

Abstracts
Twenty-second European Workshop on Computational Geometry
Delphi, Greece
March 27–29, 2006

Compilation copyright c© 2006 by Menelaos Karavelas.
Copyrights of individual papers retained by the authors.
Workshop logo by Menelaos Karavelas.

Printed in Greece.

Sponsors

UNIVERSITY OF IOANNINA

UNIVERSITY OF THE AEGEAN

Commercial Association of Atalanti “H ENΩΣIΣ”

EWCG 2006, Delphi, March 27–29, 2006

Preface

This volume contains extended abstracts of the papers presented at the Twenty-second European
Workshop on Computational Geometry held at Delphi, Greece, on March 27–29, 2006. These papers
are also available electronically at http://www.di.uoa.gr/∼ewcg06 and at the central EuroCG web
site http://www.eurocg.org. The workshop has been organized under the auspices of the National
and Kapodistrian University of Athens, the University of Crete, the University of Ioannina, and the
European Association for Theoretical Computer Science (EATCS).

The program and organizing committees would like to thank all the authors who submitted abstracts
and all those who presented their work at the workshop. Especially, we would like to thank Bernard
Chazelle, Raimund Seidel, and Monique Teillaud for kindly giving invited lectures. Thanks are also
due to the staff of the Cultural Center of Delphi for their assistance with local arrangements in the
workshop venue. Last but not least, special thanks go to Bettina Speckmann for providing LATEX
classes used to create these proceedings.

We are grateful to the workshop sponsors for providing financial and technical support: the Hellenic
Ministry of National Education and Religious Affairs, the National and Kapodistrian University of
Athens, the University of Ioannina, the University of Crete, the University of the Aegean, the Institute
of Applied and Computational Mathematics of the Foundation for Research and Technology - Hellas,
and the Commercial Association of Atalanti “H ENΩΣIΣ”.

Ioannis Emiris
Menelaos Karavelas
Leonidas Palios

Program Committee

Ioannis Emiris National University of Athens
Menelaos Karavelas University of Crete
Leonidas Palios University of Ioannina

Organizing Committee

Ioannis Emiris National University of Athens
Menelaos Karavelas University of Crete
Christos Konaxis National University of Athens
Leonidas Palios University of Ioannina
George Tzoumas National University of Athens

iii

22nd European Workshop on Computational Geometry, 2006

iv

EWCG 2006, Delphi, March 27–29, 2006

Table of Contents

Monday, March 27, 2006

9:30 – 10:30 Session 1: Polygons and (Pseudo-)Triangulations

Where to build a temple, and where to dig to find one 1
Greg Aloupis, Jean Cardinal, Sébastien Collette, John Iacono, Stefan Langerman

Fixed Parameter Algorithms for Minimum Weight Partitions 5
Christian Borgelt, Magdalene Grantson, Christos Levcopoulos

Pseudo-Convex Decomposition of Simple Polygons 13
Stefan Gerdjikov, Alexander Wolff

The Existence of a Pseudo-triangulation in a given Geometric Graph 17
André Schulz

10:40 – 11:40 Session 2: Ray Shooting and Curve Decomposition

Ray Shooting Amidst Fat Convex Polyhedra in 3-Space 21
Boris Aronov, Mark de Berg, Chris Gray

Approximation of an open polygonal curve with a minimum number of circular arcs 25
R. L. Scot Drysdale, Günter Rote, Astrid Sturm

How to Sample and Reconstruct Curves With Unusual Features 29
Tobias Lenz

On the Curve Equipartition Problem: a brief exposition of basic issues 33
Costas Panagiotakis, George Georgakopoulos, George Tziritas

12:00 – 13:00 Invited Talk

Understanding the Inverse Ackermann function 37
Raimund Seidel

15:00 – 16:00 Session 3: Combinatorial Geometry

On the density of iterated line segment intersections 39
Ansgar Grüne, Sanaz Kamali Sarvestani

On the structure of sets attaining the rectilinear crossing number 43
Oswin Aichholzer, David Orden, Pedro A. Ramos

On the All-Farthest-Segments Problem for a Planar Set of Points 47
Asish Mukhopadhyay, Samidh Chatterjee, Benjamin Lafreniere

Planar Point Sets with Large Minimum Convex Partitions 51
Jesús Garćıa-López, Carlos M. Nicolás

16:10 – 17:10 Session 4: Collision Detection and Folding

Kinetic Collision Detection for Balls Rolling on a Plane 55
Mohammad Ali Abam, Mark de Berg, Sheung-Hung Poon, Bettina Speckmann

Computing Shortest Paths amidst Growing Discs in the Plane 59
Jur van den Berg, Mark Overmars

v

22nd European Workshop on Computational Geometry, 2006

Few Optimal Foldings of HP Protein Chains on Various Lattices 63
Sheung-Hung Poon, Shripad Thite

Reconfiguring planar dihedral chains 67
Greg Aloupis, Henk Meijer

17:30 – 18:30 Session 5: Geometric Graphs

Gray Code Enumeration of Plane Straight-Line Graphs 71
Oswin Aichholzer, Franz Aurenhammer, Clemens Huemer, Birgit Vogtenhuber

The Rotation Graph of k-ary Trees is Hamiltonian 75
Clemens Huemer, Ferran Hurtado, Julian Pfeifle

Cover Contact Graphs 79
Manuel Abellanas, Nieves Atienza, Natalia de Castro, Carmen Cortés,
Maŕıa Angeles Garrido, Clara Isabel Grima, Gregorio Hernández, Alberto Márquez,
Auxiliadora Moreno, José Ramón Portillo, Pedro Reyes, Jesús Valenzuela,
Maŕıa Trinidad Villar

A binary labelling for plane Laman graphs and quadrangulations 83
Clemens Huemer, Sarah Kappes

Tuesday, March 28, 2006

9:00 – 10:00 Session 6: Geometry

Helly-Type Theorems for Line Transversals to Disjoint Unit Balls 87
Otfried Cheong, Xavier Goaoc, Andreas Holmsen, Sylvain Petitjean

Geometric realization of a projective triangulation with one face removed 91
C. Paul Bonnington, Atsuhiro Nakamoto, Kyoji Ohba

Splitting (Complicated) Surfaces Is Hard 95
Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus,
Kim Whittlesey

Pants Decomposition of the Punctured Plane 99
Sheung-Hung Poon, Shripad Thite

10:10 – 11:10 Session 7: Geometric Matching

Computing the Fréchet Distance Between Simple Polygons 103
Kevin Buchin, Maike Buchin, Carola Wenk

Probabilistic matching of sets of polygonal curves 107
Helmut Alt, Ludmila Scharf, Sven Scholz

On the ICP Algorithm 111
Esther Ezra, Micha Sharir, Alon Efrat

Noisy disk set matching under rigid motion 115
Yago Diez, J. Antoni Sellarès

vi

EWCG 2006, Delphi, March 27–29, 2006

11:30 – 12:30 Invited Talk

So Much Data, So Little Time 119

Bernard Chazelle

16:00 – 17:00 Session 8: Meshing

Restricted Mesh Simplification Using Edge Contractions 121

Mattias Andersson, Joachim Gudmundsson, Christos Levcopoulos

Guaranteed-Quality Anisotropic Mesh Generation for Domains with Curves 125

Yusuke Yokosuka, Keiko Imai

Modifying Delaunay Refined Two-Dimensional Triangular Meshes 129

Narćıs Coll, Marité Guerrieri, J. Antoni Sellarès

Mesh optimisation based on Willmore energy 133

Lyuba Alboul, Willie Brink, Marcos Rodrigues

17:10 – 18:10 Session 9: Approximation and Optimization Algorithms

A New Approximation Algorithm for Labeling Weighted Points with Sliding Labels 137

Thomas Erlebach, Torben Hagerup, Klaus Jansen, Moritz Minzlaff, Alexander Wolff

A polynomial-time approximation algorithm for a geometric dispersion problem 141

Marc Benkert, Joachim Gudmundsson, Christian Knauer, Esther Moet,
René van Oostrum, Alexander Wolff

Covering a Set of Points with a Minimum Number of Lines 145

Magdalene Grantson, Christos Levcopoulos

Min-max-min Geometric Facility Location Problems 149

Jean Cardinal, Stefan Langerman

18:30 – 19:30 Session 10: Proximity and Visibility

Proximity structures in the fixed orientation metrics 153

Christian Wulff-Nilsen

Randolph’s Robot Game is NP-complete! 157

Birgit Engels, Tom Kamphans

Visibility Map determination using Angle preprocessing 161

Lidia Ortega, Antonio J. Rueda, Francisco Feito

Maximizing the Guarded Interior of an Art Gallery 165

Ioannis Z. Emiris, Christodoulos Fragoudakis, Euripides Markou

Wednesday, March 29, 2006

9:00 – 10:00 Session 11: Terrains and In-Place Algorithms

On Realistic Terrains 169

Esther Moet, Marc van Kreveld, A. Frank van der Stappen

vii

22nd European Workshop on Computational Geometry, 2006

River networks and watershed maps of triangulated terrains revisited 173
Hee-Kap Ahn, Mark de Berg, Otfried Cheong, Herman Haverkort,
Frank van der Stappen, Laura Toma

In-Place Randomized Slope Selection 177
Henrik Blunck, Jan Vahrenhold

In-Place Algorithms for Computing (Layers of) Maxima 181
Henrik Blunck, Jan Vahrenhold

10:10 – 11:10 Session 12: Boxes and Volumes

Finding enclosing boxes with empty intersection 185
Carmen Cortés, José Miguel Dı́az-Báñez, Jorge Urrutia

Inner Approximation of Polygons and Polyhedra by Unions of Boxes 189
Christian Spielberger, Martin Held

On the Bounding Boxes Obtained by Principal Component Analysis 193
Darko Dimitrov, Christian Knauer, Klaus Kriegel, Günter Rote

Algorithms for Maximizing the Volume of Intersection of Polytopes 197
Komei Fukuda, Takeaki Uno

11:30 – 12:30 Invited Talk

From triangles to curves 201
Monique Teillaud

14:30 – 15:30 Session 13: Embeddings

On Embedding a Graph on Two Sets of Points 203
Emilio Di Giacomo, Giuseppe Liotta, Francesco Trotta

Acyclic Orientation of Drawings 207
Eyal Ackerman, Kevin Buchin, Christian Knauer, Günter Rote

A homotopy theorem for arrangements of double pseudolines 211
Luc Habert, Michel Pocchiola

Tight planar packings of two trees 215
Yoshiaki Oda, Katsuhiro Ota

15:40 – 16:40 Session 14: Implementation of Geometric Algorithms

A Topologically Robust Boolean Algorithm Using Approximate Arithmetic 217
Julian M. Smith, Neil A. Dodgson

A Small Improvement in the Walking Algorithm for Point Location in a Triangulation 221
Ivana Kolingerová

A certified algorithm for the InCircle predicate among ellipses 225
Ioannis Z. Emiris, Elias P. Tsigaridas, George M. Tzoumas

Voronoi diagrams in Cgal 229
Menelaos I. Karavelas

viii

EWCG 2006, Delphi, March 27–29, 2006

Where to build a temple, and where to dig to find one

Greg Aloupis∗ ‖ Jean Cardinal† ‖ Sébastien Collette‡ ‖ John Iacono§ Stefan Langerman¶ ‖

Abstract

In this paper, we analyze the time complexity of find-
ing regular polygons in a set of n points. We use two
different approaches to find regular polygons, depend-
ing on their number of edges. Those with o(n0.068)
edges are found by sweeping a line through the set of
points, while the larger polygons are found by ran-
dom sampling. We can find all the polygons with
high probability in O(n2.068+ε) expected time for ev-
ery positive ε. This compares well to the O(n2.136+ε)
deterministic algorithm of Brass [1]. Our method
can also be used to find incomplete regular polygons,
where up to a constant fraction of the vertices are
missing.

1 Introduction

The focus of this study is on the detection of regular
structure in point sets. Our motivation comes from
observations that have been published concerning ex-
traordinary symmetries in the placements of ancient
towns, temples and other important locations. Specif-
ically, the oracle of Delphi has been measured to be
the apex of isosceles triangles with at least seven pairs
of ancient Greek cities1. The same is true for the
oracle at Dodoni, while the small island of Delos is
the apex of at least thirteen isosceles triangles. All
three of the central locations were considered to be
among the most important of places, and in fact Del-
phi was considered to be the navel of the world. In
general, one may find seemingly countless collinear-
ities, reflective symmetries, partial n-gons and net-
works of isosceles triangles when looking at the graph
of cities in the ancient world, from the British Isles to
the Middle East.

We will not concern ourselves further questioning
whether such structures were carefully constructed or

∗greg.aloupis@ulb.ac.be
†jcardin@ulb.ac.be
‡Aspirant du F.N.R.S., sebastien.collette@ulb.ac.be
§Department of Computer and Information Science, Poly-

technic University, 5 MetroTech Center, Brooklyn NY 11201.
Research supported in part by NSF grants CCF-0430849 and
OISE-0334653. http://john.poly.edu.

¶Chercheur qualifié du F.N.R.S.,
stefan.langerman@ulb.ac.be

‖Computer Science Department, Université Libre de Brux-
elles, CP212, Boulevard du Triomphe, 1050 Bruxelles, Belgium.

1For an informal, illustrative and detailed account, see
http://www.geocities.com/sfetel/en/geometry.htm.

instead an expected result on large complete geomet-
ric graphs. However, the topic generates other inter-
esting questions. If one chooses a particular location
as a temple, it is not difficult to construct cities (at
least on paper) so that the temple becomes the cen-
ter of several symmetries. What about the opposite?
Given a set of existing cities, where should one de-
cide to place a temple? Or, to ask differently, where
should one look for a hidden temple?

2 Previous Work

Given a set of n points, we wish to find the maximum
subset which satisfies a specific symmetry or struc-
ture.

The algorithm by Brass [1], for finding maximum
symmetric subsets in a set of points, is capable of
handling reflective lines, translations, rotational sym-
metries and repeated sets. The time complexity is
O(n2.136+ε) for every positive ε.

Brass noted that another result of his algorithm was
to find all regular polygons contained in the set, which
is remarkable because there exist sets of n points con-
taining O(n2) regular polygons.

The bound of Brass was reached by analyzing
the maximum number of possible isosceles triangles
formed by a set of points in the plane. Pach and
Agarwal [2] gave a simple bound of O(n2+1/3) for that
problem. This was improved informally by Pach and
Tardos [3] to O(n2.136+ε) for every positive ε.

3 Model of Computation

We assume that all coordinates and other values are
stored in a format that allows constant time equality
testing and hashing. As hashing is only used to speed
up one dimensional searches, it can be substituted
with a comparison-based structure at a logarithmic
addition cost which is absorbed into the ε. Further-
more, as exact computation methods are typically not
used, comparison based structures can be used to al-
low equality tests to be substituted with proximity
tests for suitably small proximities to compensate for
any small discrepancies in the computation.

4 Results

We improve the time complexity for detecting max-
imal regular polygons in point sets, although unlike

1

22nd European Workshop on Computational Geometry, 2006

Figure 1: Can you find all of the regular k-gons in
this figure? Solution is in Figure 2.

the algorithm by Brass, our algorithm is randomized.
Our new bound is O(n2.068+ε). Notice that the

fractional component in the exponent of n has been
halved. This is no coincidence. Our algorithm is de-
signed to reduce this fraction by a factor of 2. Thus,
any improvement over the result of Pach and Tardos
will be directly reflected in our algorithm.

Our main result appears as Theorem 7 at the end of
this section. The remainder of the section is devoted
to presenting lemmata that guide us to the Theorem.

Lemma 1 In time O(n2.068 log n) we can find all ≤
n0.068-gons in a set S of n points.

Proof. First, we compute all line segments defined by
pairs of points in S, and we view this as an embedded
graph. We compute a hash table at each vertex con-
taining incident edges which are stored by key value
and length.

Let φi = π− 2π
i , and Φ = {φ3, φ4, . . . φn0.068}. Thus,

Φ is the set of all angles formed by three adjacent ver-
tices in a regular ≤ n0.068-gon. Thus, for any edge,
it is possible to determine using the set Φ and the
hash tables at its incident vertices if there is a pos-
sible neighboring edge that could be in a ≤ n0.068-
gon. This can be done in O(n0.068) table lookups,
and therefore time.

The algorithm is a line sweep. As we sweep
we keep the messages of the following form on the
edges that intersect the sweep line: “possible k-gon
above/below.” Edges could carry several messages
at one time, and edges deliver their messages to the
right endpoint of the edge when the sweep line arrives
there.

The sweep proceeds in the normal manner, from left

to right, where at vertices we process several types of
events:

• Origination Event. This event detects the pos-
sible leftmost point of a k-gon. If two edges of
the same length are to the right of the active
vertex and are at angle φk, then we give a “pos-
sible k-gon below” signal to the upper edge and
a “possible k-gon above signal to the lower edge.

• Propagation Event. This event traces a possible
k-gon though one edge on its upper or lower por-
tion. If a “possible k-gon above/below” signal is
received from an edge, and if there is a right fac-
ing edge of the same length and angle φk away
from the edge delivering the message, the mes-
sage is propagated to this right facing edge. (The
orientation of the angle is determined by whether
the signal is an above or below signal). If there
is no such right-facing edge, the message is dis-
carded, as what we thought might be a k-gon is
not.

• Termination Event. This event occurs when we
detect the rightmost vertex of a k-gon. If a vertex
receives a “possible k-gon above” and a “possible
k-gon” below signals from edges on the left of the
same length, angle φk apart, and in the proper
orientation, then we have finished the process of
discovering a complete k-gon. We output the de-
scription of the k-gon (the center, rotation, and
gonality can be easily determined from the infor-
mation at hand), and we do not propagate the
two incoming signals.

Hopefully, the correctness of the method is clear
from the above description. We now focus on the
runtime. It takes O(n2 log n) time to perform a line
sweep. (The astute reader will realize that a topolog-
ical sweep could be used instead at a cost of O(n2),
but as all logs get absorbed in the ε, this observation
is not critical). As there are only 2n0.068 possible sig-
nals, if all of them appeared on all O(n2) edges, this
would create a total of O(n2.068) signals to handle
over the entire sweep. Propagation and termination
events are done with table lookup and take constant
time for each event. Generating all origination events
takes O(n0.068) table lookups for each incident edge
to the right, as all angles in Φ are searched. Thus,
the total runtime is O(n2.068) if we allow hashing, and
O(n2.068 log n) in the model of computation described
above. �

Definition 1 A prime-skip triangle of a k-gon is an
isosceles triangle formed by three vertices of the k-gon
where the two non-apex vertices defining the equal
sides of the isosceles triangle are at a prime number
of vertices away from each other.

2

EWCG 2006, Delphi, March 27–29, 2006

Observation 1 Given a prime-skip triangle of a k-
gon G, k and thus G can be uniquely determined in
logarithmic time.

The simplest way to determine which one it is in
constant time is to build a lookup table of size O(n2).
If we do not allow hashing, a logarithmic factor is
added as we have to look in a binary search tree. The
following follows directly from the prime number the-
orem:

Observation 2 Given a k-gon G, a random isosceles
triangle is prime-skip with probability 1

log n .

Lemma 2 The sum of complexities of all ≥ n0.068-
gons is at most n2.068+ε.

Proof. Let κi be the number of i-gons in a fixed
set S of n points. The sum of the complexities of
all ≥ n0.068-gons is

∑n
i=n0.068 iκi. Any k-gon gen-

erates at most O(k2) isosceles triangles of which at

most O(k2

log n) are prime-skip. Thus there are at

most
∑n

i=n0.068
i2κi

log i prime-skip, and therefore distinct,

isosceles triangles. We know from [3] that there are at
most O(n2.136+ε) distinct isosceles triangles and thus:

n∑

i=n0.068

i2κi

log i
= O(n2.136+ε)

which since n0.068 ≤ i ≤ n gives

n0.068

log n

n∑

i=n0.068

iκi = O(n2.136+ε)

and dividing and absorbing the log into the ε gives

n∑

i=n0.068

iκi = O(n2.068+ε)

This last equation is exactly the statement of the
lemma. �

Definition 2 A more-than-half-full k-gon is a subset
of the vertices of a regular k-gon containing at least
k/2 points.

Corollary 3 The sum of complexities of all more-
than-half-full ≥ n0.068-gons in a set S of n points is
at most n2.068+ε

Proof. This is an easy variant of Lemma 2, as the
more-than-half-full condition does not change any-
thing but constants buried in the big-O. �

Lemma 4 Given an isosceles triangle T , we can de-
termine one of the following:

Figure 2: Here we show all of the regular k-gons in
the point set illustrated in Figure 1.

• if the candidate k-gon containing T is less-than-
half-full, then we can answer ”T is not part of a
k-gon” in O(1) time;

• otherwise we can decide in O(k) time whether T
is part of a k-gon or not.

Proof. Given an isosceles triangle T , the center of
the candidate polygon comes from the circumcenter
which can be found in constant time. From the apex
angle of the triangle, we can determine what is the
smallest value of k such that T could be three vertices
of a k-gon. This could be done by expressing the angle
as a fraction of 2π in lowest terms, or alternately via a
table lookup. Since there are at most n2 possible apex
angles in triangles with vertices in ≤ n−gons, such a
table could be precomputed in time O(n2), which does
not asymptotically contribute to the overall runtime.

Given T , the center of the polygon, and the value
of k, one knows the location of all vertices on the can-
didate polygon. We then check to see if all of the
vertices in the candidate polygon are present. We
check all k − 3 of them in random order. If any one
vertex is not present we terminate the check and out-
put nothing. If all vertices are present, we output the
candidate k-gon.

As we always spend at most O(k) time checking
each candidate k-gon, if the candidate k-gon is more-
than-half-full, we trivially spend O(k) time. If the
candidate k-gon is not more-than-half-full, over half
of the k− 3 tests will fail. Since the tests are ordered
randomly, we expect to perform at most 2 tests, and
thus expect to spend only O(1) time performing the
tests in this case. �

3

22nd European Workshop on Computational Geometry, 2006

Lemma 5 For any ≥ n0.068-gon G, at least 1
n2 of the

isosceles triangles are in G.

Proof. According to a personal communication of
Pach and Tardos cited in [1], the maximum number
of isosceles triangles among n points in the plane is
O(n2.136+ε). Any ≥ n0.068-gon G defines O(n0.136)
isosceles triangles. Thus, O(1/n2) of the isosceles tri-
angles have all three points in G. �

Corollary 6 For any ≥ n0.068-gon G, 1
n2 log n of the

isosceles triangles are prime-skip triangles in G.

Proof. Follows from Lemma 5 and Observa-
tion 2. �

Theorem 7 With high probability, we can find all
regular polygons in a set S of n points in the plane in
expected time O(n2.068+ε).

Proof. Using Lemma 1, all regular ≤ n0.068-gons can
be found in time O(n2.068). We thus focus on the case
of large polygons, that is, ≥ n0.068-gons.

The algorithm proceeds as follows: we pick
O(n2 log2 n) random isosceles triangles formed from
the vertices of S. Corollary 6 and the solution to
the coupon collector problem indicates that we will
now have with positive constant probability at least
one prime-skip isosceles triangle from every ≥ n0.068-
gon. Lemma 4 explains how we can determine which
isosceles triangles come from k-gons and which do
not. Since O(1) expected time is spent checking those
that are not part of a k-gon, we spend O(n2 log2 n)
time checking all such triangles. In order to check
those that are part of a k-gon, or at least a par-
tially full k-gon, we spend time linear in the gonal-
ity for each check. Corollary 3 states that the sum
of the gonalities of all more-than-half-full ≥ n0.068-
gons is O(n2.068) thus giving this same bound on
the time to perform this class of checks. As we
picked O(n2 log2 n) triangles, the total complexity is
O(n2.068+ε).

�

5 Variants

While we have focused on the case of finding regu-
lar k-gons, our algorithm can be used to find all k-
gons where a constant fraction of the points in the
k-gon are missing, by using a Monte Carlo version of
Lemma 4. The identification of such almost-complete
symmetric sets of historical sites can aid the computa-
tional archaeologist identify possible locations for ex-
ploratory missions in search of buried ruins. This vari-
ant has the same runtime as the original algorithm.

Also, by processing all k-gons with the same cen-
ter, more complex types of symmetry can be easily
detected.

6 Acknowledgments

We would like to thank Boris Aronov, Jean Chapelle
and Erik Demaine for interesting discussions about
chords, polygons, and Euclid in general.

References

[1] P. Brass. On finding maximum-cardinality sym-
metric subsets. Computational Geometry - Theory
and Applications, 24(1):19–25, 2003.

[2] J. Pach and P. K. Agarwal. Combinatorial geom-
etry. Wiley-Interscience, 1995.

[3] J. Pach and G. Tardos. Personal communication
cited in [1].

4

EWCG 2006, Delphi, March 27–29, 2006

Fixed Parameter Algorithms for Minimum Weight Partitions

Christian Borgelt†, Magdalene Grantson∗, and Christos Levcopoulos∗

Abstract

In this paper we propose to solve two hard geometric
optimization problems: We describe a fixed parame-
ter algorithm for computing the minimum weight tri-
angulation (MWT) of a simple polygon with (n − k)
vertices on the perimeter and k hole vertices in the in-
terior, that is, for a total of n vertices. We show that
the MWT can be found in time at most O(n44kk),
and thus in time polynomial in n if k ≤ O(log n). We
implemented our algorithm in Java and report exper-
iments backing our analysis.

Given a convex polygon with (n − k) vertices on
the perimeter and k hole vertices in the interior,
that is, for a total of n vertices, we also describe a
fixed parameter algorithm for computing the mini-
mum weight convex partition (MWCP) of the input.
We show that the MWCP problem can be found in
at most O(n3 · k4k−8 · 213k) time, and thus at O(n3)
time if k is constant, and in time polynomial in n if
k = O(log n

log log n). Our results for the MWCP problem
hold also for the more general case where the input is
an n-vertex PSLG and k is the total number of holes
and/or reflex vertices inside the convex hull.

1 Introduction

We propose to solve two hard geometric optimization
problems in this paper:

1. We consider the problem of finding the minimum
weight triangulation (MWT) of a simple polygon
with n − k vertices on the perimeter and k hole
vertices in the interior, i.e., for a total of n ver-
tices. In this case, a MWT is a maximal set of
non-intersecting edges with minimum total edge
length, all of which lie inside the polygon. The
problem of finding the MWT of a set S of points
can be reduced to this problem by finding the
convex hull of S, which is then treated as a (con-
vex) polygon, while all vertices not on the convex
hull are treated as hole vertices. The MWT prob-
lem has several applications [17, 15].

2. We also consider the problem of finding the min-
imum weight convex partition (MWCP) of a con-

∗Department of Computer Science, Lund University, Box
118, 221 Lund, Sweden, {magdalene,christos}@cs.lth.se,
†Department of Knowledge Processing and Language Engi-
neering, University of Magdeburg, Universitätsplatz 2, 39106
Magdeburg, Germany, borgelt@iws.cs.uni-magdeburg.de

vex polygon with n− k vertices on the perimeter
and k hole vertices in the interior, i.e., for a to-
tal of n vertices. In this case, the MWCP is a
convex partition such that the total edge length
is minimised. The MWCP has applications in
computer graphics [17], image processing [15],
database systems [13], and data compression [17].

It is known that the MWCP of G is NP-hard [11].
With respect to a convex polygon with a single hole
vertex or a convex polygon with two hole vertices,
we [7] gave O(n) and O(n2) time algorithms, respec-
tively. With respect to n-vertex polygons without
holes, Keil [9] developed a dynamic programming al-
gorithm that runs in O(n2N2 log n) time, where N
is the number of concave vertices. Later Agarwal,
Flato, and Halperin [1] improved this time bound to
O(n2N2).

The complexity status of the MWT problem has
been open since 1975, when it was included in a list
of problems neither known to be NP-complete or solv-
able in polynomial time [5]. Recently, however, it was
reported that the MWT problem is NP-hard [16]. For
k = 0 (no holes), however, a MWT can be found by
dynamic programming in time O(n3) [6, 12].

Recent attempts to give exact algorithms for com-
puting a MWT and a MWCP exploit the idea of de-
veloping a so-called fixed parameter algorithm. Such
an algorithm has a time complexity of O(nc · f(k)),
where n is the input size, k is a (constrained) param-
eter, c is a constant independent of k, and f is an
arbitrary function [3].

W.r.t. a MWT of a simple polygon with holes the
total number n of vertices is the size of the input
and we may choose the number k of hole vertices as
the constrained parameter. An algorithm based on
such an approach was presented in [10] and analyzed
to run in O(n5 log(n) 6k) time. In this paper we de-
scribe a fixed parameter algorithm inspired by a basic
observation in this algorithm, but deviating in several
respects. Due to improvements in both the algorithm
and its analysis, we are able to show that the time
needed to find a MWT of a polygon with hole vertices
is at most O(n44kk). In addition, we implemented our
algorithm in Java and performed experiments backing
our analysis.

W.r.t. a MWCP of a convex polygon with holes the
total number n of vertices is the size of the input and
we may choose the number k of hole vertices as the

5

22nd European Workshop on Computational Geometry, 2006

constrained parameter. In this paper, we describe a
fixed parameter algorithm for computing the MWCP
of a convex polygon G with n − k vertices on the
perimeter and k hole vertices in the interior, that is,
for a total of n vertices. We show that our algorithm
can solve the problem in at most O(n3 · k4k−8 · 213k)
time, and thus at O(n3) time if k is constant, and in
time polynomial in n if k = O(log n

log log n). Our results
for the MWCP problem hold also for the more general
case where the input is an n-vertex PSLG and k is the
total number of holes and/or reflex vertices inside the
convex hull.

The paper is structured as follows. In Section 2 we
discuss our results for the MWT problem. In section 3
we discuss our results for the MWCP problem.

The full versions of both algorithms can be found
in [7] and [8] respectively.

2 A Fixed Parameter Algorithm for the MWT
Problem

In this Section we will discuss our results for the MWT
problem.

2.1 Preliminaries and Basic Idea

Following [2], we call a polygon with holes a pointgon
for short. We denote the set of (n− k) perimeter ver-
tices by Vp = {v1, v2, . . . , vn−k}, assuming that they
are numbered in counterclockwise order starting at an
arbitrary vertex. The set of k hole vertices we denote
by Vh = {vn−k+1, vn−k+2, . . . , vn}. The set of all ver-
tices is denoted by V = Vp ∪ Vh, the pointgon formed
by them is denoted by G.

Definition 1 A vertex u ∈ V is said to be lexico-
graphically smaller than a vertex v ∈ V , written
u ≺ v, iff (1) the x-coordinate of u is smaller than
the x-coordinate of v or (2) the x-coordinate of u is
equal to the x-coordinate of v, but the y-coordinate
of u is smaller than the y-coordinate of v.

W.l.o.g. we assume that the vertices in Vh are in lex-
icographical order, i.e., ∀i; n − k < i < n : vi ≺ vi+1.
(Otherwise we can sort and renumber them.)

Definition 2 A path in a pointgon G, i.e., a sequence
of vertices from V , is called lexi-monotone iff it is ei-
ther lexicographically increasing or lexicographically
decreasing. A separating lexi-monotone path (or sim-
ply a separating path) is a lexi-monotone path with
start and end vertices on the perimeter of G (i.e. ver-
tices in Vp) and a (possibly empty) sequence of hole
vertices (i.e. vertices in Vh) in the middle, which does
not intersect the perimeter of G.

With these definitions, the core idea of our algorithm
(as well as the core idea of the algorithm in [10]) is
based on the following observation:

Observation 1 Let v ∈ Vp be an arbitrary vertex on
the perimeter of a pointgon G. Then in every triangu-
lation T of G there exists: either a separating path π
starting at v or two perimeter vertices vc and vcc that
are adjacent to v and that together with v form a
triangle without any hole vertices in its interior.

As a consequence, we can try to find the MWT of
a given pointgon G with a recursive procedure that
considers possible splits of G into at most two sub-
pointgons (using the above observation). The MWT
is then obtained as the minimum over all these splits.

Formally, we can describe the solution procedure as
follows: Let G be a given pointgon and v ∈ Vp an ar-
bitrary vertex on the perimeter of G. Let Π(G, v) be
the set of all separating paths of G starting at v. If
π ∈ Π(G, v) is a separating path, let |π| be the length
of π and L(G, π) and R(G, π) the sub-pointgons to
the left and to the right of π, respectively. Further-
more, let vc and vcc be the perimeter vertices that
are adjacent to v in clockwise and counterclockwise
direction, respectively. Then the weight of a MWT of
G can be computed recursively as

min
{

minπ∈Π(G,v){MWT(L(G, π))

+ MWT(R(G, π)) − |π|
}
,

MWT(R(G, (vcc, vc))) + |(v, vcc)|+ |(v, vc)|
}

.

The first term in the outer minimum considers all
splits by separating lexi-monotone paths. The second
term in the outer minimum refers to the special path
(vcc, vc) that “cuts off” v from the rest of the point-
gon if the triangle (v, vcc, vc) does not contain any
hole vertices. Although the above recursive formula
only computes the weight of a MWT, it can easily be
extended to yield the edges of a MWT by returning
the set of edges that is added in order to achieve a tri-
angulation for each recursive call. The union of these
sets of edges for the term that yields the minimum
weight is a MWT for the original pointgon G.

2.2 Dynamic Programming

To apply dynamic programming, we have to identify
the different subproblems that we meet in the recur-
sion, and we have to find a representation for them.
The core idea here is: if in the recursion we prefer to
use the same vertex v for attaching separating paths
as in the preceding split, every subproblem we en-
counter can be described by one or two lexi-monotone
paths that start at the same vertex v (which we call
an anchor of the subproblem) and a coherent piece of
the perimeter of the input pointgon. An analysis of
this statement, providing a proof, will be given later.

We represent a subproblem by an index word over
an alphabet with n characters, which uniquely iden-
tifies each subproblem. This index word has the gen-
eral form (v, πcc, πc) and describes a counterclockwise

6

EWCG 2006, Delphi, March 27–29, 2006

v

type A

v

type B

v

type C

v

type D

black point: in Vp

white point: in Vh

gray point: in V = Vp ∪ Vh

encircled point: anchor

thick lines: pieces of the perimeter
of the input pointgon.

Figure 1: The four types of pointgons we encounter.

walk along the perimeter of the subproblem. The first
element is the anchor v, which may be a perimeter
vertex or a hole vertex of the input pointgon and thus
can have n possible values. πcc and πc describe the
sequences of hole vertices of the input pointgon that
are on the separating paths. All elements of πcc and
πc are in Vh—with the possible exception of the last
elements, which may be perimeter vertices scc and
sc, respectively. The vertices in a coherent perimeter
piece between the end vertices scc and sc (if such a
perimeter piece exists) are not part of the subproblem
representation, but are left implicit.

Instead of pure dynamic programming, we use
memorized tree recursion based on a trie structure,
which is accessed through the index word represent-
ing a subproblem. In each recursive call, we first ac-
cess the trie structure in order to find out whether the
solution to the current subproblem is already known.
If it is, we simply retrieve and return the solution.
Otherwise we carry out the split computations and in
the end store the found solution in the trie.

2.3 Types of Pointgons

Apart from the input pointgon, which is of neither of
these types, we encounter four types of sub-pointgons
(see Figure 1; this set differs from the one used in [10]):

Type A pointgons have only one separating path
starting at the anchor v, which must be on the perime-
ter of the input pointgon. The vertices on the path are
lexicographically increasing. There is also a coherent
perimeter piece of the input pointgon.

Type B pointgons are bounded by two separating
paths starting at the anchor v, which may be either a
perimeter vertex or a hole vertex of the input point-
gon. The vertices on both paths are lexicographi-
cally increasing. There may or may not be a coherent
perimeter piece of the input pointgon.

Type C pointgons are bounded by two separating
paths starting at the anchor v, which must be a
perimeter vertex of the input pointgon. One of them

v A

vA

v B

vB

v B
vB

A
vA

v

A
vA

C

vC

Figure 2: Processing of Type A
pointgons in the recursion. v
and v∗, ∗ ∈ {A, B, C}, mark
the subproblem anchors.

is lexicographically increasing, the other decreasing.
There is a perimeter piece of the input pointgon.

Type D pointgons are bounded by two separating
paths starting at the anchor v, which may be either a
perimeter vertex or a hole vertex of the input point-
gon. The vertices on both paths are lexicographically
decreasing. There must be a perimeter piece of the
input pointgon, which contains at least two vertices.

The general principle of the choice of the anchor
of a subproblem is that it is the leftmost vertex on
the separating path if there is just one path, and the
vertex that is on both paths if there are two sepa-
rating paths. If there are two vertices that are on
both paths (because they share both start and end
vertex), we choose the leftmost of the two. For the
input pointgon, we choose the lexicographically small-
est perimeter vertex as the anchor.

For the input pointgon, regardless of whether the
path starts at the anchor or cuts off the anchor, we
obtain a sub-pointgon of type A for the subproblems.
The other types of pointgons can only be created in
deeper levels of the recursion. In the following we
consider how these types of pointgons are treated in
the recursion in our algorithm and thus also prove
that these are the only types of pointgons that occur.

Type A: The different splits of a type A pointgon are
sketched in Figure 2. On the very left a path “cut-
ting off” the anchor, which is seen as leading from the
counterclockwise neighbor of v to its clockwise neigh-
bor, can be merged with the existing separating path
to give a new type A pointgon. Otherwise, we ob-
tain a type B pointgon (second sketch). For a path
starting at the anchor, we distinguish whether it is
lexicographically increasing (third sketch) or decreas-
ing (fourth sketch, note the different anchor). In the
former case, we obtain one type A and one type B
pointgon, which receive the same anchor as the origi-
nal pointgon. In the latter case, we obtain one type A
pointgon, with its anchor at the end of the new sepa-
rating path, and one type C pointgon, with its anchor
equal to that of the original pointgon. Note that all
cases may also occur mirrored at a horizontal axis,
which should also be kept in mind for the other types.

7

22nd European Workshop on Computational Geometry, 2006

v A

vA

v B

vB

v B1

B2

vB

v B1

B2

vB

Figure 3: Processing of Type B
pointgons in the recursion. v
and v∗, ∗ ∈ {A, B}, mark the
subproblem anchors.

v

A
vA

v

C

vCvB

B

v

B

vB

C

vC

v

D C

vDvC

Figure 4: Processing of Type C
pointgons in the recursion. v
and v∗, ∗ ∈ {A, B, C, D}, mark
the subproblem anchors.

Type B: Type B pointgons behave similarly to
type A pointgons (see Figure 3). Again we have to
check whether a type A pointgon can result (first
sketch). Otherwise we get a type B pointgon with
an anchor that is one end of the cutting path (second
sketch). For separating paths starting at the anchor
only type B pointgons can result (third and fourth
sketch), since both separating paths are increasing.

Type C: Type C pointgons (which do not appear in
[10]) are the most complicated case (see Figure 4). If
the anchor is “cut off”, we only have one separating
path, so the anchor is set to its starting vertex and
we obtain a type A pointgon (first sketch). If a sepa-
rating path is attached to the anchor, we have to dis-
tinguish whether it is lexicographically increasing or
decreasing. Increasing paths are simpler, leading to a
split into one type C and one type B pointgon (second
sketch). If the path is lexicographically decreasing, we
have to check whether there is a perimeter piece of the
input pointgon with at least two vertices. If there is
not, we obtain one type B pointgon, with its anchor
at its leftmost vertex, and one type C pointgon, which
maintains the anchor of the original pointgon (third
sketch). Otherwise we obtain one type D and one
type C pointgon, both of which receive the anchor of
the original pointgon (fourth sketch).

Type D: Type D pointgons behave symmetrically to
type B pointgons. When the anchor is “cut off” we
also have to check whether a type A pointgon results
(first sketch). Otherwise we get a type D pointgon
with an anchor that is one end of the cutting path
(second sketch). For separating paths starting at the
anchor either one type B and one type D pointgon
(third sketch), namely if one perimeter piece is empty,
or two type D pointgons result (fourth sketch).

vD

vA

vA

vD

vB

vB

D
vD

vD1

D2
vD

Figure 5: Processing of Type D
pointgons in the recursion. v
and v∗, ∗ ∈ {A, B, D}, mark
the subproblem anchors.

Comparison to [10]: Our approach gives rise to a
different set of sub-pointgons. An important advan-
tage of our approach is that it uses a coherent scheme
for processing the sub-pointgons, which is strictly
based on either “cutting off” the anchor or attach-
ing a lexi-monotone path to the anchor (Section 2.1).
In contrast to this, the approach of [10] needs an ad-
ditional split type (when processing a type 1/type A
pointgon).

2.4 Analysis

To estimate the time complexity of our algorithm, we
group the subproblems and analyze the groups sepa-
rately. The groups are defined by the number of hole
vertices the sub-pointgon has on its perimeter.

So consider the number of subproblems with l, 0 ≤
l ≤ k, hole vertices on the perimeter. The worst case
is that we have three perimeter vertices of the input
pointgon, namely the anchor and the two ends of the
separating paths. This gives us a factor of n3. Next
we have to choose l of the k input hole vertices, for
which we have

(
k
l

)
possibilities, and then we have to

distribute the chosen hole vertices on the two paths,
for which there are 2l possibilities. As a consequence
we have in the worst case O(n3

(
k
l

)
2l) possible sub-

pointgons with l holes on the perimeter.

Given a sub-pointgon with l holes on the perimeter,
there are at most k − l holes left to form a separat-
ing path and at most n end points. This gives us a
maximum of n2k−l possible paths. For each path, we
have to check whether it intersects the perimeter of
the sub-pointgon. This check can exploit a prepro-
cessing step in which we determine for each edge that
could be part of a separating path whether it inter-
sects the perimeter of the input pointgon or not. The
resulting table has a size of at most n2. With this
table we can check in O(k − l) whether a given sepa-
rating path intersects a (possibly existing) perimeter
piece. We also have to check for an intersection with
the at most two already existing separating paths,
which contain at most l +2 edges. By exploiting that
all paths are lexi-monotone, this check can be car-
ried out in O(k). Once a path is found to be valid,
the sub-pointgons have to be constructed by collect-
ing their at most k + 3 defining vertices, and their

8

EWCG 2006, Delphi, March 27–29, 2006

n− k k time in seconds time/n44kk

3 1 0.008± 0.000 7.813·10−6

6 1 0.009± 0.000 9.371·10−7

9 2 0.039± 0.003 8.324·10−8

12 3 0.071± 0.004 7.305·10−9

15 4 0.121± 0.020 9.067·10−10

18 5 0.370± 0.090 2.582·10−10

21 6 1.365± 0.539 1.045·10−10

24 7 5.402± 2.209 5.100·10−11

27 8 25.335± 10.449 3.220·10−11

30 9 90.641± 34.399 1.661·10−11

Table 1: Results obtained from our Java implementa-
tion. All results are averages over 20 runs.

solutions have to be looked up. Both operations take
O(k) time. Finally the length of the path has to be
computed, which takes O(k−l) time. Thus processing
one path takes in all O(k) time.

Therefore the overall time complexity is O(n44kk).

2.5 Implementation

As already mentioned, we implemented our algorithm
in Java. Example results for different numbers of holes
and perimeter vertices (averages over 20 runs, convex
pointgons) are shown in Table 1. The test system
was an Intel Pentium 4C@2.6GHz with 1GB of main
memory running S.u.S.E. Linux 10.0 and Sun Java
1.5.0 03. To check our estimate of the time complex-
ity, we computed the ratios of the measured execution
times to the theoretical values. As can be seen, these
ratios are decreasing for increasing values of n and k,
indicating that the theoretical time complexity is ac-
tually a worst case, while average results in practice
are considerably better. The source code of our imple-
mentation can be downloaded at http://fuzzy.cs.uni-
magdeburg.de/˜borgelt/pointgon.html.

3 A Fixed Parameter Algorithm for the MWCP
Problem

In this Section we will discuss our results for the
MWCP problem.

3.1 Preliminaries

We consider as input a convex polygon with (n − k)
vertices on the perimeter and k hole vertices, thus
a total of n input vertices. We call such a con-
vex polygon with holes a convex pointgon for short.
We denote the set of perimeter vertices by Vp =
{v0, v1, . . . , vn−k−1}, assuming that they are num-
bered in counterclockwise order starting at an arbi-
trary vertex. The set of hole vertices we denote by

Vh = {vn−k, vn−k+1, . . . , vn−1}. The set of all ver-
tices is denoted by V = Vp ∪ Vh, the convex pointgon
formed by them is denoted by G.

Given a convex pointgon G a p-edge is an edge from
a hole vertex to any vertex on the perimeter.

Fact 1 Given a convex pointgon G , apart from edges
going between hole vertices, at most 3 p-edges inci-
dent to a hole vertex are sufficient to induce a convex
partition.

Proof. At most three p-edges suffice for each hole
vertex because if a hole vertex is incident to four p-
edges, there must be one that can be removed without
introducing a concavity at the hole vertex. Removing
it also does not introduce a concavity at the perimeter,
because the polygon we consider is convex. �

From the proof in Fact 1, we observe a decisive dif-
ference between a p-edge and an edge going between
hole vertices. That is, removing an edge going be-
tween hole vertices so that no concavity is introduced
at one end point may very well introduce a concavity
at the other end point and thus we cannot remove it.

From Fact 1 we deduce a more special case:

Fact 2 For any MWCP of G there are at most three
p-edges incident to a hole vertex.

Proof. At most three p-edges are needed for each
hole vertex because of the same reasoning in the proof
of Fact 1. Moreover removing the forth p-edge de-
creases the weight for the case of the MWCP prob-
lem. �

Given a convex polygon with k vertex holes, at most
3 p-edges incident to each hole vertex are needed to in-
duce a minimum convex partition. Thus a maximum
of at most 3k p-edges can be in the solution. Given at
most 3k p-edges we can also check whether they inter-
sect in constant time since k is constant. A simple and
obvious way to solve the problem is to use a brute-
force approach of examining all the possible ways of
selecting the 3k p-edges. For each possible 3k p-edges
we consider all possible combinations of non-crossing
edges going between hole vertices. There are at most
O(23 · 59)k · k−6) such combinations [4, 18]. Selecting
the best over all combinations solves the problem in
O(n3k · (23 · 59)k · k−6) time.

Given a convex pointgon G, we consider partition-
ing G into so called v-pieces. These v-pieces serve the
purpose to divide the problem into subproblems such
that a subproblem denotes a piece of G containing
a single hole vertex. The v-pieces alone do not nec-
essarily yield a convex partition. The subproblems
representing v-pieces are solved and the results are
combined. The idea is that for any given convex par-
tition CP, the v-pieces and CP are compatible if and

9

22nd European Workshop on Computational Geometry, 2006

only if for each hole vertex vh ∈ Vh, the p-edges inci-
dent to vh in CP lie only in one or several v-pieces of
vh.

Definition 3 A v-piece (vh, v1, v2) is a part of a given
polygon P with holes, where vh ∈ Vh is a hole vertex
and v1 ∈ Vp and v2 ∈ Vp are (not necessarily dis-
tinct) perimeter vertices (the so-called vital points of
the v-piece). It is the part bounded by the two p-
edges (vh, v1) and (vh, v2), the so-called vital edges,
and the part of the perimeter of G that is traversed
by a counterclockwise walk from v1 to v2. If a v-piece
(vh, v1, v2) contains no other hole vertices, we call it a
legal v-piece (or just a v-piece, for short). If a v-piece
(vh, v1, v2) contains other hole vertices, we call it an
illegal v-piece.

Note that the v-piece (vh, v1, v2) is not the same
as the v-piece (vh, v2, v1). That is, the order of the
vertices v1 and v2 is important, since the part of the
perimeter of G that bounds the v-piece is defined by
a counter-clockwise walk from the first vertex to the
second. Therefore (vh, v1, v2) and (vh, v2, v1) are com-
plements of each other w.r.t. the convex pointgon G;
their union is the whole convex pointgon G.

The idea of the algorithm is to partition the perime-
ter of G into (legal) v-pieces, such that each hole ver-
tex h has at most 3 v-pieces. Three v-pieces suffice,
because no more than three p-edges per hole vertex
are needed to achieve a convex partition (see Fact 1).
If there were more than 3 v-pieces, at most three can
contribute p-edges to the solution. Therefore we can
remove all v-pieces that do not contribute without
changing the solution. The partition should be such
that the v-pieces of a coonvex pointgon G put together
contain the entire perimeter of G (but not necessar-
ily the entire polygon P). Adjacent v-pieces, that is,
v-pieces that have at least one perimeter vertex in
common, should belong to different hole vertices.

The core idea of our algorithm is that in order to
find a MWCP it suffices to search all possible parti-
tions into v-pieces, where the partition is such that
two v-pieces associated with the same whole do not
share a vital point, but all v-pieces together cover
the perimeter. To show this, we only have to show
that any convex partition has a compatible partition
into v-pieces, from which it can be derived, so that
we do not “miss” any convex partition by searching
only partitions into v-pieces. One can do this by ini-
tially constructing an v-piece partition by placing one
vital point at the end of each p-edge, associating it
with the hole vertex the p-edge leads to. We turn
this into a list, by starting at a perimeter vertex and
following the perimeter counterclockwise, numbering
vertices and collecting vital points. If several vital
points are located at the same perimeter vertex, we
order them according to the order in which the corre-

sponding p-edges are met on a traversal of the perime-
ter shrunk by some small ε. That is we follow a route
inside the perimeter which is at a distance ε from the
perimeter. Next we remove from this list consecutive
vital points that are associated with the same hole
vertex to satisfy the condition stated in the definition
above. The resulting list induces a partition into v-
pieces that is compatible with the convex partition.
Since we did not restrict the convex partition in any
way, this procedure enables us to find a compatible
partition into v-pieces for all convex partitions.

Note that the partition into v-pieces generated as
described in the preceding paragraph is valid, that is,
there are no intersecting vital edges. To see this, con-
sider any two consecutive (with respect to the perime-
ter) p-edges {(vh, v), (vh, v′)}, vh ∈ Vh, v, v′ ∈ Vp. If
no p-edge is incident to the perimeter between v and
v′, then (vh, v) and (vh, v′) must belong to the same
hole-free convex polygon in the partition. Hence the
v-piece of vh, which contains v can extend to any ver-
tex between v and v′, including v′.

It is shown in [7] (the full version) that given k
hole vertices in a convex polygon P , there are at most
E = max(2k − 2, 1) v-pieces in the minimum convex
partition. Note however that the precise number of v-
pieces is not crucial for the complexity result, it only
helps to refine it a little bit. A rougher approximation
of its number would suffice to get similar asymptotic
upper bounds.

In order to generate all possible partitions into v-
pieces (which we have to search), we proceed as de-
scribed in the following sections.

3.2 Preprocessing Phase

We consider all possible combinations of non-crossing
edges going between hole vertices, i.e., all non-crossing
super-graphs on the k hole vertices. The total number
of such graphs is at most O((23 · 59)k · k−6) [4, 18].

As shown pointed out above, it can be shown that
given a convex pointgon G, at most 3 v-pieces in-
cident to a hole vertex are sufficient achieve a con-
vex partition (See [7] as well for further explanation).
Therefore for each non-crossing graph on the k hole
vertices, we allocate a label i ∈ {1, 2, 3} to each non-
convex hole vertex, which is meant to indicate how
many v-pieces that hole vertex would have in a convex
partition if it can be constructed. There are no more
than 3k such labelings for any non-crossing graph.

Since we know the upper bound E = max(2k−2, 1)
on the total number of v-pieces the k hole vertices may
have in an MWCP [7], we discard all labelings where
the total number of v-pieces is greater that E. To
process one labeling, we allocate unique names to each
hole’s v-pieces as follows: A v-piece name is a tuple
(vh, x), where vh ∈ Vh is a hole vertex and x ∈ {a, b, c}
distinguishes between the (at most) three v-pieces the

10

EWCG 2006, Delphi, March 27–29, 2006

hole vertex vh has.

We then consider the arrangement of lines, such
that for each pair of hole vertices we have a line con-
taining them. We look at all intersections of this
arrangement with the perimeter. There are O(k2)
such intersections. Therefore the intersections of
these lines with the perimeter partition the perime-
ter into O(k2) pieces. We will refer to each such piece
as a ‘topologically homogeneous perimeter piece’ (or
‘homogeneous piece’ for short). Assume we let the
homogeneous pieces of the perimeter CH(P) to be
{CH(P) = C0, C1, . . . , Cµ} in counterclockwise or-
der.

For each vital edge (see Definition 3) of a v-piece
there can be O(k2) possibilities as to which homo-
geneous piece the vital edge should be incident to.
However, since the v-pieces are contiguous, that is,
neighbouring v-pieces share a vital point, it suffices
to allocate one tag Cj , j = 1, 2, . . . , µ, to each v-piece
name (vh, x), instead of one tag for each vital edge.
We define that the tag Cj represents the homogeneous
piece the most clockwise vital edge of (vh, x) is inci-
dent to. To find the homogeneous perimeter piece the
most counterclockwise vital edge of a v-piece is inci-
dent to, we retrieve the tag of the neighboring v-piece
that shares the vital point this vital edge goes to.

A v-piece name assigned to a homogeneous piece Cj

is a tuple ((vh, x), Cj). There are O(k4k−4 ·22k−2) such
assignments to be considered for a given labeling L,
since there are at most 2k−2 v-piece names and each
v-piece name can be assigned to O(k2) homogeneous
pieces.

For each homogeneous assignment to v-piece name,
we then take an arbitrary point on the perimeter of
each homogeneous piece and connect it to all hole ver-
tices which should have a vital edge going to it. Let
E′ be the set of edges (line segments) created in this
way, for all homogeneous pieces. We do this to:
(1) Check for possible edge intersections. (We have
no intersections if and only if the set E′ together
with all edges of the non-crossing supergraph does
not lead to any intersections.) If there are edge inter-
sections, we discard the current labeling. (2) Find an
ordering Φ of the v-piece names of the current label-
ing L, corresponding to the counterclockwise ordering
in which the vital edges of the v-pieces will appear on
the shrunk perimeter if a convex partition is to be
constructed. This step takes O(k log k) time, because
it is basically a sorting operation.

Before we start the dynamic programming, which
determines whether it is possible to place the p-edges
on the perimeter vertices we know: 1) How many v-
pieces are associated to each hole vertex. 2) The ho-
mogeneous piece a vital edge of a v-piece should go
to. 3) The counterclockwise ordering Φ of the v-piece
names. 4) All edges connecting hole vertices.

3.3 Dynamic Programming Phase

For each ordering Φ of the v-piece names, we look
at coherent subsequences of 1 ≤ j ≤ 2k − 2 v-piece
names. We consider and solve each subsequence of
j v-piece names with the condition that either a hole
vertex has all its v-piece names (at most three) in this
subsequence, or none of them. We will refer to such
subsequences as valid coherent subsequences. Let C
be a coherent piece of the polygon starting at perime-
ter vertex l and containing m vertices. If we have
the most clockwise vital edge for a v-piece i at ver-
tex l and the most counterclockwise vital edge for a
v-piece j at (l+m) mod n (the other end of the chain),
we want to find the optimal way to place the p-edges
on the way counterclockwise from l to (l + m) mod n
in order to minimise the length of the correspond-
ing convex partition, if such a convex partition ex-
ists. To be precise, we specify each subproblem as a
4-tuple (i, j, l, m), where i ∈ 1 . . .max(2k − 2, 1) indi-
cates the position of the first element of the coherent
subsequence in the counterclockwise ordered list of
v-piece names, j ∈ 1 . . .max(2k − 2, 1) represents the
number of v-piece names of the coherent subsequence,
l ∈ 0 . . . n − k − 1 represents the vertex vl where the
considered perimeter piece starts at, m ∈ 1 . . . n − k
represents the number of vertices on the considered
perimeter piece.

We start with smaller subproblems which are later
used to solve larger subproblems, that is, we consider
subproblems in the order of increasing j and m.

For each subproblem we store the length of the min-
imum convex partition if it is possible to obtain a
convex partition. Otherwise we store ∞ indicating a
convex partition cannot be constructed.

See [7] for how the type of subproblems are solved.

3.4 Analysis

We considered all possible combinations of non-
crossing super-graphs on the k hole vertices. There
are O((23 · 59)k · k−6) number of such non-crossing
super-graphs [7]. It takes O((23 · 59)k · k−6) time to
enumerate all such non-crossing super-graphs [7]. For
each non-crossing super-graph G′, we considered all
the possible labelings of the number of v-pieces cor-
responding to each hole vertex. There are not more
than 3k such labelings for each non-crossing super-
graph. For each labeling L, we considered all possible
homogeneous assignments. There are O(k4k−4 ·22k−2)
such assignments to be considered for a given label-
ing L. For each assignment, we then obtained the
counterclockwise ordering Φ of the corresponding v-
piece names in O(k log k) time. For the ordering Φ
of an assignment Π of a labeling L, we then check
for possible edge intersections in time polynomial in
k and then run the dynamic programming algorithm
which takes O(n3k2) time at each time it is called.

11

22nd European Workshop on Computational Geometry, 2006

This is because, the memory requirement in the worst
case is dominated by the O(n2 · k2) space for the ta-
ble entries. We solve directly each subproblem in time
O(n) with the help of the smaller subproblems. That
is why each call of the dynamic programming algo-
rithm takes O(n3k2) time. We call the dynamic pro-
gramming algorithm at most O(k4k−10 · 213k) times.
Thus the time taken to solve the MWCP problem
is O((23 · 59)k · (k−6) · 3k · (k4k−4 · 22k−2) · n3k2) =
O(n3 · k4k−8 · 213k).

It is straightforward to generalize this result to the
case where we have as input a PSLG G and k is the
total number of holes and/or reflex vertices inside the
convex hull of G.1

References

[1] P.K. Agrawal, E. Flato, and D. Halperin. Polygon De-
composition for Efficient Construction of Minkowski
Sums. Computational Geometry 21(1-2):39–61. Else-
vier Science, Amsterdam, Netherlands 2002

[2] O. Aichholzer, G. Rote, B. Speckmann, and I. Streinu.
The Zigzag Path of a Pseudo-Triangulation. Proc.
WADS, LNCS 2748:377–388. Springer-Verlag, Berlin,
Germany 2003

[3] R. Downey and M. Fellows. Parameterized Complex-
ity. Springer-Verlag, New York, NY, USA 1999

[4] A. Garcia, M. Noy, and J. Tejel. Lower Bounds on the
Number of Crossing-free Subgraphs of KN . Computa-
tional Geometry, Theory and Applications 16:211–221.
Elsevier Science, Amsterdam, Netherlands 2000

[5] M.R. Garey and D.S. Johnson. Computers and In-
tractability: A Guide to Theory of NP-Completeness.
Freeman, New York, NY, USA 1979

[6] P.D. Gilbert. New Results in Planar Triangulations.
Report R-850. University of Illinois 1979

[7] M. Grantson. Fixed-Parameter Algorithms and Other
Results for Optimal Convex Partitions. Licentiate the-
sis, LU-CS-TR:2004-231, ISSN 1650-1276 Report 152.
Lund University, Sweden 2004

[8] M. Grantson, C. Borgelt and C. Levcopoulos. A Fixed
Parameter Algorithm for Minimum Weight Triangula-
tion: Analysis and Experiments. Technical Report LU-
CS-TR:2005-234, ISSN 1650-1276 Report 154. Lund
University, Sweden 2005

[9] J. Keil. Decomposing a Polygon into Simpler Compo-
nents. Ph.D. thesis (Report 163/8). Univ. of Toronto,
Toronto, Canada 1983

[10] M. Hoffmann and Y. Okamoto. The Minimum Tri-
angulation Problem with Few Inner Points. Proc. IW-
PEC, LNCS 3162:200–212. Springer-Verlag, Berlin,
Germany 2004

[11] J. Keil. Decomposing a Polygon into Simpler Compo-
nents. SIAM Journal on Computing 14:799–817. Soci-
ety of Industrial and Applied Mathematics, Philadel-
phia, PA, USA 1985

1The complexity of our algorithm increases as if every reflex
vertex were a hole vertex; i.e. k would then be the sum of all
holes and the number of reflex vertices on the outer perimeter.

[12] G.T. Klincsek. Minimal Triangulations of Polygonal
Domains. Annals of Discrete Mathematics 9:121–123.
ACM Press, New York, NY, USA 1980

[13] E. Lodi, F. Luccio, C. Mugnai, and L. Pagli. On Two-
Dimensional Data Organization, Part I. Fundaments
Informaticae 2:211–226. Polish Mathematical Society,
Warsaw, Poland 1979

[14] A. Lubiw. The Boolean Basis Problem and How
to Cover Some Polygons by Rectangles. SIAM Jour-
nal on Discrete Mathematics 3:98–115. Society of In-
dustrial and Applied Mathematics, Philadelphia, PA,
USA 1990

[15] D. Moitra. Finding a Minimum Cover for Binary
Images: An Optimal Parallel Algorithm. Algorithmica
6:624–657. Springer-Verlag, Berlin, Germany 1991

[16] W. Mulzer and G. Rote. Minimum-weight Triangu-
lation is NP-hard. Proc. 22nd Ann. Symp. on Compu-
tational Geometry. to appear, 2006

[17] D. Plaisted and J. Hong. A Heuristic Triangulation
Algorithm. Journal of Algorithms 8:405–437. Aca-
demic Press, San Diego, CA, USA 1987

[18] F. Santos and R. Seidel. A Better Upper Bound on
the Number of Triangulations of a Planar Point Set.
arXiv:math.CO/0204045 v2 2002

12

EWCG 2006, Delphi, March 27–29, 2006

Pseudo-Convex Decomposition of Simple Polygons∗

Stefan Gerdjikov† Alexander Wolff‡

Abstract

We extend a dynamic-programming algorithm of Keil
and Snoeyink for finding a minimum convex decompo-
sition of a simple polygon to the case when both con-
vex polygons and pseudo-triangles are allowed. Our
algorithm determines a minimum pseudo-convex de-
composition of a simple polygon in O(n3) time where
n is the number of the vertices of the polygon. In this
way we obtain a well-structured decomposition with
fewer polygons, especially if the original polygon has
long chains of concave vertices.

1 Introduction

Pseudo-triangles are simple polygons with exactly
three convex angles, i.e. interior angles of less than
180◦. Recently they have emerged to have geometri-
cal properties of interest for rigidity theory and ray-
shooting problems [2]. This is why pseudo-triangles
have been considered in relation with the decomposi-
tion problem of a set of points. It is defined as follows.

Given a set S of n points in the plane, decompose
the convex hull of S into polygons of a given type
such that the vertices of the polygons are in S and
each point in S is a vertex of at least one of the
polygons. The decomposition is called convex if only
convex polygons are allowed, pseudo-triangulation if
only pseudo-triangles are allowed, and pseudo-convex
if both pseudo-triangles and convex polygons can be
used. Convex decompositions have been considered
by Fevens et al. [3]. Streinu [7] shows that the min-
imum number of edges needed to obtain a pseudo-
triangulation is 2n−3 and thus, by Euler, the number
of pseudo-triangles is n−2, which does not depend on
the structure of the point set but only on its size. This
motivates research on the problem of enumerating all
minimum pseudo-triangulations [2]. Aichholzer et al.
[1] study pseudo-convex decompositions. They show
that each minimum pseudo-convex decomposition of
a set of n points consists of less than 7n/10 polygons.

A related problem is the decomposition of simple
polygons into convex polygons or pseudo-triangles,

∗Work supported by grant WO 758/4-2 of the German Re-
search Foundation (DFG).

†st gerdjikov@abv.bg
‡Fakultät für Informatik, Universität Karlsruhe,

P.O. Box 6980, D-76128 Karlsruhe, Germany. WWW:
i11www.ira.uka.de/people/awolff

e.g. for point location or ray shooting. For decom-
positions of simple polygons the same terms as for
decompositions of point sets apply. A decomposition
is called minimum if it consists of the minimum num-
ber of regions.

In this paper we give an algorithm for comput-
ing minimum pseudo-convex decompositions of simple
polygons. Given a simple polygon we use the same ap-
proach as Gudmundsson and Levcopoulos [4] to deter-
mine all geodesics in the polygon which can be sides
of a pseudo-triangle and present a simple way to check
whether three such geodesics form a pseudo-triangle.
We use dynamic programming to solve proper sub-
problems which then can be combined to obtain a
global solution. The resulting algorithm runs in O(n3)
time and uses O(n2) space.

Our algorithm is based on a general technique for
decomposing a simple polygon into polygons of a cer-
tain type proposed by Keil [5]. The technique is based
on optimally decomposing subpolygons each of which
is obtained from the original by drawing a single di-
agonal. This idea yields an O(n3 log n)-time algo-
rithm for the convex decomposition problem [5]. Keil
and Snoeyink [6] improve Keil’s result by giving an
O(min(nr2, r4))-time algorithm, where r is the num-
ber of reflex vertices of the polygon.

2 Characterization of Pseudo-Triangles

We use P+(Ai, Aj) and P−(Ai, Aj) to denote the
paths on the boundary ∂P from a vertex Ai to a ver-
tex Aj of P in clockwise and anticlockwise direction,
respectively. With vis(Ai) we denote the list of all
vertices of P which are visible from Ai in clockwise
order starting with Ai+1. Unless stated otherwise, the
vertices of a polygon will be given in clockwise order.

Definition 1 Let P = A0A1 . . . An−1 be a simple
polygon. A path p = B1B2 . . . Bm from Ai to Aj

is a concave geodesic with respect to the polygon P if
it satisfies the following three conditions, see Fig. 1:

(G1) B1 = Ai and Bm = Aj .

(G2) For each k < m it holds that Bk+1 is the last
vertex on P+(Bk, Aj) which is visible from Bk.

(G3) B1B2 . . . Bm is a convex, anticlockwise oriented
polygon.

13

22nd European Workshop on Computational Geometry, 2006

Ai = B1

Aj = Bm

B2

Bm−1
P

Figure 1: The geodesic B1B2 . . . Bm from Ai to Aj is
concave with respect to the simple polygon P .

Remark 1 If B1B2 . . . Bm is a concave geodesic from
B1 to Bm with respect to a simple polygon P then
B2 . . . Bm is a concave geodesic from B2 to Bm with
respect to P .

For our further considerations we will need the fol-
lowing fact [6]:

Fact 1 Let Ai be a vertex of P = A0A1 . . . An−1.
Then the cyclic order of the line segments AiAj with
AiAj ⊆ P around Ai is the same as the order of their
other endpoints along ∂P .

The following lemma states the relationship be-
tween the concave geodesics in a simple polygon and
the pseudo-triangles that can participate in a decom-
position of the polygon.

Lemma 1 If a pseudo-triangle T is contained in a
simple polygon P = A0A1 . . . An−1 with convex ver-
tices at Aj , Ak and Al, j < k < l, then the paths
T +(Aj , Ak), T +(Ak, Al) and T +(Al, Aj) are concave
geodesics with respect to P .

Proof. (Sketch) Due to symmetry it suffices to prove
that T +(Aj , Ak) is a concave geodesic. Proper-
ties (G1) and (G3) of a concave geodesic obviously
hold. Thus we have to verify only property (G2).

First note that T +(Aj , Ak) contains only vertices
of P that lie on P+(Aj , Ak), for otherwise T wouldn’t
be simple. Now assume that T +(Aj , Ak) does not
satisfy property (G2), see Fig. 2. Let k > i ≥ j

At

AiAs

Ak Aj

Al

x

Figure 2: Each pseudo-triangle consists of three con-
cave geodesics that connect its convex vertices. The
arcs denote the boundary of P+(Aj , At) and the solid
lines denote the edges of T +(Aj , Ak).

AiAj

Ak

π1

π2 π3

Figure 3: Testing whether three concave geodesics π1,
π2, and π3 define a pseudo-triangle

be such that Ai ∈ T +(Aj , Ak) violates the construc-
tion proposed in property (G2). Let As be the vertex
on T +(Aj , Ak) after Ai and let k ≥ t > s be such
that At is visible from Ai. It is clear that s > i.
Due to Fact 1 we obtain that the edges AiAi+1, AiAs

and AiAt appear in clockwise order around Ai. In
particular, because of the convexity of T +(Ai, Ak)Ai,
AiAt intersects T +(Ai, Ak) only in Ai and AiAs is
contained in the polygon P+(Ai, At)Ai. However, Ak

lies outside this polygon and thus T +(Ai, Ak) leaves
P+(Ai, At)Ai in some point x which does not belong
to AiAt, see Fig 2. Therefore T +(Ai, Ak) leaves P .
Contradiction. �

Next we establish the converse relation. Namely
three concave geodesics determine a pseudo-triangle.

Lemma 2 Let P = A0A1 . . . An−1 be a simple poly-
gon. Further let i < j < k and π1 = Ai . . . Aj , π2 =
Aj . . . Ak and π3 = Ak . . . Ai be concave geodesics
with respect to P . If the triangle AiAjAk is clock-
wise oriented, then the polygon π1π2π3 is a pseudo-
triangle.

Proof. (Idea) See Fig. 3. Using that, say π1 and π2

have only one common vertex, one can show that they
have no other common points. Then the orientation
of the triangle AiAjAk together with property (G2)
from Definition 1 provide that in fact π1 is contained
in the triangle AiAjAk. Similar considerations for
the paths π2 and π3 show that π1π2π3 is a pseudo-
triangle. �

3 Algorithm

We use the same approach for finding a minimum
pseudo-convex decomposition of a simple polygon as
Keil and Snoeyink [6] for finding the minimum con-
vex decomposition of a polygon. Namely we consider
smaller simple polygons which are obtained from the
original polygon by drawing a single diagonal. For
each such polygon we make assumptions in what sort
of polygon the diagonal can be included. In case the
diagonal is a part of a convex polygon we use the

14

EWCG 2006, Delphi, March 27–29, 2006

algorithm of Keil and Snoeyink [6]. In case the di-
agonal is part of a pseudo-triangle we proceed as fol-
lows. Assume we have a precomputed list L of all
concave geodesics w.r.t. P . Then we can filter L to
find all pseudo-triangles that contain the diagonal as
an edge. For each such pseudo-triangle T we compute
the size of an optimal decomposition that contains T .
The optimal solution is the minimum of the solutions
obtained in the two cases. Finally we apply dynamic
programming, just as Keil and Snoeyink [6].

Now we describe our ideas in detail. Let P =
A0A1 . . . An−1 be a simple polygon. We use defini-
tions similar to those in [6]. If i < j and Aj is visible
from Ai in P then we denote the line segment AiAj

by dij and call it a diagonal of P . In particular each
edge of P is a diagonal. For each such diagonal a
simple polygon Pij = AiAi+1 . . . Aj is defined.

Definition 2 Let D denote the set of all pseudo-
convex decompositions of a polygon Pij . Then we
introduce the following parameters:

wij = min{|D| : D ∈ D}
cwij = min{|D| : D ∈ D, the edge dij is con-

tained in a convex polygon}
pwij = min{|D| : D ∈ D, the edge dij is con-

tained in a pseudo-triangle }

Clearly wij = min(cwij , pwij).
Given the values wkl for each k, l with l− k < j− i

and a list of all concave geodesics for the polygon P
we first describe how to find pwij . We consider all
concave geodesics which contain the edge AiAj and
no vertex Ak ∈ P with k < i or k > j. For each such
path π1 = B1B2 . . . Bm we go along P−(B1, Bm) and
for each vertex Al ∈ P−(B1, Bm) we check whether
there exist concave geodesics π2 = Bm . . . Al and
π3 = Al . . . B1. If π2 and π3 exist, we apply Lemma 2
to check whether the paths π1,π2 and π3 determine
a pseudo-triangle. If this is the case, an optimal de-
composition of Pij contains this pseudo-triangle if and
only if for each pair (k, l) 6= (i, j) such that AkAl is an
edge of π1π2π3 the polygon Pkl is optimally decom-
posed.

Thus if w(π) denotes the sum of all wkl where AkAl

lies on a geodesic π, then it is clear that the optimal
decomposition of Pij using the pseudo-triangle π1π2π3

consists of

s(π1, Al) =
∑

AkAl∈π1,AkAl 6=AiAj

wkl +w(π2)+w(π3)+1

polygons. Now we can compute pwij as the minimum
of s(π1, Al) over all pairs (π1, Al) that fulfill the above
requirements.

To find the value cwij we consider all vertices Ak on
the path P−(Ai, Aj) which are visible both from Ai

and Aj . If AiAj is an edge of a convex polygon, then
this polygon is either the triangle T = AiAjAk or a

convex polygon C = Aj . . . Ak ∪ T , where Aj . . . Ak is
a smaller convex polygon. In the former case, an op-
timal decomposition of Pij consists of wik + wkj + 1
polygons. In the latter case the decomposition of Pij

is the union of two pseudo-convex decompositions:
(i) that of Pik and (ii) that of Pkj under the con-
dition that AkAj is an edge of a convex polygon C′

with C′ ∪ T convex. In (i) an optimal decomposition
of Pik consists of wik polygons. To determine an opti-
mal decomposition of Pkj in (ii) we use the approach
of Keil and Snoeyink [6], which relies on the following
observation.

We call a diagonal-convex decomposition of Pij a
decomposition where dij is the diagonal of a convex
polygon. For each polygon Pij we store not only the
value cwij but also a list CLij of representatives of
diagonal-convex decompositions of Pij which attain
cwij . Given an optimal diagonal-convex decomposi-
tion ∆ of Pij the representative (s, t) of ∆ is uniquely
defined by a pair of vertices {As, At} ∩ {Ai, Aj} = ∅.
More precisely, As and At are those vertices of Pij

that are adjacent to Ai and Aj , respectively, in the
only polygon Π ∈ ∆ with dij being an edge of Π. We
store only representatives (s, t) satisfying the property
that for each other representative (s′, t′) 6= (s, t) of Pij

either s > s′ or t < t′. Using the same arguments as
Keil and Snoeyink [6, Section 3], one can show that in
O(n) time the value cwij can be correctly determined
and the list CLij can be constructed—provided the
lists CLkj are available for all i < k < j.

4 Complexity

We now investigate the complexity of our algorithm.
We first modify slightly Theorem 2 in [4].

Proposition 3 Given a simple polygon P =
A0A1 . . . An−1 we can construct in O(n2) time a data
structure such that for any pair (i, j) it can decide in
O(1) time whether there is a concave geodesic π from
Ai to Aj . If π exists, the data structure provides an
O(l)-time walk along π, where l is the length of π.

Proof. We first compute all lists vis(Ai) in O(n2) to-
tal time. Then we use dynamic programming to check
whether there is a concave geodesic π from Ai to Aj .
If π exists, we also compute the second and the sec-
ond last vertex on π. We can walk on π by repeatedly
jumping to the second vertex of the remaining path,
which by Remark 1 is also a geodesic.

We consider the pairs (i, j) in increasing order of the
number of vertices on the path P+(Ai, Aj). The edges
AiAi+1 obviously correspond to concave geodesics
and it is easy to determine the second and second
last vertex of these paths.

When the length of P+(Ai, Aj) is greater than 1 we
use the list vis(Ai) to find the last vertex visible from

15

22nd European Workshop on Computational Geometry, 2006

Ai on P+(Ai, Aj)—this is either Aj or the last vertex
visible from Ai on P+(Ai, Aj−1). Fact 1 allows us
to handle vis(Ai) in O(1) time to obtain the desired
information. Once we have found the last vertex Al

visible from Ai on P+(Ai, Aj) we check whether there
is a concave geodesic π from Al to Aj . If this is the
case we use the second and the second last vertex on
π to check whether Ai can be added to π without vi-
olating property (G2). According to Remark 1 this is
the only way for obtaining a concave geodesic from Ai

to Aj . Finally the second and the second last vertex
on this path can also be computed in O(1) time. Thus
we need only O(1) time per pair (i, j) in order to check
whether there exists a concave geodesic from Ai to Aj

and—in case it does—to find the second and the sec-
ond last vertex on this path. Because the number of
all pairs (i, j) is O(n2), this results in an O(n2)-time
algorithm with the desired properties. �

Notice that in the proof of Proposition 3 we can
compute also the vertices with the greatest and small-
est indices that lie on a given concave geodesic π with-
out increasing the complexity of the algorithm. More-
over, we can check in constant time whether these two
vertices are adjacent on π. We use this observation
to compute a list PLij for each diagonal dij . In this
list we store all pairs (k, l) such that there is a con-
cave geodesic from Ak to Al which contains dij but
no vertex with index smaller than i or greater than j.

Theorem 4 The number of polygons in a minimum
pseudo-convex decomposition of a simple polygon
P = A0A1 . . . An−1 can be computed in O(n3) time.

Proof. We first set up the data structure of Proposi-
tion 3 and compute the lists PLij . This takes O(n2)
total time. Then we implement the algorithm of Sec-
tion 3. Using the technique of Keil and Snoeyink [6]
the computation of all cwij can be carried out in total
O(n3) time. To bound the time needed for the com-
putation of pwij first note that each concave geodesic
π = B1 . . . AjAi . . . Bm is contained in at most one
list PLij and thus it is considered once only. We walk
along π to determine the sum of the values wkl over
all (k, l) 6= (i, j) with AkAl ⊆ π. This takes O(n) time
according to Proposition 3. Then for each point Al

on P+(Bm, B1) we check whether there is a concave
geodesic π1 from Al to B1 and a concave geodesic π2

from Bm to Al. If this is the case, we use Lemma 2
to check whether ππ1π2 is a pseudo-triangle. This
takes O(1) time. Finally we need the values w(π1) and
w(π2) which can be computed in O(n) time the first
time we need them. Thus we walk along each geodesic
only once and perform only O(n) operations for each
geodesic. The total number of concave geodesics is
O(n2) which results in O(n3) time for determining
all values pwij . Thus the number of polygons in a
minimum pseudo-convex decomposition of a simple

polygon P with n vertices can be computed in O(n3)
time. �

Acknowledgments

We thank the anonymous referee whose comments
helped us to improve the readability of this paper.

References

[1] O. Aichholzer, C. Huemer, S. Renkl, B. Speck-
mann, and C. D. Tóth. On pseudo-convex decom-
positions, partitions, and coverings. In Proc. 21st
European Workshop on Computational Geometry
(EWCG’05), pages 89–92, Eindhoven, 2005.

[2] O. Aichholzer, G. Rote, B. Speckmann, and
I. Streinu. The zigzag path of a pseudo-
triangulation. In Proc. Workshop on Algorithms
and Data Structures (WADS’03), pages 377–388,
2003.

[3] T. Fevens, H. Meijer, and D. Rappaport. Mini-
mum convex partition of a constrained point set.
Discrete Applied Mathematics, 109(1–2):95–107,
2001.

[4] J. Gudmundsson and C. Levcopoulos. Mini-
mum weight pseudo-triangulations. In K. Lodaya
and M. Mahajan, editors, Proc. 24th Int. Conf.
Foundations Software Tech. Theoretical Comput.
Sci. (FSTTCS’04), volume 3328 of Lecture Notes
in Computer Science, pages 299–310. Springer-
Verlag, 2004.

[5] J. M. Keil. Decomposing a polygon into simpler
components. SIAM J. Comput., 14:799–817, 1985.

[6] J. M. Keil and J. Snoeyink. On the time bound
for convex decomposition of simple polygons. Int.
J. Comput. Geometry Appl., 12(3):181–192, 2002.

[7] I. Streinu. A combinatorial approach to pla-
nar non-colliding robot arm planning. In Proc.
41st Annu. IEEE Sympos. Found. Comp. Sci.
(FOCS’00), pages 443–453, 2000.

16

EWCG 2006, Delphi, March 27–29, 2006

The Existence of a Pseudo-triangulation in a given Geometric Graph

André Schulz∗

Abstract

We show that the problem of deciding if a pseudo-
triangulation is contained inside a geometric graph
is NP-complete. For this we investigate the Trian-
gulation Existence Problem, which is known to be
NP-complete. We present a new proof for its NP-
completeness and modify it in such a way that it can
be applied for pseudo-triangulations.

1 Introduction

A pseudo-triangle is a polygon with exactly three
convex corners. A planar partition of a point set
into pseudo-triangles is called pseudo-triangulation. A
pseudo-triangulation is called pointed, if all its ver-
tices are incident to an angle greater than π. Many
different applications for pseudo-triangulations are
known.

The main focus of this paper lies on the problem,
if there exists a pseudo-triangulation as a subset of a
given geometric graph. The geometric graph does not
have to be planar. We call this problem the Pseudo-
Triangulation Existence Problem (PTRI).

The “triangulation version” of the PTRI is known
as the Triangulation Existence Problem (TRI).
Lloyd showed in 1977 [6] that the TRI is NP-hard by
a reduction from CNF-SAT. Although the idea be-
hind the construction is not difficult, it seems hard to
modify the complex gadgets for new NP-completeness
results.

In section 2 we will present a new proof for TRI.
Instead of reducing from CNF-SAT we will use a re-
duction from Planar 3-SAT(which was not known
in 1977). This allows us a simpler construction for the
NP-hardness proof. We profit from the fact that Pla-
nar 3-SATis more structured than CNF-SAT. As a
side effect it is now easier to modify the construction
in such a way that we can apply it for PTRI.

Pseudo-triangulations do not always show the same
behavior as triangulations (to name just one example,
their flipping distance is smaller [1]). It is a natural
question, in how far known results from triangulations
can be generalized for pseudo-triangulations. This
might help to understand the properties of pseudo-
triangulations better.

∗Institut für Informatik, Freie Universität Berlin, Germany,
schulza@inf.fu-berlin.de

In [8] a NP-completeness result for triangulation
(minimum vertex degree) was generalized for pseudo-
triangulations with similar ideas used in this paper.

The problem of finding a pseudo-triangulation in-
side a triangulation was discussed in [7]. The com-
plexity status of finding a pseudo-triangulation with
minimal number of edges inside a triangulation was
introduced as an open problem. Its status is still open.

2 A new proof for the NP-hardness of TRI

First of all we state the problem, for which we want
to prove its NP-completeness

Triangulation Existence Problem (TRI)
Input: A geometric graph G = (V, E).
Question: Is there a graph G′ = (V, E′ ⊂ E) and G′

is a triangulation ?

Theorem 1 TRI is strongly NP-complete.

The proof of the theorem will be given by the fol-
lowing discussion. The Problem lies in NP, because we
can verify in polynomial time if a guessed subgraph of
G is a triangulation. To show NP-hardness, we reduce
Planar 3-Sat to TRI. A formula φ is planar if it can
be represented as a planar graph G(φ) = (Vφ, Eφ).
The set Vφ is given by the variables and the clauses
of φ. The pairs of all (negated) variables and their
associated clauses define Eφ. The Problem if a pla-
nar formula in 3-CNF is satisfiable is known to be
NP-complete [5].

The reduction from Planar 3-Sat is done by sub-
stituting edges and vertices of Gφ by more complex
subgraphs (called gadgets). The resulting graph con-
tains a triangulation, if and only if the formula is sat-
isfiable,

We are using 4 different types of gadgets. The most
essential gadget is the Wire gadget. It is responsible
for carrying the value of a variable to the clauses and
therefore it will be a replacement for the edges. The
variables themselves are represented as a piece of the
Wire gadget. To evaluate the clauses we introduce a
Nand gadget and a Not gadget, which will be also
used to negate variables. Finally we present a gadget
which will split an edge, while maintaining the sta-
tus of the wire for the outgoing parts. This gadget
is called the Split gadget. Starting with the Wire
gadget we will explain the gadget one by one.

17

22nd European Workshop on Computational Geometry, 2006

Wire

The Wire gadget represents the state of a literal
which can be either true or false. Therefore it con-
sist of a graph which contains exactly two triangu-
lations (Figure 1). The two contained triangulations
are called black (representing the value TRUE) and
dashed (representing the value FALSE). We will also
call their edges black and dashed. In the figures the
dashed triangulation is drawn with dashed lines. The

(a) (b) (c)

Figure 1: (a) The Wire (a); (b) & (c) its triangula-
tions.

reader should check that it is not possible to switch
inside the gadget from the dashed to the black tri-
angulation and vice versa. This is due to the fact
that there is no triangle which contains a dashed edge
and a black edge. Therefore the choice of one edge
determinates the status of all the other edges inside
the gadget. It is possible to bend the gadget without
destroying its structure. Figure 2 shows a 90 degree
bend. A variable will be realized as a part of the Wire

Figure 2: A Wire with a 90 degree bend.

gadget (the part where we chose the fist diagonal).

Split

The Split gadget has three input parts (Figure 3).
Like the Wire it contains a dashed and a black tri-
angulation. Since there is no triangle with a dashed
and a black edge, it is not possible to switch between
the black and dashed triangulation inside the gadget.
For this reason the status of the wire is the same on
the three output parts. The gadget will be used for
producing multiple copies of a variable (or its negated
version). Its open ends connect perfectly to the Wire.

Not

To realize a negation, we have to change the orienta-
tion of the diagonals inside the wire. Figure 4 shows
how this can be done. Again we have two triangula-
tions induced by the gadget and there exists no trian-
gle with dashed and black edges. Hence, the orienta-
tion of the diagonals is switched by the gadget.

Nand

(a) (b)

Figure 3: (a) The Split gadget; (b) a close up of the
gadget.

(a) (b)

Figure 4: (a) The Not gadget; (b) one of its triangu-
lation.

The last gadget needed for the reduction is the Nand
gadget. Its purpose is to evaluate the clauses (we can
simulate an OR gate).

The Nand has three inputs and is slightly more
complex than the other gadgets. It allows more than
two triangulations. Therefore it contains edges which
can not be handled as black or dashed (we call these
edges gray). Lets assume that the dashed triangula-
tion represents the value true. The gadget allows a
triangulation for all possible input combinations, ex-
cept when all are dashed triangulations. Lets have
a closer look at the gadget shown in Figure 5. We

a1

a2

b1

b2

Figure 5: The Nand gadget.

see that three input wires meet in a 9-gon, which is
filled with diagonals. The structure is symmetric un-
der rotation by 120 degrees, but it is not symmetric
by reflection. It can be observed that there are only
three gray diagonals crossing the black edge a1a2 but
there are 6 gray edges crossing the dashed diagonal
b1b2. Hence having three dashed triangulated input
wires makes it impossible to find a triangulation of
the 9-gon. The removal of all gray diagonals in this
setting leaves an empty hexagon (Figure 6.a), which

18

EWCG 2006, Delphi, March 27–29, 2006

can’t be triangulated. On the other hand, all other
combination of the input can be triangulated (as seen
in Figure 6.b-d). All other combinations are symmet-
ric versions of Figure 6. Therefore the functionality of
a NAND gate is provided by the gadget and clauses
can be evaluated in combination with the NOT gad-
get.

(a) (b)

(c) (d)

Figure 6: The Nand gadget with different input val-
ues.

After the substitution of the edges and vertices of
Gφ by the gadgets, we might have pockets and holes
inside the resulting graph. We will triangulate them
arbitrarily. Any edge of the graph which is not crossed
by any other edge has to be contained in the trian-
gulation. Thus no boundary edge of a gadget can
be deleted and the triangulation of the holes doesn’t
affect the functionality of the gadgets.

Clearly a formula φ is satisfiable, if and only if there
exists a triangulation inside the constructed graph.
To finishes the proof of Theorem 1 we observe that
the reduction can be made in polynomial time.

3 Pseudo-triangulations inside a graph

The new proof of the NP-completeness of TRI allows
us to attack similar problems with the same basic
idea. One natural variation of TRI is the following:
Pseudo-Triangulation Existence Problem
(PTRI)
Input: A geometric graph G = (V, E).
Question: Is there a graph G′ = (V, E′ ⊂ E) and G′

is a pointed pseudo-triangulation ?

Theorem 2 PTRI is strongly NP-complete.

As done in the proof for Theorem 1 the proof will be
given in the following discussion. Like in Section 2, we
reducing again from Planar 3-SAT and we will in-
troduce again the same set of gadgets (namely Wire,

Split, Not and Nand).

Wire

The Wire gadget can be easily obtained from the one
used for TRI. Now two pseudo-triangulations are part
of the gadget. We call them again dashed and black.
It is not possible to find a pseudo-triangle inside the
gadget, which consists of a dashed and a black diago-
nal. Hence the choice of a diagonal determinates the
whole pseudo-triangulation. See Figure 7 for the cor-
responding pictures. It should be clear that bending

Figure 7: The Wire and its pseudo-triangulations.

the gadget is no problem. We omit the picture for the
90 degree bend.

Not

The Not gadget is basicly the same as the one for the
triangulation case. We just ensure that every vertex
contains an angle greater than π. Figure 8 shows the
gadget.

(a) (b)

Figure 8: (a) The Not gadget; (b) one of its triangu-
lation.

Split

The Split is shown in Figure 9.a. It has three in-
coming wire parts and a central area, which has to be
covered by a pseudo-triangle. This is possible, if all

a

bc

(a) (b)

Figure 9: (a) The Split gadget; (b) its black pseudo-
triangulation.

three wires are dashed or black pseudo-triangulations
(Figure 9.b shows the black pseudo-triangulation of
the gadget). It is not possible to find a pseudo-
triangulation for any other combination. In these
case, we could not construct an angle greater π at
at least one of the points a, b, c. Therefore the face
covering the center of the gadget would be at least a

19

22nd European Workshop on Computational Geometry, 2006

pseudo-quadrilateral.

Nand

The Nand gadget (Figure 10) is based on the gadget
used for TRI. Again we have a 9-gon and a number
of gray diagonals. These have to be used to pseudo-
triangulate the 9-gon. The pseudo-triangulation of

Figure 10: The Nand gadget.

the incoming wires forbids a certain set of diago-
nals, depending if the pseudo-triangulation is black or
dashed. If all wires use dashed pseudo-triangulations
it is not possible to pseudo-triangulate the 9-gon (Fig-
ure 11.a). All other cases (shown in Figure 11.b-d, up
to symmetric equivalences) can produce valid pseudo-
triangulations.

(a) (b)

(c) (d)

Figure 11: The Nand gadget with different input val-
ues.

The remaining holes of the constructed graph will
be arbitrarily pseudo-triangulated (which is always
possible). It remains to show that gadget boundary
edges must be part of the pseudo-triangulation if one
exists. If all vertices are pointed this follows from
the fact that the removal of an edge, which is not
crossed by any other edge, will construct a pseudo-
quadrilateral. We leave the discussion for the non-

pointed vertices of the gadgets to the full version of
the paper.

It follows that this set of gadgets presents a valid
reduction from Planar 3-SAT to PTRI.

4 Remarks and Open Problems

Since the gadgets for the reduction to TRI are small
and easy to understand, they can be used to prove
several similar NP-completeness results. One might
think of the Problem if a quadrilateralization is con-
tained inside given geometric graph.

Another interesting question related to PTRI is the
following.

Planar Rigid Graph Containment (PRGC)
Input: Geometric graph G = (V, E).
Question: Is there a planar (minimal) rigid graph
G′ = (V, E′ ⊂ E)?

Although there are fast algorithms for testing pla-
narity [4] and rigidity (e.g. [2]) it is not clear if we
can find efficiently a rigid planar subset of a given
graph. This problem is related to PTRI, since ev-
ery pointed pseudo-triangulation forms a planar min-
imal rigid graph. Furthermore every planar minimal
rigid graph can be embedded as a pointed pseudo-
triangulation [3]. The gadgets we used will not help
us, since a different embedding will destroy their func-
tionality.

References

[1] S. Bereg. Transforming pseudo-triangulations. Infor-
mation Processing Letters, 90(3):141–145, 2004.

[2] A. R. Berg and T. Jordán. Algorithms for graph rigid-
ity and scene analysis. In ESA, volume 2832 of Lecture
Notes in Computer Science, pages 78–89. Springer,
2003.

[3] R. Haas, G. Rote, D. Orden, F. Santos, B. Ser-
vatius, H. Servatius, D. Souvaine, I. Streinu, and
W. Whiteley. Planar minimally rigid graphs and
pseudo-triangulations. Computational Geometry, The-
ory and Applications, 2005.

[4] J. Hopcroft and R. Tarjan. Efficient planarity testing.
J. ACM, 21(4):549–568, 1974.

[5] D. Lichtenstein. Planar formulae and their uses. SIAM
J. Comput., 11(2):329–343, 1982.

[6] E. L. Lloyd. On triangulations of a set of points in
the plane. In Proc. 18th Annu. IEEE Sympos. Found.
Comput. Sci., pages 228–240, 1977.

[7] G. Rote, C. A. Wang, L. Wang, and Y.-F. Xu. On
constrained minimum pseudotriangulations. In CO-
COON, volume 2697 of Lecture Notes in Computer
Science, pages 445–454. Springer, 2003.

[8] A. Schulz. New results on pseudo-triangulations with
low vertex degree. In Proceedings of the 17th Canadian
Conference on Computational Geometry (CCCG’05),
pages 130–133, 2005.

20

EWCG 2006, Delphi, March 27–29, 2006

Ray Shooting Amidst Fat Convex Polyhedra in 3-Space

Boris Aronov∗ Mark de Berg† Chris Gray†

Abstract

We present a data structure for ray-shooting queries
in a set of disjoint convex fat polyhedra of total com-
plexity n in R3. The data structure uses O(n2+ε)
storage and preprocessing time, and queries can be
answered in O(log2 n) time. A trade-off between stor-
age and query time is also possible: for any m with
n < m < n2, we can construct a structure that uses
O(m1+ε) storage and preprocessing time such that
queries take O((n/

√
m) log2 n) time.

1 Introduction

The ray-shooting problem is to preprocess a set P of
objects in Rd for the following queries: what is the
first object (if any) in P that is hit by a query ray?
Such queries form the basis of ray-tracing algorithms,
and they can be used to approximate form factors in
radiosity methods. Since ray shooting is an integral
part of many graphics applications, it should not be
surprising that it has received much attention, both
in computer graphics and computational geometry. In
fact, after the range-searching problem it is probably
one of the most widely studied data-structuring prob-
lems in computational geometry. The survey by Pelle-
grini [12] and the book by De Berg [3] discuss several
of the data structures that have been developed within
computational geometry for the ray-shooting problem
(although there is also much work that is not covered
there, for example, research concerning ray shooting
in 2-dimensional scenes, or in d-dimensional space for
d > 3). In the discussion below, we will restrict our
attention to results on ray shooting in R3. Further-
more, we focus on the general ray-shooting problem,
where the origin and direction of the query ray are
unrestricted.

If the set P consists of n arbitrary triangles, the
best known structures with O(log n) query time use

∗Department of Computer and Information Science, Poly-
technic University, Six MetroTech Center, Brooklyn, NY 11201-
3840 USA; http://cis.poly.edu/˜aronov. Research supported in
part by NSF grant ITR-0081964 and by a grant from the US-
Israel Binational Science Foundation. Part of the research was
performed when B.A. visited TU Eindhoven in June 2005.

†Department of Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands. Email:
{mdberg,cgray}@win.tue.nl. This research was supported by
the Netherlands’ Organisation for Scientific Research (NWO)
under project no. 639.023.301.

O(n4+ε) storage [3, 11], whereas the best structures
with near-linear storage have roughly O(n3/4) query
time [2]. More generally, with O(m1+ε) storage,
for any m with n < m < n4, one can obtain
O((n/m1/4) log n) query time using O(m1+ε) stor-
age [2]. Better results have been obtained for several
special cases. When the set P is a collection of n axis-
parallel boxes, one can achieve O(log n) query time
with a structure using O(n2+ε) storage [3]. Again, a
trade-off between query time and storage is possible:
with O(m1+ε) storage, for any m with n < m < n2,
one can achieve O((n/

√
m) log n) query time using

O(m1+ε) storage. If P is a set of n balls, then it is
possible to obtain O(n2/3) query time with O(n1+ε)
storage [14], or O(nε) query time with O(n3+ε) stor-
age [10].

Both axis-parallel boxes and balls are very spe-
cial objects, and in most graphics applications the
scene will not consist of such objects. The question
thus becomes: is it possible to improve upon the ray-
shooting bounds for arbitrary triangles for classes of
objects that are more general than axis-parallel boxes
or spheres? This is the problem we tackle in this pa-
per. More precisely, we study the ray-shooting prob-
lem for disjoint convex polyhedra that are fat—see
Section 2 for a formal definition.

Related work. Given the prominence of the ray-
shooting problem and the interest in efficient algo-
rithms and data structures for fat objects and other
realistic input models in the past decade, it is not sur-
prising that the ray-shooting problem for fat objects
has been studied already. The results achieved so far
are, however, quite limited. Most of the work on ray
shooting among fat objects has dealt with shooting
rays in a fixed direction [4, 5, 8]. When it comes to ar-
bitrary rays, there are only a few results. For the case
of horizontal fat triangles, there is a structure that
uses O(n2+ε) storage and has O(log n) query time [3],
but the restriction to horizontal triangles is quite se-
vere. Another related result is by Mitchell et al. [9]. In
their solution, the amount of storage depends on the
so-called simple-cover complexity of the scene, and the
query time depends on the simple-cover complexity of
the query ray. Unfortunately the simple-cover com-
plexity of the ray—and, hence, the worst-case query
time—can be Θ(n) for fat objects. In fact, this can
happen even when the input is a set of cubes. The first
(and so far only, as far as we know) result that works

21

22nd European Workshop on Computational Geometry, 2006

for arbitrary rays and rather arbitrary fat objects was
recently obtained by Sharir and Shaul [13]. They
present a data structure for ray shooting in a collec-
tion of fat triangles that has O(n2/3+ε) query time and
uses O(n1+ε) storage. Curiously, their method does
not improve the known bounds at the other end of the
query-time–storage spectrum, so for logarithmic-time
queries the best known storage bound is still O(n4+ε).

Our results. We present a data structure for ray
shooting with arbitrary rays in a collection P of
disjoint convex fat polyhedra with n vertices in to-
tal. Our structure requires O(n2+ε) storage and has
query time O(log2 n). A trade-off between storage
and query time is also possible: for any m with
n < m < n2, we can construct a structure that uses
O(m1+ε) storage and has O((n/

√
m) log2 n) query

time. Thus we improve upon the result by Sharir
and Shaul in two ways: we reduce the query time for
near-linear storage from O(n2/3+ε) to O(

√
n log2 n)

and improve the bounds at the other end of the spec-
trum as well.

Of course, the two settings are not the same: Sharir
and Shaul consider fat triangles, whereas we consider
fat polyhedra. Indeed, our solution makes crucial use
of the fact that fat polyhedra have a relatively large
volume. Note that neither setting implies the other:
fat triangles need not form fat polyhedra, and fat
polyhedra do not necessarily have fat facets.

Our solution is based on the following idea. For
each polyhedron P we construct a constant number of
so-called “towers” that lie inside P and together cover
the boundary of P . The towers are in some canonical
form, which makes it easy to detect intersections of
such a tower with a line segment. We believe that
this technique, described in detail in Section 3, is of
independent interest, and we expect it will find other
applications in problems on fat polyhedra.

2 Preliminaries

Definition and basic properties of fat objects. We
will use the definition of fatness introduced by Van
der Stappen [15]. For a 3-dimensional object o, we
use vol(o) to denote its volume.

Definition 1 An object o is β-fat if for any ball b
whose center lies in o and which does not completely
contain o, vol(b ∩ o) ≥ β · vol(b).

It is well known that any fat convex object o admits
two concentric balls, one containing o and one con-
tained in o, whose size ratio is bounded. Here we need
a similar property, but for cubes instead of balls. For
a cube C, let size(C) be the edge-length of C.

Lemma 1 Let σ := d54
√

3/βe. For any convex β-
fat object o in R3, there exist concentric axis-aligned
cubes C−(o) and C+(o) with C−(o) ⊆ o ⊆ C+(o)

such that size(C+(o))
size(C−(o)) = σ.

Ray shooting and parametric search. Agarwal and
Matoušek [1] described a technique that reduces the
ray-shooting problem on a set P of objects to the
segment-emptiness problem, i.e., testing whether a
query segment intersects any of the objects in P .
Since then their technique has been used in several
papers dealing with ray shooting [10, 13, 14]. We will
also use this technique. In our setting, it implies the
following: if we have a data structure for segment-
emptiness queries, then we can use that same struc-
ture for ray-shooting queries at the cost of an extra
(multiplicative) O(log n) factor in query time.

3 The data structure

Let P = {P1, . . . , Pm} be the set of convex fat poly-
hedra that we wish to preprocess for ray-shooting
queries. We use n to denote the total number of ver-
tices of the polyhedra. Our global strategy is roughly
as follows.

We first present a decomposition of the bound-
ary of each polyhedron into a constant number of
pieces that are monotone in some canonical direc-
tion. Each such piece is extended into the polyhe-
dron to obtain an object which we will call a tower.
Next, we present a data structure to efficiently per-
form segment-emptiness queries on the towers. Using
Agarwal and Matoušek’s parametric-search technique
mentioned above, we then convert this structure into
a structure for ray shooting.

The decomposition. We first define the canonical
directions that we will use in our decomposition. Let
C+ and C− be two concentric axis-aligned cubes such

that size(C+)
size(C−) = σ, where σ is defined as in Lemma 1.

Since σ is an integer, we can partition each face of C+

into σ2 squares of the same size as the facets of C−.
We use this to define a set D of O(1/β2) canonical
directions, as follows. For each square s on the top
facet of C+, we add to D the direction into which the
top facet of C− must be translated to make it coincide
with s. The remaining five facets of C+ are treated
similarly. The resulting set D of canonical directions
has size 6σ2 = O(1/β2).

Next, we define the towers. A tower in the direction
~d ∈ D is a convex polyhedron t with the following
properties:

(i) One of the facets of t is an axis-parallel square;
this facet if called the base of t and it is denoted
by base(t). We require that the orientation of

22

EWCG 2006, Delphi, March 27–29, 2006

(i)
C

+

C
−

(ii)

P

C−(P)

C+(P)

cap(t)

base(t)

t

~d

Figure 1: (i) Swept volume defining a tower. (ii) Two-dimensional analogue of a tower t.

the base—whether it is parallel to the xy-plane,
to the xz-plane, or to the yz-plane—be uniquely
determined by the direction ~d. Hence, all towers
in a given direction ~d have parallel bases.

(ii) The remaining facets of t form a terrain in direc-

tion ~d, that is, any line parallel to ~d and inter-
secting the base intersects the remaining facets
either in a single point or in a line segment. We
call the union of these remaining facets, exclud-
ing facets parallel to ~d, the cap of the tower,
denoted cap(t).

Let P ∈ P be a β-fat convex polyhedron. The de-
composition of P is performed in a manner similar to
the way we constructed the canonical directions. Let
C−(P) and C+(P) be cubes with the properties given
in Lemma 1. Partition each facet of C+(P) into σ2

equal-sized squares. For each such square s we con-
struct a tower by sweeping s towards the correspond-
ing facet of C−(P), and taking the intersection of the
swept volume and the polyhedron P . This way we ob-
tain for each polyhedron P one tower for each of the
|D| canonical directions. We denote the set of towers
constructed for P by T (P). The union of the towers
in T (P) is contained in P ; the boundary of this union
consists of the boundaries of P and of C−(P).

Testing for segment emptiness. Before we describe
the data structure for segment-emptiness queries, we
describe necessary and sufficient conditions for a seg-
ment to intersect a polyhedron P . In the lemma be-
low and in the rest of the paper, whenever we speak
of “above” and “below” when referring to a specific
tower, this is always with respect to the canonical di-
rection ~d of that tower. More precisely, we say that a
object o is below an object o′ whenever there exists a
(directed) line with orientation ~d that first intersects o
and then o′. A point is inside a tower, for instance,
if and only if it is above the base and below the cap.
Finally, we use proj(o) to denote the projection of an

object o in direction ~d onto a plane orthogonal to ~d.

Lemma 2 A segment s = pq intersects a polyhedron
P ∈ P if and only if one of the following conditions
holds:

1. p or q is inside P , or

2. there is a tower t ∈ T (P) such that

(a) pq intersects base(t), or

(b) pq passes below an edge of cap(t) and above
an edge of base(t), or

(c) pq passes below an edge of cap(t) and p or
q is above base(t).

Lemma 2 allows us to treat a segment-emptiness
query as the disjunction of several different conditions
and test separately for each of these conditions. De-
veloping data structures for each of these condition
is relatively routine; they can be implemented using
standard multi-level range-searching data structures.
Below we provide some of the details.

Lemma 3 Let P be a set of disjoint β-fat convex
polyhedra in R3 of total complexity n. We can detect
whether there is an endpoint of a query segment s
inside a polyhedron in P using a data structure that
requires O(n/β) storage and preprocessing time and
has O((1/β) log n) query time.

Proof. In order to detect whether a point p is in-
side a polyhedron in P , we use the so-called object
BAR-tree designed by De Berg and Streppel [6]. This
is a BSP tree with O(n) nodes and depth O(log n),
such that every leaf region intersects at most O(1/β)
objects. Therefore, assuming the polyhedra have con-
stant complexity, we can test whether p is inside any
of the polyhedra in P simply by finding the cell con-
taining p in O(log n) time and then testing whether
p is inside any of the polyhedra in the cell. If the
polyhedra do not have constant complexity, we apply
the Dobkin-Kirkpatrick hierarchy [7] to each polyhe-
dron. In either case, the test takes O(log n) to de-
termine which cell p is in and O((1/β) log n) to test

23

22nd European Workshop on Computational Geometry, 2006

if p is inside any of the O(1/β) polyhedra meeting
that cell. �

Lemma 4 Assuming there is no endpoint of query
segment s inside any polyhedron in P , we can de-
tect whether s intersects any polyhedron in P using a
data structure which requires O(n2+ε/β2) storage and
preprocessing time and has query time O((log n)/β2).
Furthermore, for any m with n < m < n2, we can
construct a structure that uses O(m1+ε/β2) storage
and preprocessing time and has O((n/(β2

√
m)) log n)

query time.

Proof. There are three cases to consider, according
to Lemma 2. We will design a different structure for
each of them, and in each case we will need a sep-
arate structure for each of the |D| canonical tower
directions. Let us fix one of the canonical directions
~d, and let T = T (~d) be the set of all towers of that
direction. Without loss of generality, assume that the
base of the towers in T is parallel to the xy-plane.

Condition 2a: s intersects base(t) for some tower
t ∈ T : A segment s intersects base(t) if and only if s
intersects base(t) both in the projection onto the yz-
plane and in the projection onto the xz-plane. Hence,
we can test whether there is an intersected base us-
ing a four-level partition tree: the first two levels are
used to select the bases that are intersected in the
projection onto the xz-plane, and the last two levels
are used to test whether any of these bases are also
intersected in the projection onto the yz-plane.

Conditions 2b and 2c can be handled similarly. �

Putting it all together. By combining the data
structure for segment-emptiness queries described
above with Agarwal and Matoušek’s parametric
search technique [1] mentioned earlier, we obtain our
final result.

Theorem 5 Let P be a set of β-fat convex and dis-
joint polyhedra in R3 of total complexity n. We can
preprocess P using O(n2+ε/β2) storage and prepro-
cessing time, such that ray-shooting queries can be
answered in O((log2 n)/β2) time. Moreover, for any
m with n < m < n2, we can construct a structure that
uses O(m1+ε/β2) preprocessing time and storage such
that queries take O((n/β2

√
m) log2 n) time.

References

[1] P. K. Agarwal and J. Matoušek. Ray shooting
and parametric search. SIAM Journal on Com-
puting, 22(4):794–806, 1993.

[2] P. K. Agarwal and J. Matoušek. On range-
searching with semi-algebraic sets. Discrete and
Computational Geometry, 11:393–418, 1993.

[3] M. de Berg. Ray Shooting, Depth Orders and
Hidden Surface Removal. Springer-Verlag New
York, LNCS 703, 1993.

[4] M. de Berg. Vertical ray shooting for fat objects.
In Proc. 21st Annual Symposium on Computa-
tional Geometry, pages 288–295, 2005.

[5] M. de Berg and C. Gray. Vertical ray shooting
and computing depth orders for fat objects. In
Proc. 17th Annual Symposium on Discrete Algo-
rithms, 2006. To appear.

[6] M. de Berg and M. Streppel. Approximate
range searching using binary space partitions. In
Proc. 24th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Sci-
ence, pages 110–121, 2004.

[7] D. P. Dobkin and D. G. Kirkpatrick. Fast detec-
tion of polyhedral intersection. Theoretical Com-
puter Science, 27(3):241–253, 1983.

[8] M. J. Katz. 3-d vertical ray shooting and 2-d
point enclosure, range searching, and arc shoot-
ing amidst convex fat objects. Computational
Geometry: Theory and Applications, 8:299–316,
1997.

[9] J. S. B. Mitchell, D. M. Mount, and S. Suri.
Query-sensitive ray shooting. International Jour-
nal of Computational Geometry and Applica-
tions, 7(4):317–347, 1997.

[10] S. Mohaban and M. Sharir. Ray shooting amidst
spheres in three dimensions and related prob-
lems. SIAM Journal on Computing, 26(3):654–
674, 1997.

[11] M. Pellegrini. Ray shooting on triangles in 3-
space. Algorithmica, 9:471–494, 1993.

[12] M. Pellegrini. Ray shooting and lines in space.
In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geom-
etry, pages 599–614. CRC Press, Boca Raton-
New York, 1997.

[13] M. Sharir and H. Shaul. Ray shooting and stone
throwing. In Proc. 11th European Symposium
on Algorithms, pages 470–481. Springer-Verlag,
LNCS 2832, 2003.

[14] M. Sharir and H. Shaul. Ray shooting amid balls,
farthest point from a line, and range emptiness
queries. In Proc. 16th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 525–534,
2005.

[15] A. F. van der Stappen. Motion Planning Amidst
Fat Obstacles. PhD thesis, Dept. of Computer
Science, Utrecht University, 1994.

24

EWCG 2006, Delphi, March 27–29, 2006

Approximation of an open polygonal curve with a minimum number of

circular arcs

R. L. Scot Drysdale∗ Günter Rote†§ Astrid Sturm‡§

Abstract

An algorithm for approximating a given open polyg-
onal curve with a minimum number of circular arcs
is introduced. In computer-aided manufacturing en-
vironments the paths of cutting tools are usually
described with circular arcs and straight line seg-
ments. Greedy algorithms for approximating a polyg-
onal curve with curves of higher order can be found
in the literature. Without theoretical bounds it is
difficult to prove anything about the quality of these
algorithms. We present an algorithm which allows us
to build a directed graph of all possible arcs and look
for the shortest path from the start point to the end
point of the polygonal curve. We can prove a run-
time of O(n2 log n), for n the number of vertices of
the original polygonal chain.

1 Introduction

In computer-aided manufacturing enviroments tool
paths are usully made of line segments and circular
arcs [3, 4, 5]. Approximating data by curves of higher
order [1, 2, 3, 4, 5, 6, 7, 8] has been investigated ex-
tensively in the past. The theoretical bounds of these
problem are not as well studied.

We wish to approximate a polygonal chain P =
(p1, . . . , pn) by a series of circular arcs (which could
include straight lines, as circles of infinite radius). The
endpoints of the arcs are vertices of P . We want our
approximating curve to have distance at most ε from
P . As a first approximation to this problem, one can
look at a region formed from strips of width ε cen-
tered at the polygon edges. However, in the vicinity of
sharp corners, this does not guarantee that the curve
remains close to the given points. Figure 1 shows a
circular piece of a hypothetic curve that can shortcut
the bend at p4 if it is only required to remain in the
strips. (Also, it might overshoot the bend, as indi-
cated in the vicinity of p6, although this looks like

∗Department of Computer Science, Dartmouth College,
scot@cs.dartmouth.edu

†Department of Computer Science, Free University Berlin,
rote@inf.fu-berlin.de.

‡Department of Computer Science, Free University Berlin,
sturm@inf.fu-berlin.de

§Partially supported by the IST Programme of the EU as
a Shared-cost RTD (FET Open) Project under Contract No
IST-006413 (ACS – Algorithms for Complex Shapes)

a theoretical possibility only.) To avoid this, we in-
troduce a gate at every vertex. The approximating
curve is required to pass through all gates in succes-
sion, and the curves are not allowed to pass through a
gate twice. This will guarantee that any curve into a
point pi can be joined with any curve out of pi without
danger of an intersection other than at pi.

For our problem, we assume that we are given a
polygonal “tolerance region” R and a sequence of
gates g1, g2, . . . , gn, which are segments through the
points pi. We will refer to endpoints of gates lying
to the left of P as we walk from p1 to pn as left end-
points and the other endpoints as right endpoints. We
require that the gates do not cross. We require that
R is a simple polygon passing through all gate end-
points, that R does not intersect the interior of gates
or cross the segments connecting corresponding end-
points of successive gates, and that the sections of R
connecting gi with gi+1 do not cross the lines that
extend gi and gi+1. (The line extending a segment is
the line that contains that segment.)

Ideally, the gate gi at vertex pi is a line segment
of length 2ε centered at pi that bisects the angle
pi−1pipi+1. For a convolved curve with sharp bends
close together, we might have to shorten the gates
and to reduce the ε-strip around the edges, as shown
in the right part of Figure 1.

Modeling the curve approximation problem by an
appropriate tolerance region with gates is a problem
of its own, which we do not discuss here. In Figure 1,
we have chosen to approximate the “ideal” circular
boundary at the outer angle of each vertex by a sin-
gle edge of P . One can use more edges to get a finer
approximation, or one could also choose to approxi-
mate the circular arc from inside, to get a guaranteed
upper distance bound of ε. Our time bounds assume
that the size of R is proportional to n.

Definition 1 (proper gate stabbing) A curve
stabs gates gi, . . . , gj properly, if and only if:

• the curve passes through gate gm ∈ {gi, . . . , gj}
from the side of pm−1pm to the side of pmpm+1

• the curve passes through every gate only once
(the stabbing curve may pass through an end-
point of the gate in addition to passing through
it once)

25

22nd European Workshop on Computational Geometry, 2006

p1

p2

p3

p4

p5

p6

p7

p8

ε

Figure 1: polygonal tolerance region

Definition 2 (valid circular arc) A circular arc
aij with starting point pi and endpoint pj is a valid
arc if:

• the arc stabs the gates gi+1, . . . , gj−1 properly,

• the arc does not cross any piece of the boundary
of the tolerance region R.

• the arc reaches pi from the correct side of gi and
reaches pj from the correct side of gj .

Note that because R passes through the gate end-
points, any arc that goes through a series of gates
without crossing the tolerance boundary must go
through them in the correct order, so we do not need
to test for that separately.

We can split the problem of determining if a valid
circular arc connects pi with pj into three parts. First,
we compute all arcs between pi and pj that stab all
intermediate gates properly. Second, we compute all
arcs that start at pi and end at pj , reaching both from
the correct side. Third, we compute all arcs between
pi and pj that do not intersect with the tolerance
boundary. A valid circular arc has to be member of
all three result sets.

2 Stabbing through the gates

Definition 3 (point/gate bisectors) Given a
point p and a gate g, let bl be the bisector of p and
g’s left endpoint and br be the bisector of p and g’s
right endpoint.

Lemma 1 The centers of all circles passing through a
vertex p and intersecting a gate g exactly once lie in a
double cone whose boundary is bl and br. The sections
we want are the ones where one half plane includes p
and the other excludes it. (Figure 2 illustrates this.)
In the degenerate case where bl is parallel to br one
“cone” is the strip between the bisectors and the other
“cone” is empty.

Proof. A case analysis of circles centered on the
bisectors and in each of the regions confirms the
claim. �

pi pj

gj

brbl

Figure 2: region of all centers of circles passing
through pi and gate gj

Lemma 2 The region of the centers of all circles
passing through a vertex p which are tangent to the
gate g or intersect it twice forms a parabolic region
(in Figure 2 the parabolic region is the filled region
to the left of the double cone). The boundary of the
parabolic region is given by a parabolic piece, defined
by the centers of the circles which are tangent to the
gate, and by two pieces of the boundary double cone.
In the degenerate case when the bisectors are parallel
the parabolic region is empty.

Proof. Geometric analysis proves the claim. �

The centers of all circles which pass through a point
p and intersect or are tangent to the gate are in the
union of the double cone and the parabolic region
described in Lemma 1 and Lemma 2. By Defini-
tion 1 an arc stabs the gates properly only if every
gate is intersected only once. Circles centered in the
parabolic region, intersect the gate twice or (on the
parabola) never pass through the gate. Therefore we
include only the two straight boundary segments of
the parabolic region, which represent extreme cases of
passing through a boundary point and an additional
point on the gate. We exclude the rest of the parabolic
region as centers for intermediate gates, even though
in some circumstances when points on P are relatively
close together an arc might end at an endpoint on
P before it again intersects the gate. We will allow
points in the parabolic region at endpoints of the arc.

According to Lemma 1, one cone is the region of the
centers of disks including the left boundary point of
the gate and excluding the right boundary point. Cir-
cular arcs centered in these region pass the gate from
the correct side, according to the stabbing condition,
if they are in CCW orientation. In CW orientation
the arc would walk around the left boundary point be-
fore intersecting the gate. The unbounded part of this
cone lies to the left of P . Symmetrically the circular
arcs in the other cone need CW orientation to pass
the gate in the correct direction, and the unbounded
part of this cone lies to the right of P .

So from now on we talk about the left cone and the
right cone. A circular arc stabbing through the gates

26

EWCG 2006, Delphi, March 27–29, 2006

is not allowed to change its orientation.

Lemma 3 A circular arc a starting at a point p stabs
gates gi, . . . , gj properly if and only if its center lies
in the intersection of the left cones defined by p and
the gates, or the intersection of the right cones.

Proof. Straightforward. �

Lemma 4 Incremetally computing the two regions
of centers of all valid circular arcs passing through a
point p and stabbing all gi, . . . , gj gates properly, can
be done in O(n log n) time.

Proof. It is the incremental intersection of O(n) half
planes. �

3 Arc endpoints

A valid circular arc from pi to pj must reach each
point from the correct side of its gate. All arcs that
start at pi and end at pj have their centers on the bi-
sector of the segment connecting pi and pj . However,
some of these arcs will approach the gate from the
wrong side. We want to eliminate all such arcs, but
allow arcs that are tangent to a gate at its defining
point or which would circle back and cut the gate a
second time if the arc did not stop. This means that
we want to consider not only centers in the double
cone, but also in the parabolic region.

All points on the bisector of pi and pj can be centers
of arcs from pi to pj that reach pj from the correct
side of gj , but most can only go around the circle
in one direction. The exception is the circle which is
tangent to pj at gj. We call the center of this circle the
splitting point. All points on the ray of the bisector
that starts at the splitting point and goes right are
centers of CW arcs that meet pj from the correct side.
All points on the ray of the bisector that starts at the
splitting point and goes left are valid centers of CCW
arcs.

To determine which arcs meet pi from the correct
side of gi we do the symmetrical test, with the roles
of pi and pj reversed.

Lemma 5 Let b be the perpendicular bisector of the
segment between pi and pj . Let si be the point of
b which is the center of a circle tangent to gi at pi,
and let sj be defined symmetrically. The centers of all
CW arcs that reach both pi and pj from the correct
side are all points on b to the right of both si and sj .
CCW arcs are symmetrical.

Proof. This ray is the intersection of the CW rays
for both endpoints of the arc. �

4 Tolerance boundary

We break the tolerance boundary R into two polygo-
nal chains, one on each side of the original polygonal
chain P . When dealing with CCW circles we will ex-
clude the right chain, which we call the CCW bound-
ary. When dealing with CW circles we will exclude
the left chain, which we call the CW boundary. The
requirements that the arcs pass through gates and
that the tolerance boundary not intersect the interi-
ors of gates or cross the segments connecting bound-
ary points of successive gates guarantees that there
will be no conflict with the other boundary.

A circle passing though point p does not intersect or
contain any edge on a polygonal chain C if its center
lies closer to p than to any point on C. That is, if we
compute the Voronoi diagram of C ∪ p, the center of
the circle must lie in point p’s region, V (p).

This is not quite the condition that we want,
namely that a circular arc does not cross chain C. The
Voronoi region guarantees that an entire circle does
not cross C. However, in our case these are equiva-
lent.

Lemma 6 If an arc from gi to gj does not intersect
a tolerance boundary between gi and gj then neither
does the circle on which that arc lies.

Proof. For each pair of consecutive gates gk and gk+1

we are given that the section of the arc between them
does not intersect the section of the tolerance bound-
ary between gk and gk+1. But this section of the
tolerance boundary is not allowed to cross either the
segment connecting its start and end points or the
lines extending gk and gk+1. Therefore this section of
the boundary cannot intersect the rest of the circle,
either. �

While we could compute the entire Voronoi dia-
gram of C ∪ p to determine V (p), this would be too
expensive. Fortunately, we can interatively add n con-
secutive segments of C and update p’s Voronoi region
V (p) in O(n) total time.

Voronoi regions are “generalized star shaped”. This
means that a shortest segment from a boundary point
to a nearest point in the shape defining the region lies
entirely within the region.

Lemma 7 Each segment added will either cause no
change to V (p) or will replace a section of V (p) by
at most three new segments (two straight lines and a
parabola). (If V (p) is unbounded we think of an edge
“at infinity” connecting the two infinite rays, so that
these three “segments” are considered consecutive.)

Proof. Follows from the connectedness of C and the
generalized star-shaped property. �

27

22nd European Workshop on Computational Geometry, 2006

There are two parts to updating p’s Voronoi region
when adding a segment s to the diagram. First, we
find a place on the boundary of V (p) that is equidis-
tant from p and S, if such a place exists. If so, we
next walk around the boundary of V (p), eliminating
boundary sections until we reach the other place on
the boundary where p is equidistant from S. (Note
that either of these places could be “at infinity”.)

The second part is easy - walk around the boundary
of V (p) from the starting point, eliminating obsolete
bisector segments until you get to the finish point.

Because C is a polygonal chain, the first part is also
easy. V (p) is bounded by bisector pieces between p
and a subset of the segments in C. Of the segments
in this subset, there is a first segment F and a last
segment L, according to the order along the chain.

Lemma 8 If V (p) changes, then its boundary with
either V (F) or V (L) must change.

Proof. The proof formalizes the idea if you can’t go
through the chain C, then the only way to get to V (p)
is through V (F) or V (L). �

Lemma 9 We can compute the centers of all circular
arcs that pass between gi and gj without crossing the
tolerance boundary in O(n) time.

Proof. Incrementally add segments from C and
amortize the update time. �

5 Computing the shortest path

To determine the shortest path from the start point
to the end point of the polygonal curve we can build a
directed graph of all possible valid arcs and do a BFS
to find the shortest path from p1 to pn.

Theorem 10 A point c is the center of a valid CW
circular arc from pi to pj if and only if it is in the
intersection of:

• the intersection of the right cones between pi and
each of the gates gi+1 through gj−1.

• The region of V (pi) in the Voronoi diagram of
pi and all of the segments on the CW boundary
between gi and gj .

• all points on b to the right of both si and sj ,
where b, si, and sj are as defined in Lemma 5.

The conditions for valid CCW arcs are symmetrical.

Proof. Direct consequence of earlier lemmas. �

We find the possible arcs from a point pi to all
points further along P incrementally. We maintain
the intersection of the right cones, the intersection

of the left cones, the Voronoi region of pi with the
CW boundary, and the Voronoi region of pi with the
CCW boundary. At each step we update each of the
four items. We intersect each bisector ray with an
intersection of cones and with a Voronoi region, and
then test if the two intersections overlap.

Note that we can quit if both of the cone intersec-
tion regions become empty. In fact, we could quit
when the intersection of the right cones with the CW
boundary Voronoi region and the intersection of the
left cones with the CCW boundary Voronoi region are
both empty, if we could test this quickly.

Theorem 11 Given an open polygonal curve P =
(p1, . . . , pn), a polygonal tolerance boundary of size
O(n), and a gate for each pi, we can approximate
P by a minimum number of valid circular arcs in
O(n2 log n) time.

Proof. Each starting point takes O(n log n) time. �

6 Future Work

Because we compute all possible circular arcs from pi

to pj , we expect to be able to use this information
to match tangents of successive arcs or to compute
bi-arcs. We have partial results along these lines.

References

[1] J. Eibel. Approximation of Planar Curves Within an
Asymmetric Tolerance Band. MSc.thesis, Universität
Salzburg, Computerwissenschaften, 2002.

[2] M. Held and J. Eibel. Biarc Approximation
of Polygons Within Asymmetric Tolerance Bands.
Computer-Aided Design, 37:357–371, 2005.

[3] DS. Meek and DJ. Walton. Approximation of dis-
crete data by G1 arc splines. Computer-Aided Design,
24:301–306, 1992.

[4] DS. Meek and DJ. Walton. Approximating quadratic
NURBS curves by arc splines. Computer-Aided De-
sign, 25:371–376, 1993.

[5] DS. Meek and DJ. Walton. Approximating smooth
planar curves by arc splines. Journal of Computa-
tional and Applied Mathematics, 59:221–231, 1995.

[6] L. Piegl. Curve Fitting for Rough Cutting.
Computer-Aided Design, 18:79–82, 1986.

[7] J. Schönherr. Smooth Biarc Curves. Computer-Aided
Design, 25:365–370, 1993.

[8] M. Yeung and DJ. Walton. Curve Fitting With
Arc Splines for NC Toolpath Generation. Computer-
Aided Design, 26:845–849, 1994.

28

EWCG 2006, Delphi, March 27–29, 2006

How to Sample and Reconstruct Curves With Unusual Features

Tobias Lenz
Institut für Informatik, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany

tlenz@mi.fu-berlin.de

Abstract

This work generalizes the ideas in the Nearest-
Neighbor-Crust algorithm by Dey and Kumar. It
allows to reconstruct smooth closed curves from ε-
samples with ε ≤ 0.48 which is a big improvement
compared to the original bound. Further generaliza-
tion leads to a new algorithm which reconstructs arbi-
trary curves (open, closed, smooth, with corners, with
intersections) in any dimension. The algorithm works
well in practice but lacks a nice sampling condition
comparable to the well-known ε-sampling condition.
This shortcoming is posed as an open problem.

1 Introduction

In curve reconstruction, one cannot or does not want
to transfer a complex shaped curve. Instead, a finite
sample of the original curve is generated which must
become reconstructed at the destination. A recon-
struction is just a polygonal line connecting the points
in the correct order. The approximation quality mea-
sured as distance to the original can be arbitrarily bad
depending on the sample. It is obvious, that not every
point set leads to the correct reconstruction, there-
fore the sample must have special properties called
the sampling condition.

2 Picking Samples from a Curve

Definition 1 A sample S is a finite subset of a curve
Σ. The elements of the sample are points in Rd and
are called sample points.

The ε-sampling condition basically states that the
sample should be dense if the curvature is high or
parts of the curve are close together while it might be
loose in straight regions of the curve. Formally it is
defined as follows.

Definition 2 The medial axis of a smooth curve is
the set M containing the center points of all empty
circles which touch the curve in more than one point.

The local feature size of a point p ∈ Σ is defined as
lfs(p) = min

m∈M
‖p−m‖.

c

Figure 1: A non-smooth curve (bold, black) with some
medial balls (dotted) and the medial axis (red) intersect-
ing the curve at the corner point c.

Definition 3 A sample S is an ε-sample of the
smooth curve Σ if and only if ∀p ∈ Σ : ∃s ∈ S :
‖p− s‖ ≤ ε · lfs(p).

These definitions apply well to smooth curves but
an ε-sample is impossible for curves with corners or in-
tersections because the medial axis goes through these
points and hence the local feature size becomes zero.
Therefore the sampling density should be infinite. See
figure 1 for an illustration. A possible solution is to
exclude a small neighborhood of these points from the
ε-sampling condition and define a new one for these
regions. This is used for corners in [2].

3 The NN-Crust Algorithm

The basis for this work came from Dey and Kumar
and their Nearest-Neighbor-Crust algorithm [1]. They
start with a point set and connect each point p to
its nearest neighbor u and its nearest half-neighbor
h. Consider the line perpendicular to pu through p
which splits the plane. The half-neighbor h of p is
now the point closest to p which does not lie in the
half plane containing u.

This procedure results in a set of edges forming the
reconstruction. If the underlying point set is at least a
1
3 -sample of a smooth closed curve, the NN-Crust al-
gorithm guarantees a correct reconstruction. Dey and
Kumar showed that the edges in the reconstruction
are a subset of the edges of a Delaunay triangulation
of the point set. This allows simple implementations

29

22nd European Workshop on Computational Geometry, 2006

qp

s

r

2α

l

i∗

i

mB

x

u

Figure 2: Computing the worst case distance between a
point on the curve and the medial axis.

with O(n log n) running time in 2d and extensions to
higher dimensions.

4 Generalization of the NN-Crust Algorithm

4.1 Flexible Opening Angles

Changing the way of describing the half-neighbor
slightly allows a simple generalization. A similar def-
inition to the one given in section 3 is the following:
The half-neighbor of a point p with nearest neighbor
u in a point set S is the point h ∈ S \ {p} which
minimizes the distance between p and h and fulfills
∠up, ph > π

2 . Now the angle appears as a parameter
and instead of π

2 one can choose an arbitrary angle.
These points are no longer called “half-neighbors” but
α-neighbors instead, where α specifies the maximally
allowed turning angle going from u to p to h.

The remainder of this section is used to show that
for α-neighbors with 0 < α ≤ π

2 , the resulting edges
are still a correct reconstruction. The arguments re-
fine and extend ideas from the original paper which
leads to a much better bound for ε. The proofs are
skipped due to space constraints.

Lemma 1 The angle spanned by three adjacent sam-
ples in an ε-sample with ε < 1 is at least π−4 arcsin ε

2 .
This angle corresponds to π − α, which gives ε ≤
2 sin α

4 if α is fixed and less than π
2 .

Figure 2 shows how to bound ε from below using
the following arguments.

Lemma 2 Given three adjacent sample points p, q, r
in an ε-sample with ε < 1, the curve segment between
q and r runs completely inside the cone at q aligned
with (p, q) with opening angle 2α = 8 arcsin ε

2 .

Lemma 3 Consider a 1
2 -sample. Given a chain of

three adjacent samples p, q, r and a sample s not ad-
jacent to q. If p and r do not lie inside the ball B
with diameter qs there will be a medial axis point on
the segment qs with distance at most 3

4‖s − q‖ from
q.

Lemma 4 Given an ε-sample of a smooth closed
curve with ε ≤ 0.48 and a correct edge (p, q). The
edge (q, s) is correct if and only if s is the closest point
to q inside the cone with apex q aligned to (p, q) with
opening angle 2 · 0.97.

Altogether this guarantees correct results for a
whole family of algorithms with different angles 0 <
α ≤ π

2 and for ε ≤ 0.48 in the extreme case which is a
big improvement compared to the NN-Crust [1]. The
NN-Crust algorithm is a special case of this approach
for α = π

2 . It follows a direct increase of the ε bound
for the original algorithm from 1

3 to 0.4 due to a more
careful analysis.

4.2 Non-Circular Neighborhoods

Picking the nearest neighbor essentially is like growing
a circle around a point until another point touches the
circle’s boundary. Instead of growing circles one can
use other shapes, here called probes, for example with
the intention to prefer straight segments over bends
or left turns over right turns. This requires an align-
ment of the shape because it is no longer rotationally
symmetric. Since every vertex in a reconstruction of
a smooth closed curve has degree two, one only has
to find a single seed edge and grow the reconstruction
from that, aligning the shape at the tip of an already
reconstructed edge. A good choice for the seed edge is
the overall shortest edge which is obviously a correct
edge for ε-samples.

Compared to the global approach of triangulating a
point set and then selecting a subset of the triangula-
tion edges, tracing is a more local concept. Extending
the reconstructed graph at its loose ends with mini-
mum weight components is also a very natural proce-
dure for greedy algorithms. This idea is in line with
famous algorithms like Dijkstra’s shortest path algo-
rithm or Prim’s algorithm to construct a minimum
spanning tree.

An animated demonstration and an interactive ver-
sion to experiment with can be found in [3].

Definition 4 A continuous map θ : [−α; α]→ R+ is
called α-probe for 0 < α ≤ π if and only if β > γ ≥
0⇒ θ(β) ≤ θ(γ) and β < γ ≤ 0⇒ θ(β) ≤ θ(γ).

30

EWCG 2006, Delphi, March 27–29, 2006

α

(a) α-probe, symmetric, with-
out negative extend

(b) polygonal, convex, sym-
metric, with negative extend

(c) convex, asymmetric, with
negative extend

–0.2

–0.1

0

0.1

0.2

0.2 0.4 0.6 0.8 1

(d) θ(α) = 4−‖α‖

Figure 3: Four probes illustrating the variety of possible
shapes. All these probes can be described with constant
complexity. Probe (a) is assembled from two circular arcs,
(b) is a polygon with seven vertices, (c) is a combination
of circular arcs and straight segments and (d) is an expo-
nential functions of the angle.

For α = π, θ(π) = θ(−π) must be true additionally.
An α-probe θ is symmetric if and only if ∀β ∈

(0; α] : θ(β) = θ(−β).
An α-probe θ has negative extend if and only if

α > π
2 .

The name “probe” refers to the shape one obtains
from drawing the function θ in polar coordinates with
θ as distance from the origin.

Inflating a probe is equivalent to minimizing the
following distance function.

Definition 5 Let θ be an α-probe by definition 4 and
β = ∠pq, qr. The probe distance function for three
points p, q, r is defined as

Fpq(r) =

{
∞ if ‖α‖ < ‖β‖

‖q−r‖
θ(β) otherwise.

Please note that Fpq is strictly positive and directed
and in general different from Fqp.

This definition is valid for any dimension since only
the plane spanned by p, q, r is considered and Fpq(r)
is computed in that plane.

The proof from section 4.1 still applies for arbitrary
α-probes with α ≤ π

2 by changing the distance ‖q−r‖
to min

−α≤β≤α
(θ(β)) and ‖q − s‖ to max

−α≤β≤α
(θ(β)).

5 Practical Extensions

5.1 Corners and Endpoints

Sharp corners might become reconstructed with
probes with negative extend, first going straight into
the corner and then backwards out to a close point (if

Figure 4: Higher density perceptually indicates discon-
nectedness. The sample on the left shows nearly equally
distributed sample points while the sample on the right
uses higher density close to endpoints and corners to em-
phasize the upcoming gap.

the apex of the corner is in the sample). Obviously
corners with an apex angle of β can only be recon-
structed with α-probes with α ≥ π − β. Endpoints
are the extreme case of corners where the point one
came from is the point with minimum distance, i.e.
Fpq(p) is minimal.

One idea to realize this comes from human percep-
tion and should be clear from figure 4. Changing the
local density of the sample makes intended gaps much
more noticeable. By placing a single additional sam-
ple point p very close to an endpoint q, a π-probe
aligned at the edge (p, q) with a tiny extend in the
backward direction will detect p as the π-neighbor of
q. This edge is already part of the recontruction, so
the algorithm stops this branch with a vertex of de-
gree one.

Unfortunately an ε-sample is now no longer possi-
ble because the medial axis goes through corners, see
figure 1. It is also no longer sufficient to guarantee a
correct reconstruction from an ε-sample because the
distance between two adjacent samples must not be
too small if none of them is an endpoint. The latter
problem can be solved by switching to (ε, δ)-samples
which have the additional condition that for any two
samples p, q ∈ S, ‖p − q‖ > δ · lfs(p). This approach
is not investigated here, because the necessity for in-
finite sampling density at corners and intersections
remains even for (ε, δ)-samples.

5.2 Intersections

An observation for smooth curves or smooth parts
of curves in the vicinity of intersection points is that
the angle between segments of properly placed sam-
ple points is small while this angle often abruptly in-
creases connecting to a wrong point. Therefore a key
idea is to favor small angles over small distances and
hope to “tunnel through” a narrow set of wrong points
and reach the correct one. This can be realized easily
using probes.

A sample as described throughout section 5 always
exists. Some construction hints follow but a nice and
general rule seems to be hard to find.

31

22nd European Workshop on Computational Geometry, 2006

Figure 5: A curve with endpoints, a corner and two in-
tersections. The sample points show the rule of thumb
how to sample these features.

For the smooth parts of the curve, an ε-δ-sample
suffices. Corners with apex angle β can be sampled
loosely like smooth bends without the apex in the
sample. If the apex is part of the sample, the dis-
tance to the closest point on both edges is given by
the negative extend of the used probe. If an inter-
section point is in the sample, the reconstruction of
its vicinity should be simple. Otherwise the adjacent
samples should all have roughly the same distance to
the intersection point. In the end, one could find the
closest pair of sample points and add an even closer
point to each endpoint to guarantee correct recon-
struction of open curves. Figure 5 gives an intuition
of the described rules of thumb.

6 Experimental Results

The Lissajou figure in figure 6(a), given by the para-
metric form L(t) 7→ (sin 4πt, cos 6πt), was sampled
such that n values were taken equally distributed from
[0; 1) and the corresponding points were put into the
sample. This was done for several values of n.

The results depend of course on the random input
but they show a general behavior which can be repro-
duced for other inputs of the same size. One possible
drawback of the algorithm is that a single failure—a
single wrong edge—can lead to a chain reaction for
the following edges because they all base on a wrong
edge. The experiments show that this disastrous ef-
fect is not likely to occur if the sample has at least a
certain density.

Obviously one can always create a point pattern
around an intersection which will result in a wrong re-
construction independent of the density. Nevertheless
there are no additional wrong edges besides close to
intersections and no gaps, so the reconstructed topol-
ogy will be correct if the sample is dense enough. This

(a) This figure was sam-
pled and reconstructed.

(b) n=50: The sample is
overall too sparse.

(c) n=100: Some wrong
edges appear resulting
from sharp bends.

(d) n=200: Almost per-
fect result except for mi-
nor dents and one wrong
edge.

Figure 6: Experimental results from random samples.

suggests that the algorithm can also be used success-
fully in a heuristic approach.

7 Open Problem

The major open problem is the lack of a nice sam-
pling condition. The ε-sampling condition is well-
established far beyond the problem of curve recon-
struction but it is just not applicable for corners and
intersections. Excluding regions around these arti-
facts and handling them with special cases is possible
but definitively not a very nice solution.

Is there a sampling condition, as simple and clear
as the ε-sampling condition, which also holds for non-
smooth or even self-intersecting curves?

References

[1] T. K. Dey and P. Kumar. A simple provable algo-
rithm for curve reconstruction. In Proc. 10th ACM-
SIAM Sympos. Discrete Algorithms, pages 893–894,
Jan. 1999.

[2] S. Funke and E. A. Ramos. Reconstructing a collection
of curves with corners and endpoints. In Proceedings of
the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 344–353. Society for Industrial and
Applied Mathematics, 2001.

[3] T. Lenz. Reconstructing collections of arbitrary
curves. In SCG ’05: Proceedings of the 21st annual
symposium on Computational geometry, pages 366–
367. http://compgeom.poly.edu/acmvideos/
socg05video/index.html, 2005.

32

EWCG 2006, Delphi, March 27–29, 2006

On the Curve Equipartition Problem: a brief exposition of basic issues

Costas Panagiotakis ∗ George Georgakopoulos ∗ George Tziritas ∗

Abstract

We describe briefly the problem of partitioning a con-
tinuous curve into N parts with equal chords. (The
length of a chord may be defined by any smooth dis-
tance metric applied on its endpoints-the Euclidean
metric being one of them.) A have proved that a deci-
sion variation of this problem is NP-complete, yet for
any continuous curve and any N there always exists
at least one equipartition. In this work, we propose
an approximate algorithm and also a steepest descent
method that converges to an exact solution.

1 Introduction

The curve segmentation problem is a challenging
problem of computational geometry. A huge number
of applications, like object recognition and tracking,
signal summarization and compression, curve simplifi-
cation and computer graphics applications, are based
on curve segmentation. Many computer graphics ap-
plications are based on curve segmentation problem,
like surface simplification and 3D modelling. Most
polygonal surface simplification methods employ tri-
angles as their approximating elements when con-
structing a surface [3]. One of the most popular trian-
gulation methods is Delaunay triangulation [5], [11].

On computer vision applications the curve segmen-
tation problem also appears. Signal summarization
and key frames detection methods using an appropri-
ate feature set reduce the initial problem into a curve
segmentation problem [4]. Methods for non articu-
lated motion tracking are based on solutions of the
curve equipartition problem [10].

Another example of such segmentation approach is
the 2D or 3D polygonal approximation [2] or convex
polygons [7]. This problem asks for computing an-
other polygonal curve that approximates the original
curve. The problem can be formulated in two ways
[6], [1] : The problem of minimum error (Min−ε) and
the the problem of minimum number of line segments
(Min−#).

Symbols Definitions
C(t) The given curve, t ∈ [0, 1]
N The number of equal length chords
d(x, y) d(x, y) = |C(x) − C(y)|2
UM···K {M, M + 1, · · · , K}

Table 1: Proof symbol table.

Fig. 1: An EP example for N = 3, |AP1| = |P1P2| =
|P2B|.

1.1 Problem Definition

The equipartition problem is defined as follows: Let
C(t), t ∈ [0, 1] be a 2D acyclic curve1 that starts on
A = C(0) and ends on B = C(1). We have to com-
pute N − 1 sequential curve points Pi, i ∈ U1···N−1,
P0 = A, PN = B under the constraint d(Pi−1, Pi) =
d(Pi, Pi+1), i ∈ U1···N−1. The problem is the curve
partitioning into N parts with equal chords, so that
the first starts from A and the last ends on B (Fig.
1). Some useful symbols are defined on Table 1.

The solution is obvious for N = 1, as we have one
chord, AB. When N = 2, we have to locate a curve
point P1, so that |AP1| = |P1B|. This point can be
given as the intersection of the curve with the AB
segment bisector. When N is higher than two, there
is not a trivial method to compute the equal length
chords. The above problem can have more than one
solutions depending on curve shape and the value of
N . As N tends to infinity the problem solution (equal
length chords) will be unique and it will approximate
the curve (Fig. 2). More examples can be found in
[9]. By our analysis, the EP problem admits always a
solution, thus the decision version of EP is certainly
not NP-complete. Yet, at the time, we cannot give

∗Department of Computer Science, University of
Crete, P.O. Box 2208, Heraklion, Greece {cpanag, ggeo,

tziritas}@csd.uoc.gr
1We suppose that the curve is piecewise-algebraic. The

problem can be defined in the same way in any dimension
(C(t) ∈ <n).

33

22nd European Workshop on Computational Geometry, 2006

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

AB

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

AB

−4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

A B

−4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

A B

−4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

A B

Fig. 2: EP examples for different N. The higher the N , the better the curve approximation.

a guarantee that it admits always a succint solution,
thus we cannot assert that the functional version of
it belongs to the TFNP class. Finally consider the
following ’verification’ version of the EP: given a curve
C and a distance ρ is it possible to equipartition C
into N parts, so their N chords are all equal to ρ?
For this version, we do know something positive: we
can prove that this version of EP is NP-complete (by
a reduction from Knapsack).

1.2 An Equivalent Definition of the Problem

The smooth function d(x, y) = |C(x)−C(y)|2, x, y ∈
[0, 1] gives a different view and an equivalent defini-
tion of the problem. We can use as d(x, y) any smooth
metric like Euclidean distance. As a smooth met-
ric distance, d(x, y) is characterized by the following
properties:

1. d(x, y) = 0⇔ x = y (isolation).

2. d(x, y) = d(y, x) (symmetry).

3. d(x, y) inherits continuity existence from C(t).

4. d(x, y) can be defined in any dimension (C(t) ∈
<n).

An equivalent problem definition can be derived us-
ing d(x, y). A problem solution {0, t1, t2, · · · , tN−1, 1}
of curve C(t), corresponds to the surface d(x, y) as
a point sequence, (0, t1), (t1, t2), · · · , (tN−1, 1). The
length r of each chord is given by the following equa-
tion:

r = d(0, t1) = d(t1, t2) = · · · = d(tN−1, 1) (1)

An alternative problem definition will be the determi-
nation of {t1, t2, · · · , tN−1}, so that Equation (1) will
be satisfied. Under this definition we prove that the
problem has at least one solution.

The rest of the paper is organized as follows: A
brief description of the proof of solution existence for
each chord number is presented in Section 2. The pro-
posed algorithms that solve the problem are presented
in Sections 3 and 4. Conclusions and discussion are
provided in Section 5.

2 Existence Proof

In this section we are going to give a brief description
of the proof that there exists at least one solution for
each N . We are going to analyze the case of N = 3.
The cases of N > 3 are faced with a generalization
of the used methodology for N = 3 and their proof
can be done inductively. The proof is presented with
more details in [8].

The function f2(x, y) = d(x, y) − d(x, 0), x ∈
[0, 1], y ≥ x, is continuous and partially monotonous
function. The null plane curves2 of f2(x, y) will be
continuous and partially monotonous. The total solu-
tions of equal length chords for N = 2 are given by the
points (x, y) of these curves, because d(x, 0) = d(x, y)
and y ≥ x. Let h2(s) = [a2(s), b2(s)], s ∈ [0, 1] be
the curve of f2(x, y) null plane, that starts from [0, 0]
(h2(0) = [0, 0]). Then a2(s) ≤ b2(s), because the
points of h2(s) are points of f2 domain. This curve
exists as f2(0, 0) = 0. It can be proved that h2(s)
ends on y = 1, equivalently b2(1) = 1. We consider
the continuous function q(s) (Equation (2)). Using
this function, we will find {t1, t2} with t2 ≥ t1 satis-
fying Equation (1) and the proposition will have been
proved for N = 3.

q(s) = d(a2(s), b2(s))− d(1, b2(s)), s ∈ [0, 1] (2)

It holds that,

• q(0) = d(0, 0)− d(1, 0) = −d(1, 0) < 0 and

• q(1) = d(a2(s), 1)− d(1, 1) = d(a2(s), 1) > 0

At least a s2 ∈ (0, 1) exists (applying the Bolzano
theorem) so that q(s2) = 0. This means
d(a2(s2), b2(s2)) = d(1, b2(s2)). Let t2 = b2(s2) and
t1 = a2(s2), ⇒ t2 ≥ t1 and d(t1, t2) = d(t2, 1). The
(t1, t2) is a point of h2 ⇒ d(t1, t2) = d(0, t1). Thus we
have found {t1, t2} with t2 ≥ t1 satisfying the equa-
tion (1). Finally, the problem has been proved for
N = 3.

3 Iso-Level Algorithm (ILA)

The iso-level algorithm is based on the equivalent
problem definition. It computes at least one solution

2The null plane curves of f(x, y) are defined by the equation
f(x, y) = 0.

34

EWCG 2006, Delphi, March 27–29, 2006

or all the solutions (greedy version). It is inductive.
Thus, when it is executed for N , it solves the problem
for any number of parts (with equal chords) less than
N .

The major hypothesis of the method is that the
function d(x, y), x, y ∈ [0, 1] can be approximated by

a polygonal surface d̂(x, y). Thus, the d̂(x, y) is de-
termined by d(mk, ml), k, l ∈ {1, 2, · · · , M}. Let

Dij = [xi, xi+1]× [yj , yj+1] ⊂ [0, 1]2

with xi = yi = mi, i, j ∈ {1, 2, · · · , M}. The segment
Dij can be separated into two triangles: D1

ij where

x − xi ≥ y − yj and D2
ij where x − xi < y − yj.

Under our major hypothesis, we have considered that
d̂(x, y), x, y ∈ D1

ij or x, y ∈ D2
ij is a part of plane.

In each iteration step l, the algorithm computes
the curves Ll so that if the point (u, v) ∈ Ll−1, u > v,
then, it holds that (z, u), z > u ∈ Ll ⇔ d(u, v) =
d(z, u). These curves consist of line segments defined
on D1

ij , D2
ij , so they can be computed from the line

segments end points. For l = 1, it holds that,

L1 = [(0, 0), (m1, 0)] ∪ · · · ∪ [(mM−1, 0), (1, 0)].

Let (x, y) ∈ Ll, x > y. Under the above def-
inition, the equipartition of curve C(t), t ∈ [0, x]
into l chords can be done using the precomputed
curves Ll, Ll−1, · · · , L1 (see Fig. 3). The equipar-
tition of curve C(t), t ∈ [0, 1] into l + 1 chords
can be done using the curves Ll, Ll−1, · · · , L1. Let
ql(u, v) = d(u, v) − d(u, 1), (u, v) ∈ Ll, u > v. This
function is piecewise linear. The roots of this function
will give the last two points (ṫl−1, ṫl) of the equipar-
tition. The other points are estimated using the rule
of Fig. 3.

It can be proved that for each step there is a con-
tinuous curve hl ⊂ Ll starting from [0, 0] and end-
ing on axis x = 1 or y = 1 (see Fig. 3). We can
compute at least one solution of the problem using
these curves. The computation cost of hl curves is
O(M · N), because we can track them starting from
their known end point [0, 0]. We can estimate a nor-
malized error (NE) of an estimated equipartition of
length chords by getting the standard deviation of the
estimated length chords of this equipartition divided
by the mean length chord of this equipartition ([8]).
NE is decreased as M increases. It can be proved
that NE is decreased by the factor O(1

M2).

Figure 4 illustrates the results of this proposed al-
gorithm for different curves and values of N . The null
plane curves converge to the diagonal (y = x), as N
increases (see Fig. 4(e)), and there exist exactly one
solution. At least one solution belongs on the hN (s)
null plane curve. However, in some cases, more solu-
tions appear on other null plane curves (see Fig. 4(a),
4(c)).

Fig. 3: An example of curve equipartition into 4 chords.
It is shown the recursive computation of {ṫ1, ṫ2, ṫ3} and
L2, L3 curves.

4 Steepest Descent based Method

The steepest descent based method (SDM) converges
to the closest solution to an initial equipartition,
given this initial equipartition. The major advantage
of this method is that the computed chords will
have exactly the same length, as the end of the
last chord is converging to B. In some cases the
algorithm can not converge as there may appear
local minima or jumps (loops) between different
solutions. These phenomena are increased, when the
initialization is far enough from an existing solution.
But, when the problem has a unique solution, which
is usually observed for high N , then the algorithm
will converge. A pseudocode of this procedure is
given hereafter.

Steepest Descent based Algorithm
s = r0

P0 = A
Repeat

for i=1:N
Pi = C(ti) : (ti > ti−1) ∧ (|Pi−1Pi| = s)

end

s =

{
s + λ |B−PN |

N , PN ∈ inside of curve C(t)

s− λ |B−PN |
N , PN ∈ ouside of curve C(t)

Until |PN −B| < T

The learning rate λ determines the number of steps
which are needed for convergence. However, when λ
is set to a high value (λ > 0.5), it can cause insta-
bility and not convergence. For better convergence,
we can start the method with λ ≈ 0.5 and we de-
crease it to λ ≈ 0.05. Conclusively, if we want to
solve the problem for lower N , where there are pos-
sibly many solutions and local minima, it is better
to execute first the approximate algorithm, getting a
good initialization for the steepest descent based algo-
rithm. For higher N , where the problem might have
a unique solution, the proposed method will converge

35

22nd European Workshop on Computational Geometry, 2006

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(a)

−8 −6 −4 −2 0 2 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

AB AB AB AB AB AB AB AB AB AB

Segments = 3 Number of solutions = 5

(b)

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

Segments = 4 Number of solutions = 7

(d)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(e)

−3 −2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

AB AB AB AB AB AB AB AB AB AB AB

Segments = 12 Number of solutions = 1

(f)

Fig. 4: Results of greedy version of ILA. The estimated solutions are projected on d(x, y) (left) with black cycles and
on input curve C(t) (right) with the same color points belonging to the same equipartition. The null plane curves are
projected on d(x, y), with gray colors, at both sides of diagonal x = y.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

A

B

(a)

−4 −2 0 2 4 6 8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

A B

(b)

Fig. 5: Steepest descent based algorithm results.

towards the exact solution, even if the initialization is
not close to the solution. The time complexity of the
algorithm is O(N · S), where S denotes the number
of steps that are needed for convergence. S depends
on curve shape and how close to the final solution the
initialization is. Results of the steepest descent based
algorithm are shown in Fig. 5.

5 Conclusions

In this paper, we have discussed the curve equipar-
tition problem (EP). If the chord length is part of
the instance then the problem becomes NP-complete,
but if the chord-length can be chosen at will it can be
proved that there always exists at least one solution
for any piecewise linear curve and thus for any contin-
uous curve. An equivalent definition of the problem
(using a distance metric on [0..1] × [0..1]) leads also
to an existence proof and to an approximate algo-
rithm. The ILA can compute at least one solution
or all the solutions using a greedy version of the al-
gorithm. The output of this algorithm can be used
to initialize a steepest descent based algorithm that
converges to an exact solution.

References

[1] P. K. Agarwal and K. R. Varadarajan. Efficient algo-
rithms for approximating polygonal chains. Discrete
& Computational Geometry, 23(2):273–291, 2000.

[2] K.-L. Chung, W.-M. Yan, and W.-Y. Chen. Efficient
algorithms for 3-d polygonal approximation based
on lise criterion. Pattern Recognition, 35:2539–2548,
2002.

[3] H. Delingette. General object reconstruction based
on simplex meshes. International Journal of Com-
puter Vision, 32:111–142, 1999.

[4] A. D. Doulamis, N. Doulamis, and S. Kollias. Non-
sequential video content representation using tempo-
ral variation of feature vectors. IEEE Trans. on Con-
sumer Electronics, 46:758–768, 2000.

[5] P. S. Heckbert and M. Garland. Survey of polygo-
nal surface simplification algorithms. In SIGGRAPH,
1997.

[6] Y. Kurozumi and W. Davis. Polygonal approxima-
tion by the minimax method. Computer Vision,
Graphics and Image Processing, pages 248–264, 1982.

[7] M. A. Lopez and S. Reisner. Hausdorff approxima-
tion of convex polygons. Computational Geometry,
32:139–158, 2005.

[8] C. Panagiotakis, G. Georgakopoulos, and G. Tzir-
itas. The curve equipartition problem. sub-
mitted to Computational Geometry, url =
http://www.csd.uoc.gr/ cpanag/papers/EP.pdf,
2005.

[9] C. Panagiotakis, G. Georgakopoulos, and G. Tziri-
tas. Curve segmentation into equal segments. Tech-
nical Report CSD-TR-05-02, Computer Science De-
partment, University of Crete, 2005 (in greek).

[10] C. Panagiotakis and G. Tziritas. Construction of an-
imal models and motion synthesis in 3D virtual en-
vironments using image sequences. In Proc. of the
second Int. Symp. on 3DPVT, 2004.

[11] C. Sohler. Fast reconstruction of delaunay triangula-
tions. Computational Geometry, 31:166–178, 2005.

36

EWCG 2006, Delphi, March 27–29, 2006

Understanding the Inverse Ackermann Function

Raimund Seidel

Fachrichtung Informatik, Saarland University
Postfach 15 11 50, D-66041, Saarbrücken, Germany

rseidel@cs.uni-sb.de

The so-called inverse Ackermann function is an exceedingly slowly growing function that
arises in bounds for a number of computational/combinatorial problems. The proofs of
those bounds are usually tedious, proceed in a bottom-up fashion, and provide little (if
any) intuition in the nature of the bound.

In my talk I will describe a top-down approach that is rather simple and leads naturally
to such inverse Ackermann function bounds (without ever having to talk about the Ack-
ermann function itself). The most striking example will be so-called path compression,
which arises in algorithms for the union-find problem. This is one of the basic problems in
algorithmics. It is distinguished by the fact that it is typically the only basic problem in
intermediate level algorithms courses for which fast solutions are taught but not analyzed.

37

22nd European Workshop on Computational Geometry, 2006

38

EWCG 2006, Delphi, March 27–29, 2006

On the density of iterated line segment intersections∗

Ansgar Grüne‡ Sanaz Kamali Sarvestani‡

Abstract

Given S1, a finite set of points in the plane, we define
a sequence of point sets Si as follows: With Si already
determined, let Li be the set of all the line segments
connecting pairs of points of

⋃i
j=1 Sj , and let Si+1 be

the set of intersection points of those line segments
in Li, which cross but do not overlap. We show that
with the exception of some starting configurations the
set of all crossing points

⋃∞
i=1 Si is dense in a partic-

ular subset of the plane with nonempty interior. This
region can be described by a simple definition.

1 Introduction

Given S = S1, a finite set of points in the Euclidean
plane, let L1 denote the set of line segments connect-
ing pairs of points from S1. Next, let S2 be the set of
all the intersection points of those line segments in L1

which do not overlap. We continue to define sets of
line segments Li and point sets Si inductively by

Li :=

{
pq

∣∣∣∣ p, q ∈
i⋃

j=1

Sj ∧ p 6= q

}
,

Si+1 := {x | {x} = l ∩ l′ where l, l′ ∈ Li} .

Finally, let S∞ :=
⋃∞

i=1 Si denote the limit set.

S1

S2 \ S1

S3 \ S2

K(S)

Figure 1: The first iterations S1, S2 and S3 of line
segment intersections and the candidate K(S).

In this article we show in which region K(S) the
crossing points S∞ are dense, and in which excep-
tional cases the crossing points are not dense in any
set with non-empty interior.

Several results concerning the density of similar
iterated constructions are known, see Bezdek and

∗The full version of this article is available as technical re-
port [5] via internet. Parts of the results stem from Sanaz
Kamali Sarvestani’s master’s thesis [9].

‡Department of Computer Science I, University of Bonn,
{gruene,kamali}@cs.uni-bonn.de

Pach [2], Kazdan [10], Bárány, Frankl, and Mae-
hara [1]. Ismailescu and Radoičić [8] examined a ques-
tion very similar to ours. The only difference is that
they considered lines instead of line segments. They
proved by applying nice elementary methods that
with the exception of two cases the crossing points
are dense in the whole plane. Hillar and Rhea [7] in-
dependently proved the same statement with different
methods.

Our setting of line segment intersections turns out
to be more difficult. It has more exceptional cases,
where the crossing points are not dense in any set with
non-empty interior. And in non-exceptional cases the
crossing points are not dense in the whole plane but
only in a particular convex region K(S). In fact, if we
do not have an exceptional configuration, the density
of the line intersections in the whole plane is an easy
consequence of the result presented here. This can be
shown by the arguments displayed in Figure 4 of [8].

Our work is also motivated by another interesting
problem introduced recently by Ebbers-Baumann et
al. [4], namely how to embed a given finite point set
into a graph of small dilation. For a given geometric
graph G in the plane and for any two vertices p and q
we define their vertex-to-vertex dilation as δG(p, q) :=
|π(p, q)|/|pq|, where π(p, q) is a shortest path from p
to q in G and | · | denotes the Euclidean length. The
dilation of G, δ(G), is the maximum dilation of any
two vertices.

A geometric graph G of smallest possible dila-
tion δ(G) = 1 is called dilation-free. We will
give a list of all cases of dilation-free graphs in
the plane in Section 2. Given a point set S in
the plane, the dilation of S is defined by ∆(S) :=
inf { δ(G) | G = (V, E) planar graph, S ⊂ V } . De-
termining ∆(S) seems to be very difficult. The an-
swer is even unknown if S is a set of five points
placed evenly on a circle. However, Ebbers-Baumann
et al. [4] were able to prove ∆(S) ≤ 1.1247 for every
finite point set S ⊂ R2 and they showed lower bounds
for some special cases.

A natural idea for embedding S in a graph of small
dilation is to try to find a geometric graph G = (V, E),
S ⊆ V , such that δG(p, q) = 1 for every p, q ∈ V .
Now, suppose we have found such G. Obviously, for
every pair p, q ∈ S, the line segment pq must be a
part of G. Since G must be planar, every intersection
point of these line segments must also be in V and so
on.

39

22nd European Workshop on Computational Geometry, 2006

If this iteration produces only finitely many inter-
section points, i.e. the set S∞ defined at the very
beginning of this article is finite, we have a planar
graph G = (V, E) with S ⊂ V , V \ S finite and
δ(G) = 1 thus ∆(S) = 1. This shows that |S∞| <∞
can only hold if S is a subset of the vertices of a
dilation-free graph. We call those point sets excep-
tional configurations. Note that ∆(S) = 1 could
still hold for other sets. There could be a sequence
of proper geometric graphs whose dilation does not
equal 1 but converges to 1.

Our main result, Theorem 8, shows that in all the
cases where S is not an exceptional configuration, S∞
is dense in a region with non-empty interior. Very
recently Klein and Kutz [11] proved a special case of
this theorem and used it to prove the first non-trivial
lower bound ∆(S) ≥ 1.0000047 which holds for every
non-exceptional finite point set S.

2 Exceptional Configurations and the Candidate

Here, we list all cases of dilation-free graphs. They
can also be found at Eppstein’s Geometry Junk-
yard [6]. It can be proven by case analysis that these
are all possibilities. The exceptional configurations are
the subsets of the vertices of such graphs.

(i) n points on a line

(ii) n− 1 points on a line, one point not on this line

(iii) n − 2 points on a line, two points on opposite
sides of this line1

(iv) a triangle (i.e. three points) nested in the inte-
rior of another triangle. Every pair of two inner
points is collinear with one outer point.

1Let p1 and p2 be the two points on opposite sides of the line,
and let p3, . . . , pn be the other points. If the segment p1p2 in-
tersects with the convex hull ch({p3, . . . , pn}), the intersection

Next, we define the region K(S), cf. Figure 1. Until
we prove that S∞ is dense in K(S), we call K(S) the
candidate.

Definition 1 The candidate K(S) is defined as the
intersection of those closed half planes which contain
all the starting points except for at most one point:

K(S) :=
⋂

p∈S

⋂

H⊃S\{p}
H

The second intersection is taken over all closed half
planes H which contain S \ {p}.

It is not difficult to prove that the candidate is a
convex polygon whose vertices belong to S1 ∪S2, and
that every intersection point lies inside of the candi-
date, that is S∞ \ S ⊂ K(S), see the full paper [5].

3 Density in a Triangle

Lemma 1 (Main Lemma) Let the starting configu-
ration S = {A, B, C, D, E} be as follows: 3 points are
the vertices of the triangle 4ABC, another 2 points
D and E are on different sides of this triangle (see
Figure 2), then S∞ is dense in a triangle.

A

D

C

E

B

F
H

G

I

Figure 2: S∞ is dense in 4GHI .

Proof. We use arguments from projective geome-
try; see Bourbaki [3] for an introduction. Consider
the Euclidean plane A as embedded in the projec-
tive plane P2. The complement of the projective line
through BC in P2 is an Euclidean plane A′. On A′ we
have the same points as in A like shown in Figure 3.

We use this simple topological fact: A set A is
dense in a set B with respect to a topological sub-
space Y ⊂ X where A ⊂ B ⊂ Y iff A is dense in B
with respect to the whole space X . That means to
prove, that S∞ is dense in a triangle in the Euclidean
plane A, it is sufficient to show, that S∞ is dense in
the same triangle in the projective plane and it is also
equivalent to prove, that S∞ is dense in that trian-
gle with respect to A′. In this case we want ro prove

point must be a vertex of the dilation-free graph. However,
it does not have to be part of the corresponding exceptional
configuration.

40

EWCG 2006, Delphi, March 27–29, 2006

that S∞ is dense in 4GHI with G := ED ∩ AF ,
H := BG ∩ EF and I := CG ∩ FD.

In A′ we have AD ‖ EF , because the lines
through AD and EF in A cross each other in C and
AE ‖ DF , because the lines through them cross each
other in B respectively. Hence G is the midpoint of
DE, I is the midpoint of DF and H is the midpoint
of EF . But for this special case we can prove with
elementary methods that the intersection points are
dense in 4GHI (see Section 3 of the full paper [5]).
Hence S∞ is dense in 4GHI in A. �

O

A

B

C

D

E

F

D

E

F
G

H

A

A′

G

I

Figure 3: A useful projection of4ABC

This implies the first partial result, proved as Corol-
lary 7 in the full version [5]:

Corollary 2 Let S1 be a set of n > 4 points in convex
position in the plane no three of them on a line. Let
Si be the sets defined as above, then S∞ =

⋃∞
i=1 Si is

dense in a triangle.

We generalize this statement as follows.

Lemma 3 For any non exceptional configuration,
there exists a triangle, in which S∞ is dense.

This can be proved by detailed case analysis and by
applying the main lemma, Lemma 1 (see proof of
Lemma 8 in [5]).

4 Density in the Candidate

We mention the following two techical tools without
proof (see the proofs in Section 5 of [5]).

Lemma 4 Let L, M and N be three distinct points
such that M lies on the line segment LN and let
a and b be two rays, emanating from M on the same
side of the line through L and N . Let K0 be a point
on the ray a (cf. Figure 4). We define a sequence of

L M N

b

a

P0

P1

P2

K1

K0

K2

Figure 4: The point sequences (Pi)i∈N and (Ki)i∈N

converge to M .

points as follows: Pi := b ∩ NKi, Ki+1 := LPi ∩ a.
Then the point sequence (Pi)i∈N converges to M on b
and the point sequence (Ki)i∈N converges to M on a.

Corollary 5 Consider Figure 5: Let L and N be two
points, and this time let M be a point not on the
line LN but such that the line which goes through M
and is perpendicular to LN meets the line segment
LN . Let H be the half plane bounded by the line
which passes LM and which does not contain N and
similarly let H ′ be the half plane, bounded by the
line which passes MN and which does not contain
L. Let a and b be two rays emanating from M and
lying in H ∩ H ′ and not on the boundary. If K0 is
a point on the ray a and we define point sequences
(Pi)i∈N and (Ki)i∈N analogously to Lemma 4, then
these sequences converge to M .

L N

M

H

H
′

H ∩ H
′

b

P0

a

K0

K1

P1

K2

Figure 5: The point sequences (Pi)i∈N and (Ki)i∈N

converge to M .

41

22nd European Workshop on Computational Geometry, 2006

Definition 2 Let C be a convex polygon and let P be
a point outside of C. We call the two rays emanating
from P , which touch the boundary of C, tangents of C
through P . Let A and B be those two vertices of C,
which are the first to be touched by the tangents.
We define the visibility cone of P with respect to C,
V (P, C), as follows:

V (P, C) :=4ABP − C

P
A

B

C

V (P, C)

Figure 6: The visibility cone of P with respect to C,
V (P, C)

In the following we often use this simple fact (see
the proof in Attachment A of [5]):

Fact 6 A family of dense rays emanating from a fixed
point generates dense intersection points on every line
segment which is hit by the rays.

Lemma 7 Let the starting configuration S be an ar-
bitrary finite point set. Assume that S∞ is dense in
a convex region R ⊂ ch(S) with nonempty interior.
And let P be a point from S∞ such that P 6∈ R
and P is not a vertex of ch(S). Then S∞ is dense in
ch({P} ∪ R).

P

P

A1

A2A3

A4

A5

R

Figure 7: Two cases in the proof of Lemma 7.

Proof. Let Ai, i = 1 . . . n be the vertices of ch(S).
We distinguish the following cases:

Case 1 : If the point P lies in or on the boundary
of a visibility cone V (Ai,R) for some i say i0, then
we have V (P,R) ⊂ V (Ai0 ,R). Thus by Fact 6, S∞ is
dense in V (P,R) and therefore in ch({P} ∪R).

Case 2 : Else: V (P,R) intersects at least
one V (Ai,R).

Hence S∞ is dense in the intersection of these vis-
ibility regions. In particular S∞ is dense in a sub

line segment of at least one tangent of R emanating
from P . Now we can apply Corollary 5 or Lemma 4
combined with Fact 6 (P as M , the tangents as the
half lines a and b, and the neighbor side of the convex
hull as LM , cf. Figure 7). �

Theorem 8 Let S = S1 be a set of n points in
the plane, which is not an exceptional configuration.
Then S∞ is dense in the candidate K(S).

Proof. If S is not an exceptional configuration, by
Lemma 3 we know that S∞ is dense in a triangle T .
Furthermore we have seen in Section 2 that T ⊂ K(S)
and that every vertex of K(S) is an intersection point.
Let P1, P2, . . . , Pn be the vertices of K(S). Then
using Lemma 7 inductively yields that S∞ is dense
in ch({P1, P2, . . . , Pn}) = K(S). �

References

[1] I. Báránay, P. Frankl, and H. Maehara. Reflecting
a triangle in the plane. Graphs and Combinatorics,
9:97–104, 1993.

[2] K. Bezdek and J. Pach. A point set everywhere dense
in the plane. Elemente der Mathematik, 40(4):81–84,
1985.

[3] N. Bourbaki. General Topology, part 2, chapter VI,
§3, pages 44–53. Elements of Mathematics. Hermann,
Paris, 1966.

[4] A. Ebbers-Baumann, A. Grüne, M. Karpinski,
R. Klein, C. Knauer, and A. Lingas. Embedding
point sets into plane graphs of small dilation. In Al-
gorithms and Computation: 16th International Sym-
posium, ISAAC 2005, volume 3827 of Lecture Notes
Comput. Sci., pages 5–16. Springer, December 2005.

[5] A. Grüne and S. Kamali Sarvestani. On the den-
sity of iterated line segment intersections. Tech-
nical Report 004, Department of Computer Sci-
ence I, University of Bonn, 2005. http://www.cs.uni-
bonn.de/I/publications/gk-disi-05.pdf.

[6] D. Eppstein. The geometry junkyard:
dilation-free planar graphs. Web page, 1997.
http://www.ics.uci.edu/˜eppstein/junkyard/dilation-
free/.

[7] C. Hillar and D. Rhea. A result about the density
of iterated line intersections in the plane. Comput.
Geom. Theory Appl., to appear.

[8] D. Ismailescu and R. Radoičić. A dense planar point
set from iterated line intersections. Comput. Geom.
Theory Appl., 27(3):257–267, 2004.

[9] S. Kamali Sarvestani. On the density of iterated
segment intersections. Master’s thesis, University of
Bonn, 2005.

[10] D. A. Každan. Uniform distribution in the plane.
Transactions of the Moscow Mathematical Society,
14:325–332, 1965.

[11] R. Klein and M. Kutz. The density of iterated cross-
ing points and a gap result for triangulations of finite
point sets. Unpublished manuscript, 2005.

42

EWCG 2006, Delphi, March 27–29, 2006

On the structure of sets attaining

the rectilinear crossing number ∗

Oswin Aichholzer† David Orden‡ Pedro A. Ramos§

Abstract

We study the structural properties of the point con-
figurations attaining the rectilinear crossing number
cr(Kn), that is, those n-point sets that minimize the
number of crossings over all possible straight-edge em-
beddings of Kn in the plane. As a main result we
prove the conjecture that such sets always have a tri-
angular convex hull.

The techniques developed allow us to show a similar
result for the halving-edge problem: For any n there
exists a set of n points with triangular convex hull
that maximizes the number of halving edges. More-
over, we provide a simpler proof of the following result
from [13]: any set of points in the plane in general po-
sition has at least 3

(
j+2
2

)
(≤ j)-edges. This bound is

known to be tight for 0 ≤ j ≤ bn
3 c − 1. In addi-

tion, we show that for point sets achieving this bound
the bn+3

6 c outermost convex layers are triangles.

1 Introduction

Given a graph G, its crossing number is the mini-
mum number of edge crossings over all possible draw-
ings of G in the plane. Crossing number problems
have both, a long history, and several applications to
discrete geometry and computer science. We refrain
from discussing crossing number problems in its gen-
erality, but instead refer the interested reader to the
early works of Tutte [15] or Erdös and Guy [8], the
recent survey by Pach and Tóth [14], or the extensive
online bibliography by Vrt’o [16].

In 1960 Guy [10] started the search for the rectilin-
ear crossing number of the complete graph, cr(Kn),
which considers only straight-edge drawings. The
study of cr(Kn) is commonly agreed to be a difficult

∗Research on this paper was carried out while the first
author was a visiting professor at the Departamento de
Matemáticas, Universidad de Alcalá, Spain.

†Institute for Software Technology, Graz University of Tech-
nology, oaich@ist.tugraz.at. Partially supported by the
FWF (Austrian Fonds zur Förderung der Wissenschaftlichen
Forschung) under grant S09205-N12, FSP Industrial Geometry

‡Departamento de Matemáticas, Universidad de Al-
calá, david.orden@uah.es. Partially supported by grants
MTM2005-08618-C02-02 and S-0505/DPI/000235.

§Departamento de Matemáticas, Universidad de Al-
calá, pedro.ramos@uah.es. Partially supported by grants
TIC2003-08933-C02-01, BMF2002-04402-C02-01 and S-
0505/DPI/000235.

task and has attracted a lot of interest in recent years,
see e.g. [1, 2, 3, 6, 7, 13]. In particular exact values
of cr(Kn) are only known up to n = 17, see [4], and
also the exact asymptotic behavior is still unknown.
Several relations to other structures, like for example
k-sets, are conjectured [11], but surprisingly little is
known about the combinatorial properties of optimal
sets.

Therefore in this paper we consider structural prop-
erties of point sets minimizing the number of cross-
ings, that is, attaining the rectilinear crossing number
cr(Kn). Relations are obtained by using basic tech-
niques, like e.g. motion flips and rotational sweeps.

Moreover we draw connections to j-edges and k-sets
which provide additional insight for two other promi-
nent problems (see [5, 13]): Maximizing the number of
halving edges and counting (≤ k)-edges. Let us recall
that a j-edge, 0 ≤ j ≤ bn−2

2 c, is a segment spanned
by the points p, q ∈ S such that precisely j points of S
lie in one open half space defined by the line through
p and q. In other words a j-edge splits S \ {p, q} into
two subsets of cardinality j and n−2−j, respectively.
Note that we consider non-oriented j-edges, i.e., the
edge pq equals the edge qp. A (≤ j)-edge has at most
j points in this half space, that is, it is a k-edge for
some 0 ≤ k ≤ j.

Due to the lack of space, we will omit proofs in this
abstract.

2 Minimizing the number of rectilinear crossings

2.1 Order type flip events

Let S = {p1, ..., pn} be a set of n points in the plane in
general position, that is, no three points lie on a com-
mon line. It is well known that crossing properties of
edges spanned by points from S are exactly reflected
by the order type of S, introduced by Goodman and
Pollack in 1983 [9]. The order type of S is a mapping
that assigns to each ordered triple i, j, k in {1, ..., n}
the orientation (either clockwise or counter-clockwise)
of the point triple pi, pj , pk.

Consider a point p1 ∈ S and move it along a
straight line in the plane in a continuous way. A
change in the order type of S occurs if, and only if, the
orientation of a triple of points of S is reversed during
this process. This is the case precisely if p1 is moved
accross a line spanned by two other points, say p2

43

22nd European Workshop on Computational Geometry, 2006

and p3, of S. We call this event a flip. The three-
dimensional analogous of these order type changes
have been used in the study of the halving-edge prob-
lem in [5], where they were called mutations.

Assume that at time t0 the three points p1, p2, p3

are collinear, then the orientation of that triple at
time t0 + ε is inverse to its orientation at time t0 − ε
for an arbitrarily small constant ε > 0. Let us assume
that p1 moves over the line segment p2p3 as indicated
in Figure 1; otherwise we can interchange the role
of p1 and p2 (or p3, respectively) for the time inter-
val [t0 − ε, t0 + ε]. We say that p1 plays the center
role of the flip. Note that for the last assumption we
make use of the fact that no three points of S are
collinear, except for the moment when a flip is per-
formed. Therefore we further assume that we do not
stop the movement of p1 during the flip, that is, in a
collinear position.

p2

p3

k

l

p1

Figure 1: The point p1 is flipped over the segment
p2p3, changing the orientation of the triple p1, p2, p3.

We call the above defined flip a (k, l)-flip if there are
k points on the same side of the line through p2 and
p3 as p1, excluding p1, and l points on the opposite
side. Note that k+l = n−3. Our first goal is to study
how flips affect the number of crossings of S, that is,
the number of crossings of a straight-line embedding
of Kn on S, which will be denoted by cr(S). Note
that we are only considering rectilinear crossings.

Lemma 1 A (k, l)-flip increases the number of cross-
ings of S by k − l.

2.2 Halving rays

Since we know how flips affect the number of cross-
ings, we are now interested in good moving directions.
A point p ∈ S is called extreme if it is a vertex of the
convex hull of S. Two extreme points p, q ∈ S are
called non-consecutive if they do not share a common
edge of the convex hull of S. We define a halving ray
` to be an oriented line passing through one extreme
point p ∈ S, avoiding S \ {p} and splitting S \ {p}
into two subsets of cardinality n

2 and n−2
2 for n even

and n−1
2 each for n odd, respectively. Furthermore,

we orient ` away from S: For H a half plane through

p containing S, the ‘head’ of ` lies in the complement
of H and the ‘tail’ of ` splits S.

Lemma 2 Let p be an extreme point of S and ` be
a halving ray for p. Moving p along ` in the given
orientation, every occurring flip event decreases the
number of crossings of S.

p

`
r

q

l

k

Figure 2: Idea of the proof of Lemma 2.

Sketch of the Proof. When point p (see Figure 2)
is moved along a halving ray `, every flip involves p
and the center role is played by a different point q.
Line ` being a halving ray implies that the flip is a
(k, l)-flip with k < l. �

Lemma 3 For every pair of non-consecutive extreme
points p and q of S, we can choose halving rays that
cross in the interior of the convex hull of S.

Remark 4 Using order type preserving projective
transformations it can also be seen that a triangu-
lar convex hull can be obtained by projection along
the halving ray. This is a rather common tool when
working with order types, see e.g. [12]. However, we
have decided to use a self-contained, planar approach.

We now have the ingredients to go for our first main
results:

Theorem 5 Let S be a set of n points in the plane
in general position with h > 3 extreme points. Then
there exists a set S′ of n points in general position
with fewer crossings than those of S and fewer than h
extreme points.

As a consequence of Theorem 5 we prove the fol-
lowing common belief (see e.g. [7]) for which evidence
was provided by all configurations attaining cr(Kn)
for n ≤ 17, [2, 4]:

Theorem 6 Any set S of n ≥ 3 points in the plane
in general position attaining the rectilinear crossing
number has precisely 3 extreme points, that is, a tri-
angular convex hull.

44

EWCG 2006, Delphi, March 27–29, 2006

p

q

`q

`p

s

Figure 3: Idea of the proof of Theorem 5.

Observation 1 If S has 3 extreme points, from our
proof of Theorem 5 it follows that for an optimal set S
the three extreme points have to be ‘far away’ in the
following sense: For every extreme point p of S, the
cyclic sorted order of S \ {p} around p has to be the
same as its sorted order in the direction orthogonal
to the halving ray of p. (Otherwise another flip event
would occur when we keep on moving p).

3 Halving edges, j-edges and k-sets

A k-set of S is a set S′ ⊂ S of 1 ≤ k ≤ bn
2 c points that

can be separated from S \ S′ by a line (hyperplane in
general dimension). In dimension 2 there is a one-to-
one relation between the numbers of k-sets and (k−1)-
edges, since each of these objects can be derived from
precisely two of its corresponding counterparts. Thus,
in this paper we will solely use the notion of j-edges,
although all the results can also be stated in terms of
k-sets.

A halving edge is a j-edge with j = bn−2
2 c. Simi-

larly to Lemma 1, we now consider how the numbers
of j-edges and halving edges change during a flip.

Lemma 7 A (k, l)-flip changes the number of j-edges
in the following way: For k < l it decreases the num-
ber of k-edges by one and increases the number of
(k + 1)-edges by one. For k > l it decreases the num-
ber of (l+1)-edges by one and increases the number of
l-edges by one. It thus changes the number of halving
edges by 0 or 1 for k < l, 0 or −1 for k > l. For k = l
everything remains unchanged.

Lemma 8 A (k, l)-flip either leaves the number of
halving edges unchanged or increases it by 1 for k < l
(decreases it by 1 for k > l, respectively).

Results similar to Lemmas 7 and 8 have been ob-
tained for dimension 3 in [5]. We are now ready to
show our main result for halving edges.

Theorem 9 For any fixed n ≥ 3, there exists a point
set with triangular convex hull that maximizes the
number of halving edges.

One might wonder whether we can obtain a
stronger result similar to Theorem 6 stating that any
point set maximizing the number of halving edges has
to have a triangular convex hull. But there exist sets
of 8 points with 4 extreme points bearing the maxi-
mum of 9 halving edges, see [5], and similar examples
exist for larger n. Hence, the stated relation is tight
in this sense. We leave as an open problem the ex-
istence of a constant h such that any point set max-
imizing the number of halving edges has at most h
extreme points. We conjecture that such a constant
exists, and the results for n ≤ 11 suggest that h = 4
could be the tight bound.

From Lemma 1 and Lemma 7 we get a relation
between the number cr(S) of rectilinear crossings of S
and the number of j-edges of S, denoted by fj . An
equivalent relation can be found in [13].

Lemma 10

cr(S)+

b n−2
2

c
X

j=0

(j−1)(n−j−3)fj =
n4 − 10n3 + 27n2 − 18n

8

Lemma 11 The number cr(S) of rectilinear cross-
ings of S can be computed in O(n2) time.

Define the j-edge vector of S as (f0, . . . , fbn−2
2 c).

Another consequence of Lemma 10 is that any two
sets of n points with the same j-edge vector necessar-
ily have the same number of crossings. The reverse
is in general not true, as we have examples of sets
with 11 points and 106 crossings each, but j-edge vec-
tors (3, 6, 9, 15, 22) and (3, 6, 10, 12, 24), respectively.
But it is conjectured that for point sets attaining the
rectilinear crossing number this relation is in fact a
bijection [11]. This conjecture is known to be true for
n ≤ 16, and it turned out that the distribution of the
number of j-edges follows some interesting patterns,
see [4] for details.

Let us consider the flipping operation as some kind
of local improvement operation, in order to obtain a
global optimum that minimizes the number of cross-
ings. The idea would be to start with an arbitrary
point set and to repeat an improving flip until no more
improving flips exist. However, as one would expect,
there exists an example of 9 points with 40 crossings
and a j-edge vector (3, 6, 11, 16) which is locally opti-
mal w.r.t. flips. But the global optimum has only 36
crossings and a j-edge vector (3, 6, 9, 18).

45

22nd European Workshop on Computational Geometry, 2006

4 On j-edge vectors and (≤ j)-edges

Recall that a (≤ j)-edge is a segment spanned by two
points a, b ∈ S that has at most j points of S in one
open half space defined by the line through ab.

Using similar notations as above, f(≤j) counts the
number of (≤ j)-edges of S and (f(≤0), . . . , f(≤bn−2

2 c))

is the (≤ j)-edge vector of S.

Lemma 12 Let S be a set of n points with
h > 3 extreme points, having (≤ j)-edge vector
(f(≤0), . . . , f(≤bn−2

2 c)). Then there exists a set S′ of

n points with triangular convex hull and (≤ j)-edge
vector (f ′

(≤0), . . . , f
′
(≤bn−2

2 c)) with f ′
(≤i) ≤ f(≤i) for

all i = 0, . . . , bn−2
2 c, where at least one inequality is

strict.

This allows us to give a geometric proof of the fol-
lowing result, which was proved in [13] using circular
sequences:

Theorem 13 Let S be a set of n points in the plane.
The number of (≤ j)-edges of S is at least 3

(
j+2
2

)
for

0 ≤ j < n−2
2 . This bound is tight for j ≤ bn

3 c − 1.

That Theorem 13 is not tight for j ≥ bn
3 c can be

seen for n = 5: For any order type, all
(
5
2

)
= 10

segments are (≤ 1)-edges. Still we can prove some
property of the lexicographic minimal j-edge vector:

Corollary 14 Let v = (f0, . . . , fbn−2
2 c) be the lexico-

graphic minimal j-edge vector for a set S of n points
in the plane. Then, fi = 3 for i = 0, . . . , bn

3 c − 1 and
fbn

3 c ≥ 3.

The investigation of lexicographic minimal j-edge
vectors is driven by the following conjecture, for which
evidence is also provided by Lemma 10:

Conjecture 1 Point sets attaining the rectilinear
crossing number have a lexicographic minimal j-edge
vector.

The next result provides insight about the structure
of point sets minimizing the j-edge vector. For a set
S of n points in the plane we call the convex hull of
S its 1-st convex layer. The j-th convex layer of S is
the convex hull of Sj , where Sj is the set of points we
get after removing all points from S which lie on the
k-th convex layer for 1 ≤ k < j.

Theorem 15 If S has 3
(
j+2
2

)
(≤ j)-edges for every

j, 0 ≤ j ≤ 2J < n−2
2 , then for 1 ≤ k ≤ J + 1 the k-

th convex layer of S is a triangle, consisting of three
(2(k − 1))-edges.

Finally, from Theorem 13 we know that sets min-
imizing the j-edge vector (or equivalently the (≤ j)-
edge vector) have precisely 3

(
j+2
2

)
(≤ j)-edges for

j ≤ bn
3 c − 1. We thus get:

Corollary 16 Let S be a set lexicographically mini-
mizing the j-edge vector. Then the outermost bn+3

6 c
convex layers of S are triangles. Among them, the
k-th convex layer consists of three (2(k − 1))-edges.

References

[1] B.M. Ábrego and S. Fernández-Merchant, A lower
bound for the rectilinear crossing number. Graphs and
Combinatorics, 21:3 (2005), 293–300.

[2] O. Aichholzer, Rectilinear Crossing Number Page.
http://www.ist.tugraz.at/staff/aichholzer/

crossings.html

[3] O. Aichholzer, F. Aurenhammer, H. Krasser, On the
crossing number of complete graphs. Computing 76
(2006) 165–176.

[4] O. Aichholzer, H. Krasser, Abstract Order Type Ex-
tension and New Results on the Rectilinear Crossing
Number. In Proc. Proc. 21th Ann. Sympos. Comput.
Geom., Pisa, Italy (2005), 91–98.

[5] A. Andrzejak, B. Aronov, S. Har-Peled, R. Seidel,
E. Welzl, Results on k-Sets and j-Facets via Con-
tinuous Motion. In Proc. Proc. 14th Ann. Sympos.
Comput. Geom., Minneapolis, USA, (1998), 192–199.

[6] J. Balogh, G. Salazar, Improved bounds for the num-
ber of (≤ k)-sets, convex quadrilaterals, and the recti-
linear crossing number of Kn. In Proc.12th Int. Symp.
on Graph Drawing. LNCS 3383 (2005), 25–35.

[7] A. Brodsky, S. Durocher, E. Gethner, Toward the rec-
tilinear crossing number of Kn: new drawings, upper
bounds, and asymptotics. Discrete Mathematics 262
(2003), 59–77.

[8] P. Erdös, R.K. Guy, Crossing number problems.
American Mathematical Monthly 80 (1973), 52–58.

[9] J.E.Goodman, R.Pollack, Multidimensional sorting.
SIAM J. Computing 12, 484-507, 1983.

[10] R.K. Guy, A combinatorial problem. Nabla (Bulletin
of the Malayan Mathematical Society) 7 (1960), 68–
72.

[11] H.F.Jensen, Personal communication. (2004/05)

[12] H.Krasser, Order Types of Point Sets in the Plane.
PhD-Thesis, TU-Graz (2003)

[13] L.Lovász, K.Vesztergombi, U.Wagner, E.Welzl, Con-
vex Quadrilaterals and k-Sets. Contemporary Math-
ematics 342 (2004), 139–148.

[14] J. Pach, G. Tóth, Thirteen problems on crossing
numbers Geombinatorics 9 (2000), 195–207.

[15] W.T. Tutte, Toward a theory of crossing numbers.
Journal of Combinatorial Theory 8, (1970), 45–53.

[16] I. Vrt’o, Crossing numbers of graphs: A bibliography.
http://www.ifi.savba.sk/∼imrich

46

EWCG 2006, Delphi, March 27–29, 2006

On the All-Farthest-Segments Problem for a Planar Set of Points

Asish Mukhopadhyay ∗

e-mail: asishm@cs.uwindsor.ca
Samidh Chatterjee †

e-mail: chatte7@cs.uwindsor.ca
Benjamin Lafreniere ‡

e-mail: lafreni@uwindsor.ca

Abstract

In this note, we outline a very simple algorithm for
the following problem: Given a set S of n points
p1, p2, p3, . . . , pn in the plane, we have O(n2) seg-
ments implicitly defined on pairs of these n points.
For each point pi, find a segment from this set of
implicitly defined segments that is farthest from pi.
The complexity of our algorithm is in O(nh+n log n),
where n is the number of input points, and h is the
number of vertices on the convex hull of S.

1 Introduction

Geometric optimization is a very active subarea of
Computational Geometry. In this paper we study a
simple geometric optimization problem. Given a set
S of n points p1, p2, p3, . . . , pn in the plane, we have
O(n2) segments implicitly defined on pairs of these n
points. For each point pi, find a segment from this set
of implicitly defined segments that is farthest from pi.

2 Previous work

For the nearest version of this problem Daescu and
Luo [1], presented an O(n log n) algorithm; Duffy et
al [2] presented an O(n2) algorithm for the all-nearest
version, and also provided evidence that this might
be an O(n2)-hard problem. Daescu and Luo [1] also
presented an O(n log n) for the farthest version of this
problem. Here we show that the all-farthest version
of the problem can be solved in O(nh + n log n))
time, where h is the number of vertices on the convex
hull of the n points.

While it is hard to provide any practical motivation
for problems of this type that does not appear con-
trived, it is intriguing to know whether the all-farthest
problem can be solved as efficiently as or faster than
the all-nearest version.

∗School of Computer Science, University of Windsor, Wind-
sor,Ontario, Canada

†School of Computer Science, University of Windsor
‡School of Computer Science, University of Windsor

pi

pk

pj

Figure 1: Farthest distance from pi to segment (pj , pk)
is to an intermediate point

pk

pi

pj

Figure 2: Farthest distance from pi to segment (pj , pk)
is to an endpoint

3 Characterization of a farthest segment

Let pjpk be a farthest segment of a point pi. The
farthest distance is obtained either by dropping a
perpendicular from pi to the segment pjpk (Fig. 1) or
by joining pi to the nearer one of the end points pj

and pk (Fig. 2). We call these two types of farthest
segments type A and type B respectively.

We design an algorithm by characterizing the two
types of segments. To ensure the correctness of the
arguments below, we shall assume that no three points
of S are collinear.

Lemma 1 If the segment pjpk is a type A farthest
segment for a point pi then pjpk is an edge on the
convex hull of S.

47

22nd European Workshop on Computational Geometry, 2006

pj

pk

pi

pl

Figure 3: pj and pk are non-adjacent convex hull ver-
tices

Proof: If the segment pjpk is not a convex hull edge,
then there exists a point pl of S in the open half-plane
defined by the supporting line through pj and pk that
does not contain pi. This gives a segment pjpl that is
farther from pi than pjpk since pipj is the hypotenuse
of the right-triangle formed by pi, pj and the foot of
the perpendicular from pi to pjpk. This contradicts
the assumption that pjpk is a farthest segment of pi.
2

Lemma 2 If the segment pjpk is a type B farthest
segment for a point pi then either pjpk is an edge on
the convex hull of S or pj is farthest from pi among
all the points that are interior to the convex hull of
the point set, while pk is a convex hull vertex of the
given point set (Fig. 2).

Proof: Let the farthest distance be realised by
joining pi to pj . Our proof is in three parts, covering
the mutually exclusive and exhaustive possibilities
that the end points of pjpk are both points internal to
the convex hull of S, are both convex hull vertices or
one is an internal vertex while the other is a convex
hull vertex.

(1) Suppose pj and pk are both internal to the convex
hull. If this were true, consider the half-plane defined
by a line through pk orthogonal to pipk that does
not contain pi. This half plane must contain a vertex
pl of the convex hull of S, giving us a segment pkpl

that is farther from pi than pjpk and a contradiction.
Hence this possibility is excluded.

(2) Suppose pj and pk are both vertices of the
convex hull. We claim that in this case pjpk is a
convex hull edge. If otherwise, the segment pjpk

divides the convex hull of S into two parts. Consider
the convex hull boundary going from pj to pk that
lies in the part not containing pi (see Fig. 3). Since
there is at least one convex hull vertex on this
boundary, let pl be the one closest to pj. Then
plpk gives us a segment (could be of type A or
Type B) that is farther from pi than pjpk as the
distances of all points on plpk from pi are greater

than the distance from pi to pj . This proves our claim.

(3) pk is a convex hull vertex and pj is an internal
vertex. We claim that in this case pj is farthest from
pi among all internal vertices. Otherwise, let pl be
an internal point that is farther from pi than pj .
There exists a point pm that lies on the convex hull
and is in the half-plane defined by a line through
pl orthogonal to pipl, not containing pi. This gives
us a segment plpm farther from pi than pjpk and a
contradiction.

By (1), (2) and (3), we have proven that the
farthest segment from pi must either be an edge of
the convex hull of S, or have one end point on the
convex hull while the other end point is the farthest
from pi among all internal points. 2

With these two lemmas, it is easy to design an effi-
cient algorithm for solving this problem.

4 Algorithm

We first construct the convex hull of the point
set; then the farthest-point Voronoi diagram of the
interior points, if any. The complexity of these two
steps is in O(n log n).

For each point pi, we find the farthest segment as
outlined in the following algorithm.

Algorithm All-farthest-segments
Input : A set of n points p1, p2, . . . , pn

Output : The farthest segment pjpk for each pi

for each pi do

Step 1: Find the fathest segment among the edges
of the precomputed convex hull; record the segment
and the distance.

Step 2: Locate pi in the precomputed farthest point
Voronoi diagram of the points interior to the convex
hull. Let pj be its farthest neighbor and record the
distance to it from pi. If this distance is smaller than
that computed in Step 1 report the segment found in
Step 1 and quit, else continue.

Step 3: Draw a line orthogonal to the segment pipj ;
the other endpoint pk is the convex hull vertex that
lies in the halfplane not containing pi. We find this
by a linear search (we can afford this!) on the convex
hull boundary. Report pjpk as the farthest segment.

od

48

EWCG 2006, Delphi, March 27–29, 2006

5 Analysis

The complexity of Step 1 is in O(h); that of Step 2 is
in O(log(n− h)); while that of Step 3 is also in O(h).
Thus the complexity of the all farthest segment is in
O(nh + n log n).

6 Future Work

It would be intereresting to extend this algorithm to
finding all k-th closest segments.

7 Acknowledgement

We would like to thank the referees for their percep-
tive comments. The improvement and clarity of this
revised version are due to their comments.

References

[1] O. Daescu and J. Luo. Proximity problems on line
segments spanned by points. In Proc. of 14th Annual
Fall Workshop on Computational Geometry, pages 9–
10, 2004.

[2] H. M. K. Duffy, C. McAloney and D. Rappaport. Clos-
est segments. In Proc. of CCCG 2005, pages 229–231,
2005.

49

22nd European Workshop on Computational Geometry, 2006

50

EWCG 2006, Delphi, March 27–29, 2006

Planar Point Sets with Large Minimum Convex Partitions∗

Jesús Garćıa-López† Carlos M. Nicolás‡

Abstract

Given a finite set S of points in the plane, a convex
partition of S is a subdivision of the convex hull of
S into nonoverlapping empty convex polygons with
vertices in S. Let G(S) be the minimum m such that
there exists a convex partition of S with at most m
faces. Let F (n) be the maximum value of G(S) among
all the sets of n points in the plane. It is known [1]
that F (n) ≥ n + 2 for n ≥ 13. In this paper we show
that, for n ≥ 4

F (n) >
12

11
n − 2

Also, for n ≥ h ≥ 3, let Fh(n) be the maximum value
of G(S) among all the sets of n points in which exactly
h of them lie in the boundary of the convex hull. We
show that

Fh(n) > n− 15

8
h +

√
(n− h)h

2

1 Introduction

Triangulations of point sets are one of the most stud-
ied structures in computational geometry. More gen-
eral structures are easily obtained by relaxing some of
the conditions that define triangulations. Let a convex
partition of a set of points S in the plane be a decom-
position of the convex hull of S into nonoverlapping
convex polygons with any number of edges, such that
no point of S belongs to the interior of any of the
convex polygons. Equivalently, a convex partition is
a tesselation of the points into empty convex poly-
gons covering the entire convex hull of S. Intuitively,
S should admit convex partitions with considerably
fewer faces (polygons) than those in a triangulation,
and this may be useful in applications where the com-
plexity depends on the number of faces.

Therefore, we should try to find the minimum num-
ber F (n) such that every set of n points in the
plane has a convex partition with at most F (n) faces.

∗Partially supported by grant MCYT TIC2002-01541
†Departamento de Matemática Aplicada. Escuela U. de In-

formática. Universidad Politécnica de Madrid, Madrid, Spain.
email:jglopez@eui.upm.es

‡Department of Mathematics, University of Kentucky, Lex-
ington, KY, USA. email:cnicolas@ms.uky.edu

In the open-problem session of CCCG-1998, J. Ur-
rutia [5] conjectured that F (n) ≤ n + 1. Later, in
2001, O. Aichholzer and H. Krasser [1] showed that
F (n) ≥ n + 2 (for n ≥ 13). The best known upper
bound, F (n) ≤ 10n−18

7 , is due to V. Neumann-Lara
et al. [4]. Other related work on convex partitions
include the study of simultaneous flips (see [3]) and
an algorithm by T. Fevens et al. [2] that computes in
polynomial time the minimum convex partition pro-
vided that the points lie on the boundaries of a fixed
number of nested convex hulls.

2 Definitions and Strict Monotonicity

For a finite set S of points in the plane, let G(S) be
the number of faces in a convex partition of S with a
minimum number of faces.

For n ≥ h ≥ 3, let Fh(n) be the maximum value of
G(S) among all the sets S with n points of which
exactly h are extreme, i.e., lie on the boundary of the
convex hull.

Let F (n), n ≥ 3, be the maximum value of G(S)
when |S| = n, so F (n) = max {Fh(n) : 3 ≤ h ≤ n}.

The following results show that the functions Fh(n)
and F (n) are strictly increasing.

Proposition 1 Fh(n+k) ≥ Fh(n)+k, for 3 ≤ h ≤ n,
0 ≤ k.

Proof. It is enough to show that Fh(n + 1) > Fh(n).

Let S be a set of n points, h of them extreme, such
that G(S) = Fh(n). Let p, p′ be contiguous extreme
points of S, see Figure 1. Take q 6∈ S satisfying

(i) q is in the interior of the convex hull of S.

(ii) q is an extreme point of S−{p} and S−{p′}.

(iii) for every r1, r2∈S−{p}, p and q lie on the same
side of the line through r1 and r2.

r r@
@

@

���
r�

r

r
r

r

p′ p

q

Figure 1: Points as in Proposition 1

51

22nd European Workshop on Computational Geometry, 2006

Conditions (i) and (ii) imply that every convex par-
tition of S ∪ {q} contains the triangle with vertices
p, q, p′ as one of its faces. And (iii) implies that every
convex partition of S ∪ {q} can be transformed into a
convex partition of S by first joining to p every vertex
adjacent to q and then removing q. Since the triangle
pqp′ is transformed into the edge pp′, the result fol-
lows by performing this transformation to a minimum
convex partition of S ∪ {q}. �

Corollary 2 F (n + k) ≥ F (n) + k, for n ≥ 3, k ≥ 0.

3 The Arrangement

Given two points o1, o2 located on the y-axis, it is not
difficult to show by induction on k≥0 that it is pos-
sible to arrange k(k + 1)/2 points {pi,j}1≤i≤j≤k on k
vertical layers Vj ={p1,j, p2,j , . . . , pj,j} and k horizon-
tal layers Hi ={pi,i, pi,i+1, . . . , pi,k}, as schematically
shown in Figure 2, in such a way that the following
properties hold:

(1) Each horizontal layer Hi is concave upward and
the y-coordinate of pi,j decreases as j increases.

(2) Each vertical layer Vi is concave to the left and
the x-coordinate of pi,j increases with i.

(3) Every point in Vj+2 lies above the line through
pi,j and pi,j+1, for i∈{1, . . . , j}, j<k − 1.

(4) Every point in Vj+1 lies below the line through
pi,i and pi+1,j , for i∈{1, . . . , k − 2}, i<j.

(5) Vj+1 lies below the line through o1 and p1,j and
above the line through o2 and pj,j, for j<k.

Additionally, let A be any nonempty set of points
satisfying:

(3’) A lies above the line through pi,k−1 and pi,k, i<k.

(4’) A lies below the line through pi,i and pi+1,k, i<k.

(5’) A lies below the line through o1 and p1,k and
above the line through o2 and pk,k.

Let S = {o1, o2} ∪ {pi,j}1≤i≤j≤k ∪A, and take any
convex partition Π of S.

For 1≤ i≤j≤k, let Ci,j be the convex polygon in Π
located immediately below pi,j, so Ci,j is the unique
polygon in the partition containing the point pi,j −
(0, ε), for very small ε. Note that Ci,k is well defined
because A is not empty.

Proposition 3 Ci1,j1 6= Ci2,j2 if (i1, j1) 6= (i2, j2).

Proof. By contradiction.
Suppose Ci1,j1 = Ci2,j2 = C with (i1, j1) 6= (i2, j2).

Clearly, both pi1,j1 and pi2,j2 are upper extreme points
of C, they lie on the upper boundary of the convex
hull of C. Without loss of generality assume that pi1,j1

appears before pi2,j2 when the extreme upper points
of C are listed from left to right. This assumption
implies that j1≤j2.

Note that pi1,j1 cannot be the leftmost point among
the extreme upper points of C, because then the other
points of C belong to Vj1+1∪ . . .∪Vk∪A (recall the x-
coordinates of points in Vj1 below pi1,j1 are less than
the x-coordinate of pi1,j1), but then C cannot be the
polygon immediately below pi1,j1 .

Let l be the leftmost upper extreme point of C,
so we know l 6= pi1,j1 and l ∈ {o1} ∪ V1 ∪ . . . ∪ Vj1 .
Similarly, the rightmost point r among the extreme
upper points of C cannot be pi2,j2 , so it belongs to
Vj2+1 ∪ . . . ∪ Vk ∪A.

By (2) we see that necessarily j1 <j2, since if j1 =j2
then l cannot lie below the line through pi1,j1 and
pi2,j2 . Also, it is clear that i1 <i2 since if i1≥ i2 then
r cannot lie below the line through pi1,j1 and pi2,j2 ,
by (3).

If l = o1 then (5) and (5’) imply that p1,j2 lies above
the line through o1 and r, but i2 >i1≥1, so p1,j2 lies
in the interior of C, a contradiction.

If l = pi0,j0 , j0≤j1, then again by (3) we must
have i0 <i1. Therefore, by (4), pi2−1,j2 lies above the
line through pi0,j0 and r, since i0 <i2 − 1 (because
i0 <i1 <i2), so pi2−1,j2 belongs to the interior of C, a
contradiction. �

A similar argument shows that the sets Ci,j cannot
contain any point in A, unless j = k.

Proposition 4 Ci,j ∩A = ∅ if j< k.

Note that from (4’) it follows that o2 is the only
point above the line through pi,i and pi+1,i+1, there-

r

r

o1

o2

r
r r r r

r r r r

r r r

r r

r

A

pk,k

p1,1

Figure 2: The Arrangement of Points. X-coordinates
are not to scale, dotted lines represent straight lines.

52

EWCG 2006, Delphi, March 27–29, 2006

fore, the edge joining pi,i and o2 belongs to Π. Let
Di, 1≤ i≤ k, be the convex polygon in Π to the left
of this edge when traversed from pi,i to o2. Using (5)
and (5’) it is easy to prove the following proposition.

Proposition 5 Dl 6= Ci,j and Dl ∩A = ∅, for 1≤ l≤
k, 1≤ i≤j≤k.

Propositions 3 and 5 imply that F3(n) − n goes
to infinity as n increases. For future reference, we
compute the bound on F3 obtained when |A|=1 and
k=3, 5, 6.

Observation 1 F3(9)≥9, F3(18)≥20, F3(24)≥27.

4 Generalization

Now we want to show that, for any h ≥ 3, it is possible
to put together h sets of k(k + 1)/2 points in such a
way that for each t∈{1, . . . , h}, the set {pt

i,j}1≤i≤j≤k

satisfies properties (1)-(5) and ∪s6=t{ps
i,j}, playing the

role of A, satisfies (3’)-(5’).

Let h≥3. Take a regular h-gon with vertices
q1, . . . , qh (in clockwise order). Assume that q1 and
q2 lie on the y-axis. Now construct the set {o1, o2} ∪
{pi,j}1≤i≤j≤k from the previous setion taking {o1, o2}
to be {q1, q2}. In addition, require that the projection
of every pi,j on the y-axis falls in the middle section of
the segment q1q2 when divided into three equal parts.
Now compress the x-coordinates of the points pi,j ,
i.e., multiply them by a constant, until they are so
close to the segment q1q2 that all the lines mentioned
in properties (1)-(5) are so slanted that they intersect
the contiguous sides q2q3 and qhq1 in the third section
adjacent to q1q2. Call these points {p1

i,j} and do the
same in each side qtqt+1 (where qh+1 =q1) to obtain
the points {pt

i,j}.
Let Sh,k = {qi}1≤i≤h ∪ {pt

i,j}1≤t≤h
1≤i≤j≤k.

Given any convex partition of Sh,k, define Ct
i,j

and Dt
i as in the previous section, for each set

{qt, qt+1} ∪ {pt
i,j}1≤i≤j≤k.

The construction of Sh,k allows the set ∪s6=t{ps
i,j}∪

{qi}i6=t,t+1 to play the role of A in Propositions 4 and
5. Therefore, Propositions 3, 4 and 5 imply the fol-
lowing result.

Proposition 6 For all 1 ≤ t1,t2≤h

(i) Ct1
i1,j1

6= Ct2
i2,j2

if 1 ≤ i1≤ j1 < k, 1 ≤ i2 ≤ j2 < k
and (i1, j1, t1) 6= (i2, j2, t2).

(ii) Ct1
i,j 6= Dt2

l if 1 ≤ i≤j≤k and 1 ≤ l≤k.

(iii) Dt1
l1
6= Dt2

l2
if 1 ≤ l1,l2≤k and (l1, t1) 6= (l2, t2).

5 Analysis

Let nh,k be the number of points in Sh,k, so

nh,k = h + h
k(k + 1)

2
(1)

Take any convex partition of Sh,k. By the last
proposition, the polygons Ct

i,j , Dt
i are all distinct if

j < k. This adds up to hk(k−1)/2+hk = hk(k+1)/2
faces. Now, each point pt

i,k must be joined to some

point not in {qt, qt+1} ∪ {pt
i,j}, because by property

(2) there is a line through pt
i,k that contains no point

of this set. Pick an edge going from r = pt
i,k to a point

s in ({qt′ , qt′+1} \ {qt, qt+1}) ∪ {pt′

i,j}, t′ 6= t, and let
Ers be the convex set to the left of this edge oriented
from r to s if t < t′ and form s to r in the other case.
Clearly, each Ers is different from every C and D
polygon that we counted above and from every Er′s′

polygon associated with other edge r′s′ 6= rs. More-
over, each rs edge appears at most twice, so we have
at least hk/2 additional polygons in the convex par-
tition. Hence,

G(Sh,k) ≥ hk(k + 1)

2
+

hk

2
= nh,k − h +

hk

2
(2)

Now we think of h as fixed and write nk in place of
nh,k. Solving for k in (1) and substituting in (2) gives

G(Sh,k) = nk − h +
h

2

−1 +

√
1 + 8(nk−h)

h

2

> nk −
5

4
h +

√
(nk − h)h

2

Hence, Fh(nk) > nk − 5
4h +

√
(nk−h)h

2 . Now we de-

rive a formula valid for every n.

Proposition 7 Fh(n) > n− 15
8 h+

√
(n−h)h

2 , for n ≥
h.

Proof. Let k be an integer such that nk ≤ n <
nk+1. By Proposition 1, Fh(n) ≥ Fh(nk) + n −
nk > n − 5

4h +
√

(nk−h)h
2 . Now,

√
(n− h)h/2 −√

(nk − h)h/2 <
√

(nk+1 − h)h/2 −
√

(nk − h)h/2 =

h
√

k + 1/(
√

k + 2+
√

k). But
√

x + 1/(
√

x + 2+
√

x)
decreases quickly to 1/2 and for x=1 its value is less
than 5/8, so the result follows for k ≥ 1. The case
k = 0 can be verified separately, using that in this
situation h≤n< 2h and Fh(n)≥(3/2)(n−h)+1. �

The best lower bound for F (n) that can be obtained
by means of the sets Sh,k is attained when k =5 and
h varies. Since nh,5 = 16h, using formula (2) we get
G(Sh,5) ≥ (35/32)nh,5 > (12/11)nh,5, h≥ 3. There-
fore, taking into account the monotonicity, we get

53

22nd European Workshop on Computational Geometry, 2006

Proposition 8 F (n) > 12
11n− 2, for n ≥ 4.

Proof. If n≥48, say 16h≤n<16(h + 1), use the fact
F (16h) > (12/11)16h and Corollary 2. If 4≤n<48,
the result follows from Corollary 2, the obvious result
F (4) = 3 and Observation 1. �

References

[1] O.Aichholzer and H.Krasser. The point set order type
data base: A collection of applications and results.
Proc. 13th Annual Canadian Conference on Compu-
tational Geometry, Waterloo, Canada, (2001).

[2] T. Fevens, H. Meijer, and D. Rappaport. Minimum
convex partition of a constrained point set. Discrete
Applied Mathematics, Vol. 109, pp. 95-107, (2001).

[3] H. Meijer and D. Rappaport. Simultaneous Edge
Flips for Convex Subdivisions. Proc. 16th Canadian
Conference on Computational Geometry, Montreal,
Canada, (2004).

[4] V. Neumann-Lara, E. Rivera-Campo, and J. Urrutia.
A note on convex decompositions of a set of points in
the plane. Graphs and Combinatorics, Vol. 20, no. 2,
pp. 223-231, (2004).

[5] J. Urrutia, Open-problem session, 10th Canadian
Conference on Computational Geometry, Montreal,
Canada, (1998).

54

EWCG 2006, Delphi, March 27–29, 2006

Kinetic Collision Detection for Balls Rolling on a Plane

Mohammad Ali Abam∗ Mark de Berg∗ Sheung-Hung Poon∗ Bettina Speckmann∗

Abstract

This abstract presents a first step towards kinetic col-
lision detection in 3 dimensions. In particular, we
design a compact and responsive kinetic data struc-
ture (KDS) for detecting collisions between n balls of
arbitrary sizes rolling on a plane. The KDS has size
O(n log n) and can handle events in O(log n) time.
The structure processes O(n2) events in the worst
case, assuming that the objects follow low-degree al-
gebraic trajectories. The full paper [1] presents ad-
ditional results for convex fat 3-dimensional objects
that are free-flying in R3.

1 Introduction

Collision detection is a basic computational problem
arising in all areas of computer science involving ob-
jects in motion—motion planning, animated figure ar-
ticulation, computer simulated environments, or vir-
tual prototyping, to name a few. Very often the prob-
lem of detecting collisions is broken down into two
phases: a broad phase and a narrow phase. The broad
phase determines pairs of objects that might possi-
bly collide, frequently using (hierarchies of) bounding
volumes to speed up the process. The narrow phase
then uses specialized techniques to test each candidate
pair, often by tracking closest features of the objects
in question, a process that can be sped up significantly
by exploiting spatial and temporal coherence. See [13]
for a detailed overview of algorithms for such collision
and proximity queries.

Algorithms that deal with objects in motion tradi-
tionally discretize the time axis and compute or up-
date their structures based on the position of the ob-
jects at every time step. But since collisions tend
to occur rather irregularly it is nearly impossible to
choose the perfect time-step: too large an interval be-
tween sampled times will result in missed collisions,
too small an interval will result in unnecessary com-
putations (and still there is no guarantee that no colli-
sions are missed). Event-driven methods, on the other
hand, compute the event times of significant changes

∗Department of Mathematics and Computer Science, TU
Eindhoven, m.a.abam@tue.nl, m.t.d.berg@tue.nl,

spoon@win.tue.nl, speckman@win.tue.nl. M.A. and S.-H.P.
were supported by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 612.065.307. M.d.B. was
supported by the Netherlands’ Organisation for Scientific Re-
search (NWO) under project no. 639.023.301.

to a system of moving objects, store those in a pri-
ority queue sorted by time, and advance the system
to the event at the front of the queue. The kinetic
data structure (KDS) framework initially introduced
by Basch et al. [4] presents a systematic way to design
and analyze event-driven data structures for moving
objects (see [7] and [8] for surveys on kinetic data
structures).

A kinetic data structure is designed to maintain or
monitor a discrete attribute of a set of moving ob-
jects, where each object has a known motion trajec-
tory or flight plan. A KDS contains a set of certifi-
cates that constitutes a proof of the property of inter-
est. These certificates are inserted in a priority queue
(event queue) based on their time of expiration. The
KDS then performs an event-driven simulation of the
motion of the objects, updating the structure when-
ever a certificate fails. A KDS for collision detection
finds a set of geometric tests (elementary certificates)
that together provide a proof that the input objects
are disjoint.

Kinetic data structures and their accompanying
maintenance algorithms can be evaluated and com-
pared with respect to four desired characteristics. A
good KDS is compact if it uses little space in addition
to the input, responsive if the data structure invari-
ants can be restored quickly after the failure of a cer-
tificate, local if it can be updated easily when the flight
plan for an object changes, and efficient if the worst-
case number of events handled by the data structure
for a given motion is small compared to some worst-
case number of “external events” that must be han-
dled for that motion.

Kinetic data structures for collision detection. One
of the first papers on kinetic collision detection was
published by Basch et al. [3], who designed a KDS
for collision detection between two simple polygons
in the plane. Their work was extended to an ar-
bitrary number of polygons by Agarwal et al. [2].
Kirkpatrick et al. [11] and Kirkpatrick and Speck-
mann [12] also described KDS’s for kinetic collision
detection between multiple polygons in the plane.
These solutions all maintain a decomposition of the
free space between the polygons into “easy” pieces
(usually pseudo-triangles). Unfortunately it seems
quite hard to define a suitable decomposition of the
free space for objects in 3D, let alone maintain it
while the objects move—the main problem being, that

55

22nd European Workshop on Computational Geometry, 2006

all standard decomposition schemes in 3D can have
quadratic complexity. Hence, even though collision
detection is the obvious application for kinetic data
structures, there has hardly been any work on kinetic
collision detection in 3D.

There are only a few papers that deal directly with
(specialized versions of) kinetic 3D collision detection.
Guibas et al. [9], extending work by Erickson et al. [6]
in the plane, show how to certify the separation of two
convex polyhedra moving rigidly in 3D using certain
outer hierarchies. Basch et al. [5] describe a structure
for collision detection among multiple convex fat ob-
jects that have almost the same size. The structure of
Basch et al. uses O(n log2 n) storage and events can be
processed in O(log3 n) time. If all objects are spheres
of related sizes Kim et al. [10] present an event-driven
approach that subdivides space into cells and pro-
cesses events whenever a sphere enters or leaves a cell.
Unfortunately there is only experimental evidence for
the performance of this structure. Finally, Guibas et
al. [9] use the power diagram of a set of arbitrary balls
in 3D to kinetically maintain the closest pair among
them. The worst-case complexity of this structure is
quadratic and it might undergo more than cubically
many changes.

Results. In this abstract we describe a compact and
responsive kinetic data structure for detecting colli-
sions between n balls of arbitrary sizes rolling on a
plane. The KDS has size O(n log n) and can handle
events in O(log n) time. It processes O(n2) events in
the worst case, assuming that the objects follow low-
degree algebraic trajectories.

2 Balls rolling on a plane

Assume that we are given a set B of n 3-dimensional
balls which are rolling on a 2-dimensional plane T ,
that is, the balls in B move continuously while re-
maining tangent to T . In this section we describe a
responsive and compact KDS that detects collisions
between the balls in B.

The basic idea behind our KDS is to construct a
collision tree recursively as follows:

• If |B| = 1, then there are obviously no collisions
and the collision tree is just a single leaf.

• If |B| > 1, then we partition B into two sub-
sets, BS and BL. The subset BS contains the
bn/2c smallest balls and the subset BL contains
the dn/2e largest balls from B, where ties are bro-
ken arbitrarily. The collision tree now consists of
a root node that has an associated structure to
detect collisions between any ball from BS and
any ball from BL, and two subtrees that are col-
lision trees for the sets BS and BL, respectively.

To detect all collisions between the balls in B it
suffices to detect collisions between the two subsets
maintained at every node of the collision tree. Let
BS and BL denote the two subsets maintained at a
particular node. The remainder of this section fo-
cusses on detecting collisions between the balls con-
tained in BS and BL. In particular, we describe a
KDS of size O(|BS |+ |BL|) that can handle events in
O(1) time—see Theorem 5. The structure processes
O((|BS | + |BL|)2) events in the worst case, assum-
ing that the balls follow low-degree algebraic trajec-
tories. Since the same event can occur simultaneously
at O(log n) nodes of the collision tree, we obtain the
following theorem:

Theorem 1 For any set B of n 3-dimensional balls
that roll on a plane, there is a KDS for collision detec-
tion that uses O(n log n) space and processes O(n2)
events in the worst case, assuming that the balls fol-
low low-degree algebraic trajectories. Each event can
be handled in O(log n) time.

2.1 Detecting collisions between small and large
balls

As mentioned above, we can restrict ourselves to de-
tecting collisions between balls from two disjoint sets
BS and BL where the balls in BL are at least as large
as the balls in BS . Recall that all balls are rolling on
a plane T . Our basic strategy is the following: we
associate a region Di on T with each Bi ∈ BL such
that if the point of tangency of a ball Bj ∈ BS and T
is not contained in Di, then Bj can not collide with
Bi. The regions associated with the balls in BL need
to have two important properties: (i) each point in T
is contained in a constant number of regions and (ii)
we can efficiently detect whenever a region starts or
stops to contain a tangency point when the balls in
BL and BS move. We first deal with the first require-
ment, that is, we consider BL to be static. For a ball
Bi let ri denote its radius and let ti be the point of
tangency of Bi and T .

The threshold disk. We define the distance of a
point q in the plane to a ball Bi as follows. Imagine
that we place a ball B(q) of initial radius 0 at point
q. We then inflate B(q) while keeping it tangent to
T at q, until it collides with Bi. The radius of B(q)
equals the distance of q and Bi which we denote by
dist(q, Bi). More precisely, dist(q, Bi) is the radius of
the unique ball that is tangent to T at q and tangent to
Bi. It is easy to show that dist(q, Bi) = d(q, ti)

2/4ri

where d(q, ti) denotes the Euclidean distance between
q and ti.

Since we have to detect collisions only with balls
from BS we can stop inflating when B(q) is as large
as the smallest ball in BL. Based on this, we define the

56

EWCG 2006, Delphi, March 27–29, 2006

threshold disk Di of a ball Bi ∈ BL as follows: a point
q ∈ T belongs to Di if and only if dist(q, Bi) ≤ rmin

where rmin is the radius of the smallest ball in BL.
It is straightforward to show that Di is a disk whose
radius is 2

√
ri · rmin and whose center is ti.

Clearly a ball Bj ∈ BS can not collide with a ball
Bi ∈ BL as long as tj is outside Di. In following, we
prove that a point q ∈ T can be contained in at most
a constant number of threshold disks. For a given
constant c ≥ 0 let us denote with c · Di a disk with
radius c · radius(Di) and center ti.

Lemma 2 The number of disks Dj that are at least
as large as a given disk Di and for which c·Di ∩ c·Dj 6=
∅, is at most (8 c2 + 2 c + 1)2 + 1.

Proof. Let D(i) be the set of all disks Dj that are at
least as large as Di and for which c ·Di ∩ c ·Dj 6= ∅.
First we prove that there are no two balls Bj and
Bk such that rk ≥ rj > 16 c2 ri and Dj , Dk ∈ D(i).
Assume, for contradiction, that there are two balls
Bj and Bk such that rk ≥ rj > 16 c2 ri and Dj, Dk ∈
D(i). Since Bj and Bk are disjoint, we have

d(tj , tk) ≥ 2
√

rj · rk > 8 c
√

rk · ri .

On the other hand, we know that

d(tj , tk) ≤ d(tj , ti) + d(ti, tk)

≤ (2 c
√

ri · rmin + 2 c
√

rj · rmin) +

(2 c
√

ri · rmin + 2 c
√

rk · rmin)

< 8 c
√

rk · ri

which is a contradiction. Hence, there is at most one
ball Bj such that rj > 16 c2 ri and Dj ∈ D(i).

It remains to show that the number of balls Bj

whose radii are not greater than 16 c2 ri and whose
disks Dj belong to D(i) is at most (8 c2 + 2 c + 1)2.
Let Bj be one of these balls and let x be a point in
c ·Dj ∩ c ·Di. Since

d(ti, tj) ≤ d(ti, x) + d(tj , x)

≤ 2 c
√

ri · rmin + 2 c
√

rj · rmin

≤ (2 c + 8 c2) ri

tj must lie in a disk whose center is ti and whose
radius is (2 c + 8 c2) ri. We also know that for any
two such balls Bj and Bk, d(tj , tk) ≥ 2

√
rj · rk ≥ 2 ri

holds. Thus the set D′(i) of disks centered at tj with
radius ri for all Dj ∈ D(i) are disjoint. Note that any
disk in D′(i) lies inside the disk centered at ti with
radius ((2 c + 8 c2) + 1) ri. Thus |D(i)| = |D′(i)| ≤
π ((2 c + 8 c2 + 1) ri)

2/πr2
i = (2 c + 8 c2 + 1)2. �

Lemma 3 Each point q ∈ T is contained in at most
a constant number of threshold disks.

Proof. Let Di be the smallest threshold disk contain-
ing q. Lemma 2 with c = 1 implies that the number
of disks which are not smaller than Di and which in-
tersect Di is constant. Hence the number of threshold
disks containing q is constant. �

The threshold disks have the important property that
each point in T is contained in a constant number
of disks. But unfortunately, as the balls in BL and
BS move, it is difficult to detect efficiently when-
ever a tangency point enters or leaves a threshold
disk. Hence we replace each threshold disk by its
axis-aligned bounding box. The bounding box of a
threshold disk Di associated with a Bi ∈ BL is called
a threshold box and is denoted by TB(Bi). In the fol-
lowing we prove that the threshold boxes retain the
crucial property of the threshold disk, namely, that
each point q ∈ T is contained in at most a constant
number of threshold boxes.

Lemma 4 Each point q ∈ T is contained in at most
a constant number of threshold boxes.

Proof. Instead of considering the threshold boxes di-
rectly, we consider the disks defined by the circumcir-
cles D(TB(Bj)) of each threshold box TB(Bj) with
Bj ∈ BL. Clearly we have radius(D(TB(Bj))) =√

2 · radius(Dj) for all Bj ∈ BL. Let TB(Bi) be the
smallest box containing q. Lemma 2 with c =

√
2 im-

plies that the number of circumcircle disks which are
at least as large as D(TB(Bi)) and which intersect
D(TB(Bi)) is constant. Hence the number of thresh-
old boxes which are not smaller than TB(Bi) and in-
tersect TB(Bi) is constant and so is the number of
threshold boxes containing q. �

Kinetic maintenance. Recall that to detect colli-
sions between BS and BL, for each ball Bj ∈ BS we
determine which threshold boxes contain the tangency
point tj . Note that according to Lemma 4, tj is con-
tained in a constant number of threshold boxes. For
each Bj ∈ BS we maintain the set of threshold boxes
that contain tj and certificates that guarantees dis-
jointness of Bj and the balls from BL whose threshold
boxes contain tj .

To maintain our structure we only need to detect
when a tangency point tj enters or leaves a threshold
box. To do so, we maintain two sorted lists on the x-
and y-coordinates of the tangency points of BS and
the extremal points of the threshold boxes associated
with the balls in BL. Clearly the number of events
processed by our structure is quadratic in the size of
of BS and BL and each event can be processed in
constant time. Unfortunately this structure is not
local—a ball Bi ∈ BL might be involved in a number
of certificates that is linear in the size of BS.

Theorem 5 Let BS and BL be two disjoint sets of
balls that roll on a plane where the balls in BL are

57

22nd European Workshop on Computational Geometry, 2006

at least as large as the balls in BS. There is a KDS
for collision detection between balls of BS and balls
of BL that uses O(|BS | + |BL|) space and processes
O((|BS |+ |BL|)2) events in the worst case if the balls
follow low-degree algebraic trajectories. Each event
can be handled in O(1) time.

3 Conclusions

This abstract describes a first step towards kinetic
collision detection in 3 dimensions: a compact and
responsive kinetic data structure for detecting colli-
sions between n balls of arbitrary sizes rolling on a
plane. The full paper [1] presents additional results
for convex fat 3-dimensional objects of constant com-
plexity that are free-flying in R3. In that case we can
detect collisions with a KDS of O(n log6 n) size that
can handle events in O(log6 n) time. The structure
processes O(n2) events in the worst case, assuming
that the objects follow low-degree algebraic trajecto-
ries. If the objects have similar sizes then the size of
the KDS becomes O(n) and events can be handled in
O(1) time.

Acknowledgements. The last author would like to
thank David Kirkpatrick for valuable discussions on
the presented subject.

References

[1] M. A. Abam, M. de Berg, S.-H. Poon, and
B. Speckmann. Kinetic collision detection for
convex fat objects. Submitted, 2005.

[2] P. K. Agarwal, J. Basch, L. J. Guibas, J. Her-
shberger, and L. Zhang. Deformable free space
tilings for kinetic collision detection. Interna-
tional Journal of Robotics Research, 21:179–197,
2002.

[3] J. Basch, J. Erickson, L. J. Guibas, J. Hersh-
berger, and L. Zhang. Kinetic collision detection
for two simple polygons. In Proc. 10th ACM-
SIAM Symposium on Discrete Algorithms, pages
102–111, 1999.

[4] J. Basch, L. Guibas, and J. Hershberger. Data
structures for mobile data. Journal of Algo-
rithms, 31:1–28, 1999.

[5] J. Basch, L. Guibas, and L. Zhang. Proximity
problems on moving points. In Proc. 13th Sym-
posium on Computational Geometry, pages 344–
351, 1997.

[6] J. Erickson, L. Guibas, J. Stolfi, and L. Zhang.
Separation-sensitive collision detection for con-
vex objects. In Proc. 10th ACM-SIAM Sym-

posium on Discrete Algorithms, pages 327–336,
1999.

[7] L. Guibas. Kinetic data structures: A state of the
art report. In Proc. 3rd Workshop on Algorithmic
Foundations of Robotics, pages 191–209, 1998.

[8] L. Guibas. Motion. In J. Goodman and
J. O’Rourke, editors, Handbook of Discrete
and Computational Geometry, pages 1117–1134.
CRC Press, 2nd edition, 2004.

[9] L. Guibas, F. Xie, and L. Zhang. Kineitc colli-
sion detection: Algorithms and experiments. In
Proc. International Conference on Robotics and
Automation, pages 2903–2910, 2001.

[10] D. Kim, L. Guibas, and S. Shin. Fast colli-
sion detection among multiple moving spheres.
IEEE Transactions on Visualization and Com-
puter Graphics, 4(3):230–242, 1998.

[11] D. Kirkpatrick, J. Snoeyink, and B. Speckmann.
Kinetic collision detection for simple polygons.
International Journal of Computational Geome-
try and Applications, 12(1&2):3–27, 2002.

[12] D. Kirkpatrick and B. Speckmann. Kinetic main-
tenance of context-sensitive hierarchical repre-
sentations for disjoint simple polygons. In Proc.
18th ACM Symposium on Computational Geom-
etry, pages 179–188, 2002.

[13] M. Lin and D. Manocha. Collision and prox-
imity queries. In J. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational
Geometry, pages 787–807. CRC Press, 2nd edi-
tion, 2004.

58

EWCG 2006, Delphi, March 27–29, 2006

Computing Shortest Paths amidst Growing Discs in the Plane

Jur van den Berg∗ Mark Overmars∗

Abstract

In this paper an algorithm is presented to find a short-
est path between two points in the plane amidst grow-
ing discs. That is, as the “point” moves through the
plane, the discs grow at an a priori known rate. We
present an O(n3 log n) algorithm and a fast imple-
mentation. The problem is motivated from robotics,
where motion planning in dynamic environments is a
great challenge. Our algorithm can be used to gen-
erate paths in such environments guaranteeing that
they will be collision-free in the future.

1 Introduction

An important challenge in robotics is motion plan-
ning in dynamic environments. That is, planning a
path for a robot from a start location to a goal loca-
tion that avoids collisions with the dynamic obstacles.
In many cases the motions of the dynamic obstacles
are not known beforehand, so their future trajecto-
ries are estimated by extrapolating current velocities
(acquired by sensors) in order to plan a path [4].

A major problem is that the world is continuously
changing: If some obstacles change their velocities
(say at time t), a new trajectory should be planned.
However, there actually is no time for this, no mat-
ter how fast it can be done, because at the time the
calculation is finished the world has already changed,
and hence the computation is outdated. To overcome
this problem, often a fixed amount of time, say τ , is
reserved for planning. The planner then takes the ex-
pected situation of the world at time t + τ as initial
world state, and the plan is executed when the time
t + τ has come. This scheme carries two problems:

• The predicted situation of the world at time t+τ
may differ from the actual situation when some
obstacles change their velocities during planning.
This may result in invalid paths.

• The path the robot will follow between time t
and time t + τ is not guaranteed to be collision
free, because this path was computed based on
the old velocities of the obstacles.

In this paper we describe a technique to overcome
these problems. We present an algorithm that com-

∗Department of Information and Computing Sciences, Uni-
versiteit Utrecht, berg@cs.uu.nl, markov@cs.uu.nl

Figure 1: An environment with two dynamic obstacles
and a shortest path. The dark and light discs depict
the obstacles at t = 0 and t = 1 respectively. A small
dot indicates the position along the path at t = 1.

putes a path from a start location to a goal location
that is guaranteed to be collision-free, no matter how
often the obstacles change their velocities in the fu-
ture. Replanning might still be necessary from time
to time, to generate trajectories with more appealing
global characteristics, but the two problems identified
above do not occur in this case. The first problem is
solved by incorporating all the possible situations of
the world at time t + τ in the world model. As the
paths the algorithm computes are guaranteed to be
collision-free no matter what the dynamic obstacles
do, the second problem dissolves.

We assume that all obstacles and the robot are
modeled as discs in the plane, and that the robot and
the obstacles have a maximum velocity. The maxi-
mum velocity of the obstacles should not exceed the
maximum velocity of the robot. The problem is solved
in the configuration space, that is, the radius of the
robot is added to the radii of the obstacles, so that
we can treat the robot as a point.

Given the initial positions of each of the obstacles,
we model the regions in which the obstacles might
be as discs in the plane that grow over time. In this
space, we compute a shortest path (a minimum time
path) from a start configuration to a goal configura-
tion that is collision-free with respect to the grow-
ing discs. Computing shortest paths is a well studied
topic in computational geometry (see [5] for a survey).
However, the problem posed in this paper presents
some interesting challenges of its own. We present an
algorithm that runs in O(n3 log n) time, where n is

59

22nd European Workshop on Computational Geometry, 2006

the number of obstacles. Further, we created a fast
implementation that generates shortest paths at in-
teractive rates.

2 Problem definition

The problem is formally defined as follows. Given are
n dynamic obstacles O1, . . . , On which are discs in the
plane. The centers of the discs at time t = 0 are given
by the coordinates p1, . . . , pn ∈ R2, and the radii of
the discs by r1, . . . , rn ∈ R+. All of the obstacles
have the same maximal velocity, given by v ∈ R+.
The robot is a point (if it is a disc, it can be treated
as a point when its radius is added to the radii of the
obstacles), for which a path should be found between
a start configuration s ∈ R2 and a goal configuration
g ∈ R2. The robot has a maximal velocity V ∈ R+

which should be larger than the maximal velocity of
the obstacles, i.e. V > v.

As we do not assume any knowledge of the velocities
of the dynamic obstacles, other than that they have
a maximal velocity, the region that is guaranteed to
contain all the dynamic obstacles at some point in
time t is bounded by

⋃
i B(pi, ri+vt), where B(p, r) ⊂

R2 is an open disc centered at p with radius r. In other
words, each of the dynamic obstacles is conservatively
modeled by a disc that grows over time with a rate
corresponding to its maximal velocity (see Fig. 1 for
an example environment).

Definition 1 A point p ∈ R2 is collision-free at time
t ∈ R+ if p 6∈ ⋃i B(pi, ri + vt).

The goal of the problem is to compute the shortest
possible path π : [0, T]→ R2 between s and g (i.e. a
minimal time path) that is collision-free with respect
to the growing discs for all t ∈ [0, T].

3 Properties

Observation 1 A point p ∈ R2 that is collision-free
at time t = t′, is collision-free for all t :: 0 ≤ t ≤ t′.

Theorem 1 The velocity ||(δx,δy)||
δt of a shortest path

is constant and equal to the maximal velocity V .

Proof. Suppose π is a path to g, of which a sub-path
has a velocity smaller than V . Then this sub-path
could have been traversed at maximal velocity, so that
points further along the path would be reached at an
earlier time. Observation 1 proves that these points
are then collision-free as well, so also g could have
been reached sooner, and hence π is not a shortest
path. �

Theorem 2 A shortest path consists only of straight
line segments, and segments of a logarithmic spiral
incident to the boundary of a growing disc.

Figure 2: The three-dimensional space of the same
environment as Fig. 1.

Proof. Theorem 1 implies that the time it takes to
traverse a path is proportional to its length. Hence,
parts of the path in ‘open’ space can always be short-
cut by a straight-line segment. Only when the path
stays incident to the boundary of a growing disc, it is
not possible to shortcut. As both the velocity of the
path, and the growth rate of the disc are constant,
it is easily shown that such segments are part of a
logarithmic spiral [6]. �

Corollary 3 A shortest path is C1-smooth.

Proof. Suppose π is a path containing sharp turns.
Then these turns could be shortcut by a straight-line
segment, and hence π is not a shortest path. Thus, in
a shortest path the straight-line segments are tangent
to the supporting spirals of the spiral segments. �

4 Global Approach

As the discs grow over time, we can see the obsta-
cles as cones in a three-dimensional space (Fig. 2),
where the third dimension models the time. Each ob-
stacle Oi transforms into a cone, whose central axis
is parallel to the time-axis of the coordinate frame,
and intersects the xy-plane at point pi. The maxi-
mal velocity v determines the opening angle of the
cone, and the initial radius ri determines the (nega-
tive) time-coordinate of the apex. The goal configura-
tion is transformed into a line parallel to the time-axis,
where we want to arrive as soon as possible (i.e. for
the lowest value of t). In this space it is easier to rea-
son about the algorithm we devise to find a shortest
path.

Our algorithm to solve the problem is based on a
Dijkstra’s shortest-path search [3], which starts from
the start configuration s. By Theorem 1, all straight-
line segments emanating from s of which the slope
equals the maximal velocity V , are possible initial
motions. This set is narrowed down by Corollary
3, which implies that only the segment leading di-
rectly to the goal, and straight-line segments tangent

60

EWCG 2006, Delphi, March 27–29, 2006

to the cones are possibly part of the shortest path to
the goal. These segments may intersect other cones,
which would make them invalid, so only the collision-
free segments are considered. Each of them is put
into a priority queue Q with a key corresponding to
the t-value of its endpoint.

Now, the algorithm proceeds by handling the point
with the lowest t-value in the queue (the front ele-
ment of Q). This point is either the goal location,
in which case the shortest path has been found, or a
point on the surface of a cone. In this latter, more
general case we proceed similarly by finding straight-
line segments tangent to other cones and to the goal
configuration. However, as we are on the surface of a
cone, we first have to walk a piece of a spiral around
the cone such that the straight-line segment is tangent
to both the ‘source’ cone and the ‘destination’ cone.
For each cone, as well as for the goal configuration,
these segments are computed and if collision-free their
endpoints are inserted in Q.

This procedure is repeated until the goal configu-
ration is popped from the priority queue. In this case
the shortest path has been found, and can be read
out if backpointers have been maintained during the
algorithm. If the priority queue becomes empty, no
valid path exists.

5 Details

The algorithm described above will indeed find a
shortest path to the goal. However, in order to have
a finite bound on the running time we must define
‘nodes’ that can provably be visited only once in a
shortest path, such that we can do relaxation on them
as in Dijkstra’s algorithm.

Let us look at the following. A shortest path
consists of spiral segments on a cone’s surface and
straight-line segments that are bitangent to two cones.
There are four ways in which a segment can be bitan-
gent to a pair of cones: left-left, right-right, left-right
and right-left. In each of these cases, there is an infi-
nite number of bitangent segments with a slope corre-
sponding to the maximal velocity V , but the possible
tangency points at the source cone form a continuous
curve on the surface of the cone. We call such curve
a departure curve.

The departure curve may be cut into several
collision-free intervals by other cones that penetrate
the surface of the cone. These intervals form the
‘nodes’ in our search process. Only the path arriv-
ing earliest in an interval can contribute to a shortest
path. Other paths arriving later in the interval can-
not be part of the shortest path, because the path
arriving earliest in the interval can be extended with
a traversal along the interval to end up at the same
position (and time) as the path arriving later in the
interval. This argument applies if for the departure

Figure 3: An impression of an arrangement on the
surface of the cone. The thick lines are the departure
curves, of which one has a shadow interval (dashed).
The thin dashed lines are spiral segments that delimit
trapezoidal regions that have the same next departure
curve or collision (only the counter-clockwise spirals
are shown). The gray area depicts an intersection area
of another cone penetrating the surface, and cutting
several departure curves into two intervals.

curve holds that ||(δx,δy)||
δt ≤ V . This is only the case

when all cones have the same opening angle. (This
explains our assumption that all discs have the same
maximal velocity v.) As the proof is rather technical,
we omit it here.

To identify these departure curve intervals, we com-
pute an arrangement [1] on the surface of each cone
of all departure curves on that cone (see Fig. 3). Ar-
eas on the surface on the cone that are intersected by
other cones are also inserted in this arrangement. The
intervals can then be extracted from the arrangement.

Each departure curve interval has two outgoing
edges. One –a spiral segment– to the next departure
curve on the source cone, and one –consisting of a bi-
tangent straight-line segment and a spiral segment– to
the first departure curve encountered on the destina-
tion cone that is associated with the departure curve.
For the first edge, which stays on the cone, we have
to determine the next departure curve that is encoun-
tered if we proceed by moving along the spiral around
the cone. This can be done using the arrangement, if
we have computed its trapezoidal map [1], where the
sides of the trapezoids are spiral segments.

For the second edge, which crosses to another cone,
we have to determine what the first departure curve
is we will encounter there. This is done using the
arrangement we have computed on that cone. Using a
point-location query, we can determine in what cell of
the arrangement the straight-line segment has arrived,
and using the trapezoidal map we know what the first
departure curve is we will encounter if we proceed

61

22nd European Workshop on Computational Geometry, 2006

from there.
Finally, we must ascertain that each edge is

collision-free with respect to the other cones. Spiral
segments may collide with other cones if these pene-
trate the spiral’s cone surface. Since intersection areas
are incorporated into the arrangement, such collisions
are easily detected. Straight-line segments may col-
lide with any cone, so for each departure curve and
each cone, we calculate the ‘shadow’ interval this cone
casts on the departure curve, in which a departure will
result in collision. These shadow intervals are stored
in the arrangement as well. In Fig. 3, an impression
is given of how such an arrangement might look.

Theorem 4 The algorithm to compute a shortest
path amidst n growing discs runs in O(n3 log n) time.

Proof. For each pair of cones there are O(1) depar-
ture curves. Since there are O(n2) pairs of cones,
there are O(n2) departure curves in total. Each of the
departure curves can be segmented into at most O(n)
intervals, as there are O(n) cones possibly intersecting
the departure curve. (Each cone can split the depar-
ture curve in at most two segments.) Hence, there
are O(n3) departure curve intervals. Each departure
curve interval has O(1) outgoing edges, making a total
of O(n3) edges.

The complexity of Dijkstra’s algorithm is known to
be O(N log N + E) where N is the number of nodes,
and E the number of edges. Each edge requires some
additional work. Firstly, we have to find the depar-
ture curve interval in which it will arrive, by doing a
point-location query in the trapezoidal map of one of
the arrangements. This takes O(log n) time. Further,
we must determine whether an edge is collision-free.
Using the shadow intervals stored at the departure
curves, this can be done in O(log n) time as well.
Thus, as both N and E are O(n3), Dijkstra’s algo-
rithm will run in O(n3 log n) time in total.

Computing the arrangements and their trapezoidal
maps takes O(n2) time per cone, as there are O(n)
departure curves on each cone, and O(n) intersection
areas of other cones. As there are O(n) cones, this
step takes O(n3) time in total. All the shadow inter-
vals can be computed in O(n3) time as well, as there
are O(n2) departure curves and O(n) cones.

Overall, we can conclude that our algorithm runs
in O(n3 log n) time. �

6 Implementation

We created a fast implementation of the algorithm
presented above. Instead of using the arrangements,
we used some ad-hoc approaches for doing the elemen-
tary tests. These may have a slower asymptotic run-
ning time, but in practice they turned out to be fast.
For example, intersections between a spiral and a de-
parture curve cannot be found analytically, so we used

a combination of two approximate root-finding algo-
rithms [2]. The Dijkstra method was replaced by an
equally suited A*-method [4], that is faster in practice
as it focusses the search to the goal. The implementa-
tion runs at interactive rates even for many obstacles.
For example, a shortest path among 10 cones is com-
puted within 0.01 seconds on a Pentium IV 3.0GHz
with 1 GByte of memory. Figs. 1 and 2 were created
using our implementation.

7 Conclusion

In this paper we presented an algorithm for comput-
ing shortest paths (minimum time paths) amidst discs
that grow over time. A growing disc could model the
region that is guaranteed to contain a dynamic ob-
stacle of which the maximal velocity is given. Hence,
using our algorithm, paths can be found that are guar-
anteed to be collision-free in the future, regardless of
the behavior of the dynamic obstacles. As the regions
grow fast over time, a new path should be planned
from time to time –based on newly acquired sensor
data– to generate paths with more appealing global
characteristics. Our implementation shows that such
paths can be generated quickly. A great advantage
over other methods is that this replanning can be done
safely. The old path that is still used during replan-
ning is guaranteed to be collision-free. A requirement
though, is that the “robot” has a higher maximal ve-
locity than any of the dynamic obstacles.

A drawback of the method we presented is that a
path to the goal often does not exist. This occurs
when the goal is covered by a growing disc before it
can be reached. A solution to this problem would
be to find the path that comes closest to the goal.
It seems that this can easily be incorporated in our
algorithm, but it is still subject of ongoing research.

References

[1] M. de Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf. Computational Geometry, Algorithms
and Applications. Chapters 6 and 8. Springer-Verlag,
Berlin Heidelberg, 1997.

[2] R. L. Burden, J. D. Faires. Numerical analysis, 7th
edition. Chapter 2. Brooks/Cole, Pacific Grove, 2001.

[3] E. W. Dijkstra. A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1:269-271,
1959.

[4] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, 2006.

[5] J. S. B. Mitchell. Geometric shortest paths and net-
work optimization. In Handbook of Computational
Geometry, pages 633-701. Elsevier Science Publish-
ers, Amsterdam, 2000.

[6] E. W. Weisstein. Logarithmic Spiral. In MathWorld
– A Wolfram Web Resource. http://mathworld.wol-
fram.com/LogarithmicSpiral.html

62

EWCG 2006, Delphi, March 27–29, 2006

Few Optimal Foldings of HP Protein Chains

on Various Lattices∗

Sheung-Hung Poon† Shripad Thite†

Abstract

We consider whether or not protein chains in the HP
model have unique or few optimal foldings. We solve
the conjecture proposed by Aichholzer et al. that the
open chain L2k−1 = (HP)k(PH)k−1 for k ≥ 3 has ex-
actly two optimal foldings on the square lattice. We
show that some closed and open chains have unique
optimal foldings on the hexagonal and triangular lat-
tices, respectively.

1 Introduction

Protein folding is a central and long-standing prob-
lem in molecular and computational biology. Due to
the complexity of the problem, a variety of simplified
models have been proposed to simulate how real pro-
teins fold. In the Hydrophobic-Polar (HP) model, the
amino acids in proteins are grouped into two types:
hydrophobic (H) monomers and hydrophilic or polar
(P) monomers. H monomers tend to attract each
other while P monomers are neutral. Proteins are
modeled as chains of H and P nodes, or equivalently,
strings from {H, P}+. The chains are embedded in
some lattice in two or three dimensions such that
monomers which are adjacent in the given chain must
be placed at adjacent points in the lattice. Two non-
adjacent nodes on the chain are in contact if they oc-
cupy a pair of neighboring lattice points. An optimal
folding of a chain is an embedding in the lattice which
maximizes the number of HH contacts.

Much research has been done on the HP model. In
particular, Berger and Lieghton [2] showed the NP-
completeness of finding the optimal folding on the
cubic lattice in 3D, and Crescenzi et al. [3] proved
the NP-completeness on the square lattice in 2D.
Constant-factor approximation algorithms were also
developed for various lattices in both 2D and 3D. We
consider the question of whether or not chains in HP
model have unique or few optimal foldings. The prob-
lem is related to the folding stability of protein chains,

∗S.-H.P. was supported by the Netherlands’ Organisation for
Scientific Research (NWO) under project no. 612.065.307. S.T.
was supported by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 639.023.301.

†Department of Mathematics and Computer Science,
TU Eindhoven, 5600 MB, Eindhoven, the Netherlands.
{spoon,sthite}@win.tue.nl

and was first suggested by Hayes [4]. Aichholzer et
al. [1] exhibited families of closed and open chains in
the square lattice, each of which has a unique optimal
folding. In this paper, we obtain several results for
the square, hexagonal and triangular lattices in two
dimensions.

2 Open Chain in Square Lattice

Consider the open chain L2k−1 = (HP)k(PH)k−1. In
this section, we solve a conjecture proposed by Aich-
holzer et al. [1] by showing the theorem below.

Theorem 1 The open chain L2k−1 for k ≥ 3 has
exactly two optimal foldings on the square lattice.

First, we need the theorem from [1] about unique
optimal folding of the closed chain as stated below.
See Figure 1 for examples. Note that, in our figures,
we use small circles to denote H nodes and small black
disks to denote P nodes; we use solid segments to
denote chain edges and dashed ones to denote HH
contacts.

Theorem 2 [1] The closed chain Sk =
P (HP)dk/2eP (HP)bk/2c for k ≥ 1 has a unique
optimal folding on the square lattice.

Figure 1: Optimal foldings of S6 and S7.

Aichholzer et al. [1] show that Fact 18 to Lemma 29
in their paper hold for the open chain L2k =
(HP)k(PH)k for k ≥ 1. We can verify that these
properties are also true for L2k−1. However, for the
later lemmas and theorems in their paper, adjust-
ments need to be made to be suitable for the chain
L2k−1. The two lemmas below simulate Lemmas
30 and 31 in [1], and their proofs can be adapted
with slight modifications. A straight node is a node
collinear with both its preceding and following nodes
on the chain. A solitary straight H node v is a straight

63

22nd European Workshop on Computational Geometry, 2006

H node on the bounding box B of the chain such that
both its preceding and following H nodes are not on
the same side of B as v.

Lemma 3 In an optimal folding of L2k−1, there are
either one or two solitary straight H nodes on its
bounding box B. In particular, if there are exactly
two solitary straight H nodes on B, then (see Fig-
ure 2(a))

(i) They lie on opposite sides of B.

(ii) One of them is adjacent to the PP edge, and the
other is adjacent to an end edge uv and in contact
with an endpoint.

(iii) The PP edge and the end edge uv lie on opposite
sides of B.

BB

(a) (b)

Figure 2: Optimal foldings: (a) when there are two
solitary straight H nodes; (b) when there are only one.

Lemma 4 In an optimal folding of L2k−1, if there is
exactly one solitary straight H node on its bounding
box B, then (see Figure 2(b))

(i) The solitary H node is adjacent to the PP edge.

(ii) The solitary H node and the contact of the two
endpoints of the chain lie on opposite sides of B.

(iii) The PP edge and an end edge of the chain lie on
opposite sides of B.

BB

(a) (b)

Figure 3: Modify cases (a) and (b) in Figure 2 to
closed chains S2k−2 and S2k−1 respectively.

Now we are ready to prove our main theorem.

Proof of Theorem 1. Case (a): If there are exactly
two solitary H nodes, by Lemma 3 we can modify
the optimal folding of L2k−1 to an optimal folding of
S2k−2 by adding a chain edge between the contact of
the two end nodes and replacing the end H node on
the chain bounding box to a P node. See Figure 3 (a).
Thus in this case, the number of optimal folding(s)
of L2k−1 is equal to that of S2k−2, which is one by
Theorem 2.

Case (b): If there is exactly one solitary H node,
by Lemma 4 we can modify the optimal folding of
L2k−1 to an optimal folding of S2k−1 by connecting
the two end H nodes by a short chain HPPH . See
Figure 3 (b). Thus in this case, the number of optimal
folding(s) of L2k−1 is equal to that of S2k−1, which is
one by Theorem 2. �

3 Hexagonal Lattice

3.1 Closed chain

Consider the closed chain Hk =
(HP)kPPP (HP)kPPP for k ≥ 1. We call the
two subchains PPPP the two ends of Hk. In the
above expression of Hk, we denote the ith H node
by Hi for 1 ≤ i ≤ 2k. We consider the folding Fk,
in which each Hi for 1 ≤ i ≤ k is in contact with
H2k−i+1. See Figure 4 for an example of folding Fk.
We call a contact between an H node and a non-H
node a missing contact.

Figure 4: Folding F3 for H3.

As in folding Fk, all H nodes are in contact with
other H nodes. As there is no missing contact in
Fk, there is also none in the optimal folding. Now
suppose each Hi for 1 ≤ i ≤ k is in contact with
Hci

in the optimal folding. Due to the parity of the
positions of H nodes, we have ci > k. We claim that
ci decreases as i increases in the lemma below. After
we have the claim, our theorem is immediate.

Lemma 5 Suppose each Hi for 1 ≤ i ≤ k is in con-
tact with Hci

in the optimal folding. Then ci de-
creases as i increases.

Proof. Suppose to the contrary that there exist
i, i′(i < i′) such that ci < ci′ . Note that Hi (resp.
Hi′) is in contact with Hci

(resp. Hci′
). Denote the

subchain from Hi to Hi′ (resp. from Hci
to Hci′

) not
containing any end of Hk by C1 (resp. C2). Denote
the subchain from Hi to Hci′

containing one end of
Hk by E1. And also denote the subchain from Hi′ to

64

EWCG 2006, Delphi, March 27–29, 2006

Hci
containing another end of Hk by E2. See Figure 5

for illustration.

Hi′Hi

Hc
i′

Hci

C1

E1

E2E2

C2

Figure 5: Illustration for the proof of Lemma 5.

Note that there are no chain edges or contacts that
can intersect the contact Hi′Hci′

. Consider the cycle
D = C∪E1∪Hi′Hci′

. As Hi is in contact with Hci
, it

is not hard to see that Hci
must be in the interior of

cycle D. Also it is clear that E2 lies in the exterior of
cycle D. As E2 connects Hi′ and Hci

, E2 must inter-
sect the contact Hi′Hci′

. This is a contradiction. �

Theorem 6 The closed chain Hk for k ≥ 1 has the
unique optimal folding Fk on the hexagonal lattice.

Proof. By Lemma 5, ci decreases as i increases from
1 to k in any optimal folding. As all ci are different
and ci ∈ {k + 1, . . . , 2k}, ci must be 2k − i + 1. Thus
Fk is the unique optimal folding. �

3.2 Open chain

Consider the open chain H′
k = P (HP)kPPP (HP)k

for k ≥ 1. In the above expression, we denote the ith
H node by Hi for 1 ≤ i ≤ 2k. We consider the folding
F ′

k, in which each Hi for 1 ≤ i ≤ k is in contact with
H2k−i+1. Notice that F ′

k simulates Fk. See Figure 6
for an example of F ′

k.

Figure 6: Folding F ′
3 for H′

3.

The uniqueness of the optimal folding forH′
k can be

shown by following the similar proof skeleton as The-
orem 6, but with slightly more involved arguments.

Theorem 7 The open chain H′
k for k ≥ 1 has the

unique optimal folding F ′
k on the hexagonal lattice.

4 Triangular Lattice

4.1 Closed chain

Consider the closed chain Tk = (HP)k. We consider
its folding Gk defined as shown in Figure 7.

In this section, we show the following uniqueness
theorem. Note that the theorem is not true for k = 6.

G7 G8

Figure 7: Foldings G7 & G8 for T7 & T8 respectively.

Theorem 8 The closed triangular chain Tk for k ≥ 2
and k 6= 6 has the unique optimal folding Gk on the
triangular lattice.

When k is small, we can show the uniqueness of
the optimal folding by enumerating the configurations
of the HH-contact graph with maximum number of
contacts.

Lemma 9 The chain Tk for 2 ≤ k ≤ 5 or k = 7 has
the unique optimal folding Gk. The chain T6 has two
optimal foldings including Gk as shown in Figure 8.

G6

Figure 8: Two optimal foldings of T6.

It remains to show the uniqueness of the optimal
folding of long chains as stated in the following main
lemma.

Lemma 10 The chain Tk for k ≥ 8 has the unique
optimal folding Gk.

As there are six missing contacts in Gk, we observe
that an optimal folding has at most six missing con-
tacts.

We call an H node fully-contacted if there is no
missing contact from it. The optimal folding of Tk for
k ≥ 8 contains at least two fully-contacted H nodes
due to the above observation. By careful examination
of the neighborhoods of the two H nodes, we can show
that there must be a pair of contacting H nodes that
are both fully-contacted and non-straight.

Lemma 11 An optimal folding of Tk for k ≥ 8 con-
tains two fully-contacted non-straight H nodes in con-
tact with each other.

Using the above lemma, we can divide the whole
chain at a pair of contacting H nodes into two “quite-
long” paths.

Lemma 12 An optimal folding of Tk for k ≥ 8 con-
tains two non-straight contacting H nodes such that
they divide Tk into two paths, each of which contains
at least two internal H nodes.

65

22nd European Workshop on Computational Geometry, 2006

We define a U-line (resp. D-line) as a line of slope√
3 (resp. −

√
3). We define a canonical line of the

triangular lattice as a horizontal line, a U-line, or a
D-line. A canonical strip of a lattice edge e in the
triangular lattice is a strip between the two parallel
canonical lines, each of which passes through exactly
one endpoint of e. Note that each lattice edge has
exactly two canonical strips.

Lemma 13 Suppose C is a path along Tk connecting
a pair of contacting H nodes such that C contains ei-
ther a non-straight internal H node or two internal H
nodes. Then there are at least three missing contacts
from internal H nodes of C.

Proof. (Sketch) Suppose X is a canonical strip of the
contacting edge e between the pair of ending H nodes
such that the two end edges of C are separated by X .
Without loss of generality, we assume that X runs
horizontally, the contact edge e between the two end
H nodes of C lies on a U-line, and C crosses X to the
right of e in an odd number of times. See Figure 9 for
illustration. Let Ha, Hb be the upper and lower ends
of e respectively.

Ha

Hb

H
L
2 H

R
2

H
L
1

H
R
1

X

`2

`1
e

Figure 9: Illustration for the proof of Lemma 13.

Sweep a D-line to the right until it reaches some
extremal H node of C. We call the D-line at cur-
rent position `1. Let HL

1 and HR
1 be the leftmost

and rightmost H nodes on `1 respectively. We de-
fine `2, H

L
2 , HR

2 similarly by sweeping a horizontal line
downwards.

It is clear that the right-contact of HR
1 and the

bottom-right-contact of HR
2 are both missing. With

the given conditions, it is easy to show that HL
1 = Ha

and HL
2 = Hb cannot both be true. Without loss

of generality, we assume that the former is not true.
Then we have that the top-right-contact of HL

1 is also
missing. �

Now by an involved analysis, we can show that in
order for each of these two paths to contain exactly
three missing contacts, it must possess the pattern as
shown in Figure 10 (a) or (b). The details are omitted
in this abstract. With this property, it is immediate
to claim our main lemma, Lemma 10, and we finish
the proof of Theorem 8.

(a)

Ha

Hb

(b)

Ha

Hb

Figure 10: Patterns in an optimal folding.

4.2 Open chain

However, the open chain T ′
k = (HP)k−1H can have

several optimal foldings on the triangular lattice. In-
stead, we show the following theorem for the open
chain T ′′

k = (HP)k(PHP)2(PH)k for k ≥ 3 by using
the similar technique we use for the closed chain Tk,
but with a more involved analysis. See Figure 11 for
an example of the unique optimal folding.

Theorem 14 The open chain T ′′
k for k ≥ 3 has a

unique optimal folding on the triangular lattice.

Figure 11: The unique optimal folding of T ′′
3 .

5 Conclusion & Discussion

We solve a conjecture about an open chain in the
square lattice. We obtain unique optimal foldings for
chains in the hexagonal and triangular lattices, re-
spectively. All of our results are in two dimensions.
Is there any family of chains that have unique optimal
foldings on some lattice in three dimensions?

References

[1] O. Aichholzer, D. Bremner, E. Demaine, H. Meijer,
V. Sacristan, and M. Soss. Long proteins with unique
optimal foldings in the H-P model. Computational
Geometry: Theory and Applications, 25(1-2), 139–
159, 2003.

[2] B. Berger and T. Leighton. Protein folding in
the hydrophobic-hydrophilic (HP) model is NP-
complete. Journal of Computational Biology, 5(1),
27–40, 1998.

[3] P. Crescenzi, D. Goldman, C. Papadimitriou, A. Pic-
colboni, and M. Yannakakis. On the complexity of
protein folding. Journal of Computational Biology,
5(3), 423–466, 1998.

[4] B. Hayes. Prototeins. American Scientist, 86, 216–
221, 1998.

66

EWCG 2006, Delphi, March 27–29, 2006

Reconfiguring planar dihedral chains

Greg Aloupis ∗ Henk Meijer †

Abstract

We consider the dihedral model of motion for chains
with fixed edge lengths, in which the angle between
every pair of successive edges remains fixed. A chain is
flat-state connected if every planar configuration can
be transformed to any other via a series of dihedral
motions which maintain simplicity. Here we prove
that three classes of chains are flat-state connected.
The first class is that of chains with unit-length edges
and all angles in the range (60◦, 150◦). The second
is the class of chains for which a planar monotone
configuration exists. The third class includes, but is
not limited to, chains for which every angle is in the
range (δ, 2δ), for δ ≤ π

3 .

1 Introduction

The dihedral model for three-dimensional linkages re-
sembles (and is designed to approximate) the “ball
and stick” molecular model, used in introductory
chemistry courses. Edges have fixed lengths and are
not allowed to intersect. The angle between any two
edges with a common vertex must also remain fixed.
Thus any linkage motion can be decomposed into ba-
sic dihedral motions. A basic dihedral motion is de-
fined on a selected edge of a given linkage. The en-
tire linkage on one side of the selected edge is rotated
rigidly about the axis of the edge (see Figure 1). This
maintains all angles fixed.

e e e

Figure 1: Three snapshots of a dihedral motion about
edge e.

Soss and Toussaint [6] showed that deciding
whether a chain can be flattened is NP-hard. They
also developed a quadratic time algorithm to de-

∗Département d’Informatique, Université Libre de Brux-
elles, greg.aloupis@ulb.ac.be

†School of Computing, Queen’s University,
henk@cs.queensu.ca

termine if the dihedral rotation about one edge re-
sults in edge-crossings. They gave a lower bound of
Ω(n log n), and this was nearly matched in the special
case where the rotation is a full revolution. Soss, Er-
ickson and Overmars [4] showed that pre-processing
hardly helps if a series of such rotation queries is to
be made. Several results on dihedral reconfigurations
appear in the doctoral thesis by Soss [5]. A main
open problem remaining from that research is to de-
termine whether all planar (flat) configurations of a
given chain are connected by a series of dihedral mo-
tions. This has come to be known as the flat-state con-
nectivity problem, and accordingly when the answer is
positive we say that a chain is “flat-state connected”.
One reason that planar configurations have received
attention is that they may be useful as an interme-
diate (canonical) form during the reconfiguration of
three-dimensional linkages. Demaine, Langerman and
O’Rourke [3] considered chains with non-acute angles
that can be “produced” through the apex of a cone,
in a first geometric attempt to model a “protein ma-
chine”. It was shown that chains are producible if
and only if they can be flattened. Problems regarding
flat-state connectivity were solved in [1, 2], by im-
posing additional restrictions to polygons, chains and
trees. For example, orthogonal graphs were shown
to be flat-state disconnected, as well as other linkages
which were partially rigid. Open chains with non-
acute or equal angles are flat-state connected, as are
orthogonal polygons with unit edges. Of particular
relevance to this paper is the class of open chains
with unit-length edges and all angles in the range
(60◦, 90◦), shown to be flat-state connected in [2].
Here, we significantly expand this range of angles and
prove that two new classes of open chains are flat-state
connected.

In the following sections, we say that a chain con-
sists of vertices v0, . . . , vn and edges e0, . . . , en−1. The
edge ei connects vertices vi and vi+1. Let αi denote
the angle at vi, between ei−1 and ei

1.

2 Chains which have a monotone configuration

Theorem 1 Open chains that have a strictly mono-
tone flat embedding are flat-state connected.

1Not to be mistaken with the turning angle of the chain.
Here we have (0 < αi < π). αi = π would mean that the two
edges could be considered as one and vi could be ignored.

67

22nd European Workshop on Computational Geometry, 2006

Proof. (sketch) Let D be a flat strictly monotone
embedding of an open chain, i.e. any line parallel to
the y-axis intersects D at a single point. Let C be
another flat embedding of the same chain. We will
prove that C can be reconfigured to D using dihedral
motions. This implies the theorem, since D serves as
a canonical configuration.

Let C be embedded in some plane Q. Let l be a
line that lies in Q. Let P be a half plane bounded by
l, contained above Q, as shown in Figure 2(a).

At the start of iteration i, e0, e1, . . . , ei−1 lie in P
and conform to the layout of these edges in D, i.e.
any line in P parallel to l intersects D at most once.
The edges ei, ei+1, . . . , en−1 lie in Q and these edges
have the layout of C. The angle between P and Q is
almost zero. Either ei has to rotate around the edge
ei−1 by an angle of almost π, or it is already nearly
in the correct position. In the latter case all we need
to do is lift vi, l and P a little out of Q until ei lies
in the plane containing P . The edge ei and the chain
in Q have to be rotated slightly for this motion to be
possible.

So assume that ei is not in its correct position . Let
e′i denote the location where it has to move to. There
are three cases to be considered. Either ei and e′i lie
on the same side of l, they lie on opposite sides of l,
or ei lies on l. Since D is strictly monotone e′i cannot
lie on l. The first two cases are illustrated in Figure
2(b) and (c).

PQ

Q

P

l

P

ei

Q
e′i

e′i

ei

(c)(b)

(a)

Figure 2: (a) Planes P and Q; (b) ei and e′i on the
same side of l; (c) ei and e′i on opposite sides l

The theorem can be proved by examining the pos-
sible values of αi. Let φ be the smallest angle between
ei−1 and l. Let θ be the smallest angle between ei−1

and plane Q so 0 < θ ≤ φ ≤ π/2.
We first observe that αi > φ since D is strictly

monotone. If ei and e′i lie on the same side of l we
have αi > π−φ. This condition implies that αi > π/2.
We rotate P around l until θ is equal to π − αi. This
happens before P is vertical. During the rotation we
have 0 < θ ≤ π − αi < φ. For each value of θ we
can rotate C0 around vi so that the angle between
ei−1 and ei falls in the range [θ, π − θ]. This range

contains αi since αi ≤ π− θ and θ < π/2 < αi. So we
can maintain an angle of αi between ei−1 and ei by
rotating C0 in plane Q around vi. Similarly we can
show that the layout after iteration i can be moved to
the same intermediate configuration. This is sufficient
to prove this case.

If ei and e′i lie on different sides of l we have αi <
π − φ. We will show that we can rotate P , while
ei stays on the same side of l. We first increase the
angle between P and plane Q from ε to π/2. The
range [θ, π − θ] contains αi since αi < π − φ ≤ π − θ.
So we can maintain an angle of αi between ei−1 and
ei. Since the largest angle between l and ei−1 remains
constant at value π−φ and is greater than αi, ei will
not cross line l. Using a similar reasoning we can show
that we can push P down until it lies on the other side
of l, while ei remains on the same side of l.

Finally if ei lies on l we have φ < π/2 and αi = π−
φ. First rotate P into a vertical position, during which
rotation ei does not move. We then rotate P left or
right; during this rotation we move ei until ei reaches
the position of e′i. We can maintain an angle of αi

between ei−1 and ei since π/2 < αi = π − φ ≤ π − θ
implies that the range [θ, π − θ] contains αi. �

3 Chains with local angle restrictions

In this section, we show that if some simple relations
between adjacent angles hold, a chain is flat-state con-
nected. Define βi = min(αi, π − αi).

Theorem 2 Chains with angles αi such that αi ≤
βi−1 + βi+1 or αi ≥ π − max(βi−1, βi+1) +
min(βi−1, βi+1) for 2 ≤ i ≤ n − 2 are flat-state con-
nected.

Proof. (sketch) Let C and D be two flat configura-
tions of a chain that satisfies the conditions of the
lemma. Assume without loss of generality that C is
embedded in a plane Q. Let P be a plane that is
parallel to and lies above plane Q at distance ε.

At the start of iteration i edges e0, e1, . . . , ei−1

lie in P . The edges ei+1, ei+2, . . . , en−1 lie in Q.
Edge ei connects vi in P to vi+1 in Q. The edges
e0, e1, . . . , ei−1 conform to the layout of D, the edges
ei, ei+1, ei+2, . . . , en−1 have the layout of C.

For all i let γi be the variable angle between ei and
P with γi ≤ π/2. We move P upward, e0, ei, . . . , ei−2

remain in P , ei−1 drops below P , ei stays above Q and
ei+1, ei+2, . . . , en−1 remain in Q. The motion contin-
ues, with angles γi−1 and γi increasing, until ei−1 and
ei lie in a plane perpendicular to P . For an illustra-
tion, see Figure 3.

The motion of ei−1 can then be reversed, while ei

moves to its correct position. In other words, the
layout before and after iteration i can be moved to
the same intermediate configuration, that in which

68

EWCG 2006, Delphi, March 27–29, 2006

Q
P

αi

βi−1

βi+1 Q

P

(b) (c)

(a)

Figure 3: Edges in P are bold; edges in Q are solid;
edges between P and Q are dashed. (a) planes P
and Q; (b) side view when ei−1 and ei lie in plane
perpendicular to P and Q; (c) top view of the same
configuration.

ei−1 and ei lie in the perpendicular plane. This is
sufficient to prove the theorem.

We first assume that βi−1 ≥ βi+1. If αi ≤ βi−1 +
βi+1 let g be such that αi = g(βi−1+βi+1). If αi ≥ π−
(βi−1−βi+1) let g be such that αi = π−g(βi−1−βi+1).
So 0 < g ≤ 1.

Suppose we have rotated the edge ei−1 out of the
plane P such that γi−1 = fβi−1 with 0 < f ≤ g. Sup-
pose we also have rotated ei with γi = fβi+1. It is not
hard to show that when f = g we have reached the
situation where ei−1 and ei lie in a plane perpendicu-
lar to P . Also it can be shown that for any value of f
we can maintain the angles αi−1 and αi+1 by rotating
the chains in P and Q. What remains to be shown is
that we can maintain the angle αi.

Below we show that αi falls in the range [f(βi−1 +
βi+1), π − f(βi−1 − βi+1)] for all values of f . This
implies that we can maintain the angle αi at vi by
rotating ei and Q around vi .

If αi = g(βi−1 + βi+1), then αi ≥ f(βi−1 + βi+1).
Since gβi−1 ≤ π − gβi−1 we have αi ≤ π − gβi−1 +
gβi+1 ≤ π−f(βi−1−gβi+1). If αi = π−(gβi−1−βi+1),
then αi ≥ gβi−1 + gβi+1 ≥ f(βi−1 + βi+1). Also
αi ≤ π − f(βi−1 − gβi+1).

To complete the proof we have to consider that case
that βi−1 < βi+1. However this case is similar to the
case that βi−1 ≥ βi+1. So the theorem holds. �

The above theorem implies that any chain with δ ≤
αi ≤ 2δ is flat state connected for any value of δ with
0 < δ ≤ π/3.

4 Unit length chains

In this section we show that unit length chains with
all dihedral angles in the range (60◦, 150◦) are flat-

state connected. Proofs for some of our claims are
left out due to space constraints.

In a plane perpendicular to the original, we use a
canonical configuration, defined as follows: the first
edge v1v2 of the given chain must point up2 . From
there, each successive edge vivi+1 is placed so that
vi+1 reaches a position with maximum height (with-
out interfering with edges already fixed in place).

First we prove that a canonical chain is simple. Let
the notation va > vb denote that va is higher than vb

in the vertical plane. We can show that in a canonical
chain no edge can point down at a slope greater than
30◦ from horizontal, and two successive edges cannot
both point down. Also, if vivi+1 points up, then vi+2

is at least half a unit higher than vi. These two claims
lead to the following two results:

Lemma 3 Once a particular height h is reached by
the canonical chain, the remaining chain cannot reach
more than half a unit below h.

Corollary 4 If e1 and e2 are consecutive edges that
point up, no successor of e2 can intersect e1.

Lemma 5 A canonical configuration has the prop-
erty that every third vertex has monotonically in-
creasing height. In addition, if edge ei points up, then
vi+3 is at least 1

2 higher than vi.

Proof. Consider any three consecutive edges, e1, e2,
e3. We will show that v4 must always be higher than
v1. If none of the three edges point down, then the
claim holds trivially.

Suppose that e2 points up. We know that a possible
height decrease due to e1 is less than 1

2 , and that e2

and e3 combine to a height increase of at least 1
2 .

Instead, if e2 points down, then the other two edges
point up. Thus e1 and e2 increase height by at least
1
2 , and this increase cannot be negated by e3.

If the first edge points up, then only one edge can
point down so the latter can be combined with its
predecessor for a net height increase of at least 1

2 . �

Lemma 6 Every six consecutive vertices result in a
height increase of at least 1

2 .

Proof. Let the six edges be e1, . . . , e6. If e1 or e4

point up then by Lemma 5 there is a triplet of consec-
utive edges (e1e2e3 or e4e5e6) that gains 1

2 in height.
The other triplet does not lose height, so the claim is
true. If both e1 and e4 point down, then e2, e3 and e5

must point up . e6 may point up or down. Thus pairs
(e3e4) and (e5e6) each contribute a height increase of
at least 1

2 . e2 contributes positively, and e1 can lose
at most 1

2 . �

2We say that an edge vivi+1 points down if vi+1 is strictly
lower than vi. Otherwise the edge points up. Pointing left
and right are defined similarly, with vertical edges symbolically
defined to be pointing right.

69

22nd European Workshop on Computational Geometry, 2006

Lemmas 3 and 6 imply that edge ei+6 and its
successors cannot intersect ei or its preceding edges.
Thus what remains is to show that no six consecutive
edges in canonical form can self-intersect.

From the angular restrictions of the problem defi-
nition, we know that no three consecutive edges can
intersect. We can prove that no four or five consecu-
tive edges in canonical form intersect. The proofs are
similar to the following:

Lemma 7 Six consecutive edges in canonical form
cannot intersect.

Proof. We know that five consecutive edges do not
intersect in canonical form. Thus we focus on proving
that e1 does not intersect e6.

Case 1: e1 points up. By corollary 4, e2 must point
down if there is to be an intersection. Thus e3 points
up. If e6 points down (implying e5 points up) we have
v6 > v7 > v5 > v2 > v1 so we are done. If instead e6

points up, we must look at e5: if it points up, we have
v7 > v6 > v5 > v2 > v1, implying no intersection.
Thus the only dangerous configuration remaining has
e5 pointing down (and e4 pointing up). We know that
v6 is at least 1

2 higher than v4, which is no more than
1
2 lower than v2. So v7 > v6 > v2 > v1.

Case 2: e1 points down (so e2 points up). By
Lemma 5, v7 > v4 > v1. Since v1 > v2, we must
only prove that v6 > v1. Clearly we only worry if e6

points up. Let us examine the pair e4e5. If e4 points
up, this would mean that v6 > v4, which proves our
claim. So instead assume that e4 points down, which
means e3 and e5 point up. Since v5 is at least 1

2 higher
than v3, and v3 is no more than 1

2 lower than v1, we
have v6 > v5 > v1. �

This concludes the proof of the following theorem:

Theorem 8 A chain that is in canonical form must
be simple.

Theorem 9 Any two planar chains with edges of
unit length and angles in the range (60◦, 150◦) are
flat-state connected.

Proof. Let the given chain be in the horizontal plane.
We begin by lifting the first edge so that it projects
vertically onto the second edge. Now suppose that we
have part of the linkage still in the original configu-
ration, and part of it has been lifted into a vertical
plane and is in canonical form. We want to move the
canonical portion of the chain into a position above
the next edge of the horizontal portion, as demon-
strated in Figure 4. On the left of the figure is a
partially lifted chain. The result will be a configura-
tion such as the one on the right. Two simultaneous
dihedral motions are performed during this operation.

eiei
ei+1

Figure 4: Lifting the next edge into canonical form.

Edges that are already in canonical configuration re-
main coplanar (in a vertical plane) throughout these
motions. To do this, we rotate ei+1 about ei and at
the same time we rotate the canonical plane so that
it always projects vertically through ei. We call these
two dihedral motions primary. We only need to inter-
vene if an edge u points directly up (becomes vertical)
during the primary motion. At this instant the chain
Cu above u may be placed arbitrarily in either of two
possible positions in the canonical plane. If the overall
motion is to continue, u and the edge above it will no
longer satisfy the greedy property. Thus we rotate Cu

about u and proceed with the primary motion until
it is complete or another edge becomes vertical. �

References

[1] G. Aloupis, E. Demaine, V. Dujmovic, J. Erickson,
S. Langerman, H. Meijer, J. O’Rourke, M. Overmars,
M. Soss, I. Streinu, and G. Toussaint. Flat-state con-
nectivity of linkages under dihedral motions. In Proc.
13th Int. Symposium on Algorithms and Computation,
volume 2518 of LNCS, pp. 369–380, 2002.

[2] G. Aloupis, E. Demaine, H. Meijer, J. O’Rourke,
I. Streinu, and G. Toussaint. On flat-state connectivity
of chains with fixed acute angles. In Proc. 14th Cana-
dian Conference on Computational Geometry, pp. 27–
30, Aug. 2002.

[3] E. Demaine, S. Langerman, and J. O’Rourke. Geomet-
ric restrictions on producible polygonal protein chains.
In Proc. 14th Int. Symposium on Algorithms and Com-
putation, volume 2906 of Lecture Notes in Computer
Science, pp. 395–404, 2003.

[4] J. Erickson, M. Overmars, and M. Soss. Preprocess-
ing chains for fast dihedral rotations is hard or even
impossible. Computational Geometry: Theory and Ap-
plications, 26(3):235–246, 2003.

[5] M. Soss. Geometric and computational aspects of
molecular reconfiguration. PhD thesis, School of Com-
puter Science; McGill University, 2001.

[6] M. Soss and G. Toussaint. Geometric and computa-
tional aspects of polymer reconfiguration. Journal of
Mathematical Chemistry, 27(4):303–318, 2001.

70

EWCG 2006, Delphi, March 27–29, 2006

Gray Code Enumeration of Plane Straight-Line Graphs∗

O. Aichholzer† F. Aurenhammer‡ C. Huemer§ B. Vogtenhuber¶

Abstract

We develop Gray code enumeration schemes for ge-
ometric graphs in the plane. The considered graph
classes include plane straight-line graphs, plane span-
ning trees, and connected plane straight-line graphs.
Previous results were restricted to the case where the
underlying vertex set is in convex position.

1 Introduction

Let E = {e1, . . . , em} be an ordered set. For the pur-
poses of this paper, E will consist of the m =

(
n
2

)
line

segments spanned by a set S of n points in the plane,
in lexicographical order. Consider a collection A of
subsets of E. For instance, think of A being the class
of all crossing-free spanning trees of S. We associate
each member Ai ∈ A with its containment vector bi

with respect to E. That is, bi is a binary string of
length m whose jth bit is 1 if ej ∈ Ai and 0, other-
wise. A (combinatorial) Gray code for the class A
is an ordering A1, . . . , At of A such that bi+1 differs
from bi by a transposition, for i = 1, . . . , t− 1. For
example (and as one of the results of this paper), for
crossing-free spanning trees a Gray code exists such
that successive trees differ by a single edge move. De-
pending on the class we will consider, a transposition
will be an exchange of two different bits (as for the
spanning tree class) or/and a change of a single bit.
Combinatorial Gray codes generalize the classical bi-
nary reflected Gray code scheme [13] for listing m-bit
binary numbers so that successive numbers differ in
exactly one bit position. See [14] for a survey article.
We also refer to [3] for various results concerning edge
moves in spanning trees.

Any Gray code for a given class A provides a com-
plete enumeration scheme for A by means of constant-
size operations. Listing all the objects of a given
class is a fundamental problem in combinatorics and,

∗Research supported by the FWF Joint Research Project
Industrial Geometry S9205-N12 and Projects MCYT-FEDER
BFM2003-00368 and Gen. Cat 2005SGR00692

†Institute for Software Technology, University of Technol-
ogy, Graz, Austria, oaich@ist.tugraz.at

‡Institute for Theoretical Computer Science, University of
Technology, Graz, Austria, auren@igi.tugraz.at

§Departament de Matematica Aplicada II, Uni-
versitat Politecnica de Catalunya, Barcelona, Spain,
Huemer.Clemens@upc.edu

¶Institute for Software Technology, University of Technol-
ogy, Graz, Austria, lambda@fsmat.at

in particular, in computational geometry. Not every
enumeration scheme constitutes a Gray code, how-
ever, as a small difference between consecutive ob-
jects will not be guaranteed, in general. For instance,
the popular reverse search enumeration technique [6]
lacks this property.

When interpreting {A1, . . . , At} as the set of nodes
of an abstract graph that connects two nodes Ai and
Aj whenever bi and bj are a single transposition apart,
any Gray code for the class A corresponds to a Hamil-
tonian path in this transposition graph. For example,
if A = G, the class of all possible straight-line graphs
on a point set S, then each of the 2m subsets of E de-
fines a member of G, for m =

(
n
2

)
. The transposition

graph for G is the hypercube in m dimensions.
While general enumeration schemes for geometric

objects have been studied quite extensively, see e.g. [6,
2, 8, 7], respective results for Gray codes are sparse.
In particular, all the known results for straight-line
graphs concern the special case where the underlying
set S of points is in convex position [5, 9, 11, 10].
These Gray code constructions are mainly based on a
hierarchy of graphs structured by increasing point set
cardinality. In this paper, we extend this approach
to general point sets S, which becomes possible when
combining it with classical combinatorial Gray codes.
We construct Gray codes for the class PG of all plane
straight-line graphs, the class CPG of all plane and
connected straight-line graphs, and the class ST of
all plane spanning trees, for a given point set. For the
class CPG no results existed even for the convex case.
The respective challenging question for triangulations
remains open (for n ≥ 7).

2 A hierarchy for plane graphs

Let S = {p1, . . . , pn} be the underlying set of points in
the plane. Without loss of generality, let S be given
in sorted order of x-coordinates. For simplicity, we
also assume that no three points in S are collinear.
Then, for 1 ≤ k ≤ n− 1, the point pk+1 lies outside
the convex hull of {p1, . . . , pk}. This property will
turn out useful in the subsequent constructions.

Let now A be one of the classes PG, CPG, or ST .
We define a hierarchy (a tree structure) HA(S) for A
and S such that the kth level of the hierarchy con-
sists of all the members of A on top of the first k
points in S, for k = 1, . . . , n. That is, each member in
HA(S) except the root (at level 1) has a unique par-

71

22nd European Workshop on Computational Geometry, 2006

ent, and each member in HA(S) which is not a leaf
has a unique set of children.

The Gray code construction for A is done recur-
sively. It hinges on an appropriate rule for defining
the parent of a given member, as well as on a con-
sistent rule for enumerating its children. Designing
the enumeration rule for the children is the crucial
part, as it has to yield a Gray code for the children
which fits the (previously constructed) Gray code for
the parents. In particular, HA(S) has to be an or-
dered tree such that the ordering at each of its levels
is a Gray code.

3 The class PG

For the class PG of all plane straight-line graphs,
things are surprisingly simple. Let G′ be at level k+1
of the hierarchy HPG(S), for k ≥ 1. That is, G′ is
some plane straight-line graph whose vertex set is
{p1, . . . , pk+1}.

The parent of G′ is obtained by removing from G′

the vertex pk+1 and all its incident edges. This gives
a unique graph G at level k of HPG(S). We say that
a vertex pj of G is visible (from pk+1) if the line seg-
ment pk+1pj does not cross any edge of G. As we
are interested only in plane graphs, all the children
of G are obtained by adding the vertex pk+1 and con-
necting pk+1 to subsets of visible points in all possible
ways (including the empty set).

Let vG be the number of visible vertices of G. We
can use the cyclic binary vG-bit Gray code B(vG)
(see Appendix) for encoding all the possible subsets
of edges incident to pk+1. A transposition then corre-
sponds to adding or removing a single edge to a visible
vertex. To specify the first and the last subset (i.e.,
child of G), we take ∅ for the first child and the sin-
gleton set {pk+1pj} for the last child, where pk+1pj is
the edge tangent to the convex hull of G from above.
(Vertex pj is visible for any choice of the graph G.
In particular, pj is the first visible vertex in counter-
clockwise order.) Accordingly, the first string in the
code B(vG) is 00 . . . 0 and the last string is 10 . . . 0.

To construct a Gray code for level k+1 of HPG(S),
let G and F be adjacent at level k of HPG(S). At-
taching 00 . . .0 to the string for G and F , respectively,
leaves the strings one transposition apart. The same
is true for 10 . . .0. That is, the first child of G is
adjacent to the first child of F , and the last child
of G is adjacent to the last child of F . So we can
run B(vG) followed by B(vF) (the code B(vF) in re-
verse order), and so on. The construction of the de-
sired Gray code is now obvious. In addition, we can
use the fact that the number of plane straight-line
graphs on n ≥ 2 points is even (because each convex
hull edge appears in exactly half of the graphs), which
by induction implies that the Gray code is cyclic. In
the language of graph theory, our result reads:

p
k+

e

e

e

e

e

1

1

e3

2

5

6

4

Figure 1: The chain of a spanning tree

Theorem 1 The transposition graph for PG con-
tains a Hamiltonian cycle.

It would be interesting to know the average degree
of pk+1 in a level-(k + 1) member of HPG(S). This
information could be used to give a lower bound on
the number of plane straight-line graphs.

4 Plane spanning trees

Our strategy for constructing Gray codes also works
for the class ST of plane spanning trees. A transpo-
sition will now be an exchange of two different bits,
because the addition (or removal) of a single edge de-
stroys the tree property.

Consider a member T ′ at level k + 1 of the hier-
archy HST (S), for k ≥ 1. That is, T ′ is some plane
spanning tree on {p1, . . . , pk+1}. Defining an appro-
priate parent of T ′ is less trivial now.

For an arbitrary plane straight-line graph G on
{p1, . . . , pk}, let q1, . . . , qv be the visible vertices of G
(as seen from pk+1) in counter-clockwise order. We
define the chain for G, C(G), as the ordered set of
line segments qiqi+1, for 1 ≤ i ≤ v − 1. Observe that
for every edge e ∈ C(G) \G, the set of visible vertices
of G ∪ {e} is the same as for G.

Parent rule: Let G be the graph obtained by re-
moving from T ′ the vertex pk+1 and all its incident
edges. Let G consist of r ≥ 1 components. We add
the first r − 1 edges of the chain C(G) that connect
these components, and define the resulting tree as the
parent of T ′.

This rule yields a unique parent for T ′. Notice
that this parent is well-defined (i.e., belongs to level k
of HST (S)) because G can always be connected to a
tree using edges of C(G), and no such edge crosses
any edge of G. From the definition of the parent we
get the definition for the children, as follows.

Let T be a tree at level k of the hierarchy HST (S),
and let ’<’ denote the total order on C(T). De-

72

EWCG 2006, Delphi, March 27–29, 2006

fine E(T) as the set of all edges e ∈ T ∩ C(T) which
satisfy the following two conditions:

(1) Removal of e does not make a non-visible vertex
of T visible.

(2) No edge e′ ∈ C(T) \ T with e′ < e gives a cycle
in T ∪ {e′} that contains e.

See Figure 1. The spanning tree T is drawn with
bold lines. Its chain C(T) consists of six edges
e1, . . . , e6. Edges e1 and e3 are not part of T and thus
do not belong to E(T). Also, we have e4, e5 /∈ E(T)
because these edges reveal visible points. Finally,
e2 /∈ E(T) as the edge e1 < e2 closes a cycle in T that
contains e2. This gives E(T) = {e6}.

Children rule: The children of T are obtained by
removing, for each possible subset of E(T), its edges
from T and connecting each resulting component to
the vertex pk+1 using a single edge to some visible
vertex, in all possible ways.

It is clear that all the graphs constructed from T in
this way are plane spanning trees on {p1, . . . , pk+1}.
To see that each member of level k + 1 of the hierar-
chy HST (S) is generated exactly once by the children
rule (provided all the members of level k have so), we
need the lemma below. Let us color the edges of E(T)
green, and the edges that connect to pk+1 red.

Lemma 2 The parent rule and the children rule are
consistent.

Proof. Child → parent: Let T ′ be some child con-
structed from T . Then T ′ contains r ≥ 1 red edges.
If r = 1 then no green edge has been removed from T
for constructing T ′. According to the parent rule, we
now remove from T ′ the vertex pk+1, which correctly
gives us the single component T . Now assume r ≥ 2.
Then r− 1 green edges have been removed from T to
construct T ′, leaving r components. Let Ki and Ki+1

be two of these components, such that there is a sin-
gle (removed) green edge e between them. There is
no edge e′ ∈ C(T) \ T with e′ < e and which gives a
cycle in T ∪ {e′} containing e. Thus, when removing
from T ′ the vertex pk+1 and joining components of
the resulting graph G according to the parent rule,
the edge e is indeed the first edge of C(G) that con-
nects Ki and Ki+1. (Otherwise we would have chosen
e′ for removal instead of e.) Thus we correctly get T
from T ′ again.

Parent → child: Let T be the parent constructed
from T ′. T is obtained by removing pk+1 and joining
the r components of the resulting graph G with edges
of C(G). Let e be such an edge. Then e is the first
edge of C(G) that connects the respective two compo-
nents. Therefore, no edge e′ ∈ C(T) \ T with e′ < e
gives a cycle in T ∪ {e′} that contains e. Moreover,
because e ∈ C(G) \G, we know that G ∪ {e} and G
have the same set of visible vertices. In conclusion,

e is indeed a green edge. Thus, by the children rule,
T ′ will be constructed as one of the children of T . �

Theorem 3 The transposition graph for ST con-
tains a Hamiltonian path.

Proof. Let T be a tree at level k. Define as the first
child T f (respectively, as the last child T `) of T the
tree obtained when adding to T the upper (respec-
tively, lower) tangent from pk+1 to the convex hull
of T . Note that T f and T ` are well-defined children
of T . We claim (and prove below) that the transposi-
tion graph for ST contains a path from T f to T ` that
contains all the children of T . The theorem follows
because, for two neighboring trees T and U at level k,
their first children T f and Uf , as well as their last
children T ` and U `, are a single transposition apart.

To encode all the children of T , we have to consider
each subset Y ⊂ E(T) of green edges and, for fixed Y ,
all allowed distributions of red edges. Let g = |E(T)|.
Similar to Section 3, the binary reflected g-bit Gray
code B(g) (let us call it the green code) is used for
encoding all possible subsets of E(T). Now consider
a fixed subset Y . Let T \ Y have r ≥ 1 components.
Given an arbitrary visible vertex qj in each compo-
nent Kj, 1 ≤ j ≤ r, there exists a Gray code R(r)
(the red code) that starts with the positions of the
edges q1pk+1, . . . , qrpk+1 and that encodes all allowed
positions of the red edges; see the Appendix.

Between every two transpositions in the green code
we work off the red code. Care has to be taken when
switching between the codes. If a green edge is added
(i.e., two components are joined) then some red edge
has to be removed. All other red edges stay at their
positions, which are the starting positions for the sub-
sequent red code. Similarly, if a green edge is removed
(i.e., a component is split into two) then some red edge
has to be added. Again, all other red edges stay at
their positions which are the starting positions for the
next red code.

The green code is cyclic, and thus we obtain a cyclic
Gray code for the children of T when combining the
green and the red code. If now T f and T ` are not
adjacent in this code, this property can be enforced as
follows: The green code is started at the subset Y = ∅
of E(T) (recall that T f and T ` arise as children for
this subset) and the red code for ∅ is started with
some red edge which is not a convex hull tangent.
Such an edge exists because T f and T ` are already
adjacent, otherwise. We first do one transposition in
the green code and, after having returned to ∅ with
the combined code in the end, we do the red code
for ∅. Cutting the obtained code, in which T f and T `

are adjacent now, between these two trees gives the
desired result. �

If the Hamiltonian path in Theorem 3 both starts
and ends with a first child (or with a last child), then

73

22nd European Workshop on Computational Geometry, 2006

we get a Hamiltonian cycle. Constructing such a cycle
in the general case is left to further research.

The Gray code construction above can be modified
to yield a Gray code for the class CPG of all con-
nected plane straight-line graphs. Allowed transposi-
tions then are an exchange of two different bits or a
change of a single bit. Disallowing either type makes
the transposition graph for CPG non-Hamiltonian.
Details are given in a full version of this paper.

5 Algorithmic issues

To perform a Gray code enumeration of a given graph
class A, the hierarchy HA(S) is traversed in preorder
and its leaves are reported. For A ∈ {PG,ST , CPG},
each non-leaf member of HA(S) has at least two chil-
dren. Consequently, the time complexity is domi-
nated by computing the leaves. When computing the
children of a given parent G, the main tasks are calcu-
lating the chain C(G) and the set E(G) of green edges.
Both tasks can be accomplished in O(|S|) time, by
traversing the faces that G defines within its convex
hull. We omit the details due to lack of space.

Theorem 4 Let A be any of the classes PG, ST , or
CPG, for a given set S of n points in the plane. A Gray
code enumeration ofA can be performed in O(n) time
per member.

For the class ST this result is superior to the O(n3)
result for (non-Gray code) enumeration in [6].

6 Discussion

For several classes of plane straight-line graphs their
transposition graph fails to be Hamiltonian, in gen-
eral. E.g., for the class of all triangulations of a point
set S, with edge flips [12] as transpositions, there is a
counterexample for |S| = 6. However, it still may be
that Hamiltonicity is attained when S is sufficently
large. For pseudo-triangulations, see e.g. [1], the sit-
uation is unclear as well. Our conjecture is that the
flip graph is Hamiltonian when both edge-exchanging
and edge-inserting flips are admitted. The flip graph
of minimum (or pointed) pseudo-triangulations and
edge-exchanging flips is known to be Hamiltonian for
all sets of up to 5 points. Our hierarchical approach
possibly may be used to settle these problems.

With small adaptions, our enumeration scheme also
works for point sets containing collinear points. Thus
we can provide Gray codes for the respective graph
classes on the grid.

The efficient generation of random spanning trees,
plane graphs, or connected plane graphs is still an
open problem. Progress can possibly be made by se-
lecting random children for members in the respective
classes.

7 Appendix

Binary reflected Gray code. The binary reflected Gray
code B(n) for n-bit numbers is defined recursively as follows.
B(1) is a list of two one-bit strings, namely 0, 1. For n ≥ 2,
B(n) is formed by taking the list for B(n − 1), prepending the
bit 0 to every string, and then taking the list for B(n − 1) in
reversed order and prepending the bit 1 to every string. Thus

B(n) =

0, 1 if n = 1

0 · B(n − 1) ◦ 1 · B(n − 1) if n ≥ 2

with · and ◦ denoting character and list concatenation, respec-
tively.

Red Gray code. For a given set Y of green edges, let the
graph T \ Y consist of the components K1, . . . , Kr. Let compo-
nent Kj have vj visible vertices, and let 1, . . . , vj be any fixed
ordering for the positions of these vertices. The red code R(1)
for the first component K1 is given by 1, 2, . . . , v1. Assume we
are given a red code R(s) for K1, . . . , Ks, for s < r. Then the
red code R(s + 1) is given by

1 · R(s) ◦ 2 · R(s) ◦ 3 · R(s) ◦ · · · ◦ vs+1 · R(s)

where the last sublist is vs+1 · R(s) if vs+1 is odd.

References

[1] O. Aichholzer, F. Aurenhammer, P. Braß, H. Krasser.
Pseudo-triangulations from surfaces and a novel type of
edge flip. SIAM Journal on Computing 32 (2003), 1621-
1653.

[2] O. Aichholzer, F. Aurenhammer, H. Krasser. Enumerating
order types for small point sets with applications. Order
19 (2002), 265-281.

[3] O. Aichholzer, F. Aurenhammer, F. Hurtado. Sequences
of spanning trees and a fixed tree theorem. Computational
Geometry: Theory and Applications 21 (2002), 3-20.

[4] M. Ajtai, V. Chvátal, M.M. Newborn, E. Szemerédi.
Crossing-free subgraphs. Annals of Discrete Mathematics
12 (1982), 9-12.

[5] R. Arenas, J. Gonzalez, A. Marquez, M. Puertas Gon-
zalez. Grafo de Grafos Planos de un Poligono Convexo.
Jornadas de Matematica Discreta y Algoritmica 4 (2004),
31-38.

[6] D. Avis, K. Fukuda, Reverse search for enumeration, Dis-
crete Applied Mathematics 65 (1996), 21-46.

[7] S. Bereg. Enumerating pseudo-triangulations in the plane.
Computational Geometry: Theory and Applications 30
(2005), 207-222.

[8] S. Felsner. On the number of arrangements of pseudolines,
Discrete & Computational Geometry 18 (1997), 257–267.

[9] M. C. Hernando, F. Hurtado, A. Marquez, M. Mora, M.
Noy. Geometric tree graphs of points in convex position.
Discrete Applied Mathematics 93 (1999), 51-66.

[10] C. Huemer, F. Hurtado, M. Noy, E. Omana-Pulido. Gray
codes for non-crossing partitions and dissections of a con-
vex polygon. In: Proc. X Encuentros de Geometria Com-
putacional, Sevilla, 2003.

[11] F. Hurtado, M. Noy. Graph of triangulations of a convex
polygon and tree of triangulations. Computational Geom-
etry: Theory and Applications 13 (1999), 179-188.

[12] F. Hurtado, M. Noy, J. Urrutia. Flipping edges in trian-
gulations. Discrete & Computational Geometry 22 (1999),
333-346.

[13] F. Ruskey. Simple combinatorial Gray codes constructed
by reversing sublists. Springer Lecture Notes in Computer
Science 762 (1993), 201-208.

[14] C. Savage. A survey of combinatorial Gray codes. SIAM
Review 39 (1997), 605-629.

74

EWCG 2006, Delphi, March 27–29, 2006

The Rotation Graph of k-ary Trees is Hamiltonian ∗

Clemens Huemer‡ Ferran Hurtado‡ Julian Pfeifle‡

Abstract

In this paper we show that the graph of k-ary trees,
connected by rotations, contains a Hamilton cycle.
Our proof is constructive and thus provides a cyclic
Gray code for k-ary trees. Furthermore, we identify
a basic building block of this graph as the 1-skeleton
of the polytopal complex dual to the lower faces of a
certain cyclic polytope.

1 Introduction

A k-ary tree is a rooted plane tree where each ver-
tex has either k children or no children. Let R(m, k)
denote the graph whose vertices are all k-ary trees
with m internal nodes, and where two trees are adja-
cent if they differ by a rotation, defined below. For
k = 2, Lucas [6] and later Hurtado and Noy [2] showed
that the rotation graph of binary trees is Hamiltonian.
There exists a well known isomorphism [11] between
the flip graph of triangulations of a convex polygon [2]
and the rotation graph of binary trees. This isomor-
phism generalises to an isomorphism between graphs
whose node sets are dissections of a convex polygon
into m k-gons and (k − 1)-ary trees with m internal
nodes, respectively. See Figures 1, 2 and 3. In fact,
a rotation for k-ary trees can be defined using this
isomorphism to dissections of a convex polygon. A
more direct definition of a rotation given by Sagan [9]
is recalled in the next section. Another definition of
rotations from Korsh [3] does not carry over to the
flip graph of dissections, meaning that rotations for
k-ary trees do not always correspond to edge-flips in
the graph of dissections.
As our main results, we present a cyclic Gray code [10]
for R(m, k) and identify the graph C(m−1, k) of weak
compositions of m− 1 into k parts as a basic building
block of R(m, k). Moreover, C(m− 1, k) turns out to
be the 1-skeleton of the polytopal complex dual to the
lower faces of a certain cyclic polytope.
There exist several Gray codes for k-ary trees. It is
common to encode trees as a sequence of numbers,
and then give a Gray code for these sequences; see

∗Research partially supported by Projects MCYT
BFM2003-00368, Gen.Cat. 2005SGR00692 and Acción
Integrada España Austria HU2002-0010

‡Departament de Matemàtica Aplicada II, Universi-
tat Politècnica de Catalunya. huemer.clemens@upc.edu,

ferran.hurtado@upc.edu, julian.pfeifle@upc.edu

[4, 1, 13]. Trees having a similar representation by
numbers can have a very different natural structure.
Our Gray code guarantees that adjacent trees in the
list are very similar. To our knowledge no Gray code
for k-ary trees based on rotations was known so far.
Sagan [9] already proved that the flip-graph of rota-
tions for k-ary trees is connected. We state our main
result which is a direct consequence of Theorem 9.

Theorem 1 There exists a cyclic Gray code for k-
ary trees with m internal nodes in which consecutive
trees differ by a rotation.

2 Rotations for k-ary trees and dissections of a
convex polygon

Let D(m, k) be the graph of dissections of a convex n-
gon into m convex k-gons, for k ≥ 3 and m ≥ 1. For
D(m, k) to exist, it is necessary and sufficient that
n = m(k − 2) + 2. Two dissections in D(m, k) are
connected by an arc if they differ in the placement of
exactly one diagonal (a ‘flip’). By [7], the number of

vertices of D(m, k) is 1
m

(
(k−1)m

m−1

)
.

The flip graph of dissections D(m, k) has already
arisen in [12] in the guise of the dual graph of the
simplicial complex ∆(m, k) of dissections of a poly-
gon into m convex k-gons, whose facets are the dis-
sections and the vertices the diagonals. Tzanaki [12]
proves that ∆(m, k) is vertex-decomposable, therefore
shellable, and in consequence homotopy equivalent to
a wedge of spheres; in fact, to a wedge of 1

m

(
m(k−2)

m−1

)

spheres of dimension m− 2. In particular, ∆(m, 3) is
the (polar of the) associahedron [5], but for k ≥ 4 and
m ≥ 2 the complex ∆(m, k) is not even isomorphic to
the boundary complex of a PL sphere, much less a
polytope.

We recall the definition of a rotation (i.e., an edge of
the graph R(m, k)) given by Sagan [9]. A subtree Tv

of a plane k-ary tree T generated by a vertex v consists
of v and all its descendants. If v is an internal vertex
then we let v1, v2, . . . , vk be its children listed left to
right and let Tv1 , Tv2 , . . . , Tvk

denote the trees they
generate, respectively. We focus on the child x =
vi and consider the list L(Tv, x) of pairwise disjoint
subtrees

L(Tv, x) := Tv1 , Tv2 , . . . , Tvi−1 , Tx1, Tx2 , . . . , Txk
,

Tvi+1 , Tvi+2 , . . . , Tvk

75

22nd European Workshop on Computational Geometry, 2006

listed left to right in the order in which they are en-
countered in T (i.e., in depth-first order). Then a tree
T is a flip (i.e., a rotation) of T , if it is isomorphic to
T outside of Tv and there is some child y of v such
that L(Tv, x) and L(Tv, y) are isomorphic as ordered
lists of rooted plane k-ary trees.

The graphs D(m, k + 1) and R(m, k) are isomor-
phic. Figures 2 and 3 illustrate the isomorphism be-
tween D(3, 4) and R(3, 3).

1

2

3

4

5

6

7

8

root

1

2 3

4

5

67

Figure 1: Bijection between a dissection of a convex
polygon and a ternary tree.

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
81

2

3
4

5
6

7
8

Figure 2: The graph D(3, 4) is isomorphic to the
graph R(3, 3) of Figure 3.

3 Compositions

Let r, s ≥ 1 be integers. A (weak) composition of r
into s parts is an ordered s-tuple (a1, a2, . . . , as) of
non-negative integers such that a1 +a2 + · · ·+as = r.
We make the set C(r, s) of all compositions of r into
s parts into a graph by declaring two of them to be
adjacent if they differ by one in exactly two positions
that are connected by a (perhaps empty) sequence

Figure 3: The graph R(3, 3) is isomorphic to the graph
D(3, 4) of Figure 2.

of 0’s. For example, the composition (1, 0, 2, 4, 0, 1) is
adjacent to (1, 0, 2, 3, 0, 2), but not to (0, 0, 2, 4, 0, 2).

Proposition 2 The graph C(r, s) is isomorphic to
the dual graph of the simplicial complex of lower faces
of the d-dimensional cyclic polytope Cd(r + d) on r +
d vertices, where d = 2s− 2.

Proof. The two sets have the same cardinality, be-
cause by Gale’s Evenness Criterion (see, e.g., [14])

the number of lower facets of Cd(r+d) is
(r+d−d/2

d/2

)
=(

r+s−1
s−1

)
= #C(r, s). Next, we define an injective map

from C(r, s) to the set of (indices of vertices contained
in) lower facets of Cd(r + d). To a weak composition
r = a1+· · ·+as, associate the subset of {1, 2, . . . , r+d}
of size d consisting of s− 1 pairs of consecutive inte-
gers surrounded by s “holes”, where the i-th “hole”
has size ai. For example, if r = 3 and s = 4, the
composition 3 = 0 + 2 + 1 + 0 corresponds to the
set {1, 2, 5, 6, 8, 9}, which has “holes” ∅, {3, 4}, {7},
∅, and indexes a lower facet of C6(9). This map is
well-defined by Gale’s Evenness Criterion, and injec-
tive by construction. Moreover, if two compositions
are adjacent in C(r, s), then exactly two “holes” in
the corresponding facets of Cd(r + d) differ in size by
exactly ±1, respectively ∓1. The two facets therefore
share d− 1 vertices, and are thus adjacent. �

Remark 3 The faces of dimension at most s − 1 of
the complex dual to the lower faces of Cd(r + d) form
a polyhedral subdivision of the r times dilated (s−1)-
dimensional standard simplex r∆s−1, where ∆s−1 is
the convex hull of the unit vectors in Rs. The graph

76

EWCG 2006, Delphi, March 27–29, 2006

C(r, s) is the 1-skeleton of this polyhedral decomposi-
tion, and the vertices of C(r, s) are exactly the integer
points of r∆s−1 ⊂ Rs. Their coordinates correspond
to the compositions of r into s parts (cf. Figure 4).

0021

0030

0120

00300030

1020

0120

1020

0012

0021

0111

00210021

1011

0111

0120

0210

0120

1011

1020

1110

10201020

2010

0111

1011

0210

11101110

2010

0003

0012

0102

00120012

1002

0102

0111

0201

0111

1002

1011

0201

0210

1101

1011

0300

0210

1011

2001

1101

1110

1200

1110

2001

2010

2100

20102010

3000

0003 01020003

1002

0102

1002

0102 0201

1002 1101

0201

1101

0201 0300

1002

2001

1101

2001

1101 1200

0300

1200

2001 2100

1200

21002001

3000

2100

3000

Figure 4: The graph C(3, 4) viewed as the 1-skeleton
of a subdivision of a 3-dimensional simplex.

Proposition 4 (see, e.g., [8]) For each graph C(r, s)
with r ≥ s ≥ 1, there exists a Gray code L(r, s) with
endpoints (r, 0, . . . , 0) and (0, . . . , 0, r).

Proof. For r ≥ 1, set L(r, 1) = r. For r ≥ s > 1,
L(r, s) is given by

L(r, s− 1) ◦ 0, L(r − 1, s− 1) ◦ 1, L(r − 2, s− 1) ◦ 2,

L(r − 3, s− 1) ◦ 3, . . . , L(0, s− 1) ◦ r,

where L(i, s− 1) is the list L(i, s − 1) in reverse or-
der. �

For example, the Gray code L(3, 3) for C(3, 3) is

(300), (210), (120), (030), (021), (111), (201), (102), (012), (003).

4 A hierarchy for dissections

In [2] a hierarchy for triangulations was defined: all
triangulations of convex polygons with any number of
vertices are organized as nodes of a certain (infinite)
tree. We generalise this approach and arrange all dis-
sections of n-gons into k-gons into another rooted in-
finite tree Tk, which will be defined in the following by
assigning a unique parent to every dissection but one.
The vertices of each D(m, k) are defined on polygons
having n = m(k − 2) + 2 vertices, labelled in coun-
terclockwise order. These vertices will lie on the level
m of Tk, so that the root of Tk, namely a k-gon, is at
level 1. Thus, the dissections on level m + 1 in this
tree are defined on polygons having n + k− 2 vertices
{p1, . . . , pn+k−2}.

For m ≥ 1 let V = {pn, pn+1, . . . , pn+k−2} be the
set of “last” vertices of the polygons in D(m + 1, k).
Fix a dissection δ∗ ∈ D(m+1, k), and for all pn+i ∈ V ,

let ai be the number of diagonals incident to pn+i

in δ∗. The total number of diagonals incident to ver-
tices of δ∗ in V will be called ` = a0 + · · · + ak−2,
so that the ordered tuple of non-negative integers
a(δ∗) = (a0, . . . , ak−2) ∈ C(`, k − 1) is a composition
of ` into k − 1 parts.

Definition 1 The parent δ ∈ D(m, k) of a dissection
δ∗ ∈ D(m + 1, k) is the dissection obtained by remov-
ing all ` diagonals in δ∗ incident to vertices in V , plac-
ing ` new diagonals incident to pn into the “hole” cre-
ated, and removing the k−2 vertices in V \{pn}. The
children of a dissection δ ∈ D(m, k) are all dissections
in D(m+1, k) whose parent is δ. A general child of δ
will be denoted δ∗. The first child δf of δ is the one as-
sociated to the composition a(δf) = (`, 0, . . . , 0); the
last child δl is associated to a(δl) = (0, . . . , 0, `).

Remark 5 If there are `−1 diagonals incident to the
last vertex pn of δ, then the children of δ are obtained
by adding the k − 2 vertices in V \ {pn} to δ, and
distributing the new total of ` diagonals incident to
pn among all vertices in V . In particular, the first
child δf can be equivalently defined by placing a new
k-gonal tile on top of the edge p1pn and leaving all
diagonals incident to pn. Similarly, the last child δl is
obtained from δ by placing a new tile on top of the
edge pn−1pn (thereby relabelling pn to pn+k−2). Note
that the reason that there are now ` diagonals incident
to pn is that the former edge p1pn of the convex hull
is now a diagonal. Figure 5 shows all children of a
dissection δ ∈ D(4, 4).

(0, 0, 4) (1, 0, 3) (0, 1, 3) (0, 2, 2)

(1, 1, 2) (2, 0, 2) (3, 0, 1) (2, 1, 1)

(1, 2, 1) (0, 3, 1) (0, 4, 0) (1, 3, 0)

(2, 2, 0) (3, 1, 0) (4, 0, 0)

12
1

2

3
4

7
8

9
10

11

5 6

1
2

3

4
5 6

7

8

9
10

parent

Figure 5: A Hamilton path for the children of a dis-
section according to a Gray code for compositions.

Remark 6 Because D(m, k) inherits the symmetry
of the n-gon it contains several copies of each compo-

77

22nd European Workshop on Computational Geometry, 2006

sition graph C(`, k−1), where ` is the total number of
diagonals incident to some choice V of “last” vertices
of the n-gon. Moreover, because each C(`, k − 1) is
isomorphic to the dual graph of the complex of lower
facets of the cyclic polytope C2k−4(` + 2k − 4) by
Proposition 2, the graph C(`1, k − 1) is an induced
subgraph of C(`2, k − 1) whenever `1 ≤ `2.

Lemma 7 Let δ be any vertex of D(m, k) and let `−1
be the number of diagonals incident to the vertex pn

of the dissection δ. Then C(`, k − 1) is isomorphic to
the subgraph of D(m + 1, k) induced by the children
of δ.

Proof. We constructed the children of δ by distribut-
ing the diagonals which are incident to pn in δ among
V. Every way of distributing the diagonals yields a
unique child, and hence a unique composition. Thus,
there is a bijection between the vertex sets. It is
straightforward that an edge of the graph C(`, k − 1)
corresponds to flipping one of the diagonals incident
to a vertex of V, such that it remains incident to V.
On the other hand, flipping such a diagonal away from
V yields a dissection δx which has a different parent.
Since the number of diagonals incident to V decreases,
the composition assigned to δx does not belong to
C(`, k− 1). Any two children of δ differ by edges inci-
dent to V , thus they are not adjacent by flipping an
edge which is not incident to V . �

5 A Hamilton cycle

In the following adjacency between two dissections is
denoted with ’∼’.

Lemma 8 Let dissections δ, δ1 and δ2 of D(m, k) be
given.
Then δ1 ∼ δ2 implies δ1

f ∼ δ2
f and δ1

l ∼ δ2
l . Moreover,

there exists a Hamilton path formed by the children
of δ whose endpoints are δf and δl.

Proof. The first statement follows immediately from
Remark 5. The Hamilton path for the children of δ
follows from Lemma 7 and Proposition 4. The end-
points of this path are the compositions (0, . . . , 0, `)
and (`, 0, . . . , 0), where ` − 1 is the number of diago-
nals incident to pn of δ. These two compositions cor-
respond to the dissections δf and δl. �

Figure 5 shows a Hamilton path among the children
of a dissection and the corresponding Gray code for
compositions. The diagonal which is exchanged in
each step is drawn in bold.

Theorem 9 The graph D(m, k) contains a Hamil-
ton cycle for all k ≥ 3, m ≥ 1, with the exception of
D(2, 3) .

The proof of Theorem 9 is based on Lemma 8. We
omit the details in this abstract.

6 Acknowledgements

The authors thank Oswin Aichholzer for valuable dis-
cussions on the presented subject.

References

[1] D.R. von Baronaigien, A Loopless Gray-Code Al-
gorithm for Listing k-ary Trees, J. Algorithms 35
(2000) 100-107

[2] F. Hurtado, M. Noy, Graph of triangulations of
a convex polygon and tree of triangulations, Com-
putational Geometry: Theory and Applications 13
(1999) 179-188

[3] J. F. Korsh, Loopless generation of k-ary tree se-
quences, Information processing letters 52 (1994)
243-247

[4] J. F. Korsh, P. LaFollette, Loopless generation of
Gray codes for k-ary trees, Information processing
letters 70 (1999) 7-11

[5] C.W. Lee, The associahedron and triangulations
of the n-gon, European J. Combinatorics 10 (1989)
551-560

[6] J.M. Lucas, The rotation graph of binary trees is
Hamiltonian, J. Algorithms 8 (1987) 503-535

[7] J. H. Przytycki, A. S. Sikora, Polygon Dissections
and Euler, Fuss, Kirkman, and Cayley Numbers, J.
Combin. Theory, Ser. A, Volume 92 (2000) 68-76

[8] F. Ruskey, Simple combinatorial Gray codes con-
structed by reversing sublists, Lecture Notes in
Computer Science, 762 (1993) 201-208.

[9] B. E. Sagan, Proper partitions of a poly-
gon and k-Catalan numbers, preprint,
arXiv:math.CO/0407280

[10] C. Savage, A survey of combinatorial Gray codes,
SIAM Review 39 (1997) 605-629

[11] D. D. Sleator, R. E. Tarjan, W. P. Thurston,
Rotation Distance, Triangulations, and Hyperbolic
Geometry, J. American Mathematical Society 1 (3)
(1988) 647-681

[12] E. Tzanaki, Polygon dissections and some gener-
alizations of cluster complexes, preprint (2005), 9
pages, math.CO/0501100v2

[13] L. Xiang, K. Ushijima, C. Tang, On generating
k-ary trees in computer representation, Information
processing letters 77 (2001) 231-238

[14] G.M. Ziegler, Lectures on Polytopes, Graduate
Texts in Mathematics, Vol. 152, Springer, Berlin
1995

78

EWCG 2006, Delphi, March 27–29, 2006

Cover Contact Graphs

M. Abellanas∗, N. Atienza†, N. de Castro†, C. Cortés†,
M.A. Garrido†, C.I. Grima†, G. Hernández∗, A. Márquez†, A. Moreno†,

J.R. Portillo†, P. Reyes†, J. Valenzuela† and M.T. Villar†

Abstract

We study properties of the cover contact graphs
(CCG). These graphs are defined by a pair G =
(S, C), where S is a set of objects (called seeds) in
the plane, and C is a collection of discs or triangles
(called covers) covering the seeds, with the property
that the interior of those discs are mutually disjoint.
The contact graph of that cover set is a CCG. Then
we study three basic properties of CCGs taking into
account the nature of the seeds and of the covers.
Namely, whether there exists a connected CCG on a
fixed seed set. Whether is it possible to realize a given
graph as a CCG, and finally we try to enumerate cer-
tain classes of CCGs.

1 Introduction

In two disciplines very much related between them as
Computational Geometry and Graph Drawing there
exists a very broad literature on covering problems
and intersection graphs. In the first case, we try to
cover some objects with covers attending some prop-
erties. And in the second case, the vertex set of a
graph is a collection of objects and the edges repre-
sent their intersections. Thus is not surprising that
sometimes both problems appear at the same time
and then we want to cover a given collection of ob-
jects and to consider the intersection graph of the cov-
ers. This is our case. A first example of this kind of
problems appears in Koebe’s Theorem (rediscovered
many times. In this sense, check [10] for a very in-
teresting report on Koebe’s theorem and its intercon-
nections) that establishes that any plane graph can
be realized as a coin graph. When in a coin graph
we cover a point set in the plane by discs centered
at the points, the discs must have disjoint interiors,
therefore the intersection is just a tangent contact.
In this paper, we study the same class of graphs but
we do not assume that the discs are centered at the
points. Changing this condition, the properties of the
graphs so obtained also change a lot as we will see
later. Additionally, we cover other objects as discs
and triangles by discs and triangles respectively and

∗U.P.M. (Spain)
†Universidad de Sevilla (Spain)

we see that again a very different behavior can be ob-
served (some other similar representations have been
considered previously, for instance in [3] not only ver-
tices are represented by discs but also the faces).

More formally, as it is established in the abstract
above, a cover contact graphs (CCG) is defined by a
pair G = (S, C), where S is a set of objects (called
seeds) in the plane, and C is a collection of discs or
isothetic triangles (called covers) covering the seeds,
with the property that the interior of those discs (or
triangles) are mutually disjoint. The contact graph of
that cover set is a CCG. In other words, we join two
seeds by an edge if their covers are tangent (or their
borders have a non-empty intersection). An example
of a CCG is depicted in Figure 1.

Seeds are points Disc contact graph

Figure 1: Realization of a graph

Not surprising, changing the nature of the seeds and
of the covers different properties are obtained. We
study here three of the more basic problems. Namely,
(1) Whether there exists a connected CCG on a fixed
seed set. (2) Whether is it possible to realize a given
graph as a CCG. (3) We try to enumerate certain
classes of CCGs. The first question is inspired by a
result that says that given a point set on the plane
to decide if there exists a connected coin graph on
it, is an NP-complete problem [1]. In fact, even to
decide if some coins can cover a given set is an NP-
complete problem [2]. On the other hand, the second
and the third problems are key problems from the
point of view of Graph Drawing and Combinatorics
respectively.

2 The seeds are points

As it is said in the Introduction, we make the first
distinction attending the nature of the seeds, and, of
course, the first class of seeds to be considered is that
of points.

79

22nd European Workshop on Computational Geometry, 2006

2.1 Points in the plane

In this subsection, the seeds will be always points in
the plane and the covers will be either discs contain-
ing the points, or equilateral triangles with an edge
parallel to the abscissae axis and the seed must be its
bottom vertex.

Firstly, regarding connectivity, it is easy to see that,
on the opposite of what happened for coin graphs, for
any seed set it is always possible to find a connected
CCG on it.

Proposition 1 For any seed set, there exists always
a connected CCG on it (for both cases of covers, discs
and triangles). Furthermore, it is possible to con-
struct one of them in O(n log n) (being n the number
of points). Even more, for any seed set, there exists
always 2–connected CCGs on it (for both cases of cov-
ers, discs and triangles). Furthermore, it is possible to
construct one of them in O(n2) (being n the number
of points).

1

2

3
4

5

6 7

8

1

2

3

4

5

6 7

8

Figure 2: A 2-connected CCG

Focussing on realization, although we have seen
that to find a connected CCG is always possible if
the seeds are points in the plane, we will see now
that to realize a given graph is much more difficult.
Of course, if we do not fix the seeds, given a planar
graph G, Koebe’s theorem [9] guaranties that we can
find a seed set S such that it is possible to realize G
on S. But if the seeds are fixed previously, then the
problem turns to be a very difficult one.

Theorem 2 Given a point set S in the plane, and a
planar graph G, to decide whether there exists a CCG
on S isomorphic to G is an NP-complete problem.

Nevertheless in some cases it is possible to say some-
thing more. The next result give some necessary con-
ditions on a graph to be realizable. In order to es-
tablish that result we define a graph on a seed set
S inspired in the Sphere of influence graph defined
by Toussaint [11] (see also [6, 7] for more results in
the sphere of influence graphs). Given a point p of a
seed set S, we associate to p the union C(p) of all the
maximal empty (in the sense that do not contain any
seed in their interior) circles centered at vertices of its

Voronoi region, the intersection graph of the sets so
defined will be called the hyperinfluence graph of S
(denoted HI(S)).

Proposition 3 Let G be a graph realizable as a CCG
on a seed set S. Then (1) G is a subgraph of HI(S);
(2) it is possible to give a plane representation of G
with S as its vertex set and each edge with at most
two rectilinear segments (one bend per edge).

The first condition of Proposition 3, says us that
graphs as that depicted in Figure 3 cannot be real-
izable as a CCG. And it is worthy to mention that
the second condition will be used later to characterize
CCGs when the seeds lie on a line.

Figure 3: A non–realizable graph

To the light of Figure 3 one can ask what is the min-
imum number of seeds with a non-realizable graph. In
this way we can enunciate

Proposition 4 Any graph with 4 or less vertices is
representable as a CCG on any seed set.

On the other hand, it is possible to give a collection
of six points in convex position, such that its Delau-
nay triangulation is not representable as a CCG, see
Figure 4.

Figure 4:

Finally, regarding enumeration, as any planar graph
can be realized by Koebe’s theorem the remarkable
result obtained in [4] holds in this case, namely, there
exists g · n−7/2γnn! realizable graphs of n vertices,
where g ≈ 0.4970043999·10−5 and γ ≈ 27.2268777685
are constants, given by explicit analytic expressions.

2.2 Points on a line

If we restrict the points to be on a line, then we can be
more precise in the results obtaining a more accurate
idea of what can be done and what cannot be done.
In fact, we introduce an interesting particular case of
CCGs. If we denote by <2

+ to the half plane defined
by the points with non-negative ordinate, we call a
CCG+ graph to a pair G = (S, C), where S is a set of

80

EWCG 2006, Delphi, March 27–29, 2006

objects (called seeds) in <2
+ such that each seed has at

least one point on the line y = 0, and C is a collection
of discs or isothetic triangles (called covers) in <2

+

covering the seeds, with the property that the interior
of those discs (or triangles) are mutually disjoint. The
contact graph of that cover set is a CCG+. (Figure 5)
shows a CCG+ graph.

We will follow the same structure as in the previous
subsection.

To achieve the connectivity is an easy task when
the points lie on a line as we see in the next result.

Proposition 5 Let S be a set of n seeds on a straight
line, then (1) there exists always a realizable (as a
CCG) Cn (cycle of length n) on it; (2) there exists
always a tree on S realizable as CCG+.

About realization, we have seen in Proposition 5
that on any seed set, Cn is always realizable. One can
ask if Koebe’s theorem is still valid when the seeds lie
on a line, but this is not true since in [8] is proved
that there is a plane triangulated graph with only 12
vertices such that for every placement of the vertices
on a straight line at least one edge must bend at least
twice in the resulting drawing.

This result together with Proposition 3 imply that
the plane graph described in that paper is not realiz-
able as a CCG if the seeds lie on a straight line. And,
it is not difficult to see that any tree is realizable.

Proposition 6 Given any tree T , it is possible to
choose seeds in a line such that T is realizable as a
CCG+ on that seed set.

(0,0)

Cv

p11
p12

p13

C11 C12 C13

Figure 5: First step in realization of a tree T .

In Proposition 6 the seeds are not fixed on the line,
an step beyond this situation is when the seeds are
not fixed but their ordering on the line. In this case,
not every tree is realizable as a CCG.

Given a labeled tree T , and an ordering S of the
vertices of the tree, we say that T is realizable on S
if there exist points on a line such that T realizable
on those points and the ordering of the vertices of the
tree on the line is S.

A subgraph as that depicted in Figure 6 is called a
forbidden chain. More precisely, given a graph G =
(V, E) an edge e ∈ E, a forbidden chain for e is a
matching M = (V ′, E′) of G described as follows:

1. The vertex set V ′ is a sequence of points in <,
A1 < A2 < B1 < A3 < B2 < A4 < · · · <
A2n−1 < B2n−2 < A2n < B2n−1 < B2n

Figure 6: A forbidden chain.

2. For any i ∈ {1, 2, . . . , 2n}, {Ai, Bi} ∈ E′.

3. e = {E1, E2} has its end points separated by M
like one of these cases:

• e1 ∈ (−∞, A2) and e2 ∈ (A2n, B2n−1)
• e1 ∈ (−∞, A1) and e2 ∈ (A2, B1)
• e1 ∈ (A2, B1) and e2 ∈ (B2n−1, +∞)
• e1 ∈ (A1, A2) and e2 ∈ (B1, B2)
• e1 ∈ (A2, B1) and e2 ∈ (B2, +∞)
• e1 ∈ (−∞, A2n−1) and e2 ∈ (A2n, B2n−1)

A B C D

Figure 7: T is not realizable on S. {A, C}, {B, D} is
an elemental forbidden chain

Theorem 7 Let T be a labeled tree, and S and or-
dering of its vertices. Then, the following conditions
are equivalent: (1) T is realizable on S as a CCG; (2)
it is possible to draw T with its vertices on a line with
only one bend per edge and such that the ordering of
those vertices is S; (3) there are no forbidden chains.

As far as the third condition can be checked in lin-
ear time, we obtain

Corollary 8 Let T be a labeled tree, and S and or-
dering of its vertices. Then, it can be decided in linear
time whether T is realizable on S as a CCG or not.

A similar result can be establish regarding CCG+.

Theorem 9 Let T be a labeled tree, and S and or-
dering of its vertices. Then, the following conditions
are equivalent: (1) T is realizable on S as a CCG+;
(2) it is possible to draw T in <2

+ with its vertices
on a line with only one bend per edge and such that
the ordering of those vertices is S; (3) there are no
elemental forbidden chains.

Corollary 10 Let T be a labeled tree, and S and
ordering of its vertices. Then, it can be decided in
linear time whether T is realizable on S as a CCG+

or not.

So, once we have established results about realiz-
ability firstly without fixing the seeds, and then fixing
the order in which they appear, we can give a result
that describes how are all the CCG+’s when the cov-
ers are triangles.

81

22nd European Workshop on Computational Geometry, 2006

Proposition 11 Given a seed set S on the line, and
covers triangles isothetic to the triangle with vertices
in the points (0, 0), (−1, 1), and (1, 1). Then, any T
realizable as a CCG+ on it can be obtained following
the next recursive method. Starting with L=S and
while |L| > 1, choose the closest pair (u, v) of L as an
edge of T and delete from L either u or v.

Although the result of Proposition 11 is stated for
a very particular case of triangles, it can be extended
easily to any kind of triangles, changing the metric
between the points.

The keys to enumeration are some results on re-
alization. Namely, Propositions 6 and 11 and Theo-
rem 9. Thus we can establish

Theorem 12 The following results hold for seeds on
a line: (1) The number of labeled trees with n ver-
tices realizable as a CCG (or CCG+) is nn−2 (all the
labeled trees); (2) given an ordering S of the natural
numbers from 1 to n. The number of labeled trees
realizable as a CCG+ on S is the Catalan number
Cn−1); (3) given a seed set S on a line. The number
of labeled trees realizable as a CCG+ on S is 2n−2.

3 The seeds are discs or triangles

In this section, we consider either discs or isothetic
triangles in the plane as a seed set, and we will cover
them with the same kind of objects, this is to say, the
covers for discs are discs and the covers for triangles
are isothetics triangles.

Regarding connectivity, we have

Proposition 13 If the seeds are triangles with its
bottom vertex in a horizontal line. Then there exists
always a connected CCG+ on it.

We cannot extend the result of Proposition 13 any
further. So in the case of triangles we can give col-
lections of seeds such that no 2-connected CCG can
be constructed on it (see Figure 8 (a)). And, in the
case of discs, collections of seeds such that no con-
nected CCG+ can be constructed on it, as Figure 8
(b) shows. Even, it is not difficult to translate the
example of Figure 8 (b) to CCGs in general; in order
to get this goal it suffices to consider a huge disc just
under all the other discs.

(a) (b)

Figure 8: This seeds cannot be covered by a connected
CCG+.

Focussing on realization and enumeration, it is triv-
ial to see that the result of Theorem 2 is still valid if we

consider as discs as seeds instead of points (in order
to see this remark it suffices to substitute the points
by small discs). In fact, the results of Proposition 3
are also easily adaptable to the case of a set of discs
as the seed set.

Regarding enumeration, the results obtained for
points are clearly upperbounds in the case of discs
or triangles, and the exact enumeration of the CCG
representable on a concrete seed set seems to be a very
difficult task.

References

[1] M. Abellanas, N. de Castro, G. Hernández, A.
Márquez and C. Moreno-Jiménez. Gear System
Graphs, Preprint.

[2] M. Abellanas, S. Bereg, F. Hurtado, A. Gar-
cia Olaverri, D. Rappaport and J. Tejel. Moving
Coins, To appear in Comp. Geom. Theor. and
Appl.

[3] G.R. Brightwell and E. R. Scheinerman. Rep-
resentations of Planar Graphs, SIAM J. Disc.
Math. Vol 6, No 2, (1993), pp 214-229.

[4] O. Giménez and M. Noy The number of planar
graphs and properties of random planar graphs,
Int. Conf. on Anal. of Alg. DMTCS proc. (2005),
pp 147-156.

[5] M.R. Garey and D.S. Johnson. Computing and
Intractability, A guide to the theory of NP-
completeness, Freeman (1979).

[6] F. Harary and M.S. Jacobson and M.J. Lipman
and F.R. McMorris. Abstract Sphere-of-Influence
Graphs, Mathl. Comput. Modeling Vol. 17, No
11, (1993), pp 77-83.

[7] M.S. Jacobson and M.J. Lipman and F.R.
McMorris. Trees that are Sphere-of-Influence
Graphs, Appl. Math. Lett. 8, (1995), pp 89-93.

[8] M. Kaufmann and R. Wiese. Embedding vertices
at points: Few bends suffice for planar graphs, J.
of G. Alg. and Appli., vol 6, No 1, (2002), pp
115-129.

[9] Janos Pach and Pankaj K. Agarwal. Combinato-
rial Geometry John Wiley and Sons (1995).

[10] H.Sachs Coin graphs, polyhedra and conformal
mapping, Disc. Math. 134, (1994) pp 133-138.

[11] G. Toussaint Proximity graphs for nearest neigh-
bor decision rules: recent progress, Interface-
2002, Canada, (2002).

82

EWCG 2006, Delphi, March 27–29, 2006

A binary labelling for plane Laman graphs and quadrangulations

Clemens Huemer∗ Sarah Kappes†

Abstract

We provide binary labellings for the angles of quad-
rangulations and plane Laman graphs which are in
analogy with Schnyder labellings for triangulations
[W. Schnyder, Proc. 1st ACM-SIAM Symposium on
Discrete Algorithms, 1990].

1 Introduction

Schnyder-labellings are by now a classical tool to deal
with planar graphs. One of their first applications was
to obtain convex drawings of such graphs on a small
grid [14].

A Schnyder-labelling is a special labelling of the an-
gles of a plane graph with three colors. Schnyder [14]
introduced this concept for triangulations, or maxi-
mal planar graphs. The angle-labelling corresponds
directly to a decomposition of the edge-set into three
spanning trees, or a Schnyder-wood. Felsner adapted
this idea for 3-connected planar graphs [4].

Other classes of planar graphs, such as maximal bi-
partite planar graphs and planar Laman graphs , ad-
mit a decomposition of the edge set into two trees.
Our motivation for this work was to obtain a bi-
nary labelling for these classes of graphs analogous
to Schnyder’s.

Let us recall that a graph is planar if it can be em-
bedded in the plane; a plane graph has already been
embedded in the plane [7]. We remark that for a bi-
nary labelling of a plane graph G, it is not necessary
that G is embedded with straight-line edges. We use
only the combinatorics of the embedding, i.e. inci-
dences of vertices, edges and faces, for our proofs.

A quadrangulation is a 2-connected plane graph
where each interior face has four edges. A quadran-
gulation Q is a maximal bipartite plane graph if and
only if the outer face of Q has four edges.

A tree decomposition for maximal bipartite pla-
nar graphs has been obtained by several authors
[13, 12, 6, 1, 10]. The binary labelling “inherits”

∗Departament de Matemàtica Aplicada II, Universitat
Politècnica de Catalunya. huemer.clemens@upc.edu. Re-
search supported by Projects MCYT BFM2003-00368 and
2005SGR00692.

†Department of Mathematics, Technical University Berlin,
kappes@math.tu-berlin.de. This research was supported by
the Deutsche Forschungsgemeinschaft within the European
graduate program ‘Combinatorics, Geometry, and Computa-
tion’ (No. GRK 588/2).

1

1

1

1

1

1

0

1

0
1

1
1

1

1

0

0

0

0

1

0

0

0

0

0
0

0
0

0

0

0

1

11

1

1

1
0

g

b

0

0

1

1

Figure 1: A binary labelling for a quadrangulation.

the tree decomposition property from Schnyder’s la-
belling. More precisely, we obtain that every quadran-
gulation can be decomposed into two spanning trees
by duplicating edges of the outer face.

Fraysseix and Mendez [5] relate Schnyder labellings
for triangulations to 3-orientations and shelling or-
ders. They also consider “separating decompositions”
for maximal bipartite planar graphs which are closely
related to binary labellings.

We show a binary labelling for plane Laman graphs.
Laman graphs [9] are well known in the context of
rigidity theory. A Laman graph on n vertices contains
2n− 3 edges and every subgraph which is induced by
k vertices contains at most 2k − 3 edges.

Every planar Laman graph can be embedded as
a pointed pseudo-triangulation[8]. A vertex v of a
plane straight-line graph is called pointed if it has
an incident angle greater than π. A pointed pseudo-
triangulation is a maximal pointed plane straight-line
graph; this means that every vertex is pointed and
adding any (non-crossing) edge yields a non-pointed
vertex. In particular, the binary labelling holds for
pointed pseudo-triangulations.

Other labellings for planar graphs have been in-
vestigated. Haas et al. [8], also see [11], defined
“combinatorial pseudo-triangulations”. Souvaine and
Tóth [15] defined a vertex-face assignment for plane
graphs.

Quadrangulations and plane Laman graphs are
structurally different, because quadrangulations are
bipartite graphs, whereas every pointed pseudo-

83

22nd European Workshop on Computational Geometry, 2006

0 0
00

1
11

1

0

1

1

1

0

1

0

0

vertex rule

edge rule

Figure 2: The vertex rule and the edge rule of a binary
labelling.

triangulation contains a triangle. However, adding
a (non-crossing) edge to a maximal bipartite plane
graph yields a plane Laman graph, which in turn
can be embedded as a pointed pseudo-triangulation.
Thus, we believe that many concepts for pseudo-
triangulations apply to quadrangulations and vice
versa. The binary labelling only represents one as-
pect of this interesting fact. Another example is that
every maximal bipartite planar graph can be obtained
via a “Henneberg construction” [17] and also via “ver-
tex splitting” [3]. As a last step of the construction
one edge has to be deleted.

2 The binary labelling

Let a plane graph G be given. A binary labelling for
G is a mapping from the angles of G to the set {0, 1}
which satisfies the following conditions:

1. There are two special vertices g and b on the outer
face of G. All angles incident to g are labelled 0,
all angles incident to b are labelled 1.

2. Vertex rule For each vertex v /∈ {b, g}, the inci-
dent labels form a non-empty interval of 1s and
a non-empty interval of 0s.

3. Face rule For each face (including the outer
face) its labels form a non-empty interval of 1s
and a non-empty interval of 0s.

4. Edge rule For each edge its labels either are
0, 1− 1, 1 or 0, 1− 0, 0; see Figure 2.

Observation 1 The labelling of the edges induces an
orientation: every edge is oriented towards its end-
point 0, 0, respectively 1, 1. In a binary labelling every
vertex but {g, b} has outdegree two.

Both quadrangulations and pseudo-triangulations
admit a binary labelling. Special properties of this la-
belling for quadrangulations are explained in the next
section.

3 The binary labelling for quadrangulations

Let a quadrangulation Q be given such that the outer
face of Q contains four vertices. For a binary labelling
of Q we also require the following properties:

5. Each face has two adjacent 0-labels and two ad-
jacent 1-labels, i.e. it is labelled (0, 0, 1, 1).

6. The edges incident to g are labelled 0, 1 − 0, 0
where the 1 stands on the right side of the edge
(seen from vertex g).

Figure 1 shows a binary labelling.

Theorem 1 Every quadrangulation with four ver-
tices on its outer face admits a binary labelling.

Proof. We use induction on the number of vertices
|V | of a quadrangulation Q. If |V | = 4 then a binary
labelling exists, as shown in Figure 3 (left). For the
induction step we distinguish two cases.

First, assume that Q contains an interior vertex v of
degree two. Removal of v and its two incident edges
yields a quadrangulation Q′. By induction, Q′ ad-
mits a binary labelling. Reinserting v and its incident
edges into Q′ maintains the binary labelling, as shown
in Figure 3 (right).

We now assume that Q contains no interior vertex
of degree two. In this case, there exists a face inci-
dent to the special vertex g which can be contracted
towards g. A face q incident to g is contractible if
it does not contain the other special vertex b. A con-
traction of q = {e′, e, f, f ′}, where {e′, e, f, f ′} are the
edges of q in cyclic order and e′ and f ′ are incident to
g and e and f are incident to the vertex p opposite to
g, identifies e with e′, f with f ′ and p with g. It can
be interpreted as a continuous movement of p and its
incident edges to g.

A contraction of q yields a quadrangulation which
by induction admits a binary labelling. In particular,
the edges e′ and f ′ are labelled 0, 1 − 0, 0 towards g
(Property 6 of the binary labelling). Now, we reverse
the contraction. This operation maintains the binary
labelling outside of the face q. It remains to label the
angles inside q. The vertex rule for the special vertex
g requires that the angle incident to g is labelled with
0. Labelling the angle formed by e and e′ with 1
maintains Property 6 for e′ and guarantees the vertex
rule for this vertex. Observe that now the edge e is
labelled with endpoint 1, 1. Hence, the angle at p
inside q has to be labelled with 1 to guarantee the
edge rule for e. Note that all other labels at p are 0.
Thus, labelling p with 1 also ensures the vertex rule
for p. Finally, labelling the angle formed by f and f ′

with 0 guarantees the edge rule for f and f ′; here, we
again use Property 6. Observe that the vertex rule is
satisfied for this vertex; and q satisfies the face rule.

84

EWCG 2006, Delphi, March 27–29, 2006

0

11

0 0

11

0

1

0

0
1

0

0
1

1 0

0 1

1g

b b

g

Figure 3: The basis of the induction and inserting a
vertex of degree two.

1

1

1

1

1
0

1

1

1

1

1

0
0

1

0

0

0

0

0
0

0

0

0

0

1

1

1

1

1

0

g

b

0

0

1

1

1

1

1
0

1

1

1

1

0
0

1

0

0

0

0

0

0

0

0

1
1

1

1

0

g

b

0

0

e
e′

f ′

fp

Figure 4: Contracting a quadrangle to the special ver-
tex g.

Figure 4 shows a contraction of a quadrangle and the
resulting binary labelling.

�

3.1 The two regions of a vertex

Analogous versions of the following results have been
given by Schnyder [14] for triangulations and by Fel-
sner [4] for 3-connected planar graphs. The proofs are
omitted in this abstract.

We denote with T0 the union of the edges which are
oriented towards 0, 0. We denote with T1 the union
of the edges which are oriented towards 1, 1.

Lemma 2 Ti, i ∈ {0, 1}, is a directed tree rooted at
g, respectively b.

Lemma 3 There is no directed cycle in T0 ∪ T−1
1 .

There is no directed cycle in T1 ∪ T−1
0 .

For each interior vertex v and i ∈ {0, 1}, we define
the i-path Pi(v) starting at v as the path in Ti from
v to the root of Ti. P0(v) and P1(v) have v as only
common vertex. Therefore P0(v) and P1(v) divide the
quadrangulation into two regions R0(v) and R1(v).

Lemma 4 For any two distinct interior vertices u
and v and for i ∈ {0, 1} there holds the implication
u ∈ Ri(v)⇒ Ri(u) ⊂ Ri(v).

The following result has been proved with a differ-
ent method in [1].

1
1

11

1
1

1 1

1

11

0

0 00

0

0

0

0

0

0

0
0

1

1

b
g

1

Figure 5: A binary labelling for a pointed pseudo-
triangulation.

Lemma 5 Every quadrangulation can be decom-
posed into two edge-disjoint spanning trees by dupli-
cating edges of the outer face.

Let Q be a quadrangulation and let Q̃ be its dual
graph. Then the “dual” of the two spanning trees Ti

for i = 1, 2 are two spanning trees decomposing Q̃.

4 A binary labelling for plane Laman graphs

We consider an analogous binary labelling for plane
Laman graphs. Now, the special vertices b and g are
adjacent convex hull vertices. Thus there is one edge
which does not satisfy the edge rule.

Figure 5 shows a binary labelling for a pointed
pseudo-triangulation.

Theorem 6 Every plane Laman graph with three
vertices on its outer face admits a binary labelling.

Sketch of Proof. Our proof of the binary labelling
is based on the Henneberg construction[17, 8, 16, 11].
A Laman graph can be constructed, starting from a
triangle, by a sequence of vertex insertions of the fol-
lowing types (see Figure 6)

1. Add a degree-two vertex (Henneberg I step)

2. Place a vertex on an existing edge and connect it
to a third vertex (Henneberg II step).

The binary labelling can be proved inductively. This
amounts to showing that a Henneberg step maintains
the labelling. To guarantee planarity, we make use of
a lemma from Haas et al. [8]. We omit the details. �

It is well known that a Laman graph can be decom-
posed into two trees [17]. These trees can be obtained
via the Henneberg construction, as indicated in Fig-
ure 6. The new vertex either is a leaf in both trees
(Henneberg I step) or in one tree (Henneberg II step).

Although the binary labelling is based on the Hen-
neberg construction too, it does not always give a de-
composition of the graph into two trees; see Figure 7

85

22nd European Workshop on Computational Geometry, 2006

Henneberg I step Henneberg II step

Figure 6: Constructing a decomposition into two
spanning trees via Henneberg steps.

g

ef
0

0 0
0 1

1

11

b

Figure 7: The binary labelling for plane Laman
graphs does not induce a decomposition into two
trees.

for a simple example: The angles around the special
vertex g, respectively b, are labelled with 0, respec-
tively 1. All edges incident to g are gray, all edges
incident to b are black. Thus, if there is a decompo-
sition of the edge set into two trees, then the edge f
has to be black and oriented towards b, and the edge
e has to be gray and oriented towards g. But then,
the angle formed by e and f has to labelled with 1
and with 0, contradicting to properties of the binary
labelling.

We remark that variants of the binary labelling hold
for plane Laman graphs containing more than three
vertices on the outer face.

5 Open problems

A main application of the Schnyder labelling for trian-
gulations is a straight-line embedding of a triangula-
tion on an n−2 by n−2 grid. Biedl and Brandenburg
[2] recently showed that every planar bipartite graph
has a straight-line embedding on a grid of size

⌊
n
2

⌋
by⌈

n
2

⌉
− 1. What is the corresponding grid size for pla-

nar Laman graphs? We did not succeed in applying
the binary labelling. Another related question, posed
by Haas et al. [8], is the following: Can every planar
Laman graph be embedded as a pseudo-triangulation
on a grid of small size?

References

[1] O. Aichholzer, F. Aurenhammer, P. Gonzalez-Nava,
T. Hackl, C. Huemer, F. Hurtado, H. Krasser, S. Ray,
B. Vogtenhuber. Matching edges and faces in polygo-
nal partitions. In Proc. 17th Canadian Conference on
Computational Geometry, 123–126, Windsor, 2005.

[2] T. Biedl, F. Brandenburg. Drawing planar bipartite
graphs with small area. In Proc. 17th Canadian Con-

ference on Computational Geometry, 105–108, Wind-
sor, 2005.

[3] Z. Fekete, T. Jordán, W. Whiteley. An Inductive
Construction for Plane Laman Graphs via Vertex
Splitting. European Symposium on Algorithms 299–
310, Bergen, 2004.

[4] S. Felsner. Convex Drawings of Planar Graphs and
the Order Dimension of 3-Polytopes. Order 18:19–37,
2001

[5] H. de Fraysseix, P.Ossona de Mendez. On topological
aspects of orientations. Discrete Mathematics 229:57–
72, 2001

[6] H. de Fraysseix, P. Ossona de Mendez, J. Pach. A
left-first search algorithm for planar graphs. Discrete
Computational Geometry 13:459–468, 1995.

[7] F. Harary. Graph Theory. Addison-Wesley, Reading,
1969

[8] R. Haas, D. Orden, G. Rote, F. Santos, B. Ser-
vatius, H. Servatius, D. Souvaine, I. Streinu, W.
Whiteley. Planar minimally rigid graphs and pseudo-
triangulations. Computational Geometry, Theory and
Applications 31:31–61, 2005.

[9] G. Laman. On Graphs and rigidity of plane skele-
tal structures. Journal of Engineering Mathematics
4:331-340, 1970.

[10] A.S. Lladó, S.C. López Masip. Decompositions of
graphs with a given tree. Actas III Jornadas de
Matemática Discreta y Algoŕıtmica, 204-211, Sevilla,
2002.

[11] D. Orden. Ph. D. thesis: Two problems in geometric
combinatorics: Efficient triangulations of the hyper-
cube; Planar graphs and rigidity. Universidad de
Cantabria, 2003.

[12] V. Petrović. Decomposition of some planar graphs
into trees. Discrete Mathematics 150:449–451, 1996.

[13] G. Ringel. Two Trees in Maximal Planar Bipartite
Graphs. Journal of Graph Theory 17:755–758, 1993.

[14] W. Schnyder. Embedding planar graphs on the grid.
In Proc. 1st ACM/SIAM Symposium on Discrete Al-
gorithms 138–148, 1990.

[15] D. Souvaine, C. Tóth. A vertex-face assignment for
plane graphs. In Proc. 17th Canadian Conference on
Computational Geometry, 138–141, Windsor, 2005.

[16] I. Streinu. A Combinatorial Approach to Planar Non-
Colliding Robot Arm Motion Planning. In Proc. 41st
Symposium on Foundations of Computer Science 443-
453, 2000.

[17] T.-S. Tay, W. Whiteley. Generating isostatic frame-
works. StructuralTopology 11:21-69, 1985.

86

EWCG 2006, Delphi, March 27–29, 2006

Helly-Type Theorems for Line Transversals to Disjoint Unit Balls

Otfried Cheong∗ Xavier Goaoc† Andreas Holmsen‡ Sylvain Petitjean§

Abstract

We prove Helly-type theorems for line transversals to
disjoint unit balls in Rd. In particular, we show that
a family of n > 2d disjoint unit balls in Rd has a
line transversal if, for some ordering ≺ of the balls,
every subfamily of 2d balls admits a line transversal
consistent with ≺. We also prove that a family of
n > 4d − 1 disjoint unit balls in Rd admits a line
transversal if every subfamily of size 4d− 1 admits a
transversal.

Helly’s celebrated theorem, published in 1923,
states that a finite family of convex sets in Rd has
non-empty intersection if and only if every subfam-
ily of size at most d + 1 has non-empty intersection.
Subsequent results of similar flavor (that is, if every
subset of size k of a set S has property P then S
has property P) have been called Helly-type theorems
and the minimal such k is known as the associated
Helly number. Helly-type theorems and tight bounds
on Helly numbers have been the object of active re-
search in combinatorial geometry. In this paper, we
investigate Helly-type theorems for the existence of
line transversals to a family of objects, i.e. lines that
intersect every member of the family.

History. The earliest Helly-type theorems in geo-
metric transversal theory appeared about five decades
ago. In 1957, Hadwiger [10] showed that an ordered
family S of compact convex figures in the plane ad-
mits a line transversal if every triple admits a line
transversal compatible with the ordering. (Note that
a line transversal to S may not respect the order-
ing on S; to prove the existence of a line transver-
sal that respects the ordering on S one needs the as-
sumption that any four admits an order-respecting
line transversal.) In what follows, we shall talk about
a Hadwiger-type theorem when the family of objects
under consideration is ordered.

The same year, L. Danzer [4] proved the follow-
ing result concerning families of pairwise disjoint unit

∗Division of Computer Science, KAIST, Daejeon, South Ko-
rea. Email: otfried@kaist.ac.kr. Otfried Cheong was supported
by LG Electronics.

†LORIA–INRIA Lorraine, Nancy, France. Email:
goaoc@loria.fr.

‡Department of Mathematics, University of Bergen, Bergen,
Norway. Email: andreash@mi.uib.no

§LORIA–CNRS, Nancy, France. Email: petitjea@loria.fr.

discs in the plane: if such a family consists of at least
5 discs, and if any 5 of these discs are met by some
line, then there exists a line meeting all the discs of
the family. This answered a question of Hadwiger [8],
who gave an example (5 circles, almost touching and
with centers forming a regular pentagon) which shows
that 5 cannot be replaced by 4. Grünbaum [6] showed
that the same result holds if “unit disc” is replaced by
“unit square”, and conjectured that the result holds
for families of disjoint translates of any compact con-
vex set in the plane. This long-standing conjecture
was finally proved by Tverberg [14]. A weaker form
of the conjecture which assumed 128 instead of 5 had
been established earlier by Katchalski [13].

In three dimensions, neither Hadwiger nor Helly-
type theorems exist for line transversals to general
convex objects, not even for translates of a convex
compact set [12]. However, Hadwiger [9] proved a
Helly-type theorem for line transversals to “thinly
distributed” disjoint balls in dimension d with Helly
number d2. A family of balls is thinly distributed
if the distance between any two balls is at least the
sum of their radii. Grünbaum [7] improved this Helly
number to 2d − 1 using the topological Helly the-
orem. For the special case of unit balls in three
dimensions—but without any additional assumption
on their distribution—Holmsen et al. [11] showed a
Hadwiger-type theorem with constant 12, and a Helly-
type theorem with constant 46. These constants were
later improved to 9 and 18 by Cheong et al. [3].

We refer the reader to the recent survey by
Wenger [15] for a broader discussion of geometric
transversal theory.

Our results. In this paper we prove Helly-type the-
orems for line transversals to families of pairwise-
inflatable balls in Rd. A family F of balls in Rd

is called pairwise-inflatable if for every pair of balls
B1, B2 ∈ F we have γ2 > 2(r2

1 + r2
2), where ri is

the radius of Bi, and γ is the distance between their
centers. A family of disjoint unit balls is pairwise-
inflatable, and so is a family of balls that is “thinly
distributed” in Hadwiger’s sense. Pairwise-inflatable
families of balls are not only more general than fami-
lies of disjoint congruent balls but allow to generalize
most of our proofs obtained in three or four dimen-
sions to arbitrary dimension; the key property, which
we prove in this paper, is that the set of pairwise-

87

22nd European Workshop on Computational Geometry, 2006

inflatable families is closed under intersection with
affine subspaces, unlike the set of families of disjoint
congruent balls.

An order-respecting line transversal to a subset of
an ordered family is a line transversal that respects
the order induced by the family on that subset. An
ordered family F of pairwise-inflatable balls is said to
have property (OR)T if it admits a (order-respecting)
line transversal. If every k or fewer members of F
admit a (order-respecting) line transversal then F is
said to have property (OR)T (k). Our first main result
requires that the line transversals to the subfamilies
induce consistent orderings:

Proposition 1 For any ordered family of pairwise-
inflatable balls in Rd, ORT (2d) implies T and
ORT (2d + 1) implies ORT .

We then remove the condition on the ordering at the
cost of increasing the Helly number to 4d − 1 and
restricting ourselves to disjoint unit balls:

Proposition 2 For any family of disjoint unit balls
in Rd, T (4d− 1) implies T .

Our results are thus both qualitative and quanti-
tative: we generalize Danzer’s result to arbitrary di-
mension and prove that the Helly number grows at
most linearly with the dimension. We build on the
work of Holmsen et al. [11] who obtained results sim-
ilar to Propositions 1 and 2 for disjoint unit balls in
three dimensions, albeit with larger bounds on Helly
numbers (12 and 46 instead of 6 and 11, respectively).
A previous version of this paper, also restricted to dis-
joint unit balls in three dimensions, appeared in the
Symposium on Computational Geometry 2005 [1].

Approach. To prove Proposition 1, we start with a
family of balls having property ORT (2d) and continu-
ously shrink them until that property no longer holds,
following Hadwiger’s approach [10]. Before the set of
order-respecting line transversals to a 2d-tuple of balls
disappears (i) it first reduces to a single line and (ii)
this line is an isolated line transversal to 2d−1 of the
balls. That line has then to be a line transversal to
the whole family and Proposition 1 follows; consider-
ations on geometric permutations yield Proposition 2.

Proving the properties (i) and (ii) mentioned above
is elementary in the plane but requires considerably
more work in higher dimension. For a sequence F ,
let K(F) ⊂ Sd−1 denote the set of directions of line
transversals to F . Our proofs rely on the following
proposition:

Proposition 3 The directions of order-respecting
line transversals to a family of pairwise-inflatable balls
in Rd form a strictly convex subset of Sd−1.

This directly implies property (i) and yields that
order-respecting line transversals form a contractible
set in line space. From there, a well-known topologi-
cal analogue of Helly’s theorem leads to a weaker ver-
sion of Proposition 1 sufficient to prove property (ii),
namely:

Proposition 4 If a line ` is an isolated line transver-
sal to a sequence F of n > 2d pairwise-inflatable balls
in Rd then there exists a subsequence F ′ ⊂ F of size
2d−1 such that ` is an isolated line transversal to F ′.

For the proofs, omitted in this extended abstract, we
refer the reader to the full version [2].

Open problems. We conclude by a few open prob-
lems suggested by our results.

Problem 1 What is the maximum number of geo-
metric permutations of pairwise-inflatable balls in Rd?

A geometric permutation of a collection of disjoint
convex sets is an ordering of these sets that can be
realized by a line transversal. To prove Proposition 2
we use the fact that the number of geometric permu-
tations of n disjoint balls in Rd is at most 3 if the balls
have equal radii [3]. If the ratio

largest radius

smallest radius

is not bounded independently of n then the number of
geometric permutations is known to be Θ(nd−1) [16].

Problem 2 For which classes of objects is the cone
of directions K(A1, . . . , An) convex, or at least con-
tractible?

Our proof of convexity for the cone of directions
of balls collapses for balls that are not pairwise-
inflatable. In fact, the set QF

AB is not necessarily
convex if B is much smaller than A but very close
to it.

Problem 3 For which classes of objects is the set of
order-respecting line transversals always connected?

Our proof of Proposition 1 follows from (i) a bounded
pinning number and (ii) the fact that as the set of
order-respecting line transversals to a sequence dis-
appears it first reduces to a single line. For strictly
convex objects, property (ii) follows from the connec-
tivity of the set of order-respecting transversals. Sur-
prisingly, it is an open question whether this set is
connected for even 4 disjoint balls in R3, whereas it is
known to be connected for any triple of disjoint con-
vex objects [5, Lemma 74]. We conjecture that gen-
eral convex sets in Rd have a bounded pinning num-
ber. Thus, understanding how general this connectiv-
ity property is would provide insight in how general

88

EWCG 2006, Delphi, March 27–29, 2006

the example of Holmsen and Matousek [12], convex
sets whose translates do not admit a Hadwiger the-
orem, actually is. Of course, a positive answer to
Problem 2 for a particular family of convex sets im-
plies a positive answer to Problem 3 for that family
as well.

Problem 4 Is the pinning number of disjoint unit
balls in Rd equal to 2d− 1?

Surprisingly, the only known lower bound on the Helly
number is the construction done by Hadwiger fifty
years ago. Note that the bound in our Hadwiger the-
orem has to be higher than the pinning number of the
corresponding family and one can therefore look for a
lower bound on the pinning number. Intuitively, con-
siderations on the dimension suggest that the pinning
number in dimension d cannot be less than 2d−1, the
dimension of the underlying line space being 2d− 2.

Acknowledgments

We thank Gregory Ginot, Günter Rote and Guillaume
Batog for helpful discussions.

References

[1] O. Cheong, X. Goaoc, and A. Holmsen. Hadwiger and
Helly-type theorems for disjoint unit spheres in R3. In
Proc. 20th Ann. Symp. on Computational Geometry,
pages 10–15. 2005.

[2] O. Cheong, X. Goaoc, A. Holmsen, and S. Petitjean.
Helly-type theorems for line transversals to disjoint
unit balls. Available from http://tclab.kaist.ac.

kr/∼otfried/Papers/cghp-httlt.pdf

[3] O. Cheong, X. Goaoc, and H.-S. Na. Geometric per-
mutations of disjoint unit spheres. Comput. Geom.
Theory Appl., 2005. In press.

[4] L. Danzer. Über ein Problem aus der kombina-
torischen Geometrie. Arch. der Math, 1957.

[5] X. Goaoc. Structures de visibilité globales : tailles,
calculs et dégénérescences. Thèse d’université, Uni-
versité Nancy 2, May 2004.

[6] B. Grünbaum. On common transversals. Arch.
Math., IX:465–469, 1958.

[7] B. Grünbaum. Common transversals for families of
sets. J. London Math. Soc., 35:408–416, 1960.

[8] H. Hadwiger. Ungelöste Probleme, No. 7. Elem.
Math., 1955.

[9] H. Hadwiger. Wiskundige Opgaven, pages 27–29,
1957.

[10] H. Hadwiger. Über Eibereiche mit gemeinsamer Tr-
effgeraden. Portugal Math., 6:23–29, 1957.

[11] A. Holmsen, M. Katchalski, and T. Lewis. A Helly-
type theorem for line transversals to disjoint unit
balls. Discrete Comput. Geom., 29:595–602, 2003.

[12] A. Holmsen and J. Matoušek. No Helly theorem for
stabbing translates by lines in Rd. Discrete Comput.
Geom., 31:405–410, 2004.

[13] M. Katchalski. A conjecture of Grünbaum on com-
mon transversals. Math. Scand., 59(2):192–198, 1986.

[14] H. Tverberg. Proof of Grünbaum’s conjecture on
common transversals for translates. Discrete & Com-
put. Geom., 4(3):191–203, 1989.

[15] R. Wenger. Helly-type theorems and geometric
transversals. In J. E. Goodman and J. O’Rourke, edi-
tors, Handbook of Discrete and Computational Geom-
etry, chapter 4, pages 73–96. CRC Press LLC, Boca
Raton, FL, 2nd edition, 2004.

[16] Y. Zhou and S. Suri. Geometric permutations of balls
with bounded size disparity. Comput. Geom. Theory
Appl., 26:3–20, 2003.

89

22nd European Workshop on Computational Geometry, 2006

90

EWCG 2006, Delphi, March 27–29, 2006

Geometric realization of a projective triangulation with one face removed

C. Paul Bonnington∗ Atsuhiro Nakamoto† Kyoji Ohba‡

Abstract

Let M be a map on a surface F 2. A geometric realiza-
tion of M is an embedding of F 2 into a Euclidian 3-
space R3 with no self-intersection such that each face
of M is a flat polygon. In our talk, we shall prove that
every triangulation G on the projective plane has a
face f such that the triangulation of the Möbius band
obtained from G by removing the interior of f has a
geometric realization.

1 Introduction

A triangulation on a surface F 2 is a map on F 2 such
that each face is bounded by a 3-cycle, where a k-cycle
means a cycle of length k. We suppose that the graph
of a map is always simple, i.e., with no multiple edges
and no loops.

Let G be a map on a surface F 2. A geometric re-
alization of G is an embedding of F 2 into a Euclidian
3-space R3 with no self-intersection such that each
face of G is a flat polygon. That is, a geometric re-
alization of G is to express G as a polytope P (G) in
R3 such that P (G) is homeomorphic to F 2, and that
the 1-skeleton of P (G) is homeomorphic to the graph
of G. Note that we do not require the convexity of
P (G).

Steinitz’s theorem states that a spherical map has
a geometric realization if and only if its graph is 3-
connected [7]. Moreover, Archdeacon et al. proved
that every toroidal triangulation has a geometric re-
alization [1]. In general, Grünbaum conjectured that
every triangulation on any orientable closed surface
has a geometric realization [5], but Bokowski et al.
showed that a triangulation by the complete graph
K12 with twelve vertices on the orientable closed sur-
face of genus 6 has no geometric realization [3].

Let us consider nonorientable surfaces, in particu-
lar, the projective plane. Since the projective plane
itself is not embeddable in R3, no map on the projec-
tive plane has a geometric realization. However, the
surface obtained from the projective plane by remov-
ing a disk (i.e., a Möbius band) is embeddable in R3,

∗Department of Mathematics, University of Auckland,
Auckland, New Zealand Email: p.bonnington@auckland.ac.nz

†Department of Mathematics, Yokohama Na-
tional University, Yokohama 240-8501, Japan Email:
nakamoto@edhs.ynu.ac.jp

‡Yonago National College of Technology, Yonago 683-8502,
Japan Email: ooba@yonago-k.ac.jp

1
2

3

3 1

4

7

5 4

7

5

8

9

6

Figure 1: A Möbius triangulation with no geometric
realization

and hence we can expect that a triangulation on the
Möbius band has a geometric realization.

For simple notations, we call a triangulation on the
projective plane and that on the Möbius band a pro-
jective triangulation and a Möbius triangulation, re-
spectively.

In the current work, we discuss geometric realiza-
tions of Möbius triangulations. However, Brehm [4]
has already found a Möbius triangulation with no ge-
ometric realization, which is shown in Figure 1. (In
Figure 1, identify vertices with the same label.) Can
we get an affirmative result for geometric realizations
of Möbius triangulations?

Let G be a projective triangulation and let f be a
face of G. Let G− f denote the Möbius triangulation
obtained from G by removing the interior of f .

The following is our main theorem.

Theorem 1 Every projective triangulation G has a
face f such that the Möbius triangulation G − f has
a geometric realization.

As far as we know, the current result seems to be
the first affirmative result for geometric realizations
of maps on nonorientable surfaces, since Brehm found
the counterexample shown in Figure 1.

2 Sketch of the proof

In this section, we briefly explain our graph-
theoretical proof of the theorem.

Let M be a map on a surface F 2 and let e be an
edge of M . Contraction of e in M is to removed e and

91

22nd European Workshop on Computational Geometry, 2006

identify the two endpoints of e. (The inverse opera-
tion of contraction of an edge is called a splitting of
a vertex.) If this yields a face bounded by a 2-cycle,
then we replace the two parallel edges with a single
edge. The contraction of an edge e is allowed only
if the graph, say H , obtained from M by the con-
traction of e is simple. In this case, we say that e is
contractible, and that M is contractible to H . We say
that M is irreducible if M has no contractible edge.

Barnette [2] proved that the projective plane admits
exactly two irreducible triangulations, which are the
complete graph K6 with six vertices and K4+K3 (i.e.,
the quadrangulation by K4 with each face subdivided
by a single vertex), which are shown in the left-hand
side in Figures 2 and 3, respectively. In particular, the
latter contains a quadrangulation by K4 with vertex
set {1, 2, 3, 4}, called a K4-quadragulation, which will
play an important role in our proof.

Figure 2: A geometric realization of K6 minus face
256

Figure 3: A geometric realization of K4 + K2 minus
face 147

Lemma 2 Each of the two irreducible projective tri-
angulation with one face removed has a geometric re-
alization.

The right-hand side of Figures 2 and 3 show ge-
ometric realizations of the two irreducible triangula-
tions with one face removed, respectively. Note that

each of the two triangulations is symmetric, the map
with any one face removed has a geometric realization.

In order to prove Theorem 1, it is difficult to use
induction on the number of vertices, though the first
step of induction is verified by Lemma 1. Therefore,
we introduce the following lemma to classify the set
of all projective triangulations into two classes, which
contain two irreducible projective triangulations inde-
pendently.

Lemma 3 Let G be a projective triangulation. Then
G is contractible to K6 if and only if G does not con-
tain a K4-quadrangulation.

Throughout the proof, we use Menger’s Theorem
many times, which is well-known in graph theory and
states that for a graph G and its two disjoint vertex-
sets A, B with cardinality k, there are k disjoint paths
joining A and B, unless G has a cut set X with car-
dinality at most k − 1 separating A and B.

We first consider a projective triangulation G with
a K4-quadrangulation as a subgraph. Applying
Menger’s Theorem suitably, we can easily find a sub-
division of K4+K3. Since K4+K3 itself satisfies The-
orem 1 by Lemma 1, it is not difficult to construct a
geometric realization of G with one face removed such
that each path of G corresponding an edge of K4+K3

is a straight-line segment, and that each 2-cell region
of G corresponding a face of K4+K3 is a flat triangle.

By Lemma 2, if a projective triangulation has no
K4-quadrangulationas a subgraph, then it is con-
tractible to K6. In other words, in this case, G has a
K6-minor as a subgraph, which is a map transformed
into K6 by a sequence of contracting and deleting
edges.

Let K5 denote a Möbius triangulation obtained
from the triangulation K6 by removing the 2-cell re-
gion consisting of five triangular faces incident to a
single vertex. A K5-minor is a map on the Möbius
band transformed into K5 by a sequence of contract-
ing and deleting edges. Observe that there are two
ways to split a vertex of K5, depending on whether
a new edge arisen by the splitting lies on the bound-
ary of the Möbius band, or not. The former is called
a boundary splitting, and the latter an innr splitting.
Hence there are several homeomorphism-classes of the
K5-minors.

Lemma 4 A K5-minor has a geometric realization.

For example, Figure 4 shows a K5-minor obtained
by five boundary splittings and its geometric realiza-
tion, in which we can see that contracting vi and v′i
for each i yields K5.

Finally, we have to put in a 2-cell region, say R,
with one face removed to the body of the geomet-
ric realization of a K5-minor constructed in Lemma
4. By using Menger’s Theorem carefully, we can take

92

EWCG 2006, Delphi, March 27–29, 2006

v′2v2v′3v3

v3v4v0

v1 v′1

v′1 v′0 v′4 v0

v′1

v′2

v′3

v′4

v′0

v1

v2

v3

v4

Figure 4: A K5-minor obtained by boundary split-
tings of all five vertices and its geometric realization

an inner vertex v in R which has disjoint five paths
Q0, . . . , Q4 to five corners v0, . . . , v4, as shown in Fig-
ure 5, for example. The argument is complicated, and
hence we omit the details.

v

v1

v0v4

v3

v2

Q1

Q0Q4

Q3

v1

v0

v4

v3

v2
v

Q2

p

Figure 5: Putting in R with one face removed to K5.

3 Conclusion and Conjecture

Our problem is as follows:

Problem. Let M be a map on the projective plane
and let f be a face of M . Does M−f have a geometric
realization?

Our main result is Theorem 1, that is, if M is a
triangulation and f is some face of M , the answer for
the above problem is “yes”. Note that in Theorem 1,
f cannot be chosen arbitrarily since there is a coun-
terexample by Brehm shown in Figure 1. Moreover,
we do not know whether the restriction to be a trian-
gulation in Theorem 1 is actually needed. Therefore,
it will be nice to consider the above problem when M
is a Petersen graph on the projective plane with each
face pentagon, which is a surface dual of K6.

Why does the Brehm’s counterexample have no ge-
ometric realization? A key of the proof is that in
every spatial embedding of the map shown in Figure
1, the two disjoint 3-cycles 123 and 456 have a link-
ing number at least 2. (See [6] for the definition of
the linking number.) However, any two 3-cycles with
straight segments have linking number at most one,

a contradiction. Therefore, we have the following ob-
servation:

Observation 1 If a Möbius triangulation G has a
boundary cycle C of length 3 and a 3-cycle C′ disjoint
from C which forms an annular region with C′, then
G never has a geometric realization.

A graph G is said to be cyclically k-connected if G
has no separating set S ⊂ V (G) of G with |S| ≤ k−1
such that each connected component of G − S has
a cycle. If we assume the cyclically 4-connectedness
of a Möbius triangulation, we can avoid the situa-
tion described in Observation 1. So we conjecture the
following, which will enable us to prove Theorem 1
easily.

Conjecture 1 Let G be a projective triangulation.
Then G is cyclically 4-connected if and only if G− f
has a geometric realization for any face f of G.

Clearly, the above characterizes a geometrically
realizable Möbius triangulation to be cyclically 4-
connected. This answers the question given in [1].

In the previous section, we have briefly explained
how to construct a geometric realization of a projec-
tive triangulation with one face removed. Of course,
we needed an observation from a geometrical point
of view. However, we feel that a graph-theoretical
method is more essential, that is, we will need to find
a geometrically realizable specific subgraph in an ar-
bitrarily given projective triangulation.

References

[1] D. Archdeacon, C.P. Bonnington and J.A. Ellis-
Monanghan, How to exhibit toroidal maps in space,
preprint.

[2] D.W. Barnette, Generating triangulations of the pro-
jective plane, J. Combin. Theory Ser. B 33 (1982),
222–230.

[3] J. Bokowski and A. Guedes de Oliveira, On the gener-
ation of oriented matorids, Discrete Comput. Geom.
24 (2004), 197–208.

[4] U. Brehm, A nonpolyhedral triangulated Möbius
strip, Proc. Amer. Math. Soc. 89 (1983), 519–522.

[5] B. Grünbaum, “Convex polytopes”, Pure and Ap-
plied Mathematics Vol. 16, Interscience-Wiley, New
York, 1967.

[6] D. Rolfsen, Knot and links, Math. Lecture Series 7,
Publish or Perish, Berkeley, Calif., 1976.

[7] E. Steinitz, Polyeder un Raumeinteilunger, Enzykl.
Math. Wiss. Vol. 3, Teil 3A612 (1922), 1–139.

93

22nd European Workshop on Computational Geometry, 2006

94

EWCG 2006, Delphi, March 27–29, 2006

Splitting (Complicated) Surfaces Is Hard

Erin W. Chambers∗ Éric Colin de Verdière† Jeff Erickson‡ Francis Lazarus§ Kim Whittlesey¶

Abstract

LetM be an orientable surface without boundary. A
cycle on M is splitting if it has no self-intersections
and it partitions M into two components, neither
homeomorphic to a disk. In other words, splitting
cycles are simple, separating, and non-contractible.
We prove that finding the shortest splitting cycle on a
combinatorial surface is NP-hard but fixed-parameter
tractable with respect to the surface genus. Specifi-
cally, we describe an algorithm to compute the short-
est splitting cycle in gO(g)n log n time.

1 Introduction

Optimization problems on surfaces in the fields of
computational topology and topological graph theory
have received much attention in the past few years.
Such problems are usually set in the combinatorial
surface model. A combinatorial surface is a graph
G(M) embedded on a surface M that cuts M into
topological disks. Curves on this surface are required
to be walks on G(M), and edges of G(M) have pos-
itive weights, allowing to measure the length of a
curve.

Many of these problems can be seen as the compu-
tation of a shortest cycle with some prescribed topo-
logical property, such as non-contractibility. When
the set of cycles with the desired property satisfies
the so-called 3-path condition, a generic algorithm of
Mohar and Thomassen finds a shortest such cycle in
O(n3) time [11, Sect. 4.3]. For instance, the sets of
non-separating and non-contractible cycles satisfy the
3-path condition.

In this paper, we study the following optimization
problem: Given an orientable 2-manifold M with
genus g ≥ 2 without boundary, find a shortest simple

∗Department of Computer Science, University of Illinois,
erinwolf@uiuc.edu. Research partially supported by an
NSF Graduate Research Fellowship and by NSF grant DMS-
0528086.

†CNRS, Laboratoire d’informatique de l’École normale
supérieure, Paris, France, Eric.Colin.de.Verdiere@ens.fr

‡Department of Computer Science, University of Illinois,
jeffe@cs.uiuc.edu. Research partially supported by NSF
grants CCR-0093348, CCR-0219594, and DMS-0528086.

§CNRS, Laboratoire des Images et des Signaux, Grenoble,
France, Francis.Lazarus@lis.inpg.fr

¶Department of Mathematics, University of Illinois,
kwhittle@math.uiuc.edu

non-contractible cycle that separatesM. For simplic-
ity, we will call a simple non-contractible separating
cycle a splitting cycle. The set of splitting cycles does
not satisfy the 3-path property. Removing a splitting
cycle from any surface leaves two surfaces, each of
genus at least one and with one boundary cycle.

We prove that finding the shortest splitting cy-
cle on a combinatorial surface is NP-hard but fixed-
parameter tractable with respect to the surface genus.
Specifically, we describe an algorithm to compute the
shortest splitting cycle in gO(g)n log n time.

2 Topological Background

2.1 Curves on surfaces

We rely on several notions from combinatorial topol-
ogy. In particular, we use the standard definitions for
a compact, orientable, and connected surface M, its
genus, a path, a loop, or a cycle onM, homotopy with
or without basepoint. See also Hatcher [8] or previ-
ous papers [4, 2] for more details. We say that two
loops are disjoint if they intersect only at their com-
mon basepoint. We say that a cycle splits a surface
M if it is simple, non-contractible, and separating.

2.2 Systems of loops

If L is a set of pairwise disjoint simple loops, M\ L
denotes the surface with boundary obtained by cut-
ting M along the loops in L. A system of loops onM
is a set of pairwise disjoint simple loops L such that
M\L is a topological disk. Any system of loops con-
tains exactly 2g loops. M\ L is a 4g-gon where the
loops appear in pairs on its boundary, and is called
the polygonal schema associated to L.

2.3 Combinatorial and cross-metric surfaces

Like most earlier related results [1, 3, 4, 5, 6, 10], we
state and prove our results in the combinatorial sur-
face model. A combinatorial surface is an abstract
surfaceM together with a weighted undirected graph
G = G(M), embedded on M so that each open face
is a disk. In this model, the only allowed paths are
walks in G; the length of a path is the sum of the
weights of the edges traversed by the path, counted
with multiplicity. A path is simple if it can be slightly

95

22nd European Workshop on Computational Geometry, 2006

deformed so as to become a simple path on the sur-
face. The complexity of a combinatorial surface is the
total number of vertices, edges, and faces of G.

It is often more convenient to work in an equiv-
alent dual formulation of this model introduced by
Colin de Verdière and Erickson [2]. A cross-metric
surface is also an abstract surface M together with
an undirected weighted graph G∗ = G∗(M), embed-
ded so that every open face is a disk. However, now we
consider only regular paths and cycles on M, which
intersect the edges of G∗ only transversely and away
from the vertices. The length of a regular curve p is
defined to be the sum of the weights of the dual edges
that p crosses, counted with multiplicity. See [2] for
further discussion of these two models.

3 NP-hardness

Theorem 1 Finding the shortest splitting cycle on a
combinatorial surface is NP-Hard.

Proof. A grid graph of size n is a graph induced
by a set of n points on the two-dimensional integer
grid. We describe a reduction from the Hamilton cy-
cle problem in grid graphs [9].

We describe a two-step reduction. Let H be a grid
graph of size n. To begin the first reduction, we over-
lay n 4 × 4 square grids of width ε < 1/4n, one cen-
tered on each vertex of H . In each small grid, we
color the square in the second row and second column
red and the square in the third row and third column
blue (we fix the origin at the upper left corner). We
now easily observe that the following question is NP-
complete: Does the modified grid contain a cycle of
length at most n + 1/2 that separates the red squares
from the blue squares? Any Hamilton cycle for H can
be modified to produce a separating cycle of length at
most n + 1/2 by locally modifying the Hamilton cy-
cle within each small grid, as shown in Figure 1, top.
Conversely, any separating cycle must pass through
the center points of all n small grids, which implies
that any separating cycle of length at most n + 1/2
must contain n grid edges that comprise a Hamilton
cycle for H .

In the second reduction, we reduce the problem to
finding a minimum-length splitting cycle. We isomet-
rically embed the modified grid on a sphere, which
we call Earth. We remove the red and blue squares
to create 2n punctures, which we attach to two new
punctured spheres, called heaven and hell. We attach
the n punctures in heaven to the n blue punctures on
Earth; similarly, we attach the n punctures in hell to
the n red punctures on Earth. We append edges of
length 2n to the resulting surface so that each face
of the final embedded graph is a disk. The resulting
combinatorial surface M(H) has genus 2n − 2 and
complexity O(n), and it can clearly be constructed in

Figure 1: Top left: A Hamilton cycle of length n. Top
right: The corresponding red/blue separating cycle (not
to scale). Bottom: Separating heaven from hell (not to
scale); the central disk is a small portion of Earth.

polynomial time. See Figure 1(c).
If the shortest cycle γ that splitsM(H) has length

less than n + 1/2, then it must lie entirely on Earth.
Moreover, γ must separate the blue punctures from
the red punctures; otherwise, M(H) \ γ would be
connected by a path through heaven or through hell.
Thus, γ is precisely the shortest cycle that separates
the red and blue squares in our intermediate problem.
Testing whether γ has length less than n+1/2 is thus
NP-complete from the first reduction. �

4 O(g) Crossings with Any Shortest Path

Proposition 2 Let P be a set of pairwise interior-
disjoint shortest paths on a cross-metric surface M.
Some shortest splitting cycle crosses each path in P
at most O(g) times.

Proof. For any two points x and y on a cycle α, we let
α[x, y] denote the path from x to y along α, taking
into account the orientation of α. For a path or a
dual edge α, the same notation is used for the unique
simple path between x and y on α.

Let γ be a shortest splitting cycle with the mini-
mum number of crossings with paths in P . We can
assume that γ does not pass through the endpoints
of any path in P . Consider any path p in P that
intersects γ.

The intersection points γ ∩ p partition γ into arcs.
These arcs may intersect other paths in P . Let M/p
be the quotient surface obtained by contracting p to
a point p/p. Each arc corresponds to a loop in M/p

96

EWCG 2006, Delphi, March 27–29, 2006

with basepoint p/p. We say that two such arcs are
homotopic rel p or relatively homotopic if the corre-
sponding loops in M/p are homotopic.

For any two consecutive intersection points x and y
along γ, the arc γ[x, y] cannot be homotopic to p[x, y],
since otherwise we can obtain a no longer splitting
cycle γ[y, x] · p[x, y] that has fewer crossings with the
paths in P . It follows that none of the arcs of γ are
contractible rel p. Since the arcs are disjoint except
at their common endpoints, they correspond, inM/p,
to a set of simple, pairwise disjoint loops (except at
their common basepoint) that are non-contractible
and pairwise non-homotopic. Under these assump-
tions, the number of loops can be shown to be at
most 12g − 6. Hence there are at most 12g − 6 rela-
tive homotopy classes of arcs.

We can partition the arcs into four types—LL, RR,
LR, and RL—according to whether the arcs start on
the left or right side of p, and whether they end on
the left or right side of p. To complete the proof, we
argue that there is at most one arc of each type in
each relative homotopy class. It suffices to consider
only types LL and RL; the other two cases follow from
symmetric arguments.

Suppose for purposes of contradiction that there
are two LL-arcs u = γ[a, z] and w = γ[c, x] that are
homotopic rel p. Since the arcs are simple, pairwise
disjoint, and homotopic, we may assume without loss
of generality that the intersection points appear along
p in the order a, c, x, z, and the cycle u · p[z, x] · w̄ ·
p[c, a] bounds a disk. Without loss of generality, we
assume that no other arc homotopic rel p intersects
this disk. Since γ is separating, there must be exactly
one arc v = γ[y, b] between u and w that is relatively
homotopic to ū and w̄.

a b c

u

v

w

x y z
p

a b c

u

v

w

x y z
p

Figure 2: The exchange argument for LL arcs.

Without loss of generality, suppose the path γ[x, a]
does not contain any of the arcs u, v, or w. Consider
the cycle

γ′ = p[a, b]·γ[b, c]·p[c, b]·γ̄[b, y]·p[y, z]·γ[z, y]·p[y, x]·γ[x, a]

obtained by removing u and w from γ, reversing v,
and connecting the remaining pieces of γ with sub-
paths of p; see Figure 2. This cycle crosses p fewer
times than γ, and crosses any other path in p no more
than γ. We can prove that γ′ is simple, separating,
and non-contractible. Because p is a shortest path,
u cannot be shorter than p[a, z], which implies that

γ′ is no longer than γ, contradicting the fact that γ
is a shortest splitting cycle with the minimal number
of crossings with paths in P . We conclude that any
two LL-arcs must be in different relative homotopy
classes.

The case of RL-arcs can be treated with a simi-
lar, though more complicated, analysis and exchange
argument. �

5 Algorithm

We will prove the following result.

Theorem 3 Let M be an orientable cross-metric
surface without boundary; let g be its genus and n
be its complexity. We can compute a shortest split-
ting cycle inM in gO(g)n log n time.

The algorithm proceeds in several stages, described
in the following subsections. First, we compute the
shortest system of loops from some arbitrary base-
point. Next, we enumerate all the plausible sequences
of intersections of the splitting cycle with the loops in
the system of loops. Note that a sequence of inter-
sections determine the homotopy type for the split-
ting cycle. We discard any sequence that does not
yield a valid splitting cycle. Finally, for each remain-
ing sequence, we compute the shortest cycle with the
same sequence of intersections. Out of all cycles con-
structed this way, the shortest one is the correct re-
sult.

5.1 Greedy Loops

Let v be any point of M in the interior of a face of
G∗(M). Let α1, . . . , α2g be the shortest system of
loops ofM with basepoint v; this system of loops can
be computed in O(n log n + gn) time using a greedy
algorithm of Erickson and Whittlesey [6].

Two key properties of this system of loops are that
each loop αi is as short as possible in its homotopy
class, and is composed of two shortest paths βi and β′

i

in the primal graph G(M). However, in general, these
two paths meet at a point in the interior of some edge.
We can handle this easily by a local modification of
the primal or dual graph.

5.2 Enumeration of Plausible Sequences via La-
beled Triangulations

Lemma 2 tells us that some shortest splitting cycle γ
crosses each path βi or β′

i at most O(g) times, and
thus crosses each loop αi at most O(g) times. Our
algorithm therefore enumerates all sequences of inter-
sections where each αi is crossed at most O(g) times.
Since we are using the shortest system of loops, we
may assume that the shortest splitting cycle does not
cross any αi consecutively in opposite directions.

97

22nd European Workshop on Computational Geometry, 2006

Cut M along the loops αi to obtain a polygonal
schema. This operation also cuts the unknown cycle γ
into many segments that go across the schema. Since
γ is simple, no two of these segments cross. Without
loss of generality, we can assume that γ does not pass
through the basepoint v.

The segments of γ can be grouped into subsets
according to which pair of edges they meet on the
polygonal schema. We dualize the polygonal schema,
replacing each edge with a vertex and connecting ver-
tices that correspond to consecutive edges; now each
subset of segments corresponds to an edge between
two vertices of the dual 4g-gon. Since no two seg-
ments cross, these edges cannot cross; in particular,
all the edges belong to some triangulation of the dual
polygon.

Thus the candidate sequences of intersections of a
shortest splitting cycle are described by labeled trian-
gulations, each of which consists of a triangulation of
the dual polygon, in which every edge is labeled with
an integer between 0 and O(g). Intuitively, the label
of an edge in the triangulation represents the number
of times that the cycle runs along that edge. There
are C4g−2 = O(44g) possible triangulations, where Cn

is the nth Calatan number, which we can enumerate
in O(g) time each. There are gO(g) ways to label each
triangulation, which we can enumerate in constant
amortized time per labeling. We thus obtain a total
of gO(g) potential labeled triangulations for γ.

5.3 Discarding Irrelevant Labeled Triangulations

Most of the labeled triangulations do not correspond
to a splitting cycle, or to any cycle for that matter.
We now explain how to throw away these possibili-
ties. Namely, given a candidate labeled triangulation
T , we want to decide if it (1) corresponds to a set
of cycles, (2) is actually a single cycle, (3) is sepa-
rating and (4) is non-contractible. (1) is satisfied if
and only if, for each i, αi and ᾱi are crossed the same
number of times. If this condition is satisfied, we can
build a (set of) simple (pairwise disjoint) cycle(s) on
M representing T , of complexity O(g2n); for exam-
ple, the segments can run along the boundary of the
polygonal schema. If the second condition is satis-
fied, we can check conditions (3) and (4) using (sim-
plified versions of) the algorithms by Erickson and
Har-Peled [5]. This takes O(g2n log n) time. Actu-
ally, this whole step can be done more efficiently in
O(g2) time.

5.4 Shortest Cycle for each Sequence of Intersec-
tions

In the last step, for each of the gO(g) non-discarded
labeled triangulation, we compute the shortest cycle
with the same sequence of intersections as defined by
the labeled triangulation and keep the shortest one.

For this, we build a cylindrical surface by gluing
copies of the polygonal schema. There is one copy per
intersection in the sequence. If the ith intersection is
αj , then the ith copy is glued to the i+1th copy along
αj . (Each loop appears twice on the boundary of the
polygonal schema and we must take orientation into
account to make the proper gluing. Also, by construc-
tion, copies i−1 and i+1 are glued on different edges
on the ith copy.) The last copy is glued to the first
copy. The resulting cylinder is made of O(g2) copies
of the polygonal schema, each of complexity O(gn).
By [7] (see also [2]) we can compute a shortest cy-
cle homotopic to the boundaries of this cylinder in
time O(g3n log n). Such a cycle, when projected back
onto the surfaceM, is a shortest cycle with the same
prescribed sequence of intersections with the greedy
system of loops. The total time spent is gO(g)n logn.

Finally, the output cycle may contain self-
intersections. However, we are able to remove these
intersections in the same amount of time. This con-
cludes the proof of Theorem 3.

Acknowledgments. Support of a travel grant from
UIUC/CNRS/INRIA is aknowledged. The authors
also thank Martin Kutz for simplifying Section 5.4.

References

[1] S. Cabello and B. Mohar. Finding shortest non-separating and
non-contractible cycles for topologically embedded graphs. In
Proc. 13th Annu. European Sympos. Algorithms, volume
3669 of LNCS, pages 131–142. Springer-Verlag, 2005.

[2] É. Colin de Verdière and J. Erickson. Tightening non-simple
paths and cycles on surfaces. In Proc. 17th Annu. ACM-

SIAM Sympos. Discrete Algorithms, page to appear, 2006.

[3] É. Colin de Verdière and F. Lazarus. Optimal pants decom-
positions and shortest homotopic cycles on an orientable sur-
face. In Proc. 11th Sympos. Graph Drawing, volume 2912 of
LNCS, pages 478–490. Springer-Verlag, 2003.

[4] É. Colin de Verdière and F. Lazarus. Optimal systems of loops
on an orientable surface. Discrete Comput. Geom., 33(3):507–
534, 2005.

[5] J. Erickson and S. Har-Peled. Optimally cutting a surface into
a disk. Discrete Comput. Geom., 31(1):37–59, 2004.

[6] J. Erickson and K. Whittlesey. Greedy optimal homotopy and
homology generators. In Proc. 16th Annu. ACM-SIAM Sym-
pos. Discrete Algorithms, pages 1038–1046, 2005.

[7] G. N. Frederickson. Fast algorithms for shortest paths in pla-
nar graphs with applications. SIAM Journal on Computing,
16(6):1004–1022, 1987.

[8] A. Hatcher. Algebraic topology. Cambridge University Press,
2002.

[9] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter. Hamilton
paths in grid graphs. SIAM J. Comput., 11:676–686, 1982.

[10] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Com-
puting a canonical polygonal schema of an orientable triangu-
lated surface. In Proc. 17th Annu. ACM Sympos. Comput.

Geom., pages 80–89, 2001.

[11] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns
Hopkins University Press, 2001.

98

EWCG 2006, Delphi, March 27–29, 2006

Pants Decomposition of the Punctured Plane

Sheung-Hung Poon∗ Shripad Thite∗

Abstract

A pants decomposition of an orientable surface Σ is a
collection of simple cycles that partition Σ into pants,
i.e., surfaces of genus zero with three boundary cy-
cles. Given a set P of n points in the plane E2,
we consider the problem of computing a pants de-
composition of Σ = E2 \ P of minimum total length.
We give a polynomial-time approximation scheme us-
ing Mitchell’s guillotine rectilinear subdivisions. We
give an O(n4)-time algorithm to compute the short-
est pants decomposition of Σ when the cycles are re-
stricted to be axis-aligned boxes, and an O(n2)-time
algorithm when all the points lie on a line; both ex-
act algorithms use dynamic programming with Yao’s
speedup.

1 Introduction

Surfaces (2-manifolds), such as spheres, cylinders,
tori, and more, are commonly encountered topolog-
ical spaces in applications like computer graphics and
geometric modeling. To understand the topology of
the surface or to compute various properties of the
surface, it is useful to decompose the surface into sim-
ple parts. Among the possible ways to decompose a
given surface, it is desirable to compute an optimum
decomposition, one that minimizes a metric depend-
ing on the application.

A decomposition of an orientable surface Σ that
has been studied is a pants decomposition [3, 2], a
collection of disjoint cycles that partition Σ into pants,
where a pant1 is a surface of genus zero with three
boundary cycles. Every compact orientable surface—
except the sphere, disk, cylinder, and torus—admits
a pants decomposition [2].

A natural measure of a pants decomposition to
minimize is the total length of its boundary cycles.
The length of a pants decomposition Π of Σ, denoted
by |Π|, is the sum of the (Euclidean) lengths of all
the cycles in Π. (If a subsegment is traversed more
than once, its length is counted with multiplicity.) A
non-crossing pants decomposition is a pants decom-
position that allows any two cycles to touch as long

∗Dept. of Math and Computer Sci., Technische Univer-
siteit Eindhoven, The Netherlands; {spoon,sthite}@win.tue.nl.
S.-H.P. and S.T. were supported by the Netherlands’ Organ-
isation for Scientific Research (NWO) under project num-
bers 612.065.307 and 639.023.301 respectively.

as they do not cross transversely. A shortest pants
decomposition is a non-crossing pants decomposition
of minimum length.

The problem of computing a shortest pants decom-
position of an arbitrary surface Σ is open. In this
paper, we study a variant of the problem where Σ is
the punctured plane, i.e., Σ = E2 \ P where P is a
discrete set of n points. Figure 1(i) gives an example
pants decomposition of the plane with 6 punctures.
Colin de Verdière and Lazarus [2] studied a related
problem: given a pants decomposition of an arbitrary
surface, they compute a homotopic pants decompo-
sition in which each cycle is a shortest cycle in its
homotopy class.

a

b

c

d
e

f

C1 C2
C3

C4

C5

(i) (ii)

C5

C3 C4

C1 C2

a b c d

e f

Figure 1: (i) A pants decomposition of the plane punctured
by a set of 6 points, and (ii) the corresponding binary tree.

A cycle C on Σ is essential if it does not bound a
disk or an annulus. A pants decomposition, also called
a maximal cut system [3], is naturally obtained by
the following greedy procedure. Let C be an essential
cycle. Cut Σ along C to get a surface Σ′ with two
additional boundary cycles C1 and C2 corresponding
to the two sides of the cut. The cycles C1 and C2,
together with the set of cycles obtained by recursing
on Σ′, is a pants decomposition Π of Σ. The resulting
cycle structure can be modeled as a binary tree with
n leaves (Figure 1(ii)). Each cycle C of Π is essential
because it encloses two other cycles, say C1 and C2;
we write C1 ≺ C and C2 ≺ C to indicate that C
encloses C1 and C2. We say that two cycles C1 and C2

are independent if neither C1 ≺ C2 nor C2 ≺ C1. The
final result is a pants decomposition of a bounded
subset of the plane together with a single unbounded

1We call a surface of genus zero with three boundary com-
ponents a pant instead of a pair of pants [2]. We refer to two
pants instead of two pairs of pants; the latter phrase can be
misunderstood to mean four such surfaces.

99

22nd European Workshop on Computational Geometry, 2006

component.

In this paper, we give a simple algorithm with ap-
proximation ratio O(log n), and a polynomial-time
approximation scheme (PTAS) using Mitchell’s guil-
lotine rectilinear subdivisions. We compute the short-
est pants decomposition in O(n4) time when the cy-
cles are restricted to be axis-aligned boxes, and in
O(n2) time when all the points lie on a line; both ex-
act algorithms use dynamic programming with Yao’s
speedup, and are faster by a linear factor than the
‘näıve’ dynamic programming formulations.

2 A simple approximation algorithm

If Π∗ is a shortest pants decomposition of the punc-
tured plane Σ = E2 \ P , then every cycle in Π is a
simple polygon whose vertices belong to P . We argue
next that Π∗ contains a traveling salesperson (TSP)
tour of the points. Choose any vertex on the outer-
most cycle as the start of the tour. Traverse the outer-
most cycle counterclockwise. The first time we visit a
vertex u that also belongs to an inner cycle (one of the
two legs of the pant) that has not been traversed yet,
we recursively construct a tour beginning and ending
at u that traverses the unvisited vertices on or in the
interior of this inner cycle. After the recursion, we
continue along the outermost cycle, repeating the re-
cursive traversal of the second leg of the pant, until we
reach our original starting point. Hence, Π∗ must be
at least as long as a shortest Euclidean TSP tour T ∗

of the points. Hence, |Π∗| ≥ |T ∗|.
We convert a TSP tour T of the points in P to a

pants decomposition Π as follows. Initially, Π is the
empty set. Order the points from 0 through n − 1
in the order along the tour T . Let C(i, j) denote the
polygon with vertices i, i + 1, i + 2, . . ., j − 2, j − 1,
j, j − 1, j − 2, . . ., i + 2, i + 1, i in order, where
the indices are taken modulo n. Imagine cycles of
zero length around each point. Repeatedly introduce
a new cycle into Π′ that is obtained by merging the
two cycles adjacent along the tour enclosing the fewest
number of points. Each cycle C(i, j) is obtained by
merging two cycles C(i, k) and C(k+1, j) by doubling
the edge between vertices k and k + 1. We ensure
that each edge in the tour T appears exactly twice in
at most dlog ne cycles in the pants decomposition Π.
Hence, |Π| ≤ 2dlogne|T |.

It is well-known [7] how to obtain a 3/2-approximate
shortest Euclidean TSP of the point set using
Christofides’ algorithm in O(n3) time; the minimum
spanning tree of the n points can be used to obtain
a 2-approximation in O(n log n) time. An approxi-
mate TSP tour obtained by either of these algorithms
gives us a non-crossing pants decomposition of length
O(log n) times the optimum.

3 PTAS

Let ε > 0 be an arbitrary constant. To construct in
polynomial time a (1+ε)-approximation to the short-
est non-crossing pants decomposition, we modify the
PTAS for Euclidean TSP tour due to Mitchell [5, 6].
Our algorithm is more complicated because a pants
decomposition consists of Θ(n) cycles instead of just
one cycle as in a TSP tour. The PTAS is a dynamic
programming algorithm where each subproblem is a
rectangular region of the plane and two adjacent sub-
problems interact only through O(1) grid points or
portals.

Let m ≥ 2 be an integer and let M = m(m − 1).
Let B denote the axis-aligned bounding box of the
point set P . Imagine a shortest pants decomposi-
tion Π∗. Mitchell [6] has shown that there exists a
favorable cut, i.e., a horizontal or vertical line l, which
partitions B into two smaller boxes that can be recur-
sively subdivided using favorable cuts. The recursion
stops when a box is empty of points of P . Just like
Mitchell, we introduce a segment of l, called a bridge,
and O(M) grid points on l. Mitchell has shown that
the total length of the additional subsegments is at

most
√

2
m times the length of Π∗.

Let R, a rectangle, be the boundary of an arbitrary
box Q during the recursive subdivision. Intuitively,
we can “bend” the cycles of Π∗ to make each cycle
that crosses R transversely do so only at one of the
portals (grid points) and possibly use subsegments of
the bridges on the four sides of R, without increasing
the length of the pants decomposition by too much.

To construct a short pants decomposition Π, our
PTAS solves subproblems of the following form. We
are given a rectangle R whose sides are defined by
two horizontal and two vertical favorable cuts. We are
given two integers ni and nt, both in the range from 0
through n−1, of the number of cycles of Π that are in-
side R and that intersect R transversely, respectively.
Each of the ni cycles inside R intersects R tangentially
and an even number of times, and each of the nt cy-
cles intersects R transversely and an odd number of
times. Let nR = ni + nt. We are given the pattern
in which the nR cycles intersect R at the O(M) grid
points on the sides of R. There are O(nO(M)) possible
ways for the nR cycles to intersect the sides of R.

It remains to account for the fact that cycles in Π
that intersect R tangentially can traverse subsegments
of the cuts bounding R. We observe that every point
in the plane lies on at most two independent cycles
of Π. Let p be an arbitrary point in the plane. Let Cp

denote the subset of cycles in Π that pass through p.
If |Cp| > 2, then there exist three cycles C1, C2,
and C3 in Cp such that both C1 and C2 are inside C3.
Let C be an outermost (minimum depth) cycle that
traverses a subsegment ab of some cut. Each subseg-
ment is shared by at most two independent cycles.

100

EWCG 2006, Delphi, March 27–29, 2006

Therefore, we count the length of ab at most twice
when counting the total length of all subsegments of
cuts traversed.

The dynamic programming algorithm proceeds as
follows. For a rectangle R intersected by nR = ni +nt

cycles, we try each of the O(n) favorable cuts that par-
tition R into two smaller rectangles, A and B. We try

each of the O(n
O(M)
R) possible ways that the nR cycles

can intersect the cut transversely, making sure that
the pattern in which the cycles intersects the cut is
consistent with the pattern in which they intersect R.
Some of the ni cycles that belong inside R may belong
inside A and some others inside B; we try the O(ni)
possible ways to allocate a subset of the ni cycles to A
and the remaining to B. We optimize over the O(n)
cuts and O(nO(M)) intersection patterns to solve the
subproblem R optimally. In the base case, if R has no
points of P in its interior, then the subproblem has
only O(M) size, which is a constant, and is solved by
brute force. Since there are O(nO(M)) different sub-
problems and each subproblem takes O(nO(M)) time,
the total running time is O(nO(M)).

The length of the pants decomposition Π ob-
tained by the dynamic programming algorithm is

O
(
1 + 2

√
2

m

)
times that of a shortest pants decom-

position. To obtain the desired approximation factor,
we choose m ≥ 2

√
2/ε.

To reiterate, the major differences between our
PTAS and that of Mitchell [5] are the following.
(i) Each of our n − 1 cycles crosses transversely the
boundary of a rectangular subproblem in one of O(M)
different ways. Therefore, we have O(nO(M)) times as
many subproblems to solve as in the TSP. (ii) Each
of the O(M) grid points on the boundary of a rectan-
gular subproblem may lie on any of the n − 1 cycles
in a pants decomposition. Therefore, the additional
information associated with each subproblem is more
than of constant size; the amount of information asso-
ciated with each subproblem is O(nO(M)). However,
the total running time is still polynomial in n.

4 Points on a line

Let P be a set of points on a line, without loss of
generality on the x-axis. Order the n points from left
to right. Let xi denote the x-coordinate of the ith
point. For every 1 ≤ i ≤ j ≤ n, let (i, j) denote the
j−i+1 consecutive points numbered from i through j.

We prove next that a shortest non-crossing pants
decomposition of Σ = E2 \ P must consist of convex
cycles only. Hence, if Π∗ is a shortest non-crossing
pants decomposition of Σ, then there exists a k in the
range 1 ≤ k < n such that Π∗ consists of a shortest
pants decomposition of (i, k) and a shortest pants de-
composition of (k + 1, n) together with an outermost
cycle of length 2(xn − x1) enclosing all n points.

Suppose to the contrary that there is a cycle C
in Π∗ that contains a non-contiguous subset of points
in P . Without loss of generality, we assume that C is a
minimal one in the sense that both its legs, C1 and C2,
contains contiguous subsets of points. Without loss of
generality, assume C1 is to the left of C2; thus, C1 is
the left leg and C2 is the right leg of C.

Let X ⊆ P be the set of all points between C1

and C2. Let x ∈ X be arbitrary. Let Dx =
{D1, D2, D3, . . . , Di, . . .} be the set of cycles in Π∗

containing x such that Di+1 contains Di. Let i be
the smallest index such that Di contains some point
of P \ X . There are two cases to consider: (i) Di

contains C, (ii) Di does not contain C.
If Di contains C, then we construct another cycle E

enclosing C1 and Di−1 making E the left leg of C
(instead of C1). Delete Di.

Otherwise, if Di does not contain C, then either
(a) Di contains points only to the left of C2 or (b) Di

contains points only to the right of C1. In the for-
mer case, Di−1 is the right leg of Di. We swap C1

and Di−1 so that C1 is the new right leg of Di

and Di−1 is the new left leg of C. In the latter case,
Di−1 is the left leg of Di. We swap C2 and Di−1 so
that C2 is the new left leg of Di and Di−1 is the new
right leg of C.

In either case, we obtain a pants decomposition
with total length smaller than Π∗, which is a con-
tradiction.

Let c(i, j) denote the cost of a shortest pants decom-
position of (i, j). We have just proved that c(i, j) sat-
isfies the following recurrence for every 1 ≤ i ≤ j ≤ n:

c(i, j) = 2(xj − xi) + min
i≤k<j

(c(i, k) + c(k + 1, j)) (1)

where c(i, i) = 0. A shortest pants decomposition of
(i, j) can be computed by choosing the appropriate
value of k in the range i ≤ k < j, computing the
optimum pants decompositions of (i, k) and (k+1, j),
and introducing a non-crossing cycle of length 2(xj −
xi) enclosing the points (i, j). The straightforward
dynamic programming algorithm computes c(1, n) in
O(n3) time.

We show how the running time of the dynamic pro-
gramming algorithm can be improved by a linear fac-
tor using Yao’s speedup [9]. Let w(i, j) = xj−xi. The
function w() is monotone, i.e., w(i, j) ≤ w(k, l) when-
ever (i, j) ⊆ (k, l), and satisfies the following concave
quadrangle inequality [9]:

∀ i ≤ i′ ≤ j ≤ j′ : w(i, j)+w(i′, j′) ≤ w(i′, j)+w(i, j′)

In fact, the above equation is satisfied with equality
because w(i, j) + w(i′, j′) = (xj − xi) + (x′

j − x′
i) =

w(i′, j)+w(i, j′). Let ck(i, j) denote w(i, j)+c(i, k)+
c(k + 1, j). Let K(i, j) denote the maximum k for
which c(i, j) = ck(i, j). The following claims are al-
most identical to those in the context of optimum bi-
nary search trees proved by Mehlhorn [4, 8]:

101

22nd European Workshop on Computational Geometry, 2006

1. The function c(i, j) also satisfies the concave
quadrangle inequality, i.e.,

∀ i ≤ i′ ≤ j ≤ j′ : c(i, j)+c(i′, j′) ≤ c(i′, j)+c(i, j′)

2. K(i, j − 1) ≤ K(i, j) ≤ K(i + 1, j)

We compute c(i, j) by diagonals, in order of increasing
value of j− i. For each fixed difference d, we compute
c(i, j) where j = i + d; we compute ck(i, j) for k in
the range K(i, j − 1) ≤ k ≤ K(i + 1, j). The cost of
computing all entries on the dth diagonal is

n−d∑

i=1

K(i + 1, j)−K(i, j − 1) + 1

= K(n− d + 1, n + 1)−K(1, d) + n− d

≤ (n + 1)− 1 + n− d

< 2n

Since d ranges from 0 through n−1, the total running
time is O(n2).

5 Box decomposition

A box decomposition of Σ is a pants decomposition Π
in which each cycle in Π is an axis-aligned rectangle.
Observe that any two axis-aligned rectangles can be
separated from each other by either a horizontal or a
vertical line.

Let x1 through xn denote the x-coordinates of the n
points in increasing order, and let y1 through yn de-
note the y-coordinates of the n points in increasing
order. Let h(i, j) = 2(xj − xi) and let v(i, j) =
2(yj − yi). Let w(i1, i2, j1, j2) = h(i1, i2) + v(j1, j2);
then, w(i1, i2, j1, j2) is the perimeter of the axis-
aligned box whose sides have x-coordinates xi1 and
xi2 and y-coordinates yj1 and yj2 . The function w()
is monotone and satisfies the concave quadrangle in-
equality.

The rest of the proof is similar to the case for
points on a line. Let c(i1, i2, j1, j2) denote the cost
of a shortest pants decomposition of the points in
the box [xi1 , xi2] × [yj1 , yj2]. The cost c(i1, i2, j1, j2)
obeys a recurrence that is a two-dimensional general-
ization of Equation 1. Similar to the dynamic pro-
gramming algorithm for points on a line, we com-
pute c(i1, i2, j1, j2) by diagonals, in order of increasing
value of max{i2− i1, j2− j − 1}. For each pair of dif-
ferences d1 and d2, we compute c(i1, i2, j1, j2) where
i2 = i1 + d1 and j2 = j1 + d2. The cost of comput-
ing all entries on the diagonals defined by (d1, d2) is
O(n2); since there are O(n2) such pairs (d1, d2), the
total running time is O(n4).

6 Work in progress

We mention some very interesting open questions that
we are currently investigating.

Is it NP-hard to determine, for an arbitrary L,
whether there exists a non-crossing pants decompo-
sition of the punctured plane of length at most L?
Is there a simple algorithm to compute an O(1)-
approximate shortest pants decomposition?

Are the cycles in a shortest (non-crossing) pants de-
composition always convex? If not, how much longer
than optimum is a convex pants decomposition?

How efficiently can we compute a shortest pants de-
composition of the plane with different types of punc-
tures, e.g., rectangular holes instead of points?

How efficiently can we compute a shortest pants
decomposition of other 2-manifolds, such as the torus
minus a set of points?

Acknowledgments

We thank members of the Algoritmiek group at TU/e,
especially Mark de Berg, for fruitful discussions. Shri-
pad Thite thanks the organizers and participants of
the Meeting on Optimization Problems in Computa-
tional Topology at ENS, Paris, in November 2005,
especially Éric Colin de Verdière and Jeff Erickson.

References

[1] S. Arora. Polynomial Time Approximation Schemes
for Euclidean Traveling Salesman and Other Geomet-
ric Problems. J. ACM, 45(5):753–782, 1998.

[2] É. Colin de Verdière, F. Lazarus. Optimal Pants De-
compositions and Shortest Homotopic Cycles on an
Orientable Surface. Proc. Graph Drawing, pp. 478–
490, 2003. Preliminary version at EuroCG’03.

[3] A. Hatcher. Pants Decompositions of Sur-
faces. arXiv:math.GT/9906084; http://arxiv.org/

abs/math.GT/9906084

[4] K. Mehlhorn. Data Structures and Algorithms 1: Sort-
ing and Searching. EATCS Monographs on Theoret.
Comput. Sci., Springer-Verlag, 1984.

[5] J. S. B. Mitchell. Guillotine Subdivisions Approxi-
mate Polygonal Subdivisions: A Simple Polynomial-
Time Approximation Scheme for Geometric TSP, k-
MST, and Related Problems. SIAM J. Computing,
28(4):1298–1309, 1999.

[6] J. S. B. Mitchell. Approximation Algorithms for Geo-
metric Optimization Problems. Proc. Canadian Conf.
Comput. Geom., pp. 229–232, 1997.

[7] C. H. Papadimitriou, K. Steiglitz. Combinatorial Op-
timization: Algorithms and Complexity. Prentice Hall,
1982.

[8] S. Thite. Optimum Binary Search Trees on the Hierar-
chical Memory Model. M.S. thesis, Computer Sci., U.
Illinois at Urbana-Champaign, CSL Tech. Rep. UILU-
ENG-00-2215 ACT-142, 2000.

[9] F. F. Yao. Speed-up in Dynamic Programming. SIAM
J. Algebraic Discrete Methods, 3(4):532–540, 1982.

102

EWCG 2006, Delphi, March 27–29, 2006

Computing the Fréchet Distance Between Simple Polygons

Kevin Buchin∗†, Maike Buchin∗†, Carola Wenk‡

Abstract

We present the first polynomial-time algorithm for
computing the Fréchet distance for a non-trivial class
of surfaces: simple polygons. For this, we show that
it suffices to consider homeomorphisms that map an
arbitrary triangulation of one polygon to the other
polygon such that diagonals of the triangulation are
mapped to shortest paths in the other polygon.

1 Introduction

The Fréchet distance is a distance measure used in
shape matching. It is defined for continuous shapes
such as curves and surfaces using reparametrizations
of the shapes.

The Fréchet distance between polygonal curves
can be computed in polynomial time [2], however
computing the Fréchet distance distance for (two-
dimensional) surfaces is NP-hard [5]. Except for the
NP-hardness very little is known so far about the
Fréchet distance of surfaces. It is known to be semi-
computable [1], but it is unknown whether it is com-
putable, and there are no approximation algorithms.

We address this problem by considering a restricted
but important class of surfaces, simple polygons, and
show that their Fréchet distance can be computed in
polynomial time. This is the first polynomial-time
algorithm for computing the Fréchet distance for a
non-trivial class of surfaces.

The rest of this abstract is organized as follows:
First we introduce in Section 2 notations and prelim-
inary lemmas. Then we show in Section 3 that it
suffices to look at a small well-behaved class of home-
omorphisms. We use this to develop a polynomial
time algorithm for deciding the Fréchet distance in
Section 4 which we extend to a computation algo-
rithm by searching over a set of critical values.

Due to space restrictions we omit detailed proofs in
this extended abstract but provide the main ideas.

∗Freie Universität Berlin, Institute of Computer Science,
Takustr. 9, 14195 Berlin, Germany

†This research was supported by the Deutsche Forschungs-
gemeinschaft within the European graduate program ‘Combi-
natorics, Geometry, and Computation’ (No. GRK 588/2).

‡University of Texas at San Antonio, Department of Com-
puter Science, 6900 N. Loop 1604 West, San Antonio, TX
78249-0667, USA

2 Preliminaries

Simple Polygons

Let P and Q be two simple polygons in the plane
with m and n vertices, respectively. A simple polygon
is the area enclosed by a non-selfintersecting closed
polygonal curve in the plane. The two polygons may
lie in two different planes. We assume as underlying
parametrizations the identity maps f : P → P and
g : Q→ Q. Their Fréchet distance is:

δF (P, Q) = inf
σ:P→Q

max
t∈P
||t− σ(t)|| ,

where σ ranges over all orientation-preserving home-
omorphisms and ||.|| is the Euclidean norm1. In
the remainder we will only consider orientation-
preserving homeomorphisms and might refer only to
σ or to a homeomorphism when the meaning is clear
from the context.

The first question that comes to
mind is: Is the Fréchet distance of
polygons different from the Fréchet
distance of their boundary curves?

Observation 1 The Fréchet distance of two poly-
gons may be arbitrarily larger than the Fréchet dis-
tance of their boundary curves.

This observation can be proved by showing that it
holds for the two polygons on the right.

We will compute the Fréchet distance between sim-
ple polygons using shortest paths and for this use an
important concept which was introduced by Guibas
et al. [6]: hourglasses. If s1 and s2 are two segments
in a simple polygon, the hourglass of s1 and s2 repre-
sents all shortest paths between any point on s1 and
any point on s2.

Simplifying a Curve

Given a curve f and a line segment s, Lemma 1 shows
that simplifying f by replacing a part of it with a line
segment does not increase the Fréchet distance to s.

Lemma 1 Let f : [0, 1] → Rd be a curve, let s :
[0, 1]→ Rd be a line segment, and let 0 ≤ t1 < t2 ≤ 1.
Define f ′ : [0, 1]→ Rd to be equal to f for t ∈ [0, t1]∪

1Of course any other metric can be considered as well.

103

22nd European Workshop on Computational Geometry, 2006

[t2, 1]. And for t ∈ [t1, t2] it equals the line segment
from f(t1) to f(t2). Then δF (f ′, s) ≤ δF (f, s).

For proving this lemma, we show that a homeo-
morphism σ for computing δF (f, s) can be modified
to a homeomorphism σ′ for computing δF (f ′, s) that
does not yield a larger value. For this we use that the
maximum distance between two segments is attained
at segment end points.

3 Shortest Paths Lemma

The next lemma states that it suffices to look at home-
omorphisms that map the diagonals of a triangulation
of P to shortest paths in Q and are piecewise linear
inside triangles. For a triangulation T of P we denote
with ET the set of points lying on all edges of T , i.e.,
all points on all boundary edges and diagonals (and
vertices) of T .

Lemma 2 Given two simple polygons P and Q, a
triangulation T of P and homeomorphism σ : P → Q.
Then there is a map σ′ : P → Q which fulfills

(1) σ′ is a limit of homeomorphisms from P → Q

(2) σ′ maps the diagonals of the triangulation T to
shortest paths in Q and is piecewise linear inside
triangles without introducing interior vertices.
Thus maxt∈P ||t− σ′(t)|| = maxt∈ET

||t− σ′(t)||.

(3) σ′ is “at least as good as σ”, i.e.,
maxt∈P ||t− σ′(t)|| ≤ maxt∈P ||t− σ(t)||.

Proof sketch. Let σ′ be as follows: σ′ equals σ on
the boundary, it maps diagonals of T to the shortest
paths between the corresponding boundary points of
Q, and is extended piecewise linearly inside triangles
(without introducing any interior vertices).

Then (2) holds by definition of σ′ and (1) holds be-
cause the shortest paths may be overlapping but non-
crossing. We can show (3) by iteratively shooting rays
along the edges of the shortest path and simplifying
the curve σ(D) using Lemma 1.

From this lemma we get the following corollaries:

Corollary 3 The Fréchet distance between simple
polygons P and Q equals

inf
σ′:P→Q

max
t∈T
||t− σ′(t)||

where T is an arbitrary triangulation of P . σ′ ranges
over all homeomorphisms from the boundary of P to
the boundary of Q which are extended to T by map-
ping the diagonals of T to the shortest paths between
the boundary vertices and which are extended piece-
wise linearly inside the triangles (without introducing
interior vertices).

Corollary 4 The Fréchet distance between two sim-
ple polygons, of which one polygon is convex, equals
the Fréchet distance between their boundary curves.

The first corollary follows immediately. For the sec-
ond corollary we triangulate the possibly non-convex
polygon and map the diagonals of the triangulation to
shortest paths in the convex polygon. Then the short-
est paths in the convex polygon are also diagonals and
the Fréchet distance between two line segments equals
the maximum distance of its endpoints.

4 Computing the Fréchet distance

The main result of this section is a polynomial time
algorithm for computing the Fréchet distance between
simple polygons. But first we have to show some pre-
liminary results and introduce some more notation.

In the following P and Q always denote two sim-
ple polygons, n and m the number of vertices of the
boundaries of P and Q, respectively, and ε a real value
greater 0. T is a triangulation of P . The decision
problem is to decide whether δF (P, Q) ≤ ε.

Free Space Diagram and Reachability Structure

The free space diagram is the data structure devel-
oped by Alt and Godau [2] for computing the Fréchet
distance between polygonal curves. For ε > 0 and two
parametrized curves f, g : [0, 1] → Rd it is defined as
{(s, t) ∈ [0, 1]2 | ||f(s) − g(t)|| ≤ ε}. If f and g are
polygonal curves of complexity n and m, respectively,
then the free space diagram can be represented in a
rectangle [0, n] × [0, m] consisting of n columns and
m rows of a total of mn cells. The double free space
diagram is the free space diagram of f concatenated
f and g and can be represented in [0, 2n] × [0, m].

The decision problem for closed polygonal curves
is solved by computing the reachability structure [2].
It is a partition of the boundary of the double free
space diagram into O(mn) intervals, where each in-
tervals is assigned pointers containing information on
the reachability in free space. The reachability struc-
ture has complexity O(mn) and can be computed in
O(mn log mn) time.

Feasible Path in the Free Space Diagram

By Lemma 2 it suffices to consider homeomorphisms
on the boundary curves of the simple polygons P and
Q and extend these by mapping the diagonals of a
triangulation of P to the corresponding shortest paths
in Q. In other words for the decision problem we
search for a homeomorphism σ : P → Q fulfilling:

(1) σ maps ∂P onto ∂Q and maxt∈∂P ||t− σ(t)|| ≤ ε

104

EWCG 2006, Delphi, March 27–29, 2006

(2) σ maps all diagonals of a triangulation to short-
est paths in Q, and all diagonals D must fulfill
maxt∈D ||t− σ(t)|| ≤ ε

For condition (1) we use the algorithm and data
structure developed by Alt and Godau [2] for closed
curves which searches for a monotone path in the dou-
ble free space diagram. We handle condition (2) as fol-
lows: a path in the free space diagram determines the
shortest paths that the diagonals are mapped to be-
cause it maps the end points of the diagonals. We call
these diagonal placements. A path in the free space
diagram which places all diagonals correctly, i.e., ful-
fills (2), we call feasible path.

Order of Diagonals in a Triangulation

The edge set of a triangulation T of P consists of
edges on the boundary and in the interior of P , the
latter of which are diagonals. We define an order of
the diagonals which we will later use for dynamic pro-
gramming over the diagonals. For a fixed starting
point s on the boundary of P we order the diagonals
as follows: If we write the diagonals as ordered tu-
ples of their end points (di, dj) with i < j, we define
(di, dj) < (dk, dl) :⇔ (j < l) ∨ (j = l ∧ i > k).

For two starting points that lie in between the same
two diagonal end points the resulting diagonal order
is the same. Hence there are at most n − 2 different
orders of diagonals in total, each characterized by the
next diagonal endpoint (in counterclockwise order) to
the starting point. We will call areas of the free space
diagram that induce the same diagonal order blocks.
Blocks consists of one or two columns in the diagram
that lie between the vertical lines corresponding to
two neighboring diagonal end points.

Combined Reachability Graph

The combined reachability graph combines the reach-
ability information in the free space with valid diag-
onal placements. First we define a reachability graph
which is the reachability structure represented as a
graph: its vertices are the reachable intervals of the
reachability structure with an edge between two in-
tervals if they can reach each other. The combined
reachability graph is a subgraph of the reachability
graph. Its vertices are all vertical interval-vertices of
the reachability graph with edges between intervals
that can be reached by feasible paths. For a fixed or-
der of diagonals the combined reachability graph can
be computed by recursively merging the reachability
graphs of the blocks in the order of diagonals. Since
the reachability structure contains O(mn) intervals
the reachability graph and the combined reachability
graph contain O(mn) vertices and O((mn)2) edges.

We will use the combined reachability graph as fol-
lows: When searching for feasible paths starting in

block B1 we compute the combined reachability graph
for the order of diagonals starting in B1 by merg-
ing blocks B2 through Bl (where l is the number of
blocks). A feasible path starting in block B1 consists
of an edge in the reachability graph of B1 from its
lower to its right boundary, an edge in the combined
reachability graph between the left boundary of B2 to
the right boundary of Bl, and an edge in the reacha-
bility graph of B1 from its left to its upper boundary.

Fréchet Distance of a Diagonal and an Hourglass

The following lemma shows how to decide the Fréchet
distance between a diagonal and a whole set of short-
est paths, namely the hourglass of two segments.
With a shortest path in the hourglass we always re-
fer to a shortest path between two points on the two
segments defining the hourglass.

Lemma 5 Let an hourglass and a diagonal be given
such that each end segment of the hourglass is con-
tained in one of the ε-disks around the endpoints of
the diagonal (and not both in the same disk). If there
exists one shortest path in the hourglass with Fréchet
distance at most ε to the diagonal, then all shortest
paths in the hourglass have Fréchet distance at most
ε to the diagonal.

The idea of the proof of this lemma is the following:
If A = a1, . . . , al is a shortest path in the hourglass
with Fréchet distance at most ε to the diagonal and
B = b1 . . . , bk another shortest path in the hourglass.
Define B′ = b1, a1, . . . , al, bk. B′ can be simplified to
B by repeatedly using Lemma 1.

Fréchet Distances of a Diagonal and many Hour-
glasses

In Section 4 we need to decide all Fréchet distances be-
tween a diagonal and several hourglasses that have a
common end segment. This can be done in O(m) time
by choosing an arbitrary vertex on each end segment
of the hourglasses and using Lemma 5 and Lemma 6.

Lemma 6 Given a diagonal, a polygon with m ver-
tices, and a set of m vertices w1, . . . , wm on the bound-
ary of the polygon. Then we can decide all Fréchet
distances between the diagonal and the m shortest
paths π(w1, wi) between w1 and wi for i = 1, . . . , m
in total O(m) time.

For proving this lemma we use the linear time algo-
rithm for computing the lengths of all shortest paths
from one vertex of a simple polygon to all others by
Guibas et al. [6]. During the algorithm we store ad-
ditional information about reachability in free space,
which can be updated in constant time while process-
ing each vertex.

105

22nd European Workshop on Computational Geometry, 2006

Decision Algorithm

Algorithm 1 DecideFréchet(P, Q, ε)

Input: Simple Polygons P, Q, ε > 0
Output: Is δF (P, Q) ≤ ε?

Compute a triangulation of P1

Compute all orders of diagonals in the2

triangulation of P

Compute a single free space diagram of the3

boundary curves

Compute the reachability graph for all blocks in4

the free space diagram

forall diagonals in the triangulation do5

forall placements in the free space do6

test δF (diagonal, shortest path)≤ ε for a cor-7

responding shortest path
end8

end9

forall blocks do10

forall diagonals, in the order given by the block11

do
if combined reachability graph is not yet com-12

puted then
if previous diagonal nested then13

compute the combined reachability14

graph merged with the combined
reachability graph of the nested diag-
onal

end15

else16

compute the combined reachability17

graph
end18

store the combined reachability graph19

end20

if diagonal has a left neighbor then21

merge the combined reachability graphs22

end23

end24

Query for a feasible path starting at the lower25

boundary of the block
end26

Answer “yes” if a feasible path has been found, else27

“no”

Theorem 7 Algorithm DecideFréchet(P, Q, ε) de-
cides whether the Fréchet distance between sim-
ple polygons P, Q is at most ε. The runtime is
O(nT (mn)), where T (N) is the time to multiply two
N ×N matrices, and n and m are the number of ver-
tices of P and Q.

Note that T (N) = Ω(N2) and the currently fastest
known matrix multiplication algorithm has a runtime

of T (N) = O(N2.376) [4]. Due to space restrictions
we have to completely omit the proof of this theorem.

Critical Values for Computation

For computing the Fréchet distance we apply the same
technique as for curves [2]: We search a set of criti-
cal values using parametric search. In addition to the
critical values of the boundary curves we consider crit-
ical values for the Fréchet distance between diagonals
and shortest paths.

A shortest path is always a polygonal curve where
the first and last vertex are arbitrary points on the
boundary of Q and all other vertices are vertices of
Q. The distances between the diagonal end points
and the boundary of Q are already contained in the
critical values for the boundary curves. Additional
critical values can only occur if the Fréchet distance
between a diagonal and a shortest path is attained
in the interior of the diagonal and the shortest path,
i.e., it is attained at a vertex of Q. For the parametric
search we sort the ”spikes” in the free space diagram.
We get m·n such spikes, one for any pair of a diagonal
and a vertex of Q. In total we get:

Theorem 8 The Fréchet distance between two sim-
ple polygons can be computed in time
O(nT (mn) log(mn)), where T (N) is the time to mul-
tiply two N×N matrices, and n and m are the number
of vertices on the boundary of P and Q.

Acknowledgements

We thank Boris Aronov for suggesting the problem,
and we thank Peter Brass and Helmut Alt for fruitful
discussions.

References

[1] H. Alt and M. Buchin. Semi-computability of the
Fréchet distance between surfaces. In Proc. 21st Eu-
rop. Workshop on Comp. Geom., pages 45–48, 2005.

[2] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Internat. J.
Comput. Geom. Appl., 5:75–91, 1995.

[3] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete Comput. Geom., 6(5):485–524, 1991.

[4] D. Coppersmith and S. Winograd. Matrix multiplica-
tion via arithmetic progressions. Journal of Symbolic
Computation, 9:251–280, 1990.

[5] M. Godau. On the complexity of measuring the simi-
larity between geometric objects in higher dimensions.
PhD thesis, Freie Universität Berlin, Germany, 1998.

[6] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. Tarjan. Linear time algorithms for visibility and
shortest path problems inside simple polygons. In
Proc. 2nd Ann. Symp. on Comput. Geom., pages 1–
13, New York, NY, USA, 1986. ACM Press.

106

EWCG 2006, Delphi, March 27–29, 2006

Probabilistic matching of sets of polygonal curves∗

Helmut Alt† Ludmila Scharf † Sven Scholz †

1 Introduction

Analysis and comparison of geometric shapes are of
importance in various application areas within com-
puter science, e.g., pattern recognition and computer
vision. The general situation in a shape matching
problem is that we are given two shapes A and B
and a certain class T of allowable transformations and
we want to transform B optimally so that the trans-
formed image of B is as close to A as possible. We
assume that shapes are modeled by sets of polygonal
curves. As possible class of transformations we will
consider translations, homotheties (scaling and trans-
lation), rigid motions (rotation and translation), sim-
ilarities (rotation, scaling and translation), and affine
maps.

We address the problem of optimal matching of
the complete shape B to the complete shape A,
called complete-complete matching. The algorithm we
present also applies to the problem of complete-partial
matching, i.e., matching B completely as good as pos-
sible to some part of A, and partial-partial matching,
i.e., matching some part of B as good as possible to
some part of A.

Several similarity measures and algorithms are
known to match two curves, especially polygonal
curves, see [10] for a survey. One of the “universal”
similarity measures is the Hausdorff distance which
is defined for any two compact sets A and B. In
[1, 3] Alt et al. describe efficient algorithms for com-
puting the Hausdorff distance and minimizing it un-
der translations and rigid motions for arbitrary sets of
line segments. One of the drawbacks of the Hausdorff-
distance is that it is very sensitive to noise. A few sim-
ilarity measures are defined for pairs of curves, which
capture the relative course of two curves: Fréchet dis-
tance [3], turning function distance [4], and dynamic
time warping distance [6]. There are no generaliza-
tions of those distances to sets of curves, although in
[2] a generalization of the Fréchet distance to geomet-
ric graphs is given, and in [9] Tanase et al. describe
an algorithm for matching a set of polygonal curves
to a single polygon. A similarity measure which is
designed for sets of curves is the reflection visibil-
ity distance [7]. The reflection visibility distance is
robust against different kinds of disturbances but is

∗This research was supported by the European Union under
contract No. IST-511572-2, Project PROFI.

†Institute of Computer Science, Freie Universität Berlin

expensive to compute. Some of these similarity mea-
sures can be modified to valuate partial match, e.g.,
percentile-based Hausdorff distance [8].

The method we introduce is close to an intuitive
notion of “matching”, i.e., find one or more candidates
for the best transformations, that when applied to the
shape B map the most similar parts of the two shapes
to each other.

2 Probabilistic matching

For given two shapes A, B ⊂ R2 represented by sets
of polygonal curves we want to find a transformation
t, which lets the transformed image of B, t(B), match
best A, i.e., maps the most similar parts of the shapes
A and B to each other.

2.1 Simple matching algorithm

The idea of the probabilistic approach is quite simple:

1. Take small random samples SA from A and SB

from B and give one “vote” to the transformation
t which maps SB to SA.

2. Repeat this experiment many times. Then the
distribution of votes in the transformation space
T approximates a certain probability distribu-
tion.

3. For a given neighborhood size δ take the points
of T with the highest number of votes in their
δ-neighborhood as candidates for good transfor-
mations.

The idea behind this algorithm, is that the trans-
formations, which map large parts of shapes to each
other should get significantly more votes than others.
The size of the δ-neighborhood influences the quality
of the match.

The size of a random sample within one experiment
depends on the class of transformations allowed:
For translations, SA and SB contain each a single ran-
domly selected point of a correspondent shape. The
transformation space is two-dimensional and the re-
sulting translation is a vector in R2.

In case of rigid motions the transformation space
is three-dimensional. A random sample of a shape
within one experiment contains a random point and a

107

22nd European Workshop on Computational Geometry, 2006

unit length vector corresponding to the average direc-
tion of tangent lines of its neighborhood. Two such
point-vector pairs define uniquely a rigid motion.

For similarity maps the transformation space is
four-dimensional and a random sample from a shape
contains two points. Two pairs of points a1, a2 in A
and b1, b2 in B determine a unique four-dimensional
similarity transformation t mapping b1 to a1 and b2

to a2.
In general, we define the δ-neighborhood of a trans-

formation t as a set of transformations that map any
point b in B into a δ-neighborhood of the point t(b).

2.2 Analysis for the Translations

As a detailed analysis shows, for most cases the trans-
lation with most votes brings the largest fitting parts
of A and B into the δ-neighborhood of each other.

The choice of δ therefore controls the trade-off be-
tween the quality of match and the size of the parts
matched. With a small value of δ our algorithm would
find a translation which maps nearly congruent parts
of two shapes to each other, see Figure 1(a). A large
value of δ leads to a translation which gives a rough
match but for larger parts of the shapes, see Fig-
ure 1(b).

(a) (b)

Figure 1: Matching with (a) small grid size and (b)
large grid size

But the value of δ does not alone determine what
kind of matching we get or how large the matched
parts are. For nearly congruent figures a small neigh-
borhood size already leads to a complete-complete
matching, see Figure 2(a), and with the same value
for δ we can get complete-partial matching, see Fig-
ure 2(b).

Furthermore, we should examine several local max-
ima of the vote distribution function, since each of the
maxima corresponds to a partial match between two
figures, an example is illustrated in Figure 3.

For most applications it would make sense to deter-
mine for each of the candidate transformations which
parts of the two shapes match and how large these

(a) (b)

Figure 2: Matching with a sampling neighborhood
of the the same size in translation space for different
shapes

Figure 3: Top: two superimpositions of the figures
each corresponding to a complete-partial match. Bot-
tom: Experimental distribution in the translation
space with two local maxima marked and a 3d-view
of the distribution.

parts are. This verification step can be performed
using the directed Hausdorff distance. We can incre-
mentally take the segments of the shape B into the
matched set if the directed Hausdorff distance from
the matched subset of B to A stays under the chosen
value δ. With the algorithm from [1] we can perform
this verification step in time O((n + m) log(n + m)),
where n and m are the numbers of segments in A and
B, respectively.

The problem of partial-partial matching is not
uniquely defined since there is a certain correlation be-
tween the quality of match and the size of the matched
parts. We address this problem by letting the user
specify the quality of match through the choice of δ,
for which we then find the matching parts.

108

EWCG 2006, Delphi, March 27–29, 2006

Running time. Maximizing the the number of
votes in the δ-neighborhood of a translation,
we maximize the measure of the set M(t) =
{(a, b) : a ∈ A, b ∈ B, ‖a− t(b)‖ ≤ δ}. We define a
similarity measure associated with a translation t as
f(t) = |M(t)| / |A×B|. Let f̃(t) denote the ratio
of the number of sample translation vectors in the δ-
neighborhood of t to the total number of samples. f̃(t)
is the estimate of f(t). Using the technique described
in [5] we can bound the absolute error for the estimate
of the distribution of votes in a following way:

The number of sample translation vectors sufficient
to get an approximation error of at most ε with prob-

ability at least 1 − η is N =
16 ln 1

η

ε2 + 2. With linear
time preprocessing we can generate a random point of
a shape modeled by n line segments in time O(log n).
That is, the time to generate N random points on
both shapes is O(n + N log n).

In order to find a translation with the highest
number of votes, or the sampling points, in its δ-
neighborhood, we consider the arrangement of the δ-
neighborhoods of the sampling points. The basic ob-
servation is that if a sampling point s is contained in
the δ-neighborhood of the translation t, then t is also
contained in the δ-neighborhood of s. All translations
in the same cell of the arrangement have the same
sampling points in their δ-neighborhoods. Therefore
it is sufficient to traverse the arrangement and take
the nodes with the highest number of sampling points
whose δ-neighborhoods contain this node. The ar-
rangement of the δ-neighborhoods of N vectors has
the complexity O(N2) and can be computed and tra-
versed in time O(N2), which yields the following the-
orem:

Theorem 1 Given two shapes modeled by sets of line
segments of complexity n in the plane and parame-

ter ε, η, 0 ≤ ε, η ≤ 1. In time O(n +
log 1

η
log n

ε2 +
log2 1

η

ε4) we can compute a translation tapp such that∣∣∣f̃(tapp)− f(topt)
∣∣∣ ≤ ε with probability at least 1− η,

where topt is a translation maximizing f(t).

2.3 A Faster Heuristic

We are also working on heuristics, in order to speed
up the matching process, that is to find good trans-
formation candidates with less experiments. Here we
describe an algorithm which uses a set of pairs of
corresponding points and during one random experi-
ment iteratively extends that set until no further data
are available or the samples are no longer consistent.
For every set a transformation is computed and the
best one is registered and gets a weight. Then we
get a weighted sample of the transformation space,
where the neighborhoods with large weight are likely

to contain candidates for transformations resulting in
a good match for the shapes.

The problem of computing preliminary transforma-
tions consists of two subproblems: one is to find cor-
respondences between features, the other is to find a
transformation that maps the corresponding features
to each other.

Finding Correspondences. The initial part of every
vote is the random choice of a single vertex of each of
the two sets of polylines, and the direction for travers-
ing the list of following vertices (also both possible
directions may be processed). Starting from that pair
a sequence of sets of pairs of vertices and vertex sur-
rogates is generated.

Let p0 be the randomly chosen vertex from the first
set S1 of planar polylines and let p1, . . . , pk be the suc-
ceeding vertices with respect to the randomly chosen
direction. Analogously, let q0 be the randomly cho-
sen vertex from the second set S2 of planar polylines
and let q1, . . . , ql be the succeeding vertices. The pair
(p0, q0) is added to the – so far empty – sample set s.

In each iteration step distances from the last added
pair of points to the next vertices on the correspond-
ing polylines are computed. If the two computed
distances are nearly equal, the next two vertices are
taken as a corresponding pair which is added to the
sample set s.

Otherwise a vertex surrogate is created for the poly-
line with a larger distance. A surrogate is a point lying
on an edge of the polyline, but nevertheless is treated
like a vertex. It is chosen to have the same distance
to its predecessor as the corresponding two vertices of
the other polyline have.

When the end of a polyline is reached, then starting
from the initial pair the traversal is performed in the
opposite direction.

Calculating the Transformations. For every new
pair of vertices or vertex surrogates added to s the
transformation t ∈ T is computed that minimizes
the sum of the weighted squared distances ε(t) =∑

(pi,qi)∈s w(pi, qi) ‖qi − t(pi)‖2 with w(pi, qi) being
half the length of the edges incident to pi and qj .

For T being the class of translations or rigid mo-
tions, t and the vertex correspondences may be de-
termined independently from each other. But for the
classes of transformations that allow scalings (i.e. ho-
motheties, similarities, and affine maps), the assign-
ment of the vertices depends on that scaling.

In every iteration step it is checked whether the er-
ror introduced by the new added pair is still within
tolerance bounds. If the error is too big, the traversal
of the polylines is ceased, as illustrated in Figure 4:
the bold polylines are traversed up to the end of the
dashed parts. The transformation for which the error
was farthest from the tolerance bound is weighted and

109

22nd European Workshop on Computational Geometry, 2006

handed over to the clustering algorithm (the trans-
formation calculated for the bold polylines up to the
beginning of the dashed line in the example).

Figure 4: Two instances of the mpeg7shapeB dataset
(ray-7, ray-20 and both mapped).

Scalings: If scalings are allowed, for every single
vote a prescaling factor ci is randomly chosen such
that ld(ci) is normally distributed with mean value
ld(c̄i) where c̄i is the prescaling factor of the trans-
formation rated best so far. Sci

1 denotes the set S1

scaled by ci. For the rest of the vote, every opera-
tion concerning the first set S1 (e.g. computing the
distance between two vertices) is performed on Sci

1 .

Weighting the Transformations and Clustering.
The two factors that have to be considered for weight-
ing a transformation t are the expressiveness of the
sample and the quality of the match. Let ε be the
sum of weighted squared distances, let w(s) be the
sum of all weights of the pairs of points in the sample
set s, and let dbb be the diameter of the bounding-box
containing the covered part of the polyline. Defining
the relative root mean square error e =

√
ε/w(s)/dbb

yields a value representing the quality of the match
which is invariant under scalings.

The match score or weight w(t) of a transformation
t is then defined as w(t) = l/(1 + γ · e) with γ being
an arbitrarily chosen constant for balancing out the
impact of the length l and the error e.

Let t1 and t2 be two arbitrary transformations and
let S be the transformed shape. The distance mea-
sure dS(t1, t2) = maxp∈S′ ‖t1(p)− t2(p)‖, with S′ be-
ing the set of the vertices of the bounding box of S
forms a metric space for affine maps, under the as-
sumption that the four points of S′ are pairwise dif-
ferent.

A cluster in our sense represents a region of lim-
ited diameter, which subsumes a considerable amount
of weights of the enclosed input points (transforma-
tions).

Let Tn be the set of n preliminary transformations
and wi be the weight of transformation ti ∈ Tn.
For every transformation tk the set of its domina-
tors in range r is defined as a set of transformations
with distance at most r to tk with a weight greater
than wk, which have no dominators in range r. Ev-
ery transformation tc which has no dominators in
range rc defines a cluster with radius rc as the set

{ti ∈ Tn|d(tc, ti) < rc}, i.e., a transformation is either
assigned to its dominators’ clusters or it defines a clus-
ter itself. The weight of a cluster is defined as the sum
of the weights of its elements. This definition allows
for a fast computation of all clusters and their weights.

3 Conclusion

We presented a probabilistic approach for matching
two shapes represented by sets of polygonal curves,
which is close to the human notion of match and is
easy to implement. The algorithms are also applicable
to the problem of partial matching and we obtained
convincing results from experiments with the MPEG7
shape dataset.

References

[1] H. Alt, B. Behrends, and J. Blömer. Approximate
matching of polygonal shapes. Annals of Mathemat-
ics and Artificial Intelligence, 13:251–265, 1995.

[2] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching
planar maps. J. of Algorithms, pages 262–283, 2003.

[3] H. Alt and L. J. Guibas. Discrete geometric shapes:
Matching, interpolation, and approximation. In
Handbook of computational geometry, pages 121 –
153. Elsevier Science Publishers B.V. North-Holland,
1999.

[4] E. Arkin, P. Chew, D. Huttenlocher, K. Kedem, and
J. Mitchell. An efficiently computable metric for com-
paring polygonal shapes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 13(3):209–
215, March 1991.

[5] O. Cheong, A. Efrat, and S. Har-Peled. On finding a
guard that sees most and a shop that sells most. In
Proc. 15th ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 1091–1100, 2004.

[6] A. Efrat and S. Venkatasubramanian. Curve match-
ing, time warping, and light fields. Technical Report
AT&T TD-4z5TMU, AT&T.

[7] M. Hagedoorn, M. Overmars, and R. Veltkamp. A
new visibility partition for affine pattern matching.
In Proc. Discrete Geometry for Computer Imagery
conference, DGCI 2000, pages 358–370, Berlin, 2000.
Springer-Verlag.

[8] M. Hagedoorn and R. Veltkamp. State-of-the-art in
shape matching. Technical Report UU-CS-1999-27,
Utrecht University, the Netherlands, 1999.

[9] M. Tanase, R. C. Veltkamp, and H. Haverkort. Mul-
tiple polyline to polygon matching. In Proceedings of
the 16th Annual Symposium on Algorithms and Com-
putation (ISAAC 2005), LNCS 3827, pages 60–70,
2005.

[10] R. C. Veltkamp. Shape matching: Similarity mea-
sures and algorithms. Technical Report UU-CS-2001-
03, Utrecht University, 2001.

110

EWCG 2006, Delphi, March 27–29, 2006

On the ICP Algorithm∗

Esther Ezra† Micha Sharir‡ Alon Efrat§

Abstract

We present upper and lower bounds for the number
of iterations performed by the Iterative Closest Point
(ICP) algorithm. This algorithm has been proposed
by Besl and McKay [4] as a successful heuristics for
pattern matching under translation, where the input
consists of two point sets in d-space, for d ≥ 1, but so
far it seems not to have been rigorously analyzed. The
considered (standard) measure of resemblance that
the algorithm attempts to optimize is the RMS (root
mean squared distance). We show that the number
of iterations performed by the algorithm is polyno-
mial in the number of input points. In particular,
this bound is quadratic in the one-dimensional prob-
lem, for which we present a lower bound construction
of Ω(n log n) iterations, where n is the overall size of
the input. We also present several structural geomet-
ric properties of the algorithm. We show that at each
iteration of the algorithm the cost function monoton-
ically and strictly decreases along the vector ∆t of
the relative translation. As a result, we conclude that
the polygonal path π, obtained by concatenating all
the relative translations that are computed during the
execution of the algorithm, does not intersect itself.
In particular, in the one-dimensional problem all the
relative translations of the ICP algorithm are in the
same (left or right) direction.

1 Introduction

The matching and analysis of geometric patterns and
shapes is an important problem that arises in vari-
ous application areas, in particular in computer vision
and pattern recognition [3]. In a typical scenario, we
are given two objects A and B, and we wish to deter-
mine how much they resemble each other. Usually one

∗Work on this paper by the first two authors has been sup-
ported by NSF Grants CCR-00-98246 and CCF-05-14079, by a
grant from the U.S.-Israeli Binational Science Foundation, by
Grant 155/05 from the Israel Science Fund, Israeli Academy of
Sciences, by the Hermann Minkowski–MINERVA Center for
Geometry at Tel Aviv University. Work on this paper by
the last author has been partially supported by an NSF CA-
REER award (CCR-0348000) and an ITR/Collaborative Re-
search grant (0312443).

†Department of Computer Science, University of Tel-Aviv,
estere@post.tau.ac.il

‡Department of Computer Science, University of Tel-Aviv,
michas@post.tau.ac.il

§Department of Computer Science, University of Arizona,
alon@cs.arizona.edu

of the objects may undergo certain transformations,
like translation, rotation and/or scaling, in order to
be matched with the other object as well as possi-
ble. In many cases, the objects are represented as
finite sets of (sampled) points in two or three dimen-
sions (they are then referred to as “point patterns”
or “shapes”). In order to measure “resemblance”,
various cost functions have been used. A prominent
one is the sum of squared distances or root mean
square [4, 5], Under this measure, the cost function
is Φ2(A, B) = 1

m

∑
a∈A ‖a − NB(a)‖2, where NB(a)

denotes the nearest neighbor of a in B, and where
m = |A|. In what follows, we also use the (slightly
abused) notation

RMS(t) :=
1

m

∑

a∈A

‖a + t−NB(a + t)‖2. (1)

A heuristic matching algorithm that is widely used,
due to its simplicity (and its good performance in
practice), is the Iterative Closest Point algorithm, or
the ICP algorithm for short, of Besl and McKay [4].
Given two point sets A and B in Rd (also referred to
as the data shape and the model shape, respectively),
we wish to minimize a cost function φ(A + t, B), over
all translations t of A relative to B. The algorithm
starts with an arbitrary translation that aligns A to
B (suboptimally), and then repeatedly performs local
improvements that keep re-aligning A to B, while de-
creasing the given cost function φ(A + t, B), until a
convergence is reached. This is done as follows.

At the i-th iteration of the ICP algorithm, the set
A has already been translated by some vector ti−1,

where t0 =
−→
0 . We then apply the following two steps:

(i) We assign each (translated) point a + ti−1 ∈
A+ ti−1 to its nearest neighbor b = NB(a+ ti−1) ∈ B
under the Euclidean distance1. (ii) We then com-
pute the new relative translation ∆ti that minimizes
the cost function φ (with respect to the above fixed
assignment). Specifically, we find the ∆ti that mini-
mizes

φ2(A + ti−1, ∆ti , B) =
1

m

X

a∈A

‖a + ti−1 + ∆ti − NB(a + ti−1)‖
2.

We then align the points of A to B by translating them
by ∆ti, so the new (overall) translation is ti = ti−1 + ∆ti.

The ICP algorithm performs these two steps repeat-
edly and stops when the value of the cost function does

1Of course, other distances can also be considered, but this
paper treats only the Euclidean case.

111

22nd European Workshop on Computational Geometry, 2006

not decrease with respect to the previous step (as a mat-
ter of fact, the ICP algorithm in its original presentation
stops when the difference in the cost function falls below
a given threshold τ > 0; however, in our analysis, we as-
sume that τ = 0). It is shown by Besl and McKay [4] that,
when φ(·, ·) measures the sum of squared distances, this
algorithm always converges monotonically to a local mini-
mum, and that the value of the cost function decreases at
each iteration2.

In other words, in stage (i) of each iteration of the ICP
algorithm we assign the points in (the current translated
copy of) A to their respective nearest neighbors in B, and
in stage (ii) we translate the points of A in order to min-
imize the value of the cost function with respect to the
assignment computed in stage (i). This in turn may cause
some of the points in the new translated copy of A to
acquire new nearest neighbors in B, which causes the al-
gorithm to perform further iterations. If no point of A
changes its nearest neighbor in B, the value of the cost
function does not change in the next iteration (in fact,

the next relative translation equals
−→
0) and, as a conse-

quence, the algorithm terminates. Note that the pattern
matching performed by the algorithm is one-directional,
that is, it aims to find a translation of A that places the
points of A near points of B, but not necessarily the other
way around.

Since the value of the cost function is strictly reduced at
each iteration of the algorithm, it follows that no nearest-
neighbor assignment arises more than once during the
course of the algorithm, and thus it is sufficient to bound
the overall number of nearest-neighbor assignments (or,
NNA’s, for short) that the algorithm reaches in order to
bound the number of its iterations.

2 General Structural Properties of the ICP Algo-
rithm under the RMS Measure

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two point
sets in d-space, for d ≥ 1, and suppose that the ICP algo-
rithm aligns A to B; that is, B is fixed and A is translated
to best fit B.

Theorem 1 The maximum possible overall number of
nearest-neighbor assignments, over all translated copies
of A, is Θ

`

mdnd
´

.

Sketch of proof: Let V(B) denote the Voronoi diagram
of B, that is, the partition of Rd into d-dimensional cells
V(bi), for i = 1, . . . , n, such that each point p ∈ V(bi)
satisfies ‖p − bi‖ ≤ ‖p − bj‖, for each j 6= i.

The global NNA changes at critical values of the trans-
lation t, in which the nearest-neighbor assignment of some
point a + t of the translated copy of A is changed; that
is, a crosses into a new Voronoi cell of V(B). For each
a ∈ A (this denotes the initial location of this point) con-
sider the shifted copy V(B) − a = V(B − a) of V(B); i.e.,
the Voronoi diagram of B − a = {b − a | b ∈ B}. Then
a critical event that involves the point ai occurs when
the translation t lies on the boundary of some Voronoi
cell of V(B − ai), for i = 1, . . . , m. Hence we need to

2We definitely decrease it with respect to the present
nearest-neighbor assignment, and the revised nearest-neighbor
assignment at the new placement can only decrease it further.

consider the overlay M(A, B) of the m shifted diagrams
V(B−a1), . . . ,V(B−am). Each cell of the overlay consists
of translations with a common NNA, and the number of
assignments is in fact equal to the number of cells in the
overlay M(A, B). A recent result of Koltun and Sharir [6]
implies that the complexity of the overlay is O(mdnd).
It is straightforward to give constructions that show that
this bound is tight in the worst case, for any d ≥ 1. 2

Corollary 2 For any cost function that guarantees con-
vergence (in the sense that the algorithm does not reach
the same NNA more than once), the ICP algorithm ter-
minates after O(mdnd) iterations.

Remark: A major open problem is to determine whether
this bound is tight in the worst case. So far we have been
unable to settle this question (under the RMS measure)
even for d = 1; see below for details. In other words,
while there can be many NNA’s, we suspect that the ICP
algorithm cannot step through many of them in a single
execution.

We next present a simple but crucial property of the
relative translations that the algorithm generates.

Lemma 3 At each iteration i ≥ 2 of the algorithm, the
relative translation vector ∆ti satisfies

∆ti =
1

m

X

a∈A

NB(a + ti−1) − NB(a + ti−2)

!

, (2)

where tj =
Pj

k=1 ∆tk.

Proof: Follows using easy algebraic manipulations, based
on the obvious equality that follows by construction

∆ti =
1

m

„

X

a∈A

(NB(a + ti−1) − (a + ti−1))

«

.

2

Remark: The expression in (2) only involves differences
between points of B. More precisely, the next relative
translation is the average of the differences between the
new B-nearest neighbor and the old B-nearest neighbor
of each point of (the current and preceding translations
of) A. This property does not hold for the first relative
translation of the algorithm.

Theorem 4 Let ∆t be a move of the ICP algorithm from
translation t0 to t0+∆t. Then RMS(t0+ξ∆t) is a strictly
decreasing function of ξ ∈ [0, 1].

Proof: The function (see also (1))

RMS(t) =
1

m

X

a∈A

„

‖t‖2+2t·(a−NB(a+t))+‖a−NB(a+t)‖2

«

is the average of m Voronoi surfaces SB−a(t), whose re-
spective minimization diagrams are V(B − a), for each
a ∈ A. That is,

SB−a(t) = min
b∈B

‖a+t−b‖2 = min
b∈B

„

‖t‖2+2t·(a−b)+‖a−b‖2

«

,

for each a ∈ A. Subtracting the term ‖t‖2, we obtain
that each resulting Voronoi surface SB−a(t) − ‖t‖2 is the

112

EWCG 2006, Delphi, March 27–29, 2006

f(t)

h(t)
t0

∆tQ(t)

b′

∆t

b

a

(a) (b)

Figure 1: (a) Illustrating the proof that RMS(t0 + ξ∆t)
is a strictly decreasing function of ξ ∈ [0, 1]. (b) The new
nearest neighbor lies ahead of the old one in the direction ∆t

lower envelope of n hyperplanes, and is thus the boundary
of a concave polyhedron. Hence Q(t) := RMS(t)−‖t‖2 is
equal to the average of these concave polyhedral functions,
and is thus the boundary of a concave polyhedron (see also
the proof of Theorem 1).

Consider the NNA that corresponds to the translation
t0. It defines a facet f(t) of Q(t), which contains the point
(t0, Q(t0)). We now replace f(t) by the hyperplane h(t)
containing it, and note that h(t) is tangent to the poly-
hedron Q(t) at t0; see Figure 1(a) for an illustration. Put
RMS0(ξ) := 1

m

P

a∈A
‖a + t0 + ξ∆t − NB(a + t0)‖

2. The
graph of RMS0(ξ) is the image of the relative translation
vector ∆t on the paraboloid ‖t‖2+h(t). Since Q(t) ≤ h(t),
for any t ∈ Rd, the concavity of Q(t) implies that for
any 0 ≤ ξ1 < ξ2 ≤ 1, Q(t0 + ξ1∆t) − Q(t0 + ξ2∆t) ≥
h(t0 + ξ1∆t)− h(t0 + ξ2∆t). Since ‖t‖2 + h(t) is (strictly)
monotone decreasing3 along ∆t, we obtain

RMS(t0 + ξ1∆t) − RMS(t0 + ξ2∆t) =

‖t0+ξ1∆t‖2+Q(t0+ξ1∆t)−‖t0+ξ2∆t‖2−Q(t0+ξ2∆t) ≥

‖t0+ξ1∆t‖2−‖t0+ξ2∆t‖2+h(t0+ξ1∆t)−h(t0+ξ2∆t) > 0,

which implies that RMS(t0+ξ∆t) is a strictly decreasing
function of ξ ∈ [0, 1]. 2

Let π be the connected polygonal path obtained by con-
catenating the ICP relative translations ∆tj . That is, π
starts at the origin and its j-th edge is the vector ∆tj .
Theorem 4 implies:

Theorem 5 The ICP path π does not intersect itself.

Corollary 6 (Monotonicity) In the one-dimensional
case, the ICP algorithm moves the points of A always in
the same (left or right) direction. That is, either ∆ti ≥ 0
for each i ≥ 0, or ∆ti ≤ 0 for each i ≥ 0.

Corollary 7 In any dimension d ≥ 1, the angle between
any two consecutive edges of π is obtuse.

Proof: Consider two consecutive edges ∆tk, ∆tk+1 of π.
Using Lemma 3 we have

∆tk+1 =
1

m

X

a∈A

„

NB(a + tk) − NB(a + tk−1)

«

.

3By definition, ∆t moves from t0 to the minimum of the
fixed paraboloid ‖t‖2 + h(t), whence the claim.

b1 = 0 b2 = 1

an = 1
2

−
1
n

+ δa2 = −
1
2

+ 1
n

+ δa1 = −n − δ(n − 1)

1
2

Figure 2: The lower bound construction. Only the two
leftmost cells of V(B) are depicted.

It is easy to see that (consult Figure 1(b))

„

NB(a + tk) − NB(a + tk−1)

«

· ∆tk ≥ 0,

for each k ≥ 1, where equally holds if and only if a does
not change its B-nearest neighbor. Hence ∆tk+1 ·∆tk ≥ 0.
It is easily checked that equality is possible only after the
last step (where ∆tk+1 = 0). 2

3 The ICP Algorithm on the Line under the RMS
Measure

In this section we consider the special case d = 1, and
analyze the performance of the ICP algorithm on the line
under the RMS measure. Theorem 1 implies that in this
case the number of NNA’s, and thus the number of iter-
ations of the algorithm, is O(mn). In general, we do not
know whether this bound is sharp in the worst case (we
strongly believe that it is not). However, in the worst case,
the number of iterations can be superlinear:

Theorem 8 There exist point sets A, B on the real line
of arbitrarily large common size n, for which the number of
iterations of the ICP algorithm (under the RMS measure)
is Θ(n log n).

Proof: We construct two point sets A, B on the real line,
where |A| = |B| = n. The set A consists of the points

a1 < · · · < an, where a1 = −n−δ(n−1), ai = 2(i−1)−n

2n
+δ,

for i = 2, . . . , n, and δ = o
`

1
n

´

is some sufficiently small
parameter. The set B consists of the points bi = i− 1, for
i = 1, . . . , n. See Figure 2.

Initially, all the points of A are assigned to b1. As the
algorithm progresses, it keeps translating A to the right.
The first translation satisfies

∆t1 =
1

n

n
X

i=1

(b1 − ai) =
1

n
(b1 − a1) −

n − 1

n
δ = 1,

which implies that after the first iteration of the algorithm
all the points of A, except for its leftmost point, are as-
signed to b2. Using (2), we have ∆t2 = 1

n

Pn−1
i=1 (b2−b1) =

n−1
n

, which implies that the n − 1 rightmost points of A
move to the next Voronoi cell V(b3) after the second iter-
ation, so that the distance between the new position of an

from the right boundary of V(b3) is 2
n
−δ, and the distance

between the new position of a2 and the left boundary of
V(b3) is δ, as is easily verified.

In the next iteration ∆t3 = n−1
n

(arguing as above).
However, due to the current position of the points of A
in V(b3), only the n − 2 rightmost points of A cross the
right Voronoi boundary of V(b3) (into V(b4)), the nearest
neighbor of a2 remains unchanged (equal to b3).

113

22nd European Workshop on Computational Geometry, 2006

bn−j+2bn−j+1
bn−j+3

l+2
n

βn−j+2

al+2 ana2

βn−j+1

an−(j−l−1)

Figure 3: At the last iteration of round j, after shift-

ing the points of A by ∆t = j

n
to the right, the points

al+2, . . . , an−(j−l−1) (represented in the figure as black bul-
lets) still remain in V(bn−j+2).

We next show, using induction on the number of
Voronoi cells the points of A have crossed so far, the fol-
lowing property. Assume that the points of A, except for
the leftmost one, are assigned to bn−j+1 and bn−j+2, for
some 1 ≤ j ≤ n (clearly, these assignments can involve
only two consecutive Voronoi cells), and consider all itera-
tions of the algorithm, in which some points of A cross the
common Voronoi boundary βn−j+1 of the cells V(bn−j+1),
V(bn−j+2). Then, (i) at each such iteration the relative
translation is j

n
, (ii) at each iteration, other than the last

one, the overall number of points of A that cross βn−j+1

is exactly j, and no point crosses any other boundary, and
(iii) at the last iteration of the round, the overall number
of points of A that cross either βn−j+1 or βn−j+2 is ex-
actly j − 1. In fact, in the induction step we assume that
properties (i), (ii) hold, and, as a consequence, show that
property (iii) follows.

To prove this property, we first note, using (2), that the
relative translation at each iteration of the algorithm is
k
n
, for some integer 1 ≤ k ≤ n. The preceding discussion

shows that the induction hypothesis holds for j = n and
j = n − 1. Suppose that it holds for all j′ ≥ j, for some
2 ≤ j ≤ n − 1, and consider round (j − 1) of the algo-
rithm, during which points of A cross βn−j+2 (that is, we
consider all iterations with that property). Thus, at each
iteration of round j (except for the last one), in which
there are points of A that remain in the cell V(bn−j+1),
the j rightmost points of A (among those contained in
V(bn−j+1)) cross βn−j+1. Let us now consider the last
such iteration. In this case, all the points of A, except l of
them, for some 0 ≤ l < j (and the leftmost point, which
we ignore), have crossed βn−j+1 (in previous iterations).
The key observation is that the distance from the current
position of an to the next Voronoi boundary βn−j+2 is
l+2
n

− δ (this follows since we shift in total n − 1 points
of A that are equally spaced by 1

n
), and since the next

translation ∆t satisfies ∆t = j

n
(using the induction hy-

pothesis and (2)), it follows that only j − 1 points of A
cross a Voronoi boundary in the next iteration. Moreover,
the points a2, . . . , al+1 cross the boundary βn−j+1, and
the points an−(j−l−2), . . . , an cross the boundary βn−j+2

(this is the first move in which this boundary is crossed at
all); see Figure 3 for an illustration.

Thus, at the next iteration, since only j−1 points have
just crossed between Voronoi cells, (2) implies that the
next translation is j−1

n
, and, as is easily verified, at each

further iteration, as long as there are at least j − 1 points
of A to the left of βn−j+2, this property must continue
to hold, and thus j − 1 points will cross βn−j+2. This

establishes the induction step.4

It now follows, using the above properties, that the
number of iterations required for all the points of A to
cross βn−j+1 is dn

j
e, where in the first (last) such itera-

tion some of the points may cross βn−j (βn−j+2) as well.
This implies that the number of such iterations, in which
the points of A cross only βn−j+1 (and none of the two

neighboring Voronoi boundaries), is at least
l

n
j

m

− 2 (but

not more than dn/je). Thus the overall number of iter-

ations of the algorithm is Θ
“

Pn

j=1

l

n
j

m”

= Θ(n log n).
2

4 Concluding Remarks
A major open problem that this paper raises is to improve
the upper bound, or, alternatively, present a tight lower
bound construction on the number of iterations performed
by the algorithm. This problem is challenging even in the
one-dimensional case. So far, we have not managed to
obtain a construction that yields Ω(n2) iterations, and we
conjecture that the actual bound is subquadratic in this
case, perhaps matching our lower bound, i.e., Θ(n log n).

Finally, we note that some of the results given in this
paper were supported and verified by running experimen-
tation. Our implementation is based on the Cgal [1] and
Leda [2] libraries.

Acknowledgments. The authors wish to thank Boris
Aronov for useful discussions concerning the problem. In
particular, during these discussions, the proof of Theo-
rem 4 has been obtained, and the parametrization given
in the construction presented in Section 3 has been simpli-
fied (from the original construction given by the authors).
The authors also wish to thank Leo Guibas, Pankaj Agar-
wal, Jie Gao and Vladlen Koltun for helpful discussions
concerning this problem. In particular, a preliminary ver-
sion of the proof of Theorem 4 has been obtained during
these discussions.

References

[1] The Cgal project homepage.
http://www.cgal.org/.

[2] The Leda homepage.
http://www.algorithmic-solutions.com/enleda.htm.

[3] H. Alt and L. Guibas. Discrete geometric shapes:
matching, interpolation, and approximation. In
Handbook of Computational Geometry. J.-R. Sack
and J. Urrutia eds. Elsevier, Amsterdam, pages 121-
153, 1999.

[4] P. J. Besl and N. D. McKay. A method for registra-
tion of 3-d shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):239–256, 1992.

[5] S. Har-Peled and B. Sadri. How fast is the k-means
method? Algorithmica, 41(3):185–202, 2005.

[6] V. Koltun, and M. Sharir. On overlays of minimiza-
tion diagrams. Manuscript, 2005.

4Note that the induction step first establishes property (iii)
of the preceding round, and then (i) and (ii) of the current
round.

114

EWCG 2006, Delphi, March 27–29, 2006

Noisy disk set matching under rigid motion

Yago Diez and J. Antoni Sellarès∗

Abstract

Let A and B be two disk sets, with |A| ≤ |B|. We
propose a process for determining matches between A
and subsets of B under rigid motion, assuming that
the position of all disks in both sets contains a cer-
tain amount of ”noise”. The process consists on two
main stages: a candidate zone determination algo-
rithm and a matching algorithm. A candidate zone
is a region determined by one, two or four squares
that contains a subset S of B such that A may match
one or more subsets B′ of S. We use a compressed
quadtree to have easy access to the subsets of B re-
lated to candidate zones. In each quadtree node we
store geometric information that is used by the algo-
rithm that searches for candidate zones. The second
algorithm solves the disk set matching problem: we
generate all, up to a certain equivalence, possible mo-
tions that bring A close to some subset B′ of every S
and seek for a matching between sets A and B′.

1 Introduction

Determination of the presence of a geometric pattern
in a large set of objects is a fundamental problem in
computational geometry. It arises in diverse appli-
cations such as astronomy (constellation recognition
problem) and molecular biology (substructure search
problem). Stars can be seen as disks in R2 with
radii determined by their brightness and an atom in
a protein molecule can be modelled as a ball in R3

whose radius is the Van Der Waals radius of the el-
ement it represents. Since star and atom positions
are fuzzy, both problems can be transformed to ap-
proximate disk/ball set matching under rigid motion
problems. In this paper we will concentrate in the
two-dimensional case.

1.1 Problem formulation

A rigid motion in R2 is a distance preserving mapping
that can be expressed as a composition of a rotation
and a translation. Fixed a real number ε ≥ 0 we say
that two disks D(a, r), D(b, s) of centers a, b and radii
r, s approximately match when r = s and d(a, b) ≤ ε,
where d denotes the Euclidean distance.

Let D, S be two disk sets of the same cardinality. A
radius preserving bijective mapping f : D → S maps
each disk A = D(a, r) ∈ D to a distinct and unique

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {ydiez,sellares}@ima.udg.es. Partially supported by
grant TIN2004-08065-C02-02.

disk f(A) = D(b, s) ∈ S so that f(a) = b and r =
s. Let F be the set of all radius preserving bijective
mappings between D and S. Observe that when the
disks in D and S have a high number of different radii,
|F| may severely diminish. The bottleneck distance
between D and S is defined as:

db(D,S) = min
f∈F

max
A∈D

d(A, f(A)) .

The Noisy Disk Matching (NDM) problem can
be formulated as follows. Given two disk sets A, B,
|A| ≤ |B|, and ε ≥ 0, determine all rigid motions
τ for which there exists a subset B′ of B such that
db(τ(A),B′) ≤ ε.

If τ is a solution to the NDM problem, every disk of
τ(A) approximately matches to a distinct and unique
disk of B′ of the same radius, and we say that A and
the subset B′ of S are noisy congruent. According
to our initial motivation, we are only interested in
subsets B′ so that A and B′ are noisy congruent, and
not so much in the individual matchings between disks
in τ(A) and B′.

If we think of a point as a disk of 0 radius and
point sets of the same cardinality are considered, then
the NDM problem becomes the Noisy Matching
(NM) problem: Given two point sets A, B of the
same cardinality and ε ≥ 0, determine, if possible, a
rigid motion τ such that db(τ(A),B) ≤ ε .

1.2 Previous Results

The study of the NM problem was initiated by Alt
et al. [1] who presented an exact O(n8) time algo-
rithm for solving the problem for two sets of cardi-
nality n. This bound can be reduced to O(n3 log n) if
an assignment of points in A to points in B is given
[1]. Combining Alt et alt. algorithm with the tech-
niques by Efrat et al. [3] the time can be reduced to
O(n7 log n).

We must note here that none of these approaches
considers the possibility of working with disk sets and
that the fact of having sets of different cardinality is
often not considered.

2 Our Approach

Our main goal is to discretize the NMD problem by
turning it into a series of ”smaller” instances, expect-
ing that their solution will be faster. To do so, we
will use a conservative strategy to discard those sub-
sets of B where no noisy match may happen and keep
a number of zones where this matches may occur.

115

22nd European Workshop on Computational Geometry, 2006

We will assume that all rectangles and squares we
consider are axis-parallel. Our algorithm consists on
two main parts. The first one yields a collection of
candidate zones, which are regions determined by one,
two or four squares that contain a subset S of B such
that A may approximately match one or more subsets
B′ of S. The second part of the algorithm solves the
NDM problem between A and every B′.

The discarding decisions throughout the first part
of this process will be made according to a series of
geometric parameters, invariant under rigid motion,
that will help us to describe the shapes of A and the
different subsets of B that we explore. To navigate B
and have easy access to those subsets, we will use a
compressed quadtree [2]. By doing this we intend to
achieve a reduction of the total computational time,
corresponding to a pruning of the search space, as an
effect of all the calculations we avoid by discarding
parts of B cheaply and at an early stage.

The candidate zone determination algorithm con-
sists itself of two subparts: a quadtree construc-
tion algorithm and a search algorithm that traverses
the quadtree looking for the candidate zones. The
quadtree construction algorithm can also be subdi-
vided in two more parts: a compressed quadtree
building algorithm that uses the centers of the disks in
B as sites (without considering their radii), and then
an algorithm that adds the information related to the
geometric parameters being used to each node.

The second part of the algorithm consists on two
more parts. The first one, the ”enumeration” part,
will group all possible rigid motions of A in equiv-
alence classes in order to make their handling fea-
sible. We will choose a representative motion τ for
every equivalence class. The second step, the ”test-
ing” part, will perform a bipartite matching algorithm
between every set τ(A) and every disk set B′ associ-
ated to a candidate zone. For these matching tests
we will modify the algorithm proposed in [3] by using
the skip-quadtree data structure [4] in order to make
it easier to implement and to take advantage of the
data structures that we have already built.

3 Candidate zone determination algorithm

Let RA be the minimal rectangle that contains all the
centers of the disks in A, and let s be the smallest pos-
itive integer for which (diagonal(RA)+2ε) ≤ 2s holds.
It is not difficult to prove that for any rigid motion τ
there exists an square of size s (with side length 2s)
containing all the centers in τ(A). This allows us to
affirm that, for any S ⊂ B noisy congruent with A
there will exist a square of size s that contains the
centers of its disks. In this first step of our algorithm,
instead of looking for all possible rigid motions of set
A we will look for such squares. More specifically, we
will store the centers of the disks in B in a compressed
PR quadtree QB and describe the geometry of each of

the nodes in this quadtree using a number of geomet-
ric parameters that are invariant for rigid motions.
Then we will look for candidate zones in the quadtree
whose associated geometric parameters match those
of A. Although our intention would be to describe
our candidate zones exactly as squares of size s this
will not always be possible, so we will also have to use
two or four squares of size s. It is important to stress
the fact that ours is a conservative algorithm, so we
will not so much look for candidate zones as rule out
those regions where no candidate zones may appear.

3.1 Compressed quadtree construction

Although for the first part of the algorithm we will
only use the quadtree levels between the root and the
one whose associated nodes have size s, we will use
the remaining levels later, so we build the whole com-
pressed quadtree QB. We use the techniques in [2]
to ensure a total asymptotic cost of O(m log m) in all
cases, where m = |B|.

3.1.1 Adding information to the quadtree

To simplify explanations we will consider QB to be
complete. Although it is clear that this will not be
the general situation this limitation can be easily over-
come in all the parts of the algorithm.

At this moment the quadtree QB contains no infor-
mation about the different radii of the disks in B or
the geometric characteristics of B as a whole. Since
these parameters will guide our search for matches
they must be invariant under rigid motion. Some ex-
amples of geometric parameters we can consider are:
a) parameters that take into account the fact that
we are working with disk sets: number of disks or
list of disk’s radii attached to a node; b) parameters
based on distances between centers: maximum and
minimum distance between centers or maintaining the
whole of the distance matrix depending on our prac-
tical memory requirements and the performance we
achieve. For every geometric parameter we will define
a parameter compatibility criterium that will allow us
to discard zones of the plane that cannot contain a
subset B′ of B to which A may approximately match.

Figure 1: There cannot be any B′ that approximately
matches A fully contained in the four top-left squares be-
cause A contains twelve disks and the squares only six.

Once selected the set of geometric parameters to

116

EWCG 2006, Delphi, March 27–29, 2006

be used, in the second stage of the quadtree construc-
tion, we will traverse QB and associate to each node
the selected geometric parameters. We will also com-
pute them for the whole of A. The computational
cost of adding the geometric information to QB de-
pends on the parameters that we choose. In the
case of the ”number of disks” and ”list of radii” pa-
rameters we can easily keep track of them while we
build the quadtree, so no additional cost is needed.
Adding other parameters will indeed need extra com-
putational time but will also make the discarding of
zones more effective. The balance between this two
factors will be an important part of our future work.

3.2 Candidate zones determination

We must face the problem of determining all the can-
didate zones where squares of size s that cover a sub-
set of B which is parameter compatible with A can
be located. The subdivision induced by the nodes of
size s of QB corresponds to a grid of squares of size s
superimposed to set B. If we bear in mind that we are
trying to place a certain square in a grid of squares of
the same size, it is easy to see that the only three ways
to place one of our squares respect to this grid corre-
spond to the relative position of one of the square’s
vertices. This will yield three different kinds of can-
didate zones associated to one, two or four nodes (see
Figure 2). The subsets B′ that we are looking for may
lie anywhere inside those zones.

Figure 2: Position of the candidate zones in the grid.

3.2.1 Search algorithm

Due to lack of space, we only provide a very brief
overview of an algorithm that traverses the quadtree
QB searching for the collection C of candidate zones.
The hierarchical decomposition of B provided by QB
makes possible to begin searching at the whole of
B and later continue the search only in those zones
where, according to the selected geometric parame-
ters, it is really necessary. The algorithm searches
recursively in all the quadrants considering also those
zones that can be built using parts of more than one
of them. The zones taken into account through all
the search will continue to decrease their size, until
they reach s, following the algorithm’s descent of the
quadtree. Consequently, early discards made on be-
half of the geometric parameters will rule out of the
search bigger subsets of B than later ones.

Given that two or four nodes defining a candi-
date zone need not be in the same branch of QB,
at some points we will need to be exploring two or
four branches simultaneously. This will force us to
have three separate search functions, depending on
the type of candidate zones we are looking for, and
to calculate the geometric information associated to
those zones that do not correspond exactly to nodes
in the quadtree. This calculations are of constant cost
in the case of the parameters number of disks and list
of radii. The main search function seeks for candidate
zones formed by only one node and the other two seek
for zones formed by two or four nodes.

In the worst case all possible zones are considered
to be candidate zones and the total number of nodes
of QB ∈ O(m), so the number of candidates zones,
c = |C|, is in O(m). Considering a ”perfect” behav-
ior of the geometric pruning technique and that the
quadtree is descended from the root (sized t) down to
a level whose nodes have size s, t − s < m, then the
cost of the search algorithm is O(c(t − s)) ∈ O(m2).

Summarizing, the computational cost of our algo-
rithm in the case where in the two steps only the
”number of disks” and ”list of radii” parameters are
used is O(max{m log m, c(t − s)}. In practice we ex-
pect the factor (t−s) to be close to constant achieving
computational times close to quasi-linear in m.

4 NDM problem solving algorithm

Now we have a NDM problem where we can expect
the sets involved, A, S ∈ C (n = |A| ≤ n′ = |S| ≤ m),
to be ”similar” in numbers of disks and in the aspects
of their shape described by the geometric parameters.
We present an algorithm to solve this NDM problem,
that adapts the best currently existing algorithms for
solving the NM problem [3, 1] and takes advantage of
the compressed quadtree that we have already built
and is implementable. Our approach will consist of
two parts called ”enumeration” and ”testing”.

4.1 Enumeration

Generating every possible rigid motion that brings set
A onto a subset of S is infeasible due to the continuous
nature of movement. We will partition the set of all
rigid motions in equivalence classes in order to make
their handling possible.

For b ∈ R2, let (b)ε denote the circle of radius ε cen-
tered at point b. Let Sε denote the set {(b)ε|D(b, s) ∈
S}. Consider the arrangement A(Sε) induced by the
circles in Sε. Two rigid motions τ and τ ′ will be con-
sidered equivalent if for all disks D(a, r) ∈ A, τ(a)
and τ ′(a) lie in the same cell of A(Sε). We generate
a solution in each equivalence class, when it exists,
and its corresponding representative motion using the
techniques presented in [1]. A simple geometric argu-
ment shows that if there exists any rigid motion τ
that solves our NDM problem then there exists an-

117

22nd European Workshop on Computational Geometry, 2006

other rigid motion τ ′, that belongs to the equivalence
class of τ , that also does it and such that we can
find two pairs of disks D(ai, ri), D(aj , rj) ∈ A and
D(bk, sk), D(bl, sl) ∈ S, ri = sk and rj = sl, with
τ ′(ai) ∈ (bk)ε and τ ′(aj) ∈ (bl)

ε. We check this prop-
erty for all quadruples i, j, k, l.

Mapping ai, aj onto the boundaries of (bk)ε, (bl)
ε

respectively in general leaves one degree of freedom
which is parametrized by the angle φ ∈ [0, 2π) be-
tween the vector |ai − bk| and a horizontal line. Con-
sidering any other disk D(ah, rh) ∈ A, h 6= i, j for
all possible values of φ, the center of that disk will
trace an algebraic curve of degree 6 σijklh so that
for every value of φ there exists a rigid motion τφ

holding τφ(ai) ∈ (bk)ε, τφ(aj) ∈ (bl)
ε and τφ(ah) =

σijklh(φ). For every remaining disk D(bp, sp) in S
with sp = rh, we compute the intersections between
(bp)

ε and σijklh(φ) which contains at most 12 points.
For parameter φ, this yields a maximum of 6 intervals
contained in I = [0, 2π[where the image of τφ(ah) be-
longs to (bp)

ε. We will call this set Ip,h following the
notations in [1]). Notice for all the values φ ∈ Ip,h we
may approximately match both disks. We repeat the
process for each possible pair D(ah, rh), D(bp, sp) and
consider the sorted endpoints, called critical events, of
all the intervals Ip,h. Notice that the number of crit-
ical events is O(nn′). Subsequently, any φ ∈ [0, 2π[
that is not one of those endpoints belongs to a cer-
tain number of Ip,h’s and φ corresponds to a certain
rigid motion τφ that brings the disks in all the pairs
D(ah, rh), D(bp, sp) near enough to be matched. The
subdivision of [0, 2π[consisting in all the maximal
subintervals that do not have any endpoints of any
Ip,h in their interior stands for the partition of the set
of rigid motions that we were looking for.

4.2 Testing

We move parameter φ along the resulting subdivision
of [0, 2π[. Every time a critical event is reached, we
test the sets τφ(A) and S for matching. Whenever the
testing part determines a matching of cardinality n we
annotate the corresponding τφ and proceed. Follow-
ing the techniques presented in [3], in order to update
the matching, we need to find a single augmenting
path using a layered graph.

When searching for augmenting paths we will need
to perform efficiently the two following operations: a)
neighbor(D(T), q): for a query point q in a data
structure D(T) that represents a point set T , re-
turn a point in T whose distance to q is at most ε
or ∅ if no such element exists. b) delete(D(T), s):
Delete point s from D(T). For our implementation
we will use the skip quadtree, a data structure that
combines the best features of a quadtree and a skip
list [4]. The cost of building a skip quadtree for any
set T ⊆ S is in O(n′ log n′). This computational cost
is, in the worst case when n′ = m, the same ob-

tained in [3]. Neighbor operation is used to get all
the points in our skip quadtree holding the condition
previously stated, and combined with the delete op-
eration to prevent refinding points. This corresponds
to a range searching operation in the skip quadtree
followed by a set of deletions. The asymptotic com-
putational cost of the deletion of a point in a skip
quadtree is O(log n′). The range searching can be ap-
proximated in O(δ−1 log n′ + u) time where u is the
size of the output in the approximate range query
case, for constant δ > 0 [4]. The approximate range
searching outputs some ”false” neighbor points that
can be detected in O(1) time. For the asymptotic
cost of the neighbor operation, we observe that the
smaller δ is, the bigger the computational time for
the approximate range searching but the smaller the
number of false neighbors. This leaves the cost of the

neighbor operation between O(δ−1 log n′

u + 1) amor-
tized cost, when δ allows no false neighbors, and O(n′)
when δ is arbitrarily big. The first case meets the cost
in [3] and the second one is a little worse and meets the
costs in [1]. We believe this last case to be unrealistic
and expect an overall of our algorithm performance
similar to [3] using simpler data structures. We de-
note t(n′) an upper bound on the time of performing
neighbor operation in S’s skip quadtree. This yields
a computational cost of O(nt(n′)) for finding an aug-
menting path.

4.3 Computational Cost

During the enumeration part, in the worst case
O(n2n′2) quadruples of disks are considered. For each
quadruple, we work with O(nn′) pairs of disks, obtain-
ing O(nn′) critical events. Summed over all quadru-
ples the total number of critical events encountered
in the course of the algorithm is O(n3n′3). Finally
for the testing part, since we spent O(nt(n′)) time at
each critical event for finding an augmenting path, the
total time of the algorithm sums to O(n4n′3t(n′)).

When all candidate zones S ∈ C are considered, the
total cost is

∑
S∈C O(n4n′3t(n′)).

References

[1] H. Alt, K. Mehlhorn, H. Wagener and E. Welzl. Con-
gruence, similarity and symmetries of geometric ob-
jects. Discrete & Computational Geometry, 3:237–
256, 1988.

[2] S. Aluru and F.E. Sevilgen. Dynamic compressed hy-
peroctrees with application to the N-body problem.
Proc. 19th Conf. Found. Softw. Tech. Theoret. Com-
put. Sci., LNCS 1738:21-33, 1999.

[3] A. Efrat, A. Itai and M.J. Katz. Geometry helps in
Bottleneck Matching and related problems. Algorith-
mica, 31:1–28, 2001.

[4] D. Eppstein, M.T. Goodrich, and J.Z. Sun. The skip
quadtree: a simple dynamic data structure for multi-
dimensional data. 21st ACM Symp. on Comp. Geom.,
296–305, 2005.

118

EWCG 2006, Delphi, March 27–29, 2006

So Much Data, So Little Time

Bernard Chazelle

Department of Computer Science, Princeton University
35 Olden Street, Princeton, NJ 08540-5233, USA

chazelle@cs.princeton.edu

Motivated by the need to cope with floods of data, algorithm design is undergoing profound
changes. Self-improvement, online property-preserving filtering, uncertainty, sublinearity
and property testing are all parts of the story. I will discuss some of these exciting
developments with an emphasis on its geometric aspects.

119

22nd European Workshop on Computational Geometry, 2006

120

EWCG 2006, Delphi, March 27–29, 2006

Restricted Mesh Simplification Using Edge Contractions

Mattias Andersson ∗ Joachim Gudmundsson † Christos Levcopoulos‡

Abstract

We consider the problem of simplifying a triangle
mesh using edge contractions, under the restriction
that the resulting vertices must be a subset of the in-
put set. That is, contraction of an edge must be made
onto one of its adjacent vertices. In order to maintain
a high number of contractible edges under this re-
striction, a small modification of the mesh around the
edge to be contracted is allowed. Such a contraction
is denoted a 2-step contraction. Given m “important”
points or edges it is shown that a simplification hier-
archy of size O(n) and depth O(log n/m) may be con-
structed in O(n) time. Further, for many edges not
even 2-step contractions may be enough, and thus,
the concept is generalized to k-step contractions.

1 Introduction

In computer graphics objects are commonly repre-
sented using triangle meshes. One important problem
regarding these meshes is how to efficiently simplify
them, while maintaining a good approximation of the
original mesh. As an example, scanners often pro-
duce information redundant meshes containing mil-
lions of points and triangles. Further, often the sim-
plication should be performed in several rounds, such
that a level-of-detail hierarchy is constructed. One
application of such a hierarchy is that an appropriate
level may be chosen depending on viewing distance, as
finer details tend to be unnecessary as the distance in-
creases. Other applications include progressive trans-
mission and efficient storing. It is common to repre-
sent the level-of-detail hierarchy as a directed, acyclic
and hierarchical graph, where each level in the graph
corresponds to a level in the level-of-detail hierarchy,
and where each node in the graph corresponds to a
triangle, in the natural way. The first, top-most, level
in the graph corresponds to the input mesh. When
a contraction is made two triangles disappear, and
one or more triangles are affected in such a way that
their appearance change. In the graph this is repre-
sented with edges between disappearing triangles at

∗Department of Computer Science, Lund University,
mattias@cs.lth.se

†National ICT Australia Ltd., IMAGEN Program,
Joachim.Gudmundsson@nicta.com.au

‡Department of Computer Science, Lund University,
christos@cs.lth.se

some level i, and the affected triangles at level i + 1.
Such a graph will simply be denoted a hierarchical
graph, and the efficiency of a simplification algorithm
is directly related to the size [3, 11] and depth of
the hierarchical graph it may produce. Simplification
algorithms constructing hierarchies of size O(n) and
depth O(log n) have been presented for several prob-
lem variants [1, 2, 4, 10]. Mesh simplification is gener-
ally regarded as a mature field (see [5, 8] for surveys),
consisting of several suggested methods and problem
variants. In this paper the method of iteratively con-
tracting edges [1, 6, 7, 9] is considered, where contrac-
tions are made such that no crossing edges result from
the contraction. This method is examined under the
restriction that the set of output points is required to
be a subset of the input points, i.e., contraction of an
edge must be done onto one of its adjacent vertices. In
order to maintain a high number of contractible edges
a small modification of the mesh around an edge to
be contracted is allowed. This method is denoted a
2-step contraction, and it is shown that a hierarchical
graph of size O(n) and depth O(log n/m) may be pro-
duced under the restriction that several “important”
points or edges may not be contracted. Further, in
order to enable contraction of edges that are not even
2-step contractible the concept is generalized to k-step
contractions. We show that k can be bounded by ei-
ther deg(v) − 4 of a vertex v to be contracted, or by
the number of concave corners on the hull of v (see
Section 2 for definition).

(a) (b)

Figure 1: (a) A planar triangulation with a rectan-
gular outer hull is given as input. (b) Illustrating an
edge contraction (merge-operation).

2 Contracting in k steps

As input we are given a planar triangulation T . We
can assume that the outer hull of T is a rectangle, as
illustrated in figure 1a.

121

22nd European Workshop on Computational Geometry, 2006

v
v1v

u u u
′

v
′ v

′
v
′

u

v
′

(a) (b) (c) (d)

vu
′

u
′

uu
′

t

s s

t

s

t

s

t

Figure 2: Illustrating a 2-step contraction of a degree
6 node v.

The aim is to simplify T by iteratively perform-
ing edge contractions, as shown in Fig. 1b, where an
edge (u, v) can be contracted such that u is moved to
v, or v is moved to u. A problem that often occurs
during edge contractions of triangulations is that the
resulting triangulation might not be planar. An edge
contraction is said to be valid if the resulting trian-
gulation still is planar. In this paper we consider the
problems of defining valid contractions and comput-
ing valid contractions. Below some basic operations
and notations are defined:

Consider a vertex v and assume the degree of
v is d, and let u1, . . . , ud be the vertices adjacent
to v in clockwise order around v. The hull of v,
denoted H(v), is the cycle described by the edges
(ui, u(i+1) mod d) for 1 ≤ i ≤ d. We need some addi-
tional definitions. A split operation splits a vertex v
of degree d into two vertices v and v1 connected by
an edge such that the resulting triangulation is pla-
nar, v has degree d′ and v1 has degree d − d′ + 4, as
illustrated in Figure 2a-b. Next, a merge operation
contracts one vertex u onto another vertex u′, both
connected by an edge in T , into one vertex u′, as il-
lustrated in Figure 2c-d. Let d(u′) denote the degree
of u′ before the contraction. After the contraction u′

has degree d(u) + d(u′)− 3. And, finally, a split-and-
merge operation on vertices v and u first performs a
split operation of v, followed by a merge operation on
v1 and u. The split-and-merge operation is said to be
valid if the triangulation is planar at each step of the
operation. Note that an edge contraction is obtained
by a single merge operation.

Next we define 1-step contractible using the merge
concept, and we then generalize this concept into k-
step contractible. If two vertices u and v, connected
by an edge in the triangulation T can be merged into
a new vertex w placed at u such that the contracted
triangulation still is planar, then v is said to be 1-step
contractible (at u). A vertex v is said to be k-step
contractible if and only if one can perform at most
k − 1 valid split-and-merge operations followed by a
1-step contraction of v.

With regards to guaranteeing a hierarchical simpli-
fication graph of small size and depth, mainly 2-step
contractions will be considered. Figure 2 shows a ver-
tex v that is 2-step contractible since a valid split-and-

A

Figure 3: No edge in region A can be contracted,
unless using k-step contractions.

(a) (b)
p′

p

u′

u

p u

p′ u′

q

l

v

v

Figure 4: The two cases of Theorem 1.

merge operation is followed by a 1-step contraction of
v. However, to be able to change the level of details for
models where the user is allowed to perform the stan-
dard operations - rotate, zoom and so on, we would
ideally perform edge contractions in small specified ar-
eas. For example, in configurations like the one shown
in Figure 3, if one wants to perform k-step contrac-
tions which change or contract only edges inside the
area A, then k has to be at least proportional to the
number of edges inside A (divided by some constant).

Thus, the generalized concept of a k-step contrac-
tion is needed, and below (Theorem 1 and 3) upper
bounds on k are shown.

Theorem 1 Any vertex v, not on the hull of T , with
degree at most m is k-step contractible, where k =
max{1, m− 4}.

Proof. The theorem is proven by induction on the
degree of v.
Base case: Vertices of degree at most four can easily
be 1-step contracted. We thus assume that v has de-
gree five, which immediately implies that H(v) con-
tains five points. Consider the interior of H(v). If
there exists a corner v′ of H(v) which can see all other
corners of H(v) then v is 1-step contractible at v′,
and thus, the theorem holds. Next, since H(v) has
at least three convex corners, H(v) has at most two
concave corners. If H(v) has only one concave corner
u then this corner must see all the vertices of H(v)
and, hence, v is 1-step contractible to u. If H(v) has
two concave corners we have two cases, as shown in

122

EWCG 2006, Delphi, March 27–29, 2006

v

Figure 5: Example of a vertex v that is not 1-step
contractible.

Figure 4. Note that edges between v and H(v) are
not included in order to avoid cluttering of the figure.
In the first case, Figure 4a, the concave corner points
p and u are not incident, while in the second, Figure
4b, they are.

First case First note that p and u must lie inside
the triangle defined by the three convex corners
in H(v), and also that p and u always see each
other. There exist two incident convex corner
points p′ and u′, such that p′ is incident on p and
u′ is incident on u. It is straightforward to see
that p sees all points of H(v) if the edge (p, p′)
does not cross the line-extension of the segment
(u, u′), as p then can see u′. The same holds
for u, the edge (u, u′) and the line extension of
(p, p′). However, both cases can not occur simul-
taneously as this implies that the edges (u, u′)
and (p, p′) must cross. Thus, either p or u can
see all of H(v).

Second case Consider the one convex corner point q
not incident on either p or u. Since q is connected
to both p′ and u′, q will see all corners of H(v) if
and only if q sees both p and u. Next, consider
the line-extension l of the segment (p, u). Since
p and u are concave corners p′ and u′ must lie on
the same side of l. Further, q must connect to
p′ and u′ such that p′ and u′ form convex angles
and p and u form concave angles. This means
that q must lie on the opposite side of p and u,
with regards to l, which immediately implies that
q can see both p and u.

Induction hypothesis: Assume that the theorem holds
for all vertices of degree at most m− 1.
Induction step: Assume that v has degree m. There
exists a point u on the hull of v that can see at least
four consecutive vertices of the hull including itself.
Denote these vertices u1, . . . , u4. Split v into v1 and
v such that v1 is connected to u1, . . . , u4 and v. Now,
v1 can be 1-step contracted at u. The degree of v is
now m−1, thus applying the induction hypothesis on
v proves the theorem. �

Note that if v has degree 6 then it might not be
1-step contractible as shown in Figure 5.

Corollary 2 At least two edges in T are 1-step con-
tractible.

Proof. Follows from Theorem 1 and the fact that any
planar graph has total degree at most 6n−12 (Euler’s
theorem). Details omitted. �

Note that if only few edges are 1-step contractible
then almost all vertices in T must have degree 6. The
bound stated in Corollary 2 is probably very conser-
vative. If the number of 1-step contractible edges is
small that implies that almost all vertices of T have
degree 6. However, we have not been able to con-
struct any examples where almost all vertices have
degree 6 while simultaneously being not 1-step con-
tractible. Next we present an alternative bound on k.
As only concave corners restrict visibility, intuitively
it should be easier to contract a vertex with few con-
cave corners on its hull. The following theorem can
be shown.

Theorem 3 Every vertex v, not on the hull of T ,
with at most c concave vertices on its hull is k-step
contractible, where k = c.

Proof. Proof omitted. �

3 The number of k-contractible edges

Allowing k-step contractions increases the flexibility
of simplification since it allows a greater fraction of
the edges to be contracted. In this section a lower
bound on the number of k-contractible edges is given,
where Theorem 1 and the fact that the total degree
is bounded is used.

Observation 1 At least (k−1
k+2)n vertices are k-step

contractible, for any k ≥ 2.

Proof. Let L be the set of interior vertices of T that
are k-step contractible. From Theorem 1 we know
that L at least consists of all vertices of degree at
most d = k+4. Let N be the remaining set of interior
vertices. Recall that the sum of the degrees over all
vertices is at most 6n− 12. This implies that the size
of L is minimized when all vertices in N has degree
(d + 1) and the vertices in L and the four vertices on
the hull has degree 3. We have the following equation:

4·3+(d+1)|N |+3|L| = 6n−12 where |N |+|L| = n−4.

As a result it holds that |L| ≥
(

d−5
d−2

)
n ≥

(
k−1
k+2

)
n. �

4 The hierarchical graph

In this section we show that using 2-step contrac-
tions we can achieve a hierarchical graph, as defined in
the introduction, of size O(n) and depth O(log n/m),
given m important points or edges that may not be
contracted. In order to do this several edges must be
simultaneously contracted in each round, that is, at

123

22nd European Workshop on Computational Geometry, 2006

x

y
y

Figure 6: Initially x and y are contractible, but after
x has been contracted y is no longer contractible.

each level of the graph. Next, note that a previously
valid 1-step contractible edge might become invalid af-
ter other edges have been contracted, as shown in Fig-
ure 6. In order to avoid this problem, for the purpose
of finding simultaneously contractable edges, we con-
sider independent edges. Let S′

2 be the set of 2-step
contractible vertices of degree at most six. Combining
Theorem 1 and Observation 1 it is straightforward to
see that |S′

2| ≥ n
4 . Since a vertex in S′

2 has at most
six neighbors we can choose at least n

4·7 = n
28 vertices

from S′
2 such that none of these chosen vertices has a

neighbor from S′
2. Thus, there exists a constant frac-

tion γ of independent 2-step contractible vertices, and
the following theorem can be shown.

Theorem 4 Given m important points S′′ ⊂ S in a
triangulation T one can perform O(log n/m) rounds
of 2-step contractions to obtain a triangulation T ′ of
a point set S′ with complexity O(m) such that S′′ ⊆
S′ ⊂ S.

Proof. Let ni denote the number of vertices before
round i and consider an arbitrary constant δ < γ.
Perform rounds until m ≥ δni, that is until the re-
sulting point set S′ have complexity O(m). This is
possible, since as long as m ≤ δni, there are at least
γni − δni = (γ − δ)ni 2-step contractible vertices re-
maining, containing no important point. Thus, T ′ can
be obtained using at most O(log 1

γ−δ
n− log 1

γ−δ
m) =

O(log n − log m) = O(log n/m) rounds of contrac-
tions. �

Corollary 5 Using rounds of 2-step contractions a
hierachical graph of size O(n) and depth O(log n/m),
given m important points, may be produced in O(n)
time.

Proof. Note that the above theorem immediately en-
ables the construction of hierarchical graph of depth
O(log n/m). Next, consider the size. Note that the
number of nodes in the hierarchical graph is O(n)
and only 2-step contractible vertices of degree at most
six are used during the rounds of contractions. This
means that at most four triangles are affected by a
contraction, which implies that each node in the hier-
archical graph has at most four incident edges. Thus,
the hierarchical graph has size O(n)

Next, consider the time complexity of creating the
hierarchical graph. Note that the Theorem 4 was
shown using only 2-step contractible edges of constant
degree (at most six). Thus, in each round i the set
of γni independent 2-step contractible edges can be
found in O(ni) time. This means, since ni ≤ n(γ)i−1,
that the total running time is O(n+nγ+n(γ)2+ . . .+
n(γ)O(log n/m)) = O(n(γ + γ2 + . . . + γO(log n/m)) =
O(n). �

Finally, note that the above results also holds for m
important edges (or m edges and vertices, in total),
since each important edge restricts possible contrac-
tion for only a constant (two) number of vertices.

References

[1] S. Cheng, T. Dey and S. Poon. Hierarchy of Surface
Models and Irreducible Triangulations. Computa-
tional Geometry Theory and Applications (CGTA),
27:135-150, 2004.

[2] M. de Berg, K. T. G. Magillo. On Levels of Detail
in Terrains. In Proc. ACM Symposium on Computa-
tional Geometry, pp.26-27, 1995.

[3] L. De Floriani, P. Magillo and E. Puppo. Building
and Traversing a Surface at Variable Resolution. In
Proc. IEEE Visualization’97, pp.103-110, 1997.

[4] C. A. Duncan, M. T. Goodrich and S. G. Kobourov.
Planarity-Preserving Clustering and Embedding for
Large Planar Graphs. In Proc. Graph Drawing ’99,
pp.186-196, 1999.

[5] M. Garland. Multiresolution Modelling: Sur-
vey and Future Opportunities. Eurograph-
ics ’99, State of the Art Report (STAR).
http://graphics.cs.uiuc.edu/ garland/papers.html

[6] S. Gumhold, P. Borodin and R. Klein. Intersec-
tion Free Simplification In Proc. 4th Israel-Korea
Bi-National Conference on Geometric Modeling and
Computer Graphics, pp 11-16, 2003

[7] P. Heckbert and M. Garland. Surface Simplifica-
tion Using Quadric Error Metrics. In Proc. SIG-
GRAPH’97, pp 209-216, 1997

[8] P. Heckbert and M. Garland. Survey of Polyg-
onal Surface Simplification Algorithms. Multires-
olution Surface Modelling Course, SIGGRAPH’97
http://graphics.cs.uiuc.edu/ garland/papers.html

[9] H. Hoppe. Progressive Meshes. In Proc. SIG-
GRAPH’96, pp. 99-108, 1996

[10] D. G. Kirkpatrick. Optimal Search in Planar Subdi-
visions. SIAM Journal of Computing, 12:28-35, 1983.

[11] J. C. Xia, J. El-Sana and A. Varshney. Dynamic
View-Dependent Simplification for Polygonal Mod-
els. In Proc. IEEE Visualization’96, pp.327-334,
1996.

124

EWCG 2006, Delphi, March 27–29, 2006

Guaranteed-Quality Anisotropic Mesh Generation

for Domains with Curves

Yusuke Yokosuka∗ Keiko Imai†

Abstract

Anisotropic mesh generation is important for interpo-
lation and numerical modeling. Recently, Labelle and
Shewchuk proposed a two dimensional guaranteed-
quality anisotropic mesh generation algorithm called
Voronoi refinement. This algorithm treats only do-
mains with straight lines as inputs. However, in many
applications, input domains have many curves and the
exact representation of curves is needed for efficient
numerical modeling. In this paper, we extend the
Voronoi refinement and propose it as a guaranteed-
quality anisotropic mesh generation algorithm for do-
mains with curves. Some experimental results are also
shown.

1 Introduction

Mesh generation is used in interpolation including
computer graphics, and numerical modeling includ-
ing the finite element method. It has been shown
that anisotropic meshes where the elements are elon-
gated along specified directions are well suited for in-
terpolation and numerical modeling [6]. In this paper,
we consider two dimensional anisotropic mesh gener-
ation.

In anisotropic mesh generation, many heuristic so-
lutions have been proposed [1, 2, 4, 7]. These al-
gorithms work for all kinds of domains. However,
meshes generated by heuristics are not unique and
have no guaranteed property. Recently, Labelle and
Shewchuk [3] have proposed an anisotropic mesh gen-
eration algorithm which guarantees that high quality
meshes are generatedD This high quality means that
there are no poor-quality triangles in the mesh. The
algorithm can be applied to the cases where the input
domain is a planar straight line graph (PSLG). How-
ever, it cannot be used for input domains with curves.
Therefore, we aim to extend this algorithm to treat
domains with curves.

There is an approach to handle domains with
curves. If we first approximate an input curve with
segments, the Voronoi refinement algorithm proposed

∗Department of Information and System Engineering, Grad-
uate School of Science and Engineering, Chuo University,
yoyu@imai-lab.ise.chuo-u.ac.jp

†Department of Information and System Engineering, Chuo
University, imai@ise.chuo-u.ac.jp

by Labelle and Shewchuk can be used for the seg-
ments. The new points inserted by the algorithm are
not on the original curves but on the approximate
segments. It follows that the obtained mesh does not
precisely approximate the boundary of the input do-
main. To overcome this, there is a way to divide the
curve into smaller segments. If we use this method,
the number of triangles in the mesh is undesirably
large. From the above discussion, we find that where
new points are to be inserted has to be decided during
the execution of the algorithm.

2 Anisotropic Mesh

In this section, we first explain the relationship be-
tween a metric tensor and anisotropic mesh genera-
tion. Next, we define anisotropic Voronoi diagrams
and anisotropic Delaunay triangulations. These defi-
nitions are introduced by Labelle and Shewchuk [3].

Consider a domain Ω ⊆ Rd. Suppose that for any
point p ∈ Ω, there is a metric tensor Mp. Mp is given
as a symmetric positive definite matrix, and is used
to measure length and angles from p. The distance
between q1 ∈ Rd and q2 ∈ Rd as measured by p is
defined as

dp(q1, q2) =
√

(q1 − q2)TMp(q1 − q2).

Let dp(q) = dp(p, q). In the same way, the angle
∠pq1q2q3 (q1, q2, q3 ∈ Rd) as measured by p is defined
as

∠pq1q2q3 = arccos
(q1 − q2)

TMp(q3 − q2)

dp(q1, q2)dp(q3, q2)
.

Given a metric tensor Mp of a point p, define a
deformation tensor Fp to be any matrix such that
FT

p Fp = Mp and det(Fp) > 0. The relative distor-
tion between p and q is defined as τ(p, q) = τ(q, p) =
max{||FqF

−1
p ||2, ||FpF

−1
q ||2}.

In anisotropic mesh generation, the metric tensors
show the directions and size of scaling at each point in
the domain. Triangles are elongated according to the
metric tensors. Consider any point p in a triangle t. If
t is equilateral as measured by p, t is elongated as to
the metric tensor at p in physical space. Therefore,
in anisotropic mesh generation, it is necessary that
each triangle is equilateral as measured by any point
within itself.

125

22nd European Workshop on Computational Geometry, 2006

Figure 1: An anisotropic Voronoi diagram.

We briefly explain anisotropic Voronoi diagrams as
proposed by Labelle and Shewchuk [3]. Let V be a
set of points called sites. The Voronoi cell of a site
v ∈ V is

Vor(v) = {p ∈ Rd | dv(p) ≤ dw(p), ∀w ∈ V }.

Any subset of sites W ⊆ V define a Voronoi face
Vor(W) =

⋂
w∈W Vor(w), which is a set of points

equally close to the sites in W but no closer to any
other. Every site of W is said to own Vor(W). The
anisotropic Voronoi diagram of V is the arrangement
of the non-empty faces {Vor(W) | W ⊆ V, W 6=
∅, Vor(W) 6= ∅}. Figure 1 shows an example of an
anisotropic Voronoi diagram. 0-faces and 1-faces in
the Voronoi diagram are called Voronoi vertices and
Voronoi arcs, respectively.

The dual of an ordinary Voronoi diagram is the De-
launay triangulation. But the dual of an anisotropic
Voronoi diagram is not generally a triangulation.
Here, we describe the condition where the dual of the
anisotropic Voronoi diagram is a triangulation. The
wedge between two sites v, w is defined as

wedge(v, w) = {q ∈ Rd | (q − v)TMv(w − v) > 0

and (q − w)TMw(v − w) > 0}.

A Voronoi k-face f ∈ Vor(W) (0 ≤ k < d, W ⊆ V) is
said to be wedged if for any pair of sites v1, v2 ∈ W
(v1 6= v2), any point q ∈ f is inside the wedge(v1, v2).

We know the following property [3]. Let V be a
set of sites in a general position and let D be the
anisotropic Voronoi diagram of V . If all the Voronoi
arcs and vertices in D are wedged, the dual of D
is a triangulation. This triangulation is called the
anisotropic Delaunay triangulation.

3 Voronoi refinement for Domains with Curves

The Voronoi refinement algorithm can be applied to
polygonal domains with straight line segments. We
want to extend the algorithm for curve-bounded do-
mains with internal curves.

1

2
3

2

1
3 1

2

1

2

1

1

2

2

(a) A counter example (b) An example

Figure 2: A linear order.

First, we precisely describe the conditions of the
input domains. The input in our algorithm is a Planar
Regular Curve Graph X and a metric tensor field M .
The definition of a Planar Regular Curve Graph is as
follows.

Definition 1 A Planar Regular Curve Graph
(PRCG) is a set of sites and regular curves in a plane
that satisfies three conditions:

1. For any curve contained in a PRCG, two end-
points of the curve are sites in the PRCG.

2. The site is an endpoint of a curve, or a point that
is not on a curve.

3. Curves are permitted to intersect only at their
endpoints.

These conditions are equal to the conditions of a
Planar Straight Line Graph (PSLG), which is a set
of sites and line segments. If a set of curves is that
of segments, a PRCG is identical with a PSLG. Ad-
ditionally, we assume that any pair of curves has no
two common endpoints. Moreover, we suppose that
the collinear points on any curve occur in a linear
order (Figure 2(b)), and for any two curves the two
convex hulls are disjoint with the exception of shared
endpoints. Even if these additional conditions are not
satisfied in a PRCG, we can make changes to satisfy
them in the preprocessing.

Let Ω ⊂ R2 be a finite domain in which we want to
generate a triangulation. We assume that curves and
points in the interior of Ω consist of a PRCG and the
boundary of Ω is also a PRCG. In total, the PRCG is
designated as X(Ω). The domain Ω that satisfies this
condition is called a PRCG domain.

Our algorithm generates a quality anisotropic mesh
so that the following condition is satisfied: Each angle
in every triangle t in the mesh is larger than or equal
to θbound as measured by any point in t. In this paper,
a triangle that doesn’t satisfy this condition is called
a poor-quality triangle.

We define some concepts to give an outline of our
algorithm for the generation of a quality anisotropic
mesh. If a Voronoi cell Vor(w) of a site w contains
a curve c that does not contain w, c is said to be
encroached upon w (Figure 3). If c is encroached, split
it by inserting a site z in c ∩ Vor(w). At this time,

126

EWCG 2006, Delphi, March 27–29, 2006

w w

Figure 3: A curve encroached upon a site w is split.

if possible, the curve c is split so that da(z) = db(z)
where a and b are the endpoints of c. We consider the
case that the point z such that da(z) = db(z) does not
lie in Vor(w) of an encroaching site w. In this case,
let z′ be the point that is in c ∩ Vor(w) and as close
to the point z as possible, and z′ is inserted as a new
site. This operation is called a “split”.

Definition 2 A point q in domain Ω is called a viola-
tor if q satisfies either one of the next two conditions.

• q lies on a Voronoi arc Vor({v, w}) (v, w ∈
X) that is not wedged, and q doesn’t lie in
wedge(v, w). In this case, q is called a wedge
violator.

• q is a Voronoi vertex whose dual is an inverted
or a poor-quality triangle. q is called a poor vio-
lator.

Outline of our algorithm
Step 1: Construct the anisotropic Voronoi diagram D
of sites in X . For each encroached curve c, split the
curve c. After this, every curve is contained in the
Voronoi cells of its endpoints.
Step 2: Select any violator q. If q does not encroach,
then q is inserted as a new site. Otherwise, q is
not inserted and c is split. After that, update the
anisotropic Voronoi diagram.

In our algorithm, sin θbound is strictly less than 1/4
(arcsin(1/4) ≈ 14.4◦) to guarantee termination of our
algorithm. The detail of the proof is described in the
next section.

4 Termination of the algorithm

In this section, we prove that our algorithm termi-
nates and guarantees good quality. Most of the proof
follows the same approach as in [3]. We give only a
short summary of the proof here, further details about
it are given in the full paper.

We assume that each angle of any two curves in the
input PRCG X is more than 60◦. Under this assump-
tion, we can prove that our algorithm terminates for
θbound < arcsin(1/4). We will show that the algo-
rithm does not bring segments with shorter distances

b c

a

q b a

q

Case (1) Case (2)

c

q

z

b

c′

a
b

z

a

q

c

Case (3) Case (4)

Figure 4: Inserting a new site.

than that of any segment existing in each step. In the
proof, we use the Euclidean distance because we can
prove the same fact in the same way even where we
use a metric tensor.

There are four cases in which a new site is inserted
during the execution of the algorithm (Figure 4); (1)
The new site is a poor violator; (2) It is a wedge
violator; (3) A site on a curve c′ encroaches another
curve c and a point on c is inserted; (4) The algorithm
tries to insert a violator q whose Vor(q) encroaches
another curve, and inserts a new site on the curve
instead of q.

First, we consider the case of (1). Let q be a poor
violator. In this case, the dual triangle of q has an an-
gle that is less than θbound. l denotes the shortest edge
of the triangle. We can show that the length of the
new segment that appears by inserting q is more than
Bl, where B = 1/(2 sin θbound). In the case of (2),
with further investigation into details, we also have it
that the length of the new segment that appears by
inserting q is more than Bl.

Next, we examine the case of (3). In this case, the
site q on a curve c′ encroaches another curve c. The
situation that c and c′ are disjoint is of no matter in
the proof of the termination. Therefore, we assume
that c and c′ have a common endpoint a. Let b be
the other endpoint of c. The new site z is chosen
as the nearest point in Vor(q) ∩ c from the Voronoi
edge determined by a and b. In the triangle 4qaz,
the shortest edge among the newly created edges is
qz because z is in Vor(q). Therefore, qz < az and
this means ∠zqa > ∠qaz. It is shown that ∠qaz is
the smallest in the triangle4qaz from our assumption
that ∠qaz > 60◦. Therefore, we get qz ≥ qa and the
new segment is longer than the existing segments.

We consider the last case (4) is which a violator q
encroaches a curve c, and c is split. Note that q is
not inserted in this case. The algorithm inserts the
point z, which is the nearest point in Vor(q) ∩ c from

127

22nd European Workshop on Computational Geometry, 2006

Voronoi diagram mesh

Figure 5: Input with straight lines and a circle.

the Voronoi edge determined by a and b, where a and
b are endpoints of c. Without loss of generality, we
assume that q is nearer to b than a. In the triangle
4qbz, we can get that qz + bz > qb from the triangle
inequality. Moreover, qz < bz because z is in Vor(q).
Summarizing the above discussion, we have bz > qb/2.
q is a violator and the distance between any other
point and q is greater than Bl. If B > 2, the distance
from the other site to q is not shorter than the length
of any existing segment. This condition is satisfied
when θbound < arcsin(1/4).

From the above discussion, the algorithm does not
create a shorter segment than the existing segments in
the case of θbound < arcsin(1/4). Let l be the shortest
length among the segments created during the algo-
rithm. We draw a circle whose center is a site with
radius l/2. There are only a finite number of such
circles in Ω. From this fact, we have that our al-
gorithm terminates. When there is no violator, the
algorithm also terminates. Therefore, in the obtained
mesh, there is no angle that is smaller than θbound.

5 Experimental Results

In this section, we show some experimental results.
We generate anisotropic meshes for 10 domains with
curves by using the algorithm we described in Sec-
tion 3. We assign θbound = 14.4◦ to guarantee that
our algorithm terminates. Some of these results are
shown in Figure 5 and 6. Moreover, our algorithm of-
ten terminates in practice even if the specified angle
is greater than arcsin(1/4).

6 Conclusion

In this paper, we proposed a guaranteed-quality
anisotropic mesh generation algorithm for domains
with curves. This algorithm has as its basis a Voronoi
refinement algorithm [3]. This proposed algorithm
generates an anisotropic mesh in which no triangle has
an angle smaller than 14.4◦, as measured by any point
in the triangle. We also gave some experimental re-
sults. The results showed that the proposed algorithm

Voronoi diagram mesh

Figure 6: Input with straight lines, circles, and Bezier
curves.

does indeed generate guaranteed-quality anisotropic
meshes.

There are three proposed future works. The up-
per bound of the specified angle θbound in the original
Voronoi refinement algorithm is 20.7◦. However, our
upper bound is 14.4◦. Therefore, one future work is to
improve the upper bound of the specified angle θbound.
The second will be to take away the assumption of the
lower bound of input angles. In the Delaunay refine-
ment algorithm, Pav and Walkington’s approach [5]
accepts inputs without a lower bound for the input
angles. But as yet there is no Voronoi refinement algo-
rithm with such a property. The third work will be to
improve our method for three dimensional anisotropic
mesh generation.

References

[1] F. J. Bossen, P. S. Heckbert, A Pliant Method for
Anisotropic Mesh Generation. Fifth International
Meshing Roundtable, 63–74, 1996.

[2] P. George, H. Borouchaki, Delaunay Triangulation
and Meshing: Application to Finite Elements. Her-
mes, Paris, 1998.

[3] F. Labelle, J. R. Shewchuk, Anisotropic Voronoi
Diagrams and Guaranteed-Quality Anisotropic Mesh
Generation. Proceedings of the Nineteenth Annual
Symposium on Computational Geometry, 191–200,
2003.

[4] X. Li, S. Teng, A. Üngör, Biting Ellipses to Gener-
ate Anisotropic Mesh. Eighth International Meshing
Roundtable, 97–108, 1999.

[5] S. Pav, N. Walkington, Delaunay Refinement by
Corner Lopping. Fourteenth International Meshing
Roundtable, 165–182, 2005.

[6] J. R. Shewchuk, What Is a Good Linear Element?
Interpolation, Conditioning, and Quality Measures.
Eleventh International Meshing Roundtable, 115–126,
2002.

[7] K. Shimada, A. Yamada, T. Itoh, Anisotropic Tri-
angulation of Parametric Surfaces via Close Packing
of Ellipsoids. International Journal of Computational
Geometry and Applications, 10(4), 400–424, 2000.

128

EWCG 2006, Delphi, March 27–29, 2006

Modifying Delaunay Refined Two-Dimensional Triangular Meshes

Narćıs Coll, Marité Guerrieri and J.Antoni Sellarès ∗

Abstract

We propose algorithms to modify a mesh of a PSLG
through out the interactive addition/deletion of ele-
ments to/from the PSLG, keeping the quality of the
mesh all along the process. Our algorithms achieve
quality by deleting, moving or inserting Steiner
points.

1 Introduction

There exist many works on the generation of quality
meshes. Delaunay refinement mesh generation algo-
rithms have taken place in this frame of investiga-
tions [6, 7, 5, 4]. Different kind of domains can be
meshed, but a Planar Straight Line Graph (PSLG) is
the main input to 2D refining algorithms. In all these
works modification of the initial PSLG implies a re-
generation of the whole mesh. These mesh generation
algorithms do not allow us to modify the initial PSLG
incrementally.

In keeping quality of a mesh two objectives are pur-
sued. First, get skinny triangles, triangles without
required quality, out of the mesh. Second, force seg-
ments of the PSLG into the mesh. Both goals are
achieved by the addition of Steiner points, points that
do not belong to the original mesh. In current Delau-
nay refinement algorithms, two kinds of Steiner points
deal with the former goal, namely, circumcenters and
off-centers. The later objective is carried out by the
addition of midpoints on constrained segments to in-
sert.

All these algorithms guarantee that the length of
the edges of the triangulation are greater than the
minimum local feature size (lfsmin) of the PSLG. This
lfsmin is the shortest distance between two noninci-
dent elements (points or segments) of the input PSLG.

Applications where a combination of dynamic mod-
ifications of a mesh and numerical methods like the
Finite Element Method (FEM) is required have mo-
tivated this research. Apart from the quality require-
ment, these applications expected additional features
to be provided by the algorithms, namely:

Progressively: The interactive modification of the
initial PSLG are obtained without the regeneration of
the whole mesh.

∗Departament d’Informàtica i Matemàtica Aplicada, Uni-
versitat de Girona, {coll,mariteg,sellares}@ima.udg.es.
Work partially supported by grant TIN 2004-08065-C02-02.

Locality: The changes applied to the mesh do
not imply a propagation of these modifications to the
whole mesh.

Optimality: The Steiner points added as a result
of the modification of the mesh should be as few as
possible.

Modification of quality meshes under insertion or
deletion of PSLG elements required incremental algo-
rithms. In order to obtain a new refined mesh adding
the minimum number of Steiner points we have to
consider that the current mesh is treated as an in-
put PSLG by existing algorithms. Consequently, the
lower bound of lengths of the edges of the new mesh
will not be the lfsmin of the modified PSLG. This
bound will be the lfsmin of the union of the current
mesh and the modified PSLG.

Possible solutions to the excessive insertion of
points could be the movement or deletion of Steiner
points, or a different algorithm that split constrained
segments. The movement of points, also, could resolve
the problem of the generation of small triangles pro-
duced by a degradation in the distribution of points in
successive updates of the mesh. Movement of points
could assure better lfsmin bounds. Figure 1 shows the
insertion of four consecutive segments before and after
deleting Steiner points. In Figure 1(b) deleted Steiner
points are shown to facilitate the understanding of the
process.

(a) (b)

Figure 1: Insertion of four consecutive segments. Tri-
angulation before and after deletion of Steiner points.

2 Quality zones

The main idea behind our proposed algorithms is that
the quality of a mesh can be improved by means of
the movement of Steiner points belonging to skinny
triangles. This solution relies on the fact that it is
possible to define a zone for a given Steiner vertex

129

22nd European Workshop on Computational Geometry, 2006

where it can be placed ensuring that the quality is
preserved.

The star, Sq, of a vertex q of a mesh consists of all
the triangles that contain q. All edges of triangles in
Sq that are disjoint from q form the link, Lq, of q. The
quality zone Zab,t,α of an edge ab of a triangle t for
an angle α, that controls the quality of the triangles,
is defined by the domain of points p external to the
circumcircle of the triangle adjacent to t by ab and

satisfying âpb ≥ α, p̂ab ≥ α and âbp ≥ α. These
conditions assure that the triangle abp is Delaunay
and non-skinny. See Figure 2 for an example of this
defined zone. The Quality zone for a given vertex q
is defined by Qq,α =

⋂Ze,te,α, ∀e ∈ Lq and te ∈ Sq.
The computation of Qq,α can be achieved by means of
a sweep algorithm. Since the mean number triangles
of Sq is bounded by six, then it can be inferred that
the mean cost of the computation of the quality zone
of q is constant.

ba t

Figure 2: Quality zone of edge ab

3 Basic operations

Our main goal is the design of an algorithm that main-
tains a Delaunay refined mesh after the progressive
insertion of elements from a PSLG. We also work un-
der the demand of achieving local modifications of the
mesh and the challenge of adding as less Steiner points
as possible.

Movement and deletion of Steiner points are the ba-
sic operations designed to carry out these objectives.
To face the appearance of skinny triangles, caused by
the insertion of a new element from a PSLG, the al-
gorithms developed try first to destroy each skinny
triangle by moving or deleting its Steiner vertices,
adding additional Steiner points, circumcenter or mid-
points, if basic operations can not be applied. The
algorithm herein described is based in a modification
of an incremental Delaunay one. As it will be seen
all these operations have a constant cost. The use
of an incremental algorithm as well as movement and
deletion of points allow us to modify a mesh in a local
and progressive way, adding a lesser number of Steiner
points than whether existing Delaunay refinement al-
gorithms are used.

It has to be taken into account that points belong-

ing to the previous mesh as well as Steiner points in-
serted by the modification in process are target points
to be treated by our algorithm. Previous circumcen-
ters or midpoints could be moved as a result of ap-
plying a basic operation, therefore, it is necessary to
give them a new denomination. Points to be treated
by our algorithm can basically belong to two main
groups. One group is formed by Steiner points that
are on a segment of the PSLG, whose movement is
restricted to the segment. A second group is formed
by those points to which their restriction of move-
ment comes from the triangulation itself. We have
named the first group restricted vertices, and the sec-
ond group free vertices.

3.1 Moving free vertices

The key concept regarding the movement of a free ver-
tex p is to substitute this vertex for another point q
interior to the quality zone of p. If Qp,α is empty the
vertex p can not be moved. The problem of the elec-
tion of a point q that maximizes the minimum angle
of Sq has been studied by [1] and others, but they do
not include the Delaunay property as a restriction as
it is required in our problem. During the sweep pro-
cess used to compute the quality zone, we currently
choose the midpoint of the first segment contained in
the quality zone. Choosing the point into the qual-
ity zone that maximizes the smallest angle is left as a
future work.

The quality zone ensures that if the vertex p is
placed inside it the new Sp is constituted by non-
skinny triangles. The quality zone, also, produces a
Delaunay triangulation of the Lp with respect to its
exterior triangulation. But this zone does not guaran-
tee that triangles belonging to this Sp fulfil Delaunay
property among them. For this reason the vertex p
has to be deleted and reinserted in the quality zone
using an Incremental Delaunay algorithm.

Consequently, the steps to determine whether a free
vertex p can be moved are: Determine Qp,α, deter-
mine point q in Qp,α, delete p, and finally, insert q.

3.2 Deleting free vertices

Devillers in [2] proposed an algorithm to delete a point
from a Delaunay triangulation. Basically, his algo-
rithm retriangulates Lp by determining Delaunay ears
using the concept of power of p. We need to obtain
not just a Delaunay triangulation, but a Delaunay
refined one. Consequently we verify whether the De-
launay ear is skinny or not, stopping the process when
a skinny one was found. The algorithm may then be
stated as:

1. Obtain a priority queue in ascending order of the
power of ears from the Lp

2. Repeat until three ears remain in the queue or a
skinny triangle is found

(a) Take the first ear from the queue and flip

130

EWCG 2006, Delphi, March 27–29, 2006

the diagonal to form a triangle

(b) If the triangle is not skinny

(i) Modify ears previous to and next to the

treated ear

(ii) Compute the power for these two new ears

(iii) Update the priority queue

3.3 Moving restricted vertices

The movement of those restricted vertices is con-
strained over its correspondent subsegment. This
kind of vertices can be present on a boundary subseg-
ment or on a non boundary subsegment of a PSLG.
In both cases the same algorithm to determine the
movement of these vertices is applied.

The steps to determine when a restricted vertex p
can be moved are the followings:

1. Determine adjacent triangles to p

2. For each edge e opposite to p

(a) Determine quality zone, z

(b) Calculate segment ie = z ∩ s, where s

is the subsegment that contains vertex p

3. Determine i = ∩ie
4. If i is not empty

(a) Determine a point q on i

(b) Retriangulate: change the vertex p by q

3.4 Deleting restricted vertices

Deletion of a restricted vertex depends on whether
it belongs or not to a boundary subsegment of the
PSLG. The presence of a restricted vertex on a non-
boundary subsegment implies the application of the
deletion algorithm explained in the section 3.2 to
the two sides of the subsegment independently. In
this way the point is deleted only if each side inde-
pendently fulfils the point deletion verification, and
then the region in each side is retriangulated indi-
vidually. The same steps from the algorithm of sec-
tion 3.2 can be carried out without changes, with the
only extra consideration that a restricted vertex which
encroached some of the polygon points can not be
deleted. In case of a boundary subsegment the pro-
cess detailed above is applied only to the interior side.

3.5 Expanding deletion of vertices

Once a vertex has been deleted from the mesh other
vertices are susceptible of deletion. Each time a vertex
is deleted all its adjacent Steiner vertices are added to
a queue to be deleted, producing in this way several
iterations. The iteration process ends when any of the
vertices in the queue can not be deleted.

4 Modifying a 2D Delaunay refined mesh

Modification of a Delaunay refined mesh will mean to
insert/delete elements to/from a PSLG. Using the ba-
sic operations we design algorithms for insertion and

deletion of points, segments, polygonal lines, polygo-
nal holes, as well as progressive polygonal lines inser-
tions.

After the insertion or deletion of an element of the
PSLG, a process of refinement is called that carries
the quality through the mesh.

4.1 Inserting an element

To insert a point p of the PSLG, we have modified
the incremental Delaunay algorithm from [3]. A list
of midpoints belonging to segments that could not be
flipped, and a list of the generated skinny triangles is
passed to the refinement process.

We used a recursive algorithm to insert a segment of
the PSLG into the mesh. The process starts inserting
its endpoints, then if the segment does not appear
as an edge in the mesh a midpoint is added and a
Delaunay process is triggered. The process of adding
midpoints continues over half segments that are not
yet into the triangulation.

Inserting a polygonal line into the mesh will mean
to insert several segments of the PSLG one after the
other. Inserting a polygon means to insert a closed
polygonal line.

To obtain a polygonal hole inserted into the mesh
we start inserting the polygon without any refinement,
and then we delete the internal triangles.

4.1.1 Inserting a polygonal line progressively

To insert a polygonal line progressively we add inter-
actively a set of points p0, · · · , pn. Next we describe
the basic process we follow. For each point pi we in-
sert the segment pi−1pi. If point pi is collinear with
pi−2 and pi−1 then pi−1 is considered a Steiner point
and a deletion point process is started with this point.

4.2 Deleting an element

To delete an element of the PSLG (point, segment,
polygonal line ...) the free and restricted vertices of
the element are considered as Steiner points and then
a deletion process is run for them.

4.3 Refinement process

It is a process applied after the insertion or deletion of
an element of the PSLG. It receives as input two lists.
The list of points to insert, initially containing only
midpoints, and the list of skinny triangles to remove,
produced by insertion of an element. The output of
the process is a mesh with desired quality. The pro-
cess maintains the two lists and finishes when the two
list are empty. Priority is established on midpoints.
To remove an skinny triangle, we first check its Steiner
vertices for deletion, then we check its Steiner vertices
for movement, and finally we add circumcenters to the
list of points. This order of treatment of skinny trian-
gles is important in order to obtain a reduction in the
number of vertices. To insert a midpoint we apply our

131

22nd European Workshop on Computational Geometry, 2006

algorithm to insert a point into the mesh. To insert
a circumcenter we follow rules from Ruppert’s algo-
rithm: circumcenter is not inserted if it is encroached
over a constrained edge, in this case the midpoint of
this edge is added to the list of points.

5 Results

In Figure 3 we show the insertion of a hole into the
PSLG. Figure 3(a) is obtained by applying the in-
cremental algorithm with movement and deletion of
Steiner vertices and Figure 3(b) without movement
or deletion of Steiner vertices. In the first case less
triangles have been generated.

(a) (b)

Figure 3: Insertion of a hole applying incremental al-
gorithm.

Figure 4 shows a sequence of six steps during the in-
sertion of a polygonal line using our algorithm. From
Figure 4(a) to 4(c) a deletion operation of a vertex has
been carried out. From Figure 4(d) to 4(e) a vertex
has been moved. In these triangulations the Steiner
points deleted are shown to facilitate the understand-
ing of the process.

In Figure 5 the progressive insertion of the polygo-
nal presented in the previous example is achieved us-
ing the same algorithm but without moving or delet-
ing Steiner vertices. It can be seen that in this case
we obtain more triangles.

References

[1] N. Amenta, M. Bern and D. Epstein. Optimal point
placement for mesh smoothing. In SODA:ACM-
SIAM Symposium on Discrete ALgorithms, 1997.

[2] O. Devillers. On deletion in Delaunay triangulation.
15th Annual ACM Symposium on Computational Ge-
ometry, 181–188, 1999.

[3] L. Guibas, D. Knuth and M. Shair. Randomized in-
cremental construction of Delaunay and Voronoi di-
agrams. Algorithmica, 7:381–413, 1992.

[4] S. Har-Peled and A. Üngör. A Time-Optimal Delau-
nay Refinement Algorithm in Two Dimensions. 21st
Annual ACM Symposium on Computational Geome-
try (SoCG), 228–229, 2005.

[5] S.-E. Pav. Delaunay Refinement Algorithms. De-
partment of Mathematical Sciences - Carnegie Mellon
University - PhD thesis, 2003.

(a) (b)

(c) (d)

(e) (f)

Figure 4: A sequence showing a progressive polygonal
line insertion

Figure 5: A progressive polygonal line insertion with-
out moving or deleting Steiner vertices.

[6] J. Ruppert. A Delaunay Refinement Algorithm for
Quality 2-Dimensional Mesh Generation. Journal of
Algorithms, 18:3:548–585, 1995.

[7] J.-R. Shewchuk. Delaunay Refinement Mesh Genera-
tion. School of Computer Science - Carnegie Mellon
University - PhD thesis, 1997.

132

EWCG 2006, Delphi, March 27–29, 2006

Mesh optimisation based on Willmore energy

Lyuba Alboul∗ Willie Brink† Marcos Rodrigues‡

Abstract

An algorithm for improving the quality of an ini-
tial triangulation on a fixed set of vertices is sug-
gested. The edge flip operation is performed consec-
utively, aiming to minimise the discrete Willmore en-
ergy over a triangulated surface (or mesh). The Will-
more energy of a surface is a function of Gaussian and
mean curvature, and measures local deviation from a
sphere. Virtual points are introduced in the triangu-
lation to overcome the local invariance of Willmore
energy under edge flips. Some experimental results
are given.

1 Introduction

Computer-based modelling and visualisation has nu-
merous applications in engineering, science and the in-
dustry. In particular, the digital capturing and recon-
struction of a physical 3D object has applications in
computer graphics and vision, computational geome-
try, reverse engineering, terrain modelling, tomogra-
phy and medical imaging.

A polyhedral surface, or mesh, is a piecewise planar
surface and is commonly used in computer graphics
for approximating smooth surfaces. We will be con-
cerned with triangular meshes, hereafter referred to
as triangulations.

Given a set of vertices sampled from the surface
of some physical 3D object, surface reconstruction
is concerned with finding an “optimal” triangulation
that in some sense best approximates the original sur-
face. If the coordinates of the vertices are fixed these
triangulations are said to be data-dependent.

Some examples of methods for surface reconstruc-
tion from scattered data may be found in [3, 6, 7].
These methods aim at constructing a triangulation
that defines an underlying smooth surface (e.g. by
means of subdivision) that somehow approximates the
surface of the original 3D object in an optimal man-
ner. Most of the reconstruction methods therefore
contain an optimisation step that changes some ini-
tial triangulation on the scattered data such that the
resulting triangulation induces a smooth surface that
is optimal. This paper focusses on that step.

∗Materials and Engineering Research Institute, Sheffield
Hallam University, UK, L.Alboul@shu.ac.uk

†idem, W.Brink@shu.ac.uk (corresponding author)
‡idem, M.Rodrigues@shu.ac.uk

The problem that is addressed may be stated as
follows: given a fixed set of points in 3D, typically ac-
quired from the surface of a physical object by means
of a 3D scanner, and some initial triangulation on
these points, improve (or optimise) the local quality
of this triangulation. This is generally referred to as
mesh optimisation.

Some mesh optimisation algorithms based on min-
imising certain geometric properties of a polyhedral
surface have been proposed. Examples include min-
imising the total area of the triangular mesh [10],
minimising discrete analogues of the integral Gaus-
sian curvature [1] and absolute mean curvature [2].
See also [5] for algorithms based on minimising these
curvatures. The question of which of these algorithms
produce the “best” result remains unanswered.

We propose an algorithm similar in structure to
those mentioned above. However, we incorporate a
geometric property known as Willmore energy. This,
to our knowledge, is a new approach to mesh optimi-
sation.

The rest of the paper is structured as follows: Sec-
tion 2 briefly outlines the theory of discrete curva-
tures, with specific focus on the Willmore energy of
a surface. Section 3 describes the mesh optimisation
algorithm. Some experimental results are given in
Section 4 and Section 5 concludes.

2 Discrete curvatures

For a smooth surface with Gaussian curvature K and
mean curvature H the following geometric properties
are of importance: the area,

∫
dA; the total Gaussian

curvature,
∫

K dA; the total mean curvature,
∫

H dA;
and the total Willmore energy,

∫
(H2 −K) dA.

Consider a simplicial triangular surface (i.e. a tri-
angulation) with vertex set V , face set F and edge set
E. Discretisations for the first three of these proper-
ties are well known for this type of surface (see for
example [1, 8]).

The discrete area is simply the sum of areas of all
the triangular faces.

The discrete analogue of the Gaussian curvature at
a vertex v ∈ V is defined as

G(v) = 2π −
∑

i

αi,

where αi denotes the angle at v of every triangle shar-
ing v. The total discrete Gaussian curvature is then

133

22nd European Workshop on Computational Geometry, 2006

given by G =
∑

v∈V G(v).
The discrete analogue of the mean curvature at an

edge e ∈ E is defined as

M(e) = θ|e|,

where |e| denotes the length of the edge and θ the an-
gle between the normals of the two adjacent faces.
The total mean curvature is then given by M =∑

e∈E M(e).
Bobenko [4] recently proposed a discrete analogue

of the Willmore energy for a triangulated surface. At
a vertex v it is defined as

W (v) =
∑

e3v

β(e)− 2π,

where the sum is taken over all incident edges of v.
For each edge e the angle β(e) is calculated as fol-
lows: let vi and vj denote the endpoints of e, and vk

and v` the other two vertices of the adjacent faces, as
shown in Figure 1. The value of β(e) is then defined
to be the external angle of intersection between the
circumcircles of the two triangles vjvivk and vivjv`.

�

�

�
�

� �

� �

� �
� �

� � � 	

Figure 1: The angle β(e) of an edge e = (vi, vj).

The total discrete Willmore energy of the mesh is
then given by W =

∑
v∈V W (v).

Bobenko [4] derives some properties of this energy,
most notably that W (v) ≥ 0 and W (v) = 0 if and
only if v is convex and v and all its neighbours lie on
a common sphere (possibly with infinite radius, i.e. a
plane).

It is therefore expected that a surface with mini-
mum Willmore energy would be smooth and visually
pleasing. This motivates the need for developing a
mesh optimisation algorithm that aims at minimising
Willmore energy.

3 Mesh optimisation

Consider a given set of vertices V and some initial
triangulation on these points. Our mesh optimisation
algorithm attempts to minimise the discrete Willmore
energy of this surface by changing the triangulation.

Following the methodology of [2], the triangulation
is changed with the edge flip operation illustrated in
Figure 2. A cost function is defined for a specific
triangulation and edge flips that result in a decrease
in this cost function are then performed successively
until a minimum is reached.

� �
��

� �

�
�

�

Figure 2: The edge flip operation.

The algorithm assigns to each edge a value that
reflects the difference between the cost function before
and after flipping the corresponding edge. We refer to
this value as the cost reduction value.

The order in which the edges are flipped may be
chosen by an optimisation method such as simulated
annealing, but at this stage our algorithm is greedy in
nature, flipping an edge that maximally reduces the
cost function at every step. It is important to note
that this may not always lead to a global minimum in
the cost function and the algorithm may terminate at
a local minimum. Techniques to escape from such a
local minimum are currently under investigation. Pos-
sibile strategies include implementing multiple edge
flips at each step [9].

Since the aim of our algoritm is to minimise the
Willmore energy of the surface we want to define the
cost function to be the total discrete Willmore energy
of the current triangulation. However, as also men-
tioned in [4], for an edge e and its flipped version e′,
β(e) = β(e′). This may lead to the Willmore energy
being locally invariant under flips.

Attempting to overcome this we introduce “virtual”
points to the triangulation. To assign a cost reduction
value to an edge e we implement a simple subdivision
scheme by adding a vertex v in the middle of e and
connect it as shown in Figure 3. The total Willmore
energy is calculated for this new triangulation and
then compared to the total Willmore energy of the
triangulation resulting from flipping e to e′, with a
point v′ in the middle of e′. The cost reduction value
of e is then taken to be the difference between these
energies. Since in general the positions of v and v′

would differ there would also be a difference in the
Willmore energy before and after the flip.

We call the points v and v′ virtual since they only
appear in calculating the cost reduction values, not in
the resulting triangulation. We refer to the Willmore
energy of the triangulation with added points as the
virtual Willmore energy.

134

EWCG 2006, Delphi, March 27–29, 2006

�

�
�

�

�

�

�
�

�

��
�

�

�
�

�
� �

�

�
�

�
	

� �

Figure 3: Adding points to the triangulation.

In one of the proofs of Bobenko [4] the combina-
torics of a mesh is changed by adding points to every
edge and connecting them in a similar way as depicted
in Figure 3. This is done in order to render an ab-
stract simplicial sphere inscribable and is therefore
essentially quite different from what we are doing.

In the implementation of the algorithm there are
some types of edges that cannot be flipped without
changing the topological type of the triangulation. An
edge e with flipped version e′ should not be flipped
if e′ is already an edge of the triangulation. For such
edges we define the cost reduction function to be −∞.

Note also that β(e) is undefined for a boundary
edge e (i.e. an edge with only one adjacent face). It
is also clear that a boundary edge cannot be flipped.
Hence the cost reduction function of boundary edges
are also defined as −∞.

It is important to realise that the algorithm de-
scribed above does not necessarily minimise the total
discrete Willmore energy of the triangulated surface
since this energy might remain unchanged under edge
flips. The virtual Willmore energy (VWE) might be
a new type of energy somehow related to the Will-
more energy. It can be said that our algorithm at-
tempts to minimise the VWE over a triangulation in
the hopes of minimising the Willmore energy of the
underlying smooth surface induced by the triangula-
tion. Whether or not this would always be achieved
is still under investigation although experiments do
suggest that it would.

4 Results

This section provides some experimental results from
applying our mesh optimisation algorithm on a few
test models.

The data of the first model comprises of the 8 cor-
ners of a cube with 6 vertices added to the centres of
each face, slightly inside the cube. Figure 4 shows on
the left an initial triangulation on these vertices. The
result of applying our algorithm on this triangulation
is shown on the right of the figure.

What is interesting about this result is that the ini-
tial triangulation is a so-called tight triangulation [1],
i.e. a triangulation on the data with minimum total
absolute extrinsic curvature. Our algorithm changes
this triangulation to what appears to be a triangu-
lation with minimum total area. An algorithm that
minimises total absolute curvature [2] has the exact
opposite effect on this data. Exactly how these al-
gorithms relate to each other is a topic for further
study.

Figure 4: Test model I - a cube with 6 added vertices,
initial (left) and optimised (right).

The second test model consists of points sampled
on the surface of a torus. Figure 5 shows an initial
triangulation on the left. On the right of the figure
the result of applying our algorithm is shown.

The resulting triangulation is clearly more regular
(the triangles are more or less equal in size). The tri-
angulation is also visually smoother. This may be due
to the fact that for a region of a smooth surface that
closely resembles a sphere the corresponding Willmore
energy is close to zero. It would seem that our algo-
rithm attempts to extract regions in a triangulation
that is spherelike.

Figure 5: Test model II - points sampled on a torus,
initial (left) and optimised (right).

The data for the third test model was acquired with
a 3D scanner and consists of points on the surface
of a human face. An initial triangulation, shown on
the top left of Figure 6, was obtained by parameter-
ising the data and applying 2D Delaunay triangula-
tion. The result from our algorithm is shown on the

135

22nd European Workshop on Computational Geometry, 2006

top right of the figure. The figure also shows shaded
versions of the top parts of these two triangulations.

There are many “vertical” edges visible in the initial
triangulation. This is a parameterisation artifact and
results in the underlying smooth surface to have many
vertical creases (see lower left part of Figure 6). Our
algorithm does seem to smooth out these creases (a
result from flipping most of the vertical edges in the
initial triangulation), as can be seen on the lower right
of Figure 6.

Figure 6: Test model III - points sampled on a face,
initial (left) and optimised (right).

Regarding the compexity of the algorithm, consider
a triangulation with n edges. By keeping record of
adjacency in the mesh (edges to faces) a single edge
flip can be performed in O(1) time. Searching through
a priority queue for which edge to flip would require
O(log n) time. The worst case scenario, in which every
edge is flipped, would thus be O(n log n).

5 Conclusion and future work

We presented a new mesh optimisation algorithm.
The algorithm attempts to minimise the so-called vir-
tual Willmore energy of a triangulation by performing
the edge flip operation successively.

An important area for further research is to study
and develop methods for escaping from local minima
in the cost function. Implementing other optimisation
strategies such as simulated annealing, rather than
our greedy method, might prove to be useful.

Another important issue in the algorithm is that
some edge flips can result in the surface intersecting

itself. Detecting these edges and avoiding such inter-
sections is still an open problem.

Based on results obtained experimentally our algo-
rithm seems to be promising. It should be stressed
that the arguments upon which the algorithm is built
are mostly heuristic in nature and a comprehensive
analytical analysis is necessary.

Topics of current ongoing research also include de-
termining under what circumstances the choice of
where to position the virtual points on the edges af-
fects the outcome, and the relationship between this
algorithm and other algorithms such as minimising
area or mean curvature.

The discrete analogue of Willmore energy is rela-
tively new. It would be interesting to learn how dif-
ferent areas in shape modelling could benefit from this
concept.

References

[1] L. Alboul and R. van Damme. Polyhedral metrics
in surface reconstructions. In: The Mathematics of
Surfaces VI, G. Mullineux (Ed.), Clarendon Press,
Oxford, 171–200, 1996.

[2] L. Alboul, G. Kloosterman, C. Traas and R. van
Damme. Best data-dependent triangulations. Jour-
nal of computational and applied mathematics, 119:1–
12, 2000.

[3] F. Bernardini and C.L. Bajaj. Sampling and recon-
structing manifolds using alpha-shapes. Proceedings
of the 9th Canadian conference of computational ge-
ometry, 193–198, 1997.

[4] A.I. Bobenko. A conformal energy for simplicial sur-
faces. Combinatorial and computational geometry,
52:133–143, 2005.

[5] N. Dyn, K. Hormann, S.J. Kim and D. Levin. Op-
timizing 3D triangulations using discrete curvature
anlysis. Mathematical methods for curves and sur-
faces, Oslo, 135–146, 2000.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and
W. Stuetzle. Surface reconstruction from unorganized
points. ACM SIGGRAPH ’92, 71–78, 1992.

[7] K. Hormann. From scattered samples to smooth
surfaces. Proceedings of the 4th Israel-Korea bi-
national conference on geometric modeling and com-
puter graphics, 1–5, 2003.

[8] M. Meyer, M. Desbrun, P. Schröder and A.H. Barr.
Discrete differential-operators for triangulated 2-
manifolds. In: Visualization and mathematics III,
Hege and Polthier (Eds.), 35–57, 2003.

[9] A. Netchaev. Triangulations and their application
in surface reconstruction. PhD thesis, University of
Twente, The Netherlands, September 2004.

[10] J. O’Rurke. Triangulation of minimal area as 3D ob-
ject models. Proceedings of the international joint
conference on AI 81, Vancouver, 664–666, 1981.

136

EWCG 2006, Delphi, March 27–29, 2006

A New Approximation Algorithm for

Labeling Weighted Points with Sliding Labels∗

Thomas Erlebach† Torben Hagerup‡ Klaus Jansen§ Moritz Minzlaff¶ Alexander Wolff‖

Abstract

This paper presents a polynomial-time approximation
algorithm for labeling some of the points in a given set
of weighted points with horizontally sliding labels of
unit height and given lengths to maximize the weight
of the labeled points. The approach is based on a dis-
cretization, and two results are established: In gen-
eral, the algorithm has an approximation factor of
2/3 − ε, for arbitrary fixed ε > 0. If the ratio of
maximal to minimal label lengths is bounded by a
constant, the approximation factor becomes 1− ε.

1 Introduction

Map labeling is the problem of placing a set of labels
next to a given set of points in the plane while meet-
ing certain conditions. Most often, the label associ-
ated with a point is of a specified rectangular shape
and must be placed in the plane without rotation
so that its boundary touches the point. One distin-
guishes fixed-position models and slider models. In
fixed-position models, the labeled point must belong
to a predetermined finite set of points on the bound-
ary of the label. Slider models allow the labeled point
to touch the label anywhere along a certain segment
of the label’s boundary. Poon et al. [3] introduce a
hierarchy of fixed-position and slider models.

In this paper we consider the slider model 1SH [3]
that is defined as follows. Let P be a set of n points
in the Euclidian plane R2. The x and y coordinates
of a point p are denoted by px and py, respectively.
We associate with each point p ∈ P an axes-parallel
open rectangular shape Lp of unit height and length
lp ∈ R>0, the label of p. Each point p ∈ P has a weight
wp ∈ R>0. An instance of a 1SH-labeling problem is
given by the triple I = (P, l, w). A (1SH-) labeling of

∗Work supported by grant WO 758/4-2 of the German Re-
search Foundation (DFG).

†Department of Computer Science, University of Leicester,
Leicester LE1 7RH, England. te17@mcs.le.ac.uk

‡Institut für Informatik, Universität Augsburg, D–86135
Augsburg, Germany. hagerup@informatik.uni-augsburg.de

§Institut für Informatik und Praktische Mathe-
matik, Universität Kiel, D–24098 Kiel, Germany.
kj@informatik.uni-kiel.de

¶moritz.minzlaff@stud.uni-karlsruhe.de
‖Fakultät für Informatik, Universität Karlsruhe,

P.O. Box 6980, D-76128 Karlsruhe, Germany. WWW:
i11www.ira.uka.de/people/awolff

I is a family L = {rp}p∈Q, indexed by the elements
of Q ⊆ P , where rp ∈ [0, lp] places Lp in the plane
with its right edge at the x-coordinate px + rp and
its lower edge at the y coordinate py; see Fig. 1. For
any two points p, q ∈ Q, the values of rp and rq must
be such that Lp ∩ Lq = ∅. Points in Q are said to be
labeled. We define wL :=

∑
p∈Q wp to be the weight of

the labeling L = {rp}p∈Q. A labeling of I is optimal
if no labeling of I has a larger weight. We denote the
weight of an optimal labeling of I by wopt(I).

rq

Lq

lq

q p

p
′

q

Figure 1: Left : A 1SH-labeling L. Right : The corre-
sponding normalization L∗ and GL∗ .

Poon et al. [3] show that finding an optimal 1SH-
labeling is NP-hard even if all points lie on a hori-
zontal line and the weight of each point equals the
length of its label. For the one-dimensional case, they
give a fully polynomial-time approximation scheme,
which yields an O(n2/ε)-time (1/2−ε)-approximation
for the two-dimensional case. Poon et al. also give
a polynomial-time approximation scheme (PTAS) for
unit-square labels. They raise the question of whether
a PTAS exists for rectangular labels of arbitrary
length and unit height. This is known to be the case
for fixed-position models [1] and for sliding labels with
unit weight [4].

In this paper we make a step towards settling the
question. We present a new approximation algorithm
for 1SH-labeling. If the ratio of maximal to minimal
label lengths is bounded by a constant, our algorithm
is a PTAS. In the general case our algorithm has an
approximation factor of 2/3 − ε, for arbitrary fixed
ε > 0. This is an improvement over the approximation
factor of 1/2− ε of Poon et al. [3].

In Section 2 we discretize the problem. The idea
is to compute, for a given problem instance I =
(P, l, w), “suitable” sets of discrete label positions for
each point in P . “Suitable” means that the weight
wopt(Ifix) of an optimal labeling of the resulting in-
stance Ifix of a fixed-position labeling problem must
be close enough to wopt(I). This leads to a two-step
approximation algorithm for the slider model 1SH:

137

22nd European Workshop on Computational Geometry, 2006

First discretize the given problem instance. Then ap-
ply an algorithm, e.g., the one in [1], to the computed
fixed-position problem instance. In Section 3 we con-
sider the requirements for and the quality of the dis-
cretization.

2 Approximation by a Fixed-Position Model

By the diameter of a directed graph G we mean the
maximum number of nodes on any path in G. As
a first step towards discretization, we associate with
each labeling L a directed graph GL. If, for some
constant t ∈ N, GL has a subgraph of weight at
least (1 − 1/t)w(L) and of diameter bounded by a
constant g, then we can compute an instance I of
a fixed-position labeling problem such that an opti-
mal labeling of I has weight at least (1 − 1/t)w(L).
Roughly speaking, in order to compute the instance
I, we enumerate all positions that a label can have if
it is part of a chain of at most g labels that succeed
each other in the following sense.

Definition 1 Let L = {rp}p∈Q be a labeling and let
p, q ∈ Q. The label Lq succeeds Lp (with respect to
L), written Lp → Lq, if (a) the left edge of Lq touches
the right edge of Lp other than at a corner, (b) the
vertical line supporting the left edge of Lq contains
no point in Q, and (c) rq 6= 0.

The position of each label in a chain of labels that
succeed each other depends on the position of the first
label in the chain. The following definition discretizes
the position of the first label and thus of all its suc-
cessors.

Definition 2 Let L = {rp}p∈Q be a labeling. For
q ∈ Q, a label Lq is in normal position (with respect
to L) if (a) rq = 0, (b) the vertical line supporting
the left edge of Lq contains a point in Q, or (c) Lq

succeeds Lp for some p ∈ Q. If all labels of L are in
normal position, then L is normal.

We can obtain a normal labeling from an arbitrary
labeling by processing the labeled rectangles in the
order from left to right and moving each rectangle
left until it first reaches a normal position. We call
this process normalizing the labeling. For an example
see Fig. 1.

We could associate a directed graph G = (Q, E)
with a labeling {rp}p∈Q by defining (p, q) ∈ E if and
only if Lp → Lq. However, this is not entirely sat-
isfactory: On the one hand, we want to bound the
diameter of the graph. On the other hand, we want
to normalize labelings. However, normalization may
increase the diameter by too much. For this reason we
also define an edge whenever there is the “possibility”
that a label Lq succeeds a label Lp, namely if a nor-
malization after the removal of some other labels can

make this happen. This gives rise to the edge (p, q)
in Fig. 1.

Definition 3 Let L = {rp}p∈Q be a labeling. The
labeling graph GL = (Q, E) of L has the edge (p, q) if

(E1) px < qx,

(E2) px + rp > qx − lq,

(E3) (py, py + 1) ∩ (qy, qy + 1) 6= ∅, and

(E4) there is no p′ ∈ Q such that
px + rp ≤ p′x ≤ qx − lq + rq.

For a label Lq to succeed a label Lp, the point p
must lie to the left of q (E1). Properties (E2) and
(E3) ensure that Lp and Lq overlap if Lq is shifted as
far left as possible. Finally, (E4) implies that there is
no point in Q between the right edge of Lp and the
left edge of Lq. Note that Lp → Lq implies (E1)–(E4).
We define the weight of a labeling graph GL as the
weight of the labeling L. The following lemma lists
properties of labeling graphs that we will need later.

Lemma 1 Every labeling graph is a planar directed
acyclic graph. If (p, q) is an edge of the graph, then
this edge is the only path from p to q.

Now we can state precisely the condition under
which we can discretize a 1SH-labeling problem such
that the optimal weight of the resulting discrete in-
stance is close enough to that of the original instance.

Theorem 2 Assume that for some instance I =
(P, l, w) of the 1SH-labeling problem, there are g ∈ N

and α ∈ R such that for every labeling L of I, there
is a normal labeling L∗ of I with wL∗ ≥ αwL for
which the diameter of GL∗ is bounded by g. Then,
in O(ng+1) time, we can compute for each p ∈ P a
set M(p) ⊆ [0, lp] of cardinality O(ng) such that the
instance Ifix of the fixed-position labeling problem de-
fined by the sets M(p) fulfills wopt(Ifix) ≥ αwopt(I).

Proof. For τ = 1, . . . , g, we compute for each p ∈ P
a set M(p, τ) that contains all possible values of rp in
a normal labeling whose longest chain of labels ending
in Lp contains τ labels.

M(p, 1) =
(
{qx − (px − lp) | q ∈ P} ∪ {0}

)
∩ [0, lp]

for all p ∈ P , and for τ = 2, . . . , g and for all p ∈ P ,

M(p, τ) =
{qx + r − (px − lp) | q ∈ P, r ∈M(q, τ − 1)} ∩ [0, lp].

Finally, let M(p) =
⋃g

τ=1 M(p, τ). Clearly
|M(p, 1)| ≤ n + 1 and, by induction, |M(p, τ)| =
O(nτ) for τ = 1, . . . , g. Thus |M(p)| = O(ng) for
all p ∈ P , and M(p) can be computed for all p ∈ P in
O(ng+1) time.

138

EWCG 2006, Delphi, March 27–29, 2006

If L is an optimal labeling of I, then, by assumption
on g, there is a normal labeling L∗ = {r∗p}p∈Q (Q ⊆
P) of I whose weight is at least (1− 1/t)wopt(I) and
whose labeling graph GL∗ has diameter at most g.
By the construction above, r∗p ∈M(p) for each p ∈ Q.
Thus L∗ is a labeling of the fixed-position problem
instance Ifix defined by the sets M(p), so wopt(Ifix) ≥
(1− 1/t)wopt(I). �

3 Simplifiable Graphs

To satisfy the prerequisites of Theorem 2, we are in-
terested in families of labeling graphs for which, for
each constant t ∈ N, there is a constant g = g(t)
such that every labeling graph G in the family is
trimmable for g, i.e., contains a subgraph G′ with
weight w′ ≥ (1 − 1/t)w and diameter at most g(t).
As a tool we use the stronger notion of simplifiable
graphs, which we now define.

Definition 4 Let G = (V, E) be a directed graph. A
simplification of G is a function f : V → Z with the
following properties:

(S1) ∀(v, w) ∈ E : 0 ≤ f(w)− f(v) ≤ 1.

(S2) For all v ∈ V , there exists at most one w ∈ V
such that (v, w) ∈ E and f(v) = f(w).

The graph G is said to be simplifiable by f and for
each i ∈ Z, the set Vf (i) = {v ∈ V | f(v) = i} is
called the ith level of G with respect to f .

0

0

1

0
1

0

1
0

Figure 2: A graph with a simplification. Dashed ar-
rows indicate a change of levels.

We write V (i) instead of Vf (i) whenever f is clear
from the context. Given a graph G = (V, E) and a
subset V ′ of V , we denote by G[V ′] the subgraph of
G induced by V ′. Now we exploit property (S1) to
reduce the trimming of graphs to that of levels.

Lemma 3 Let G = (V, E) be a labeling graph with
simplification f and let t ∈ N. Assume that for each
i ∈ Z, there is a subset V ′(i) of V (i) such that G[V ′(i)]
has weight at least (1− 1/(2t))w(G[V (i)]) and diam-
eter at most g′(t). Then there is a subgraph G′ of G
with weight at least (1−t)w(G) and diameter at most
(2t− 1)g′(t).

Proof. Consider the subgraphs

Gτ := G[V \
⋃

i∈Z

V (τ + 2ti)], τ = 0, . . . , 2t− 1,

in which we remove every (2t)th level of G. By the
pigeon-hole principle, there is a τ0 ∈ {0, . . . , 2t − 1}
such that Gτ0 has weight at least (1 − 1/2t)w(G).
Due to property (S1), the nodes of any path in Gτ0

span at most 2t− 1 distinct levels of G. Hence, with
V ′ =

⋃
i∈Z

V ′(i), the graph

G′ := G[V ′ \
⋃

i∈Z

V ′(τ0 + 2ti)]

corresponding to Gτ0 has the required property. �

Property (S2) implies that each node has at most
one successor within its own level. Thus a level V (i)
is an in-forest; see Fig. 2. For r = 0, . . . , 2t − 1, let
V ′

r (i) be the subset of V (i) obtained by removing all
nodes whose depth in the forest modulo 2t is r. By
the pigeon-hole principle, the set V ′(i) with maximum
weight among the sets V ′

r (i) satisfies the requirements
of Lemma 3 with g′(t) = 2t− 1.

Theorem 4 Every simplifiable labeling graph is
trimmable for g(t) = (2t− 1)2.

3.1 Outerplanar labeling graphs

Lemma 5 Let F be the subgraph of a labeling graph
spanned by the nodes on the boundary of one of its
faces. For every edge (v, w) of F , there are sim-
plifications f and f ′ of F with f(w) = f(v) and
f ′(w) = f ′(v) + 1.

This lemma depends on the last property noted in
Lemme 1. The proof is simple and can be found in [2].

Theorem 6 Every outerplanar labeling graph is sim-
plifiable.

Proof. A simplification can be constructed essen-
tially as follows. Begin by choosing an arbitrary inner
face of the graph. By Lemma 5, a simplification of this
face exists. Then extend the simplification face by
face to a simplification of the entire graph. The clue
is that by outerplanarity, there is always a face that
shares either exactly one node or one edge with the
current subgraph. Hence extending the simplification
can be done with a repeated application of Lemma 5.
Tree parts of the graph can also be handled easily. We
refer to [2] for a detailed proof. �

We apply this result in the context of stabbing lines.
A set S of stabbing lines with respect to a labeling
{rp}p∈Q is a set of horizontal lines with the following
properties: Each line has distance greater than 1 from
every other line, each line intersects at least one label,
and each label is intersected by exactly one line. With
each stabbing line l we may associate a “sub-labeling”
consisting of all rp such that Lp intersects l. For more
on stabbing lines, see, e.g., [1, 2].

139

22nd European Workshop on Computational Geometry, 2006

Proposition 7 If L is a labeling with two stabbing
lines, then the labeling graph GL is outerplanar.

Proof. In a natural planar embedding of GL, each
node can be reached from above or from below by
a vertical ray from infinity that does not cross any
edges. Therefore all nodes of GL lie on the boundary
of the outer face. �

The following corollary is an immediate conse-
quence of the results of this section, Theorem 2 and
the two-step algorithm outlined in Section 1. Its proof
again relies on the pigeon-hole principle: Consider re-
moving all labels stabbed by every third line. An op-
timal fixed-position labeling for k stabbing lines can
be computed in Ak(ñ) = O(ñ2k−1) time, where ñ is
the size of the fixed-position instance [1].

Corollary 8 There exists an approximation algo-
rithm with factor 2/3(1 − 1/t) for the slider model
that runs in O(ng(t)+1) + A2(n

g(t)+1) = O(n3(g(t)+1))
time, where g(t) = (2t− 1)2.

3.2 Bounded Ratio of Label Lengths

The labeling graph of Fig. 3 is not simplifiable: As the
numbers next to the nodes indicate, on the path from
a via b to c any simplification would need to “jump”
at least two levels.

0
1 2 3

a

b

c

Figure 3: A labeling graph whose labeling needs three
stabbing lines.

The example easily extends in such a way as to force
a simplification to make arbitrarily large “jumps”.
However, the ratio of the maximal label length M
to the minimal label length m would tend to infinity
in the process. This gives rise to the following idea:
let λ ∈ N and replace (S1) in the definition of a sim-
plification by

(S1λ) ∀(v, w) ∈ E : 1 ≤ f(w)− f(v) ≤ λ

We call a function f with properties (S1λ) and
(S2) a λ-simplification and the corresponding graph
λ-simplifiable. Note that f(w) ≥ f(v) + 1 for each
edge (v, w) according to this definition. Therefore,
each level V (i) induces a subgraph of diameter 1 (con-
sisting of isolated nodes). In the proof of Lemma 3
we can set V ′(i) = V (i) and have g′(t) = 1. If further
not only one but λ consecutive levels out of t levels

are removed from the graph to get Gτ , the pigeon-hole
principle yields the following analog of Theorem 4.

Theorem 9 If G is a λ-simplifiable labeling graph of
a labeling L and t is an integer with t > λ, then G
contains a subgraph with weight at least (1−λ/t)w(L)
and diameter at most g(t) = t− λ.

Theorem 10 Let I be a problem instance with
M/m ≤ ρ for some ρ ∈ N. Then the labeling graph
of every labeling of I is (2ρ)-simplifiable.

Proof. Consider a labeling L = {rp}p∈Q of I. The
idea is to divide the x-axis into intervals of length
m and to assign a node p of GL to level i if the x-
coordinate of the left edge of Lp belongs to the inter-
val [im, (i + 1)m). This is achieved by the following
function f : Q→ Z:

f(p) =

⌊
px − lp + rp

m

⌋
, p ∈ Q.

Let (p, q) be an edge of the labeling graph. By proper-
ties (E1), (E2) and (E3) and the fact that Lp and Lq

do not overlap, the left edge of Lq is at least lp ≥ m
and at most lp + lq ≤ 2M to the right of the left edge
of Lp. Therefore 1 ≤ f(q) − f(p) ≤ 2ρ, which shows
f to be a (2ρ)-simplification of GL. �

Plugging Theorem 10 into Theorem 9 and using a
PTAS for fixed-position models [1] yields a PTAS for
instances with bounded ratios of label lengths.

Corollary 11 For all instances with M/m ≤ ρ for
some ρ ∈ N and for all integers t > 2ρ and k ≥ 1, there
exists a factor-(1−2ρ/t)(1−1/(k+1)) approximation
algorithm that runs in O(Ak(ng(t)+1)) time, where
g(t) = t− 2ρ.

Acknowledgment

We thank an anonymous referee, whose recommenda-
tions led to greater readability.

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label
placement by maximum independent set in rectangles.
Computational Geometry: Theory and Applications,
11:209–218, 1998.

[2] M. Minzlaff. Beschriften gewichteter Punkte mit ver-
schiebbaren Labeln. Student research report, Fakultät
für Informatik, Universität Karlsruhe, March 2005.
Available at http://i11www.ira.uka.de/teaching/

theses/files/studienarbeit-minzlaff-05.pdf.

[3] S.-H. Poon, C.-S. Shin, T. Strijk, T. Uno, and A. Wolff.
Labeling points with weights. Algorithmica, 38(2):341–
362, 2003.

[4] M. van Kreveld, T. Strijk, and A. Wolff. Point labeling
with sliding labels. Computational Geometry: Theory
and Applications, 13:21–47, 1999.

140

EWCG 2006, Delphi, March 27–29, 2006

A polynomial-time approximation algorithm

for a geometric dispersion problem

Marc Benkert∗ Joachim Gudmundsson† Christian Knauer‡ Esther Moet§ René van Oostrum§

Alexander Wolff∗

Abstract

We consider the problem of placing a set of disks in
a region containing obstacles such that no two disks
intersect. We are given a bounding polygon P and a
set R of possibly intersecting unit disks whose centers
are in P . The task is to find a set B of m disks of
maximum radius such that no disk in B intersects a
disk in B ∪ R, where m is the maximum number of
unit disks that can be packed.

Baur and Fekete showed that the problem can-
not be solved efficiently for radii that exceed 13/14,
unless P = NP . In this paper we present a 2/3-
approximation algorithm.

1 Introduction

The problem of packing objects into a bounded region
is one of the classic problems in mathematics and the-
oretical computer science, see for example the mono-
graphs [7, 9] which are solely devoted to this problem,
and the survey by Tóth [8].

In this paper we consider a problem related to pack-
ing disks into a polygonal region. As pointed out by
Baur and Fekete in [1], even when the structure of
the region and the objects is simple, only very lit-
tle is known, see for example [4, 6]. We consider the
following geometric dispersion problem:

Problem 1 (ApproxSize) Given a bounding poly-
gon P and a set R of, possibly intersecting, unit disks
whose centers are in P , the aim is to pack m non-
intersecting disks of maximum radius in P , where m is
the maximal number of unit disks that can be packed
in P .

Note that we do not know the value of m a priori.
In 1985 Hochbaum and Maas gave a PTAS for the
problem of packing a maximal number of unit disks
in a region in their pioneering work [5]. The prob-
lem is known to be NP-complete [3]. Even though

∗Faculty of Computer Sci., Karlsruhe University, Germany.
Supported by grant WO 758/4-1 of the DFG. Part of this work
was done while M. Benkert visited National ICT Australia, sup-
ported by a DAAD grant.

†National ICT Australia Ltd, Sydney, Australia.
‡Inst. of Computer Sci., Freie Universität Berlin, Germany.
§Dept. of Comp. Sci., Utrecht University, The Netherlands.

the corresponding geometric dispersion problem looks
very similar much stronger inapproximability results
have been shown. Baur and Fekete [1] proved hard-
ness results for a variety of geometric dispersion prob-
lems, and their results can be modified to our setting
with a bit of effort. Specifically, they show that Ap-
proxSize cannot be solved in polynomial time for
disks of radius exceeding 13/14. Furthermore, for the
case when the objects are squares, Baur and Fekete
gave a 2/3-approximation algorithm. However, since
a square is a simpler shape and easier to pack than
a disk their approach cannot be generalized to disks.
The main contribution of this paper is a polynomial
time 2/3-approximation algorithm. Actually, we con-
jecture that 2/3 is indeed the largest value for which
the problem can be solved, but so far we have been
unable to prove it.

ApproxSize has applications in non-photorealistic
rendering system, where 3D models are to be ren-
dered in an oil painting style, as well as in random
examinations of, e.g., soil ground.

P

R

F(P)

Figure 1: The freespace F(P) (light shaded) is the
region that could be covered by a unit disk not inter-
secting any disk of R.

2 The approximation algorithm

We will use the term r-disk to refer to a disk of ra-
dius r. The main idea of our approximation algorithm
is described next, see also Algorithm 1. First com-
pute the space F(P), denoted freespace, that could
potentially be covered by a unit disk not intersecting
any disk of R. Then, apply the PTAS of Hochbaum
and Maas [5] for the problem of packing unit disks in

141

22nd European Workshop on Computational Geometry, 2006

Algorithm 1: DiskPacking

1. Compute the freespace F(P).
2. Use HM’s algorithm [5] to compute a set B of

at least 12
13m unit disks in F(P).

3. Introduce a metric d on the set B of unit disks.
4. Compute the nearest neighbor graph

G = (B, E) with respect to d.
5. Find a sufficiently large matching in G.
6. For each matching pair {C, D} of 1-disks do
7. Place three 2

3 -disks in T2/3(C, D).
8. For each unmatched unit disk D do
9. Place one 2

3 -disk in D.

F(P). If we set ε = 1/13 in the PTAS this yields a
set B of at least 12/13 ·m unit disks and it requires
O(n625) time to compute. Here, n is the minimum
number of unit squares that cover P .

Note that the approximation scheme by Hochbaum
and Maas can be modified such that the algorithm
is strongly polynomial with respect to the size of the
input. If the number of disks that can be packed is
not polynomial in the size of P andR then there must
exist a huge empty square region within P . This can
be “cut out” and packed almost optimally by using a
nâıve approach. The added error obtained is bounded
by O(1/ñ2) where ñ is the optimal number of disks
that can be packed in the square. This step can be
repeated until there are no more huge empty squares.

Let m′ be the number of unit disks in the set B.
Starting from B we compute a set B2/3 of disks of ra-
dius 2/3 that has cardinality at least 13/12 ·m′ which
in turn yields that B2/3 contains at least m disks. We
obtain B2/3 by computing a sufficiently large match-
ing in the nearest neighbor graph of B. Then, we
define a region for each matching pair such that one
can insert three 2/3-disks in each region and all re-
gions are pairwise disjoint. For each unmatched unit
disk we insert one 2/3-disk, see Figure 2.

4

4/3

Figure 2: Packing three 2
3 -disks in a matching pair of

unit disks (left) and one in a single disk (right).

In the next sections we describe each step of Algo-
rithm 1 more detailed.

3 The freespace and a metric on it

We briefly recall the setting. We are given a set R of
unit disks whose centers lie in a polygon P . The disks

in R are allowed to intersect.

Definition 1 The freespace F(P) is the union of all
unit disks D in P such that D ∩⋃D′∈R D′ = ∅.

For an example of a freespace see Figure 1. Obvi-
ously, F(P) can be computed in O(n625) time. From
now on we will w.l.o.g. assume that F(P) consists of
only one connected component, since each component
can be handled separately. Next, we introduce a met-
ric for a set of non-intersecting disks in F(P).

Definition 2 Let C and D be two non-intersecting
unit disks in F(P). There is a shortest movement
of a unit disk from the position of C to the posi-
tion of D that keeps entirely within F(P). The dis-
tance d(C, D) is the length of the center-point curve
c̃(C, D) of this movement. We call the orbit that is
induced by the transformation of the unit disk the
1-transformation tunnel T (C, D).

The curve c̃(C, D) can consist of straight-line seg-
ments (the disk can be moved arbitrarily in the
freespace without hitting any obstacles) and of arcs
of radius 2 (the disk hits a disk R ∈ R on the bound-
ary of the freespace), see Figure 3.

Next, we define a transformation for 2/3-disks. The
transformation tunnels of this movement yield us the
regions in which we will place the m 2/3-disks.

C D

C

D

R ∈ R

T2/3(C, D)

T (C, D)

c̃(C, D) = c̃2/3(C, D) c̃2/3(C, D)

T2/3(C, D)

T (C, D)

Figure 3: The minimum transformations of disks
{C, D} and {C′, D′} in F(P). Left: unrestricted case,
right: a disk R ∈ R as obstacle.

Definition 3 Let C and D be two non-intersecting
unit disks in F(P). Let C2/3 and D2/3 be the 2

3 -
disks centered at the centers of C and D, respectively.
There is a shortest movement of a 2/3-disk from the
position of C2/3 to the position of D2/3 that keeps
entirely within T (C, D). We call the orbit that is
induced by the transformation of the 2/3-disk the 2

3 -
transformation tunnel T2/3(C, D) and its center-point
curve c̃2/3(C, D).

142

EWCG 2006, Delphi, March 27–29, 2006

4 The set B and its nearest neighbor graph

Now, the freespace F(P) is the region for which we
compute a 12/13-approximation algorithm for the
problem of packing the maximum number of unit
disks. We do this by applying the PTAS of Hochbaum
and Maas for ε = 1/13, with running time of O(n625).
Let the resulting set of unit disks be B. By a post-
processing step we can assume that F(P) \ ⋃B∈B B
does not offer enough space for another unit disk (in-
serting unit disks in a greedily manner until no more
disks can be added). We need this to ensure that the
nearest neighbor graph of B (w.r.t. d) is planar and of
bounded degree. Using a similar argument as in the
proof [2] showing that the nearest neighbor graph of
a point set in the plane (w.r.t. the Euclidean metric)
has degree at most 6, we can show that the degree
of the nearest neighbor graph G of B is also bounded
by 6. Furthermore, G is planar since no two edges in
a nearest neighbor graph can intersect. Obviously, G
can be computed in O(n625) time.

From now on we will call a pair {C, D} ⊆ B a near-
est pair if {C, D} is an edge in G, i.e., either D is
the nearest disk to C (in B) or C is the nearest disk
to D (in B). For every nearest pair {C, D} we de-
fine the region A(C, D) to be C ∪ D ∪ T2/3(C, D).
As the nearest pair {C, D} is a potential candidate
to become a matching pair, we want to ensure that
we can use A(C, D) to pack three 2/3-disks in it such
that all these packed 2/3-disks are pairwise disjoint.
Thus, we have to prove: (i) three 2/3-disks fit into
A(C, D) and (ii) for any nearest pair {E, F} where
C, D, E and F are pairwise disjoint, A(C, D) does not
intersect A(E, F). Note that we do not have to care
whether, e.g., A(C, D) intersects A(C, E) because the
matching will choose at most one pair out of {C, D}
and {C, E}. Clearly, three 2/3-disks fit into A(C, D)
since C and D do not intersect. Thus, (i) is fulfilled
but the second part (ii) requires much more work.

We split the proof into two parts. The first part
shows that T2/3(C, D) is not intersected by any other
disk than C and D. The second part shows that no
two tunnels T2/3(C, D) and T2/3(E, F) can intersect.

We start with a technical lemma that will help to
prove the first part. The notation |p, q| will indicate
the Euclidean distance between two points p and q.

C D

E

dmin

1

R ∈ R

2

3

2

3
π

c

d

e
60

◦

Figure 4: Illustration for Lemmas 1 and 2.

Lemma 1 Let C and D be two unit disks in F(P)
with centers c and d. If |c, d| is less than dmin := 2

3 ·√
11, the center-point curve c̃2/3(C, D) is straight and

each unit disk that does not intersect C ∪ D cannot
intersect T2/3(C, D).

Proof. We compute dmin as the minimum value of
|c, d| when a disk E, disjoint from C and D, inter-
sects T2/3(C, D). Clearly, dmin is attained if E and
T2/3(C, D) only intersect in a single point and fur-
thermore, also E and C as well as E and D only
intersect in a single point, see Figure 4. This means
that |c, e| = |d, e| = 2, where e is the center of E.
Moreover, the Euclidean distance between e and the
straight-line segment cd is 1+ 2

3 = 5
3 . By Pythagoras’

theorem we calculate dmin = |c, d| to be 2
3

√
11. �

We make the following observation:

Observation 1 Let C and D be two unit disks in
F(P) that are infinitesimally close to each other.
Then d(C, D) ≤ 2

3π.

Proof. For simplification we assume that C and D
touch. The curve c̃(C, D) attains its longest length
if both C and D touch an obstacle disk that has to
be overcome. In this case c̃(C, D) describes an arc of
radius 2 and 60◦. Its length is 1

6 · 2 · 2π = 2
3π. �

Lemma 2 Let {C, D} ⊆ B be a nearest pair with the
center-point curve c̃(C, D). Then, no disk of B ∪R \
{C, D} intersects T2/3(C, D).

Proof. It immediately follows from Definitions 1 and
3 that neither T (C, D) nor T2/3(C, D) are intersected
by a disk in R. Thus, it remains to prove that apart
from C and D no disk in B intersects T2/3(C, D).

W.l.o.g. let C be the nearest disk to D (in R). The
proof is done by contradiction: assume that there is
a disk E ∈ B that intersects T2/3(C, D).

First, we move a unit disk from the position of D
on the center-point curve c̃(C, D) to the first position
in which it hits E, denote the disk in this position
by D, see Figure 4 where D = D holds. Accord-
ing to Observation 1, we know that 2

3π ≈ 2.09 is an

upper bound on d(D, E). As C is closer to D than
E is, the center of C has to lie within a disk of ra-
dius 2

3π with center d. However then, according to
Lemma 1, c̃2/3(C, D) must be a straight-line because
2
3π < 2

3

√
11 ≈ 2.21 holds. Thus, also according to

Lemma 1, E cannot intersect T2/3(C, D) which yields
the contradiction. �

Lemma 2 settles that no other disks apart from C
and D intersect T2/3(C, D). We still have to show

that any two 2
3 -transformation tunnels T2/3(C, D) and

T2/3(E, F) do not intersect.

143

22nd European Workshop on Computational Geometry, 2006

Lemma 3 Let {C, D}, {E, F} ⊆ B be two nearest
pairs such that C, D, E and F are pairwise disjoint.
Then T2/3(C, D) ∩ T2/3(E, F) = ∅.

Proof. The proof is by contradiction again. Ob-
viously, we can w.l.o.g assume that T2/3(C, D) and
T2/3(E, F) only intersect in a single point p, see Fig-
ure 5. The basic idea of the proof is to show that
then, {C, D} and {E, F} cannot be nearest pairs at
the same time. Note that at least one of the disks
{C, D, E, F} intersects the unit disk P with center p:
otherwise there would be another disk in B located
in the space between C, D, E and F which would im-
mediately contradict {C, D} as well as {E, F} being
nearest pairs.

W.l.o.g. let C be a disk that intersects P . We can
show that d(C, E) < d(E, F) holds, i.e. that F is not
the nearest neighbor of E, thus E has to be the near-
est neighbor of F in order for {E, F} to be a near-
est pair. Under this assumption we can then show
that d(C, E) < d(C, D) and d(D, F) < d(C, D) holds.
However, this contradicts {C, D} being a nearest pair
because neither D is the nearest neighbor of C nor C
is the nearest neighbor of D. �

C

D

E

p

F

Figure 5: Illustration for the proof of Lemma 3. If
T2/3(C, D) and T2/3(E, F) intersect, not both pairs
{C, D} and {E, F} can be nearest pairs.

5 Placing the 2/3-disks

After computing B and the nearest neighbor graph
G = (B, E), we compute a matching in G. Let m′ =
|B| be the number of unit disks in B. Recall that G
is planar and of bounded degree 6. We show that we
can find a matching in which the number of matched
disks is at least 1/6 ·m′. Observe that G can consist
of more than one connected component. We look at
each connected component separately. Let C be a
connected component and c be the number of disks
that it contains. Clearly, C contains a spanning tree
of bounded degree 6. It is easy to see that there is
a matching in C that matches at least 1/6 · c disks.
Doing this for each component yields a matching in
G that contains at least 1/6 ·m′ matched disks.

According to Lemmas 2 and 3 we can pack three
2/3-disks in A(C, D) for every matched pair {C, D}
such that the set of these 2/3-disks is pairwise disjoint.
For each of the remaining unmatched disks D we pack
one 2/3-disk in D. Lemma 2 ensures that these disks
are disjoint to the disks that have been packed for the
matched pairs. Let B2/3 be the set of all disks packed

as above. Its cardinality is at least 1
6 · 32 ·m′ + 5

6 ·m′ =
13
12 ·m′. Since the cardinality of B is at least 12

13 ·m,
the set B2/3 contains at least m 2/3-disks and we can
conclude with the following theorem:

Theorem 4 Algorithm 1 is a 2/3-approximation for
the ApproxSize problem. Its running time is
O(n625).

6 Conclusion

Naturally, our result is purely of theoretic interest.
The bottleneck for the running time is the applica-
tion of Hochbaum and Maas’ PTAS. To obtain an
algorithm with better running time, it seems to be
unavoidable to use a completely different approach.
For future work it would also be desirable to narrow
the gap between the known approximation (2/3) and
the inapproximability result (13/14). We conjecture
that, unless P = NP , the lower bound of 2/3 is indeed
tight.

References

[1] C. Baur and S.P. Fekete. Approximation of Ge-
ometric Dispersion Problems. Algorithmica, 30:451–
470, 2001.

[2] D. Eppstein and M.S. Paterson and F.F. Yao.
On nearest-neighbor graphs. Discrete & Computa-
tional Geometry, 17(3):263-282, 1997.

[3] R.J. Fowler and M.S. Paterson and S.L. Tani-
moto. Optimal packing and covering in the plane
are NP-compete. Information Processing Letters,
12:133–137, 1981.

[4] Z. Füredi. The densest packing of equal circles into
a parallel strip. Discrete & Computational Geometry,
6:95–106, 1991.

[5] D. Hochbaum and W. Maas. Approximation
schemes for covering and packing problems in image
processing and VLSI. J. of the ACM, 32, 1985.

[6] C. Maranas, C. Floudas and P. Pardalos. New
results in the packing of equal circles in a square.
Discrete Mathematics, 128:187–293, 1995.

[7] C. A. Rogers. Packing and Covering. Cambridge
University Press, 1964.

[8] G. F. Tóth. Packing and Covering. In Handbook of
Discrete and Computational Geometry, 2nd edition,
J. E. Goodman and J. O’Rourke, editors, CRC Press
LLC, 2004.

[9] C. Zong and J. Talbot. Sphere Packings. Springer-
Verlag, 1999.

144

EWCG 2006, Delphi, March 27–29, 2006

Covering a Set of Points with a Minimum Number of Lines

Magdalene Grantson Christos Levcopoulos ∗

Abstract

We consider the minimum line covering problem:
given a set S of n points in the plane, we want to
find the smallest number l of straight lines needed to
cover all n points in S. We show that this problem
can be solved in O(n log l) time if l ∈ O(log1−ε n),
and that this is optimal in the algebraic computation
tree model (we show that the Ω(n log l) lower bound
holds for all values of l up to O(

√
n)). Furthermore,

a O(log l)-factor approximation can be found within
the same O(n log l) time bound if l ∈ O(4

√
n). For

the case when l ∈ Ω(log n) we suggest how to im-
prove the time complexity of the exact algorithm by
a factor exponential in l.

1 Introduction

We consider the minimum line covering problem:
given a set S of n points in the plane, we want to
find the smallest number l of straight lines needed to
cover all n points in S. The corresponding decision
problem is: given a set S of n points in the plane and
an integer k, we want to know whether it is possible to
find k (or fewer) straight lines that cover all n points
in S.

Langerman and Morin [7] showed that the decision
problem can be solved in O(nk + k2(k+1)) time. In
this paper we show that the decision problem can be
solved in O(n log k + (k/2.2)2k) time.

Kumar et al. [6] showed that the minimum line cov-
ering problem is APX-hard. That is, unless P = NP ,
there does not exist a (1 + ε)-approximation algo-
rithm. In their paper they pointed out that the greedy
algorithm proposed by Johnson [5], which approxi-
mates the set covering problem within a factor of
O(log n), is the best known approximation for the
minimum line covering problem. In this paper we
show that a O(log l)-factor approximation for the min-
imum line covering problem can be obtained in time
O(n log l + l4 log l).

We also present an algorithm that solves the line
covering problem exactly in O(n log l+(l/2.2)2l) time.
This simplifies to O(n log l) if l ∈ O(log1−ε n), and we
show that this is optimal in the algebraic computation
tree model. That is, we show that the Ω(n log l) lower
bound holds for all values of l up to O(

√
n). We also

∗Dept. of Computer Science, Lund University, Box 118, 221
Lund, Sweden {magdalene,christos}@cs.lth.se

suggest more asymptotic improvements for our exact
algorithms when l ∈ Ω(log n).

2 Preliminaries

Lemma 1 Any set S of n points in the plane can be
covered with at most dn

2 e straight lines.

Proof. A simple way to show this upper bound is to
pick two points at a time, to construct a line through
the pair, and then to remove the pair from the set.
For the special case when n is odd, we can draw an
arbitrary line through the last point. The time com-
plexity of this algorithm is obviously O(n). �

Lemma 2 If a set S of n points can be covered with k
lines (k minimal or not), then: for any subset R ⊆ S
of at least k + 1 collinear points (i.e., |R| ≥ k + 1
and ∀~r1, ~r2, ~r3 ∈ R : ~r1 6= ~r2 ⇒ ∃α ∈ IR : ~r3 =
α · (~r2 − ~r1) + ~r1), the line through them is in the set
of k covering lines.

Proof. Suppose the line through the points in R was
not among the k lines covering S. Then the points
in R must be covered with at least k + 1 lines, since
no two points in R can be covered with the same line.
(The only line covering more than one point in R is the
one through all of them, which is ruled out.) Hence
we need at least k + 1 lines to cover the points in
R. This contradicts the assumption that S can be
covered with k lines. �

Lemma 3 If a set S of n points can be covered with
k lines (k minimal or not), then: any subset of S
containing at least k2 +1 points must contain at least
k + 1 collinear points.

Proof. Suppose there is a subset R ⊆ S containing
at least k2+1 points, but not containing k+1 collinear
points. Then each of the k covering lines must contain
at most k points in R. Hence with these at most k
covering lines, each containing at most k points, we
can cover at most k2 points. Thus we cannot cover R
(nor any superset of R, like S) with the k lines. This
contradicts the assumption that S can be covered with
k lines. �

Corollary 1 If in any subset of S containing at least
k2 +1 points we do not find k +1 collinear points, we
can conclude that S cannot be covered with k lines.

145

22nd European Workshop on Computational Geometry, 2006

Lemma 4 If a set S of n points can be covered with
l lines, but not with l−1 lines (i.e., if l is the minimum
number of lines needed to cover S) and k ≥ l, then:
if we generate all lines containing more than k points,
the total number of uncovered points will be at most
l · k.

Proof. Let R be the set of uncovered points in S
after all lines containing more than k points have been
generated. Since S can be covered with l lines and
R ⊆ S, R can be covered with l (or fewer) lines. None
of the lines covering points in R can cover more than
k points in R (as all such lines have already been
generated). Hence there can be at most l · k points in
R. �

3 General Procedure

Given a set S of n points in the plane, we already
know (because of Lemma 1) that the minimum num-
ber l of lines needed to cover S is in {1, . . . , dn

2 e}.
In our algorithm, we first check whether l = 1, which
can obviously be decided in time linear in n. If the
check fails (i.e., if the points in S are not all collinear
and thus l ≥ 2), we try to increase the lower bound for
l by exploiting Lemmas 2 and 3, which (sometimes)
provide us with means of proving that the set S can-
not be covered with a certain number k of lines. In
the first place, if for a given value of k we find a subset
R ⊆ S containing k2 + 1 points, but not containing
k+1 collinear points, we can conclude that more than
k lines are needed to cover S (because of Corollary 1).
On the other hand, if we find k + 1 collinear points
(details of how this is done are given below), we record
the line through them (as it must be among the cov-
ering lines due to Lemma 2) and remove from S all
points covered by this line. This leads to a second
possible argument: If by repeatedly identifying lines
in this way (always choosing the next subset R from
the remaining points), we record k lines while there
are points left in S, we can also conclude that more
than k lines are needed to cover S.

We check different values of k in increasing or-
der (the exact scheme is discussed below), until we
reach a value k1, for which we fail to prove (with the
means mentioned above) that S cannot be covered
with k1 lines. On the other hand, we can demon-
strate (in one of the two ways outlined above) that
S cannot be covered with k0 lines, where k0 is the
largest value smaller than k1 that was tested in the
procedure. At this point we know that l > k0.

Suppose that when processing S with k = k1, we
identified m1 lines, m1 ≤ k1. We use a simple greedy
algorithm to find m2 lines covering the remaining
points. (Note that m2 may or may not be the mini-
mum number of lines needed to cover the remaining
points. Note also that m2 = 0 if there are no points

left to be covered.) As a consequence we know that
S can be covered with m1 + m2 lines (since we have
found such lines) and thus that k0 < l ≤ m1 + m2.
We show in [3] that m1 + m2 ∈ O(l log l) and thus
that with the m1 + m2 lines we selected we obtained
an O(log l) approximation of the optimum.

In a second step we may then go on and determine
the exact value of l by drawing on the found approxi-
mation (See the full version of paper in [3] for details).

Our proposed approximate and exact algorithms to
solve the minimum line covering problem use the fol-
lowing two already known algorithms as subroutines:

1. An algorithm proposed by Guibas et al. [4],
which finds all lines containing at least k +
1 points in a set S of n points in time

O
(

n2

k+1 log n
k+1

)
.

2. An algorithm proposed by Langerman and Morin
[7], which takes as input a set S of n points and an
integer k, and outputs whether S can be covered
with k lines in O(nk + k2(k+1)) time.

3.1 Approximation for Minimum Line Covering

Lemma 5 We can approximate the minimum line
covering problem within a factor of O(log l) in
O(n log l) time if l ≤ 4

√
n.

Theorem 6 We can approximate the minimum line
covering problem within a factor of O(log l) in time
O(n log l + l4 log l).

Corollary 2 We can approximate the minimum line
covering problem within a factor of O(log l) in
O(n log l) time if l ∈ O(4

√
n).

See the full paper [3] for the proofs of the above
results.

3.2 Exact Minimum Line Covering

Theorem 7 The minimum line cover-
ing problem can be solved exactly in
O(n log l + l2l+2) time. In particular, if
l ∈ O(log1−ε n), the minimum line covering problem
can be solved in O(n log l) time.

Theorem 8 Given a set S of n points in the plane
and an integer k, we can answer whether it is possible
to find k lines that cover all the points in the set in
O(n log k + k2k+2) time.

See the full paper [3] for the proofs for the above
Theorems.

146

EWCG 2006, Delphi, March 27–29, 2006

3.3 Producing the optimal set of lines

We also remark that after computing the optimal
number of lines l, we can also produce the actual
lines covering the input point set within the same
time bounds. One way is to first use the algorithm
proposed by Guibas et al. [4] to produce lines cover-
ing at least l + 1 points. Let l′ denote the number of
lines covering at least l+1 points and n′ the number of
points left to be covered. We observe that at least one
of the remaining l− l′ lines cover at least n′

l−l′ points.
Let a line be called a candidate line if it covers at least
n′

l−l′ points. Let us now compute the first candidate
line: If n′ ≤ 2(l − l′) then any line covering at least
two points can be included in the optimal solution.
Otherwise, we tentatively (temporarily) remove the
points covered by it and call Langerman and Morin’s
algorithm [7] to see whether the remaining points can
be covered by l−l′−1 lines. Clearly, the candidate can
be included in the optimal solution if and only if the
answer is yes. Let nr denote the remaning points to
be covered and ln denote the number of lines needed
to cover nr. We repeat the above algorithm and up-
date nr and ln accordingly after each construction of
a candidate line.

To calculate the time bound we show that there
are at most 3

2 · (l − l′)2 candidate lines. Any point
can be covered by no more than 3

2 · (l − l′) candidate
lines. (The factor 3

2 comes from the extreme case

when l − l′ = n′

3 , so that each candidate line covers

only three points and the point is covered by n′−1
2 can-

didates.) Hence, if we sum for each point the number
of candidates it is covered by, we thus get an upper
bound of n′ · 3

2 (l − l′). But we observe that this sum
equals the sum we obtain by adding for each candidate
line the number of points it covers. Since each can-
didate line covers at least n′

l−l′ points, the number of

candidate lines cannot be larger than (n′·32 (l−l′))/ n′

l−l′

and hence not larger than 3
2 (l − l′)2. Therefore we

call Langerman and Morin’s algorithm [7] at most
3
2 (l − l′)2 times before we produce one more optimal
line. In subsequent calls to their algorithm, the num-
ber of optimal lines to be produced gets smaller and
hence the time complexity gets smaller each time by
at least a constant factor, since it is exponential in
the number of optimal lines. This results in a geo-
metric progression of the time complexity. Therefore
the worst-case bound for the first call asymptotically
dominates all subsequent calls.

3.4 Improving the time bound when l ∈ Ω(log n)

Theorem 9 For any input set of n points, it can be
decided whether there is a set of lines of cardinality
at most k covering the n points in time O(n log k +
(k
2.2194...)

2k). Moreover, an optimal set of covering
lines with minimum cardinality l can be produced in

time O(n log l + (l
2.2194...)

2l)

Proof. See the full paper [3] of the proof. �

4 Lower Bound

In this section we give a lower bound on the time com-
plexity for solving the minimum line cover problem.
We make the assumption that the minimum number
of lines l needed to cover a set S of n points is at most
O(
√

n). (For larger values of l our lower bound may
not be very interesting, since the best known upper
bounds on the time complexity of the minimum line
cover problem are exponential anyway.)

The main result we prove in this section is as fol-
lows:

Theorem 10 The time complexity of
the minimum line cover problem is
Ω(n log l) in the algebraic decision tree model of
computation.

We prove Theorem 10 with a reduction from a special
variant of the general set inclusion problem [1], which
we call the k-Array Inclusion problem. Set inclusion
is the problem of checking whether a set of m items
is a subset of the second set of n items with n ≥ m.
Ben-Or [1] showed a lower bound of Ω(n log n) for this
problem using the following important statement.

Statement 1 If YES instances of some problem Π
have N distinct connected components in <n, then the
depth of the real computation tree for this problem is
Ω(log N − n).

Applying Statement 1 to the complement of Π, we get
the same statement for NO instances. We define the
k-array inclusion problem as follows:

Definition 1 k-Array Inclusion Problem: Given
two arrays A[1 . . . k] of distinct real numbers and
B[1 . . .m] of (not necessarily distinct) real numbers,
k ≤ m, m + k = n, determine whether or not each
element in B[1 . . .m] belongs to A[1 . . . k].

Corollary 3 Any algebraic computation tree solv-
ing k-array inclusion problem must have a depth of
Ω(n log k).

Proof. This lower bound can be shown in a corre-
sponding way as the lower bound for the set inclu-
sion problem [1]. As already pointed out by Ben-Or,
any computational tree will correctly decide the case
when A[1 . . . k] = (1 . . . k). The number of disjoint
connected components, N , for YES instances of the
k-array inclusion problem is km. This is because, in
order to create a YES instance, for each element mi

in B[1 . . .m], there are k choices concerning which of

147

22nd European Workshop on Computational Geometry, 2006

the k fixed elements in A[1 . . . k], mi could be equal to.
Since these choices are independent for each mi, the
total number of YES-instances becomes km. Apply-
ing Statement 1, we get a lower bound of Ω(m log k),
which is also Ω(n log k), since m > n

2 . �

To establish the lower bound in Theorem 10 for the
minimum line cover problem, we convert (in linear
time) the input of the k-array inclusion problem into
a suitable input to the minimum line cover problem as
follows: Each real number ai, 1 ≤ i ≤ k, in the array
A[1 . . . k] becomes k points with coordinates (ai, j) (
in total we obtain k2 points), 1 ≤ j ≤ k and each
real number bj in the array B[1 . . .m], 1 ≤ j ≤ m,
becomes a point with coordinates (bj ,−j), all points
are in two dimensional space. None of the constructed
sets of n = k + m points coincide. If we use any algo-
rithm for the minimum line cover problem to solve the
constructed instance, the output will be a set of lines
covering these points. To obtain an answer to the k-
array inclusion problem, we check whether the total
number of lines, denoted by l, obtained for the min-
imum line cover problem is greater than k. If l = k
then each element in B[1 . . .m] belongs to A[1 . . . k],
otherwise at least one element in B[1 . . .m] does not
belong to A[1 . . . k]. Since the k-array inclusion prob-
lem requires Ω(n log k) time, it follows that the min-
imum line cover problem requires Ω(n log k) time as
well.

According to this construction, if it would be pos-
sible to compute the number l in o(n log l) time, for
some l = O(

√
n), then it would also be possible to

solve the k-array inclusion problem in time o(n log k)
for the case when k = l, which would contradict our
lower bound for the k-array inclusion problem.

Acknowledgment: The authors wish to thank
Dr. Christian Borgelt for his detailed reading and
comments on the paper.

References

[1] M. Ben-Or. Lower Bounds for Algebraic Compu-
tation Trees. Proc. 15th Annual ACM Symp. on
Theory of Computing, 80–86. ACM Press, New
York, NY, USA 1983

[2] H. Edelsbrunner, L. Guibas and J.Stolfi. Opti-
mal Point Location in a Monotone Subdivision.
SIAM J. Comput. 15:317–340. Society for In-
dustrial and Applied Mathematics, Philadelphia,
PA, USA 1986

[3] M. Grantson and C. Levcopoulos. Covering a
Set of Points with a Minimum Number of Lines.
http://www.cs.lth.se/~magdalene/lines.pdf

[4] L. Guibas, M. Overmars, J. Robert. The Ex-
act Fitting Problem in Higher Dimensions.Com-

putational Geometry: Theory and Applications,
6:215–230. 1996

[5] D. Johnson. Approximation Algorithms for Com-
binatorial Problems. J. of Comp. Syst. Sci.
9:256-278. 1974

[6] V. Kumar, S. Arya, and H. Ramesh. Hardness
of Set Cover With Intersection 1. Proc. 27th
Int. Coll. Automata, Languages and Program-
ming, LNCS 1853:624–635. Springer-Verlag, Hei-
delberg, Germany 2000

[7] S. Langerman and P. Morin. Covering Things
with Things. Proc. 10th Annual Europ. Symp. on
Algorithms (Rome, Italy), LNCS 2461:662–673.
Springer-Verlag, Heidelberg, Germany, 2002

[8] N. Megiddo and A. Tamir. On the Complexity of
Locating Linear Facilities in the Plane.Operation
Research Letters 1:194–197. 1982

[9] N. Sarnak, and R.E. Tarjan. Planar Point Loca-
tion Using Persistent Search Tree. Comm. ACM
29:669-679. ACM Press, New York, NY, USA
1986

148

EWCG 2006, Delphi, March 27–29, 2006

Min-max-min Geometric Facility Location Problems

Jean Cardinal∗ Stefan Langerman†

Abstract

We propose algorithms for a special type of geomet-
ric facility location problem in which customers may
choose not to use the facility. We minimize the maxi-
mum cost incurred to a customer, where the cost itself
is a minimum between two costs, according to whether
the facility is used or not. We therefore call this type
of location problem a min-max-min geometric facil-
ity location problem. As a first example, we describe
the Closer Post Office problem, a generalization
of the minimum spanning circle problem. We show
that this problem can be solved in O(n) randomized
expected time. We also show that the proposed algo-
rithm solves two other min-max-min geometric facility
location problems. One, which we call the Moving
Walkway problem, seems to be the first instance of
a facility location problem using time metrics.

1 Introduction

In this work we study facility location problems in
which customers make some decision on whether they
have some interest in using the facility or not. The
facility is defined as a geometric object, and customers
are not interested in using it if it is too far from their
own location.

We assume there are n customers. If we denote
by x the facility to be located, then Cx(i) is the cost
incurred to the ith customer if she uses the facility,
and Cx̄(i) is the cost if she does not use the facility.
A min-max-min facility location problem is a problem
of the form:

min
x

max
1≤i≤n

min{Cx(i), Cx̄(i)}.

An interesting application of this model is trans-
portation facility location. A transportation facility
might be for instance a bus line, a subway station, or
an air connection between two airports. When set-
ting up a new facility of this type, a company must
take into account its usefulness, since customers that
already have access to a closer or faster existing trans-
portation facility will certainly not use the new one.

∗Université Libre de Bruxelles, Computer Science Depart-
ment, jcardin@ulb.ac.be

†Université Libre de Bruxelles, Computer Science Depart-
ment, Chercheur qualifié FNRS. slanger@ulb.ac.be

1.1 Related Works

The simplest form of facility location is maybe the
Weber problem (see for instance [7], Chapter 1), in
which a point minimizing the sum of distances to n
other points is to be found. This problem dates back
to the seventeenth century and many variations of it
are still the subject of intense research nowadays.

Recently, Cabello et al. proposed algorithms for re-
verse facility location problems [3]. This term refers
to reverse nearest neighbor queries in sets of points.
Those queries receive a point as input and return the
points from the set that have the query point as near-
est neighbor. In reverse facility location, a new facil-
ity is located in such a way that the corresponding
reverse nearest neighbor query returns the maximum
number of points. The authors prove that this prob-
lem is 3SUM-hard and also propose algorithms for
locating the facility with respect to additional min-
max or max-min distance criteria. The problem we
consider in Section 2 is a variant of this, which can
be solved more efficiently. Reverse facility location
can be considered as a discrete version of the problem
studied in [5] of inserting, in a given set of points, a
new point whose Voronoi cell has maximum size.

Several geometric optimization problems can be
cast as finding minima on the upper envelope of a
set of so-called Voronoi surfaces, generated by dis-
tance functions. In [8], it is proposed to construct
completely this upper envelope to solve a family of
problems, one of which is the minimum Haussdorff
distance under translation between two point sets.
General bounds on the description complexity of sur-
face envelopes are given in Sharir and Agarwal’s book
on Davenport-Schinzel sequences [10]. They also pro-
pose algorithms for constructing the envelopes, which
are used in the reverse facility location algorithms of
[3]. The problems we consider in the following sec-
tions are all sufficiently simple so that we can avoid
constructing the whole envelope of Voronoi surfaces.

In the min-max-min facility location problems we
consider, the cost for a customer is the result of a
(simple) minimization problem. If the facility is a
transportation facility, then this minimum can be in-
terpreted as a time metric. Time metrics have re-
cently shown to be useful in the geometric analysis of
transportation networks [1, 2]. The problem we con-
sider in Section 4 is, to the authors’ knowledge, the
first instance of a facility location problem using time

149

22nd European Workshop on Computational Geometry, 2006

metrics.

1.2 Our Contributions

In Section 2, we define the Closer Post Office
problem, a first, simple application of the proposed
model. Suppose a new post office is to be installed in
a city and we wish to minimize the maximum distance
between any customer and the closest post office. If,
for some customer, the new post office is not closer
than the one she is used to go to, she will not use
it and her cost will not vary. This is reminiscent of
reverse facility location, except that the cost of all
customers are taken into account, and not only the
costs of the customers that actually use the facility.
We observe that this problem boils down to finding a
minimum height point on the upper envelope of a set
of surfaces, each of which is the lower envelope of a
horizontal plane and a cone.

In Section 3, we show that this problem is solvable
in O(n) randomized expected time.

In Section 4, we consider a transportation facil-
ity location problem, the Moving Walkway prob-
lem. It consists of finding the best location of a sim-
ple transportation facility, that is a moving walkway,
modeled as an interval on the real line. Using the pre-
vious developments, we show that we can solve it in
O(n) randomized expected time as well.

In Section 5, we define a line location problem, the
Highway problem. This problem can be interpreted
as that of finding the optimal location of a highway,
that customer might use to go quicker from point si

to point ti. Its interpretation in the geometric dual
plane (mapping lines to points and points to lines)
leads to a simple formulation similar to the previous
ones.

Finally, Section 6 presents higher-dimensional gen-
eralizations of the previous problems.

2 The Closer Post Office problem

This problem is a generalization of the min-max cen-
ter problem (or minimum spanning circle, see e.g. [9])
in which the distance function is the minimum be-
tween the actual distance to the facility and some
constant.

Definition 1 (Lp-Closer Post Office) Given n
pairs (si, ti) of points in the plane, find a point x∗

which solves the following problem:

min
x∈R2

max
1≤i≤n

min{d(si, ti), d(si, x)},

where d(., .) is the Lp distance function.

We denote by di(x) = min{d(si, ti), d(si, x)} the
cost for customer i. The function d(si, x) in the plane
defines a cone centered on si. The function di(x)

Si

(a) A single surface fi.

(b) The upper envelope of the surfaces fi.

Figure 1: Illustration of the objective function yielded
by the Lp-Closer Post Office problem.

therefore defines a surface fi that is the lower envelope
of the cone and the plane of equation f(x) = d(si, ti).
We call Si the region of equation d(si, ti) ≥ d(si, x),
which is a scaled and translated version of the unit
disk for the Lp distance function that is used.

Since we minimize the maximum distance di(x),
this amounts to finding the minimum height point on
the upper envelope of the set of surfaces fi. This is
depicted schematically on Figure 1.

3 A General Algorithm

In order to solve the Closer Post Office prob-
lem, we first reformulate it in terms of the surfaces
fi. We let hi = d(si, ti) be the height of the surface
fi. We define the disks Si(h) for each surface fi and
real number h as the regions of equation d(si, x) ≤ h
if h < hi and R2 otherwise.

Lemma 1 Solving the Closer Post Office prob-
lem is equivalent to finding the minimum value h∗ of
h for which the intersection

⋂n
i=1 Si(h) is nonempty.

We first solve the decision problem consisting of
verifying whether h > h∗. This amounts to checking
whether a set of disks has a nonempty intersection,
which can be done in O(n) randomized expected time
using Seidel’s algorithm (see e.g. [6]).

In order to solve the corresponding optimization
problem within the same time bounds, we use Timo-
thy Chan’s reduction [4] of an optimization problem
to its decision version. For that purpose, we have
to decompose the original problem in m subproblems
{Q1, Q2, . . . , Qm} of size n/c for some constants m
and c, such that the solution h∗ of the original prob-
lem is the maximum of the solutions of the m sub-
problems.

We first make reasonable assumptions on the prob-
lem, namely that the surfaces fi are symbolically
tilted and the points si and ti are in some general
position so that the minimum h∗ is on the intersec-
tion of a constant, say k, number of surfaces. To

150

EWCG 2006, Delphi, March 27–29, 2006

find a suitable subproblem decomposition, we parti-
tion the set of surfaces {fi} in k + 1 disjoint subsets
F1, F2, . . . , Fk+1. Each subproblem Qj is defined the
same way as our original problem, but only on the
union of k subsets F` of surfaces fi. There are as
many subproblems as there are k-subsets of the set
{F1, F2, . . . , Fk+1}, thus m = k+1. Each subproblem
has size k

k+1n, thus we identify c = (k + 1)/k. The
minimum we look for is defined by k surfaces, and this
k-tuple must appear in at least one of the subprob-
lems Qj . In all the other subproblems, the minimum
cannot be smaller, hence the solution is given by the
maximum of the solutions of the m subproblems. This
gives us all necessary conditions for the reduction to
work, and we can therefore solve the Closer Post
Office problem using Seidel’s algorithm.

Theorem 2 The Lp-Closer Post Office problem
can be be solved in O(n) randomized expected time.

Note that this algorithm can be applied to any simi-
lar problem, in which we look for the minimum on the
upper envelope of a set of surfaces, each being a plane
with a convex ”hole” of constant description complex-
ity.

4 The Moving Walkway problem

The motivation for the next problem is the following.
Suppose a new moving walkway is to be installed
in a long corridor (for instance in the concourse of
an airport). This walkway is to be used by people
to go from one point of the corridor to another, and
we wish to locate it so that it is the most useful.
We model the corridor as the real line, source and
destination points by pairs (si, ti) of real numbers
with ti ≥ si, and the moving walkway by an interval
[a, b] on the line, with b ≥ a. We denote by v−1 > 1
the speed on the moving walkway, and assume
that the speed outside the moving walkway is 1.
Customers can only enter the walkway at point a and
step down of it at point b. Our objective function is
the maximum time needed to go from si to ti.

The time to go from any point s of the line to any
other point t is really a time metric [1, 2], defined
as the minimum between the difference t− s and the
following sum:

|s− a|+ |t− b|+ v(b − a).

The first two terms are the time needed to go from s
to the entrance of the walkway, and from the end of
the walkway to t, respectively, while the third term
is the time spent on the walkway. We can now define
the problem.

Definition 2 (Moving Walkway) Given n pairs
(si, ti) of real numbers with ti > si, and a real number

a

b

si ti

si

ti

ti − (ti − si)/α

si+
(ti − si)/α

a = b

Figure 2: Edges of the surface defined by the function
di(a, b) in the Moving Walkway problem.

v ≤ 1, find a pair (a∗, b∗) which solves the following
problem:

min
(a,b)∈R2:b≥a

max
1≤i≤n

di(a, b)

where di(a, b) = min{ti−si, |si−a|+|ti−b|+v(b−a)}.

The following lemma characterizes the situations in
which customers decide not to use the walkway. We
denote by `(I) the length of an interval I.

Lemma 3 The time metric di(a, b) between si and ti
can be written as:

di(a, b) =

ti − si if `([a, b] ∩ [si, ti])

≤ α(b − a)

|si − a|+ |ti − b|
+v(b − a) otherwise,

where α = (v + 1)/2.

We now consider the function di(a, b) in the plane
(a, b). This function defines a surface fi that has a
structure similar to those appearing in the Closer
Post Office problem. The surface fi is the lower
envelope of a horizontal plane corresponding to the
inequality di(a, b) ≤ ti − si, and a piecewise linear
surface made of four patches. The vertices of fi

are the following: di(si, ti) = v(ti − si), di(ti, ti) =
di(si, si) = ti − si, and di(si, si + (ti − si)/α) =
di(ti − (ti − si)/α, ti) = ti − si. The projection of the
edges of the surface fi on the plane (a, b) is depicted
on Figure 2. If the speed on the walkway is infinite,
that is when v = 0, then the surface fi is the lower
envelope of a horizontal plane and a rectilinear cone,
as those appearing in the L1-Closer Post Office
problem.

Lemma 4 The Moving Walkway problem with
v = 0 is a special case of the L1-Closer Post Of-
fice problem.

It can be checked that the algorithm described in the
previous section applies to this problem, even when
v > 0.

151

22nd European Workshop on Computational Geometry, 2006

b

a

ti

si

Figure 3: Edges of the surface defined by the function
di(a, b) = min{d(si, ti), dv(si, L) + dv(L, ti)} in the High-
way problem, where the line L has equation y = ax + b.
The function has value 0 at the intersection of the lines de-
fined by the points si and ti in the dual plane, and d(si, ti)
outside the parallelogram.

Theorem 5 The Moving Walkway problem can
be be solved in O(n) randomized expected time.

5 The Highway problem

Our last problem is that of locating a line L : y =
ax+b in the plane. We denote by dv(x, L) the vertical
distance between the point x and the line L.

Definition 3 (Highway) Given n pairs (si, ti) of
points in the plane, find a line L∗ which solves the
following problem:

min
L

max
1≤i≤n

min{d(si, ti), dv(si, L) + dv(L, ti)}

This problem can be interpreted as that of locating a
highway, which customers may use to go from point si

to point ti. When analyzed in the dual plane mapping
lines to points and points to line, this problem can be
shown to be very similar to the previous two ones,
for it also consists of finding a minimum on the upper
envelope of a set of surfaces, each of which is defined as
the lower envelope of a plane and a cone, as depicted
on Figure 3. The previous algorithm applies again in
this situation.

Theorem 6 The Highway problem can be be solved
in O(n) randomized expected time.

6 Higher-dimensional variants

Clearly, the algorithm designed to solve the Closer
Post Office problem can also be used to solve
the analogous problem in k > 2 dimensions instead
of 2. The decision problem then consists of check-
ing whether an intersection of k-dimensional balls is
empty, which can be done in linear time as long as k
remains constant. The 2-dimensional extension of the
Moving Walkway problem is of particular interest.
It could model a situation in which for instance a new
public transport connection is to be set up between
two points. The problem is the following.

Definition 4 (2D-Lp-Moving Walkway) Given n
pairs (si, ti) of points in the plane, and a real number
v ≤ 1, find a pair (a∗, b∗) which solves the following
problem:

min
(a,b)∈R2×R2

max
1≤i≤n

di(a, b)

where di(a, b) = min{d(ti, si), d(si, a) + d(ti, b) +
vd(a, b)} and d(., .) is the Lp distance function.

In order for the algorithm to work, we have to make
sure that the decision problem can be solved in linear
time. We define the regions Si(h) as R4 if d(si, ti) ≤ h
and as

{(a, b) ∈ R4 : d(si, a) + d(b, ti) + vd(a, b) ≤ h}

otherwise. The decision problem amounts to checking
whether the intersection of the regions Si(h) is empty.
Those regions can be shown to be convex, hence the
decision problem is a convex programming problem in
4 dimensions. This can be solved using a randomized
algorithm in O(n) time. From the previous develop-
ments, the optimization problem can be solved within
the same time bound.

References

[1] M. Abellanas, F. Hurtado, and B. Palop. Transportation
networks and Voronoi diagrams. In Proc. International
Symposium on Voronoi Diagrams in Science and Engi-
neering, 2004.

[2] O. Aichholzer, F. Aurenhammer, and B. Palop. Quickest
paths, straight skeletons, and the city Voronoi diagram.
Discrete & Computational Geometry, 31(1):17–35, 2004.

[3] S. Cabello, J. M. Dı́az-Báñez, S. Langerman, C. Seara, and
I. Ventura. Reverse facility location problems. In Proc.
17th Canadian Conference on Computational Geometry
(CCCG’05), pages 68–71, 2005.

[4] T. Chan. Geometric applications of a randomized opti-
mization technique. Discrete & Computational Geometry,
22:547–567, 1999. (SoCG special issue).

[5] O. Cheong, A. Efrat, and S. Har-Peled. On finding a guard
that sees most and a shop that sells most. In Proc. ACM-
SIAM Symposium on Discrete Algorithms (SODA’04),
pages 1098–1107, 2004.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry, Algorithms
and Applications. Springer-Verlag, 1997.

[7] Z. Drezner and H. W. Hamacher, editors. Facility Loca-
tion: Applications and Theory. Springer-Verlag, 2001.

[8] K. Kedem, D. P. Huttenlocher, and M. Sharir. The upper
envelope of Voronoi surfaces and its applications. Discrete
Comput. Geom., 9(3):267–291, 1993.

[9] J.-M. Robert and G. T. Toussaint. Computational geom-
etry and facility location. In Proc. International Conf. on
Operations Research and Management Science, volume B,
pages 1–19, Dec. 1990.

[10] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge Uni-
versity Press, 1995.

152

EWCG 2006, Delphi, March 27–29, 2006

Proximity structures in the fixed orientation metrics

Christian Wulff-Nilsen∗

Abstract

We present algorithms computing two types of prox-
imity structures in the plane with a fixed orientation
metric. Proximity structures have proven useful for
Steiner tree heuristics in the Euclidean plane and may
play a similar role for the fixed orientation metrics
where Steiner trees are important in the area of VLSI
design. We show how to find an all nearest neighbour
graph NNG(Z) of a set Z of n points in O(an log n)
time using O(n) space where a is the number of fixed
orientations. The algorithm does not use the Voronoi
diagram of Z. We present an algorithm that com-
putes the Gabriel graph GG(Z) of Z in O(an log n)
time using O(an) space under the assumption that no
three points of Z are on a line parallel to one of the
boundary edges of a σ-circle where σ is the set of fixed
orientations. We show that if this assumption is not
satisfied then GG(Z) may contain Ω(n2) edges. Both
algorithms are optimal for constant a.

1 Introduction

Let σ be a set of a angles α1, . . . , αa sorted
counter-clockwise. These angles are called (fixed) σ-
orientations and a line, halfline, or line segment with a
σ-orientation is said to be σ-oriented. The σ-distance
dσ between two points is the length of a shortest path
of σ-oriented line segments between the points and
dσ is called the σ-metric. We refer to the σ-metric as
a fixed orientation metric. We will sometimes write
|pq|σ instead of dσ(p, q).

In recent years, fixed orientation metrics have
played an important role in the area of VLSI design.
This is due to the fact that the orientations of wires
on a print are typically restricted to a finite set of
fixed orientations. In VLSI routing, an important ob-
jective is to minimize the total length of an inter-
connection. This involves computing a Steiner tree.
Since the Steiner tree problem is NP-hard, heuristics
can be applied. Proximity structures have proven effi-
cient for Steiner tree heuristics in the Euclidean plane
[3] and could possibly play a similar role for Steiner
tree heuristics in fixed orientation metrics.

We consider two types of proximity structures in
the σ-metric. The first is an all nearest neighbour
graph NNG(Z) of Z where Z is a finite set of n points

∗Department of Computer Science, University of Copen-
hagen, DK-2100 Copenhagen Ø, Denmark, koolooz@diku.dk

or terminals in the plane. This graph has an edge
(z1, z2) if and only if z2 is a nearest neighbour of z1,
i.e. dσ(z1, z2) = minz∈Z\{z1} dσ(z1, z), or if z1 is a
nearest neighbour of z2. If a terminal has more than
one nearest neighbour, only one of them is picked as
a nearest neighbour.

For c ∈ R2 and r > 0, the σ-circle Cσ(c, r) with cen-
ter c and radius r is the set of points having σ-distance
at most r to c, i.e. Cσ(c, r) = {p ∈ R2|dσ(c, p) ≤
r}. The second proximity structure we consider is
the Gabriel graph GG(Z) of Z. This graph has an
edge (z1, z2) if and only if the σ-circle with center
c = 1

2 (z1 + z2) and radius |cz1|σ = |cz2|σ contains no
terminals in its interior.

We present algorithms computing NNG(Z) and
GG(Z) in the σ-metric.

The organization of the paper is as follows. In sec-
tion 2, we make various definitions and present some
basic properties related to the σ-metric. In section
3, we show how to find NNG(Z) in O(an log n) time
using O(n) space. We also show how to compute a
similar all nearest neighbour graph and, using this,
we present an O(an log n) time and O(an) space al-
gorithm computing GG(Z) in section 4. To obtain
these bounds, we make a simplifyng assumption about
Z since otherwise, GG(Z) may contain Ω(n2) edges.
Our algorithms are optimal for constant a as we show
in section 6. Finally, we make some concluding re-
marks in section 7.

2 Definitions and basic properties

Associate with each z ∈ Z the region of points not
farther from z than from any other terminal in the σ-
metric. This region is a (possibly unbounded) polygon
[2] and is referred to as the Voronoi polygon of z. Since
Voronoi polygons are not always disjoint, they need
not define a partition of the plane.

We define a Voronoi diagram of Z, Vor(Z), to be
a partition of the plane into regions such that each
region contains some z ∈ Z together with (some of
the) points not farther from z than from any other
terminal in Z. The region containing z is a (possibly
unbounded) polygon [2] called the Voronoi region (of
z) and the line segments defining the boundary of a
Voronoi region are called Voronoi edges. A Voronoi
diagram Vor(Z) of Z can be found in O(an log n) time
using O(an) space [2].

Given a point p, a σ-cone of p is the region bounded

153

22nd European Workshop on Computational Geometry, 2006

by halflines emanating from p having orientations αi

and αi+1 respectively for some i (if i = a then the
orientations are αa and α1 respectively). We order
the σ-cones of p counter-clockwise starting with the
σ-cone having orientations a1 resp. a2.

Let q be another point. The union of σ-oriented
lines through p resp. q partitions the plane into regions
called fields. The bisector of p and q is the set of points
r such that dσ(p, r) = dσ(q, r). When the bisector of
p and q is restricted to a field, it is either empty, a
line segment, or the whole field [2]. In the latter case,
we will refer to the field as a bisector field of p and q.

We will need another type of all nearest neighbour
graph, denoted NNG(M, M ′), where each point in M
is incident to a nearest neighbour among points in M ′

for finite point sets M and M ′.
As we shall see later, GG(Z) may contain Ω(n2)

edges unless we make some simplifying assumption
about Z. We will show that one such assumption
is the following: no three terminals are on the same
line parallel to a boundary edge of a σ-circle. If this
assumption is satisfied, we say that the terminals are
in general position.

3 All nearest neighbour graph

In this section, we show how to find NNG(Z) in
O(an log n) time using O(n) space. This is done with-
out computing Vor(Z), as opposed to the algorithm
suggested in [2]. The idea is to linearly transform Z
by mapping σ-cones to north-east (NE) quadrants in
such a way that finding a nearest neighbour in a σ-
cone is equivalent to finding a nearest NE-neighbour
in the transformed terminal set in the L1-metric.
Nearest NE-neighbours are then found using the al-
gorithm suggested in [1].

We will briefly describe the algorithm in [1] since
we need to modify it later. It finds nearest north-
east neighbours in the L1-metric by partioning the
given point set into a left and a right half, recursively
finding nearest NE neighbours in the two halves, and
then finding nearest NE neighbours of points in the
left half among points in the right half. To do the
latter, the algorithm keeps track of three pointers, left,
right, and min. During the course of the algorithm,
left advances down the list of points in the left half,
right advances down the list of candidate nearest NE
neighbours of left in the right half, and min keeps
track of the nearest NE neighbour of left in the right
half found so far. Pointer left makes only one pass
through the points in the left half. Similarly, right
makes only one pass through the points in the right
half.

Let K be the ith σ-cone of a point p = (px, py)
and let q = (qx, qy) be a point in K. By rotating if
necessary, we may assume that the right leg of K is
aligned with the x-axis. Now, letting s = cot θ, where

θ = αi+1 − αi, we have (see Figure 1)

dσ(p, q) = (qx − px) + (qy − py)
(√

s2 + 1− s
)

.

Define Ti : R2 → R2 by

Ti(x, y) =

(
x− sy√
s2 + 1

, y

)
.

The following lemma shows that Ti is the linear trans-
formation we are looking for.

(q − p)sy y

p

q

θθ

Figure 1: The σ-distance from p to q is the sum of
lengths of the two σ-oriented line segments marked in
bold.

Lemma 1 With the above definitions, Ti is linear
and maps K to the first quadrant of Tip. If Tiq
is in the first quadrant of Tip then q ∈ K. If
q1, q2 ∈ K then dσ(p, q1) ≤ dσ(p, q2) if and only if
L1(Tip, Tiq1) ≤ L1(Tip, Tiq2).

The algorithm computing NNG(Z) is as follows.
For i = 1, . . . , a, we make a call to the algorithm in
[1] on Ti(Z). By Lemma 1, this gives us nearest neigh-
bours in the ith σ-cones of terminals in Z. To ensure
O(n) space requirement, we maintain only the near-
est neighbour of each terminal found so far during the
iterations.

The time spent in each of the a iterations is
bounded by the time spent in the algorithm in [1]
which is O(n log n). Thus, the total running time of
our algorithm is O(an log n). The space used is O(n),
the amount required by the algorithm in [1].

In order to construct NNG(M, M ′), where |M | =
m and |M ′| = m′, we need to modify the update of
pointers left and right in the algorithm in [1]. We do
this as follows. The input point set is M ∪M ′. Since
we need to find nearest neighbours of points in M
among points in M ′ pointer left needs to skip points in
M ′ and pointer right needs to skip points in M . With
this modification, we can construct NNG(M, M ′) in
O(a(m+m′) log(m+m′)) time using O(m+m′) space.

4 Gabriel graph

Next, we consider the Gabriel graph GG(Z) of Z. We
will show how to find this graph in O(an log n) time
using O(an) space. We assume that a supergraph

154

EWCG 2006, Delphi, March 27–29, 2006

S(Z) of GG(Z) containing O(n) edges is given. In sec-
tion 5, we present an algorithm that finds such a su-
pergraph in O(an log n) time and O(an) space. How-
ever, we assume that terminals are in general position
since otherwise, GG(Z) may contain Ω(n2) edges, see
Figure 2.

Figure 2: GG(Z) with a quadratic number of edges,
shown in the rectilinear metric.

Let M be the set of midpoints of edges of the su-
pergraph S(Z). An edge e = (z1, z2) ∈ S(Z) belongs
to GG(Z) if and only if a nearest neighbour terminal
of midpoint m of e is no closer to m than z1 and z2.
From this it follows that, given NNG(M, Z), which
can be constructed in O(an log n) time using O(n)
space, determining whether e belongs to GG(Z) takes
O(1) time. Hence, edges of S(Z) not belonging to
GG(Z) can be discarded in O(n) time. This shows
that GG(Z) can be found in O(an log n) time using
O(an) space.

5 A supergraph of GG(Z)

In the Euclidean metric, the Delaunay graph of Z is
the straight-line dual of the Voronoi diagram of Z.
The Delaunay graph of Z contains the Gabriel graph
of Z. Unfortunately, this does not always hold in the
σ-metric since a Voronoi region need not equal the
corresponding Voronoi polygon, see Figure 3. The al-

Voronoi regions
of z and z’

Voronoi polygon
of z

Voronoi polygon
of z’

z

z’

z

z’

z

z’

Figure 3: Voronoi regions and Voronoi polygons of
terminals z and z′, shown in the rectilinear metric.

gorithm in [2] constructing Vor(Z) does not always
pick an entire bisector field but merely one of the
halflines bounding this field when constructing the
boundary of a Voronoi region P . Hence, the bisec-
tor parts bounding P will not always be included in
P and the straight-line dual of Vor(Z) will therefore
not always contain GG(Z).

To remedy this, we expand each Voronoi region of
Vor(Z) to its corresponding Voronoi polygon by in-
cluding those parts of the bisector fields that belong
to the Voronoi polygon. In the following, assume that
Vor(Z) is found using the algorithm in [2]. In the σ-
metric, we define the Delaunay graph DG(Z) of Z to
be the graph having an edge between each pair of ter-
minals whose Voronoi polygons overlap (possibly only
on the boundaries). We will later see that DG(Z) can
be used as a supergraph S(Z).

In order to efficiently construct DG(Z), we will
need a few results. Suppose Voronoi edges of each
Voronoi region are directed clockwise. This involves
replacing each edge of Vor(Z) by two oppositely di-
rected edges. Let e = (p, q) be a Voronoi edge of the
Voronoi region P of a terminal z1 and let (q, p) belong
to the Voronoi region P ′ of a terminal z2. The follow-
ing lemma gives a necessary and sufficient condition
for expanding P at e.

Lemma 2 With the above definitions, e bounds a
bisector field F of z1 and z2 such that F does not
intersect the interior of P if and only if there are two
lines l and l′ with orientations αi and αi+1 respec-
tively for some i such that e, z2, p ∈ l and z1, p ∈ l′

(Figure 4).

z2

1z

el

l’

p

P

P’

q

Figure 4: The situation in Lemma 2.

Next, we show that we only need to consider
Voronoi regions adjacent to P when expanding.

Lemma 3 Let z1, z2, and z3 be distinct points. If
F1 is a bisector field of z1 and z2 and F2 is a bisector
field of z1 and z3 then F1 ∩ F2 = ∅.

We can quickly find those Voronoi edges of the
neighbouring Voronoi region P ′ that belong to the
expanded P as the next lemma shows.

Lemma 4 With the above definitions, if e bounds a
bisector field F of z1 and z2 such that F does not
intersect the interior of P then the Voronoi edges of
P ′ intersected by F occur sequentially when walking
around the Voronoi edges of P ′ starting in p.

Theorem 5 Given Vor(Z), DG(Z) can be con-
structed in O(an) time using O(an) space and DG(Z)

155

22nd European Workshop on Computational Geometry, 2006

consists of O(n) edges. Furthermore, GG(Z) ⊆
DG(Z).

Proof. We construct DG(Z) from Vor(Z) by initial-
izing the edge set of DG(Z) to the empty set and do-
ing the following for each Voronoi region P of Vor(Z).
Let z1 be the terminal of P . For each edge e = (p, q)
of P , let z2 be the terminal of the Voronoi region P ′

sharing edge e with P . We check if e bounds a bi-
sector field F of z1 and z2 such that F intersects the
interior of P (Lemma 2). If so, we add edge (z1, z2) to
DG(Z). Otherwise, we need to expand P at e. We do
not do this explicitly since we only need to construct
DG(Z). Instead, we make a counter-clockwise detour
into P ′, starting in q. Each edge in this detour is ad-
jacent to the Voronoi region of a terminal z3 6= z2.
We add (z1, z3) to DG(Z) if (z1, z3) is not already in
DG(Z). The detour stops when we encounter an edge
not intersecting F or if there are no more edges in the
tour (this may happen when P ′ is unbounded).

The correctness of the above algorithm follows from
Lemma 3 and Lemma 4. The running time is bounded
from above by the number of edges we traverse. An
(undirected) edge e of Vor(Z) is traversed at most
four times, namely once in each of the two traversals
of Voronoi regions adjacent to e and, by Lemma 3,
at most twice in detours. Thus, the running time is
O(an). The space requirement is clearly O(an).

Let Vor ′(Z) be the graph obtained from Vor(Z) by
merging edges of Vor(Z) meeting in degree two ver-
tices into one edge. Since no vertex of Vor ′(Z) has de-
gree less than three, the number of edges in this graph
is O(n) by Euler’s formula (the unbounded faces are
easily handled). In the above algorithm, an edge
traversal of a Voronoi region or a detour in Vor(Z)
induces an edge traversal in Vor ′(Z). An argument
similar to the one above shows that the number of
times we traverse any edge of Vor ′(Z) is bounded by
a constant. Thus, DG(Z) contains O(n) edges.

Let e = (z1, z2) be an edge of GG(Z) and let m =
(z1 + z2)/2 be the midpoint of e. Since no terminals
are strictly closer to m than z1 and z2 it follows that
the Voronoi polygons (the expanded Voronoi regions)
of z1 and z2 overlap in m, hence e ∈ DG(Z). �

6 Optimality of algorithms

Finally, we show that for fixed a, the two algorithms
presented are optimal.

Space requirement is clearly optimal. That our
GG-algorithm has optimal running time follows from
reduction of sorting. Let c1, . . . , cn be n distinct real
numbers. Consider the corresponding set Z of n ter-
minals zc1 , . . . , zcn

, where zci
= (ci, 0) for i = 1, . . . , n.

Let τ be the permutation of c1, . . . , cn such that
τ(c1) < τ(c2) < · · · < τ(cn) and let G = (Z, E)
where E is the set of edges (zτ(ci), zτ(ci+1)) for i =

1, . . . , n− 1. Then GG(Z) = G, showing the optimal-
ity of the GG-algorithm.

Now, with Z as above, construct NNG(Z). This
graph is a collection of connected components, each
of which corresponds to a sublist of the sorted list
of numbers. Letting Z ′ ⊆ Z be the set of left end-
point of each sublist, the fact that each terminal has
a nearest neighbour implies |Z ′| ≤ 1

2 |Z|, see figure 5.
We repeat the procedure on NNG(Z ′). Eventually we

NNG(Z)

NNG(Z’)

Figure 5: We can use NNG(Z) to sort numbers.

end up with a single component. Using the generated
graphs, we find the sorted list of n numbers in lin-
ear time. If we could construct NNG(Z) in o(n log n)
time, we could construct the above sequence of graphs
in o(n lg n) time, a contradiction.

7 Conclusion

We presented algorithms computing an all nearest
neighbour graph NNG(Z) and the Gabriel graph
GG(Z) for a set Z of n points in the plane with
a fixed orientation metric. For a constant number
of fixed orientations, both algorithms have O(n log n)
optimal running time and O(n) optimal space require-
ment. We assumed that no three points of Z are on
the same line parallel to a boundary edge of a σ-circle
when constructing GG(Z) and showed that GG(Z)
may contain Ω(n2) edges in general.

It should be possible to extend both algorithms to
the weighted fixed orientation metrics in which each
fixed orientation has an associated weight.

Finally, it should be possible to relax the general
position assumption without affecting the asymptotic
time and space bounds of our algorithms by only re-
quiring the following: at most a constant number of
terminals are on the same line parallel to a boundary
edge of a σ-circle.

References

[1] Leo J. Guibas and Jorge Stolfi. On computing all
north-east nearest neighbors in the L1 metric. Infor-
mation Processing Letters 17 (1983) 219-223, North-
Holland.

[2] P. Widmayer, Y. F. Wu and C. K. Wong. On some
distance problems in fixed orientations. Siam J. Com-
put. Vol. 16, No. 4, August 1987.

[3] M. Zachariasen and P. Winter. Concatenation-Based
Greedy Heuristics for the Euclidean Steiner Tree
Problem. Algorithmica (1999) 25: 418-437.

156

EWCG 2006, Delphi, March 27–29, 2006

Randolph’s Robot Game is NP-complete!

Birgit Engels∗ Tom Kamphans†

Abstract

We introduce a new type of movement constraints for
a swarm of robots in a grid environment. This type
is inspired by Alex Randolphs board game Ricochet
Robot and may be used to model robots with very
limited abilities for self localization: We assume that
once a robot starts to drive in a certain direction, it
does not stop its movement until it hits an obstacle
wall or another robot. We show that the question,
whether a given cell can be reached is NP-complete
for arbitrary environments.

A Java applet for simulating robot swarms moving
with these constraints can be found in

http://www.geometrylab.de/RacingRobots/

Keywords: Robot navigation, cellular environments,
navigation errors, robot swarms, NP-completeness.

1 Introduction

Robot motion planning has received a lot of attention
both in computational geometry and in robotics; see,
for example, the surveys [3, 16, 11], or the books [15,
19, 6].

In this paper, we consider a quite simple model for
the robots and their environment: The robots are
short sighted and the surrounding is subdivided by
a rectangular integer grid; that is, the robots move
in a cellular environment, similar to a chessboard or
squared writing paper.

Environments with a grid structure were considered
in different settings. Icking et al. [12] studied the ex-
ploration problem (also known as covering) of a simple
grid polygon (i.e., a polygon with no obstacles inside).
They gave a lower bound of 7

6 and a 4
3 -competitive

exploration strategy for this problem. The case of
a polygon with obstacles was considered by Icking et
al. [10]—see also [14]—and independently by Gabriely
and Rimon [9]. Itai et al. [13] showed that the corre-
sponding offline problem is NP-hard. Betke et al. [4]
and Albers et al. [1] studied the piecemeal exploration
problem, where the robot has to return to the start
cell every now and then. Cellular environments were

∗Universität zu Köln, Zentrum für angewandte Informatik
(ZAIK), 50831 Köln, Germany. engels@zpr.uni-koeln.de

†University of Bonn, Institute of Computer Science I,
53117 Bonn, Germany. kamphans@cs.uni-bonn.de

also considered from a more practical point of view;
see, for example, Moravec and Elfes [17].

Swarms of robots have been studied intensely. See,
for example, Bruckstein et al. [5]. Arkin et al. [2] con-
sidered the freeze-tag problem (i.e., the question how
to ’wake up’ an initially inactive swarm of robots).

Figure 1: The board game Ricochet Robots by Alex
Randolph.

Another interesting model for robots moving
around in cellular environments was inspired by the
board game Ricochet Robots by Alex Randolph [18],
see Figure 1. The interesting part of the game are the
rules to move a robot: A robot can move in one of the
four directions (north, east, south, or west), but once
it has chosen a direction it continues to move in this
direction until it hits an obstacle or another robot.
Thus, it is often necessary to move robots that serve
as guides to stop the movement of another robot on
an appropriate cell. See, for example, Figure 2: The
task is to move the robot ⊗ to the cell marked with 3.
To permit this movement, the robot ⊕ has to move
to a, so three moves are necessary to solve the task.

a⊗

3

⊕

Figure 2: Example: the robot ⊕ has to move to a to
allow the robot ⊗ a movement to 3.

This model can be used for a swarm of robots. Each
of them has a very restricted orientation: Even if the
robots have a map of their environment, a robot that
touches a wall knows only, which wall in the environ-
ment it touches, but as soon as the robot leaves the

157

22nd European Workshop on Computational Geometry, 2006

wall it has no chance to locate itself. Therefore, it
continues its movement until it hits another wall or
another robot. However, the robots are able to com-
municate with each other, or all of them are controlled
by the same computer. Apart from the best strategy
to solve Randolph’s game, an interesting question is,
whether there is an upper bound for the number of
robots, such that every cell can be reached by at least
one robot. In this paper we show that the reachability
problem in arbitrary environments is NP-complete.

2 Preliminaries

We assume that the robot’s environment is subdivided
by a rectangular integer grid. We call a reachable
basic block in the environment a cell, and the set of all
cells that can be reached by the robots a grid polygon,
or polygon for short. An unreachable block is called
an obstacle or hole.

We assume that the environment is populated by
a system R of N robots r1, . . . , rN . The robots start
either from a common start cell s or from a given
start configuration S = (s1, . . . , sN) inside the poly-
gon. The sensors of a robot provide the information,
which of the four neighbors of the currently occupied
cell belong to the polygon and which ones do not. Fur-
thermore, the robot is able to recognize neighboring
cells occupied by another robot. A robot can enter an
unoccupied polygon cell, but once it started to drive
in a certain direction, it will continue the movement
until it hits a wall (i.e., an obstacle) or another robot.
We assume that in any point of time at most one robot
moves.

In spite of the very basic sensors, the robots are
either able to communicate with each other or they
are steered by a common controlling unit. However,
the robot system R provides enough memory to store
a map of the environment and some additional infor-
mation.

3 Reachability in Arbitrary Polygons

Let the Reachability Problem be defined as follows:
Given an arbitrary grid polygon P , a system of N
Randolph robots r1, . . . , rN , a start configuration S =
(s1, . . . , sN), and a target cell t. Is one of the robots
able to reach t—probably with the help of the other
robots?

In this section, we show that the Reachability Prob-
lem is NP-complete by reducing the well known satis-
fiability problem with three literals per clause (3SAT)
to the Reachability Problem. Let us recall the 3SAT
Problem: Given a boolean expression, α, consisting
of m clauses C1, . . . , Cm over n variables X1, . . . , Xn,
where each clause consists of three literals; that is,
α = C1 ∧ . . . ∧ Cm with Ci = (Li1 ∨ Li2 ∨ Li3) and

Lij ∈ {X`,¬X`; 1 ≤ ` ≤ n }. Is there a truth assign-
ment for X1, . . . , Xn such that α is fulfilled?

OUTXk

sk

OUT¬Xk

Figure 3: A fork polygon.

Given an expression α, we construct a polygon,
P (α). In the following, we give a brief description
of the construction.1 The robot system R consists of
n + 1 robots, r0, r1, . . . , rn, where n is the number of
variables in the 3SAT instance. The robot r0 plays a
special role: it starts on a special start cell s0 and its
purpose is to reach t. Note, that r0 is the only robot
that may reach t, if t is reachable at all. Each of the
other robots rk, 1 ≤ k ≤ n, represents a variable Xk

and its truth assignment. Thus, we call these robots
literal robots. A literal robot rk starts at a cell sk in
a special fork-shaped (sub-)polygon called fork poly-
gon fpk, see Figure 3. As soon as rk leaves the fork
polygon, it is impossible for rk to return to sk and
to enter the other vertical passage. This property en-
sures the consistency of the truth assignment for the
variables in α. By convention, we assign Xk := 1 if
the robot enters the left-hand vertical passage of the
corresponding fork polygon, and Xk := 0 otherwise.
We denote the former passage with Xk-passage and
the latter with ¬Xk-passage of fpk. We have:

Lemma 1 The truth assignment of the variables that
is derived from the movement of the literal robots is
consistent.

di2di1

×

×

×

×

×

×

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

•

•

×

INclause

×

×

×

×

×

• ◦

×

di3

OUTclause

INXi2
INXi3

INXi1

OUTXi1
OUTXi2

OUTXi3

Figure 4: A clause polygon.

For every clause Ci in α we construct a correspond-
ing (sub-)polygon called the clause polygon cpi, see

1For more details and proofs see our technical report [8],
where we discuss also lower bounds on the number of robots
needed to reach every cell. For example, it is easy to see that
three robots are necessary and sufficient to reach every cell in
a rectangular environment.

158

EWCG 2006, Delphi, March 27–29, 2006

C2 = ¬X1 ∨ X4 ∨ ¬X5

t

s1 s2 s3 s4 s5

s0 C1 = X1 ∨ X2 ∨ X3

Figure 5: Construction example for P (α) corresponding to α = C1 ∧C2 = (X1 ∨X2 ∨X3) ∧ (¬X1 ∨X4 ∨ ¬X5).

Figure 4. The robot r0 may pass a clause polygon if
and only if the clause polygon is visited by at least
one of the literal robots corresponding to the literals
in Ci. This, in turn, is only possible, if the clause Ci

in α is fulfilled. More precisely, a robot rk may en-
ter cpi, if it represents Xk = 1 and Xk is a literal in
Ci, or if it represents Xk = 0 and ¬Xk is a literal in
Ci. Moving south into cpi, a robot rk stops on a cell
dij marked with an arrow in Figure 4. Now, imagine
that the robot r0 moves from INclause to the hori-
zontal passage marked with ◦ where rk is positioned.
The robot r0 stops in front of rk and can change its
direction to enter the vertical passage marked with ×
in Figure 4 leading to OUTclause. Note that r0 cannot
pass the clause polygon without further help of other
robots. The main property of the clause polygons is
the following:

Lemma 2 The robot r0 may pass a clause polygon
from INclause to OUTclause if and only if the corre-
sponding clause in α can be fulfilled.

In the last step of the construction, we arrange and
combine the clause and fork polygons to one polygon
P (α): We arrange the clause polygons one beneath
the other on the left-hand side of P (α) and the fork
polygons side by side on top of P (α), each of them
with sufficient space for the connections, see the ex-
ample in Figure 5. Then we consecutively connect

all clause polygons by a passage. More precisely, for
1 ≤ i < m we connect OUTclause of cpi and to INclause

of cpi+1. Further, we connect INclause of cp1 to the
start cell s0 of r0 and OUTclause of cpm to the target
cell t. Thus, r0 has to pass consecutively all clause
polygons.

Now we connect the fork polygons to the clause
polygons: First, we extend the Xk-passages and the
¬Xk-passages of the fork polygons to the south un-
til they reach the last clause polygon. Thus, we have
2n vertical corridors parallel to the column of clause
polygons. Each of these corridors ends in a blind al-
ley. Then we add connections from this bus struc-
ture to the clause polygons: If Xk is the jth literal in
the clause Ci of α, we divert rk from the Xk-passage
via INXij

through cpi and via OUTXij
back to the

Xk-passage. Remark that we add an obstacle cell to
the Xk-passage between the horizontal connections to
the clause polygon. Analogously, if ¬Xk is the jth
literal, we connect INXij

and OUTXij
to the ¬Xk-

passage. Note that the passages are mostly separated
by obstacles—the only exceptions are crossings of con-
necting passages. But these crossings do not matter,
a literal robot rk stays in its Xk- or ¬Xk-passages, af-
ter it left the fork polygon. Further, r0 cannot reach
one of these passages.

Altogether, we arrived at the basic idea of our proof:
If t is reachable by r0, r0 must pass every clause poly-
gon. At the same time r0 reaches a clause polygon

159

22nd European Workshop on Computational Geometry, 2006

cpi, at least one literal robot rk must enter cpi. This
corresponds to the conditions to fulfill α: The truth
assignment derived from the literal robots that enter
the clause polygons ensures that there is at least one
literal fulfilled in every clause. On the other hand, any
given truth assignment that satisfies α fulfills at least
one literal for every clause of α; thus, for every clause
polygon in P (α) there is at least one literal robot
able to enter it. Further, all clauses are connected in
a serial way, which corresponds to the conjunction of
clauses in α. Thus, we can state:

Lemma 3 There is a truth assignment that fulfills α,
if and only if t is reachable by R in P (α).

It is easy to see that we need a construction time
in O(mn), but this time is still polynomial in the size
of α. Further, we can construct a nondeterministic
Turing machine that chooses nondeterministically a
sequence of movements to reach t and verifies the
reachability of t in polynomial time, see [7] for more
details. Altogether, we have:

Theorem 4 The Reachability Problem is NP-
complete.

4 Summary

We considered robot swarms moving in cellular envi-
ronments under a new type of movement constraint
and showed that the question, whether a cell can be
reached by a robot, is NP-complete for arbitrary envi-
ronments. A Java applet for simulating robot swarms
moving under our constraints can be found in

http://www.geometrylab.de/RacingRobots/

Interesting open problems are, whether there is a
constant lower bound for polygons without holes and
without corridors of width 1, and whether there is
an efficient algorithm for the Reachability Problem in
this type of polygons.

References

[1] S. Albers, K. Kursawe, and S. Schuierer. Exploring
unknown environments with obstacles. Algorithmica,
32:123–143, 2002.

[2] E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B.
Mitchell, and M. Skutella. The freeze-tag problem:
how to wake up a swarm of robots. In Proc. 13th
Annu. ACM-SIAM Symp. Disc. Algor., pages 568–
577, 2002.

[3] P. Berman. On-line searching and navigation. In
A. Fiat and G. Woeginger, editors, Competitive Anal-
ysis of Algorithms. Springer-Verlag, 1998.

[4] M. Betke, R. L. Rivest, and M. Singh. Piecemeal
learning of an unknown environment. Machine Learn-
ing, 18(2–3):231–254, 1995.

[5] A. M. Bruckstein, M. Lindenbaum, and I. A. Wagner.
Distributed covering by ant-robots using evaporat-
ing traces. IEEE Trans. Robot. Autom., 15:918–933,
1999.

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kan-
tor, W. Burgard, L. E. Kavraki, and S. Thrun. Prin-
ciples of Robot Motion: Theory, Algorithms, and Im-
plementations. MIT Press, Boston, 2005.

[7] B. Engels. Navigation in Gitterumgebungen für
verteilte Robotersysteme mit eingeschränkter Sen-
sorik. Diplomarbeit, Universität Bonn, August 2005.
http://www.geometrylab.de/RacingRobots/.

[8] B. Engels and T. Kamphans. Randolphs robot
game is NP-complete! Technical Report
005, Department of Computer Science I, Univer-
sity of Bonn, 2005. http://web.informatik.uni-
bonn.de/I/publications/ek-rrgin-05.pdf.

[9] Y. Gabriely and E. Rimon. Competitive on-line cov-
erage of grid environments by a mobile robot. Com-
put. Geom. Theory Appl., 24:197–224, 2003.

[10] C. Icking, T. Kamphans, R. Klein, and E. Langetepe.
Exploring an unknown cellular environment. In Ab-
stracts 16th European Workshop Comput. Geom.,
pages 140–143. Ben-Gurion University of the Negev,
2000.

[11] C. Icking, T. Kamphans, R. Klein, and E. Langetepe.
On the competitive complexity of navigation tasks.
In H. Bunke, H. I. Christensen, G. D. Hager, and
R. Klein, editors, Sensor Based Intelligent Robots,
volume 2238 of Lecture Notes Comput. Sci., pages
245–258, Berlin, 2002. Springer.

[12] C. Icking, T. Kamphans, R. Klein, and E. Langetepe.
Exploring simple grid polygons. In 11th Internat.
Comput. Combin. Conf., volume 3595 of Lecture
Notes Comput. Sci., pages 524–533. Springer, 2005.

[13] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter.
Hamilton paths in grid graphs. SIAM J. Comput.,
11:676–686, 1982.

[14] T. Kamphans. Models and Algorithms for Online Ex-
ploration and Search. PhD thesis, University of Bonn,
to appear.

[15] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, 1991.

[16] J. S. B. Mitchell. Geometric shortest paths and
network optimization. In J.-R. Sack and J. Ur-
rutia, editors, Handbook of Computational Geome-
try, pages 633–701. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 2000.

[17] H. P. Moravec and A. Elfes. High resolution maps
from wide angle sonar. In Proc. IEEE Internat. Conf.
Robot. Autom., pages 116–121, 1985.

[18] A. Randolph. Ricochet robots. Board Game, german
edition by Abacus Games, Dreieich, 1999.

[19] M. Sharir and P. K. Agarwal. Davenport-Schinzel
Sequences and Their Geometric Applications. Cam-
bridge University Press, New York, 1995.

160

EWCG 2006, Delphi, March 27–29, 2006

Visibility Map determination using Angle preprocessing

L. Ortega, A.J. Rueda and F. Feito∗

Abstract

Visibility determination becomes especially signifi-
cant in Computer Graphics for walkthrough applica-
tions. The aim is to determine those visible objects
of the scene from the viewer position. Even when this
problem is nowadays efficiently solved by the graph-
ics hardware, when a real-time response is required,
some additional CPU processing in the scene geome-
try may be necessary to deal with large scenes or with
observers moving into the scene.

The present work introduces a new technique based
on angle preprocessing with polar diagrams. The re-
sult is displaying 2.5D scenes in a more efficient way
than using acceleration graphics hardware.

1 Introduction

The increasing capabilities of the graphics hardware
allows to speed up image generation, obtaining a
great realism sensation. However, scene sizes can
be increased to become too high to provide interac-
tive frame-rates. A previous process to the rendering
phase should be able to discard as much non-visible
objects as possible, in order to release the hardware
of displaying scene primitives that are invisible from
a certain viewer position. These techniques are called
Visibility culling and some of them have been already
incorporated in the hardware. The aim is reducing
as much as possible the resulting Potentially Visible
Set (PVS) for a high performance in the rendering,
obtaining the visibility map when the PVS becomes
minimum. Occlusion culling methods, summarized in
[1, 2, 7], try to reduce the PVS as possible, but not for-
getting any visible primitive. The strategies including
this characteristic are called conservative methods.

Normally, the type of scene if determinant in or-
der to select a proper occlusion culling method. Ur-
ban scenes, as well as architectural environments, are
considered a special case of densely occluded environ-
ments, studied by cell-portal culling techniques [8].
If cities consist of a set of 2.5D objects represent-
ing buildings instead of 3D models [3, 11], the scene
geometry becomes more straightforward to process,
what could make possible a exact visibility approach
in real time, even if virtual observers are moving into
the scene. The additional CPU time to compute the

∗Department of Computer Science, University of Jaén,
Spain {lidia|ajrueda|ffeito}@ujaen.es

visibility set in the 2.5D scene is compensated in the
rendering phase.

In this work we propose a new visibility culling
approach based on polar diagrams, a plane tessel-
lation, that used as preprocessing, solves efficiently
some angle-based problems, as Visibility Determina-
tion or Convex Hull of points and objects [4, 5], Path
Plannig [6] and Collision Detection [10].

Section 2 defines the polar diagram and its angular
characteristics. Section 3 studies visibility with polar
diagrams as a previous step to find the visible set of
objects from any point in the scene (Section 4), and
finally Section 5 shows the experimental results when
this algorithm is used to display urban scenes.

2 The polar diagram

The polar diagram of the scene E, consisting of n two-
dimensional objects, E = {o0, o1,...,on−1}, denoted
as P(E), is a plane partition in polar regions. Each
generator object oi creates a polar region PE(oi) rep-
resenting the locus of points with common angular
characteristics in a starting direction. Any point in
the plane can only belong to a polar region, what de-
termines its angular situation with respect to the rest
of generator objects in the scene. More specifically, if
point p lies in the polar region of object oi, p ∈PE(oi),
we know that oi is the first object found after per-
forming an angular scanning from the horizontal line
crossing p in counterclockwise direction [9].

The polar angle of point p with respect to oi, de-
noted as angoi

(p), is the angle formed by the posi-
tive horizontal line of p and the straight line linking
p and o, as shown in Figure 1.a). The polar angle
must be lower than π, involving that p must be un-
der the horizontal line defined by si. The locus of
points with smaller positive polar angle with respect
to oi ∈ E is the polar region of oi. Thus, PE(oi) ={
(x, y) ∈ E2 | angoi

(x, y) < angoj
(x, y),∀j 6= i

}
. The

same criterion is valid for points or any other geomet-
ric object. Figure 1.b) depicts the polar diagram of
the cloud of points S

The polar diagram can be computed efficiently us-
ing the Divide and Conquer or the Incremental meth-
ods, both working in Θ(n log n). The strength of using
this tessellation as preprocessing is avoiding any an-
gular sweep by locating a point into a polar region in
logarithmic time [4, 5].

161

22nd European Workshop on Computational Geometry, 2006

P

s
i

ang

(a) polar angle of p with respect to
s1

0

1

2
3

4

S

(b) polar diagram of S

Figure 1: Example of polar angle and polar diagram.

Figure 2: p ∈PE(A) in the East+ polar diagram and
p ∈PE(C) in the East− polar diagram.

3 Visibility resolution

Polar diagrams can solve Visibility problems due to its
capability of determining the nearest angular neigh-
bours. Observe Figure 2 and suppose that the max-
imum visibility angle from point p in East direction
is required. Instead of solving the problem in linear
time by performing two angular sweeps, object A is
found because point p is located in its polar region
in O(n log n) time, as depicted in Figure 2.a). How-
ever, a new polar angle criterion should be necessary
to find object C, and consequently a new plane tessel-
lation. With the positive polar angle criterion (coun-
terclockwise) the East+ polar diagram is constructed,
and using the negative one (clockwise), the East−, as
Figure 2.b) shows. The maximum visibility angle is
obtained throwing tangent lines towards A in East+,
and towards C in the East− polar diagram.

Summarizing, given the observer position p looking
at the East direction, and the pair of polar diagrams
East+ and East−, the visibility problem solution can
be dealt with a simple result:

• if the point lies in regions associated to differ-
ent objects in both polar diagrams, as point p in
the figure, it always means that there is an open
visibility angle in East+ direction.

• when a point lies in regions belonging to the same
object, the visibility angle is null.

if 0 ≤ −→d ≤ π/2 use p.d. East+

if π/2 ≤ −→d ≤ π use p.d. West-

if π ≤ −→d ≤ 3π/2 use p.d. West+

if 3π/2 ≤ −→d ≤ 0 use p.d. East-

Figure 3: The Polar diagram election depends on the
direction.

Point x belongs only to the polar regions of object
A, what implies that the visibility angle is null. Any-
way, this information can be enormously important
because we know exactly the first object obstructing
a trajectory in the specified direction, what becomes
useful in collision detection problems.

To manage visibility problems in any other non-
orthogonal direction, a fixed and specific set of po-
lar diagrams can be constructed, each of them cov-
ering an angular spectrum, a quadrant of the coordi-
nate system, for instance. The East+ polar diagram
can avoid angular sweeps in the interval [0, π/2], what
means that for all rectilinear movements in this an-
gular interval, the use of the East polar diagram is
enough to solve visibility problems. If the movement
direction is in the range [π/2, π], the visibility infor-
mation can be given by the West- polar diagram, that
is, starting from π and sweeping clockwise. Figure 3
shows a table with this correspondence. In the worst
case, the first visibility object in a given direction is
solved using four polar diagrams.

Actually, visibility problems need to be solved in
angular intervals, the equivalent to the observer vi-
sion angle. The previous problem is more a collision
detection resolution as described in [10]: a point ob-

ject is thrown from the position p with direction
−→
d ,

describing the ray r(t) = p + t
−→
d . The result is the

first object intersecting its trajectory. However, this
method is the key to compute the visibility map as
we describe next.

4 Visibility culling in 2D scenes

The visibility culling resolution becomes an exact
visibility approach using polar diagrams in two-
dimensional scenes because it allows to compute the
exact set of visible objects, even the set of vis-
ible edges, what becomes specially interesting in
scenes whose polygons contain a large number of ver-
tices. This new approach is conservative: obtains an
angular-sorted list of primitives and is independent of
the scene size, that is, the processing time depends
only on the visible set size.

Let be E a two-dimensional scene consisting on a
set of polygonal objects, E = {o1, o2, ... , on}, and
an observer located in position p looking at the scene
in an angular interval [~rL, ~rR], being ~rL a ray defin-

162

EWCG 2006, Delphi, March 27–29, 2006

Figure 4: Example of visible set from p.

ing the left portion of the angular sector, and ~rR the
one defining the right portion, both rays starting from
point p as observed in Figure 4.

• If ~rL and ~rR are located in different quadrants,
the angular interval [~rL, ~rR] is divided into the
resulting sub-intervals from the intersection with
the coordinate axes.

• Each of these sub-intervals, [~rl, ~rr] ⊆ [~rL, ~rR] is
located in only a polar diagram. For all of them:
(1) locate p in a polar region using the appropiate
polar diagram and (2) obtain a sorted list of rays
Rlr, between ~rl and ~rr, Rlr = {~rl, ~r1, ~r2, ..., ~rr},
being ~rj , j ∈ [i, 1, 2, ..., d] a ray starting from
point p.

For every rj a collision detection is performed, de-
termining not only the intersected object (or primi-
tive), oi, i ∈ [0..N − 1], but also a set of crossed polar
regions, or what becomes similar, the set of crossed
polar edges. Let be lj the sorted set of crossed po-
lar edges by rj until a collision detection is detected,
or until the ray left the scene, lj = {ek, ek+1, ..., em},
k ≥ m. The final set of rays Rlr, represents the visibil-
ity map because each pair [rj , rj+1], j ∈ [l, 1, 2, ..., r−
1], symbolizes an angular sector (a triangle) from the
viewer position p towards an only polygon oi, as de-
picted in Figure 4.

The method starts from the rays ~rl and ~rr , the
ones defining the vision angle. The rest of rays of
Rlr are obtained throwing tangent rays towards the
involved objects of the collision method described in
[10]. Whenever a ray ~rj reaches a new object oi, the
following step consists of throwing the ray ~rj+1 as
right tangent (or left tangent depending on the run-
ning sequence of the algorithm) from p to oi. The
final goal is joining ~rl and ~rr with a fan of rays. The
ray ~rj can:

Figure 5: The method is able to find object A.

• reach the right (or left) tangent vertex of oi and
then collides with some other object om (in the
example ~r1 is tangent to o13 and intersects with
o9).

• not reach the right (or left) tangent vertex of oi

because it collides previously with some other ok

(in the example the ray ~r2, the right tangent line
to o9, collides before with o21). These cases are
easily detected checking the length of the lists of
rays; if li is longer than lj , as in this example, the
search is diverged in two angular intervals, the
first between ~ri and ~rj , and the second between
~rj and ~rd, that is, [~rl, ..., ~rj , ..., ~rr]. The process
starts from ~rj left to reach ~rl, and right to reach
~rr recursively, closing the angular sequence.

Conclusions after applying polar diagrams in the
described visibility culling technique are the follow-
ing: O(2k) rays thrown for k visible objects, being
k independent of the scene size n. In the example
ten rays are necessary to locate seven visible objects.
The method is conservative because it is able to find
all visible objects from p without forgetting any of
them. In fact, it is an exact visibility culling method
for 2D scenes because the exact set of visible edges
from p is found.

The example of Figure 5 clearly shows that the
method is conservative. Suppose that object A is
located in such a position that the described al-
gorithm throws tangent rays, ~rj and ~rj+1 towards
tangent positions of object o5, but object A is not
reached at all. However A can be detected by check-
ing the lists lj = {e27, e18, e17, e16, e8, e2} and lj+1 =
{e27, e16, e8, e2}. Both begin and end with the same
sequence but edges e18 and e17 does not appear in list
lj+1, what means that there is another object just in
the middle of the angular interval [~rj , ~rj+1].

163

22nd European Workshop on Computational Geometry, 2006

Figure 6: Experimental results.

5 Experimental results

Normally the efficiently of occlusion culling methods
are highly dependent of the environment characteris-
tics. However, the construction of this plane partition
is not altered by the scene density, or by the convex-
ity or non-convexity of occluders, only the number
of vertices is relevant. In any case polar diagrams
are calculated only once in the preprocessing phase.
The location and collision processes are determined
by the number of objects N . In the calculation of
the visibility map, the more visible primitives, the
more collision detections are necessary. If occluders
are large objects, their capacity to hide some others
is greater, and the number of rays to throw probably
lower. Furthermore, a collision detection process is
dependent on the number of crossed polar edges, and
consequently on the number of scene objects.

The experimentation has been carried out in a Pen-
tium IV running at 2.4GHz with a plane city of
N = 600 buildings with non-convex floor, each of
them representing a ground plant of a building or a
block of buildings. The total number of vertices in
the scene is n = 45.000, a number only relevant in the
polar diagram construction process. Each of the four
polar diagrams are calculated in 100ms. The rest of
algorithms, location or collision detection, run in pro-
portional times to 2N = 12000 polar edges.

Figure 6 shows the requiring time to display the
same view of the city while an observer moves along of
part of its outskirts. The required time to display the
scene at every step is represented in edge Y , while the
edge X represents each of this steps. For simplicity,
we suppose a vision angle of 90, centered in 45.

The chart is eloquent at all: the top most line repre-
sents the time to display the scene directly (Direct),
without using any CPU or hardware improvement.
When hardware acceleration is activated the visual-
ization process is clearly improved (Occlusion Query
[1]). However using the visibility map and displaying
only those visible objects, the time behaviour is still

better. The time required for performing the visibil-
ity map is appreciably lower that any of the required
for visualization, what proves the advantage of using
a CPU preprocessing. During the walkthrow process,
sometimes the walker sees only a reduced set of build-
ing and in other occasions can see the row of buildinds
of an avenue. That is the reason of the zigzag ob-
served in the line defining the visibility map (Visibil-
ity Map). The line labeled as MV+Display adds the
time required for the visibility map calculation and
the one for displaying the resulting visible set.

References

[1] T. Akenine-Möller and E. Haines. Real-Time
Rendering. A. K. Peters, 2002.

[2] D. Cohen-Or, Y. Chrysanthou, C.T. Silva, and
F. Durand. A survey of visibility for walkthrough
applications. IEEE Transation and Computer
Graphics, 19(3):412–431, Jul-September 2003.

[3] Laura Downs, Tomas Möller, and Carlo H.
Séquin. Occlusion horizons for driving through
urban scenery. In Symposium on Interactive 3D
Graphics, pages 121–124, 2001.

[4] C. I. Grima, A. Máquez, and L. Ortega. A locus
approach to angle problems in computational ge-
ometry. In Proc. of 14th European Workshop in
Computational Geometry, Barcelona, 1998.

[5] C. I. Grima, A. Máquez, and L. Ortega. Po-
lar diagrams of geometric objects. In Proc. of
14th European Workshop in Computational Ge-
ometry, pages 149–151, Sophia-Antipolis, 1999.

[6] C.I. Grima, A. Márquez, and L. Ortega. Motion
planning and visibility problems using the polar
diagram. In EUROGRAPHICS’03 Short Presen-
tations, pages 13–19, 2003.

[7] H. Hey and W. Purgathofer. Occlusion culling
methods. state of the art report. In EURO-
GRAPHICS’01, Manchester, 2001.

[8] D.P. Luebke and C. Georges. Portals and mir-
rors: Simple, fast evaluation of potencially visible
sets. In Proceedings 1995 Symposium on Inter-
active 3D Graphics, 1995.

[9] L. Ortega. El Diagrama Polar, Ph Thesis. Uni-
versity of Seville (Spain), 2002.

[10] Lidia Ortega and Francisco F. Feito. Collision
detection using polar diagrams. Computer &
Graphics, 29(5):726–737, 2005.

[11] P. Wonka, M. Wimmer, and D. Schmalstieg. Oc-
cluder shadows for fast walkthroughs of urban
environments. In Proceedings of EUROGRAPH-
ICS, pages 51–60, 1999.

164

EWCG 2006, Delphi, March 27–29, 2006

Maximizing the Guarded Interior of an Art Gallery∗

Ioannis Z. Emiris† Christodoulos Fragoudakis‡ Euripides Markou§

Abstract

In the Art Gallery problem a polygon is given and the
goal is to place as few guards as possible so that the
entire area of the polygon is covered. We address a
closely related problem: how to place a fixed number
of guards on the vertices or the edges of a simple poly-
gon so that the total guarded area inside the polygon
is maximized. Recall that an optimization problem is
called APX-hard, if there exists an ε > 0 such that an
approximation ratio of 1 + ε cannot be guaranteed by
any polynomial time approximation algorithm, unless
P = NP . We prove that our problem is APX-hard
and we present a polynomial time algorithm achiev-
ing constant approximation ratio. Finally we extend
our results for the case where the guards are required
to cover valued items inside the polygon. The val-
ued items or “treasures” are modeled as simple closed
polygons.

1 Introduction

In the Art Gallery problem a polygon is given and the
goal is to place as few guards as possible so that the
entire area of the polygon is covered. Many variations
of the Art Gallery problem have been studied during
the last two decades ([11], [12], [13]). These can be
classified with respect to where the guards are allowed
to be placed (e.g. on vertices, edges, interior of the
polygon) or whether only the boundary or all of the
interior of the polygon needs to be guarded, etc. Most
known variations are NP–hard. We address a closely
related problem:

Definition 1 Given is a simple polygon P and an in-
teger k > 0. The goal of the Maximum Area Ver-
tex Guards problem is to place k vertex guards so
that the area of P ’s interior that is overseen by the
guards is maximum.

The Minimum Vertex Guards problem asks
how to guard a polygon, with or without holes, us-

∗Research partially supported by PYTHAGORAS (project
70/3/7392 under the EPEAEK program of the Greek Ministry
of Educational Affairs.

†Department of Informatics and Telecommunications, Na-
tional University of Athens, emiris@di.uoa.gr

‡Computer Science, ECE, National Technical University of
Athens, cfrag@cs.ntua.gr

§Department of Informatics and Telecommunications, Na-
tional University of Athens, emarkou@di.uoa.gr

ing a minimum number of guards placed on ver-
tices; extensions consider edges or points in the in-
terior. These problems are APX–hard and O(log n)–
approximable [8, 3, 4]. A related problem about
terrain guarding, is the Minimum Fixed Height
Vertex (Point) Guards On Terrain problem
(Θ(log n)–approximable [6], [3], [4]). In [7] the case
of guarding the walls (and not necessarily every inte-
rior point) is studied. In [2] the following problem has
been introduced: suppose we have a number of valu-
able treasures in a polygon P ; what is the minimum
number of mobile (edge) guards required to patrol P
in such a way that each treasure is always visible from
at least one guard? In [2] they show NP–hardness and
give heuristics for this problem. In [1] weights are as-
signed to the treasures in the gallery. They study the
case of placing one guard in the gallery in such a way
that the sum of weights of the visible treasures is max-
imized. Recent (non-)approximability results for art
gallery problems can be found in [8, 11, 12, 13, 4, 6].

2 Finest Visibility Subdivision

We recall from [5] and [9] some preliminary defini-
tions: Let P be a simple polygon, a, b ∈ P two points
inside P and L, M ⊆ P two sets of points inside P .
We say that point a sees point b, i.e. a and b are mu-
tually visible, if the segment connecting a and b lies
inside the closed polygon P . We say that the point
set L is visible from the point set M or that M over-
sees L if for every point a which belongs to L, there
exists a point b that belongs to M , such that a sees b.
Notice that if M oversees L, it is not necessary for L
to oversee M . Finally, M watches L if there exists a
point a that belongs to L and a point b that belongs
to M such that a sees b. Notice that if M watches L
then also L watches M .

Our method descritizes the interior of any simple
polygon with respect to visibility. In [5] we defined
the notion of the Finest Visibility Segmentation of the
boundary of P : Consider the visibility graph VG(P)
with vertex set V (P), i.e. the vertex set of P , where
two vertices share an edge iff they are visible in P .
By extending the edges of VG(P) inside P up to the
boundary of P we obtain a set of points FVS of the
boundary of P , that includes of course all vertices of
P . An extended edge of VG(P) generates at most two
FVS points. Since there are O(n2) edges in VG(P),
there are O(n2) points in any polygon’s FVS set. We

165

22nd European Workshop on Computational Geometry, 2006

call this construction the Finest Visibility Segmenta-
tion of the boundary of P . Any open segment (a, b),
(i.e. a and b are excluded), defined by consecutive
FVS points, is called an FVS segment of P .

Here we extend the FVS construction considering
also all the intersection points of all the extended vis-
ibility graph’s edges inside P . There are O(n4) re-
gions created inside P which are called FVS regions
of P . Due to the above construction, such an FVS
region has the following property: none of the ex-
tended visibility edges can cross the region. We call
this construction the Finest Visibility Subdivision of
the interior of P .

The following two lemmas establish that a FVS re-
gion cannot be only partly visible from a vertex or
an edge.

Lemma 1 For any vertex v of a simple polygon P , a
FVS region is visible by v if and only if it is watched
by v.

Proof. Of course if a FVS region is visible by v, then
it is watched by v. Suppose now that the region is
watched by v but not overseen by v. In that case there
must be another vertex v′ which blocks the visibility
of v. But then vv′ is a visibility edge and the extension
of vv′ crosses the FVS region which cannot hold since
it contradicts the definition of a FVS region. �

Lemma 2 For any edge e of P , a FVS region is vis-
ible by e if and only if it is watched by e.

Proof. (Sketch) Of course if a FVS region is visi-
ble by e, then it is watched by e. Suppose now that
the region is watched by e = (vi, vj) but not overseen
by e. This means that there is a point p inside the
FVS region which sees a point d ∈ e. Sweeping the
line that passes through p and d around d we meet
a vertex vm of P before the sweep lines stops cross-
ing the FVS region (since the region is not overseen).
We start now sweeping the line that passes through
d and vm around vm until the line stops crossing the
FVS region. Notice that if another vertex vn is hit
by the sweep line then there must be a visibility edge
(e.g. vmvn) whose extension crosses the FVS region.
But the latter cannot hold since by definition an FVS
region is not crossed by any visibility edges. �

The above lemmas demonstrate the following: The
interior of P can be effectively descritized in terms of
visibility to O(n4) FVS regions. Any vertex (edge)
of P oversees a FVS region if and only if it watches
the FVS region. In order to find the set of all over-
seen FVS regions from a polygon vertex v, namely
the FVS(v) set, (using lemma 1) it suffices to select a
point p inside every FVS region and connect it to ver-
tex v. If this segment is everywhere inside the polygon
P , then the region containing p is overseen from v.

For the case of the FVS(e) set, that is the set of
all overseen FVS segments from a polygon edge e,
(using lemma 2) it suffices to select a point p inside
every FVS region and then sweeping a line around p.
The FVS region containing p is overseen by an edge
touched by that line.

3 The Maximum Area Vertex (Edge) Guards
problem

Let A(r) be the area of region r.

Algorithm 1 Maximum Area Vertex Guards

compute the FVS regions
for all v ∈ V (P) do

compute FVS (v)
end for
SOL← ∅
for i = 1 to k do

select v ∈ V that maximizes A(SOL ∪ FVS(v))
SOL← SOL ∪ FVS(v)

end for
return A(SOL)

Consider P and integers k, A > 0. It is NP–hard
to decide whether we can place at most k guards on
vertices of P so that the total area overseen by the
guards is at least A. To see why, consider the deci-
sion Minimum Vertex Guards problem, which asks
whether the interior is overseen by at most k guards.
The reduction to Maximum Area Vertex Guards
is straightforward.

In [10] they prove that to maximize the guarded
boundary of a polygon with or without holes using
guards placed on vertices or edges, is APX–hard.
They present a gap preserving reduction from Max-
5-Occurence-3-SAT to Maximum Value Vertex
Guard problem. In the construction part, methods
from [8] for NP-hardness and [3] for APX-hardness are
combined. If we change the construction part of the
reduction so that to make sure that the area touched
by the (so called) “cheap edges” is small enough then
the following theorem holds:

Theorem 3 The Maximum Area Vertex (Edge)
Guards problem is APX–hard.

Alg. 1 is an approximation algorithm for the Max-
imum Area Vertex Guards problem. It starts
by calculating the FVS regions and then for every
v ∈ V (P) the set FVS (v). During each iteration of
the algorithm, for any vertex v that hasn’t been as-
signed a guard yet, the set SOL ∪ FVS (v) (of the
overseen regions) is found and its area is calculated.
The vertex that maximizes the total area of the (not
previously) overseen regions is then chosen, causing a
maximum possible increase of the solution. Then the

166

EWCG 2006, Delphi, March 27–29, 2006

algorithm updates the set SOL by adding the new
FVS regions.

In order to prove that algorithm 1 approximates
Maximum Area Vertex Guards by a constant ap-
proximation factor, we work as follows:

Let OPT denote the collection of the set of regions
in an optimal solution and SOL denote the collection
returned by the algorithm. These collections have
A(OPT) and A(SOL) values respectively. Suppose
that the algorithm places a guard at vertex vi at it-
eration i, and a set of new regions Pi. Therefore the
added total value of regions at iteration i is A(Pi).

Consider the ordered sequence of vertices (as they
have been selected by the algorithm) and let vl be
the first vertex in the sequence where a guard has
been placed by the algorithm but not in the optimal
solution. It holds:

A(Pi) = A(∪i
m=1Pm)−A(∪i−1

m=1Pm)

Lemma 4 After l iterations of algorithm 1, we have,
for l = 1, 2, . . . , k,

A(∪l
i=1Pi)−A(∪l−1

i=1Pi) ≥
A(OPT)−A(∪l−1

i=1Pi)

k
.

Proof. Consider vertices where guards have been
placed in the optimal solution but no guard has been
placed there by the algorithm. By the pigeonhole
principle, there is at least one such vertex vm so that
the following holds:

A(P ′
m) ≥ A(OPT)−A(∪l−1

i=1P
′
i)

k
⇒

⇒ A(P ′
m) ≥ A(OPT)−A(∪l−1

i=1Pi)

k
.

Notice that A(Pl) ≥ A(Pm) ≥ A(P ′
m) and

A(∪l
i=1Pi)−A(∪l−1

i=1Pi) = A(Pl), therefore:

A(∪l
i=1Pi)−A(∪l−1

i=1Pi) ≥
A(OPT)−A(∪l−1

i=1Pi)

k

�

Lemma 5 After l iterations of algorithm 1 it holds:

A(∪l
i=1Pi) ≥ (1− (1 − 1

k
)l)A(OPT), l = 1, ..., k

Proof. We are going to prove this by induction on
l. During the first step of the algorithm the set with
value A(P1) is chosen. It holds:

A(P1) ≥ A(P ′
1)

A(P ′
1) is the maximum possible value that OPT

achieves, so from the pigeonhole principle:

A(P ′
1) ≥

A(OPT)

k
→ A(P1) ≥

A(OPT)

k

Suppose that the relation holds for i = l − 1:

A(∪l−1
i=1Pi) ≥ (1− (1− 1

k
)l−1)A(OPT).

Since A(∪l
i=1Pi) = A(∪l−1

i=1Pi) + (A(∪l
i=1Pi) −

A(∪l−1
i=1Pi)), using lem. 4 we have:

A(∪l
i=1Pi) ≥ A(∪l−1

i=1Pi) +
A(OPT)−A(∪l−1

i=1Pi)

k
→

A(∪l
i=1Pi) ≥ A(∪l−1

i=1Pi)(1 −
1

k
) +

A(OPT)

k

From the inductive hypothesis:

A(∪l
i=1Pi) ≥ (1−(1−1

k
)l−1)A(OPT)(1−1

k
)+

A(OPT)

k

→ A(∪l
i=1Pi) ≥ (1 − (1− 1

k
)l)A(OPT)

�

Theorem 6 Algorithm 1 runs in polynomial time
and achieves an approximation ratio of 1

1− 1
e

u 1.58

for the Maximum Area Vertex Guards problem.

Proof. Using lemma 5, we set l = k and get:

A(∪k
i=1Pi) ≥ (1− (1− 1

k
)k)A(OPT)

It holds:

lim
k→∞

(1 − (1− 1

k
)k) = 1− 1

e

As (1− (1− 1
k)k) continuously gets smaller, we have:

1− (1− 1

k
)k ≥ 1− 1

e

So:

A(SOL) > (1 − 1

e
)W (OPT)

That is the algorithm approximates the Maximum
Area Vertex Guards problem with a 1

1− 1
e

→ 1.58

ratio. �

The algorithm’s complexity is O(n4) because this
is the size of FVS . A different approach, based on a
triangulation and avoiding the FVS , yields O(n2k2)
for the same algorithm.

Similarly as before the Maximum Area Edge
Guards problem is APX–hard. A similar algorithm
to algorithm 1 approximates the Maximum Area
Edge Guards problem. The only difference from
algorithm 1 is that we need to calculate the FVS (e)
set using the technique described in section 2.

All algorithms apply when the polygons have holes.

167

22nd European Workshop on Computational Geometry, 2006

4 The Maximum Treasures Value Vertex
(Edge) Guards problem

Consider the following problem: There exists a sim-
ple polygon P which encloses a number of simple sub-
polygons each of which has a non-negative value as-
signed. The Maximum Treasures Value Vertex
(Edge) Guards problem’s goal is to place vertex or
edge guards in a way which maximizes the total value
of the overseen or watched subpolygons. To show the
usefulness of FVS , we prove the following: Given is P ,
which encloses a number of simple subpolygons, each
of which has a value assigned. Given also are two in-
tegers k, M > 0. It is NP–hard to decide whether we
can place at most k vertex or edge guards so that the
total value of the overseen or watched subpolygons
is at least M . The proof goes as follows: The deci-
sion version of Minimum Vertex Guards problem
for P reduces to the corresponding decision version of
the Maximum Treasures Value Vertex (Edge)
Guards problem for the same polygon: Construct all
FVS regions of P and assign value 1 to each region;
take as M the total number of FVS regions. Now the
reduction is staightforward: The polygon’s interior is
overseen by at most k guards if and only if the total
value of the overseen FVS regions is at least M .

A stronger negative result is the following:

Theorem 7 Maximum Treasures Value Ver-
tex (Edge) Guards is APX–hard.

For this proof, we can change the construction part
of the reduction presented in [10] by adding small
enough subpolygons touching the “cheap edges”.
Then, we assign a suitable small value to each sub-
polygon.

Alg. 1, with the appropriate modifications, approx-
imates also the Maximum Treasures Value Ver-
tex (Edge) Guards problem with the same ratio
as in theorem 6. In fact, the computation of the FVS
regions is not required for the case of vertex watching
guards, since we can easily compute the subpolygons
that are watched by a vertex guard. However, for the
case of edge guards, a subpolygon pi is watched by an
edge e if and only if there is a FVS region watched
by e that touches pi. The total value of subpolygons
in A(SOL ∪ FV S(v)) is also required.

Notice that all the algorithms can be applied even
when the polygons have holes.

5 Open problems

Interesting problems are the following: (a) How to
place guards and given subpolygons in the polygon so
that a maximum value is guarded (i.e. this time we
need to place also the subpolygons). (b) How to place
guards in the interior of P for all the above problems.

References

[1] Carlsson S. and Jonsson H. Guarding a Treasury.
In Proc. 5th Canadian Conf. on Computational
Geometry, pages 85–90, 1993.

[2] Deneen L. and Joshi S. Treasures in an Art
Gallery. In Proc. 4th Canadian Conf. on Com-
putational Geometry, pages 17–22, 1992.

[3] Eidenbenz S. Inapproximability Results for
Guarding Polygons without Holes. In ISAAC,
volume 1533 of LNCS, pages 427–436, 1998.

[4] Eidenbenz S. (In–)Approximability of Visibility
Problems on Polygons and Terrains. PhD thesis,
ETH Zurich, 2000.

[5] Fragoudakis C., Markou E., and Zachos S. How
to Place Efficiently Guards and Paintings in an
Art Gallery. In 10th Panhellenic Conference on
Informatics, volume 3746 of LNCS, pages 145–
154, 2005.

[6] Ghosh S. Approximation Algorithms for Art
Gallery Problems. In Proc. Canadian Informa-
tion Processing Society Congress, pages 429–434,
1987.

[7] Laurentini A. Guarding the Walls of an Art
Gallery. The Visual Computer Journal, 15:265–
278, 1999.

[8] Lee D. and Lin A. Computational Complexity
of Art Gallery Problems. IEEE Transactions on
Information Theory, 32(2):276–282, 1986.

[9] Markou E., Fragoudakis C., and Zachos S. Ap-
proximating Visibility Problems within a con-
stant. In 3rd Workshop on Approximation and
Randomization Algorithms in Communication
Networks, pages 91–103, 2002.

[10] Markou E., Zachos S., and Fragoudakis C. Maxi-
mizing the Guarded Boundary of an Art Gallery
is APX–Complete. In Proc. CIAC, volume 2653
of LNCS, pages 24–35, 2003.

[11] O’Rourke J. Art Gallery Theorems and Algo-
rithms. Oxford University Press, 1987.

[12] Shermer T. Recent Results in Art Galleries. In
Proceedings of the IEEE, 1992.

[13] Urrutia J. Art Gallery and Illumination Prob-
lems. In Handbook of Computational Geometry.
Elsevier, 2000.

168

EWCG 2006, Delphi, March 27–29, 2006

On Realistic Terrains∗

Esther Moet Marc van Kreveld A. Frank van der Stappen

Abstract

We study worst-case complexities of the visibility
map, the shortest path map, and the Voronoi diagram
on terrains under realistic assumptions on edge length
ratios and the angles of the triangles. We show that
their complexities are considerably lower on realistic
terrains than in the general case.

1 Introduction

One of the main objectives of computational geometry
is to uncover the computational complexity of geomet-
ric problems. It provides a theory that explains how
efficiently geometric problems can be solved that arise
in applications. However, in many cases a discrepancy
exists between the provable worst-case computational
complexity of an algorithm and the actual running
time behavior of that algorithm on inputs that arise
in applications. This has led to the study of fatness
and realistic input models.

Among the first applications of realistic input mod-
els in computational geometry, Alt et al. [1] consider
motion planning for a rectangular robot. The effi-
ciency depends on the aspect ratio of this rectangle.
Matoušek et al. [8] show that if all triangles of a set of
n triangles have their angles bounded away from zero
(at least α, for some constant α > 0), then the union
of these triangles has O(n) holes rather than O(n2) for
the general case, and the boundary complexity of the
union is O(n log log n). Such triangles are called fat.
Since then, various definitions of fatness [2, 5, 12, 14]
have been proposed. Other realistic models—such as
low density [13], unclutteredness [4], and simple-cover
complexity [10]—consider the spatial distribution of
objects or their features. An overview of reduced com-
binatorial complexities and improved algorithmic ef-
ficiencies for inputs satisfying these models is given
in [4] along with a model hierarchy.

Realistic assumptions have not yet been studied
for polyhedral terrains. However, several geometric
structures on terrains have complexities much higher
than typical in applications. For example, the visi-
bility map of a polyhedral terrain of n triangles has
complexity Θ(n2) in the worst case, a shortest path
has Θ(n) complexity, and even a bisector of two points

∗Department of Information and Computing Sciences, Uni-
versiteit Utrecht, {esther,marc,frankst}@cs.uu.nl

on a terrain can have quadratic size. Hence, the dis-
crepancy between theoretical complexity bounds and
typical complexity bounds exists on terrains as well.
In this paper, we analyze this discrepancy by studying
realistic assumptions on terrains.

For visibility maps, we give three assumptions
whose combination provides an O(n

√
n) bound on

the visibility map of a terrain when viewed from in-
finity, and an O(n

√
n log log n) bound for perspective

views. Dropping any of the three assumptions im-
mediately makes an Ω(n2) lower bound construction
possible. With our three assumptions, we provide a
lower bound construction of size Ω(n

√
n), matching

the upper bound for views from infinity. It is inter-
esting to note that the assumptions all refer to the
xy-projection of the terrain.

p

q

Figure 1: A terrain where in the projection, all its
vertices lie on a regular grid and the shortest path
between p and q crosses Ω(n) triangles.

Next, we consider distance structures on terrains.
Using only the three assumptions for visibility, we can
still have shortest paths that have linear complexity;
see Figure 1. Therefore, we introduce a fourth as-
sumption that relates to the steepness of the terrain,
and show that any shortest path between two points
passes through only Θ(

√
n) triangles. For a bisector

between two points, we show that the same set of
four assumptions gives an O(n

√
n) complexity bound

rather than quadratic. We give an Ω(n) size lower
bound. The shortest path map for a source point s is
the subdivision of the terrain into regions where the
combinatorial structure of shortest paths from s is
the same. In general it has complexity Θ(n2), but we
show that under our assumptions it is Θ(n

√
n). Fi-

nally, we study Voronoi diagrams on terrains, which
in general also have quadratic complexity, even for
only two sites. Our assumptions allow us to prove an
upper bound of O(n

√
n), and we give a lower bound

of Ω(n+m
√

n) in case there are m sites on the terrain.
Algorithmically, our results imply faster compu-

169

22nd European Workshop on Computational Geometry, 2006

tation of visibility maps on realistic terrains. The
output-sensitive construction of the visibility map of
a terrain by Katz et al. [7] implies that for realistic
terrains, it can be computed in O(n

√
n log n) time for

views from infinity, and in O(n
√

n log n log log n) time
for perspective views.

Shortest paths on general terrains can be computed
in O(n log2 n) time [6]. This improved earlier algo-
rithms [3, 9]. The description of Kapoor [6] does not
provide sufficient detail to analyze whether a slightly
faster algorithm can be obtained for realistic terrains.
For shortest path maps and Voronoi diagrams, the al-
gorithm of Mitchell et al. [9] leads to O(n

√
n log n)

time bounds for the construction on realistic terrains.

The proofs and lower bound constructions that we
omit in this extended abstract can be found in the full
version of this paper [11].

2 Realistic model

Let T be a polyhedral terrain, comprising a set T of
n triangles, a set E of ne edges, and a set V of nv

vertices, where ne and nv are O(n). We assume T
satisfies the following three properties:

1. the minimum angle of any triangle in T in the pro-
jection to the xy-plane is at least α,

2. the boundary of the projection of T onto the xy-
plane is a rectangle with side lengths 1 and c,

3. the longest xy-projection over all edges in E is at
most d times as long as the shortest one.

The values α, c, and d in the above assumptions are
all positive constants. A projected triangle that satis-
fies the first assumption is fat [8]. We call a polyhedral
terrain T a realistic terrain if T satisfies assumptions
1, 2, and 3. Realistic terrains have certain properties,
stated in the lemmas and corollaries below, which we
use in the next section to prove upper bounds on the
worst-case complexities of visibility structures.

Lemma 1 Every edge of a realistic terrain has length

Θ
(

1√
n

)
in the projection.

Corollary 2 Every triangle in a realistic terrain has
area Θ

(
1
n

)
in the projection.

Lemma 3 Two vertices v and w in a realistic terrain
have distance Ω

(
1√
n

)
in the projection.

Corollary 4 Two edges e and e′ in a realistic terrain

that have no common endpoint have distance Ω
(

1√
n

)

in the projection.

The terrain in Figure 1 satisfies the three assump-
tions above, but a shortest path between two points
on the terrain still passes through Θ(n) triangles in
the worst case. In Section 4, we discuss distance struc-
tures on terrains, and to bound their complexity, we
introduce an additional assumption:

4. the dihedral angle of the supporting plane of any
triangle in T with the xy-plane is at most β,
where β < π

2 is some constant.

Assumption 4 implies that the maximum slope of a
line segment on any triangle of T is tanβ = O(1). In
Section 4, we call a terrain realistic if it satisfies all
four assumptions.

All complexity bounds for the visibility map of a
realistic terrain in Section 3 are achieved with only
the first three assumptions. In particular, we do not
need a bound on the dihedral angles to prove the up-
per bounds, and the lower bound constructions are
all possible with bounded dihedral angle. In the full
version of this paper [11], we show that the first three
assumptions are necessary to obtain a subquadratic
upper bound on the complexity of the visibility map.

3 Complexity of the visibility map

Let p be the viewpoint of the visibility map VM(p, T)
that we consider. We bound the complexity of the
visibility map by giving an upper bound on #It, the
number of terrain triangles with which a given triangle
t can interact, i.e., with which it can create features of
VM(p, T). Recall that a vertex of the visibility map
of p directly corresponds to a line through p that is
a common tangent of two terrain edges. Since any
two triangles create Θ(1) vertices of VM(p, T) in the
worst case, we get the following expression:

Complexity of VM(p, T) = O

(∑

t∈T

#It

)
.

We call the locus of the triangles with which a trian-
gle t interacts in the visibility map of p the influence
region of t, and we denote it by Rt. Using this def-
inition, we can bound #It from above by the num-
ber of triangles in T whose projection intersects Rt.
We distinguish two cases based on the location of the
viewpoint: (a) p is located infinitely far away from
T (parallel projection), and (b) p lies on or above T
(perspective projection).

In case (a), for any triangle t, all triangles that
intersect the influence region Rt are contained in a
slab bounded by two parallel lines, whose width is
three times the length of the longest edge in E; see
Figure 2(a). We give bounds on the complexity of
VM(p, T) in this case in Section 3.1. In case (b), the
influence region of a triangle t is a truncated wedge;
see Figure 2(b). In Section 3.2, we bound the com-
plexity of VM(p, T) in this case.

170

EWCG 2006, Delphi, March 27–29, 2006

1

c

p

Rt

t

1

c

t

p

Rt

(a) (b)

Figure 2: The influence region for a triangle t and (a)
a viewpoint at infinity or (b) a viewpoint on or above
the terrain.

3.1 Viewpoint at infinity

Under the assumptions of Section 2, we can place
Θ(
√

n) triangles in a rectangle of constant length and
of width Θ(1√

n
). By placing Ω(

√
n) triangles at one

end of this rectangle, each of which interacts with
Ω(
√

n) triangles at the other end, we can get a paral-
lel projection with complexity Ω(n) for this rectangle.

Since the projection of T is a rectangle with side
lengths 1 and c, we can replicate this construction
Ω(
√

n) times, resulting in a visibility map of com-
plexity Ω(n

√
n) in total; see Figure 3(a).

(a) (b)

Figure 3: The visibility map of (a) a viewpoint at
infinity, or (b) a viewpoint on or above the terrain,
can have Ω(n

√
n) vertices.

Lemma 5 The visibility map of a realistic terrain for
a viewpoint at infinity can have Ω(n

√
n) vertices.

We now show that this bound is tight. Let l1 and l2
be two parallel lines in the xy-plane, both intersect-
ing the projection of T , at distance three times the
length of the longest edge in E. Let L be the slab
that is formed by l1 and l2. For every triangle t of
T and every viewpoint at infinity, there exists such a
slab Lt that completely contains all the triangles that
intersect Rt. By Lemma 1, for any triangle t from T ,
the area of Lt is O(1/

√
n), and thus, by Corollary 2,

the number of triangles in Lt is O(
√

n). Now, by the
discussion at the beginning of Section 3 and Lemma 5,
we have the following theorem.

Theorem 6 Let T be a realistic terrain with n tri-
angles, and let p be a viewpoint at infinity. Then
VM(p, T) has complexity Θ(n

√
n) in the worst case.

3.2 Viewpoint on or above the terrain

We can create a subconstruction with Ω(
√

n) triangles
that are located in a wedge of area Ω(1/

√
n), instead

of in a rectangle of the same area, as is the case in
Figure 3(a). If we place the viewpoint at the apex of
the wedge, then this subconstruction produces a vis-
ibility map with Ω(n) vertices. We can replicate this
construction Ω(

√
n) times in a rectangle of Θ(1) area;

Figure 3(b) displays the construction schematically.

Lemma 7 The visibility map of a realistic terrain for
a viewpoint on or above the terrain can have Ω(n

√
n)

vertices.

To obtain an almost matching upper bound, we
subdivide the projection of T into annuli of increas-
ing size and increasing distance from p and bound the
number of visibility map vertices for every region sep-
arately; this captures the intuition that triangles far
away from the viewpoint contribute less to the visi-
bility map than triangles close to the viewpoint. In
this way, we can prove the following lemma.

Lemma 8 The visibility map of a point on or above
a realistic terrain has complexity O(n

√
n log log n).

Summarizing the results in this section gives us the
following theorem.

Theorem 9 Let T be a realistic terrain with n tri-
angles, and let p be a point located on or above T .
Then VM(p, T) has worst-case complexity Ω(n

√
n)

and O(n
√

n log log n).

4 Complexity of the shortest path map and the
Voronoi diagram

Shortest paths on terrains were studied extensively
in [3, 6, 9]. It is easy to see that on any realistic
terrain T , two points exist whose shortest path passes
through Ω(

√
n) triangles. We show a matching upper

bound. First, we can show that the shortest path
between two points on a realistic terrain has constant
length, because it cannot be more than a constant
times as long as its xy-projection. By the results of
Section 2, this leads to the following lemma.

Lemma 10 Let T be a realistic terrain with n tri-
angles. The shortest path over T between two points
p and q on T passes through Θ(

√
n) triangles in the

worst case.

The bisector B(p, q) of a point p and a point q on
T is the set of points on T with equal distance to
p and q. It is a simple curve (open or closed) that
consists of line segments and hyperbolic arcs [9]. The
worst-case complexity of a bisector is Θ(n2) on general
terrains. The bisector B(p, q) has O(n) breakpoints,

171

22nd European Workshop on Computational Geometry, 2006

which are the points that have two shortest paths to
p or two shortest paths to q. In [11], we show that on
realistic terrains, a bisector intersects Θ(

√
n) triangles

between two breakpoints in the worst case.

Lemma 11 For two points p and q on a realistic ter-
rain T , the bisector B(p, q) has complexity O(n

√
n).

The shortest path map of a source point s is the
subdivision of T into cells such that the vertex and
edge sequence of the shortest path to any point in that
cell from the source is the same. In general terrains,
this structure has worst-case complexity Θ(n2) [9]. A
global analysis of where the boundaries of the shortest
path map cells originate from, yields an O(n

√
n) size

bound for realistic terrains.

Theorem 12 The shortest path map of a realistic
terrain has complexity Θ(n

√
n) in the worst case.

Although we could not use the combinatorial anal-
ysis of Mitchell et al. [9] to obtain better complexity
bounds, it is easy to verify that the total number of
points for which their algorithm computes the addi-
tively weighted Voronoi diagram is O(n

√
n) on a real-

istic terrain, and therefore the shortest path map for
a point can be computed in O(n

√
n log n) time.

We are also interested in the maximum complex-
ity of the Voronoi diagram of a set S of m sites
on a realistic terrain T , where distances are short-
est path distances on T . The Voronoi cell of a site
si ∈ S on T is connected, but not necessarily simply-
connected. As a consequence, only O(m) bisectors
appear in the Voronoi diagram of S on T , and there
are O(m) Voronoi vertices. This immediately leads to
an O(mn

√
n) bound on the complexity, but in [11],

we show that it is O(n
√

n).
Since the bisector of two sites can have Ω(n) break-

points, this is a trivial lower bound. Alternatively, we
can place m sites on a terrain such that projected,
all m − 1 bisectors are lines parallel to the y-axis.
Each bisector intersects Ω(

√
n) triangles between the

boundaries with the terrain, which gives a Voronoi
diagram of complexity Ω(m

√
n).

Theorem 13 The Voronoi diagram of a set of m sites
on a realistic terrain has complexity Ω(n+m

√
n) and

O(n
√

n) in the worst case.

5 Concluding Remarks

This paper studied realistic input models for polyhe-
dral terrains, a topic that has not been considered
so far. We have made three input assumptions that
together are necessary and sufficient to show a sub-
quadratic upper bound on the complexity of the visi-
bility map. For paths, bisectors, shortest path maps,
and Voronoi diagrams on terrains, we used a fourth

input assumption and proved upper and lower bounds
on their complexities. Our research helps to explain
the discrepancy between the worst-case performance
of algorithms on polyhedral terrains and their effi-
ciency in practice.

The upper and lower bounds for visibility maps,
shortest paths, and the shortest path map are tight
or nearly tight, but there is a considerable gap for
bisectors and Voronoi diagrams. This is the most im-
portant open problem that arises from this paper.

References

[1] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn,
S. Näher, S. Schirra, and C. Uhrig. Approximate mo-
tion planning and the complexity of the boundary of
the union of simple geometric figures. Algorithmica,
8:391–406, 1992.

[2] B. Aronov, A. Efrat, V. Koltun, and M. Sharir. On
the union of κ-round objects in three and four dimen-
sions. In Proc. 20st Annu. ACM Sympos. Comput.
Geom., pages 383–390, 2004.

[3] J. Chen and Y. Han. Shortest paths on a polyhe-
dron. Internat. J. Comput. Geom. Appl., 6(2):127–
144, 1996.

[4] M. de Berg, M. J. Katz, A. F. van der Stappen, and
J. Vleugels. Realistic input models for geometric al-
gorithms. Algorithmica, 34:81–97, 2002.

[5] A. Efrat. The complexity of the union of (α, β)-
covered objects. SIAM J. Comput., 34:775–787, 2005.

[6] S. Kapoor. Efficient computation of geodesic shortest
paths. In Proc. 31st Annu. ACM Sympos. Theory of
Computing, pages 770–779, 1999.

[7] M. J. Katz, M. H. Overmars, and M. Sharir. Efficient
hidden surface removal for objects with small union
size. Comput. Geom. Theory Appl., 2:223–234, 1992.

[8] J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and
E. Welzl. Fat triangles determine linearly many holes.
SIAM J. Comput., 23:154–169, 1994.

[9] J. S. B. Mitchell, D. M. Mount, and C. H. Papadim-
itriou. The discrete geodesic problem. SIAM J. Com-
put., 16:647–668, 1987.

[10] J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-
sensitive ray shooting. Internat. J. Comput. Geom.
Appl., 7(4):317–347, Aug. 1997.

[11] E. Moet, M. van Kreveld, and A. F. van der Stappen.
On realistic terrains. To appear in Proc. 22nd Annu.
ACM Sympos. Comput. Geom., 2006.

[12] M. H. Overmars and A. F. van der Stappen. Range
searching and point location among fat objects. J.
Algorithms, 21:629–656, 1996.

[13] A. F. van der Stappen, M. H. Overmars, M. de Berg,
and J. Vleugels. Motion planning in environments
with low obstacle density. Discrete Comput. Geom.,
20(4):561–587, 1998.

[14] M. van Kreveld. On fat partitioning, fat covering, and
the union size of polygons. Comput. Geom. Theory
Appl., 9(4):197–210, 1998.

172

EWCG 2006, Delphi, March 27–29, 2006

River networks and watershed maps of triangulated terrains revisited∗

Hee-Kap Ahn† Mark de Berg‡ Otfried Cheong§ Herman Haverkort¶ A. Frank van der Stappen‖

Laura Toma∗∗

Abstract

Triangulated surfaces are often used to represent ter-
rains in geographic information systems. We investi-
gate the complexity of river networks and watershed
maps on such terrains under the assumption that wa-
ter always follows the path of steepest descent. We
show that the worst-case complexity is only Θ(n2)
if all triangles are non-obtuse or if all triangles are
fat, that is, their minimum angles are bounded from
below by a positive constant. Furthermore, we can
compute the river networks and watershed maps by
tracing paths in a directed acyclic graph representa-
tion of the triangulation—a property that can be ex-
ploited to do computations I/O-efficiently.

1 Introduction

Hydrologists, country planners etc. use terrain models
while managing or monitoring water resources, possi-
ble flood areas, erosion and other natural processes.
In such applications it is important that one can iden-
tify where rivers are, where the boundaries of their
watersheds are (the areas that drain through them),
and to which rivers they are tributaries. Construc-
tion works and natural processes in the terrain may
change its shape and affect the river network and the
boundaries of watersheds. To analyse or predict such
changes by manual quantification of watersheds would
be a tedious and time-consuming job, so we would
rather compute river networks and watershed maps
from the updated terrain model automatically.

Therefore several computational geometers have
studied the structure, complexity and computation of

∗We thank Sang-Won Bae, Hyo-Sil Kim, and the partici-
pants of the 2005 Carleton-Eindhoven workshop on computa-
tional geometry for discussions and the stimulating environ-
ment in which this research took place.

†Department of Computer Science, Korea Advanced Insti-
tute of Science and Technology, heekap@gmail.com

‡Department of Mathematics and Computer Science, Eind-
hoven University of Technology, mdberg@win.tue.nl

§Department of Computer Science, Korea Advanced Insti-
tute of Science and Technology, otfried@kaist.ac.kr. Otfried
Cheong was supported by LG Electronics.

¶Department of Mathematics and Computer Science, Eind-
hoven University of Technology, cs.herman@haverkort.net

‖Department of Information and Computing Sciences,
Utrecht University, frankst@cs.uu.nl

∗∗Department of Computer Science, Bowdoin College,
ltoma@bowdoin.edu

river networks and watershed maps on triangulated
terrains [3, 5, 7, 8]. To be able to discuss their and our
results, we first give some definitions. A terrain is the
graph in R3 of a continuous function z = f(x, y) de-
fined on a compact, connected subset of the xy-plane.
A triangulated terrain or tin is a terrain that con-
sists of triangles. We assume that water always runs
downhill in the direction of steepest descent (to keep
the definitions simple we assume that the direction of
steepest descent is always unique). The watershed of
a point p is the set of all points in the terrain from
which the water flows to p. The drainage area of p is
the size of its watershed. The river network is the set
of points with drainage area greater than zero, or in
other words, the set of points whose watersheds are
two-dimensional regions. A watershed map is a map
of the boundaries between the watersheds of points of
interest (such as river mouths and confluences).

Yu et al. distinguish three types of edges in the
triangulation [8]: confluent edges or channels are
edges that receive water from both adjacent triangles
(because on both adjacent triangles, the direction of
steepest descent is directed towards the edge); trans-
fluent edges receive water from one adjacent triangle,
which continues its way down the other triangle; and
diffluent edges or ridges receive no water (because on
both adjacent triangles, the direction of steepest de-
scent is directed away from the edge).

De Berg et al. [3] observe that the river network of
a triangulated terrain consists of confluent edges and
paths of steepest descent that start from the lower
ends of confluent edges. McAllister and Snoeyink [5,
7] analyse the complete topology of watershed maps.
They find that watersheds are bounded by ridges and
by paths of steepest descent that lead to the points
for which we want to know the watershed boundaries
and to certain vertices in the triangulation. Thus, in
a triangulation with n vertices, both the river network
and the watershed map consist of edges and vertices
already present in the triangulation, plus O(n) paths
of steepest descent.

The map can therefore be computed by an algo-
rithm based on tracing paths of steepest descent in
the terrain. We can model this as a computation on
a directed planar graph: let the descent graph G be
the graph that contains a node v(e) for every edge e
of the triangulation, and a directed arc from v(e) to
v(f) if and only if e and f are on the boundary of the

173

22nd European Workshop on Computational Geometry, 2006

same triangle and there is a path of steepest descent
across that triangle from e to f . Following a path of
steepest descent (until it reaches a vertex or a conflu-
ent edge) now corresponds to following a path in G.
Computing a watershed map by tracing paths in this
graph and connecting them properly can be done in
O(n log n + k) time, where k is the complexity of the
output (McAllister [6]).

Alas, the output may be quite big, at least in the-
ory. De Berg et al. [3] describe how to construct a
terrain with n vertices that has a descent graph with
cycles, so that a path of steepest descent may return
to the same edge of the triangulation several times.
In fact their terrain contains Θ(n) rivers that each
cross a set of Θ(n) edges Θ(n) times. Thus the river
network has Θ(n3) vertices and so has the watershed
map. De Berg et al. provide some Dutch comfort by
proving that the worst-case complexity of river net-
works (and, by the same arguments, watershed maps)
is in fact not worse than Θ(n3).

Problem. When computing watershed maps for large
terrains that may not even fit in main memory, a cubic
complexity of the watershed map would be disastrous.

On top of that, when the terrain does not fit in main
memory, the computation may be slow. Accessing
data stored on disk takes much longer than accessing
data in main memory: in present-day hardware, the
difference may be a factor 1 000 000. This is due to the
latency of hard disks. Fortunately, once the disk and
its read/write head have been moved into the correct
position, reading a large block of data is almost as
fast as reading just a few bytes. Hence, to amortize
the latency, current computer systems transfer data
between disk and memory in blocks: when we access
the disk to read an edge of the triangulation, we do not
read only one edge, but a block of several thousands.

To run McAllister’s algorithm and trace paths of
steepest descent without accessing the disk too of-
ten, we would have to group the nodes of the descent
graph in blocks such that while following paths in this
graph, we do not cross block boundaries too often.
However, the best known methods for blocking pla-
nar graphs perform poorly [1]. Research into I/O-
efficient algorithms (algorithms with optimized disk
access patterns) has yielded another, much more effi-
cient technique, called time-forward processing [2, 4],
that can be used to process directed acyclic graphs
efficiently. Unfortunately, as is apparent from the
aforementioned construction by De Berg et al. [3], the
descent graph G is not guaranteed to be acyclic.

However, the construction by De Berg et al. is
highly contrived and we do not expect to encounter
such artefacts in practice. This has led us to investi-
gate what easily verifiable, realistic properties of a tri-
angulation would guarantee that G is acyclic. Thus we
kill two birds with one stone: find out under what con-
ditions time-forward processing can be applied, and

prove that the complexity of river networks and wa-
tershed maps in realistic triangulations is only O(n2).

Our results. We prove that the descent graph is
acyclic if all triangles in the triangulation are non-
obtuse (either in space, or in the projection on a hor-
izontal plane).

Furthermore, we describe a method to cut the edges
of any triangulation into segments such that the de-
scent graph on those segments is acyclic. If all tri-
angles in the triangulation are fat—that is, if their
minimum angles, either in space or in the projection,
are bounded from below by a positive constant—then
the number of segments per edge is O(1), and thus
the total complexity of the descent graph is O(n).

Therefore, for triangulations with only non-obtuse
triangles or only fat triangles the complexity of any
steepest descent path is O(n), and the total complex-
ity of river networks and watershed maps is therefore
O(n2). We prove that this is optimal in the worst case
by means of a lower-bound construction on a triangu-
lated regular square grid.

Below we describe our results for descent graphs of
fat triangulations and our lower-bound construction.
We leave the results on non-obtuse triangulations for
the full version of this paper.

2 Fat triangulations

We first describe our method to cut the edges of any
triangulation into segments. For a vertex v in the tri-
angulation, let rmin(v) be the distance to its nearest
neighbour vertex in the triangulation, and let dmin(v)
be the distance between v and the nearest edge in the
triangulation that is not incident to v. We define the
neighbourhood of a vertex v as the disk centered on v
with radius min{rmin(v)/2, dmin(v)}. The neighbour-
hood boundaries divide every edge in the triangula-
tion into two inner segments (the segments inside the
neighbourhoods of the endpoints) and at most one
outer segment (the rest of the edge)—see Fig. 1. The
neighbourhoods are pairwise disjoint.

We further subdivide the outer segments of the
edges into a minimum number of smaller segments,
called free segments, such that each segment’s mini-
mum circumscribed circle does not intersect any other
edges—see Fig. 1 for an example. All segments are
considered to include their upper endpoints and to be
relatively open at their lower endpoints.

The descent graph G on these segments contains a
node for every inner or free segment; the segment cor-
responding to node v is denoted by segm(v), and its
upper and lower endpoint are indicated by up(v) and
lw(v), respectively. The descent graph contains a di-
rected arc from node a to node b if and only if segm(a)
and segm(b) are on the boundary of the same trian-
gle T and there is a path of steepest descent across T
from segm(a) to segm(b).

174

EWCG 2006, Delphi, March 27–29, 2006

Figure 1: A part of a triangulation. Dotted circles de-
limit the vertex neighbourhoods. Inner edge segments
are drawn with thin lines, outer edge segments are
drawn with thick lines. For one outer edge, a subdi-
vision into free segments is shown, with the minimum
circumscribed circles of the segments (shaded disks).

For two nodes a and b in G, we define segm(a) �
segm(b) if and only if z(up(a)) > z(up(b)), or
z(up(a)) = z(up(b)) and z(lw(a)) > z(lw(b)), where
z(p) is the elevation of p.

Lemma 1 If G contains an arc from a to b, then
segm(a) � segm(b).

Proof. Without loss of generality, assume segm(b) is
oriented from east to west and segm(a) lies on the
triangle T to the north of segm(b). Let L(owland)
be the closed halfplane bounded from above by the
contour line of T through up(b). Let H(illside) be the
open halfplane that contains segm(b) and is bounded
by the line of steepest descent through lw (b) on T . Let
N(orth) be the open halfplane bounded from below
by the line that contains segm(b). (See Fig. 2)

Assume, for the sake of contradiction, segm(a) 6�
segm(b). Then segm(a) lies completely in L. Because
there is flow across T from segm(a) to segm(b), there
is at least one point in segm(a) that lies in H ∩ N ,
and hence, in L ∩H ∩N . By Thales’ Theorem, that
point lies inside the minimum circumscribed circle of
segm(b).

By definition, the minimum circumscribed circle of
any free segment segm(b) cannot intersect any other
segments (or vertices) of the triangulation, and the
minimum circumscribed circle of an inner segment can
only intersect other inner segments in the same ver-
tex neighbourhood. So segm(a) and segm(b) must
be inner segments in the neighbourhood of some ver-
tex v. By the assumption segm(a) 6� segm(b), the
endpoint of segm(b) that is not v must lie at least as
high as the endpoint of segm(a) that is not v. Since
segm(a) and segm(b) have the same length, this im-
plies that segm(b) does not descend more steeply (or
ascend less steeply) from v than segm(a). Thus the

segm(b) up(b)lw(b)

L

H

N

Figure 2: L∩H∩N lies in the minimum circumscribed
circle of segm(b).

triangle shared by segm(a) and segm(b) is not tilted
towards segm(b), which contradicts that there would
be a path of steepest descent from segm(a) to segm(b).

Therefore segm(a) � segm(b). �

Let an α-fat triangulation be a triangulation that
only contains triangles that have minimum angle at
least α in the projection on a horizontal plane.

Theorem 2 The descent graph G on the segments
of an α-fat triangulation with n triangles is a planar
directed acyclic graph with O(n/α2) nodes.

Proof. Sorting the nodes of G into �-order puts
them into topological order (by Lemma 1); hence G
is acyclic. To bound the number of nodes we use the
fact that each edge of the triangulation is cut into at
most 2d2.64/α2e segments. We omit the details from
this abstract. �

Corollary 3 Any path of steepest descent or ascent
in an α-fat triangulation has O(n/α2) vertices, and
the total complexity of the river network and the wa-
tershed map in an α-fat triangulation is O(n2/α2).

To allow tracing paths of steepest descent through
channels and vertices, G also needs to include nodes
representing the vertices of the triangulation. With a
more refined definition of vertex neighbourhoods the
theorem also holds if angles of triangles are measured
in space instead of in the projection on the plane.

3 Lower bound

We describe a terrain, represented by a regular grid
of n/2 triangulated squares, that has a river network
with Θ(n2) vertices. The basic ingredient of our con-
struction is shown in Fig. 3. It is a terrain of 5 × 7
squares. The boundary is at roughly the same ele-
vation all around, except for three lower, horizontal
edges a, b and z (and the surrounding slopes that con-
nect them to the higher boundary edges). All rivers
that enter the terrain across the interior of a or b leave
the terrain as separate rivers across the interior of z.
The shaded areas drain through two more rivers that
leave the terrain across the interior of z. All of the
above properties can easily be maintained if the val-
leys (the triangles across which water flows from a or
b to z) are simultaneously raised or lowered.

175

22nd European Workshop on Computational Geometry, 2006

z

ba

9

12

3

6

9
12

6

6

9

9

12

12

Figure 3: A contour map of a terrain of 5×7 triangu-
lated squares. The rivers that enter the terrain across
a or b leave the terrain as separate rivers across z.

Lemma 4 For any k > 0 there is a rectangular ter-
rain T (k) of less than 168× 2k triangles such that at
least 2k different rivers flow out of the terrain across
the middle edge of one of the long sides.

Proof. Let T (1) be the terrain shown in Fig. 3, with
the valleys raised so that a and b are at the same ele-
vation as the rest of boundary (except z). For k > 1,
the terrain T (k) consists of two appropriately rotated
and mirrored copies of T (k− 1), connected by a copy
of T (1) with valleys appropriately lowered—see Fig. 4.
We complete the terrain to a rectangle by padding it
with triangles, such that the rivers that flow across z
flow straight to the closest edge of the boundary. The
claimed bounds are easily proven by induction. �

Theorem 5 There is a terrain of n non-obtuse, fat,
Delaunay triangles that has a river network with
Θ(n2) vertices.

Proof. Take T (blog(n/336)c) and complete it to n
triangles, such that all Ω(n) rivers that flow from it
cross Θ(n) edges of the complementary triangles. �

4 Discussion

De Berg et al. [3] asked if one could prove an O(n2)
bound on the complexity of river networks in Delau-
nay triangulations or other triangulations with well-
shaped triangles. We showed that this bound indeed
holds if all triangles are non-obtuse, or if the triangles
are fat. The question if the same bound can be proven
for a Delaunay triangulation is still open.

In the case of fat triangles, the constant in the
O(n2) bound depends on the minimum angle of the
triangles. A close look at the analysis reveals that the
dependency seems to be quite local: only in the direct
neighbourhood of small angles, will many nodes be
put in the descent graph. Hence an occasional non-fat

T (k − 1)

a b

z

(padding)

T (k − 1)

Figure 4: T (k): a terrain of O(2k) triangles with

Θ(2k) rivers flowing out across a single edge.

triangle in the triangulation will not affect the bounds
on the complexity of the river network significantly.

Our lower bound proves that the O(n2) worst-case
bound cannot be improved under any of the condi-
tions mentioned so far. However, because quadratic
complexity would still be impractical, because our
lower-bound construction is still quite contrived, and
because Yu et al. [8] observed linear complexity in ex-
periments on real data, we still wonder if other, easily
verifiable conditions on triangulations may enable us
to prove subquadratic bounds.

References

[1] P. K. Agarwal, L. Arge, T. M. Murali, K. R.
Varadarajan and J. S. Vitter. I/O-efficient algorithms
for contour-line extraction and planar graph blocking.
Symp. on Discrete Algorithms ’98, p117–126.

[2] L. Arge. The buffer tree: A technique for design-
ing batched external data structures. Algorithmica,
37(1):1–24, 2003.

[3] M. de Berg, P. Bose, K. Dobrint, M. van Kreveld,
M. Overmars, M. de Groot, T. Roos, J. Snoeyink
and S. Yu. The complexity of rivers in triangulated
terrains. Canad. Conf. Comp. Geom. ’96, p325–330.

[4] Y.-J. Chiang, M. T. Goodrich, E. F. Grove,
R. Tamassia, D. E. Vengroff and J. S. Vitter.
External-memory graph algorithms. Symp. on Dis-
crete Algorithms ’95, p139–149.

[5] M. McAllister. The computational geometry of hy-
drology data in geographic information systems. PhD
th., Univ. of British Columbia, 1999.

[6] M. McAllister. A watershed algorithm for triangu-
lated terrains. Canad. Conf. Comp. Geom. ’99.

[7] M. McAllister and J. Snoeyink. Extracting consis-
tent watersheds from digital river and elevation data.
Ann. Conf. Amer. Soc. for Photogrammetry and Re-
mote Sensing / Amer. Congr. on Surveying and Map-
ping ’99.

[8] S. Yu, M. van Kreveld and J. Snoeyink. Drainage
Queries in TINs: from local to global and back again.
Symp. on Spatial Data Handling ’96, p13A.1–14.

176

EWCG 2006, Delphi, March 27–29, 2006

In-Place Randomized Slope Selection

Henrik Blunck∗ Jan Vahrenhold†

Abstract

Slope selection, i.e. selecting the slope with rank k
among all

(
n
2

)
lines induced by a collection P of points,

results in a widely used robust estimator for line-
fitting. In this paper, we demonstrate that it is possi-
ble to perform slope selection in expected O(n ·log2 n)
time using only constant extra space in addition to the
space needed for representing the input.

1 Introduction

Computing a line estimator, i.e., fitting a line to a
collection P of n data points {p1, . . . , pn} in the plane
is a frequent task in statistical analysis. A frequently
used robust line estimator is the so-called Theil-Sen
estimator (see [13] and the references therein) which
considers all

(
n
2

)
lines induced by the points in P and

selects the line with median slope. This problem is
also known as the (median) slope selection problem
and has been shown to exhibit an Ω(n · log2 n) lower
bound [6]. Several deterministic algorithms for solv-
ing this problem in optimal O(n · log2 n) running time
have been presented [5, 6, 10], however, as noted by
Matoušek et al. [13], they are based on relatively com-
plicated concepts such as parametric search, sorting
network, expander graphs, or cuttings. More practical
approaches have resulted in randomized algorithms
with expected O(n · log2 n) running time [7, 12, 15].

The Model The goal of investigating space-efficient
algorithms is to design algorithms that use very little
extra space in addition to the space used for represent-
ing the input. The input is assumed to be stored in
an array A of size n, thereby allowing random access.
We assume that a constant size memory can hold a
constant number of words. Each word can hold one
pointer, or an O(log2 n) bit integer, and a constant
number of words can hold one element of the input
array. An in-place algorithms uses O(1) extra words
of memory. Recently, a number of in-place algorithms
have been designed for solving geometric problems—
see, e.g., [1, 2, 3, 4, 16].

∗Westfälische Wilhelms-Universität Münster, Institut für
Informatik, Einsteinstr. 62, 48149 Münster, Germany. E-mail:
blunck@math.uni-muenster.de

†Westfälische Wilhelms-Universität Münster, Institut für
Informatik, Einsteinstr. 62, 48149 Münster, Germany. E-mail:
jan@math.uni-muenster.de

In addition to theoretical considerations, one reason
for investigating space-efficient algorithms is that they
have the potential of using the different stages of hier-
archical memory, e.g., caches, to a much higher degree
of efficiency. Another motivation, especially for de-
signing algorithms for statistical data analysis, comes
from the recently increased interest in sensor networks
where small-scale computing devices are used to col-
lect large amounts of data. Since the memory of such
sensor devices usually is very limited, and since trans-
mitting data is much more costly than local computa-
tion, it is desirable to process as much data as possible
locally before transmitting (intermediate) results.

Our Results In this paper we show how to solve
the slope selection problem in expected optimal
O(n log2 n) time while at the same time using only
constant extra space. Our algorithm follows the ap-
proach of Matoušek [12], and, in the course of im-
plementing his algorithm in-place, we also devise an
in-place variant of the so-called randomized interpola-
tion search technique. This variant, together with an
algorithmic subroutine for efficiently constructing and
storing a set of randomly sampled intersections, is of
independent interest, since it can be used as a substi-
tute for Megiddo’s parametric search technique [14].

2 Randomized Interpolation Search

In the following, the slope selection problem is studied
in the dual setting where each point (x, y) is identified
with the line {(ξ, υ) | υ = x · ξ − y} and vice versa.
Selecting the k-th smallest slope is dual to the follow-
ing problem: Given a set of n lines in the plane, find
the k-th leftmost intersection point induced by the
arrangement of the lines. Since the duality transform
can be performed in an implicit way, we will assume
that our input is given as a set P of lines in the plane.

Since it is infeasible to compute all Θ(n2) intersec-
tions induced by P , the algorithm of Matoušek [12]
maintains a vertical strip 〈b, e〉 := [b, e]×IR ⊂ IR2 that
is guaranteed to contain the k-th smallest intersection
point. For a parameter r (to be defined later), the al-
gorithm first constructs a sample R of size r drawn
from the intersections inside 〈b, e〉. It then selects two
intersections from R whose x-coordinates are used to
construct a (narrower) candidate strip 〈b′, e′〉. The al-
gorithm then checks whether 〈b′, e′〉 indeed contains
the k-th smallest intersection point. If this is not the

177

22nd European Workshop on Computational Geometry, 2006

case, the process is repeated for 〈b, e〉 but using a new
sample R, otherwise the algorithm iterates with the
refined strip 〈b′, e′〉. The iteration terminates when
the number |I(b, e)| of intersections within 〈b, e〉 is no
larger than r: in this case, the k-th leftmost intersec-
tion point can be computed directly by enumerating
all intersections in 〈b, e〉 and selecting the appropriate
one. This refinement strategy is referred to as ran-
domized interpolation search—see [12]. The efficiency
of the resulting algorithm for slope selection is based
upon the following lemma which (applied iteratively)
implies that the number |I(b, e)| of intersections that
lie inside 〈b, e〉 can be reduced to O(r) using an ex-
pected constant number of iterations:

Lemma 1 (Lemma 2.1 in [13]) Given a set of
numbers Θ = {θ1, θ2, . . . , θN}, an index k (1 ≤ k ≤
N), and an integer r > 0, we can compute in O(r)
time an interval [θlo, θhi], such that, with probability
1−1/Ω(

√
r), the k-th smallest element of Θ lies within

this interval, and the number of elements in Θ that
lie within the interval is at most N/Ω(

√
r).

The above lemma will be applied for N ∈ O(n2).
Furthermore, Matoušek et al. [13] proved that we may
choose r := dnβe for any 0 < β < 1 without affecting
the asymptotic efficiency of the resulting algorithm,
and thus we will set r := d√ne. As we will see below,
our in-place algorithm will be working with binary
encoded numbers, and thus accessing a single num-
ber θi will take O(log2 n) time. Thus, the in-place
version of the algorithm implied by Lemma 1 runs in
O(r · log2 n) time.

It remains to describe how to construct (and store!)
the sampled set R of r = d√ne intersections in an in-
place setting, i.e., using only constant extra space.
Furthermore, we need to discuss how to compute
|I(b, e)|. To this effect, we describe an algorithm for
the first task, which also provides a solution for the
second one. Anticipating the results presented in the
next section, we combine them with the above lemma
and the original analyses of Matoušek et al. [12, 13]:

Theorem 2 The slope selection problem for a set of
n input points in the plane can be solved in-place and
in expected optimal O(n · log2 n) running time.

3 Constructing the Random Sample R

Following the approach of Matoušek [12, Lemma 1],
we first draw (with replacement) a set of r random
integers from {0, . . . , |I(b, e)| − 1} where |I(b, e)| is
the number of intersections in 〈b, e〉; these numbers
give the ranks of the intersections that will be part of
R with respect to the order in which they are found.

The main ingredient used for efficiently processing
intersections in 〈b, e〉 is the following well-known ob-
servation: the number of intersections inside 〈e, b〉 is

exactly the number of inversions between the permu-
tation of P that arranges the lines in sorted <b-order
(the vertical order at x = b) and the permutation
that arranges the lines in sorted <e-order (the ver-
tical order at x = b). Thus, to efficiently compute
|I(b, e)|, we can run the classic divide-and-conquer al-
gorithm for inversion counting—see, e.g., [11]. While
doing so, we keep track of the total number of inver-
sions/intersections seen so far and “record” an inter-
section if its rank matches one of the r given ranks.
If the ranks are sorted, we can process them in con-
stant extra time per inversion counting operation. We
process the “recursion tree” of (our adaption of) the
inversion counting algorithm (see Algorithm 1) in a
bottom-up, level-by-level traversal, i.e., without the
need of maintaining a recursion stack. Since we need
to maintain the r ranks and the intersections com-
puted so far in an in-place setting, the algorithm is
divided into three phases: During the first phase, we
process the lines stored in A[0, . . . , n/2 − 1] and use
A[n/2, . . . , n − 1] to encode the ranks and the inter-
sections found so far. We then reverse the roles of
both subarrays, and finalize the algorithm with a third
phase that processes the intersections induced by lines
stored in different halves of the array.

Three In-Place Data Structures For maintaining
more than O(1) numbers or indices, we resort to a
standard technique in the design of space-efficient al-
gorithms, namely to encode a single bit by a permuta-
tion of two objects q and r: For lines q, r with q <b r,
the permutation qr encodes a binary zero, and the
permutation rq encodes a binary one. We use the
subarray of size n/2 that does not contain the lines to
be processed in the current phase to represent three
(implicit) data structures DR, DL, and DI that oc-
cupy a subarray of size 4 · r · log2 n each:

Lines to be processed DR DL DI

0 1
2
n n − 1

Storing Ranks The randomly generated ranks in
the range [0, . . . , n2−1] are encoded in a “sorted-
list” data structure DR. At initialization of DR,
these ranks are sorted using heapsort [17], which
performs O(r · log2 r) operations each of which
requires decoding a binary-encoded integer or
swapping the values of two “rank elements”.1

This results in O(r · log2 r · log2 n) time spent for
sorting. Having sorted the ranks, our algorithm
will be able to traverse the list and report each
rank to be processed in O(log2 n) time.

1Note, that swapping two encoded values a, b (as done by
heapsort) does not require swapping the blocks of input ele-
ments used for encoding a and b—it merely involves updating
the permutations used to represent bits. Therefore, each input
element will be at most one position off its correct position.

178

EWCG 2006, Delphi, March 27–29, 2006

Storing Lines Involved in Intersections We use
a “sorted-list” data structure DL to record (ref-
erences to) lines involved in all of the sampled
intersections found so far. These (references to)
lines are maintained in sorted <b-order. Every
reference to a line is inserted into DL using inser-
tion sort (ignoring duplicates), and this leads to
O(r2 · log2 n) global cost for maintaining DL.

Storing Intersections The “linked-list” data struc-
ture DI records the intersections found so far by
indexing into DL. To add an intersection induced
by two lines `1 and `2 to DI , we first insert ref-
erences to `1 and `2 in sorted <b-order into DL

and then append the pair (i, j) referencing the
references in DL to these two lines at the end of
DI . The cost for performing a single insert to DI

is O(log2 n), and thus we have a global update
cost of O(r · log2 n).

3.1 Processing one Half of the Subarray

The algorithms for processing the two halves of
A[0, . . . , n−1] are symmetric, and thus we present the
algorithm for processing the subarray A[0, . . . , n/2−1].

Counting Inversions The algorithm for counting all
inversions in 〈b, e〉 is an extension of the iterative
mergesort algorithm: starting from the set of lines in
sorted <b-order, the algorithm iteratively merges the
lines into <e-order while counting inversions. Dur-
ing each merge-step of the algorithm, two subarrays
already in sorted <e-order are merged into a single
<e-sorted subarray. Each of these subarrays has been
processed during the previous iteration, and thus all
inversions involving lines from only one of these sub-
arrays have been processed. An obvious, yet cru-
cial, fact guaranteeing the correctness of the inversion
counting algorithm is that any two subarrays A1 and
A2 that are merged in the j-th iteration of processing
the m-th bottom-most level of the recursion tree are
of the form A1 := A[j · 2m, . . . , (j + 1) · 2m − 1] and
A2 := A[(j +1) · 2m, . . . , (j +2) · 2m− 1]2. Since in our
case all lines are initially sorted in <b-order, for every
invocation of the algorithm CountAndRecord (Al-
gorithm 1) depicted below the following holds: Each
line in A1 precedes all lines in A2 with respect to the
<b-order and the union A1 ∪ A2 forms a complete in-
terval of the input in <b-order.

Algorithm 1 can be implemented using constant ex-
tra space, and, excluding the time needed for record-
ing the relevant intersections, its running time is lin-
ear in the size of the union of the two subarrays to
be merged. Thus, excluding the time needed for up-
dating DR, DL, and DI , its time complexity is in

2The algorithm can be easily modified to handle instances
where n is not a power of two [1].

Algorithm 1 CountAndRecord(A1, A2, 〈b, e〉) in-
crements the global count c of intersections (falling
inside 〈b, e〉) by the number of intersections induced
by lines in A1 and A2 while recording intersections to
be sampled in DI .

Require: A1 and A2 are sorted according to <e.
Ensure: A1 and A2 are sorted according to <e.
1: Let i1 := 0 and i2 := 0.
2: for i = 0 to length(A1 ∪ A2)− 1 do
3: Let `1 := A1[i1] and `2 := A2[i2].

{The i-th element in sorted order is `1 or `2.}
4: if `1 <b `2 then
5: Let ci1 := i2. {](inversions induced by `1)

=](elements in A2 preceding `1)}
6: for each rank ρ in DR ∩ [c, . . . , c + ci1] do
7: Let ` be the line stored at A2[ρ− c].
8: Update DI to record the pair (`1, `) as the

intersection with rank ρ.
9: end for

10: Let c := c + ci1 . {Count intersections.}
11: i1 := i1 + 1. {Advance i1.}
12: else
13: i2 := i2 + 1. {Advance i2.}
14: end if
15: end for

O(n log2 n). Also, leaving out the code in Lines 6–
9, we may use Algorithm 1 to compute |I(b, e)|.

Merging Two Subarrays Into Sorted <e-Order It
remains to discuss the actual merging process that
is required to merge A1 and A2 into sorted <e-order.
Since each of the subarrays is sorted according to <e,
a simple application of the linear-time merging algo-
rithm of Geffert et al. [8] will produce the desired
result. However, we also need to update the values
stored in DL, since they reference the lines involved in
the intersections found so far by directly indexing into
A. Merging A1 and A2 seems to corrupt the informa-
tion recorded in DL, but fortunately the information
of what goes where can be computed on the fly while
running CountAndRecord: During the i-th itera-
tion, this algorithm computes the element with rank
i in the final sorted order (Line 3 of Algorithm 1),
and thus we simply check whether the line ` that will
be the i-th element in sorted order is involved in an
intersection. In this case, we simply update the refer-
ence to ` to point to `’s position after the merge step:
the i-th position in the union of A1 and A2.

We point out that we have to be very careful when
maintaining (in DI) the references to elements stored
inDL: with every new intersection recorded, some ref-
erences may need to change their position in order to
maintain the <b-order. Due to space constraints, we
omit the description of the update algorithm, which
is summarized in the following lemma:

179

22nd European Workshop on Computational Geometry, 2006

Lemma 3 The global extra cost incurred by updat-
ing the references stored in the data structure DL

while merging subarrays is in O(r · log2 r · log2
2 n).

3.2 Finishing Up

After we have processed the first half of the input ar-
ray (using the second half to maintain the data struc-
tures DR, DL, and DI), we reverse the roles of the
two subarrays. To do so, we first need to copy the
contents of the data structures to the first half of the
array. The important detail to keep in mind is that,
as a result of the inversion-counting algorithm, the
first half of the array is sorted according to <e. Thus,
when copying the contents of the data structures to
the first half of the array, the order according to which
we have to decide whether two lines encode a binary
zero or a binary one, is the <e-order.

DI DL DR Lines to be processed

0 1
2
n n − 1

Having run our subroutine on A[n/2, . . . , n− 1], we
need to finalize the algorithm by processing all in-
tersections induced by lines stored in different halves
of the array. As it turns out, we do not need
to actually merge the lines in A[0, . . . , n/2 − 1] and
A[n/2, . . . , n − 1]—it is sufficient to count the inver-
sions and construct the needed intersections. This
means that we can simply run Algorithm 1 with-
out the modifications needed to record the “what-
goes-where” information. Since the binary encoding
scheme permutes only adjacent elements, the lines
used to encode the data structures DR, DL, and DI

are at most one position off their correct position (in
sorted <e-order). Thus, we can process them with
constant extra (look-ahead) space.

As a result of this final invocation of CountAnd-
Record, the data structure DI will reference r pairs
of entries in DL which in turn reference pairs of lines
in A. To select the two intersection points whose x-
coordinates delimit the candidate strip 〈b′, e′〉 that
might be used during the next iteration (see [12]),
we could run a selection algorithm. However, since
we have chosen r small enough, we can simply sort
the pairs in DI according to the x-coordinate of their
intersection. The running time for the sorting (in-
cluding the time for resolving one level of indirection)
is O(r · log2 r · log2 n).

Combining the above, Lemma 3, and the fact that
r ∈ O(

√
n), we obtain the following lemma:

Lemma 4 A random sampleR of r = d√ne intersec-
tions inside a strip 〈b, e〉 can be constructed in-place
and in O(n · log2 n) time.

The same algorithm can be used to explicitly con-
struct all of the at most r intersection points falling

inside 〈b′, e′〉 in the final iteration of the slope selec-
tion algorithm. This finishes the proof of Theorem 2.

References

[1] P. Bose, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and J. Vahrenhold. Space-efficient geomet-
ric divide-and-conquer algorithms. Computational
Geometry: Theory & Applications, 2006. To appear.

[2] H. Brönnimann and T. M.-Y. Chan. Space-efficient
algorithms for computing the convex hull of a simple
polygonal line in linear time. In Proc. Latin Amer-
ican Theoretical Informatics, LNCS 2976, pp. 162–
171. 2004.

[3] H. Brönnimann, T. M.-Y. Chan, and E. Y. Chen.
Towards in-place geometric algorithms. In Proc. 20th
Symp. Computational Geometry, pp. 239–246. 2004.

[4] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin,
J. Morrison, and G. T. Toussaint. Space-efficient pla-
nar convex hull algorithms. Theoretical Computer
Science, 321(1):25–40, 2004.

[5] H. Brönnimann and B. M. Chazelle. Optimal slope
selection via cuttings. Computational Geometry:
Theory and Applications, 10(1):23–29, 1998.

[6] R. Cole, J. S. Salowe, W. L. Steiger, and E. Sze-
merédi. An optimal-time algorithm for slope selec-
tion. SIAM J. Computing, 18(4):792–810, Aug. 1989.

[7] M. B. Dillencourt, D. M. Mount, and N. S. Nethan-
yahu. A randomized algorithm for slope selection.
Intl. J. Computational Geometry and Applications,
2(1):1–27, 1992.

[8] V. Geffert, J. Katajainen, and T. Pasanen. Asymp-
totically efficient in-place merging. Theoretical Com-
puter Science, 237(1–2):159–181, 2000.

[9] P. Huber. Robust Statistics. Wiley, 1981.

[10] M. J. Katz and M. Sharir. Optimal slope selec-
tion via expanders. Information Processing Letters,
47(3):115–122, 1993.

[11] J. Kleinberg and É. Tardos. Algorithm Design.
Addison-Wesley, 2006.

[12] J. Matoušek. Randomized optimal algorithm for
slope selection. Information Processing Letters,
39(4):183–187, 1991.

[13] J. Matoušek, D. M. Mount, and N. S. Nethanyahu.
Efficient randomized algorithms for the repeated
median line estimator. Algorithmica, 20(2):136–
150,1998.

[14] N. Megiddo. Applying parallel computation algo-
rithms in the design of serial algorithms. J. ACM,
30(4):852–865, 1983.

[15] L. Shafer and W. L. Steiger. Randomizing optimal
geometric algorithms. In Proc. 5th Canadian Conf.
Computational Geometry, pp. 133–138, 1993.

[16] J. Vahrenhold. Line-segment intersection made in-
place. In Proc. 9th Intl. Workshop Algorithms and
Data Structures, LNCS 3608, pp. 146–157, 2005.

[17] J. W. J. Williams. Algorithm 232: Heapsort. Comm.
ACM, 7(6):347–348, 1964.

180

EWCG 2006, Delphi, March 27–29, 2006

In-Place Algorithms for Computing (Layers of) Maxima

Henrik Blunck∗ Jan Vahrenhold†

Abstract

We describe space-efficient algorithms for solving
problems related to finding maxima among points in
two and three dimensions. Our algorithms run in op-
timal O(n log2 n) time and require O(1) space in ad-
dition to the representation of the input.

1 Introduction

In this paper, we consider the fundamental geometric
problems of computing the maxima of point sets in
two and three dimensions and of computing the lay-
ers of maxima in two dimensions. Given two points p
and q, the point p is said to dominate the point q
iff the coordinates of p are larger than the coordi-
nates of q in all dimensions. A point p is said to
be a maximal point (or: a maximum) of P iff it is
not dominated by any other point in P . The union
MAX(P) of all points in P that are maximal is called
the set of maxima of P . This notion can be extended
in a natural way to compute layers of maxima [7]:
After MAX(P) has been identified, the computation is
iterated for P := P \ MAX(P), i.e., the next layer of
maxima is computed until P becomes empty.

Related Work The problem of finding maxima of a
set of n points has a variety of applications in statis-
tics, economics, and operations research (as noted by
Preparata and Shamos [14]), and thus was among the
first problems having been studied in Computational
Geometry: In IR2 and IR3, the best known algorithm,
Kung, Luccio, and Preparata’s algorithm [11], identi-
fies the set of maxima in O(n log2 n) time which is
optimal since the problem exhibits a sorting lower
bound [11, 14]. For constant dimensionality d ≥
4, their divide-and-conquer approach yields an al-
gorithm with O(n logd−2

2 n) running time, and Ma-
toušek [12] gave an O(n2.688) algorithm for the case
d = n. The problem has also been studied for dynam-
ically changing point sets in two dimensions [10] and
under assumptions about the distribution of the input
points in higher dimensions [1, 8]. Buchsbaum and

∗Westfälische Wilhelms-Universität Münster, Institut für
Informatik, Einsteinstr. 62, 48149 Münster, Germany. E-mail:
blunck@math.uni-muenster.de

†Westfälische Wilhelms-Universität Münster, Institut für
Informatik, Einsteinstr. 62, 48149 Münster, Germany. E-mail:
jan@math.uni-muenster.de

Goodrich [7] presented an O(n log2 n) algorithm for
computing the layers of maxima for point sets in three
dimensions. Their approach is based on the plane-
sweeping paradigm and relies on dynamic fractional
cascading to maintain a point-location structure for
dynamically changing two-dimensional layers of max-
ima. The maxima problem has also been actively in-
vestigated in the database community following the
definition of the SQL “skyline” operator [2] that is
used to compute the set of maxima. Spatial index
structures have been used to produce the “skyline”
practically efficient and/or in a progressive way, that
is outputting results while the algorithm is running—
see [13] and the references therein. For none of these
approaches, non-trivial upper bounds are known.

The Model The goal of investigating space-efficient
algorithms is to design algorithms that use very lit-
tle extra space in addition to the space used for rep-
resenting the input. The input is assumed to be
stored in an array A of size n, thereby allowing ran-
dom access. We assume that a constant size memory
can hold a constant number of words. Each word
can hold one pointer, or an O(log2 n) bit integer,
and a constant number of words can hold one ele-
ment of the input array. The extra memory used
by an algorithm is measured in terms of the num-
ber of extra words; an in-place algorithm uses O(1)
extra words of memory. It has been shown that some
fundamental geometric problems such as 2D convex
hulls and closest pairs can be solved in-place and
in optimal time [3, 4, 6]. More involved problems
(range searching, line-segment intersection) can be
(currently) solved in-place only if one is willing to
accept near-optimal running time [5, 15], and 3D con-
vex hulls and related problems seem to require both
(poly-)logarithmic extra space and time [5].

Our Contribution The main issue in designing in-
place algorithms is that most powerful algorith-
mic tools (unbalanced recursion, sweeping, multi-
level data structures, fractional cascading) require
Ω(log2 n) or even Ω(n) extra space, e.g., for the re-
cursion stack or pointers. This raises the question of
whether there exists a time-space trade-off for geo-
metric algorithms besides range-searching. We make
a further step towards a negative answer to this ques-
tion by demonstrating that O(1) extra space is suf-

181

22nd European Workshop on Computational Geometry, 2006

. . . τ0. . . τκ−1 Points below Lκ−1 Points on L0. . .Lκ−1

`b `b + κ i j n − 1

Figure 1: Data layout for processing the topmost κ layers.

ficient to obtain optimal O(n log2 n) algorithms for
computing skylines in two and three dimensions and
two-dimensional layers of maxima. The solution to
the latter problem is of particular interest since it is
the first optimal in-place algorithm for a geometric
problem that is not amenable to a solution based on
balanced divide-and-conquer or Graham’s scan.

2 Computing the Skyline in IR2 and IR3

A point p from a point set P is said to be maximal
if no other point from P has larger coordinates in all
dimensions; ties are broken using a standard shearing
technique. This definition has been transferred by
Kung et al. [11] into a plane-sweeping algorithm for
the two-dimensional case and a divide-and-conquer
approach for the higher-dimensional case. The out-
put of the algorithm will consist of a permutation of
the input array A and an index k such that k points
constituting the set of maxima are stored sorted by
decreasing y-coordinates in A[0, . . . , k − 1].

Lemma 1 The skyline, i.e., the set of maxima of
a set P of n points in two dimensions can be com-
puted in-place and in optimal time O(n log2 n). If P
is sorted according to <y, the running time is in O(n).

For the case of a three-dimensional input, we imple-
ment Kung et al.’s [11] divide-and-conquer algorithm
using an in-place divide-and-conquer scheme we have
proposed earlier [3]; this scheme is based on in-place
routines for median-finding, partitioning, and merg-
ing. Since we cannot explicitly keep track of the num-
ber of maxima in each subproblem, we have to recover
them algorithmically during each merging step.

Theorem 2 The skyline, i.e., the set of maxima of
an n-element point set in three dimensions can be
computed in-place and in optimal time O(n log2 n).

3 Computing the Layers of Maxima in IR2

A näıve approach to computing all layers of maxima
would be to iteratively use the in-place algorithm de-
scribed in Section 2. Since a point set may exhibit a
linear number of layers, this will lead to O(n2 log2 n)
worst-case running time. In this section, we will show
that we can simultaneously peel off multiple layers
such that the resulting algorithm runs in optimal
O(n log2 n) time; its goal is to rearrange the input
such that the points are grouped by layers and each
layer is sorted by decreasing y-coordinate.

3.1 Computing the Topmost κ Layers

Our algorithm imitates counting-sort, i.e., prior to ac-
tually partitioning the points into layers, it first com-
putes the number of points for each of the layers. This
can be done efficiently:

Lemma 3 The number of layers of maxima exhibited
by an n-element point set in two dimensions can be
computed in-place and in O(n log2 n) time.

Counting the points on the topmost κ layers In
this section, we prove the following lemma:

Lemma 4 The cardinality ci of each of the topmost κ
layers of A[0, . . . , n−1] can be computed inO(n log2 n)
time. If the points are presorted, the complexity is
O(n + ξ log2 κ) where ξ =

∑κ−1
i=0 ci.

To illustrate the algorithm, let us assume that we
have already peeled off some layers and stored the
result in A[0, . . . , `b− 1]. Inductively, we maintain the
following invariant which, prior to the first iteration,
can be established by sorting and by setting `b := 0:

Invariant (SORT): The points that have not yet
been assigned to a layer are stored in A[`b, . . . , n− 1]
and are sorted by decreasing y-coordinate.

Let us further assume that the total number of
points on the topmost κ layers L0 through Lκ−1 of
the remaining points stored in A[`b, . . . , n − 1] is ξ
and that `b + 2ξ ≤ n. The first step then is to sta-
bly extract the ξ points on the topmost κ layers and
move them to A[`b, . . . , `b + ξ − 1] while maintaining
the sorted y-order in A[`b + ξ, . . . , n − 1]. The algo-
rithm processes the points as they are stored in the
array, i.e., in decreasing y-order. It maintains the
invariant that, when processing point A[j], all points
that already have been identified as “below Lκ−1” are
stored in decreasing y-order in A[`b + κ, . . . , i− 1] for
some i ∈ [`b+κ, . . . , j]—see Figure 1. Since the points
are sorted according to <y, we can efficiently sweep
the plane top-down. For each h ∈ [0, . . . , κ − 1], we
maintain the tail τh, the lowest point seen so far that
is known to lie on Lh.

The point A[j] now either is classified as “below
Lκ−1” (pi1 in Figure 2) or replaces the tail τh of some
layer Lh (pi2 in in Figure 2). In the former case, A[j]
is stably moved directly behind A[`b + κ, . . . , i − 1],
i.e., it is swapped with A[i] and i is then incremented
by one. In the latter case, A[j] is swapped with τh,
i.e., with A[`b + h], and we increment the counter ch

182

EWCG 2006, Delphi, March 27–29, 2006

p
i1

p
i2

sweeping
direction

L
h-1

L
h

L
κ-1

τ
hτ

κ-1 ...

...

τ
h-1

Figure 2: Maintaining the lowest point of each layer.

by one. When we have reached the end of the ar-
ray, we inductively see that A[`b + κ, . . . , i − 1] con-
tains the points below Lκ−1 in sorted order. Fur-
thermore, by the definition of ξ, we know that the
two subarrays A[`b, . . . , `b + κ − 1] (containing the
tails) and A[i, . . . , n − 1] (containing the remaining
points on the layers L0 through Lκ−1) together con-
sist of exactly ξ points. We then swap (in linear
time) A[`b + κ, . . . , i − 1] (containing the elements
below Lκ−1) and A[i, . . . , n − 1] such that the ξ el-
ements on the layers L0 through Lκ−1 (tails and
non-tails) are blocked in A[`b, . . . , `b + ξ − 1]. To re-
establish the y-order of these ξ points, we sort them
in O(ξ log2 ξ) ⊂ O(ξ log2 n) time, that is, we establish
Invariant (SORT) for A[`b, . . . , ξ − 1]. Thus, the over-
all running time for counting the number of points on
the topmost κ layers and for re-establishing Invariant
(SORT) is O(n + ξ log2 n) where ξ =

∑κ−1
i=0 ci.

Sorting the points by layer Using the counters ci

computed during the previous step, we now run a vari-
ant of counting sort to extract the layers L0 through
Lκ−1 in sorted y-order. To do this in-place, we use
the subarray A[`b + ξ, . . . , `b +2ξ− 1] as scratch space
that will hold the layers to be constructed (note that

we assume `b + 2ξ ≤ n and that ξ =
∑κ−1

i=0 ci holds
by definition). To re-establish Invariant (SORT), we
finally sort A[`b + ξ, . . . , `b + 2ξ − 1] (note that the
points A[`b +2ξ, . . . , n−1] have not been touched and
thus still are sorted) and update `b := `b + ξ. The
running time for sorted extraction of the ξ points on
the topmost κ layers and for re-establishing Invariant
(SORT) for A[`b + ξ, . . . , n− 1] is O(n + ξ log2 n).

3.2 Extracting all Layers in Sorted Order

The above algorithm is built on two major assump-
tions that need to be maintained in an in-place set-
ting: (1) we have to have access to κ counters and
(2) the subarray A[`b, . . . , n−1] has to be large enough
to accommodate two subarrays of size ξ. The first is-
sue to be resolved is how to maintain a non-constant
number κ of counters without using Θ(κ) extra space.
Each such counter ci is required to represent values
up to n, and thus has to consist of log2 n bits.

We will resort to a standard technique in the design
of space-efficient algorithms, namely to encode a sin-

gle bit by a permutation of two distinct (but compa-
rable) elements q and r: assuming q < r, the permu-
tation rq encodes a binary zero, and the permutation
qr encodes a binary one. As the elements in our case
are two-dimensional points, we will use the y-order for
deciding whether two points encode a binary zero or
a binary one.1 Using a block of 1

3n elements, we can
encode 1

6n bits, i.e., 1
6n/ log2 n counters, and this im-

plies that the maximum number of layers for which we
can run the algorithm of Lemma 4 is κ = 1

6n/ log2 n.
Lemma 4 gives an O(n+ξ log2 n) bound for each run,
and thus we have to make sure that maintaining the
counters does not interfere with keeping the overall
number of iterations in O(log2 n).

3.2.1 The case `b < 1
3n

If, prior to the current iteration, `b < 1
3n holds, we

maintain the counters in A[23n, . . . , n− 1].

Counting the points on the topmost κ layers By
Invariant (SORT), A[`b, . . . , n−1] is sorted by decreas-
ing y-coordinate, so all counters encode the value zero.
We set κ := 1

6n/ log2 n and count the elements on
each of the topmost κ layers. Note that, since the
algorithm will process all points in A[`b, . . . , n − 1],
any point q in A[23n, . . . , n−1] may be swapped to the
front of the array since it may become the tail τi of
some layer Li. Using a more careful implementation
of the approach given in Section 3.1, we can com-
pute all counters and re-establish Invariant (SORT)
in O(n + ξ log2 n) time. After we have computed the
values of all counters ci—but prior to re-establishing
Invariant (SORT)—we compute the prefix sums of c0

through cκ−1, i.e., we replace cj by ĉj :=
∑j

i=0 cj .
This can be done in-place spending O(log2 n) time
per counter, i.e., in O(n) overall time. We also main-
tain the maximal index κ′ such that `b + 2ĉκ′ < 2

3n.

Extracting and sorting the points on the topmost
κ layers If the index κ′ described above exists, we
run (a slightly modified implementation of) the al-
gorithm for extracting the ξ′ := ĉκ′ points on the
κ′ topmost layers as described in Section 3.1. Be-
cause of the way κ′ was chosen, we can guarantee
that the scratch space of size ξ′ = ĉκ′ needed for the
counting-sort-like partitioning will not interfere with
the space A[23n, . . . , n − 1] reserved for representing
the counters. The total cost for extracting ξ′ points
is O(n+ ξ′ log2 n); this also includes the cost for sort-
ing the scratch space A[`b + ξ′, . . . , `b + 2ξ′ − 1] and
re-establishing Invariant (SORT) (see Section 3.1).

1A set cannot contain duplicates; hence the relative order
of two points is unique. Furthermore, the set of maxima of a
multiset M consists of the same points as the set of maxima of
the set obtained by removing the duplicates from M . Duplicate
removal can be done in-place and in O(n log2 n) time.

183

22nd European Workshop on Computational Geometry, 2006

If κ′ < κ, i.e., if we extract some but not all
κ = 1

6n/ log2 n layers, we will additionally run the
O(n log2 n) skyline computation algorithm described
in Section 2 as a post-processing step to also extract
the points on the next topmost layer, regardless of its
size. Similarly, if the index κ′ does not exist at all,
we extract the topmost layer L0 using the O(n log2 n)
skyline computation algorithm on A[`b, . . . , n − 1]—
note that in this case the topmost layer L0 contains
c0 > 1

2

(
2
3n− `b

)
> 1

2

(
2
3n− 1

3n
)
∈ Θ(n) points. In

any case, we spend another O(n log2 n) time to re-
establish Invariant (SORT) by sorting.

Analysis Our analysis classifies each iteration ac-
cording to whether or not all ξ points on the topmost
κ = 1

6n/ log2 n layers are moved to their final position
in the array. If all ξ points are moved, we know that
ξ ≥ 1

6n/ log2 n, and thus only a logarithmic number
of such iterations can exist. Also, we can distribute
the O(n + ξ log2 n) time spent per iteration such that
each iteration gets charged O(n) time and that each
of the ξ points moved to its final position gets charged
O(log2 n) time, so the overall cost for all such itera-
tions is O(n log2 n). If less than κ layers can be pro-
cessed in the iteration in question (this also includes
the case that κ′ does not exist), the O(n + ξ log2 n)
cost for counting the ξ points on the topmost κ layers
and the O(n+ξ′ log2 n) cost for extracting ξ′ points on
the topmost κ′ layers is dominated by the O(n log2 n)
cost for the successive skyline computation. The defi-
nition of κ′ guarantees that, after we have performed
the skyline computation, we have advanced the index
`b by at least 1

2

(
2
3n− `b

)
steps. Since `b < 1

3n, there
is only a constant number of such iterations, hence
their overall cost is O(n log2 n).

3.2.2 The case `b ≥ 1
3n

If, prior to the current iteration, `b ≥ 1
3n holds,

we maintain the counters in A[0, . . . , 1
3n − 1]. Note

that this subarray contains (part of) the layers that
have been computed already. Since maintaining a
counter will involve swapping some of the elements in
A[0, . . . , 1

3n− 1], this will disturb the y-order of (some
of) the layers already computed, and we have to make
sure that we can reconstruct the layer order.

As for the case `b < 1
3n we either extract all ξ points

on the topmost κ layers in O(n+ ξ log2 n) time or ex-
tract less than κ layers followed by a skyline compu-
tation in O(ν log2 ν) time where ν := n− `b. In both
cases, the complexity given also includes the cost for
re-establishing Invariant (SORT). Summing up, the
cost for all iterations in which `b < 1

3n and for all
iterations in which `b ≥ 1

3n is O(n log2 n). Restoring
the “counter space” to the original order can be done
in the same time complexity, and in the full version,
we prove that a simple linear-time scan is sufficient

to detect all “layer boundaries”. Combining this with
the fact that each point gets charged O(log2 n) cost
for the iteration in which it is moved to its final loca-
tion, we obtain our main result:

Theorem 5 All layers of maxima of an n-element
point set in two dimensions can be computed in-place
and in optimal time O(n log2 n) such that the points
in each layer are sorted by decreasing y-coordinate.

References

[1] J. Bentley, K. Clarkson, and D. Levine. Fast linear
expected-time algorithms for computing maxima and
convex hulls. Algorithmica, 9(2):168–183, 1993.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In Proc. 17th Intl. Conf. Data En-
gineering, pp. 421–430. 2001.

[3] P. Bose, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and J. Vahrenhold. Space-efficient geomet-
ric divide-and-conquer algorithms. Computational
Geometry: Theory & Applications, 2006.

[4] H. Brönnimann and T. Chan. Space-efficient algo-
rithms for computing the convex hull of a simple
polygonal line in linear time. In Proc. Latin Amer-
ican Theoretical Informatics, LNCS 2976, pp. 162–
171. 2004.

[5] H. Brönnimann, T. Chan, and E. Chen. Towards
in-place geometric algorithms. In Proc. 20th Symp.
Computational Geometry, pp. 239–246. 2004.

[6] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin,
J. Morrison, and G. Toussaint. Space-efficient planar
convex hull algorithms. Theoretical Computer Sci-
ence, 321(1):25–40, 2004.

[7] A. Buchsbaum and M. Goodrich. Three-dimensional
layers of maxima. Algorithmica, 39(4):275–286, 2004.

[8] H. Dai and X. Zhang. Improved linear expected-time
algorithms for computing maxima. In Proc. Latin
American Theoretical Informatics, LNCS 2976, pp.
181–192. 2004.

[9] V. Geffert, J. Katajainen, and T. Pasanen. Asymp-
totically efficient in-place merging. Theoretical Com-
puter Science, 237(1–2):159–181, 2000.

[10] S. Kapoor. Dynamic maintenance of maxima of 2-
D point sets. SIAM J. Computing, 29(6):1858–1877,
2000.

[11] H. Kung, F. Luccio, and F. Preparata. On finding the
maxima of a set of vectors. J. ACM, 22(4):469–476,
1975.

[12] J. Matoušek. Computing dominances in En. Infor-
mation Processing Letters, 38(5):277–278, 1991.

[13] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progres-
sive skyline computation in database systems. ACM
Trans. Database Systems, 30(1):41–82, 2005.

[14] F. Preparata and M. Shamos. Computational Geom-
etry. An Introduction. Springer, 1988.

[15] J. Vahrenhold. Line-segment intersection made in-
place. In Proc. 9th Intl. Workshop Algorithms and
Data Structures, LNCS 3608, pp. 146–157, 2005.

184

EWCG 2006, Delphi, March 27–29, 2006

Finding enclosing boxes with empty intersection

C. Cortés∗, J.M. Dı́az-Báñez† y J. Urrutia ‡

Abstract

Let S be a point set in general position on the plane
such that its elements are colored red or blue. We
study the following problem: Remove as few points
as possible from S such that the remaining points can
be enclosed by two isothetic rectangles, one containing
all the red points, the other all the blue points, and
such that each rectangle contains only points of one
color. We prove that this problem can be solved in
O(n3) time and space.

1 Introduction

In Data Mining and Classification problems, a natural
method to analyse data, is to select prototypes repre-
senting different classes of data. A standard technique
to achieve this, is to perform cluster analysis on the
training data [4, 6]. The clustering can be obtained by
using simple geometric shapes such as circles or boxes.
In [1, 5], circles and parallel-axis boxes respectively,
are considered for the selection. In [1], the following
problem is studied: given a bicolored point set, find a
ball that contains the maximum number of red points
without containing any blue point inside it.

In some cases these methods can produce slanted
classifications due to the fact that some data may be
defective or contain values out of reasonable ranges.
In other cases, we may obtain data hard to classify
due to relatively small similarities between different
classes. A possible way to find a better classification
for the former problem is to remove some data-points
from the input. Culling the minimum number of such
points can be a suitable criterium to lose as less in-
formation as possible. Thus, in this paper we study
the following problem: Let S be a bicolored point set
in general position on the plane such that no two ele-
ments of S lie on a vertical or horizontal line. Find
the largest subset S′ of S that can be enclosed by two
isothetic rectangles R and B such that:

• R (resp. B) contains all the red (resp. blue)
points of S′ respectively

∗Departamento Matemática Aplicada I, Universidad de
Sevilla, ccortes@us.es

†Departamento Matemática Aplicada II, Universidad de
Sevilla, dbanez@us.es

‡Instituto de Matemáticas, Universidad Nacional Autónoma
de México, urrutia@matem.unam.mx

• R (resp. B) contains no blue (resp. red) points
of S′.

We will refer to this problem as Empty Intersection
Enclosing Boxes problem or simply as EIEB-problem.

For example, the solution to the EIEB-problem for
the point set shown in Figure 1 is 2, since by remo-
ving the points r1 and b1 we can obtain two rectangles,
R and B each of them containing only red and blue
points respectively.

b1
r1

R

B

Figure 1: Removing points r1 and b1, we get a solu-
tion.

From now on, an isothetic rectangle enclosing a set
of red (resp., blue) points will be called red rectangle,
denoted by R (resp., blue rectangle, denoted by B).

To solve our problem, we observe first that given a
bicolored point set S, and two rectanglesR and B that
provide an optimal solution to the EIEB-problem for
S, there are three types of relative positions ofR with
respect to B, up to symmetry. These are depicted in
Figure 2. We call a corner solution to that in which R
contains exactly one corner of B; a sandwich solution
to that in which R intersects properly two parallel
sides of B; and disjoint solution to that in which R
and B can be separated either by a horizontal or a
vertical line.

a.) b.) c.)

R

B B

R

R

B

Figure 2: a.) Corner, b.) sandwich and, c.) disjoint
solutions.

Our procedure consists on looking for the best so-
lution of each type keeping the best among them. In
all of the previous cases, we reduce our 2-dimensional
problem to the following 1-dimensional problem:

Maximum Consecutive Subsequence (MCS):
Given a sequence x1, x2, ..., xn of 0′s, +1’s and −1′s,

185

22nd European Workshop on Computational Geometry, 2006

compute, for every index i = 1, ..., n, all the subse-
quences xi, xi+1, ..., xj of consecutive elements such
that xi + xi+1 + . . . + xj is maximized over all subse-
quences starting at xi.

It is relatively easy to see that the MCS-problem
can be solved in linear time by using the same tech-
niques used to solve Bentley’s Maximum segment sum
problem [2].

2 Finding the optimum Corner Solution

We now sketch the key idea to find the best corner
solution. The remaining cases are solved using similar
techniques.

Let (R,B) be a corner type pair of rectangles. Assu-
me for the rest of this section that, as in Figure 3, R
contains the topmost right corner of B. We denote by
Red(R \ B) to the set of red points of S contained in
R \ B. Similarly we define Blue(R \ B), Red(B \ R),
Blue(B \R), Red(R∩B), and Blue(R∩B), see Figu-
re 3. We remark that R and B are considered to be
closed sets.

Proposition 1 Let (R,B) be a corner type pair of
rectangles. Then, it is possible to find another corner
type pair (R̂, B̂) such that R̂\B̂ (resp., B̂\R̂) contains
at least Red(R\B) red points (resp., Blue(B\R) blue
points) and the sides of R̂ (resp., B̂) go through red
(resp., blue) points.

Corollary 2 There exists a pair (R,B) of corner type
rectangles that provides an optimal corner solution
such that the sides of R (resp., B) go through red
(resp., blue) points.

From now on, any rectangle R (resp., B) will be
considered to be delimited by red (resp., blue) points
of S.

A pair (R,B) of corner type rectangles that pro-
vides an optimal corner solution will be a pair that
maximizes the sum |Red(R \ B)|+ |Blue(B \ R)|.

Let QR be the quadrant obtained from R by ex-
tending to infinity its left and lower sides towards the
North and the East respectively. We will refer to QR
as the red quadrant. Similarly we define the blue quad-
rant QB, obtained by extending to infinity the right
and upper sides of B towards the South and West re-
spectively. We will assume that the quadrants include
their borders.

As a consequence of Proposition 1, if (R,B) pro-
vides an optimal solution, then |Red(R \ B)| =
|Red(QR\QB)| and |Blue(R\B)| = |Blue(QB\QR)|.
We then reformulate our problem as follows: find the
pair of quadrants (QR,QB) that maximize the sum
|Red(QR \ QB)|+ |Blue(QB \ QR)|.

It is easy to see that by using range search tech-
niques [3], we can solve this problem in O(n4) time.

We proceed now to show how to solve the EIEB-
problem in O(n3) time.

Red(R \ B)

Red(R∩ B)

Blue(R \ B)

Blue(R∩ B)
Blue(B \ R)

Red(B \ R)

R

B

Figure 3: Notation for points in S depending on their
location.

vr

hr

hb

QR

Figure 4: Illustrating the Query problem.

2.1 The Algorithm

Consider the orthogonal grid generated by drawing
horizontal and vertical lines through the elements of
S.

Assume we have already preprocessed points in S
so that it is possible to answer in O(1) amortized time
the next problem (Figure 4):

OptQuad: Given a red quadrant QR, determined
by two red lines < hr, vr >, and a blue horizontal line
hb above hr, find the blue vertical line vb to the right
of vr such the blue quadrant QB bounded above and
to its right by hb and vr respectively, is such that it
maximizes the sum |Red(QR\QB)|+|Blue(QB\QR)|
over all the possible choices of vb.

Our algorithm to solve an instance of a corner type
solution proceeds as follows.

Corner Solution Algorithm (CS-Algorithm):

1. For each vertex of the grid, compute the number
of red and blue points of S laying in the four
(North-West, North-East, South-West and South
East) quadrants with vertex in it.

2. For each red quadrant QR < hr, vr > and for
every blue horizontal line hb above hr, the query
reports a blue vertical line vb. Store the sum
s(QR,QB) = |Red(QR \ QB)|+ |Blue(QB \ QR)|.

3. Output the pair (QR,QB) that provides the ma-
ximum value s(QR,QB).

186

EWCG 2006, Delphi, March 27–29, 2006

Complexity: It is easy to see that the first step
of our algorithm can be completed in quadratic time
[3]. The second step of our algorithm answers O(n3)
queries. These queries can be solved in amortized
constant time using OptQuad. Finally reporting the
best s(QR,QB) can be done in constant time.

2.2 The Preprocessing

We now describe briefly the preprocessing needed to
solve OptQuad and prove the correctness of the
whole algorithm. Consider the orthogonal grid ob-
tained by passing a horizontal and a vertical line
through every element of S. Assume that these lines
are colored red or blue according to the color of the
point in S they contain.

Each pair consisting of a horizontal blue line hb

and a horizontal red line hr below it determines a
horizontal strip HShb,hr

. We assign weights to some
elements of S according to the following criteria, see
Figure 5 a.):

1. Every red point inside HShb,hr
has weight −1

2. Red points in or above HShb,hr
have weight 0

3. Blue points in HShb,hr
have weight 0

4. Blue points below HShb,hr
have weight +1

Blue points above HShb,hr
and red points below

HShb,hr
are discarded. We next project our blue and

red points together with their weights on the x−axis
obtaining a sequence P = {pσ(1), . . . , pσ(k)} of points
with weights −1, 0, or +1, where k is the number of
weighted points of S. We use now the solution to the
MCS problem, and find for each pσ(i) the j > i s.t.
the sum of the weights of all the elements in P bet-
ween pσ(i) and pσ(j) (including the weight of pσ(j)) is
maximized.

Suppose now that we have a red quadrant bounded
below by hr and to its left by a vertical line vr through
a red point above hr, and a blue quadrant bounded
above by hb and to its right by a vertical line vb

through a blue point as shown in Figure 5 b.). Let
Q′ be the quadrant bounded above by hb, and to the
right by vr.

Let us define the following numbers:

• Let b1 be the number of blue points in Q′

• Let r1 be the number of red points in QR

• Let c be the sum of the weights of the ele-
ments of P = {pσ(1), . . . , pσ(k)} between pσ(i)

and pσ(j), where pσ(i) and pσ(j) are the points
into which points in vr and vb were projected in
P = {pσ(1), . . . , pσ(k)}.

Theorem 3 The number of red points in QR plus
the number of blue points in QB minus the number of
blue and red points in QR ∩ QR equals b1 + r1 + c.

It follows now that we have to maximize c to find
the optimal solution in which QR participates, and
QB is bounded above by hb. This can be done
using the solution to the SMC problem in P =
{pσ(1), . . . , pσ(k)}. Thus we have:

Theorem 4 An optimum corner solution can be
found in O(n3) time and storage, given O(n3) pre-
processing time.

vr

hr

hb

QR

vr

hr

hb

QR

vb

B0

Red(R∩ B)

+1 +1 +1−1−1−10 0 0

vr

hr

hb

QR

a.)

b.)

0 0 0 0

Figure 5: Illustrating the proof of the algorithm’s cor-
rectness.

3 Conclusions

We propose an algorithm to solve the EIEB-problem
that requires O(n3) time and quadratic space. The

187

22nd European Workshop on Computational Geometry, 2006

algorithm solves separately three different possibilities
for an optimal solution type: corner, sandwich and,
disjoint solution. We have presented here the way to
solve the optimum corner solution. This is the most
interesting case, the others can be solved in a similar
way.

To conclude, let us mention that the 1-dimensional
EIEB-problem, where a set of red and blue points on
a line are given and we are asked to determine the
minimum number of points to be removed in order
to get two disjoint intervals containing points of only
one color, can be solved in lineal time.

References

[1] B. Aronov, S. Har-Peled. On approximating the
depth and related problems. Proceedings 16th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2005), 2005.

[2] J. Bentley, “Programming pearls: algorithm design
techniques,” Comm. ACM, vol. 27, no. 9, pp. 865 -
873, 1984.

[3] J.L. Bentley and M.I. Shamos, A problem in multi-
variate statistics: Algorithms, data structure and ap-
plications, Proceedings of the 15th annual Allerton
Conference on Communications, Control, and Com-
puting, pp. 193-201, 1977.

[4] R. Duda, P. Hart, D. Stork. Pattern Classification.
John Wiley and Sons, Inc., New York, 2001.

[5] Eckstein, J., Hammer, P.L., Liu, Y., Nediak,M.,
Simeone, B. The maximum box problem and its ap-
plications to data analysis. Comput. Optim. Appl.
23, 2002, 285-298.

[6] Hand,H., Mannila, H., Smyth, P. Principles of Data
Mining. The MIT Press, 2001.

188

EWCG 2006, Delphi, March 27–29, 2006

Inner Approximation of Polygons and Polyhedra by Unions of Boxes

Christian Spielberger∗ Martin Held†

Abstract

Given a multiply-connected polygonal area P in the
plane and a point set S ⊂ R2, where some points of
S may lie inside of P , we present a fast approxima-
tion method for finding a largest axis-aligned or ori-
ented rectangle contained in P which does not contain
any points of S. All standard meanings of “largest”
are supported, such as maximum area and maximum
perimeter. This heuristic is extended to finding k
rectangles whose union is largest. Furthermore, we
present an extension of our method to 3D, i.e., to
computing inner approximations of polyhedra (possi-
bly with holes, voids and cavities) by unions of (ori-
ented) boxes.

Our 2D algorithm is based on a discretization of
space by means of a regular mesh of size w×h and on
a discretization of the rotation angles. Let n be the
sum of the number of vertices of P and the number of
points in S. Then an inner approximation by k rect-
angles is found in O

(
mn(w + h) + k2k(mwh)k

)
time

and O(wh + n) space, where m denotes the number
of rotation angles tested. A similar bound is obtained
for the 3D case. Several algorithmic improvements
help to decrease the time complexity in practice con-
siderably, thus making it quite feasible to determine
inner approximations of complex objects by several
boxes within a few seconds of CPU time. Extensive
practical tests have yielded a formula for predicting a
mesh resolution suitable for achieving the approxima-
tion quality sought by a user.

1 Introduction

Motivation. A problem that often arises in metal or
textile industry is to cut a rectangle as large as pos-
sible out of an arbitrarily shaped piece of sheet metal
or cloth [3]. Typically, the term “large” means “max-
imum area” but other measures of size (such as max-
imum perimeter) may also be of interest. Sometimes
the situation is further complicated if discrete spots
of material imperfectness are to be excluded from the
rectangle sought.

Finding one or more maximal boxes that are lo-
cated inside of a shape can also be regarded as an

∗Department of Scientific Computing, University of
Salzburg, Salzburg, Austria; christian.spielberger@aon.at

†Department of Scientific Computing, University of
Salzburg, Salzburg, Austria; held@cosy.sbg.ac.at

inner approximation (or inner cover) of that shape.
For instance, for visibility tests we are asked whether
an object O in the foreground occludes other ob-
jects in the background. Since visibility tests in 3D
scenes are very time consuming for complex objects
O, researchers in graphics have long been interested
in inner approximations of O by one (or more) con-
vex shapes, such boxes, spheres and ellipsoids: rather
than testing a 3D scene for occlusion againstO, it may
be significantly faster to test the scene against an in-
ner approximation of O. Similarly, simple pre-tests
for path planning are based on inner approximations.

Overview of Results. We study the following prob-
lem: Given an integer k, a multiply-connected planar
area A and a set S of n points (in R2), find k rect-
angles inside of A such that the rectangles do not
contain any point of S and such that their union has
maximum size according to a measure µ. Typically, µ
will denote the area of a rectangle but our algorithm
will be able to deal with any measure µ provided that
µ(A) ≤ µ(B) if A ⊆ B for two planar areas A and
B. In particular, µ could also measure the perimeter
or the length of a rectangle. Depending on the ap-
plication, the rectangles will have sides parallel to the
coordinate axes (axis-aligned) or they will be oriented
rectangles, i.e., they will have arbitrary orientations.

A natural extension to 3D asks to determine k
cuboids inside of a polyhedron P such that the size of
their union is maximum with respect to µ and such
that no point of a set S of points of R3 is contained in
a cuboid. As for the 2D polygons, the polyhedron P
may contain voids, holes and cavities. Again, we are
interested in both axis-aligned and oriented cuboids.

In the sequel we present a fast heuristic for find-
ing such a set of k large boxes in 2D and 3D. Our
algorithm is based on a discretization of space by
means of a regular mesh of size w × h. Furthermore,
we apply a straightforward discretization of the ro-
tation angles. Let n be the sum of the number of
vertices of P and the number of points in S. Then
the worst-case time complexity of the 2D algorithm is
O
(
mn(w + h) + k2k(mwh)k

)
, where m denotes the

number of rotation angles tested; its space complex-
ity is O(wh + n). A similar bound is obtained for
the 3D case. Several algorithmic improvements help
to decrease the time complexity in practice consider-
ably, thus making it quite feasible to determine inner
approximations of complex objects by several axis-

189

22nd European Workshop on Computational Geometry, 2006

aligned or 2–3 oriented boxes within a few seconds.

Since our algorithm depends on the resolution of the
mesh it cannot guarantee a constant-factor approxi-
mation of the true maximum size of an optimum set
of k boxes. Furthermore, there is an obvious trade-off
between the quality of the inner approximation and
the resolution of the mesh. Based on extensive prac-
tical tests we came up with a formula that allows to
predict a mesh resolution such that the approxima-
tion quality sought by a user can be expected to be
achieved with a user-specified probability.

Our algorithms for inner approximation by k boxes
have been implemented in C++ for both the 2D and
the 3D case. In the sequel, we will mostly focus on
the 2D case, though.

Related Work. Restricted versions of our problem
have received considerable interest in the past. For
the 2D case, if P is restricted to a rectangle A, the
problem of finding the largest rectangle inside of A
whose sides are parallel with those of A and which
does not contain a point of S was discussed in a va-
riety of papers, see [8] for a survey. (In most papers,
“largest” means “largest area”.) The fastest algo-
rithm that solves this problem runs in O(n log n + s)
time, where s is the number of axis-aligned rectangles,
whose edges contain a point of S or are contained in
the border of A [8]; its expected time complexity is
O(n log n). It is notable that this algorithm uses only
O(n) memory. A more general problem is to find the
largest empty oriented rectangle bounded by a point
of S on each of its four sides. This problem can be
solved in O(n3) time [2, 6].

A largest-area axis-aligned rectangle (LAR) inside
of a multiply-connected polygonal area can be found
in O(n log2 n) time [3]. For polygons without islands
an O(n log n) algorithm is presented in [1]. Note that
none of those papers considers additional point con-
straints within P . (That is, the set S is empty.) Also,
nothing is known for finding k (oriented) rectangles
(LORs) such that their union has maximum size.

For the 3D case of a set S of n points inside of
a bounding cuboid, a largest empty cuboid can be
computed in O(n3) time and O(n2 log n) space in the
worst case, see [4]. In [7], it is claimed that all locally
maximal cuboids can be reported in O(c + n2 log n)
time and O(n) space, where c is bound by O(n3).

No algorithms are known for finding largest axis-
aligned and largest oriented cuboids inside a poly-
hedron. As in 2D, an inner approximation by k > 1
axis-aligned or oriented boxes also is an open problem.

2 Finding a LAR Inside a Polygon

Our heuristic for computing a maximum axis-aligned
rectangle (relative to the measure µ) uses a regular

mesh for discretizing the plane. A rectangle that con-
sists entirely of mesh cells is called a mesh rectangle.
Our algorithm finds the largest mesh rectangle which
lies completely in the given polygon P and does not
contain any point of S.

Consider a regular mesh M := {0, 1, . . . , w − 1} ×
{0, 1, . . . , h−1}with resolution w×h. In the first step,
all cellsM(a, b) that are intersected by the boundary
∂P of the polygon are determined and their cell values
are set to zero. Then all cells that include at least
one point of S are set to zero. Both can be done
in O(n(w + h)) time. Then all outer cells are set to
−1 in O(wh) time. The inner cells are set to the
values specified by the chessboard distance. Several
algorithms are known for computing the chessboard
distance on a w × h mesh in O(wh) time, see, for
instance, [5]. We use a modified flood-fill algorithm:
in the first step, all eight neighbor cells of zero cells
that currently have undefined values get the value one.
Then the neighbor cells of 1-cells get the value 2, and
so on. (In Fig. 1, the shaded cells depict the zero cells
occupied by ∂P and the points of S). The resulting
value obtained for a cellM(a, b) is denoted by d(a, b).

-1

-1

-1

-1

-1

-1-1-1

-1-1-1-1

-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1-1-1-1-1-1-1-1-1-1-1-1

0

0

0

0

0

0

0

00

0

0 0

00

0

0

0

0

0

0

0

0

0 00

0 0 0

0

00

0 0

0

0

00

0

00

0

0

11

11

1

1

1

1 1

1 1 1 1 1

1

1

1 1

1

1

1111

1

1

1

1

222

2 2 2

2

2222

3

Figure 1: Discretization of a polygon.

The square anchored at cell M(a, b) is defined as
the square with lower left cellM(a−(d−1), b−(d−1))
and upper right cellM(a+(d−1), b+(d−1)), where
d = d(a, b). It is easy to see that every such square is
fully contained in P\S.

For an inner cellM(a, b) the number of cells which
are to the right of it and which have a cell value of
at least d(a, b) is given by the horizontal length code
h(a, b). Similarly, a vertical length code v(a, b) is de-
fined for each inner cell. The horizontal length code
for each cell of a rowM(., b) can be set in O(w) time
by stepping from cellM(w− 1, b) to cellM(0, b) and
by performing the following tasks for each inner cell
M(a, b).

• If d(a, b) > d(a+1, b) then the length code h(a, b)

190

EWCG 2006, Delphi, March 27–29, 2006

stays 0.

• If d(a, b) = d(a+1, b) then the length code h(a, b)
is set to h(a + 1, b) + 1.

• If d(a, b) < d(a + 1, b) then the length code is
set to the value h(a + 1, b) + h(c, b) + 2, where
c = min{x ∈ N : x > a and d(x, b) = d(a, b)}.

Suppose d = d(a, b). The value h(c, b) is the length
code of the next d-cell in this row. This value is stored
in an array with index d. Thus, it can be retrieved in
constant time. These tasks are done for each row in
the mesh. The vertical length code is set in a similar
manner, by stepping downwards through the cells of
columns. The calculation of the length code takes
O(wh) time.

The mesh rectangle with lower-left cell M(la, lb)
and upper-right cell M(ua, ub) is denoted by
R[(la, lb), (ua, ub)]. For any inner cell M(a, b) the
mesh rectangle rech,1(a, b) := R[(a − d + 1, b − d +
1), (a + h + d − 1, b + d − 1)], where d = d(a, b) and
h = h(a, b), is the horizontal mesh rectangle anchored
at cell M(a, b) with a one-row core. If d(a, b + 1) ≥
d(a, b) ≥ 1, the mesh rectangle rech,2(a, b) := R[(a −
d+1, b−d+1), (a+h2+d−1, b+d)], where d = d(a, b)
and h2 = min(h(a, b), h(a, b + 1)), is the horizontal
mesh rectangle anchored at cell M(a, b) with a two-
row core. Similarly, vertical mesh rectangles with
one- and two-column cores are defined. Since an ar-
bitrarily anchored mesh rectangle can be covered by a
set of anchored squares, it is fully contained in P\S.

Theorem 1 For an arbitrary mesh rectangle R in P
that does not contain any point of S there is an an-
chored mesh rectangle which covers R.

Theorem 2 Given an arbitrary n1-vertex polygon P
in the plane, a point set S with n2 points, and a mesh
M with resolution w × h covering P , a largest mesh
rectangle contained in P\S can be found in O(n(w +
h) + wh) time using O(wh + n) memory, where n =
n1 + n2.

Proof. Setting the zero cells and the outer cells can
be done in O(n(w+h)+wh) time and O(wh+n) space.
The cell values in the interior of P can be calculated
without further costs. The length code can also be
set in O(wh) time for the whole mesh.

Let S′ be the set of all anchored mesh rectangles.
Due to Theorem 1, the set S′ is a sufficient search
space for the largest mesh rectangle inside P . Since
there are only O(wh) mesh rectangles in S′, for each
inner cell one, searching S′ does not increase the time
and space complexity further. �

An inner cell M(a, b) is called a horizontal upward
cell, if d(a, b) > d(a− 1, b) or
d(a, b) = d(a, b + 1) and d(a, b) > d(a− 1, b + 1).

Similarly, an inner cellM(a, b) is called a vertical up-
ward cell, if d(a, b) > d(a, b− 1) or
d(a, b) = d(a + 1, b) and d(a, b) > d(a + 1, b− 1).

A mesh rectangle which is anchored in an upward
cell is called upward anchored.

Theorem 3 For any anchored mesh rectangle R
there is an upward anchored mesh rectangle which
covers R.

Thus, the search space can be reduced to the set of
all upward anchored mesh rectangles. Each upward
cell gets a pointer to the next upward cell for this
reason. The first cell in a mesh row (column) gets the
pointer to the first upward cell in this row (column).
Hence, many cells can be left out during the search.
This does not reduce the worst-case time complexity
but tends to decrease the practical run-time of the
program considerably.

3 General Orientation

By using the method of Section 2 a simple heuristic
for the LOR can be built. Again, given is an arbitrary
polygon P and a point set S. The angle range [0 . . π

2]
is discretized. The input data is rotated by the an-
gles 0, δ, 2δ, . . . , (m− 1)δ, where m is an integer with
m ≥ 2, and δ := π

2m . The LAR is calculated for each
of the rotated data sets. The largest mesh rectangle
returned by the LAR algorithm is the result of the
LOR algorithm. (Of course, this mesh rectangle has
to be re-transformed to the original orientation.)

4 Generalization to 3D Space

We extended the described method to approximate
the maximum volume cuboid inside a given polyhe-
dron P such that no point of S is included. A 3D
mesh was used to discretize the space. However, the
length code can not be adopted directly to the 3D
mesh. Instead the length codes have to be calculated
for each of the three coordinate planes xy, xz and
yz. In addition a 3D chessboard distance is used to
retrieve the maximal thickness of each cuboid.

5 Inner Approximation by Several Objects

Let F be a finite set of shapes in Rd. (In our appli-
cation, d = 2, 3.) Let k ≥ 2 be an integer. Given
a region R ⊂ Rd and a set of points S ⊂ Rd, we
want to find k shapes C1, . . . , Ck ∈ F such that
∪1≤i≤k Ci ⊆ R \ S and µ (∪1≤i≤kCi) is maximum.

Note that the shapes Ci may intersect. Let
(F

k

)
be the

set of all k-elemental subsets of F . The proposed algo-
rithm performs a brute-force search of the set

(F
k

)
for

the largest union of k shapes relative to the measure
µ. Let s be the cardinality of F . The algorithm has

191

22nd European Workshop on Computational Geometry, 2006

to check
(

s
k

)
shape combinations by a k-times nested

loop. Thus the union of k shapes has to be calculated
O(sk) times.

The calculation of µ for such a union is done
by the inclusion-exclusion principle, by relying on∑k

i=1

(
k
i

)
= 2k calculations of µ (∩C∈BC), where B

can have at most k elements. How long it takes to
calculate the intersection of k shapes depends on the
complexity of the shapes and has to be analyzed for
each specific type of shapes. For example, computing
the common intersection of k axis-aligned rectangles
takes O(k) time. Thus the calculation of the union
volume of k axis-aligned rectangles needs O

(
k 2k

)

time, and our shape selector needs at most O
(
k 2ksk

)

time in total.
Two improvements may reduce the average time

complexity drastically. First, let F ′ be the set of all
shapes in F that are not contained in another shape
in F . The shape set F ′ is a sufficient search space for
the shape combination that maximizes µ. The second
improvement relies onF ′ being arranged in decreasing
order according to µ. Our shape selector uses a k-
times nested loop to determine C1, . . . , Ck, starting
with the the j-largest shape in loop j. During each
pass through the body of a loop the next smaller shape
is tested. Suppose that the current candidate shapes
selected in loops 1 to (j − 1) are Ci1 , Ci2 , . . . , Cij−1 ,
and we are to select a shape in loop j. Let Cij

be the
next smallest shape after Cij−1 in the ordered list of
shapes. If

M > µ(Ci1 ∪Ci2 ∪ · · · ∪Cij−1) + (k − j + 1) ∗ µ(Cij
),

where M is the size of the union of the best selection
of shapes obtained so far, then an early termination
of the loops j to k is possible (since no better result
will be obtained) and the next smaller shape is tested
in loop j − 1.

6 Choosing a Suitable Mesh Resolution

Let A be the area of the true LAR and let A′ be the
area of the largest mesh rectangle obtained by our al-
gorithm. The ratio α = A′/A is called approximation
ratio and should be as close to 1 as possible. Let B

be the bounding box of P . The ratio aP = a(P)
a(B) is

called the relative area of P , where a is a measure for
the area. Let p(P) be the perimeter of P . Further,
let p(B) be the perimeter of the bounding box of P .

The ratio pP = p(P)
p(B) is called relative perimeter of

P . Furthermore, we call the ratio tP = aP/pP the
thickness of P . It is an attempt to cast an intuitive
understanding of the “thickness” of a polygon into a
numerical number.

Tests indicated that the higher the thickness of a
polygon is the lower the resolution of the mesh can
be in order to achieve the same approximation ratio.

Let w×w be the resolution of the meshM used. The
value w2 tP is called weighted resolution of M rela-
tive to P . Since the number of inner cells grows with
the thickness, the approximation ratio grows with the
weighted resolution. Our 2D algorithm was tested
over a variety of polygons with different mesh resolu-
tions. As a result we obtained a look-up table and a
formula for the mesh resolution. The parameters for
the formula are the weighted resolution, which can be
read off from the table, and the area and the perime-
ter of the polygon. The row index of the table is the
desired approximation ratio α and the column index
is the probability that α will be achieved.

7 Conclusion

We use a regular mesh to discretize 2D and 3D
space for computing inner approximations of polyg-
onal/polyhedral shapes by one or more axis-aligned
or oriented boxes. The time consumption of the al-
gorithm depends on the mesh resolution which, on
the other hand, influences the quality of the approx-
imation obtained. Although the basic idea is rather
simple, several algorithmic improvements make our
approach quite feasible for the approximation of com-
plex shapes by several boxes. Based on extensive tests
we have come up with a heuristic to predict a suitable
resolution of the mesh relative to the approximation
quality requested by a user.

References

[1] R. P. Boland and J. Urrutia. Finding the Largest Axis-
aligned Rectangle in a Polygon in O(n log n) Time. In
Proc. 13th Canad. Conf. Comput. Geom., pages 41–44,
2001.

[2] J. Chaudhuri, S. Nandy, and S. Das. Largest
Empty Rectangle Among a Point Set. J. Algorithms,
46(1):54–78, 2003.

[3] K. Daniels, V. Milenkovic, and D. Roth. Finding the
Largest Area Axis-Parallel Rectangle in a Polygon.
Comput. Geom. Theory and Appl., 7:125–148, 1997.

[4] A. Datta and S. Soundaralakshmi. An Efficient Algo-
rithm for Computing the Maximum Empty Rectangle
in Three Dimensions. Informat. Sciences Appl. An
Int. J., 128(1):43–65, 2000.

[5] T. Hirata. A Unified Linear-Time Algorithm for
Computing Distance Maps. Inform. Process. Lett.,
58(3):129–133, May 1996.

[6] A. Mukhopadhyay and S. V. Rao. On Computing a
Largest Empty Arbitrarily Oriented Rectangle. Inter-
nat. J. Comput. Geom. Appl., 13(3):257–271, 2003.

[7] S. C. Nandy and B. B. Bhattacharya. Maximum
Empty Cuboid Among Points and Blocks. Comput-
ers & Math. with Appl., 36(3):11–20, 1998.

[8] M. Orlowski. A New Algorithm for the Largest Empty
Rectangle Problem. Algorithmica, 5:65–73, 1990.

192

EWCG 2006, Delphi, March 27–29, 2006

On the Bounding Boxes Obtained by Principal Component Analysis

Darko Dimitrov∗ Christian Knauer∗ Klaus Kriegel∗ Günter Rote∗∗

Abstract

Principle component analysis (PCA) is commonly
used to compute a bounding box of a point set in Rd.
In this paper we give bounds on the approximation
factor of PCA bounding boxes of convex polygons in
R2 (lower and upper bounds) and convex polyhedra
in R3 (lower bound).

1 Introduction

Substituting sets of points or complex geometric
shapes with their bounding boxes is motivated with
many applications. For example, in computer graph-
ics, it is used to maintain hierarchical data structures
for fast rendering of a scene or for collision detec-
tion. Additional applications include those in shape
analysis and shape simplification, or in statistics, for
storing and performing range-search queries on a large
database of samples.

Computing a minimum-area bounding box of a set
of n points in R2 can be done in O(n log n) time,
for example with the rotating caliper algorithm [9].
O’Rourke [6] presented a deterministic algorithm, a
rotating caliper variant in R3, for computing the exact
minimum-volume bounding box of a set of n points
in R3. His algorithm requires O(n3) time and O(n)
space. Barequet and Har-Peled [2] have contributed
two (1+ε)-approximation algorithms for computing
the minimum-volume bounding box problem for point
sets in R3, both with nearly linear complexity. The
running times of their algorithms are O(n + 1/ε4.5)
and O(n log n + n/ε3).

Numerous heuristics have been proposed for com-
puting a box which encloses a given set of points.
The simplest heuristic is naturally to compute the
axis-aligned bounding box of the point set. Two-
dimensional variants of this heuristic include the well-
known R− tree, the packed R− tree [7], the R∗− tree
[8], the R+ − tree [3], etc. A frequently used heuris-
tic for computing a bounding box of a set of points
is based on principal component analysis. The princi-
pal components of the point set define the axes of the
bounding box, and the dimension of the bounding box
along an axis is given by the extreme values of the pro-
jection of the points on the corresponding axis. Two

∗Institut für Informatik, Freie Universität Berlin, Germany,
{darko, knauer, kriegel, rote}@inf.fu-berlin.de

distinguished applications of this heuristic are OBB-
tree [4] and BOXTREE [1], hierarchical bounding box
structures, which support efficient collision detection
and ray tracing. Computing a bounding box of a set
of points in R2 and R3 by PCA is quite fast, it requires
linear time. To avoid the influence of the distribution
of the point set on the directions of the PCs, a possible
approach is to consider only the boundary of the con-
vex hull of the point set. Thus, the complexity of the
algorithm increases to O(n log n). The popularity of
this heuristic besides its speed, lies in its easy imple-
mentation and in the fact that usually, PCA bounding
boxes are tight-fitting.

We are not aware of any previous published results
about the quality of the bounding boxes obtained by
PCA. Here we give guarantees on the approximation
factor of bounding boxes of convex polygons in R2

and convex polyhedra in R3.
The paper is organized as follows. In section 2 we

review the basics of principal component analysis. In
Section 3 we give lower bounds on the approximation
factor of PCA bounding boxes in R2 and R3, and in
Section 4 an upper bound in R2. We conclude with
future work and open problems in Section 5.

2 Principal Component Analysis

The central idea and motivation of PCA [5] (also
known as the Karhunen-Loeve transform, or the
Hotelling transform) is to reduce the dimensional-
ity of a data set by identifying the most signifi-
cant directions (principal components). Let X =
{x1, x2, . . . , xm}, where xi is a d-dimensional vector,
and c = (c1, c2, . . . , cd) be the center of gravity of X .
For 1 ≤ k ≤ d, we use xik to denote the kth coordi-
nate of the vector xi. Given two vectors u and v, we
use 〈u, v〉 to denote their inner product. For any unit
vector v ∈ Rd, the variance of X in direction v is

var(X, v) =
1

m

m∑

i=1

〈xi − c, v〉2. (1)

The most significant direction corresponds to the unit
vector v1 such that var(X, v1) is maximum. In gen-
eral, after identifying the j most significant directions
Bj = {v1, v2, . . . , vj}, the (j+1)th most significant di-
rection corresponds to the unit vector vj+1 such that
var(X, vj+1) is maximum among all unit vectors per-
pendicular to v1, v2, . . . , vj .

193

22nd European Workshop on Computational Geometry, 2006

It can be verified that for any unit vector v ∈ Rd,

var(X, v) = 〈Cv, v〉, (2)

where C is the covariance matrix of X . C is a
symmetric d × d matrix where the ij-th component,
Cij , 1 ≤ i, j ≤ d, is defined as

Cij =
1

m

m∑

k=1

(xik − ci)(xjk − cj). (3)

The procedure of finding the most significant direc-
tions, in the sense mentioned above, can be formu-
lated as an eigenvalue problem. Namely, it can be
shown that, if λ1 ≥ λ2 ≥ · · · ≥ λd are the eigenval-
ues of C, then the unit eigenvector vj for λj is the
jth most significant direction. It follows that all λjs
are non-negative as λj = var(X, vj). Since the ma-
trix C is symmetric positive definite, its eigenvectors
are orthogonal. The following result summarizes the
above background knowledge on PCA. For any set S
of orthogonal unit vectors in Rd, we use var(X, S) to
denote

∑
v∈S var(X, v).

Lemma 1 For 1 ≤ j ≤ d, let λj be the j-th largest
eigenvalue of C and let vj denote the unit eigen-
vector for λj . Let Bj = {v1, v2, . . . , vj}, sp(Bj) be
the linear subspace spanned by Bj , and sp(Bj)

⊥ be
the orthogonal complement of sp(Bj). Then λ1 =
max{var(X, v) : unit vector v in Rd} and for any
2 ≤ j ≤ d,

i) λj = max{var(X, v) : unit vector v in sp(Bj−1)
⊥}.

ii) λj = min{var(X, v) : unit vector v in sp(Bj)}.

iii) var(X, Bj) ≥ var(X, S) for any set S of j orthog-
onal unit vectors.

Since the covariance matrix depends on the distribu-
tion of the points, there is not necessarily a strong cor-
relation between the eigenvectors and the directions
of the axes of the minimal bounding box. Consider
for example the situation when a significant num-
ber of points is located in a small part of the space,
see figure 1. Moreover, by adding points inside or
on the boundary of the convex hull of the point set,
the PCA bounding box can arbitrarily vary between
the minimum-volume bounding box and maximum-
volume bounding box of the convex hull of the point
set. To overcome this problem, one possible approach
is to consider only the points on the boundary of the
convex hull of the point set when the covariance ma-
trix is computed. This is the approach we take in
the rest of the paper. This leads us to so-called con-
tinuous PCA. In that case, X is a continuous set of
d-dimensional vectors and it can be verified that the
derivations and the lemma above also hold.

1stPC

2ndPC

1stPC

2ndPC

Figure 1: Four points and its PCA bounding-box
(left). Dense collection of additional points signifi-
cantly affect the orientation of the PCA bounding-box
(right).

3 Lower Bounds

The following connection between hyperplane reflec-
tive symmetry and principal components will help us
to derive the lower bounds of the approximation fac-
tor of the PCA bounding boxes.

Theorem 2 Let P be a d-dimensional point set sym-
metric with respect to a hyperplane H. Then, a prin-
cipal component of P is orthogonal to H.

Proof. Without loss of generality, we can assume
that the hyperplane of symmetry is spanned by the
last n− 1 standard base vectors of the d-dimensional
space and the center of gravity of the point set coin-
cides with the origin of the d-dimensional space, i.e.,
c = (0, 0, . . . , 0). Then, the components C1j and Cj1,
for 2 ≤ j ≤ d, are 0 and the covariance matrix has
the form:

C =

C11 0 . . . 0
0 C22 . . . C2d

...
...

. . .
...

0 Cd2 . . . Cdd

 (4)

Its characteristic polynomial has the form:

det(C − λ I) = (C11 − λ)f(λ) (5)

where f(λ) is a polynomial of degree d − 1, with co-
efficients determined by the elements of the (d− 1)×
(d− 1) submatrix of C. From this it follows that C11

is a solution of the characteristic equation, i.e., it is an
eigenvalue of C and the vector (1, 0, ...,0) is its cor-
responding eigenvector (principal component), which
is orthogonal to the assumed hyperplane of symme-
try. �

3.1 R2

We obtain a lower bound in R2 from a rhomb. Let
its side length be a. Since the rhomb is symmetric,
its PCs coincide with its diagonals. On the left side
in figure 2 its optimal-area bounding boxes, for 2 dif-
ferent angles, are shown, and on the right side its

194

EWCG 2006, Delphi, March 27–29, 2006

corresponding PCA bounding boxes. As the rhomb’s
angles approach 90◦, its optimal-area bounding box
approaches a square with side length a, and the PCA
bounding box a square with side length

√
2a. So, the

ratio between the area of the PCA bounding box and
the area of the optimal-area bounding box in the limit
goes to 2.

aa

α

aa

α → 0 α → 0

α

a a

a a

Figure 2: An example which gives us the lower bound
of the area of the PCA bounding box of an arbitrary
convex polygon in R2.

Proposition 3 In general, the ratio between the area
of the PCA bounding box and optimal-area bounding
box of a convex polygon cannot be smaller than 2.

3.2 R3

We obtain a lower bound in R3 from a square dipyra-
mid, having a rhomb with side length

√
2 as a base.

Its other side lengths are
√

3
2 . Similarly as in R2, we

consider the case when its base, the rhomb, in limit
approaches the square. Then the ratio of the volume
of the bounding box on the left side in figure 3, and
the volume of its PCA bounding box, on the right in
figure 3, goes to 4.

1

1

√

2

2

2

√

2

Figure 3: An example which gives the lower bound of
the volume of the PCA bounding box of an arbitrary
convex polygon in R3.

Proposition 4 In general, the ratio between the vol-
ume of the PCA bounding box and optimal-volume

bounding box of a convex polyhedron cannot be
smaller than 4.

4 Upper Bound in R2

Let P be a set of points in R2, and P the boundary of
its convex hull. P , its PCA bounding box and the line
lpca, which coincides with the 1st PC of P , are given
in the left part of figure 4. The optimal bounding
box and the line l 1

2
, going through the middle of its

smaller side, parallel with its longer side, are given in
the right part of figure 4.

The sides of any bounding box of P , BB(P) (let
us denote them with a and b, s.t. a ≥ b) cannot be
larger than the diameter of P . From the other side,
it is true that diam(P) ≤ diam(BB(P)) ≤

√
2a. So

we have the following relation

apca ≤ diam(P) ≤
√

2aopt. (6)

We denote with d2(P , l) the integral of the squared

apca

bpca

lpca

P

l1

2

bopt

aopt

P

b′

Figure 4: PCA bounding-box and the optimal
bounding-box of the polygon P .

distances of the points of P to the arbitrary line l, i.e.
d2(P , l) =

∫
x∈P d2(x, l)ds. From continuous version of

lemma 1, part ii), follows that lpca is the best fitting
line in the sense that it minimize the sum of squared
distances, and therefore

d2(P , lpca) ≤ d2(P , l 1
2
). (7)

We denote with BBOPT the boundary of the optimal
bounding box of the P . It is true that

d2(P , l 1
2
) ≤ d2(BBOPT , l 1

2
)

=
bopt

2aopt

2 +
bopt

3

6 .
(8)

Due to space limitation, we leave the proof of (8) to a
full paper. Now we look at P and its PCA bounding

Tupp

Tlow

U1 L1

apca

bpca

lpca

P
b
′

L2U2

U3

L3

a1
a2

b1 b2

Figure 5: Lower bound for d2(P , lpca).

box (figure 5). lpca divides P into an upper and a

195

22nd European Workshop on Computational Geometry, 2006

lower part, Pupp and Plow. Let us denote with lupp

the orthogonal projection of Pupp onto lpca, with U1

and U2 as its extreme points, and with llow the or-
thogonal projection of Plow onto lpca, with L1 and L2

as its extreme points. Since P is convex, the following
relations hold:

|lupp| ≥
b′

bpca
apca, and |llow| ≥

bpca − b′

bpca
apca. (9)

We inscribe in Pupp a triangle Tupp(4U1U2U3), and
in Plow a triangle Tlow(4L1L2L3). It then holds that

d2(P , lpca) = d2(Pupp

⋃Plow, lpca) ≥
d2(Tupp

⋃ Tlow, lpca) = d2(Tupp, lpca) + d2(Tlow, lpca).
(10)

Due to space limitation, we leave also the proof of
(10) to a full paper. The value

d2(Tupp, lpca) =
b′2

3
(
√

a2
1 + b′2 +

√
a2
2 + b′2)

is minimal when a1 = a2 =
|lupp|

2 . So with (9) we get

d2(Tupp, lpca) ≥ b′3

3bpca
(
√

a2
pca + 4b2

pca).

Analogously, we have for the lower part:

d2(Tlow , lpca) ≥
(bpca − b′)3

3bpca
(
√

a2
pca + 4b2

pca).

The sum d2(Tupp, lpca)+d2(Tlow, lpca) is minimal when

b′ =
bpca

2 . This, together with (10), gives:

d2(P , lpca) ≥ b2
pca

12

√
a2

pca + 4b2
pca. (11)

Combining (7), (8) and (11) we have:

1

2
aoptb

2
opt +

1

6
b3
opt ≥

b2
pca

12

√
a2

pca + 4b2
pca. (12)

Let apca = αaopt and bpca = βbopt. Replacing b2
pca

with β2b2
opt in (12), we obtain:

6aopt + 2bopt ≥ β2
√

a2
pca + 4b2

pca ≥ β2apca.

Replacing further apca with αaopt, we obtain:

6aopt + 2bopt ≥ β2αaopt =
β2α

8
(6aopt + 2aopt).

Since aopt ≥ bopt, we have

6aopt + 2bopt ≥
β2α

8
(6aopt + 2bopt),

and from this

β ≤
√

8

α
. (13)

Finally, from (6) and (13) we obtain:

area(BBPCA(P))
area(BBOP T (P)) =

apcabpca

aoptbopt
= αβ ≤

√
8
√

α

≤
√

8
√

2 ≈ 3.3635856.

We summarize this result in the following theorem:

Theorem 5 Let P be the boundary of the convex
hull of the point set P ⊂ R2. The ratio between the
area of the PCA bounding box of P and the area of
its optimal bounding box is bounded from above by
3.3636.

5 Future Work and Open Problems

Improving the upper bound in R2, as well as obtain-
ing an upper bound in R3 are our current interests. A
variant of the PCA bounding box problem, where in-
stead of considering only the points on the boundary
of the convex hull all points from the convex hull are
taken into account, is also of interest. A very demand-
ing open problem is to get an approximation factor of
PCA bounding boxes in arbitrary dimension.

References

[1] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B.
Mitchell and A. Tal. BOXTREE: A Hierarchical Rep-
resentation for Surfaces in 3D. Computer Graphics
Forum, 1996, vol. 15, no.3, pages 387–396.

[2] G. Barequet and S. Har-Peled. Efficiently Approx-
imating the Minimum-Volume Bounding Box of a
Point Set in 3D. Proc. 10th ACM-SIAM Sympos.
Discrete Algorithms, 1999, pages 82–91.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In ACM SIGMOD
Int. Conf. on Manag. of Data, 1990, pages 322–331.

[4] S. Gottschalk, M. C. Lin and D. Manocha. OBBTree:
A Hierarchical Structure for Rapid Interference De-
tection. Proc. SIGGRAPH 1996, pages 171–180.

[5] I. Jolliffe. Principal Component Analysis. Springer-
Verlag, New York, 2nd ed., 2002.

[6] J. O’Rourke. Finding Minimal Enclosing Boxes. Int.
J. Comp. Info. Sci. 14 (1985), pages 183–199.

[7] N. Roussopoulos and D. Leifker. Direct Spatial
Search on Pictorial Databases Using Packed R-Trees.
In Proc. of the ACM SIGMOD, 1985, pages 17–31.

[8] T. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-tree: A dynamic index for multidimensional ob-
jects. In Proc. 13th VLDB Conference, 1987, pages
507–518.

[9] G. Toussaint. Solving geometric problems with the
rotating calipers. Proc. IEEE MELECON’83, May
1983.

196

EWCG 2006, Delphi, March 27–29, 2006

Algorithms for Maximizing the Volume of Intersection of Polytopes

Komei Fukuda∗ Takeaki Uno1†

Abstract: In this paper, we address the problem of

maximizing the volume of the intersection of polytopes

in Rd by translation. We show that (1) the dth root of

the objective function is concave, thus the problem can be

solved oracle polynomial time by ellipsoidal method, and

(2) the problem can be solved in strongly polynomial time

in dimension two even for non-convex polygons.

1 Introduction

Let A and B be two polygons in Euclidean plane
where the position of A is fixed and the body B can
be translated freely. Then, the intersection of A and
B changes as the move. Here we consider the intersec-
tion maximization problem, that is, to maximize the
volume of the intersection by translation. This prob-
lem is easy to state, but it appears that it has not been
investigated in depth. In fact, this problem has been
recently proposed as an open problem at an Oberwol-
fach workshop by P. Brass [2]. Let us consider a sim-
ple example in Figure 1. By shifting horizontally the
triangle from left to right, the volume of the intersec-
tion of the triangle and the square initially increases
as a convex function in the translation variable. Once
the right half of the triangle is contained in the square,
the volume increase as a concave function. Thus, the
volume of the intersection has both features of con-
vex and concave functions. One can also see that the
function is continuous, but not differentiable. Conse-
quently, maximization of such functions may not be
done in a straightforward manner.

In this paper, we address this problem from the
computational point of view. Firstly, we show that
the dth root of the objective function is concave for
any finite number of d-dimensional convex polytopes.
It follows that we can solve the problem in oracle poly-
nomial time where the oracle is the computation of
the volume and its gradient. We also show that the
hyperplanes spanned by the facets of the polytopes
define an arrangement where the objective function is
a simple polynomial function in each of its regions. By
using these properties, we propose a strongly polyno-
mial time algorithm for the case of two convex poly-

∗Institute for Operations Research and Institute of Theo-
retical Computer Science, ETH Zentrum, CH-8092 Zurich, and
IMA/ROSO, EPF Lausanne, CH-1015 Lausanne, Switzerland,
e-mail:fukuda@ifor.math.ethz.ch

†National Institute of Informatics, 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo, 101-8430, Japan, e-mail:uno@nii.jp

Figure 1: The volume of the intersection of two poly-
gons

gons in the plane. Its time complexity is O(n2 log2 n)
and its space complexity is O(n) if they both have
at most n edges. We further propose an enumeration
based algorithm for the problem with two non-convex
polygons which runs in O(n4) time and O(n2) space.

2 Preliminaries

We denote the d dimensional Euclidean space by Rd.
For a convex body P in Rd (i.e. a compact convex
set with nonempty interior), we denote its volume by
vol(P). For a vector h in Rd, P + h is the convex
body obtained by translating P by h, i.e., P + h =
{x + h|x ∈ P}. Whenever there is no confusion, we
call a face of B+h face of B. For a family P of convex
bodies P1, . . . , Pk, we denote its intersection by ∩(P),
i.e., ∩(P) = ∩k

i=1Pi.
For a given set of polytopes P = {P1, . . . , Pk} in Rd,

the intersection maximization problem is to maximize
vol(∩(P = {P1, P2 + h2, . . . , Pk + hk})) subject to
hi ∈ Rd for i = 2, . . . , k.

3 Convexity on the Intersection Volume of Poly-
topes

Our first result is the following theorem.

Theorem 1 For any two convex bodies A and B in
Rd, the function (vol (∩({A, B +h})))1/d is concave in
h over the region of nonempty intersection, Ω = {h ∈
Rd| ∩ ({A, B + h}) 6= ∅}.

To prove the theorem, we use the Brunn-Minkowski
theorem below. Let us denote by H(z, d) the hyper-
plane in Rd given by xd = z.

Theorem 2 (Brunn-Minkowski, see [1])
For any convex body P in Rd, the function
(vol(∩({P, H(z, d)})))1/(d−1) is concave in z over the
region Ω = {z ∈ Rd| ∩ ({P, H(z, d)) 6= ∅}.

197

22nd European Workshop on Computational Geometry, 2006

t

A B

P

Figure 2: Polytopes Ā, B̄, and P̄

Proof: (of Theorem 1) Let h, h′ ∈ Rd be any vectors
such that both ∩({A, B + h}) and ∩({A, B + h′}) are
non-empty. It suffices to show that the function is
concave over the line segment connecting h and h′.
Let

Ā = {(x1, . . . , xd, λ) | 0 ≤ λ ≤ 1, (x1, . . . , xd) ∈ A},
B̄ = {(x1, . . . , xd, λ) | 0 ≤ λ ≤ 1,

(x1, . . . , xd) ∈ B + (λh + (1− λ)h′))}.

Since both sets are convex, P̄ = Ā ∩ B̄ is also con-
vex, see Figure 2. Consequently, the intersection of
H(λ, d + 1) and P̄ is

H(λ,d + 1) ∩ P̄

= {(x1, . . . , xd, λ) | (x1, . . . , xd) ∈ A,

(x1, . . . , xd) ∈ B + (λh + (1− λ)h′)},
= {(x1, . . . , xd, λ)

(x1, . . . , xd) ∈ A ∩B + (λh + (1− λ)h′)}.

Thus, the intersection is a lifted copy of ∩({A, B +
(λh + (1−λ)h′)}). The theorem then follows directly
from the Brunn-Minkowski Theorem.

The theorem above can be easily extended to the
intersection of several polytopes.

Theorem 3 For any convex bodies P1, . . . Pm in Rd,
the function (vol (∩(P1 +h1, P2+h2, . . . Pm +hm)))1/d

is concave in h = (h1, . . . , hm) over Ω = {h | ∩ (P1 +
h1, P2 + h2, . . . Pm + hm)) 6= ∅}.

It follows from Theorem 1 that any locally max-
imum solution is a global maximum solution. This
also implies that the volume of the intersection is a
unimodal (quasiconcave) function. Moreover, it is
semistrictly quasiconcave. A function f(x) is called
semistrictly quasiconcave if f(y) < f(λx + (1 − λ)y)
holds for any x and y with f(x) > f(y), and 0 < λ <
1.

For a given point x and a function f having a max-
imum solution, a hyperplane is called separating hy-
perplane if it separates x from the set of maximum

solutions. Any function can be maximized by ellip-
soidal method with finding polynomially many sepa-
rating hyperplanes. A separating hyperplane of a non-
differentiable concave function can be obtained from
its subgradient, thus we obtain the following theorem.

Theorem 4 The problem of maximizing the inter-
section of d-dimensional polytopes by translation
without rotation can be solved in oracle polynomial
time in the input size, where the oracle is to compute
the volume and its subgradient of the intersection.

In the next section, we analyze the structure of the
objective function so that we can construct a combi-
natorial algorithm that terminates in strongly poly-
nomial time when d = m = 2.

4 Decomposing the Domain into Regions of
Equivalence

Let A and B be two convex polygons in R2, and h be
a vector in R2. Here we regard h as variables. For
a vertex v of ∩({A, B + h}), we define its topological
representation by the set of facets (edges) of A and B
containing v. The position of v is given by the inter-
section of these facets, and thus we can represent the
position of v as a unique solution to the linear system
given by the facets. The solution is a linear function
of h. We call this the functional representation of v.

Suppose that we are given functional representa-
tions of the vertices of ∩({A, B +h}), and consider its
volume. In general, the volume of a polytope in Rd

is the sum of the volumes of simplexes in a triangula-
tion of the polytope. The volume of each simplex is
obtained from the determinant of a matrix consisting
of its vertices properly lifted. Therefore, the volume
is a polynomial of degree at most d. In the plane,
the volume is a quadratic function in h. We call this
function the volume function.

The following lemma is important.

Lemma 5 The volume function of ∩({A, B + h}) in
h and that of ∩({A, B + h′}) in h′ are identical if
the topological representations of the vertices are the
same.

198

EWCG 2006, Delphi, March 27–29, 2006

A B

Figure 3: Arrangements by the hyperplanes induced by the facets of A and B

The translations h that induce the same topolog-
ical representations form an equivalence class. Each
equivalence class is determined by a set of linear in-
equalities which represent conditions such as “a vertex
of A (resp., B+h) is in a half space induced by a facet
of B + h (resp., A).” We denote the set of the hyper-
planes (lines) being the boundary of an equivalence
class by H({A, B}). The cardinality of H({A, B}) is
O(n2).

Consider the arrangement by the hyperplanes in
H({A, B}) (see Figure 3). Then, in a region (i.e a
full-dimensional cell) of the arrangement, the set of
the topological representations of the vertices does
not change. Thus, in each equivalence region, the in-
tersection maximization problem is just a non-convex
non-concave quadratic programming with two vari-
ables. It can be solved by evaluating the values of
the objective function on the vertices, the edges, and
the points satisfying that the gradient is 0. It can
be done in linear time in the number of edges of the
region. Enumerating all regions in the arrangement
by O(n2) lines takes O(n4) time[3]. The volume func-
tion of a region can be computed in constant time
from the volume function of a region adjacent to it.
Consequently, we can solve the intersection maximiz-
ing problem in O(n4) time and O(n2) space. Further-
more, this method does not depend on the convexity
of two polygons. Therefore, we obtain the following
theorem.

Theorem 6 The problem of maximizing the volume
of the intersection of two non-convex polygons in the
plane can be solved in O(n4) time and O(n2) space.

Note that one can extend the theorem to general d
dimension with k non-convex polytopes. However, the
problem is no longer easy, since the volume function
is a polynomial of higher degrees, and the number of
the regions is huge, exponential in both k and d.

5 Binary Search Algorithm

We here assume that the objective function is per-
turbed so that the optimal solution is unique. Sup-
pose that H is a hyperplane in H({A, B}), and h is
the point in H maximizing vol (∩({A, B+h})). Then,
by looking at the gradient of vol (∩({A, B + h})), we
can check which half space induced by H contains an
optimal solution. Using this fact, one can construct a
binary search algorithm.

Every hyperplane in H({A, B}) is a translation of
a hyperplane spanned by a facet of A or B. It follows
that the hyperplanes in H({A, B}) can be partitioned
into groups H1, . . . ,H2n such that each group is com-
posed of hyperplanes parallel to each other. Suppose
that Hi = {H1, . . . , Hk} are sorted in their direction.
Then, there is Hj such that an optimal solution is in
the area between Hj and Hj+1. We call the area be-
tween Hj and Hj+1 the optimal slab of Hi. The inter-
section of the optimal slabs of allHi gives the region in
which an optimal solution is contained. The optimal
slab of Hi can be found by binary search on Hi, by
solving O(log n) intersection maximization problems
on a hyperplane.

Although a straightforward binary search on a line
needs O(n2) preprocessing time and O(n2) memory,
one can reduce them to O(n log n) time and O(n)
space by a median finding like algorithm and implicit
representation of Hi.

6 Solving the Problem on a Line

For a hyperplane (line) H ∈ Hi, we present a method
to find an optimal solution h∗ in H , which maxi-
mizes the volume function restricted to H . Since a
line is partitioned into intervals by hyperplanes in
H({A, B}), our objective is to find the optimal inter-
val, i.e., the interval containing the optimal solution.

Let x1, . . . , xm be the intersection points of Hi and
hyperplanes in H({A, B}) which are not parallel to

199

22nd European Workshop on Computational Geometry, 2006

H . If x1, . . . , xm are sorted in the order of their po-
sitions on H , we can easily perform binary search in
O(n log n) time. However, to compute all x1, . . . , xm,
we need O(n2) time. Moreover, we need O(n2) space
to keep H({A, B}) and x1, . . . , xm in memory. Thus,
here we consider how to execute binary search without
computing x1, . . . , xm.

The basic idea of the binary search is as fol-
lows. Suppose that the groups of hyperplanes are
H1, . . . ,Hp, and the hyperplanes in each Hi are
sorted. Here we do not include the hyperplanes par-
allel to H in them. We denote by H∗

i the median of
Hi in the sorted order, and the intersection point of
H and H∗

i by x∗
i . Then, we find H∗

z such that x∗
z is

“middle” of x∗
1, . . . , x

∗
p. Here the middle means that

z satisfies

z∑

i=1

|Hi| ≥(

p∑

i

|Hi|)/2, and

p∑

i=z

|Hi| ≥(

p∑

i

|Hi|)/2.

Note that
∑p

i |Hi| is the number of intersection
points generated by H and hyperplanes inH1, . . . ,Hp.
Thus, by looking at the gradient at x∗, we can deter-
mine at least 1/4 of the hyperplanes which do not
give the endpoints of the optimal interval. More pre-
cisely, for each Hi = {H1, . . . , Hl}, suppose that x∗

i

is on the side without the optimal solution. The
both endpoints of the optimal interval are in the
other side, thereby not given by H1, . . . , H

∗
i (or

H∗
i , . . . , Hl). Therefore, we can reduce such Hi to
Hi\{H1, . . . , H

∗
i }. By repeating this process,

∑p
i |Hi|

decreases by a constant factor each time. This yields
a binary search with O(log n) steps.

Finding x∗
z can be done in O(n) time by a median

finding like method. We find the median, usual mean-
ing of median, of x1, . . . , xp by a median finding algo-
rithm in O(n) time. Then we can see that at least a
half of x1, . . . , xp will not be x∗

z . In this way, we can
iteratively reduce the candidates, and find x∗

z in O(n)
time.

The last remaining problem is to reduce O(n2)
space to store each sorted Hi in memory. For this, we
divide Hi into two groups, and keep them in memory
implicitly with O(1) space. Let v1, . . . , vn be the ver-
tices of A sorted in the clockwise order. For an edge
e in B, we denote one of its orthogonal direction by
D(e). Let v∗ and v∗∗ be vertices which maximizes and
minimizes D(e), respectively. We divide v1, . . . , vn

into two groups such that one group is composed of
vertices from v∗ to v∗∗, and the other is composed of
vertices from v∗∗ to v∗. We consider that v1, . . . , vn is
a cyclic sequence. Then, we can see that the order of
the hyperplanes induced by e and vertices from v∗ to
v∗∗ is a sorted order, and that by vertices from v∗∗ to

v∗ is also a sorted order. Thus, keeping these by two
end vertices, we can implicitly keep them in memory
with O(1) space.

Now we describe the whole algorithm.

Algorithm MaxIntersection (A ,B)
1. sort the vertices of A and B in the clockwise

order, respectively
2. for each edge e in A and B
3. compute v∗ and v∗∗

4. make implicit representation of groups,
e and vertices from v∗ to v∗∗, and
e and vertices from v∗∗ to v∗

5. endfor
6. for each group Hi = {H1, . . . , Hl}

//binary search for the optimal slab
7. p :=1, q := k
8. while p + 1 < q
9. find the optimal solution h∗ in H(p+q)/2 by

binary search
10. set p := (p + q)/2 or set q := (p + q)/2

according to the gradient at h∗

11. endwhile
12. endfor
13. output the optimal solution in the intersection of

optimal slabs

Finally, we have the following theorem.

Theorem 7 The maximization problem of the vol-
ume of two convex polygons can be solved in
O(n2 log2 n) time and O(n) space.

Acknowledgment

We thank Professor Masakazu Kojima, Akiko Takeda
of Tokyo Institute of Technology, Akiyoshi Shioura
of Tohoku University, and Junya Goto of Tsukuba
University for their answering out questions. This
research is partially supported by Swiss National Sci-
ence Foundation and Japan Society for the Promotion
of Science.

References

[1] K. Ball, “An Elementary Introduction to Modern
Convex Geometry,” Flavors of Geometry, Math. Sci.
Res. Inst. Publ., 31, Cambridge Univ. Press, Cam-
bridge, 1997.

[2] P. Brass, “A Lower Bound for Lebesgue’s Univer-
sal Cover Problem,” Workshop of Discrete Geom-
etry, Mathematisches Forschungsinstitut Oberwol-
fach, 2005.

[3] H. Edelsbrunner and L. J. Guibas, “Topologically
Sweeping an Arrangement,” J. Comput., Syst. Sci.,
38, 165-194, 1989.

[4] G. T. Toussaint, “A Simple Linear Algorithm for In-
tersecting Convex Polygons,” The Visual Computer
1, 118-123, 1985.

200

EWCG 2006, Delphi, March 27–29, 2006

From triangles to curves

Monique Teillaud

Projet Geometrica, INRIA Sophia Antipolis
BP 93, 06902 Sophia Antipolis Cedex, France

Monique.Teillaud@sophia.inria.fr

The objects studied in Computational Geometry were traditionally linear objects (points,
line segments, triangles,. . .) and research on curved objects was quite theoretical.

Curves and surfaces have been considered from a more practical point of view for a few
years, especially in Europe.a Cross-fertilization between researchers in Computational
Geometry and Computer Algebra allowed advances that this talk will try to summarize.

On the implementation side, the talk will in particular mention the work in progress in
the cgal Open Source project.b

aLet us mention two European projects, ecg (Effective Computational Geometry for Curves and Sur-
faces - http://www-sop.inria.fr/prisme/ECG/) and acs (Algorithms for Complex Shapes with certified
topology and numerics - http://acs.cs.rug.nl/).

bwww.cgal.org

201

22nd European Workshop on Computational Geometry, 2006

202

EWCG 2006, Delphi, March 27–29, 2006

On Embedding a Graph on Two Sets of Points

Emilio Di Giacomo Giuseppe Liotta Francesco Trotta∗

1 Introduction

Let S0, S1, . . . , Sk−1 be k sets of points such that the
points of Si are colored with color i (i = 0, . . . , k−1).
Let G be a planar graph such that |Si| vertices of G
have color i, for every 0 ≤ i ≤ k − 1. A k-chromatic
point-set embedding of G on S = S0 ∪ S1 ∪ · · · ∪ Sk−1

is a crossing-free drawing of G such that each vertex
colored i is mapped to a point of Si, and each edge is
a polygonal curve.

If k = 1 (“monochromatic” case), all the vertices
and all the points have the same color, and therefore
any vertex can be mapped on any point. In this case
the algorithm that computes the drawing of G on S
can choose the mapping between vertices and points
as it is more convenient. Kauffman and Wiese [4]
prove that every planar graph admits a monochro-
matic point-set embedding with at most two bends
per edge on any given set of points.

If k = n, where n is the number of vertices of G,
each vertex of G must be drawn on the unique point
with the same color. Therefore the mapping between
vertices and points is given as a part of the input
and the drawing algorithm cannot change it. Pach
and Wenger [5] prove that every planar graph has an
n-chromatic point-set embedding on any given set of
points such that each edge has O(n) bends; they also
prove that this bound is asymptotically optimal in the
worst case even if G is a path.

Given the two results above, a natural question
arises: If two bends per edge are necessary and suffi-
cient to solve the monochromatic point-set embedding
problem [4] while O(n) bends per edge are necessary
and sufficient for the n-chromatic case [5], how many
bends per edge do we need if the number of colors is
a constant larger than one?

In this paper we continue the study, initiated in a
previous work [1], of the apparently simple case of
two colors. The two colors will be referred in the
following as red and blue and the two set of points S0

and S1 will be denoted as R and B. Notice that, by
the result of Pach and Wenger [5], every planar graph
has a bi-chromatic point-set embedding (2CPSE) with
O(n) bends per edge (arbitrarily map every red/blue
vertex to a red/blue point and then use the drawing
technique of [5]). Therefore the question that we ask

∗Dipartimento di Ingegneria Elettronica e dell’Informazione,
Università degli Studi di Perugia, {digiacomo, liotta,

francesco.trotta}@diei.unipg.it

is whether O(n) bends per edge is also a lower bound
for the 2CPSE problem and/or there are cases where
a constant number of bends can be achieved. In [1]
the simple family of bi-chromatic paths is considered
and it is proved that every bi-chromatic path admits
a 2CPSE on any two sets of red and blue points with
at most one bend per edge.

The main results in this paper can be listed as fol-
lows. (a) In Section 3 we show that there exists a
2-colored tri-connected planar graph G with n ≥ 8
vertices and two sets of points R and B such that ev-
ery 2CPSE of G on R ∪B has one edge that requires
at least

⌈
n
6

⌉
−1 bends. This proves that bi-chromatic

point-set embeddability of a generic planar graph re-
quires O(n) bends per edge. Motivated by this result
we investigate subclasses of planar graphs.

(b) In Section 4 we prove that every 2-colored
caterpillar admits a 2CPSE on any two sets of red
and blue points such that every edge of the drawing
has at most two bends. We also prove that for prop-
erly 2-colored caterpillars (i. e. colored in such a way
that no two adjacent vertices have the same color)
the number of bends per edge can be reduced to one,
which is worst-case optimal since not all bi-chromatic
paths admit a 2CPSE with no bends per edge [3].

2 Preliminaries

Let G = (V, E) be a planar graph. A 2-coloring of G
is a partition of V into two disjoint sets Vb and Vr,
the blue vertices and the red vertices respectively. A
2-coloring is proper if for every edge (u, v) ∈ E we
have u ∈ Vb and v ∈ Vr. Let R be a set of red points
in the plane and let B be a set of blue points in the
plane. We say that S = B ∪R is equipollent with G if
|B| = |Vb| and |R| = |Vr|. A 2-colored planar graph G
is bi-chromatic point-set embeddable if it has a 2CPSE
on any set of points equipollent with G. We denote by
c(x) the color of x, where x can be a vertex, a point
or a set of vertices/points with the same color.

Let G be a planar graph. A 2-page book embedding
of G is a crossing-free drawing of G such that: (i) the
vertices of G are represented as points of a straight
line called spine, and (ii) each edge is drawn as a sim-
ple Jordan curve completely contained in one of the
two half-planes (pages) defined by the spine. A subdi-
vision of a graph G = (V, E) is a graph obtained from
G by replacing each edge (u, v) ∈ E by a path with
at least one edge whose endpoints are u and v. Inter-

203

22nd European Workshop on Computational Geometry, 2006

nal vertices on this path are called division vertices.
A 2-page topological book embedding of G is a 2-page
book embedding of a subdivision of G. If the number
of division vertices for each edge is at most d we say
that G has 2-page topological book embedding with at
most d divisions.

A red-blue sequence σ is a set of collinear points such
that each point is either red or blue. Let G be a 2-
colored planar graph and let σ be a red-blue sequence
equipollent with G. A 2-page (topological) book em-
bedding of G consistent with σ is a 2-page (topologi-
cal) book embedding of G such that each vertex v of
G is represented by a point p of σ and c(v) = c(p). A
2-colored planar graph G is 2-page bi-chromatic (topo-
logical) book embeddable if, for any red-blue sequence
σ equipollent with G, G has a 2-page (topological)
book embedding consistent with σ. If the number of
division vertices for each edge is at most d, we say that
G is 2-page bi-chromatic topological book embeddable
with at most d divisions.

3 Curve Complexity of 2CPSEs

One can compute a drawing with O(n) bends per edge
by mapping every vertex v ∈ G to a point p ∈ S
such that c(v) = c(p) and then use the algorithm
in [5]. Therefore every 2-colored planar graph is bi-
chromatic point-set embeddable with O(n) bends per
edge. In this section we prove that such number of
bends per edge can also be necessary for some config-
urations.

v0

v1

v2

C

C CH(S)

(a)
v0 v1 (b)

v2

vn/2

un/2

u1u0

v3

Figure 1: (a) The graph G∗ whose 2CPSE on the set

of points (b) requires
⌈

n
6

⌉
− 1 bends per edge .

Let G∗ be one of the graph in the class of tri-
connected bi-chromatic planar graphs shown in Fig-
ure 1 (a) and let S be a convex set equipollent with
G∗ such that the red and blue points alternate along
the shape of its convex hull. We can prove that in any
2CPSE of G∗ on S one of the three edges of the cycle
C highlighted in Figure 1 has at least

⌈
n
6

⌉
− 1 bends

(see [2]). The following theorem therefore holds.

Theorem 1 A 2-colored planar graph is bi-
chromatic point-set embeddable with O(n) bends per
edge, which is worst-case optimal.

Theorem 1 naturally raises the question about
whether there exist families of 2-colored planar graphs

that are bi-chromatic point-set embeddable with a
constant number of bends. In next section we affir-
matively aswer this question for caterpillars.

4 Computing 2CPSEs with at Most Two Bends
per Edge

Bi-chromatic point-set embeddability can be studied
by modelling the problem as a 2-page bi-chromatic
topological book embeddability problem based on the
following theorem, whose proof is omitted for brevity
(see [2]).

Theorem 2 Let G be a 2-colored planar graph.
Then G is bi-chromatic point-set embeddable with at
most two bends per edge if and only if it is 2-page bi-
chromatic topological book embeddable with at most
one division.

A caterpillar G is graph that consists of a path,
called the body of G, and of a (possibly empty) set of
vertices adjacent to the body and having degree one.
Based on Theorem 2, we describe a drawing algorithm
that computes a 2-page bi-chromatic topological book
embedding of G consistent with σ and with at most
one division.

We need some additional notation. We denote as
v0, v1, . . . , vh the vertices of the body of G. We
denote as G0 the graph consisting of vertex v0 and
as Gk (k = 1, . . . , h) the subgraph of G induced by
v0, v1, . . . , vk−1 and by their adjacent vertices. We
denote as Nk the set of vertices of Gk+1 \Gk, i.e. all
vertices adjacent to vk in G except vk−1; also, we
denote as N−

k the set Nk \ {vk+1}, i.e. all the leaves
of G adjacent to vk. We define N−1 as the graph
consisting of vertex v0.

We are going to describe a drawing algorithm,
called Cater-Draw that is recursive with the number
of vertices in the body of G. At Step k of the recursion
the subgraph induced by Nk−1 is added to the current
drawing. The output of the algorithm after k steps is
a drawing γk that maintains a set of invariant prop-
erties. In the next sections we denote as σk ⊆ σ the
red-blue subsequence consisting of all points repre-
senting the vertices of Gk in γk. The rightmost point
of σk is denoted as ρk. The set of all points of σ \ σk

that are to the left of ρk in σ is denoted as NBk. The
set of vertices that are after ρk in σ and whose color
is c (c ∈ {b, r}) is denoted as F c

k .
Let l be the line through the points of σk and let

q be any point of l (q may or may not be an element
of σ) and let π be either the top or the bottom half-
plane (page) defined by l. We say that q is accessible
from π in γk if there is no edge (u, v) in Gk such that
q is between the point representing u and the point
representing v in γk. For a vertex v of G, we often
denote as p(v) the point of σ that represents v.

204

EWCG 2006, Delphi, March 27–29, 2006

4.1 The Drawing algorithm

At each step of Algorithm Cater-Draw the following
three invariant properties are maintained. Property
1: γk is a 2-page bi-chromatic topological book em-
bedding with at most one division. Property 2: All
the points in NBk have the same color, and each of
them is accessible from one of the two pages. Prop-
erty 3: Point p(vk) is accessible from one of the two
pages.

(a)

vk-1 vk

N k-1

- {u0 u1 u2

(b)

(c)

vk-1

vk
u0 u1

u2

NBk

-

vk-1

NBk-1

rk-1
rk

-

x

u0
u1 u2

zy
vk

r

(d)

vk-1 vk

N k-1

- {u0 u1 u2 u3

(e)

(f)

vk-1
vk

pw0

u0

u1 u2 u3

NBk

-

vk-1 vk

NBk-1

rk

-
rk-1

u0

u1 u2 u3

r

(g)

(h)

(i)

vk-1 vk

N k-1

- {u0 u1 u2 u3 u4

u5

vk-1

vk

pw1

u0 u1
u2 u3u4

u5

pw0

vk-1 vk

u0 u1
u2

u3
u4 u5

NB =0k

-

NBk-1

rk

-rk-1

r

vk-1 vk

N k-1

- {u0 u1 u2

vk-1

vku0 u1 u2

(j)

(k)

(l)

vk-1

vk

rk-1 rk

-
NBk

-

NBk-1

u0 u1 u2

r

x w

Figure 2: Different examples for Step k of Algorithm
Cater-Draw. (a),(d),(g),(j): Different examples for
graph Gk. (b),(e),(h),(k): Mapping the vertices of
Nk−1 to points of σ. (c), (f), (i), (l) Drawing edges
connecting vk−1 to the vertices of Nk−1.

At Step 0 of the algorithm, N−1 (i.e. vertex v0) is
drawn as the leftmost point pj of σ such that c(v0) =
c(pj). The output of Step 0 is a drawing γ0 consisting
of a single vertex and for which it is immediate to
see that all above invariants are satisfied. At Step
k > 0, we assume by induction that γk−1 satisfies
the invariants and show how to add Nk−1 and the
corresponding edges in order to compute γk.

The algorithm draws first the vertices of N−
k−1

and then adds vk. In the description of Algorithm
Cater-Draw we shall often refer to Figure 2 for dif-
ferent examples. For example, in the caterpillar of
Figure 2 (a) vertex vk−1 is blue, N−

k−1 consists of two
blue vertices (vertices u0 and u1) and one red vertex

(vertex u2): Algorithm Cater-Draw will first draw u0,
u1, u2, and finally draw vk.

Since Property 2 is satisfied by γk−1 we have that
all points in NBk−1 have the same color; we denote
as c1 such a color and we denote the other color as
c2. We draw first the vertices of N−

k−1 whose color

is c2, i.e. the vertices of N−
k−1 ∩ Vc2 . Assume n2 is

the number of such vertices (for example n2 = 1 in
Figure 2 (a) and n2 = 2 in Figure 2 (g)). We map
the vertices of N−

k−1 ∩ Vc2 to the first n2 points of
color c2 that are to the right of ρk−1; more formally,
the vertices of N−

k−1 ∩Vc2 are mapped to the leftmost
n2 points of F c2

k−1. For example, the red vertex u2 of

N−
k−1 in Figure 2 (a) is mapped to the first red point

that follows ρk−1 in Figure 2 (b), i.e. u2 is mapped
to point x. Vertices u4 and u5 of Figure 2 (g) are
mapped to points x and w of Figure 2 (h).

We now draw the vertices of N−
k−1 that have color

c1. Let n1 = |N−
k−1 ∩ Vc1 |. If n1 ≤ |NBk−1| the ver-

tices of the set N−
k−1 ∩ Vc1 are mapped to the right-

most n1 points of NBk−1 (that is, the last n1 points
of NBk−1 encountered when walking along the spine
of γk−1 from left to right). For example, see the draw-
ing of vertices u0, u1, and u2 in Figure 2 (h). If
n1 > |NBk−1| the vertices of N−

k−1 that have color
c1 are mapped to all vertices of NBk−1 and to the
n1 − |NBk−1| leftmost vertices of F c1

k−1. For exam-

ple in Figure 2 (a) N−
k−1 has the two blue vertices u0

and u1 but NBk−1 has only one blue point (point y);
hence we map u0 to y and u1 to the first blue point
after ρk−1, i.e. we map u1 to point z.

Once all vertices of N−
k−1 have been mapped to

points, Algorithm Cater-Draw draws vk. Let σ−
k ⊆ σ

be the red-blue sequence consisting of all points used
to construct the drawing up to now. Let ρ−k be the
rightmost point of σ−

k . For example, in Figure 2 (b)
ρ−k is point x. Let NB−

k be the set of points of σ \ σ−
k

that are to the left of ρ−k . It can be proved that all
points of NB−

k share the same color c(NB−
k). For ex-

ample, in Figure 2 (b) the set NB−
k consists of one

blue point. As other examples, in Figure 2 (h) NB−
k

is the empty set, in Figure 2 (e), NB−
k consists of two

blue points (note that all points of NB−
k−1 belong to

σ−
k), and in Figure 2 (k) NB−

k consists of a blue point.

In order to draw vk, Algorithm Cater-Draw distin-
guishes among different cases.

Case A: If the first point that follows ρ−k has the
same color as vk, then we take it; more formally, if
c(vk) = c(next(ρ−k)) then we map vk to next(ρ−k).
For example, vertex vk of Figure 2(a) is mapped to
point r of Figure 2 (b).

Case B: If NB−
k 6= ∅ and c(vk) = c(NB−

k) then we
map vk to the rightmost point of NB−

k . For exam-
ple, we map vertex vk of Figure 2 (d) to point r of
Figure 2 (e).

Case C: Otherwise, vk is mapped to the “first” point

205

22nd European Workshop on Computational Geometry, 2006

of σ to the right of ρ−k and having the wanted color.
More formally, vk is mapped to the point r ∈ σ to the
right of ρ−k such that c(r) = c(vk) and there are no
other points between ρ−k and r having color c(vk). For
example, in Figure 2 (h) where NB−

k = ∅ and c(vk) 6=
c(next(ρ−k)), we have that vk is mapped to point r.
In Figure 2 (k) NB−

k 6= ∅ but c(vk) 6= c(next(ρ−k))
and c(vk) 6= c(NB−

k); hence vk is mapped to the high-
lighted red point r.

Once all vertices of Nk−1 have been mapped to
points, Algorithm Cater-Draw draws the edges con-
necting vk−1 to the vertices of Nk−1. We define where
to draw the division vertices along the edges and to
which page each edge (or portion of edge between con-
secutive division vertices) is assigned. We distinguish
two cases.

Case 1: p(vk−1) = ρk−1. Refer to Figures 2 (c)
and (l). The edges connecting vk−1 to the vertices
mapped to points that follow ρk−1 (i.e. the points of
of F c1

k−1 ∪F c2

k−1) are assigned to a same page that can
be arbitrarily chosen. Indeed note that since p(vk−1)
is the right-most vertex drawn so-far, p(vk−1) is ac-
cessible from both pages and so any of the two pages
can be chosen to draw edges that connect p(vk−1) to
points on its right.

Let u be a vertex mapped to a point p of NBk−1;
by Property 2, p is accessible from a page π. Edge
(vk−1, u) is assigned to page π. See for example edge
(vk−1, u0) in Figure 2 (c) and edge (vk−1, u0) in Fig-
ure 2 (l).

Case 2: p(vk−1) 6= ρk−1. Since γk−1 satisfies by
inductive hypothesis the invariants, we have that by
Property 3 p(vk−1) is accessible from one page, say
π. The edges connecting vk−1 to points to the right
of ρk−1 (i.e. to points of F c1

k−1 ∪F c2

k−1) are assigned to
π. See for example edge (vk−1, u2) in Figure 2 (f) and
edge (vk−1, vk) in Figure 2 (i).

Let u be a vertex mapped to a point p of NBk−1; by
Property 2, p is accessible from a page π′. There are
two subcases.

Case 2.a: π coincides with π′. If π′ coincides
with π then edge (vk−1, u) is assigned to page π. See
for example edge (vk−1, u1) in Figure 2 (f) and edge
(vk−1, u2) in Figure 2 (i).

Case 2.b: π and π′ are distinct. If the two pages
π and π′ are different, it is not possible to connect
vk−1 and u with a curve entirely contained in one
page without creating a crossing. See for example
the points vk−1 and u0 in Figure 2 (e), where vk−1

is accessible from the top page, u0 is accessible from
the bottom page and any curve connecting these two
points without crossing the edges of γk−1 must cross
the spine.

In this case, Algorithm Cater-Draw splits edge
(vk−1, u) by means of a division vertex ω, then adds
a dummy point pω between ρk−1 and next(ρk−1); fi-
nally, edge (vk−1, ω) is assigned to π and edge (ω, u)

is assigned to π′. See for example the drawing of edge
(vk−1, u0) in Figure 2 (f).
If we have more than one vertex not accessible from
π, some additional care is needed when placing the
dummy points. Let u0, u1, . . . , ud−1 be the vertices
of NBk−1 that are not accessible from π and assume
that they are encountered in this order from left to
right in σ. Let ωi be the division point of edge
(vk−1, ui) (i = 0, . . . , d − 1). In order to avoid cross-
ings the dummy points pωi

must be placed in the order
pωd−1

, . . . , pω1 , pω0 so that edges (ui, ωi) do not cross
each other (i = 0, . . . , d − 1). See for example the
edges (vk−1, u0) , (vk−1, u1) and the dummy points
pω1 , pw0 in Figure 2 (i): Note that if we swapped pω1

and pω0 in the drawing, the two edges (vk−1, u0) and
(vk−1, u1) would cross each other.

It can be proved that algorithm Cater-Draw cor-
rectly computes a 2-page bi-chromatic topological
book embedding of a 2-colored caterpillar consistent
with any given red-blue sequence (see [2]). Based on
this result and on Theorem 2 the following theorem
holds.

Theorem 3 Any 2-colored caterpillar is bi-
chromatic point-set embeddable with at most
two bends per edge.

It is possible to prove that if a caterpillar is prop-
erly 2-colored, the number of bends per edge can be
reduced to one. This is worst-case optimal since not
all properly 2-colored simple paths are bi-chromatic
point-set embeddable with zero bends per edge [3].

Theorem 4 Any properly 2-colored caterpillar is bi-
chromatic point-set embeddable with at most one
bend per edge, which is worst-case optimal.

References

[1] E. Di Giacomo, G. Liotta, and F. Trotta. How to em-
bed a path onto two sets of points. In Proc. GD 2005.
Springer, 2005. To appear.

[2] E. Di Giacomo, G. Liotta, and F. Trotta. On embed-
ding a graph on two sets of points. Technical Report
RT-005-05, DIEI Università di Perugia, 2005.

[3] A. Kaneko, M. Kano, and K. Suzuki. Path coverings
of two sets of points in the plane. In Towards a The-
ory of Geometric Graph, volume 342. American Math.
Society, 2004.

[4] M. Kaufmann and R. Wiese. Embedding vertices at
points: Few bends suffice for planar graphs. JGAA,
6(1):115–129, 2002.

[5] J. Pach and R. Wenger. Embedding planar graphs
at fixed vertex locations. Graph and Combinatorics,
17:717–728, 2001.

206

EWCG 2006, Delphi, March 27–29, 2006

Acyclic Orientation of Drawings∗

Eyal Ackerman† Kevin Buchin‡ Christian Knauer‡ Günter Rote‡

Abstract

Given a set of curves in the plane or a topological
graph, we ask for an orientation of the curves or edges
which induces an acyclic orientation on the corre-
sponding planar map. Depending on the maximum
number of crossings on a curve or an edge, we provide
algorithms and hardness proofs for this problem.

1 Introduction

Let G be a topological graph, that is, a graph drawn in
the plane such that its vertices are distinct points, and
its edge set is a set of Jordan arcs, each connecting
two vertices and containing no other vertex. In this
work we further assume that G is a simple topological
graph, i.e., every pair of its edges intersect at most
once, either at a common vertex or at a crossing point.

An orientation of (the edges of) a graph is an as-
signment of a direction to every edge in the graph.
We say that an orientation is acyclic if the result-
ing directed graph does not contain a directed cycle.
Finding an acyclic orientation of a given undirected
(abstract) graph can be easily computed in linear time
by performing a depth-first search on the graph and
then orienting every backward edge from the ancestor
to the descendent. However, is it always possible to
find an orientation of the edges of a topological graph,
such that a traveller on that graph will not be able to
return to his starting position even if allowed to move
from one edge to the other at their crossing point?
Rephrasing it in a more formal way, let M(G) be the
planar map induced by G. That it, the map obtained
by adding the crossing points of G as vertices, and
subdividing the edges of G accordingly. Then we ask
for an orientation of the edges of G such that the in-
duced directed planar map M(G) is acyclic.

Clearly, if the topological graph is x-monotone, that
is, every vertical line crosses every edge at most once,
then one can orient each edge from its endpoint with
the smaller x-coordinate towards its endpoint with
the greater x-coordinate. Travelling on the graph un-
der such orientation, one always increases the value

∗Work by the first author was done while he was visiting
the Freie Universität Berlin, and was partly supported by a
Marie Curie scholarship. Research by the second author was
supported by the Deutsche Forschungsgemeinschaft within the
European graduate program “Combinatorics, Geometry, and
Computation” (No. GRK 588/2).

†Department of Computer Science, Technion—
Israel Institute of Technology, Haifa 32000, Israel.
ackerman@cs.technion.ac.il

‡Institute of Computer Science, Freie Univer-
sität Berlin, Takustr. 9, 14195 Berlin, Germany.
{buchin|knauer|rote}@inf.fu-berlin.de

Figure 1: A non-orientable topological graph

of one’s x-coordinate and therefore cannot form a di-
rected cycle. However, not every topological graph
is acyclic-orientable as Figure 1 demonstrates. Note
that the degree of every vertex in this example is one.
This gives rise for considering the orientation prob-
lem in the special case the degree of each vertex is
one, or in other words, when one looks for an acyclic
orientation of a set of curves embedded in the plane.

It turns out that determining whether a topological
graph (resp., a set of curves) has an acyclic orientation
depends crucially on the maximum number of times
an edge in the graph (resp., a curve) can be crossed.
Given a (simple) topological graph G on n vertices,
such that each edge in G is crossed at most once, we
show that one can find an acyclic orientation of G in
O(n) time. When four crossings per edge are allowed,
deciding whether there exists an acyclic orientation
becomes NP-complete. Topological graphs with few
crossings per edge were considered in several works
in the literature [4, 5, 6]. For a set of n curves in
which each pair of curves intersects at most once and
every curve is crossed at most k times, we describe an
O(n)-time orientation algorithm for the case k ≤ 3.
When k ≥ 5 finding an acyclic orientation of the set
of curves is NP-complete.

The rest of this paper is organized as follows. In
Section 2 we study the problem of finding an acyclic
orientation for a set of curves. Then, in Section 3 we
consider the more general case where the input is a
topological graph. Finally, we give some concluding
remarks in Section 4, and mention a few related open
problems.

2 Acyclic orientation of a set of curves in the plane

Throughout this paper we assume the intersections
between the curves are known in advance. Given a
set of curves C, the vertices of the planar map M(C),
induced by C, are the crossing points between the
curves, while the edges of M(C) are segments of the
curves that connect two consecutive crossing points
on a curve. As we have mentioned above, the maxi-
mum number of crossings per curve plays an impor-

207

22nd European Workshop on Computational Geometry, 2006

tant role when we ask for an acyclic orientation of a
set of curves. If every curve is crossed at most once,
then M(C) contains no edges, and therefore any ori-
entation of C is acyclic. If C is a set of curves with
at most two crossing points per curve, then M(C) is a
union of cycles and paths and thus finding an acyclic
orientation of C is also easy in this case. Hence, the
first non-trivial case is where each curve is crossed at
most three times. In this case we have:

Theorem 1 Let C be a set of n curves in the plane,
such that every pair of curves intersect at most once
and each curve has at most three crossings. Then one
can find an acyclic orientation of C in O(n) time.

This result is proved in Section 2.1, while in Sec-
tion 2.2 we show:

Theorem 2 Let C be a set of curves in the plane,
such that every pair of curves intersects at most once
and each curve has at most five crossings. Then de-
ciding whether C has an acyclic orientation is NP-
complete.

2.1 Curves with at most three crossings per curve

Let C be a set of n curves in the plane, such that
every pair of curves intersect at most once and each
curve has at most three crossings. In this section we
describe an algorithm for obtaining an acyclic orien-
tation of C. We start by constructing M(C), the pla-
nar map induced by C. Every connected component
of M(C) can be oriented independently, therefore we
describe the algorithm assuming M(C) is connected.
Suppose C contains a curve c which is crossed less
than 3 times. By removing c we obtain a set of n− 1
curves in which there must be at least two curves (the
ones crossed by c) which are crossed at most twice.
We continue removing the curves, until none is left.
Then we reinsert the curves in a reverse order (the last
to be removed will be the first to be reinserted and
so on). During the insertion process we reconstruct
M(C) and define a total order of its vertices. For this
purpose we store the vertices of M(C) in a data struc-
ture suggested by Dietz and Sleator [1]. This data
structure supports the following operations, both in
O(1) worst-case time:

1. INSERT(X ,Y): Insert a new element Y immedi-
ately after the element X .

2. ORDER(X ,Y): Compare X and Y .

Note that by inserting Y after X and then switch-
ing their labels we can also use this data structure to
insert a new element immediately before an existing
element in constant time. We also keep a record of
the maximal element in the order, MAX (that is, we
update MAX when a new element is added after it).

We now describe the way a curve c is reinserted.
For every curve c′ that has already been added and is
crossed by c (recall that there are at most two such
curves) we take the following actions. Let x be the
crossing point of c and c′. If c′ has no other crossing
points, then x is inserted after MAX. In case c′ has
exactly one crossing point x′, we insert x after x′ when

c′ is oriented from x′ to x, and before x′ otherwise.
Otherwise, suppose c′ has two crossing points x′

1 and
x′

2, such that x′
1 < x′

2. Then we insert x before x′
1 if x′

1
is the middle point on c′ among the three points; after
x′

1 if x is the middle point; and after x′
2 if x′

2 is the
middle point. Finally we orient c arbitrarily if it has
less than two crossings, or from the smaller crossing
to the greater one, in case it has two crossings. We
refer to the algorithm described above as Algorithm 1.

Lemma 3 Let C be a set of n curves such that ev-
ery curve is crossed at most three times and there is
a curve that is crossed at most twice. Then the Al-
gorithm 1 finds an acyclic orientation of C in O(n)
time.

The more complicated case is when all the curves
in C are crossed exactly three times. However, in this
short version of the paper we only provide the general
idea in this case, which is to:

1. find a set of curves S that form a ‘special’ type
of undirected cycle in M(C);

2. orient C \ S using Algorithm 1; and

3. orient S such that:

(a) the curves in S do not form a directed cycle;
and

(b) it is impossible to ‘hop’ on S from C \ S,
‘travel’ on S, and ‘hop’ off back to C \ S.

2.2 Curves with at most five crossings per curve

In the section we show that deciding whether there
exists an acyclic orientation of a set of curves with
at most 5 crossings per curve is intractable. We
will reduce this problem from the Not-All-Equal-
k-SAT1 (k ≥ 3) problem which is known to be NP-
complete [7].

Proof of Theorem 2. An acyclic orientation can be
verified in polynomial time, therefore the problem is
in NP. The problem is shown to be NP-hard by re-
duction from Not-All-Equal-k-SAT to the acyclic
orientation problem for k ≥ 3.

Note that drawing the NAE problem in the plane
introduces crossings between the wires. We call these
crossings extra-crossings in order to distinguish them
from the crossings between the curves. A variable is
encoded as shown in Figure 2(a) where orientations
correspond to Boolean signals. In any acyclic orien-
tation all the curves drawn as arrows either have the
orientation depicted or the opposite. The thick curves
are used as wires and can have three further cross-
ings. The construction uses 4 + 3k curves to generate
k wires.

Figure 2(b) shows the encoding of a NOT gate. It
uses two wires from one variable and one from the
other. The latter is used to propagate the signal
across an extra-crossing without introducing a sixth
crossing on a curve (note that this wire has only four

1Not-All-Equal-k-SAT (k ≥ 3) is given by a collection of
clauses, each containing exactly k literals. The problem is to
determine whether there exists a truth assignment such that
each clause has at least one true and one false literal.

208

EWCG 2006, Delphi, March 27–29, 2006

(a) A variable (b) A gadget for handling
negation and extra-crossings

+

+

+

+

+

−

− −

−

−

(c) A clause

Figure 2: A reduction from NAE-k-SAT to orienta-
tion of curves with at most 5 crossings per curve.

crossings). Using this gadget a signal is negated be-
fore and after the extra-crossing, thus preventing the
introduction of new cycles through the extra-crossing
point.

The encoding of a clause with k literals is done by
k curves forming a k-gon, as shown in Figure 2(c)
for k = 5. A wire enters at the plus or at the minus
sign depending on whether its corresponding literal in
the clause in negated. The edges of the k-gon form a
directed cycle if and only if all the literals of the clause
are true or all are false. A solution to the Not-All-
Equal-k-SAT problem will therefore yield an acyclic
orientation of the curves. Conversely, if there is no
solution, any orientation will either have a cycle at a
clause encoding, or have outgoing edges at a variable
encoding with different orientations, forcing a cycle
within the variable. �

3 Acyclic orientation of topological graphs

Given a topological graph in which no edge is crossed,
one can use the simple algorithm for abstract graphs
described in the Introduction to find an acyclic orien-
tation. Thus, the first non-trivial case is when every
edge is crossed as most once.

3.1 Topological graphs with at most one crossing
per edge

Theorem 4 Let G be a simple topological graph on
n vertices in which every edge is crossed at most once.
Then G has an acyclic orientation. Moreover, such an
orientation can be found in O(n) time.

Before proving Theorem 4 we recall a basic term
from graph theory [3].

Definition 1 Given a biconnected graph G = (V, E)
and an edge (s, t) ∈ E, an st-numbering (or st-
ordering) of G is a bijection ` : V → {1, 2, . . . , |V |}
such that: (a) `(s) = 1; (b) `(t) = |V |; and (c)
for every vertex v ∈ V \ {s, t} there are two edges
(v, u), (v, w) ∈ E such that `(v) < `(u) and `(v) >
`(w).

Given an st-numbering we will not make a dis-
tinction between a vertex and its st-number. An st-
ordering of a graph G naturally defines an orientation

of the edges of G: direct every edge (u, v) from u to v
if u < v and from v to u otherwise. The proof of the
next lemma is omitted due to lack of space.

Lemma 5 Let G = (V, E) be a plane biconnected
multi-graph such that |V | > 2, and denote by G′ the
directed planar graph defined by some st-numbering
of G. Let f be a face of G (and G′), and denote
by G′

f (resp., Gf) the graph induced by the edges of

G′ (resp., G) bounding f . Then G′
f has exactly one

source and one sink.

Algorithm 3 Acyclic orientation of a topological
graph with at most one crossing per edge

Input: A topological graph G with at most one cross-
ing per edge.
Output: An acyclic orientation of G.

1: for each pair of crossing edges (a, b) and (c, d) do
2: add the edges (a, c), (a, d), (b, c), and (b, d);
3: end for
4: compute the biconnected components of the new

graph;
5: for each biconnected component C do
6: delete all pairs of crossing edges in C;
7: find an st-numbering of the remaining graph;
8: reinsert all pairs of crossing edges in C;
9: orient each edge of C according to the st-

numbering;
10: end for
11: remove the edges added in line 2;

Proof of Theorem 4. Let G be a simple topologi-
cal graph in which every edge is crossed at most once.
Denote by n the number of vertices in G, and by m the
number of its edges. We will show that Algorithm 3
computes an acyclic orientation of G. Denote by G′

the graph obtained after adding the edges in lines 1–3.
Note that it is always possible to add the edges listed
in line 2 without introducing new crossings. After this
step the vertices of each crossing pair of edges lie on a
simple 4-cycle. It is enough to verify that each bicon-
nected component of G′ is acyclicly oriented, since (a)
every simple cycle in the underlying abstract graph
is contained entirely in some biconnected component;
and (b) the crossings do not introduce any interac-
tion between different biconnected components, as all
the vertices of a crossing pair of edges lie on a sim-
ple 4-cycle and therefore are in the same biconnected
component. Thus, for the rest of the proof we as-
sume G′ is biconnected. We denote by G′′ the graph
obtained by removing all the pairs of crossing edges.
Removing a chord from a cycle does not affect the
connected components of a graph, thus G′′ is bicon-
nected. Therefore, in line (7) an st-numbering of G′′

is indeed computed.
Clearly, one can obtain an acyclic orientation of an

abstract graph by numbering the vertices of the graph
and directing every edge from its endpoint with the
smaller number to its endpoint with the larger num-
ber. Therefore, it is enough to verify that the crossing

209

22nd European Workshop on Computational Geometry, 2006

(a) A variable (b) A negation gadget
with an edge (wire)
crossed only once so far

(c) A clause gate

Figure 3: A reduction from NAE-k-SAT to acyclic ori-
entation of a topological graph with at most 4 cross-
ings per edge.

points do not introduce a bad “shortcut”, that is a
path from a vertex u to a vertex v such that v < u.
Let ((a, b), (c, d)) be a pair of crossing edges. Denote
by f the 4-face a − c − b − d − a of G′′. Accord-
ing to Lemma 5 the digraph induced by f and the
computed st-numbering has only one source and sink.
Therefore, we have to consider only two cases based
on whether the sink and the source are adjacent in
f . One can easily verify by inspection that in both
cases no bad shortcut is formed. Thus Algorithm 3
produces an acyclic orientation.

Note that Algorithm 3 can be implemented to
run in time linear in the number of vertices: Find-
ing the biconnected components of a graph takes
O(n + m) time [2], as does the computation of an
st-numbering [3]. Therefore the overall running time
is O(n + m), however the maximum number of edges
in a topological graph in which every edge is crossed
at most once is 4n− 8 [6]. �

3.2 Topological graphs with at most four crossings
per edge

Theorem 6 Let G be a simple topological graph on
n vertices in which every edge is crossed at most once,
and each curve has at most four crossings. Then de-
ciding whether G has an acyclic orientation is NP-
complete.

Proof (sketch). As for the case of a set of curves, the
reduction is done from Not-All-Equal-k-SAT. The
gadgets we use appear in Figure 3. �

4 Discussion

We considered the problem of finding an acyclic orien-
tation for a given topological graph or a set of curves
in the plane. For topological graphs with at most one
crossing per edge we showed an algorithm for finding
an acyclic orientation in linear time. It follows from
our results that when the maximum crossing per edge
is at least four, deciding whether an acyclic orienta-
tion of the graph exists is NP-complete. An obvi-
ous open question is what happens when the maxi-
mum number of crossings per edge is two or three. A
non-orientable topological graph with at most three
crossings per edge can be constructed by combining

the gadgets shown in Figure 3(a) (without the dashed
wire) and in Figure 3(c). However, deciding whether
a topological graph with at most three crossings per
edge has an acyclic orientation is open. The situa-
tion is worse for topological graphs with at most two
crossings per edge: So far we were unable to find an
example which has no acyclic orientation, or to prove
that every such graph is acyclic-orientable.

A special case is where all the vertices in the topo-
logical graph have degree 1. This case corresponds
to asking the acyclic orientation question for a set of
curves. Clearly, if the problem can be solved (or de-
cided) for topological graphs with at most k crossings
per edge, then it can be solved for curves with at most
k crossings per curve. It would be interesting to de-
termine whether there is a construction that provides
a reduction from topological graphs with at most k
crossings per edge to a set of curves with at most k′

crossings per curve.
For curves with at most three crossings per curve

we provided a linear time algorithm that finds an
acyclic orientation. For five crossings per curve we
showed that the problem becomes NP-complete. A
set of curves in which every curve is crossed at most
four times might not have an acyclic orientation, as
Figure 1 implies. However, the decision problem for
such sets of curves is also open. Two other interesting
open questions are: (1) What happens if we only re-
quire acyclic faces? and (2) What happens if we look
for an orientation such that for every pair of vertices,
u, v, in the induced planar map there is a directed
path from u to v or vice versa?

Acknowledgements We thank Michel Pocchiola for
suggesting a problem that led us to study the ques-
tions discussed in this paper. We also thank Scot
Drysdale, Frank Hoffmann, and Klaus Kriegel for
helpful discussions.

References

[1] P. Dietz and D. Sleator, Two algorithms for maintain-
ing order in a list, Proc. 19th Ann. ACM Symp. on Theory
of Computing (STOC), NYC, NY, 1987, 365–372.

[2] S. Even, Graph Algorithms, Computer Science Press,
1979.

[3] S. Even and R. E. Tarjan, Computing an st-numbering,
Theoretical Computer Science, 2(3):339–344, 1976.

[4] A. Grigoriev and H. L. Bodlaender, Algorithms for
graphs embeddable with few crossings per edge, Proc.
15th Int. Symp. on Fundamentals of Computation The-
ory (FCT), Lübeck, Germany, Lecture Notes in Computer
Science, volume 3623, Springer, 378–387, Sep. 2005.

[5] J. Pach, R. Radoicic, G. Tardos, and G. Tóth, Im-
proving the crossing lemma by finding more crossings in
sparse graphs, Proc. 20th ACM Symp. on Computational
Geometry (SoCG), Brooklyn, NY, 2004, 68–75.

[6] J. Pach and G. Tóth, Graphs drawn with few crossings
per edge, Combinatorica, 17(3):427–439, 1997.

[7] T. J. Schaefer, The complexity of satisfiability problems,
Proc. 10th Ann. ACM Symp. on Theory of Computing
(STOC), San Diego, CA, 1978, 216–226.

210

EWCG 2006, Delphi, March 27–29, 2006

An homotopy theorem for arrangements of double pseudolines

Luc Habert Michel Pocchiola∗

Abstract

We define a double pseudoline as a simple closed curve
in the open Möbius band homotopic to the double of
its core circle, and we define an arrangement of dou-
ble pseudolines as a collection of double pseudolines
such that every pair crosses in 4 points – the cross-
ings being transversal – and induces a cell decompo-
sition of the Möbius band whose 2-dimensional cells
are 2-balls, except the unbounded cell which is a 2-
ball minus a point. Dual arrangements of boundaries
of collection of pairwise disjoint 2-dimensional closed
bounded planar convex sets are examples of arrange-
ments of double pseudolines. We show that every pair
of simple arrangements of double pseudolines is con-
nected by a sequence of triangle-switches and that
every simple arrangement of double pseudolines has a
representation by a configuration of pairwise disjoint
disks in the plane with pseudoline double tangents.
This shows in particular that any double-permutation
sequence of J.E. Goodman and R. Pollack (SoCG’05
page 159, [2]) has a representation by a configuration
of pairwise disjoint disks in the plane with pseudoline
double tangents. We also present some enumeration
results for our arrangements, and a property of their
subarrangements.

γ

γ
γ γ

γ′
γ′

γ′γ′
γ
γ

M(γ) l

Figure 1: The Möbius band and its core circle, a (mono-
tone) double pseudoline γ and the Möbius band M(γ)
bounded by γ, an arrangement of two double pseudolines
γ and γ′, a collection of two double pseudolines with 4
crossing points but which is not an arrangement because
the cell intersection of the associated Möbius bands is not
a 2-ball, and a triangle-switch.

1. Arrangements of double pseudolines in the
Möbius band. Let M be the open Möbius band, say
quotient of R2 under the map ι : R2 → R2 that as-
signs to the pair (θ, u) the pair (θ + π,−u), and let
c : [0, 1] → M, c(t) = (πt, 0), be its core circle. A
pseudoline in M is a simple closed path in M homo-
topic to its core circle and a double pseudoline in M

∗Department of Computer Science, Ecole normale
supérieure, Paris, {Luc.Habert,Michel.Pocchiola}@ens.fr

is a simple closed path in M homotopic to the dou-
ble cc of its core circle. Boundary curves of tubular
neighborhoods of pseudolines are examples of dou-
ble pseudolines. We define an arrangement of dou-
ble pseudolines in M as a finite collection Γ of double
pseudolines in M such that every pair of elements of
Γ crosses in 4 points – the crossings being transver-
sal – and induces a cell decomposition of M whose
2-dimensional cells are 2-balls, except the unbounded
cell which is a 2-ball minus a point, and we define
the chirotope χΓ of Γ as the map that assigns to each
γ ∈ Γ and to each ordered triple u, v, w of vertices
lying on γ of the cell decomposition XΓ of M induced
by the elements of Γ the value +1 if walking along
the curve γ we encounter the vertices in cyclic order
uvwuvw · · · ; −1 otherwise. An arrangement of dou-
ble pseudolines is called simple if exactly two double
pseudolines meet at every vertex of the induced cell
decomposition of M. A simple arrangement of dou-
ble pseudolines is called thin if there is no vertex of
the induced cell decomposition lying in the interiors
of the closed Möbius bands bounded by the double
pseudolines. Thin arrangements are obtained from
simple (finite) arrangements of pseudolines by replac-
ing the pseudolines by the boundary curves of suitable
tubular neighborhoods. Collections of dual curves1 of
boundaries of pairwise disjoint 2-dimensional closed
bounded planar convex sets are examples of arrange-
ments of double pseudolines; these arrangements are
simple and thin under the additional assumption that
there is no line transversal to three convex sets; these
arrangements are also monotone with respect to the
core circle in the sense every meridian θ = c of the
Möbius band crosses every double pseudoline exactly
twice. Finally we observe that, as in the case of ar-
rangements of pseudolines, the set of arrangements of
double pseudolines is stable by triangle-switch. The
main result of the paper is the following.

Theorem 1 Let Γ be a simple arrangement in M

of double pseudolines, X the induced cell decompo-
sition of M, and γ ∈ Γ. Assume that there is a vertex
of X lying in the interior of the Möbius band M(γ)
bounded by γ. Then there is a triangular face of X

1The dual of a planar smooth curve is the curve in the space
of undirected lines of the plane of the tangent lines to the curve.
We identify the space of undirected lines of the plane with the
Möbius band M via the map that assigns to the pair (θ, u) the
line with equation u − x sin θ + y cos θ = 0.

211

22nd European Workshop on Computational Geometry, 2006

included in M(γ) with a side supported by γ.

Therefore triangle-switches are always possible for
non thin arrangements of double pseudolines and,
consequently, every arrangement of double pseudo-
lines is homotopic to a “core” thin one; furthermore
since thin arrangements are arrangements of bound-
ary curves of tubular neighborhoods of simple ar-
rangements of pseudolines and since Ringel’s homo-
topy theorem for arrangements of pseudolines [1, page
267] [5, 6] asserts that the set of simple arrangements
of pseudolines is connected by triangle-switches we get
a similar result for the set of arrangement of double
pseudolines on a fixed number of double pseudolines.
We summarize.

Corollary 2 Let Γ be a simple arrangement of dou-
ble pseudolines. Then there exists an homotopy Γt,
t ∈ [0, 1], of Γ = Γ0 onto a thin arrangement of dou-
ble pseudolines Γ1 such that M(γt) ⊇ M(γt′) for all
t ≤ t′. (Simplicity is of course not maintained during
the homotopy.)

Corollary 3 Let Γ and Γ′ be two arrangements of n
double pseudolines. Then Γ and Γ′ are homotopic.

2. Combinatorial equivalence and enumeration re-
sults. For Γ an arrangement of two double pseudo-
lines γ and γ′ we set v(γ, γ′) to be the linear sequence
of vertices of XΓ encountered when walking along the
curve γ starting from the source of the 2-cell intersec-
tion of the Möbius bands M(γ) and M(γ′) associated
with γ and γ′. Let Γ and Γ′ be two arrangements of
n double pseudolines and let ϕ : Γ → Γ′ be a bijec-
tion. We denote by ϕ̃ : Γ∪X0 → Γ′∪X ′

0 the canonical
extension of ϕ to the sets of vertices of XΓ and XΓ′ de-
fined by the condition that ϕ̃ assigns to the sequence
v(γ1, γ2) the sequence v(ϕγ1, ϕγ2) for all γ1, γ2 ∈ Γ.
We say that Γ and Γ′ are ϕ-equivalent if χΓ′ ◦ ϕ̃ = χΓ,
that Γ and Γ′ are combinatorially equivalent if Γ and
Γ′ are ϕ-equivalent for some bijection ϕ : Γ → Γ′,
and that Γ and Γ′ are combinatorially equivalent up
to (global) reorientation if Γ is equivalent to Γ′ or to
Γ′−1. Finally we say that two ordered arrangements
of n double pseudolines are combinatorially equivalent
if they are ϕ-equivalent for the bijection ϕ induced by
the orderings. We denote by an the number of classes
of ordered simple arrangements of n double pseudo-
lines, and by bn et cn the numbers of classes of simple
arrangements of n double pseudolines under the com-
binatorial equivalence and combinatorial equivalence
up to (global) reorientation.

Our main result provides an algorithm to enumer-
ate the combinatorial equivalence classes of ordered
arrangements and arrangements of n double pseudo-
lines by a traversal of the triangle-switch graph of dou-
ble pseudoline arrangements. We have implemented

this algorithm. Preliminary results are reported in
the following table that confirms the result reported
in [8] concerning the value of c4.

n 2 3 4
an 1 118 –
bn 1 22 22620
cn 1 16 11502

The numbers an, bn et cn are in 2Θ(n2) since the cell
decomposition XΓ induced by an arrangement Γ of
size n is constructable in time O(n2) using an in-
cremental ramdomized algorithm [7]. Lower bounds
were established (even for dual arrangements of con-
vex sets) in [3, 4]. Representatives of the 22 =
16 + 6 classes of combinatorially equivalent arrange-
ments of three double pseudolines are depicted in
the figure below. The 10 arrangements numbered
1,2,3,9,10,11,12,13,14,15 and 16 are combinatorially
equivalent to their (global) reoriented versions. The
reoriented versions of the arrangements numbered
4,5,6,7,8 and 12 are numbered 4 bis, 5 bis, 6 bis, 7
bis, 8 bis and 12 bis.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

4 bis 5 bis 6 bis

7 bis 8 bis 12 bis

3. Representation by arrangements of disks. We
use the following terminology. A disk is 2-dimensional
bounded closed simply connected subset of the affine
oriented plane. A tangent to a disk is a pseudoline
that intersects the disk at a sole boundary point; in
particular a disk is included in the closure of one of
the two connected components of the complement of
any of its tangents (half-plane for short). An arrange-
ment of disks is a finite collection ∆ of pairwise dis-
joint disks equipped with a map that assigns to each
unordered pair o, o′ of disks a set L(o, o′) of four dou-
ble tangents to o and o′ such that the whole set of

212

EWCG 2006, Delphi, March 27–29, 2006

pseudolines L(∆) union of the L(o, o′)’s is an affine
arrangement of pseudolines and such that the inter-
section of a disk and a line is connected. We denote by
L(o) the set of pseudolines of L(∆) that are tangents
to o. An arrangement of disks is called simple if ev-
ery tangent of the arrangement is tangent to exactly
two disks. Wlog we will assume that a touching point
between a double tangent and a disk lies on exactly
one double tangent. The chirotope of an arrangement
of disks ∆ is the map χ∆ that assigns to each disk
o and to each ordered triple u, v, w of tangents to o
the value +1 if walking counterclockwise around the
boundary of the disk o we encounter the tangents in
cyclic order uvwuvw · · · ; -1 otherwise.

γ

γ′
γ′
γ′

γ
γ

1 1

2

2

3

3

4

4

Figure 2: Local representation : the double pseudolines γ
and γ′ are represented by the disks labelled γ, γ′ and the 4
vertices numbered 1,2,3, and 4 of the induced cell decom-
position of M are represented by the pseudoline double
tangents numbered 1,2,3 and 4.

Let now Γ be an arrangement of double pseudolines.
An arrangement ∆ of disks is called a representation
of Γ if ∆ and Γ have the same chirotope, i.e., there
is a bijection ϕ : Γ → ∆ such that its extension ϕ :
X0 → L between the set X0 of vertices of XΓ and
the set of double tangents L of ∆ defined in Figure 2
carries the chirotope of Γ onto the chirotope of ∆, i.e.,
χ∆ ◦ ϕ = χΓ.

Theorem 4 Every simple arrangement of double
pseudolines is representable by an arrangement of
disks.

Proof. (Sketch.) Since representable arrangements
of double pseudolines exist it is sufficient, thanks to
Theorem 1, to show that the property to have a rep-
resentation is maintained during a triangle-switch op-
eration. So let Γ be a simple arrangement of dou-
ble pseudolines represented by an arrangement ∆ of
disks, i.e., there exists a bijection ϕ : Γ→ ∆ such that
χ∆ ◦ϕ = χΓ. Let σ a triangular face αβγ of X whose
edges αβ, βγ and αγ are supported by the double
pseudolines U, V and W . Using a simple perturbation
argument it is sufficient to prove that the (non simple)
arrangement of double pseudolines Γ′ obtained by col-
lapsing the triangular face αβγ to a single point is rep-
resentable by an arrangement of disks Ω′. The disks
and double tangents corresponding to U, V, W, α, β, γ

will be simply denoted U∗, V ∗, W ∗, α∗, β∗ and γ∗. We
orient the double tangent α∗ from V ∗ towards U∗ and
β∗ and γ∗ from U∗ towards W ∗. In that case a simple
analysis shows that the relative positions of the disks
and the double tangents are as indicated in the top
left part of Figure 3. (There are 23 = 8 combinatori-
ally different cases which correspond to the choice of
the positions of the disks with respect to the double
tangents.)

U

U

U

U

V

V

V

V

V

V

W

W

W

W

W

W

U ′

U ′

the pocket of U

E

E

α

β

γ
α

α

ββ

γ

γ

C1C1

C2C2

C0C0

Figure 3: The three double pseudolines α∗, β∗ and γ∗ are
replaced by the 1-level of their arrangement.

Let C0, C1 and C2 be the 0-, 1- and 2-level of the
arrangement of the pseudolines α∗, β∗ and γ∗. We
set L′ = L \ {α∗, β∗, γ∗} ∪ {C1} and we define U ′

to be the union of the disk U∗ and the “pocket” de-
limited by the contact points with U∗ of the double
tangents α∗ and γ∗ and their intersection point E
and we define U ′′ to be a slight perturbation of U ′

so that its intersection with C1 reduces to the ver-
tex E (this pertubation has do be done only if U∗

lies on the right sides of γ∗ and α∗); similar construc-
tions are done with the disks V ∗ and W ∗. We set
Ω′ = Ω \ {U, V, W} ∪ {U ′′, V ′′, W ′′}. One can check
that L′ is an arrangement of pseudolines and that the
collection of disks Ω′ equipped with the set L′ is an
arrangement of disks whose chirotope is combinatori-
ally equivalent to the chirotope of Γ′. �

4. Wiring diagrams and double-permutation se-
quences. Since the triangle-switch operation can
be implemented to preserve the monotonicity of the
curves with respect to the core circle we see that every
simple arrangement Γ of double pseudolines is com-
binatorially equivalent to a monotone one. Therefore
one can not only speak of the source, sour(σ), and
the sink, sink(σ), of every 1-cell or 2-cell σ ∈ XΓ

but the transitive closure of the covering relations
sour(σ̃) ≺ σ̃ ≺ sink(σ̃) defined on the lifts of the

213

22nd European Workshop on Computational Geometry, 2006

cells of XΓ in the universal covering p : R2 → M

of M is a well-defined partial order on X̃Γ. The fol-
lowing theorem provides a complete description of the
set of monotone arrangements combinatorially equiva-
lent to a given simple arrangement and gives an inter-
pretation in terms of representation by arrangements
of disks (answering positively a question set in [2,
Remark 20] regarding the realizability of a double-
permutation sequence by an arrangement of disks).

Theorem 5 Let Γ be a monotone arrangement of
n double pseudolines in M and assume that walking
along the core circle we encounter the vertical projec-
tions v′i of the vertices vi of XΓ in the circular order
v′1v

′
2 . . . v′2n(n−1). Then (1) v1v2 . . . v2n(n−1) is the pro-

jection on M of a linear extension of the poset (X̃0
Γ,≺)

compatible with ι, i.e., if v precedes w then ι(v) pre-
cedes ι(w); (2) Γ is representable by an arrangement
∆ of n disks such that the circular ordering of the cor-
responding double tangents with respect to the line at
infinity corresponds to the circular ordering of the ver-
tices.

5. On the chirotopes of subarrangements. By def-
inition the chirotope of an arrangement of n disks
depends only on its

(
n
4

)
subarrangements of 4 disks.

Since chirotopes of collections of points depends only
by definition of the collection of chirotopes of subsets
of three points it is natural toask if the same holds
for arrangements of disks. The answer is yes. This
result was conjectured2 to be true for stretchable ar-
rangements in [3, Theorem 3.] and checked using the
exhaustive list of 11502 arrangements on 4 disks gen-
erated by triangle-switches starting from a stretchable
arrangement by F. Torossian [8], ten years ago. We
provide a direct proof below; this direct proof con-
firms partially the validity of our implementation.

Theorem 6 The chirotope of an arrangement of n
disks depends only on the

(
n
3

)
chirotopes of its subar-

rangements of 3 disks.

Proof. (Sketch.) Let O, U, V, W be 4 disks. We de-
note by χ the chirotope and χ3 its restriction to triple
of disks. We write L(X) for the set of double tan-
gents to O and X , and we write (a, b) for the set
of x such that χO(a, x, b). Let u, u′ ∈ L(U) and let
x ∈ L(U, V, W). Clearly one can decide if χ(u, x, u′)
using only χ3. A pair (u, u′) of bitangents is said to
separate the pair (x, x′) if u, u′, x, x′ appear in the
cyclic order uxu′x′ around the disk O. Assume that a
pair (u, u′) of elements of L(U) separates a pair (x, x′)
of elements of L(V, W). In that case a triplet a, b, c
of elements of L(V, W) lying in the interval (u, u′) ap-
pears in the linear order abc in the interval (u, u′) iff.

2Claimed without proof to be more honest!

x′, a, b, c appear in the cyclic order x′abc around the
disk o. So it remains to examine the case where no
pair of elements of L(U), L(V) and L(W) separates
a pair of elements of L(V, W), L(W, U) and L(U, V).
In that case χ(u, v, w) is independant of the choice of
u ∈ L(U), v ∈ L(V) and w ∈ L(W). We will simply
write χ(U, V, W).

O
O

O

U
U U

V

V

VW
W

W

Case 2 and 4 Case 3Case 1

Let 1,2,3 and 4 be the consecutive elements of L(U)
on O where 1 is the right-left double tangent oriented
from O toward U . We write I1(U), I2(U), I3(U), I4(U)
for the interval (3, 4), (4, 1), (1, 2), (2, 3). It remains
four cases to examine (cf. figure above):
case 1. L(V, W) = I4(U). In that case χ(U, V, W) iff
U, V et W appear in this order when walking counter-
clockwise around the boundary of their convex hull.
case 2. L(V, W) = I1(U). In that case χ(U, V, W) iff
W lies in the interior of the convex hull of U and V ;
case 3. L(V, W) = I2(U). In that case χ(U, V, W) iff
U, W, V appear in this in order when walking coun-
terclockwise on the boundary of their convex hull.
case 4. L(V, W) = I3(U). similar to case 2 modulo a
reorientation of the plane.

Furthermore in each of these four cases the chiro-
tope is unique up to the permutation of V and W . �

References

[1] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and
G. M. Ziegler. Oriented Matroids. Cambridge University
Press, Cambridge, 1993.

[2] J.E. Goodman and R. Pollack. The combinatorial encod-
ing of disjoint convex sets in the plane, and a generaliza-
tion of the edelsbrunner-sharir transversal theorem, 2004.

[3] M. Pocchiola and G. Vegter. Order types and visibility
types of configurations of disjoint convex plane sets (ex-
tended abstract). Technical Report 94-4, Labo. Inf. Ens,
45 rue d’Ulm 75230 Paris, France, January 1994.

[4] M. Pocchiola and G. Vegter. Pseudo-triangulations: The-
ory and applications. In Proc. 12th Annu. ACM Sympos.
Comput. Geom., pages 291–300, 1996.

[5] G. Ringel. Teilungen der ebene durch geraden oder topol-
ogishe geraden. Math. Zeitschrift, 64:79–102, 1956.

[6] G. Ringel. Über geraden in allgemeiner lage. Elemente
der Math., 12:75–82, 1957.

[7] R. Seidel. Backwards analysis of randomized geometric
algorithms. In J. Pach, editor, New Trends in Discrete
and Computational Geometry, volume 10 of Algorithms
and Combinatorics, pages 37–68. Springer-Verlag, 1993.

[8] F. Torossian. Enumération des arrangements duaux de
quatre convexes du plan. DEA, Ecole Normale Supérieure,
July 1996.

214

EWCG 2006, Delphi, March 27–29, 2006

Tight planar packings of two trees

Yoshiaki Oda∗ Katsuhiro Ota†

Abstract

When we consider an embedding of graphs into a
plane, it would be nice if it does not intersect inter-
nally since the embedding simply shows us the struc-
ture of graphs. It is easy to embed a tree into a plane
with non-self-intersections. If we embed two or more
trees into a plane with non-self-intersections, what oc-
curs? In this paper, we consider embeddings of two
trees into a plane with using same vertices, sharing no
edges and no-intersections. We prove that a non-star
tree and a non-star caterpillar can be embedded into
a plane satisfying the above conditions. It is one of
the special cases of a conjecture by Garcia et al. [1].

1 Introduction

In this paper, we deal with finite undirected graphs
with neither loops nor multiple edges. The following
problem is well-known.

For given graphs G, T1, · · · , Tk, does G contain sub-
graphs isomorphic to T1, · · · , Tk and pairwise edge
disjoint?

This problem is NP-complete since if we suppose
that G is a complete graph Kn and k = 2 then
the problem is equivalent to SUBGRAPH ISOMOR-
PHISM which is known to be NP-complete [2].

We say that graphs T1, · · · , Tk can be packed into
a graph G or there exists a packing of T1, · · · , Tk into
G if G contains subgraphs isomorphic to T1, · · · , Tk

and pairwise edge disjoint. Moreover, if it satisfies
|V (T1)| = · · · = |V (Tk)| = |V (G)|, we say that
T1, · · · , Tk can be tightly packed into G or there ex-
ists a tight packing of T1, · · · , Tk into G. A star with
n vertices means a complete bipartite graph K1,n−1.

u u u

u u u

A
A

A
A

A

�
�
�
�
�

Figure 1: A star with 6 vertices (K1,5)

∗Department of Mathematics, Keio University,
oda@math.keio.ac.jp

†Department of Mathematics, Keio University,
ohta@math.keio.ac.jp

Hedetniemi et al. [3] proved the following theorem.

Theorem 1 (Hedetniemi et al. [3]) Let T1 and
T2 be non-star trees with n vertices. Then, there ex-
ists a tight packing of T1 and T2 into a complete graph
Kn.

Here we suppose that G is a plane graph. Garcia
et al. [1] gave the following conjecture.

Conjecture 1 (Garcia et al. [1]) Let T1 and T2 be
non-star trees with n vertices. Then, there exists a
simple plane graph G such that T1 and T2 can be
tightly packed into G.

If the above plane graph exists, we say that there
exists a tight planar packing of T1 and T2. We observe
that such a packing is equivalent to a planar drawing
of T1 and T2 without sharing edges. In this case, we
obtain a simultaneous drawing of T1 and T2 on the
same vertex set.

The following observations are fundamental.

Observation 1 Let T1 be a star and T2 be a tree
with n vertices. Then, there does not exist any tight
planar packing of T1 and T2.

Proof. Suppose that T1 and T2 can be packed into a
simple plane graph G. We focus on the center vertex
v of the star T1. Any edge which is incident with the
vertex v̄ of G corresponding to v must be used for T1.
Hence, we can assign no vertex of T2 to v̄, which is a
contradiction. �

Observation 2 There does not exist a tight planar
packing of three trees.

Proof. The sum of the number of edges for three
trees with n vertices is 3(n − 1). But the number
of edges of a simple plane graph of order n is at most
3n− 6. �

Garcia et al. proved the following theorems in the
same paper[1].

Theorem 2 Let T be any tree with n vertices which
is different from a star. Then, there exists a tight
planar packing of T and a copy of T .

215

22nd European Workshop on Computational Geometry, 2006

Theorem 3 Let T1 be any tree with n vertices which
is different from a star and let T2 be a path of order
n. Then, there exists a tight planar packing of T1 and
T2.

Also, we showed the following theorem.

Theorem 4 (Enomoto et al. [5]) Let T1 be any
tree with n vertices which is different from a star.
Let T2 be a non-star graph which is obtained from a
star by adding at most one vertex for each edge. (If
it is obtained by adding a vertex for any edge, it is
called a firework. See the lower right hand of Figure
2.) Then, there exists a tight planar packing of T1

and T2.

����

����

����

����
��		

��

��
����

� �� �
��

� �� �
� �� �

����

� �� �
� �� �

� �� �
��

����

����

����

!
!

"
"
#
#

$
$
%
%

&&''

(())
**++

, ,
, ,
- -
- -

.

.
/
/

Figure 2: A star and graphs T2 in Theorem 4

2 Main results

A caterpillar is a graph derived from a path by hang-
ing any number of leaves from the vertices of the path.

u u u u u

u u u u u u

A
A

A
A

A

�
�
�
�
�

A
A

A
A

A

�
�
�
�
�

Figure 3: A caterpillar

The following is our main theorem.

Theorem 5 Let T1 be any tree with n vertices which
is different from a star and let T2 be any caterpillar
with n vertices which is different from a star. Then,
there exists a tight planar packing of T1 and T2.

We give a sketch of our proof. At first, we set n
vertices in some line l and each vertex is labeled from
0 to n− 1 in linear order. Next, we consider two em-
beddings of T1 and T2 into a plane with non-crossing
edges. An embedding of T1 is to be on the upper area
of l and an embedding of T2 is to be on the lower area
of l. Then, we should take care only that they do not
share any edges. Here we give a key lemma as follows:

Lemma 6 Let T1 be a caterpillar with m vertices and
T2 be a tree with n vertices. We assume that m < n.
Take vertices ri ∈ V (Ti) for i = 1, 2, arbitrarily. Let
a be an integer such that 0 ≤ a ≤ n − m. Then,
there exist two bijection ϕ : V (T2) → [0, n − 1] and
γ : V (T1)→ [a, a + m− 1] satisfying:

(1) Each embedding of T1 and T2 according to ϕ
and γ is non-self-intersecting.

(2) The embeddings of T1 and T2 according to ϕ
and γ do not share any edge.

(3) The vertex ϕ(r2) is open in ϕ(T2) and γ(r1) is
open in γ(T1).

(4) ϕ(r2) 6= γ(r1)
(5) ϕ(r2) ∈ {0, n− 1} ∪ [a + 1, a + m− 2]

We say that the vertex ϕ(r2) is open in ϕ(T2) if
there does not exist any edge e = (u, v) in T2 such
that ϕ(u) < ϕ(r2) < ϕ(v) or ϕ(v) < ϕ(r2) < ϕ(u).
We define γ(r1) is open in γ(T1) similarly.

Theorem 5 is one of the special cases of Conjecture
1. Neadless to say, our ultimate goal is to solve Con-
jecture 1. Toward the goal we need more general proof
technique. We note that the above lemma is proved
by using induction and the technique is new.

References

[1] A. Garcia, C. Hernando, F. Hurtado, M. Noy and J.
Tejel. Packing trees into planar graphs. J. Graph
Theory, 40:172–181, 2002.

[2] M. R. Garey and D. S. Johnson. Computers
and intractability - A guide to the theory of NP-
completeness. W. H. Freeman and Co., 1979.

[3] S. M. Hedetniemi, S. T. Hedetniemi and P. J. Slater.
A note on packing two trees into Kn. Ars Combin.,
11:149–153, 1981.

[4] M. Maheo, J. F. Saclé and M. Woźniak. Edge-disjoint
placement of three trees. European J. of Combina-
torics, 17:543–563, 1996.

[5] H. Enomoto, K. Kanda, T. Masui, Y. Oda, K. Ota.
Private communications.

216

EWCG 2006, Delphi, March 27–29, 2006

A Topologically Robust Boolean Algorithm Using Approximate Arithmetic

Julian M. Smith ∗ Neil A. Dodgson †

Abstract

We present a previously unpublished, topologically ro-
bust algorithm for Boolean operations on polyhedral
boundary models. The algorithm can be proved al-
ways to generate a result with valid connectivity if
the input shape representations have valid connectiv-
ity, irrespective of the type of arithmetic used or the
extent of numerical errors in the computations or in-
put data. The main part of the algorithm, known as
the basic Boolean algorithm, is based on a series of
interdependent operations. The relationship between
these operations ensures a consistency in the inter-
mediate results that guarantees correct connectivity
in the final result. Either a triangle mesh or poly-
gon mesh can be used. The algorithm described can
be extended naturally to the problem of computing
the overlay of two cellular subdivisions, and also to
operate in higher-dimensional domains.

1 Introduction

Problems of robustness are a major cause for concern
in the implementation of computational geometry al-
gorithms ([2, 5, 6, 7]). Most geometrical algorithms
are a mix of numerical and combinatorial computa-
tions, and the approximate nature of the former often
leads to logical decisions that are inconsistent, thus
hindering the construction of a combinatorially cor-
rect result. In the context of boundary representa-
tions, inconsistent computations can lead to connec-
tivity faults. There is also the problem that numerical
errors can lead to the computed boundary intersecting
itself.

A number of proposals have been put forward to
address this problem. One approach favoured, partic-
ularly in the polyhedral domain, is to rely on exact
arithmetic to avoid altogether the problems of numer-
ical errors and inconsistencies [1, 4, 8]. Floating point
filters are often used in conjunction to reduce the over-
head of exact computations.

Certain methods take the topology-oriented ap-
proach. These are designed to guarantee a topologi-
cally or combinatorially correct result, irrespective of
the extent of any numerical error in the computations

∗Rainbow Group, Computer Laboratory, University of Cam-
bridge, jms222@cl.cam.ac.uk

†Rainbow Group, Computer Laboratory, University of Cam-
bridge, nad@cl.cam.ac.uk

or in the input data. As such they can be implemented
using standard floating point arithmetic. Sugihara et
al. [9] refer to such techniques for the Voronoi and De-
launay problems, the convex hull problem, and also
for the intersection of convex polyhedra.

The algorithm presented here can be classed as
topology-oriented. The main part of the algorithm,
the basic Boolean algorithm, consists of a series of
interdependent operations guaranteed to yield consis-
tent intermediate results. This in turn ensures the
final result has valid connectivity, provided both in-
put structures have valid connectivity. The algorithm
can be implemented using either a triangle or poly-
gon mesh. For the triangle mesh variant of the basic
algorithm there is a requirement to break up non-
triangular facets into triangles.

The structure generated by the basic algorithm may
have features that are redundant or are close to mak-
ing the structure geometrically invalid. For that rea-
son it is generally preferable to apply a data smooth-
ing process to the structure to make it suitable for
downstream operations.

The basic Boolean algorithm is described in section
2. Section 3 briefly discusses topological robustness
and also the need for data smoothing. The process
for triangulating facets is not covered.

2 The basic Boolean algorithm

The basic algorithm for the Boolean operation be-
tween two shapes A and B is performed as a series
of interdependent operations. Each operation deter-
mines the relation between two entities, one from each
shape, an entity being a vertex, edge (or half-edge),
facet, or the entire shape. Hence there are 16 types
of operation: one for each pairing of the four types of
entity. Each operation type is considered as belonging
to a particular level, 0 to 6, equal to the sum of the
manifold dimensionalities of the two entities, oA and
oB. Each operation has a similar pattern: the result
is influenced by the results of those operations one
level lower, concerning (1) each boundary component
of oA in turn, and oB ; and (2) oA, and in turn each
boundary component of oB. This leads to a depen-
dency hierarchy between the types of operation, as
shown in figure 1. Operations at level 0-3 determine
the point at which the entities intersect, while those
at level 3-6 work towards constructing the result.

The operations at level 3 take a pivotal role between

217

22nd European Workshop on Computational Geometry, 2006

solid A

vertex of B
facet of A

edge of B

edge of A

facet of B

vertex of A

solid B

facet of A

vertex of B

edge of A

edge of B

vertex of A

facet of B

edge of A

vertex of B

vertex of A

edge of B

vertex of A

vertex of B

solid A

edge of B

facet of A

facet of B

edge of A

solid B

solid A

facet of B

facet of A

solid B

solid A

solid B

- x-direction

shadowing on

line y=0, z=0

- intersection

on line y=0, z=0

- y-direction

shadowing

on plane z=0

- intersection

on plane z=0

- z-direction

shadowing

in full space

- intersection

in full space

- determine

result vertices

- determine

result edges

- determine

result facets

- determine

result solid

{
{

determine

relation

between

input

entities

create

entities

for result

level 0:

level 1:

level 2:

level 3:

level 4:

level 5:

level 6

}

}

}

Figure 1: The hierarchy of operations for the basic Boolean algorithm.

the two stages. They determine whether a vertex of
one solid lies inside or outside the other solid, and
whether an edge of one solid intersects a facet of the
other solid. The latter operation also determines the
point of intersection. All operations assume object B
to be perturbed by an infinitesimal distance in each of
the three axis directions. This resolves the problem of
degeneracy, in the manner described by Edelsbrunner
and Mücke [3] in the context of exact computations.
Thus a point is deemed to lie inside or outside a solid,
never on the boundary; likewise, an edge either inter-
sects a facet or it does not, they are never deemed
simply to touch. This makes special case handling
unnecessary.

An intersection function, Xij(oA, oB), ascertains
whether entities oA and oB intersect, i and j indi-
cating the manifold dimensionality of each entity. A
non-zero function value indicates that the entities in-

tersect; the sign of the function value indicates the
nature of the intersection, such as whether the edge
enters or exits the solid through the facet. Inter-
section functions are used at lower levels too, where
i+j<3. In general terms, Xij(oA, oB) operates in
(i+j)-dimensional space or subspace, as specified by
the first i+j coordinate values of the Cartesian rep-
resentation used in the computation. Hence level
3 intersection functions (i+j=3) operate in full 3D
space. Level 2 intersection functions (i+j=2) oper-
ate in effect in the (x, y) plane, so z coordinate values
are ignored when determining if the entities intersect.
However if they do intersect, the z-values of the in-
tersection point are determined for the use in sub-
sequent calculations. Two such values are required:
one for each entity. In turn, level 1 intersection func-
tions operate simply on the (x) line, and two sets
of y and z values are determined at any intersection

218

EWCG 2006, Delphi, March 27–29, 2006

A

A

A A

B
B

B
B

Figure 2: Demonstration of how intersection between two edges in (x, y) space is determined. The two edges
intersect only if they overlap in (x) space (max xB ≥ min xA and minxB < maxxA) and if yB ≥ yA at
one end of the overlap range in (x) and yB < yA at the other (i.e. at x = max(min xA, min xB) and x =
min(max xA, maxxB)).

point. One can also consider there to be a level 0
‘intersection function’, X00(vA, vB), that operates at
the origin point; it always takes the value 1, with the
‘intersection point’ located at vA and vB.

The calculations involve shadow functions,
Sij(oA, oB), that operate in (i+j+1)-dimensional
space or subspace as defined by the first i+j+1 co-
ordinate values. If Xij(oA, oB) = 0 then Sij(oA, oB)
= 0. If Xij(oA, oB) 6= 0, the value is determined
by considering the next coordinate value at the
point of intersection: ξA on oA and ξB on oB,
where ξ is x if i+j=0, y if i+j=1, or z if i+j=2.
Sij(oA, oB) = Xij(oA, oB) if ξB ≥ ξA, or 0 otherwise.

The intersection function Xij(oA, oB) is evaluated
as the sum, with appropriate +/− signs, of each of the
shadow function values: Si−1,j(c, oB) for each bound-
ary component c of oA (if i > 0); and Si,j−1(oA, c)
for each boundary component c of oB (if j > 0). The
individual formulae are listed in table 1.

The intersection point associated with a non-zero
value of Xij(oA, oB) is determined by considering two
lower-level intersection points associated with a non-
zero value of Xi−1,j or Xi,j−1, one for which ξB ≥ ξA

and one for which ξB < ξA. The intersection point
for Xij is obtained by linearly interpolating the two
lower-level intersection points so that ξB = ξA. Figure
2 demonstrates this for the case X11(eA, eB).

Following the determination of the level 3 intersec-
tion points the structure representing the result is con-
structed. The result contains two types of vertices:
retained vertices, which are copies of original vertices
that lie on the appropriate side of the other solid (out-
side for the union operation, inside for the intersec-
tion operation), and intersection vertices, which are
new vertices located at each point where an edge in-
tersects a facet.

The operations at level 4 construct the edges: re-
tained edges (and part-edges), and intersection edges
(between two facets). For each operation, a series of
start-vertices and end-vertices is obtained from the
level 3 operations, and these are paired up to form
edges in the new structure.

Retained facets (or part-facets) are determined at
level 5; these are bordered by half-edges computed at

level 4. For the triangle mesh variant of the algorithm,
any non-triangular facet must be broken up into tri-
angles. For the polygon mesh variant, the polygonal
region is retained as it is.

Finally, at level 6 the resulting solid is generated
from the retained facets.

3 Topological robustness, numerical accuracy, and
implementation

Topological robustness of the basic algorithm is as-
sured by the formulae used, assuming A and B both
have valid connectivity. For the calculations at lev-
els 1, 2 and 3, it can be proved that if Xij 6= 0, then
there will be at least one lower-level intersection where
ξB ≥ ξA and also one where ξB < ξA, hence it will al-
ways be possible to interpolate to determine the point
of intersection. At level 4, it can be proved that the
number of start-vertices will always equal the number
of end-vertices, so it will always be possible to de-
termine segments from which to construct edges. At
level 5, it can be shown that every end-vertex of a
half-edge of a particular facet is also the start-vertex
of a half-edge of the same facet, and at level 6, every
half-edge going from vertex v to w is matched by a
half-edge going from vertex w to v. Hence the struc-
ture generated satisfies the constraints that ensure it
has correct connectivity. Proofs of these statements
will be published separately.

Geometrical validity of the result is not assured by
the basic Boolean algorithm. The structure gener-
ated can have artifacts that can be considered un-
suitable: coincident vertices, coincident and oppos-
ing facets, coincident and opposing half-edges within
a facet, zero-length edges, and zero-area facets. Co-
incident and opposing facets or half-edges make the
structure on the borderline of being geometrically in-
valid; it may even turn out invalid due to numerical
errors in computing the result, or else it may become
invalid after applying a subsequent operation such as
a repositioning translation. It is therefore appropriate
to process the structure to remove the artifacts before
passing on the data structure to any process likely to
be adversely affected by geometrical errors. This data

219

22nd European Workshop on Computational Geometry, 2006

level formula situation leading to value of +1
0 X00(vA, vB) = 1

1 X01(vA, eB) = S00(vA, ve(eB))− S00(vA, vs(eB)) vA lies within eB, with eB going left to right

X10(eA, vB) = −S00(ve(eA), vB) + S00(vs(eA), vB) vB lies within eA, with eA going left to right

2 X02(vA, fB) = −∑h∈∂fB
S01(vA, h) vA lies within fB, with fB going anti-clockwise

(denoting that it faces upwards)

X11(eA, eB) = S01(ve(eA), eB)− S01(vs(eA), eB) eA crosses eB from left to right
+S10(eA, ve(eB))− S10(eA, vs(eB))

X20(fA, vB) =
∑

h∈∂fA
S10(h, vB) vB lies within fA, with fA going anti-clockwise

3 X03(vA, B) =
∑

f∈∂B S02(vA, f) vA lies within B, with faces facing outwards

X12(eA, fB) = −S02(ve(eA), fB) + S02(vs(eA), fB) eA crosses fB going to the outer side
−∑h∈∂fB

S11(eA, h)

X21(fA, eB) = −∑h∈∂fA
S11(h, eB) eB crosses fA going to the outer side

+S20(fA, ve(eB))− S20(fA, vs(eB))

X30(A, vB) = −∑f∈∂A S20(f, vB) vB lies within A, with faces facing outwards

Table 1: Formulae for intersection functions. ∂f denotes the collection of half-edges that border facet f ; vs(e)
and ve(e) denote the start- and end-vertex of edge (or half-edge) e.

smoothing process consists of a number of Euler-type
operations (as described in [5]), simplifying the struc-
ture while preserving topological correctness, and re-
stricting any change to the shape boundary (which
may be necessary) to within specified bounds.

The first author devised and successfully imple-
mented the Boolean algorithm for use within a
widely circulated commercial CAD product, for which
Boolean operations are used principally to convert
CSG models of industrial plant components to poly-
hedral approximations. The product and algorithm
continue to be used extensively several years after re-
lease. The general polygonal mesh variant of the al-
gorithm was adopted, since it was found to be more
efficient than an initial trial version based on the tri-
angular mesh. It was found to be more efficient to
apply the data smoothing process once at the end of
a sequence of basic Boolean operations rather than
after each individual operation. The data smoothing
process that was implemented does not have a full the-
oretical backing, so it is not provably fully robust in
performing the task required of it, but it has turned
out to be sufficiently reliable. Users of the released
product only ever reported one fault that turned out
to be related to the data smoothing process: a prob-
lem of non-termination, which was resolved by en-
forced early termination.

References

[1] CGAL. http://www.cgal.org/, 2006.

[2] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry. Springer,
1997.

[3] H. Edelsbrunner and E. Mücke. Simulation of sim-
plicity: A technique to cope with degenerate cases in
geometric algorithms. ACM Transactions on Graph-
ics, 9(1), January 1990.

[4] S. Fortune. Polyhedral modelling with exact arith-
metic. In Proc. 3rd Symp. Solid Modeling, pages 225–
234. ACM Press, NY, 1995.

[5] C. Hoffmann. Geometric and Solid Modeling: An In-
troduction. Morgan Kaufmann Publishers, Inc., 1989.

[6] C. Hoffmann. Robustness in geometric computations.
Journal of Computing and Information Science in En-
gineering, 1:143–156, 2001.

[7] C. Hoffmann, J. Hopcroft, and M. Karasik. Robust
set operations on polyhedral solids. IEEE Computer
Graphics & Applications, 9(6):50–59, 1989.

[8] K. Mehlhorn and S. Näher. The LEDA Platform of
Combinatorial and Geometric Computing. Cambridge
University Press, 1999.

[9] K. Sugihara, M. Iri, H. Inagaki, and T. Imai.
Topology-oriented implementation—an approach to
robust geometric algorithms. Algorithmica, 27:5–20,
2000.

220

EWCG 2006, Delphi, March 27–29, 2006

A Small Improvement in the Walking Algorithm for Point Location

in a Triangulation

Ivana Kolingerová∗

Abstract

The paper shows a simple technique which saves some
edge tests in the walking algorithm for point loca-
tion. The walking technique does not achieve the log-
arithmic per point complexity of the location-data-
structure-based methods but does not need any aux-
iliary data structure and is very simple to implement,
therefore, it is very popular in practice. The suggested
idea did not bring a substantial improvement in our
tests but it is very simple and there is an open door
to further more substantial improvement in the future
research.

1 Introduction

Point location in a triangulation is a very frequent
task. Most effective solutions use hierarchical data
structures, such as a DAG [1], [5], a skip list [10], a
quadtree, buckets [9], a data structure with a random
sampling [7], [2] or a uniform grid [8], [11]. These
structures are very effective and bring a complexity
O(log n) per point where n is the total number of
points in the triangulation. However, their disad-
vantage is a memory consumption, which, although
linear in E2, still can bring a substantial limitation
to the program usefulness as the data sets processed
today are very huge. Also, implementation effort
for most of these data structures may be nontrivial.
Therefore, practical programmers turn very often to a
’pragmatic’ solution, represented by the walking type
of location algorithm, where the point is located by
traversing from one triangle to another according to
some kind of test of the point position against the tri-
angle boundaries. Such an approach is less effective,
bringing O(n1/3) up to O(n1/2) per one point loca-
tion but no extra location data structures are needed
and so no extra memory is consumed [4], [3], [6].

There are several walking algorithms, differing in
the strategy how to find the next triangle from the
current one, the most effective one seems to be the
so-called remembering stochastic walk. This paper
shows a very simple improvement of this walking al-
gorithm that may save about 8% of edge tests. Theo-

∗Department of Computer Science and Engineering,
University of West Bohemia, Pilsen, Czech Republic,
kolinger@kiv.zcu.cz

retical improvement could be up to 50% but we have
not been able to achieve this efficiency yet.

Section 2 explains the remembering stochastic walk
and the suggested improvement. Section 3 explains
experiments and results and section 4 concludes the
paper.

2 Remembering stochastic walk and the sug-
gested improvement

Walking strategy generally means that from some
starting triangle, we inspect the triangles one after an-
other, traveling over the edge into that triangle neigh-
bour which looks the best choice to approach the tri-
angle containing the query point q. The starting tri-
angle can be chosen in random, or it is the triangle vis-
ited most recently, or by brute force choice from a ran-
dom subset of triangles according to their distances
from the located point. The walking can traverse all
the triangles intersected by the line segment originat-
ing at a vertex of the starting triangle and ending at
the query point - this is the so-called straight walk. Or
the transfer can be divided into 2 axes, approaching
first in one and then in the other axis, so-called or-
thogonal walk. The visibility walk uses an orientation
test of the triangle edge and the query point, a bad
sign of the orientation test reveals which edge to cross
to continue the search. As the visibility walk can cy-
cle for a non-Delaunay triangulation, it can be more
properly implemented in a randomized version as the
stochastic walk - randomization means here that the
choice of the first triangle edge to be tested is random,
which prevents an infinite loop. The last modification
is the remembering stochastic walk which remembers
over which edge we came into the triangle. It does
not test this edge because we already know the result
of this test, after all. All these walking strategies and
their comparison in E2 and E3 can be found in [3].

The algorithm of remembering stochastic walk is
given in Alg.1 (adapted from [3]). For further ac-
celeration, it is good to combine the walking algo-
rithm with some preprocessing where a randomly se-
lected set of triangle vertices from the triangulation is
tested on distance to the query point and the small-
est distance from a vertex to the query point chooses
the starting triangle [6]. A proper size of this set is
O(n1/3) triangle vertices where n is the total number

221

22nd European Workshop on Computational Geometry, 2006

of vertices in the triangulation. Although the dis-
tance tests are expensive, still this technique brings
improvement both in the number of edge tests and in
the total runtime.

Remembering stochastic walk (t,q)

// traverses the triangulation T
// from the triangle t to the query point q
// using the remembering stochastic walk

begin
previous := t ; found := false;

while not found do
begin

e := random edge from t;
p := the vertex of t not contained in e;
nb := neighbour (t over e);

if (nb is not equal to previous) and
(q on the other side of e than p) then
begin

previous := t; t := nb
end

else
begin

e := next edge of t;
p := the vertex of t not contained in e;
nb := neighbour (t over e);

if (nb is not equal to previous) and
(q on the other side of e than p) then
begin

previous := t; t:=nb
end

else
begin

e := next edge of t;
p := the vertex of t not contained in e;
nb := neighbour (t over e);

if (nb is not equal to previous) and
(q on the other side of e than p) then

begin
previous := t;
t := nb

end
else found := true

end
end

end
end

// now t contains q

Remembering stochastic walk

Algorithm 1

An average number of edge tests per triangle is 1.5
because in each triangle (with the exception of the

first one), we either find a bad orientation at the first
attempt and go to the triangle sharing this edge, or
we have to test one more edge and the orientation
test either sends us further, or acknowledges that the
query point is inside this triangle. The starting trian-
gle may need one more test but this is not important
for the average value.

An improvement of this algorithm is straightfor-
ward: if we want to be better, we should test only
one edge per triangle. Is it possible? With the excep-
tion of the first and the last triangle, yes: we know
the result of test of the edge which led us to the cur-
rent triangle. If we test one more edge, we can either
get the result ’go to the neighbouring triangle shar-
ing this edge’, or the result ’do not go over this edge,
you should stay inside or go to the triangle over the
third triangle edge’. We cannot decide for sure be-
tween the 2 latter possibilities without one more test,
but the key point is that the answer ’stay inside’ is
valid for the last triangle only and is highly improba-
ble in comparison with the answer ’leave the triangle
over the non-tested edge’, as we usually test many tri-
angles before we come to the triangle containing the
query point. In this way, we can save as much as one
edge test per triangle.

Black point of this improvement is that with one
edge test per triangle, we are not able to recognize
that we are already in the triangle containing the
query point, and we could continue in the walking
for ever without recognizing the end. Therefore, we
can use the ’fast walking’ strategy only for some num-
ber of steps which we expect it is usually necessary to
approach the goal triangle, and then continue more
slowly by the remembering stochastic walk, until we
find the goal triangle.

This combined strategy would work perfectly if we
knew exactly how many steps the algorithm will need
to find the goal triangle but this is not the case. Ac-
cording to [6] and our experiments, the number of
visited triangles is O(n1/3) in average, so we can ex-
pect about this number of steps to get into the goal
triangle. Bad news is that dispersion of the number
of visited triangles per query point is very high, there-
fore, in many cases we stop the faster search too early
and in many cases too late, which increases the total
number of the tests. The whole algorithm which we
called fast walk is given as Alg.2 and results can be
seen in the next section.

222

EWCG 2006, Delphi, March 27–29, 2006

Fast walk (t,q)

// traverses the triangulation T
// from the triangle t to the query point q
// using fast walk
// nsteps is the number of steps for the fast walk,
// usually O(n1/3)
// where n is the number of vertices in the triangulation

begin
previous:= t;
for i := 1 to nsteps do

begin
e := random edge from t;
nb := neighbour (t over e);
while nb is equal to previous do

begin
e := next edge of t; nb:= neighbour (t over e);

end ;
p := the vertex of t not contained in e;

if (q on the same side of e as p) then
begin

e := next edge of t; nb := neighbour (t over e)
end;

previous:= t ; t :=nb
end

end

// we do not know whether t contains q,
// so we must continue by the remembering
// stochastic walk

Remembering stochastic walk (t, q);

// now t contains q

Fast walk

Algorithm 2

3 Experiments and results

We tested the program as a part of an incremental
insertion algorithm for the Delaunay triangulation,
programmed in Delphi, under MS Windows operating
system. In order to have results independent on the
platform, we measured the number of edge tests nec-
essary to construct the triangulation for up to 5 mil-
lion of points. We measured uniformly distributed
points, but also points in clusters and other types of
data. We show the uniform data as they provided the
average values. The suggested improvement is com-
pared to the remembering stochastic walk. Both algo-
rithms were programmed with the use of preprocess-
ing according to [6] as the version with preprocessing
is quicker and it tests fewer edges in all cases. Results
for the straight walk are not given as they were worse
than those of the remembering walk in all cases.

Figure 1 shows how many triangle tests are nec-
essary in the remembering stochastic walk for each

query point within the triangulation process. The av-
erage number of visited triangles can be approximated
by 2n1/3 to 2.15n1/3 for n = 1000 up to 5 million but
the dispersion is high, see an example in Fig.1. Due
to this dispersion, we used less fast walk steps than
would correspond to this function. (We should stress
that in the application for triangulation construction,
n is different for each inserted point and is equal to
the number of points already inserted into the tri-
angulation, not to the total number of points to be
inserted.)

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

n

N
u

m
b

er
 o

f
ch

ec
ke

d
 t

ri
an

g
le

s

Figure 1: The number of checked triangles in the re-
membering walk during construction of the Delaunay
triangulation on 1000 points.

Table 1 shows comparison between the number of
tested edges in the remembering stochastic walk and
in the fast walk. We tested various functions derived
from O(n1/3) for derivation of the number of steps
for fast walk (nsteps in Alg.2). The best results of
the fast walk presented in this table were obtained by
the number of fast walk steps equal to 1.15n1/3. Im-
provement is much lower than expected, only about
8% of the edge tests. The reason for this smaller suc-
cess than hoped is the already mentioned dispersion
in the number of traversed edges: the expected num-
ber of triangles that can be fast walked varies so much
that a decrease in the number of tested edges is nearly
compensated by inspecting some triangles in vain be-
cause the goal triangle was not recognized in time; in
some cases the situation is the opposite, fast walk is
stopped too early. Unfortunately, there is no way how
to find the correct number of tests for the given case
in advance. Maybe there exists some simple, elegant
and brilliant idea how to get closer to the theoretical
bound 50% improvement but we have not come to it
yet.

4 Conclusion

The paper presents a fast walk, a simple modification
of the remembering stochastic walk algorithm for lo-
cating a point in a triangulation. The method is very

223

22nd European Workshop on Computational Geometry, 2006

simple and does not consume any extra memory for
data structure, improvement achieved in the tests is
not significant at present but the simplicity of the
idea may inspire further research to achieve a theoret-
ically possible 50% improvement against the original
remembering walk algorithm.

n Rem.st.wlak Fast walk Savings
104 469 462 445 097 5.47
5.104 4 028 040 3 759 661 7.14
105 10 084 883 9 372 859 7.60
5.105 85 496 066 79 068 466 8.13
106 214 296 506 197 641 298 8.43
5.106 1 816 818 470 1 670 737 631 8.74

Table 1: Number of edge tests for the remembering
stochastic walk and for the fast walk

5 Acknowledgement

The author would like to thank to ing. J.Kohout for
inspiration to inquire into the walking algorithms.

References

[1] M. de Berg, M. van Kreveld, M. Overmars and
O. Schwarzkopf. Computational geometry, algorithms
and applications, Berlin Heidelberg: Springer, 1997.

[2] O. Devillers. Improved incremental randomized De-
launay triangulation. Proceedings of the 14th Annual
Symposium on Computational Geometry 1998, 106-
115, 2001.

[3] O. Devillers, S. Pion and M. Teillaud. Walking in a
triangulation. Proceedings of the 17th Annual Sym-
posium on Computational Geometry 2001, 106-114,
2001.

[4] L.J. Guibas and J. Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation
of Voronoi diagrams. ACM Trans Graphics, 4(2):75-
123, 1985.

[5] I. Kolingerová and B. Žalik. Improvements to ran-
domized incremental Delaunay insertion. Computers
& Graphics, 26, 477-490, 2002.

[6] E.P. Mücke, I. Saias and B. Zhu. Fast random-
ized point location without preprocessing in two- and
three-dimensional Delaunay triangulations. Proceed-
ings of the 12th Annual Symposium on Computa-
tional Geometry 1996, 274-283, 1996.

[7] K. Mulmuley. Randomized multidimensional search
trees: dynamic sampling. Proceedings of the 7th An-
nual Symposium on Computational Geometry 1991,
121-131, 1991.

[8] S.W. Sloan A fast algorithm for constructing Delau-
nay triangulations in the plane. Adv Eng Software,
9(1):34-55, 1987.

[9] P. Su and R.L.S. Drysdale. A comparison of sequen-
tial Delaunay triangulation algorithms. Proceedings
of the 11th Annual Symposium on Computational Ge-
ometry 1995, 61-70, 1995.

[10] M. Zadravec and B. Žalik. An almost distribution-
independent incremental Delaunay triangulation al-
gorithm. The Visual Computer, 21(6):384-396, 2005.

[11] B. Žalik and I. Kolingerová. An incremental con-
struction algorithm for Delaunay triangulation using
the nearest-point paradigm. Int.J. Geographical In-
formation Science, 17(2):119-138, 2003.

224

EWCG 2006, Delphi, March 27–29, 2006

A certified algorithm for the InCircle predicate among ellipses

Ioannis Z. Emiris∗ Elias P. Tsigaridas∗ George M. Tzoumas∗

Abstract

This paper examines the InCircle predicate among el-
lipses in the Euclidean plane, under the exact com-
putation paradigm. The ellipses are non-intersecting
and given in parametric representation. We present
a subdivision-based algorithm and implement it in
Maple and CORE.

1 Introduction

We study the InCircle predicate for the Voronoi di-
agram of ellipses. This is the hardest predicate for
implementing the algorithm of [7] and has not been
solved in the exact computation paradigm. The work
coming closest to ours is [5]: The authors essen-
tially trace the bisectors in order to compute the
Voronoi cells of arbitrary curves up to machine preci-
sion. Their algorithm uses floating point arithmetic;
they claim that their software works well in practice.
Although they argue that their algorithm can be ex-
tended to exact arithmetic, they do not explain how.
For instance, they do not discuss degenerate configu-
rations. Our implementations are exact but can also
run with any prescribed precision.

It seems hard, for the algebraic approach of [3], to
yield a fast solution. All four predicates of the in-
cremental algorithm [7] were studied in [4], including
a certified subdivision-based algorithm for InCircle,
implemented in Maple. In this paper, we offer a bet-
ter implementtion using the CORE library [6]. The
algorithm “moves” on the border of parametrically
defined ellipses. This avoids computing the Voronoi
circle explicitly.

The Voronoi circle is specified at any desired ac-
curacy. This is achieved by refining the interval ex-
pressing its 3 tangency points until the predicate can
be decided; in fact, all tangency points are expressed
as a function of one of them. Exactness is guaranteed
by root separation bounds.

Let the length of the axes be 2α, 2β and (xc, yc) be
the center. We use the parametric representation:

x(t) = xc − (α(1 − w2)t2 + 4βwt− α(1 − w2))/d

y(t) = yc + 2(−αwt2 + β(1− w2)t + αw)/d,

∗Dept. of Informatics and Telecommunications, Na-
tional and Kapodistrian University of Athens, Greece,
{emiris,et,geotz}@di.uoa.gr

Figure 1: Left: The 6 bitangent circles. The Apollonius

circle is the 4th from the left. Right: Starting intervals for
t, r, s (and region of the Voronoi vertex)

where d = (1+w2)(1+t2), t = tan(θ/2) ∈ (−∞,∞), θ
is the angle that traces the ellipse, w = tan(φ

2), and φ
is the rotation angle between the major and horizontal
axes. We denote by Et an ellipse parameterized by t.

2 The bitangent circle

Lemma 1 Given 2 ellipses and a point on the first,
there may exist up to 6 real bitangent circles, tangent
at the specific point. This bound is tight. Only one
such circle is external to both ellipses.

We call this unique external bitangent circle the
Apollonius circle of the 2 ellipses, e.g. the third circle
from the right in fig. 1 (left).

Given ellipses Et, Er, the tangency points of any
Apollonius circle lie inside their Convex Hull (CH).
This offers a starting point to begin our search for the
tangency point of the Voronoi circle within a contin-
uous range on the boundary of an ellipse. Now, con-
sider all bitangent circles to Et, Er, tangent at point
t of Et.

We shall compute arc (r1, r2) on Er which contains
only the tangency point of the Apollonius circle, iso-
lating it from the tangency points of non-external bi-
tangent circles. Consider all bitangent circles at t.
Also, consider the lines from t tangent to Er at points
r1, r2. They define two arcs on Er . Arc (r1, r2), whose
interior points lie on the same side of line r1r2 as t, is
called a visible arc.

Visible arc (r1, r2) contains only tangency points of
bitangent circles at t, which are externally tangent to
Er, but may be internally tangent to Et. They include
the Apollonius circle of Et, Er, tangent at t ∈ Et.

225

22nd European Workshop on Computational Geometry, 2006

V

Q

e

P F

A

F

P V

e

A

Q

Figure 2: The visible arc and the Apollonius circle

Lemma 2 Given is a point P = (x(t), y(t)) on Et.
Consider line ε, tangent at P (cf. fig. 2). If ε does not
intersect Er , then the visible arc contains a unique
Apollonius circle. Otherwise, the endpoints of such an
arc are: the intersection of ε with Er and the endpoint
of the visible arc which lies on the opposite side of Et

with respect to ε.

Given ellipses Et, Er their bisector B(t, r) is a bi-
variate polynomial of degree 6 in t and 6 in r. The
above lemma provides an isolating interval for the
unique root r̂ of B(t, r), which lies on the visible arc
of Er with respect to some fixed t. In other words, r̂
corresponds to the Apollonius circle.

Given a point (x(t), y(t)) on Et, the squared radius
of the Apollonius circle of Et, Er tangent to Et at that
point is denoted by ftr(t). It follows that

ftr(t) :=
(
v1(t, r̂)− x(t)

)2
+
(
v2(t, r̂)− y(t)

)2
,

where r̂ is the root of the bisector that corresponds
to the Apollonius circle, when we fix t, and (v1, v2) is
the intersection of the normals at t and r̂.

In the sequel, we assume that ftr(t) is defined on a
continuous interval (a, b). The interval can also be of
the form (−∞, a)∪(b,∞), but in this case the problem
is identical or easier.

Lemma 3 Function ftr(t) consists of two strictly
monotone parts, one decreasing and one increasing.

We have not proved the function’s convexity, though
this is implied by numerical examples.

Our overall algorithm maintains an interval that
contains the tangency on Et. At every iteration, it
picks some value for t within the interval and solves
B(t, r) for finding r̂, which was defined above. These
values are used to determine the sign of S, to be in-
troduced below.

3 Deciding the predicate

The Voronoi circle is the circle which is externally
bitangent to Et, Er, and Et, Es at the same time. Its

Ars Arh

fth

t

ftsftr

Figure 3: Deciding the predicate

tangency point on Et is defined by the condition:

Strs(t) = 0, where Strs(t) = ftr(t)− fts(t),

where ftr (and similarly fts) in the case of ellipses
becomes

ftr(t) =
1

4
Pt(t)

(
Atr(t, r̂)

(1 + t2)(1 + r̂2)Dtr(t, r̂)

)2

.

In the above equation, Pt(t) has no real roots, Atr is
a bivariate polynomial of degree 2 in t and 4 in r and
Dtr 6= 0, unless the normals at t, r̂ are parallel.

We factor Strs(t) as follows:

Pt(t) ·
ˆ

Q1(t, r̂, ŝ) − Q2(t, r̂, ŝ)
˜

·
ˆ

Q1(t, r̂, ŝ) + Q2(t, r̂, ŝ)
˜

4
ˆ

(1 + t2)(1 + r̂2)(1 + ŝ2)Dtr(t, r̂)Dts(t, ŝ)
˜2

(1)

We use a customized bisection to approximate a root
of Strs(t). We only need to determine the sign Q1 −
Q2 and Q1 + Q2, since the rest of the terms in (1)
are always positive. This way we avoid computing f
explicitly.

We express the Voronoi circle of Et, Er, Es by an
interval containing t, such that (x(t), y(t)) is the tan-
gency point on Et.

1 We start by the initial interval
[a, b] that contains the tangency point and subdivide
it by bisection. The subdivision operator yields

[a+b
2 , a+b

2], if Strs(
a+b
2) = 0,

[a, a+b
2], if Strs(a)Strs(

a+b
2) < 0,

[a+b
2 , b], otherwise.

Theorem 4 Let x ∈ [a, b] be the root of Strs(x). If
Strh(x) > 0, then Eh intersects the Voronoi circle of
Et, Er, Es. If Strh(x) < 0, then Eh lies outside the
Voronoi circle. Otherwise, Eh is externally tangent to
this circle.

1This interval might contain tangency points of other non-
external tritangent circles, but they don’t interfere with our
approach, since it deals only with externally bitangent circles.

226

EWCG 2006, Delphi, March 27–29, 2006

Note that there is no such case such as internal
tangency. This is due to the fact that we deal only
with externally tangent circles.

Clearly, there is a neighborhood U of x where
sgn(Strh(u)) = sgn(Strh(x)), ∀u ∈ U . In our im-
plementation, to find U , it will suffice to separate the
roots of Strs,Strh.

We now establish the exactness of our algorithm.
Consider system ∆1(v1, v2, q) = ∆2(v1, v2, q) =
∆3(v1, v2, q) = q − v2

1 − v2
2 + s = 0 [4], where (v1, v2)

is the center and s the squared radius of the Voronoi
circle. Let us eliminate v1, v2, q; the resultant R(s)
is of degree 184 in s and has coefficient bit size
3 · 56 · τ∆ = 168τ∆. Here 56 equals the mixed volume
of the system ∆i, ∆j , q − v2

1 − v2
2 + s, if we consider

s as a parameter, and τ∆ denotes the bit size of the
coefficients of ∆i, where 1 ≤ i, j ≤ 3 and i 6= j.

The minimum distance between two real roots of a
polynomial P of degree d and bit size τ is sep(P) ≥
d−(d+2)/2(d + 1)(1−d)/22τ(1−d) [9], thus the number of
bits that we need in order to compute s is no more
than 1389 + 30744 τ∆.

In order to compare two radii s1 and s2, which are
roots of polynomials R1 and R2 respectively, we need
a bound for |s1 − s2|. Since |s1 − s2| ≥ sep(R1R2),
where the polynomial R1R2 has degree 368 and coef-
ficient bit size 8+336τ∆, it follows that the number of
bits needed is 1508 + 30324τ∆. This is tight, because
the system has optimal mixed volume [3].

In computing the implicit representation the bit size
increases by a factor of 6. If the parametric input
coefficients have τ bits, then τ∆ = 6τ . If the order of
convergence of our method is φ, then the number of
iterations needed is logφ (1508 + 181944τ).

4 Implementation and experiments

A reference implementation with parametric ellipses
has been done in Maple 9. We have implemented
a small algebraic number package that performs ex-
act univariate real root isolation, comparison and sign
evaluation of univariate (bivariate) expressions over
one (two) algebraic number(s), using Sturm sequences
and interval arithmetic over Q.

We speed up the subdivision by noticing that Strs

is strictly monotone in the starting interval [a, b] and
has a unique simple real root in it. So we use Brent’s
method with theoretical convergence rate φ = 1.618
[1]. Let [a, b] be any interval and m = a+b

2 . The

new endpoint is x = m + P
Q , where R = Strs(m)

Strs(b) ,

S = Strs(m)
Strs(a) , T = Strs(a)

Strs(b) , P = S(T (R − T)(b −m) −
(1 − R)(m − a)) and Q = (T − 1)(R − 1)(S − 1). If
x /∈ [a, b] then the new estimation is m. However, in
practice we observe a fast growth of bitsize, if we use
this method with an exact number type, i.e. rationals.

Based on this reference implementation in Maple,

we implemented the algorithm in C++ using CORE.
While still in a preliminary stage, it is faster than the
Maple implementation. In this case it is possible to
certify our algorithm based on constructive root sep-
aration bounds e.g. [2, 10], which should be tighter
than the static bounds now used. In this implemen-
tation, the input quantities are of type BigRat (ra-
tional numbers), while the endpoints of the interval
that expresses the Voronoi circle are BigFloats (multi-
precision floating point). Evaluation of Q1±Q2 in (1)
is performed using CORE::Expr constructs after con-
verting t from BigFloat to BigRat. This, along with
B(t, r) seem to be the most heavy computations, due
to growth of bitsize. In a future improvement we will
use guaranteed precision arithmetic with BigFloats.
Another improvement will be to use information from
previous iterations (where t has fewer correct bits) in
order to solve B(t, r) and determine the sign of Q1

and Q2.

We performed several preliminary experiments with
different triplets of ellipses and circles. We consider
a query ellipse (circle) with its centre moving along a
line and measure the time taken to decide its relative
position wrt the Voronoi circle. Among the various
configurations, there were both degenerate and non-
degenerate cases.

We did our experiments on a P4 2.6GHz. In fig. 4
we present the times for 2 test suites, where the el-
lipses have 10-bit coefficients in their parametric form.
The first graph involves ellipses that do not share a
common Voronoi circle with the query one, whose cen-
ter moves along the line y = −x (fig. 5 left). Notice
that the time increases as we approach a degenerate
configuration. Although the hardest cases took about
5s, in 90% of the cases we can decide in less than 2.5s.
The C++ implementation without any compiler op-
timizations is 2 times faster than Maple. The second
graph involves circles (fig. 5 right). The peak corre-
sponds to nearly degenerate configurations, running
in 38s and 200 iterations. In all other cases the tim-
ings are less than 2.5s. Again, the C++ implementa-
tion is 3-4 times faster.

Our implementations are exact but can also run
with any prescribed precision, e.g. for rendering pur-
poses. In particular, a much faster execution is pos-
sible for the above algorithms if we restrict ourselves
to machine precision, as in [5].

Solving the algebraic system B(t, r) = B(t, s) =
B(r, s) = 0 with the SYNAPS [8] package of multi-
variate subdivision in 3 msec to 1 min, depending on
how large the initial domain was. Moreover, we used
PHCpack, to solve the system of ∆i’s, in about 36
seconds. These running times indicate that our dedi-
cated solver sometimes outperforms generic solvers on
the algebraic system. Moreover, solving the algebraic
system alone does not suffice to completely decide the
predicate, contrary to our algorithm.

227

22nd European Workshop on Computational Geometry, 2006

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

-8 -6 -4 -2 0 2 4 6 8

"ee2.out"
"ee2-maple.out"

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3

"cc-degen.out"
"cc-degen-maple.out"

Figure 4: Execution time as function of the position of the
query ellipse’s (circle’s) center. The solid line corresponds
to C++, the dotted one to Maple.

84

8

0

-8

4

-8 -4

-4

0

320

-3

1

1

-3

3

-2

-1

4

2

-2

0

-1

Figure 5: Test suites

5 Future work

Our final goal is a CGAL implementation of the
Voronoi diagram of ellipses. Working in C++ may
allow us to use one of the powerful interval arith-
metic packages. We tried the iCOs interval-arithmetic
solver 2 on the system of ∆i’s with bitsize 60. It de-
tects a degeneracy in about 213 sec on a 1GHz P3.

The most difficult part of the implementations
is the detection of a degeneracy. Although near-
degenerate inputs can be handled quite efficiently, real
degeneracies exploit the separation bound and need a
large number of iterations. Then, the computed quan-
tities grow too large. We are currently trying to opti-

2http://www-sop.inria.fr/coprin/ylebbah/icos/

mize the inner loop. In this direction, we are looking
for better ways to perform certified sign computation
of Q1 ± Q2, as well as better separation bounds us-
ing geometric arguments and exploiting the algebraic
approach.

Acknowledgments All authors acknowledge partial

support by IST Programme of the EU as a Shared-

cost RTD (FET Open) Project under Contract No IST-

006413-2 (ACS - Algorithms for Complex Shapes) and by

PYTHAGORAS, project 70/3/7392 under the EPEAEK

program funded by the Greek Ministry of Educational Af-

fairs and EU. GT is partially supported by State Scholar-

ship Foundation of Greece, Grant No. 4631.

References

[1] R. Brent. Algorithms for Minimization without
Derivatives. Prentice-Hall, Englewood Cliffs, N.J.,
1973.

[2] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and
S. Schmitt. A Separation Bound for Real Algebraic
Expressions. In ESA, volume 2161 of LNCS, pages
254–265. Springer, 2001.

[3] I. Emiris and G. Tzoumas. Algebraic study of the
Apollonius circle of three ellipses. In Proc. Europ.
Works. Comp. Geom., pages 147–150, Holland, 2005.
Also: Poster session, CASC’05, Greece. To appear in
SIGSAM Bulletin.

[4] I. Emiris, G. Tzoumas, and E. Tsigaridas. The pred-
icates of the Voronoi diagram of ellipses. Symp.
of Comp. Geom., 2006. To appear. Available from
http://www.di.uoa.gr/∼geotz/.

[5] I. Hanniel, R. Muthuganapathy, G. Elber, and M.-
S. Kim. Precise Voronoi cell extraction of free-form
rational planar closed curves. In Proc. 2005 ACM
Symp. Solid and phys. modeling, pages 51–59, Cam-
bridge, Massachusetts, 2005. Best paper award.

[6] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap.
A CORE library for robust numeric and geometric
computation. In 15th ACM Symp. on Computational
Geometry, 1999.

[7] M. Karavelas and M. Yvinec. Voronoi diagram of
convex objects in the plane. In Proc. ESA, pages
337–348, 2003.

[8] B. Mourrain, J. P. Pavone, P. Trébuchet, and E. Tsi-
garidas. SYNAPS, a library for symbolic-numeric
computation. In 8th Int. Symposium on Effective
Methods in Algebraic Geometry, MEGA, Sardinia,
Italy, May 2005. to appear.

[9] C. Yap. Fundamental Problems of Algorithmic Alge-
bra. Oxford University Press, New York, 2000.

[10] C. Yap. On guaranteed accuracy computation. In
F. Chen and D. Wang, editors, Geometric Computa-
tion, volume 11 of Lect. Notes Series Comp. World
Scientific, 2004.

228

EWCG 2006, Delphi, March 27–29, 2006

Voronoi diagrams in Cgal

Menelaos I. Karavelas∗

Abstract

In this paper we describe a generic C++ adaptor1, that
adapts a 2-dimensional triangulated Delaunay graph
and to the corresponding a Voronoi diagram, repre-
sented as a doubly connected edge list (DCEL) data
structure. Our adaptor has the ability to automat-
ically eliminate, in a consistent manner, degenerate
features of the Voronoi diagram, that are artifacts
of the requirement that Delaunay graphs should be
triangulated even in degenerate configurations. De-
pending on the type of operations that the underlying
Delaunay graph supports, our adaptor allows for the
incremental or dynamic construction of Voronoi dia-
grams and can support point location queries. Our
code will appear in the next public release of Cgal.

1 Introduction

A Voronoi diagram on the plane is typically defined
for a set of planar objects, also called sites in the
sequel, and a distance function that measures the dis-
tance of a point x in R2 from an object in the object
set. Let S = {S1, S2, . . . , Sn} be our set of sites and
let δ(x, Si) denote the distance of a point x ∈ R2

from the site Si. Given two sites Si and Sj , the set
Vij of points that are closer to Si than to Sj with re-
spect to the distance function δ(x, ·) is simply the set:
Vij = {x ∈ R2 : δ(x, Si) < δ(x, Sj)}. We can then de-
fine the set Vi of points on the plane that are closer to
Si than to any other object in S as Vi =

⋂
i6=j Vij . The

set Vi is said to be the Voronoi cell or Voronoi face of
the site Si. The locus of points on the plane that are
equidistant from exactly two sites Si and Sj is called a
Voronoi bisector. A point that is equidistant to three
or more objects in S is called a Voronoi vertex. A sim-
ply connected subset of a Voronoi bisector is called a
Voronoi edge. The collection of Voronoi faces, edges
and vertices is called the Voronoi diagram of the set
S with respect to the distance function δ(x, ·), and it
is a subdivision of the plane.

We typically think of faces as 2-dimensional ob-
jects, edges as 1-dimensional objects and vertices as

∗Department of Applied Mathematics, University of Crete;
mkaravel@tem.uoc.gr and Institute of Applied and Computa-
tional Mathematics, Foundation for Research and Technology
- Hellas.

1An adaptor is a class or a function that transforms one
interface into a different one.

0-dimensional objects. However, this may not be the
case for several combinations of sites and distance
functions (for example points in R2 under the L1 or
the L∞ distance can produce 2-dimensional Voronoi
edges). Moreover, the cell of a site can in general
consist of several disconnected components (e.g., in
the multiplicatively weighted Euclidean Voronoi dia-
gram). In this paper we are going to restrict ourselves
to Voronoi diagrams that have the property that the
Voronoi cell of each site is a simply connected region
of the plane. We are going to call such Voronoi dia-
grams simple Voronoi diagrams. Examples of simple
Voronoi diagrams include the usual Euclidean Voronoi
diagram of points, the Euclidean Voronoi diagram of
a set of disks on the plane, the Euclidean Voronoi di-
agram of a set of disjoint convex objects on the plane,
or the power (Laguerre) diagram for a set of circles
on the plane. In fact every instance of an abstract
Voronoi diagram in the sense of Klein [2] is a simple
Voronoi diagram in our setting. In the sequel when we
refer to Voronoi diagrams we refer to simple Voronoi
diagrams.

2 Adapting triangulated Delaunay graphs

In many applications we are not really interested in
computing the Voronoi diagram itself, but rather its
dual graph, called the Delaunay graph. In general
the Delaunay graph is a planar graph, each face of
which consists of at least three edges. Under the non-
degeneracy assumption that no point in the plane
is equidistant to more than three sites, the Delau-
nay graph is a planar graph with triangular faces.
In certain cases this graph can actually be embed-
ded with straight line segments in which case we talk
about a triangulation (e.g., the Euclidean Voronoi di-
agram/Delaunay triangulation of points, or the power
diagram/regular triangulation of a set of circles).
Graphs of non-constant non-uniform face complexity
can be undesirable in many applications, so we typi-
cally end up triangulating the non-triangular faces of
the Delaunay graph.

Choosing between computing the Voronoi diagram
or the (triangulated) Delaunay graph is a major de-
cision while implementing an algorithm. It heavily
affects the design and choice of the different data
structures involved. Although in theory the two ap-
proaches are entirely equivalent, it is not so straight-
forward to go from one representation to the other.

229

22nd European Workshop on Computational Geometry, 2006

The objective for our adaptor is to provide a generic
way of going from triangulated Delaunay graphs to
planar subdivisions represented through a DCEL data
structure. Although the look and feel is that of a
DCEL data structure, internally we keep the graph
data structure representing triangular graphs.

The adaptation might seem straightforward at a
first glance, and this is true if our data do not contain
degenerate configurations. The situation becomes
complicated whenever we want to treat the artifacts
introduced in our representation due to these degen-
erate configurations. Suppose for example that we
have a set of sites that contains subsets of sites in
degenerate positions. The dual of the computed tri-
angulated Delaunay graph is a Voronoi diagram that
has all its vertices of degree 3, and for that purpose
we are going to call it a degree-3 Voronoi diagram
in order to distinguish it from the true Voronoi dia-
gram of the input sites. A degree-3 Voronoi diagram
can have degenerate features, namely Voronoi edges
of zero length, and/or Voronoi faces of zero area, and
do not correspond to the true geometry of the Voronoi
diagram.

The manner that we treat such issues is by defining
an adaptation policy. The adaptation policy is respon-
sible for determining which features in the degree-3
Voronoi diagram are to be rejected and which not.
The policy to be used can vary depending on the
application or the intended usage of the resulting
Voronoi diagram. What we care about is that firstly
the policy itself is consistent and, secondly, that the
adaptation is also done in a consistent manner. The
latter is the responsibility of the adaptor we provide,
whereas the former is the responsibility of the imple-
mentor of a policy. We currently provide two types of
adaptation policies, which are discussed in Section 5.

Delaunay graphs can be mutable or non-mutable.
By mutable we mean that sites can be inserted or re-
moved at any time, in an entirely on-line fashion. By
non-mutable we mean that once the Delaunay graph
has been created, no changes, with respect to the set
of sites defining it, are allowed. If the Delaunay graph
is a non-mutable one, then the Voronoi diagram adap-
tor is a non-mutable adaptor as well. If the Delaunay
graph is mutable then the question of whether the
Voronoi diagram adaptor is also mutable is slightly
more complex to answer. In Section 6 we discuss the
issue in detail.

3 Software design

The class Voronoi_diagram_2<DG,AT,AP> imple-
ments our generic adaptor. It is parametrized by
three template parameters which are required to be
models of corresponding concepts (see Fig. 1). The
first template parameter must be a model of the
DelaunayGraph_2 concept, which corresponds to the

interface required from a class representing a De-
launay graph. Currently, all classes of Cgal that
represent Delaunay graphs are models of this con-
cept, namely, Delaunay triangulations, regular trian-
gulations, Apollonius graphs and segment Delaunay
graphs [1]. The second template parameter must be
a model of the AdaptationTraits_2 concept, which
is responsible for accessing the geometric information
needed from the specific Delaunay graph in order to
perform the adaptation. We discuss this concept in
detail in Section 4. Finally, the third template pa-
rameter must be model of the AdaptationPolicy_2

concept, which refers to the policy used to perform
the adaptation. This concept is discussed in detail in
Section 5.

The Voronoi_diagram_2<DG,AT,AP> class has
been intentionally designed to provide an interface
similar to Cgal’s arrangements: Voronoi diagrams
are special cases of arrangements after all. The inter-
faces of the two classes, however, could not be identi-
cal. The reason is that arrangements in Cgal do not
yet support more than one unbounded faces, or equiv-
alently, cannot handle unbounded curves. On the con-
trary, a Voronoi diagram defined over at least two
generating sites, has at least two unbounded faces.

On a more technical level, the
Voronoi_diagram_2<DG,AT,AP> class imitates
the representation of the Voronoi diagram (seen as a
planar subdivision) by a DCEL (Doubly Connected
Edge List) data structure. We have vertices (the
Voronoi vertices), halfedges (oriented versions of
the Voronoi edges) and faces (the Voronoi cells).
We can perform all standard operations of the
DCEL data structure: go from a halfedge to its
next and previous in the face; go from one face to
an adjacent one through a halfedge and its twin
(opposite) halfedge; walk around the boundary of a
face; enumerate/traverse the halfedges incident to a
vertex from a halfedge, access the adjacent face; from
a face, access an adjacent halfedge; from a halfedge,
access its source and target vertices; from a vertex,
access an incident halfedge.

In addition to the above possibilities for traversal,
we can also traverse the following features through
iterators: the vertices of the Voronoi diagram; the
edges or halfedges of the Voronoi diagram; the faces of
the Voronoi diagram; the bounded/unbounded faces
of the Voronoi diagram; the bounded/unbounded
halfedges of the Voronoi diagram; the sites defining
the Voronoi diagram.

Finally, depending on the adaptation traits passed
to the Voronoi diagram adaptor, we can perform point
location queries, namely given a point p we can de-
termine the feature of the Voronoi diagram (vertex,
edge, face) on which p lies.

230

EWCG 2006, Delphi, March 27–29, 2006

Vertex_handle incident_vertices(Vertex_handle)

Is template parameter of adaptor

model

conceptIs model of

bool is_infinite(Face_handle)
bool is_infinite(Vertex_handle)
int dimension()

DelaunayGraph_2

...

Finite_faces_iterator finite_faces_end()
Finite_faces_iterator finite_faces_begin()

Types:

Geom_traits
size_type

Edge
Vertex_handle
Face_handle

Vertex_circulator
Face_circulator
Edge_circulator

All_edges_iterator
All_vertices_iterator
All_faces_iterator

...

Access methods:
size_type number_of_vertices()
size_type number_of_faces()
Face_handle infinite_face()
Vertex_handle infinite_vertex()
Vertex_handle finite_vertex()

All_faces_iterator all_faces_begin()
All_faces_iterator all_faces_end()

C
ac

hi
ng

de
ge

ne
ra

cy
re

m
ov

al

Finite_edges_iterator
Finite_faces_iterator
Finite_edges_iterator

...

po
li

ci
es

D
eg

en
er

ac
y

re
m

ov
al

po
li

ci
es

Identity policy

Halfedge_around_vertex_circulator

Segment_Delaunay_graph_degeneracy_removal_policy_2<SDG2>

Apollonius_graph_degeneracy_removal_policy_2<AG2>

Delaunay_triangulation_degeneracy_removal_policy_2<DT2>

Regular_triangulation_degeneracy_removal_2<RT2>

Segment_Delaunay_graph_caching_degeneracy_removal_policy_2<SDG2>

Apollonius_graph_caching_degeneracy_removal_policy_2<AG2>

Delaunay_triangulation_caching_degeneracy_removal_policy_2<DT2>

Regular_triangulation_caching_degeneracy_removal_2<RT2>

Segment_Delaunay_graph_2<Gt,DS>

Apollonius_graph_2<Gt,Agds>

Delaunay_triangulation_2<Gt,TDS>

Regular_triangulation_2<Gt,TDS>

Types:
Site_2
Delaunay_graph
Delaunay_vertex_handle
Delaunay_face_handle
Delaunay_edge
Edge_rejector
Face_rejector
Has_inserter
Site_inserter

Access methods:
Edge_rejector edge_rejector_object()
...

AdaptationPolicy_2

Point_2

Types:

Site_2
Locate_result
size_type
Site_iterator Vertex_iterator

Face_iterator

Halfedge_iterator

Vertex_handle
Halfedge_handle

Face_handle

Unbounded_hafledges_iterator
Bounded_halfedges_iterator
Unbounded_faces_iterator
Bounded_faces_iterator

Access methods:
Delaunay_graph dual()
size_type number_of_vertices()
size_type number_of_faces()
size_type number_of_halfedges()
size_type number_of_connected_components()
Face_handle unbounded_face()
Face_handle bounded_face()
Halfedge_handle unbounded_halfedge()
Halfedge_handle bounded_halfedge()
Halfedge_iterator halfedges_begin()
Halfedge_iterator halfedges_end()
Face_iterator faces_begin()
Face_iterator faces_end()
Ccb_halfedge_circulator ccb_halfedges(Face_handle)
...

Insertion:
Face_handle insert(Site_2)
size_type insert(Iterator, Iterator)

Queries:
Locate_result locate(Point_2)

Ccb_halfedge_circulator

...

Voronoi_diagram_2<DG,AT,AP>

...

Delaunay_graph
Site_2

Delaunay_face_handle
Delaunay_vertex_handle
Delaunay_edge
Access_site_2
Construct_Voronoi_point_2
Has_nearest_site_2
Nearest_site_2

Access_site_2 access_site_2_object()
Access methods:

...

Identity_policy_2<DG,VT>

AdaptationTraits_2

Point_2

Regular_triangulation_adaptation_traits_2<RT2>

Delaunay_triangulation_adaptation_traits_2<DT2>

Apollonius_graph_adaptation_traits_2<AG2>

Segment_Delaunay_graph_adaptation_traits_2<SDG2>

Types:

Figure 1: The design of the Voronoi diagram adaptor, and the relations between the various concepts, their
models and the adaptor.

4 The adaptation traits

The AdaptationTraits_2 concept defines the types
and functors required by our adaptor in order to ac-
cess geometric information from the Delaunay graph.
In particular, it defines the type of the generating
sites, and provides functors for accessing these sites
in the Delaunay graph as well as constructing Voronoi
vertices given their dual triangular faces in the Delau-
nay graph.

Finally, it defines a tag that indicates whether near-
est site queries are to be supported by the Voronoi di-
agram adaptor. If such queries are to be supported, a
corresponding functor is also required. Given a query
point, the nearest site functor should return infor-
mation related to how many and which sites of the
Voronoi diagram are at equal and minimal distance
from the query point. This way of abstracting the
point location mechanism allows for multiple differ-
ent point location strategies, which are passed to the
Voronoi diagram adaptor through different models of
the AdaptationTraits_2 concept. The point loca-
tion queries of the Voronoi_diagram_2<DG,AT,AP>

class uses internally this nearest site query functor.

Along with our adaptor we provide four adapta-
tion traits classes, all of which support nearest site
queries. These four classes serve as adaptation traits
for Cgal’s Apollonius graphs, Delaunay and regular
triangulations and segment Delaunay graphs, respec-
tively.

5 The adaptation policy

When we perform the adaptation of a triangulated
Delaunay graph to a Voronoi diagram, a question that
arises is whether we want to eliminate certain features
of the Delaunay graph when we construct its Voronoi
diagram representation. We resolve such issues, in
a generic way, via the introduction of an adaptation
policy. The adaptation policy is responsible for de-
termining which features in the degree-3 Voronoi dia-
gram are to be rejected and which not. The policy to
be used can vary depending on the application or the
intended usage of the resulting Voronoi diagram.

The concept AdaptationPolicy_2 defines the re-
quirements on the predicate functors that determine
whether a feature of the triangulated Delaunay graph
should be rejected or not. More specifically it defines
an Edge_rejector and a Face_rejector functor that
answer the question: “should this edge (face) of the
Voronoi diagram be rejected?”.

We have implemented two types of policies that
provide two different ways for answering the ques-
tion of which features of the Voronoi diagram to
keep and which to discard. The first one is
called the identity policy and corresponds to the
Identity_policy_2<DG,VT> class. This policy is in
some sense the simplest possible one, since it does
not reject any feature of the Delaunay graph. The
Voronoi diagram provided by the adaptor is the true
dual (from the graph-theoretical point of view) of the
triangulated Delaunay graph adapted.

231

22nd European Workshop on Computational Geometry, 2006

The second type of policy we provide is called de-
generacy removal policy. If the set of sites defin-
ing the triangulated Delaunay graph contains sub-
sets of sites in degenerate configurations, the graph-
theoretical dual of the triangulated Delaunay graph
has edges and potentially faces that are geometrically
degenerate. By that we mean that the dual of the tri-
angulated Delaunay graph can have Voronoi edges of
zero length or Voronoi faces/cells of zero area. Such
features may not be desirable, in which case we would
like to eliminate them. The degeneracy removal poli-
cies eliminate exactly these features. Along with our
Voronoi diagram adaptor we provide four degeneracy
removal policies, namely for Apollonius graphs, De-
launay triangulations, regular triangulations and seg-
ment Delaunay graphs.

A variation of the degeneracy removal policies are
the caching degeneracy removal policies. In these poli-
cies we cache the results of the edge and face rejectors.
Such policies really pay off when we have a lot of de-
generate data in our input set of sites. This is due
to the fact that detecting whether a Voronoi edge or
a Voronoi face is degenerate implies computing the
outcome of a predicate in a possibly degenerate or
near degenerate configuration, which is typically very
costly (compared to computing the same predicate in
a generic configuration). We provide four caching de-
generacy removal policies, one per degeneracy removal
policy mentioned above.

6 Mutable vs. non-mutable policies

In addition to the edge and face rejectors the adapta-
tion policy defines a boolean tag, the Has_inserter

tag. Semantically, this tag determines if the adaptor is
allowed to insert sites in an on-line fashion (on-line re-
movals are not yet supported). In the former case, i.e.,
when on-line site insertions are allowed, an additional
functor is required, the Site_inserter functor. This
functor takes as arguments a reference to a Delaunay
graph and a site, and inserts the site in the Delau-
nay graph. Upon successful insertion, a handle to the
vertex representing the site in the Delaunay graph is
returned. In our discussion of the adaptation policies,
we did not indicate the value of the Has_inserter

tag for the degeneracy removal and caching degener-
acy removal policies. The issue is discussed in detail
in the sequel.

In Section 2 we raised the question whether the
adaptor is a mutable or non-mutable one, in the sense
of whether we can add/remove sites in an on-line fash-
ion. The answer to this question depends on: (1)
whether the Delaunay graph adapted allows for on-
line insertions/removals and (2) whether the associ-
ated adaptation policy maintains a state and whether
this state is easily maintainable when we want to al-
low for on-line modifications.

As we mentioned above, the way we indicate
if we allow on-line insertions of sites is via the
Has_inserter tag. A true value indicates that
our adaptation policy allows for on-line insertions,
whereas a false value indicates the opposite. Note
that these values do not indicate if the Delaunay
graph supports on-line insertions, but rather whether
the Voronoi diagram adaptor should be able to per-
form on-line insertions or not. This delicate point will
be become clearer below.

If the Delaunay graph is non-mutable, the Voronoi
diagram adaptor cannot perform on-line insertions of
sites anyway. In this case not only degeneracy removal
policies, but rather every single adaptation policy for
adapting the Delaunay graph in question should have
the Has_inserter tag set to true.

If the Delaunay graph is mutable we can choose
between two types of adaptation policies, those that
allow these on-line insertions and those that do not.
At a first glance it may seem excessive to restrict ex-
isting functionality. There are situations, however,
where such a choice is necessary. Consider a caching
degeneracy removal policy. If we do not allow for on-
line insertions then the cached quantities are always
valid since the Voronoi diagram never changes. If we
allow for on-line insertions the Voronoi diagram can
change, which implies that the results of the edge and
face degeneracy testers that we have been cached are
no longer valid or relevant. In these cases, we need to
update the cached values, and ideally we would like
to do this in an efficient manner.

For our caching degeneracy removal policies, our
choice was made on the grounds of whether we can
update the cached results efficiently when insertions
are performed. For Cgal’s Apollonius graphs, De-
launay triangulation and regular triangulations it is
possible to ask what are the edges and faces of the De-
launay graph that are to be destroyed when a query
site is inserted. This is done via the get_conflicts

method provided by these classes. Using the outcome
of the get_conflicts method the site inserter can
first update the cached results (i.e., indicate which
are invalidated) and then perform the actual inser-
tion. Such a method does not yet exist for segment
Delaunay graphs. We have thus chosen to support on-
line insertions for all non-caching degeneracy removal
policies, i.e., the caching degeneracy removal policy
for segment Delaunay graphs does not support on-line
insertions, whereas the remaining three caching de-
generacy removal policies support on-line insertions.

References

[1] The Cgal homepage. http://www.cgal.org/.

[2] R. Klein. Concrete and Abstract Voronoi Diagrams,
volume 400 of Lecture Notes Comput. Sci. Springer-
Verlag, 1989.

232

EWCG 2006, Delphi, March 27–29, 2006

Author Index

Abam, Mohammad Ali . 55
Abellanas, Manuel . 79
Ackerman, Eyal . 207
Ahn, Hee-Kap .173
Aichholzer, Oswin . 43, 71
Alboul, Lyuba . 133
Aloupis, Greg .1, 67
Alt, Helmut . 107
Andersson, Mattias . 121
Aronov, Boris . 21
Atienza, Nieves .79
Aurenhammer, Franz . 71

Benkert, Marc . 141
Blunck, Henrik . 177, 181
Bonnington, C. Paul . 91
Borgelt, Christian . 5
Brink, Willie . 133
Buchin, Kevin . 103, 207
Buchin, Maike . 103

Cardinal, Jean . 1, 149
Chambers, Erin W. 95
Chatterjee, Samidh . 47
Chazelle, Bernard . 119
Cheong, Otfried . 87, 173
Colin de Verdière, Éric . 95
Coll, Narćıs . 129
Collette, Sébastien . 1
Cortés, Carmen . 79, 185

Dı́az-Báñez, José Miguel . 185
de Berg, Mark . 21, 55, 173
de Castro, Natalia . 79
Di Giacomo, Emilio . 203
Diez, Yago . 115
Dimitrov, Darko . 193
Dodgson, Neil A. 217
Drysdale, R. L. Scot .25

Efrat, Alon .111
Emiris, Ioannis Z. 165, 225
Engels, Birgit . 157
Erickson, Jeff .95
Erlebach, Thomas . 137
Ezra, Esther . 111

Feito, Francisco . 161
Fragoudakis, Christodoulos . 165
Fukuda, Komei .197

Garćıa-López, Jesús . 51
Garrido, Maŕıa Angeles .79
Georgakopoulos, George . 33
Gerdjikov, Stefan .13

Goaoc, Xavier . 87
Grantson, Magdalene . 5, 145
Gray, Chris . 21
Grima, Clara Isabel . 79
Grüne, Ansgar . 39
Gudmundsson, Joachim 121, 141
Guerrieri, Marité . 129

Habert, Luc . 211
Hagerup, Torben . 137
Haverkort, Herman .173
Held, Martin . 189
Hernández, Gregorio . 79
Holmsen, Andreas . 87
Huemer, Clemens . 71, 75, 83
Hurtado, Ferran . 75

Iacono, John . 1
Imai, Keiko . 125

Jansen, Klaus . 137

Kamali Sarvestani, Sanaz .39
Kamphans, Tom . 157
Kappes, Sarah . 83
Karavelas, Menelaos I. 229
Knauer, Christian 141, 193, 207
Kolingerová, Ivana . 221
Kriegel, Klaus .193

Lafreniere, Benjamin . 47
Langerman, Stefan . 1, 149
Lazarus, Francis . 95
Lenz, Tobias . 29
Levcopoulos, Christos 5, 121, 145
Liotta, Giuseppe . 203

Márquez, Alberto . 79
Markou, Euripides . 165
Meijer, Henk . 67
Minzlaff, Moritz .137
Moet, Esther . 141, 169
Moreno, Auxiliadora . 79
Mukhopadhyay, Asish . 47

Nakamoto, Atsuhiro . 91
Nicolás, Carlos M. .51

Oda, Yoshiaki . 215
Ohba, Kyoji . 91
Orden, David . 43
Ortega, Lidia . 161
Ota, Katsuhiro . 215
Overmars, Mark .59

Panagiotakis, Costas . 33

233

22nd European Workshop on Computational Geometry, 2006

Petitjean, Sylvain . 87
Pfeifle, Julian . 75
Pocchiola, Michel . 211
Poon, Sheung-Hung . 55, 63, 99
Portillo, José Ramón . 79

Ramos, Pedro A. 43
Reyes, Pedro . 79
Rodrigues, Marcos . 133
Rote, Günter . 25, 193, 207
Rueda, Antonio J. .161

Scharf, Ludmila . 107
Scholz, Sven . 107
Schulz, André . 17
Seidel, Raimund . 37
Sellarès, J. Antoni . 115, 129
Sharir, Micha . 111
Smith, Julian M. 217
Speckmann, Bettina . 55
Spielberger, Christian . 189
Sturm, Astrid . 25

Teillaud, Monique . 201
Thite, Shripad . 63, 99
Toma, Laura . 173
Trotta, Francesco . 203
Tsigaridas, Elias P. .225
Tziritas, George . 33
Tzoumas, George M. 225

Uno, Takeaki .197
Urrutia, Jorge .185

Vahrenhold, Jan . 177, 181
Valenzuela, Jesús . 79
van den Berg, Jur . 59
van der Stappen, Frank169, 173
van Kreveld, Marc . 169
van Oostrum, René . 141
Villar, Maŕıa Trinidad . 79
Vogtenhuber, Birgit . 71

Wenk, Carola . 103
Whittlesey, Kim . 95
Wolff, Alexander .13, 137, 141
Wulff-Nilsen, Christian . 153

Yokosuka, Yusuke . 125

234

