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Persistent Nerves Revisited

Nicholas J. Cavanna and Donald R. Sheehy

University of Connecticut

1 Introduction

A nerve is a simplicial complex derived from a cover of a
topological space. Nerves appear all over computational
topology and geometry, e.g. a Delauney triangulation
is the nerve of a Voronoi diagram and the Čech com-
plex is the nerve of a collection of metric balls. They
are used to solve problems concerning surface recon-
struction, homology inference, and homological sensor
networks, among other areas.

If one has an open cover of a paracompact space in
which all non-empty intersections of the cover elements
are contractible, i.e. it is a good cover, then its nerve
is homotopy equivalent to the covered space. This re-
sult is known as the Nerve Theorem. It has a natural
extension to the setting of persistent homology called
the Persistent Nerve Lemma (PNL), due to Chazal and
Oudot [2]. The PNL implies that given a filtration of
covers of a filtration of spaces such that at each time the
cover is good, then the persistent homology of the space
filtration is that of the nerve filtration. Good covers are
not always an option, e.g. if a metric space is not con-
vex then the metric balls of a finite point sample may
cover the space, but they won’t be a good cover without
adding other conditions. The requirement of having a
good cover in order to invoke the PNL is the motivation
for our work – instead we assume the cover elements’
homology is trivial when included into a later scale.

Recently, Botnan and Spreemann assumed an inter-
leaving between two cover filtrations to prove a bound
on the bottleneck distance between the persistence dia-
grams of their nerve filtrations [1]. Govc and Skraba [3]
considered a simplicial filtration and a cover of the ter-
minal complex, using it to construct a cover filtration by
taking the intersection of the cover with the simplicial
filtration at each scale. They assumed that the persis-
tence modules of all the non-empty k-wise intersections
of the filtration’s cover elements were "-interleaved with
0 and proved a tight bound on the bottleneck distance
between the persistence diagrams of the filtered simpli-
cial complex and the nerve filtration, linear with respect
to dimension and ".

We consider a more general cover assumption—that
we have an arbitrary cover filtration consisting of sim-
plicial complexes which collectively cover a filtered sim-

Figure 1: A bump in R3 and subsets with non-
contractible intersection.

plicial complex, rather than a cover filtration induced by
intersection like Govc and Skraba. We also assume the
cover filtration is what we define as "-good. The major
contributions are that there are interleavings between
the filtered simplicial complex and the nerve filtration’s
homology groups, induced by chain maps, which imply a
tight dimension-dependent bound on the bottleneck dis-
tance between the two persistence diagrams, linear with
respect to dimension and ". A noteworthy corollary of
our result is the Persistent Nerve Lemma by considering
a 0-good cover.

2 Background

Let U := {U
1

, . . . , U
n

} be an arbitrary collection of
filtrations, growing sequences of spaces, where U

i

:=
(U↵

i

)
↵�0

, and each U↵
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is a simplicial complex. We
call U a cover filtration. For each ↵ � 0, define
U↵ := {U↵

1

, . . . , U↵

n

} and W↵ :=
S

i2[n]

U↵

i

. For each
non-empty v ✓ [n] = {1, . . . , n}, let U↵

v

:=
T

i2v

U↵

i

.
The nerve of the cover U↵ is defined as Nrv U↵ :=

{v ✓ [n] | U↵

v

6= ;}. One can check this is a
simplicial complex. The nerve filtration is defined as
Nrv U := (Nrv U↵)

↵�0

. When we consider the collec-
tion of spaces that each U↵ covers over all ↵ � 0, we
get the union filtration, W := (W↵)

↵�0

. U↵ is a good
cover of W↵ if for all subsets v ✓ [n], we have U↵

v

is
empty or contractible. For filtrations, we say U is a
good cover of W if U↵ is a good cover of W↵ for all
↵ � 0. The Persistent Nerve Lemma implies that if
U is a good cover of W, then Dgm(Nrv U) = Dgm(W),
where Dgm(·) is the persistence diagram over all dimen-
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Figure 2: A cover filtration that is not good, but is
1-good.

sions of the input filtration– a multiset representing the
“birth” and “deaths” of homological features as ↵ ! 1.
When we refer to the persistence diagram of just the k-
dimensional homological features we will write Dgm

k

(·).
Given a cover filtration U , we say it is "-good if for

all non-empty v ✓ [n], and for all ↵ � 0, H̃
⇤

(U↵

v

,!
U↵+"

v

) = 0, so any nontrivial homology classes of U↵

v

are trivial when mapped into U↵+"

v

. Note that due to
the definition of contractibility, U being a good cover of
W implies that it is 0-good.

For each U↵ there is a corresponding commutative di-
agram DU↵, where the spaces are the non-empty sets
U↵

v

for non-empty v ✓ [n] and there is an inclusion map
U↵

v

,! U↵

v

0 whenever v0 ⇢ v. Let N↵ be the barycen-
tric subdivision of Nrv U↵ which has simplices of the
form � = v

0

! . . . ! v
k

, where v
i

⇢ v
i+1

, and each
v
i

corresponds to a simplex of Nrv U↵. This is an ab-
stract simplicial complex and we denote the associated
geometric filtration as N := (|N↵|)

↵�0

. We define the
homotopy colimit of DU↵ as

hocolim DU↵ :=
[

N

↵
3�=v0!...

U↵

v0
⇥ |�|,

where | · | is the geometric realization functor. This
homotopy colimit is also known as the Meyer-Vietoris
blowup complex [4]. It yields another filtration, B =
(B↵)

↵�0

, where B↵ = hocolim DU↵.
We note that there is a (pseudo)-metric between two

persistence diagrams D and D0 called the bottleneck dis-
tance, denoted d

B

(D,D0), which is the standard mea-
sure of the similarity of two persistence diagrams, and
with that, the persistent homology of two filtrations.

3 Results

Theorem 1 If U = {U
1

, . . . , U
n

} is a set of simplicial
filtrations that is an "-good cover of the simplicial fil-
tration W =

S
n

i=1

U
i

, then

d
B

(Dgm
k

(W),Dgm
k

(Nrv U))  (k + 1)"

2
.

Furthermore, there is an upper-bound of (D+1)"

2

, where
D is the dimension of the nerve filtration.

An overview of the proof is as follows. As for all
↵, B↵ ✓ W↵ ⇥ |N↵|, we have natural chain maps
induced by projection b↵ : C

⇤

(B↵) ! C
⇤

(W↵) and
p↵ : C

⇤

(B↵) ! C
⇤

(|N↵|), where b↵ at the space level is
a homotopy equivalence, so Dgm(W) = Dgm(B).

Since |N↵| is homeomorphic to |Nrv U↵|, it follows
that Dgm(N ) = Dgm(|Nrv U|), and as simplicial ho-
mology is equivalent to singular homology, we have that
Dgm(N ) = Dgm(Nrv U). Define t := (k + 1)", where
k is the maximal dimension of homology groups being
considered. We create a chain map q↵ : C

⇤

(|N↵|) !
C

⇤

(W↵+t) such that a↵ := q↵ � p↵ is chain homotopic
to i↵,↵+t

B

� b↵, via chain homotopy c↵ : C
⇤

(|N↵|) !
C

⇤

(W↵+t). These maps can be viewed in diagram 1.

C
k
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i
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We use q↵ to define a chain map q̄↵ : C
⇤

(|N↵|) !

C
⇤

(B↵+t), where q̄↵(�) :=
kP

i=0

q(�
i

) ⌦ �̄
i

, with �
i

:=

v
0

! . . . ! v
i

and �̄
i

:= v
i

! . . . ! v
k

, such that
p↵+t � q̄↵ commutes with i↵,↵+t

N

and q̄↵ � p↵ is chain
homotopic to i↵,↵+t

B

, via chain homotopy c̄↵, defined
analogously to q̄↵.

By applying the homology functor to the diagram at
all ↵, the chain maps p↵ and q̄↵ commute with all the
inclusion homomorphisms, forming interleaving homo-
morphisms between N and B thus implying our result.
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Towards Canonical Ideal Triangulations of Convex Projective Surfaces via
Area Estimates

Dominic Tate

Department of Mathematics and Statistics, The University of Sydney

1 Introduction

This paper outlines a method for calculating a canoni-
cal ideal triangulation of a member of a family of non-
compact surfaces.1 Canonical triangulations and meth-
ods for their construction such as [5] have applications
in a diverse array of problems including the uniformisa-
tion of Riemann surfaces and graphical problems such
as discretizations of texture analysis and shape classifi-
cation.

The Hilbert metric and Hilbert area are notions of
length and area which may be defined on convex, open,
bounded domains in R2.2 A surface of the kind de-
scribed above, hereafter denoted S, may be imbued with
a length and area locally isometric to the Hilbert length
and area of some domain. An identification of this kind
is called a convex projective structure on S. A convex
projective structure on a surface is uniquely determined
by the generalized shear parameters defined by Fock and
Goncharov in [3].

Cooper and Adeboye in [1] use the generalized shear
parameters to assign to each triangulation of S, a real
number which bounds below the Hilbert area of the
given surface. This provides a function on the set of
all ideal triangulations which serves as a tool for deter-
mining if a particular triangulation is canonically de-
termined by the geometry. The author shows that this
assignment does not constitute a uniform bound on that
area. An improvement on [1] for estimating the area of
such surfaces is subsequently constructed by the author.
This function has the benefit of avoiding cases appear-
ing in [1] where each triangulation is assigned the same
value. Moreover, this work serves as a means of estimat-
ing the area of the surface with respect to the Hilbert
geometry. This area is particularly di�cult to calculate
with exactitude as the Hilbert area form depends intrin-
sically on the domain in which the area is calculated.

1The particular surfaces under consideration are non-compact
surfaces of negative Euler characteristic, finite topological type
and empty boundary. Definitions of these terms may be found,
for example, in [4].

2The formal definition of this geometry and the subsequent
geometric structures on S can be found in, for example, [3].

2 Canonical Triangulations and Edge Flips

It follows from the definition above that S has some
number of punctures.3 An ideal triangulation of S is
the result of ‘filling in’ the aforementioned punctures,
triangulating the resulting surface with vertices only at
the filled in points, then removing the punctures once
again. Hereafter the word triangulation will refer to
ideal triangulations and the word ‘ideal’ will be omitted.

Fix a triangulation ⇧ of S. Every edge E in ⇧ is
shared by two triangles which together form a quadri-
lateral Q of which E is one diagonal. An edge flip is the
process of removing E and replacing it with the other
diagonal of Q, thus forming a new triangulation as in
Figure 1. It is well-known that any two triangulations
of S di↵er by a finite sequence of these moves. Two tri-
angulations will be considered equivalent if their edges
di↵er by ambient isotopy of S. While any two triangu-
lations of the once-punctured torus are combinatorially
equivalent, there are countably many ambient isotopy
classes of triangulations, see for example, [2].

Figure 1: An edge flip on the once-punctured torus.

3 Di↵erent Geometric Structures on a Surface

Fock and Goncharov [3] devise a set of coordinates
on the set of isomorphism classes of convex projective
structures on a fixed surface S. These coordinates are
well-suited to comparing triangulations of ⌦ and for use

3For the purposes of this section they may be thought of
as marked points but it is pertinent to the geometry of S that
the construction proceeds with punctures as opposed to marked
points.
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in estimating the Hilbert area of ideal triangles. One pa-
rameter, called a triple ratio, is assigned to each ideal
triangle ⌧ in ⇧ and denoted Tr(⌧). Two parameters,
called edge ratios, are assigned to each edge.

Theorem 1 Cooper and Adeboye [1]
Let S be a surface with convex projective structure.

If ⇥ is the set of ideal triangles in ⇧

�(S) :=
1

8

X

T2⇥

⇣
⇡2

+ log

2 �Tr(T )
�⌘

< Area(S)

If there exists a triangulation of S at which � attains
a global maximum or minimum then it may be used as
a canonical triangulation for the purpose of classifying
convex projective structures on S. Note that � depends
only on triple ratios, it will take the same value on dif-
ferent triangulations with the same set of triple ratios.

4 Area Estimates and Canonical Triangulations

The author presents two results demonstrating the use
and limitations of � as a tool for estimating area and
determining a canonical triangulation. Thereafter, �
is explicitly calculated on the graph of triangulations
of a torus with fixed convex projective structure. This
informs the subsequent construction of an alternative to
� for estimating the Hilbert area of an ideal triangle in
a convex domain.

The author has shown that for S a surface with con-
vex projective structure,

Area(S)� �(S)

is not uniformly bounded. This makes essential use of
the fact that hyperbolic geometry is a special case of
Hilbert geometry, as shown in [3]. In this case, all ideal
triangles are isometric and consequently have area ⇡
and triple ratio equal to 1. Taking a sequence of sur-
faces with hyperbolic structure and increasing number
of triangles in their triangulation provides a counterex-
ample to uniform boundedness. It is shown in [3] that
the triple ratios resulting from an edge flip are rational
polynomials in the pre-flip triple ratios and edge ratios.
It follows by induction on edge flips that the infimum of
� is not always achieved on some triangulation. These
facts limit the e�cacy of e↵orts to estimate area or yield
a canonical triangulation from �.

An example in which � is more informative about the
underlying geometry of the given surface is shown in
Figure 2. Each vertex in the graph represents an ideal
triangulation of the once-punctured torus. Two vertices
are joined by an edge if and only if their respective tri-
angulations di↵er by a single edge flip. In the image,
vertices are labelled with the value of the largest triple
ratio of the two in its corresponding triangulation. Ei-
ther triple ratio uniquely determines � because direct

calculation shows that the product of the two triple ra-
tios in a finite-area structure is 1. A priori there is noth-
ing special about the vertex labelled 2, about which the
labelled graph has rotational symmetry. This vertex
represents a triangulation for which � is a better area
approximation than any other.

Figure 2: A reparameterisation of � on the flip graph of
a once-punctured torus.

If S was chosen to have a hyperbolic geometry, all
possible triangles have triple ratio equal to 1, so � will
take a constant value, regardless of changes in triangu-
lation. It does not, in this case, distinguish a particular
triangulation. An alternative function to � has been
constructed by the author which takes the edge ratios
as input, in order to make such a dinstinction. An anal-
ysis of the edge-flip functions given in [3] shows that
unlike triple ratios, the set of edge ratios is never con-
stant under edge-flips so this function is better able to
distinguish between di↵eren triangulations. Having con-
structed a more discerning function on the flip graph,
these two functions can be used as tools for comput-
ing e↵ective estimates for the Hilbert area of an ideal
triangle in a bounded, convex domain in R2.
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Length spectrum estimates for hyperbolic 3-manifolds

Robert C. Haraway III, Neil Ho↵man, Matthias Görner, and Maria Trnkova

Many 3-manifolds are hyperbolic, admitting a com-
plete metric locally isometric to hyperbolic space.
Weeks and others have developed and implemented pro-
cedures to estimate this metric given a triangulation of
a 3-manifold, and to estimate properties of this metric
([3], [5]). However, these procedures rely on floating-
point calculations, and do not provide bounds on the er-
ror of their estimates. Recent progress has already been
made in providing such error bounds on estimates of
the actual hyperbolic metric and of some basic proper-
ties of the metric, like volume ([4]). The current project
builds on this work, using interval arithmetic to provide
rigorous estimates of the length spectrum.

1 Basic facts and definitions

A 3-triangulation, or, for the purposes of this paper,
simply a triangulation, is a face-pairing T of finitely
many tetrahedra. Identifying the sides of these sim-
plices according to the face-pairing yields a topological
space, which we also call T . In this abstract we will
assume every point in T admits a neighborhood homeo-
morphic to a ball. That is, we assume T is a 3-manifold.
Furthermore, we will assume T is orientable.

Suppose that the tetrahedra of T are realized as
geodesic tetrahedra of hyperbolic space H3, and sup-
pose that each face-pairing map is an isometry of H3

taking one face to another. Then the metrics on the
tetrahedra descend to a metric on T . If the dihedral
angles around every edge class add up to 2⇡, then the
resulting metric restricted to T \V (T ) is locally isomet-
ric to H3—it is a hyperbolic metric. For each v 2 V (T ),
there is an additional “completion” condition c

v

in-
volving only the tetrahedra incident to v, analogous to
the 2⇡ requirement on dihedral angles. The metric on
T \ V (T ) completes to a hyperbolic metric on T if and
only if for all v 2 V (T ), c

v

holds true. A 3-manifold
T with a complete, finite-volume hyperbolic metric is a
hyperbolic 3-manifold. The multiset of lengths of simple
closed geodesics in T with length at most L is the length
spectrum L(T )|

L

of T up to L.
A hyperbolic 3-manifold T is determined by the isom-

etry classes of its tetrahedra. One can specify the isom-
etry class of a tetrahedron by a few parameters. For
instance, compact tetrahedra are determined by their
edge lengths. Conversely, the condition that edges of
given length fit together into a hyperbolic tetrahedron
is some analytic inequality on these lengths. Further-

more, the 2⇡-restrictions on dihedral angles around edge
classes and the completion conditions are likewise ana-
lytic equations on the edge lengths. A hyperbolic struc-
ture on T is a solution to this system of analytic condi-
tions, or, in interval arithmetic, a convergent sequence
of interval approximations to such a solution.

We can identify every hyperbolic 3-manifold T as
the quotient of H3 by the action of a discrete group
of isometries �. For g 2 � and U ⇢ H3 we write
gU = {g(u) : u 2 U}; we also write �U =

S
g2�

gU .
Because T is a 3-manifold, every nontrivial g 2 � is
nontrivial translation along and possibly trivial rota-
tion around some geodesic of H3, called its axis ↵(g).
The length of the translation is called `(g). If S is a
subset of �, we write `(S) = {`(g) : g 2 �}, a multiset.
If � is a simple closed geodesic in T and �̃ lifts �, there
is g 2 � such that �̃ = ↵(g) and `(g) = `(�).

A fundamental domain for � acting on H3 is a poly-
hedron D ⇢ H3 such that (cf. [2], p. 259)

•
S

g2�

gD = H3;

• for all g, g0 2 �, gD = g0D implies g = g0; and

• for all p 2 H3, there is ✏ > 0 such that the ball
B

✏

(p) intersects gD for only finitely many g 2 �.

We say a skeleton of T is a finite 2-complex in T
which intersects every simple closed geodesic. Suppose
⇡ : H3 ! T is the quotient map, and suppose D is a
fundamental domain of �. If K is a skeleton, then we
call ⇡�1(K)\D a sinew for � in D. For instance, if the
interior of D is a ball, then @D descends to a skeleton
in T , so @D = ⇡�1(⇡(@D)) \D is a sinew for � in D.

For every skeleton K, every simple closed geodesic �
of T intersects K. Therefore, every lift �̃ of � intersects
⇡�1(K) at some point p. Translating p to D via g 2 �,
we see that g�̃ is a lift of � intersecting ⇡�1(K) \ D.
Thus, for any sinew X of � in D, every simple closed
geodesic in T admits a lift intersecting X.

2 Tiling procedure for length spectrum superset

We recently developed the following procedure inspired
by the work of Hodgson and Weeks in [3]. Let L > 0,
and let T be a hyperbolic 3-manifold as above.

• Let T , �, D, and X be as above. Initialize a poly-
hedron H := D.
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• Let S be {g 2 � | gD ⇢ H ^ g 6= id}. Let B be @H.
The following loop maintains these definitions.

• While there is a face F of B with d(X,F )  L:

– Let g be the element of � taking D to the
“other side” of F .

– Set S,H,B := S [ {g}, H [ gD, @(H [ gD).

Lemma 1 If the procedure terminates, then `(S) con-
tains L(T )|

L

, and min(`(S)) is the systole length.

Proof. If the procedure terminates, d(X,F ) > L for all
faces F of B. So d(X,B) > L. Suppose � is a simple
closed geodesic in T . Some lift �̃ intersects X in a point
q. Let g 2 � be such that �̃ = ↵(g) and `(g) = `(�).
Then `(�) = d(q, g(q)) � d(X, gX). If g /2 S, then
by definition of S, gD * H; in particular, gX * H.
Thus, d(X, gX) � d(X,B). Therefore, if g /2 S, then
`(�) > L. So if `(�)  L, then g 2 S. Now, each g
corresponds to exactly one �. So `(S) contains L(T )|

L

.
Suppose h 2 � has smallest length among nontrivial

elements. Then by [1], ↵(h) descends to a shortest sim-
ple closed geodesic ⌘, and `(h) = `(⌘). There is some
lift ⌘̃ intersecting X; let h0 2 � such that ↵(h0) = ⌘̃ and
`(h0) = `(⌘). Then by the above argument, h0 2 S. So
min(`(S)) = `(⌘), the systole length. ⇤

Refining S until `(S) = L(T )|
L

is work in progress.
The above procedure is the first to provide interval
bounds on systole length without an appeal to exact
arithmetic, as far as the authors know. We should now
address some potential concerns about implementing
the above procedure in interval arithmetic.

3 Interval arithmetic

First, the initial definitions. Computing generators of
� from the metric on T is straightforward, and general-
izes easily to interval arithmetic. Less straightforward
are choices of D and X. Our procedure allows any such
choices as input. This contrasts with the approach of
Hodgson and Weeks in [3], which begins with a calcula-
tion of a Dirichlet domain D, the calculation of which
has, historically, been expensive. (New methods in nu-
merical analysis for solving overdetermined systems may
reduce this cost.) Our method doesn’t require this cal-
culation. Instead, one can build up a suitable D by re-
peatedly gluing on tetrahedra in the face-pairing using
face-pairing maps. Defining a sinew X is also straight-
forward, using a “butterfly” in each tetrahedron, and
ensuring that the butterflies glue up in T (see Fig. 1).
Second, the test d(X,F )  L in fact goes as follows.

We have some approximation [d
l

, d
r

] of d(X,F ) with
d
l

, d
r

2 Q. We actually test d
l

 L (assuming L 2 Q).
For termination, we argue that eventually, either for all

Figure 1: A butterfly in a
tetrahedron. We can pick
butterflies consistently by
picking points on edges
and faces which agree in
T , then coning o↵ these.

faces F , d
l

> L, or else for some face F , [d
l

, d
r

] is too
wide. In the latter case, one picks a better approxima-
tion of the structure on T and begins again. Showing
this process terminates is work in progress.

Finally, in the assignment dH := @(H [ g.D), we
have to distinguish which faces of the old H and of g.D
become faces of the new @H, and which get identified,
and thereby become “interior” faces of the new H. This
appears to be an equality test. But we can use a trick
to circumvent this apparent problem. Suppose a face of
g.D is the same as a face F of the old @H. Note that
F is a face of h.D for some h 2 S. Then h�1.(g.D) is
adjacent to D along h�1.F . Let f be the face-pairing
of D associated to h�1.F . Then f�1.(h�1.(g.D)) = D.
So g�1hf is the identity, essentially by the definition of
fundamental domain.

Now pick a tetrahedron in D of largest inradius R,
and let p be its incenter. Then every nontrivial element
of � translates p at least distance 2R away. On the
other hand, the identity translates p not at all. So we
test for d(p, (g�1hf).p) < 2R and d(p, (g�1hf).p) > ✏
for some small ✏ > 0. If both tests fail, as before, we
better approximate T and begin again. Showing this
terminates likewise is work in progress.
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An Optimal Lower Bound for the Hilbert-type
Planar Universal Traveling Salesman Problem

Patrick Eades and Julián Mestre

1 Introduction

The traveling salesman problem (TSP) is one of the
most studied problems in theoretical computer science.
For a given set of locations and pairwise distances it
asks to find the shortest path such that all locations are
visited. In the case when the locations are points in R2

with their Euclidean distances this problem is known as
the Planar TSP.

The universal traveling salesman (UTSP) is a heuris-
tic approach to the TSP in which all possible locations
are ordered ahead of time (generally according to some
space-filling curve). Then when presented with a subset
of the possible locations which need service, the UTSP
visits them in the induced order. The goal of the UTSP
is to find an ordering such that the competitive ratio,
that is, the ratio of induced tour to optimal tour, is
minimized over all subsets of the possible locations.

It is known that in the planar case there exists an
ordering of the unit square such that the competitive
ratio is bounded by O(log n). We show this ratio is
optimal for a large category of orderings of the unit
square (Hilbert-type orderings) by proving the existence
of a subset with competitive ratio ⌦(log n).

Work is ongoing to determine whether all non-Hilbert
type orderings admit a subset with competitive ratio
also at least ⌦(log n).

2 Problem Statement

Definition 1 Suppose that � is a total ordering of
[0, 1]2 and S ⇢ [0, 1]2 is a set of n points, indexed such
that s

1

� · · · � s
n

. Let S
n

be the symmetric group of
order n! and let s

n+1

:= s
1

. We define:

Tsp(S) = min
�2Sn

nX

i=1

d(�(s
i

),�(s
i+1

)),

Utsp

�

(S) =
nX

i=1

d(s
i

, s
i+1

),

⇢
�

(S) =
Utsp

�

(S)

Tsp(S)
.

We call ⇢
�

(S) the competitive ratio of � with respect
to S.

Let us introduce a category of orderings of the unit
square, called Hilbert-type by analogy to the Hilbert
space-filling curve, which induces the most well-known
ordering of this type. These orderings are worth exam-
ining because they have a high degree of locality, and
so form the basis for most UTSP heuristics.

Definition 2 A Hilbert-type ordering of the unit
square divides [0, 1]2 into k2 equal squares, and assigns
a total ordering to the squares. This ordering induces
a partial ordering on [0, 1]2, defined for pairs of points
that lie in di↵erent squares. Points lying in the same
square are ordered by recursively dividing that square
into k2 equal squares and applying the same method.

A Hilbert-type ordering is uniquely determined by k
and the ordering used.

The main result of our work is a lower bound on the
competitive ratio for Hilbert-type orderings. In particu-
lar, for any Hilbert-type ordering we prove the existence
of a set with constant optimal cost but logarithmic cost
under the UTSP heuristic.

Theorem 1 For any Hilbert-type ordering � of the
unit square and any su�ciently large n there exists a
set S ⇢ [0, 1]2 of size n such that ⇢

�

(S) = ⌦(log n).

3 Prior Work

The UTSP heuristic was formally introduced by Platz-
man and Bartholdi in 1989 in response to a need for
faster performing TSP algorithms [5]. They used an or-
dering induced by the Sierpinski space-filling curve to
achieve an approximation ratio of O(log n) which was
shown to be tight (for the Sierpinski ordering) by Bert-
simas and Grigni [1].

The first general lower bound in the planar case was
provided by Hajiaghayi et al. [4] who used a grid-graph

to show a lower bound of ⌦
⇣

6

q
logn

log logn

⌘
. They further

conjecture their method could be improved to provide
a tight lower bound of ⌦(log n)

Gorodezky et al. [3] provide a lower bound of ⌦(log n)
in general metric spaces. However, their worst case met-
ric space is a Ramanujan graph which is not the setting
of most applications, so interest remains in the problem
when restricted to the Euclidean plane.
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A recent paper by Christodoulou and Sgouritsa in
SODA 2017 [2] provides an ordering of the m⇥m grid
graph with competitive ratio O( logn

log logn

), disproving a

conjecture of Bertsimas and Grigni [1]. However, their
construction only works on discrete grids and cannot be
generalized to the unit square.

The generalized Lebesgue orderings used by
Christodoulou and Sgouritsa, when naturally ex-
tended from the grid graph to the unit square are of
Hilbert type. Thus, by our analysis they exhibit a
competitive ratio of ⌦(log n) on the unit square and
are not an improvement over Platzman and Bartholdi’s
Sierpinski approach.

4 Outline of Method

Intuitively our method for a k⇥k Hilbert-type ordering
� is to draw a random line L through the unit square
and let S

`

be k` points spaced uniformly along L. Our
use of a random line is inspired by [4] as a way to gen-
eralize the style of argument used by [1].

Clearly the optimal tour visits each point in the order
they appear down the line, so Tsp(S

`

) = ⇥(1). Then it
remains to show that Utsp

�

(S
`

) = ⇥(`), which implies
that ⇢

�

(S
`

) = ⇥(log |S
`

|).

Lemma 1 For a uniformly random line L through
[0, 1]2, partitioned into k2 equal squares, the probability
of L intersecting a given square is 1

k

.

Lemma 2 For a uniformly random line L through a
square Q of side length 1

k

, the expected length of the
line segment L \Q is 1

k

.

Let a
`

= Utsp

�

(S
`

). We can decompose a
`

into a
sum of smaller problems as follows: let Q

1

, . . . , Q
k

2 be
the squares in the k ⇥ k division of [0, 1]2. Then a

`

is
equal to the cost within each Q

i

intersecting L plus the
cost of jumping between them in order.

Applying Lemmas 1 and 2 the expected cost within
each Q

i

is 1

k

2 a`�1

, since an expected k`�1 points lie in
each square.

Definition 3 Let L be a line through [0, 1]2 partitioned
into k2 equal squares with a total ordering �. Let Q

1

,
Q

2

and Q
3

be three squares which intersect L, labeled
so that Q

2

\ L lies between Q
1

\ L and Q
3

\ L along
L. If Q

1

, Q
3

� Q
2

or Q
2

� Q
1

, Q
3

we call Q
2

\L a non
order-respecting segment of L.

Lemma 3 For a random line L through [0, 1]2 parti-
tioned into k2 equal, ordered squares, the expectation
of the sum of the non order-respecting segments of the
line is constant (see Figure 1).

Thus, we have that E(a
`

) = E(a
`�1

) + C and so
E(a

`

) = ⇥(`) as required. By taking a line with cost
at least as large as the expectation we have the S we
needed to prove Theorem 1.

1

2

3

4

5

6

7

8

9

Figure 1: An non-order respecting line: the UTSP tour
must first visit square 1, then 2 and then 4, resulting in
a constant-size jump over square 1

5 Ongoing Work

Intuitively any non-Hilbert-type ordering will have very
bad locality properties. We aim to use this intuition
to construct a point set S with logarithmic competitive
ratio.
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Voronoi Diagrams with Rotational Distance Costs ⇤
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1 Introduction

We analyse the problem of constructing Voronoi dia-
grams where the distance metric contains a term that
represents a rotation cost.

The motivation for investigating the problem is the
work by Taki et al. [1] who proposed the concept of
the dominant region for the analysis of football (soccer)
matches. Informally, the idea is to subdivide the foot-
ball pitch into regions such that a particular player can
reach the points within the region before all other play-
ers. The dominant region diagram is thus a Voronoi
diagram where the distance function considers proper-
ties such as the a priori direction the player is facing,
the player’s velocity, and physiological factors such as
the acceleration and turning rate of the player. There
have been several e↵orts to construct algorithms for this
problem [2, 4], but the algorithms have been approxi-
mations or heuristics. To date, no formal analysis of
this problem has been carried out, nor has an exact al-
gorithm been presented.

We aim to make progress in this direction by analy-
sing Voronoi diagrams where the distance metric con-
tains a term for cost of rotation. Under the model, each
site is a tuple containing a location and a direction. The
distance function from the site s to a point p in the plane
contains two terms: a linear term for the cost of rotation
from the site’s initial direction to the direction towards
the point p; and a term for the Euclidean distance from
s to p. Each site can be visualised as a robot that can
rotate about its axis when stationary and move only in
a straight line in the direction it is facing, i.e. the dis-
tance to a point is the sum of the cost of rotation to
face the point and the cost of moving to the point.

This abstract presents the research undertaken and
results to date. The problem is formally defined in
Section 2. Preliminary analysis of the problem is pre-
sented in Section 3 showing that the Voronoi regions can
be disconnected, even when the number of sites n = 2,
and the complexity of the Voronoi diagram can be at
least quadratic in n. Section 4 lists the open problems.

⇤We thank Ali Mehrabi for useful discussions during the initial
stages of this research.

2 Preliminaries

The input is a set S of n sites, and each site s 2 S
is a triple (s

x

, s
y

, s
↵

), where (s
x

, s
y

) 2 R2 specifies the
location of s, and s

↵

2 [�⇡,⇡) is the direction, that is
a counterclockwise angle relative to the positive x-axis.
Where appropriate and unambiguous, s is treated as
a point in R2, for example |sp| denotes the Euclidean
distance between site s and a point p 2 R2.

Let C � 0 be a fixed constant. The dis-
tance function d

C

: S ⇥ R2 ! R
�0

accepts as argu-
ments a site s and a point p, and determines the
distance from s to p, i.e. d

C

(s, p) = ✓ + C|sp|,
where ✓ is the absolute di↵erence between s

↵

and
the angle of sp, relative to the positive x-axis, i.e.
✓ = arccos(p0 · (cos s

↵

, sin s
↵

)/||p0||), where p0 = (p
x

�
s
x

, p
y

� s
y

).
Now that we have the distance function d

C

, we can
define the Voronoi diagrams and related concepts in the
usual way: the bisector of two sites s, u 2 S is defined
as b(s, u) = {z 2 R2 | d(s, z) = d(u, z)}; the Voronoi
region of a site s 2 S is defined as V R(s, S) = {z 2 R2 |
d(s, z) < d(s0, z) 8 s0 2 S� s}; and the Voronoi diagram
of S is defined as

V (S) = R2 \
[

s2S

V R(s, S).

Voronoi regions may be disconnected, and thus each
Voronoi region V R(s, S) can have one or more faces.

3 Analysis

The case n = 2. Given two sites s and u, the bisector
b(s, u) can be a set of closed or infinite curves, and may
have multiple disconnected components.

We will need the following lemma.

Lemma 1 B is a set of disjoint 2D regions in R2 such
that any line ` crosses the boundaries of B at most three
times. Then B has at most one bounded face and at
most three unbounded faces.

We define disjoint in this context to be that for any
B0, B00 2 B, the closures of B0 and B00 only intersect at a
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�

(a) C = 0: angle-only case

�

(b) C > 0: general case

Figure 1: Example showing line dashed line ` inter-
secting the bisector b(s, u) at (a) three points for C = 0
and (b) five points for C > 0.

finite number of points. The condition that the number
of intersection points between ` and the boundaries of
B is at most three excludes instances where a boundary
�(B), B 2 B and ` intersect in a line-segment pq. Howe-
ver, such cases can be dealt with using a perturbation
argument.

Consider the number of intersections between an arbi-
trary line ` and b(s, u) in Voronoi diagrams of two sites s
and u. We analyse two distance functions: where C = 0,
i.e. the distance from site s to point p is the rotation cost
only—the angle-only case; and where C > 0—the ge-
neral case. In the angle-only case, we can prove that
the number of intersections is no greater than three, see
Fig. 1(a). Using this fact and Lemma 1 leads to the
following result.

Corollary 2 When C = 0, that is, in the angle-only
case, the Voronoi diagram of two sites in the d

C

-distance
has at most four faces.

However, in the case of the general distance function,
there are examples where line ` intersects the bisector
line in five points, and therefore a bound cannot be con-
structed using Lemma 1, see Fig. 1(b). A bound for this
case remains an open question.

The case n > 2. In the general case with more than
two sites, we show a lower bound of ⌦(n2) on the com-
plexity of the diagram, see Fig. 2. Furthermore, it is
possible to construct cases where the number of faces
of a single Voronoi region is ⌦(n2), giving the following
theorem.

Theorem 3 The number of faces of the Voronoi dia-
gram of n sites based on the d

C

-distance is ⌦(n2) in the
worst case.

Thus far, we have been unable to find an example
where the complexity of the Voronoi diagram is cubic.
An upper bound on the complexity of V (S) when n > 2
is an open question, although we conjecture that it is
O(n2).

Figure 2: Example of Voronoi diagram of quadratic
complexity with respect to the number of sites.

4 Open Problems

The main open problems are to determine the complex-
ity of the Voronoi diagram when n = 2 using the general
distance function; and the complexity when n > 2 using
both distance functions.

It also remains to determine an algorithm to e�-
ciently compute the Voronoi diagram in the d

C

-metric.
(Note: the framework for abstract Voronoi diagrams [3]
cannot be directly used, since this requires the bisector
b(s, u) to be connected.)
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Unwinding Annular Curves and Electrically Reducing Planar Networks

Hsien-Chih Chang⇤ Jeff Erickson⇤

1 Introduction

Any continuous deformation of a closed curve on any sur-
face can be decomposed into a finite sequence of homotopy
moves, consisting of the following three operations and
their inverses. A 1�0 move removes an empty loop; a
2�0 move removes an empty bigon, and a 3�3 move flips
an empty triangle. A classical argument of Steinitz [6]
implies that any planar curve with n vertices can be sim-
plified using O(n2) homotopy moves; using a later result
of Hass and Scott [4] one can extend this upper bound to
contractible curves on arbitrary surfaces. We prove that
Hass and Scott’s quadratic upper bound is tight.

Theorem 1 Simplifying a contractible curve in the annu-

lus (or any surface that has the annulus as its covering

space) requires ⌦(n2) homotopy moves in the worst case.

This improves our previous ⌦(n3/2) lower bound, which
follows from an analysis of curves in the plane, and gen-
eralizes our previous ⌦(n2) lower bound for simplifying
non-contractible curves on higher-genus surfaces [1].

Our second result concerns the reduction of plane graphs
via electrical transformations: leaf reductions, loop reduc-
tions, series-parallel reductions, and ���Y transforma-
tions. We distinguish between two types of electrical trans-
formations in plane graphs: A loop reduction, parallel
reduction, or ��Y transformation is facial if the edges
deleted by the operation bound a face in G, and non-facial
otherwise. Dual pairs of facial electrical transformations
correspond to local transformations in the medial graph
of G, which we call medial electrical moves.

Theorem 2 Reducing an n-vertex plane graph with two
terminals as much as possible requires ⌦(n2) facial electri-

cal transformations in the worst case.

The proof uses our quadratic homotopy lower bound for an-
nular curves. This result matches the upper bound implied
by Hass and Scott [4], and it strengthens and generalizes
our earlier ⌦(n3/2) lower bound for reducing plane graphs
to a single vertex [1].

2 Unwinding Annular Curves

To simplify our analysis of annular curves, it is convenient
to work in the punctured plane R2 \ {o}, where o is an
⇤Department of Computer Science, University of Illinois at Urbana-

Champaign. Supported in part by NSF grant CCF-1408763.

Figure 1. Top row: Homotopy moves 1�0, 2�0, and 3�3. Bottom row:
Medial electrical moves 1�0, 2�1, and 3�3.

arbitrary point called the origin. In any homotopy in the
punctured plane, homotopy moves that contract either the
face containing the origin or the outer face of the curve are
forbidden. It is precisely these forbidden homotopy moves
that make the quadratic lower bound possible; if we only
forbid homotopy moves on the outer face, then any curve
can be simplified using at most O(n3/2) moves [1].

Let � be an arbitrary oriented closed curve in the punc-
tured plane, and let p be any point outside the image of �.
The winding number wind(�, p) is the number of times �
crosses a generic ray ⇢ based at p from right to left, minus
the number of times � crosses ⇢ from left to right. For any
vertex x of �, the winding number wind(�, x) is defined as
the average of the winding numbers around the four faces
incident to x .

Smoothing � at a vertex x replaces a small neighbor-
hood of x with two disjoint simple paths. There are
two possible smoothings at each vertex, one of which
splits � into two subcurves; let �+x and ��x denote the
subcurves locally to the left of x and locally to the right
of x , respectively. We define the type of any vertex x as
type(�, x) := wind(�+x , o). A vertex x is irrelevant if either
type(�, x) = 0 or type(�, x) = wind(�, o) and relevant oth-
erwise. Two vertices x and y have complementary types if
type(�, x) + type(�, y) = wind(�, o).

Case analysis shows that homotopy moves modify the
types and winding numbers of vertices as follows: (a) Each
1��0 move creates or destroys one irrelevant vertex. (b)
Each 2��0 move creates or destroys two vertices with com-
plementary types and identical winding numbers. (c) Each
3��3 move changes the winding numbers of the three ver-
tices, each by exactly 1. (d) Otherwise, homotopy moves
do not change the type or winding number of any vertex.

To prove Theorem 1, consider any contractible � and
any homotopy that contracts � to a point, and let x be a
relevant vertex at any stage of the homotopy. We can fol-
low x through the homotopy to a 2�0 move that deletes x
and a complementary vertex; symmetrically, we can follow
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x backward through the homotopy either to a vertex of �
or to a 0�2 move that creates x and a complementary ver-
tex. Proceeding inductively, we obtain a matching between
complementary relevant vertices of �. Each matched pair
is connected by a path through the homotopy that alter-
nately moves forward and backward through the homotopy,
switching direction and type at 2��0 moves.

During the homotopy, the winding number of a vertex
changes precisely when it participates in a 3�3 move.
Thus, the path between two matched vertices x and y
must pass through at least

��wind(�, x)�wind(�, y)
�� 3�3

moves, and the entire homotopy must contain at leastP
x⇠y

��wind(�, x)�wind(�, y)
��/3 3�3 moves, where the

sum is over all matched pairs of vertices of �.

Figure 2. Our bad example curve X13 in the punctured plane.

For any relatively prime integers p and q, the flat torus
knot T(p, q) winds |p| times around the origin and oscil-
lates |q| times between two concentric circles. For any odd
integer p, let Xp denote the connected sum of T(�p, 1)
and T (p, 2), where the former curve is scaled to lie inside
the innermost face of the latter. This curve is contractible
and has 3(p�1) vertices. Analysis of the types and winding
numbers of the vertices of Xp implies that any homotopy
that contracts Xp contains at least p(p� 1)/6 3�3 moves.

3 Planar Graphs with Two Terminals

Most applications of electrical transformations designate
two vertices as terminals. In this context, leaf reductions,
series reductions, and Y�� transformations at terminals
are not proper electrical transformations. Every 2-terminal
plane graph can be reduced by facial electrical transfor-
mations to a unique graph, which we call a bullseye, but
not necessarily to a single edge. (The medial graph of a
bullseye is the curve T (p, 1), for some even integer p.)

A multicurve is an immersion of one or more closed
curves. For a plane graph G with two terminals, the medial
graph of G is the image of a multicurve embedded in
the annulus. Arguments of Truemper [7] and Noble and
Welsh [5], described in detail in our earlier paper [1],

imply that reducing a plane curve � using medial electrical
moves requires at least as many steps as reducing � using
homotopy moves. To prove Theorem 2, we extend these
arguments to annular curves. Specifically, we show that
the number of medial electrical moves required to reduce
an annular curve is at least the number of homotopy moves
required to reduce the same curve; the quadratic lower
bound now follows directly from Theorem 1.

Two key ingredients of our proof may be of independent
interest. First, we show that a multicurve � on any surface
can be further reduced using medial electrical moves if and
only if � can be further reduced using homotopy moves.
We prove this fact using a classical result [3] that any multi-
curve can be simplified as much as possible via homotopy
moves without ever increasing the number of vertices.

Let � be an arbitrary connected multicurve in the punc-
tured plane. Let X (�) denote the minimum number of
medial electrical moves required to reduce �. Let depth(�)
denote the minimum number of times a generic ray based
at the origin crosses � (not considering the directions of
crossings). Our second key observation, which relies on
the first, is that the inequality

X (�)< X (�) +
�
depth(�)� depth(�)

�
/2

holds for every connected proper smoothing � of �. This
generalizes the simpler inequality X (�) < X (�) for con-
nected multicurves in the plane [1].

As a final remark, by including one more operation
called the terminal leaf reduction in addition to facial elec-
trical transformations, any 2-terminal plane graph can be
reduced to a single edge; indeed, existing electrical reduc-
tion algorithms for plane graphs rely exclusively on these
operations [2,7]. Unfortunately, our lower bound does not
apply when terminal leaf reductions are allowed.
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Conditional Nontrivial Lower Bounds for 3SUM and Friends

Jean Cardinal⇤ John Iacono† Stefan Langerman‡ Aurélien Ooms§

Abstract

3SUM-hardness is a key tool when it comes to identi-
fying the complexity of geometric problems. Moreover,
the more general k-SUM problem can be cast as a point
location problem. We show that, if pk ´ 1q-SUM can

be solved in Õpn k
3 ´�q time, then k-SUM can be solved

in Õpn k
2 ´ 3�k{2´3�

4k{3´2´� q time in the linear decision tree and
algebraic computation tree models. This result holds
for all integers k • 3. In particular, a corollary of our
results is that a !pn2´"q lower bound on the depth of
8-linear decision trees for sorting X ` Y would imply
a nontrivial lower bound of !pn4{3´"q on the depth of
4-linear decision trees for 3SUM.

1 Introduction

Most geometric problems su↵er from missing tight com-
plexity lower bounds. A remedy to this annoyance is
conditional complexity : conjecture some key problem is
hard, then show that this conjecture implies hardness
for other problems. The 3SUM problem is one such
key problem. For instance, Gajentaan and Overmars [5]
show that, the problem of computing the separator of
an input set of line segments (see Figure 1), the prob-
lem of computing the minimum area triangle spawned
by input points, and many other geometric problems,
are all as hard as 3SUM. The 3SUM problem is defined
as the k-SUM problem when k “ 3.

Problem (k-SUM) Given a set of n real numbers S “
t s

1

† s
2

† ¨ ¨ ¨ † s
n

u, decide whether there exists

i “ pi
1

, i
2

, . . . , i
k

q P rnsk such that
∞

k

j“1

s
ij “ 0.

Until spring 2014, the conjecture had been that 3SUM
requires quadratic time. Had this conjecture been
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Figure 1: Separating line segments is 3SUM-hard.

true, it would have implied a quadratic lower bound
on the problems mentioned above. However, Grønlund
and Pettie [6] refuted this conjecture. In their break-
through paper, they gave the first subquadratic time
algorithms for 3SUM in both uniform and nonuniform
models of computation: a real-RAM algorithm in time

Opn2plog log n{ log nq2{3q and a 4-linear decision tree of
depth Opn 3

2
?
log nq. The respective complexities of

those algorithms have since been slightly improved. The
outdated 3SUM conjecture has been updated to take
into account this important progress:

Conjecture 1 In the real-RAM model, 3SUM cannot
be solved in Opn2´�q, for any � ° 0.

Another key problem is sorting the n2 pairwise sums of
elements of two sets of n real numbers. This problem is
commonly refered to as sorting X `Y . The best known
algorithms for sorting X`Y all use a quadratic number
of sum comparisons (4-linear queries) [4, 8, 9].

Our paper focuses on the (nonuniform) decision tree
complexity of k-SUM. By leveraging Grønlund and Pet-
tie’s decision tree, we show how the complexity of the
k-SUM problem relates to the complexity of the pk´1q-
SUM problem. Our result implies that, unless sorting
X `Y can be solved in Opn2´"q 8-linear queries, 3SUM
cannot be solved in Opn4{3´"q 4-linear queries.

Recent exposition on the n-linear decision tree com-
plexity of k-SUM, casting k-SUM as a point location
problem, suggested that the linear decision tree com-
plexity of 3SUM should lie close to linear [2, 3]. This
conjecture is indeed true; Kane, Lovett, and Moran [7]
just showed that k-SUM can be solved using Opn log2 nq
2k-linear queries. This brings the state of the art close
to the information-theoretic lower bound of ⌦pn log nq.

This recent breakthrough limits the applications of
our conditional results. Since sorting X ` Y can now
be done in Opn log2 nq 8-linear queries, our technique
does not allow to unconditionally lower bound the depth
of 4- or 5-linear decision trees for 3SUM (⌦pn2q and
Opn log2 nq being respectively the best known lower and
upper bound for 3- and 6-linear decision trees).
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2 Results

Idea We proceed as in Grønlund and Pettie [6]. They
reduce solving a 3SUM instance to a preprocessing
phase on a large 2SUM instance (sorting) and a query
phase that quickly searches through the sorted lists ob-
tained via the preprocessing phase. Similarly, we reduce
a k-SUM instance to a preprocessing phase followed by
a query phase. The preprocessing phase involves solving
a large pk ´ 1q-SUM instance. The query phase quickly
searches through the information gathered during the
preprocessing phase.

Partitioning Let S “ t s
1

† s
2

† ¨ ¨ ¨ † s
n

u. For some
g to be chosen later, partition the interval rs

1

, s
n

s into
n{g blocks S˚

1

, S˚
2

. . . , S˚
n{g such that each block contains

g numbers in S. For the sake of simplicity, and with-
out loss of generality, we assume that g divides n. To
each of the pn{gqk´1 tuples of blocks pS˚

i1
, S˚

i2
, . . . , S˚

ik´1
q

corresponds a cell
ë

k´1

j“1

S˚
ij

in the pk ´ 1q-dimensional
grid generated by our partition of S. The two following
lemmas are consequences of our partitioning scheme:

Lemma 1 In Rk´1 with variables x
1

, x
2

, . . . , x
k´1

, for

a fixed w P R, the hyperplane of equation ´w “ ∞
k´1

i“1

x
i

intersects Oppn{gqk´2q cells. Moreover, those cells can

be found in Oppn{gqk´2q time.

Proof. The hyperplane ´w “ ∞
k´1

i“1

x
i

draws a pk´1q-
dimensional staircase in the grid. We can output all
the cells on this staircase in time proportional to their
number (and k, which is constant). ˝

Lemma 2 If the set S can be preprocessed in T
g

pnq
time so that, for any given cell

ë
k´1

j“1

S˚
ij

and any given

w P S, testing whether ´w P ê
k´1

j“1

S
ij “ t ∞

k´1

i“1

z
i

: z P
ë

k´1

j“1

S
ij u can be done in Oplog gq time, then k-SUM

can be solved in T
g

pnq ` Opn

k´1

g

k´2 log gq time.

Proof. Preprocess the input in T
g

pnq time. For each

input number w, for each cell
ë

k´1

j“1

S˚
ij

intersected by

the hyperplane ´w “ ∞
k´1

i“1

x
i

, test whether ´w Pê
k´1

j“1

S
ij in Oplog gq time. Use Lemma 1 to bound the

number of intersected cells and the time it requires to
find them. ˝

Lemma 3 Assuming pk ´ 1q-SUM on N numbers can
be solved in fpNq “ OppolypNqq time, the set S can
be preprocessed as in Lemma 2 using T

g

pnq “ Opfpngqq
time, in the linear decision tree and algebraic computa-
tion tree models.

Proof. We sort all sets
ê

k´1

j“1

S
ij by solving a pk ´ 1q-

SUM instance of size Opngq. Sorting the set
ê

k´1

j“1

S
ij

amounts to answering the linear query
∞

k´1

i“1

z
i

§∞
k´1

i“1

z1
i

for all z, z1 P ë
k´1

j“1

S
ij . Those queries are

equivalent to
∞

k´1

i“1

pz
i

´ z1
i

q § 0 which, by [1], can be
answered by solving a pk´1q-SUM instance on the num-
bers pz

i

´z1
i

q. Because there are Opn{gq blocks S˚
i

, and
because there are g2 tuples pz

i

, z1
i

q in each block, there
are Opngq such numbers. ˝

Theorem 4 If pk ´ 1q-SUM can be solved in Opn k
3 ´�q

time, with k • 3 and 0 § � § k

3

´ 1, then k-SUM can

be solved in Õpn k
2 ´ 3�k{2´3�

4k{3´2´� q time in the linear decision
tree and algebraic computation tree models.

Proof. Assume we can solve pk ´ 1q-SUM on N num-
bers in ÕpNk{3´�q time, then the preprocessing phase

can be done in Õppngqk{3´�q time by Lemma 3. Bal-
ancing the sum in Lemma 2 gives an optimal solution

g “ ⇥̃pn 1
2 ` 3�{2

4k{3´2´� q. ˝

Remark Note that a more careful analysis allows to
transfer polylog shavings from pk´1q-SUM to k-SUM.
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