 illustrates the action of
�ab on the piece of loop that is modified, after reduc-
tion, only in a neighbourhood of the intersection with
edge ab; in terms of intersection symbols, �O1 loses one
intersection with edges bc, ac, ad and bd. Having i con-
figurations of type O1 crossing edge ab, applying �ab on
the loop [i j i+ j] we obtain the loop with intersection
symbol [i j � i j], which satisfies the theorem. See
the full version [3] for a more detailed argument, and
all remaining configurations of pieces of loops around a
crossing.

The fact that i and j are coprime integers follows
from the “braiding” of the loop [0 1 1] to obtain any
loop [i j i+ j] (and permutations), as it simulates the
Euclidean algorithm on the pair (i, j). Again, we refer
to [3] for a complete proof. ⇤
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Abstract

Topological features provide global information about a
shape, such as the number of the connected components, and
the number of holes and tunnels. These are especially impor-
tant in high-dimensional data analysis, where pure geometric
tools are usually not sufficient. When dealing with simplicial
homology, the size of the simplicial complex S is a major
concern, since all the algorithms available in the literature are
mainly affected by the number of simplices of S. Edge con-
traction has been the most common operator for simplifying
simplicial complexes. It has been used in computer graphics
and visualization and more recently in topological data analy-
sis. Edge contraction on its own does not preserve the homo-
logical information but a check, called link condition [2], has
been developed for verifying whether the contraction of an
edge preserves homology or not. However, since the number
of simplices in the link of an edge grows exponentially when
the dimension of the complex increases, checking the link
condition is costly. In our work, we consider the definition of
an homology preserving simplification algorithm, introduc-
ing a new way for verifying the link condition. We focus on
a specific class of representations for simplicial complexes
that we call top-based. A top-based representation encodes
only the vertices and top simplices (also called facets) of a
simplicial complex S, thus providing a data structure scalable
with the dimension and size of S.

Background notions Given a simplex of dimension p
(briefly a p-simplex), any simplex s which is the convex hull
of a non-empty subset of the points generating t is called a
face of t . Conversely, t is called a coface of s . Given a p-
simplex s , the set of simplices for which s is a face is called
star of s (also denoted St(s)). If St(s) = /0, s is called top
simplex (or facet). A simplicial complex S is a finite set of
simplices, such that each face of a simplex in S belongs to S,
and each non-empty intersection of any two simplices in S is
a face of both. We say that S is a d-simplicial complex if the
largest dimension of its simplices is d.

Let S a d-simplicial complex, an edge contraction acts on
S by contracting an edge e = (n1,n2) to one of its vertices
(i.e. n1). As a result, all the simplices in St(e) are removed
from S and all the simplices in St(n1)� St(e) are mapped
into St(n2) in such a way that, for each simplex s 2 St(n1)�

St(e), µ(s) = (s � n1)[ n2. Thus, edge contraction is an
operation linear in the number of simplices in St(n1).

The link of a simplex s 2 S, denoted as Lk(s), is the
set of faces of St(s) that do not intersect s . An edge
e = (n1,n2) 2 S satisfies the link condition if and only if
Lk(n1)\ Lk(n2) = Lk(e). For reducing the computational
cost of extracting the links all at once, a weaker condition,
called p-link condition, has been introduced in [3]. An edge
e = (n1,n2) satisfies the p-link condition if and only if either
p  0 or p > 0 and every (p�1)-simplex 2 Lk(n1)\Lk(n2)
is also in Lk(e). Thus, an edge e = (n1,n2) satisfies the link
condition if and only if it satisfies the p-link condition for all
p  d. Despite the fundamental reduction in the computa-
tional cost, the numerosity of p-simplices in the link of two
vertices, still, can be huge depending on the dimension d of
the complex. We consider solving this problem, by adapting
the edge contraction and the link condition to perform on a
top-based representation.

Top-based homology preserving edge contraction

Encoding only the top-simplices and the vertices we can per-
form an edge contraction e = (n1,n2) by focusing on the
simplices Sttop(e), i.e. the set of top-simplices incident in
the edge removed, and Sttop(n1), i.e. the set of top-simplices
incident in the vertex removed with e . The key point is to
modify the set of simplices maintaining the top-based repre-
sentation valid. We recall that, in a top-based representation,
each simplex s 2 S is encoded if and only if s is a vertex or
a top simplex. Thus, while removing the set of top simplices
incident in e , it is crucial to recognize if new top simplices
must be introduced.

Algorithm 1 describes the procedure that can be imple-
mented on a top-based representation for performing an edge
contraction. Each top p-simplex s 2 Sttop(e) is removed
with the edge (rows 5 to 10). By definition of edge contrac-
tion, all the faces of s are removed with the exception of
the (p� 1)-faces g1 = (s � n2) and g2 = (s � n1), which
will be merged in a single (p�1)-face (for example g2). Let
S = Sttop(g1)[ Sttop(g2) be the set of top simplices in the
star of either g1 or g2. S cannot be empty before the edge
contraction, as, at least s belongs to S. By merging g1 and
g2 while removing s , the star of the new simplex will be
St(g2) = S�s . Then, g2 is a new top simplex if and only if
St(g2) = /0. Notice that this condition can be verified before
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Algorithm 1 contractEdge(e ,S)
1: Input: S is a simplicial complex
2: Input: e = (n1,n1) edge to be contracted
3: Output: S0 is a simplified simplicial complex
4: // For each top simplex in the star of e
5: for each s in Sttop(e) do
6: g1 = (s �n2)
7: g2 = (s �n1)
8: if Sttop(g1)[Sttop(g2) = s then
9: addTop(g2,S)

10: removeTop(s ,S)
11: // For each top simplex in the star of n1
12: for each s in Sttop(n1) do
13: s = (s �n1)[n2
14: removeVertex(n1)

performing the edge contraction by checking if S = s (rows
8 to 9). Then, working on the set of top simplices incident
in n1 (rows 12 to 13), we update Sttop(n1), replacing n1 with
n2, without modifying the star of any other simplex. Finally,
we remove n1 from S (row 14). The edge contraction be-
cames here aan operation linear in the number of simplices
in Sttop(n1).

The link condition can be efficiently verified exploiting the
top-based representation as well. From the definition of link,
we can trivially say that Lk(e)✓ {Lk(n1)\Lk(n2)} thus, the
link condition is satisfied when also the opposite is true. No-
tice that, the link of a simplex is a simplicial complex and,
thus, also the intersection of two simplicial complexes is still
a simplicial complex. So, we can conclude that the link con-
dition is satisfied if the top simplices in L = Lk(n1)\Lk(n2)
are also in Lk(e). Computing the top simplices of L is much
faster than computing the links, but, still, it is an expensive
operation. Let Ts the set of simplices obtained by pairwise
intersecting the simplices in Sttop(n1) and Sttop(n2). The top
simplices of L would be obtained by removing from Ts those
simplices that are not maximal in L. However, to improve
scalability, we avoid storing Ts thus considering all the sim-
plices originated by the intersection. The space complexity
of the top-based approach is then O(|T1|+ |T2|) since we only
need to store the top simplices incident in n1 and n2 while the
time complexity is O(|T1||T2|), thus, depending on the size
of T1 and T2. In practice, it is computationally faster than the
traditional (weak) link condition since it avoids: (i) the ex-
traction of the faces of the simplices s 2 T1,T2 (2d �1 faces
for each simplex); (ii) the intersection of the two sets Lk(n1)
and Lk(n2); (iii) and the comparison of the resulting set with
Lk(e).

Experimental results In our evaluation, we use eleven
simplicial complexes having from 9 thousand to 14 millions
vertices. The dimension of the top simplices goes from 7 to
68. The hardware configuration used for these experiments
is an Intel i7 3930K CPU at 3.20Ghz with 64 GB of RAM.

We have implemented the simplification approach, using a
specific top-based representation, the Stellar tree [4]. On the
top of it we have implemented both the weak link condition
[2] and the new top-based approach for verifying the link
condition. The size of each simplicial complex S is then re-
duced applying homology preserving edge contractions until
no more can be applied without changing the homology of S.
A simplification process is killed after 25 hours of computa-
tion. The simplification ratio is, on average, around 90%-95%
of the initial number of vertices. From the results obtained
the limitation of the approach based on the weak link con-
dition is evident. Using the latter, the simplification process
ends in very few cases (two datasets). Typically the compu-
tation exceeds the 25 hours and, in two cases, the process
exceeds the 64GB of memory. Verified the computational im-
provement for checking the link condition we have evaluated
the practical relevance of the proposed approach comparing
the performances of our implementation with respect to the
state-of-the-art data structure for performing edge contrac-
tions, the Skeleton-Blocker [2] (as implemented in [1]). From
the results obtained we can say that the Stellar tree is gener-
ally faster taking 25% to 70% of the time required by the
Skeleton-Blocker for simplifying a dataset. Focusing on the
timings distribution, the Skeleton-Blocker needs more effort
for updating the structure during the edge contraction while it
is particularly fast at verifying the link condition. Conversely,
the Stellar tree is faster at performing the contraction but it
is slower at checking the link condition. This is an expected
result due to the characteristics of the two data structures (de-
tails are are not included for brevity). Analyzing the memory
peak, i.e. the amount of memory used at runtime for perform-
ing simplification, the Stellar tree is also more compact, using
from 30% to 80% of memory required by Skeleton-Blocker.
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Abstract

Morse theory [3] studies the relationships between the topol-
ogy of a shape and the critical points of a real-valued smooth
function defined on it. Recently a discrete counterpart, called
Discrete Morse Theory, has been proposed in an entirely
combinatorial setting by Robin Forman for cell complexes
[2]. Discrete Morse theory is the basis for computing Morse
decompositions of discretized geometric shapes, and it pro-
vides a tool for retrieving topological invariants, like homol-
ogy groups. In particular, the Forman gradient is the basis
for an efficient and derivative-free computation of a segmen-
tation of a discretized shape endowed with a scalar function
f . It fully encodes the topological structure of the function
and of its domain and the regions of influence of the critical
points. Discrete Morse theory defines a vector as a pair of
cells (s ,t) where s is a k-cell in the immediate boundary of
t (i.e. their dimension differs by 1). A discrete vector field

V defined on a CW-complex G is a collection of pairs such
that each cell of G is in at most one vector of V . A critical

cell of V of index k is a k-cell g which does not appear in
any pair of V . A V -path is a sequence s1,t1,s2,t2, ..., s

r

,t
r

of k-cells s
i

and pk ` 1q-cells t
i

,i “ 1, ..,r with r • 1, such
that ps

i

,t
i

q P V , s
i`1 is a face of t

i

, and s
i

‰ s
i`1. A V -

path with r ° 1 is closed if s1 is a face of t
r

different from
s

r´1. A discrete vector field V is called a Forman gradient

if and only if there are no closed V-paths in V (see Figure
1c). A Forman gradient can be computed from a scalar field
defined on the vertices of a CW-complex G, extending the
scalar function from the vertices of G to all its cells. In [4] a
dimension-independent algorithm is proposed that processes
the lower star of each vertex independently, where the lower

star of a cell g is the subset of cells incident in g containing
only cells with a lower function value than g . By means of
the lower star subdivision, we obtain a domain partition cov-
ering G. Cells are paired if they belong to the same lower
star and if they have the same function value. The resulting
algorithm is then easy to parallelize and it has been proved
to identify critical cells in one-to-one correspondence with
the topological changes in the sub-level sets (i.e. no spu-
rious critical simplexes are created). Extending topological
methods to multivariate functions is an active research area

that has been investigated based on few techniques, includ-
ing Jacobi sets, Reeb spaces, joint contour nets, and Pareto
sets. For discrete Morse theory, the main problem arising in
the multidimensional setting is that the lower star subdivi-
sion no longer provides a cover for G. More precisely, the
vertex lower stars still do not intersect each other but they
do not necessarily cover the entire domain. In [1] a solution
has been proposed considering the lower star of each cell
rather than for each vertex. Possible double classifications
are avoided by defining a flag for each cell of G. The result-
ing approach is computationally expensive since it requires
each cell of G to be explicitly encoded. Moreover, by impos-
ing a specific order on the cells of G, there is no trivial way
to parallelize the computation.

Let G be a CW-complex and G0
f›Ñ Rn be a function on

the set of vertices G0, f is required to be component-wise
injective. We extend f to all the cells g P G by taking the
least common upper bound of the f values on their vertices.
We denote such extended function, F .

The idea at the base of both [4] and [1] was to group cells
in G where possible pairings can be found. We refer to these
subsets of G as filtration-based lower stars (denoted L

F

). For
the multidimensional settings the filtration-based lower star
of a cell g P G has been defined in [1] as

L
F

pgq :“ tt P G | g Ñ t ^ Fptq ® Fpgqu
where ® is the partial order on Rn, u ® v if and only if

u

i

§ v

i

for all components.
We propose a new approach consisting of a generalization

of the algorithm defined in [4] but still based on collecting
the lower stars of the vertices only. We consider an index-
ing I created on the vertices of G, based on f (see Figure
1a). The new called index-based lower stars (denoted L

I

)
are computed as follows. For each vertex v,

L
I

pvq :“ tg P G | Ĩpgq “ Ipvqu

where Ĩpgq denotes the maximum of values Ipwq of the ver-
tices w of g . In other words, given a vertex v P g , we say
that g belongs to the lower star of v if and only if v is the
vertex with index maximum among the vertices of g (see
Figure 1b). Once the lower stars have been separated, cells
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(a) (b) (c)

Figure 1: (a) The vector-valued function is extended from the vertices of G to all the cells. The vertex indexing is depicted
within square brackets. (b) The lower star of each vertex is computed based on the vertex indexing. Cells having the same index
belong to the same lower star. (c) The Forman gradient is computed, on each lower star, pairing cells with the same function
value. Critical vertices are depicted in blue and the critical edge is depicted in green.

can be paired independently in each one. Still, we admit two
cells s ,t to be paired only when they have the same function
value (see Figure 1c). Notice that if two cells belong to the
same lower star, this does not mean that they have the same
function value (details on the pairing algorithm are skipped
for brevity).

It is easy to see that both L
F

and L
I

cover the entire do-
main but, in order for the index-based partition not to affect
any possible pairing of cells, we need to show that they are
coherent (i.e. each filtration-based lower star must be con-
tained in only one indexed-based lower stars). To this pur-
pose, we require the indexing I to be well-extensible with
respect to the function f , i.e., for every two cells g and t , if
Fpgq ® Fptq, then Ĩpgq § Ĩptq. A trivial way to obtain a well-
extensible indexing is by ordering the vertexes according to
the values of a single component f

i

. This ensures that pair
of cells belonging to the same filtration-based lower star are
in the same index-based lower stars. The coherence between
the index-based partition and filtration-based lower stars can
be formalized as follow. If I is a well-extensible indexing
with respect to f , it follows that

@g P G, D!v P G0, L
F

pgq Ñ L
I

pvq
and v belongs to g . Indeed, let g be a cell in G. It is easy

to check that there exists a unique vertex v P g such that g
belongs to L

I

pvq, the index-based lower star of v. Let a
be a cell in L

F

pgq. By definition of lowerstar, a Ö g and
Fpaq ® Fpgq. The former condition implies that Ĩpaq • Ĩpgq
and that v P a . The latter condition together with the assump-
tion on I being well-extensible give Ĩpaq § Ĩpgq. Hence,
Ĩpaq “ Ĩpgq “ Ipvq, which concludes the proof. Subdividing
G based on the new index-based lower star presents practi-
cal improvements with respect to [1]. Indeed, lower stars
are retrieved locally and independently within the vertex-
based partition, rather than globally. This implies fewer cells
to be stored in memory at runtime and easy parallelization
of computation, thus allowing for real world applications to

data sets of medium and large size. Moreover, the proposed
approach has been proved to retrieve a discrete vector field
compatible with the multidimensional persistent homology.
When G is a simplicial complex, a vector-valued function
F induces a multidimensional filtration by sublevel sets on
G. Then we can consider the multidimensional persistent
homology of G with respect to such filtration. In analogy
with the Morse reductions in the single-valued setting, it has
been proved that, if one reduces the complex G according to
the pairings of the output discrete vector-field, the reduction
returns a smaller complex with the same multidimensional
persistent homology with respect to F as that of G. Our al-
gorithm inherits the property of compatibility with the mul-
tidimensional persistent homology. It promises to be useful
both for the computation of multidimensional persistent ho-
mology of simplicial complexes filtered by sublevel sets of
vector-valued functions as well as for developing new visu-
alization techniques for representing topological features of
datasets characterized by multiple scalar fields.
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Local Structures for Approximating Rips Filtrations
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Abstract

(Vietoris-)Rips filtrations are important structures used
to infer topological properties of metric spaces. Un-
fortunately, they pose significant computational chal-
lenges, particularly when the data has high dimension.
We present a new technique to O(

p
d)-approximate the

topological information carried by the Rips filtration
which can be represented using at most n2O(d log d) d-
simplices per scale in the filtration.

1 Introduction

Given a metric space, for instance a point cloud, one is
often interested in studying its topological properties. A
common requirement is to study those topological fea-
tures of the space which persist over a large range of
scales. Longer persisting features often correspond to
important structures in the data. A preliminary step
in computing such features is to build a simplicial com-
plex on the point set. One such simplicial complex is
the Rips complex, which we denote as R. It is defined
on a point set P with respect to a scale parameter ↵,
R↵ = {Q ✓ P |diam(Q)  2↵}. Varying the scale pa-
rameter over a range of scales, one gets a sequence of
simplicial complexes called a filtration. The complexes
of a filtration are connected by inclusion maps, and give
rise to the persistence module (H⇤(R↵))↵�0

, which con-
tains relevant topological information.
Although the Rips filtration is simple to describe, it

poses computational challenges: for instance, given n
points in Rd, the k-skeleton of R has size O(nk+1),
where k  d, which is practically feasible only for very
small k. This makes it impractical to compute persis-
tence of higher dimensional features, specially when d is
large. The common way to remedy this issue is to com-
pute an approximate filtration which roughly preserves
the topological information but is much more attractive
computationally.
Sheehy [3] was the first to come up with an ap-

proximation scheme for the Rips filtration. The
(1 + ")-approximate filtration had a k-skeleton of size
n(1/")O(k�), � being the doubling dimension of the
space. Although the bound is linear in n, for large
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� and k, this is prohibitively expensive. Recently, a
O(d)-approximation scheme of size n2O(d log k) per scale
was proposed in [1]. Combined with dimension reduc-
tion techniques, this is the first scheme with polynomial
complexity independent of dimension.

In this work, we show the existence of a O(
p
d)-

approximate Rips filtration. Our filtration consists of
cell complexes connected by continuous maps at di↵er-
ent scales. The cell complex has complexity at most
n2O(d log d) at any scale. This improves the approxima-
tion factor over our previous result in [1]. The reliance
on continuous maps and cell complexes makes a compu-
tational treatment of our construction challenging. We
discuss our ideas to address this issue at the end of this
abstract.

2 Approximation scheme

Construction We denote by P , a set of n points in
Rd. To construct the approximation complex, we use
the grid lattice. Let G denote a scaled version of
the d-dimensional integer grid lattice with basis vec-
tors (↵e

1

, . . . ,↵ed) where (e
1

, . . . , ed) are the standard
basis vectors of Rd. G can also be visualized as collec-
tion of d-dimensional hypercubes, whose vertices form
G. Each such hypercube has 2d vertices. We call such
hypercubes cells.

For each point p 2 P , we find its closest point in G
(we assume generic position of P for simplicity, such
that the closest point is unique). We call those points
in G whose Voronoi cell contains at least one point of P
as full vertices. The full vertices of G are the vertices of
our approximation complex. Consider any cell C which
is non-empty, that is, it contains at least one full vertex.
Let FC be the set of full vertices incident to C. Then,
we define

• ULS↵: let �C denote the (abstract) simplex
spanned by the vertices FC . Note that �C does
not embed in Rd if |FC | � d+2 for at least one C.
We define ULS↵ as the abstract simplicial complex
whose maximal simplices are the �C ’s. In other
words, ULS↵ is the union of simplices on the full
vertices of each non-emtpy cell.

• ULH↵: let HC denote the convex hull of the ver-
tices FC . Then ULH↵ = [HC over all non-empty
cells of G. In other words, ULH↵ is the union of
local convex hulls of the full vertices of each cell.
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Relation between ULS and Rips By varying the scale
↵, one can build a discrete filtration on ULS↵. We show
that by using a suitable choice of scales, it is possible to
approximate the Rips filtration using ULS.

At any scale ↵, we define two maps, a↵, which maps
a point in P to its closest full vertex and b↵ which maps
a full vertex to its closest point in P . These vertex
maps induce the simplicial maps �↵ : R↵/2 ! ULS↵
and  ↵ : ULS↵ ! R↵3

p
d respectively and give rise to

the diagram

· · · // R↵/2
� � //

�

✏✏

Rc↵/2

�

✏✏

// · · ·

· · · // ULS↵

 
::

✓ // ULSc↵
// · · ·

(1)

where c = 6
p
d and ✓ = � �  induces a discrete

filtration
�ULS↵ck

�
k2Z. It follows that the persis-

tence module
�
H⇤(ULS↵ck)

�
k2Z is a c-approximation of

(H⇤(R↵))↵�0

. However, the size of ULS↵ per scale is
n2O(dk), which is no improvement over existing (1 + ")-
approximation techniques [3].

Relation between ULS and ULH We write A
h' B if

the spaces A and B are homotopically equivalent. We

show that ULS↵ h' ULH↵ using the following maps:

• f : ULS↵ ! ULH↵: let x be a point in a sim-
plex (e

1

, . . . , ek) 2 ULS↵. Then x =
Pk

i=1

aiei, for

some
P

ai = 1, ai � 0. We set f(x) =
Pk

i=1

aivi,
where vi is the vertex in ULH↵ corresponding to
ei.

• g : ULH↵ ! ULS↵: let ULT ↵ be a triangulation
of the space ULH↵. This triangulation can be gen-
erated by a union of local Delaunay triangulations
in combination with simulation of simplicity. Any
point x 2 ULH↵ lies in the interior of a unique
k-simplex (v

0

, . . . , vk) in ULT ↵. It follows that

x =
Pk

i=0

�ivi, for some
P
�i = 1,�i � 0. We

set g(x) =
Pk

i=0

�iei.

It can be verified that f � g and g � f are indeed
homotopic to the respective identity maps on ULH↵

and ULS↵, proving the homotopic equivalence. The
connections between ULH and R can be summarized
as in Figure 1. By functoriality of homology, it follows
that

Theorem 1 The module

�
H⇤(ULH↵(6

p
d)k)

�
k2Z is a

6
p
d-approximation of (H⇤(R↵))↵�0

.

· · · // R↵/2
� � //

�

✏✏

Rc↵/2

�

✏✏

// · · ·

· · · // ULS↵
f

  

 
99

✓ // ULSc↵

f

  

// · · ·

· · · // ULH↵

g

II

⌘ // ULHc↵

g

II

// · · ·

(2)

Figure 1: Diagram of spaces involved in our construc-
tion. Here ⌘ = f � ✓ � g is chosen to make the diagram
commute and c = 6

p
d.

3 Outlook

Our filtration from Theorem 1 is a sequence of cell com-
plexes connected by continuous maps. This is in con-
trast to known approximation schemes, where typically,
a filtration is a sequence of simplicial complexes con-
nected by inclusions or, more generally, simplicial maps.
Clearly, a transition to such a combinatorial category
appears necessary for an e�cient computation of the
persistent homology of the approximation.

There are several ways for converting ULH↵ into a
simplicial complex; for instance, we can triangulate the
convex hull of each cell locally such that the triangula-
tions are consisted along common boundaries. Another
approach is to pass to the barycentric subdivision. Both
approaches yields quite small simplicial complex on each
scale (in the same magnitude as in [1]). However, the
maps f and g introduced earlier do not extend to sim-
plicial maps between simplicial complexes on di↵erent
scales, in general. In the spirit of the simplicial ap-

proximation theorem [2, §16] we are currently investi-
gating whether there exists an (easily computable) sim-
plicial map h : sd(S↵) ! Sc↵ between triangulations of
|ULH↵| and |ULHc↵|, where sd(S↵) is the barycentric
subdivision of sd(S↵).
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Exact and Approximation Algorithms for Time-Window TSP
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Abstract

We study a version of the time-window traveling sales-

man problem (TWTSP): given a speed bound s  1 for
a robot, a set of cities each having a time window dur-
ing which it must be visited, find a shortest path for the
robot to visit all cities within their respective time win-
dows, if possible to do so. We give an exact algorithm
for 1D instances with dyadic time windows and s = 1
and a pseudo-polynomial time algorithm for s < 1. For
s < 1 in a general metric space, when there are only
two di↵erent time window lengths, we present an (↵,�)
dual approximation algorithm, using speed  ↵ · s and
travel distance  � · d⇤(s), where d⇤(s) is the shortest
TSP path with speed bound s, ↵,� = O(1). Then we
generalize these results to instances with arbitrary time
windows and obtain an (↵,�) dual approximation for
↵,� = O(logL), where L is the length of the longest
time window (assuming the shortest time window is 1).
We also generalize our methods to other time window
problems in the TSP family.

1 Introduction

A natural variant of the classical TSP is to include a
preferred time window for each city/job to be visited.
This constraint appears in many scenarios: delivery of
time-critical packages; data gathering and battery ser-
vicing of distributed sensors; etc. We consider the time

window traveling salesman problem (TWTSP): given a
speed bound s  1, find a shortest path (if it exists)
that visits each site i within the time window [ri, di], for
release time ri and deadline di.
Note that if s is too small, there is no feasible solution.

Let smin be the smallest speed s such that there exists
a feasible solution. For a given speed bound s � smin,
let d⇤(s) be the minimum possible travel distance. For
s � smin, an algorithm is an (↵,�) dual approximation
if the robot moves with speed  ↵s, and travels distance
 �d⇤(s).
Related Work. The problem of enforcing time win-

dows in the TSP has been studied before, e.g., by
Bansal et al. [1]): given n sites in a metric space, each
with a time window [ri, di], and a speed bound s, we
wish to find a path/tour that visits as many points

⇤
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in their time window as possible. This problem of
maximizing the number of sites might be called the
Time Window Prize Collecting TSP. Bansal et al. [1]
gave an O(log n)-approximation for instances having
release times ri = 0 and arbitrary deadlines di, and
an O(log2 n)-approximation for arbitrary time win-
dows. The TWTSP has also been studied in the op-
erations research literature, using integer programming
and branch-and-bound techniques. These algorithms
are not reviewed here, as our emphasis is on polytime
approximation algorithms.

2 Case of Infinite Speed (s = 1)

We say a set of time windows are dyadic, if the length
of each time window is a power of two, and the release
time is a nonnegative integer multiple of its length.

Theorem 1 For dyadic time windows, the 1D TWTSP

problem with infinite speed (s = 1) can be solved in

polynomial time.

Theorem 2 For s = 1 and arbitrary time windows,

there is a polytime O(log n)-approximation in a metric

space.

3 Case of Bounded Speed (s < 1)

3.1 One Dimension: TWTSP on a Line

The 1D version can be viewed as a 2D problem in space-
time. Using dynamic programming, we prove the follow-
ing result:

Theorem 3 Consider the 1D TWTSP with speed

bound s < 1, dyadic time windows with largest win-

dow length L, integer release times, and for each i  L
assume that there is at least one site with time window

[i, i + 1]. Then, in time polynomial(n, s, L) we can ei-

ther find d⇤(s) or report that there is no feasible solution
for s.

3.2 Bounded Speed in a Metric Space: A Special
Case

We begin with a special case:

1. All release times are integers;
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2. Each time window is either unit-length or [0, L], for
an integer L;

3. For each i  L, there is at least one site with time
window [i, i+ 1].

We refer to such an instance as a “simple instance”; our
more general results build on this case.

Given a bipartite graphH = (VR[VB , E), a subgraph
M is a�-matching if for any v 2 V (M)\VR, degM (v) =
1 and for any v 2 V (M) \ VB , degM (v) 6 �. Given a
tree T , and a number ⇢, we let shad(T ) = [v2V (T )D⇢(v)
and call it the ⇢-shadow (or simply shadow) of T , where
D⇢(v) is the disk centered at v with radius ⇢. Call
the sites with unit-length time windows red sites and
the other sites blue sites. Our algorithm consists of the
following steps:

1. Find an MST for all sites, and cut this tree into a
set T of subtrees T1,...,T k, all but one having size
at least C1s and at most C2s, with the exceptional
piece of size < C1s.

2. Build an unweighted bipartite graph on red sites vi
and subtrees Tj , with an edge (ri, T j) if they are at
distance  s. Denote this graph H = (VR [ T , E).

3. Find a �-matching in H.

4. For each red site, traverse the subtrees assigned to
it, and connect the red sites respecting the order of
their time windows.

Theorem 4 Under the assumptions above, this algo-

rithm is an (O(1), O(1)) dual approximation.

The proof relies on the following lemmas.

Lemma 5 Given a tree T whose max edge length is

less than s, and given any C1 � 1 and C2 � C1 + 1, we
can partition it into subtrees T 0

is, s.t.

1. At most one subtree T does not satisfy C1s  |T | 
C2s.Moreover, this can be done in linear time. Call

the exceptional piece the remainder piece;

2. The depth of overlapping is at most 2, i.e. each

node is contained in at most two subtrees.

Lemma 6 Recall that T is a family of trees, denote |T |
the number of trees it contains. Let ↵St be the Steiner

ratio. Then, |T |  ↵St
C1

|VR|.

Lemma 7 (Generalized Hall’s Marriage Theorem)
In a bipartite graph G = (VR [VB , E), if for any subset

A of VB , we have |�(A)| � 1
� |A|, then there exists a

�-matching.

Lemma 8 If M is a �-matching in H, then w(M) 
� · d⇤(s), where w(M) is the sum of edge lengths in M .

Lemma 9 Given a weighted undirected graph G =
(V,E), let T 1, ...Tm be some node-disjoint subtrees of

MST (G). Let V 0 = [iV (Ti) and G0
be the restriction

of G on V 0
. Then MST (G0) �

P
i |Ti|.

Lemma 10 Suppose s � smin, then for any set of

blocks A = {T 1, ...Tk} ⇢ T , we have |�(A)| � �|A|,
where � = C1

↵st(C2+3) .

Theorem 11 The running time of the above algorithm

is min{O(n2.5),O(n2L)}.

We remark that the dominating term in the running
time is time spent on bipartite max-matching.

3.3 Dyadic Time Windows in a Metric Space

Next we consider more general dyadic time windows.
For any set of intervals I with integer endpoints and
maximum length L, we can bucket them into logL
classes. Define the diversity parameter � as the num-
ber of nonempty buckets. For example, if I is a set of
unit-length time windows, then � = 1. Notice that � is
at most logL.

Theorem 12 For inputs with diversity parameter �,
and having at least one site with time window [i, i +
1] for each integer i  L, there is an (O(�),O(�))-
approximation for TWTSP.

4 Other Variants

In the full paper, we also show how to use our method
to give positive results for some other routing problems
with time windows. These problems include (1) multi-
robot TWTSP with some given information (For each
robot j, and each i  L, there is a site vi,j with time
window [i, i + 1] that robot j is required to visit); and
(2) special cases for TWTSPN.
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Generalized Coverage in
Homological Sensor Networks⇤
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1 Introduction

In their seminal work on homological sensor networks,
de Silva and Ghrist showed the surprising fact that it
is possible to certify the coverage of a coordinate-free
sensor network even with very minimal knowledge of
the space to be covered [5]. We give a new, simpler
proof of the de Silva-Ghrist Topological Coverage Crite-

rion (TCC) that eliminates any assumptions about the
smoothness of the boundary of the underlying space,
allowing the results to be applied to much more gen-
eral problems. The new proof factors the geomet-
ric, topological, and combinatorial aspects of this ap-
proach. This allows us to extend the TCC to support
k-coverage, in which the domain is covered by k sensors,
and weighted coverage, in which sensors have varying
radii.

2 Background

Distances and O↵sets. For a setX, let P(X) denote
the power set of X and let

�
X

k

�
denote the set of k-

element subsets of X. Given a compact point set A ⇢
Rd with weights w

a

� 0 for all a 2 A the weighted
distance from a point x to a weighted point y is defined
as the power distance

⇢
y

(x)2 := kx� yk2 + w2
y

.

Such a set is referred to as a weighted set. We use
weighted distances to model coverage by disks of varying
radii, where larger weights correspond to smaller radii.
The weighted k-nearest neighbor distance from

a point x to k points in a weighted compact set A is
defined as

d
k

(x,A)2 := inf
K2(Ak)

max
y2K

⇢
y

(x).

⇤
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Note that if w
a

= 0 for all a 2 A and k = 1 then

d1(x,A) = d(x,A) := min
y2A

kx� yk.

Such as set is said to be unweighted.
The canonical o↵sets of a set A at a scale " are

defined as

A" := {x 2 X | d(x,A)  "} .

We use the word “canonical” to distinguish these o↵sets
from theweighted (k, ")-o↵sets of a weighted compact
set A, defined to be

A"

k

:= {x 2 X | d
k

(x,A)  "} .

If A is unweighted we obtain the (k, ")-o↵sets, the
points within " of k points in A. Note that for any
weighted set A we have A"

k

✓ A". Thus, " provides an
upper bound on the radii.

Čech and Rips Complexes. The weighted Čech
complex of a finite collection of points A in Rd at scale
" is defined as

Čech
"

(A) :=

⇢
� ✓ A | 9x 2 Rd : max

p2�

⇢
p

(x)  "

�
.

The (Vietoris-)Rips complex of A at scale " is de-
fined

Rips
"

(A) :=
�
� ✓ A | {p, q} 2 Čech

"

(A) for all p, q 2 �
 
.

The standard Rips and Čech complexes are obtained
setting w

p

= 0 for all a 2 A.
An important result about the relationship of Čech

and Rips complexes follows from Jung’s Theorem [7]
relating the diameter of a point set A and the radius of
the minimum enclosing ball:

Čech
"

(A) ✓ Rips
"

(A) ✓ Čech
#d"(A), (1)

where the constant #
d

=
q

2d
d+1 for unweighted sets and

#
d

= 2 for weighted sets (see [1]).

The k-Barycentric Decomposition. Given a sim-
plicial complex S we define a flag in S to be an ordered
subset of simplices {�1, . . . ,�t

} ⇢ S such that �1 ⇢
. . . ⇢ �

t

. The barycentric decomposition of S is the
simplicial complex formed by the set of flags of S and is
defined as Bary(S) := {U ⇢ S | U is a flag of S}. The
vertices of the barycentric decomposition are the sim-
plices of S. We define the degree of a flag �1 ⇢ · · · ⇢ �

t

to be |�1|.

Definition 1 The k-barycentric decomposition of

a complex S is defined

k-Bary(S) := {U ⇢ S | U is a flag in S of degree at least k} .
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The k-barycentric decomposition of the Čech and Rips
complexes of a finite point set A at a scale " are denoted

Čech
k

"

(A) and Ripsk
"

(A) respectively. By [8], we have
the following results relating the k-barycentric decom-
position of Čech and Rips complexes to the (k, ")-o↵sets
of their vertex set A.

Theorem 1 Given a finite point set A, fixed k and

any " � 0 the k-barycentric decomposition of the

ˇ

Cech

complex

ˇ

Cech

k

"

(A) is homotopy equivalent to the (k, ")-
o↵sets A"

k

.

Theorem 2 The k-barycentric decomposition of the

Rips complex Ripsk
"

(A) is a #
d

-approximation to the

(k, ")-o↵sets A"

k

.

This result allows us to extend Equation 1 to the k-
barycentric decomposition of the Čech and Rips com-
plexes as follows:

Čech
k

"

(A) ✓ Ripsk
"

(A) ✓ Čech
k

#d"
(A), (2)

Homology and Persistent Homology. Homology
is a tool from algebraic topology that gives a computable
signature for a shape that is invariant under many kinds
of topological equivalences. It gives a way to quantify
the components, loops, and voids in a topological space.
It is a favored tool for applications because its compu-
tation can be phrased as a matrix reduction problem
with matrices representing a finite simplicial complex.

Throughout, we assume singular homology over a
field, so the nth homology group H

n

(C) of a space C
is vector space. When considering the homology groups
of all dimensions, we will write H

⇤

(C). We will make
extensive use of relative homology. That is, for a pair
of spaces (A,B) with B ✓ A, we write H

⇤

(A,B) for the
homology of A relative to B.

There are dual vector spaces to the homology groups
called the cohomology groups and are denoted with
superscripts as H⇤(C). For finite-dimensional homology
groups theAlexander duality [6] implies that for pairs
of nonempty locally-contractible spaces in Rd[{1}, the
r-dimensional homology is isomorphic to the (d � r)-
dimensional cohomology of the complement space, i.e.

H
r

(X,Y ) ⇠= Hd�r(Y ,X).

3 Geometric Assumptions

Strange examples abound in topology. One must make
some assumptions about the underlying domain to make
the TCC possible. In this section, we will introduce
and illustrate the minimal geometric properties that
we require of the bounded domain to be covered. Our
goal is to weaken the geometric assumptions on the do-
main required for the topological coverage criterion of

de Silva & Ghrist to apply it to domains without smooth
manifold boundaries. In particular, for a domain D
with boundary B satisfying the following conditions for
0  3↵  �, we want to certify that a sample P ⇢ D
covers D at scale ↵ in the sense that D \ B2↵ ⇢ P↵.

Assumptions

1. (Non-degenerate) D is compact, locally con-
tractible, full dimensional in Rd and there
exists " > 0 such that D ,! D" induces a
homotopy equivalence.

2. (Components are not too small) The map
H0(D \ B↵+� ,! D \ B2↵) is surjective.

3. (Components are not too close) The map
H0(D \ B2↵ ,! D2↵) is injective.

Assumption 1 disallows degenerate cases in which
some of the theorems listed in Section 2 cannot be ap-
plied. For example, the Alexander duality as we have
stated it requires distinct, bounded, locally contractible
spaces.

Assumptions 2 and 3 prevent components from ap-
pearing and disappearing in the inclusions D \B↵+� ,!
D \ B2↵ and D \ B2↵ ,! D2↵, respectively. These re-
strictions are in order to allow us to reliably compare
the coverage region to the sampled subset of a discon-
nected domain in terms of the 0-dimensional homology,
or connected components of related spaces. Specifi-
cally, Assumption 2 disallows domains with components
that are too small to be included in the map from
D \ B↵+� ,! D \ B2↵. Fig. 1 illustrates a domain in
which the induced map is not surjective, allowing our
algorithm to potentially report a false positive.

Assumption 3 requires that the components of D\B2↵

are spaced out well enough so that no components are
joined with inclusion into D2↵. This is required in order
to be able to reliably bound the number of connected
components of the shrunken domain by those of a com-
putable combinatorial structure. Fig. 2 illustrates do-
mains which violates Assumption 3 as components are
lost in both D \ B2↵ ,! D and D ,! D2↵.

Relationship to Geometric Assumptions in Prior Work
Previous work on the TCC by de Silva & Ghrist is re-
stricted to connected domains with a smooth bound-
ary in which a particular region around the domain
has uniform thickness. This region is parameterized for
smooth manifolds in the work by the injectivity radius,
which serves to bound the region around the boundary
in which no topological changes occur. The injectivity
radius is closely related to the reach of a compact set K
in Rd, defined as the supremum of the distance r from
K to any point x with a unique closest point y 2 K
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Figure 1: A domain that violates assumption 2 in which
H0(D\B↵+� ,! D\B2↵) is not surjective as the upper-
right component is pinched out in D \ B↵+� .

Figure 2: A domain that violates Assumption 3 in which
H0(D \ B2↵ ,! D2↵) is not injective as components are
lost in both the inclusions D\B2↵ ,! D and D ,! D2↵.

such that d(x, y) = d(x,K). For non-smooth compact
sets K containing sharp corners, for example, note that
the reach of K will be equal to zero, as for all r > 0
there must exist some x 2 Rd \ K with at least two
closest points in K a distance r from x approaching the
sharp corner of the set.

This notion of feature size approaching a non-smooth
feature is generalized in [2] as the µ-reach. Roughly
speaking, the µ-reach parameterizes the reach in order
to provide a meaningful measure of the region around
a potentially non-smooth compact subset K in which
no topological changes occur. In particular, the µ-reach
is equal to the reach for µ = 1, and converges to the
minimum distance from K to the critical points of the
distance function d(·,K) as µ approaches 0. This min-
imum distance is known as the weak feature size
of B and was introduced in [3] as a way to param-
eterize compact sets that may not be smooth mani-
folds. For our purposes it can be understood as the
minimum size of the topological features of a compact
set. Thus, for a compact subset K of Rd we have that
reach(K)  reach

µ

(K)  wfs(K).

We note that any bounded domain D such as that in
Fig. 1 with a component in D\B2↵ in which the distance
from every point in the component is at most ↵+� has
a boundary with reach at most ↵ + �. Moreover, in
the figures of 2 there exist points in D \ B2↵ and D
contained in distinct components within distance 2↵ of
each other, respectively. It follows that the minimum
distance to a critical point of B, a point which lies in
the convex hull of its nearest neighbors in B, is at most

2↵. Conversely, for any D such that the reach of B
is strictly greater than ↵ + � Assumption 2 is implied.
Assumption 3 is implied for any bounded domain such
that the weak feature size of its boundary is strictly
greater than 2↵. As reach(K)  wfs(K) we therefore
maintain our geometric assumptions for any domain D
with a boundary B such that wfs(B) > ↵+ � � 4↵.

Relationship to the de Silva & Ghrist TCC For the
sake of contrast, we will state the Topological Coverage
Criterion as states by de Silva & Ghrist in [5]. Here we
will assume points in a fixed point set P in a domain
D ⇢ Rd with boundary B have have uniform coverage
radius r

c

, fence detection radius (in which nodes can
detect the boundary) r

f

, and node-detection radii r
s

p
2r

c

, r
w

� r
s

p
10. Moreover, we will let Q = {x 2 P |

d(x,B)  r
f

} be the subset of P consisting of points
su�ciently close to the boundary B.

Theorem 3 (TCC (de Silva & Ghrist)) Let P be

a fixed set of nodes in a domain D ⇢ Rd

with bound-

ary B such that each p 2 P the restricted domain

D \ Brf+rs/
p

2
is connected and the hypersurface ⌃ =

{x 2 D | d(x,B) = r
f

} has internal injectivity radius

at least r
s

/
p
2 and external injectivity radius at least

r
s

. The sensor cover P rc
contains D \ Brf+rs/

p

2
if the

homomorphism

◆
⇤

: H
d

(Rips
rs
(P ),Rips

rs
(Q)) ! H

d

(Rips
rw
(P ),Rips

rw
(Q))

induced by the inclusion ◆ : Rips
rs
(P ) ,! Rips

rw
(P ) is

nonzero.

Figure 3: This instance illustrates the failure of Lemma
3.3 of [5] when the boundary is not smooth. A cycle
that is trivial in the thickened boundary persists. This
highlights the need to work with the relative homology
of the domain modulo the boundary rather than the
homology of the boundary alone. Such a cycle in the
boundary cannot form a relative cycle.

According to [5, Remark 4.5], the smooth manifold
hypothesis is a necessary requirement in order to ap-
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ply the TCC without degenerating constants.1 Because
their analysis involves directly comparing this thickened
region around boundary to this complex it was neces-
sary to show that the thickness of this region is such
that any topological noise in the complex is eliminated
with inclusion from scale ↵ to �. This amounts to prov-
ing that that cycles lying entirely in a thickening of the
boundary of the domain cannot persist in the TCC, as
in [5, Lemma 3.3]. Such a case is shown in Fig. 3, illus-
trating a domain without a smooth boundary in which
the thickened boundary contains a cycle that persists
across a range of scales. This is to be contrasted with
our Lemma 5, requiring Assumptions 1 and 2, in which
the persistence of this cycle does not indicate the per-
sistence of a relative cycle. For example, although the
domain in Fig. 3 clearly does not have a smooth bound-
ary it does have weak feature size greater than ↵ + �,
and therefore satisfies our geometric conditions. It is in
this sense that Assumptions 2 and 3 serve to weaken the
smoothness hypothesis in order to allow the TCC to be
applied to domains, such as those with bounded weak
feature size, which imply our minimal hypothesis.

4 The Generalized Topological Coverage Criterion

Consider a domain D ⇢ Rd, its boundary B, and con-
stants ↵ and � such that 0  3↵  � satisfying Assump-
tions 1–3. Given a weighted finite point set P ✓ D
we will give a su�cient condition to guarantee the k-
coverage of a shrunken domain D \ B2↵, where the k-
covered region corresponds to the weighted o↵sets P↵

k

as defined by d
k

. We define Q := P \ B↵, i.e. the sub-
sample of P that is within distance ↵ of the boundary.

Lemma 4 allows us to talk about the homology of
the shrunken boundary in terms of relative homology
where A := (Rd [1) \ A denotes the complement of
A in the compactification of Rd homeomorphic to the
d-sphere Sd.

Lemma 4 For all " > 0, H0(D \ B") ⇠= H0(B",D").

Proof. Consider the inclusion (D \ B", ;) ,! (B",D")
and the corresponding map H0((D\B", ;) ,! (B",D")).
For injectivity, given some non-trivial 0-chain [x] 2
H0(D \ B"), we can pick a representative point x 2
D \ B" ✓ B". Given that B is the boundary of D,
a dimension-n space, then there exists no paths from
D \ B" to B, so [x] 6= 0 2 H0(B",D"). For surjectivity,
given some [x] 2 H0(B",D"), it represents a point on a
connected component on B" \ D" = D \ B", and thus a
homology class [x] 2 H0(D \ B"). ⇤

1
[5, Remark 4.5] states that, although domains with a polyg-

onal boundary are admissible in practice, the constant rw would

blow up along with the angle of the sharpest corner of the outer-

most boundary component.

We will assume non-negative weights w
x

� 0 assigned
to each x 2 P , and that w

x

= 0 for all points x 2 D\P .
This implies that D"

k

= D", and similarly B"

k

= D",
so we will simply use the notation D" and B" through-
out. Moreover, we know that P↵

k

✓ D↵

k

= D↵ by the
monotonicity of d

k

. For any arbitrary weighted com-
pact set A ✓ D, A"

k

✓ A"

1 ✓ A" and Q ✓ B↵, for " � 0,
Q"

k

✓ Q" ✓ B↵+".
Diagram (3) relates the connected components of the

pairs, and induces the map ⇡
⇤

: im j
⇤

! im i
⇤

.

H0(B↵+� ,D↵+�)
j⇤ //

✏✏

H0(B2↵,D2↵)

✏✏
H0(Q

�

k

, P �

k

)
i⇤ // H0(Q↵

k

, P↵

k

)

(3)

Though reversed and inverted by the dualities, this map
describes the topology of the o↵sets embedded into the
domain, where the scale change eliminates noise. That
is, it captures exactly the topological information we
want. Analyzing ⇡

⇤

directly simplifies the proof and
aids in eliminating some hypotheses.

The following two lemmas prove two important prop-
erties of ⇡

⇤

. These will be used to give a computable
way to infer coverage from the rank of i

⇤

.

Lemma 5 Given Assumptions 1 and 2, the map ⇡
⇤

is

surjective.

Proof. Assumption 2 implies that j
⇤

is surjective by
Alexander Duality. We choose a basis for im i

⇤

such
that each basis element is a point in P↵

k

\Q�

k

. Consider

x 2 P↵

k

\Q�

k

such that [x] 6= 0 2 im i
⇤

. If x 2 B2↵, then

x 2 D \ B2↵ so [x] 6= 0 2 H0(B2↵,D2↵). Because j
⇤

is
surjective, H0(B2↵,D2↵) = im j

⇤

and thus ⇡
⇤

([x]) = [x]
and so [x] 2 im ⇡

⇤

.
If x 2 B2↵, then there is a point y 2 B such that kx�

yk  2↵. Because x 2 Q�

k

by hypothesis, d
k

(x,Q) > �.
We will show that if a point z is in the line segment
xy, then z 2 Q↵

k

. For any z 2 xy, we have kx � zk 
kx� yk  2↵. So,

d
k

(z,Q) � d
k

(x,Q)� kx� zk [dk is Lipschitz]

> � � 2↵ [dk(x,Q) > � and kx � zk  2↵]

� ↵ [� � 3↵]

So, we conclude that z 2 Q↵

k

, and thus xy ✓ Q↵

k

.
The definition of Q implies that B\Q↵

k

✓ P↵

k

, and so
y 2 P↵

k

. Any path � : [0, 1] ! Q↵

k

such that �(0) = x
and �(1) = y, generates a class [�] in the chain group
C1(Q↵

k

) containing �. For [�] 2 C1(Q↵

k

, P↵

k

) it follows
@([�]) = [x + y] = [x] as y 2 P↵

k

, and therefore that
there must exist z 2 xy\Q↵

k

. This is a contradiction as
we have shown that xy \Q↵

k

= ;, and thus we conclude
x cannot be in B2↵. ⇤
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The following lemma therefore allows us to confirm
coverage by comparing the ranks of im i

⇤

and im j
⇤

.

Lemma 6 Given Assumption 1, if ⇡
⇤

is injective then

D \ B2↵ ✓ P↵

k

.

Proof. The proof is essentially the same as that pre-
sented by de Silva & Ghrist [5]. We include it here in
our own notation for completeness.
We will prove this by contradiction. Assume there ex-

ists x 2 (D\B2↵)\P↵

k

,and thus [x] 6= 0 2 H0(B2↵,D2↵).
This is true because as we know that x is in the inte-
rior of D, so it is on a connected component of D \B2↵.
Consider the following sequence:

H0(B2↵,D2↵)
f⇤�! H0(B2↵,D2↵ [ {x}) g⇤�! H0(Q↵

k

, P↵

k

)

As f
⇤

([x]) = 0 2 H0(B2↵,D2↵ [ {x}), then (g
⇤

�
f
⇤

)([x]) = 0. But we have a contradiction as g
⇤

�f
⇤

= ⇡
⇤

,
and ⇡

⇤

([x]) 6= 0 by injectivity, so D \ B2↵ ✓ P↵

k

. ⇤

As Lemma 5 asserts that ⇡
⇤

is surjective under our
assumptions, Lemma 6 can therefore be used to con-
firm coverage by providing conditions in which ⇡

⇤

is in-
jective. Thus, the following theorem provides su�cient
conditions to confirm D \ B2↵ ✓ P↵

k

. Note that it will
not yet give us an algorithm (that will come in The-
orem 10), but instead gives a result about the o↵sets
directly rather than an embedding of a Rips complex as
was used in previous work.

Theorem 7 (Geometric TCC) Consider D ⇢ Rd

with boundary B satisfying Assumptions 1 and 2. Let ↵
and � be constants such that 0 < 3↵  �. Let P ⇢ D be

a finite set with Q = P \B↵

. Let i
⇤

and j
⇤

be the maps

in Diagram (3). If rk i
⇤

� rk j
⇤

then D \ B2↵ ✓ P↵

k

.

Proof. Given Assumptions 1 and 2, Lemma 5 im-
plies that ⇡

⇤

: im j
⇤

! im i
⇤

is surjective, and so
rk i

⇤

 rk j
⇤

. By hypothesis, rk i
⇤

� rk j
⇤

, so it
follows that rk i

⇤

= rk j
⇤

. Because both the images are
finite-dimensional, ⇡

⇤

is an isomorphism, and therefore
it is injective. Lemma 6 then implies D\B2↵ ✓ P↵

k

. ⇤

5 Computing the TCC

In the previous section we prove su�cient conditions
for generalized coverage in terms of the o↵sets of the
input points. However, we may not be able to compute
these o↵sets, because we do not know the positions of
the points in P . Instead, we use Rips complexes in the
algorithm.
Let Rips

�

(X) and Čech
�

(X) denote respectively

the Rips and Čech complexes of a set X at scale
�. Let Rk

�

be the pair of k-barycentric Rips com-

plexes (Ripsk
�

(P ),Ripsk
�

(Q)) and let Ck

�

be the pair

of k-barycentric Čech complexes (Čech
k

�

(P ), Čech
k

�

(Q))
as defined in Section 2. If k = 1 and P is un-
weighted we define the standard Rips and Čech com-
plex pairs R1

�

:= (Rips
�

(P ),Rips
�

(Q)) and C1
�

:=

(Čech
�

(P ), Čech
�

(Q)).
Algorithm 1 is for checking k-coverage of the shrunken

domain by a weighted sample P , i.e. that D\B2↵ ✓ P↵

k

.
The algorithm requires that the point samples each of
the connected components of D\B2↵. It first constructs
three Rips complexes based on the input parameters
(↵,�, P,Q, k): Rips

↵

(P ), Rk

↵/#d
and Rk

�

. It then checks
a condition relating the homology of the complexes, and
if it satisfied, k-coverage is guaranteed. Note that if the
algorithm’s output is false it does not necessarily mean
there is not coverage. Lemma 8, Lemma 9 and Theo-

Algorithm 1 Check if D \B2↵ ✓ P↵

k

1: procedure k-Coverage(↵,�, P,Q, k)
2: construct Rips

↵

(P )
3: let c := dim H0(Rips

↵

(P ))
4: construct Rk

↵/#d
and Rk

�

5: let r := rk H
d

(Rk

↵/#d
,! Rk

�

)
6: if c = r then return True
7: else return False

rem 10 together provide a proof of correctness of Algo-
rithm 1. Lemma 8 bounds the rank of the map between
the Rips complexes at di↵erent scales by rk i

⇤

, in order
to compare it to rank j

⇤

through Theorem 7. Lemma 9
states that if the components are separated enough, for-
mally defined in Assumption 3, then the number of con-
nected components of the Rips complex at scale ↵ of P
provides an upper bound for the number of components
of D \ B2↵.

Lemma 8 The rank of the map H
d

(Rk

↵/#d
,! Rk

�

) in-

duced by inclusion is at most rk i
⇤

.

Proof. For the case of k = 1, the Persistent Nerve
Lemma [4] says that for " � 0, H

⇤

(C1
"

) ⇠= H
⇤

(P "

1 , Q
"

1).
The Universal Coe�cient Theorem with respect to Dia-
gram (3) implies that rk(H

d

(C1
↵

,! C1
�

)) = rk i
⇤

. More-

over, the inclusion R1
↵/#d

,! R1
�

can be factored as

R1
↵/#d

,! C1
↵

,! C1
�

,! R1
�

.

It follows that

rk(H
d

(R1
↵/#d

) ! H
d

(R1
�

))  rk(H
d

(C1
↵

) ! H
d

(C1
�

)) = rk i
⇤

.

For k � 2, Theorem 2 states that
(Ripsk

"

(P ),Ripsk
"

(Q)) is a #
d

-approximation to
(P "

k

, Q"

k

). This implies that H
⇤

(Rk

"/#d
) ⇠= H

⇤

(P "

k

, Q"

k

),
so the previous argument naturally follows for these
cases as well. ⇤
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Lemma 9 Given P has at least one point on each con-

nected component of D \ B2↵
, if Assumptions 1 and 3

are satisfied then the number of connected components

of Rips
↵

(P ) is greater than or equal to the number of

connected components of D \ B2↵
.

Proof. Assume there exists p, q 2 P such that p and
q are connected in Rips

↵

(P ), but not in D \ B2↵. This
implies that kp� qk  2↵ and [p] 6= [q] in H0(D \ B2↵).
However, pq 2 D2↵ as the distance between p and q is
less than 2↵, so [p] = [q] in H0(D2↵), which implies that
H0(D \ B2↵ ,! D2↵) is not injective, a contradiction to
Assumption 3. ⇤

Theorem 10 (Algorithmic TCC) Consider a do-

main D ⇢ Rd

with boundary B and constants ↵,�,
where 0  3↵  �, satisfying Assumptions 1, 2 and 3.

Let P ⇢ D be a finite point sample, |P | � max{k,m},
where m = H0(D\B2↵), such that there is a point p 2 P
in each of the m connected components of D \ B2↵

.

If rk H
d

(Rk

↵/#d
,! Rk

�

) = dim H0(Rips
↵

(P )), then

D \ B2↵ ✓ P↵

k

.

Proof. For simplicity, define a
⇤

:= H
d

(Rk

↵/#d
,! Rk

�

)

and set c = dim H0(Rips
↵

(P )). By our hypothesis and
Lemma 8, rk i

⇤

� rk a
⇤

= c. By Lemma 9, c � m, and
Assumption 2 implies that j

⇤

is surjective by Alexander
duality, so m = rk j

⇤

. Thus rk i
⇤

� rk a
⇤

= c � m =
rk j

⇤

, namely rk i
⇤

� rk j
⇤

, so by Theorem 7 we can
conclude D \ B2↵ ✓ P↵. ⇤

From this algorithm we can see that, even if we do not
know the number of connected components of D0, as
long as we know which components have been sampled
we can provide a condition to certify coverage of the
subdomain that P has been sampled from.

6 Conclusion

The TCC gives an e↵ective algorithm for certifying cov-
erage of coordinate-free sensors in an unknown domain.
In this paper, we generalized the TCC to certify cover-
age in spaces whose boundaries may not be smooth. We
replaced the smoothness assumption with much weaker
conditions, that the domain is non-degenerate in some
sense (Assumption 1), that the components are not too
small (Assumption 2), and that the components are not
to close (Assumption 3).

Although the language of homological sensor net-
works might imply that the application is restricted to
sensors, we hope that the more general geometric condi-
tions provided in this paper will lead to applications in
data analysis. Specifically, eliminating the smoothness
assumption should make this approach amenable to real
data problems.
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Universal Guards: Guarding All Polygonalizations of a Point Set in the Plane

Sándor P. Fekete⇤ Qian Li† Joseph S. B. Mitchell† Christian Sche↵er⇤

1 Introduction

The Art Gallery Problem (AGP) seeks to find the fewest
guards to see all of a given domain; in its classic combi-
natorial variant (posed by Victor Klee), it asks for the
number of guards that always su�ce and are sometimes
necessary to guard any simple n-gon: the answer is the
well known bn/3c [1, 3].

While Klee’s question was posed about guarding
an n-vertex simple polygon, a related question about
point sets was posed at the 2014 Goodman-Pollack Fest
(NYU, November 2014): Given a set S of n points in
the plane, how many guards always su�ce to guard any
simple polygon with vertex set S? A set of guards that
guard every polygonalization of S is said to be a set of
universal guards for the point set. The question is how
many universal guards are always su�cient, and some-
times necessary, for any set of n points? We give the
first set of results on universal guarding. We focus here
on the case in which guards must be placed at a subset
(the guarded points) of the input set S and thus will be
vertex guards for any polygonalization of S.

Due to space limitations, we outline here two selected
cases of results: The UGPI (universal guard problem us-
ing interior guards), in which guards are placed only at
points of S that are not on the convex hull of S, and the
UGPG (universal guard problem on grids), in which the
input set S is a regular grid of points. We then men-
tion results for the general UGP (guards placed at any
points of S) and cases in which S has a bounded number
of convex layers. For the UGPI and UGP, it turns out
that a fraction smaller than 1 is not possible: essentially
all of the points of S require guards for universal cov-
erage of all polygonalizations of S. For the UGPG (on
grids) and for cases with bounded convex layers, frac-
tions less than 1 are possible, as we show. Details and
further results appear in the paper [2].

Preliminaries. We say that three points a, b, c 2 S form
a spike if there exists a subset S0 ✓ S with a, b, c 2 S0

and a simple polygonal chain, ⇡, having vertex set S0

such that not all of4abc is seen by the points S\{a, b, c}
when treating ⇡ as a set of opaque edges. Refer to Fig-
ure 1. A point set S is said to be in a safe configuration

with respect to spikes if no 3 points of S form a spike.

⇤
TU Braunschweig, {fekete,scheffer}@ibr.cs.tu-bs.de

†
Stony Brook University, {qian.li.1,joseph.mitchell}@

stonybrook.edu
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c

Figure 1: Examples of spikes on a, b, c; guards at red
points fail to see all of 4abc.

a

b

c

a

b

c

Figure 2: Safe conditions: Rules 1 and 2.

For three unguarded points a, b, c 2 S we say that
they satisfy the safe condition if they satisfy either one
of the following rules (refer to Figure 2):

Rule 1: There are points inside (or on the boundary
of) 4abc, and within 4abc a ray with apex in {a, b, c}
rotated inwards, starting from each incident edge to the
apex, hits a guarded interior point before hitting an
unguarded point.

Rule 2: There is no point of S inside (or on the bound-
ary of) 4abc, and, further, a ray with apex in {a, b, c}
rotated outwards, starting from each incident edge to
the apex hits a guarded point that is within the corre-
sponding “wedge” (shown in green in the figure), before
hitting an unguarded point.

A key fact (proof omitted here) is the equivalence:

Lemma 1 A point set S with guards atG ✓ S is in safe

configuration with respect to spikes if and only if any

three unguarded points of it satisfy the safe conditions.

2 The UGPI: Using Interior Guards

In the UGPI we allow guards to be placed only at points
of S that are interior to the convex hull, CH(S). Note
that placing guards at all interior points is su�cient

This is an abstract of a presentation given at CG:YRF 2016. It has been made public for the benefit of the community and should be considered a preprint rather

than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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to guard any polygonalization of S, since the CH(S)
vertices are convex vertices in any polygonalization of
S, and a simple fact is that the reflex vertices of any
simple polygon see all of the polygon. Our main result
in this section is a proof that it is sometimes necessary
to place guards at all interior points, in order to have a
universal guard set:

Theorem 2 There exist configurations of n points S,
for arbitrarily large n, for which CH(S) is a triangle,

and the only universal guard set using only interior

guards is the set of all n� 3 interior points.

Proof sketch: We utilize Lemma 1 and construct a
careful configuration of points whose general structure
is shown in Figure 3: The points a, b, c 2 S are the ver-
tices of CH(S). Six additional points (in red) are placed
just inside each edge of 4abc, so that each is first hit
by rays rotating inwards from the edges of 4abc. Then,
very carefully located points are placed (in a sequence
of “rounds”) along each of three line segments (thick
green in the figure), in such a way that all of these in-
terior points must be guarded in order to avoid a spike
(created by the unguarded point, together with two ver-
tices of4abc). (Each of the potential spikes is such that,
in this configuration S, we can argue that there exists
a polygonalization of S that includes the spike.)

a

b

c

Figure 3: The overall configuration for the proof of The-
orem 2.

3 The UGPG: Guarding Full Grids

Theorem 3 For n = ab points S on a regular a⇥b grid,⌅
n
2

⇧
guards are su�cient to guard all polygonalizations

on n points. Further,

⌅
a
2

⇧
· b guards are necessary to

guard every polygonalization on a⇥b grid points (a  b)
with size at least 4⇥ 5.

The proof of su�ciency is based on either of two pat-
terns of guard selection: (1) place guards at the odd
posititions on odd-numbered rows and at even positions
on even-numbered rows of the grid (i.e., place guards in
the grid according to white squares on a checkboard); or
(2) place guards at all positions on the even-numbered
rows. We argue that with either placement strategy, any
triangle with vertices at grid points, and no other grid
points on the boundary or interior of the triangle, must
have at leat one of its vertices guarded. This implies
that the

⌅
n
2

⇧
guards see every point in any polygonal-

ization P of S, since any such P can be triangulated,
and every triangle in any triangulation has at least one
guard at a vertex. The proof of necessity is based on an-
alyzing possible spikes in the grid, using the fact that in
a solution an unguarded interior grid point cannot have
both of its horizontal and vertical neighbors unguarded
at the same time.

4 The General UGP, Bounded Layers, k-UGP

In [2] we prove a bound for the general UGP:

Theorem 4 For any m = 2h � 8 such that h 2 N,
there is a point set P with |P | = n = m2 + 2 ⇤m � 21
that requires at least (1� 5p

n�1
)n universal guards.

The proof of this theorem is based on having the
points evenly distributed on multiple convex layers in
such a way that on each layer at most 4 points can be
unguarded. We also consider sets S on m layers:

Theorem 5 (1 � 1

16n
2m�1
2m

)n are always su�cient to

guard all polygonalizations for n points that lie on m
convex layers.

In [2] we also give results on the k-universal guarding
problem, in which the guards must perform visibility
coverage for a set of k di↵erent polygonalizations of the
input points (instead of all polygonalizations).

The complexity of deciding if a given set S has a
universal guard set of size at most m is open; it is also
open to obtain approximation algorithms for universal
guarding.
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Certified Homology Inference

Nicholas J. Cavanna⇤ Kirk Gardner† Donald R. Sheehy‡

1 Introduction

The goal of homology inference is to compute a space’s
shape from a point cloud sampled near it. Given such
a sample, one may want to know when we can reliably
infer the homology of the space in question. Naturally,
this requires making assumptions on the sample as well
as the underlying space.
Niyogi, Smale, and Weinberger showed that one can

infer the homology of a smooth manifold from finite
points chosen uniformly at random near its surface [5].
Chazal and Lieutier relaxed this to include non-smooth
bounded spaces in Rd via the so-called weak feature
size [1]. Both assume that there is a sampled point
within " of every point in the space in their sample. In
their work on sensor networks, de Silva and Ghrist give
sampling conditions for checking coverage of a shrunken
version of a space assuming one can compute the dis-
tance from points to the boundary [3].
We show how these approaches can be combined in

order to provide a computable inference of the homology
of domain from a coordinate-free point sample. We do
so on more general spaces in Rd, only assuming a lower
bound on the weak feature size of a compact, locally
contractible domain, and that we can compute the dis-
tance to the boundary and between close pairs of sample
points.

2 Background

Distance Functions. For a compact set A ⇢ Rd, and
metric d(·, ·), define the distance function from x 2 Rd

to A as d(x,A) := min
y2A

d(x, y). The "-o↵sets of
a set A are defined as A" := {x 2 X | d(x,A) 
"} = [

x2A

ball
"

(x). Recall the set di↵erence, or rel-
ative complement, of two sets A and B is defined as
A \ B := {a 2 A | a 62 B}. In this paper, the ambi-
ent space will be the one-point compactification of Rd,
Rd [ {1}, which is homeomorphic to the d-sphere, Sd,
and the metric will be the Euclidean metric, k · k.
Given a compact set A ⇢ Rd, the critical value as-

sociated to a critical point x of the distance function is
d(x,A). The weak feature size of A is defined to be
the least positive critical value of d(·, A) and is denoted
wfs(A).

⇤
University of Connecticut

†
University of Connecticut

‡
University of Connecticut

Homology. Homology is a tool from algebraic topol-
ogy that gives a characterization of the shape of a space
with regards to its k-dimensional holes. It is a topolog-
ical invariant and as such it is preserved under homeo-
morphisms. We assume singular homology over a field,
which implies that the resulting homology groups of a
space X, written H⇤(X) when considered over all di-
mensions, are vector spaces. When referencing homol-
ogy with respect to a specific dimension k, we write
H

k

(X). If there exists a map between two spaces, e.g.
f : X ! Y , then there is a map at the level of homol-
ogy, f⇤ : H⇤(X) ! H⇤(Y ). We will denote such a map
by f⇤ := H⇤(X ! Y ).

Čech and Rips Complexes. When computing ho-
mology in practice, one often needs a finite simplicial
complex to represent the space as their homology can
be calculated via matrix multiplication.

Given a finite collection of points P 2 Rd, its Čech
complex at scale " is defined as C

"

(P ) := {� ✓ P |
9x 2 Rd : max

p2�

kx� pk  "}.
Of note is that the Čech complex of a point set P

at scale " is the nerve of the collection {ball
"

(p)}
p2P

,
whose union is P ". By the nerve theorem [4] , C

"

(P ) is
homotopic to P ", and thus H⇤(C"(P )) ⇠= H⇤(P "). This
implies that by studying the homology of the "-Čech
complex, one knows the homology of the "-o↵sets.

As we simply know the distance between close points
in the sample, this is not enough to compute the Čech
complex. Instead we compute the Rips complex, as this
can be computed by checking pairs of points’ distance.
The (Vietoris-)Rips complex of P at scale " is de-
fined as R

"

(P ) := {� ✓ P | {p, q} 2 C
"

(P ) for all p, q 2
�}. The following inclusions help us in relating the
knowledge about a Čech complex to a Rips complex.

For all " > 0 and a finite point set P ✓ Rd, C
"

(P ) ✓
R

"

(P ) ✓ C
#d"(P ), where #

d

=
q

2d
d+1 .

3 Results

Throughout we assume a compact, locally contractible
domain D ⇢ Rd, with boundary B, and a finite point
sampling P ⇢ D. Given a constant � � 0, define U

�

:=
P \ B� = {p 2 P | d(p,B) > �}. These are the points
of P at least a distance of � away from the boundary.
This definition leads to the following lemma relating a

This is an abstract of a presentation given at CG:YRF 2016. It has been made public for the benefit of the community and should be considered a preprint rather
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subsampling to a shrunken domain, assuming we have
coverage.

Lemma 1 Given a domain D with boundary B and a

finite set P ⇢ D with ↵ > 0 such that D \ B2↵ ✓ P↵

,

for all �,� such that �,� � ↵, we have the following.

U�

�+�

✓ D \ B�

and D \ B�+� ✓ U�

�

.

The following lemma relates the homology of the in-
clusion between two sub-samplings of P to the homology
of the domain D.

Lemma 2 Given a domain D with boundary B and a

finite set P ⇢ D with ↵ > 0 such that D \ B2↵ ✓ P↵

,

let �, �, ", � be constants such that � � " � � � ↵
and � � " + � + �. If wfs(B) > � + �, then for all

� 2 (0,wfs(D)),

rk(H⇤(U
�

�

,! U"

�

)) = dim(H⇤(D�)).

From this lemma we can prove our main theorem by
switching to the Čech and Rips complexes. We assume
that we know the distance between all p, q 2 P such
that d(p, q) < #

d

↵, where ↵ corresponds to the scale
at which we have coverage. The constants used are a
result of Lemma 2 and those required to achieve the
Rips-Čech inclusions.

The theorem tells that we can compute the homology
of a small o↵set of the domain by computing the Rips
complexes at the two scales, and computing the image of
the induced map between their homology groups. Fur-
thermore, if D is homotopic to D�, the image tells the
homology of the domain itself.

Theorem 3 Given D ⇢ Rd

, a compact, locally con-

tractible domain with boundary B such that wfs(B) >
(2#2

d

+ 4#
d

+ 2)↵, and finite point set P ⇢ D such that

D\B2↵ ✓ P↵

, the following holds for all � 2 (0,wfs(D)).

im(H⇤(R↵(U(2#2
d+4#d+1)↵) ,! R#d↵(U(2#2

d+#d)↵
))) ⇠= H⇤(D�).

Proof. Let 0 < ↵  �  � and �1 � �2 � �3 � �4 � 0.
This leads to the following inclusions of sub-samplings.

U↵

�1
U�

�2
U�

�3
U�

�4

If � � #
d

↵ and � � #
d

� � #2
d

↵, then we have the
following diagram with Čech and Rips complexes, with
the diagonal maps due to the Rips-Čech interleaving.

C↵(U�1) C�(U�2) C�(U�3) C�(U�4)

R↵(U�1) R�(U�3)

By applying the homology functor to the previous two
diagrams, we get a commutative diagram of maps at
the level of homology and vertical isomorphisms due to
the Persistent Nerve Lemma [2].

H⇤(U↵
�1
) H⇤(U

�
�2
) H⇤(U

�
�3
) H⇤(U

�
�4
)

H⇤(C↵(U�1 )) H⇤(C�(U�2 )) H⇤(C�(U�3 )) H⇤(C�(U�4 ))

H⇤(R↵(U�1 )) H⇤(R�(U�3 ))

⇠= ⇠= ⇠= ⇠=

If �1, �4,↵, � and �2, �3,� are chosen such that they
satisfy the assumptions of Lemma 2, then we have the
following isomorphisms, as each vector space in question
is finite-dimensional

im(H⇤(U
↵
�1 ,! U�

�4
)) ⇠= im(H⇤(U

�
�2

,! U�
�3
)) ⇠= H⇤(D�).

This also gives us the following isomorphisms at the
level of the Čech complexes.

im(H⇤(C↵(U�1) ,! C�(U�4)) ⇠= im(H⇤(C�(U�2) ,! C�(U�3)) ⇠= H⇤(D�).

The conditions for the Rips-Čech interleaving and
Lemma 2 are satisfied by making the following substi-
tutions. � = #

d

↵, � = #2
d

↵, �1 = (2#2
d

+ 4#
d

+ 1)↵,
�2 = (2#2

d

+ 3#
d

)↵, �3 = (2#2
d

+ #
d

)↵, and �4 = #2
d

↵.
Applying Lemma 3.2 from Chazal and Oudut [2]

to the following homological sequence using the above
Čech isomorphisms completes the proof.

H⇤(C↵(U�1)) H⇤(R↵

(U
�1)) H⇤(C�(U�2))

H⇤(C�(U�3)) H⇤(R�

(U
�3)) H⇤(C�(U�4))

⇤
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Homology Localization by Hierarchical Blowups

Ahmed Abdelkader ⇤

Abstract

Topological descriptors such as the generators of homol-
ogy groups are very useful in the analysis of complex
data sets. It is often desired to find the smallest such
generators to help localize the interesting features. One
interpretation of localization utilizes a covering of the
underlying space and computes generators contained
within these covers. A similar construction was later
used to compute persistence homology for smaller sub-
sets in parallel before gluing the results. In this pre-
sentation, we describe a more e�cient version of this
construction and discuss how it can be used to find gen-
erators within a large class of subspaces.

1 Introduction

Persistent Homology is a crucial device in computa-
tional topology and finds wide application in data anal-
ysis and as a core component of a variety of algorithms.
Although the formalism of homology provides e�cient
means to detect the existence of topological features,
it cannot directly locate them within the space. This
is often required to reason about the embedding of the
data set in the measurement space and to allow further
processing, e.g., cleaning up noises introduced in data
collection or detecting holes in sensor networks.
One approach to locating topological features is to

find the smallest generator for a given homology group
[3]. Another approach is localized homology [6], which
utilizes a covering of the space and computes homology
bases compatible with the bases of the local pieces de-
fined by the cover. However, choosing an appropriate
cover was left to the domain expert.
The idea of computing homology through a cover was

later reused to devise a parallel algorithm based on a
hierarchical decomposition of the domain [4]. The al-
gorithm performs reduction on local pieces in parallel
before gluing the results, which is inherently expensive.
Potentially better ways to go about gluing are provided
by spectral sequences [2, 5].
In this presentation, we take a di↵erent look at ho-

mology localization utilizing the model of computation
developed for the parallel setting. Using a hierarchi-
cal space decomposition, we aim to quickly report the
topological descriptors within nearly arbitrary covers by

⇤
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gluing partial precomputed results. Motivated by recent
developments in approximate range queries [1] we antic-
ipate similar notions in topological data analysis.

We start by revisiting the construction used in [4] to
enable finer decompositions of the domain as required
for range queries. Then, we discuss the anticipated no-
tion of topological range queries and their applications.

2 Preliminaries

A topological space X may be represented by a sim-

plicial complex K. A filtration is a nested sequence
of simplicial complexes K0 ✓ K1 ✓ · · · ✓ K

n

= K.
Given a set of subcomplexes as a cover C = {Ki}

i2I

,
with K = [ C, the Mayer-Vietoris Blowup Complex

KC ✓ K ⇥ I is defined as:

KC = [
J✓I

[
�2K

J � ⇥ J, where KJ = \
j2J

Kj . (1)

Intuitively, the blowup complex creates one copy of
each simplex � 2 K for each of the covers containing
it. This allows each cover to be processed indepen-
dently. The blowup complex also includes additional
copies of simplices where each subset of covers overlap.
This marks the locations where these covers should be
glued together to recover the original space.

Formally, the projection ⇡ : KC ! K takes an ele-
ment of the blowup to its first factor and induces a map
on homology ⇡⇤ : H(KC) ! H(K). As ⇡ is a homotopy
equivalence [6], ⇡⇤ is an isomorphism. Then, by the Per-
sistence Equivalence Theorem, the persistent homology
of K can be computed from KC [4].

3 The Hierarchical Blowup Complex

We start by formalizing the notion of the blowup com-
plex for a hierarchical cover as introduced in [4].

Definition 1 A Hierarchical Cover of height h is a sys-
tem of covers H = {C

i

}
i2[h], with H = [ C

i

8i, such
that 8 ci

↵

2 C
i

, there is a unique j-parent, cj
pj(↵)

2 C
j

,

8j 2 [i], satisfying ci
↵

✓ cj
pj(↵)

, where p
i

(ci
↵

) = ci
↵

.

Consider a simplex � 2 K lying in the intersection
of two subcovers at the lowest level, i.e., � 2 ch

x

\ ch
y

for x 6= y. We track � through the hierarchy until it
possibly falls into a single subcover at a higher level.
Note that � 2 ci+1

↵

=) � 2 ci
pi(↵)

.
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Define the set of all levels where � falls into a pairwise
intersection as � = {j 2 [h] | p

j

(x) 6= p
j

(y)}. It follows
that � is contained in the intersection of h + |�| cov-
ers. Letting F

h

= [
i2[h]Ci, it follows from the product

formula of the blowup complex that KFh will generate
2h+|�| � 1 copies of �. Although the cover sets form
a hierarchy, they are distinct sets and KFh as defined
in [4] does not seem to exploit their nesting structure.
This makes it infeasible to work with deeper hierarchies
where h grows as a function of |K| as |KFh | = O(2h)|K|.

To remedy this, we propose a recursive construction.
Given a hierarchical cover H, we lift each level of the
hierarchy to a decomposition of the blowup complex at
the above level. We denote the lifted cover C

i

as Ĉ
i

.

Definition 2 Given a hierarchical cover H = {C
i

}
i2[h],

the Hierarchical Blowup Complex {KHi}
i2[h] is defined

recursively as KH1 = KC1 and

KHi+1 = KHi
Ĉi+1

. (2)

Definition 3 A lifted cover Ĉ
i

= {ĉi+1
↵

| ci+1
↵

2 C
i

}
where ĉ1

↵

= c1
↵

and

ĉi+1
↵

= {(�, J1, . . . , Ji) 2 KHi | � 2 ci+1
↵

^ p
i

(↵) 2 J
i

}.

Now, for � 2 ch
x

\ ch
y

and i = min�, KHi generates

{(�̂
i�1, pi(x)), (�̂i�1, pi(y)), (�̂i�1, {pi(x), pi(y)})},

where �̂
i�1 is the lifted copy of � in the common parent

ĉi�1
pi�1(x)

. Further decomposing at level j > i 2 �, lifted

simplices with only p
j�1(x) or pj�1(y) get one new copy

while mixed simplices again get three. Letting s(j) be
the number of copies of � at level j, we get s(i) = 3
and s(j) = s(j � 1) + 2 for j > i. Summing over all
levels, KHh will only create h + O(|�|2) copies of �. If
H only has pairwise intersections at any level, |KHh | =
O(h2)|K|. For typical decompositions h = O(log |K|)
and we get only a polylogarithmic expansion.

Finally, we define the projections ⇡1 : KH1 ! K and
⇡
i

: KHi+1 ! KHi . Again, these maps are homotopy
equivalences [6] and it follows that the induced maps on
the homology of the hierarchical blowup complex are
isomorphisms. We get the following:

Theorem 1 A filtration K1 ✓ · · · ✓ K
i

✓ · · · ✓ K
induces filtrations of all levels of a hierarchical blowup

complex K
Hj

1 ✓ · · · ✓ K
Hj

i

✓ · · · ✓ KHj . Passing to
homology, we get a sequence of homology groups con-
nected by isomorphisms at each level. By the Persis-
tence Equivalence Theorem, the persistence pairs in all
levels are the same.

H(K1) . . . H(K
i

) . . . H(K
n

)

H(KH1
1 ) . . . H(KH1

i

) . . . H(KH1
n

)

H(KH2
1 ) . . . H(KH2

i

) . . . H(KH2
n

)

⇡

⇤
1,1 ⇡

⇤
1,i ⇡

⇤
1,n

⇡

⇤
2,1 ⇡

⇤
2,i ⇡

⇤
2,n

In this example, for a filtration with a 2-level blowup
complex, the diagram commutes. Specifically, the per-
sistence pairs of C

j

encoded into KHj may be computed
by gluing the results for subcovers at any level.

4 Topological Range Queries

We envision queries of the form (Qr,↵, ✏), where Qr is
a parameterized range and ↵ is a filtration parameter.
For example, given a set of points P ⇢ Rd the query
can be defined over an implicit Vietoris-Rips Complex
R↵(P \ Qr), with approximations of both Qr and R↵

within ✏. The query can then ask for the Betti numbers
at a given (r,↵) or possibly the persistence barcodes for
a range of parameter settings, e.g., [r0, r1] or [↵0,↵1].

In Rd, ranges are often simple geometric primitives,
e.g., hyperrectangles and hyperspheres. To support a
larger class of embeddings, it would be interesting to
define corresponding notions of ranges in more general
metric spaces, for which a variety of algorithmic results
in the Euclidean setting were adapted. Another direc-
tion is to consider ranges defined directly on the com-
plex, e.g., geodesic balls, utilizing tools from graph the-
ory like recursive separators.
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Improved Bounds on the Growth Constant of Polyiamonds

Gill Barequet⇤ Mira Shalah⇤

Abstract

In this paper we provide improved lower and upper
bounds on the asymptotic growth constant of polyia-
monds, proving that it is between 2.8424 and 3.6050.

1 Introduction

Figure 1: 14 tetriamonds

A polyomino of size n is an edge-connected set of n
cells on the square lattice Z2. Similarly, a polyiamond of
size n is an edge-connected set of n cells on the triangu-
lar lattice. Fixed polyiamonds are considered distinct if
they have di↵erent shapes or orientations. In this paper
we consider only fixed polyiamonds, and so we refer to
them simply as “polyiamonds.” Figure 1 shows all the
polyiamonds of size 4.
In general, a connected set of cells on a lattice is called

a lattice animal. The fundamental combinatorial prob-
lem concerning lattice animals is “How many animals
with n cells are there?” and is one of the long-standing
open problems in combinatorial geometry.
The symbol A(n) usually denotes the number of poly-

ominoes of size n. As no analytic formula for the num-
ber of animals is yet known for any nontrivial lattice, a
great portion of the research has so far focused on in-
vestigating the growth constant of animals, and a few
asymptotic results are known. Klarner [2] showed that
the limit � := limn!1

n
p

A(n) exists. The convergence
of limn!1 A(n + 1)/A(n) to � was proven only three
decades later by Madras [4]. Similarly, T (n) usually de-
notes the number of polyiamonds of size n. Elements of
the sequence T (n) were computed up to n = 75 [1], and
the limits limn!1

n
p
T (n) and limn!1 T (n + 1)/T (n)

exist and are equal. Let, then, �T = limn!1
n
p
T (n) =

limn!1 T (n + 1)/T (n) denote the growth constant of
polyiamonds.
Klarner [2] showed that �T � 2.13, by taking the

square root of 4.54, a lower bound he computed for

⇤Dept. of Computer Science, The Technion, Haifa 32000, Is-
rael. E-mail: {barequet,mshalah}@cs.technion.ac.il

(b) Left arrow

(a) A polyiamond (c) Right arrow

Figure 2: Polyiamonds on the triangular lattice

the growth constant of animals on the rhomboidal
lattice. Rands and Welsh [5] showed that �T �
(T (n)/(2(1 + �T )))1/n for any n 2 N. Using the up-
per bound �T  4 (see below), and knowing at that
time T (n) for 1  n  20 only, they showed that
�T � (T (20)/10)1/20 ⇡ 2.3011. Nowadays, know-
ing T (n) up to n = 75, we can obtain, using the same
method, that �T � (T (75)/10)1/75 ⇡ 2.7714. Moreover,
using the upper bound we obtain in Section 3, we get
that �T � (T (75)/(2(1 + 3.6050)))1/75 ⇡ 2.7744. How-
ever, we take a di↵erent approach and improve on this.

Using a simple argument, Lunnon [3] proved that

�T  limn!1
�2(n�1)

n�1

�1/n
= 4. As can be seen, there is

a large gap between the lower and upper bounds on �T .
In this paper we improve both bounds, showing that
2.8424  �T  3.6050.

2 Lower Bound

A concatenation of two polyiamonds P1, P2 is the trans-
lation of P1 relative to P2, so that P1, P2 do not overlap
but their union is a valid (connected) polyiamond, and
all the translated versions of the cells of P1 are smaller
than the cells of P2 under a proper definition of a lexi-
cographic order on the cells of the lattice.

Theorem 1 �T � 2.8424.

Proof. We orient the triangular lattice as is shown in
Figure 2(a), and define a lexicographic order on the
cells of the lattice as follows: A cell c1 is smaller than
cell c2 6=c1 if the lattice column of c1 is to the left of
the column of c2, or if c1, c2 are in the same column
and c1 is below c2. Denote triangles which look like a
“left arrow” (Figure 2(b)) as triangles of Type 1, and
triangles which look like a “right arrow” (Figure 2(c)) as

This is an abstract of a presentation given at CG:YRF 2016. It has been made public for the benefit of the community and should be considered a preprint rather
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Figure 3: Concatenations of Type 1 and Type 2 trian-
gles

triangles of Type 2. Let T1(n) be the number of polyi-
amonds of size n whose largest triangle is of Type 1,
and let T2(n) be the number of polyiamonds of size n

whose largest triangle is of Type 2. Obviously, we have
T (n) = T1(n) + T2(n). By rotational symmetry, the
number of polyiamonds of size n, whose smallest trian-
gle is of Type 2, is also T1(n), and the number of polyi-
amonds, whose smallest triangle is of Type 1, is T2(n).

We now proceed with a standard concatenation argu-
ment, tailored to the specific case of the triangular lat-
tice. Interestingly, not all pairs of polyiamonds of size n
can be concatenated. In addition, there exist many
polyiamonds of size 2n which cannot be represented as
the concatenation of two polyiamonds of size n. Polyia-
monds, whose largest triangle is of Type 1, can be con-
catenated only to polyiamonds whose smallest triangle
is of Type 2, and this can be done in two di↵erent ways:
horizontal and vertical (see Figure 3), yielding 2(T1(n))2

concatenations. Polyiamonds whose largest triangle is
of Type 2, can be concatenated, in a single way, only to
polyiamonds whose smallest triangle is of Type 1, yield-
ing (T2(n))2 concatenations. Thus, as argued above,

2(T1(n))
2 + (T2(n))

2  T (2n). (1)

Let x = x(n) be the fraction of T1(n) out of
T (n), i.e., T1(n) = xT (n) and T2(n) = (1 � x)T (n).
Eq. (1) can then be rewritten as T (2n) � 2(xT (n))2 +
((1 � x)T (n))2 = (3x2 � 2x + 1)T 2(n). The func-
tion f(x) = 3x2 � 2x + 1 assumes its minimum at
x = 1/3 and f(1/3) = 2/3. Hence, 2

3T
2(n) 

T (2n). By manipulating this relation, we obtain�
2
3T (n)

�1/n 
�
2
3T (2n)

�1/(2n)
. This implies that the se-

quence
�
2
3T (k)

�1/k
,
�
2
3T (2k)

�1/(2k)
,
�
2
3T (4k)

�1/(4k)
, . . .

is monotone increasing for any value of k, and, as a

subsequence of
⇣�

2
3T (n)

�1/n⌘
, it converges to �T too.

Therefore, any term of the form
�
2
3T (n)

�1/n
is a lower

bound on �T . In particular, �T � ( 23T (75))
1/75 ⇡

2.8424. ⇤

3 Upper Bound

3.1 Number of Compositions

Definition 1 A polyiamond P can be decomposed into

two polyiamonds P1, P2 if the cell set of P can be split

into two complementing non-empty subsets, such that

each subset is a valid (connected) polyiamond. We also

say that the polyiamonds P1, P2 can be composed so as

to yield the polyiamond P .

Theorem 2 (Composition) Let P1, P2 be two polyia-

monds of sizes n1 and n2, respectively. Then, P1 and

P2 can be composed and yield at most (n1+2)(n2+2)/2
di↵erent polyiamonds.

3.2 Balanced Decompositions

Definition 2 A decomposition of a polyiamond of

size n into two polyiamonds P1, P2 is k-balanced if

k  |Pi|  n� k (for i = 1, 2).

Theorem 3 Every polyiamond of size n has at least

one d(n� 1)/3e-balanced decomposition.

3.3 The Bound

Theorem 4 �T  3.6050.

Proof. Theorems 2 and 3 imply that

T (n) 
bn/2cX

k=dn�1
3 e

(1�
�k,n/2

2
)
(k + 2)(n� k + 2)

2
T (k)T (n� k).

(The factor (1��k,n/2/2) compensates for double count-
ing which occurs when P1, P2 are of the same size.) Now
define the sequence T

0(n) as follows.

T

0(n) =
8
><

>:

T (n) 1n75;
bn/2cX

k=
l
n�1
3

m
(1� �k,n/2

2 )
(k+2)(n�k+2)

2 T 0(k)T 0(n� k) n>75.

Since T

0(n) � T (n) for any value of n 2 N, the growth
constant of T 0(n), if it exists, is an upper bound on �T .
Numerical calculations show that T 0(n) has an asymp-
totic growth constant of about 3.6050. ⇤
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New results on gap ratio and correlation with other uniformity measures
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1 Introduction

The gap ratio was introduced as a measure of spatial
uniformity by Teramoto et al. [15], motivated by combi-
natorial approaches and applications in digital halfton-
ing [1, 3, 4, 12]. They defined the problem of maintain-
ing low gap ratio in an online setting. We generalised
the problem by extending the definition of gap ratio to
general spaces and removing its online nature in [5]. We
recall that definition below.

Definition 1 Let (M, �) be a metric space and P be

a set of k points from M. Define the minimum gap

as rP := min
p,q2P,p 6=q

�(p,q)
2 . The maximum gap brings into

play the interrelation between the metric space M and

P (⇢ M), and is defined as RP := sup
q2M

� (q, P ) where

�(q, P ) := min
p2P

� (q, p). The gap ratio for the point set

P is defined as GRP := RP
rP

.

The space M, as in Definition 1 can be either contin-
uous or discrete. The measure itself makes sense over
unbounded spaces as well, if, we remove the finiteness
of P from the definition.
In [5] we use the generalized definition of gap ratio

to pose combinatorial optimization questions where M,
for example, can be a set S of N points, and we would
like to choose a subset P ⇢ S of k points from S, such
that the gap ratio is minimized. The formal statement
of the problem is as follows.

Definition 2 (The gap ratio problem) Given a

metric space (M, �), an integer k (k < |M|, if M is

finite) and a parameter g, find a set P ⇢ M such that

|P | = k and GRP 6 g.

We showed lower bounds, NP-hardness and approxima-
tion results for various spaces (discrete and continuous)
in [5].
In a geometric sense, the maximum gap is analogous

to the minimum radius required to cover M with equal
sized balls (i.e., covering balls) around each point of
P , and the minimum gap is the maximum radius of
equal sized balls around each point of P having pair-
wise disjoint interiors (i.e., packing balls). This makes
the problem particularly di�cult in continuous spaces.

⇤
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The problems on optimal packing and optimal covering
are classical problems and not much progress has been
made. For example, proven optimal packings of k disks
in a square are known for only upto k = 30 [14].

Previous works. Gap ratio as a uniformity measure
has been studied by researchers, both in computer sci-
ence [2, 5, 15, 16] and mathematics [6, 7, 8, 11, 13].
Statisticians also look at uniformity measure. Ong et
al. [10] review seven statistical measures of uniformity
dividing them into three classes viz., (i) point-to-point
measures, characterized by their focus on pair wise
distances, (ii) volumetric measures which require the
Voronoi diagram to be computed and (iii) discrepancy
which seek to distribute points proportionally in every
fraction of the metric space. Gap ratio due to its use
of covering and packing radius is a volumetric measure.
In this paper our metric space is the unit square. Our
results are given in the next section.

2 Results

Lower bounds and a construction. We explore a lower
bound for gap ratio in the unit square.

Theorem 1 Let the point set P be the vertex set of a

uniform constrained Delaunay triangulation of the unit

square with |P | points such that the maximum angle is

at least

⇡
2 . Then GRP >

p
2.

We can construct point sets of certain sizes which
achieve the lower bound using the farthest point algo-
rithm [5] shown in Algorithm 1. This gives a gap ratio
either 2 or

p
2 in the unit square. The point sets achiev-

ing the lower bound are characterized by the following
theorem.

Theorem 2 If the set P of k > 4 points is sampled

from the unit square using Algorithm 1, then the gap

ratio is

p
2 if and only if k = Gj where,

Gj =

(
4i�1 + 2i + 1 j = 2i� 1

2 · 4i�1 + 2i + 1 j = 2i

for i 2 N.

Figure 1 gives examples of some cases where the op-
timal gap ratio is achieved.
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Algorithm 1 Pseudocode of Farthest-point-
insertion(M, k)

1: Input: metric space (M, �) and k;
2: Initialize: find q1, q2 2 M with �(q1, q2) =

diam(M) and S2 = {q1, q2};
3: for i = 2 to k � 1 do
4: qi+1  argmaxp2M �(p, Si);
5: Si+1  Si [ {qi+1};
6: end for
7: Output: Sk and GRSk =

RSk
rSk

;

(a) (b) (c) (d)

Figure 1: Some cases when gap ratio is
p
2 (a) k = 40

(b) k = 16 (c) k = 9 (d) k = 13

Correlation with other measures. To establish corre-
lations with other uniformity measures we do extensive
experiments by sampling points using the Poisson disk
sampling technique, and also obtain centroidal Voronoi
tessellations and compute the Spearman’s Rank corre-
lation coe�cient of gap ratio with discrepancy [9] and
some other measures reviewed by Ong et al. [10]. These
experiments establish that gap ratio is highly correlated
with other measures of uniformity. The correlation ob-
tained for gap ratio with other measures is over 0.95
when the measures are computed 1000 times with sam-
ples taken using Poisson disk sampling or over separate
iterations of Lloyd’s algorithm to obtain a centroidal
Voronoi tessellation. The correlation is extremely bad
when the same is done using random samples.

We expect a good correlation between gap ratio and
discrepancy when both have low values and thus the
point set is reasonably uniform. The following theorem
captures that.

Theorem 3 For k points in the interval [0, 1] with dis-

crepancy Dk < 2
k , GR 6 6

2�kDk
� 2.
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All-Pairs Shortest Paths in Unit Disk Graphs in Slightly Subquadratic Time

Timothy M. Chan⇤ Dimitrios Skrepetos⇤

Abstract

We study the all-pairs shortest paths problem in (un-
weighted) unit disk graphs. The previous best solu-
tion for this problem required O(n2 log n) time, by run-
ning the O(n log n)-time single-source shortest path al-
gorithm of Cabello and Jejčič (2015) from every source
vertex, where n is the number of vertices. We not only
manage to eliminate the logarithmic factor, but also ob-
tain the first (slightly) subquadratic algorithm for the

problem, running in O(n2

q
log logn
logn ) time. Our algo-

rithm computes an implicit representation of all the
shortest paths, and, in the same amount of time, can
also compute the diameter of the graph.

1 Introduction

The all-pairs shortest paths (APSP) problem is one of
the most well known problems in the field of algorithms:
given a graph G = (V,E) with n vertices, where each
edge has a real weight, we are asked to compute the
shortest paths between all pairs of vertices. The classi-
cal algorithm of Floyd and Warshall solves the problem
in O(n3) time. The current fastest algorithm achieves

superpolylogarithmic speedup, requiring n3

2

⌦(

p
log n)

time
[11, 3]. For the case of unweighted undirected graphs,
the problem can be solved in matrix multiplication time
[10, 5].
One very important class of graphs arising from com-

putational geometry is unit disk graphs. A unit disk
graph is the intersection graph of a set of unit disks,
which is defined by creating a vertex for each unit disk
and an edge between any two unit disks that intersect
each other. Equivalently, given a set S of n points in
the plane (the disk centers, after rescaling by a half),
the unit disk graph is defined by setting V = S and cre-
ating an edge between any two points of S whose Eu-
clidean distance is at most 1. The edges are unweighted.
The unit disk graph with n vertices may contain ⇥(n2)
edges, as every unit disk may intersect with every other
unit disk. Since we aim for a subquadratic solution to
the all-pairs shortest path problem, we do not construct
the set of the edges explicitly in our algorithms.
Unit disk graphs are among the most well-studied

families of graphs in geometry, with motivation from

⇤
Cheriton School of Computer Science, University of Waterloo

({tmchan,dskrepetos}@uwaterloo.ca)

communication networks. Unit disk graphs are related
to planar graphs: by the circle packing theorem any pla-
nar graph can be represented as a coin disk graph, al-
though the disks may have di↵erent radii; on the other
hand, planar graphs do not have large cliques unlike
unit disk graphs. Frederickson [4] gave an O(n2)-time
algorithm for solving the APSP problem in weighted
planar graphs. Chan [2] improved the bound for un-
weighted directed planar graphs with an O(n2

log logn
logn )-

time algorithm (and also considered general unweighted
undirected sparse graphs). Wul↵-Nielsen [12] indepen-
dently developed another O(n2

log logn
logn )-time algorithm

for computing the diameter of unweighted undirected
planar graphs (and also announced similar results for
the weighted case).

2 Our Contributions

In this paper, we provide an algorithm for the
APSP problem in unit disk graphs that requires

O(n2

q
log logn
logn ) time. The previously fastest solution

was to run from each vertex the single-source shortest
path algorithm of Cabello and Jejčič [1], which required
O(n2 log n) total time. (See [9, 6] for other previous re-
sults on shortest paths in unit disk graphs.) Therefore,
we not only shave o↵ the extra logarithmic factor of the
previous result, but also provide the first (slightly) sub-
quadratic solution to the problem. Our algorithm com-
putes an implicit representation of the shortest paths:
we encode the O(n2) shortest path distances and pre-
decessors using bit-packing techniques, so that we are
still able to retrieve the shortest path distance of a pair
of vertices in O(1) time and the shortest path ⇡ itself
in time linear in the number of vertices of ⇡. In the
same amount of time, we can also compute the diame-
ter of the graph. Our algorithm operates in the RAM
model of computation assuming (log n)-bit words, which
is standard in most algorithm analysis.

In recent years, obtaining polylogarithmic speedup
for standard algorithmic problems have received con-
siderable renewed attention. Such problems include
3SUM, Fréchet distance, combinatorial Boolean matrix
multiplication, k-cliques, Klee’s measure problem, CFL
reachability, and many more. Our result can be seen as
another contribution along this line of research.
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3 Our Techniques

The polylogarithmic improvement that we obtain for
APSP in unit disk graphs goes beyond standard word
RAM tricks. First, we present a new algorithm for the
single-source shortest path problem for unit disk graphs,
running in linear time after presorting the x- and y-
coordinates of the input points. This improves over
Cabello and Jejčič’s single-source algorithm [1]. Their
algorithm started with the Delaunay triangulation and
performed repeated nearest neighbor queries, which in-
herently required ⌦(n log n) time even excluding pre-
processing cost. Our new algorithm is instead based
on a simple grid approach and exploits a linear-time
Graham-scan-like procedure for computing upper en-
velopes of presorted unit disks. (According to [1], Efrat
has also observed an alternative, grid-based O(n log n)-
time algorithm, but his suggested solution seemed a bit
more complicated and used a semi-dynamic data struc-
ture of Efrat et al. [8], which also inherently required
⌦(n log n) time even after presorting.)

Second, we extend the single-source algorithm to the
case of multiple (k = o(log n)) sources that lie in a clus-
ter, i.e., in a common grid cell. In this case, we have to
construct not just one but k upper envelopes, one for
each source. This leads to a new kind of data structure
problem: preprocess a set of unit disks (a “universe”)
so that given any subset of the universe, we can com-
pute the upper envelope of the subset in slightly sub-

linear time. Our ideas can similarly be applied to the
following (even more natural) problem of independent
interest: preprocess a point set (a universe) in 2D so
that given any subset of the universe, we can compute
its convex hull, again in slightly sublinear time. Note
that the input subset and the output can be encoded
with linear number of bits, and thus slightly sublinear
number of words. Solving problems for “preprocessed
universes” is a relatively recent research direction; our
result with slightly sublinear time provides an unusual
addition to this body of work.

Finally, to obtain our subquadratic-time APSP algo-
rithm, we draw inspiration from previous algorithms for
planar graphs [2, 12], which use planar separators to de-
compose into regions of polylogarithmic size, and table
lookup techniques to handle each region. However, this
approach does not directly apply to unit disk graphs,
because there could be large cliques and no small sepa-
rators. On the other hand, when there are many large
cliques, intuitively we should be able to exploit the
multi-source algorithm developed earlier to handle such
clusters more e�ciently. The challenge lies in how to
carefully combine these two approaches. For unit disk
graphs, we end up avoiding planar separators and in-
stead adopting a simpler shifted grid strategy [7]. This
strategy is standard for geometric approximation algo-
rithms, but we use the technique in a new and interest-

ing way to design an exact algorithm (with an intricate
balancing of parameters).
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On Minimum Area Homotopies

Brittany Terese Fasy, Selcuk Karakoc, Carola Wenk

1 Introduction

The minimum homotopy area between two simple
curves has been defined in [1], where a polynomial-time
dynamic programming algorithm has been given. This
algorithm, however, relies crucially on the fact that both
input curves are simple. We generalize minimum homo-
topy area to arbitrary (normal) curves and provide the
first algorithm to compute it. We show that minimum-
area homotopies can be represented as contractions of
self-overlapping subcurves of the input curve. Even
though the runtime of our algorithm is currently ex-
ponential, we believe that our structural results lay the
groundwork for a polynomial-time algorithm.

2 Normal Curves and Homotopies

A closed curve C is a continuous map C : [0, 1] ! R2

such that C(0) = C(1). In this paper, we will use [C]
to denote the image of a map C. We assume that C(0)
is on the boundary of the outer face. A point p 2 [C]
is ordinary if the preimage C�1(p) is a single point.
A point p 2 [C] is called a simple crossing point if
there exist exactly two points t1, t2 2 [0, 1] such that
p = C(t1) = C(t2) and if C 0(t1) and C 0(t2) are linearly
independent. We assume C�1(C(0)) = {0, 1}, i.e., C(0)
is not a crossing point. A closed curve C is called nor-

mal if there exist only a finite number of simple crossing
points and all points in [C], other than C(0) and simple
crossing points, are ordinary.
Whitney has shown that any closed curve can be

made normal by arbitrary small deformation [5]. Hence
we only consider normal curves from now on. We call a
curve C almost normal if it has a finite number of sim-
ple crossing points, type II and III singularities, and
all other points are ordinary. C has a type II sin-
gularity at p 2 [C] if there exist t1, t2 2 [0, 1] such
that C�1(p) = {t1, t2} and if C 0(t1) and C 0(t2) exist
but are linearly dependent. C has a type III singular-
ity if there exist three numbers t1, t2, t3 2 [0, 1] such
that C�1(p) = {t1, t2, t3}.
A homotopy H : [0, 1] ⇥ [0, 1] ! R2 between two

normal curves, C and C 0, is normal if there exists a
finite set S = {s1, . . . , sm} 2 [0, 1] such that for each
t 2 [0, 1] � S, Ht is normal, and for each s 2 S, Hs is
almost normal. Here, Hs denotes an intermediate curve
of the homotopy H.
Combinatorially, any normal homotopy of a normal

closed curve can be described as a sequence of three
types of events which we call Titus moves [3]:

• Type I: Destroying (Ia) or creating (Ib) a sim-
ple monogon.

• Type II: Destroying (IIa) or creating (IIb) a sim-
ple bigon.

• Type III: Inverting a triangle.

A Ia move takes a simple sub-loop � of an interme-
diate curve Hs and contracts it to a point b 2 [H]. We
call the point b an anchor point of the homotopy H. If
an anchor point b does not move until H contracts �
to b, then b remains on the curve. In this case, we say
that the homotopy H fixes b. If H fixes all of its anchor
points, we say that the homotopy is stable.

3 Homotopy Area & Winding Area of Closed Curves

Let wn(p, C) be the winding number of a closed curve C
at a point p 2 R2 � [C]. We define the winding

area W (C):

W (C) =

Z

R2�[C]
|wn(x,C)|dx ,

where dx is the two-dimensional Lebesgue measure.
Let C and C 0 be two closed curves and let H be a

homotopy between them. We define the homotopy area:

Area(H) =

Z

R2

EH(x) dx .

Here, EH : R2 ! Z is a function, where EH(x) is the
number of connected components of H�1(x), for any
x 2 R2. In other words, EH counts how many times the
intermediate curves Hs sweep over x.

Let H(C,C 0) be the set of all normal homotopies be-
tween C and C 0. We define the minimum homotopy

area of C and C 0, denoted as �(C,C 0):

�(C,C 0) = inf
H2H(C,C0)

Area(H)

If p0 : [0, 1] ! R2 is the constant path, i.e. p0(t) =
C(0) for all t 2 [0, 1], we denote �(C) = �(C, p0). A
minimum homotopy H is a normal homotopy such that
Area(H) = �(C).

The relation between the homotopy area and winding
area can be observed by the following lemma, originally
proven in [1].
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Lemma 1 (Homotopy Area Inequality) For any

closed curve C : [0, 1] �! R2
, we have �(C) � W (C).

A consequence of Lemma 1 is the following corollary:

Corollary 2 (Minimum Area Realization) If

there exists a homotopy H between C and p0 such that

Area(H) = W (C), then �(C) = Area(H) = W (C).

R1

R0

R2

p0p0p0

Figure 1: A self-overlapping curve with a minimum ho-
motopy; �(C) = Area(H) = 2Area(R2) +Area(R1).

4 Self-Overlapping Curves

A normal curve C : [0, 1] ! R2 is called self-overlapping,
if there exists an immersion of the disk F : D2 ! R2

such that F |@D2 = [C]. Figures 1 and 2 show exam-
ples. Detecting whether a given normal curve is self-
overlapping can be done in polynomial time [4].

Figure 2: A curve that is not self-overlapping. This
curve is not the projection of the boundary of a disk
embedded in R3.

Let M be a surface and let F : M ! R2 be an im-
mersion. We define the thickness of F at point x 2 R2

as the cardinality of the set F�1(x) which is always a
finite number. A lifting of the immersion F is a smooth
embedding E : M ! R3 that projects F , that is, for
each point p 2 M , we have F (p) = ⇡z(E(p)), where
⇡z(x, y, z) = (x, y). We obtain the following theorem.

Theorem 3 (Self-Overlapping Curve Homotopy)
If C is a self-overlapping curve, then �(C) = W (C).

Proof. Let F : D2 ! R2 be an immersion such that
F |@D2 = [C]. Consider a lifting E : D2 ! R3 of F .
Define � = E|@D2 . Hence, � is a Jordan curve in R3 with
an interior E|D2 homeomorphic to the open disk D2

in R2. A standard homotopy can be defined for Jordan
curves, and by projecting this homotopy to R2 we get
a homotopy H between C and C(0) such that for each
point p 2 R2, EH(p) is equal to the thickness of F at p.
But, the thickness at each point is also equal to the
winding number of the curve at that point [2]. In other

words, for each p 2 R2 we have EH(p) = wn(p, C) and
Area(H) = W (C). By Corollary 2, H is a minimum
homotopy and �(C) = W (C) as desired.

Let C be a normal curve and p be an intersection point.
Assume C�1(p) = {t1, t2} where t1 < t2, and let �p =
C|[t1,t2]. We call p an anchor point of C if �p is a self-
overlapping curve.

If a homotopy H is stable, then the set of anchor
points of H is contained in the set of anchor points
of C. In this work we show that a stable minimum
homotopy exists. Furthermore, to find the minimum
homotopy, we divide the curves into simple subcurves,
that are self-overlapping and calculate all possible areas
obtained this way. The minimum homotopy will be the
one that has the minimum area among the homotopies
obtained from this construction.

Theorem 4 (Minimum Area Homotopy) Let C
be a normal curve. Then there exists a stable minimum

homotopy H. Furthermore, H defines a sequence of

curves C = C0 ! C1 ! . . . ! Cm = p0 such that

each Ci ! Ci+1 is a contraction of a self-overlapping

subcurve of Ci based at an intersection point of Ci.

A proof of the theorem can be sketched as follows: We
show that for each normal curve there exists a mini-
mum area homotopy that does not require Ib moves,
and any IIb move does not create anchor points. Fur-
thermore, if these homotopies are carefully constructed,
the anchor points will be a subset of the simple crossing
points of the curve. And since a minimum homotopy
is locally sense-preserving, these anchor points define
self-overlapping pieces of the curve.

Testing all possible sequences of intersection points as
anchor points yields an exponential-time algorithm. We
are currently working on using dynamic programming
to obtain a polynomial-time algorithm.
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