
supported by

Collection of Abstracts

WC

Z
A

G
R

E

EWCG’07 March 19−21 2007, Graz, Austria

ew
cg

07
.tu

gr
az

.a
t

Collection of Abstracts of the
23rd European Workshop on Computational Geometry
Technische Universität Graz, Austria
March 19–21, 2007

For information about obtaining copies of this volume contact

Oswin Aichholzer
Institute for Software Technology
Graz University of Technology
Inffeldgasse 16b/II
8010 Graz
Austria
oaich@ist.tugraz.at

ISBN: 978-3-902465-62-7

Verlag der Technischen Universität Graz
www.ub.tugraz.at/Verlag

Bibliographic information published by Die Deutsche Bibliothek. Die
Deutsche Bibliothek lists this publication in the Deutsche Nationalbiblio-
graphie, detailed bibliographic data is available at http://dnb.ddb.de.

Editors:
Oswin Aichholzer and Thomas Hackl

Compilation copyright c©2007 by Oswin Aichholzer.
Copyrights of individual papers retained by the authors.
Workshop logo c©2007 by Oswin Aichholzer and Thomas Hackl.

Printed in Austria by:
Druck- und Kopierzentrum der Technischen Universität Graz

EWCG 2007, Graz, March 19–21, 2007

Preface

The 23rd European Workshop on Computational Geometry (EWCG’07) was held at the
University of Technology in Graz (Austria) on March 19th − 21st, 2007. More information about the
workshop can be found at http://ewcg07.tugraz.at. This collection of extended abstracts contains
the 60 scientific contributions as well as three invited talks presented at the workshop. The submission
record of over 70 abstracts from more than 20 different countries, covering a wide range of topics,
shows that Computational Geometry is a lively and still growing research field in Europe.
We would like to thank all the authors for submitting papers and presenting their results at the
workshop. We are especially grateful to our keynote speakers Bernard Chazelle, Erik Demaine, and
Herbert Edelsbrunner for accepting our invitation. Special thanks go to Bettina Speckmann for
providing us with the framework of the conference web page and specific LATEX-classes.
The collection of abstracts at hand will also be available electronically from the workshop’s web portal
at http://ewcg07.tugraz.at/EuroCG2007Abstracts.pdf. Following the tradition of the workshop,
many contributions present ongoing research, and it is expected that most of them will appear in a
more complete version in scientific journals. Selected papers from the workshop will be invited to
a special issue of “Computational Geometry: Theory and Applications”. We thank the co-editors
in-chief, Kurt Mehlhorn and Jörg Rüdiger Sack, for their cooperation.
Finally, we are grateful to Graz University of Technology for providing the necessary infrastructure,
and to our sponsors for their support: Stadt Graz - Wissenschaft, Stadt Graz - Bürgermeister Siegfried
Nagl, Das Land Steiermark - Wissenschaft, Das Land Steiermark - Landeshauptmann Franz Voves,
Österreichische Computer Gesellschaft, IBM - Geschäftsstelle Graz.

Oswin Aichholzer and Thomas Hackl (Editors)

Program Committee

Oswin Aichholzer
Franz Aurenhammer
Thomas Hackl
Hannes Krasser

Organizing Committee

Oswin Aichholzer
Thomas Hackl
Bernhard Kornberger
Petra Pichler
Birgit Vogtenhuber

1st EWCG 1983: Zürich, Switzerland 9th EWCG 1993: Hagen, Germany 17th EWCG 2001: Berlin, Germany
2nd EWCG 1984: Bern, Switzerland 10th EWCG 1994: Santander, Spain 18th EWCG 2002: Warsaw, Poland
3rd EWCG 1985: Karlsruhe, Germany 11th EWCG 1995: Linz, Austria 19th EWCG 2003: Bonn, Germany
4th EWCG 1988: Würzburg, Germany 12th EWCG 1996: Münster, Germany 20th EWCG 2004: Seville, Spain
5th EWCG 1989: Freiburg, Germany 13th EWCG 1997: Würzburg, Germany 21st EWCG 2005: Eindhoven, The Netherlands
6th EWCG 1990: Siegen, Germany 14th EWCG 1998: Barcelona, Spain 22nd EWCG 2006: Delphi, Greece
7th EWCG 1991: Bern, Switzerland 15th EWCG 1999: Antibes, France 23rd EWCG 2007: Graz, Austria
8th EWCG 1992: Utrecht, The Netherlands 16th EWCG 2000: Eilat, Israel 24th EWCG 2008: Nancy, France

More information about previous workshops can be found at http://www.eurocg.org.

iii

23rd European Workshop on Computational Geometry, 2007

iv

EWCG 2007, Graz, March 19–21, 2007

Table of Contents

Monday, 19 March 2007

9:15 – 10:00 Invited Talk

Introduction to persistent homology 1
Herbert Edelsbrunner

10:30 – 11:30 Session 1

Unfolding Lattice Polygons on Some Lattice Polyhedra 2
Sheung-Hung Poon

Morphing Polygonal Lines: A Step Towards Continuous Generalization 6
Damian Merrick, Martin Nöllenburg, Alexander Wolff, Marc Benkert

Deflating The Pentagon 10
Erik D. Demaine, Martin L. Demaine, Diane L. Souvaine, Perouz Taslakian

Wrapping the Mozartkugel 14
Erik D. Demaine, Martin L. Demaine, John Iacono, Stefan Langerman

11:45 – 12:45 Session 2

Minimum-Dilation Tour is NP-hard 18
Panos Giannopoulos, Christian Knauer, Dániel Marx

Existence of Simple Tours of Imprecise Points 22
Maarten Löffler

Convex Approximation by Spherical Patches 26
Kevin Buchin, Simon Plantinga, Günter Rote, Astrid Sturm, Gert Vegter

Guarding Rectangular Partitions 30
Yefim Dinitz, Matthew J. Katz, Roi’ Krakovski

14:15 – 15:45 Session 3

Carpenter’s Rule Packings — A Lower Bound 34
Oliver Klein, Tobias Lenz

On the Exact Maximum Complexity of Minkowski Sums of Convex Polyhedra 38
Efi Fogel, Dan Halperin, Christophe Weibel

Covering points by axis parallel lines 42
Daya Ram Gaur, Binay Bhattacharya

Inflating the Cube by Shrinking 46
Kevin Buchin, Igor Pak, André Schulz

Hamiltonian Tetrahedralizations with Steiner Points 50
Francisco Escalona, Ruy Fabila-Monroy, Jorge Urrutia

A conjecture about Minkowski additions of convex polytopes 54
Komei Fukuda, Christophe Weibel

v

23rd European Workshop on Computational Geometry, 2007

16:15 – 17:45 Session 4

Between Umbra and Penumbra 57
Julien Demouth, Olivier Devillers, Hazel Everett, Sylvain Lazard, Raimund Seidel

Good Θ-illumination of Points 61
Manuel Abellanas, Antonio Bajuelos, Inês Matos

Good Illumination Maps 65
Narćıs Coll, Marta Fort, Narćıs Madern, J. Antoni Sellarès

StrSort Algorithms for Geometric Problems 69
Christiane Lammersen, Christian Sohler

I/O-Efficient Map Overlay and Point Location in Low-Density Subdivisions 73
Mark de Berg, Herman Haverkort, Shripad Thite, Laura Toma

Streaming Algorithms for Line Simplification under the Fréchet Distance 77
Mohammad Ali Abam, Mark de Berg, Peter Hachenberger, Alireza Zarei

Tuesday, 20 March 2007

9:00 – 9:45 Invited Talk

Computational Geometry through the Information Lens 81
Erik Demaine

10:00 – 11:00 Session 5

Smoothed Analysis of Probabilistic Roadmaps 82
Siddhartha Chaudhuri, Vladlen Koltun

Polygon Exploration with Discrete Vision 86
Sándor P. Fekete, Christiane Schmidt

Leaving an Unknown Maze with One-Way Roads 90
Bernd Brüggemann, Tom Kamphans, Elmar Langetepe

A Simple Solution To Two-Guard Street Search Problem 94
John Z. Zhang

11:30 – 13:00 Session 6

Maximizing Maximal Angles for Plane Straight Line Graphs 98
Oswin Aichholzer, Thomas Hackl, Michael Hoffmann, Clemens Huemer,
Francisco Santos, Bettina Speckmann, Birgit Vogtenhuber

Triple-loop networks with an arbitrarily big number of associated minimum
distance diagrams 102
Pilar Sabariego, Francisco Santos

Online conflict-free coloring for geometric hypergraphs 106
Amotz Bar-Noy, Panagiotis Cheilaris, Svetlana Olonetsky, Shakhar Smorodinsky

On the Chromatic Numbers of Some Flip Graphs 110
Ruy Fabila-Monroy, David Flores Peñaloza, Clemens Huemer, Ferran Hurtado,
Jorge Urrutia, David R. Wood

vi

EWCG 2007, Graz, March 19–21, 2007

Computing multiple convex hulls of a simple polygonal chain in linear time 114
Lilian Buzer

Cluster registration in 2D geometric constraint solving 118
David Podgorelec, Borut Žalik

14:30 – 16:00 Session 7

New Upper Bounds on the Quality of the PCA Bounding Boxes in R2 and R3 122
Darko Dimitrov, Christian Knauer, Klaus Kriegel, Günter Rote

Kinetic kd-Trees 126
Mohammad Ali Abam, Mark de Berg, Bettina Speckmann

Approximating Boundary-Triangulated Objects with Balls 130
Oswin Aichholzer, Franz Aurenhammer, Thomas Hackl, Bernhard Kornberger,
Martin Peternell, Helmut Pottmann

Correcting Distortion of Laser-Sintered Parts by Means of a Surface-Based Inverse
Deformation Algorithm: An Experimental Study 134
Christian Pfligersdorffer, Martin Held

Complexity of Approximation by Conic Splines 138
Sylvain Petitjean, Sunayana Ghosh, Gert Vegter

Automatic Local Remeshing of Unstructured Quadrilateral Meshes in Problems with
Large Deformations 142
Alexander V. Skovpen, Vladimir A. Bychenkov, Irina I. Kuznetsova

16:30 – 18:00 Session 8

Edges and Switches, Tunnels and Bridges 146
David Eppstein, Marc van Kreveld, Elena Mumford, Bettina Speckmann

Rendering the Flow of Comparabilities in Ordered Sets 150
Guy-Vincent Jourdan, Livaniaina Rakotomalala, Nejib Zaguia

An Algorithm for 3D-biplanar Graph Drawing 154
Meysam Tavassoli, Mohammad Ghodsi, Farnoosh Khodakarami, S. Mehdi Hashemi

A linear bound on the expected number of rectilinear full Steiner tree components
spanning a fixed number of terminals 158
Christian Wulff-Nilsen

Planar Bichromatic Minimum Spanning Trees 162
Magdalene G. Borgelt, Marc van Kreveld, Maarten Löffler, Jun Luo, Damian Merrick,
Rodrigo I. Silveira, Mostafa Vahedi

Transforming Spanning Trees: A Lower Bound 166
Kevin Buchin, Andreas Razen, Takeaki Uno, Uli Wagner

vii

23rd European Workshop on Computational Geometry, 2007

Wednesday, 21 March 2007

9:00 – 10:30 Session 9

How Difficult is it to Walk the Dog? 170
Kevin Buchin, Maike Buchin, Christian Knauer, Günter Rote, Carola Wenk

Small Manhattan Networks and Algorithmic Applications for the Earth Mover’s Distance 174
Joachim Gudmundsson, Oliver Klein, Christian Knauer, Michiel Smid

Applying graphics hardware to achieve extremely fast geometric pattern matching in
low dimensional transformation space 178
Dror Aiger, Klara Kedem

Computing Geodesic Disks in a Simple Polygon 182
Magdalene G. Borgelt, Marc van Krevelt, Jun Luo

Generalized Source Shortest Paths on Polyhedral Surfaces 186
Marta Fort, J. Antoni Sellarès

Improved algorithms for length-minimal one-sided boundary labeling 190
Marc Benkert, Martin Nöllenburg

11:00 – 12:30 Session 10

Optimal Higher Order Delaunay Triangulations of Polygons 194
Rodrigo I. Silveira, Marc van Kreveld

Notes on the Dynamic Bichromatic All-Nearest-Neighbors Problem 198
Magdalene G. Borgelt, Christian Borgelt

Improving the Construction of the Visibility–Voronoi Diagram 202
Mojtaba Nouri Bygi, Mohammad Ghodsi

Polar Diagram with respect to a Near Pole 206
Bahram Sadeghi Bigham, Ali Mohades

Net-aware Critical Area extraction for VLSI opens via Voronoi diagrams 210
Evanthia Papadopoulou

Linear Axis Computation for Polygons with Holes 214
Vadim Trofimov, Kira Vyatkina

14:00 – 14:45 Invited Talk

Data-Powered Geometric Computing 218
Bernard Chazelle

viii

EWCG 2007, Graz, March 19–21, 2007

14:15 – 16:30 Session 11

Exact and efficient computations on circles in CGAL 219
Pedro M. M. de Castro, Sylvain Pion, Monique Teillaud

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces 223
Eric Berberich, Efi Fogel, Dan Halperin, Ron Wein

Efficient Spatial Indexes for Approximate Range Searching 227
Micha Streppel, Ke Yi

Exact Computation of Arrangements of Rotated Conics 231
Eric Berberich, Manuel Caroli, Nicola Wolpert

Computing Envelopes of Quadrics 235
Eric Berberich, Michal Meyerovitch

An Efficient Algorithm for the InCircle Predicate among Smooth Closed Curves 239
Ioannis Z. Emiris, George M. Tzoumas

ix

23rd European Workshop on Computational Geometry, 2007

x

EWCG 2007, Graz, March 19–21, 2007

Introduction to persistent homology

Herbert Edelsbrunner

Arts and Sciences Professor of Computer Science and Mathematics
Duke University,

Computer Science Department
Box 90129, Durham, NC 27708, USA

edels@cs.duke.edu

Persistent homology is an algebraic tool for measuring topological features of shapes and
functions. It casts the multi-scale organization principle we frequently observe in nature
into a mathematical formalism. This talk will introduce the basic concepts, present a
few applications, and survey extensions of the original concept motivated by applications.

1

23rd European Workshop on Computational Geometry, 2007

Unfolding Lattice Polygons on Some
Lattice Polyhedra∗

Sheung-Hung Poon†

Abstract

We consider the problem of unfolding lattice polygons
embedded on the surface of some classes of lattice
polyhedra. We show that an unknotted lattice poly-
gon embedded on a lattice orthotube or orthotree can
be convexified in O(n) moves and time, and a lat-
tice polygon embedded on a lattice Tower of Hanoi or
Manhattan Tower can be convexified in O(n2) moves
and time.

1 Introduction

Graph reconfiguration problems have wide applica-
tions in contexts including robotics, molecular con-
formation, animation, wire bending, rigidity and knot
theory. The motivation for reconfiguration problems
of lattice graphs arises in applications in molecular bi-
ology and robotics. For instance, the bonding-lengths
in molecules are often similar [8, 13, 14], as are the
segments of some types of robot arms.

A unit tree (resp. unit polygon) is a tree (resp. poly-
gon) containing only edges of unit length. An orthog-
onal tree (resp. orthogonal polygon) is a tree (resp.
polygon) containing only edges parallel to coordinate-
axes. A lattice tree (resp. lattice polygon) is a tree
(resp. polygon) containing only edges from a square
or cubic lattice. Note that a lattice tree or polygon is
basically a unit orthogonal tree or polygon. A lattice
polyhedron is a polyhedron whose surface is the union
of lattice faces from a cubic lattice. A graph is simple
if non-adjacent edges do not intersect. We consider
the problem about the reconfiguration of a simple
chain, polygon, or tree through a series of continuous
motions such that the lengths of all graph edges are
preserved and no edge crossings are allowed. A tree
can be straightened if all its edges can be aligned along
a common straight line such that each edge points
“away” from a designated root node. In particular, a
chain can be straightened if it can be stretched out to
lie on a straight line. A polygon can be convexfied if
it can be reconfigured to a convex polygon. We say
a chain or tree is locked if it cannot be straightened.

∗The author was supported by the Netherlands’ Orga-
nization for Scientific Research (NWO) under project no.
612.065.307.

†Department of Mathematics & Computer Science, Techni-
cal University of Eindhoven, spoon@win.tue.nl

We say a polygon is locked if it cannot be convexified.
We consider one move in the reconfiguration as a con-
tinuous monotonic change for the joint angle at some
vertex, or a continuous axial rotation of one of its an-
gle side around its another angle side in 3D, during
which no edge crossings occur.

In four dimensions or higher, a polygonal tree can
always be straightened, and a polygon can always be
convexified [9]. In two dimensions, a polygonal chain
can always be straightened and a polygon can always
be convexified [11, 17, 6]. However, there are some
trees in two dimensions that can lock [3, 10, 15]. In
three dimensions, even a 5-chain can lock [4]. Alt et
al. [2] showed that deciding the reconfigurability for
trees in two dimensions and for chains in three dimen-
sions is PSPACE-complete. However the problem of
deciding straightenability for trees in two dimensions
and for chains in three dimensions remains open. Due
to the complexity of the problems in two and three di-
mensions, some special classes of trees and polygons
have been considered. Cantarella and Johnston [7]
showed that a unit 5-chain in three dimensions can
always be straightened. Demaine et al. [12] even stud-
ied interlocked configurations of several short chains
in three dimensions. In particular, they showed that
two 3-chains cannot interlock, but three of them can.
They also showed that a 3-chain and a 4-chain can in-
terlock. Poon [15] showed that a unit tree of diameter
4 in two dimensions can always be straightened. In
their paper, they posed a challenging open question
whether a unit tree in either two or three dimensions
can always be straightened.

Biedl et al. [4] proved that an open chain on the
surface of a convex polyhedron can always be straight-
ened. In this paper, we show that an unknotted lattice
polygon embedded on a lattice orthotube, orthotree,
Tower of Hanoi, and Manhattan Tower can always be
convexified.

2 Preliminaries

A near-lattice edge is a unit-length edge within dis-
tance ε � 1 from some lattice edge. The particular
lattice edge is called the core edge of the correspond-
ing near-lattice edge. A core vertex is a lattice vertex
of some core edge. A near-lattice tree (resp. near-
lattice polygon) is a tree (resp. polygon) that contains

2

EWCG 2007, Graz, March 19–21, 2007

only near-lattice edges. Suppose P is a near-lattice
tree or polygon. The core of P , denoted by K(P), is
the union of core edges for all edges in P . A spring
in P is the set of edges in P converging to a common
lattice edge. A spring with only one edge is called a
singleton. A near-lattice edge or spring is called em-
bedded or lying on a lattice polyhedron if its core is
embedded on the lattice polyhedron.

3 Lattice Orthotube

A lattice orthotube is a lattice polyhedron made out
of boxes that are glued face-to-face such that its face-
to-face contact graph is a path or cycle. A lattice or-
thotube is called open if its face-to-face contact graph
is a path; otherwise it is called closed. In an open lat-
tice orthotube, the two blocks whose degrees in the
face-to-face contact graph are one are called the end
blocks of the given orthotube. An end face of an open
orthotube is a face of its end block such that it is op-
posite to the face which is the intersection of the end
block and the second last end block.

Remark that there are some orthogonal polygons
embedded on some orthogonal polyhedra that can
lock as shown in Figure 1(a), and there are some lat-
tice polygons embedded on some closed lattice ortho-
tubes can knot as shown in Figure 1(b). This moti-

(a) (b)

Figure 1: (a) A 3D locked orthogonal polygon. (b) A
3D knotted lattice polygon.

vates that we consider the lattice polygons embedded
on open lattice orthotubes, and the unknotted lattice
polygons embedded on closed lattice orthotubes.

3.1 Open Lattice Orthotube

In this subsection, we will show that lattice polygons
embedded on open lattice orthotubes can always be
convexified.

Consider a near-lattice polygon embedded on open
lattice orthotube. The end block of the orthotube
is called free if its end face does not contain any edge
from the core of the given embedded near-lattice poly-
gon. It is clear that the free end blocks of an open or-
thotube do not help in our unfolding process and can
be truncated away. We thus assume the end block
of any orthotube mentioned below is not free. Our
algorithm proceeds by folding up the polygon from
the non-free end blocks of the orthotube successively.
Suppose we are given a near-lattice polygon embed-
ded on a lattice orthotube at the beginning of each

folding step. We fold up the part of the given near-
lattice polygon lying on the end block onto the springs
of the second last end block using constant number of
moves. After one folding step, again we obtain back a
near-lattice polygon. We repeat this step until the re-
mained orthotube contains only one lattice cell. Now
it is clear that the near-lattice polygon embedded on
one lattice cell can be unfolded to a convex polygon
straightforwardly. We first need the following lemma
on how to perform a folding step. Then we summarize
our result in Theorem 2.

Lemma 1 Given a near-lattice polygon P embedded
on an open lattice orthotube Q such that both end
blocks of Q are not free, and Q contains more than
one lattice cells. Then the part of P lying on an end
block of Q can be folded onto some springs on the
second last end block so that the current end block
becomes free.

Proof. Suppose the end face of the orthotube Q is
facing to the right. We divide into three cases de-
pending on how many core edges of P lie on the end
face.

Case 1: The end face contains one core edge. Then
the end block can be folded up as shown in Figure 2.

Figure 2: Case 1 of folding up an end block.

Case 2: The end face contains two core edges. Then
for the two subcases in Figure 3(a) or (b), the end
block can be transformed into Case 1 as shown in
the figures; for the subcase in Figure 3(c), it can be
treated as two occurrences of Case 1. Consequently,
the resulting end block can be folded up by applying
once or twice the operation of Case 1.

(a) (b) (c)

Figure 3: Case 2 of folding up an end block.

Case 3: The end face contains three core edges.
Then the end block can be transformed into Case 1
as shown in Figure 4.

Note that for any of the operations above, only the
joint angles at the end vertices of the end edges of a
constant number of related springs are changed. Thus
folding up the end block takes a constant number of
moves and time. �

3

23rd European Workshop on Computational Geometry, 2007

Figure 4: Case 3 of folding up an end block.

Theorem 2 A lattice polygon embedded on an open
lattice orthotube can be convexified in O(n) moves
and time.

3.2 Closed Lattice Orthotube

Given an unknotted lattice polygon embedded on a
closed lattice orthotube. First it is clear that at any
cross section, the intersection of the given lattice poly-
gon and the cross-section cutting plane contains either
zero, two or four corner vertices. If there is a point
on lattice orthotube where the cross section does not
intersect the given lattice polygon, then after cutting
the closed orthotube open, we can use the algorithm
for open lattice orthotube to unfold the polygon. Oth-
erwise there is no such point where the cross section
does not intersect the given lattice polygon. Then it
is clear that there must exist some cross section at
some lattice points where all the four corner vertices
lie in the intersection of the given polygon and the
current cross-section cutting plane, and the structure
of its neighborhood on the polygon is in one of the
cases in Figure 5.

(a) (b) (c)

Figure 5: Cases for folding a closed lattice orthocube.

For case (a) in the figure, the closed orthocube can
still be cut along the cross section to obtain an open
lattice orthocube. In both cases (b) and (c), by succes-
sively applying the folding operation of Case 1 to fold
the end block of an open lattice orthocube, we can
transform them to case (a) by eliminating the long
U-turns. Therefore, we have the following theorem.

Theorem 3 An unknotted lattice polygon embedded
on a closed lattice orthotube can be convexified in
O(n) moves and time.

4 Lattice Orthotree

A lattice orthotree is a lattice polyhedron made out
of boxes that are glued face-to-face such that its face-
to-face contact graph is a tree. In a lattice orthotree,
those blocks whose degrees in the face-to-face contact
graph are one are called the end blocks of the given

orthotree. To convexify a lattice polygon embedded
on a lattice orthotree, the algorithm runs in the same
fashion as that for an open lattice orthotube. We fold
up the polygon from the end blocks successively.

Theorem 4 A lattice polygon embedded on a lattice
orthotree can be convexified in O(n) moves and time.

5 Lattice Towers

Let Zk be the plane z = k for k ≥ 0. A Manhattan
Tower Q is an orthogonal polyhedron such that

1. Q lies in the halfspace z ≥ 0 and its intersection
with Z0 is a simply connected orthogonal poly-
gon;

2. For j > k ≥ 0, Q∩Zj ⊂ Q∩Zk: the cross section
at a higher level is nested in that at a lower level.

A Tower of Hanoi Q is a Manhattan Tower such that
its intersection with Zk for k ≥ 0 is either empty or a
simply connected orthogonal polygon.

5.1 Lattice Tower of Hanoi

Given a lattice polygon embedded on a lattice Tower
of Hanoi. The overall intuition of the unfolding algo-
rithm is to press level by level vertically downwards
from the highest level. Let’s first consider the detail
for pressing the highest level L down to the second
highest level L′ under the condition that L′ is not
the lowest level. Notice that between L and L′, there
are vertically lattice polygon edges connecting them,
which we call legs. And we also call the end vertex of
the leg at L′ the foot of the leg. To press level L to
level L′, we press the maximal polygon path on level
L one by one onto the level L′. More precisely, each
maximal polygon path α on level L has two legs con-
necting to level L′. We will collapse one leg and pull
one edge of α towards one of the collapsed leg. On
the other end, the other leg is pulled to replace the
position of one end edge of α, and the end edge of α
is pulled to replace the position second last end edge
of α, and so on so forth. See the operation (a) in Fig-
ure 6. Remark that at the end of the pressing step, we

(a) (b)

L
L′

Figure 6: Pressing a path from level L down to L′.

don’t really press α down to the level L′; but we keep a
level higher but very close the level L′ to prevent edge
crossing with polygon edges in level L′. Later on, this
treatment also gives us some convenience to recog-
nize which springs are “inside” and which springs are

4

EWCG 2007, Graz, March 19–21, 2007

“outside” for those springs with the same core edges.
We then have the convention that the highest spring
is the “most inside”. After the pressing step, if the
core edge of some spring has degree one at its one end,
we need to collapse those dangling springs. See the
operation (b) in Figure 6. It is clear that this pressing
step takes at most O(n) moves and time. Notice that
each time we press a path down to one level lower,
two vertical legs are collapsed. There can be at most
O(n) vertical legs. All the pressing operations take
O(n2) moves and time.

After all the pressing steps, we obtain near-lattice
polyhedron of height one. At this stage, using a gen-
eralized end-block collapsing similar to what we did
for orthotubes and orthotrees, we can fold up the
current near-lattice polygon to become a near-lattice
unit square, which can then be convexified straightfor-
wardly. This end-block collapsing process can be re-
alized such that it takes O(n2) moves and time. How-
ever, its detail is eliminated in this abstract. Hence,
we have the following theorem.

Theorem 5 A lattice polygon embedded on a lattice
Tower of Hanoi can be convexified in O(n2) moves and
time.

5.2 Lattice Manhattan Tower

Given a lattice polygon embedded on a lattice Man-
hattan Tower. The algorithm is the same as that for
lattice Tower of Hanoi. The only difference is that
when we press the highest level L to the second high-
est level L′, we need to press several separate orthog-
onal polygonal regions on L instead of only one for
lattice Tower of Hanoi. Thus we have the following
theorem.

Theorem 6 A lattice polygon embedded on a lattice
Manhattan Tower can be convexified in O(n2) moves
and time.

6 Open Problems

We conjecture that a lattice polygon embedded on a
general lattice polyhedron can always be convexified.
The conjecture [16] that any unknotted lattice poly-
gon in 3D can always be convexified is still open.

References

[1] J. Alberto-Calvo, D. Krizanc, P. Morin, M. Soss, G.
Toussaint. Convexifying polygons with simple pro-
jections. Information Processing Letters, 80(2):81-86,
2001.

[2] H. Alt, C. Knauer, G. Rote, and S. Whitesides. The
Complexity of (Un)folding. In Proc. 19th ACM Sym-
posium on Computational Geometry (SOCG), 164–
170, 2003.

[3] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A.
Lubiw, J. O’Rourke, S. Robbins, I. Streinu, G. Tou-
ssaint, and S. Whitesides. A Note on Reconfigur-
ing Tree Linkages: Trees can Lock. Discrete Applied
Mathematics, volume 117, number 1-3, pages 293-
297, 2002.

[4] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A.
Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I.
Streinu, G. Toussaint, and S. Whitesides. Locked
and Unlocked Polygonal Chains in Three Dimen-
sions. Discrete & Computational Geometry, volume
26, number 3, pages 269-281, October 2001.

[5] T. Biedl, E. Demaine, M. Demaine, A. Lubiw, M.
Overmars, J. O’Rourke, S. Robbins, and S. White-
sides. Unfolding Some Classes of Orthogonal Polyhe-
dra. In Proc. of 10th Canadian Conference on Com-
putational Geometry (CCCG), 1998.

[6] J. Cantarella, E.D. Demaine, H. Iben, and J. O’Brien.
An Energy-Driven Approach to Linkage Unfolding. In
Proceedings of the 20th Annual ACM Symposium on
Computational Geometry (SoCG), 134–143, 2004.

[7] J. Cantarella and H. Johnston. Nontrivial embedding
of polygonal intervals and unknots in 3-space. J. Knot
Theory Ramifications, 7, 1027–1039, 1998.

[8] H.S. Chan and K.A. Dill. The protein folding prob-
lem. Physics Today, pages 24–32, February 1993.

[9] R. Cocan and J. O’Rourke. Polygonal Chains Can-
not Lock in 4D. Computational Geometry: Theory &
Applications, 20, 105–129, 2001.

[10] R. Connelly, E. Demaine, and G. Rote. Infinitesimally
Locked Self-Touching Linkages with Applications to
Locked Trees. In Physical Knots: Knotting, Linking,
and Folding of Geometric Objects in R3, edited by
J. Calvo, K. Millett, and E. Rawdon (editors), 2002,
pages 287–311, American Mathematical Society.

[11] R. Connelly, E.D. Demaine, and G. Rote. Straighten-
ing Polygonal Arcs and Convexifying Polygonal Cy-
cles. Discrete & Computational Geometry, volume 30,
number 2, 205–239, 2003.

[12] E. D. Demaine, S. Langerman, J. O’Rourke, and
J. Snoeyink. Interlocked Open Linkages with Few
Joints. In Proc. 18th Annual ACM Symposium on
Computational Geometry (SoCG), Barcelona, Spain,
June 5-7, pages 189–198, 2002.

[13] K.A. Dill. Dominant forces in protein folding. Bio-
chemistry, 29(31), 7133–7155, August 1990.

[14] B. Hayes. Prototeins. American Scientist, 86, 216–
221, 1998.

[15] S.-H. Poon. On Straightening Low-Diameter Unit
Trees. In Proc. 13th International Symposium on
Graph Drawing (GD), 519–521,2005.

[16] S.-H. Poon. On Unfolding Lattice Polygons/Trees
and Diameter-4 Trees. In Proc. 12th Annual Inter-
national Computing and Combinatorics Conference
(COCOON), 186–195, 2006.

[17] I. Streinu. A combinatorial approach for planar non-
colliding robot arm motion planning. In Proc. 41st
ACM Annual Symposium on Foundations of Com-
puter Science (FOCS), 443–453, 2000.

5

23rd European Workshop on Computational Geometry, 2007

Morphing Polygonal Lines: A Step Towards Continuous Generalization

Damian Merrick∗ Martin Nöllenburg† Alexander Wolff‡ Marc Benkert†

Abstract

We study the problem of morphing between two poly-
lines that represent a geographical feature generalized
at two different scales. Some cartographical general-
izations are not handled well by traditional morphing
algorithms, e.g., when three consecutive bends in a
river or road are generalized to two bends at a smaller
scale. We attempt to handle such cases by modeling
the problem as an optimal matching between charac-
teristic parts of each polyline. A dynamic program-
ming algorithm is presented that solves the match-
ing problem in O(nm) time, where n and m are the
respective number of characteristic parts of the two
polylines. We also show the results of applying this
algorithm on real road data.

1 Introduction

Visualization of geographic information in the form of
maps has been established for centuries. Depending
on the scale of the map the level of detail of displayed
objects must be adapted in a generalization process.
Be it done manually or (semi-)automatically, gener-
alization methods usually produce a map at a single
target scale. This is a well-studied field, surveyed, for
example, by Weibel et al. [12].

In current geographic information systems users
can interactively zoom in and out of the map, ide-
ally at arbitrary scales and with smooth, continuous
changes. However, current approaches are often char-
acterized by a fixed set of scales or by simply zoom-
ing graphically without modifying map objects. To
overcome these deficiencies continuous generalization
methods are needed.

This paper studies an algorithm for continuously
generalizing linear features like rivers or roads be-
tween their representations at two scales. Instead of
line-simplification methods with a single target scale,

∗School of Information Technologies, University of Syd-
ney and National ICT Australia (funded through the
Australian Government’s Backing Australia’s Ability initia-
tive, in part through the Australian Research Council),
dmerrick@it.usyd.edu.au

†Faculty of Informatics, Karlsruhe University, Ger-
many, {noelle,mbenkert}@iti.uka.de. Supported by grant
WO 758/4-2 of the German Research Foundation (DFG).

‡Department of Mathematics and Computing Science,
Technische Universiteit Eindhoven, The Netherlands,
http://www.win.tue.nl/∼awolff

we consider morphing between a source and a target
scale in a way that keeps the maps at intermediate
scales meaningful. Of specific interest are morphings
that can deal with a certain amount of exaggeration
and schematization such as reducing the number but
increasing the size of road serpentines at the smaller
scale. Our method first partitions the input poly-
line into characteristic segments and then defines dis-
tances between these segments. Based on those dis-
tances we compute an optimum morphing of the poly-
line segments at the two input scales using dynamic
programming. We have implemented a prototype of
the algorithm and compare its output with that of a
simple linear morph.

2 Related work

Cecconi and Galanda [3] study adaptive zooming for
web applications with a focus on the technical imple-
mentation. While maps can be produced at arbitrary
scales there is no smooth animation of the zooming. A
set of continuous generalization operators is presented
by van Kreveld [11], including two simple algorithms
for morphing a polyline to a straight-line segment.

Existing algorithms for the geometric problem of
finding an optimal intersection-free geodesic morph-
ing between two simple, non-intersecting polylines [2]
cannot be applied here because the two input poly-
lines intersect in general. Given the correspondence
between nodes of two plane graphs, Erten et al. [5]
and Surazhsky and Gotsman [10] compute trajecto-
ries for an intersection-free morphing using compat-
ible triangulations. In computer graphics, Cohen et
al. [4] match point pairs sampled uniformly along two
(or more) parametric freeform curves. They compute
an optimal correspondence of the points w.r.t. a sim-
ilarity measure based on the tangents of the curves.
The algorithm is similar to ours in that it also uses dy-
namic programming to optimize the matching, but it
does not take into account the characteristic points of
geographic polylines. Samoilov and Elber [9] extend
the method of Cohen et al. by eliminating possible
self-intersections during the morphing.

3 Model and algorithm

In this paper, we consider the problem of morphing
between two given polylines, each generalized at a dif-
ferent scale. Our algorithms to solve the problem can

6

EWCG 2007, Graz, March 19–21, 2007

be extended in a straightforward manner to finding a
series of morphs across many scales, by solving each
pair of polylines in the problem independently. The
same approach can be applied to two networks with
identical topology.

The problem of morphing between two polylines is
two-fold. Firstly, a correspondence must be found be-
tween points on the two lines. Secondly, trajectories
that connect pairs of corresponding points must be
specified. Here we focus on the correspondence prob-
lem and assume straight-line trajectories.

In addressing the correspondence problem, our goal
is to match parts of each polyline that have the same
semantics, e.g. represent the same series of hairpin
bends in a road at two levels of detail. We wish to
do this in a way that allows the mental map to be
retained as much as possible. We therefore want to
minimize the movement of points from one polyline to
another. To create a morph with these desired prop-
erties, we first detect characteristic points of a poly-
line (Section 3.1) and use these to find an optimum
correspondence (Section 3.2).

Formally, we are given two polylines f and g in the
plane R2. In the correspondence problem we need
to find two continuous, monotone parameterizations
α : [0, 1] → f and β : [0, 1] → g, such that α(0) and
β(0) map to the first points of f and g and α(1) and
β(1) map to the last points, respectively. These two
parameterizations induce the correspondence between
f and g: for each u ∈ [0, 1] the point α(u) is matched
with β(u).

3.1 Detection of characteristic points

In order to solve the correspondence problem, we first
need to divide each polyline into subpolylines to be
matched up. We do this by locating points on each
line that are considered to be characteristic of the line;
each of these characteristic points then defines the end
of one subpolyline and the start of another.

Previous work on generalization notes the impor-
tance of inflection points, bend points, and start and
end points in defining the character of a line [8]. To
find such points, we process each of the vertices in
a polyline in order, checking at each if the sign of
curvature has changed (an inflection point) or if the
vertex is a point of locally maximal curvature (a bend
point). We also apply thresholding and Gaussian fil-
tering techniques to minimize error on noisy or poorly
sampled polylines, as detailed in Algorithm 1. Gaus-
sian filtering is a method of smoothing curves often
used to assist in analyzing noisy curves; Lowe [7] gives
further details and an efficient algorithm.

Algorithm 1 requires O(|f | + n′) time and space,
where |f | is the number of vertices of the polyline f
and n′ is the number of sample points. All input pa-
rameters are user-defined. Their values influence the

Algorithm 1 Characteristic point detection
Input: Polyline f , number of sample points n′, Gaus-

sian smoothing factor σ, threshold angles θi, θb

and θc.
Output: Set of characteristic points C.
1: Resample f using n′ equally-spaced points to cre-

ate a new polyline f ′.
2: Apply a Gaussian filter (factor σ) to smooth f ′.
3: Mark inflection vertices with inflection angle ≥ θi.
4: Mark bend vertices with bend angle between ad-

jacent edges ≥ θb and change in curvature ≥ θc

from last point of locally minimal curvature.
5: Mark first and last vertices.
6: Proceed through the smoothed polyline f ′ and

store the distance of each marked vertex from the
start of f ′ as a percentage of the length of f ′.

7: Return set C of points at the stored percentage
distances along the original polyline f .

number of characteristic points that will be detected.

3.2 Finding an optimum correspondence

We detect the characteristic points of f and g inde-
pendently of each other. Assume that there are n + 1
such points on f and m + 1 points on g, which di-
vide the polylines into two sequences of subpolylines
(f1, . . . , fn) and (g1, . . . , gm). Next, we approach the
correspondence problem. Basically, there are five pos-
sibilities to match a subpolyline fi:

(a) fi is mapped to the last characteristic point glast
j

of a subpolyline gj (i.e., fi disappears),

(b) a subpolyline gj is mapped to the last point f last
i

of fi (i.e., gj disappears),

(c) fi is mapped to a subpolyline gj ,

(d) fi is mapped to a merged polyline gj...(j+k), and

(e) fi is part of a merged polyline f`...i...(`+k) that is
mapped to a subpolyline gj .

Clearly, the linear order of the subpolylines along f
and g has to be respected by the assignment.

Now assume that there is a morphing cost δ as-
sociated with the morph between two polylines. We
suggest a morphing distance in the next section, but
Algorithm 2 is independent of the concrete distance.
It is based on dynamic programming and computes
a minimum-cost correspondence. Algorithm 2 recur-
sively fills an n ×m table T , where the entry T [i, j]
stores the minimal cost of morphing f1...i to g1...j .
Consequently, we can obtain the optimum correspon-
dence from T [n, m].

The required storage space and running time of Al-
gorithm 2 is O(nm) provided that the look-back pa-
rameter K is constant. Otherwise the running time

7

23rd European Workshop on Computational Geometry, 2007

Algorithm 2 Optimum correspondence
Input: Polylines f = (f1, . . . , fn), g = (g1, . . . , gm);

distance matrix δ.
Output: Optimum correspondence for f and g.
1: T [0, 0] = 0
2: T [0, j] = T [0, j − 1] + δ(ffirst

1 , gj), j = 1 . . .m
3: T [i, 0] = T [i− 1, 0] + δ(fi, g

first
1), i = 1 . . . n

4: for i = 1 to n do
5: for j = 1 to m do
6: T [i, j] =

min

T [i− 1, j] + δ(fi, g
last
j)

T [i, j − 1] + δ(f last
i , gj)

T [i− 1, j − 1] + δ(fi, gj)
T [i− 1, j − k] + δ(fi, g(j−k+1)...j),

k = 2, . . . ,K

T [i− k, j − 1] + δ(f(i−k+1)...i, gj),
k = 2, . . . ,K

7: Store pointer to predecessor, i.e., to the table
entry that yielded the minimum.

8: Generate optimum correspondence from T [n, m]
using backtracking along pointers.

increases to O(nm(n + m)). The parameter K deter-
mines the maximum number of subpolyline segments
that can be merged in order to match them with an-
other segment in cases (d) and (e).

Distance measure. Algorithm 2 relies on a distance
function δ that represents the morphing cost of a pair
of polylines. Distance functions for polylines can be
defined in many ways, e.g., morphing width [2] and
Fréchet distance [1].

We define a new distance measure that takes into
account how far all points move during the morphing
by integrating over the trajectory lengths. Assume
that two subpolylines fi and gj with uniform param-
eterizations α and β are given. Each point α(u) on fi

will move to β(u) on gj along the connecting segment
of length ||α(u)−β(u)||. Then the morphing distance
is defined as

δ(fi, gj) =
∫ 1

0

||α(u)− β(u)||du (1)

and can be computed in time linear in the complexity
of fi and gj .

Optionally, we can add further terms to the base
distance δ. Adding the length difference of fi and
gj , or alternatively the length of the polyline γ(u) :=
α(u)− β(u) favors pairs of polylines that are roughly
the same length or orientation. We can also multiply δ
by the ratio of the subpolylines’ length with the total
length of the containing polylines f and g, to account
for their relative visual importance.

Finally, we wish to avoid self-intersections in the
morph. We do this locally by setting the effective

morphing distance to∞ if matching two subpolylines
causes a self-intersection in the morph between them.
However, in rare cases intersections between two non-
corresponding subpolylines may still occur.

4 Results

We ran our implementations on a small set of French
roads from the BD Cartor and the TOP100 series
maps produced by the IGN Carto2001 project [6]. For
each road, we used a polyline from BD Cartor at
scale 1:50,000, and a generalized version at scale
1:100,000 from the Carto2001 TOP100 maps. Fig-
ures 1(a) and 1(b) show one example of a road in the
dataset, at the two respective scales. The character-
istic points that Algorithm 1 detected are marked by
little squares. Currently, the parameters used to ob-

(a) Road 1 (1:50,000) (b) Road 1 (1:100,000)

Figure 1: Example roads at two scales with detected
characteristic points marked.

tain these results were set by trial and error; so far we
have no automatic process to pick reasonable values.

A sequence of snapshots1 of the final morph, af-
ter applying Algorithm 2, is shown in Figure 2(b). A
look-back parameter K of 5 was used. For the purpose
of comparison, Figure 2(a) shows a simple linear mor-
phing between the same polylines, where both poly-
lines were uniformly parameterized to establish the
correspondence between points. On a 3.0GHz Pen-
tium 4 with 1GB RAM, the entire processing time
was under 3 seconds.

The optimum-correspondence morphing shows
some clear improvements over the näıve linear mor-
phing. The linear morphing in Figure 2(a) shows
one of the large serpentine sections at the top being
flipped “inside-out” during the morph. In contrast,
the optimum-correspondence morphing in Figure 2(b)
simply expands the bends. It is evident that the total
movement overall is much higher for the linear mor-
phing than for the optimum matching morphing.

5 Concluding remarks

The algorithms in this paper should be improved in
two ways. Ensuring that self-intersections do not

1The full animation and an additional example are available
at http://i11www.iti.uni-karlsruhe.de/morphingmovies

8

EWCG 2007, Graz, March 19–21, 2007

(a) Linear

(b) OptCor

Figure 2: A comparison between simple linear morphing and the optimum-correspondence morphing (OptCor).
In each snapshot, the previous two frames are drawn in successively lighter shades of grey. Areas of particular
interest are marked with dashed circles.

occur during a morph could potentially be accom-
plished by utilizing the algorithm of Surazhsky and
Gotsman [10] to compute non-linear trajectories for
points. Also, the detection of appropriate character-
istic points with little or no user interaction requires
further investigation.

Acknowledgements The authors thank Sébastien
Mustière for providing the Carto2001 data.

References

[1] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. Comp.
Geom. & Appl., 5(1–2):75–91, 1995.

[2] S. Bespamyatnikh. An optimal morphing between
polylines. Int. J. Comp. Geom. & Appl., 12(3):217–
228, 2002.

[3] A. Cecconi and M. Galanda. Adaptive zooming
in Web cartography. Computer Graphics Forum,
21(4):787–799, 2002.

[4] S. Cohen, G. Elber, and R. Bar-Yehuda. Matching of
freeform curves. Computer-Aided Design, 29(5):369–
378, 1997.

[5] C. Erten, S. G. Kobourov, and C. Pitta. Intersection-
free morphing of planar graphs. In Proc. 11th Int.
Sympos. Graph Drawing (GD’03), volume 2912 of
Lecture Notes in Computer Science, pages 320–331.
Springer Verlag, 2004.

[6] F. Lecordix, Y. Jahard, C. Lemarié, and E. Hauboin.
The end of Carto 2001 project: Top100 based on bd-
carto database. In Proc. 8th ICA Workshop on Gen-
eralisation and Multiple Representation, A Coruña,
Spain, July 2005.

[7] D. Lowe. Organization of smooth image curves at
multiple scales. International Journal of Computer
Vision, 3(2):119–130, 1989.

[8] C. Plazanet, J.-G. Affholder, and E. Fritsch. The im-
portance of geometric modeling in linear feature gen-
eralization. Cartography and Geographic Information
Systems, 22(4):291–305, 1995.

[9] T. Samoilov and G. Elber. Self-intersection elimi-
nation in metamorphosis of two-dimensional curves.
The Visual Computer, 14:415–428, 1998.

[10] V. Surazhsky and C. Gotsman. Morphing stick fig-
ures using optimized compatible triangulations. In
Proc. Ninth Pacific Conf. on Comp. Graph. and App.
(PG’01), pages 40–49, 2001.

[11] M. van Kreveld. Smooth generalization for continu-
ous zooming. In Proc. 20th Int. Cartographic Conf.
(ICC’01), pages 2180–2185, 2001.

[12] R. Weibel and G. Dutton. Generalising spatial data
and dealing with multiple representations. In P. A.
Longley, M. F. Goodchild, D. J. Maguire, and D. W.
Rhind, editors, Geographical Information Systems –
Principles and Technical Issues, volume 1, chap-
ter 10, pages 125–155. John Wiley & Sons, 1999.

9

23rd European Workshop on Computational Geometry, 2007

Deflating The Pentagon

Erik D. Demaine∗ Martin L. Demaine∗ Diane L. Souvaine† Perouz Taslakian‡

Abstract

In this paper we consider deflations (inverse pocket
flips) of quadrilaterals and pentagons. We charac-
terize infinitely deflatable quadrilaterals by proving
necessity of previously obtained sufficient conditions.
Then we show that every pentagon can be deflated
after finitely many deflations, and that any infinite
deflation sequence of a pentagon results from deflat-
ing an induced quadrilateral on four of the vertices.

1 Introduction

A deflation of a simple planar polygon is the opera-
tion of reflecting a subchain of the polygon through
the line connecting its endpoints such that (1) the
line intersects the polygon only at those two polygon
vertices, (2) the resulting polygon is simple (does not
self-intersect), and (3) the reflected subchain lies in-
side the hull of the resulting polygon. A polygon is
deflated if it does not admit any deflations, i.e., every
pair of polygon vertices either defines a line intersect-
ing the polygon elsewhere or results in a nonsimple
polygon after reflection.

Deflation is the inverse operation of pocket flipping.
Given a nonconvex simple planar polygon, a pocket
is a maximal connected region exterior to the poly-
gon and interior to its convex hull. Such a pocket is
bounded by one edge of the convex hull of the polygon,
called the pocket lid, and a subchain of the polygon,
called the pocket subchain. A pocket flip (or simply
flip) is the operation of reflecting the pocket subchain
through the line extending the pocket lid. The re-
sult is a new, simple polygon of larger area with the
same edge lengths as the original polygon. A convex
polygon has no pocket and hence does not admit a
flip.

In 1935, Erdős conjectured that every nonconvex
polygon convexifies after a finite number of flips [3].
Four years later, Nagy [1] claimed a proof of Erdős’s
conjecture. Recently, Demaine et al. [2] uncovered
a flaw in Nagy’s argument, as well as other claimed
proofs, but fortunately correct proofs remain.

In the same spirit of finite flips, Wegner conjectured
in 1993 that any polygon becomes deflated after a fi-
nite number of deflations [6]. Eight years later, Fevens

∗MIT, {edemaine,mdemaine}@mit.edu
†Tufts University, dls@cs.tufts.edu
‡McGill University, perouz@cs.mcgill.ca

et al. [4] disproved Wegner’s conjecture by demon-
strating a family of quadrilaterals that admit an infi-
nite number of deflations. They left an open problem
of characterizing which polygons deflate infinitely.

In this paper, we show that the family of quadri-
laterals described in [4] are the only polygons with
four sides that admit infinitely many deflations, thus
characterizing infinitely deflatable quadrilaterals. We
also show that any such quadrilateral flattens in the
limit. We use this characterization of infinitely de-
flating quadrilaterals to understand deflations of pen-
tagons. Specifically, we show that every pentagon ad-
mitting an infinite number of deflations induces an in-
finitely deflatable quadrilateral on four of its vertices.
Then we show our main result: every pentagon can be
deflated after finitely many (well-chosen) deflations.

2 Definitions and Notations

Let P = 〈v0, v1, . . . , vn−1〉 be a polygon together
with a clockwise ordering of its vertices. Let P k =
〈vk

0 , vk
1 , . . . , vk

n−1〉 denote the polygon after k arbitrary
deflations, and P ∗ denote the limit of P k, when it
exists, having vertices v∗i . Thus, the initial polygon
P = P 0. The turn angle of a vertex vi is the signed an-
gle θ ∈ (−180◦, 180◦] between the two vectors vi−vi−1

and vi − vi+1. A vertex of a polygon is flat if the an-
gle between its incident edges is 180◦, i.e., forming a
turn angle of 0◦. A flat polygon is a polygon with all
its vertices collinear. A hairpin vertex vi is a vertex
whose incident edges overlap each other, i.e., forming
a turn angle of 180◦. A polygon vertex is sharpened
when its absolute turn angle decreases.

3 Deflation in General

In this section, we prove general properties about de-
flation in arbitrary simple polygons. Our first few
lemmata are fairly straightforward, while the last
lemma is quite intricate and central to our later argu-
ments.

Lemma 1 Deflation only sharpens angles.

This result follows from an analogous result for
pocket flips, which only flatten angles (see, e.g., [5]).

Corollary 2 Any n-gon with no flat vertices will con-
tinue to have no flat vertices after deflation, even in
an accumulation point.

10

EWCG 2007, Graz, March 19–21, 2007

Lemma 3 In any infinite deflation sequence
P 0, P 1, P 2, . . . , the absolute turn angle |τi| at any
vertex vi has a (unique) limit |τ∗i |.

Corollary 4 In any infinite deflation sequence
P 0, P 1, P 2, . . . , v∗i is a hairpin vertex in some accu-
mulation point P ∗ if and only if v∗i is a hairpin vertex
in all accumulation points P ∗.

Lemma 5 Any n-gon with n odd and no flat vertices
cannot flatten in an accumulation point of an infinite
deflation sequence.

Lemma 6 For any infinite deflation sequence
P 0, P 1, P 2, . . . , there is a subchain vi, vi+1, . . . , vj

(where j− i ≥ 2) that is the pocket chain of infinitely
many deflations.

We conclude this section with a challenging lemma
showing that infinitely deflating pockets flatten:

Lemma 7 Assume P = P 0 has no flat vertices. If P ∗

is an accumulation point of the infinite deflation se-
quence P 0, P 1, P 2, . . . , and subchain vi, vi+1, . . . , vj

(where j − i ≥ 2) is the pocket chain of infinitely
many deflations, then v∗i , v∗i+1, . . . , v

∗
j are collinear

and v∗i+1, . . . , v
∗
j−1 are hairpin vertices. Furthermore,

if v∗i+1, . . . , v
∗
j−1 extends beyond v∗j , then v∗j is a hair-

pin vertex; and if v∗i+1, . . . , v
∗
j−1 extends beyond v∗i ,

then v∗i is a hairpin vertex. In particular, if j− i = 2,
then either v∗i or v∗j is a hairpin vertex.

Proof. Because P 0 ⊇ P 1 ⊇ P 2 ⊇ · · · , we
have hull(P 0) ⊇ hull(P 1) ⊇ hull(P 2) ⊇
· · · , and in particular area(hull(P 0)) ≥
area(hull(P 1)) ≥ area(hull(P 2)) ≥ · · · ≥ 0.
Thus,

∑∞
t=1[area(hull(P t)) − area(hull(P t−1))] ≤

area(hull(P 0)), so area(hull(P t)) −
area(hull(P t−1)) → 0 as t → ∞. Hence, for
any ε > 0, there is a time Tε such that, for all t ≥ Tε,
area(hull(P t)) − area(hull(P t−1)) ≤ ε. As a conse-
quence, for all t ≥ Tε, hull(P t−1) ⊆ hull(P t) ⊕ Dε/`

where ⊕ denotes Minkowski sum, Dx denotes a disk
of radius x, and ` is the length of the longest edge
in P , which is a lower bound on the perimeter of
hull(P t).

Let t1, t2, . . . denote the infinite subsequence of de-
flations that use vi, vi+1, . . . , vj as the pocket sub-
chain, where P tr is the polygon immediately after the
rth deflation of the pocket chain vi, vi+1, . . . , vj . Con-
sider any vertex vk with i < k < j. If tr ≥ Tε, then
vtr−1

k ∈ hull(P tr) ⊕ Dε/`. Also, vtr−1
k is in the half-

plane Hr exterior to the line of support of P tr through
vtr

i and vtr
j . Now, the region (hull(P tr)⊕Dε/`) ∩Hr

converges to a subset of the line `tr
i,j through vtr

i and
vtr

j as ε→ 0 while keeping tr ≥ Tε. Thus, for any ac-
cumulation point P ∗, v∗k is collinear with v∗i and v∗j ,

for all i < k < j. In other words, v∗i+1, . . . , v
∗
j−1 lie

on the line `∗i,j through v∗i and v∗j . By Corollary 2,
v∗i+1, . . . , v

∗
j−1 are not flat, so they must be hairpins.

By Lemma 3, the absolute turn angle |τj | of ver-
tex vj has a limit |τ∗j |. If |τ∗j | > 0 (i.e., v∗j is not
a hairpin in all limit points P ∗), then by Lemma 1,
|τ t

j | ≥ |τ∗j | > 0. For sufficiently large t, vt
j−1 ap-

proaches the line `t
i,j . To form the absolute turn angle

|τ t
j | ≥ |τ∗j | > 0 at vj , vt

j+1 must eventually be bounded
away from the line `t

i,j : after some time T , the mini-
mum of the two angles between vt

jv
t
j+1 and `t

i,j must
be bounded below by some α > 0. Now suppose that
some vtr−1

k were to extend beyond vtr−1
j in the pro-

jection onto the line `tr−1
i,j for some tr − 1 > T . As

illustrated in Figure 1, for the deflation of the chain
vtr−1

i , vtr−1
i+1 , . . . , vtr−1

j to not cause the next polygon
P tr to self-intersect, the minimum of the two angles
between vtr−1

j vtr−1
k and `tr−1

i,j must also be at least α.
See Figure 1.

But this is impossible for sufficiently large t, be-
cause vt

k accumulates on the line `t
i,j . Hence, in fact,

vt
k must not extend beyond vt

j in the `t
i,j projection

for sufficiently large t. In other words, when v∗j is
not a hairpin, each v∗k must not extend beyond v∗j on
the line `∗i,j . A symmetric argument handles the case
when v∗i is not a hairpin.

Finally, suppose that j−i = 2. In this case, because
v∗i+1 = v∗j−1 is a hairpin, it must extend beyond one
of its neighbors, v∗i or v∗j . By the argument above, in
the first case, v∗i must be a hairpin, and in the second
case, v∗j must be a hairpin. Thus, as desired, either
v∗i or v∗j must be a hairpin. �

4 Deflating Quadrilaterals

Lemma 8 Any accumulation point of an infinite de-
flation sequence of a quadrilateral is flat and has no
flat vertices.

Proof. First we argue that all quadrilaterals
P 1, P 2, . . . (excluding the initial quadrilateral P 0)
have no flat vertices. Because deflations are the in-
verse of pocket flips, and pocket flips do not exist for
convex polygons, deflation always results in a noncon-
vex polygon. Thus all quadrilaterals P t with t > 0
must be nonconvex. Hence no P t with t > 0 can have
a flat vertex, because then it would lie along an edge
of the triangle of the other three vertices, making the
quadrilateral convex. By Corollary 2, there are also
no flat vertices in any accumulation point P ∗.

By Lemma 6, there is a subchain vi, vi+1, . . . , vj ,
where j − i ≥ 2, that is the pocket chain of infinitely
many deflations. In fact, j − i must equal 2, because
reflecting a longer (4-vertex) pocket chain would not
change the polygon. Applying Lemma 7 to P 1, P 2, . . .
(with no flat vertices), for any accumulation point P ∗,
v∗i+1 is a hairpin and either v∗i or v∗j = v∗i+2 is a

11

23rd European Workshop on Computational Geometry, 2007

vt
j+1

vt
i

α `t
i,j

< αvt
j

vt
k

vt+1
k

(a) The angle between vt
kvt

j and `t
i,j is less than α, hence

in the next deflation step the chain vt
i . . . vt

j will intersect
the polygon.

> α

α `t
i,j

vt
j+1

vt
j

vt
k

vt+1
k

vt
i

(b) The angle between vt
kvt

j and `t
i,j is greater than α, so

the polygon will not self-intersect in the next deflation
step.

Figure 1: Because vt
j is not a hairpin, the minimum angle α between vt

jv
t
j+1 and `t

i,j is strictly positive. If any
vertex vt

k of the chain vt
i , v

t
i+1, . . . , v

t
j extends beyond vt

j , then the minimum angle between vt
kvt

j and `t
i,j must

be at least α for the polygon P t+1 not to self-intersect in the next deflation step. The dotted curve represents
the rest of the polygon chain and the shaded area is the interior of the polygon below line `t

i,j .

hairpin. Hairpin v∗i+1 implies that v∗i , v∗i+1, v∗i+2 are
collinear, while hairpin v∗i or v∗i+2 implies that the
remaining vertex v∗i+3 = v∗i−1 lie on that same line.
Therefore, any accumulation point P ∗ is flat. �

Combining the flattening property of Lemma 8 with
the previous necessary conditions of Fevens et al. [4],
we obtain a complete characterization of infinitely de-
flating quadrilaterals:

Theorem 9 A quadrilateral with side lengths
`1, `2, `3, `4 is infinitely deflatable if and only if

1. opposite edges sum equally, i.e., `1 +`3 = `2 +`4;
and

2. adjacent edges differ, i.e., `1 6= `2 6= `3 6= `4 6= `1.

Furthermore, every such infinitely deflatable quadri-
lateral deflates infinitely independent of the choice of
deflation sequence.

Proof. Fevens et al. [4] proved that every quadrilat-
eral satisfying the two conditions on its edge lengths
are infinitely deflatable, no matter which deflation se-
quence we make. Thus the two conditions are suffi-
cient for infinite deflation.

To see that the first condition is necessary, we use
Lemma 8. Because deflation preserves edge lengths,
so do accumulation points of an infinite deflation se-
quence, so the flat limit configuration from Lemma 8
is a flat configuration of the edge lengths `1, `2, `3, `4.
By a suitable rotation, we may arrange that the flat
configuration lies along the x axis. By Lemma 8, no
vertex is flat, so every vertex must be a hairpin. Thus,
during a traversal of the polygon boundary, the edges
alternate between going left `i and going right `i. At
the end of the traversal, we must end up where we
started. Therefore, ±(`1 − `2 + `3 − `4) = 0, i.e.,
`1 + `3 = `2 + `4.

To see that the second condition is necessary, sup-
pose for contradiction that `1 = `2 (the other con-
trary cases are symmetric). By the first condition,

`1 + `3 = `1 + `4, so `3 = `4. Thus, the polygon is a
kite, having two pairs of adjacent equal sides. (Also,
all four sides might be equal.) Every kite has a chord
that is a line of reflectional symmetry. No kite can
deflate along this line, because such a deflation would
cause edges to overlap with their reflections. If a kite
is convex, it may deflate along its other chord, but
then it becomes nonconvex, so it can be deflated only
along its line of reflectional symmetry. Therefore, a
kite can be deflated at most once, so any infinitely
deflatable quadrilateral must have `1 6= `2 and sym-
metrically `1 6= `2 6= `3 6= `4 6= `1. �

5 Deflating Pentagons

Theorem 10 There is a pentagon with a flat vertex
that deflates infinitely for all deflation sequences, ex-
actly like the quadrilateral on the nonflat vertices.

Proof. See Figure 2. We start with an infinitely
deflating quadrilateral 〈v0, v1, v2, v3, v4〉 according to
Theorem 9, and add a flat vertex v5 along the edge
v4v0. As long as we never deflate along a line passing
through the flat vertex v4, the deflations act exactly
like the quadrilateral, and thus continue infinitely
no matter which deflation sequence we choose. To
achieve this property, we set the length of segment
v3v0 to 1, with v4 at the midpoint; we set the lengths
of edges v0v1 and v2v3 to 2/3; and we set the length
of edge v1v2 to 1/3. Then we deflate the quadrilat-
eral until the vertices are close to being hairpins that
v4 cannot see the nonadjacent convex vertex and the
line through v4 and the reflex vertex intersects the
pentagon at another point. Thus no line of deflation
passes through v4, so we maintain infinite deflation as
in the induced quadrilateral. �

Finally we show that any infinitely deflating pen-
tagon induces an infinitely deflating quadrilateral.

Theorem 11 Every pentagon with no flat vertices is
finitely deflatable.

12

EWCG 2007, Graz, March 19–21, 2007

v0
2

v1
1 v1

1

v1
2

`

v0
0 v1

3

v1
4

v0
0 v0

3

v0
4

v0
1

Figure 2: An infinitely deflatable pentagon that induces an infinitely deflatable quadrilateral (left) and its
configuration after the first deflation (right).

Proof. Let P be a pentagon with no flat vertices,
and assume for the sake of contradiction that P de-
flates infinitely. Consider any accumulation point
P ∗ of an infinite deflation sequence P 0, P 1, P 2,
By Lemma 6, there is an infinitely deflating pocket
chain, say v0, v1, . . . , vj , where j ≥ 2. By Lemma 7,
v∗1 , . . . , v∗j−1 are hairpin vertices. Because the pen-
tagon has only five vertices, j ≤ 4. In fact, j ≤ 3:
if j = 4, this pocket chain would encompass all
five vertices, making P ∗ collinear, which contradicts
Lemma 5. If j = 3, then v∗1 and v∗2 are hairpins. If
j = 2, then by Lemma 7, either v∗0 or v∗2 must be a
hairpin; suppose by symmetry that it is v∗2 . Thus,
in this case, again v∗1 and v∗2 are hairpins. Hence, in
all cases, v∗1 and v∗2 are hairpins, so v∗0 , v∗1 , v∗2 , v∗3 are
collinear, while by Lemma 5, v∗4 must be off this line.

By Lemma 7, an infinitely flipping pocket chain re-
quires at least one hairpin vertex. Thus, the only
possible infinitely flipping pocket chains are v0, v1, v2;
v1, v2, v3; and v0, v1, v2, v3. Let T denote the time af-
ter which only these chains flip. Thus, after time T ,
v0, v3, v4 stop moving, so in particular, v4’s angle and
the length of the edge v0v3 take on their final val-
ues. Therefore, after time T , the vertices v0, v1, v2, v3

induce a quadrilateral that deflates infinitely.
Because v∗0 , v∗1 , v∗2 , v∗3 are collinear and v∗4 is off this

line, neither v∗0 nor v∗3 can be hairpins. By Lemma 7,
v∗1 and v∗2 must lie along the segment v∗0v∗3 . By Theo-
rem 9, no two adjacent edges of the quadrilateral have
the same length, so in fact v∗1 and v∗2 must be strictly
interior to the segment v∗0v∗3 . For sufficiently large t,
vt
0, v

t
1, v

t
2, v

t
3 are arbitrarily close to collinear, and vt

1

and vt
2 project strictly interior to the line segment

vt
0v

t
3. As a consequence, for sufficiently large t, we can

deflate the chain vt
0, v

t
1, v

t
2, v

t
3 along the line through

vt
0 and vt

3 into the triangle vt
0v

t
3v

t
4. But then the con-

vex hull of P t+1 is vt+1
0 vt+1

3 vt+1
4 , which is fixed, so

no further deflations are possible, resulting in a finite
deflation sequence. �

6 Larger Polygons and Open Problems

It is easy to construct n-gons with n ≥ 6 that de-
flate infinitely, no matter which deflation sequence
we choose. See Figure 3 for the idea of the con-
struction. We can add any number of spikes to
obtain n-gons with n ≥ 6 and even. For n odd,
we can shave off the tip of one of the spikes.

Figure 3: An in-
finitely deflating oc-
tagon constructed by
adding long spikes to
an infinitely deflating
quadrilateral.

Thus, n = 5 is the only
value for which every n-
gon with no flat vertices
can be finitely deflated.

None of the infinitely
deflating polygons of Fig-
ure 3 are particularly sat-
isfying because their ac-
cumulation points are not
flat. Are there any n-gons,
n > 4, that have no flat
vertices and always deflate
infinitely to flat accumula-
tion points? In an unpub-
lished manuscript (2004),
Fevens et al. show a fam-
ily of infinitely deflating
hexagons with no flat ver-
tices that flatten in the limit.

Does every infinite deflation sequence have a
(unique) limit? Our proofs would likely simplify if
we knew there was only one accumulation point.

Is there an efficient algorithm to determine whether
a given polygon P has an infinite deflation sequence?
What about detecting whether all deflation sequences
are infinite? Even given a (succinctly encoded) infi-
nite sequence of deflations, can we efficiently deter-
mine whether the sequence is valid, i.e., whether it
avoids self-intersection?

References

[1] Béla de Sz. Nagy. Solution of problem 3763. American
Mathematical Monthly, 46:176–177, 1939.

[2] Erik D. Demaine, Blaise Gassend, Joseph O’Rourke,
and Godfried T. Toussaint. Polygons flip finitely:
Flaws and a fix. In Proc. of the 18th Canadian Con-
ference in Comput. Geometry, pp. 109–112, Aug 2006.

[3] Paul Erdős. Problem 3763. American Mathematical
Monthly, 42:627, 1935.

[4] Thomas Fevens, Antonio Hernandez, Antonio Mesa,
Patrick Morin, Michael Soss, and Godfried Toussaint.
Simple polygons with an infinite sequence of deflations.
Contrib. to Algebra and Geom., 42(2):307–311, 2001.

[5] Godfried T. Toussaint. The Erdős-Nagy theorem and
its ramifications. Computational Geometry: Theory
and Applications, 31:219–236, 2005.

[6] Bernd Wagner. Partial inflations of closed polygons
in the plane. Contributions to Algebra and Geometry,
34(1):77–85, 1993.

13

23rd European Workshop on Computational Geometry, 2007

Wrapping the Mozartkugel

Erik D. Demaine∗ Martin L. Demaine∗ John Iacono† Stefan Langerman‡

Abstract

We study wrappings of the unit sphere by a piece
of paper (or, perhaps more accurately, a piece of
foil). Such wrappings differ from standard origami
because they require infinitely many infinitesimally
small “folds” in order to transform the flat sheet into
a positive-curvature sphere. Our goal is to find shapes
that have small area even when expanded to shapes
that tile the plane. We characterize the smallest
square that wraps the unit sphere, show that a 0.1%
smaller equilateral triangle suffices, and find a 20%
smaller shape that still tiles the plane.

Keywords: chocolate, marzipan, praline, nougat

1 Introduction

The Mozartkugel (“Mozart sphere”) [9, 8] is a famous
fine Austrian confectionery: a sphere with marzipan
in its core, encased in nougat or praline cream, and
coated with dark chocolate. It was invented in 1890
by Paul Fürst in Salzburg (where Wolfgang Amadeus
Mozart was born), six years after he founded his con-
fectionery company, Fürst. Fürst (the company) still
to this day makes Mozartkugeln by hand, about 1.4
million per year, under the name “Original Salzburger
Mozartkugel” [6]. At the 1905 Paris Exhibition, Paul
Fürst received a gold medal for the Mozartkugel.

Many other companies now make similar
Mozartkugeln, but Mirabell is the market leader with
their “Echte (Genuine) Salzburger Mozartkugeln” [7].
Over 1.5 billion have been made, about 90 million
per year, originally by hand but now by industrial
methods, and Mirabell claims their product to be
the only Mozartkugel that is perfectly spherical.
They are also the only Mozartkugel to be taken into
outer space, by the first Austrian astronaut Franz
Viehböck as a gift to the Russian cosmonauts on the
MIR space station. Despite industrial techniques,
each Mozartkugel still takes about 2.5 hours to make.

Although most of a Mozartkugel is edible, each
sphere is individually wrapped in a square of alu-
minum foil. To minimize the amount of this wasted,
inedible material, it is natural to study the smallest
piece of foil that can wrap a unit sphere. Because the

∗MIT, {edemaine,mdemaine}@mit.edu
†Polytechnic University, http://john.poly.edu/
‡Chercheur qualifié du FNRS, Université Libre de Bruxelles,

stefan.langerman@ulb.ac.be

pieces will be cut from a large sheet of foil, we would
also like the unfolded shape to tile the plane.

We formalize this practical problem in the next sec-
tion; the main difficulty is to allow a continuum of
infinitesimal folds to curve the paper, a feature not
normally modeled by mathematical origami. We then
study wrappings by squares and equilateral triangles,
and show that the latter leads to a small (0.1%) sav-
ings, which may prove significant on the many mil-
lions of Mozartkugel consumed each year. Even bet-
ter, if we allow wrapping by arbitrary shapes that
tile the plane, we show how to achieve a 20% sav-
ings. In addition to direct savings in material costs
for Mozartkugel manufacturers, the reduced material
usage also indirectly cuts down on CO2 emissions, and
therefore partially solves the global-warming problem
and consequently the little-reported but equally im-
portant chocolate-melting problem.

2 Wrapping Problem

In standard mathematical origami [4, 5], a piece of
paper is a two-dimensional manifold (usually flat),
and a folding is an isometric mapping of this piece of
paper into Euclidean 3-space. Here isometric means
that distances are preserved, as measured by shortest
paths on the piece of paper before and after mapping
via the folding.

But there is no isometric folding of a square into a
sphere: isometric folding preserves curvature. There-
fore we define a new, less restrictive type of fold-
ing that allows changing curvature but still prevents
stretching of the material. Namely, a wrapping is a
continuous contractive mapping of a piece of paper
into Euclidean 3-space. Here contractive means that
every distance either decreases or stays the same, as
measured by shortest paths on the piece of paper be-
fore and after mapping via the folding. This definition
effectively assumes that the length contraction can be
achieved by continuous infinitesimal pleating.

We can model one family of wrappings by express-
ing which distances are preserved isometrically. An
optimal wrapping should be isometric along some
path, for otherwise we could uniformly scale the en-
tire wrapping and make a larger object. We call a
path stretched if the wrapping is isometric along it. A
stretched wrapping has the property that every point
is covered by some stretched path. Such a wrapping
can be specified by a set of stretched paths whose

14

EWCG 2007, Graz, March 19–21, 2007

union covers the entire piece of paper. Although not
all such specifications are valid—we need to check that
all other paths are contractive—the specification does
uniquely determine a wrapping. We specify all of our
wrappings in this way, under the belief that stretched
wrappings are generally the most efficient.

A special case of stretched wrapping is when the
stretched paths consist of the shortest paths from one
point x to every other point y. In this case, we are
rolling geodesics in the piece of paper onto geodesics
of the target surface. This situation corresponds to
continuous unfoldings of smooth polyhedra as con-
sidered by Benbernou, Cahn, and O’Rourke [1]. Al-
though perhaps the most natural kind of wrapping,
this special case is too restrictive for our purposes,
as it essentially forces the sphere to be wrapped by a
disk of radius π, for those geodesics to reach around
to the pole opposite x. We will show how to wrap
with far less paper than this disk of area π3.

Note that, if we start with an arbitrarily long and
narrow rectangle, we can wrap the sphere using pa-
per area arbitrarily close to the surface area 4π of
the sphere [3]. This wrapping is not very practical,
however; in particular, it makes it difficult to make a
nondistorted logo on the surface of the sphere.

The only other known optimal wrapping result
(where no contraction is necessary) is wrapping a unit
cube with a square [2].

3 Petal Wrapping

Our wrappings are based on the following k-petal
wrapping. On the sphere we first construct k stretched
paths p1, p2, . . . , pk from the south pole to the north
pole, dividing the 2π angle around each pole into k
equal parts of 2π/k. To each path pi we assign an
“orange peel” with apex angles 2π/k, centered on
the path pi and bounded by the Voronoi diagram of
pi−1, pi, pi+1. These orange peels partition the surface
of the sphere into k equal pieces.

Then we construct a continuum of stretched paths
to cover each orange peel. Specifically, for every point
q along each path pi, we construct two stretched paths
emanating from q, proceeding along geodesics perpen-
dicular to pi in both directions, and stopping at the
boundary of pi’s orange peel.

These stretched paths cover every point of the
sphere (covering boundary points twice). It remains
to find a suitable piece of paper that wraps accord-
ing to these stretched paths. The main challenge is
to unfold the half of an orange peel left of a path pi.
Then we can easily glue the two halves together along
the (straight) unfolded path pi, and finally join the
resulting petals at the unfolded south pole.

To unroll half of a petal, we parameterize as shown
in Figure 1. Here B = π/k is the half-petal angle;
c is a given amount that we traverse along the center

path pi starting at the south-pole endpoint; A = π/2
specifies that we turn perpendicular from that point;
and b is the distance that we travel in that direction.
Our goal is to determine b in terms of c.

C

A

b

a

c

B

Figure 1: Half of a petal, labeled in preparation for
spherical trigonometry.

By the spherical law of cosines,

cos C = − cos A cos B + sinA sinB cos c.

Now cos A = cos(π/2) = 0 and sin A = sin(π/2) =
1, so this equation simplifies to cos C = sinB cos c.
Hence, sinC =

√
1− sin2 B cos2 c. By the spherical

law of sines,
sinB

sin b
=

sinC

sin c
.

Substituting sinC =
√

1− sin2 B cos2 c, we obtain

sinB

sin b
=

√
1− sin2 B cos2 c

sin c
,

i.e.,

sin b =
sinB sin c√

1− sin2 B cos2 c
.

Taking arccos of both sides, we determine the value of
b in terms of the parameter c and the known quantity
B = π/k.

Figure 2 shows two examples of the resulting petal
unfolding, with k = 3 and k = 4.

4 Square Wrapping

The angle at the tip of the petals can be computed
by taking the derivative ∂b/∂c at c = 0. For k =
4, this derivative is 1 which implies a half angle of
π/4. Because the petals are convex, the convex hull
of the petal unfolding for k = 4 is exactly the square
of diagonal 2π. No smaller square could wrap the
unit sphere because the length of the path connecting
the center of the square to the point mapped to the
antipodal point must have length at least π. This
square has area 2π2.

Note that the same area is attainable by a rectan-
gle of dimensions 2π×π: draw one path p around the

15

23rd European Workshop on Computational Geometry, 2007

(a) k = 3

(b) k = 4

Figure 2: Petal unfoldings.

equator of the sphere and cover the sphere by a contin-
uum of stretched paths perpendicular to p emanating
from every point of p until the north and the south
pole of the sphere. The same rectangle is also exactly
a 2-petal unfolding. Interestingly, the area of this
rectangle wrapping is also 2π. The Echte Salzburger
Mozartkugel is wrapped by Mirabell using the same
rectangle (expanded a bit to ensure overlap) but with
a slightly different folding.

5 Triangle Wrapping

For k = 3, the angle at the tip of the petals can be
computed similarly to obtain 2π/3, which is natural

as the three petals meet at the north pole, their an-
gles summing to 2π. However, the convex hull of the
3-petal unfolding is not a triangle. We compute its
smallest enclosing equilateral triangle. The support-
ing lines of the triangle will be each tangent to two
of the petals. The tangent point on the petal can be
computed by finding the point (c, b) on its boundary
that maximizes the direction (− cos(π/3), sin(π/3)).
Plugging this into the previous equations, we obtain

c = arccos
(√

57
6 −

1
2

)
≈ 0.710086.

This implies that the supporting line is at a distance

π
2 −

1
2 arccos

(√
57
6 −

1
2

)
+

√
3

2 arcsin
(√√

57−5√√
57−3

)
≈ 0.620190π

from the center. The area of the inscribing equilat-
eral triangle is therefore 3h2 tan(π/6) ≈ 1.998626 π2,
about 0.1% less than the 2π2 area of the smallest
wrapping square.

6 Tiling

Instead of expanding the petal unfoldings to tilable
regular polygons, we can pack the petal unfoldings
directly and expand them just to fill the extra space.
Figure 3 shows an even better tiling resulting from
the 3-petal unfolding. A quick computation shows
that only about 1.6 π2 area of paper is required for
each wrapping, a substantial improvement.

Figure 3: Packing the 3-petal unfolding.

16

EWCG 2007, Graz, March 19–21, 2007

7 Conclusion

This paper initiates a new research direction in the
area of computational confectionery. We leave as open
problems the study of wrapping other geometric con-
fectioneries, or further improving our wrappings of the
Mozartkugel. In particular, what is the optimal con-
vex shape that can wrap a unit sphere? What is the
optimal shape that also tiles the plane? What about
smooth surfaces other than the sphere?

Acknowledgements

The authors thank Luc Devroye, Vida Dujmović, and
Dania El-Khechen for helpful discussions, the anony-
mous referees for their comments, and the Café du
Monde for their inspirational beignets.

References

[1] Nadia Benbernou, Patricia Cahn, and Joseph
O’Rourke. Unfolding smooth prismatoids. In 14th
Annual Fall Workshop on Computational Geome-
try, Cambridge, MA, 2004. arXiv:cs.CG/0407063.

[2] Michael L. Catalano-Johnson and Daniel Loeb.
Problem 10716: A cubical gift. American Math-
ematical Monthly, 108(1):81–82, January 2001.
Posed in volume 106, 1999, page 167.

[3] Erik D. Demaine, Martin L. Demaine, and Joseph
S. B. Mitchell. Folding flat silhouettes and wrap-
ping polyhedral packages: New results in compu-
tational origami. Computational Geometry: The-
ory and Applications, 16(1):3–21, 2000.

[4] Erik D. Demaine, Satyan L. Devadoss, Joseph
S. B. Mitchell, and Joseph O’Rourke. Continuous
foldability of polygonal paper. In Proceedings of
the 16th Canadian Conference on Computational
Geometry, pages 64–67, Montréal, Canada, Au-
gust 2004.

[5] Erik D. Demaine and Joseph O’Rourke. Geomet-
ric Folding Algorithms: Linkages, Origami, and
Polyhedra. Cambridge University Press, to ap-
pear.

[6] Fürst. Original salzburger mozartkugel. http://
www.original-mozartkugel.com/.

[7] Mirabell. The brand. http://www.mozartkugel.
at/.

[8] Die freie Enzyklopädie Wikipedia. Mozartkugel.
http://de.wikipedia.org/wiki/Mozartkugel.

[9] The Free Encyclopedia Wikipedia. Mozartkugel.
http://en.wikipedia.org/wiki/Mozartkugel.

17

23rd European Workshop on Computational Geometry, 2007

Minimum-Dilation Tour is NP-hard

Panos Giannopoulos∗ Christian Knauer† Dániel Marx∗

Abstract

We prove that computing a minimum-dilation (Eu-
clidean) Hamilton circuit or path on a given set of
points in the plane is NP-hard.

1 Introduction

Let P be a set of n points in R2 and G be a geomet-
ric network on P , i.e., an undirected graph G(P,E)
drawn with straight line edges on the plane, where
the weight of an edge pq ∈ E equals the Euclidean
distance |pq|. The dilation δG(p, q) of a pair of points
p, q in G is defined as δG(p, q) = dG(p, q)/|pq|, where
dG(p, q) is the weight or length of a shortest path from
p to q in G. The vertex-to-vertex dilation or stretch
factor δ(G) of G is defined as

δ(G) = max
p,q∈P, p6=q

δG(p, q).

For a real number t ≥ 1, we say that G is a t-spanner
for P if δ(G) ≤ t.

The cost of a network can be measured by the num-
ber of edges, the weight, the diameter, or the maxi-
mum degree. Constructing low-cost geometric net-
works of small dilation, as alternatives to the ‘expen-
sive’ complete Euclidean graphs, is a problem that
has been studied extensively; see the surveys by Epp-
stein [2] and Smid [7], and the forthcoming book by
Narasimhan and Smid [6]. Among other interesting
questions, one can ask for the minimum dilation that
can be achieved by a network with a given number
of edges and other additional properties, and how we
compute such a network. We are interested in the
complexity of the following problem:

Minimum-dilation tour (path): Given a set P
of points in the plane, compute a minimum-dilation
Euclidean Hamilton circuit (path) on P .

Related work. Klein and Kutz [5] have recently
proved that computing a minimum-dilation geomet-
ric network on a point set in the plane, using not
more than a given number of edges, is NP-hard, no
matter whether edge crossings are allowed or not.

∗Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, D-10099 Berlin, Germany, {panos,
dmarx}@informatik.hu-berlin.de

†Institut für Informatik, Freie Universität Berlin, Takus-
traße 9, D-14195 Berlin, Germany, Knauer@inf.fu-berlin.de

Moreover, Cheong et al. [1] showed that the prob-
lem remains NP-hard even for the minimum-dilation
spanning tree. On the other hand, Eppstein and
Wortman [3] gave polynomial time algorithms for the
minimum-dilation star problem.

Results. We prove that the minimum-dilation tour
(and path) problem is (strongly) NP-hard. The prob-
lem requires the use of exactly n (n − 1, for a path)
edges and that every vertex have degree 2 (except for
the start and end-point in the case of a path). Note
that the proofs of the results by Klein and Kutz and
Cheong et al., mentioned above, cannot handle our
problem since the former creates graphs with more
than one cycle, while the latter works only for trees
with no restriction on the maximum degree. Also,
both of these results use reductions from Set Par-
tition, while we use a different approach and re-
duce from the Hamilton Circuit problem on grid
graphs [4]. A collorary of our reduction is that the
minimum-dilation tour (and path) problem does not
admit an FPTAS.

2 Reduction

For a point p ∈ R2, we denote by p(1), p(2) its x and
y-coordinate respectively.

Let G∞ be the infinite graph whose vertex set con-
tains all points of the plane with integer coordinates
and in which two vertices are connected if and only if
the Euclidean distance between them is equal to 1. A
grid graph is a finite, node-induced subgraph of G∞.
Note that a grid graph is completely specified by its
vertex set. We reduce the Hamilton circuit problem in
grid graphs, which is strongly NP-hard [4], to the de-
cision version of the minimum-dilation tour problem.
Our main result is the following:

Theorem 1 Given a set P of points in the plane and
a parameter δ > 1, the problem of deciding whether
there exists a Euclidean Hamilton circuit on P with
dilation at most δ is NP-hard.

Proof. Let G be a grid graph with vertex set V and
|V | = n. Using V , we construct a point set P such
that, for some δ, a Hamilton circuit on P with dilation
at most δ exists if and only if G has a Hamilton circuit.

We assume that G has no degree-0 or 1 vertices,
since, otherwise, there is no Hamilton circuit in G;

18

EWCG 2007, Graz, March 19–21, 2007

this can be checked in polynomial time. Consider the
smallest enclosing rectangle R of G, see Fig. 1. Since
G is finite and |V | = n, R has finite dimensions and
its height is at most n. Let v ∈ V be the vertex that

u

v

s1s2

t1t2

si

ti

s

t

S

T

G

R

2n + 1

1

< n

Figure 1: A grid graph G, its smallest enclosing rectangle
R, and the point-sets (‘handles’) S and T .

is closest to the lower-left corner of R and lies on the
left vertical edge of R. Then, v must be a degree-
2 vertex and have a neighbor on the same edge of
R; let u be this vertex. We append two point-sets,
called ‘handles’, S and T to G as shown in Fig. 1.
Each handle has one horizontal and one vertical part
consisting of 2 and n + 1 points respectively, and the
two parts have one point in common.

Let s1 = (u(1) − 1, u(2)), s2 = (u(1) − 2, u(2)),
and si = (u(1)− 2, u(2) + i− 3) with i = 3, . . . , n + 3.
Similarly, let t1 = (v(1)−1, v(2)), t2 = (v(1)−2, v(2)),
and ti = (v(1) − 2, v(2) − i + 3) with i = 3, . . . , n +
3. We set S = {s1, s2, si|i = 3, . . . , n + 3} and T =
{t1, t2, ti|i = 3, . . . , n + 3}. Let W = V ∪ S ∪ T . We
have that |W | = 3n+4. Copies of W will be included
later in P . Consider the points s, t ∈W with s = sn+3

and t = tn+3. We have that |st| = 2n + 1. We start
with a simple lemma.

Lemma 2 There exists a Hamilton s-t path on W
with length 3n+3 if an only if there exists a Hamilton
circuit in G.

We continue with the construction of point set P .
First, we choose points on a rectangle R′ of width α
and height β, with α = (2n2 +1)n6 +2n2n3 and β =
2n6+3n3. Let a, b, c, and d be the upper-right, upper-
left, bottom-left, and bottom-right corner points of
R′ respectively. Consider a straight-line segment of
length n6. We choose a set B of points on the seg-
ment at regular intervals such that the distance be-
tween any two consecutive points is n/2. We have
that |B| = 2n5 + 1. We use B as a ‘building’ block:

starting on the upper side of the rectangle, from a,
we choose copies of B, simply referred to as blocks, at
regular intervals of length n3; see Fig. 2 (to avoid clut-
tering, the edges of the rectangle are not shown). Let
K, L, M, and N be the sets of points on the right, up-
per, left, and lower side of the rectangle respectively.
Sets K and M are unions of two vertical blocks each,
while L and N are unions of 2n2 + 1 horizontal ones.
The right and left-most point of an horizontal block
are called the right and left end-points of the block.
Similarly, the lower and upper-most point of a verti-
cal block are called the lower and upper end-points
of the block. Let K = K1 ∪ K2, where K1,K2 is
the upper and lower block respectively, as shown in
Fig. 2. Also, let e be the lower end-point of K1 and
f be the upper end-point of K2. In the empty in-
terval, i.e., the gap, between K1 and K2, we place
point set W such that its handles S and T lie on
the right side of R′. Additionally, we require that
|es| = |ft| = (n3 − |st|)/2 = (n3 − 2n − 1)/2. Since
the height of the minimum enclosing rectangle R of
V is at most n, the distance between any point of a
block and any point of W is at least (n3−2n−1)/2 as
well. A reflected copy of W , denoted by W ′, is placed
between the two blocks (subsets) of M in a similar
way.

Let P = K ∪ L ∪M ∪N ∪W ∪W ′ and

δ =
α + β − (2n + 1) + 3n + 3

β
= 1+n2+g(n)+h(n),

where g(n) = (n3 − n2)/(2n3 + 3) and h(n) = (n +
2)/(2n3 + 3)n3. Note that g(n), h(n) < 1 for every
n ≥ 1. We have that |P | = (2n2 + 1)(2n5 + 1) +
2(2n5 + 1) = O(n7).

Lemma 3 If there is a Hamilton s-t path on W with
length 3n + 3, then there is a Hamilton circuit on P
with dilation at most δ.

Proof. Let HW be a Hamilton s-t path on W with
length 3n + 3. We construct a Hamilton circuit HP

on P by simply connecting the points in K, L, M, N
in the ‘canonical’ way along the sides of rectangle
R′, as shown in Fig. 2. First, every two consecutive
points in each block are connected by an edge. Sec-
ond, in L,N , the left end-point of each block is con-
nected to the right end-point of its immediate neigh-
bor block. Finally, the upper end-point of K1 and
the lower end-point of K2 are connected to points a
and d respectively, while e connects to s and f con-
nects to t; the blocks of M are connected to b, c, and
the point set W ′ in a similar way. We prove that
δ(Hp) ≤ δ. Let p and q be the ‘middle’ points of
L and N respectively. That is, p = (a + b)/2 and
q = (c + d)/2. Note that any path from p to q
in HP must go through either W or W ′. By the
symmetry of the construction of HP , we have that

19

23rd European Workshop on Computational Geometry, 2007

N
dc

K1

W

s

t

e

f

p

q

p′

q′

K2

q′

|p′q′|

L
ab

V

p′

2n + 1

n3W ′

block end-point

HP

block

q′

y

y

< n

β

α

x

n6

Figure 2: Point set P , Hamilton circuit HP and example
positions of points p′ and q′.

dHP
(p, q) = α+β−|st|+dHW

(s, t) = α+β+n+2. It is
easy to check that δHP

(p, q) = dHP
(p, q)/|pq| = δ. We

now prove that for any other pair of points p′, q′ ∈ P ,
δHP

(p′, q′) ≤ δ. We distinguish the following cases,
see Fig. 2:

(i) p′, q′ lie on opposite sides of R′ or p′ ∈ W ′ and
q′ ∈ K (symmetrically, p′ ∈ M and q′ ∈ W), or p′ ∈
W ′ and q′ ∈ W . In this case we have that |p′q′| ≥
|pq|. Note that the total length of HP is 2dHP

(p, q),
hence dHP

(p′, q′) ≤ dHP
(p, q). Thus, δHP

(p′, q′) =
dHP

(p′, q′)/|p′q′| ≤ dHP
(p, q)/|pq| = δ.

(ii) p′, q′ lie on non-opposite sides of R′ and there is
a path in HP connecting them that visits no point in
W (symmetrically, W’). If p′, q′ lie on the same side
of R′, then dHP

(p′, q′) = |p′q′|, hence δHP
(p′, q′) = 1.

If p′, q′ lie on different, i.e., vertical to each other,
sides, then dHP

(p′, q′) = |p′a| + |aq′| < 2|p′q′|, hence
δHP

(p′, q′) < 2.

(iii) p′, q′ lie on non-opposite sides of R′ and any path
in HP connecting them must visit a point in W (sym-
metrically, W’). First, |p′q′| ≥ |es| = (n3 − |st|)/2 =
(n3 − 2n − 1)/2. Let x = |p′(1) − a(1)| and y =
|p′(2)− q′(2)|. Then,

dHP
(p′, q′) < x + y + dHW

(s, t) < 2|p′q′|+ 3n + 3.

Thus, δHP
(p′, q′) < 2 + (3n + 3)/(n3 − 2n − 1) < 3,

for any n ≥ 3.

(iv) Finally, when p′, q′ ∈ W or W ′, we have that

dHP
(p′, q′) ≤ dHW

(s, t) = 3n +3 and |p′q′| ≥ 1, hence
δHP

(p′, q′) ≤ 3n + 3 ≤ δ, for any n ≥ 4. �

Conversely, we now prove the following.

Lemma 4 If there is a Hamilton circuit on P with
dilation at most δ, then there is a Hamilton s-t path
on W with length 3n + 3.

Proof. Let HP be a Hamilton circuit on P with
δ(HP) ≤ δ. Also, let p = (a + b)/2 and q = (c + d)/2.
We prove that HP must contain a path from p to q
that is ‘locally optimal’ in the sense that firstly, it
connects p to s and t to q in the ‘canonical’ way on
the sides of R′ and, secondly, it connects s to t via a
Hamilton path on W with length 3n + 3. In particu-
lar, we show that δ is small enough to ensure that the
following requirements be met:

(i) Once inside a block, HP visits all the points of the
block before leaving it. To see this, consider a block B
and a point pi ∈ B for which there is an edge opi with
o ∈ P \B (such a point must exist since HP must visit
all the points of P); see Fig. 3. We trace HP starting
from o and entering B via opi. Let us assume that HP

pi pj

pk+1

pk

HP

HPHP

HP

block B

set of vertices of B visited by the
part of HP between pi and pj

Figure 3: Case (i) in the proof of Lemma 4.

leaves B before having visited all its points and let pj

be the last point visited and pk be a point that is left
out. Then, at least one neighbor point, say pk+1 of
pk in B is not connected to pk via this part of HP

inside B. Also, HP must visit pk but only after it has
visited at least one point outside B. Let o′ be such
a point connected to pj with an edge pjo

′. Note that
o′ must be in some block other than B or in W or
in W ′; the same holds for o. Recall that the distance
between any two blocks is at least n3 and that the
distance between any block and W or W ′ is at least
|es| = (n3−2n−1)/2. Hence, |pjo

′| ≥ (n3−2n−1)/2
and |opi| ≥ (n3 − 2n − 1)/2 as well. We have that
dHP

(pk+1, pk) > 2 min{|pjo
′|, |opi|} ≥ 2(n3 − 2n − 1)

and, thus, δHP
(pk+1, pk) > 2n2−6 > δ, for any n ≥ 3.

(ii) Once inside W (or W ′), HP visits all the points
of W (or W ′) before leaving it. This can be seen by
using arguments similar to the ones in case (i).

20

EWCG 2007, Graz, March 19–21, 2007

(iii) Any two blocks that are consecutive along the
sides of R′ must be ‘connected’ by an edge in HP , as
long as W or W ′ does not lie between the two blocks.
To see this, consider a block B and a neighbor of
it, B′, and let p′ and q′ be the endpoints of B and
B′ respectively, with |p′q′| = n3. Assume that HP

contains no edge connecting a point of B to a point of
B′; see Fig 4. Then, any path from p′ to q′ in HP must
visit some other block, different from B and B′, and,
hence, dHP

(p′, q′) > n6, where n6 is the diameter of
any block. Thus, δHP

(p′, q′) > n3 > δ, for any n ≥ 2.

p′ q′

q′

p′

Figure 4: Examples of the case (iii) in the proof of
Lemma 4.

(iv) Blocks K1,K2 must be connected to W by an
edge in HP ; this holds also for the blocks in M and
W ′ (similar to the case (iii)).

All the above requirements assert that HP does not
contain ‘long’ edges (jumps) between any two points
of P that belong to different blocks or between a point
of a block and a point of W or W ′. Note that, since all
points of a block lie on the same straight-line segment,
the minimum-length Hamilton path on a block has
length n6; any detour increases this length by at least
n. Also, s and t are the points of W that are closest
to e and f respectively. Case (ii) also asserts that the
part of HP inside W (W ′) forms a Hamilton s-t path
on W (W ′); let l be its length. Consider now the pair
p, q. By combining all the above, we have that

(1) dHP
(p, q) ≥ |pa|+|ae|+|es|+l+|tf |+|fd|+|dq| =

α + β − (2n + 1) + l.

Since δ(HP) ≤ δ, we have that δHP
(p, q) ≤ δ as

well. From the proof of Lemma 3, this implies that

(2) dHP
(p, q) ≤ α + β + n + 2.

From (1), (2), we have that l ≤ 3n + 3. However,
any Hamilton path on W has length at least 3n + 3,
and the lemma follows.

�

Note that all points in P have rational coordinates
with numerators and denominators bounded by a
polynomial in n. Also, the construction of P takes
O(|P |) = O(n7) time. Combining Lemmata 2, 3,
and 4, concludes the proof of the theorem. �

Any Hamilton path on W has length at least 3n+3
and, from Lemma 2, this value is achieved if and only
if there is a Hamilton circuit in G. On the other hand,
if there is no Hamilton circuit in G, then any Hamilton
path on W has length at least (3n + 3)− 1 +

√
2: In

this case, an edge with length at least the length of a
diagonal of the grid must be used by the path. This
observation implies that the minimum-dilation tour
problem admits no-FPTAS.

Corollary 5 The minimum-dilation tour problem
does not admit an FPTAS.

As it is easy to see, Theorem 1 and Corollary 5 hold
also for the decision version of the minimum-dilation
path problem by considering a point set that contains
p and q, the points of P that lie on R′ to the right
side of p and q, and the points in W .

Corollary 6 Given a set P of points in the plane and
a parameter δ > 1, the problem of deciding whether
there exists a Euclidean Hamilton path on P with
dilation at most δ is NP-hard. The minimum-dilation
path problem does not admit an FPTAS.

References

[1] O. Cheong, H. Haverkort, and M. Lee. Computing a
minimum-dilation spanning tree is NP-hard. In Proc.
of Computing: the Australasian Theory Symposium
(CATS), 2006. To appear.

[2] D. Eppstein. Spanning trees and spanners. In J.R.
Sack and J. Urrutia, editors, Handbook of Compu-
tational Geometry, pages 425–461. Elsevier Science
Publishers B.V. North-Holland, Amsterdam, 2000.

[3] D. Eppstein and K.A. Wortman. Minimum dilation
stars. In Proc. of the 21st ACM Symp. Comput. Ge-
ometry, pages 321–326, 2005.

[4] A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter.
Hamilton paths in grid graphs. SIAM J. Comput-
ing, 11(4):676–686, 1982.

[5] R. Klein and M. Kutz. Computing geometric
minimum-dilation graphs is NP-hard. In Proc. of the
14th Internat. Symp. on Graph Drawing, 2006. To
appear.

[6] G. Narasimhan and M. Smid. Geometric Networks.
Cambridge University Press. To appear.

[7] M. Smid. Closest point problems in computational
geometry. In J.R. Sack and J. Urrutia, editors, Hand-
book of Computational Geometry, pages 877–935. El-
sevier Science Publishers, 2000.

21

23rd European Workshop on Computational Geometry, 2007

Existence of Simple Tours of Imprecise Points ∗

Maarten Löffler †

Abstract

Assume that an ordered set of imprecise points is
given, where each point is specified by a region in
which the point may lie. This set determines an im-
precise polygon. We show that it is NP-complete to
decide whether it is possible to place the points inside
their regions in such a way that the resulting polygon
is simple. Furthermore, it is NP-hard to minimize the
length of a simple tour visiting the regions in order,
when the connections between consecutive regions do
not need to be straight line segments.

1 Introduction

Traditionally, geometric algorithms assume exact
input. However, in practice there is often some im-
precision in real-life input data, which may result in
artifacts. For example, a polygon that describes the
boundary of some region may have self-intersections.

If we know that the vertices of some polygon are
imprecise, given by some region in which they lie, the
question arises how to place the vertices inside their
regions such that the resulting polygon has no self-
intersections. We show here that it is NP-complete
to determine whether such a placement is possible,
and hence also to find one if it exists. This is a
refinement of an earlier result, where we proved that
it is NP-hard to find the minimum perimeter polygon
that has no self-intersections [4].

In this paper, we study the following problem. We
are given an ordered set S ⊂ P(R2) of n connected
regions in the plane. We are looking for a tour (closed
curve) that visits all regions of S in the correct order.
We call such a tour simple if it does not cross itself.
We call such a tour straight if it is a polygon with
a vertex in each region, and no other vertices. We
are interested in the existence of a simple straight
tour. Figure 1 shows an example of an ordered set of
regions and some tours through them.

For non-simple tours, it is easy to see that the

∗This research was partially supported by the Nether-
lands Organisation for Scientific Research (NWO) through the
project GOGO.

†Institute of Information and Computing Sciences, Utrecht
University, loffler@cs.uu.nl

1

2

3

4

5

(a)

1

2

3

4

5

(b)

1

2

3

4

5

(c)

1

2

3

4

5

(d)

1

2

3

4

5

(e)

1

2

3

4

5

(f)

Figure 1: (a) Five regions and an order on them. (b)
A tour passing through the regions in order. (c) A
simple tour. (d) A straight tour. (e) The shortest
tour. (f) The shortest simple tour.

shortest one is always straight. This problem has
been studied by Dror et al. [2], and can be solved in
near-linear time if the regions are convex polygons,
while it is NP-hard for non-convex regions. For
square regions, the shortest and longest straight
tours can be computed in O(n) time [4]. If the
regions are all adjacent to the inner boundary of a
simple polygon, this problem is known as the Safari
Keepers problem [6, 9]. On the other hand, if we
want to find a simple tour, the shortest one is not
always straight. We also prove that finding the
shortest simple tour is NP-hard. This answers an
open question posed by Polishchuk and Mitchell [7].

The problem of finding the shortest tour for an
unordered set of regions has been well studied before
and is generally called the Traveling Salesman Prob-
lem with Neighbourhoods, or (Planar) Group-TSP.
This problem is obviously NP-hard. Mata and
Mitchell [5] give a constant factor approximation
algorithm for some region models; additional results
can be found in [1, 8].

The remainder of this paper is organized as follows.
The next section contains the NP-hardness proof for
the problem of deciding whether a simple straight tour
through an ordered set of vertical line segments exists.
Section 3 shows how to extend this result to other
imprecision regions like squares and circles. Section 4
describes the NP-hardness of the problem of finding
a shortest simple tour. Finally, some concluding re-

22

EWCG 2007, Graz, March 19–21, 2007

(a) (b) (c)

Figure 2: (a) The input for a pair of scissors. (b)
One of the solutions, representing the state True.
The mirrored solution represents the state False. (c)
Schematic representation.

marks are given in Section 5.

2 Simple Straight Tours through Vertical Line
Segments

Given a set of parallel line segments and a cyclic
order on them, we want to choose a point on each
segment such that the polygon determined by those
points in the given order is simple. The decision
problem of whether this is possible is NP-complete.
The problem is trivially in NP, and we prove NP-
hardness by reduction from planar 3-SAT [3]. For
different components of a planar 3-SAT instance, we
construct polygonal chains that will be connected
into a polygon in the end. A simple polygon can be
realized if and only if the 3-SAT instance is satisfiable.

In the construction we give here, the simple polygon
will be a degenerate one if it exists. A degenerate
simple polygon is a polygon for which it is possible
to move all vertices over an arbitrarily small distance
to make it into a simple polygon. However, we will
show that the gadgets can be adapted slightly to also
allow non-degenerate simple polygons.

We represent variables by scissor gadgets as in
Figure 2(a). This gadget consists of two imprecise
points and two precise (or degenerate imprecise)
points. The dashed lines depict the order in which
the tour should visit these regions. There are two
possible ways to make a simple straight tour through
this gadget, which represent the two different values
of a variable. The solution with a positive sloping
diagonal, see Figure 2(b), represents the value True,
and the negative sloping diagonal represents the
value False. In the remainder of the proof we use
a schematic drawing for this configuration of four
imprecise points, see Figure 2(c).

We can make a chain of scissor gadgets that all
represent the same variable, as shown in Figure 3.
Here each scissor gadget is represented schematically
as two crossing diagonal lines and a horizontal line
indicating where the gadget is connected to the

polygon. For each scissor gadget one of the legs is
used in a solution, the other is not. There are only
two possible states to this chain: either all of the
scissor gadgets use their positive sloping leg or they
all use their negative sloping leg.

We can also split this chain into more chains with
a junction as shown in Figure 4(a). Here scissor
gadgets of two different sizes are used, but still there
are only two possible states in the total structure:
either all scissor gadgets use their positive sloping leg,
or all use their negative sloping leg. The chains can
be split again to make as many chains for a variable
as needed. Furthermore, we can make chains under
a slope of almost 45◦, and by zigzagging between
junctions we can move over vertical distances, see
Figure 4(b).

We represent the clauses of the 3-SAT formula by
clause gadgets, as in Figure 5(a). This configuration
consists of one imprecise point and four precise points.
For clauses, there are three unconnected polygonal
chains that visit the gadget, which are represented
by dashed lines. The three possible solutions for this
situation can be seen in Figures 5(b), 5(c) and 5(d).
The idea is that in order to find a total solution, at
least one of the three solutions to the clause must be
possible. For example, if we want to build the clause
a ∨ b ∨ ¬c, we intersect the negative sloping leg of
the variable a with one of the three solution paths of
the clause, the negative sloping leg of the variable b
with another path, and finally the positive sloping
leg of c with the remaining path, and the clause can
be solved if and only if the logical clause is satisfied,
see Figure 5(f).

Now that we have structures for variables and
clauses, we can build an instance of planar 3-SAT
by embedding the graph in the plane and making it
wide enough to fit all the structures such that they
do not interfere. However, this does not complete
our construction yet. The scissor and clause gadgets
have some precise points where the tour is supposed
to enter and leave the gadget. We need to construct
a tour that visits all gadgets in any order, but in such
a way that it does not interfere with the gadgets. We
can easily do this by linking neighbouring gadgets
together, see Figure 5(g). However, doing this will
result in a number of smaller tours instead of one big
tour, because the 3-SAT instance partitions the plane

Figure 3: A chain of scissors.

23

23rd European Workshop on Computational Geometry, 2007

(a) (b)

Figure 4: (a) A junction to split the chain of scissors.
(b) Going vertical.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5: (a) The input for a clause. (b) One of the
three solutions. (c) Another solution. (d) The third
solution. (e) Schematic representation. (f) The clause
attached to the three variables. (g) Connecting the
gadgets.

into a number of faces. We need one tour to visit all
gadgets, and therefore all faces. This means we need
the tour to cross the scissor chains. Therefore, we
design another primitive, see Figure 6(a).

This bridge gadget consists of two imprecise points
and four precise points, and has two chains passing
through it, again indicated by the dashed lines. Like
the scissor gadget, the bridge gadget has two possible
solutions representing the values True and False of a
variable, see Figure 6(b). A schematic representation
is shown in Figure 6(c). Bridge gadgets can be em-
bedded in chains of scissor gadgets, and they preserve
the property that the whole chain uses either posi-
tive or negative sloping legs, see Figure 7. However,
we now have two parts of the tour that cross the chain.

Now we can include bridges into the network such that
all faces of the embedded planar 3-SAT graph are con-

nected by bridges, see Figure 8. All we need to do now
is connect the fat edges to each other with a fixed part
of the tour (a part that only contains precise points),
and we have a valid input for the problem. The num-
ber of imprecise points in the construction is clearly
polynomial in the length of the 3-SAT instance, which
completes the proof.

Theorem 1 Given an ordered set of n vertical
line segments, it is NP-hard to decide whether it is
possible to choose a point on each segment such that
the resulting polygon is simple.

It is easy to adapt the gadgets slightly to also al-
low non-degenerate polygons, without damaging the
proof. For the scissor gadgets, just make the vertical
line segments slightly longer; for the clauses, move the
two central precise points slightly towards the impre-
cise point.

3 Simple Straight Tours through General Regions

In the gadgets of the proof, we can replace the vertical
line segments by narrow rectangles. Next, we observe
that we can scale the input of the problem in the x
direction without interfering with the existence of a
simple straight tour. If we model the imprecise points
as scaled copies of any connected shape, e.g. circles,
we can deform the input such that their bounding
boxes become narrow rectangles. Because the regions
are connected, there is a point inside the region for
every y-coordinate of each narrow rectangle, and the
proof works as before.

Theorem 2 Given an ordered set of n arbitrarily
scaled copies of any connected region, it is NP-hard
to decide whether it is possible to choose a point in
each region such that the resulting polygon is simple.

4 Simple Tours through Line Segments

If we drop the requirement that the edges between
two consecutive points need to be straight line seg-

(a) (b) (c)

Figure 6: (a) The input for a bridge. (b) One of the
solutions, representing the state True . The mirrored
solution represents the state False . (c) Schematic
representation.

24

EWCG 2007, Graz, March 19–21, 2007

Figure 7: A bridge embedded in a chain of scissors.

ments, a simple tour always exists. In this context, it
is interesting to consider shortest simple tours. Find-
ing such a shortest tour is also NP-hard. We need to
make slightly more complex gadgets. In the scissors
gadget, we need to explicitly ensure that the tour goes
down, so we add a horizontal segment, see Figure 9.
We also need to adapt the clause gadget, to ensure
that the three solutions all have the same length, see
Figure 10. The bridge gadget still works. Now, if
the 3-SAT instance is satisfiable, a tour exists that
is considerably shorter than the shortest tour if the
instance is not satisfiable. We can extend the proof
to squares by noting that in all gadgets the given seg-
ments might as well be sides of squares, without al-
lowing any shorter solutions.

Theorem 3 Given an ordered set of n axis-parallel
line segments or squares, it is NP-hard to find a tour
that visits all segments or squares in order such that
this tour is simple and as short as possible.

5 Conclusions

We studied the problem of finding a simple straight
tour through a sequence of regions, and proved that
it is NP-complete to decide whether this is possible.
We also proved that it is NP-hard to find the shortest
non-straight tour, resolving an open problem from [7].

It still remains open whether a shortest simple tour

Figure 8: Part of a network of variables and clauses to
represent planar 3-SAT. The network contains bridges
to connect cycles.

(a) (b) (c)

Figure 9: Adapted scissors.

(a) (b) (c) (d)

Figure 10: Adapted clause.

visiting a set of single points, instead of regions, can
be found efficiently.

Acknowledgements The author thanks Marc van
Kreveld for helpful discussions.

References

[1] M. de Berg, J. Gudmundsson, M. J. Katz, C. Lev-
copoulos, M. H. Overmars, and A. F. van der Stap-
pen. TSP with neighborhoods of varying size. Journal
of Algorithms, 57(1):22–36, 2005.

[2] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell.
Touring a sequence of polygons. In Proc. 35th ACM
Sympos. Theory Comput., pages 473–482, 2003.

[3] D. Lichtenstein. Planar formulae and their uses. SIAM
J. Comput., 11(2):329–343, 1982.

[4] M. Löffler and M. van Kreveld. Largest and small-
est tours and convex hulls for imprecise points. In
Proc. 10th Scandinavian Workshop on Algorithm The-
ory, LNCS 4059, pages 375–387, 2006.

[5] C. Mata and J. S. B. Mitchell. Approximation algo-
rithms for geometric tour and network design prob-
lems. In Proc. 11th Annu. ACM Sympos. Comput.
Geom., pages 360–369, 1995.

[6] S. Ntafos. Watchman routes under limited visibility.
Comput. Geom. Theory Appl., 1(3):149–170, 1992.

[7] V. Polishchuk and J. S. B. Mitchell. Touring convex
bodies - a conic programming solution. In Proc. 17th
Canad. Conf. on Comp. Geom., pages 290–293, 2005.

[8] S. Safra and O. Schwartz. On the complexity of
approximating TSP with neighborhoods and related
problems. Comput. Complexity, 14(4):281 – 307, 2006.

[9] X. Tan and T. Hirata. Finding shortest safari routes
in simple polygons. Information Processing Letters,
87:179–186, 2003.

25

23rd European Workshop on Computational Geometry, 2007

Convex Approximation by Spherical Patches

Kevin Buchin∗‡ Simon Plantinga †‡ Günter Rote∗‡ Astrid Sturm∗‡ Gert Vegter†‡

Abstract

Given points in convex position in three dimensions,
we want to find an approximating convex surface
consisting of spherical patches, such that all points
are within some specified tolerance bound ε of the
approximating surface. We describe a greedy al-
gorithm which constructs an approximating surface
whose spherical patches are associated to the faces
of an inscribed polytope. We show that deciding
whether an approximation with not more than a given
number of spherical patches exists is NP-hard.

1 Introduction

Problem Statement. We are given a set P of n three
dimensional points in convex position. We want to
find a convex approximating surface S that consists
of spherical patches. A spherical patch is part of the
boundary of a sphere. There are two quality criteria
that we want to optimize: (a) the approximation er-
ror, which is defined as the maximum distance from
a point of P to S; and (b) the number of patches.

Motivation. Our motivation for studying this prob-
lem is based on open problems in polytope approxi-
mation as well as on practical considerations. Surface
reconstruction and surface simplification is an impor-
tant area of computer graphics and geometric model-
ing [1]. One goal is to approximate complex objects
by simpler shapes. A lot of research has been done in
the field of approximation of three dimensional point
sets with polytopes with surfaces of higher order [3].

A first natural step to higher order approxima-
tion is the approximation with spheres or spherical
patches. Since polyhedral facets can be seen as spher-
ical patches with infinite radius, spherical patch ap-
proximation generalizes polytope approximation.

We initiate the study of this problem by considering
convex surfaces only, for simplicity. The results might
nevertheless be interesting for real data sets, e.g. data
sets from imaging procedures such as MRT. A wide

∗Institut für Informatik, Freie Universität Berlin, {buchin,
rote, sturm}@inf.fu-berlin.de

†University of Groningen Department of Mathematics and
Computing Science, {simon, gert}@cs.rug.nl

‡Partially supported by the IST Programme of the EU as
a Shared-cost RTD (FET Open) Project under Contract No
IST-006413 (ACS – Algorithms for Complex Shapes)

range of objects scanned for data consist of parts that
are convex, and thus our results remain valid at least
on a local scale.

The complexity of the approximation problem is
related to open problems in polytope approximation,
in particular to the complexity of the minimum facet
polytope approximation. We hope to use our new
methods from the NP-hardness proof of the more gen-
eralized problem to solve the complexity question of
the minimum facet polytope approximation.

Results and Techniques. We present an algorithm
for solving the approximation problem with a speci-
fied error bound ε. It is based on a triangulated in-
scribed polytope which is the convex hull of a sub-
set of the input points, and on which the spherical
patches are built. This polytope is successively re-
fined in a greedy manner. We attempt to extend the
well-known Douglas-Peuker algorithm for polygonal
line approximations of curves to our setting.

Proofs are omitted due to space constraints. A full
version is available1.

2 Approximation of a convex point set by Spher-
ical Patches

Outline The optimization problem we are consider-
ing is the Approximation by Spherical Patches prob-
lem (ASP): the approximation of a convex point set
with a number g of spherical patches resulting in a
convex surface with all points within some specified
tolerance to the surface. We construct a point set
defining an instance of the ASP with zero tolerance
such that - in the satisfiable case - a minimal solution
of the approximation problem corresponds to a truth
assignment in the NP-hard grid-3-SAT problem. This
point set is lifted to a paraboloid and extended with
additional points. We describe the minimal solution
in the satisfiable case and prove that more patches
than g are needed in the non-satisfiable case for the
ASP.

Grid-3-Satisfiability 3-SAT statements consist of a
Boolean conjunction of clauses, where each clause
consists of a disjunction of three boolean variables,
each of which may be negated. Such a statement can
be represented by a bipartite graph, where variables

1http://page.mi.fu-berlin.de/ sturm/Spheres.pdf

26

EWCG 2007, Graz, March 19–21, 2007

and clauses are represented by vertices. Each clause
vertex is connected to its three variable vertices by an
edge marked + or − depending on whether this vari-
able occurs negated in that clause. The 3SAT prob-
lem is NP hard even if the variable-clause graph of a
formula of length n in 3-conjunctive normal form can
be embedded on a c ·n2 grid with c some constant [2].

Modifying the grid The first step of the reduction
requires a refinement of the grid, vertices correspond
to facets and edges correspond to rectilinear paths on
the grid. Further we disperse the grid cells by a small
constant factor δ which creates free space between the
cells. Depending on the label of the edge in the vari-
able clause graph, we change the number of facets in
the path on the grid corresponding to the edge. A
negatively labeled edge is represented by a path with
an odd number of cells and a positively labeled edge
corresponds to a path with an even number of cells.
To achieve this correspondence we need sufficiently
many cells on a straight path. The inclusion of an ad-
ditional cell is done by reducing the size of the cells in
a straight segment of the path and fitting in another
cell of this size. Next we delete all grid cells corre-
sponding to clauses (the clauses will be represented
later by a single point). We also drop the lower right
vertex of each grid cell.

Clause

Inclusion of negation cell Variable

Figure 1: refinement of the grid

Lifting to a paraboloid The next step is a lifting
of the point triples of the grid cells onto a very flat
paraboloid. The distance between vertices in one grid
cell is set to one. For a c · (n × n) grid we pick a
paraboloid of the form z = λ ·

(
x2 + y2

)
. The param-

eter λ has to be chosen in such a way that for two
neighboring point triples the disks Di and Dj cor-
responding to the circles Ci and Cj intersect. This
guarantees the existence of valid spherical patches.
For a lifting of a δ dispersed c · (n×n) grid this leads

to an upper bound on λ of

q
(1−1/

√
2)2−δ2

δ2+2δ(c+δ)n . For this, δ

has to be chosen less than 1− 1/
√

2. For our explicit
construction we choose δ := 1/10 and λ := 1/(10m)
with m = c(1 + δ)n a bound on the width and length
of the dispersed grid (see Theorem 4).

Fill points After lifting the point set we place one
point into each triangular face defined by point triples

corresponding to grid cell vertices of cells which did
not belong to the 3SAT. We refer to these four points
as a set of fill-points.

Lemma 1 Each set of fill points induces exactly one
spherical patch and all sets cannot be covered with
less than one patch per set.

Wire The wire corresponds to edges in the variable-
clause graph. An edge in the variable-clause graph
corresponds to a set of the lifted point triples. Each
point triple Pi defines a circle Ci. These circles do
not lie on the paraboloid, but (since λ is small) lie
close to the lifted circumcircles of the base squares
(which are ellipses). The supporting plane of each
circle splits the space into an inner half space con-
taining the convex hull of the original point set and
an outer half space. Each circle Ci defines a family
of spheres, i.e. set of all spheres induced by the circle
Ci. Candidates for valid patches are only spheres with
centers in the inner half space. Furthermore adjacent
spherical patches need to intersect properly. The in-
tersection of the outer half space with the circle Cj

of an adjacent patch has to lie outside the spherical
patch, i.e., the spherical patch should pass below the
circular arcs of its neighbors.

We build a wire out of consecutive spherical patches
to propagate information from the variables to the
clauses. The main idea of the reduction is to place
points on the intersection of consecutive spherical
patches in the wire. These points narrow down the
choice from a family of spheres to only two spheres
for each patch a flat or bulbous patch. Furthermore
the points force alternating spherical patches in the
wire.

The approximating surface is constructed by taking
the inner upper hull of the patch intersection. This
is the surface of the intersection of the patch defining
spheres. We need to guarantee that the additional
points on the flat and bulbous patches will lie on the
approximating surface (see Lemma 3). We place four
points, Fk, on the intersection circle of consecutive
flat patches and four points, Bki

, on the intersection
of bulbous patches. The points Fki

lie on the circular
arc which is in between the intersection of the defin-
ing circles and the points Bki lie on the circular arc
outside the intersection (see Figure 2).

For the wire gadget we need to place a point (ap-
proximately) on the intersection of two neighboring
“bulbous” spheres. If at least one of the two bul-
bous spheres is chosen the point must lie on the inner
hull of the construction. In the following we formu-
late conditions under which a point lies on the inner
hull. Then we pick such a point and prove that the
conditions hold.

Since the radii of the bulbous spheres have been
chosen in such a way that they only come close to

27

23rd European Workshop on Computational Geometry, 2007

BBFF

BFFB

Figure 2: Placing of the points on the circular arc
of the FF and BB patch intersection. The light gray
points are on BB.

the grid polytope at the face by which it is defined,
it suffices to consider the local configuration. The
grid polytope is the polytope obtained by lifting all
the grid vertices restricted to the region of the 3SAT
construction. Thus, for a point to lie on the inner hull
the following conditions are sufficient:

1. The point lies above (i.e. on the same side as the
grid polytope) both of the planes defined by the
two triples of points.

2. The point lies below (i.e. on the other side than
the grid polytope) the face of the grid polytope
between the two faces defining the spheres.

3. The projection of the point lies within (possibly
on the boundary of) the face of the grid polytope
between the two faces defining the spheres.

For two neighboring triples of points there are two
points p1 and p2, one of each triple, neighboring in
the grid. Let e be the plane orthogonal to the z-axis
through these two points. For the intersection point
of the plane e with the two spheres we can prove that
the conditions above hold.

For a flat patch we choose the sphere with center
at infinity, the plane defined by the point triple. For
a bulbous patch we request that all points of the grid
polytope except the point triple defining the patch
lie inside the “bulbous” ball. This leads to a set of
constraints on the radius of the ball by considering
the radii of the balls defined by the point triple and a
set of possible fourth points. These constraints can be
fulfilled by a radius linear in n. To guarantee further
that all points of the grid polytope except the point
triple have distance of at least 1/n2 to the surface of
the ball the radius can be chosen quadratic in n. We
choose for all bulbous patches the same radius.

Variable A variable is a point triple which is han-
dled as a wire point set. Choosing the flat patch cor-
responds to a 0 assignment and the bulbous patch
to a 1 assignment. Choosing the flat patch will re-
sult in a covering of all flat points in the free space
around the variable point triple, therefore all consecu-
tive wire patches will propagate the same information

- all wires starting from this variable will start with a
bulbous patch. The case of picking a bulbous patch
for a variable point triple is symmetric.

Clause Before the lifting a clause corresponds to a
grid cell in the plane which is connected to three wires
(from three variables). The vertices of this grid cell
are not lifted. In the lifted point set the clause corre-
sponds to a single point. This point is placed in the
free space between the three wire point triples and is
the intersection point of the bulbous patches of these
point sets.

Theorem 2 There exists a true assignment for the
grid 3SAT instance if and only if the lifted point set
with all additional points can be approximated with s
spherical patches. For a c(n× n) grid, with g clauses
and t cells included for negation, s = c(n2) + t− g

Lemma 3 All point sets Fki
and Bki

are on the ap-
proximating surface.

Theorem 4 For a SAT instance on a c(n × n) grid
let P be the set of points in convex position con-
structed as above with δ := 1/10, λ := 1/(10m),m :=√

2(1 + δ)cn, and the common radius of the bulbous
spheres r := 10m. Let P ′ equal P with the excep-
tion that the points on the bulbous-bulbous sphere
intersections might be displaced by ε := 1/m2. For
sufficiently large m the following holds: If the SAT
instance is feasible, then there is a surface with g
patches such that all points have distance at most ε
to a patch. If the SAT instance is infeasible, then for
every surface with at most g patches there is at least
one point which has distance more than 100ε from all
patches.

3 Greedy algorithm

In this section we present a construction of curved
surfaces based on inscribed polytopes, resulting in a
convex surface consisting of spherical patches. The
inscribed polytope approach makes our construction
suitable for various incremental algorithms. We start
with a minimal inscribed polytope consisting of a
tetrahedron, and incrementally extend this polytope
until the corresponding surface is a valid approxima-
tion.

Constructing a curved surface In order to produce
a valid surface, we require that spherical caps pass
through triples of input points ensuring that adjacent
caps intersect properly. The approximating surface
is generated by a convex triangulation, in particular
the convex hull of a subset of the input points. The
triangles of this hull are called supertriangles. Our

28

EWCG 2007, Graz, March 19–21, 2007

goal is to inflate this polytope by replacing its faces
with curved, spherical patches.

First we construct the spherical caps. The sup-
porting plane of each supertriangle splits space into
an inner halfspace containing the convex hull, and an
outer halfspace. For each supertriangle we construct
a spherical cap by first taking a sphere through its
vertices with its center in the inner halfspace. Then
we take the intersection of this sphere with the outer
halfspace. The intersection of the outer halfspace with
the circumcircle of an adjacent supertriangle has to
lie outside the spherical cap (see Figure 3), i.e., the
spherical cap should pass below the circular arcs of
its three neighbors.

Figure 3: Supertriangle with spherical cap.

For each neighboring supertriangle, the circumcir-
cle and dihedral angle give a lower bound on the ra-
dius of the spherical cap, to ensure that the cap is
flat enough to pass below that circumcircle. Taking
the maximum over the three adjacent supertriangles
results in a single lower bound for the cap radius. The
centre of the spherical cap now has to lie on a halfline
perpendicular to the supertriangle. The approximat-
ing surface consists of the inner hull of the union of
these spherical patches.

Lemma 5 If neighboring spherical caps intersect
properly, the inner hull of the union of caps forms
a convex surface.

Incremental construction We can now construct a
curved convex surface from a subset S of the input
points P . The convex hull of S generates a surface
as long as the patch radii are large enough, to ensure
proper intersection.

For an incremental approach, we initialize S to the
four extremal points of the point set P , in the di-
rections of the normals of a regular tetrahedron. Re-
specting the lower bound on the radii, we try to choose
cap radii such that the caps are closer than ε to the
remaining input points. If this is not possible we add
more input points to S.

A supertriangle is valid if there exists a correspond-
ing spherical cap with radius larger than its lower
bound, such that all points inside the outer halfspace
of the supertriangle are closer than ε to this spherical
cap.

If all supertriangles of the inscribed polytope are
valid, all input points lie closer than ε to the union

of caps. However, it is still possible that they are not
ε-close to the inner hull of these caps, especially if
adjacent supertriangles have a large dihedral angle or
if some supertriangles are obtuse. We therefore have
to test whether the input points that are ε-close to a
cap but not to the patch, are ε-close to their nearest
patch.

Testing supertriangles for validity results in more
bounds for the patch radius. The centre of the spher-
ical cap has to lie on the centre line of the supertrian-
gle, which is the line passing through the circumcentre
and is perpendicular to that triangle. If an input point
inside the corresponding halfspace needs to be ε-close
to the spherical cap, this condition gives an interval of
valid cap centres on the centre line. If the intersection
of all of these intervals together with the half-line is
nonempty, the supertriangle is valid. Since the lower
bound for proper intersection of caps corresponds to
the surface being convex, we expect the intersection
of these intervals to lie within that valid half-line.

First we test all supertriangles for validity. If there
are invalid supertriangles, we add an input vertex to
S and update the convex hull incrementally. We then
test the validity for the newly constructed supertrian-
gles and for previously invalid neighbors of new super-
triangles. This way we gradually refine the approx-
imating curved surface without having to revalidate
the entire structure.

For an invalid supertriangle we choose the outly-
ing input point corresponding to the smallest radius
of the spherical cap. As we increase the number of
spherical caps, we increase the radius. This is mo-
tivated by the fact that we want flatter patches as
the dihedral angles between supertriangles decrease.
The incremental algorithm now moves gradually from
a curved surface consisting of four patches, to the en-
tire convex hull of P .

The extra test for points close to caps but not to
the corresponding patch can also reveal points that
are further than ε from the approximating surface.
These points are also added to S.

Lemma 6 The greedy algorithm terminates.

References

[1] T. K. Dey. Curve and surface reconstruction. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Dis-
crete and Computational Geometry, CRC Press, 1997,
2004, volume 2. 2004.

[2] M. Godau. On the difficulty of embedding planar
graphs with inaccuracies. In R. Tamassia and I. G.
Tollis, editors, Graph Drawing, volume 894 of LNCS,
pages 254–261. Springer, 1994.

[3] N. Kruithof and G. Vegter. Envelope surfaces. In
N. Amenta and O. Cheong, editors, Symposium on
Computational Geometry, pages 411–420. ACM, 2006.

29

23rd European Workshop on Computational Geometry, 2007

Guarding Rectangular Partitions

Yefim Dinitz∗ Matthew J. Katz† Roi’ Krakovski‡

Abstract

A rectangular partition is a partition of a rectangle
into non-overlapping rectangles, such that no 4 rect-
angles meet at a common point. A vertex-guard is a
guard located at a vertex of the partition (i.e., at a
corner of a rectangle); it guards the rectangles that
meet at this vertex. An edge-guard is a guard that
patrols along an edge of the partition, and is thus
equivalent to two adjacent vertex-guards. We con-
sider the problem of finding a minimum-cardinality
guarding set for the rectangles of the partition. For
vertex-guards, we prove that guarding a given sub-
set of the rectangles is NP-hard. For edge-guards,
we prove that guarding all rectangles, where guards
are restricted to a given subset of the edges, is NP-
hard. For both results we show a reduction from
vertex cover in triangle-free 3-connected cubic planar
graphs.

For the second NP-hardness result, we obtain a
graph-theoretic result which establishes a connection
between the set of faces of a plane graph of vertex
degree at most 3 and a vertex cover for this graph.

We show that the vertices of a rectangular parti-
tion can be colored red, green, or black, such that
each rectangle has all 3 colors on its boundary. We
conjecture that the above is also true for 4-coloring.
Finally, we obtain an upper bound for guarding by
edge-guards rectangular partitions with some restric-
tion on their structure.

1 Introduction

A rectangular partition R is a partition of a rectangle
into non-overlapping rectangles, such that no 4 rect-
angles meet at a common point. One can think of a
rectangular partition as a plane graph with the rect-
angles as faces, the rectangles’ corners as vertices, and
the line segments between adjacent vertices as edges.
Following this description, we denote by r(R), v(R),
and e(R) the set of rectangles, vertices, and edges,
respectively, of a rectangular partition R.

∗Department of Computer Science, Ben-Gurion University
of the Negev, Beer-Sheva 84105, Israel, dinitz@cs.bgu.ac.il.

†Department of Computer Science, Ben-Gurion University
of the Negev, Beer-Sheva 84105, Israel, matya@cs.bgu.ac.il.

‡Department of Computer Science, Ben-Gurion University
of the Negev, Beer-Sheva 84105, Israel, roikr@cs.bgu.ac.il.
Partially supported by the Lynn and William Frankel Center
for Computer Sciences.

Let R be a rectangular partition. The dual graph of
R, D(R), is obtained by representing each rectangle of
R by a vertex, and drawing an edge between two ver-
tices if their corresponding rectangles have a (bound-
ary) point in common. A rectangular dual R(G) of
a plane graph G(V,E) is a rectangular partition R
consisting of |V | rectangles, such that (i) each vertex
v ∈ V corresponds to a distinct rectangle in R, and
(ii) two rectangles in R touch each other, i.e., have a
(boundary) point in common, if and only if there ex-
ists an edge in E between the two vertices in V that
correspond to these two rectangles. A clique cover of
a graph G(V,E) is a partition of V into k disjoint sub-
sets V1, V2, . . . , Vk, such that the subgraph induced by
Vi is a complete graph, for i = 1, . . . , k. In the mini-
mum clique cover problem, one needs to find a clique
cover of G of minimum cardinality.

It is easy to observe that the problem of finding
a minimum guarding set consisting of vertex guards
for a rectangular partition R (VGP) is equivalent to
finding a minimum clique cover of D(R). Note that if
R is not a single row (alternatively, column) of rect-
angles, then its dual graph is a plane triangulation.
Thus, VGP is equivalent to finding a minimum clique
cover in plane triangulations that admit a rectangu-
lar dual. Despite this connection, we do not know
whether VGP is NP-hard.

Czyzowicz et al. [2] showed that the dual graph of
a rectangular partition with n rectangles (where n is
even) admits a perfect matching. This result imme-
diately implies an

⌈
n
2

⌉
upper bound on the number

of vertex guards needed for guarding a rectangular
partition. It would be nice to know whether there ex-
ists a coloring argument for this bound. In section 4
we suggest that such an argument may be found us-
ing the notion of face-respecting coloring introduced
in [1].

A natural generalization of the above problem is the
following problem (PVGP): Let R be a rectangular
partition, and let W ⊆ r(R) be a subset of rectangles.
Is there a set of vertex guards of size k that guards
all rectangles in W? A closely related problem is the
following problem (SEGP): Let R be a rectangular
partition, and let EA ⊆ e(R) be a subset of edges. Is
there a set of size k of edge guards restricted to EA,
that guards all the rectangles of R? In Section 3 we
show that both problems are NP-hard. Note that the
status of the first problem for the case W = r(R), and
the second problem for the case EA = e(R), remains

30

EWCG 2007, Graz, March 19–21, 2007

unknown.
In Section 2, we prove a theorem that is needed for

the NP-hardness proof of SEGP.

2 A face-vertex matching result for planar graphs

In the full version of this paper we prove the following
theorem.

Theorem 1 Let G be a connected non-bipartite
plane graph of vertex degree at most 3, and V C a
vertex cover for G. Then, one can assign to each in-
ternal face of G a distinct vertex of V C, so that the
vertex assigned to a face lies on its boundary.

3 NP-hardness results

Uehara [5] proved that the problem of finding a ver-
tex cover of minimum cardinality is NP-hard for 3-
connected cubic planar graphs of girth greater than
3. In particular, since the vertex cover problem is
polynomial-time solvable for bipartite graphs, it fol-
lows that the vertex cover problem remains NP-hard
even when restricted to non-bipartite 3-connected cu-
bic planar graphs of girth greater than 3.

Several definitions are needed before we can pro-
ceed. A plane triangulation is a 2-connected plane
graph in which all faces (except possibly the outer
face) are triangles (i.e., 3-cycles). If the outer face
is also a triangle then the graph is called a maxi-
mal plane triangulation. A separating triangle in a
plane graph is a 3-cycle which is not a face, i.e., a
3-cycle with a vertex in its interior and in its exterior.
A proper plane triangulation is a plane triangulation
that satisfies the following properties: (i) The outer
face consists of at least 4 edges, (ii) all internal ver-
tices have degree at least 3, and (iii) all cycles that
are not faces are of length at least 4, i.e., there are no
separating triangles.

Let G be a 2-connected plane graph. A shortcut in
G is an edge between two vertices on the outer cycle of
G, that is not an edge of this cycle. A corner implying
path in G is a segment v1, v2, . . . , vk of the outer cycle
of G, such that (v1, vk) is a shortcut and v2, . . . , vk−1

are not endpoints of any shortcut. Finally, for a graph
G, its line graph L(G) is constructed by representing
each edge of G by a vertex, and drawing an edge be-
tween two vertices u, v ∈ V (L(G)) if and only if the
edges of G represented by u and v share a common
endpoint in G. It is well known that the line graph of
a cubic graph is a 4-regular graph, and that the line
graph of a cubic planar graph is also planar; see [3].

The following theorem was stated and proved by
Kozminski and Kinnen [4].

Theorem 2 (Kozminski and Kinnen [4]) Let G
be a proper plane triangulation with at most four cor-
ner implying paths, then G admits a rectangular dual.
The rectangular dual of G can be constructed in linear
time.

3.1 PVGP is NP-hard

We show that the following problem (which we named
PVGP) is NP-hard. Let R be a rectangular partition,
and let W ⊆ r(R) be a subset of R’s rectangles. Is
there a vertex guarding set of size at most k for W?

The reduction. Let G = (V,E) be a non-bipartite
3-connected cubic plane graph of girth greater than 3.
Construct the line graph L(G) = (VL, EL) of G. Since
the line graph of a cubic planar graph is also planar,
L(G) is a planar graph. For each (internal) face of
L(G) whose boundary consists of four or more edges,
triangulate it by creating a new vertex in the interior
of the face and connecting this vertex to all vertices on
the boundary of the face. Denote the resulting graph
by L1(G) = (V1, E1), and let VH ⊆ V1 be the set
of newly created vertices. Construct the rectangular
dual, RG, of L1(G). Let H ⊆ r(RG) be the subset
of rectangles corresponding to the vertices in VH . We
call the rectangles in H holes, and put W = r(RG)−
H. See Figure 1.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 1: The reduction. Top left: a non-bipartite
3-connected cubic plane graph G of girth 4 with 16
vertices, 24 edges and 9 faces (excluding the outer
face). The 9 vertices of a minimum vertex cover for
G are in black. Top right: L(G). Bottom left: L1(G);
the vertices in VH are in grey. Bottom right: RG; the
rectangles in H are in grey; and the 9 vertices of a
minimum vertex guarding set for W are in black.

Our goal is to prove Lemma 6 below, but first we
need to justify the last step of the reduction.

Lemma 3 L1(G) is a proper plane triangulation with
no corner implying paths. Thus according to Theo-
rem 2 it has a rectangular dual.

Proof. We already know that L(G) is 4-regular and
planar. By the definition of L(G), since G is 3-
connected, L(G) is also 3-connected. Now, since G
is triangle-free, there are exactly |V (G)| triangles in

31

23rd European Workshop on Computational Geometry, 2007

L(G), created around each of the vertices of G. These
triangles are empty, thus L(G) has no separating tri-
angles.

Now consider L1(G). From L(G)’s properties and
since no separating triangles are introduced in the
triangulation step, it follows that L1(G) is a 3-
connected plane triangulation with no separating tri-
angles. Moreover, L1(G) has no corner implying path,
since the existence of such a path would contradict
the 3-connectivity of L1(G). Thus, according to The-
orem 2, L1(G) admits a rectangular dual. �

Definition 1 Let RG be the rectangular partition
obtained by the reduction above. An (x, y)-meeting
point of RG is a vertex of RG that is a meeting point
of x+y rectangles, of which exactly y are holes. Note
that 1 ≤ x + y ≤ 3 and y ≤ 1.

Lemma 4 (i) There is a natural one-to-one corre-
spondence between the vertices of G and the (3,0)-
meeting points of RG. (ii) There is a natural one-to-
one correspondence between the edges of G and the
rectangles of W . (iii) There is a natural one-to-one
correspondence between the internal faces of G and
the holes of H.

Following Lemma 4, it is easy to verify the following
statements. (i) Each non-hole rectangle of RG has
exactly two (3,0)-meeting points on its boundary, (ii)
no two (3,0)-meeting points are adjacent, (iii) a (2,1)-
meeting point is adjacent to exactly one (3,0) meeting
point, and (iv) a (2,0)-meeting point is adjacent to
exactly one (3,0)-meeting point.

Lemma 5 Let T be a vertex guarding set for W .
Then the guards in T can be moved, so that all guards
will lie on (3,0)-meeting points.

Lemma 6 (Reduction correctness) There exists
a vertex cover of size at most k for G if and only
if there exists a vertex guarding set of size at most k
for W. Thus PVGP is NP-hard.

Proof. ⇒ Assume there exists a vertex cover V C of
size k for G. For each v ∈ V C, place a guard, gv, on
the (3,0)-meeting point of RG corresponding to v. Let
v ∈ V C, and let e1, e2, e3 be the edges of G adjacent
to v. Clearly, gv sees the 3 rectangles corresponding
to the edges e1, e2, e3. Now, since V C covers all edges
of G, and the edges of G correspond to the rectangles
of W , we are done.
⇐ Let T be a vertex guarding set of size k for

RG. From Lemma 5 we may assume that all guards
in T are located at (3,0)-meeting points. Now sim-
ply put into V C all vertices corresponding to these
(3,0)-meeting points. From the same considerations
as above, V C is a vertex cover of size k for W . �

3.2 SEGP is NP-hard

We show that the following problem (which we named
SEGP) is NP-hard. Let R be a rectangular partition,
and let EA ⊆ e(R) be a subset of R’s edges. Is there
an edge guarding set restricted to EA of size k that
guards all rectangles of R ?

The reduction. The reduction is a direct continu-
ation of the one presented in Section 3.1. Consider the
rectangular partition RG obtained in that reduction.
Let EF ⊆ e(RG) be the set of all edges e, such that
e is an edge either on the boundary of a hole (i.e., a
rectangle in H), or e is on the outer boundary of RG.
EF is the set of forbidden edges, i.e., all edges that
cannot serve as edge guards. Put EA = e(RG)− EF .

Lemma 7 There exists an edge guarding set re-
stricted to EA of size at most k for RG if and only
if there exists a vertex guarding set of size at most k
for W .

Proof. ⇐ Let T , |T | ≤ k, be a vertex guarding set
for W . We describe how to construct an edge guard-
ing set restricted to EA of size at most k for RG. By
Lemma 5 we may assume that all guards in T are at
(3,0)-meeting points. Let V C be the subset of ver-
tices of G corresponding to T ; by Lemma 6, V C is a
vertex cover for G. Now, by Theorem 1, there exists
a complete matching of F (G), the set of internal faces
of G, into V C, such that the vertex matched to a face
lies on the face’s boundary. Thus, applying Lemma 4,
we obtain that there exists a complete matching from
H into T , such that if a guard g ∈ T is matched to
a rectangle h ∈ H, then by transforming g into an
edge guard, g can see h, in addition to the rectangles
that it already sees. The guards of T that were not
matched are transformed arbitrarily into edge guards.
See Figure 2.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 2: The connection between vertex guards and
edge guards.

⇒ Let TE ⊆ EA, |TE | ≤ k, be an edge guarding set
for RG. Let e be an edge in TE . Since e is neither
on the boundary of a hole, nor on the outer boundary
of RG, one of its endpoints must be a (3,0)-meeting
point and the other must be a (2,i)-meeting point,
0 ≤ i ≤ 1. Therefore, if we replace e by a vertex guard
at the endpoint of e that is a (3,0)-meeting point, we
only (possibly) lose sight of a hole. By doing this for
each edge guard in TE , we obtain a vertex guarding
set of size at most k for W . �

32

EWCG 2007, Graz, March 19–21, 2007

4 Upper bounds

4.1 Face-respecting coloring

Let G = (V,E) be a plane graph. A face-respecting
k-coloring of G is a coloring of the vertices of G with k
colors, such that each internal face has all k colors on
its boundary. Note that adjacent vertices may have
the same color.

Bose et al. [1] proved that any simple plane graph
has a face-respecting 2-coloring. Obviously, since a
rectangular partition is a plane graph, we have that
every rectangular partition admits a face-respecting
2-coloring.

8

3 6

1

7

2 5

4

8

3 6

1

10 11 13

12
7

2 5

4

9

Figure 3: Left: A rectangular partition and a staircase
ordering. The number in each rectangle is its rank in
the ordering. Right: The staircase formed by the first
eight rectangles in the ordering.

We show that every rectangular partition admits
a face-respecting 3-coloring. Let R be a rectan-
gular partition with n rectangles. A staircase or-
dering for R, is a (not necessarily unique) ordering
(R1, R2, . . . , Rn) of the rectangles of R, such that for
any 1 ≤ i ≤ n, the boundary of the union of the rect-
angles R1, R2, . . . , Ri forms a staircase (see Figure 3).
It is not difficult to show that every rectangular par-
tition admits a staircase ordering. Now, using the
staircase ordering for R, we present in the full version
of this paper an incremental algorithm for computing
a face-respecting 3-coloring of R. We thus obtain the
following lemma.

Lemma 8 Every rectangular partition admits a face-
respecting 3-coloring.

It remains, therefore, to consider face-respecting 4-
colorings. For that we conjecture:

Conjecture 1 Every rectangular partition admits a
face-respecting 4-coloring.

Despite considerable effort, we were not able to
prove or disprove this conjecture. Besides its rele-
vance to guarding, the conjecture is, so we believe, of
independent interest.

4.2 Guarding rectangular partitions by edges

We would like to derive an upper bound on the num-
ber of edge guards needed to guard a rectangular par-
tition of n rectangles. For that, we introduce the no-
tion of a suitable Hamiltonian path.

Definition 2 A Hamiltonian path (or cycle) in a
plane triangulation G is suitable if it satisfies the fol-
lowing locality condition: Any 3 consecutive vertices
on the path either belong to a single triangle or be-
long to two triangles that share an edge. That is, for
any 3 consecutive vertices u, v, w on the path, there
exist two triangles ∆1,∆2 with a common edge, such
that u, v, w ∈ ∆1 ∪ ∆2. A Hamiltonian path (or cy-
cle) is k-semi-suitable if there are at most k triples
of consecutive vertices not satisfying the locality con-
dition. Note that a suitable Hamiltonian path is a
0-semi-suitable Hamiltonian path.

Lemma 9 Let R be a rectangular partition, and let
D(R) be its dual graph. Let u, v, w be 3 vertices of
D(R) satisfying the locality condition. Then, the cor-
responding rectangles of u, v, w in R can be guarded
with a single edge guard.

Theorem 10 Let R be a rectangular partition in
which every rectangle is surrounded by at most five
rectangles (considering the outer face as a rectangle).
Then the dual graph of R (not including R’s outer
face) has a 4-semi-suitable Hamiltonian path. Thus
R can be guarded with

⌈
n
3

⌉
+ 4 guards.

We suspect that every 4-connected maximal plane
triangulation admits a suitable Hamiltonian path. If
this is indeed true, then we can obtain a

⌈
n
3

⌉
+2 upper

bound on the number of edge guards that are always
sufficient for guarding a rectangular partition.

References

[1] P. Bose, D. Kirkpatrick, and Z. Li. Worst-case-
optimal algorithms for guarding planar graphs and
polyhedral surfaces. Computational Geometry: The-
ory and Applications, 26(3), pp. 209–219, 2003.

[2] J. Czyzowicz, E. Rivera-Campo, N. Santoro, J. Urru-
tia, and J. Zaks. Guarding rectangular art galleries.
Discrete Mathematics, to appear.

[3] R. Greenlaw and R. Petreschi. Cubic graphs. ACM
Computing Surveys, 1995.

[4] K. Kozminski and E. Kinnen. An algorithm for find-
ing a rectangular dual of a planar graph for use in
area planning for VLSI integrated circuits. In Proc.
21st Design Automation Conf., pp. 655–656, 1984.

[5] R. Uehara. NP-complete problems on a 3-connected
cubic planar graph and their applications. Tech. re-
port TWCU-M-0004, Tokyo Woman’s Christian Uni-
versity, 1996.

33

23rd European Workshop on Computational Geometry, 2007

Carpenter’s Rule Packings — A Lower Bound

Oliver Klein∗ Tobias Lenz∗

Abstract

A carpenter’s rule problem is considered, where a fold-
ing of a rule should be covered by a convex figure with
diameter 1. The problem to compute this figure is
known to be NP-hard and a (1 + ε)-approximation
exists, so we look at the worst-case bounds. An up-
per bound of 0.614 is known for the area of a convex
figure with diameter 1 such that for any rule there is
a folding which can be covered by this figure. The ex-
isting lower bound of 0.375 is increased in this paper
to 0.475, narrowing the gap significantly.

1 Introduction

The problem of “folding” an object composed of rods
and joints in a restricted environment was originally
motivated by robot arm motion. Hopcroft, Joseph
and Whitesides [2] have shown that even abstract sim-
plifications are NP-hard. One of these abstract formu-
lations is the carpenter’s rule problem, i.e. minimizing
the area of a convex polygon with diameter 1 cover-
ing at least one folding of any rule, which is NP-hard
even for fixed dimension. Approximation algorithms
exist, see Călinescu and Dumitrescu [1] and Hopcroft
et al. [2], but the exact worst-case bound for the nec-
essary area to cover a 2d-folding is still unknown.

2 The Problem

Definition 1 A carpenter’s rule L of length n is a
chain of n oriented straight line segments s1, . . . , sn,
called links, with fixed lengths l1, . . . , ln, where 0 <
li ≤ 1 for 1 ≤ i ≤ n. The end point of si is hinged to
the start point of si+1 for 1 ≤ i < n.

Definition 2 A folding of a carpenter’s rule L of
length n is a specification of all n− 1 angles between
the links of L.

The problem at hand is to find a convex figure P
of minimal area with diameter less or equal to 1, such
that for all rules there exists a folding which is com-
pletely covered by P .

∗Freie Universität Berlin, Takustr. 9, 14195 Berlin, Ger-
many, {oklein,tlenz}@mi.fu-berlin.de

Figure 1: The left shape is a Reuleaux triangle (R3),
the right shape is called R2.

3 Known Bounds

Dropping the diameter condition leads to an obvious
solution with all angles equal to 0 or π. This gives a
total area of 0 and Hopcroft et al. [2] showed that 2
is an upper and lower bound for the optimal length
of such a flat folding. Therefore this is not applicable
for our problem.

Călinescu and Dumitrescu [1] showed an upper
bound of

√
3

4 ≈ 0.614 using the right shape in Fig-
ure 1 called R2, which is a Reuleaux triangle (left
shape) with one circular arc removed. This is the
best known upper bound.

A Reuleaux triangle can be constructed by taking
an equilateral triangle and adding the circular arcs
between two points, centered in the third point.

In the same paper a lower bound of 3
8 = 0.375 is

derived from a rule of length 3 with l1 = l3 = 1 and
l2 =

√
7−1
2 . The authors showed that for such a rule

the area of the convex hull of every folding is at least
0.375. We will improve this bound considerably to
approximately 0.476.

4 Upper Bound Lemma

Although this paper is focused on lower bounds, the
following theorem may help in future research for bet-
ter upper bounds. Figure 2 illustrates its proof, where
L,R, T are the vertices, aL, aR are the circular arcs, e
is the base edge and the dashed line is the rule. Please
note, that the shape R2 has diameter 1.

Theorem 1 No subset of R2 with smaller area than
R2 covers all rules.

34

EWCG 2007, Graz, March 19–21, 2007

T

L R

aL aR

ε

2ε

ε

2ε

e

Figure 2: Covering virtually all of R2.

Proof. Consider a rule of length 4n+1 with the link
lengths 1, ε, 1, ε, 1, 2ε, 1, 2ε, 1, 3ε, . . . , nε, 1 with ε =

1
n+1 . Now we try to embed this into R2 without leav-
ing the shape. Every vertex must lie on aL or aR,
because it is start or end point of a link of length 1
enclosed in a shape with diameter 1.

Starting the embedding on one of the arcs, we im-
mediately end in L or R after the first 1, assume L.
Since the upcoming ε segment must end on one of the
arcs, its end is uniquely determined on aL. The next
segment of length 1 must end in R and again, the
endpoint of the following ε segment is uniquely de-
termined on aR. This continues until the whole rule
is embedded, climbing higher and higher on the arcs.
The idea is illustrated as a red dashed line in Figure 2.

Assume that we start the embedding in R. From
there we must go 1 to the arc aL, L or T . If we go to
T , the next 1 would lead to the case already discussed.
Going to L leads directly to the above case. So we go
to aL and if the upcoming ε segment ends on aL, aR

or T , we are again in the above case. Therefore we
consider the case where we end up in L. Now we
are back to the beginning, having consumed the first
two links. Following this strategy describes the same
embedding as the first case, but in a different order.

In the limit for n → ∞ and therefore ε → 0, this
covers the whole shape of R2, except the point T and
the segment e, but removing a single point and a line
segment does not decrease the area. �

5 Improving the Lower Bound

Consider a special rule with 5 segments of lengths
1, t, 1, t, 1 and t =

√
5−1
2 , the golden ratio. Folding

this to minimal area with diameter at most 1 gives
the desired result. The main challenge is to show that
our folding is minimal. We define some nomenclature
in Figure 3.

Using simple geometry, one can easily derive the
following observation.

Observation 1 All segments of length 1 must pair-
wise intersect.

shoulderelbow
elbow

α

β

γ

δ

hand
hand

left arm right arm

Figure 3: Giving things names: Parts of our special
carpenter’s rule.

Figure 4: These are schematically the only distinct
cases: both segments of length t point in the same di-
rection from the middle segment and they do not cross
(left), both segments of length t point in the same di-
rection from the middle segment and they cross (mid-
dle), the segments of length t point in opposite direc-
tions from the middle segment (right).

b

T

s
s∗

ξ

α

h

Figure 5: Only a single triangle of the convex hull area
is influenced by an elbow angle, if the other angles are
fixed.

Due to Observation 1 and the symmetry of the rule
and its possible foldings, it is sufficient to consider the
three cases depicted in Figure 4. W.l.o.g., let the end
points of the middle segment be fixed to (0, 0) and
(1, 0).

Lemma 2 Fixing three angles and considering the
area of the convex hull of the folding as a function
A(α) in the fourth angle, A is strictly concave.

Proof. Consider a 1, x, 1, y, 1 ruler, x and y arbitrary,
exemplarily shown in figure 5. Changing the elbow
angle α rotates the hand h, thereby changing the con-
vex hull. The only part of the convex hull dependent
on α is the dashed triangle T . The base b of T does
not change and the area of T is maximized for s = s∗.
Let ξ denote the angle between s and b. Then, for

35

23rd European Workshop on Computational Geometry, 2007

β γ

Figure 6: Boundary case: fixed γ and minimal β.

s = s∗ we have ξ = π/2. The area of T is composed
of cos ξ and some constants and obviously ξ ∈ [−π

2 ; π
2].

The cosine is a concave function in this domain and
therefore our area function, too.

Due to symmetry this holds for both elbows and
analogous for the shoulder angles, which influence two
triangles at once, but the sum of concave functions is
again concave. �

The upcoming paragraphs focus on the first two
cases from Figure 4 but for the third case, analogous
statements hold.

The angles α and δ are uniquely determined by find-
ing some angle at the boundary minimzing the area.
Therefore, it follows by Lemma 2 that it suffices to
have an area function A in two parameters (shoulder
angles) and to search for the minimum at the bound-
ary of the domain of A(β, γ). Geometrically, for each
fixed γ we look at the “extreme folding”, meaning
that β is uniquely chosen as small as possible, see
Figure 6, resulting in an area formula solely depen-
dent on γ. The other extreme case with β as large as
possible, particularly β > γ, is omitted because due
to symmetry A(β, γ) = A(γ, β) holds and it thus suf-
fices to check cases in which the second angle is not
smaller than the first one.

Determining the area of these shapes depending on
γ involves long and complicated terms computing two
circle-circle intersections. For a lower bound on the
area it suffices to look at a subset As(γ) composed of
only two triangles, shown gray in Figure 7. This area
As(γ) only depends on the angle γ and bounds the
convex hull area from below. It is an approximation
for the crossing and for the non-crossing case.

Depending on the link length t we get the following
for the point coordinates.

c = 1− t cos γ

d = t sin γ

β γ

(0, 0)

(a, b)
(c, d)

(1, 0)

(g, h) (e, f)

Figure 7: The real area A one has to compute (convex
hull) and the lower bound As (gray shaded) excluding
the top left triangle.

The point (g, h) is the intersection of the circle
around (0, 0) with radius 1 and around (c, d) with ra-
dius 1. This leads to

g =
c

2
+ d

√
1

c2 + d2
− 1

4

h =
d

2
− c

√
1

c2 + d2
− 1

4

Choosing e = g and f = h gives a valid folding and
does not increase the area, so this must be optimal.

Using t =
√

5−1
2 and putting all this together in the

area formula As(γ) = d
2 + h

2 yields

As(γ) =
√

5− 1
8

sinx+
2 +

(
1−
√

5
)
cos x

8

√
8

p(x)
− 1

with p(x) = 5−
√

5− 2
(√

5− 1
)
cos x. This function,

see Figure 8, should be minimized, so with standard
means of differentiation we get

A′
s(γ) =

√
5− 1
8

(
cos x + sinx

(√
8

p(x)
− 1

+
8
((√

5− 1
)
cos x− 2

)
p(x)2

√
8

p(x) − 1

 .

Solving A′
s(γ) = 0 in the interval

(
0; π

2

)
yields a sin-

gle minimum of As which is smaller than the bound-
ary values. This is attained for γ∗ = arccos 1+

√
5

4 .
Fortunately this is exactly the case where (a, b) =
(c, d), so the skipped triangle has area zero, thus mak-
ing the approximate area function an exact area func-
tion:

A(γ∗) = As(γ∗) =

√
10 + 2

√
5

8
≈ 0.4755.

36

EWCG 2007, Graz, March 19–21, 2007

0.25 0.5 0.75 1 1.25 1.5
Γ0.475

0.48

0.485

0.49

0.495

0.5

AsHΓL

Figure 8: A plot of the simplified area function As.

β

γ

0

0

π −
arccos

(

1−
t
2

2

)

2

m

Figure 9: The boundary of the domain of A(β, γ).

This case is depicted in the middle in Figure 10.
Schematically, the boundary of the area where

A(β, γ) is defined, looks like Figure 9. The fat part
is the univariate function from the previous section,
the dashed part is obtained due to symmetry. The
computed minimum is in point m. One point is still
missing in the considerations above—the origin in the
diagram. Computing this separately with both angles
equal to

π −
arccos

(
1− t2

2

)
2

,

see left image in Figure 10, yields the same area as
above. In fact, we choose t such that these areas are
equal.

Due to space constraints, we skip the third case
from Figure 4. The chain of arguments is similar
to the discussed cases and the minimal area is again√

10+2
√

5
8 , which is depicted on the right in Figure 10.

This whole section proves our main theorem.

Theorem 3 A convex shape with diameter at most
1, which covers at least one folding of every possible
carpenter’s rule, must have an area of at least√

10 + 2
√

5
8

≈ 0.4755.

Figure 10: Three optimal foldings (solid lines) with
minimal convex hull area (solid and dotted lines).
From left to right, they correspond to the cases from
figure 4.

6 Conclusion

The main contribution of this paper is the raise of the
lower bound for the area necessary to cover at least
one folding of every carpenter’s rule. The existing gap
between upper and lower bound was shrunken by ap-
proximately 40%, which is a significant improvement.

We naturally extended the lower bound proof of
Călinescu and Dumitrescu [1] to longer rules. Clev-
erly chosen link lengths allow to omit a large case dis-
tinction due to high symmetry. Although the proof
is somewhat lengthy, it is a nice interplay of geomet-
ric arguments and calculus and has its own beauty.
Also the appearance of the golden ratio in this con-
text indicates, that the problem bears some deeper,
yet unidentified, structure.

Extending this approach to rules of length 7 does
not give any new results without giving up the sym-
metry in the link lengths. Variable link lengths would
imply much more complicated formulas and many dis-
tinct cases due to missing symmetry.

We believe that the true bound lies close to the
known upper bound. Maybe the shape R2 is already
the best possible for arbitrary rules. What remains is
to prove it.

References

[1] G. Călinescu and A. Dumitrescu. The carpenter’s
ruler folding problem. Combinatorial and Compu-
tational Geometry, 52:155–166, 2005.

[2] J. E. Hopcroft, D. A. Joseph, and S. H. White-
sides. On the movement of robot arms in 2-
dimensional bounded regions. SIAM J. Comput.,
14:315–333, 1985.

37

23rd European Workshop on Computational Geometry, 2007

On the Exact Maximum Complexity of Minkowski Sums of Convex
Polyhedra∗

Efi Fogel† Dan Halperin† Christophe Weibel‡

Abstract

We present a tight bound on the exact maximum com-
plexity of Minkowski sums of convex polyhedra in R3.
In particular, we prove that the maximum number
of facets of the Minkowski sum of two convex poly-
hedra with m and n facets respectively is bounded
from above by f(m,n) = 4mn− 9m− 9n+26. Given
two positive integers m and n, we describe how to
construct two convex polyhedra with m and n facets
respectively, such that the number of facets of their
Minkowski sum is exactly f(m,n). We generalize
the construction to yield a lower bound on the maxi-
mum complexity of Minkowski sums of many convex
polyhedra in R3. That is, given k positive integers
m1,m2, . . . ,mk, we describe how to construct k con-
vex polyhedra with corresponding number of facets,
such that the number of facets of their Minkowski sum
is
∑

1≤i<j≤k(2mi − 5)(2mj − 5) +
(
k
2

)
+
∑

1≤i≤k mi.
We also provide a conservative upper bound for the
general case. The polyhedra models and an in-
teractive program that computes their Minkowski
sums and visualizes them can be downloaded from
http://www.cs.tau.ac.il/~efif/Mink.

1 Introduction

Let P and Q be two compact convex polyhedra in
Rd. The Minkowski sum of P and Q is the convex
polyhedron, polytope for short, M = P ⊕ Q = {p +
q | p ∈ P, q ∈ Q}.

Minkowski-sum computation constitutes a funda-
mental task in computational geometry. Minkowski
sums are frequently used in areas such as robotics
and motion planing [6, 8] and many additional do-
mains, like solid modeling, design automation, man-
ufacturing, assembly planning, virtual prototyping,
etc., as Minkowski sums are closely related to prox-
imity queries [7].

Various methods to compute the Minkowski sum of
two polyhedra in R3 have been proposed. One com-

∗This work has been supported in part by the IST Programme
of the EU as Shared-cost RTD (FET Open) Project under Con-
tract No IST-006413 (ACS - Algorithms for Complex Shapes), by
the Israel Science Foundation (grant no. 236/06), by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv University,
and by the Swiss National Science Foundation Project 200021-
105202, “Polytopes, Matroids and Polynomial Systems”.

†School of Computer Science, Tel-Aviv University, Israel.
{efif,danha}@post.tau.ac.il

‡Mathematics Institute, EPFL, Laussane, Switzer-
land.christophe.weibel@epfl.ch

mon approach is to decompose each polyhedron into
convex pieces, compute pairwise Minkowski sums of
pieces of the two, and finally the union of the pairwise
sums. Computing the Minkowski sum of two convex
polyhedra remains a key operation. The combinato-
rial complexity of the sum can be as high as Θ(mn)
when both polyhedra are convex.

Recently a few complete implementations of
output-sensitive methods for computing exact
Minkowski sums have need introduced: (i) a method
based on Nef polyhedra embedded on the sphere [4],
(ii) an implementation of Fukuda’s algorithm by
Weibel [2, 9], and (iii) a method based on the cubical
Gaussian-map data structure [1]. These methods
exploit efficient innovative techniques in the area of
exact geometric-computing to minimize the time it
takes to ensure exact results. However, even with
the use of these techniques, the amortized time of
a single arithmetic operation is large in comparison
with a single arithmetic operation carried out on
native number types, such as floating point. Thus,
the constants involved in the expressions of these
algorithm time complexities increases, which makes
the question this paper attempts to answer, “What
is the exact maximum complexity of Minkowski sums
of polytopes in R3?”, even more relevant.

Gritzmann and Sturmfels [5] formulated an upper
bound on the number of features fd

i of any given
dimension i of the Minkowski sum of many poly-
topes in d dimensions. Fukuda and Weibel [3] ob-
tained upper bounds on the number of edges and
facets of the Minkowski sum of two polytopes in R3

in terms of the number of vertices of the summands:
f2(P1 ⊕ P2) ≤ f0(P1)f0(P2) + f0(P1) + f0(P2) − 6.
They also studied the properties of the Minkowski
sums of perfectly centered polytopes and their polars,
and provided a tight bound on the number of vertices
of the sum of polytopes in any given dimension.

2 The Upper Bound

The Gaussian Map G = G(P) of a compact convex
polyhedron P in R3 is a set-valued function from P to
the unit sphere S2, which assigns to each point p the
set of outward unit normals to support planes to P at
p. The overlay of the Gaussian maps of two polytopes
P and Q respectively identifies all pairs of features of
P and Q respectively that have common supporting

38

EWCG 2007, Graz, March 19–21, 2007

(a) (b)

Figure 1: (a) The Minkowski sum of a tetrahedron and a

cube and (b) the Gaussian map of the Minkowski sum.

planes, as they occupy the same space on the unit
sphere, thus, identifying all the pairwise features that
contribute to the boundary of the Minkowski sum of
P and Q. A facet of the Minkowski sum is either a
facet f of Q translated by a vertex of P supported
by a plane parallel to f , or vice versa, or it is a facet
parallel to two parallel planes supporting an edge of
P and an edge of Q respectively. A vertex of the
Minkowski sum is the sum of two vertices of P and Q
respectively supported by parallel planes.

The number of facets of the Minkowski sum M of
two polytopes P and Q with m and n facets respec-
tively is equal to the number of vertices of the Gaus-
sian map of M . A vertex in the Gaussian map of M is
either due to a vertex in the Gaussian map of P , due
to a vertex in the Gaussian map of Q, or due to an
intersection between an edge of the Gaussian map of
P and an edge of the Gaussian map of Q. Thus, the
exact complexity f(m,n) of M can be upper bounded
by the expression g(m,n) + m + n, where g(m,n) is
the number of edge intersections in the Gaussian map
of M .1

Corollary 1 The maximum exact number of edges
in a Gaussian map G(P) of a polytope P with m
facets is 3m− 6. The exact number of faces in such a
Gaussian map is 2m− 4.

The above can be obtained by a simple application
of Euler’s formula for planar graphs to the Gaussian
maps G(P). It can be trivially used to bound the
exact number of facets of the Minkowski sum of two
polytopes. We can plug the bound on the number of
dual faces, which is the number of primal vertices, in
the expression introduced by Fukuda and Weibel, (see
Section 1), to obtain: f(m,n) ≤ (2m− 4) · (2n− 4) +
(2m − 4) + (2n − 4) − 6 = 4mn − 6m − 6n + 2. We
can improve the bound, but first we need to bound
the number of faces in G(M).

Lemma 2 Let G1 and G2 be two Gaussian maps,
and let G be their overlay. Let f1, f2, and f denote
the number of faces of G1, G2, and G respectively.
Then, the number of faces f cannot exceed f1 · f2.

1The exact complexity is strictly equal to the given expres-
sion, only when no degeneracies occur.

This lemma is similar to the one where convex planar
maps replace the Gaussian maps, the proof of which
appears in several flavors in the literature. We are
ready to tackle the upper bound.

Theorem 3 Let P and Q be two polytopes in R3

with m and n facets respectively, and let f(m,n) de-
note the number of facets of their Minkowski sum
M = P ⊕Q. Then, f(m,n) ≤ 4mn − 9m − 9n + 26.
The maximum complexity is attained only when the
number of edges of each of P and Q is maximal for
the given number of facets.

Proof. Let v1, e1, f1 and v2, e2, f2 denote the number
of vertices, edges, and faces of G(P) and G(Q) respec-
tively. Recall that v1 = m, v2 = n, and v = f(m,n),
where v denotes the number of vertices of G(M). The
number of edges and faces of G(M) is similarly de-
noted as e and f respectively. Assume that P and
Q are two polytopes, such that the number of facets
f(m,n) of their Minkowski sum is maximal. First,
we need to show that vertices of G(P), vertices of
G(Q), and intersections between edges of G(P) and
edges of G(Q) do not coincide. Assume to the con-
trary that some do. Then, one of the polytopes P or
Q or both can be slightly rotated to escape this de-
generacy, but this would increase the number of ver-
tices v = f(m,n), contradicting the fact that f(m,n)
is maximal. Therefore, the number of vertices v is
exactly equal to v1 + v2 + vx, where vx denotes the
number of intersections of edges of G(P) and edges of
G(Q) in G(M).

The total count of degrees of all vertices of G(M) is
twice the number of edges e of G(M) on one hand, as
each edge contributes two to this count. On the other
hand, it is equal to the sum of degrees of all vertices
of G(P), vertices of G(Q), and intersection vertices.
Each edge of G(P) and each edge of G(Q) contributes
exactly two to the count of degrees of the original
vertices, and the degree of each new intersection is
exactly four. Thus, we have 2e1 + 2e2 + 4vx = 2e.
Applying Euler’s formula and Lemma 2 yields vx ≤
f1f2 + v1 + v2 − 2− e1 − e2.

Corollary 1 sets an upper bound on the number of
edges e1. Thus, e1 can be expressed in terms of `1,
a non-negative integer, as follows: e1 = 3v1 − 6 − `1.
Applying Euler’s formula, the number of facets can
be expressed in terms of `1 as well: f1 = e1−2−v1 =
2v1 − 4 − `1. Similarly, we have e2 = 3v2 − 6 − `2
and f2 = 2v2 − 4 − `2 for some non-negative integer
`2. G(P) consists of a single connected component.
Therefore, the number of edges e1 must be at least
v1 − 1. This is used to obtain an upper bound on `1
as follows: v1 − 1 ≤ e1 = 3v1 − 6 − `1, which implies
`1 ≤ 2v1 − 5, and similarly `2 ≤ 2v2 − 5.

Plugging all this in the above inequality results with
vx ≤ 4v1v2−10v1−10v2+26, and since f(m,n) = v1+

39

23rd European Workshop on Computational Geometry, 2007

v2+vx, we conclude that f(m,n) ≤ 4v1v2−9v1−9v2+
26. The maximum complexity can be reached when
h(`1, `2) diminishes. This occurs when `1 = `2 = 0.
That is, when the number of edges of G(P) and G(Q),
(respectively P and Q), is maximal. �

3 The Lower Bound

uv

w

Y

Given two integers m ≥ 4
and n ≥ 4, we describe
how to construct two poly-
topes in R3 with m and
n facets respectively, such
that the number of facets of
their Minkowski sum is ex-
actly 4mn − 9m − 9n + 26.
More precisely, given i, we
describe how to construct a skeleton of a polytope Pi

with i facets, 3i − 6 edges, and 2i − 4 vertices, and
prove that the number of facets of the Minkowski sum
of Pm and Pn properly adjusted and oriented is ex-
actly 4mn−9m−9n+26. The figures above and below
depict the Gaussian map of P5 and P4 respectively.

uv

w

Y

We use the subscript let-
ter i in all notations Xi to
identify some object X with
the polytope Pi. For ex-
ample, we give the Gaussian
map G(Pi) of Pi a shorter
notation Gi First, we ex-
amine the structure of the
Gaussian map Gi. Let Vi de-
note the set of vertices of Gi. Recall that the number
of vertices, edges, and faces of Gi is i, 3i−6, and 2i−4
respectively. The unit sphere, where Gi is embedded
on, is divided by the plane y = 0 into two hemispheres
H− ⊂ {(x, y, z) | y ≤ 0} and H+ ⊂ {(x, y, z) | y > 0}.
One vertex vi is located exactly at the pole (0, 0, 1).
Another vertex wi lies in H− very close to vi. A third
vertex ui is located very close to the opposite pole
(0, 0,−1). It is the only vertex (out of the i vertices)
that lies in H+. All the remaining i − 3 vertices in
V ′ = Vi \ {ui, vi, wi} are concentrated near the pole
(0, 0,−1) and lie in H−. The edge uvi is the only
edge whose interior is entirely contained in H+. Ev-
ery vertex in V ′ is connected by two edges to vi and
wi respectively. These edges together with the edge
uwi form a set of 2i − 5 edges, denoted as E′. The
length of all edges in E′ is almost π, due to the near
proximity of ui, vi, and wi to the respective poles.

It is easy to verify that if the polytope Pi is not
degenerate; namely, its affine hull is 3-space, then any
edge of Gi is strictly less than π long. Bearing this
in mind, the main difficulty in arriving at a tight-
bound construction is to force all edges but one of the
Gaussian map of one polytope to intersect all edges
but one of the Gaussian map of the other polytope,
and on top of that force the pair of excluded edges,

one from each Gaussian map, to intersect as well. As
shown below, this is the best one can do in terms of
intersections.

The number of facets in
the Minkowski sum of Pm

and Pn is maximal, when
the number of vertices in the
overlay of Gm and Gn is
maximal. This occurs, for
example, when one of Gm

and Gn is rotated 90◦ about
the Y axis, as depicted on
the right for the case of m = n = 5. In this configura-
tion, each edge of the 2m − 5 edges in E′

m intersects
each edge of the 2n − 5 edges in E′

n. These intersec-
tions occur in H−. In addition, the edge uvm inter-
sects the edge uvn near the pole (0, 1, 0). Counting all
these intersections results with (2m−5)(2n−5)+1 =
4mn − 10m − 10n + 26. Adding the original vertices
of Gm and Gn yields the desired result.

All the vertices of Pi lie on the boundary of a cylin-
der the axis of which coincides with the Z axis. When
Pi is looked at from z =∞, two facets are visible, and
when looked at from z = −∞, the remaining i − 2
facets are visible. The precise details that govern the
construction of Pi, i ≥ 4, which match the description
of Gi above, are omitted due to lack of space.

4 Maximum Complexity of Minkowski Sums of
Many Polytopes

In this section we discuss the bounds on the exact
complexity of the Minkowski sum many polytopes
generalizing some of the arguments presented above.

Conjecture 1 Let P1, P2, . . . , Pk be a set of k poly-
topes in R3, such that the number of facets of Pi

is mi for i = 1, 2, . . . , k. The exact maximum com-
plexity of the Minkowski sum P1 ⊕ P2 ⊕ . . . ⊕ Pk is∑

1≤i<j≤k(2mi − 5)(2mj − 5) +
(
k
2

)
+
∑k

i=1 mi.

In the following sections we establish the lower bound,
but provide only a conservative upper bound, which
leaves a gap between the two bounds.

4.1 The Lower Bound

Given k positive integers m1,m2, . . . ,mk, such that
mi ≥ 4, we describe how to construct k polytopes
in R3 with corresponding number of facets, such that
the number of facets of their Minkowski sum is ex-
actly

∑
1≤i<j≤j(2mi − 5)(2mj − 5) +

(
k
2

)
+
∑k

i=1 mi.
More precisely, given i, we describe how to construct
a skeleton of a polytope Pi with i facets, 3i− 6 edges,
and 2i−4 vertices, and prove that the number of facets
of the Minkowski sum M = P1 ⊕ P2 ⊕ . . .⊕ Pk of the
k polytopes properly adjusted and oriented is exactly
the expression above. We use the same construction
described in Section 3.

40

EWCG 2007, Graz, March 19–21, 2007

(a) (b) (c) (d)

Figure 2: (a) The Minkowski sum M11,11 = P11 ⊕ P ′
11, where P ′

11 is P11 rotated 90◦ about the Y axis. (b) The Gaussian

map of M11,11 looked at from z = ∞. (c) A scaled up view of the Gaussian map of M11,11 looked at from z = ∞. (d) The

Gaussian map of M11,11 looked at from y = −∞.

The number of facets
in the Minkowski sum of
Pi, i = 1, 2, . . . , k is max-
imal, when the number of
vertices in the overlay of
Gi, i = 1, 2, . . . , k is maxi-
mal. This occurs, for ex-
ample, when Gi is rotated
180◦i/k about the Y axis
for i = 1, 2, . . . , k, as depicted on the right for the
case of m1 = m2 = m3 = 4. In this configura-
tion, all the 2mi − 5 edges in E′

i intersect all the
2mj − 5 edges in E′

j , for 1 ≤ i < j ≤ k. These
intersections occur in H−. In addition, the edge
uvmi

intersects the edge uvmj
for 1 ≤ i < j ≤ k.

These intersection points lie in H+ near the pole
(0, 1, 0). Counting all these intersections results with∑

1≤i<j≤j(2mi−5)(2mj −5)+
(
k
2

)
. Adding the origi-

nal vertices of G(Pi), i = 1, 2, . . . , k, yields the bound
asserted in Conjecture 4.

4.2 An Upper Bound

We apply a similar technique to the one used in Sec-
tion 2 to obtain an upper bound. First, we extend
Lemma 2.

Lemma 4 Let G1, G2, . . . , Gk be a set of k Gaussian
maps, and let G be their overlay. Let fi denote the
number of faces of Gi, and let f denote the number of
faces of G. Then, the number of faces f of G cannot
exceed

∑
1≤i<j≤k fi · fj .

The proof of the lemma above is a simple generaliza-
tion of the proof of lemma 2. Secondly, we count the
total degrees of vertices in G(M). Let P1, P2, . . . , Pk

be k polytopes in R3 with m1,m2, . . . ,mk facets
respectively. Let G(Pi) denote the Gaussian map
of Pi, and let vi, ei, and fi denote the num-
ber of vertices, edges, and faces of G(Pi) respec-
tively. Let vx denote the number of intersec-
tions of edges of G(Pi) and edges of G(Pj), i 6=
j in G(M). Starting with

∑k
i=1 ei + 2vx = e,

and applying Lemma 4 and Theorem 3 we get
vx ≤

∑
1≤i<j≤k(2vi−4)(2vj−4)−2

∑k
i=1 vi +6k−2.

For example, the complexity of the Minkowski sum
of k tetrahedra is vx +

∑k
i=1 vi, and by the inequality

above it is bounded from above by 8k2 − 6k− 2. The
construction described in the previous section yields
a configuration of k tetrahedra, the Minkowski sum of
which is 5k2−k. For k = 2 both expressions evaluate
to 18.

References

[1] E. Fogel and D. Halperin. Exact and efficient con-
struction of Minkowski sums of convex polyhedra with
applications. In Proc. 8th Workshop Alg. Eng. Exper.
(Alenex’06), 2006.

[2] K. Fukuda. From the zonotope construction to the
Minkowski addition of convex polytopes. Journal of
Symbolic Computation, 38(4):1261–1272, 2004.

[3] K. Fukuda and C. Weibel. On f-vectors of Minkowski
additions of convex polytopes. Discrete and Compu-
tational Geometry, 2006. To appear.

[4] M. Granados, P. Hachenberger, S. Hert, L. Kettner,
K. Mehlhorn, and M. Seel. Boolean operations on
3D selective Nef complexes: Data structure, algo-
rithms, and implementation. In Proc. 11th Annu.
Euro. Sympos. Alg., volume 2832 of LNCS, pages 174–
186. Springer-Verlag, 2003.

[5] P. Gritzmann and B. Sturmfels. Minkowski addition
of polytopes: Computational complexity and applica-
tions to Gröbner bases. SIAM J. Disc. Math, 6(2):246–
269, 1993.

[6] D. Halperin, L. Kavraki, and J.-C. Latombe. Robotics.
In J. E. Goodman and J. O’Rourke, editors, Hand-
book of Discrete and Computational Geometry, 2nd
Edition, chapter 48, pages 1065–1093. CRC, 2004.

[7] M. C. Lin and D. Manocha. Collision and proximity
queries. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry,
2nd Edition, chapter 35, pages 787–807. CRC, 2004.

[8] M. Sharir. Algorithmic motion planning. In J. E.
Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, 2nd Edition,
chapter 47, pages 1037–1064. CRC, 2004.

[9] C. Weibel. Minkowski sums.
http://roso.epfl.ch/cw/poly/public.php.

41

23rd European Workshop on Computational Geometry, 2007

Covering points by axis parallel lines

Daya Ram Gaur∗ Binay Bhattacharya †

Abstract

We consider the problem of covering points in Rd

(d ≥ 2) by minimum number of axis parallel lines.
The problem is NP-complete for all d ≥ 3. We give a
d − 1 approximation algorithm based on a determin-
istic rounding of the optimal solution to a linear pro-
gram.

1 Introduction

Given a set of n points in Rd the objective is to cover
all the points using minimum number of axis parallel
lines. We call this problem, the point cover problem.
The point cover problem was first examined by Hassin
and Megiddo [8], who showed that it can be solved in
polynomial time in two dimensions, they also estab-
lished that for all d ≥ 3, the problem is NP-complete.
A natural greedy algorithm is to pick the line that
covers the maximum number of points in each iter-
ation. The performance ratio for the greedy heuris-
tic was shown to be ≥ log n [8] even in two dimen-
sions. On the other hand Johnson [10] and Chvatal [6]
showed that the greedy heuristic has performance ra-
tio at most log n for the set cover problem.

Consider the following algorithm, again from [8]:
while there exists an uncovered point, pick all the lines
that go through the point; Hassin and Megiddo noted
that the previous algorithm has performance ratio d.
We are not aware of any algorithm with performance
ratio better than d for the point cover problem.

The variant of the problem where the lines can have
arbitrary finite slopes also has a rich history. It is
NP-complete even in two dimensions [13], and the
corresponding optimization version is APX-hard [1].
Langerman and Morin [12] established that the prob-
lem is tractable in two dimensions when the number
of lines in the optimal cover is small. Grantson and
Levcopoulos [7] describe an approximation algorithm,
and also give an improved exact algorithm (improve-
ment over [12]), again the results are in two dimen-
sions.

∗Department of Math and Computer Science, University of
Lethbridge, Lethbridge, AB, Canada, gaur@cs.uleth.ca

†School of Computing Science, Simon Fraser University,
Burnaby, BC, Canada, binay@cs.sfu.ca

2 Approximation algorithm

Let x1, . . . , xn be a set of points in Rd. Let L be the
set of all the axis parallel lines going through the n
points. L(x) denotes the set of lines through point
x. Note that |L| ≤ nd. Next we describe an integer
program for the point cover problem. Associated with
each line l ∈ L is a binary variable yl whose value is
1 if the line is picked in the solution, 0 otherwise.

IP: min
∑
l∈L

yl (1)∑
l : l∈L(xi)

yl ≥ 1 ∀ xi (2)

yl ∈ {0, 1} (3)

The linear programming relaxation to the integer
program IP, obtained by replacing constraints of type
(3) with non-negativity constraints yl ≥ 0, above is
denoted LP. The linear programming dual of LP is:

LP-dual: max
n∑

i=1

zi (4)∑
i : l∈L(xi)

zi ≤ 1 ∀ l ∈ L (5)

zi ≥ 0 (6)

Let y∗ be the optimal solution to the linear pro-
gram LP. value(y∗) denotes the value of the optimal
solution. y∗ can be computed in O(n5) time using the
the strongly polynomial algorithm of Tardos [17], as
the coefficient matrix contains only 0s and 1s. Let A
denote the coefficient matrix of the linear program LP
with dimensions n × nd. A[i] denotes the ith row in
matrix A. Note that each row of A contains exactly
d ones, all the other entries are 0 in the row.

Next we show that the d approximation algorithm
in [8] can be visualized as a primal-dual algorithm.
While there exists an uncovered point, the algorithm
picks all the d axis parallel lines that go through the
point. We construct an integral primal and an inte-
gral dual feasible solution to the linear programs as
follows: set yl = 1 if the line is picked by the algorithm
else yl = 0. Let xi be the uncovered point picked in
iteration j, then set zi = 1. Dual feasibility requires
that at most one uncovered point is picked from each
line. Clearly, no two uncovered points picked in two

42

EWCG 2007, Graz, March 19–21, 2007

different iterations, share a line that was picked (dual
feasibility). The primal solution is feasible by con-
struction. Furthermore, the value of the primal solu-
tion is at most d times the value of the dual solution,
i.e. the performance ratio is d.

Another d approximation algorithm can be ob-
tained by rounding the optimal solution to the lin-
ear program LP as shown in [9]. If y∗ is the optimal
solution to LP, then select all the lines l such that
y∗l ≥ 1

d . Each covering constraint has exactly d 1s,
therefore at least one of the lines going through any
point has value ≥ 1

d in the optimal fractional solution
y∗. Hence, the rounding gives an integral solution
that is feasible. The rounding process increases the
value of the solution at most d fold, therefore the per-
formance ratio is d. Note that the primal-dual based
algorithm is preferable over the rounding algorithm,
as it takes O(nd) time.

In two dimensions, the problem is equivalent to ver-
tex cover in bipartite graphs as established in [8]. We
give their reduction below: each line corresponds to
a vertex, and each point correspond to an edge be-
tween the two vertices that correspond to the lines
going through the point. A set of lines that cover all
the points, corresponds to a vertex cover in the graph
and vice-versa. In two dimensions a feasible primal
solution to the integer program IP corresponds to a
vertex cover, and an integral solution to the LP-dual
corresponds to a matching.

Next we recall König–Egerváry theorem:

Theorem 1 (König–Egerváry) The size of the
minimum vertex cover is the same as the size of the
maximum matching in a bipartite graph.

This implies that the optimal solutions to the dual
pairs of linear programs LP and LP-dual are integral
and have the same value when d = 2. Therefore, the
minimum vertex cover in bipartite graphs can be com-
puted in polynomial time. For general graphs the ver-
tex cover problem is known to be NP-Complete, and
there is evidence that probably it is hard to approxi-
mate vertex cover strictly better than 2 [11]. Several
approximation algorithms with performance ratio 2
(asymptotic) are known [2, 9, 4, 3, 14] for the vertex
cover problem.

Next, we describe an application of the Local Ra-
tio theorem of Bar-Yehuda and Even [3], (as noted
in [15]) to improve the performance ratio of the novel
algorithm due to Hochbaum [9]. The algorithm in [9]
uses a result of Nemhauser and Trotter [16] to approx-
imate vertex cover within a factor of 2− 2

k for graphs
that are k-colourable. We begin with the theorem of
Nemhauser and Trotter [16].

Theorem 2 (Nemhauser–Trotter [16]) There
exists an optimal solution to the linear program LP

for the vertex cover problem which is half-integral
(all the values are in the set {0, 1, 1

2}).

We assume that our graph is k-colourable. Given
a half-integral optimal solution y∗ to the linear pro-
gramming relaxation LP of the vertex cover problem,
let V0(V1) be the set of vertices that are assigned value
1
2 (1) respectively. First we note that each edge that
does not have any vertex incident on V1, has both
its end-points in V0 (else we do not have a fractional
vertex cover).

Given a k-colouring of the vertices in V0, let V ′ be
the colour class of largest size (≥ |V0|/k). We note
that V1 ∪ V0 \ V ′ is a vertex cover. Size of the vertex
cover thus computed is |V1∪V0\V ′| ≤ |V1|+|V0|(1− 1

k).
The optimal fractional vertex cover is of size |V1|+ |V0|

2 .
Therefore, we get the following theorem.

Theorem 3 For k-colourable graphs, there exists a
vertex cover of size ≤ (2 − 2

k)y∗, where y∗ is the op-
timal solution to the linear programming relaxation
LP of the vertex cover problem.

2.1 A first approximation

In this section we describe a, d− 1-approximation al-
gorithm for covering points with axis parallel lines in
d dimensions.

Recall that A is the coefficient matrix for the linear
programming relaxation to the point cover problem
when each point lies in Rd. Furthermore, each row
of A contains exactly d non-zero elements (ones). Let
Ci be the indices of columns with non-zero entries in
row i of the coefficient matrix A. Alternatively stated
Ci = {j | A[i, j] = 1}. For each a, b & a 6= b ∈ Ci, let
A(a, b)[i] be a row vector derived from A[i] by setting
the cth, c 6= a, b column to 0, i.e, A(a, b)[i, j] = A[i, j]
if j = a, b; 0 otherwise, where a, b ∈ Ci.

Lemma 4 For each row i in the coefficient matrix A
there exists a, b ∈ Ci such that A(a, b)[i] y∗ ≥ 2

d .

Proof. Each row of A contains d ones. Wlog, assume
that the ones occur in the first d columns of row i.
Assume that all for all a, b ∈ [1..d]

A(a, b)[i]y∗ <
2
d
. (7)

where y∗ is the optimal solution to the linear program
LP. Summing up the previous equation over all a, b ∈
[1..d], we get

(d− 1)A[i]y∗ <
2
d

(
d

2

)
A[i]y∗ < 1

This is a contradiction as y∗ is a feasible solution
in LP. �

43

23rd European Workshop on Computational Geometry, 2007

Theorem 5 The point cover problem in Rd can be
approximated within a factor of d− 1 (in O(n5) time
assuming constant d).

Proof. Let A′ be the matrix whose ith row A′[i] =
A(a, b)[i] such that A(a, b)[i] y∗ ≥ 2

d . At least one
pair (a, b) with the desired property exists for each
row due to Lemma 4. If for row i more than one pair
(a, b) exists then we pick one arbitrarily.

Consider the following integer program:

IR: min y (8)
A′y ≥ 1 (9)

yi ∈ {0, 1} (10)

y is a column vector with nd entries, each row of
A′ contains exactly two non-zero elements (1s). In-
teger program IR describes the vertex cover problem
for a graph whose vertices are the elements of vec-
tor y, and edges corresponds to pairs of non-zero ele-
ments in each row of A′. Furthermore, this graph is
d-colourable; assign lines associated with each dimen-
sion a unique colour. For instance all the lines parallel
to x-axis get color 1, and so on.

Given the linear programming relaxation LP to the
point cover problem, construct the linear program IR
as shown above. Let LPR be the linear programming
relaxation to the integer program IR. If y∗ is the frac-
tional optimal solution to LP then dy∗

2 is feasible in
LPR. Let y” be the optimal solution to LPR. Then
y” ≤ dy∗

2 . By Theorem 3 we can find an integral ver-
tex cover (to the problem described by integer pro-
gram IR) of size ≤ (2− 2

d)y” ≤ (2(d−1)
d

dy∗

2 . Therefore
the performance ratio ≤ d− 1.

One can use either the algorithm of Nemhauser and
Trotter [16] or the algorithm due to Bourjolly and Pul-
leyblank [5] to compute a half-integral fractional ver-
tex cover in O(|E||V |) time. The d-colouring can be
computed in O(|V |) time. Therefore, the algorithm
in Theorem 3 can be implemented in O(|E||V |) time.
As there are n rows in the coefficient matrix A′, we
have n edges in the graph over nd vertices. As our co-
efficient matrix A contains only 0s and 1s we can use
the strongly polynomial algorithm of Tardos [17] with
running time O(n5) to obtain the optimal linear pro-
gramming solution y∗ (assuming constant d). Hence,
we can compute a d − 1-approximate solution to the
point cover problem in d dimensions in O(n5) time.
Note that all the steps, except the first step required
to compute y∗, can be implemented in O(n2) time.

�

3 Discussion

We consider the problem of covering points in Rd with
minimum number of axis parallel lines. This prob-
lem is known to be NP-complete for all d ≥ 3, and

the current, long standing and obvious, bound on the
performance ratio is d [8].

We give a d − 1 approximation algorithm. Our al-
gorithm is based on deterministic rounding of the op-
timal solution to a linear program, and relies heavily
on the approximation algorithm for the vertex cover
problem. It would be interesting to see how far can we
push this technique, whether it is possible to obtain
a d

c + O(1) approximation algorithm for any constant
c using the approach presented here. Also interesting
would be a combinatorial algorithm for computing the
optimal solution y∗ to the linear programming relax-
ation.

References

[1] V. S. Anil Kumar, A Sunil Arya, and A H. Ramesh,
Hardness of Set Cover with Intersection 1, Proceed-
ings of the 27th International Colloquium on Au-
tomata, Languages and Programming, (2000), 624–
635.

[2] R. Bar-Yehuda, and S. Even, A linear time algorithm
for the weighted vertex cover problem, Journal of Al-
gorithms, 2 (1981), 198–203.

[3] R. Bar-Yehuda, and S. Even, A local ratio theorem
for approximating the weighted vertex cover problem,
Annals of Discrete Math, 25 (1985), 27–45.

[4] K. L. Clarkson, A modification of the greedy algo-
rithm for vertex cover, Information Processing Let-
ters, 16 (1983), 23–25.

[5] J. M. Bourjolly and W. R. Pulleyblank, König-
Egerváry graphs, 2-bicritical graphs and fractional
matchings, Discrete Applied Mathematics, 24 (1989)
63–82.

[6] V. Chvatal, A greedy heuristic for the set-covering
problem, Math. Oper. Res. 4 (1979) 233–235.

[7] M. Grantson and C. Levcopoulos, Covering a Set
of Points with a Minimum Number of Lines, CIAC
(2006) 6–17, also in EWCG, Delphi, 2006.

[8] R. Hassin and N. Megiddo, Approximation algorithms
for hitting objects with straight lines, Discrete Appl.
Math. 30(1) (1991) 29–42.

[9] D. S. Hochbaum, Approximation Algorithms for the
Set Covering and Vertex Cover Problems, SIAM J.
Comput. 11(3) (1982) 555-556.

[10] D.S. Johnson, Approximation algorithms for combi-
natorial problems, J. Comput. System Sci. 9 (1974)
256–278.

[11] S. Khot and O. Regev, Vertex Cover Might be Hard
to Approximate to within 2− ε, IEEE Conference on
Computational Complexity (2003) 379–386.

[12] S. Langerman, P. Morin, Covering Things with
Things, Discrete & Computational Geometry 33(4)
(2005) 717–729.

[13] N. Megiddo and A. Tamir, On the complexity of lo-
cating linear facilities in the plane, Oper. Res. Lett.,
1 (1982) 194–197.

44

EWCG 2007, Graz, March 19–21, 2007

[14] B. Monien, and E. Speckenmeyer, Ramsey numbers
and an approximation algorithm for the vertex cover
problem, Acta Informatica, 22 (1985), 115–123.

[15] R. Motwani, Lecture Notes on Approximation Algo-
rithms – Vol I.

[16] G. L. Nemhauser and L. E. Trotter, Jr., Vertex Pack-
ing: Structural Properties and Algorithms, Mathe-
matical Programming, 8 (1975), 232–248.

[17] E. Tardos, A strongly polynomial algorithm to solve
combinatorial linear programs, Oper. Res. 34 (1986),
250–256.

45

23rd European Workshop on Computational Geometry, 2007

Inflating the Cube by Shrinking

Kevin Buchin∗ Igor Pak† André Schulz∗

Abstract

We present a continuous, submetric deformation of
the surface of the cube which increases the enclosed
volume by about 25.67%. This improves the previous
bound of about 21.87% by Bleecker

1 Introduction

We address the problem how large the volume of a
body with a surface isometric to that of the unit cube
can be. The idea of considering volume-increasing iso-
metric embeddings is due to Bleecker [2]. He proved
that a volume-increasing continuous isometric defor-
mation exists for every simplicial convex surface in
R3. A deformation is called isometric if it preserves
the geodesic distances between any two points on the
surface. Bleecker also gives a direct construction for
the cube and other platonic solids. By Alexandrov’s
uniqueness theorem [1] a body resulting from such a
deformation must be non-convex.

Most recently, Pak [6] gave an easy construction
for increasing the volume of the unit cube to about
1.1812 based on the work of Milka [4]. Bleecker’s more
involved construction yields a volume of about 1.2187.
A simple upper bound can be obtained by the volume
of the sphere which has the same surface as the cube.
This gives an upper bound on the volume of 1.3820.
This bound is not sharp as the cones around cube
vertices are not isometric to spherical regions.

Bleecker conjectured that for every (not necessarily
simplicial) polyhedron P ⊂ R3 there exists a volume-
increasing deformation of ∂P [2]. Bleecker’s conjec-
ture was positively resolved by Pak [5], who also ex-
tended it to non-convex polyhedra and polyhedra in
higher dimensions.

It was observed by Pak [6] that one can also con-
sider submetric embeddings, a larger class containing
the isometric embeddings. In a submetric embedding
geodesic distances on the surface are non-increasing.
By a result of Burago and Zalgaller [3], for every sub-
metric embedding there is an isometric embedding ar-
bitrary close to it. Thus the bound achieved by sub-
metric embeddings coincides with that by isometric
embeddings.

∗Institut für Informatik, Freie Universität Berlin,
[buchin|schulza]@inf.fu-berlin.de

†Department of Mathematics, Massachusetts Institute of
Technology, pak@math.mit.edu

In this paper, we present a shrinking, i.e., a con-
tinuous, submetric deformation of the unit cube for
which the resulting volume is at least 1.2567. This
also improves the lower bound on the volume of a
surface isometric to that of a unit cube. The shrink-
ing problem and the idea of looking at shrinkings in
order to get isometric embeddings is due to Pak [5].

2 A Shrinking of the Cube with Large Volume

We present volume-increasing submetric embeddings
of the cube. The embeddings are parametrized by
ε ∈ [0, 0.5]. Increasing ε from zero yields a continuous
deformation. In this section we show a construction
with volume about 1.2444, which we improve in the
next section further.

Our approach is a refinement of Igor Pak’s work
[5, 6]. The original cube is given as the convex hull
of the set {0, 1}3. We denote vertices on the surface
of the cube by pi. The same vertex in the deformed
cube is denoted as vi.

As a first step we cut off ε-cubes in every corner of
the cube (see Figure 1) Now we are going to deform

ε

Figure 1: Cutting off ε cubes.

the remaining part of the cube. We place one vertex in
the middle of every ε segment as shown in Figure 2.a.
The segments defined between p1, p5/4, p3/2, p7/4, p2

have the length ε/2. Let the framework induced by
this chain be C. We move the vertices of C such
that v1, . . . , v2 lie on a quarter-circle (depicted in Fig-
ure 2.b). We apply the deformation for all correspond-
ing pairs of ε segments. This leads to a body which
we divide into a corpus and 12 bars. Figure 3 shows
the parts. A bar is a prism with a 6-gon as base area.
The 6-gon is inscribed in quarter circle. Its shorter
edges have the length ε/2. The radius of the quarter
circle is denoted by δ. Expressed in terms of ε we

46

EWCG 2007, Graz, March 19–21, 2007

ε

ε

p1

p2

p5/4

p3/2

p7/4

v1

v2

v5/4

v3/2

v7/4
v3

v0

a b

Figure 2: Bending the chains induced by a pair of ε
segments.

Figure 3: Corpus and bar and star.

obtain

δ =
1
2
ε

√
1

2− 2 cos(π/8)
.

The volume of one bar is given by

Vbar = 2(1− 2ε)δ2 sin(π/8).

The corpus is the remaining part after cutting out the
bars. Its volume is given by

Vcorpus = (1− 2ε)3 + 6δ(1− 2ε)2.

It remains to place the cut-outs at the corners of
the body. We have to deform the ε-cubes, such that
they fit into the open 12-gons (formed by three chains
C) of the body. Consider the open part depicted in
Figure 2.b. One vertex is part of the corpus and the
three bars, which we denote by v0. In the follow-
ing we refer to an orthogonal coordinate system. Its
origin lies at v0 and its x,y, and z directions are de-
fined by the rays passing through v1, v2, and v3. The
object we glue into this part is called star. It is de-
fined as the convex hull of the vertices on the chains
between v1, v2, v3 together with v0 and a vertex v∗.
The coordinate of v∗ is chosen in such a way, that
the embedding is submetric. We place v∗ on a line
given by x = y = z. The condition for a submetric
embedding is fulfilled if no distance is enlarged. The
crucial distances are obtained in the original cube be-
tween p1, p5/4 and p3/2 and the original corner vertex
of the cube pc. All other distances which occur are
symmetric variants of these distances. Therefore we
have to choose v∗ = (a, a, a) such that the following

conditions hold.

‖p1 − pc‖ =
√

2ε ≥ ‖v1 − vc‖
‖p5/4 − pc‖ =

√
5

2 ε ≥ ‖v5/4 − vc‖
||p3/2 − pc‖ = ε ≥ ‖v3/2 − vc‖

To compute the distances we need the coordinates of
v1, v5/4 and v3/2 in the specified coordinate system
which are

v1 = (0, δ, 0),
v5/4 = (δ sin(π/8), δ cos(π/8), 0),

v3/2 =
(
δ/
√

2, δ/
√

2, 0
)

.

We are left with three equation systems which lead
to different upper bounds on a. It turns out that
the smallest feasible solution for a is obtained by the
distance between v1 and v∗, namely 0.976468 ε. If
we set v∗ to (0.9764 ε, 0.9764 ε, 0.9764 ε) all distances
decrease.

Finally, we have to evaluate the volume of the stars.
Each star is divided into tetrahedra. There are two
types of tetrahedra, one is given by the convex hull
of v0, v1, v5/4, v∗ and the other by the convex hull of
v0, v5/4, v3/2, v∗. Both tetrahedra appear 6 times in
every star. That leads to the following expression for
the volume of a star;

Vstar = 1.227259706ε3.

Now we can evaluate the volume of the complete body
which is

V = Vcorpus + 12Vbar + 8Vstar.

See Figure 4 for the graph of V (ε) for the feasible val-
ues of ε. The volume V (ε) is maximized at about ε0 =

1

1.05

1.1

1.15

1.2

0 ε0.1 0.2 0.3 0.4 0.5

V (ε)

Figure 4: The volume of the deformed cube in terms
of ε.

0.351311, which induces a volume V (ε0) = 1.2444.
Thus, this improves the bound of Bleecker [2]. The
deformed cube for this value of ε is shown in Fig-
ure 5. Each star has 3 concave edges depicted as
dashed lines. In the next section we refine our con-
struction.

47

23rd European Workshop on Computational Geometry, 2007

Figure 5: Deformed cube.

3 A Refined Construction

We refine the construction to increase the volume of
the cube. A crucial part of the construction was to
take two adjacent edges of length ε and turn them into
a chain of 4 edges of length ε/2. The deformation puts
all vertices of the chain on a quarter circle with ra-
dius δ. In the previous section the chain C contained
5 vertices. If we increase the number of vertices on C
the deformed cube becomes more “spherish”, promis-
ing a larger volume. In the limit C is a spherical arc.
In the following, we consider this situation.

The value of δ is the radius of a circle with perimeter
8π, therefore

δ =
4ε

π
.

The volume of the corpus is the same as calculated in
Section 2. Every bar is a prism with a quarter circle
of radius δ as base area. This leads to

Vbar =
1
4
(1− 2ε)πδ2.

The stars consist of three equally sized quarter cones.
The base area coincides with the base area of the bars.
The height of the quarter cones is given by a. The
value of a has to be chosen in such a way that the
embedding is submetric. We consider the point px

on the C (See Figure 6). Let its distance from p1 be
x. For the deformed cube we consider the same co-

px

x

pc

Figure 6: The point px.

ordinate system like in Section 2. The coordinates of

the point vx are (δ cos(x/δ), δ sin(x/δ), 0). The dis-
tance between px and pc (depicted in Figure 6) equals√

(ε− x)2 + ε2. This leads to the following expres-
sion for the submetric condition:

(ε−x)2 +ε2 ≥ (a−cos(x/δ))2 +(a−δ sin(x/δ))2 +a2.

The inequality holds with equality if,

a(x, ε) = 1
3π

(
4 cos

(
xπ
4ε

)
ε + 4 sin

(
xπ
4ε

)
ε +√

32ε2(cos
(

xπ
4ε

)
sin
(

xπ
4ε

)
− 1) + 3π2(x2 + 2ε2 − 2xε)

)
The variable a depends on x and ε. We choose x

as a multiple of ε. Minimizing the expression over all
x ∈ [0, 1]ε yields a value for a of about a = 0.9772 ε
which is obtained at about x = 0.1144 ε. Therefore
we can describe the volume of the star by

vstar =
1
4

0.9772 ε δ2π.

Finally we maximize the volume of the whole body (1
corpus, 12 bars, 8 stars) over ε ∈ [0, 0.5]. It turns out
that the maximum is at least 1.2567 which is obtained
at about ε = 0.37712.

4 Future Work

Our construction leads to a non-convex body. Due to
Alexandrov [1] we know that there exist no convex iso-
metric embedding for a convex polytope with larger
volume. It would be interesting to convexify our con-
struction to find a submetric embedding for the cube,
which is convex and has largest possible volume. The
example given in [6] gives a convex polyhedral con-
struction with a volume only a little large than 1.
Related to this question is a conjecture, posed in [6]:

Conjecture 1 (Pak) Let S0 be a convex polyhedral
surface in R3 and let S1 be a convex polyhedral surface
submetric to S0 of greater volume. Then there exists
a volume increasing shrinking from S0 to S1.

Since volume-increasing shrinkings exist for poly-
hedral surfaces in any dimension [6], one can ask for
shrinkings for hypercubes. What ratios of the volume
can be obtained in dimensions larger than 3? What
is the relation between the ratio and the dimension?
Notice that if we mimic the construction given in Sec-
tion 3 in R2, we end up with a circle, which matches
the upper bound.

We have concentrated in our paper on shrinkings
of the cube. Our technique is applicable to other sur-
faces as well. However the computations for other
interesting bodies (like platonic solids) still has to be
done.

48

EWCG 2007, Graz, March 19–21, 2007

Acknowledgments

The first and third author would like to thank Günter
Rote for suggesting the problem to them. The second
author was partially supported by the NSF.

References

[1] A. D. Alexandrov. Convex polyhedra. Springer Mono-
graphs in Mathematics. Springer, 2005. Original Rus-
sian edition published by Gosudarstv. Izdat. Tekhn.-
Teor. Lit., Moscow-Leningrad, 1950.

[2] D. D. Bleecker. Volume increasing isometric deforma-
tions of convex polyhedra. J. Diff. Geom., 43(3):505–
526, 1996.

[3] Y. D. Burago and V. A. Zalgaller. Isometric
piecewise-linear embeddings of two-dimensional man-
ifolds with a polyhedral metric into R3. St. Petersburg
Math. J., 7:369–385, 1996.

[4] A. D. Milka. Linear bendings of regular convex poly-
hedra (in Russian). Mat. Fiz. Anal. Geom., 1:116–
130, 1994.

[5] I. Pak. Inflating polyhedral surfaces. preprint, 2006.
37 pp.

[6] I. Pak. Inflating the cube without stretching.
preprint, 2006. 3 pp. to appear in Amer. Math.
Monthly.

49

23rd European Workshop on Computational Geometry, 2007

Hamiltonian Tetrahedralizations with Steiner Points

Francisco Escalona∗ Ruy Fabila-Monroy† Jorge Urrutia †

Abstract

A tetrahedralization of a point set in 3-dimensional
space is Hamiltonian if its dual graph has a Hamilto-
nian cycle. Let S be a set of n points in general posi-
tion in 3-dimensional space. We prove that by adding
to S at most bm−2

2 c Steiner points in the interior of
the convex hull of S, we obtain a point set that admits
a Hamiltonian tetrahedralization. We also obtain an
O(m

3
2) + O(n log n) algorithm to solve this problem,

where m is the number of elements of S on its convex
hull. We also prove that point sets with at most 20
convex hull points have a Hamiltonian tetrahedraliza-
tion without the addition of any Steiner points.

1 Introduction

Let S be a set of n points in R3 in general position.
The convex hull of S (Conv(S)) is the intersection of
all convex sets containing S.

The points of S lying on the boundary of Conv(S)
are called convex points and the points lying in the
interior of Conv(S), interior points.

A tetrahedralization T of S is a partition of
Conv(S) into tetrahedra with vertices in S such that:

1. The tetrahedra only intersect at points, lines or
faces.

2. The tetrahedra do not contain points of S in their
interior.

In a similar way, a triangulation of a point set in
the plane is a partition of its convex hull into triangles
satisfying the above properties.

Given a tetrahedralization T of S, we define DT ,
the dual graph of T , to be the graph whose vertex set
is the tetrahedra of T , two of which are adjacent if
and only if they share a common face.

In this paper, we are interested in tetrahedraliza-
tions such that their dual graph contains a Hamilto-
nian cycle or path. In general, we call such tetrahe-
dralizations Hamiltonian tetrahedralizations. To dif-
ferentiate between cycles and paths, we write Hamil-

∗Facultad de Ciencias, Universidad Nacional Autónoma de
México

†Instituto de Matemáticas, Universidad Nacional Autónoma
de México (ruy@ciencias.unam.mx, urrutia@math.unam.mx).
Supported by CONACYT of Mexico, Proyecto SEP-2004-Co1-
45876, and PAPIIT (UNAM), Proyecto IN110802.

tonian cycle and Hamiltonian path tetrahedraliza-
tions. We say that S admits a Hamiltonian tetrahe-
dralization if there exists a Hamiltonian tetrahedral-
ization of S.

A well known problem in computational geometry
(see [5], Problem 29) asks if every convex polytope
in R3 admits a Hamiltonian tetrahedralization, that
is, a tetrahedralization of the set of vertices of the
polytope.

The question was raised in [1], where a Hamilto-
nian triangulation was sought; in that paper the same
problem was solved in the plane. In [3] it was proved
that triangulations produced by applying Graham’s
Scan to calculate the convex hull of point sets are
Hamiltonian.

It was observed in [1] that Hamiltonian triangula-
tions allow for faster rendering of triangular meshes.
The same holds true for tetrahedra. In [1], the prob-
lem of finding a Hamiltonian tetrahedralization for
a convex polytope in R3 was conjectured to be NP-
complete.

The existence of a Hamiltonian tetrahedralization
of a convex polytope remains open. In this paper we
study the following related problem: Given a convex
polytope P in R3, how many Steiner points must be
placed in the interior such that the set of vertices of
P together with the added Steiner points admits a
Hamiltonian tetrahedralization?

We consider the more general case and consider
point sets rather than convex polytopes. Let S be
a set of n points in R3 in general position such that
its convex hull contains m vertices, and let m′ be the
number of S that belong to the interior of Conv(S).

We present an algorithm that adds at most bm−2
2 c

Steiner points, located in the interior of Conv(S),
to S. Our algorithm produces a Hamiltonian tetrahe-
dralization. The overall complexity of the algorithm
is O(m

3
2) + O(n log n).

Finally we show that if m ≤ 20, no Steiner points
need to be added.

2 The algorithm

The main idea is to first add a point to S to obtain
a tetrahedralization such that its dual graph can be
partitioned into cycles.

We then insert Steiner points to join existing cycles.
We continue this process until the cycle partition con-
sists of just one cycle. This final cycle is a Hamiltonian

50

EWCG 2007, Graz, March 19–21, 2007

Figure 1: Join Operation.

cycle in the dual graph of the final tetrahedralization.
Actually, we first remove the interior points of S

and those convex hull points of degree 3 (that is,
points adjacent to 3 other points in the boundary of
Conv(S)). We can do this in view of the following:

Lemma 1 If the convex hull points of S admit a
Hamiltonian tetrahedralization, so does S.

Proof. Consider an interior point x of S and suppose
S − {x} admits a Hamiltonian tetrahedralization T .
Let τ be the unique tetrahedron of T that contains
x in its interior. If we remove τ from T and add the
four tetrahedra induced by the faces of τ with x, we
obtain a tetrahedralization of S and the Hamiltonian
cycle of DT can be extended to a Hamiltonian cycle
of the new tetrahedralization. Applying this process
recursively, the theorem follows. �

In the same manner we can suppose that S does
not have any convex hull vertices of degree 3.

Theorem 2 Let x be a convex hull point of S of de-
gree 3. If S − {x} admits a Hamiltonian tetrahedral-
ization, then so does S.

Proof. Suppose S−{x} admits a Hamiltonian tetra-
hedralization T . The three convex hull vertices of
S adjacent to x form a face F of the boundary of
Conv(S − {x}). Let τ1 be the only tetrahedron of T
that contains F as a face and let τ2 be the tetrahedron
induced by x and F . Clearly τ1 ∪ τ2 is convex. If we
remove τ1 and τ2 from T and replace them with the

Figure 2: DT before and after the join operation.

three tetrahedra induced by the faces of τ1 (except F)
and x, we obtain a tetrahedralization T ′ of S. The
Hamiltonian cycle of DT can now be extended to a
Hamiltonian cycle of DT ′

�

Assume now that S does not contain interior points
or convex hull points of degree 3.

We insert a point p0 in the interior of Conv(S) and
join every face of the boundary of Conv(S) to it, form-
ing a tetrahedralization T of S ∪ {p0}.

Let G be the graph induced by the 1-skeleton of the
boundary of Conv(S); that is, the graph whose vertex
set consists of the convex hull points of S and whose
edges are the edges of the boundary of Conv(S). It is
easy to see that both G and its dual graph are planar
and 3-connected. By construction, the dual graph of
G is isomorphic to DT . Since every face of G is a
triangle, DT is a regular graph of degree 3.

To obtain the initial partition, we use a theorem
of Petersen [8] that states that every 2-connected cu-
bic graph contains a perfect matching. Since DT is
3-connected, in particular it is 2-connected and there-
fore contains a perfect matching M . If we remove
the edges of M from DT , we obtain a regular graph
of degree 2. This subgraph of DT is the initial cycle
partition.

2.1 Joining cycles

Consider two disjoint cycles, C1 and C2, in our cycle
partition of DT , and furthermore suppose that there
is an edge e of DT that has its end points τ1 and τ2 in
C1 and C2 respectively. Since τ1 and τ2 are tetrahedra
in T , e corresponds to a shared face F of τ1 and τ2.

The join operation consists of adding a point p to
the interior of τ1 so that the line segment joining the
point q in τ2 opposite to F in τ2 intersects F . We

51

23rd European Workshop on Computational Geometry, 2007

now remove τ1 and τ2 and replace them by the six
tetrahedra induced by the faces of τ1, τ2 and p (except
F) as shown in Figure 1.

It can now be shown that there is a cycle that passes
through all the vertices of C1∪C2−{τ1, τ2} plus the six
new tetrahedra containing p as a vertex (see Figure 2).

We repeat this process until a single cycle is ob-
tained. We will show in the next section that the
number of Steiner points we need to insert before a
Hamiltonian cycle is reached is at most bn−2

2 c.

3 Complexity and implementation.

In this section we will analyze the running time and
implementation issues of the algorithm sketched in
Section 2.

Suppose that S is a point set with n points in R3

with m convex hull points and m′ interior points,
m + m′ = n. We first calculate the convex hull of S
in O(n log n), and then remove the points of S in the
interior of Conv(S).

Next, we remove the convex hull vertices of de-
gree 3. This can be done in O(m) by using a priority
queue with all convex hull vertices of degree 3. Each
time one is removed, the degree of its neighbors is
checked and if necessary they are added to the queue.

Adding the first Steiner point p0 and tetrahedraliz-
ing as in the previous section takes time O(m).

The complexity of finding the initial cycle partition
described at the end of Section 2 is that of finding a
perfect matching in G. In a graph with |V | vertices
and |E| edges, a perfect matching can be found in
time O(|E|

√
|V |) [7]. Since we are dealing with a

cubic graph, we have |E| = 3
2 |V |. Thus we can find

the cycle cover in 0(3
2m
√

m) = O(m
3
2) time.

Once we have the initial cycle cover, we return the
vertices that were removed. This is done before the
join operations in order to take advantage of the struc-
ture of the tetrahedralization to return the convex hull
points of degree 3 and interior points efficiently. Us-
ing the fact that DT is a planar graph, the interior
points and convex hull points of degree 3 can be added
using point location at a cost of O(log m) per point.
The convex hull points of degree 3 are added first and
the interior points afterwards. As these points are
returned, the initial cycle partition is updated as in
Lemma 1 and Theorem 2.

We have to be careful about the order in which the
interior points are added. Suppose we have a tetrahe-
dra τ which contains k interior points that remain to
be added, and that we return q0, one of these points.
When we retetrahedralize the point set, τ would be
split into 4 new tetrahedra. We have to guarantee
that each of these tetrahedra receives a linear frac-
tion of the points in τ , for otherwise the iterative pro-
cess could take as much as O(k2). That is, we need a
splitter vertex (see [2]). Such a vertex can be found

in time O(k), thus ensuring a total of O(m′ log m′)
running time.

Finally we proceed to merge the set of cycles ob-
tained thus far into a single cycle as in Subsection 2.1.
Each time we join two cycles, we insert one Steiner
point. Since G has m vertices, the number of faces of
G is 2m − 4, and since all the cycles obtained have
at least four vertices, the initial cycle partition con-
tains at most b 2m−4

4 c elements. Thus the number of
Steiner points required is at most bm−2

2 c. This can
be done in O(n log n) since there are O(n) edges in
H. The overall complexity of the algorithm is thus
O(m

3
2) + O(n log n).

4 Hamiltonian Convex Hulls

To conclude the paper, we show that if the dual graph
G defined by the convex hull of S is Hamiltonian, then
no Steiner points need to be added.

Theorem 3 Let S be a point set in R3 such that the
dual graph H of G is Hamiltonian. Then S admits a
Hamiltonian path tetrahedralization.

Proof. Consider a planar embedding of H and a
Hamiltonian cycle C of H. Let F be a face in this
embedding such that all except one of its edges are in
C.

Observe that there is a one-to-one mapping between
the vertices of G and the faces of H. Let v be the ver-
tex of G corresponding to F . Observe that each face
of Conv(S) (not containing v as one of its vertices)
together with v induces a tetrahedron, and that the
union of these tetrahedra forms a tetrahedralization
of Conv(S).

It is easy to see that the dual of this tetrahedral-
ization is isomorphic to H − F , and thus contains a
Hamiltonian path. �

Using Euler’s formula and the fact that all 3-
connected cubic planar graphs with 36 or fewer ver-
tices have a Hamiltonian cycle (see [6]), we obtain the
following corollary:

Corollary 4 Let S be a point set in R3 having at
most 20 convex hull points. Then S admits a Hamil-
tonian path tetrahedralization.

The tetrahedralization mentioned in the proof of
Theorem 3 (where all the points are joined to a given
point) is known in the literature as a “pulling” tetra-
hedralization. Recently, point sets with no Hamilto-
nian path pulling tetrahedralizations have been shown
to exist [4].

52

EWCG 2007, Graz, March 19–21, 2007

5 Conclusions

We presented an algorithm for computing Hamilto-
nian tetrahedralizations of a given point set S in R3

by adding Steiner points.
The algorithm has a running time of O(m

3
2) +

O(n log n) and inserts at most bm−2
2 c Steiner points.

We believe that this bound is not optimal.
We also showed that point sets with at most 20

convex hull points always admit a Hamiltonian path
tetrahedralization.

We remark that we have restricted ourselves to
adding Steiner points to the interior of Conv(S). If
we allow the use of Steiner points in the exterior of
Conv(S), four exterior points (the vertices of a tetra-
hedron containing the elements of S in its interior)
suffice.

References

[1] E. Arkin, M. Held, J.S.B. Mitchell, and S. Skiena.
Hamiltonian triangulations for fast rendering.
Visual Comput., 12(9):429–444, 1996.

[2] D. Avis, H. ElGindy. Triangulating point sets
in space. Discrete & Computational Geometry,
2:99–11, 1987.

[3] R. Fabila-Monroy, and J. Urrutia. Graham Tri-
angulations and Triangulations With a Center
are Hamiltonian. Information Processing Let-
ters, 96, pp. 295-299, 2005.

[4] F. Chin, Q. Ding and C. Wang On Hamilto-
nian tetrahedralizations of convex polyhedra Pro-
ceedings of ISORA’05 (Lecture Notes on Oper-
ations Research), Vol. 5, pp. 206–216, August
2005, Lhasa, China.

[5] E.D. Demaine, J.S.B. Mitchell, and J. O’Rourke,
editors. The Open Problems Project.
http://maven.smith.edu/orourke/TOPP/
welcome.html

[6] D.A. Holton and B. D. Mckay. The small-
est non-Hamiltonian 3-connected cubic planar
graphs have 38 vertices. J. Combin. Theory,
Ser. B. 45:315–319, 1988.

[7] S. Micali, V. V. Vazirani, An O(
√
|V ||E|) algo-

rithm for finding maximum matching in general
graphs. 21st Annual Symp. on Foundations of
Computer Science, Syracuse, NY, 1980, pp 17–
27.

[8] J. Petersen. Die Theorie de regulären Graphen
Acta Math. 15:193–220, 1891.

[9] H Whitney. Congruent graphs and the connec-
tivity of graphs Amer. J. Math. 54:150–168, 1932.

53

23rd European Workshop on Computational Geometry, 2007

A conjecture about Minkowski additions of convex polytopes ∗

Komei Fukuda† Christophe Weibel‡

Abstract

This paper introduces a conjecture about Minkowski
sums of polytopes. When the facets of the sum have
exact decomposition, a linear relation can be observed
on the augmentation of the number of faces between
the sum and the summands. We prove this relation
holds for two particular cases.

1 Introduction

Let P1, . . . , Pn be polytopes in Rd. Their Minkowski
sum is defined as

P = {x1 + · · ·+ xn | xi ∈ Pi ∀i} .

Minkowski sums can be used in a wide variety of sub-
jects, such as robotics ([8]), manufacturing ([9]) and
algebraic statistics ([5]). One of the main subjects
of interest, for efficiency computation as well as some
theoric applications, is the study of the number of
faces of the sum related to that of the summands.

A first bound has been presented by Gritzman and
Sturmfels ([5]), bounding the number of faces of any
dimension in terms of the number of edges of the sum-
mands. More recently, other bounds have been pro-
posed in terms of facets or vertices, but mostly in low
dimensions ([2, 4]).

We will now introduce a conjecture relating to the
number of faces of different dimensions in a certain
type of Minkowski sums. The term face here defines
a set on which a linear function is optimal in the poly-
tope. Vertices, edges and facets are faces of dimension
0, 1, and d − 1 respectively. The f-vector of a poly-
tope P , noted by (f0(P), . . . , ff−1(P)), contains the
number of faces of different dimensions.

Any face F of a Minkowski sum of polytopes can
be decomposed uniquely into a sum of faces of the
summands ([3]). We will say that the decomposition
is exact when the dimension of the sum is equal to
the sum of the dimensions of the summands. When

∗Supported by the Swiss National Science Foundation
Project 200021-105202, “Polytopes, Matroids and Polynomial
Systems”.

†Mathematics Institute, EPFL, Lausanne, Switzerland.
Also affiliated with Institute for Operations Research and In-
stitute of Theoretical Computer Science ETH Zentrum, Zurich,
Switzerland. fukuda@ifor.math.ethz.ch

‡Mathematics Institute, EPFL, Lausanne, Switzerland.
christophe.weibel@epfl.ch

all facets have an exact decomposition, we will say the
summands are relatively in general position.

Though this condition is rather restrictive, it can be
shown that for fixed number of faces in the summands,
the maximum number of faces of any dimension can
only be attained if the summands are relatively in
general position.

This is our main conjecture:

Conjecture 1 Let P1, . . . , Pn be d-dimensional poly-
topes relatively in general position, and P = P1+· · ·+
Pn their Minkowski sum. Then

d−1∑
k=0

(−1)kk(fk(P)− (fk(P1) + · · ·+ fk(Pn))) = 0.

Note that the form is rather similar to Euler’s Equa-
tion:

d−1∑
k=0

(−1)kfk(P) = 1− (−1)d.

By using Euler’s Equation, we can write the con-
jecture slightly differently:

Corollary 1 Let P1, . . . , Pn be d-dimensional poly-
topes relatively in general position, and P = P1 +
· · ·+ Pn their Minkowski sum. Then for all a,

d−1∑
k=0

(−1)k(k − a)(fk(P)− (fk(P1) + · · ·+ fk(Pn)))

= a− a(−1)d.

2 Cases proved

We will show here proofs for two different fami-
lies of Minkowski Sums. General proofs for three-
dimensional sums can be found in [2] and [4].

2.1 Proof for zonotopes sums

The f -vector of general zonotopes are completely
known. Since the sum of two zonotopes is again a
zonotope, it is possible to prove the following:

Theorem 2 Let Zm1
d and Zm2

d be two d-dimensional
zonotope in generated by m1 respectively m2 seg-
ments in general position, then the main conjecture
holds for their Minkowski sum.

54

EWCG 2007, Graz, March 19–21, 2007

Proof. As stated in [6] the f -vector of Zm
d is given

by:

fk(Zm
d) = 2

(
m

k

) d−k−1∑
h=0

(
m− k − 1

h

)
.

Defining d′ = d− 1, k′ = k − 1 and m′ = m− 1, and

using the identity k
(
m
k

)
= m

(
m′

k′

)
, and we can write:

d−1∑
k=0

(−1)kkfk(Zm
d) =

d−1∑
k=1

(−1)kk2
(

m

k

) d−k−1∑
h=0

(
m− k − 1

h

)
=

−
d′−1∑
k′=0

(−1)k′m2
(

m′

k′

) d′−k′−1∑
h=0

(
m′ − k′ − 1

h

)
=

−m
d′−1∑
k′=0

(−1)k′fk′(Zm′

d′).

Since Zm′

d′ is a polytope, Euler’s formula tells us that
the alternating sum of its f -vector is equal to 1 −
(−1)d′ , and so

d−1∑
k=0

(−1)kkfk(Zm
d) = −m(1 + (−1)d).

The conjecture is therefore equivalent to the obvious
statement:

−(m1 + · · ·+ mn)(1 + (−1)d)+

m1(1 + (−1)d) + · · ·+ mn(1 + (−1)d) = 0.

�

2.2 Proof for Nesterov roundings of perfectly cen-
tered polytopes

We will here present the proof for the particular case
of perfectly centered polytopes summed with their
own dual. We will use extended f-vectors, which
give for a set of dimensions S = {s1, . . . , sk} ⊆
{0, . . . , d − 1} the number of different chains of faces
F1 ⊆ · · · ⊆ Fk so that dim(Fi) = si.

We will need to use the Dehn-Sommerville relations
for extended f -vectors:

Lemma 3 ([1],[7]) Let P be an Eulerian poset of
rank d, S ⊂ {0, . . . , d − 1}, {i, k} ⊆ S ∪ {−1, d}, i <
k − 1, and S contains no j so that i < j < k. Then

k−1∑
j=i+1

(−1)j−i−1fS∪j(P) = fS(P)(1− (−1)k−i−1).

If we use for convenience the notation fi,i,k := fi,k,
we can write the special case of D-S relations where
S = {i, k} ⊆ {−1, . . . , d} as:

Lemma 4

k∑
j=i

(−1)jfi,j,k(P) = 0.

A polytope is called perfectly centered if for each
non-empty face F , the intersection of F with its own
normal fan N (F) is non-empty.

Theorem 5 ([4]) Let P be a perfectly centered
polytope. A subset H of P +P ∗ is a nontrivial face of
P + P ∗ if and only if H = G + FD for some ordered
nontrivial faces G ⊆ F of P .

Using this theorem, we can write a formula for the
f -vector of P + P ∗ using the extended f -vector of P .

Theorem 6 Let P be a perfectly centered polytope,
then the f -vector of P + P ∗ can be written as:

fk(P + P ∗) =
k∑

i=0

fi,i+d−1−k, ∀k = 0, . . . , d− 1

Proof. Let P be a perfectly centered polytope. For
every k, the sumber of k-faces of P +P ∗ is equal to the
number of pairs of faces (F,G) of P , F ⊆ G so that
dim(F) + dim(GD) = k, which means dim(F) + d −
1−k = dim(G). Which is the number of chains of two
non-trivial faces of dimensions i and i+d−1−k. �

Theorem 7 Let P be a perfectly centered polytope.
Then the conjecture holds for the Minkowski sum P +
P ∗.

Proof. Let P be a perfectly centered polytope. We
have that

d−1∑
k=0

(−1)kkfk(P) =
d−1∑
i=0

(−1)iifi,d(P)

By using k′ = d− 1− k:

d−1∑
k=0

(−1)kkfk(P ∗) =

d−1∑
k′=0

(−1)d−1−k′(d− 1− k′)f−1,k′(P)

And finally:

d−1∑
k=0

(−1)kkfk(P + P ∗) =
d−1∑
k=0

k∑
i=0

(−1)kkfi,i+d−1−k(P)

55

23rd European Workshop on Computational Geometry, 2007

Let’s replace in this sum k by k′ = i + d− 1− k:

=
d−1∑
i=0

d−1∑
k′=i

(−1)i+d−1−k′(i + d− 1− k′)fi,k′(P)

=
d−1∑
i=0

d−1∑
k′=i

(−1)i+d−1−k′ifi,k(P)+

d−1∑
k′=0

k′∑
i=0

(−1)i+d−1−k′(d− 1− k′)fi,k(P)

Composing the three, we get:

d−1∑
k=0

(−1)kkfk(P + P ∗)− fk(P)− fk(P ∗) =

d−1∑
i=0

d∑
k=i

(−1)i+d−1−kifi,k(P)+

d−1∑
k=0

k∑
i=−1

(−1)i+d−1−k(d− 1− k)fi,k(P) =

d−1∑
i=0

i
d∑

k=i

(−1)i+d−1−kfi,k,d(P)+

d−1∑
k=0

(d− 1− k)
k∑

i=−1

(−1)i+d−1−kf−1,i,k(P) = 0

By Dehn-Sommerville relations (4), the inner sums
are equal to zero. �

References

[1] M. M. Bayer and L. J. Billera. Generalized Dehn-
Sommerville relations for polytopes, spheres and
Eulerian partially ordered sets. Invent. Math.,
79(1):143–157, 1985.

[2] E. Fogel, D. Halperin, and C. Weibel. On the exact
maximum complexity of Minkowksi sums of con-
vex polyhedra. In 23rd Annual ACM Symposium
on Computational Geometry, 2007.

[3] K. Fukuda. From the zonotope construction to
the Minkowski addition of convex polytopes. J.
Symbolic Comput., 38(4):1261–1272, 2004.

[4] K. Fukuda and C. Weibel. On f-vectors of
Minkowski additions of convex polytopes. Dis-
crete and Computational Geometry, 2006. AC-
CEPTED.

[5] P. Gritzmann and B. Sturmfels. Minkowski addi-
tion of polytopes: computational complexity and
applications to Gröbner bases. SIAM J. Discrete
Math., 6(2):246–269, 1993.

[6] P. Gritzmann and B. Sturmfels. Minkowski addi-
tion of polytopes: computational complexity and
applications to Gröbner bases. SIAM J. Discrete
Math., 6(2):246–269, 1993.

[7] B. Lindström. On the realization of convex poly-
topes, Euler’s formula and Möbius functions. Ae-
quationes Math., 6:235–240, 1971.

[8] T. Lozano-Pérez and M. A. Wesley. An algorithm
for planning collision-free paths among polyhedral
obstacles. Commun. ACM, 22(10):560–570, 1979.

[9] J.-P. Petit. Spécification géométrique des pro-
duits : Méthode de détermination des tolérances.
Application en conception assistée par ordinateur.
PhD thesis, Université de Savoie, 2004.

56

EWCG 2007, Graz, March 19–21, 2007

Between Umbra and Penumbra

Julien Demouth † Olivier Devillers ‡ Hazel Everett † Sylvain Lazard † Raimund Seidel §

Abstract

Computing shadow boundaries is a difficult problem
in the case of non-point light sources. A point is in
the umbra if it does not see any part of any light
source; it is in full light if it sees entirely all the light
sources; otherwise, it is in the penumbra. While the
common boundary of the penumbra and the full light
is well-understood, less is known about the boundary
of the umbra. In this paper we present various bounds
on the complexity of the umbra cast by a segment or
polygonal light source on a plane in the presence of
polygon or polytope obstacles.

1 Introduction

Shadows play a central role in human perception. Un-
fortunately, computing realistic shadows efficiently is
a difficult problem, particularly in the case of non-
point light sources. A wide spectrum of approaches
has been considered for rendering shadows (see, for
example, the surveys [8], [4]); many methods make
extensive use of graphics hardware (see the survey
[6]).

We say that a point is in the umbra if it does not
see any part of the light source(s); it is in full light if it
sees entirely all the light source(s); otherwise, it is in
the penumbra. While the boundary of the penumbra
is well-understood, less is known about the boundary
of the umbra. Nevertheless, there is an extensive lit-
erature concerning the explicit computation of these
boundaries; see, for example, [3, 5, 7]

In this paper we present various bounds, summa-
rized in Table 1, on the complexity (i.e., number of
vertices and arcs) of the umbra cast by a segment or
polygonal light source on a plane in the presence of
polytopal obstacles. We show that the complexity of
the umbra cast by k polytopes of total complexity
n has an O(nk3) upper bound in the presence of a
segment light source and an O(n3k3) upper bound in
the presence of a polygonal light source. Even though
these bounds are not tight, they improve drastically
over the only previously known bounds which were
the trivial O(n4) and O(n6) upper bounds.

†INRIA-Lorraine – University Nancy 2, LORIA, Nancy,
France, Firstname.Lastname@loria.fr

‡INRIA, Sophia-Antipolis, France, Olivier.Devillers@inria.fr
§Saarland University, FR Informatik, Saarbrücken, Ger-

many, rseidel@cs.uni-sb.de

Scene type Lower bounds Upper bounds

Segment light source

2 triangles 4 O(1)
2 fat polytopes Ω(n) O(n)

k polytopes Ω(nk2 + k4) O(nk3)
n-gon light source

k polytopes Ω(nk3 + k6) O(n3k3)

Table 1: Lower bounds on the number of connected
components and upper bounds on the complexity of
the umbra. All polytopes have complexity O(n).

We exhibit a configuration where a single segment
light source may cast, in the presence of two triangles,
four connected components of umbra. We also prove
an Ω(nk2) lower bound on the maximum number of
connected components of the umbra in the presence of
a segment light source and k disjoint polytopes of total
complexity n. This lower-bound example is rather
pathological in the sense that most of the obstacles
are long and thin. However, we also present lower
bound examples of Ω(n) with two fat n-gons obstacles
and Ω(k4) with k convex obstacles. Finally, in the
presence of a polygonal light source, we exhibit an
Ω(nk3 + k6) lower bound.

It is interesting that, even for the simplest cases
of non-point light sources, obtaining tight bounds on
the complexity of the umbra and understanding its
structure is a very challenging problem.

2 Preliminaries

Our setting is R3. Let s be a line segment and p a
point. We denote by 〈s, p〉 the set of line transversals
of s and p. Similarly, for any triple of segments s1, s2

and s3, we denote by 〈s1, s2, s3〉 its set of line transver-
sals. It is a well-known fact that 〈s1, s2, s3〉 consists of
lines belonging to the same regulus of a ruled quadric
surface. Hence any set of transversals, whether 〈s, p〉
or 〈s1, s2, s3〉, forms patches of a quadric (possibly de-
generating to one or two planes). Moreover, the set
of transversals consists of at most three patches, or
more formally, at most three connected components
in line space [2]. We will be loose in our use of nota-
tion and we let 〈s, p〉 and 〈s1, s2, s3〉 not just denote
sets of lines but also the surface patches they form.

Let P be a finite set of disjoint convex polygons or

57

23rd European Workshop on Computational Geometry, 2007

polytopes in R3 with L ⊂ P identified as light sources.
A surface σ = 〈e, v〉 is called a ev-surface if there exist
two distinct objects P,Q ∈ P so that e is an edge of
P , v a vertex of Q and σ intersects a light source. A
surface σ = 〈e1, e2, e3〉 is called a eee-surface if there
exist three distinct objects P,Q,R ∈ P so that e1, e2

and e3 are respectively edges of P , Q and R and σ
intersects a light source.

Any plane Π intersects an ev-surface or an eee-
surface in a set of arcs of a conic (each possibly empty
or possibly a line segment). Hence the intersection
between Π and all the ev and eee surfaces defines an
arrangement of arcs of conics on Π.

Here we are interested in the arcs of conics that cor-
respond to shadow boundaries. In particular, we are
interested in maximal free line segments1 that inter-
sect a light source and are supported by a line that is
on an ev or eee surface. The intersection of these free
line segments with Π defines an arrangement of arcs
of conics on Π which we call the shadow arrangement
on the shadow plane Π.

A point p is in the umbra if for any point q on a
light source, the segment pq intersects an object from
P \L. Similarly, p is in full light if for any point q on
a light source, the segment pq does not intersect any
object from P \ L. Otherwise, p is in the penumbra.

We will make extensive use of the fact that the
boundary of the umbra and penumbra consists of arcs
of the shadow arrangement; see, for example [7].

Throughout this paper, we consider the regions of
umbra and penumbra on a plane cast by a single light
source in the presence of polytopes.

3 Penumbra boundary

In this section we refer to the union of the umbra
and penumbra as the shadow region. We give lower
and upper bounds on the complexity of the shadow
boundary. We omit the proofs of these results be-
cause of lack of space. Note that the boundary of
the shadow region is only composed of line segments
induced by ev-surfaces. The absence of boundary in-
duced by quadric eee-surfaces simplifies the compu-
tation of these regions.

Theorem 1 The complexity of the shadow region
cast on a plane Π by a convex polygonal light source
of complexity m in the presence of k convex poly-
hedra of total complexity n is, in the worst case, in
Ω(n α(k) + k m + k2) and O(n α(k) + k mα(k) + k2),
where α(k) denotes the pseudo-inverse of the Acker-
mann function.

1A maximal free line segment is a segment that intersects
the interior of no polytope and whose endpoints lie on some
polytope or at infinity.

4 Upper bounds on the complexity of the umbra

In this section we present the following two upper
bounds. The proof of Theorem 2 is omitted due to
lack of space.

Theorem 2 The complexity of the umbra cast by
one segment light source and k disjoint polytopes of
total complexity n is O(nk3).

Theorem 3 The complexity of the umbra cast by
one polygonal light source and k disjoint polytopes of
total complexity n is O(n3k3).

To prove Theorem 3, we consider an arrangement
A of arcs of conics that contains the shadow arrange-
ment. This arrangement A consists of the intersec-
tions of Π with (i) the lines that are transversal to a
vertex and an edge of two polytopes and that do not
intersect the interior of either of these polytopes (the
connected components of these lines form patches of
ev-surfaces) (ii) the lines that are transversal to the
edges of three polytopes and that do not intersect the
interior of these polytopes (the connected components
of these lines form patches of eee-surfaces). We will
establish a O(n3k3) upper bound on the complexity
of A which yields the same bound for the complexity
of the umbra.

Lemma 4 Any line L in Π intersects at most O(nk2)
arcs of conics of A.

Proof. An intersection point between L and A cor-
responds to a line ∆ which belongs to an ev or eee
surface. Consider first ev-surfaces. The line ∆ lies in
a plane which contain L and a vertex, say v, of one
of the polytopes. There exist O(n) such planes and
in each of them there are at most O(k) lines through
v that are tangent to a polytope. Thus there are at
most O(nk) points on L∩A which correspond to lines
in ev-surfaces.

Now we consider eee-surfaces. Let ni be the num-
ber of vertices of polytope Pi, for 1 ≤ i ≤ k. The
number of eee-surfaces generated by three edges of
polytopes Pi, Pj and Pl, not intersecting the interior
of Pi, Pj and Pl, and that intersect L is O(ni+nj +nl)
[1, Main Lemma]. Since

∑
1≤i<j<l≤k O(ni+nj+nl) =

O(nk2), there are at most O(nk+nk2) = O(nk2) arcs
of A which intersect the line L on Π. �

Proof of Theorem 3. Here, we introduce an arbi-
trary coordinate frame Oxy in the plane Π. We call
Ox the horizontal axis and Oy the vertical axis.

We first show that the number of intersection points
on A is O(nk2) times the number of conic arcs. We
first break all conic arcs into maximal “horizontally
monotone” pieces. This increases the number of arcs
only by a constant factor. Consider a conic arc α0

58

EWCG 2007, Graz, March 19–21, 2007

and its rightmost endpoint p along Ox. We charge
to p all points of intersection between α0 and another
conic arc whose rightmost endpoint is to the right of
p. Any arc intersects α0 in at most O(1) points so the
number of such intersection points is bounded by the
number of arcs intersected by a vertical line in Π and
containing p. By Lemma 4, there are at most O(nk2)
such arcs. Thus, each endpoint is charged at most
O(nk2) times.

We now bound the number of arcs (and thus the
number of arc endpoints) generating A. Let ni be
the number of vertices of polytope Pi, 1 ≤ i ≤ k
and e an edge. The number of eee-surfaces pertinent
to A and involving e and edges from polytopes Pi

and Pj is O(ni + nj) [1, Corollary 9]. Thus, for each
edge e, there are, at most,

∑
1≤i<j≤k O(ni + nj) =

O(nk) eee-surfaces having e as a generating segment.
Since there exist n edges, the total number of arcs is
therefore O(n2k).

In conclusion, there are at most O(n2k) arcs gener-
ating A, each of them charged with at most O(nk2)
intersection points, hence there are at most O(n3k3)
intersection points. The total complexity of the A
and, thus of the umbra, is O(n3k3). �

Note that Theorem 2 can be proved similarly by
noticing that, in the case of a single segment light
source, the eee-surfaces σ = 〈e1, e2, e3〉 and ev-
surfaces σ = 〈e, v〉 that contribute to the shadow ar-
rangement are such that e1, e2 or e3 is the segment
light source and such that e is the segment light source
or v is one of its endpoints.

5 Lower bounds

We present here several lower bounds on the maxi-
mum number of connected components of the umbra.

Theorem 5 A segment light source and two triangles
may cast, on a plane, four connected components of
umbra.

We prove Theorem 5 by providing an example of
two triangles and a segment light source that admit
four connected components of umbra on a particular
plane (see Figure 1). Because of lack of space we omit
the proof here. We also omit the proof of the following
theorem which is similar to Theorem 7.

Theorem 6 The umbra cast by one segment light
source in the presence of two fat convex polygons of
total complexity n can have Ω(n) connected compo-
nents.

Theorem 7 The umbra cast by one segment light
source in the presence of k polytopes of total com-
plexity n can have Ω(nk2) connected components.

Figure 1: A segment light source, two triangles, and
their four induced connected components of umbra.
Rendered with OpenRT; courtesy of Andreas Diet-
rich.

Proof. Consider three non-parallel segments s1, l2,
and l3 all parallel to the shadow plane Π and planes
P2 ⊃ l2 and P3 ⊃ l3 parallel to Π, refer to Figure 2.
The surface 〈s1, l2, l3〉 intersects Π in a conic arc α.

Now consider the following setup: s1 is the light
source; P2 has k narrow rectangular holes (or slits)
parallel and arbitrary close to l2; similarly P3 has
k slits parallel and arbitrary close to l3. (A plane
with such k slits can be modelled by O(k) rectan-
gles.) Each pair of slits, s2 from P2 and s3 from
P3, together with the light source s1 induce a piece of
penumbra in Π that is essentially a thickened copy of
the conic arc α.

We thus get that the umbra covers the whole plane
Π except for k2 curves of penumbra that are all close
to α (see Figure 2-left).

Finally, we trim the two planes P2 and P3, creating
an n-sided convex polygon on Π such that the region
outside is in light or penumbra and each edge inter-
sects all the k2 curves. The umbra then consists of nk2

regions inside the convex polygon and between the k2

conics (see Figure 2-right). Note that the O(k) convex
obstacles can each be transformed into a polytope by
the addition of a single vertex without changing the
umbra. �

Theorem 8 The umbra cast by a segment light
source in the presence of k polytopes can have Ω(k4)
connected components.

Proof. Refer to Figure 3. We create k2 curves of
penumbra using parallel thin holes. Making a second
set of thin holes in each plane, we create a second
family of curves of light and penumbra intersecting
the first one. The umbra is now the complement of

59

23rd European Workshop on Computational Geometry, 2007

l2

l3

l2

l3

P2

P3

s1 s1

Figure 2: Ω(nk2) lower bound.

the union of these two sets of curves and it consists of
k4 connected components. �

s1

l2

l3

l′2

Π

l′3

Figure 3: Ω(k4) lower bound.

We finally present a lower bound on the complexity
of the umbra cast by a polygonal light source in the
presence of k polygonal obstacles.

Theorem 9 The umbra defined by one polygonal
light source and k convex obstacles can have Ω(nk3 +
k6) connected components.

Proof. The Ω(k6) lower-bound example is built sim-
ilarly as in the proof of Theorem 8. The Ω(nk3) one
is created in the same way as in Theorem 7. Due to
the lack of space, we omit the detailed description of
these examples. �

6 Conclusion

The purpose of this paper is to establish the complex-
ity of the boundaries between the umbra, penumbra
and fully lit regions on a plane in a scene consisting
of k polytopes of total complexity n.

The results presented here constitute a first step to-
ward understanding the intrinsic structure and com-
plexity of the umbra in this setting. We have proved
that if the light is reduced to one line segment,
then the umbra may have Ω(nk2 + k4) connected
components and O(nk3) complexity. We have also
shown that a polygonal light source could generate

an umbra with Ω(nk3 + k6) connected components
and O(n3k3) complexity. In both cases these com-
ponents of umbra are delimited by arcs of conics.
These results prove that the umbra is intrinsically
much more intricate than the penumbra boundary
which only contains line segments and has complexity
O(n α(k)+k mα(k)+k2), where m is the complexity
of the light source.

Our upper bounds, in fact, apply to the complexity
of the arrangement of the curves where the deriva-
tive of the light intensity is discontinuous. These ar-
rangements clearly include the limits between penum-
bra and umbra and those between penumbra and full
light. It is thus overkill to use this arrangement for
computing an upper bound on the complexity of the
umbra. Although a gap remains between our lower
and the upper bounds, we still have some tight bounds
in the case of a segment light source: on the one hand,
the bounds are tight for small k (k = O(1)) and for
small n (n = O(k)); on the other hand, we prove that
the upper bound on the arrangement generated by a
segment light source is tight, that is, there exists a
scene and a shadow plane where the arrangement of
derivative discontinuity curves has Θ(nk3) complex-
ity.

References

[1] H. Brönnimann, O. Devillers, V. Dujmović, H. Ev-
erett, M. Glisse, X. Goaoc, S. Lazard, H.-S. Na and
S. Whitesides. On the number of maximal free line
segments tangent to arbitrary three-dimensional con-
vex polyhedra. Research Report no 5671, INRIA, Sept
2005. To appear in SIAM Journal on Computing.

[2] H. Brönnimann, H. Everett, S. Lazard, F. Sottile and
S. Whitesides. Transversals to line segments in three-
dimensional space. Discrete and Computational Geom-
etry, 34(3):381–390, 2005.

[3] G. Drettakis and E. Fiume. A fast shadow algorithm
for area light sources using backprojection. In Com-
puter Graphics Proceedings, ACM SIGGRAPH, pages
223-230, 1994.

[4] F. Durand. A multidisciplinary survey of visibility.
ACM SIGGRAPH course notes, Visibility, Problems,
Techniques, and Applications, 2000.

[5] F. Durand, G. Dretakkis and C. Puech. Fast and accu-
rate hierarchical radiosity using global visibility. ACM
Transactions on Graphics, 18(2):128–170, 1999.

[6] J-M. Hasenfratz, M. Lapierre, N. Holzschuch and F.
Sillion. A survey of real-time soft shadows algorithms.
In Eurographics, 2003.

[7] P. S. Heckbert. Discontinuity meshing for radiosity. In
Proceedings of the Third Eurographics Workshop on
Rendering, pages 203–215, 1992.

[8] A. Woo, P. Poulin and A. Fournier. A survey of shadow
algorithms. IEEE Computer Graphics and Applica-
tions, 10(6):13–32, 1990.

60

EWCG 2007, Graz, March 19–21, 2007

Good Θ-illumination of Points

Manuel Abellanas∗,† Antonio Bajuelos‡,§ Inês Matos‡,¶

Abstract

A point p in the plane is well Θ-illuminated by a
set F of n light sources if there is, at least, one
light source interior to each cone emanating from p
with a given angle Θ. We consider the illumination
range of the light sources as a parameter to be op-
timized and the angle Θ as a fixed value, this is, 1

Θ
is constant. Given an angle Θ ≤ π, we present an
algorithm to minimize the light sources’ illumination
range to well Θ-illuminate a given point p. The al-
gorithm runs in linear time which is optimal. It also
computes a minimal embracing set of light sources
that well Θ-illuminates p with minimum illumination
range. Good Θ-illumination is related to the concept
of t-good illumination [1] as it is shown in Proposi-
tion 3.

1 Introduction

Visibility or illumination has been a main topic for
different papers in the area of Computational Geo-
metry (for more information on the subject, check T.
Asano et. al [3] and J. Urrutia [7]). We present an
illumination problem which is a generalization of the
1-good illumination of minimum range [1, 2]. In its
original definition [1], a point is 1-well illuminated if
there is, at least, one light source illuminating p in
every open half plane passing through p. We extend
this concept to cones and make a brief relation
between our problem and the Maxima Problem [4, 6].

Let F be a set of n light sources in the plane. Each
light source fi ∈ F has limited illumination range
r > 0, this is, they can only illuminate objects that
are within the circle centered at fi with radius r. A
cone emanating from a point p is the region between
two rays starting at p.

∗Facultad de Informática, Universidad Politécnica de
Madrid, mabellanas@fi.upm.es

†Supported by grant TIC2003-08933-C02-01, MEL-HP2005-
0137 and partially supported by CAM:P-DPI-000235-0505

‡Departamento de Matemática & CEOC, Universidade de
Aveiro, {leslie,ipmatos}@mat.ua.pt

§Supported by CEOC through Programa POCTI, FCT, co-
financed by EC fund FEDER and by Acção No. E-77/06

¶Supported by a FCT fellowship, grant
SFRH/BD/28652/2006, by CEOC through Programa POCTI,
FCT, co-financed by EC fund FEDER and by Acção No.
E-77/06

Definition 1 Let F be a set of n light sources and
Θ ≤ π a given angle. We say that a point p in the
plane is well Θ-illuminated by F if there is, at least,
one light source interior to each cone emanating from
p with an angle Θ.

There is an example of this definition in Figure 1(a).
A light source fi ∈ F is an embracing site for point p
if p is well Θ-illuminated by the set formed by fi and
all the light sources whose distance to p is less or equal
than the distance between p and fi. As there may be
more than one embracing site per point, our main goal
is to compute the closest embracing site for a given
point p. The distance between the closest embracing
site and p is called the Minimum Embracing Range
(MER) of p and it is denoted by rm (see Figure 1(b)).
A set formed by the closest embracing site fi and all
the light sources closer to p than fi is called a minimal
embracing set for p. Computing the MER of a given
point p is important to us because once we have it, the
minimum illumination range that the light sources of
the minimal embracing set need to well Θ-illuminate
p is its MER (see Figure 1(c)).

p

(a) (b)

f4

f1 f2

f3

p

(d)

p

NE

π

2

(c)

f4

f1 f2

f3

p

rm

rm

f5

f6

f7

Figure 1: (a) Point p is not well π
2 -illuminated because

there is, at least, one empty cone starting at p with an
angle π

2 . (b) Light source f4 is the closest embracing
site for p, so the MER of p is rm = d(f4, p). (c) Point
p is well π-illuminated, its minimal embracing set is
{f1, f2, f3, f4} and the illumination range of these four
light sources is rm. (d) Point p is a maximum.

61

23rd European Workshop on Computational Geometry, 2007

These well Θ-illuminated points are clearly related
to dominance and maximal points. Let p, q ∈ S be
two points in the plane. We say that p = (px, py)
dominates q = (qx, qy), q ≺ p, if px > qx and py > qy.
Therefore, a point is said to be maximal (or maxi-
mum) if it is not dominated or in other words, it
means that the quadrant NE centered at p must be
empty (see Figure 1(d)). This version of maximal
points can be extended. According to the definition
of Avis et. al [4], a point p in the plane is said to
be an unoriented Θ-maximum if there is an empty
cone centered at p with an angle of, at least, Θ. The
problem of finding all the maximal points of a set S
is known as the maxima problem [6] and the prob-
lem of finding all the unoriented Θ-maximal points is
known as the unoriented Θ-maxima problem [4]. The
next proposition follows from the definitions of good
Θ-illumination and unoriented Θ-maxima.

Proposition 1 Given a point p in the plane and an
angle Θ, a point p is well Θ-illuminated by F if and
only if it is not an unoriented Θ-maximum of the set
F ∪ {p}.

The next section presents an algorithm to compute
the Minimum Embracing Range (MER) and the mi-
nimal embracing set for a well Θ-illuminated point,
given Θ ≤ π. It also establishes the bridge between
1-good illumination and good Θ-illumination.

2 Minimum Embracing Range of a Well
Θ-Illuminated Point

We now present a linear time algorithm that not
only decides if a point is well Θ-illuminated as it
also computes the closest embracing site and the
minimal embracing set for a given point p in the
plane. The main idea is to divide the plane in several
cones and test the distribution of the light sources
while making a logarithmic search for the MER. We
split the algorithm’s explanation in two parts: first
we show how to decide if a set of light sources well
Θ-illuminates p and then we show how to compute
the MER of p.

Let F be a set of n light sources, p a point in the
plane and Θ ≤ π a given fixed angle. To check if
p is well Θ-illuminated, we divide the plane in seve-
ral cones emanating from p with an angle of Θ

2 . Let
nc be the number of possible cones, if 2π is divisi-
ble by Θ then nc = 4π

Θ (see Figure 2(a)). Otherwise
nc = d 4π

Θ e because the last cone has an angle less
than Θ

2 (see Figure 2(b)). Since the angle Θ is con-
sidered to be a fixed value, the number of cones is
constant. Let i be an integer index of arithmetic mod
nc. For i = 0, . . . , nc, each ray i is defined by the set

{p + (cos(iΘ
2), sin(iΘ

2))λ : λ > 0}, while each cone is
defined by p and two consecutive rays.

p

(a)

π

4 p

(b)

7π

18

Figure 2: (a) To check if p is well π
2 -illuminated, the

plane is divided in eight cones with an angle of π
4 .

(b) To check if p is well 7π
9 -illuminated, the plane is

divided in six cones and the last one has an angle less
than 7

18π because 2π is not divisible by 7
18π.

Since we have cones with an angle of at least
Θ
2 , it is straightforward to see that p is not well
Θ-illuminated if we have two consecutive empty
cones (see Figure 3(a)). On the other hand, if all
cones have at least one interior light source then p
is well Θ-illuminated (see Figure 3(b)). In the last
case, there can be at least one empty cone but no two
consecutive empty ones (see Figure 4(a)). We need to
spread each empty cone, this is, we have to open out
the rays that define it until we find one light source
on each side. Let fl be the first light source we find
on the left and fr the first light source we find on the
right (see Figure 4(b)). If the angle formed by fl, p
and fr is at least equal to Θ than there is an empty
cone emanating from p with an angle Θ which means
p is not well Θ-illuminated.

p

(b)(a)

p

Figure 3: (a) Point p is not well π
2 -illuminated because

there is an empty cone with an angle of π
2 . (b) Point

p is well π
2 -illuminated since there is a light source

interior to each cone.

Now we explain how to make the logarithmic search
to compute the MER of p. First, we compute the
median of the distances between the light sources and
p and divide F in two subsets. The subset F c contains
the dn

2 e closest light sources to p, while the set F f

contains the furthest half. Using the method descri-
bed above, we are able to decide if the light sources
of F c are sufficient to well Θ-illuminate p. If they are
then we can forget about the light sources of F f and

62

EWCG 2007, Graz, March 19–21, 2007

(a)

p

(b)

p
≥

π

2

fl

fr

Figure 4: (a) There are two non-consecutive empty
cones. (b) Point p is not well π

2 -illuminated since there
is an empty cone defined by p and the light sources fl

and fr with an angle greater than π
2 .

compute the median of the distances between the light
sources of F c and p. We reassign F c to the closest half
and repeat the previous method to check if the new set
is still sufficient to well Θ-illuminate p. If F c does not
well Θ-illuminate p then we have to save the location
of the empty cones. Since the light sources of F c are
not sufficient, we have to get some more of the set F f

that have not been used. We compute the median of
the light sources of F f and reassign F c to the closest
half of the latter. Now we will test the new set F c

just by checking if its new light sources are interior to
the cones left empty in the last iteration. If they are
not sufficient, then we repeat the procedure and try
again with another half of F f , otherwise we try half
of the ones we have just used.

We repeat this search until |F c| = 1. If p is well
Θ-illuminated then the only light source of F c is the
closest embracing site for p. The MER of p is na-
turally given by the distance between p and its clo-
sest embracing site. All the light sources closer to
p than its closest embracing site together with the
closest embracing site form the minimal embracing
set for p. Otherwise p cannot be well Θ-illuminated.

Theorem 2 Given a set F of n light sources, a point
p in the plane and an angle Θ ≤ π, checking if p is
well Θ-illuminated, computing its MER and a mini-
mal embracing set for it takes Θ(n) time.

Proof. Let F be a set of n light sources, p a point
in the plane and Θ ≤ π a given angle. Divide the
plane in cones with an angle of Θ

2 and assign each
light source to its cone takes O(n) time.

The distances from p to all the light sources can
be computed in linear time. Computing the median
also takes linear time [5], as well as splitting F in
two halves. Since we consider the angle Θ to be a
fixed value, the number of cones is constant (1

Θ is
constant). Consequently, spreading each empty cone
by computing a light source on each side of the cone is
linear. So checking if p is well Θ-illuminated by a set
F c ⊂ F is linear on the number of light sources of F c.
Note that we never study the same light source twice

while searching for the MER of p. So the total time for
this logarithmic search isO(n+n

2 +n
4 +n

8 +...) = O(n).
Therefore, we find a closest embracing site for p and
a minimal embracing set in linear time.

All the light sources of F are candidates to be the
closest embracing site for a point p in the plane, so in
the worst case we have to study every one of them.
Knowing this, we have Ω(n) as a lower bound which
makes the linear complexity of this algorithm opti-
mal. �

Note that this algorithm not only computes the
minimal embracing set and the MER of a well
Θ-illuminated point as it also computes them for a
t-well illuminated point. A point p is said to be t-well
illuminated if there are at least t light sources illu-
minating p in every open half plane passing through
p. The next theorem solves the t-good illumination of
minimum range [1] using the Θ-illumination of mini-
mum range.

Proposition 3 Given a set F of n light sources, a
point p in the plane and a given angle Θ ≤ π, let rm

be the MER to well Θ-illuminate p. Then rm is also
the MER to t-well illuminate p, where t = b π

Θc.

Proof. Let F be a set of n light sources, p a point
in the plane and Θ ≤ π a given angle. If p is well
Θ-illuminated then we know that there is always one
interior light source to every cone emanating from p
with an angle Θ. On the other hand, p is t-well illu-
minated if there are, at least, t interior light sources
to every half-plane passing through p. An half plane
passing through p can be seen as a cone emanating
from p with an angle π. So if we know that we have
at least one light source in every cone emanating from
p with an angle Θ then we know that we have at least
b π

Θc light sources in every half-plane passing through
p. This means that p is b π

Θc-well illuminated. So
the MER needed to well Θ-illuminate p also b π

Θc-well
illuminates p. �

Corollary 4 Let F be a set of n light sources, p a
point in the plane and Θ ≤ π a given angle. A mini-
mal embracing set that well Θ-illuminates p also t-well
illuminates p, where t = b π

Θc.

Proof. Let F be a set of n light sources, p a point
in the plane and Θ ≤ π a given angle. According to
the last proposition, the MER to well Θ-illuminate
p also t-well illuminates it, t = b π

Θc. So the closest
embracing site of p for both types of illumination is
the same. Since the minimal embracing set for p is
formed by the closest embracing site of p, fi ∈ F , and
by all the light sources closer to p than fi then the
minimal embracing set to well Θ-illuminate p is the
same as the minimal embracing set to t-well illuminate
p, where t = b π

Θc. �

63

23rd European Workshop on Computational Geometry, 2007

Observation 1 Note that if a point is well
Θ-illuminated, it is also t-well illuminated for t = b π

Θc,
however the other implication is not necessarily true
as it is shown in Figure 5.

(a)

p

(b)

p

Figure 5: (a) Point p is 2-well illuminated since
there are at least two light sources in ever open half
plane passing through p. (b) Point p is not well
π
2 -illuminated because there is an empty cone with
an angle of π

2 .

3 Conclusions

In this paper we presented a generalization of the
t-good illumination of minimum range [1] called good
Θ-illumination of minimum range. We present an op-
timal linear time algorithm to compute the Minimum
Embracing Range needed to well Θ-illuminate a given
point p and a minimal embracing set for it. We also es-
tablished a connection between both illumination con-
cepts in Proposition 3. The MER to well Θ-illuminate
a point is also the MER to t-well illuminate that point,
for t = b π

Θc.

References

[1] M. Abellanas, A. Bajuelos, G. Hernández and I.
Matos. Good Illumination with Limited Visibility.
Proceedings of the International Conference of Nu-
merical Analysis and Applied Mathematics 2005 (IC-
NAAM 2005), Wiley-VCH Verlag, 35–38.

[2] M. Abellanas, A. Bajuelos, G. Hernández, F. Hur-
tado, I. Matos and B. Palop. Good Illumination of
Minimum Range. Submitted to the International
Journal of Computational Geometry and Applica-
tions (2006).

[3] T. Asano, S. K. Ghosh and T. C. Shermer. Visibility
in the plane. In Handbook of Computational Geome-
try, edited by in J.-R. Sack and J. Urrutia, (Elvevier,
2000), 829–876.

[4] D. Avis, B. Beresford-Smith, L. Devroye, H. Elgindy,
E. Guvremont, F. Hurtado and B. Zhu. Unoriented
Θ-maxima in the plane: complexity and algorithms.
Siam J. Computation 28, no. 1, (1998), 278–296.

[5] M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R.
Tarjan. Time bounds for selection. Journal of Com-
puter and System Sciences 7, (1973), 448–461.

[6] H. Kung, F. Luccio and F. Preparata. On finding
the maxima of a set of vectors. Journal of ACM 22,
(1975), 469–476.

[7] J. Urrutia. Art Gallery and Illumination Problems. In
Handbook of Computational Geometry edited by in
J.-R. Sack and J. Urrutia, (Elsevier 2000), 973–1027.

64

EWCG 2007, Graz, March 19–21, 2007

Good Illumination Maps

Narćıs Coll∗ Marta Fort ∗ Narćıs Madern∗ J. Antoni Sellarès∗

Abstract

Given a set P of points (lights) and a set S of segments
(obstacles), the good illumination of a point q relative
to P and S, describes the relationship between q and
the distribution of the points in P from which q is
illuminated taking into account the effect of the seg-
ments of S. A point q is t-well illuminated relatively
to P and S if and only if every closed halfplane de-
fined by a line through q contains at least t points of
P illuminating q. The greater the number t the better
the illumination of q. The good illumination depth of
q is the maximum t such that q is t-well illuminated
relatively to P and S. The good illumination map
is the subdivision of the plane in good illumination
regions where all points have the same fixed good il-
lumination depth. In this paper we present algorithms
for computing and efficiently drawing, using graphics
hardware capabilities, the good illumination map of
P and S.

1 Introduction

Given a set P of points, the location depth of a point
q relative to P describes, intuitively, the relationship
of q to the distribution of the points in P . A depth
region is the locus of all points with the same fixed
location depth. The depth map of P is the subdivision
of the plane in depth regions.

The notion of illumination or visibility is an impor-
tant topic in Computational Geometry. In some ap-
plications dealing with an environment of point lights
and obstacles, several lights surrounding and illumi-
nating points are needed. In this paper we use the
good illumination concept introduced by Canales et.
al [1, 3]. We will see that, in fact, good illumination
combines two well studied concepts: illumination with
obstacles and location depth. In [3], Canales studied
1-good illumination when the lights are located in the
exterior of a convex polygon and 2-good illumination
when lights are located at the vertices of a simple
(convex or non-convex) polygon.

In this paper we extend the study of good illumi-
nation to the general case of a set P of points (lights)

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {coll,mfort,nmadern,sellares}@ima.udg.es. Par-
tially supported by grant TIN2004-08065-C02-02. Marta Fort
and Narcis Madern are also partially supported by grant
AP2003-4305 and BES-2005-9541 respectively.

and a set S of segments (obstacles). The good illumi-
nation map is the subdivision of the plane in regions
whose points have the same good illumination relative
to P and S. Drawing the good illumination map of P
and S helps to visualize the distribution of the points
of P relative to the segments of S. We present al-
gorithms for computing and efficiently drawing, using
graphics hardware capabilities, the good illumination
map of P and S.

2 Depth Maps

Let P be a set of n points. The location depth of
an arbitrary point q relative to P , denoted by ldP (q),
is the minimum number of points of P lying in any
closed halfplane defined by a line through q. The k-
th depth region of P , represented by drP (k), is the
set of all points q with ldP (q) = k. For k ≥ 1, the
external boundary dcP (k) of drP (k) is the k-th depth
contour of P . The depth map of P , denoted dm(P),
is the set of all depth regions of P (see Figure 1).
The complexity of dm(P) is O(n2). This bound is
tight, for example, when all points of P are in convex
position. We denote dmr(P) the restriction of dm(P)
to a planar region r.

Figure 1: Depth map of a set of points.

2.1 Computing Depth Contours

Miller et al [7] present an algorithm for computing the
depth contours for a set of points that makes an ex-
tensive use of duality, and proceeds as follows: given
a set P of points, the algorithm maps them to their
dual arrangement of lines. Then, a topological sweep
is applied to find the planar graph of the arrangement
and its vertices are labeled with their levels (the num-
ber of dual lines above them). The depth of a vertex
can be computed using min(level(v), n−level(v) + 1).

65

23rd European Workshop on Computational Geometry, 2007

Finally, for a given k, dcP (k) is computed by find-
ing the lower and upper convex hulls of the vertices
at depth k. Each such vertex corresponds to a half-
plane in the primal plane, and dcP (k) is the boundary
of the intersection of these halfplanes (which might be
empty, in that case dcP (k) does not exist). The com-
plexity of this algorithm, that has been shown to be
optimal, is O(n2) in time and space.

Since for large n the O(n2) time of Miller et al al-
gorithm could be too large, in [5, 6] an algorithm is
presented that draws, using graphics hardware capa-
bilities, an image of the depth contours as a set of
colored pixels, where the color of a pixel is its depth
value. The algorithm consists of two steps: in the
first step, the input point set P is scan-converted to
lines in the dual image plane. The algorithm runs
on two bounded duals due to the finite size of the
dual plane, in order to guarantee that all intersec-
tion points of the lines lie in this finite region. Since
each dual plane is discrete, it is possible to compute
the level of each pixel by drawing the region situated
above every dual line of P , incrementing by one the
stencil buffer for each region. In the second step, the
two images formed by all the dual lines are scanned,
and for each pixel on a dual line the corresponding
primal line at the appropriate depth is rendered as a
colored 3D graphics primitive using the z-buffer. The
depth of each primal line is easily determined from the
stencil buffer value and the line color must be distinct
for each depth. The resulting rendered image (see
Figure 1) contains the depth contours of the point set
P as the boundaries between colored regions. This
method can also be used for drawing the convex hull
of a set of points P by introducing minor changes in
the second step: when we scan the dual images, if a
pixel has a level greater than zero we rasterize its pri-
mal line with depth one and using always the same
color.

3 Good Illumination Maps

Let P be a set of n points and S be a set of m seg-
ments. We assume that no point in P belongs to the
interior of a segment in S. The free space FS rela-
tive to S is the complement of S. Given two points
q ∈ FS and p ∈ P , we say that point p illuminates
q if the interior of the segment with endpoints p and
q remains completely inside FS . A point q is t-well
illuminated relatively to P and S if and only if every
closed halfplane defined by a line through q contains
at least t points of P that illuminate q. The good
illumination depth of q relative to P and S, denoted
by gidP,S(q), is the maximum t such that q is t-well
illuminated relatively to P and S.

Lemma 1 If Pq denotes the subset of points of P
illuminating q, then gidP,S(q) = ldPq

(q).

The k-th good illumination region relative to P and
S, denoted girP,S(k), is the set of all points q with
gidP,S(q) = k. Observe that girP,S(k) can be formed
by several convex connected components (see Figure
2).

Lemma 2 If S is empty or does not intersect the
convex hull CH(P) then girP,S(k) = drP (k).

We call the set of all good illumination regions rel-
ative to P and S the good illumination map of P and
S and denote it with gim(P, S).

Also we denote with gimr(P, S) the restriction of
gim(P, S) to region r.

Figure 2: In the left we have the good illumination
map of a set with three points and an empty set of
segments; the corresponding 1-good illumination re-
gion is represented in dark. In the right a segment
obstacle has been added.

4 Computing Good Illumination Maps

From now on we will focus on the non trivial case
where n ≥ 3, m ≥ 1 and S intersects CH(P).

Lemma 1 induces a way to compute gim(P, S).
First we decompose the free space FS into illumina-
tion regions so that all points in a single connected
such region are illuminated exactly by the same points
in P . Then, in each illumination region we compute
the depth map of its illuminating points.

Given a point p ∈ P and a segment s ∈ S, the
shadow region of s with respect to p, denoted sr(p, s),
is the set of points non illuminated from p when we
consider segment s as an obstacle. Denote s0, s1 the
endpoints of s. When p /∈ s, sr(p, s) is the region
delimited by the segment s, the ray of origin s0 and
direction −→ps0 and the ray of origin s1 and direction
−→ps1. When p is an endpoint of s, for example s0,
the shadow region sr(p, s) is the ray of origin p and
direction −→ps1.

Let A(P, S) be the arrangement determined by
the family of all shadow regions sr(p, s) interior to
CH(P), for all p ∈ P and s ∈ S. All cells in A(P, S)
are convex and all points in a cell c of A(P, S) are
seen from exactly the same subset Pc of points of P .
Observe that two cells c 6= c′ that are seen from the
same subset of points of P may exist, it is to say with
Pc = Pc′ .

66

EWCG 2007, Graz, March 19–21, 2007

Theorem 3 The arrangement A(P, S) consist of
O(n2m2) cells and each cell has O(n) illuminating
points.

Proof. Each shadow region is bounded by two rays
and one segment, and the convex hull CH(P) has
O(n) edges. Then, the arrangement A(P, S) has
O(nm) lines and O((nm)2) cells. Figure 3 proves that
this upper bound is tight. In a) we can see a segment
placed in the diameter of a circle and n/2 light points
pi placed on the circle and above the segment. The
point pi is put so that one ray of its shadow region in-
tersects i−1 rays of all other shadow regions inside the
circle and the free space. Then, the number of cells
of the line arrangement is Ω(

∑n/2
i=1(i − 1)) = Ω(n2).

In b) the segment is split in m segments. Since we
have the same properties of a) for each one of the
m segments, the new line arrangement has Ω((nm)2)
cells. In c) we have placed n/2 light points on the cir-
cle and under the segments. This placement assures
that there are Ω((nm)2) cells interior to the CH(P)
that see a minimum of n/2 illuminating points. Con-
sequently O(n2m2) is a well fitted upper bound of the
A(P, S), and O(n) a well fitted upper bound of the
illuminating points of each cell.

�

For each cell c of A(P, S) with illuminated points
set Pc, Lemma 1 states that gimc(P, S) can be com-
puted as dmc(Pc), the depth map of the set Pc re-
stricted to c. Then, we have:

gim(P, S)) =
⋃

c∈A(P,S)

dmc(Pc) .

Theorem 4 The good illumination map of P and S
can be computed in O(n4m2) time.

Proof. We associate a set Pc to each cell c of A(P, S).
First, by using a topological sweep [4, 8], A(P, S) and
the associated sets Pc can be computed in O(n3m2)
time. Next, for each cell c we compute dmc(Pc) by
intersecting the convex cell c with the depth contours
determined by dm(Pc). This spends a time of O(n2)
per cell (see section 2.1). Thus, the time needed to
compute gim(P, S) is O((nm)2n2) = O(n4m2).

�

5 Drawing Good Illumination Maps

In this section we describe a method for draw-
ing good illumination maps using GPU capabilities.
The method, based on the fact that gim(P, S)) =⋃

c∈A(P,S) dmc(Pc), proceeds in two steps.

First step. We start drawing CH(P) on a black
screen, as described in Section 2.1, and we store it
in a texture. Next we rasterize the boundary, inte-
rior to CH(P), of all shadow regions sr(p, s), p ∈ P ,

p3

p2

m segments

n/2 points

p1

n/2 points

m segments

n/2 points

n/2 points

a) O(n2) regions b) O(n2m2) regions

c) O(n2m2) regions seeing O(n) points

Figure 3: Upper bound configuration.

s ∈ S in white and we transfer the frame buffer to a
matrix in the CPU so that each element represents a
pixel. Then we find all the cells of A(P, S) using a
CPU based growing method as follows. We take any
black pixel of the matrix and we choose an unused
color. We paint this pixel with the current color and
then we visit its four surrounding pixels. If the vis-
ited pixel is white (belongs to the boundary) we store
its neighbors in a waiting list and we continue visit-
ing and painting pixels until we have visited a entire
cell. While there are pixels in the list, we take the
first pixel and if it is black we repeat the process from
this position, otherwise the pixel is rejected. By doing
this we paint each cell with a different color. During
the process we store an interior pixel of each cell and
its color. Finally, for each cell c we determine the set
Pc by taking the interior pixel of c and drawing the
shadow regions defined by the pixel and the m seg-
ments of S in white on a black screen. By doing this,
a point p illuminates the cell c if its corresponding
pixel is black. We obtain the set Pc by checking if
the pixel corresponding to each point in P is colored
black. Moreover, we assign a distinct color to each
different subset Pc so that all cells illuminated by Pc

will get the same color. By doing this we ensure that
we paint the same depth map at most once in the
second step.

Second step. For each cell c ∈ A(P, S) we draw
dmc(Pc) using the algorithm described in Section 2.1
that draws depth contours. In order to paint only the
pixels inside c we use a fragment shader. The inputs
of this fragment shader are the arrangement A(P, S)

67

23rd European Workshop on Computational Geometry, 2007

represented as a texture and the color assigned to Pc.
The fragment shader only paints a pixel (x, y) if the
color in the position (x, y) of the texture representing
A(P, S) is equal to the color of c, since in this case
the pixel is inside the cell c.

5.1 Results

We have implemented the proposed method using
C++ and OpenGL, and all the tests and images have
been carried out on a Intel(R) Pentium(R) D at 3GHz
with 2GB of RAM and a GeForce 7800 GTX/PCI-
e/SSE2 graphics board.

Figures 2, 4 and 5 show some examples of good il-
lumination maps obtained using our implementation.
In these figures the points are colored in a grey grada-
tion according to its good illumination depth (black
corresponds to level one), however pure white color
shows level zero.

Figure 4: Good illumination maps of two different
configurations of points and segments. On the left we
show the depth maps of the points. On the right we
show the good illumination maps of the points and the
segments.

Figure 5: Good illumination map of a set of points in
convex position and a convex obstacle polygon.

6 Future Work

We are extending our work on good illumination to
the case of points modelling source lights of restricted
illumination, for example emiting light within an an-
gular region or/and with limited range [2].

We are studying the possibility of developing a more
efficient algorithm for computing good illumination
maps that, as in the case of depth maps, will work
entirely in dual space. We are also interested on a
more efficient algorithm for some particular cases as
the ones studied in [1, 3].

References

[1] M. Abellanas, S. Canales and G. Hernández.
Buena iluminación, Actas de las IV Jornadas de
Matemática Discreta y Algoŕıtmica, (2004), 239-
246.

[2] M. Abellanas, A. Bajuelos, G. Hernández and I.
Matos. Good Illumination with Limited Visibil-
ity. Proc. International Conference of Numerical
Analysis and Applied Mathematics, Wiley-VCH
Verlag, (2005), 35-38.

[3] S. Canales. Métodos heuŕısticos en problemas
geométricos, Visibilidad, iluminación y vigilan-
cia. Ph.D. thesis, Universidad Politécnica de
Madrid, 2004.

[4] H. Edelsbrunner and L. Guibas. Topological
sweeping an arrangement. J. Comput. System.
Sci. 38 (1989), 165–194.

[5] Fischer I. and Gotsman C. Drawing Depth Con-
tours with Graphics Hardware. Proceedings of
Canadian Conf. on Comp. Geometry, (2006),
177–180.

[6] S. Krishnan, N. Mustafa, and S. Venkatasubra-
manian. Hardware-assisted computation of depth
contours. Proc. thirteenth ACM-SIAM sympo-
sium on Discrete algorithms, (2002), 558–567.

[7] K. Miller, S. Ramaswami, P. Rousseeuw, J.A.
Sellarès, D. Souvaine, I. Streinu and A. Struyf.
Fast implementation of depth contours using
topological sweep. Statistics and Computing,
(2003), 13:153–162.

[8] E. Rafalin, D. Souvaine, I. Streinu. Topological
Sweep in Degenerate cases. Proc. of the 4th in-
ternational workshop on Algorithm Engineering
and Experiments, ALENEX 02, in LNCS 2409,
Springer-Verlag, Berlin, Germany, (2002), 155–
156.

68

EWCG 2007, Graz, March 19–21, 2007

StrSort Algorithms for Geometric Problems

Christiane Lammersen ∗ Christian Sohler †

Abstract

In the StrSort model [2], the input is given as a
stream, e.g. a sequence of points, and an algorithm
can perform (a) streaming and (b) sorting passes to
process the stream. A streaming pass reads the input
stream from left to right and writes an output stream,
which is the input of the next pass. A sorting pass is
a black box operation that sorts a stream according
to some partial order.

In this paper, we develop algorithms for two basic
geometric problems in the StrSort model. At first,
we propose a divide-and-conquer algorithm that com-
putes the convex hull of a point set in 2D in O(log2 n)
passes using O(1) memory. Then we give a StrSort
algorithm to compute a (1 + ε)-spanner for a point
set in Rd for constant d and constant ε that uses
O(logd−1 n) passes and O(log n) space. This result
implies a (1+ ε)-approximation of the Euclidean min-
imum spanning tree in Rd, for constant d and ε.

1 Introduction

In the last few years, we see ourselves more and more
often confronted with massive data sets, e.g. the Web
Graph, IP traffic logs, clickstreams, or the human
genome. Often these data sets are of geometric nature
such as data sets arising in geographical information
systems, astrophysics, and sensor networks.

In many cases, these data sets are too large to be
analyzed with traditional algorithms and sometimes
even external memory algorithms are too slow. One
approach to deal successfully with the data is stream-
ing. In streaming, the data items arrive sequentially
in worst case order. In this model, we typically do not
want to store the whole data, but only a summary of
it. However, streaming is also interesting when the
data can be stored in secondary memory because the
fastest way to access this data is to do a sequential
scan. It is also possible to write an output stream at
the same time, e.g., by writing to another hard disk,
or sending the data to another computer. In this con-
text the W -stream model emerged [7], where one looks
at the possible tradeoffs between memory usage and
number of passes over the data. However, it seems

∗Heinz Nixdorf Institute and Department of Computer Sci-
ence, University of Paderborn, basilisk@upb.de

†Heinz Nixdorf Institute and Department of Computer Sci-
ence, University of Paderborn, csohler@upb.de

that to solve more difficult problems in few passes
one has still relatively high memory requirements. So
a natural question is to consider a model that sup-
ports one basic non-local operation on a data stream
efficiently. A canonical candidate for such a non-local
operation is sorting. Sorting is one of the most basic
algorithms and highly optimized implementations for
large data sets exist. The combination of streaming
and sorting is known as the StrSort model and has
been introduced in [2].

In this paper, we develop geometric algorithms in
the StrSort model. A first such algorithm has been
given in [2], where the authors showed how to compute
the number of intersections between a set of red and
blue line segments.

Related Work. The convex hull problem has been
widely considered in the streaming model. In [6] the
authors introduced the radial histogram [6], which can
be used to approximate the convex hull of a stream
of points in the plane with an error of O(D/r), where
r is the sample size and D the diameter of the sam-
ple. Hershberger and Suri proposed an adaptive sam-
pling algorithm that reduces the error to O(D/r2) [8].
The convex hull problem has also been considered in
higher dimensions [1]. Chan and Chen gave exact al-
gorithms to compute convex hulls in data streams [5].
If the input stream consists of n points, that are sorted
according to their x-coordinate, their algorithm needs
a constant number of passes and O(n1/2+δ) space for
any fixed constant δ > 0. If the input is not sorted,
they need O(hnδ) space, where h is the output size.

Suri et al. gave ε-approximation algorithms for
rectangle and halfplane ranges in d-dimensions [13].
Bagchi et al. proposed a deterministic sampling algo-
rithm to maintain ε-nets and ε-approximations with
polylogarithmic memory requirements [4]. Shahabi
and Sharifzadeh showed how to approximate Voronoi
cells for fixed two-dimensional site points when the
location of the neighbouring sites arrive as a data
stream [12]. For other work on streaming algorithms,
we refer to the survey by Muthukrishnan [10].

The construction of a t-spanner for a real constant
t > 1 with O(n) edges has lead to the definition of
the Θ-graph. Ruppert and Seidel [11] and Arya et al.
[3] developed O(n logd−1 n) time algorithms based on
the Θ-graph that construct a (1+ ε)-spanner for a set
of n points in Rd.

69

23rd European Workshop on Computational Geometry, 2007

2 Preliminaries

Let % = 〈p1, . . . , pn〉 be a sequence of points in Rd,
i.e., the input stream. We will assume that d is a
constant. As usually done in Computational Geome-
try, we consider an algebraic model of computation,
i.e., all computations are done with exact precision
arithmetic and we can always store a point coordi-
nate or alternatively an integer with O(log n) bits in
one memory cell. We further assume that standard
arithmetic operations can be done in constant time.

In the StrSort model, an algorithm is allowed to
perform two types of passes, a streaming pass and
a sorting pass [2]. A streaming pass reads an input
stream % point by point without ever going back and
at the same time writes an output stream Str(%). A
sorting pass rearranges the input stream according to
a partial order ≤ on the items, where we assume that
for every pair of constant size (in terms of memory
cells) items p, q we can decide whether p < q, p > q
or p = q using a machine that only gets p, q as input.

Between two passes the local memory is main-
tained. We require that any intermediate stream has
length O(n). We say that a StrSort algorithm is pass-
efficient, if it uses at most logO(1) n passes, and it
is space-efficient, if it uses at most logO(1) n memory
cells. Here we assume that the sorting pass is a black
box operation that does not require local memory.

The Θ-Graph. Let P be a set of points in Rd. Let
G = (P,E) be an undirected graph whose vertices are
the points of P . The length of an edge is given by the
Euclidean distance between its endpoints. G is called
a t-spanner for P , if for any pair u, v ∈ P there exists
a path in G from u to v having length at most t-times
the Euclidean distance between u and v. To compute
a (1 + ε)-spanner for a given point set P , we use the
construction of the Θ-graph.

Let k > 2 be an integer and let Θ = 2π/k be an
angle. Let C be a set of cones with the following
property: The apex of each cone C ∈ C is at the
origin and there exists a halfline lC having the end-
point at the origin such that the angle between lC
and every halfline of the superficies surface of C is at
most Θ/2, and the union of the cones covers the whole
space. With the method of Lukovszki [9], it is possible
to construct a set C of O((d3/2

Θ)d−1) simplicial cones
which have this property. For every vertex u ∈ P ,
we devide the space into cones by translating every
cone of C such that its apex is at u. We denote the
translated cone by Cu and the translated halfline by
lC,u. To obtain the edges of the Θ-graph, we connect
every point u ∈ P for each cone C ∈ C to the point
v ∈ Cu∩P\{u} whose orthogonal projection onto lS,u

is closest to u.
The spanner property of the Θ-graph is proven for

an angle 0 < Θ < π/3:

Lemma 1 ([11, 9]) Let P ⊂ Rd be a set of points.
Let k > 6 be an integer constant and Θ = 2π/k. Then
the graph GΘ(P) is a t-spanner for t = 1

1−2 sin(Θ/2) .

A direct consequence of this lemma is

Corollary 2 Let P ⊂ Rd be a set of points, d a con-
stant. Then for every 0 ≤ ε ≤ 1 there is Θ = Ω(ε)
such that the graph GΘ(P) is a (1 + ε)-spanner.

3 Convex Hull

In this section, we present an efficient StrSort algo-
rithm that computes the convex hull CH(P) of a set
of n points P ⊆ R2 in O(log2 n) passes using O(1)
memory cells. We first give a high level description
of the algorithm. Our algorithm proceeds bottom up.
First, we sort the input points according to their x-
coordinate resulting in a sequence 〈p1, . . . , pn〉. Each
point pi builds a group Gi, so that we obtain the
output stream 〈CH(G1), . . . , CH(Gn)〉. Then in ev-
ery step, we merge all pairs of consecutive convex
hulls, i.e. after the first such step we obtain the out-
put stream 〈CH(G1 ∪ G2), CH(G3 ∪ G4), . . . 〉. We
continue this until we have found the convex hull of⋃k

i=1 Gi = P .
It is well-known that two convex hulls can be

merged in linear time. However, the classical merge
algorithm does not seem to carry over to the stream-
ing model, because it requires interleaved access to
the right and left convex hull.

The Merge Step. We first describe the merge step
without considering streaming. To merge a pair of
consecutive convex hulls, we have to find the tangent
of the upper hulls and the tangent of the lower hulls.
For symmetry reasons, it is sufficient to show how to
find the osculation point of the left upper hull.

Let us consider a pair of convex hulls
〈CH(Gi), CH(Gi+1)〉. We denote by u1, . . . , um

the vertices of the upper hull of CH(Gi). Further let
Hj denote the halfspace induced by a line through
uj and uj+1 that does not contain CH(Gi). We say
that CH(Gi+1) is visible from a vertex uj of CH(Gi),
if Hj ∩ CH(Gi+1) is non empty (see Figure 1).

Observation 1 For 2 ≤ j ≤ m the point uj is os-
culation point of the upper left hull, iff CH(Gi+1) is
visible from uj and CH(Gi+1) is not visible from uj−1.

We first check whetherH1∩CH(Gi+1) is non empty.
If this is the case, u1 is the osculation point for the
upper convex hull. Otherwise, we use the follow-
ing binary search procedure to find the osculation
point. Let [l, r] denote the interval of point indices
that contains the osculation point. We start with

70

EWCG 2007, Graz, March 19–21, 2007

j = (l + r)/2. If uj is not an osculation point then
either (a) CH(Gi+1) is visible from both uj and uj−1

or (b) CH(Gi+1) is not visible from both uj and uj−1.
In case (a) the osculation point lies between ul and
uj−1. Otherwise, it is between uj+1 and ur.

Figure 1: (a) Illustration of visibility. (b) Illustration
of Observation 1. CH(Gi+1) is visible from the red
vertices.

3.1 The StrSort Algorithm

In this section, we describe the StrSort algorithm for
convex hull computation.

Initialization. We start by sorting the points by x-
coordinate resulting in a sequence 〈p1, . . . , pn〉. Then
we replace each point pi by a quadruple (i, α, m, p),
where initially m = 1 and α = 0. This will be our
representation for the stream 〈CH(G1), . . . , CH(Gn)〉.
In general, we have for each vertex p of a convex hull
CH(Gi) one quadruple (i, α, m, p), where m denotes
the position in a clockwise ordering of the vertices
of CH(Gi) starting with the vertex with minimum x-
coordinate. From now on, we will only use sorting
passes that compute a lexicographically increasing or-
der of these quadruples.

Implementing the merge step. The main idea is to
perform the merge step in parallel for each consecu-
tive pair of convex hulls in our input stream. Let us
consider an arbitrary pair of consecutive convex hulls
〈CH(Gi), CH(Gi+1)〉. To implement the binary search
for the upper left osculation point, we use the follow-
ing invariant. The left and right node of the current
search interval have α-value 0. All other nodes get
an α-value of 1. This way the search interval appears
first in a lexicographically sorted sequence. When we
pass over the input stream we can compute from the
index of the first two nodes, for which vertex we have
to perform a visibility test. Let pj denote this point.
The visibility test is done as follows. We store pj , its
predecessor pj−1 and successor pj+1 in the local mem-
ory. Then we only have to test whether CH(Gi+1)
is visible from pj−1 and pj , i.e., whether a vertex of
CH(Gi+1) is contained in the halfspacesHj−1 andHj ,
respectively. Hence, once we have seen all points of
CH(Gi+1) we know the result. We write all quadru-
ples unchanged in the output stream, but once we

decided the visibility test, we output an additional
“dummy point” (i,−∞, r, 0), where r is an encoding
of the result of the test. After we have computed the
output stream, we sort it lexicographically. This way,
the “dummy point” occurs first among the points of
CH(Gi) and we can use it to adjust the search inter-
val. The above operations can be carried out for all
pairs of consecutive hulls during a single pass.

In this way, we can compute the four osculation
points using O(log n) passes. Now, we can easily iden-
tify the points that are vertices of CH(Gi∪Gi+1), the
points of CH(Gi) whose indices are not larger than
the index of the upper osculation point or not smaller
than the index of the lower osculation point and the
points of CH(Gi+1) whose indices are between the in-
dices of the corresponding osculation points. After
removing all the other points, we can compute the
center of gravity and sort the remaining points clock-
wise around it to compute the new ordering of them.

The algorithm needs O(log2 n) passes and O(1)
memory. Intermediate passes are at most a constant
factor larger than the input stream. Hence, we obtain

Theorem 3 Let % be a stream of n points in R2.
Then there exists a StrSort algorithm that computes
the convex hull CH(%) in O(log2 n) passes with mem-
ory requirements of O(1) cells.

4 Geometric (1 + ε)-Spanners

In this section, we briefly describe our StrSort algo-
rithm to compute a (1 + ε)-spanner for a point set
P in Rd. We will use the following spanner con-
struction as described in [3]. Let C ∈ C be any
cone and let h1, h2, · · · , hd be the bounding hyper-
planes of C. Furthermore, let H1,H2, · · · ,Hd be
lines that run through the origin and are orthogo-
nal to h1, h2, · · · , hd respectively. H1, · · · ,Hd are the
axes of a transformed coordinate system. We choose
their directions such that the cone C is given by
C = {p ∈ Rd | ∀1 ≤ i ≤ d : p(i) ≥ 0}, where p(i)

denotes the coordinate of p with respect to the i-th
transformed coordinate axes. To find the neighbor of
u in the cone Cu, we have to ask for the point p ∈ P
with p(i) ≥ u(i) for all 1 ≤ i ≤ d whose orthogonal
projection onto lC,u is closest to u. Let c be the gra-
dient vector of lC,u. Then the neighbor of u in Cu is
the point p ∈ Cu that minimizes cT p.

Our StrSort algorithm computes in parallel for each
cone C ∈ C the neighbor of every point u ∈ P . For
that purpose, we create |C| streams. For each stream
the algorithm determines the neighbors of every point
u ∈ P with respect to one cone C ∈ C. For an arbi-
trary cone C ∈ C, we can focus on the following prob-
lem. We are given a stream 〈p1, . . . , pn, q1, . . . , qn〉 of
n points followed by n queries. For each query qi ∈ Rd

we want to find the point pj ∈ P that minimizes cT pj

71

23rd European Workshop on Computational Geometry, 2007

under the constraint that p
(`)
j > q

(`)
i for all 1 ≤ ` ≤ d

and for some fixed direction c. We will refer to this
problem as the orthogonal range optimization prob-
lem. We call the area {(x(1), . . . , x(d)) | ∀1 ≤ i ≤ d :
x(i) > q(i)} the range of query q.

The Range Optimization Problem in 1D. We first
attach to the points and queries an identifier to distin-
guish between them. Then we sort decreasingly. We
pass over the stream and maintain the point p that
minimizes cT p among the points seen so far. Every-
time we reach a query qi we output the pair (qi, p).
Clearly, p is greater than qi and minimizes cT p.

Theorem 4 The range optimization problem in 1D
can be solved in O(1) passes using O(1) memory cells.

The Range Optimization Problem in 2D. We only
give a high level description of the algorithm. The al-
gorithm works somewhat similar to range trees. First
it computes a balanced binary search tree sorted by
x-coordinates. Let v(p) denote the node of the search
tree that corresponds to point p. Our procedure to an-
swer n range queries consists of O(log n) rounds. We
think of each query as a pebble on the binary search
tree. Let Q(q) be the pebble corresponding to query
q. At the beginning all pebbles start at the root of the
tree and in every round they move one step on their
search pass in the tree, i.e. we maintain the invariant
that, at the beginning of each round, all pebbles are
in the same level. Each pebble Q(q) remembers its
“current optimum”, i.e. the point p ∈ Cq with the
smallest cT p value seen so far.

Now, we consider one round of the algorithm. Let
Q(q) be a pebble that is currently placed on the node
v(p) of the search tree. If q(1) ≥ p(1) then the pebble
moves to the right child of v(p). No other updates
have to be performed. If q(1) < p(1) then the pebble
moves to the left child of v(p). If p ∈ Cq and the ob-
jective value cT p is smaller than the current optimum
maintained with Q(q), we replace the current opti-
mum by p. Additionally, we have to check the points
in the right subtree of v(p). We know that any point
r stored in that subtree satisfies r(1) > q(1) and so
we only have to solve a 1D range searching problem.
To solve this, we create for all queries that move to
the left subtree a 1D query for the point set in the
right subtree. Then we run the StrSort algorithm for
the 1D case on this problem and replace the current
optimum of a query, if necessary. Then the pebbles
are moved to the next level and the round ends.

Obviously, after O(log n) rounds the pebbles have
reached the bottom level of the search tree. Since
any point in the range of a query q is stored on the
search path of q or in a tree right of the search path,
we know that the “current optimum” of Q(q) is the
correct answer to the corresponding query.

The 2D algorithm can be generalized to higher di-
mensions, so that we get the following result

Theorem 5 There is a StrSort algorithm that com-
putes a (1+ε)-spanner in Rd using O(logd−1 n) passes
and O(log n) memory.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating Extent Measures of Points. J. Assoc.
Comput. Mach., 51(4):606–635, 2004.

[2] G. Aggarwal, M. Datar, S. Rajagopalan, and
M. Ruhl. On the Streaming Model Augmented with a
Sorting Primitive. Proc. 45th IEEE Sympos. Found.
Comput. Sci., pp. 540–549, 2004.

[3] S. Arya, D. M. Mount, and M. Smid. Dynamic Al-
gorithms for Geometric Spanners of Small Diameter:
Randimized Solutions. Int. J. Comput. Geom. Appli-
cations, 13(2):91–107, 1999.

[4] A. Bagchi, A. Chaudhary, D. Eppstein, and
M. T. Goodrich. Deterministic Sampling and Range
Counting in Geometric Data Streams. Proc. 20th
Annu. ACM Sympos. Comput. Geom., pp. 144-151,
2004.

[5] T. M. Chan and E. Y. Chen. Multi-Pass Geometric
Algorithms. Proc. 21st Annu. ACM Sympos. Com-
put. Geom., pp. 180–189, 2005.

[6] G. Cormode and S. Muthukrishnan. Radial His-
tograms for Spatial Streams. DIMACS Technical Re-
port 2003-11, 2003.

[7] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading
off Space for Passes in Graph Streaming Problems.
Proc. 17th Annu. ACM-SIAM Sympos. Discrete Al-
gorithms, 2006.

[8] J. Hershberger and S. Suri. Convex Hulls and Related
Problems in Data Streams. Proc. ACM/DIMACS
Workshop on Management and Processing of Data
Streams, 2003.

[9] T. Lukovszki. New Results on Geometric Span-
ners and Their Applications. Dissertation, University
Paderborn, 1999.

[10] S. Muthukrishnan. Data streams: Algorithms and
applications (invited talk at SODA03). http://
athos.rutgers.edu/ muthu/stream-1-1.ps, 2003.

[11] J. Ruppert and R. Seidel. Approximating the d-
dimensional complete Euclidean graph. Proc. 3rd
Canad. Conf. Comput. Geom., pp. 207–210, 1991.

[12] C. Shahabi and M. Sharifzadeh. Approximate
Voronoi Cell Computation on Geometric Data
Streams. Technical Report 04-835, Computer Sci.
Dep. University of Southern California, 2004.

[13] S. Suri, C. D. Toth, and Y. Zhou. Range Count-
ing over Multidimensional Data Streams. Proc. 20th
Annu. ACM Sympos. Comput. Geom., pp. 160-169,
2004.

72

EWCG 2007, Graz, March 19–21, 2007

I/O-Efficient Map Overlay and Point Location in Low-Density
Subdivisions

Mark de Berg∗ Herman Haverkort∗ Shripad Thite∗ Laura Toma†

Abstract

We present improved and simplified i/o-efficient
algorithms for two problems on planar low-density
subdivisions, namely map overlay and point location.
More precisely, we show how to preprocess a low-
density subdivision with n edges in O(sort(n)) i/o’s
into a compressed linear quadtree such that one can:
(i) compute the overlay of two such preprocessed

subdivisions in O(scan(n)) i/o’s, where n is
the total number of edges in the two subdivisions,

(ii) answer a single point location query in O(logB n)
i/o’s and k batched point location queries in
O(scan(n) + sort(k)) i/o’s.

For the special case where the subdivision is a fat tri-
angulation, we show how to obtain the same bounds
with an ordinary (uncompressed) quadtree, and we
show how to make the structure fully dynamic us-
ing O(logB n) i/o’s per update. Our algorithms and
data structures improve on the previous best known
bounds for general subdivisions both in the number of
i/o’s and storage usage, they are significantly simpler,
and several of our algorithms are cache-oblivious.

1 Introduction

The traditional approach to algorithms design consid-
ers each atomic operation to take roughly the same
amount of time. Unfortunately this simplifying as-
sumption is invalid when the algorithm operates on
data stored on disk: reading data from or writing data
to disk can be a factor 100,000 or more slower than
doing an operation on data that is already present in
main memory. Thus, when the data is stored on disk
it is usually much more important to minimize the
number of disk accesses rather than CPU operations.

This has led to the study of so-called i/o-efficient
algorithms, also known as external-memory algo-
rithms. The standard way of analyzing such algo-
rithms is with the model introduced by Aggarwal and
Vitter [1]. In this model, a computer has an internal

∗Dept. of Mathematics and Computer Science, Technische
Universiteit Eindhoven, the Netherlands, mdberg@win.tue.nl,
cs.herman@haverkort.net, sthite@win.tue.nl. MdB and ST
were supported by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 639.023.301.

†Dept. of Computer Science, Bowdoin College, Brunswick
ME, USA, ltoma@bowdoin.edu

memory of size M and an arbitrarily large disk. The
data on disk is stored in blocks of size B, and when-
ever an algorithm wants to work on data not present
in internal memory, the block(s) containing the data
are read from disk. The i/o-complexity of an algo-
rithm is the number of i/o’s it performs—that is, the
number of block transfers between internal memory
and disk. Scanning—reading a set of n consecutive
items from disk—takes scan(n) = dn/Be i/o’s, and
sorting takes sort(n) = Θ((n/B) logM/B(n/B)) i/o’s.

One of the main application areas for i/o-efficient
algorithms is the area of geographic information sys-
tems (gis), because gis typically work with massive
amounts of data and loading all of it into memory
is often infeasible. In gis data for a particular geo-
graphic region is stored as a number of separate the-
matic layers. There can be a layer storing the road
network, a layer storing the river network, a layer stor-
ing a subdivision of the region according to land usage
or soil type, and so on. To combine information from
two such layers—for example to find the crossings be-
tween the river network and the road network—one
has to compute the overlay of the layers.

Background. The problem of map overlay can be
formulated as a red-blue intersection problem: given a
set of non-intersecting blue segments and a set of non-
intersecting red segments in the plane, compute all in-
tersections between the red and blue segments. Arge
et al. show how to do this in O(sort(n) + k/B) i/o’s,
where k is the number of intersections [2]. This is op-
timal in the worst case, but it is not satisfactory: the
algorithm is complicated and uses Θ(n logM/B(n/B))
storage. Crauser et al. [4] describe a randomized solu-
tion with the same (expected) bound of O(sort(n) +
k/B) i/o’s and linear space under some realistic as-
sumptions on M,B and n. Whether this algorithm is
practical is not clear.

Although the i/o-complexity of the above algo-
rithms is optimal for general sets of line segments,
there are important special cases for which this is not
clear. For example, in internal memory one can over-
lay two subdivisions in O(n+k) time when these sub-
divisions are connected [6]. This brings us to the topic
of our paper: is it possible to do the overlay of two
planar maps in O(scan(n + k)) i/o’s?

We will describe solutions based on modifications

73

23rd European Workshop on Computational Geometry, 2007

of the so-called linear quadtree, introduced by Gar-
gantini [8]. The linear quadtree is a quadtree variant
where only the leaf regions are stored, and not the
internal nodes. To facilitate a search in the quadtree,
a linear order is defined on the leaves based on some
space-filling curve; then a b-tree is constructed on the
leaves using this ordering—see Section 2 for details.
The idea of using linear quadtrees to store planar sub-
divisions has been used by Hjaltason and Samet [9].
They present algorithms for constructing the quadtree
and for insertions. Although their experiments indi-
cate their method performs well in practice, the i/o-
complexity of their algorithms is not fully understood
and does not seem to be worst-case-optimal. Further-
more, the stopping rule for splitting quadtree cells is
based on user-defined parameters, so their method is
not fully automatic.

Our results. We show how to overcome these dis-
advantages for two types of subdivisions: fat trian-
gulations and low-density subdivisions [5]. A δ-fat
triangulation is a triangulation in which every angle
is bounded from below by a fixed positive constant δ.
A λ-low-density subdivision is a subdivision such that
any disk D is intersected by at most λ edges whose
length is at least the diameter of D, for some fixed
constant λ. We believe these two types of subdivisions
are representative for most subdivisions encountered
in practice, for reasonable values of δ and λ.

We present improved external-memory algorithms
for map overlay and point location for such subdivi-
sions. Our results are based on quadtrees which we
define to ensure that (i) each leaf intersects only a
constant number of edges of the subdivision, (ii) that
we create only O(n) leaves, and (iii) that we can con-
struct the leaves efficiently. To store the quadtrees,
we combine the ideas of compressed quadtrees and
linear quadtrees to get a linear compressed quadtree.
Our algorithms to construct the quadtrees are simple
and elegant—simpler than the algorithm of Hjaltason
and Samet [9]—and use only O(sort(n)) i/o’s.

Our other results then come almost for free:
overlaying two subdivisions boils down to a simple
merge of the ordered lists of quadtree leaves tak-
ing O(scan(n)) i/o’s, point location can be done in
O(logB n) i/o’s by searching in the b-tree built on top
of the list of quadtree leaves, and k batched point loca-
tion queries can be done in O(scan(n)+sort(k)) i/o’s
by sorting the points along the space-filling curve and
merging the sorted list with the list of quadtree leaves.
The structure for fat triangulations can be made fully
dynamic at the cost of O(logB n) i/o’s per update.

All our data structures and query algorithms can
be made cache-oblivious [7] by plugging in the cache-
oblivious variants of the various building blocks used,
so that no tuning for B and M is necessary. For tri-
angulations, also the construction and update algo-

rithms can be made cache-oblivious, except that up-
dates then take O(logB n + 1

B log2 n) i/o’s.
In this abstract we assume that our inputs are sub-

divisions of the unit square [0, 1]2.

2 Our solution for fat triangulations

Theorem 1 Let F be a δ-fat triangulation with n
edges. Knowing the memory size M and the block
size B, we can construct, in O(sort(n/δ2)) i/o’s, a
linear quadtree for F with O(n/δ2) cells such that
each cell intersects O(1/δ) triangles and the total
number of intersections between cells and triangles is
O(n/δ2). With this structure we can do the following:

(i) Map overlay: Given two δ-fat triangulations
with n triangles in total, each stored in such
a linear quadtree, we can find all pairs of
intersecting triangles in O(scan(n/δ2)) i/o’s.

(ii) (Batched) point location: for any query
point p we can find the triangle of F that
contains p in O(logB n) i/o’s, and for any set
P of k query points we can find for each point
p ∈ P the triangle of F that contains p in
O(scan(n/δ2) + sort(k)) i/o’s.

(iii) Updates: Inserting a vertex, moving a vertex,
deleting a vertex, and flipping an edge can all be
done in O((logB n)/δ4) i/o’s.

The quadtree subdivision for fat triangulations A
quadtree is a hierarchical subdivision of the unit
square into quadrants, where the subdivision is
defined by a criterion to decide what quadrants are
subdivided further, and what quadrants are leaves
of the hierarchy. A canonical square is any square
that can be obtained by recursively splitting the unit
square into quadrants. For a canonical square σ,
let mom(σ) denote its parent, that is, the canonical
square that contains σ and has twice its width. The
leaves of the quadtree form the quadtree subdivision;
that is, a quadtree subdivision for a set of objects in
the unit square is a subdivision into disjoint canonical
squares (quadtree cells), such that each cell obeys the
stopping rule while its parent does not. The stopping
rule we use is as follows:

Stop splitting when all edges intersecting
the cell σ under consideration are incident
to a common vertex.

Note that the stopping rule includes the case were
σ is not intersected by any edges. We can prove that
this stopping rule leads to a quadtree subdivision with
O(n/δ2) cells, such that each cell is intersected by at
most 2π/δ triangles, and the total number of triangle-
cell intersections is O(n/δ2).

We store the quadtree subdivision defined above as
a linear quadtree [8]. To this end, we define an order-
ing on the leaf cells of the quadtree subdivision. The

74

EWCG 2007, Graz, March 19–21, 2007

ordering is based on a space-filling curve defined re-
cursively by the order in which it visits the quadrants
of a canonical square. We use the z-order space-filling
curve for this, which visits the quadrants in the or-
der bottom left, top left, bottom right, top right, and
within each quadrant, the z-order curve visits its sub-
quadrants recursively in the same order. Since the
intersection of every canonical square with this curve
is a contiguous section of the curve, this yields a well-
defined ordering of the leaf cells of the quadtree sub-
division. We call this order the z-order.

The z-order curve not only orders the leaf cells of
the quadtree subdivision, but it also provides an or-
dering for any two points in the unit square—namely
the z-order of any two disjoint canonical squares con-
taining the points. (We assume that canonical squares
are closed at the bottom and the left side, and open at
the top and the right side.) The z-order of two points
can be determined as follows. For a point p = (px, py)
in [0, 1〉2, define its z-index z(p) to be the value in the
range [0, 1〉 obtained by interleaving the bits of the
fractional parts of px and py, starting with the first
bit of px. The value z(p) is sometimes called the Mor-
ton block index of p. The z-order of two points is now
the same as the order of their z-indices [9]. The z-
indices of all points in a canonical square σ form a
subinterval [z1, z2〉 of [0, 1〉, where z1 is the z-index
of the bottom left corner of σ. Note that any subdi-
vision of the unit square [0, 1〉2 into k leaf cells of a
quadtree corresponds directly to a subdivision of the
unit interval [0, 1〉 of z-indices into k subintervals.

A simple way of storing a triangulation in a linear
quadtree is now obtained by storing all cell-triangle
intersections in a b-tree [3]: each cell-triangle inter-
section (σ,4) of a cell σ corresponding to the z-index
interval [z1, z2〉 is represented by storing triangle 4
with key z1. Thus the leaf cells are stored implic-
itly: each pair of consecutive different keys z1 and z2

constitutes the z-index interval of a quadtree leaf cell.

Building the quadtree Since the quadtree may have
height Θ(n), a natural top-down construction algo-
rithm could take Θ(n2/B) i/o’s. Below we describe a
faster algorithm that computes the leaf cells that re-
sult with our stopping rule directly, using local com-
putations instead of a top-down approach.

For any vertex v of the given triangulation F , let
star(v) be the star of v in F ; namely, it is the set of
triangles of F that have v as a vertex. Recall that a
canonical square is any square that can be obtained
by recursively subdividing the unit square into quad-
rants. For a set S of triangles inside the unit square,
we say that a canonical square of σ is active in S if
it lies completely inside S and all edges from S that
intersect σ are incident to a common vertex, while
mom(σ) intersects multiple edges of S that are not
all incident to a common vertex. Thus the cells of the

quadtree subdivision we wish to compute for F are
exactly the active canonical squares in F .

Lemma 2 Let 4uvw be a triangle of F and σ a
canonical square that intersects 4uvw. Then σ is ac-
tive in F if and only if σ is active in star(u), star(v)
or star(w).

We now construct the linear quadtree as follows:

1. Compute an adjacency list for each vertex.
2. Scan the adjacency lists for all vertices: for each

vertex u load its adjacency list in memory and
compute the active cells of star(u), with for each
cell σ the triangles that intersect σ. Output each
triangle with the key z1 of the z-index interval
[z1, z2〉 that corresponds to σ.

3. Sort the triangles by key, removing duplicates.
4. Build a b-tree on the list of triangles with keys.

This algorithm runs in O(sort(n/δ2)) i/o’s. Note
that by Lemma 2, local update operations such as in-
serting a vertex can be done by computing the struc-
ture of the quadtree locally in the area of the update,
and determining what the changes entail for the data
stored on the disk.

Overlaying maps and point location Recall that
each triangulation’s quadtree, or rather, subdivision
of the z-order curve, is stored on disk as a sorted list of
z-indices with triangles. To overlay the two triangula-
tions, we scan the two quadtrees simultaneously in z-
order, reporting, for any pair of intersecting leaf cells,
the intersections between the triangles stored with the
cells. The input has size O(n/δ2). The output con-
sists of O(n/δ) intersections since a δ-fat triangulation
has density O(1/δ), as shown by De Berg et al. [5].
Thus map overlay takes only O(scan(n/δ2)) i/o’s.

To locate a point p we compute its z-index z(p) and
search the b-tree for the triangles with the highest
keys less than or equal to z(p). For batched point
location, we sort the set P of query points by z-index,
and scan the leaves of the b-tree and P in parallel.

3 Our solution for low-density subdivisions

The density of a set of line segments in the plane is the
smallest number λ such that the following holds: any
disk D is intersected by at most λ line segments with
length at least the diameter of D. We say that a sub-
division F has density λ if its edge set has density λ.

Theorem 3 Let F be a subdivision or a set of non-
intersecting line segments of density λ with n edges.
Knowing M and B, we can construct, in O(sort(λn))
i/o’s, a linear compressed quadtree for F with O(n)
cells that each intersect O(λ) edges. With this struc-
ture we can do the following:

75

23rd European Workshop on Computational Geometry, 2007

(i) Map overlay: If we have two subdivisions (or
sets of non-intersecting line segments) of density
λ with n edges in total, both stored in such a
linear compressed quadtree, then we can find all
pairs of intersecting edges in O(scan(λn)) i/o’s.

(ii) (Batched) point location: for any query point
p we can find the face of F that contains p in
O(logB n) i/o’s, and for any set P of k query
points we can find for each point p ∈ P the face of
F that contains p in O(scan(λn)+sort(k)) i/o’s.

Below we explain our data structure. The query
algorithms are the same as in the previous section.

The compressed quadtree subdivision for low-
density maps Let G be the set of vertices of
the axis-parallel bounding boxes of the edges of F .
We construct a quadtree for F with the following rule:

Stop splitting when the cell σ under consid-
eration contains at most one point from G.

To be able to bound the number of cells to O(n), we
use five-way splits as in a compressed quadtree [10],
as follows. Let σ be a canonical square that contains
more than one point from G, and let σ′ be the small-
est canonical square that contains all points of σ ∩ G.
Then σ is split into five regions. The first region is the
donut σ \ σ′. The remaining four regions are the four
quadrants of σ′. Note that the first region does not
contain any points of G, so it is never subdivided fur-
ther. We can prove that a quadtree subdivision based
on the above stopping rule and five-way splits has
O(n) cells, each intersected by at most O(λ) edges.

We store the cell-edge intersections of the com-
pressed quadtree subdivision in a list sorted by the
z-order of the cells, indexed by a b-tree. The only
difference with the previous section is that we now
have to deal with donuts as well as square cells. Recall
that a canonical square (a square that can be obtained
from the unit square by a recursive partitioning into
quadrants) corresponds to an interval on the z-order
curve. For a donut this is not true. However, a donut
corresponds to at most two such intervals, because a
donut is the set-theoretic difference of two canonical
squares. Thus the solution of the previous section can
be applied if we represent each donut by two intervals
[z1, z2〉 and [z3, z4〉; edges intersecting the first part of
the donut are stored with key z1 and edges intersect-
ing the second part are stored with key z3. We merge
cells that do not intersect any edge with their immedi-
ate successors or predecessors in the z-order. We call
the resulting structure—the b-tree on the cell-edge in-
tersections whose keys imply a compressed quadtree
subdivision—a linear compressed quadtree.

Building the quadtree We construct the leaves of
the compressed quadtree, or rather, the corresponding

subdivision of the z-order curve, as follows. We sort
G into z-order, and scan the sorted points. For each
pair of consecutive points, say u and v, we construct
their lowest common ancestor lca(u, v) by examining
the longest common prefix of the bit strings represent-
ing z(u) and z(v). We output the five z-indices that
bound and separate the z-order intervals of the four
children of lca(u, v). To complete the subdivision of
the z-order curve, we sort the output into a list by
z-order, removing duplicates.

We now build a b-tree on the subdivision of the z-
order curve, and distribute the edges of F to the leaves
that intersect them. This is done in O(sort(λn)) i/o’s
in a straightforward top-down manner.

Finally we collect all edge-leaf intersections, or-
dered by the z-indices of the leaf cells, and put a new
b-tree on top of them. Each cell σ without any inter-
secting edges is merged with the cells that precede or
follow it in the z-order.

The complete algorithm runs in O(sort(λn)) i/o’s.

Acknowledgment

We thank Sariel Har-Peled for his extensive contribution.

References

[1] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Commun.
ACM, 31:1116–1127, 1988.

[2] L. Arge, D. E. Vengroff, and J. S. Vitter. External-
memory algorithms for processing line segments in
geographic information systems. In Proc. European
Sympos. Algorithms, pages 295–310, 1995.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press /
McGraw-Hill, Cambridge, Mass., 2001.

[4] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer,
and E. Ramos. Randomized external-memory algo-
rithms for some geometric problems. Comput. Geom.
Theory Appl., 11(3):305–337, June 2001.

[5] M. de Berg, M. J. Katz, A. v. Stappen, and
J. Vleugels. Realistic input models for geometric al-
gorithms. Algorithmica, 34:81–97, 2002.

[6] U. Finke and K. Hinrichs. Overlaying simply con-
nected planar subdivisions in linear time. In Proc.
ACM Symp. Comp. Geom., pages 119–126, 1995.

[7] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran. Cache-oblivious algorithms. In Proc.
IEEE Symp. Found. Comp. Sc., pages 285–298, 1999.

[8] I. Gargantini. An effective way to represent
quadtrees. Commun. ACM, 25(12):905–910, 1982.

[9] G. R. Hjaltason and H. Samet. Speeding up construc-
tion of pmr quadtree-based spatial indexes. VLDB
Journal, 11:190–137, 2002.

[10] H. Samet. Spatial Data Structures: Quadtrees, Oc-
trees, and Other Hierarchical Methods. Addison-
Wesley, Reading, MA, 1989.

76

EWCG 2007, Graz, March 19–21, 2007

Streaming Algorithms for Line Simplification under the Fréchet Distance

M.A. Abam∗ M.de Berg∗ P. Hachenberger∗ A. Zarei†

Abstract

We study the following variant of the well-known line-
simplification problem: we are getting a possibly infi-
nite sequence of points p0, p1, p2, . . . defining a polyg-
onal path, and as we receive the points we wish to
maintain a simplification of the path seen so far. We
study this problem in a streaming setting, where we
only have a limited amount of storage so that we can-
not store all the points. We analyze the competitive
ratio of our algorithm, allowing resource augmenta-
tion: we let our algorithm maintain a simplification
with 2k (internal) points, and compare the error of
our simplification to the error of the optimal simplifi-
cation with k points.

1 Introduction

Suppose we are tracking one, or maybe many, moving
objects. Each object is equipped with a device that
is continuously transmitting its position. Thus we are
receiving a stream of data points that describes the
path along which the object moves. The goal is to
maintain this path for each object. We are interested
in the scenario where we are tracking the objects over
a very long period of time, as happens for instance
when studying the migratory patterns of animals. In
this situation it may be undesirable or even impossible
to store the complete stream of data points. Instead
we have to maintain an approximation of the input
path. This leads us to the following problem: we are
receiving a (possibly infinite) stream p0, p1, p2, . . . of
points in the plane, and we wish to maintain a simpli-
fication (of the part of the path seen so far) that is as
close to the original path as possible, while using not
more than a given (fixed) amount of available storage.

The problem described above is a streaming version
of line simplification, one of the basic problems in GIS.
Here one is given a polygonal path P := p0, p1, . . . , pn

in the plane, and the goal is to find a path Q :=

∗Department of Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, the Netherlands. Email:
{mabam,mdberg,phachenb}@win.tue.nl. MAA was supported
by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 612.065.307. MdB and PH were sup-
ported by the Netherlands’ Organisation for Scientific Research
(NWO) under project no. 639.023.301.

†Computer Engineering Department, Sharif University of
Technology and IPM School of Computer Science, Tehran, Iran.
Email: zarei@mehr.sharif.edu.

q0, q1, . . . , qk with fewer vertices that approximates P
well. In fact, this problem arises whenever we want to
perform data reduction on a polygonal shape in the
plane, and so it plays a role not only in GIS but also
in areas like image processing and computer graphics.
Line simplification has been studied extensively both
in these application areas as well as in computational
geometry.

The line-simplification problem has many variants.
For example, we can require the sequence of vertices
of Q to be a subsequence of P (with q0 = p0 and
qk = pn)—this is sometimes called the restricted ver-
sion—or we can allow arbitrary points as vertices. In
this paper, as in most other papers, we consider the
restricted version, and we limit our discussion to this
version from now on; some results on the unrestricted
version can be found in [5, 6, 7]. In the restricted
version, each link qlql+1 of the simplification corre-
sponds to a shortcut pipj (with j > i) of the original
path, and the error of the link is defined as the dis-
tance between pipj and the subpath pi, . . . , pj . To
measure the distance between pipj and pi, . . . , pj the
Hausdorff distance or the Fréchet distance are usually
used. Since we concentrate on the latter, the error
of the simplification Q is now defined as the maxi-
mum Fréchet error of any of its links. Once the error
measure has been defined, we can consider two types
of optimization problems: the min-k and the min-δ
problem. In the min-k problem, one is given the path
P and a maximum error δ, and the goal is to find a
simplification Q with as few vertices as possible whose
error is at most δ. In the min-δ problem, one is given
the path P and a maximum number of vertices k, and
the goal is to find a simplification with the smallest
possible error that uses at most k vertices.

The line-simplification was first studied for the
Fréchet distance by Godau [4]. Alt and Godau [2]
proposed an algorithm to compute the Fréchet dis-
tance between two polygonal paths in quadratic time;
combined with the approach of Imai and Iri [8] this
can be used to compute an optimal solution to the
min-δ or the min-k problem for the Fréchet distance.
Since solving the line-simplification problem exactly
is costly—the best known algorithm for the Fréchet
distance takes quadratic time or more—Agarwal et
al. [1] consider approximation algorithms. In par-
ticular, they consider the min-k problem for both
the Hausdorff distance for x-monotone paths (in the
plane) and the Fréchet distance for general paths (in

77

23rd European Workshop on Computational Geometry, 2007

d-dimensional space). They give near-linear time al-
gorithms that compute a simplification whose error is
at most δ and whose number of vertices is at most the
minimum number of vertices of a simplification of er-
ror at most δ/2. However, these algorithms cannot be
used in a streaming setting, because the complexity
of the produced simplification for an input path of n
points can be Θ(n).

To state our problem more precisely, we first intro-
duce some terminology and definitions. Let p0, p1, . . .
be the given stream of input points. We use P (n) to
denote the path defined by the points p0, p1, . . . , pn—
that is, the path connecting those points in order—
and for any two points p, q on the path we use P (p, q)
to denote the subpath from p to q. For two vertices
pi, pj we use P (i, j) as a shorthand for P (pi, pj). A
segment pipj with i < j is called a link or some-
times a shortcut. Thus P (n) consists of the links
pi−1pi for 0 < i 6 n. We assume a function error
is given that assigns a non-negative error to each link
pipj . An `-simplification of P (n) is a polygonal path
Q := q0, q1, . . . , qk, qk+1 where k 6 ` and q0 = p0

and qk+1 = pn, and q1, . . . , qk is a subsequence of
p1, . . . , pn−1. The error of a simplification Q for a
given function error , denoted error(Q), is defined as
the maximum error of any of its links. We consider
an error function based on the Fréchet distance, as
defined next.

The Fréchet distance between two paths A and B,
which we denote by dF (A,B), is defined as follows.
Consider a man with a dog on a leash, with the man
standing at the start point of A and the dog standing
at the start point of B. Imagine that the man walks
to the end of A and the dog walks to the end of B.
During the walk they can stop every now and then,
but they are not allowed to go back along their paths.
The Fréchet distance between A and B is the mini-
mum length of the leash needed for this walk, over all
possible such walks. See [4] for a formal definition.

Now consider an algorithm A := A(`) that
maintains an `-simplification for the input stream
p0, p1, . . ., for some given `. Let QA(n) denote the
simplification that A produces for the path P (n). Let
Opt(`) denote an optimal off-line algorithm that pro-
duces an `-simplification. Thus error(QOpt(`)(n)) is
the minimum possible error of any `-simplification of
P (n). We define the quality of A using the compet-
itive ratio, as is standard for on-line algorithms. We
also allow resource augmentation, i.e., we allow A to
use a 2k-simplification, but we compare the error of
this simplification to QOpt(k)(n). Thus we define the
competitive ratio of an algorithm A(2k) as

competitive ratio of A(2k) := max
n>0

error(QA(2k)(n))
error(QOpt(k)(n))

.

We say that an algorithm is c-competitive if its com-
petitive ratio is at most c.

We present and analyze a simple general streaming
algorithm for line simplification. Our analysis shows
that the algorithm has good competitive ratio un-
der two conditions: the error function that is used is
monotone—see Section 2 for a definition—and there
is an oracle that can approximate the error of any can-
didate link considered by the algorithm. We then con-
tinue to show that the Fréchet error function is mono-
tone for arbitrary paths in the plane and how to imple-
ment the error oracles for this setting. Putting every-
thing together leads to the following result. For paths
in the plane and the Fréchet error function we can,
for any fixed ε > 0, obtain a (4

√
2 + ε)-competitive

streaming algorithm that uses O((k2/
√

ε) log2(1/ε))
additional storage and processes each input point in
O((k/

√
ε) log2(1/ε)) amortized time.

2 A general simplification algorithm

In this section we describe a general strategy for
maintaining an `-simplification of an input stream
p0, p1, . . . of points in the plane, and we show that
it has a good competitive ratio under two conditions:
the error function is monotone (as defined below), and
we have an error oracle at our disposal that com-
putes or approximates the error of a link. We denote
the error computed by the oracle for a link pipj by
error∗(pipj). Later we will prove that the Fréchet er-
ror function is monotone, and we will show how to
implement the oracle for this setting.

Suppose we have already handled the points
p0, . . . , pn. (We assume n > ` + 1; otherwise we
can simply use all points and have zero error.) Let
Q := q0, q1, . . . , q`, q`+1 be the current simplification.
Our algorithm will maintain a priority queue Q that
stores the points qi with 1 6 i 6 `, where the priority
of a point is the error (as computed by the oracle) of
the link qi−1qi+1. In other words, the priority of qi is
(an approximation of) the error that is incurred when
qi is removed from the simplification. Now the next
point pn+1 is handled as follows:

1. Set q`+2 := pn+1, thus obtaining an (` + 1)-
simplification of P (n + 1).

2. Compute error∗(q`q`+2) and insert q`+1 into Q
with this error as priority.

3. Extract the point qs with minimum priority
from Q; remove qs from the simplification.

4. Update the priorities of qs−1 and qs+1 in Q.

Next we analyze the competitive ratio of our algo-
rithm. We say that a link pipj encloses a link plpm if
i 6 l 6 m 6 j, and we say that error is a c-monotone
error function for a path P (n) if for any two links pipj

and plpm such that pipj encloses plpm we have

error(plpm) 6 c · error(pipj).

78

EWCG 2007, Graz, March 19–21, 2007

In other words, an error function is c-monotone if the
error of a link cannot be worse than c times the error
of any link that encloses it. Furthermore, we say that
the error oracle is an e-approximate error oracle if for
any link pipj

error(pipj) 6 error∗(pipj) 6 e · error(pipj)

Theorem 1 Suppose that the error function is c-
monotone and that we have an e-approximate error
oracle at our disposal. Then the algorithm described
above with ` = 2k is ce-competitive with respect to
Opt(k). The time the algorithm needs to update the
simplification Q upon the arrival of a new point is
O(log k) plus the time spent by the error oracle. Be-
sides the storage needed for the simplification Q, the
algorithm uses O(k) storage plus the storage needed
by the error oracle.

Proof. Consider an arbitrary n > 0, and let Q(n)
denote the 2k-simplification produced by our algo-
rithm. Since the error of Q(n) is the maximum er-
ror of any of its links, we just need to show that
error(σ) 6 ce · error(QOpt(k)(n)) for any link σ in
Q(n). Let m 6 n be such that σ appears in the sim-
plification when we receive point pm. If m 6 2k + 2,
then error(σ) = 0 and we are done. Otherwise, let
Q(m − 1) := q0, . . . , q2k+1 be the 2k-simplification of
P (m − 1). Upon the arrival of pm = q2k+2 we insert
q2k+1 = pm−1 into Q. A simple counting argument
shows that at least one of the shortcuts qt−1qt+1 for
1 6 t 6 2k + 1, let’s call it σ′, must be enclosed by
one of the at most k + 1 links in QOpt(k)(n). Since σ
is the link with the smallest priority among all links
in Q at that time, its approximated error is smaller
than that of σ′. Therefore,

error(QOpt(k)(n)) > 1
c error(σ′) > 1

c·eerror
∗(σ′)

> 1
c·eerror

∗(σ) > 1
c·eerror(σ).

We conclude that our algorithm is ce-competitive with
respect to Opt(k). Besides the time and storage
needed by the error oracle, the algorithm only needs
O(k) space to store the priority queue and O(log k)
for each update of the priority queue. �

3 An algorithm for the Fréchet error function

We now turn our attention to the Fréchet error
function. We will show that we can obtain an
O(1)-competitive algorithm for arbitrary paths in the
plane. The first property we need is that the Fréchet
error function is monotone. This has in fact already
been proven by Agarwal et al. [1].

Lemma 2 [1] The Fréchet error function is 2-
monotone on arbitrary paths.

pi pj

pm

b(i, j)

pl

Figure 1: The largest back-path in direction pipj .

Next we turn our attention to the implementation
of the error oracle for the Fréchet error function. We
use two parameters to approximate errorF (pipj): the
width of the points of P (i, j) in the direction pipj and
the length of the largest back-path in the direction of
pipj .

The width of a set of points with respect to a
given direction

−→
d is the minimum distance of two

lines being parallel to
−→
d that enclose the point set.

Let w(i, j) be the width of the points in subpath
P (i, j) with respect to the direction −−→pipj . Chan [3]
has described a streaming algorithm for maintaining
a core-set that can be used to approximate the width
of a set in any direction. More precisely, given a
data stream p0, p1, . . ., he maintains an ε-core-set of
size O((1/

√
ε) log2(1/ε)) in O(1/

√
ε) amortized time

per point; with this core-set one can get a (1 + ε)-
approximation of the width in any direction.

The largest back-path in direction pipj is defined
as follows. Assume without loss of generality that
pipj is horizontal with pj to the right of pi. For two
points pl, pm on the path P (i, j) with l < m we define
P (l, m) to be a back-path on P (i, j) if (pm)x < (pl)x.
In other words P (l,m) is a back-path if, relative to
the direction −−→pipj , we go back when we move from pl

to pm. The length of a back-path P (l, m) on P (i, j)
is defined to be the length of the projection of plpm

onto a line parallel to pipj , which is equal to (pl)x −
(pm)x since we assumed pipj is horizontal. We define
b(i, j) to be the maximum length of any back-path
on P (i, j). See Figure 1 for an illustration.

Lemma 3 max(w(i,j)
2 , b(i,j)

2) 6 errorF (pipj) 6

2
√

2 max(w(i,j)
2 , b(i,j)

2).

In the algorithm as presented in Section 2 we need
to maintain (an approximation of) the error of each
shortcut qlql+2 in the current simplification. Ac-
cording to the above lemma, in order to approxi-
mate errorF (pipj) it is enough if we can approxi-
mate max(w(i, j), b(i, j)).

To approximate the width of the links qlql+2, we
must maintain a core-set for each link that might be
needed at some later time in our simplification. These
are the links qiqj , with 0 6 i < j − 1 < 2k + 1. So
we need to maintain a core-set for each of these O(k2)
links. Considering a new point q2k+2 = pn+1, we must

79

23rd European Workshop on Computational Geometry, 2007

create O(k) new core-sets, one for each of the links
qipn+1, with 0 6 i 6 2k. We create such core-sets for
the links qipn+1, by copying the core-sets qiq2k+1 and
‘inserting’ point pn+1 to them using Chan’s algorithm.

We also need to approximate the maximum length
of a back-path on the path from ql to ql+2. For the
moment let’s assume that all we need is the maximum
length of the back-path with respect to the positive
x-direction. Then we maintain for each link pipj of
the simplification the following values:

(i) b(i, j), the maximum length of a back-path
(w.r.t. the positive x-direction) on P (i, j);

(ii) xmax (i, j), which is defined as the maximum x-
coordinate of any point on P (i, j);

(iii) xmin(i, j), which is defined as the minimum x-
coordinate of any point on P (i, j).

Now consider a shortcut qlql+2. Let ql = pi, ql+1 = pt

and ql+2 = pj . Then b(i, j), the maximum length of
a back-path on P (ql, ql+2) = P (i, j), is given by

max (b(i, t), b(t, j), xmax (i, t)− xmin(t, j)).

Adding a point q`+2 is easy, because we only have to
compute the above three values for q`+1q`+2, which
is trivial since q`+1 and q`+2 are consecutive points
on the original path. Removing a point qs can also
be done in O(1) time (let qs−1 = pi and qs+1 = pj):
above we have shown how to compute b(i, j) from the
available information for qs−1qs and qsqs+1, and com-
puting xmax (i, j) and xmin(i, j) is even easier.

Thus we can maintain the maximum length of a
back-path. There is one catch, however: the proce-
dure given above maintains the maximum length of a
back-path with respect to a fixed direction (the pos-
itive x-direction). But in fact we need to know for
each qiqi+2 the maximum length of a back-path with
respect to the direction −−−→qiqi+2. These directions are
different for each of the links and, moreover, we do
not know them in advance. To overcome this prob-
lem we define 2π/α equally spaced canonical direc-
tions, for a suitable α > 0, and we maintain, for every
link pipj , the information described above for each
direction. Now suppose we need to know the maxi-
mum length of a back-path for pipj with respect to
the direction −−→pipj . Then we will use b−→

d
(pipj), the

maximum length of a back-path with respect to
−→
d

instead, where
−→
d is the canonical direction closest

to −−→pipj in clockwise order. In general, using
−→
d may

not give a good approximation of the maximum length
of a back-path in direction −−→pipj , even when α is small.
However, the approximation is only bad when w(i, j)
is relatively large, which means that the Fréchet dis-
tance can still be approximated well.

Lemma 4 Let w be the width of P (i, j) in direc-
tion −−→pipj , let b be the maximum length of a back-path

on P (i, j) in direction−−→pipj , and let b∗ be the maximum

length of a back-path on P (i, j) in direction
−→
d . Then

we have: b∗−tan(α) ·w 6 b 6 b∗+tan(α) ·(b∗+w).

The final oracle is now defined as follows. Let w∗

be the approximation of the width of P (i, j) in di-
rection −−→pipj as given by Chan’s ε-core-set method,
and let b∗ be the maximum length of a back-path
on P (i, j) in direction

−→
d , where

−→
d is the canonical

direction closest to −−→pipj in clockwise order. We set

error∗F (pipj) :=
√

2·max(w∗, b∗+tan(α)·(b∗+w∗)).

Combing Lemma 3 with the observations above, we
can prove the following lemma.

Lemma 5 errorF (pipj) 6 error∗F (pipj) 6 2
√

2(1 +
ε)(1 + 4 tan(α)) · errorF (pipj)

With ε and α sufficiently small, we get our final result.

Theorem 6 There is a streaming algorithm that
maintains a 2k-simplification for arbitrary paths un-
der the Fréchet error function and that is (4

√
2 + ε)-

competitive with respect to Opt(k). The algorithm
uses O(k2 1√

ε
log2(1

ε)) additional storage and each

point is processed in O(k 1√
ε
log2(1

ε)) amortized time.

References

[1] P.K. Agarwal, S. Har-Peled, N.H. Mustafa and
Y. Wang. Near-linear time approximation algorithms
for curve simplification. Algorithmica 42:203–219
(2005).

[2] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. Comput.
Geom. Appl. 5:75–91 (1995).

[3] T.M. Chan. Faster core-set constructions and data-
stream algorithms in fixed dimensions. Comput.
Geom. Theory Appl. 35:20–35 (2006).

[4] M. Godau. A natural metric for curves: Computing
the distance for polygonal chains and approximation
algorithms. In Proc. 8th Annu. Sympos. Theoret. Asp.
Comput. Sci.(STACS), pages 127–136, 1991.

[5] M.T. Goodrich. Efficient piecewise-linear function
approximation using the uniform metric. Discr. Com-
put. Geom. 14:445–462 (1995).

[6] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, and
J.S. Snoeyink. Approximating polygons and subdi-
visions with minimum link paths. Int. J. Comput.
Geom. Appl. 3:383–415 (1993).

[7] S.L. Hakimi and E.F. Schmeichel. Fitting polygonal
functions to a set of points in the plane. CVGIP:
Graph. Models Image Process. 53:132–136, 1991.

[8] H. Imai and M. Iri. Polygonal approximations of
a curve-formulations and algorithms. In: G.T.
Toussaint (ed.), Computational Morphology, North-
Holland, pages 71–86, 1988.

80

EWCG 2007, Graz, March 19–21, 2007

Computational Geometry through the Information Lens

Erik Demaine

Esther and Harold E. Edgerton Professor, MIT
Associate Professor of Electrical Engineering and Computer Science

Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA 02139, USA
edemaine@mit.edu

A central issue in computational geometry is the discrepancy between the idealized geo-
metric view of points and lines with infinite precision, and the realistic computational
view that everything is represented by (finitely many) bits. The geometric view is in-
spired by Euclidean geometric constructions from circa 300 BC. The computational view
matches the reality of digital computers as we know them today and as set forth by
Turing in 1936. This discrepancy is traditionally seen as negative: theoretically simple
algorithms with infinite precision become difficult to implement in practice with finite
precision. A new body of research views the finite-precision reality to be a feature, not
a bug, and analyzes the extent to which it can be exploited to obtain faster algorithms
than possible for infinite precision.

The bounded-precision / information-theoretic viewpoint has proved extremely successful
in the field of (one-dimensional) data structures, reaching tight upper and lower bounds
for many fundamental problems. A simple example, hashing, tells us that searching for
an exact copy of a query item in a set of n items requires around lg n bits of information
about the query, regardless of the domain. A more complex example, fusion trees, tells us
that we need only b bits of information to search for the one-dimensional nearest neighbor
among b numbers each b bits long. The information-theoretic view has led to solutions
to long-standing open problems in data structures for both finite- and infinite-precision
problems, as well as a better understanding of practical uses of finite precision such as
radix sort.

The past year has seen the first exploitation of bounded precision in two-dimensional,
nonorthogonal problems. We now have data structures for static planar point location
and dynamic convex hulls with sublogarithmic query time, and algorithms for con-
structing Voronoi diagrams in near-linear time. This work starts an exciting new line of
research that is far more challenging than classic one-dimensional problems. Our goal is
to elucidate the fundamental ways in which geometric information such as points and
lines can be decomposed in algorithmically useful ways, enabling a deeper understanding
of the relative difficulty of geometric problems.

81

23rd European Workshop on Computational Geometry, 2007

Smoothed Analysis of Probabilistic Roadmaps

Siddhartha Chaudhuri∗ Vladlen Koltun∗

Abstract

The probabilistic roadmap algorithm is a leading
heuristic for robot motion planning. It is extremely ef-
ficient in practice, yet its worst case convergence time
is unbounded as a function of the input’s combina-
torial complexity. We prove a smoothed polynomial
upper bound on the number of samples required to
produce an accurate probabilistic roadmap, and thus
on the running time of the algorithm, in an environ-
ment of simplices. This sheds light on its widespread
empirical success.

1 Introduction

Smoothed analysis It is well-documented that
many geometric algorithms that are extremely effi-
cient in practice have exceedingly poor worst-case
performance guarantees. Smoothed analysis [15] ad-
dresses this issue by observing that geometric inputs
often contain a small amount of random noise, such as
with point clouds generated by a laser scanner [12].
It can be argued that small degrees of randomness
creep into geometric inputs even if they are created
by a human modeler [14]. By this reasoning, finely
tuned worst-case examples have a low probability of
arising and should not disproportionately skew theo-
retical measures of algorithm performance.

Smoothed analysis [15] measures the maximum over
inputs of the expected running time of the algorithm
under slight random perturbations of those inputs.
For example, let A ∈ Rn×d specify a set of n points
in Rd, and let fX(A), where fX : Rn×d 7→ R, be
a measure of the performance of algorithm X on A.
Then the smoothed performance of X is

max
A∈Rn×d

ER∼N
[
fX(A + ‖A‖R)

]
,

where ‖A‖ denotes the Frobenius norm of A and
N = N(0, σ2In×d) is a Gaussian distribution in Rn×d

with mean 0 and variance σ2. The parameter σ con-
trols the magnitude of the random perturbation, and
as it varies from 0 to ∞ the smoothed performance
measure interpolates between worst-case and average-
case performance.

∗Computer Science Department, 353 Serra Mall,
Stanford University, Stanford, CA 94305, USA;
{sidch,vladlen}@stanford.edu. The first author was
supported by a PACCAR Inc Stanford Graduate Fellowship.

Probabilistic roadmaps The probabilistic roadmap
(PRM) algorithm revolutionized robot motion plan-
ning [8, 10]. It is a simple heuristic that exhibits rapid
performance and has become the standard algorithm
in the field [4, 5, 13]. Yet its worst-case running time
is unbounded as a function of the input’s combinato-
rial complexity. The basic algorithm for constructing
a probabilistic roadmap is as follows:

Sample uniformly at random a set of points,
called milestones, from the configuration space
C of the robot. Keep only those milestones
that lie in the free configuration space Cfree.1
Let V be the resulting point set. For every
u, v ∈ V , if the straight line segment between
u and v lies entirely in Cfree, add {u, v} to the
set of edges E, initially empty. The graph G =
(V,E) is the probabilistic roadmap.

Given such a roadmap G, a motion between two
points p, q in Cfree can be constructed as follows:

Find a milestone p′ (resp., q′) in V that is
visible from p (resp., from q). If p′ and q′ lie
in different connected components of G, report
that there is no feasible motion between p and
q. Otherwise plan the motion using a path in
G that connects p′ and q′.

The above PRM construction and query algorithms
can be efficiently implemented in very general set-
tings. The outstanding issue is what the number
of samples should be to guarantee (in expectation)
that G accurately represents the connectivity of Cfree.
Clearly, for the algorithm to be accurate there should
be a milestone visible from any point in Cfree, and
there should be a bijective correspondence between
the set of connected components of G and the set
of connected components of Cfree. Unfortunately, the
number of random samples required to guarantee this
can be made arbitrarily large even for very simple
configuration spaces [5].

A number of theoretical analyses provide bounds
for the number of samples under assumptions on the

1A robot’s configuration space is the set of physical posi-
tions it may attain (which may or may not coincide with
obstacles), parametrised by its degrees of freedom (so a
robot with d degrees of freedom has a d-dimensional con-
figuration space). The robot’s free configuration space is
the subset of these positions which do not coincide with
obstacles, i.e. are possible in real life. These terms are
standard in the motion planning literature.

82

EWCG 2007, Graz, March 19–21, 2007

structure of Cfree such as goodness [2, 9], expansive-
ness [6], and the existence of high-clearance paths [7].
However, none of these assumptions were justified in
terms of realistic motion planning problems. In prac-
tice, the number of random samples is chosen ad hoc.

Contributions This paper initiates the use of
smoothed analysis to explain the success of PRM. We
model the configuration space using a set of n sim-
plices in Rd whose vertices are subject to Gaussian
perturbation with variance σ2. We prove a smoothed
upper bound on the required number of milestones
that is polynomial in n and 1

σ . The result extends to
all γ-smooth perturbations, see below.

In order to achieve this bound we define a space
decomposition called the locally orthogonal decom-
position. Previously known decompositions, like the
vertical decomposition [3, 11] and the “castles in the
air” decomposition [1] turn out to be unsuitable for
our purpose. We prove that for the roadmap to ac-
curately represent the free configuration space it is
sufficient that a milestone is sampled from every cell
of this decomposition (Corollary 2). We then prove a
smoothed lower bound on the volume of every decom-
position cell (Corollary 5). This leads to the desired
bound on the number of milestones (Theorem 6).

Our result is only the first step towards a convinc-
ing theoretical justification of PRM. The analysis is
quite challenging already for the simple representa-
tion of the configuration space using independently
perturbed simplices. We suggest extensions to more
general configuration space models as future work.

2 Bounding the Number of Milestones

Notation Two objects are ε-close (ε-distant) if the
shortest distance between them is at most (at least) ε.
A⊕B denotes the Minkowski sum of A and B. Bd(r)
denotes the d-ball of radius r, and Sd−1(r) denotes its
boundary (the (d− 1)-sphere of radius r).

The model Let Σ be a fixed, convex, polyhedral
bounding box for Cfree in Rd, where d is assumed
to be constant. This is the domain from which the
milestones are sampled by the PRM algorithm. Let
D be the diameter and Din be the inner diameter of
Σ (the inner diameter of a region is the diameter of
the largest ball contained completely within the re-
gion). Let S be a set of n (d − 1)-simplices in Σ.
These are the C-space obstacles in our model. Thus
Cfree = Σ \

⋃
s∈S s.

A probability distribution D on Rd with density
function µ(.) is said to be γ-smooth, for some γ ∈ R,
if

1. µ(x) ≤ γ for all x ∈ Rd, and

2. given any hyperplane H, a point distributed un-
der D is almost surely not on H.

A symmetric d-variate Gaussian distribution with
variance σ2 (covariance matrix σ2Id) is Θ

(
1

σd

)
-

smooth. We assume that each vertex of each sim-
plex in S is independently perturbed according to a
γ-smooth distribution within the domain.

We note that these simplices may also be thought
of as boundary elements of full-dimensional polyhe-
dral obstacles. Our upper bound on the the num-
ber of samples required to build an accurate roadmap
applies verbatim, since we will discard those samples
which fall in the interior of these polyhedra. However,
our analysis is then not completely realistic because
our perturbation model destroys the connectivity of
these boundaries — an improved model and its anal-
ysis form a possible avenue of future work (see the
Conclusion section).

The locally orthogonal decomposition The locally
orthogonal decomposition �(S) of S is the arrange-
ment of the following two collections of hyperplanes:

• Aff(s) for each s ∈ S.

• The hyperplane orthogonal to s that is spanned
by f (i.e. contains f , since f is of lower dimen-
sion), for each s ∈ S and each facet f of s.

Hyperplanes of the second type are called walls. A
facet of �(S) is bound if it is contained in some s ∈ S,
otherwise it is free. In the following, the decompo-
sition is assumed to be restricted to Σ. The second
property of γ-smooth distributions ensures that under
our perturbation model, �(S) is almost surely in gen-
eral position. We readily obtain the following lemma
and its obvious corollary.

Lemma 1 Let c1 and c2 be two cells of �(S) that
are incident at a free facet. Then for any p1 ∈ c1 and
p2 ∈ c2, the line segment between p1 and p2 is disjoint
from all s ∈ S.

Corollary 2 If a milestone is placed in each cell of
�(S) then any two points that can be connected by a
path in Cfree can also be connected by a piecewise lin-
ear path whose only internal vertices are milestones.

Volume bound Corollary 2 implies that it suffices to
place a milestone in every cell of �(S). To show that
this can be accomplished with a polynomial number
of samples we prove a high-probability lower bound
on the volume of each cell of �(S). This is achieved
with the help of the following simple lemma.

Lemma 3 Let A(H) be the arrangement induced by
a set of hyperplanes H. If every vertex v of A(H)

83

23rd European Workshop on Computational Geometry, 2007

is ε-distant from every hyperplane H ∈ H for which
v 6∈ H, then the volume (k-dimensional measure) of
any k-face of the arrangement is at least εk/k!, for
1 ≤ k ≤ d.

Lemma 3 implies that volume bounds can be proved
through vertex-hyperplane separation bounds. Ac-
cordingly, Section 3 is devoted to proving the follow-
ing theorem:

Theorem 4 Consider a vertex v and a hyperplane H
of �(S) such that v 6∈ H, and let ∆ := min{1, Din}.
Given ε ∈ [0,∆), v is ε-close to H with probability at
most

O
(
ε1−α max{γ, γd2

}
)

for any α > 0.

Note that all terms involving only the constants
d and D are subsumed into the O(.) notation. The
number of hyperplanes in �(S) is O(n) and the num-
ber of vertices of �(S) is O(nd). A union bound and
an application of Lemma 3 thus yield the following
corollary to Theorem 4.

Corollary 5 Each cell of �(S) has volume at least ε
with probability at least 1− ω if

ε ≤ min
{

K ω
d

1−α n−
d(d+1)
1−α

(
max{γ, γd2

}
)− d

1−α

,
∆d

d!

}
for any α > 0 and an appropriate constant K.

If each cell of �(S) has volume at least ε, standard
probability theory implies that the expected number
of samples sufficient for placing a milestone in every
cell is O

(
1
ε log 1

ε

)
. Applying Corollary 5, we conclude

that with high probability, a set of Poly(n, γ) samples
from Σ is expected to place a milestone in every cell of
�(S). This yields our main theorem, which we state
in the special case of Gaussian perturbations.

Theorem 6 Let a free configuration space be de-
fined by n (d− 1)-simplices in Rd within a fixed do-
main. If independent Gaussian perturbations of vari-
ance σ2 are applied to the simplex vertices then the
expected number of uniformly chosen random sam-
ples required to construct an accurate probabilistic
roadmap is polynomial in n and 1

σ .

3 Distance Bounds

This section forms the technical bulk of the analy-
sis and is devoted to proving Theorem 4. The one-
dimensional case admits a simple proof, so we assume
d ≥ 2 in the balance of this paper. The hyperplane H
can be of three types, which we analyse separately:

1. The affine span of s ∈ S.

2. A wall spanned by a facet of s ∈ S.

3. A hyperplane defining the boundary of Σ.

3.1 Affine Spans of Simplices

Theorem 7 Consider a fixed point p in Rd. Given
0 ≤ k < d, let k + 1 points U = {u1, u2, . . . , uk+1} be
distributed independently and γ-smoothly in Σ. The
probability that the affine span of U is ε-close to p is
at most

Kεd−kγk+1

for ε ≥ 0 and a constant K depending on k, d and D.

Proof. (Sketch) For k = 0 the result is trivial. As-
sume 1 ≤ k ≤ d

2 . We will integrate over all k-flats
formed by (k + 1)-tuples of points. For a given u1,
the k-subspace F − u1 of Rd can be represented as
the span of k orthogonal unit vectors v1, v2, . . . , vk.
We define a particular onto mapping φ between k-
tuples of points drawn from Sd−k and orthonormal
bases for k-flats in Rd that ensures that the localiza-
tion of a k-tuple to a differential element ensures a
corresponding spatial localization of the image k-flat.
With this localization, we can assume that the k-flat
F has the same orientation as a fixed subspace F 0,
and it can be entirely parametrized by a single point
on it, say u1. The point p is ε-close to the the k-flat iff
u1 lies in (p+F 0)⊕Bd−k(ε) — the probability of this
happening is at most γ times the volume of the latter
region. The result follows by integration over k-tuples
of points from Sd−k. We omit the mathematical de-
tails of the mapping φ and of the integration. The
case k > d

2 is handled by considering the orthogonal
complement of F − u1. �

The following corollary is immediate.

Corollary 8 For nonnegative integers k, k′ that sat-
isfy k + k′ < d, consider an arbitrarily distributed
k′-flat F in Rd, as well as a set U = {u1, . . . , uk+1} of
γ-smoothly distributed points in Σ, independent of F
and of each other. The shortest distance between F
and the affine span of U is at most ε with probability
at most

Kεd−k−k′γk+1

for ε ≥ 0 and a constant K depending on k, d and D.

From Theorem 7 we see that a hyperplane-vertex
pair of �(S), in which the hyperplane is the affine
span of a simplex s, and the vertex v is defined entirely
by hyperplanes not associated with s, is ε-close with
probability at most polynomial in ε and γ. Specifi-
cally, the bound is Kεγd for a constant K depending
on d and D. The “local orthogonality” of �(S) al-
lows us to extend the use of Corollary 8 to the case
when the vertex is formed by the intersection of one
or more walls supporting s with hyperplanes not as-
sociated with s.

84

EWCG 2007, Graz, March 19–21, 2007

3.2 Walls Supporting Simplices

When the hyperplane is a wall spanned by a simplex
facet, the analysis is trickier. We divide our work into
three cases based on the interdependence of the wall
and the vertex. These cases may be summarised as:

1. The wall and the vertex are entirely independent.

2. The wall and the vertex depend on the same sim-
plex but the vertex does not lie in the affine span
of that simplex.

3. The wall and the vertex depend on the same sim-
plex and the vertex lies in the affine span of that
simplex.

The mathematical details are too involved for this
abstract and the reader is encouraged to refer to the
full version. We will merely comment that the tech-
niques used are similar to those used to prove The-
orem 7, and involve, in the last two cases, a study
of the angle between two faces of a simplex, which is
where we obtain the mysterious constant α (from the
inequality log x ≤ Kαxα, for any x > 1, α > 0 and a
constant Kα depending only on α).

3.3 The Boundary of the Domain

Again, the analysis of this final case that deals with
hyperplanes constituting the boundary of Σ is omit-
ted due to space limitations. In brief, we use results
from Sections 3.1 and 3.2 to show that every vertex
of �(S) (other than those of the bounding box) fol-
lows a smooth distribution and thus prove that the
probability of the vertex being ε-close to a boundary
hyperplane is at most Kε max{γ, γd2}.

This concludes the proof of Theorem 4.

Acknowledgements

We are grateful to Dan Halperin for crucial early dis-
cussions and to Jean-Claude Latombe for his support
throughout this project.

References

[1] B. Aronov and M. Sharir. Castles in the air revis-
ited. Disc. and Comp. Geom., 12:119–150, 1994.

[2] J. Barraquand, L. E. Kavraki, J.-C. Latombe, T.-
Y. Li, R. Motwani, and P. Raghavan. A random
sampling scheme for path planning. Int. J. of
Robotics Research, 16:759–774, 1997.

[3] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and
M. Sharir. A singly-exponential stratification
scheme for real semi-algebraic varieties and its
applications. Th. Comp. Sci., 84:77–105, 1991.

[4] R. Geraerts and M. Overmars. A comparative
study of probabilistic roadmap planners. In Proc.
5th W. on Alg. Founds. of Robotics, pages 43–59,
2002.

[5] D. Hsu, J.-C. Latombe, and H. Kurniawati.
On the probabilistic foundations of probabilistic
roadmap planning. Int. J. of Robotics Research,
25(7):627-643, 2006.

[6] D. Hsu, J.-C. Latombe, and R. Motwani. Path
planning in expansive configuration spaces. Int.
J. of Comp. Geom. and Apps., 9:495–512, 1999.

[7] L. E. Kavraki, M. N. Kolountzakis, and J.-C.
Latombe. Analysis of probabilistic roadmaps for
path planning. IEEE Trans. on Robotics and Au-
tomation, 14:166–171, 1998.

[8] L. E. Kavraki and J.-C. Latombe. Probabilistic
roadmaps for robot path planning. In K. Gupta
and A. del Pobil, editors, Practical Motion Plan-
ning in Robotics: Current Approaches and Future
Directions, pages 33–53, 1998.

[9] L. E. Kavraki, J.-C. Latombe, R. Motwani, and
P. Raghavan. Randomized query processing in
robot path planning. In Proc. 27th ACM Symp.
on Th. of Computing, pages 353–362, 1995.

[10] L. E. Kavraki, P. Svestka, J.-C. Latombe, and
M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration
spaces. IEEE Trans. on Robotics and Automa-
tion, 11:566–580, 1996.

[11] V. Koltun. Almost tight upper bounds for verti-
cal decompositions in four dimensions. J. of the
ACM, 51:699–730, 2004.

[12] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. E. Ander-
son, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital Michelangelo project: 3D scanning
of large statues. In SIGGRAPH, pages 131–144,
2000.

[13] G. Song, S. L. Thomas, and N. M. Amato. A
general framework for PRM motion planning. In
Proc. Int. Conf. on Robotics and Automation,
pages 4445–4450, 2003.

[14] D. A. Spielman and S.-H. Teng. Smoothed anal-
ysis of algorithms. In Proc. of the Int. Congress
of Mathematicians, 2002.

[15] D. A. Spielman and S.-H. Teng. Smoothed anal-
ysis of algorithms: Why the simplex algorithm
usually takes polynomial time. J. of the ACM,
51:385–463, 2004.

85

23rd European Workshop on Computational Geometry, 2007

Polygon Exploration with Discrete Vision

Sándor P. Fekete∗ Christiane Schmidt* †

Abstract

With the advent of autonomous robots with two-
and three-dimensional scanning capabilities, classical
visibility-based exploration methods from computa-
tional geometry have gained in practical importance.
However, real-life 3D laser scanning of useful accuracy
does not allow the robot to scan continuously while
in motion; instead, it has to stop each time it sur-
veys its environment. This requirement was studied
by Fekete, Klein, and Nüchter for the subproblem of
looking around a corner, but until now has not been
considered for whole polygonal regions.

We give the first comprehensive algorithmic study
for this important algorithmic problem that combines
stationary art gallery-type aspects with watchman-
type issues in an online scenario. We show that there
is a lower bound of Ω(

√
n) on the competitive ratio

in an orthogonal polygon with holes; we also demon-
strate that even for orthoconvex polygons, a compet-
itive strategy can only be achieved for limited aspect
ratio A, i.e., for a given lower bound on the size of
an edge. Our main result is an O(log A)-competitive
strategy for simple rectilinear polygons, which is best
possible up to constants.

1 Introduction

Visibility Problems: Old and New. The study
of geometric problems that are based on visibility is a
well-established field within computational geometry.

In recent years, the development of real-world au-
tonomous robots has progressed to the point where ac-
tual visibility-based guarding, searching, and explor-
ing become very serious practical challenges, offering
new perspectives for the application of algorithmic so-
lutions. However, some of the technical constraints
that are present in real life have been ignored in the-
ory; taking them into account gives rise to new algo-
rithmic challenges, necessitating further research on
the theoretical side, and also triggering closer interac-
tion between theory and practice.

One technical novelty that has lead to new pos-
sibilities and demands is the development of high-

∗Abteilung für Mathematische Optimierung, TU
Braunschweig, D-38106 Braunschweig, Germany,
Email: {s.fekete,c.schmidt}@tu-bs.de, http://www.math.tu-
bs.de/mo

†Supported by DFG Focus Program “Organic Computing”
(SPP 1183) project “AutoNomos” (Fe 407/11-1).

resolution 3D laser scanners that are now being used
in robotics. By merging several 3D scans, the robot
Kurt3D builds a virtual 3D environment that allows
it to navigate, avoid obstacles, and detect objects [8];
this makes visibility problems quite practical, as actu-
ally using good trajectories is now possible and desir-
able. However, while human mobile guards are gener-
ally assumed to have full vision at all times, Kurt3D
has to stop each time it scans the environment, taking
in the order of several seconds for doing so; the typical
travel time between scans is in the same order of mag-
nitude, making it necessary to balance the number of
scans with the length of travel, and requiring a com-
bination of aspects of stationary art gallery problems
with the dynamic challenge of finding a short tour.

In this paper, we give the first comprehensive al-
gorithmic study of visibility-based online exploration
in the presence of scan cost, i.e., discrete vision, by
considering an unknown polygonal environment, i.e.,
we consider the resulting Online Watchman Problem
with Discrete Vision (OWPDV). This is not only in-
teresting and novel in theory, it is also an important
step in making algorithmic methods from computa-
tional geometry more useful in practice. We focus on
the case of rectilinear polygons, which is particularly
relevant for practical applications, as it includes al-
most all real-life buildings.

Classical Related Work. Using a fixed set of po-
sitions for guarding a known polygonal region is the
classical art gallery problem [9]. Note that Schuchardt
and Hecker [10] showed that finding a minimum car-
dinality set of guards is NP-hard, even for a simple
rectilinear region; quite easily, this also implies that
the offline version of our problem (minimum watch-
man problem with discrete vision) is also NP-hard,
even in simple rectilinear polygons.

Finding a short tour along which one mobile guard
can see a given region in its entirety is the watch-
man problem; see Mitchell [7] for a survey. For simple
rectilinear polygons and distance traveled being mea-
sured according to the Manhattan metric, Deng et
al. [2] gave an online algorithm for finding an optimum
watchman route (i.e. c = 1); note that our approach
for the problem with discrete vision is partly based on
this GREEDY-ONLINE algorithm, but needs consid-
erable additional work.

Searching with Discrete Penalties. In the pres-
ence of a cost for each scan, any optimal tour consists
of a polygonal path, with the total cost being a lin-

86

EWCG 2007, Graz, March 19–21, 2007

ear combination of the path length and the number
of vertices in the path.

Somewhat surprisingly, scan cost (however small it
may be) causes a crucial difference to the well-studied
case without scan cost, even in the limit of infinitesi-
mally small scan times: quite recently, Fekete et al. [3]
have established an asymptotically optimal competi-
tive ratio of 2 for the problem of looking around a
corner with scan cost, as opposed to the optimal ratio
of 1.2121. . . without scan cost [6].

Our Results. Our mathematical results are as
follows, cf. [4]:

• We show that there is a lower bound of Ω(
√

n)
on the competitive ratio in a rectilinear polygon
with holes; this is markedly higher than in the
case of continuous vision, where the best lower
bound is Ω(log n). Note that this lower bound is
purely combinatorial, as it only requires coordi-
nates that are strongly polynomial (even linear)
in n.

• We demonstrate that even in extremely simple
cases, a competitive strategy is only possible if
maximum and minimum edge length in the poly-
gon are bounded, i.e., for limited resolution of
the scanning device; more precisely, we give an
Ω(log A) lower bound on the competitive ratio for
the case of orthoconvex polygons that depends
logarithmically on the aspect ratio A of the re-
gion that is to be searched; if the input size of
coordinates is not taken into account, we get an
Ω(n) lower bound on the competitive factor.

• For the natural special case of simple rectilin-
ear polygons (which includes almost all real-life
buildings), we provide a matching competitive
strategy with performance O(log A).

2 Polygons with Holes

Theorem 1 Let P be a polygonal region with n +
2 holes and O(n) edges whose lengths are multiples
of 1/10 not exceeding O(n). Then no deterministic
strategy can achieve a competitive ratio better than
Ω(
√

n), even if P is rectilinear.

Sketch. We construct P as a polygon and add a
number of obstacles as holes to its interior; see Fig-
ure 1 for the overall layout. In-between these holes, we
add small modifications whose exact shape depends
on the tour the robot chooses for exploration. They
are bounded by the green rectangles in Figure 1.

3 Why the Aspect Ratio Matters

We state that an O(log A)-competitive strategy for a
simple orthogonal polygon with aspect ratio A is best
possible, cf. [4].

Theorem 2 Let P be an orthoconvex polygon region
with n edges and aspect ratio A. Then no determin-
istic strategy can achieve a competitive ratio better
than Ω(log A).

4 Simple Rectilinear Polygons

In the following we will develop our strategy
SCANSEARCH for simple rectilinear polygons. We
start by reviewing the strategy GREEDY-ONLINE
for the online watchman problem in simple rectilinear
polygons by Deng, Kameda, and Papadimitriou [2]
that is optimal for continuous vision.

We will deal with a limited aspect ratio by assuming
a minimum edge length of a; for simplicity, we assume
that the cost of a scan is equal to the time a robot
needs for traveling a distance of 1.

GREEDY-ONLINE. A central idea of polygon
exploration is the use of extensions (see [2].) The
basic idea of the GREEDY-ONLINE algorithm is to
identify the clockwise bound of the currently visible
boundary; this is followed by considering a necessary
extension that is defined either by the corner incident
with this bound, or by a sight-blocking corner. This is
based on the proposition of Chin and Ntafos [1] that
there always exists a non-crossing shortest path, i.e.,
a path that visits the critical extensions in the same
circular order as the edges on the boundary that in-
duce them. This property is what we need to establish
for the case of discrete scans.

A definition of a visibility path (a path of a robot
with discrete vision along which the same area is visi-
ble as it would be for a robot with continouos vision)
and modifications for discrete vision to the results by
Chin and Ntafos allow us to reformulate their Lemma
3:

Lemma 3 Any optimum watchman route of a robot
with discrete vision in P will have to visit the essential
edges in the order in which they appear on the bound-
ary of P ′, the new polygon obtained by removing the
”non-essential” portions of the polygon.

Developing a Competitive Strategy for a
Robot with Discrete Vision. Just like in the

starting
point

P

Figure 1: An overview of a construction for n = 6.

87

23rd European Workshop on Computational Geometry, 2007

GREEDY-ONLINE strategy by Deng et al. [2], we
start with identifying the next extension, which is ei-
ther defined by f , the bound of the contiguous visible
part of the boundary, or by b, a sight-blocking corner;
then the boundary is in clockwise order completely
visible up to the extension. Now we merely know that
the identified extension needs to be visited; with dis-
crete vision, the optimum does not necessarily need to
perform a scan on the extension, instead it may also
run beyond it. We distinguish two cases (depending
on the distance to the next extension): If we search
for visibility on the path to the extension, we refer to
the interval case, as we only have an unknown interval
on one (the counterclockwise) side. If we run beyond
the extension, we call this the extension case: beyond
the extension the clockwise side is also unknown. For
simplicity, we compare to an optimal tour in the Man-
hattan metric.

Even situations that are trivial for a robot with con-
tinuous vision may lead to serious difficulties in the
case of discrete vision. This leads to the definition of
non-visible regions (NVRs), as illustrated in Figure 2:
without entering the gray area a watchman with con-
tinuous vision is able to see the bold sides completely.
A robot with discrete vision is only able to see these
bold parts of the boundary if he chooses a scan point
under the northernmost part of the boundary. Such
an area where not (yet) all sides which would be com-
pletely visible with continuous vision (the bold sides)
are visible for a robot with discrete vision is called a
non-visible region (NVR).

Figure 2: If the dark gray point represent the scan po-
sition, a robot with discrete vision cannot see the entire
bold sides, resulting in a non-visible region (NVR), shown
in gray; an NVR is dealt with by performing a binary
search.

Now we assume that without loss of generality, the
known parts of the boundary run north-south and
east-west, and the extension runs north-south. Thus,
we distinguish cases depending on whether we run to
or over an extension, and, furthermore, whether we
reach the extension on an axis-parallel path without
a change of direction.

In case we move beyond an extension, two sub-
cases may occur: either we are able to cover the total
planned length, or a boundary keeps us from doing so.
Our strategy differs in case of a shortened travel dis-
tance, depending on whether the boundary is closed
to the south of our path, or not. If we may cover the
total distance, we draw an imaginary line parallel to
the extension. Then we observe whether the entire

boundary on the opposite side of this line is visible.
If this is the case we say that the line creation is pos-
itive. A positive line creation implies that between
the extension and the imaginary line there is an es-
sential extension (which may be the extension or the
line itself). Otherwise we refer to it as a negative line
creation.

Both in the interval case and the extension case,
our strategy may force the robot to pass some non-
visible regions, which we are going to discover with
a binary search strategy: we use binary search over
a maximal distance as an upper bound (we can show
that the robot needs at most k searches (2k if we have
NVRs on both sides) if the optimum uses k scans).
This yields a reference point for computing the cost
of the optimum to determine an upper bound for the
competitive ratio.

In some cases our robot needs to take a turn, but we
do not know where the optimum turns. Therefore, we
consider the maximum possible corridor for turning,
move in its center and make adjustments to the new
center whenever a width reduction appears. As soon
as it is again required to turn, we adjust to the best
possible position.

The strategy SCANSEARCH. The full details
of the resulting strategy are quite involved, cf. [4]. For
an example of our strategy, see Figure 3, with a = 0.5.
Because of limited space, we just note the following.

Theorem 4 A simple rectilinear polygon allows an
O(log A)-competitive strategy.

5 Conclusions

We have considered the online problem of exploring
a polygon with a robot that has discrete vision. In
case of a rectilinear multi-connected polygon we have
seen that no strategy may have a constant competitive
ratio; even for orthoconvex polygons, it has turned
out that any bound on the competitive factor must
involve the aspect ratio. Finally, we have developed a
competitive strategy for simple rectilinear polygons.
For this purpose it was important that we were able
to order the extensions along the optimal route of a
robot without continuous vision; this enabled us to
compare the cost of the optimum with the cost of a
robot that uses our strategy.

Another question is whether there exists a competi-
tive strategy in case of a more general class of regions:
simple polygons. In this context we face the difficulty
that we do not know where the extensions lie. Thus,
we are not able to give an a-priori lower bound on the
length of the optimum; this is a serious obstacle to
adapting the step length to the one of the optimum;
extending the highly complex method of Hoffmann
et al. [5] for continuous vision to the case of discrete
vision is an intriguing and challenging problem.

88

EWCG 2007, Graz, March 19–21, 2007

starting point

12 34
5

6

7

8

9
10

11 12

13

14
15

16 17

18 19

2021

23

22,2425

26

27
28

29

31

32

33

30,34
35

36
37

38 39

40
41

42

45
4644,47

43,4849

Figure 3: An example for strategy SCANSEARCH. The path of the robot is plotted in dark gray, we use light gray for
binary searches, and dashed dark gray for parts of the path where it improves clarity. Extensions are dotted in black,
some straight connections are dash dot dotted and some line creations are dash dotted. (For clarity, some lines are slightly
offset from their actual position.) Numbered points correspond to turns in the tour, scan points are circled; uncircled
turn points arise when navigating back from fully explored terrain. The first extension may be achieved on a straight,
axis-parallel line. As we face the interval case and no non-visible regions appear on the counterclockwise side up to E,
the robot moves directly to E and takes a scan.

Finally, it is interesting to consider the offline prob-
lem for various classes of polygons. As stated in the
introduction, even the case of simple rectilinear poly-
gons is NP-hard; developing reasonable approxima-
tion methods and heuristics would be both interesting
in theory as well as useful in practice.

References

[1] W.-P. Chin and S. Ntafos. Optimum watchman
routes. Proceedings on the Second Annual ACM
Symposium on Computational Geometry, 28(1):39–
44, 1988.

[2] X. Deng, T. Kameda, and C. H. Papadimitriou. How
to learn an unknown environment I: The rectilinear
case. Journal of the ACM, 45(2):215–245, 1998.

[3] S. P. Fekete, R. Klein, and A. Nüchter. Online search-
ing with an autonomous robot. Computational Ge-
ometry: Theory and Applications, 34:102–115, 2006.

[4] S. P. Fekete and C. Schmidt. Polygon exploration
with discrete vision, 2006. Submitted for publication.

[5] F.Hoffmann, C.Icking, R.Klein, and K.Kriegel. The
polygon exploration problem. SIAM J. Comp.,
31:577–600, 2001.

[6] C. Icking, R. Klein, and L. Ma. An optimal compet-
itive strategy for looking around a corner. Technical
Report 167, Department of Computer Science, Fer-
nUniversität Hagen, Germany, 1994.

[7] J. S. B. Mitchell. Geometric shortest paths and net-
work optimization. In J.-R. Sack and J. Urrutia, ed-
itors, Handbook on Computational Geometry, pages
633–702. Elsevier Science, 2000.

[8] A. Nüchter, H. Surmann, and J. Hertzberg. Auto-
matic classification of objects in 3D laser range scans.
In Proc. 8th Conf. Intelligent Autonomous Systems,
pages 963–970, March 2004.

[9] J. O’Rourke. Art Gallery Theorems and Algorithms.
Internat. Series of Monographs on Computer Science.
Oxford University Press, New York, NY, 1987.

[10] D. Schuchardt and H.-D. Hecker. Two NP-hard art-
gallery problems for ortho-polygons. Mathematical
Logic Quarterly, 41:261–267, 1995.

89

23rd European Workshop on Computational Geometry, 2007

Leaving an Unknown Maze with One-Way Roads

Bernd Brüggemann∗ Tom Kamphans∗ Elmar Langetepe∗

Abstract

We consider the problem of escaping from an unknown
polygonal maze under limited resources. The maze
may have passages that can be traversed in only one
direction. It is well-known that in a setting without
’one-way roads’, the Pledge algorithm always finds a
path out of an unknown maze provided that such a
path exists. We extend the Pledge algorithm for our
type of environments and show the correctness of our
solutions.

Apart from the maze-leaving application, we intro-
duce a new type of scenes that combines the advan-
tages of both polygonal scenes (i.e., modelling the geo-
metric shape of the environment) and directed graphs
(i.e., modelling the connectivity of several parts in the
environment). This type might be interesting to con-
sider in other motion-planning tasks such as explo-
ration and search.
Keywords: Online algorithms, motion planning, au-
tonomous robots, Pledge algorithm, one-way roads.

1 Introduction

Imagine you want to leave the old town of a large city.
The city is surrounded by some ring roads. As soon
as you reach this ring, there are traffic signs that lead
you to your destination, but you have no clue how to
get to the ring roads. To make things worse, there are
many one-way roads in the old town [8].

Usually, we model environments like this by polygo-
nal scenes; see, for example, [12, 14, 3]. If we have lim-
ited ressources and, particularly, cannot build a map
of the environment, the task of leaving an unknown
maze can be solved using the well-known Pledge al-
gorithm, see Algorithm 1.1 The Pledge algorithm as-
sumes that the searcher is able to recognize and fol-
low a wall in a specified direction while counting the
turning angles (w.l.o.g. we assume that the searcher
uses the left-hand rule; that is, the searcher keeps the
obstacle boundary on its left side). We assume that
the searcher has no vision and knows—somehow or
other—when it leaved the maze.

It was shown by Abelson and diSessa [1] and Hem-
merling [7] that a searcher will escape from a polyg-

∗University of Bonn, Institute of Computer Science I, 53117
Bonn, Germany.

1See also [1, 7, 10]. For an implementation of the Pledge
algorithm see [6].

Algorithm 1: Pledge [1]

ϕ := 0.
REPEAT

REPEAT
Move in direction ϕ in the free space.

UNTIL Searcher hits an obstacle.
REPEAT

Follow the wall using the left-hand rule.
Count the overall turning angle in ϕ.

UNTIL Angle counter ϕ is equal to 0.
UNTIL Searcher is outside the maze.

onal maze using the Pledge algorithm, provided that
there is such a solution, and provided that the agent is
error free. For sufficient conditions on the searcher’s
errors to ensure a successful application of the Pledge
algorithm see [9, 8].

P1

e

s

Figure 1: Applying the Pledge algorithm to environ-
ments with one-way roads does not work.

We consider the case that there are one-way roads
in the surrounding. We can model this problem by
adding directed edges between obstacle boundaries.
The searcher is allowed to cross these edges only from
the left to the right—seen in the direction of the
edge—but never the opposite way. It is easy to see
that we cannot simply apply the Pledge algorithm
considering one-way roads as obstacle edges if we en-
counter them from the wrong side and otherwise pass
them. Figure 1 shows an example with one one-way
road e. A searcher starting in s hits the obstacle P1,
passes e, and leaves P1. Following the second obstacle,
the searcher meets the exit side of e. Thus, it follows
e and circles P1 again. The angle counter gets zero
in the same vertex of P1 as in the first visit and the
searcher is trapped in an endless loop. Therefore, the

90

EWCG 2007, Graz, March 19–21, 2007

simple consideration of one-way roads does not work
and we have to use a more sophisticated strategy.

2 Preliminaries

We are given a scene,M = (P, E), where P is a set of
simple polygons and E is a set of directed edges, whose
start- and endpoints lie on the boundary of a polygon.
We call the left side of an edge e ∈ E the entrance
of the one-way road marked by e, the right side the
exit. The searcher is allowed to pass e only from the
entrance side; passing e from the exit side is forbidden.
We assume that the searcher perceives exits as walls.
Nevertheless, we assume that the searcher does not
have sufficient memory to store a map of the whole
scene. We allow space only in |E|, not in |P|.

We consider two different models: First, the
searcher is not able to distinguish entrances; that is,
when meeting an entrance, the searcher is not able to
determine whether this entrance is met for the first
time or has been met before. In the second setting
we assume that the searcher is able to distinguish en-
trances. Either every entrance has a unique identifier
that the searcher can read or the searcher is able to
mark a discovered entrance.

s

A B

Figure 2: An unfair maze: The searcher cannot tell
whether A or B leads to the exit, and it is trapped if
it chooses to pass B.

Further, we assume that for every point in the free
space, Cfree := R2\

⋃
P∈P

◦
P , there exists a path to

an exit; we call such an environment a fair maze. In
an unfair maze, the searcher may get stuck. See, for
example, Figure 2: Starting in s, the searcher cannot
determine whether the exit is behind one-way road A
or B. Once the searcher passed the wrong road, B, it
is trapped!

Definition 1 Given a scene, M = (P, E), we can
consider every edge in E as a wall. Now, the free
space, Cfree, divides into several path-connected com-
ponents.2 We call these components the regions of
M.

2A set S ⊆ R2 is path connected, if for every a, b ∈ S there
is a path from a to b that is completely inside S.

3 Leaving a Maze with One-Way Roads

The difference between usual polygonal scenes and
our type of environments is that we have edges that
mark the entrance to a one-way road. Now, when the
searcher reaches an entrance, it has the choice to en-
ter the one-way road or to consider the entrance edge
as a wall and follow the edge.

It is easy to see that any strategy with periodic
choices (e.g., ’enter every second one-way road’ or ’en-
ter a one-way road every second time that its entrance
is met’) fails: For such a strategy, we can construct
a maze where the given periodic choice ends up in an
endless loop. However, any fair maze is solvable:

Lemma 1 For every fair maze,M = (P, E), there is
a function β : { 1, . . . , |E| } −→ { enter,bypass } such
that a searcher using the Pledge algorithm can leave
M if it enters a one-way road, ei, iff β(i) = enter.

Proof. We start with β(i) = bypass ∀i. In ev-
ery maze there exists a region, R1, from which the
searcher using the Pledge algorithm can escape with-
out crossing a one-way road. Remark that R1 is the
only unbounded region inM. Now, we remove every
obstacle and one-way road in R1 and proceed recur-
sively until we removed every obstacle. For a given
start point, there is a sequence Rk, . . . , R1 of regions
that the searcher has to pass to move from s to R1.
Now, we define β(i) := enter for every ei that leads
from a region Rj to Rj−1, 1 < j ≤ k. �

3.1 Indistinguishable One-Way Roads

In this section, we assume that the searcher is not able
to distinguish one-way roads. That is, if the searcher
meets an entrance it cannot tell whether this is a new
entrance or one that has been met before. Algorithm 2
solves the problem in this setting: We store a control
word w ∈ { ′r′, ′p′, ′b′ }∗ (see Algorithm 2) where ev-
ery character determines the searcher’s behavior when
meeting an entrance. We evaluate this word charac-
ter by character and generate the next word in lexi-
cographical order when every character is evaluated.
Between two entrances, the searcher moves using the
Pledge algorithm.

Theorem 2 Algorithm 2 finds the exit from every
fair maze.

Proof. We use a proof idea similar to [7]. First, we
show that there is a universal control word, wuni, that
allows the searcher to escape from every start point.
Let the searcher start in s1 and let ei be the first one-
way road that the searcher meets. By Lemma 1, there
is a control word wi that directs the searcher to the
exit. Now, let the searcher start in s2 and met an-
other one-way road ej 6= ei. If the searcher applys wi

91

23rd European Workshop on Computational Geometry, 2007

Algorithm 2: Pledge with indistinguishable one-way
roads

• w := ′′p′′, i := 1.

• Use the Pledge algorithm, until a one-way
entrance is met. If the ith character in w is

’p’: enter the one-way road
’b’: do not enter
’r’: angle counter ϕ := ϕ mod 2π

Increment i.
If i > |w| generate the next word and i := 1.
Continue the Pledge algorithm.

starting in ej , it either escapes or ends up on another
one-way road ek. Now, there is a word wk that leads
to the exit, and the concatenation w1 := wk ◦ ′r′ ◦ wi

finds the exit from two one-way roads. Note that it
is necessary to ’reset’ the angle counter between two
control words to ensure that wk leads to the exit for
every angle-counter value that the searcher may have
when it meets ek, because two different angle-counter
values may cause different paths even for the same
control word.

This way we continue, until our control word, wuni,
finds the exit from every one-way road. Algorithm 2
enumerates all words in { ′r′, ′p′, ′b′ }∗ and, thus, even-
tually finds wuni. �

Needless to mention that Algorithm 2 may try a lot
of words until it finds the exit and uses O(|E|2) space,
so this algorithm is more of theoretical value.

3.2 Distinguishable One-Way Roads

Now, we assume that the searcher is able to uniquely
identify entrances to one-way roads. Clearly, this
model is more powerful than the one used in the
preceding section: We have the advantage of using
the entrances of one-way roads as landmarks. Thus,
we can uniquely identify regions by the entrances on
their outer boundary. Our algorithm builds a graph
of the environment with one node per region and
directed edges representing the one-way roads lead-
ing from one region to another. We traverse this
graph using an online strategy for the exploration of
directed graphs, see Papadimitriou [13], Albers and
Henzinger [2], Kwek [11], or Fleischer and Trippen [5].
The graph exploration strategy is the framework for
our maze leaving strategy. Algorithm 3 is a subroutine
that is called by the graph explorer when the search
begins and every time the searcher has just passed a
one-way road that has never been passed before.

Algorithm 3, in turn, uses basically the Pledge al-
gorithm to explore a region. If the searcher arrives
at an entrance, the Pledge algorithm is interrupted

to gather some information about the region. Algo-
rithm 3 uses a marker for every one-way roads either
to store a pair (from, to) of regions or to mark the one-
way road as ’unknown so far’, ’open forever’, or ’closed
forever’. The latter is used for one-way roads that are
part of the inner boundary of a region that is already
visited (i.e., lead to regions that are completely sur-
rounded by this region), see Figure 3(i). The exit of
the maze cannot be inside such a region, so we never
have to visit it. We use ’open forever’ for one-way
roads that do not define a region, see Figure 1. For
every other one-way road, the decision whether or not
to enter it is based on the online exploration strategy
for directed graphs.

e

e

(i) (ii)

Figure 3: (i) The searcher surrounded a set of inner
obstacles, (ii) the searcher moved on the outer bound-
ary of a region.

Theorem 3 A graph explorer that calls Algorithm 3
from start point s and after a one-way road is entered
for the first time, finds the exit from every fair maze.

Proof. The Pledge algorithm ensures that we eventu-
ally reach the outer boundary of a region that we enter
either from the start point or after passing a one-way
road: Inside a region we interrupt the Pledge algo-
rithm only when we meet an entrance on the inner
boundary. After surrounding this part of the inner
boundary, we consider this boundary as one obsta-
cle by ’closing’ every one-way road that leads inside.
Then, we continue the Pledge algorithm with the same
angle-counter value as before the interruption. From
the correctness of the Pledge algorithm follows that it
reaches the bounding box of a maze in a setting with-
out one-way roads; thus, in our setting the Pledge
algorithm reaches the outer boundary of a region.

When we reach the first one-way road on the outer
boundary of a region, we interrupt the Pledge algo-
rithm again. We completely circle the outer boundary
discovering every one-way road that leaves the current
region. So we build by and by a graph that contains
a node for every region that we enter and an edge
for every one-way road between regions. The online
graph exploration strategy ensures that this graph is
completely traversed until we find the exit. �

92

EWCG 2007, Graz, March 19–21, 2007

Algorithm 3: Pledge with distinguishable one-way
roads

• Use the Pledge algorithm, until an entrance to a
one-way road e is met.

• If e is ’open forever’ or ’closed forever’ continue
the Pledge algorithm.

• If the ’from’-marker of e is set, update the ’to’-
marker of the most recently passed one-way road.
(The searcher is inside a known region). If both
markers are the same, set the one-way road to
’open forever’ and remove it from the graph.
Continue the graph explorer.

• If e was never met before, store the current angle-
counter value, ωe, and follow the wall using the
left-hand rule until e is met again. On this path,
store all discovered entrances in a list, `, and
count the turning angles. Compare the current
angle-counter value to ωe:

– If the difference is 2π, the searcher has sur-
rounded an inner obstacle (or a set of inner
obstacles), see Figure 3(i). Mark every one-
way road in ` as ’closed forever’. Set the
angle-counter to ωe and continue the Pledge
algorithm.

– If the difference is −2π, the searcher moved
on the outer boundary of a region, see
Figure 3(ii). If no entrance on the outer
boundary has been met before, we have
found a new region: Add a new vertex to
the graph. Set the ’from’ markers of the
one-way roads in ` and the ’to’-marker of
the most recently passed one-way road to
this region. Continue the graph explorer.

Both the graph explorer and Algorithm 3 use
O(|E|) space. The simple strategy by Kwek [11] uses
O(min{ r|E|, dr2+|E| }) edge traversals, where r is the
number of vertices (regions) and d is the number of
edges that have to be added to make the graph Eule-
rian. The more elaborated strategy by Fleischer and
Trippen [5] uses O(d8 |E|) edge traversals. Altogether,
the strategy presented in this section is more applica-
ble than the one shown in the preceding section. But
it assumes, that the searcher is able to distinguish
one-way roads.

4 Conclusion

We introduced polygonal scenes with passages that
can be traversed in only one direction, and considered
the problem of leaving such a scene. This problem was

solved for two different settings—indistinguishable
and distinguishable one-way entrances—by combining
the Pledge algorithm with other techniques that make
the decision whether or not to enter a one-way road:
enumerating all control words and exploring directed
graphs online. Two other approaches are presented in
[4] and in the forthcoming technical report. A strat-
egy that leaves an unknown maze with one-way roads
was implemented on a Khepera II robot [4].

The next step may be to ask, if and how other algo-
rithms known for polygonal scenes such as searching,
navigation, exploration/covering have to be modified
in the presence of one-way roads.

References

[1] H. Abelson and A. A. diSessa. Turtle Geometry. MIT
Press, Cambridge, 1980.

[2] S. Albers and M. Henzinger. Exploring unknown envi-
ronments. In Proc. 12th Annu. ACM Sympos. Theory
Comput., pages 416–425, 1997.

[3] A. Blum, P. Raghavan, and B. Schieber. Navigating in un-
familiar geometric terrain. SIAM J. Comput., 26(1):110–
137, Feb. 1997.

[4] B. Brüggemann. Entkommen aus unbekannten
Labyrinthen mit Einbahnstraßen. Diplomarbeit, Univer-
sity of Bonn, November 2006.

[5] R. Fleischer and G. Trippen. Exploring an unknown graph
efficiently. In Proc. 13th Annu. European Sympos. Algo-
rithms, volume 3669 of Lecture Notes Comput. Sci., pages
11–22. Springer-Verlag, 2005.

[6] U. Handel, T. Kamphans, E. Langetepe, and
W. Meiswinkel. Polyrobot — an environ-
ment for simulating strategies for robot naviga-
tion in polygonal scenes. Java Applet, 2002.
http://www.geometrylab.de/Polyrobot/.

[7] A. Hemmerling. Labyrinth Problems: Labyrinth-Searching
Abilities of Automata. B. G. Teubner, Leipzig, 1989.

[8] T. Kamphans. Models and Algorithms for Online Explo-
ration and Search. Dissertation, University of Bonn, 2005.
http://www.kamphans.de/k-maole-05.pdf.

[9] T. Kamphans and E. Langetepe. The Pledge algorithm
reconsidered under errors in sensors and motion. In Proc.
of the 1th Workshop on Approximation and Online Algo-
rithms, volume 2909 of Lecture Notes Comput. Sci., pages
165–178. Springer, 2003.

[10] R. Klein. Algorithmische Geometrie - Grundlagen, Meth-
oden, Anwendungen. Springer, Heidelberg, 2nd edition,
2005.

[11] S. Kwek. On a simple depth-first search stratey for explor-
ing unknown graphs. In Proc. 5th Workshop Algorithms
Data Struct., pages 345–353, 1997.

[12] V. J. Lumelsky and A. A. Stepanov. Path-planning strate-
gies for a point mobile automaton moving amidst unknown
obstacles of arbitrary shape. Algorithmica, 2:403–430,
1987.

[13] C. H. Papadimitriou. On the complexity of edge travers-
ing. J. ACM, 23:544–554, 1976.

[14] C. H. Papadimitriou and M. Yannakakis. Shortest paths
without a map. Theoret. Comput. Sci., 84(1):127–150,
1991.

93

23rd European Workshop on Computational Geometry, 2007

A Simple Solution To Two-Guard Street Search Problem

John Z. Zhang∗

Abstract

Given a simple polygon P with two prespecified ver-
tices s and g on its boundary and two guards, the two-
guard street search problem asks whether two guards
can move on the boundary of P from s to g in the op-
posite directions such that they always maintain their
mutual visibility. We revisit this problem and present
a simple solution to it.

1 Introduction

A simple polygon is defined as a geometric entity con-
sisting of a set of vertices and a set of closed non-
intersecting segments connecting adjacent vertices.
Those segments compose the boundary of the poly-
gon, which can have extremely complex structures.

The two-guard street search problem was first intro-
duced by Icking and Klein [4]. A street is a simple
polygon P with two prespecified vertices s (the en-
trance) and g (the exit) on its boundary. (In the se-
quel, we denote a street as P (s, g).) s and g divide
the boundary of P into two sides, which are required
to be mutually visible, i.e., any point on one side is
visible to at least one point on the other, and vice
versa. The two-guard street search problem involves
determining whether the two guards can move along
the boundary of P from s to g, one clockwise and the
other counter-clockwise, and maintain their mutual
visibility. If this can be accomplished, P (s, g) is said
to be walkable or searchable.

The problem was further investigated. Heffernan [3]
showed that linear time was sufficient to check the
searchability of a polygon. Tseng et al. [9] studied a
related problem, obtaining, for given a simple polygon
P of n vertices, an O(n log n)-time algorithm to find
all the pairs s and g such that P (s, g) is searchable by
two guards. Bhattacharya et al. [1] proposed a linear-
time algorithm to the same problem. For some other
related work, interested readers are referred to [2, 6,
5, 8].

The rest of the paper is organized as follows. Sec. 2
introduces the notation used throughout the paper.
We will discuss the visibility space diagram of a street
in Sec. 3. In Sec. 4, we will present our simple char-
acterization of searchable streets. We conclude the
paper by discussing some related results in Sec. 5.

∗Department of Mathmatics and Computer Science, Univer-
sity of Lethbridge, zhang@cs.uleth.ca

2 Preliminaries

A simple polygon P is defined by a clockwise sequence
of n distinct vertices (n ≥ 3) and edges that con-
nect adjacent vertices. The edges form the bound-
ary of P , which is denoted as ∂P . We assume that
∂P ⊆ P . The vertices immediately preceding and suc-
ceeding vertex v clockwise are denoted by Pred(v) and
Succ(v), respectively. For any two points a, b ∈ ∂P ,
the polygonal chain of ∂P clockwise from a to b is
denoted by ∂Pcw(a, b).

Succ(r)

Pred(r)

r

B(r)

F(r)

Figure 1: Extensions from a reflex vertex.

We distinguish the reflex vertices of P , whose in-
terior angles inside P are larger than 180o. For a
reflex vertex r, we generate two extensions from it.
The backward extension (resp. forward extension) ex-
tends rSucc(r) (resp. rPred(r)) within P . The back-
ward extension point B(r) (resp. forward extension
point F (r)) is the first intersection between the back-
ward extension (resp. forward extension) and ∂P . See
Fig. 1. Two points u, v ∈ P are said to be mutually
visible if the line segment uv ⊆ P .

In street P (s, g), s and g divide ∂P into two sides.
We call ∂Pcw(s, g) (resp. ∂Pcw(g, s)) L (resp. R). L
and R are mutually weakly visible, i.e., any point on
L is visible to at least one point on R, and vice versa.
The two guards move along L and R, respectively.
Let us use functions l(t) and r(t), where t ∈ [0, 1], to
represent the positions of the two guards on L and
R, respectively, i.e. l : [0, 1] → L and r : [0, 1] → R.
The two-guard search problem (adapted from [4]) asks
whether P (s, g) is searchable, i.e., l(0) = r(0) = s,
l(1) = r(1) = g, and r(t) and l(t) are mutually visible
at any time t ∈ [0, 1].

It should be noted that in [4], three types of searches
- general, straight and counter straight - were dis-
cussed. For the sake of space, we only report our
result related to the general search in this paper.

94

EWCG 2007, Graz, March 19–21, 2007

3 The visibility space diagram of a street

Imagine that there were intruders sneaking into street
P (s, g). The two guards’ task is to push them from s
to g. The requirement of the mutual visibility between
the guards is equivalent to that the portion of the
street (containing s) below l(t)r(t) at any time t is
clear of intruders, while the invisibility between them
would allow the intruders to escape the street through
s.

We define a visibility configuration or just configu-
ration to be a pair of boundary points q and p such
that q ∈ L and p ∈ R. The visibility space for street
P (s, g) is defined as L × R = {〈q, p〉| q ∈ L, p ∈ R}.
〈p, q〉 is a visible configuration if p and q are mutually
visible. Otherwise, it is an invisible configuration.

4p

1q

4q

6q 3p

1p3q
5q

2p

2q

g

s

(a) (b)

g

Entrance
point

Exit
point

g

Figure 2: A street and its VSD.

We visualize the visibility space in a rectangle
whose sides are horizontal and vertical. The points
on L are mapped clockwise onto the horizontal sides
(whose length is |L|) from left to right while the points
on R are mapped counter-clockwise onto the vertical
sides (whose length is |R|) from top to bottom. A
configuration can be uniquely mapped onto a point
in this rectangle. Now let us gray the points which
correspond to invisible configurations while leaving
white those corresponding to visible configurations.
We call the rectangle after this coloring the visibility
space diagram (VSD) of P (s, g). We call its top-left
corner the entrance point and its bottom-right corner
the exit point. As an example, for the street shown in
Fig. 2 (a), its VSD is shown in Fig. 2 (b). The VSD
of a street is essentially the same as the visibility ob-
struction diagram of a polygon proposed by LaValle et
al. [7]. However, we have adapted it extensively, mak-
ing it possible for us to conduct searchability analysis
related to a street.

Before proceeding, we make some comments on the
VSD. The gray areas in a VSD are caused by reflex
vertices. For instance, for reflex vertex q3 ∈ L in
Fig. 2 (a), it is obvious that any point on q3Succ(q3)
is invisible to any point on ∂Pcw(B(q3), s). This in-
visibility information, when mapped into the VSD,
corresponds to a gray area attaching at q3 on the

top side, whose height is |∂Pcw(B(q3), s)|, as shown
in Fig. 2 (b). Similarly, a gray area attaching on the
bottom side is due to a reflex vertex on L, whose for-
ward extension point is on R. The gray areas from the
left and right sides are due to the reflex vertices on
R, whose forward extension points and/or backward
extension points are on L.

The two guards start at time t = 0, where
〈l(0), r(0)〉 corresponds to the entrance point. If
P (s, g) is searchable, at any time t ∈ (0, 1), 〈l(t), r(t)〉
is a visible configuration, which corresponds to a
white point in the VSD. The search ends at time t = 1
at g, where 〈l(1), r(1)〉 is at the exit point.

Imagine that, as time t changes from 0 to 1, the
points corresponding to 〈l(t), r(t)〉 form a continuous
path within the white area in the VSD, which starts
at the entrance point and ends at the exit point. We
call it the legal path. Conversely, if there exists a legal
path in the VSD, P (s, g) is searchable by two guards,
since any point on the path is corresponding to a visi-
ble configuration, which can represent the current po-
sitions of the two guards on L and R, respectively.

Proposition 1 Street P (s, g) is searchable by two
guards if and only if there exists a legal path inside
the VSD of P (s, g).

The following is obvious due to the requirement of
the mutual visibility between the two guards.

Proposition 2 No point on a legal path can be in
a gray area and a legal path never crosses through a
gray area.

q 1 q 2 q 3 q 5 q 6

p 1

p 2

p 3

p 4

q 4

Exit
point

g
g

s
s

g

g

Entrance
point

Figure 3: The SVSD of the street shown in Fig. 2.

When we use the VSD of a street to help conduct
the searchability analysis, we can focus on the skeletal
version of the diagram. Consider, for instance, a re-
flex vertex r ∈ L, where B(r) ∈ R. The height of the
gray area (due to it) tells us the degree of invisibility
that r causes on R. Therefore, instead of using the
whole gray area in our analysis, we use the line seg-
ment that sustain the gray area, whose length is equal
to |∂Pcw(B(r), s)|. For example, we highlight the sus-
taining segment for each gray area in Fig. 2 (b). The
diagram thus obtained is called the skeletal visibility
space diagram (SVSD) of P (s, g). For the street in
Fig. 2 (a), its corresponding SVSD is shown in Fig. 3.

95

23rd European Workshop on Computational Geometry, 2007

As commented in [7], the visibility space diagram and
its skeleton counterpart are topologically equivalent.
In the SVSD, abusing the notation, we still call the
top-left corner the entrance point and the bottom-
right corner the exit point. For convenience, we call
the segments attaching on the top side north segments
(NS), the ones on the right side east segments (ES),
the ones on the bottom side south segments (SS), and
the ones on the left side west segments (WS). Each
segment originates from one side of the SVSD and
ends at its tip.

4 A simple characterization of seachable streets

The characterization of searchable streets was dis-
cussed in [4]. In this section, we will derive an equiv-
alent one using the SVSD of a street. The proof of
our characterization is simple, and in addition, we be-
lieve that our approach is applicable to other related
problems as well.

Clearly, due to the relationship between the VSD
and SVSD, in the VSD there is a legal path if and
only if in the counterpart SVSD we can construct a
path which starts at the entrance point and ends at
the exit point. We still call such a path in the SVSD
legal path. According to Proposition 2, such a path
never crosses a segment.

Proposition 3 Street P (s, g) is searchable by two
guards if and only if there exists a legal path inside
the SVSD of P (s, g).

Therefore, in order to obtain the characterization of
searchable streets by two guards, we need to analyze
what ”patterns”, in terms of the relationship among
the segments in the SVSD, could make it impossible
to construct a legal path.

point
Entrance q

p q p

s

(a) (b)

Figure 4: The situation where the entrance point is
trapped.

Consider a north segment and a west segment, as
shown in Fig. 4 (a), which intersect within the SVSD.
The entrance point is said trapped. Under this situa-
tion, no legal path is possible, since, no matter how we
extend it, it is confined within the rectangle formed
by the top side of the SVSD, the left side, and the
two segments. The corresponding street is thus not

searchable. It is easy to see that the pattern corre-
sponds to some geometric entity called deadlock [4] in
the street itself, as shown in Fig. 4 (b).

(a) (b)

q p

g

p

q

Exit
point

Figure 5: The situation where the exit point is
trapped.

Lemma 4 For street P (s, g), if the entrance point
is trapped in the SVSD, it is not searchable by two
guards.

On the other hand, consider the intersection be-
tween a south segment and a west segment in
Fig. 5 (a). We say that the exit point is trapped. Even
though we can extend a path from the entrance point,
there is no way that the path can be extended into the
rectangle shown in the figure and reach the exit point.
Such a pattern corresponds to a deadlock containing
exit g in the street, as shown in Fig. 5 (b).

NS

Entrance
point

Exit
point

(1)

WS (2)

SS

(4)

NS
ES

SS
(5)

(6)

(3)

Figure 6: The illustration for the proof of Lemma 6.

Lemma 5 For street P (s, g), if the exit point is
trapped in the SVSD, it is not searchable by two
guards.

Lemma 6 For street P (s, g), if neither the entrance
point nor the exit point is trapped, P (s, g) is search-
able by two guards.

Proof. We use Fig. 6 as a reference.1 Within the
SVSD of P (s, g), we attempt to construct a path from
the entrance point. We divide the construction into
two stages. In the first stage, we extend the path
eastwards along the top side. There are two cases.
The path is about to either hit the right side of the

1We omit the irrelevant segments in the figure.

96

EWCG 2007, Graz, March 19–21, 2007

SVSD, in which case we switch to the second stage,
or to hit an NS, in which case the path is extended
along the NS downwards (1).

Such an extension should be able to reach the tip
of the NS. We need to consider two cases here. (a) It
is about to hit a WS (2). However, this is impossible,
since this means that the NS and WS make the en-
trance point trapped. (b) It is about to hit a ES. We
can then continue the extension along the ES west-
wards. We do not need to worry about any NS that
intersects with the ES (3), since this means that the
path has been extended into the rectangle formed by
the top side, the right side, the NS and the ES. This is
impossible since the path cannot cross any segment.
Going around the tip of the ES, we extend the path
along the ES eastwards, attempting to reach the NS
(from (1)). No SS can stop our extension (4), since if
so, the exit point is trapped. When the path is about
to hit the NS, we extend it downwards again.

We may need to repeat the above process, extend-
ing the path around the tips of ESs. But eventually,
the path should be at the tip of the NS (from (1)). Af-
ter that, we extend the path eastwards, until the path
hits the next NS, in which case we repeat the process.
If the path hits an SS (5), it is extended upwards
along it. Any ES stopping this extension would mean
that the exit point is trapped. On the other hand,
any WS stopping this extension would mean that the
path has been extended into the rectangle formed by
the SS, the WS and the two sides of the SVSD. Af-
ter the tip of the SS is reached, the path is extended
again eastwards until the next NS and SS. If it hits
the right side of the SVSD, we go to the second stage.

At the beginning of the second stage, the path is
about to hit the right side. We extend the path down-
wards, attempting to reach the exit point. The exten-
sion may encounter an ES (6). But it can always go
around it, by the similar reasoning as above, and go
back to the right side. It is impossible for it to come
across any WS, since this means that the two sides of
the street are not mutually weakly visible. Therefore
the path should be able to reach the exit point. �

Theorem 7 Street P (s, g) is searchable by two
guards if and only if in its SVSD neither the entrance
point nor the exit point is trapped.

As discussed after Lemmas 4 and 5, the fact that
the entrance point or the exit point is trapped corre-
sponds deadlocks in the street. Therefore, the char-
acterization stated in Theorem 7 is equivalent to the
one in [4]. However, its proof is simple, avoiding the
previous tedious and complex analysis.

5 Discussions

We reported in this paper our initial attempts to sim-
plify the street search problem. By extracting the

visibility information in a street and using it to guide
our analysis, we derived a simple characterization of
searchable streets, in terms of its understandability
and interpretation. Actually the same merit applies to
our solutions to the other related problems in streets
as well. Due to limited space, we do not present the
relevant results here.

In addition, the simplicity of our characterizations
has shed light on our efforts to simplify the previ-
ous approach to achieve the optimal-time complexity
for checking the searchability and generating a search
schedule for a street.

The next step of our work is naturally to find all the
entrance and exit pairs in a polygon that can form a
searchable street. We believe that the same approach
reported here can be harnessed and further explored.

Acknowledgments

We would like to thank the anonymous readers for their

comments on the paper.

References

[1] B.K. Bhattacharya, A. Mukhopadhyay, and
G. Narasimhan. Optimal algorithms for two-
guard walkability of simple polygons. In Proc. 7th
Int’l Workshop on Algorithms and Data Structures,
pages 438–449, 2001.

[2] D. Crass, I. Suzuki, and M. Yamashita. Searching for a
mobile intruder in a corridor: the open edge variant of
the polygon search problem. Int’l J. of Computational
Geometry and Applications, 5(4):397–412, 1995.

[3] P. Heffernan. An optimal algorithm for the two-guard
problem. Int’l J. of Computational Geometry and Ap-
plications, 6:15–44, 1996.

[4] C. Icking and R. Klein. The two guards problem.
Int’l J. of Computational Geometry and Applications,
2(3):257–285, 1992.

[5] C. Icking, R. Klein, and E. Langetepe. An optimal
competitive strategy for walking in streets. In Proc.
16th Symp. on Theoretical Aspects of Computer Sci-
ence 1999, number 1563 in Lecture Notes in Computer
Science, pages 110–120. Springer-Verlag, 1999.

[6] J. M. Kleinberg. On-line search in a simple polygon.
In Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 8–15, 1994.

[7] S. M. LaValle, B. Simov, and G. Slutzki. An algorithm
for searching a polygonal region with a flashlight. Int’l
J. of Computational Geometry and Applications, 12(1-
2):87–113, 2002.

[8] I. Suzuki and M. Yamashita. Searching for a mobile
intruder in a polygonal region. SIAM J. on Computing,
21(5):863–888, October 1992.

[9] L. H. Tseng, P. J. Heffernan, and D. T. Lee. Two-
guard walkability of simple polygons. Int’l J. of Com-
putational Geometry and Applications, 8(1):85–116,
1998.

97

23rd European Workshop on Computational Geometry, 2007

Maximizing Maximal Angles for Plane Straight Line Graphs

Oswin Aichholzer∗ Thomas Hackl∗ Michael Hoffmann† Clemens Huemer‡ Francisco Santos§

Bettina Speckmann¶ Birgit Vogtenhuber∗

Abstract

Let G = (S, E) be a plane straight line graph on a
finite point set S ⊂ R2 in general position. For a point
p ∈ S let the maximum incident angle of p in G be
the maximum angle between any two edges of G that
appear consecutively in the circular order of the edges
incident to p. A plane straight line graph is called ϕ-
open if each vertex has an incident angle of size at
least ϕ. In this paper we study the following type of
question: What is the maximum angle ϕ such that for
any finite set S ⊂ R2 of points in general position we
can find a graph from a certain class of graphs on S
that is ϕ-open? In particular, we consider the classes
of triangulations, spanning trees, and paths on S and
give tight bounds in all but one cases.

1 Introduction

Conditions on angles in plane straight-line graphs
have been studied extensively in discrete and com-
putational geometry. It is well known that Delaunay
triangulations maximize the minimum angle over all
triangulations, and that in a (Euclidean) minimum
weight spanning tree each angle is at least π

3 . In
this paper we address the fundamental combinatorial
question, what is the maximum value α such that for
each finite point set in general position there exists
a plane straight-line graph (of a certain type) where
each vertex has an incident angle of size at least α.
We present bounds on this value for three classes of
graphs: spanning paths (general and bounded de-
gree), spanning trees, and triangulations. Most of the
bounds we give are tight. In order to show that, we

∗Institute for Software Technology, Graz University of Tech-
nology, [oaich|thackl|bvogt]@ist.tugraz.at. Supported by
the Austrian FWF Joint Research Project ’Industrial Geome-
try’ S9205-N12.

†Institute for Theoretical Computer Science, ETH Zürich,
hoffmann@inf.ethz.ch

‡Departament de Matemática Aplicada II, Universitat
Politécnica de Catalunya, Huemer.Clemens@upc.edu. Partially
supported by projects MEC MTM2006-01267 and Gen. Cat.
2005SGR00692.

§Departamento de Matemáticas, Estad́ıstica y Com-
putación, Universidad de Cantabria, francisco.santos

@unican.es. Partially supported by grant MTM2005-08618-
C02-02 of the Spanish Ministry of Education and Science.

¶Department of Mathematics and Computer Science, TU
Eindhoven, speckman@win.tue.nl

describe families of point sets for which no graph from
the respective class can achieve a greater incident an-
gle at all vertices.

Background. Our motivation for this research stems
from the investigation of “pseudo-triangulations”, a
straight-line framework which, apart from deep com-
binatorial properties, has applications in motion plan-
ning, collision detection, ray shooting and visibility;
see [1, 9, 10, 12, 13] and references therein. Pseudo-
triangulations with a minimum number of pseudo-
triangles (among all pseudo-triangulations for a given
point set) are called minimum (or pointed) pseudo-
triangulations. They can be characterized as plane
straight-line graphs where each vertex has an incident
angle greater than π. Furthermore, the number of
edges in a minimum pseudo-triangulation is maximal,
in the sense that the addition of any edge produces
an edge-crossing or negates the angle condition.

In comparison to these properties, we consider con-
nected plane straight-line graphs where each vertex
has an incident angle α – to be maximized – and the
number of edges is minimal (spanning trees) and the
vertex degree is bounded (spanning trees of bounded
degree and spanning paths, respectively). We further
show that any planar point set has a triangulation in
which each vertex has an incident angle of at least 2π

3 .
Observe that perfect matchings can be described as
plane straight-line graphs where each vertex has an
incident angle of 2π and the number of edges is max-
imal.

Related Work. There is a vast literature on triangu-
lations that are optimal according to certain criteria.
Similar to Delaunay triangulations which maximize
the smallest angle over all triangulations for a point
set, farthest point Delaunay triangulations minimize
the smallest angle over all triangulations for a convex
polygon [6]. If all angles in a triangulation are ≥ π

6 ,
then it contains the relative neighborhood graph as a
subgraph [11]. The relative neighborhood graph for a
point set connects any pair of points which are mu-
tually closest to each other (among all points from
the set). Edelsbrunner et al. [7] showed how to con-
struct a triangulation that minimizes the maximum
angle among all triangulations for a set of n points in
O(n2 log n) time.

98

EWCG 2007, Graz, March 19–21, 2007

In applications where small angles have to be
avoided by all means, a Delaunay triangulation may
not be sufficient in spite of its optimality because even
there arbitrarily small angles can occur. By adding so-
called Steiner points one can construct a triangulation
on a superset of the original points in which there is
some absolute lower bound on the size of the smallest
angle [4]. Dai et al. [5] describe several heuristics to
construct minimum weight triangulations (triangula-
tions which minimize the total sum of edge lengths)
subject to absolute lower or upper bounds on the oc-
curring angles.

Spanning cycles with angle constraints can be re-
garded as a variation of the traveling salesman prob-
lem. Fekete and Woeginger [8] showed that if the cycle
may cross itself then any set of at least five points ad-
mits a locally convex tour, that is, a tour in which the
angle between any three consecutive points is positive.
Aggarwal et al. [2] prove that finding a spanning cycle
for a point set which has minimal total angle cost is
NP-hard, where the angle cost is defined as the sum
of direction changes at the points.

Regarding spanning paths, it has been conjectured
that each planar point set admits a spanning path
with minimum angle at least π

6 [8]; recently, a lower
bound of π

9 has been presented [3].

Definitions and Notation. Let S ⊂ R
2 be a fi-

nite set of points in general position, that is, no
three points of S are collinear. In this paper we
consider plane straight line graphs G = (S, E) on
S. The vertices of G are precisely the points in
S, the edges of G are straight line segments that
connect two points in S, and two edges of G do
not intersect except possibly at their endpoints.

p
q

α

β
γ

δ

Figure 1: Incident
angles of p.

For a point p ∈ S the max-
imum incident angle opG(p)
of p in G is the maximum an-
gle between any two edges of
G that appear consecutively
in the circular order of the
edges incident to p. For a ver-
tex p ∈ S of degree at most
one we set opG(p) = 2π. We
also refer to opG(p) as the
openness of p in G and call p ∈ S ϕ-open in G for
some angle ϕ if opG(p) ≥ ϕ. Consider, for example,
the graph depicted in Figure 1. The point p has four
incident edges in G and, therefore, four incident an-
gles. Its openness is opG(p) = α. The point q has only
one incident angle and correspondingly opG(q) = 2π.

Similarly we define the openness of a plane straight
line graph G = (S, E) as op(G) = minp∈S opG(p) and
call G ϕ-open for some angle ϕ if op(G) ≥ ϕ. In other
words, a graph is ϕ-open if and only if every vertex
has an incident angle of size at least ϕ. The openness
of a class G of graphs is the supremum over all angles

ϕ such that for every finite point set S ⊂ R2 in gen-
eral position there exists a ϕ-open connected plane
straight line graph G on S and G is an embedding
of some graph from G. For example, the openness of
minimum pseudo-triangulations is π.

Observe that without the general position assump-
tion many of the questions become trivial because for
a set of collinear points the non-crossing spanning tree
is unique – the path that connects them along the line
– and its interior points have no incident angle greater
than π.

Let a, b, and c be three points in the plane that
are not collinear. With ∠abc we denote the counter-
clockwise angle between the segment (b, a) and the
segment (b, c) at b.

Results. In this paper we study the openness of sev-
eral well known classes of plane straight line graphs,
such as triangulations (2π

3 , Section 2), spanning trees
(Section 3) in general (5π

3) and with maximum degree
three (3π

2), and spanning paths (3π
2 for sets in convex

position, Section 4).

2 Triangulations

Theorem 1 Every finite point set in general position
in the plane has a triangulation that is 2π

3 -open and
this is the best possible bound.

Proof. Consider a point set S ⊂ R2 in general posi-
tion. Clearly, opG(p) > π for every point p ∈ CH(S)
and every plane straight line graph G on S. We re-
cursively construct a 2π

3 -open triangulation T of S by
first triangulating CH(S); every recursive subproblem
consists of a point set with a triangular convex hull.

Let S be a point set with a triangular convex hull
and denote the three points of CH(S) with a, b, and
c. If S has no interior points, then we are done. Oth-
erwise, let a′, b′ and c′ be (not necessarily distinct) in-
terior points of S such that the triangles ∆a′bc, ∆ab′c
and ∆abc′ are empty (see Figure 2). Since the sum of
the six exterior angles of the hexagon bc′ab′ca′ equals
8π, the sum of the three angels ∠ac′b, ∠ba′c, and
∠cb′a is at least 2π. In particular, one of them, say
∠cb′a, is at least 2π/3. We then recurse on the two
subsets of S that have ∆bb′c and ∆ab′b as their re-
spective convex hulls.

a b

c

a
′

b
′

c
′

Figure 2: Constructing a 2π
3 -open triangulation.

99

23rd European Workshop on Computational Geometry, 2007

Sa Sb

p

Sc

Figure 3: The openness of triangulations of this
point set approaches 2π

3 .

The upper bound is attained by a set S of n points
as depicted in Figure 3. S consists of a point p and
of three sets Sa, Sb, and Sc that each contain n−1

3
points. Sa, Sb, and Sc are placed at the vertices of an
equilateral triangle ∆ and p is placed at the barycen-
ter of ∆. Any triangulation T of S must connect p
with at least one point of each of Sa, Sb, and Sc and
hence opT (p) approaches 2π

3 arbitrarily close. �

3 Spanning Trees

In this section we give tight bounds on the ϕ-openness
of two basic types of spanning trees, namely general
spanning trees and spanning trees with bounded ver-
tex degree. Consider a point set S ⊂ R2 in general
position and let p and q be two arbitrary points of S.
Assume w.l.o.g. that p has smaller x-coordinate than
q. Let lp and lq denote the lines through p and q that
are perpendicular to the edge (p, q). We refer to the
region bounded by lp and lq as the orthogonal slab of
(p, q).

Observation 1 Assume that r ∈ S \ {p, q} lies in
the orthogonal slab of (p, q) and above (p, q). Then
∠qpr ≤ π

2 and ∠rqp ≤ π
2 . A symmetric observation

holds if r lies below (p, q).

Recall that the diameter of a point set is a pair of
points that are furthest away from each other. Let
a and b define the diameter of S and assume w.l.o.g.
that a has a smaller x-coordinate than b. Clearly, all
points in S \ {a, b} lie in the orthogonal slab of (a, b).

Observation 2 Assume that r ∈ S \{a, b} lies above
a diametrical segment (a, b) for S. Then ∠arb ≥ π

3
and hence at least one of the angles ∠bar and ∠rba
is at most π

3 . A symmetric observation holds if r lies
below (a, b).

These two simple observations can be used to obtain
the following results on spanning trees.

Theorem 2 Every finite point set in general position
in the plane has a spanning tree that is 5π

3 -open, and
this bound is tight.

Theorem 3 Let S ⊂ R2 be a set of n points in gen-
eral position. There exists a 3π

2 -open spanning tree T
of S such that every point from S has vertex degree at
most 3 in T . The angle bound is best possible, even
for the much broader class of spanning trees of vertex
degree at most n− 2.

Both proofs for the above theorems are based on an
extensive case analysis. Therefore we omit them in
this extended abstract. The interested reader can find
all details in the full version of the paper or in [14].

4 Spanning Paths

For spanning paths, the upper bound for trees with
bounded vertex degree can be applied as well. The
resulting bound of 3π

2 is tight for points in convex
position, even in a very strong sense: There exists a
3π
2 -open spanning path starting from any point. We

also give examples showing that our construction can-
not be extended to general point sets.

4.1 Point Sets in Convex Position

Consider a set S ⊂ R2 of n points in convex position.
We can construct a spanning path for S by starting
at an arbitrary point p ∈ S and recursively taking
one of the tangents from p to CH(S \{p}). As long as
|S| > 2, there are two tangents from p to CH(S \{p}):
the left tangent is the oriented line t` through p and
a point from p` ∈ S \ {p} (oriented in direction from
p to p`) such that no point from S is to the left of
t`. Similarly, the right tangent is the oriented line tr
through p and a point from pr ∈ S \ {p} (oriented
in direction from p to pr) such that no point from S
is to the right of tr. If we take the left and the right
tangent alternately, we call the resulting path a zigzag
path for S.

Theorem 4 Every finite point set in convex position
in the plane admits a spanning path that is 3π

2 -open,
and this bound is best possible.

In the full version of the paper, we present two dif-
ferent proofs for this theorem, an existential proof
using counting arguments and a constructive proof.
In addition, the latter provides the following stronger
statement.

Corollary 5 For any finite set S ⊂ R2 of points in
convex position and any p ∈ S there exists a 3π

2 -open
spanning path for S which has p as an endpoint.

100

EWCG 2007, Graz, March 19–21, 2007

4.2 General Point Sets

So far we have not been able to generalize the results
of Theorem 4 and Corollary 5 to general point sets.
In this section we present a few examples to indicate
where the difficulties lie.

p1

Figure 4: Starting at interior point p1 results in an
at most (π + ε)-open spanning path.

Figure 4 depicts a configuration where any span-
ning path starting at the interior point p1 is at most
(π + ε)-open. Figure 5 shows a configuration that has
a similar property. Here point p5 is positioned arbi-
trarily far to the left and β = π

3 . If we require the
edge (p1, p2) to be part of the spanning path, then we
can construct at most a

(
4π
3 + ε

)
-open spanning path.

p4

p1

p3

p2

β

p5

p5
p5

β

β

Figure 5: If edge (p1, p2) is forced we get at most a(
4π
3 + ε

)
-open spanning path.

Both examples show that, whatever approach is
used to generate a spanning path, we have to be care-
ful when forcing points or edges to play a specific role
in the construction. Especially starting at a fixed in-
terior point has to be avoided.

A direct generalization of the constructive approach
for convex sets would be a path which starts at a given
extreme point and recursively continues only along
tangents to the remaining point set. But there exist
examples where this approach generates an at most
(π + ε)-open spanning path. Details on this construc-
tion and the examples presented above, as well as a
large variety of much more involved approaches can
be found in [14].

On the other hand, and despite the above presented
constructions, we have not been able to provide a sin-
gle point set, which does not contain a 3π

2 -open span-
ning path. To the contrary, computational investiga-
tions on several billion random point sets (in the range
of 4 ≤ n ≤ 20 points) provided for each set a 3π

2 -open
spanning path, even if we required the path to start
with a prefixed extreme point. Thus we conclude this
section with the following conjecture.

Conjecture 1 Spanning paths for general point sets
are 3π

2 -open.

Acknowledgments. Research on this topic was ini-
tiated at the third European Pseudo-Triangulation
working week in Berlin, organized by Günter Rote
and André Schulz. We thank Sarah Kappes, Hannes
Krasser, David Orden, Günter Rote, André Schulz,
Ileana Streinu, and Louis Theran for many valuable
discussions. We also thank Sonja Čukić and Günter
Rote for helpful comments on the manuscript.

References

[1] O. Aichholzer, F. Aurenhammer, H. Krasser, and P.
Brass. Pseudo-Triangulations from Surfaces and a
Novel Type of Edge Flip. SIAM J. Comput. 32, 6
(2003), 1621–1653.

[2] A. Aggarwal, D. Coppersmith, S. Khanna, R. Mot-
wani, and B. Schieber. The Angular-Metric Traveling
Salesman Problem. SIAM J. Comput. 29, 3 (1999),
697–711.

[3] I. Bárány, A. Pór, and P. Valtr. Paths with no Small
Angles. Manuscript in preparation, 2006.

[4] M. Bern, D. Eppstein, and J. Gilbert. Provably Good
Mesh Generation. J. Comput. Syst. Sci. 48, 3 (1994),
384–409.

[5] Y. Dai, N. Katoh, and S.-W. Cheng. LMT-Skeleton
Heuristics for Several New Classes of Optimal Tri-
angulations. Comput. Geom. Theory Appl. 17, 1–2
(2000), 51–68.

[6] D. Eppstein. The Farthest Point Delaunay Triangu-
lation Minimizes Angles. Comput. Geom. Theory
Appl. 1, 3 (1992), 143–148.

[7] H. Edelsbrunner, T. S. Tan, and R. Waupotitsch. An
O(n2 log n) Time Algorithm for the Minmax Angle
Triangulation. SIAM J. Sci. Stat. Comput. 13, 4
(1992), 994–1008.

[8] S. P. Fekete and G. J. Woeginger. Angle-Restricted
Tours in the Plane. Comput. Geom. Theory Appl.
8, 4 (1997), 195–218.

[9] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius,
H. Servatius, D. Souvaine, I. Streinu, and W. White-
ley. Planar Minimally Rigid Graphs and Pseudo-
Triangulations. Comput. Geom. Theory Appl. 31,
1–2 (2005), 31–61.

[10] D. Kirkpatrick, J. Snoeyink, and B. Speckmann. Ki-
netic Collision Detection for Simple Polygons. Inter-
nat. J. Comput. Geom. Appl. 12, 1–2 (2002), 3–27.

[11] J. M. Keil and T. S. Vassilev. The Relative Neigh-
bourhood Graph is a Part of Every 30◦-Triangulation.
Abstracts 21st European Workshop Comput. Geom.,
2005, 9–12.

[12] G. Rote, F. Santos, and I. Streinu. Pseudo-
Triangulations — a Survey. Manuscript, 2006.

[13] I. Streinu. Pseudo-Triangulations, Rigidity and Mo-
tion Planning. Discrete Comput. Geom. 34, 4 (2005),
587–635.

[14] B. Vogtenhuber. On Plane Straight Line Graphs.
Master Thesis, Graz University of Technology, Graz,
Austria, 2006.

101

23rd European Workshop on Computational Geometry, 2007

Triple-loop networks with an arbitrarily big number of associated
minimum distance diagrams ∗

Pilar Sabariego† Francisco Santos‡

Abstract

We say that a minimum distance diagram (MDD, for
short) for a multi-loop network is coherent if, when-
ever the shortest path from v1 to v2 in the MDD
passes through a third vertex v3, then the two sub-
paths induced are the shortest paths that the diagram
gives from v1 to v3 and from v3 to v2. In contrast to
the (known) fact that every double loop network has
at most two coherent MDD’s, we here show that there
are triple-loop networks with arbitrarily many.

Our methods exploit the relations between MDD’s
and monomial ideals, introduced in [3]. Our result
shows that characterizing MDD’s of triple-loop net-
works combinatorially, which has been a topic of study
in recent years, is going to be a difficult task.

1 Introduction

Multi-loop networks, that is, directed circulant
graphs, were proposed in 1974 by Wong and Copper-
smith for organizing multi-module memory services
[5]. The double-loop case has been widely studied,
but many problems remain in the general case.

In the double-loop case, a very useful tool are the
so-called L-shapes which are a special case of min-
imum distance diagrams. Minimum distance dia-
grams, or MDD for short, are arrays that give (one
of) the shortest paths form every node to every other
node. In particular, from an MDD one can easily
compute the diameter or the average distance of the
corresponding network.

By contrast, MDD’s for triple-loop networks do not
have a uniform nice shape like the L-shapes in dimen-
sion two, and this fact has made the study of the
properties of the triple-loop networks difficult. For
example, [1] proposed the study of a particular type
of tiles that they called hyper-L tiles, but it was shown
in [2] that only triple-loop networks with very special
parameters possess these type of MDD’s.

∗Research partially supported by the Spanish Ministry of
Education and Science, grant number MTM2005-08618-C02-
02.

†Departamento de Matemáticas, Estad́ıstica y Com-
putación, Universidad de Cantabria, Santander, Spain,
pilar.sabariego@unican.es

‡Departamento de Matemáticas, Estad́ıstica y Com-
putación, Universidad de Cantabria, Santander, Spain,
francisco.santos@unican.es

Here, we show that there are triple-loop networks
with an arbitrarily big number of coherent MDD’s as-
sociated (see Figure 6).We use the fact that a coherent
MDD is the same as (the set of standard monomials
of) one of the monomial ideals associated to the net-
work (see [3]). For double-loop networks, L-shapes
are precisely the coherent MDD’s.

2 Circulant digraphs and monomial ideals

In this section, we recall some results from Gómez et
al. in [3], and extend them by giving in Theorem 4 a
simpler characterization of the binomial ideal associ-
ated to a multi-loop network.

Definition 1 The multi-loop network or circulant
digraph of size N and with steps s1, ...sr is a directed
graph which has nodes 0, 1, . . . , N − 1 and rN links:

i→ i + sj mod N,

for all i = 0, 1, . . . , N − 1 and j = 0, 1, . . . , r.
We denote it CN (s1, ...sr) and call it “double” or

“triple” if r = 2 or r = 3, respectively.

In other words, CN (s1, ...sr) is the Cayley digraph
of the cyclic group ZN with respect to {s1, . . . , sr}.
Clearly, CN (s1, ...sr) is vertex-transitive and of degree
r. It is connected if and only if gcd(N, s1, ..., sr) = 1,
which we always assume. Figure 1 shows the triple-
loop network C10(1, 2, 3).

The routing map associated to the circulant digraph
CN (s1, ...sr) is the map:

R := Nr −→ ZN

a 7−→ a1s1 + · · ·+ arsr

That is, R(a1, . . . , ar) tells where in the graph you
end up if you start at zero and do a1, . . . , ar steps via
the edges of type 1, . . . , r. Observe that the order in
which different steps are performed is irrelevant.

A minimum distance diagram is a right inverse of
the routing map that point-wise minimizes the L1

norm:

Definition 2 A minimum distance diagram (MDD)
of CN (s1, ...sr) is a map D : ZN −→ Nr such that
R(D(c)) = c,∀c ∈ ZN and

‖D(c)‖1 = min{‖x‖1 : x ∈ R−1(c)}

102

EWCG 2007, Graz, March 19–21, 2007

0

1

2

3

4

5

6

7

8

9

Figure 1: Graphic representation of the circulant
graph C10(1, 2, 3)

Here and in what follows, N = {0, 1, 2, 3, . . . }.
MDD’s give minimum paths from vertex 0 to any
other vertex and, by transitivity, between any two
vertices in the network. They admit (for small r) a
nice graphical representation as a “stack of labeled
boxes”: boxes represent elements of Nr and they are
labeled by the numbers 0, . . . , N − 1. See two MDD’s
for the network C6(1, 2, 3) in Figure 2. They differ
in the choice of shortest path from 0 to 4. To un-
derstand the concept of “coherent” MDD, think of
the Figure as representing six of the seven blocks of
certain MDD’s for the network C8(1, 2, 3). To com-
plete them we need to add the box (0, 0, 2) labeled
“6” and either of the boxes (1, 0, 2) or (0, 2, 1) labeled
“7” (since 1 + 3 + 3 = 2 + 2 + 3 = 7). But only one
of the choices for “7” is coherent with each choice for
“4”.

0

00

3

33
2

22

1

11

5

55

4

44

0

00

3

33
2

22

1

11

5

55
4

44

Figure 2: Two MDD’s for the network C6(1, 2, 3).

We now switch to a more algebraic language. Let
K be an arbitrary field and K[x1, ..., xr] the polyno-
mial ring in the variables x1, ..., xr. As customary, we
identify monomials of K[x1, ..., xr] with vectors of Nr

in the following way:

xa = xa1
1 · · ·xar

r ←→ a = (a1, . . . , ar).

A monomial ideal is any ideal generated by mono-
mials. It can be thought of as a set I of monomials
(i.e., a subset of Nr) with the property that v ∈ I
implies v + w ∈ I for every w ∈ Nr. Equivalently,
I ⊂ N is an ideal if its complement (a.k.a. “its set of
standard monomials”) satisfies

v + w 6∈ I ⇒ v, w 6∈ I.

Hence:

Lemma 1 An MDD is coherent if and only if it is
the complement of an ideal.

A monomial ordering is a total ordering on Nr that
is invariant under addition and in which 0 is the
unique minimum. We say a monomial ordering is
graded if it extends the (partial) ordering given by
the L1 norm (or total degree) of monomials.

Lemma 2 Every graded monomial ordering ≺ in-
duces a coherent MDD, the map:

D≺ : ZN −→ Nr

c 7−→ min≺(R−1(c))

The main result in [3] is that coherent MDD’s can
be obtained as the initial ideals of a certain lattice
ideal. Recall that every integral lattice L ⊂ Zr has an
associated binomial ideal:

IL :=
〈
xa+
− xa− : a ∈ L

〉
⊂ K[x1, . . . , xr],

where a = a+ − a− is the unique decomposition of
a with a+,a− ∈ Nr. Moreover (see [4]):

xa − xb ∈ IL ⇐⇒ a− b ∈ L

Theorem 3 (Gómez-Pérez et al. 2006) The co-
herent MDD’s of a circulant digraph CN (s1, . . . , sr)
are “the same” as the (complements of) initial ideals
of the binomial ideal IC of the lattice ker(R), where
R : Zr → ZN is (the natural extension of) the routing
map.

Our result in this respect is a more explicit charac-
terization of the ideal IC :

Theorem 4 Let L̃G be the lattice associated to the
circulant digraph CN (s1, . . . , sr):

L̃G := 〈Net, s1et − e1, . . . , sret − er〉

Then the ideal IC equals the elimination ideal of the
variable t in the binomial ideal of the lattice. That is,

IC = elim
(〈

tN − 1, ts1 − x1, ..., t
sr − xr

〉
; t
)

In particular, if G is a reduced Gröbner basis, with
respect to the elimination ordering, of the ideal I eLG

then the set of the leading monomials of the elements
of G, constitutes a minimal system of generators of
(the complement of) an MDD.

103

23rd European Workshop on Computational Geometry, 2007

3 Many minimum distance diagrams

In this section we consider a triple-loop network
CN (s1, s2, s3). Its associated lattice L = kerR equals:

L := {(x, y, z) ∈ Z3 : s1x + s2y + s3z ≡ 0 mod N}.

Choices in the construction of an MDD correspond
to different path-vectors a, b ∈ Nr with R(a) = R(b)
and ‖a‖1 = ‖b‖1. This makes us interested in the
following auxiliary lattice

L0 := L ∩ {(x, y, z) ∈ Z3 : x + y + z = 0}.

See again Figure 2, where the lattice L :=
{(x, y, z) ∈ Z3 : x + 2y + 3z ≡ 0 mod 6} gives an
L0 generated by the vectors (1,−2, 1) and (for exam-
ple) (3, 0,−3). The second vector is irrelevant in this
example, but the first is the cause of non-uniqueness
of the MDD.

We now state and proof or main result:

Theorem 5 Let a and q ∈ N. Let N = 1 + q + q2

and let k ≥ N be such that gcd(k, N) = 1. Then, the
triple-loop network CNk(a + k, a + qk, a + q2k) has at
least 3(q + 2) coherent MDD’s.

Proof. We have to prove that there are 3(q + 2) dif-
ferent initial ideals for the lattice L. To simplify the
exposition we will work out the case a = 1 and q = 5.
The general case is similar.

The equation for the lattice L

(1 + k)x + (1 + 5k)y + (1 + 25k)z ≡ 0 mod 31,

together with x + y + z = 0, reduces to:

L0 =
{

y + 6z ≡ 0 mod 31
x + y + z = 0

Consider the octant with sings (−,+,+) intersected
with L0. This is a semigroup generated by the
points (−31, 0, 31), (−6, 1, 5), (−11, 7, 4), (−16, 13, 3),
(−21, 19, 2), (−26, 25, 1) and (−31, 31, 0) (in general,
we obtain q + 2 generators).

Now, for each bi in this minimal sistem of gener-
ators the normal to ~Obi in the direction exterior to
the octant gives us a ray which separates two regions
in the fan of coherent MDDs (the so-called Gröbner
fan), since if bi = b+

i − b−i , with b+
i = max{bij , 0} and

b−i = max{−bij
, 0}, then:

• The exterior normal vector gives equal weight to
the two monomials xb+i and xb−i , which are in the
same orbit modulo L (they represent the same
monomial in the ideal).

• Since xb+i and xb−i have less degree than 31 < k
and because L contains only vectors whose coor-
dinates sum a number multiple of k there are no
monomials with less degree equivalent to them
modulo L.

(+,−,+)

(+,+,−)

(0,0,0)
(−6,1,5)

(−11,7,4)

(−16,13,3)

(−21,19,2)

(−26,25,1)

(−31,31,0)

(−,+,+)

(−31,0,31)

Figure 3: Lattice L0 of C31k(1 + k, 1 + 5k, 1 + 25k)

• Between the monomials equivalent to xb+i and
xb−i and with the same degree, the exterior nor-
mal vector gives less wieght to these one than
to any one, since ~Obi is a segment in the convex
hull of the points equivalent to b+

i and b−i mod-
ulo L that are in the octant intersected with the
plane x + y + z = 0 considered at the beginning,
then the exterior normal vector gives less degree
to these two points than to any others.

So xb+i and xb−i are two monomials of the initial
ideal obtained by perturbing the graded monomial or-
dering with a vector produced by a perturbation of
the exterior normal vector in one side or in another,
respectively. See Figure 4

(0,0,21)

x+y+z=21

(21,0,0)

(0,19,2)
(0,21,0)

Figure 4: Perturbed exterior normal vector.

Repeating the same reasoning over the octants with
signs (+,−,+) and (+,+,−), the numbers of coherent
MDD’s will be the sum of the number of elements in
the three mininal systems of generators. So, there
are 21 = 3 × 7 coherent MDD’s associated with the
circulant digraph C31k(1 + k, 1 + 5k, 1 + 25k) under
the conditions given at the beginning. �

104

EWCG 2007, Graz, March 19–21, 2007

The crucial object used in this group is the systems
of generators of the semigroups obtained intersecting
the lattice L0 with different orthants. We recall that
the (unique) minimal system of generators of a semi-
group is called its Hilbert basis. It seems logical to
think that the number of elements in the Hilbert bases
of the three semigroups is going to equal the number
of MDD’s, but we have a counterexample of this as-
sertion:

Let L0 be the lattice generated by (−4, 4, 0) and
(−4, 3, 1). (See Figure 5)

The Hilbert basis in each cone is shown in Table 1,
but the only elements susceptible to generate rays in
the fan of MDD’s are: (−4, 4, 0), (4, 0,−4), (0, 1,−1)
and (0,−1, 1)

(0,0,0)

(+,+,−)

(−,+,+)

(+,−,+)

Figure 5: Lattice L0 generated by (−4, 4, 0) and
(−4, 3, 1)

Cone Hilbert Basis
(+,+,-) (4,0,-4), (0,1,-1)

(-4,4,0), (-4,3,1),
(-,+,+) (-4,2,2), (-4,1,3),

(-4,0,4)
(+,-,+) (0,-1,1), (4,-4,0)

Table 1: Hilbert Bases for the auxiliary lattice L0

generated by (−4, 4, 0) and (−4, 3, 1).

The circulant digraph which corresponds with this
lattice, L0, is C16(13, 5, 5) and the four MDD’s asso-
ciated to it are shown in Figure 5.

In fact, we have a rult to prescribe which elements
in the Hilbert bases are susceptible of producing rays
in the fan of MDD’s:

Let v1, . . . , vk be the vectors in the Hilbert ba-
sis of a cone, from left to right (see figure 5). Let
vi, vi+1, . . . , vj be the vectors in the basis with the
minimum norm L1. Then:

• The left exterior normal vector of each of the vec-

0

00

5

55
13

1313

10

1010
2

22

15

1515
7

77

4

44
12

1212

9

99
1

11

14

1414
6

66

3

33
11

1111

8

88

0

00
13

1313

5

55

10

1010

2

22

7

77

15

1515

4

44

12

1212

1

11

9

99

14

1414

6

66

11

1111

3

33

8

88

0

00
13

1313

5

55
10

1010

2

22
7

77

15

1515
4

44

12

1212
1

11

9

99
14

1414

6

66
11

1111

3

33
8

88

0

00
5

55

13

1313
10

1010

2

22
15

1515

7

77
4

44

12

1212
9

99

1

11
14

1414

6

66
3

33

11

1111
8

88

Figure 6: Coherent MDD’s diagrams associated with
C16(13, 5, 5)

tors v1, . . . , vi is susceptible to produce a ray in
the fan of MDD’s.

• The right exterior normal vector of each of the
vectors vj , . . . , vk is susceptible to produce a ray
in the fan of MDD’s.

References

[1] F. Aguiló, M.A. Fiol, C. Garćıa, Triple-loop net-
works with small transmission delay. Discrete Math.
167/168 (1997) 3–16.

[2] C. Chen, F.K. Hwang, J.S. Lee, S.J. Shih, The exis-
tence of hyper-L triple-loop networks. Discrete Math.
268 (2003) 287–291.

[3] D. Gómez, J. Gutierrez, A. Ibeas, Cayley Digraphs of
Finite Cyclic Groups and Monomial Ideals Preprint.
University of Cantabria (2006).

[4] B. Sturmfels, R. Weismantel and G. M. Ziegler,
Gröbner Bases of Lattices, Corner Polyhedra, and
Integer Programming Contribution to Algebra and
Geometry. Vol. 36 (1995), No 2, 281–298.

[5] C.K. Wong, D. Coppersmith, A combinatorial prob-
lem related to multimodule organizations. J. Assoc.
Comput. Mach. 21 (1974) 392–402.

105

23rd European Workshop on Computational Geometry, 2007

Online conflict-free coloring for geometric hypergraphs

Amotz Bar-Noy∗ Panagiotis Cheilaris† Svetlana Olonetsky‡ Shakhar Smorodinsky§

Abstract

(i) We provide a framework for online conflict-free
coloring (CF-coloring) any hypergraph. We use this
framework to obtain an efficient randomized online
algorithm for CF-coloring any k-degenerate hyper-
graph. Our algorithm uses O(k log n) colors with
high probability and this bound is asymptotically op-
timal for any constant k. Moreover, our algorithm
uses O(k log k log n) random bits with high probabil-
ity. We obtain asymptotically optimal randomized
algorithms for online CF-coloring some hypergraphs
that arise in geometry and model an important ver-
sion of the frequency assignment task for cellular net-
works. Our algorithms use exponentially fewer ran-
dom bits compared to previous results for these spe-
cial cases (O(log n) bits instead of Θ(n log n) bits).
(ii) We initiate the study of deterministic online CF-
coloring with recoloring. The goal is to use few col-
ors, but also resort to recoloring as little as possible.
We provide an algorithm for CF-coloring with respect
to halfplanes using O(log n) colors and O(n) recolor-
ings.

1 Introduction

A hypergraph is a pair (V, E), where V is a finite set
and E ⊂ 2V . The set V is called the ground set
or the vertex set and the elements of E are called
hyperedges. A proper k-coloring of a hypergraph
H = (V, E), for some positive integer k, is a func-
tion C : V → {1, 2, . . . , k} such that no S ∈ E with
|S| ≥ 2 is monochromatic. A conflict-free coloring
(CF-coloring) of H is a coloring of V with the further
restriction that for any hyperedge S ∈ E there exists a
vertex v ∈ S with a unique color (i.e., no other vertex
of S has the same color as v).

The study of conflict-free colorings was originated
in the work of Even et al. [5] and Smorodinsky [9]

∗Brooklyn College, City University of New York,
amotz@sci.brooklyn.cuny.edu. Supported by the CUNY
Collaborative Incentive Research Grants Program Round 11
(2004–2006).

†City University of New York and National Technical Uni-
versity of Athens, philaris@sci.brooklyn.cuny.edu. Supported
by the European Social Fund (75%) and National Resources
(25%), under the program EPEAEK II, ‘Heraclitus’.

‡Tel-Aviv University, olonetsk@post.tau.ac.il
§Courant Institute for Mathematical Sciences, New York

University, shakhar@cims.nyu.edu. Supported by the NSF
Mathematical Sciences Postdoctoral Fellowship award 0402492.

who were motivated by the problem of frequency as-
signment in cellular networks. Specifically, cellular
networks are heterogeneous networks with two differ-
ent types of nodes: base stations (that act as servers)
and clients. Base stations are interconnected by an
external fixed backbone network whereas clients are
connected only to base stations. Connections between
clients and base stations are implemented by radio
links. Fixed frequencies are assigned to base stations
to enable links to clients. Clients continuously scan
frequencies in search of a base station with good re-
ception. The fundamental problem of frequency as-
signment in such cellular networks is to assign fre-
quencies to base stations so that every client, located
within the receiving range of at least one station, can
be served by some base station, in the sense that the
client is located within the range of the station and no
other station within its reception range has the same
frequency (such a station would be in “conflict” with
the given station due to mutual interference). The
goal is to minimize the number of assigned frequen-
cies (“colors”) since the frequency spectrum is limited
and costly. In addition to the practical motivation,
this new coloring model has drawn much attention of
researchers through its own theoretical interest and
such colorings have been the focus of several recent
papers (see, e.g., [2, 3, 4, 7, 8, 10]). To capture a dy-
namic scenario where antennas can be added to the
network, Fiat et al. [4] initiated the study of online
CF-coloring of hypergraphs.

In this paper, we study the most general form of
online CF-coloring applied to arbitrary hypergraphs.
Suppose the vertices of an underlying hypergraph
H = (V, E) are given online by an adversary. Namely,
at every given time step t, a new vertex vt ∈ V is given
and the algorithm must assign vt a color such that the
coloring is a valid conflict-free coloring of the hyper-
graph that is induced by the vertices Vt = {v1, . . . , vt}
(see the exact definition in section 2). Once vt is as-
signed a color, that color cannot be changed in the fu-
ture. The goal is to find an algorithm that minimizes
the maximum total number of colors used (where the
maximum is taken over all permutations of the set V).

We present a general framework for online CF-
coloring any hypergraph. Interestingly, this frame-
work is a generalization of some known coloring al-
gorithms. For example the Unique-Max Algorithm
of [4] can be described as a special case of our frame-
work. Also, when the underlying hypergraph is a

106

EWCG 2007, Graz, March 19–21, 2007

simple graph then the First-Fit online algorithm is
another special case of our framework.

Based on this framework, we introduce a random-
ized algorithm and show that the maximum number
of colors used is a function of the ‘degeneracy’ of the
hypergraph. We define the notion of a k-degenerate
hypergraph as a generalization of the same notion
for simple graphs. Specifically we show that if the
hypergraph is k-degenerate, then our algorithm uses
O(k log n) colors with high probability. This is asymp-
totically tight for any constant k.

As demonstrated in [4], the problem of online
CF-coloring the very special hypergraph induced by
points on the real line with respect to intervals is
highly non-trivial. Kaplan and Sharir [7] studied the
special hypergraph induced by points in the plane
with respect to halfplanes and unit discs and obtained
a randomized online CF-coloring with O(log3 n) colors
with high probability. Recently, the bound Θ(log n)
just for these two special cases was obtained indepen-
dently by Chen [3]. Our algorithm is more general and
uses only Θ(log n) colors; an interesting evidence to
our algorithm being fundamentally different from the
ones in [3, 4, 7], when used for the special case of hy-
pergraphs that arise in geometry, is that it uses expo-
nentially fewer random bits. The algorithms of [3, 7]
use Θ(n log n) random coin flips and our algorithm
uses O(log n) random coin flips. Another interesting
corollary of our result is that we obtain a randomized
online coloring for k-inductive graphs with O(k log n)
colors with high probability. This case was studied
by Irani [6] who showed that the first-fit greedy algo-
rithm achieves the same bound deterministically.
Deterministic online CF-coloring with recol-
oring: We initiate the study of online CF-coloring
where at each step, in addition to the assignment of
a color to the newly inserted point, we allow some
recoloring of other points. The bi-criteria goal is to
minimize the total number of recoloring done by the
algorithm and the total number of colors used by the
algorithm. We provide an algorithm for CF-coloring
with respect to halfplanes using O(log n) colors and
O(n) recolorings.

2 Preliminaries

Definition 1 Let H = (V, E) be a hypergraph. For
a subset V ′ ⊂ V let H(V ′) be the hypergraph (V ′, E ′)
where E ′ = {e∩V ′|e ∈ E}. H(V ′) is called the induced
hypergraph on V ′.

Definition 2 For a hypergraph H = (V, E), the De-
launay graph G(H) is the simple graph G = (V,E)
where the edge set E is defined as E = {(x, y) |
{x, y} ∈ E} (i.e., G is the graph on the vertex set
V whose edges consist of all hyperedges in H of car-
dinality two).

Definition 3 A simple graph G = (V,E) is called k-
degenerate (or k-inductive) for some positive integer
k, if every (vertex-induced) subgraph of G has a vertex
of degree at most k.

Definition 4 Let k > 0 be a fixed integer and let
H = (V, E) be a hypergraph on n vertices. Fix a sub-
set V ′ ⊂ V . For a permutation π of V ′ such that V ′ =
{v1, ..., vi} (where i = |V ′|) let Cπ(V ′) =

∑i
j=1 d(vj),

where d(vj) = |{l < j|(vj , vl) ∈ G(H({v1, ..., vj}))}|,
that is, d(vj) is the number of neighbors of vj in
the Delaunay graph of the hypergraph induced by
{v1, ..., vj}. Assume that ∀V ′ ⊂ V and for all per-
mutations π ∈ S|V ′| we have Cπ(V ′) ≤ k |V ′|. Then
we say that H is k-degenerate.

It is not difficult to see that our definition of a k-
degenerate hypergraph is a generalization of that of a
k-degenerate graph.

3 An online CF-coloring framework

Let H = (V,E) be any hypergraph. Our goal is to
define a framework that colors the vertices V in an
online fashion. That is, the vertices of V are revealed
by an adversary one at a time. At each time step t, the
algorithm must assign a color to the newly revealed
vertex vt. This color cannot be changed in the future.
The coloring has to be conflict-free for all the induced
hypergraphs H(Vt) t = 1, . . . , n, where Vt ⊂ V is the
set of vertices revealed by time t.

For a fixed positive integer h, let A = {a1, . . . , ah}
be a set of h auxiliary colors (not to be confused with
the set of ‘real’ colors used for the CF-coloring: {1,
2, . . . }). Let f : N → A be some fixed function. We
now define the framework that depends on the choice
of the function f and the parameter h.

A table (to be updated online) is maintained where
each entry i at time t is associated with a subset V i

t ⊂
Vt in addition to an auxiliary proper coloring of H(V i

t)
with at most h colors. We say that f(i) is the color
that represents entry i in the table. At the beginning
all entries of the table are empty. Suppose all entries
of the table are updated until time t − 1 and let vt

be the vertex revealed by the adversary at time t.
The framework first checks if an auxiliary color can
be assigned to vt such that the auxiliary coloring of
V 1

t−1 together with the color of vt is a proper coloring
of H(V 1

t−1 ∪ {vt}). Any (proper) coloring procedure
can be used by the framework. For example a first-fit
greedy one in which all colors in the order a1, . . . ,
ah are checked until one is found. If such a color
cannot be found for vt, then entry 1 is left with no
changes and the process continues to the next entry.
If however, such a color can be assigned, then vt is
added to the set V 1

t−1. Let c denote such an auxiliary
color assigned to vt. If this color is the same as f(1)

107

23rd European Workshop on Computational Geometry, 2007

(the auxiliary color that is associated with entry 1),
then the final color in the online CF-coloring of vt is
1 and the updating process for the t-th vertex stops.
Otherwise, if an auxiliary color cannot be found or
if the assigned auxiliary color is not the same as the
color associated with this entry, the updating process
continues to the next entry. The updating process
stops at the first entry i for which vt is both added to
V i

t and the auxiliary color assigned to vt is the same as
f(i). The color of vt in the final conflict-free coloring
is then set to i.

It is possible that vt never gets a final color. In
this case we say that the framework does not halt.
However, termination can be guaranteed by impos-
ing some restrictions on the auxiliary coloring method
and the choice of the function f . For example, if first-
fit is used for the auxiliary colorings at any entry and
if f is the constant function f(i) = a1, for all i, then
the framework is guaranteed to halt for any time t.
In section 4 we derive a randomized online algorithm
based on this framework. It is not difficult to prove
that the algorithm halts after a “small” number of
entries with high probability (w.h.p.).

Lemma 1 If the above framework halts for any ver-
tex vt then it produces a valid online CF-coloring.

4 An online randomized CF-coloring algorithm

There is a randomized online CF-coloring in the obliv-
ious adversary model that always produces a valid col-
oring and the number of colors used is related to the
degeneracy of the underlying hypergraph in a manner
described in theorem 2. Proofs will be included in a
longer version of this paper.

Theorem 2 Let H = (V, E) be a k-degenerate hy-
pergraph on n vertices. Then there exists a random-
ized online CF-coloring for H which uses at most
O(log1+ 1

4k+1
n) = O(k log n) colors with high prob-

ability.

The algorithm is based on the framework of sec-
tion 3. In order to define the algorithm, we need to
choose: (a) the set of auxiliary colors of each entry,
(b) the algorithm we use for the auxiliary coloring at
each entry, and (c) the function f . We use: (a) auxil-
iary colors in A = {a1, . . . , a2k+1}, (b) a first-fit algo-
rithm for the auxiliary coloring, and (c) for each entry
i, the representing color f(i) is chosen uniformly at
random from A. Our assumption on the hypergraph
H (being k-degenerate) implies that at least half of
the vertices up to time t that ‘reached’ entry i (but
not necessarily added to entry i), and we denote by
Xt
≥i, have been actually given some auxiliary color

at entry i (that is,
∣∣V i

t

∣∣ ≥ 1
2

∣∣Xt
≥i

∣∣). This is easily

implied by the fact that at least half of those ver-
tices vt have at most 2k neighbors in the Delaunay
graph of the hypergraph induced by Xt−1

≥i (since the
sum of these quantities is at most k

∣∣Xt
≥i

∣∣ and since
V i

t ⊂ Xt
≥i). Therefore since we have 2k + 1 colors

available, there is always a free color to assign to such
a vertex. The following lemma shows that if we use
one of these ‘free’ colors then the updated coloring is
indeed a proper coloring of the corresponding induced
hypergraph as well.

Lemma 3 Let H = (V, E) be a k-degenerate hyper-
graph and let V j

t be the subset of V at time t and at
level j as produced by the above algorithm. Then for
any j and t if vt is assigned a color distinct from all
its neighbors in the Delaunay graph G(H(V j

t)) then
this color together with the colors assigned to the ver-
tices V j

t−1 is also a proper coloring of the hypergraph

H(V j
t).

Lemma 4 Let H = (V, E) be a hypergraph and let
C be a coloring produced by the above algorithm on
an online input V = {vt} for t = 1, . . . , n. Let Xi (re-
spectively X≥i) denote the random variable counting
the number of points of V that were assigned a final
color at entry i (respectively a final color at some en-
try ≥ i). Let Ei = E[Xi] and E≥i = E[X≥i] (note
that X≥i+1 = X≥i −Xi). Then:

E≥i ≤
(

4k + 1
4k + 2

)i−1

n

Lemma 5 The expected number of colors used by
the above algorithm is at most log 4k+2

4k+1
n + 1.

Remark: In the above description of the algorithm,
all the random bits are chosen in advance (by deciding
the values of the function f in advance). However, one
can be more efficient and calculate the entry f(i) only
at the first time we need to update entry i, for any i.
Since at each entry we need to use O(log k) random
bits and we showed that the number of entries used
is O(k log n) w.h.p then the total number of random
bits used by our algorithm is O(k log k log n) w.h.p.

5 Application to Geometry

Our randomized algorithm has applications to CF col-
orings of certain geometric hypergraphs studied in
[3, 4, 7]. We obtain the same asymptotic result as in
[3], but with better constants of proportionality and
much fewer random bits. An algorithm for intervals
is given in [1]. When the hypergraph H is induced
by points in the plane intersected by halfplanes or
unit disks, we obtain online randomized algorithms
that use O(log n) colors w.h.p. We summarize it as
follows:

108

EWCG 2007, Graz, March 19–21, 2007

Lemma 6 Let V be a finite set of n points in the
plane and let E be all subsets of V that can be ob-
tained by intersecting V with a halfplane. Then the
hypergraph H = (V, E) is 4-degenerate.

Proof. The proof uses a few geometric lemmas. De-
tails are omitted. �

Corollary 7 Let H be the hypergraph as in lemma 6.
Then the expected number of colors used by our ran-
domized online CF-coloring applied to H is at most
log 18

17
n + 1. Also the actual number of colors used

is O(log 18
17

n) with high probability. The number of

random bits is O(log n) with high probability

Proof. The proof follows immediately from lemma 6,
lemma 5 and theorem 2. �

Proposition 8 Let V be a finite set of n points in
the plane and let E be all subsets of V that can be
obtained by intersecting V with a unit disc. Then
there exists a randomized online algorithm for CF-
coloring H which uses O(log n) colors and O(log n)
random bits with high probability.

Proof. By a technique of Kaplan and Sharir [7] and
Corollary 7. �

6 Deterministic online CF-coloring with recoloring

In this section we describe a deterministic algorithm
for online CF-coloring points with respect to half-
planes that uses O(log n) colors and recolors O(n)
points. At every time instance t, the algorithm main-
tains the following invariant (Vt is the set of points
that have appeared): All points (strictly) inside the
convex hull of Vt are colored with the same special
color, say ‘?’. The set of points on the convex hull
of Vt, denoted by CH(Vt), are colored with another
set of colors, such that every set of consecutive points
on the convex hull has a point with a unique color.
The number of colors used in CH(Vt) must be log-
arithmic on t. It is not difficult to see that every
subset of points of Vt induced by a halfplane contains
a set of consecutive points, and thus the whole col-
oring is conflict-free. We describe how the algorithm
maintains the above invariant. A new point vt+1 that
appears at time t + 1 is colored as follows: If it is
inside the convex hull of Vt, then it gets color ‘?’. If
however it is in CH(Vt+1), it might force some points
that where in CH(Vt) to get inside the convex hull
of Vt+1. In order to maintain the invariant, if there
exist such points, they are recolored to ‘?’, and vt+1

is colored greedily, so that the coloring of CH(Vt+1) is
conflict-free (it can be proved that no new color is in-
troduced). If, on the other hand, no points of CH(Vt)
are forced into the convex hull, then vt+1 ∈ CH(Vt+1)
is colored with the algorithm that is used for intervals,

given in [1], with a slight adaptation to address the
closed curve nature of the convex hull. In that last
case, in order to maintain logarithmic number of col-
ors on t, one recoloring of a point in CH(Vt+1) might
be needed. The number of recolorings is guaranteed
to be O(n), because for every insertion, at most one
recoloring happens on the new convex hull, and every
point colored with ‘?’ stays with that color, because
the convex hull never shrinks.

References

[1] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and
S. Smorodinsky. Weakening the online adversary
just enough to get optimal conflict-free colorings
for intervals. Manuscript, 2006.

[2] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky.
Conflict-free coloring for intervals: from offline to
online. In Proceedings of the 18th annual ACM
symposium on Parallelism in algorithms and ar-
chitectures (SPAA), pages 128–137, 2006.

[3] K. Chen. How to play a coloring game against a
color-blind adversary. In Proceedings of the 22nd
Annual ACM Symposium on Computational Ge-
ometry (SoCG), pages 44–51, 2006.

[4] K. Chen, A. Fiat, H. Kaplan, M. Levy,
J. Matoušek, E. Mossel, J. Pach, M. Sharir,
S. Smorodinsky, U. Wagner, and E. Welzl. Online
conflict-free coloring for intervals. SIAM Journal
on Computing, 36(5):956–973, 2006.

[5] G. Even, Z. Lotker, D. Ron, and S. Smorodin-
sky. Conflict-free colorings of simple geomet-
ric regions with applications to frequency assign-
ment in cellular networks. SIAM Journal on
Computing, 33:94–136, 2003.

[6] S. Irani. Coloring inductive graphs on-line. Al-
gorithmica, 11(1):53–72, 1994.

[7] H. Kaplan and M. Sharir. Online CF coloring
for halfplanes, congruent disks, and axis-parallel
rectangles. Manuscript, 2004.

[8] J. Pach and G. Tóth. Conflict free color-
ings. In Discrete and Computational Geometry,
The Goodman-Pollack Festschrift, pages 665–
671. Springer Verlag, 2003.

[9] S. Smorodinsky. Combinatorial Problems in
Computational Geometry. PhD thesis, School of
Computer Science, Tel-Aviv University, 2003.

[10] S. Smorodinsky. On the chromatic number of
some geometric hypergraphs. In Proceedings of
the 17th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2006.

109

23rd European Workshop on Computational Geometry, 2007

On the Chromatic Numbers of Some Flip Graphs

Ruy Fabila-Monroy† David Flores Peñaloza † Clemens Huemer ‡ Ferran Hurtado ‡

Jorge Urrutia † David R. Wood ‡

Abstract

In this paper we study the chromatic number of the
following four flip graphs: A graph on the perfect
matchings of the complete graph on 2n vertices and
three graphs on the triangulations, Hamiltonian geo-
metric non-crossing paths, and triangles respectively
of a point set in convex position in the plane. We
give tight bounds for the latter two cases and upper
bounds for the first two.

1 Introduction

Given a class C of combinatorial objects of a given
kind and a transformation (flip) between these ob-
jects, a flip graph is defined as the graph whose vertex
set is C, where two vertices are adjacent whenever they
differ by a flip. Flip graphs have received considerable
attention in the past. Properties such as Hamiltonic-
ity, connectivity and diameter have been widely stud-
ied [4, 6, 12, 15]. This interest is very likely due to the
practical applications of these properties. For exam-
ple, Hamiltonicity allows for rapid generation of the
given combinatorial objects. We refer the interested
reader to the survey [1].

The chromatic number χ(G) of a graph is the small-
est integer such that it is possible to assign to each
vertex of G an integer i ≤ χ(G) such that adjacent
vertices of G receive different integers. The chromatic
number of flip graphs has received little attention,
with only a few papers concentrating on this param-
eter (see for example [5]). In this paper we study
the chromatic number of a flip graph on the perfect
matchings of the complete graph and three flip graphs
for sets of points in convex position, that is, they form
the set of vertices of a convex polygon on the plane.

For flip graphs on convex point sets, we determine

†Instituto de Matemáticas, Universidad Nacional Autónoma
de México (ruy@ciencias.unam.mx, colegadavid@gmail.com,
urrutia@math.unam.mx). Supported by CONACYT of Mex-
ico, Proyecto SEP-2004-Co1-45876, and PAPIIT (UNAM),
Proyecto IN110802.

‡Departament de Matemàtica Aplicada II, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain
{(huemer.clemens,ferran.hurtado,david.wood}@upc.edu).
Research of C. Huemer and F. Hurtado supported by projects
MEC MTM2006-01267 and Gen. Cat. 2005SGR00692.
Research of D. Wood supported by a Marie Curie Fellowship
of the European Community under contract 023865.

Figure 1: G5

the exact chromatic number for geometric Hamilto-
nian paths (Section 2), we define a certain flip graph
on its triangles of and determine its chromatic num-
ber up to a constant multiplicative factor (Section 3),
and we give an upper bound on the chromatic num-
ber for triangulations (Section 5). We also consider
a flip graph on the the perfect matchings of the com-
plete graph on 2n vertices and give an upper bound
on its chromatic number (Section 4). It should be
stressed that in the case of matchings, no geometry is
considered. We conclude with some open problems in
Section 6.

Throughout the rest of the paper S will denote a
set of n points in convex position in the plane.

2 Geometric Non-Crossing Hamiltonian Paths

Let Gn be the graph whose vertex set is the set of
all non-crossing geometric paths with vertex set S.
Two paths Γ1 and Γ2 in V (Gn) are adjacent if and
only if there exist edges e in Γ1 and f in Γ2 such that
Γ2 = Γ1 − e + f . We say that Γ2 is obtained from
Γ1 by flipping e and f . We point out that e and f
may intersect. Note that Rivera-Campo and Urrutia-
Galicia [14, 17] proved that Gn is Hamiltonian. We
determine χ(Gn).

Theorem 1 χ(Gn) = n for n ≥ 3.

Proof. Since G3 ' K3, assume n ≥ 4. For i =
0, . . . , n− 3, let Di be the set of paths in V (Gn) that
contain exactly i non-convex hull edges (see Figure 1).
Note that the set D0 consists of n paths, all of whose
edges are on the convex hull of S. Each element of D0

is obtained by removing one edge of the convex hull

110

EWCG 2007, Graz, March 19–21, 2007

of S. Clearly any two elements of D0 are adjacent in
Gn, and D0 thus induces a complete subgraph of Gn.
This proves that χ(Gn) ≥ n.

We now give a method to obtain an n-coloring of
Gn. Note that each time we flip an edge of a path in
Di, we obtain a path in either Di−1, Di or Di+1. Since
D0 induces a clique of size n in Gn, in any n-coloring
of Gn we assign a different color to each element in
D0. We now show how to extend an n-coloring of the
elements of D0 to an n-coloring of Gn. Observe that
every path Γ1 in D1 is adjacent to exactly two paths
in D0. Furthermore if Γ1 and Γ2 lie in D1, then both
are adjacent to the same two paths of D0, or there is
no path in D0 adjacent to both of them. Since we are
assuming n ≥ 4, for each pair of adjacent paths in D1

there are at least two colors we can assign to them,
different from the colors assigned to their neighbors in
D0. Thus we can extend our coloring of D0 to one of
D0 ∪D1. Observe next that for for i ≥ 2, there is no
pair of adjacent paths in Di, and that every path in
Di is adjacent to exactly two elements in Di−1. Thus
any n-coloring of D0∪. . .∪Di−1 can be extended to an
n-coloring of D0∪ . . .∪Di, i = 2, . . . , n−3. Therefore
χ(Gn) = n. �

3 Triangle Graph

We introduce a new flip graph G4(n), whose vertex
set is the set of triangles with endpoints in S, two
of which are adjacent if they share an edge and their
interiors are disjoint. Assume that the elements of S
are labeled {0, . . . , n− 1} clockwise along the convex
hull of S, and let 4(i, j, k) denote the triangle with
vertex set {i, j, k}.

Lemma 2 χ(G4(n)) ≥ log2(n− 1).

Proof. Let H be the subgraph of G4(n) induced by
all triangles containing 0 as a vertex. Suppose that
H has a coloring with k colors. Let Aj be the set
of colors assigned to the triangles 4(0, i, j) with i <
j. Observe that for r 6= s, Ar 6= As. This follows
from the fact that if r < s, 4(0, r, s) is adjacent to
every triangle 4(0, k, r) with k < r; thus the color
assigned to 4(0, r, s) is in As but not in Ar. The
number of possible color sets must be at least n − 1.
Therefore 2k ≥ n−1, k ≥ log2(n−1) and χ(G4(n)) ≥
log2(n− 1). �

The subgraph H of G4 considered in the proof of
Lemma 2 is known as the shift graph, and its chro-
matic number is well known [16].

Given two graphs G and H, a homomorphism from
G to H is a mapping from the vertex set of G to the
vertex set of H such that adjacent vertices of G are
mapped to adjacent vertices in H. It is well known

Figure 2: The homomorphism between G and G4(m)

and straightforward to see that if there is a homomor-
phism from G to H, then the chromatic number of G
is less than or equal to the chromatic number of H.

Lemma 3 Let G be the subgraph of G4(2m) in-
duced by all the triangles without edges on the convex
hull of S. Then χ(G) ≤ χ(G4(m)).

Proof. Color the vertices of S red and blue such that
no two consecutive vertices have the same color. Note
that the subgraph H of G induced by the blue points
is isomorphic to G4(m). We now map every triangle
t in V (G) to a triangle such that all its vertices are
blue as follows: if i is a red vertex of t, substitute
it by the blue vertex i + 1, addition taken mod n.
Observe that triangles whose vertices were already all
blue are mapped onto themselves. Since adjacent tri-
angles in G are mapped to adjacent triangles in H,
this mapping induces a homomorphism from G to H
(see Figure 2). The result follows. �

Lemma 4 χ(G4(2m)) ≤ χ(G4(m)) + 3.

Proof. We use a similar technique to that used in
Theorem 1 of Section 2. Let G′ be the subgraph of
G4(2m) induced by all those triangles of S that have
at least one edge on the convex hull of S. Let τ =
4(i, i+1, j) be any such triangle. S−{j, i, i+1} can be
partitioned into two maximal subsets of consecutive
points, namely the points from i+1 to j and the points
from j to i, which we denote by lτ and rτ respectively.
We define the “order” of τ to be min{|lτ |, |rτ |}. For
i = 0, . . . dn−2

2 e, let Di be the subset of V (G′) of all
triangles of order i. Note that the subgraph of G′

induced by Ddn−2
2 e has maximum degree 2 and there-

fore chromatic number at most 3. Note that in gen-
eral every vertex of Di is only adjacent to at most
2 vertices in Di+1 ∪ . . . Ddn−2

2 e. Thus any 3-coloring
of Di+1 ∪ . . . Ddn−2

2 e can be extended to a coloring
of Di ∪Di+1 ∪ . . . Ddn−2

2 e. Therefore χ(G′) = 3. By
Lemma 3, we can color G with χ(G4(m)) colors and
G′ with four different colors. This produces a coloring
of G4(2m) with χ(G4(m)) + 3 colors. �

111

23rd European Workshop on Computational Geometry, 2007

We now have:
Theorem 5 log2(n− 1) ≤ χ(G4(n)) ≤
3dlog2(n)e − 6.

Proof. Let F (k) = χ(G4(2k)). By Lemma 4,
F (k) ≤ F (k − 1) + 3. Observe that χ(G4(4)) = 2.
Thus F (k) ≤ 3k − 6 and therefore χ(G4(n)) ≤
3 log2(n)− 6.

For n 6= 2k, let m be the smallest power of 2 greater
than n. Since in general G4(n) is a subgraph of
G4(n + 1), we can color the vertices of G4(n) with
χ(G4(m)) ≤ 3 log2(m)−6 = 3dlog2(n)e−6 colors. �

4 Perfect Matchings of K2n

Given any graph G, we defineM(G) to be the graph
whose vertex set is the set of perfect matchings of G,
where two vertices of M(G) are adjacent whenever
the symmetric difference of the corresponding perfect
matchings is a cycle of length 4. M(G) is known as
the flip graph of the perfect matchings of G.

We now give an upper bound on χ(M(K2n)). To
do so, we need the fact that χ(M(Kn,n)) = 2. In [7],
the flip graph of the non-crossing geometric match-
ings of a set of 2n points in convex position is shown
to be bipartite. This graph is actually a subgraph
of M(Kn,n). Using the same arguments as in [7] it
is possible to show that M(Kn,n) is bipartite. For
details, the interested reader can see [7].

Theorem 6 χ(M(K2n)) ≤ 4n− 4 for n ≥ 2.

Proof. Label the vertices of V (K2n) = {1, . . . , 2n}.
For every perfect matching M of K2n, let UM = {i ∈
V (K2n)|(i, j) ∈ M and i > j} and DM = {i ∈
V (K2n)|(i, j) ∈ M and i < j}. Assign to every par-
tition UM , DM of V (K2n) given by a matching M
the number iM =

∑
i∈DM

i mod 2n − 2. Given two
sets U , D, let MU,D be the set of matchings M such
that UM = U and DM = D. The subgraph HU,D of
M(K2n) induced by MU,D is a subgraph ofM(Kn,n),
and is thus 2-colorable. Color the vertices of H with
colors iM and i

′

M .
We show now that if two matchings M and M ′

differ by a flip, they receive different colors.
Two cases arise: UM = UM ′ and DM = DM ′ or for

some i < j, UM = UM ′− i+ j and DM = DM ′− j + i.
In the first case, M and M ′ belong to HUM ,DM

and
thus receive different colors.

In the second case, UM 6= UM ′ − i + j, and the
colors assigned to M and M ′ are different. Thus we
obtain a coloring of the vertices of χ(M(K2n)) with
2(2n− 2) = 4n− 4 colors. �

5 Triangulations of a Convex Polygon

Finally, we consider a flip graph on the triangulations
of S. Let GT (n) be the graph whose vertex set is the

Figure 3: GT (5) and GT (6)

set of triangulations of S, where two triangulations
T1 and T2 are adjacent in GT (n) whenever they differ
by one edge flip; that is, there exist edges e ∈ T1 and
f ∈ T2 such that T2 = T1 − e + f (see Figure 3).

Much is known about GT (n). This is probably due
to the fact that there is a bijection between triangula-
tions of the n-gon and binary trees with n− 2 nodes.
A flip in a triangulation corresponds to a rotation in
its corresponding binary tree.

Lucas [12] proved that GT (n) is Hamiltonian.
Sleator et al. [15] proved that the diameter of GT (n)
is 2n − 10. Lee [10] proved that the automorphism
group of GT (n) is the dihedral group of order 2n and
can be realized as an (n−3)-dimensional convex poly-
tope called the associahedron. Most of these results
are proved again in [8] using a unifying framework
called the tree of triangulations.

Of the flip graphs we have studied, GT (n) is the one
for which we have made the least progress. We present
our results as a starting point for further research in
the area.

Theorem 7 χ(GT (n)) ≤ dn
2 e.

Proof. It is well known that for n even, the set of
(
n
2

)
edges between the vertices of S can be partitioned
into n

2 edge-disjoint geometric non-crossing graphs
(see [11, 2] and Figure 4 for an example with n = 6).
Since GT (n) is a subgraph of GT (n + 1), we will as-
sume n to be even for the time being. Label these
graphs G1, . . . , Gn

2
. If an edge e belongs to Gi, assign

it the weight w(e) = i. To every triangulation T of
S, assign the number (

∑
e∈T w(e)) mod n

2 . Let T1
and T2 be two adjacent triangulations of GT (n), i.e.
T2 = T1−e+f for some crossing edges e and f . Since
e and f cross each other, w(e) 6= w(f), and thus the
numbers associated to T1 and T2 are different. This
induces a coloring of GT (n) with n

2 colors for n even
and dn

2 e in general. �

The upper bound on χ(GT (n)) in Theorem 7 is non-
trivial since, for example, Brooks’ Theorem [3] gives
an upper bound of only n − 1. However, χ(GT (n))
is in fact sublinear, as we now show. Johansson [9]

112

EWCG 2007, Graz, March 19–21, 2007

Figure 4: Partition of the edges into disjoint non-
crossing geometric Hamiltonian paths

proved that for sufficiently large ∆, every triangle-free
graph with maximum degree ∆ is O

(
∆

log ∆

)
-colorable;

see [13]. The next theorem follows since GT (n) is
(n− 3)-regular and triangle-free.

Theorem 8 χ(GT (n)) ∈ O
(

n
log n

)
.

We remark that the proof of Theorem 7 is construc-
tive, whereas Johansson’s proof is probabilistic.

6 Open Problems

The most challenging open problems arising from
this work are to determine the chromatic numbers of
GT (n) andM(K2n). Despite our efforts, we have not
been able to obtain non-trivial lower bounds for these
graphs. We have made the following educated guess
of the chromatic number ofM(K2n).

Conjecture 1 χ(M(K2n)) = n + 1.

We have verified this conjecture with the aid of a
computer for n = 2, 3, 4.

We have studied M(K2n), but it would be very
interesting to study M(G) for other graphs.

There is another flip graph, M(G), related to
M(G). M(G) has as its vertex set the perfect match-
ings of G, where two matchings are now adjacent if
and only if their symmetric difference is a cycle of ar-
bitrary length. We have yet to study its chromatic
number.

With respect to χ(GT (n)), the problem seems far
more intriguing since not only do we not have a non-
trivial lower bound, we also believe that our upper
bound is far from being tight.

Conjecture 2 χ(GT (n)) = Θ(log(n)).

It would be interesting to see what techniques will
be capable of improving the lower bounds of both of
these graphs. It is likely that such techniques will turn

out to be useful in determining the chromatic number
of other graphs.

References

[1] P. Bose and F. Hurtado. Flips in planar graphs. Tech-
nical Report TR-06-09, School of Computer Science,
Carleton University, Ottawa, 2006.

[2] P. Bose, F. Hurtado, E. Rivera-Campo and D. R.
Wood Partitions of complete geometric graphs into
plane trees. Computational Geometry: Theory an
Applications, 34(2):116–125,2006.

[3] R. L. Brooks. On coloring the nodes of a network.
Cambridge Philos. Soc., 37:194–197, 1941.

[4] R. Cummins. Hamilton circuits in tree graphs. IEEE
Transactions on Circuit Theory 13:82–90, 1966.

[5] V. Estivill-Castro, M. Noy and J. Urrutia. On The
chromatic number of tree graphs. Discrete Math.
233:363–366, 2000.

[6] W. Goddard and H. C. Swart. Distances be-
tween graphs under edge operations. Discrete Math.
161:121–132, 1996.

[7] C. Hernando, F. Hurtado and M. Noy. Graphs of
non-crossing perfect matchings. Graphs and Combi-
natorics, 18:517–532, 2002.

[8] F. Hurtado and M. Noy Graph of triangulations of
a convex polygon and tree of triangulations. Com-
putational Geometry: Theory and Applications,
13(3):179–188, 1999.

[9] A. Johansson. Asymptotic choice number for triangle
free graphs. DIMACS Technical Report 91–95, 1996.

[10] C. Lee. The associahedron and the triangulations of
the n-gon. European J. Combinatorics 10(4):551–560,
1989.

[11] D. E. Lucas. Recreations Mathématiques, Volume 2.
Gauthiers Villars, Paris 1892.

[12] J. M. Lucas. The rotation graph of binary trees is
Hamiltonian. J. Algorithms, 8(4):503–535, 1987.

[13] M. Molloy and B. Reed. Graph colouring and the
probabilistic method., Algorithms and Combinatorics,
Vol. 23, Springer, 2002.

[14] E. Rivera-Campo and V. Urrutia-Galicia. Hamilton
cycles in the path graph of a set of points in convex
position. Computational Geometry: Theory and Ap-
plications, 18(2):65–72, 2001.

[15] D. Sleator, R. Tarjan and W. Thurston Rotations
distance, triangulations and hyperbolic geometry. J.
Amer. Math. Soc., 1:667–682, 1988.

[16] W. Trotter. Ramsey theory and partially ordered
sets. Contemporary Trends in Discrete Mathmat-
ics, R. L. Graham, et al., eds., DIMACS Series in
Discrete Mathematics and Theoretical Computer Sci-
ence 49:337–347, 1999.

[17] V. Urrutia-Galicia. Algunas propiedades de gráficas
geométricas. Ph.D. thesis, Universidad Autónoma
Metroploitana-Iztapalala, México D.F., 2000.

113

23rd European Workshop on Computational Geometry, 2007

Computing multiple convex hulls of a simple polygonal chain in linear time

Lilian Buzer ∗†, buzerl@esiee.fr

Abstract

In 1987, Melkman published an online algorithm that
can compute the convex hull of a simple polygonal
chain in linear time [1]. Its short implementation
based on a basic data structure leads to a very simple
and efficient function. Twenty years later, we revisit
his method and propose to solve a more complex prob-
lem. For a given polygonal chain S = (v1, v2, . . . , vn),
we want to determine the convex hulls of some sub-
chains of the form Sj

i = (vi, vi+1, . . . , vj−1, vj). Con-
sider two non-decreasing sequences (iu)1≤u≤k and
(ju)1≤u≤k satisfying 1 ≤ iu ≤ ju ≤ n for all u,
1 ≤ u ≤ k. We succeed in proving that the computa-
tion of the k convex hulls of the subchains (Sju

iu
)1≤u≤k,

can be processed online in optimal linear time.

1 Introduction

A polygonal chain S in the Euclidian plane, with n
vertices, is defined as an ordered list of n vertices
(v1, v2, . . . , vn) such that any two consecutive ver-
tices vi, vi+1 are connected by a line segment. A
polygonal chain is called simple when it is not self-
intersecting. In this paper, we use the notation Sj

i

to describe the subchain of S corresponding to the
vertices vi, vi+1, . . . , vj−1, vj .

In 1987, Melkman proposed an online algorithm
that successively computes the convex hulls of the
subchains (Sj

1)1≤j≤n in optimal linear time. It only
requires to use a sequence of vertices associated with
a simple polygonal chain. We extend this problem
to a more general case where we propose an online
method that computes all the convex hulls of the sub-
chains (Sju

iu
)1≤u≤2n in optimal linear time. The two

non-decreasing sequences (iu)1≤u≤2n and (ju)1≤u≤2n

must satisfy i1 = j1 = 1, i2n = j2n = n and iu ≤ ju

for any u. When we know the convex hull of the sub-
chain Sju

iu
, we can choose like in Melkman’s algorithm

to insert the next point vju+1. The two sequences also
satisfy: iu+1 = iu and ju+1 = ju + 1. But now, we
are able to choose to withdraw the first point viu

of
the current subchain and in this case : iu+1 = iu + 1
and ju+1 = ju.

Such a problem arises when we want to perform a
∗A2SI Laboratory, ESIEE, 2 boulevard Blaise Pascal, Cité

Descartes, - BP 99, 93162 Noisy-Le-Grand Cedex, France
†Institut Gaspard Monge, Unité Mixte CNRS-ESIEE, UMR

8049, 77454 Marne-la-Valle, France

geometrical simplification of a polygonal chain. When
we use the general framework of Imai and Iri [2], the
problem is formulated as follows: for a given poly-
gonal chain S, the subchain Sj

i can be approximated
by the straight segment vivj when the subchain Sj

i is
contained in a tolerance region defined by vivj . When
the approximation criterion is linked to a property of
the convex hull of Sj

i , our method can be reused to
offer efficiency and a low complexity bound.

In the first Section, we recall Melkman’s algorithm
and its main properties. We show that the reverse
case where only deletions are supported and where
we also process the convex hulls of the subchains
(Sn

i)1≤i≤n can be simply deduced from the existing
algorithm. In Section 2, we show that the convex
hulls of two consecutive subchains of S intersect in at
most two points. This main property allows us to set
up our new algorithm in Section 3. In the last Sec-
tion, we show that the resulting complexity is linear
in the number of vertices.

2 Melkman’s algorithm

Data structure representation. The algorithm
uses a deque D (doubly ended queue) where the ver-
tices of the current convex hull are stored in counter-
clockwise order. However, the last vertex created on
the convex hull is stored twice at the top and at the
bottom of the deque. You can see an example in
Figure 1.a. At the beginning of the algorithm, the
deque is initialized with three vertices associated with
a counterclockwise triangle.

Insertion of a new point. We successively insert
points corresponding to the vertices of a simple poly-
gonal chain. When a new point is processed, Melk-
man proves that a simple test allows us to determine
whether the new point is inside the convex hull. You
can see an example in Figure 1.b. Let us suppose that
vi is the last vertex inserted on the convex hull. If the
next point vi+1 lies inside the current convex hull, it
can only be located in the area A and B on the Fig-
ure. In fact, if it was elsewhere inside the convex hull,
the straight line segment vivi+1 should cross the poly-
gonal chain and that would contradict the hypothesis
of simplicity. Thus, it is sufficient to test the location
of the new point vi+1 relative to the two straight line
segments: Dtop−1Dtop and DbottomDbottom+1.

Convexifying. When the next point p lies outside
the current convex hull, we compute the new resulting

114

EWCG 2007, Graz, March 19–21, 2007

convex body. For this, classical approaches like phase
two of ”Graham’s scan” or ”three coins algorithm”
can be used in order to fill the concave angles created
by p and the neighboring points on the hull border.
For each backtracking, one vertex is deleted and so
the number of operations is bounded by the number
of the vertices of the polygonal chain. You can see an
example in Figure 1.c.

Source Code. We present the inner loop of Melk-
man’s algorithm:

Get the next vertex v
// Test if v is inside the current convex hull
If (v is on the left of DbottomDbottom+1) and

(v is on the left of Dtop−1Dtop)
skip v and proceed to the next vertex

// Update the tangent to the bottom
While v is on the right of DbottomDbottom+1

Remove Dbottom from the bottom of D
Push v at the bottom of D

// Update the tangent to the top
While v is on the right of Dtop−1Dtop

Remove Dtop from the top of D
Push v onto the top of D

Reverse Melkman’s algorithm. For a given
polygonal chain S of n vertices, we propose to han-
dle a similar problem where we want to successively
compute the convex hulls of the subchains Sn

i from
i = 1 to n. For this, we apply Melkman’s algorithm
as usual but we process the points in reverse order
from the vertex vn to the vertex v1. Thus, we succes-
sively have access to the convex hulls of Sn

n up to the
convex hull of Sn

1 . To obtain the same results from
Sn

1 up to Sn
n , we keep in memory the successive dele-

tions that appear during the insertion of each vertex.
This list of events is used to build back the succes-
sive convex hulls of Sn

1 up to Sn
n . For example, we

store in memory that the insertion of the vertex vi

in the convex hull of Sn
i−1 suppresses the vertices vj

and vk from the bottom of the deque and the vertices
vj , vl and vm from the top of the deque. Then, when
we want to deduce the convex hull of Sn

i−1 from the
convex hull of Sn

i , we only withdraw vi from the top
and the bottom of the deque, push back vj and vk on
the bottom of deque and push back vj , vl and vm on
the top of the deque. Each operation is processed in
constant time and the total number of operations is
bounded by the number of vertices. So, the overall
cost of this procedure is linear.

3 Main proposition

Proposition 1 For a simple polygonal chain S of n
vertices, the convex hulls of two consecutive subchains
Sj

i and Su
k with j ≤ k can intersect at most twice.

(c) Updating the current convex hull

(b) Testing if the next vertex lies inside the hull

A

B

Deque:

(a) Representation of the convex hull

p

Dtop = Dbottom = v12

Dtop−1
v6

v10

Dbottom+1

v10 v9 v3 v2 v5 v6v12 v12

vi+1

vi

Dbottom+1

Dtop = Dbottom = vi

Dtop−1

v9

v3

v2

v7

v11

v8

v1

v4

v5

topbottom

Figure 1: Melkman’s algorithm.

Proof. Let T and T ′ denote the convex hulls asso-
ciated with the subchain Sj

i and the subchain Sl
k re-

spectively. Suppose that T and T ′ intersect in two
points I1 and I2. Let A1 denote the vertex on the
convex hull T that follows I1 and that lies outside the
intersections of T ∩ T ′. In the same way, we define
A2, A′

1 and A′
2. Relative to the convex property of

T and T ′, there exists two forbidden areas delimited
by their tangents I1A1, I1A

′
1, I2A2 and I2A

′
2 where

T and T ′ cannot lie. Only two configurations can ap-
pear depending on the possible locations of I1A1 and
I2A2 relative to I1I2. Consider the second configura-
tion presented in Figure 2. As A1 and A2 belongs to
the same subchain there exists a polygonal path t that
joins these two points. In the same way, there exists a
polygonal path that joins A′

1 and A′
2. Nevertheless, if

115

23rd European Workshop on Computational Geometry, 2007

Configuration 2

area
forbidden

Configuration 1

u

I2

I1

A1

I1

P

K

P ′

v

A′
1

A1

A′
1

A2

A′
2

A′
2

A2

I2

Figure 2: Intersections of two consecutive polygonal
subchains.

this path exists, as it cannot traverse the two forbid-
den areas, it would have to cross the first path t and
that would contradict the hypothesis of simplicity of
S. Thus, only the first configuration can exist.

We consider the area P delimited by u, I1, I2 and v
and the area K (blue colored) delimited by A1, I1, I2,
A2 and the polygonal path that joins A2 to A1. Let C
and C ′ denote T∩P and T ′∩P . Using the simplicity of
S, the polygonal subchain associated with T ′ cannot
cross the polygonal path that joins A2 to A1. More-
over, relative to the convex property of the convex hull
T ′, T ′ is located on each side of its tangents A′

1I1 and
A′

2I2. Thus, the convex body C ′ is included in the
domain K and it follows that C ′ ⊂ convex hull(K).
As convex hull(K) ⊂ C, we finally obtain C ⊂ C ′.
Symmetrically, we obtain the same property on the
other side of I1I2. As a consequence, no intersections
between T and T ′ can lie in P , in P ′ and in the forbid-
den areas. So, T and T ′ intersect at most twice. �

Observation 1 An immediate consequence for our
problem is that there exist at most two bridges be-
tween the convex hull of Sk

i and Sl
k.

4 Our algorithm

4.1 Online processing

We now explain how to handle the online insertions
and deletions. Our algorithm produces a sequence
of event points. Suppose that the procedure has just
ended and let us have a look at two consecutive event
points vi and vj with i ≤ j. A decremental convex
hull C− has been managed from vj to vi and an in-
cremental convex hull C+ has been processed from vj .
The successive mergings of the two convex hulls C−

and C+ gave the different results. When insertions
are requested, points are inserted into C+. When we
ask to delete a point vu with i ≤ u ≤ j, the operation

b−

a−

C−

b+ b−

C−

b+
a−

vkvk

a+

C+

a+

C+

Figure 3: Testing whether C+ is included in C−.

is performed in C−. When the last vertex of C− dis-
appears, this decremental convex hull is empty and
it is now useless. Let vk denote the last vertex cre-
ated on the border of C+ and let vl denote the last
inserted point. A new decremental convex hull C−

is initialized using Sk
j and a new incremental convex

hull C+ is initialized to Sl
k. The point vk is the next

event point after vj . We apply the same process until
the end. To start the algorithm, we choose the two
event points to be equal to v1.

4.2 First stage: C+ ⊂ C−

Consider that the couple of event points changes to vj

and vk. As vk is the last created vertex on the border
of the previous C+, the subchain Sl

k is also included
in the new convex hull C−. Thus, at the beginning of
this new phase, we have: C+ ⊂ C−.

When a new point p is inserted in C+, it is quite
simple to check whether C+ is included in C−. The
classical Melkman’s condition guarantees that check-
ing the location of p relative to two edges emerging
from vk on the border of C− is sufficient.

We now explain how to check whether C+ is in-
cluded in C− when a point is withdrawn from C−.
Since vk is an extreme point of C− and k is the great-
est index of the points of C−, vk will always remain
an extreme point of C− (see Fig. 3). Let a− and b−

(resp. a+ and b+) denote the two vertices neighboring
vk on the border of C− (resp. C+). Since vk belongs
to C+ and vka− and vkb− are tangent to C+, vk is an
extreme point for C+ too. When a+ and b+ are inte-
rior to vka− and vkb−, C+ is included in the domain
defined by a−, vk, b− and the polygonal subchain that
joins a− to b−. As this domain is included in C−, C+

is inside C−. Thus, testing if a+ and b+ are interior
to a−vk and vkb− is sufficient.

When C+ is no more included in C−, we compute
the merging C of C+ and C− in time linear in the
number of vertices (using the rotating caliper algo-
rithm for example). Thus, we determine which ver-
tices of C+ and of C− contribute to the definition of
C and which vertices support the two bridges. After
this, we proceed to the second step.

116

EWCG 2007, Graz, March 19–21, 2007

4.3 Second stage: C− * C+

Incremental case. When we insert a new point p
in C+, we concurrently insert it in C (the merging
between C+ and C−) using Melkman’s routine (see
Fig. 4.b). To offer a virtual access to C, we test for
each operation in O(1) if we operate on C+, on C−

or on one bridge. This simple approach automatically
updates the current bridges.

Decremental case. Removing a point p in C−

that does not support one of the two bridges is a sim-
ple operation. Nevertheless, when this special case
happens (see Fig. 4.a), the corresponding problem is
equivalent to merging two convex hulls. We cannot
launch a routine that updates the current bridges in
time linear in the number of vertices of C+ and C−

elsewhere we could not achieve a linear time complex-
ity. Let x and y denote the two neighboring points of
p on C− and let x̂y denote the border of C− that
appears after the deletion of p. We now prove that
the new bridge that replaces the bridge supported by
A and p is inevitably supported by x̂y. If the new
bridge was supported by yy′, one point of C+ should
lie above the straight line py. But py was tangent to
C the step before and so C+ lies under this line. In
the same way, if the new bridge was supported by x̂x′,
C+ should lie on the right of the straight line px and
this contradicts that A, the point of C+ that supports
the old bridge, lies on the left of px.

To find the new bridge, we use a rotating caliper
approach. First, we find the vertex of x̂y that sup-
ports a line parallel to Ap to obtain an antipodal pair
between C+ and C−. Second, we rotate these lines
until we find the new bridge. The previous remark
guarantees that we traverse at most k vertices on C−

where k denote the number of vertices of x̂y.

Observation 2 When C− is included in C+ we leave
the second stage and enter the last stage. As deletions
in C− have no influence on C, we only perform opera-
tions when insertions are done in C+ and C = C+.

(b)(a)

C+

p

C−x′A

yp

cxy

C+

x

y′
C−

Figure 4: Updating C+, C− and C.

5 Complexity analysis

Let (vαi)2≤i≤k−1 denote the subsequence of (vi)1≤i≤n

that describe the event points. We fix α0 = α1 = 1
and αk−1 = αk = n. Between three event points vαi

,
vαi+1 and vαi+2 , we manage a decreasing convex hull
C− from vαi+1 to vαi

and an increasing convex hull
C+ from vαi+1 to vαi+2 . Let δi denote αi+1 − αi.
The number of vertices of C− (resp. C+) is bounded
by δi (resp. δi+1). So, if the number of operations
processed during the three stages is linear in δi +δi+1,
the overall complexity T (n) of our method satisfy:
T (n) =

∑k−2
i=0 O(δi + δi+1) ≤ 2

∑k−1
i=0 O(δi) = O(n)

Between three event points vαi
, vαi+1 and vαi+2 , we

estimate the operations processed during the three
stages. Operations due to insertions in C+ are
bounded by O(δi+1) because of Melkman’s algorithm.
Deletions in C− produces O(δi) operations because of
reverse Melkman’s algorithm. Checking whether C+

lies inside C− is a constant time operation done at
most O(δi + δi+1) times. Computing the merging of
C+ and C− to enter the second stage is a linear op-
eration. Updating C relative to insertions in C+ is an
equivalent work than Melkman’s algorithm applied on
O(δi+δi+1) vertices. The sole difficult operation is the
deletion of vertices that support the bridges between
C+ and C−. We soon prove that for each deletion,
the number of operations relative to C− is bounded
by the number of vertices added in C− when the ver-
tex disappears. Thus, this quantity is bounded by
O(δi). To bound the number of operations processed
on C+ (bridge displacement), we have to notice that
C+ increases and that C− decreases. Thus, a bridge
supported by a vertex of C+ that moves to another
vertex can never return to the previous point. So, the
overall number of operations processed for the case
described in Figure 4.a is bounded by O(δi+1). The
number of operations is then bounded O(δi + δi+1).

6 Conclusion

We revisit the classical online convex hull algorithm
of a simple polygonal chain and extend it to a more
general case where deletions from the queue are pos-
sible. As this functionality is quite interesting, many
applications may emerge from this method. More-
over, this algorithm achieves an optimal linear time
complexity unlike dynamic convex hull algorithms of
the literature that are at least O(n log2 n).

References

[1] A. Melkman. On-line Construction of the Convex
Hull of a Simple Polygon. IPL. 25, p.11, 1987.

[2] H. Imai, M. Iri. Computational-geometric methods
for polygonal approximations of a curve. Computer
Vision, Graphics and Image Proc. pp:31-41, 36, 1986.

117

23rd European Workshop on Computational Geometry, 2007

Cluster registration in 2D geometric constraint solving

David Podgorelec∗ Borut Žalik†

Abstract

We present two original features of our new 2D ge-
ometric constraint solver. Firstly, we introduce the
cluster registration step, which reduces the number
of clusters below the number of points and, conse-
quently, importantly accelerates the cluster merging
process. We also propose a heuristic search for a min-
imal mergeable subproblem, which further accelerates
the recombination phase, extends the drawing scope
of the method and improves generality.

1 Introduction

Geometric constraint solving was first introduced in
CAD to suppress disadvantages of classical geometric
modellers. Namely, a geometric constraint problem
(GCP) consisting of a finite set of geometric elements
and a finite set of geometric constraints (relations be-
tween the elements), captures a designer’s intent more
naturally than traditional geometric modellers. The
solution of the GCP is a class of geometric element
instantiations in a given coordinate system, such that
all the constraints are satisfied [1]. Of course, we ex-
pect to obtain this solution automatically.

Geometric constraint solvers can be classified into
two main groups: direct and constructive solvers.
A direct solver transforms constraints into equations
and, simultaneously, solves them by employing a gen-
eral numerical [2] or symbolic technique [3]. The
time complexity of direct solvers is exponential and,
therefore, their use should be restricted to subprob-
lems that are as small as possible. Isolation of such
subproblems, whose solutions can be recombined by
solving other small subproblems, represents the main
task of the constructive solvers. These solvers typi-
cally represent a GCP by a constraint graph G = (N,
E) where the set of nodes N consists of geometric el-
ements and the edges from E represent constraints.
The constructive solvers either use a set of construc-
tion rules to solve some predefined subgraph patterns
(shape-recognition-based constraint solvers) [4, 5], or
they rely on more general techniques [1, 6], usually
slower but with the extended drawing scope.

The presented algorithm is a representative of the

∗Faculty of Electrical Engineering and Computer Science,
University of Maribor, david.podgorelec@uni-mb.si

†Faculty of Electrical Engineering and Computer Science,
University of Maribor, zalik@uni-mb.si

shape-recognition-based solvers. In Section 2, we out-
line its structure. Section 3 introduces an original
concept of cluster registration, which importantly re-
duces the number of the initial clusters, created in
the decomposition phase. In Section 4, we deal with
the recombination phase. We first describe the strat-
egy. Then we present a simple, but efficient heuristic
algorithm for minimal mergeable subproblem search.
Finally, we offer a brief summary in Section 5.

2 The method

We consider only GCPs in Euclidean plane. The geo-
metric elements are points and lines, which form the
so-called auxiliary geometry, but more complex geo-
metric elements of the visible geometry as, for exam-
ple, circular arcs and cubic Bézier curves, can also
be handled by mapping them onto the control points
and lines [7]. A user can use 26 predefined constraint
types, but constraints of 15 types are decomposed
into conjunctions of intuitively simpler constraints.
To further simplify the GCP, the constraints of the
remaining 11 types are transformed into constraints
(equations) among the corresponding control points
only. Transformations of distances are based on the
formula for the Euclidean distance between a pair of
points. Angles are transformed by employing the re-
lation between the scalar product of two vectors and
the angle between the vectors.

The decomposition phase represents a variant of the
algorithm introduced by Sunde [5]. It operates with
two types of point sets: clusters and CA sets.

Definition 1 A cluster is a maximal structurally
rigid geometric part.

The cluster’s shape and size are completely con-
strained, unlike its position and orientation. Namely,
the required structural rigidity means that a clus-
ter retains three degrees of freedom, two translations
and a rotation. Definition 2 introduces the structural
rigidity, and recalls some terms, closely related to it.

Definition 2 The GCP represented by a constraint
graph G = (N, E) is structurally:

• over-constrained if there is an induced subgraph
G′ = (N ′, E′) with |E′| > 2|N ′| − 3,

• under-constrained if G is not structurally over-
constrained and |E| < 2|N | − 3,

118

EWCG 2007, Graz, March 19–21, 2007

• well-constrained if G is not structurally over-
constrained and |E| = 2|N | − 3,

• well over-constrained if it is structurally over-
constrained, and if it can be transformed into a
structurally well-constrained GCP by removing
structurally redundant constraints [8],

• rigid if it is structurally well constrained or struc-
turally well over-constrained.

Different choices of initial clusters are possible. The
decomposition phase is pre-processed by determina-
tion of redundant constraints. Solving triangles, de-
termining the sums of adjacent angles, and elimina-
tion of the so-called simple conditional constraints
are used to determine redundant distances and an-
gles [7]. This pre-processing assures that point sets
with known distances between all pairs of member
points are typically large enough to represent a good
choice for the initial clusters. This choice enables de-
velopment of a simple and efficient cluster creation
algorithm. Note that the required maximality in Def-
inition 1 means that none of clusters may represent a
subset of any other cluster. We also require that each
point should be a member of at least one cluster. A
cluster containing a single point is also acceptable.

Definition 3 A cluster is called 1-cluster if it con-
tains a single point, 2-cluster if it contains two points,
3-cluster if it contains three points, or k-cluster if it
contains three or more points.

Definition 4 A constrained angle set (CA set) is a
2-cluster, a k-cluster or a part consisting of 2-clusters
and/or k-clusters with known angles between them.

The recombination phase merges clusters into
larger clusters, and CA sets into larger CA sets. A
model is completely constrained when all the points
belong to the same cluster.

3 Cluster registration

Definition 5 A constraint is called an inter-cluster
constraint if it addresses points from different clusters.
Constraints that are not inter-cluster will be called the
intra-cluster constraints.

Cluster creation treats all Distance constraints as
intra-cluster constraints. Consequently, it usually
produces a high number of initial 2-clusters. In Figure
1, each of 32 Distance constraints results in a sepa-
rate 2-cluster. The recombination phase analytically
solves only patterns with up to three clusters and,
therefore, the obtained decomposition is not optimal
for further processing. We introduce the cluster regis-
tration algorithm to prevent such situations. It regis-
ters all 1-clusters and k-clusters, and those 2-clusters,

assuring that each point remains in at least one clus-
ter. Only these registered clusters enter the recombi-
nation phase, and all other 2-clusters are replaced by
inter-cluster Distance constraints. Only 8 of 32 clus-
ters in Figure 1 are registered. Different implementa-

Figure 1: Cluster registration reduces the number of
clusters.

tions of cluster registration are possible, and there is
also not a unique solution. Figure 1(b) represents only
one of the possible solutions. Eight nearly horizontal
or eight non-intersecting diagonal 2-clusters are also
acceptable, and there are many other solutions with
eight or more registered clusters. An optimal clus-
ter registration algorithm would run in O(k), where
k is the number of initial clusters before the regis-
tration. The algorithm must also assure that each
registered 2-cluster contains at least one point which
is not present in any other registered cluster. This
enables us to state the important Theorem 1.

Theorem 1 The number of registered clusters can-
not exceed the number of points n.

Proof. Let us assume the opposite: a GCP with n
points is decomposed into m registered clusters, where
0 < n < m. Let r ≤ m represent the total number of
1-clusters and 2-clusters. If we remove these r reg-
istered clusters, we simultaneously remove at least
r points. We obtain a subproblem with, at most,
p = n−r points and with exactly q = m−r k-clusters.
Our hypothesis 0 < n < m becomes 0 ≤ p < q. Then
we reduce each k-cluster into a 3-cluster. This op-
eration may also reduce the point set, but the num-
ber of 3-clusters (former k-clusters) remains q. Let
N’ and E’ represent the point set and the set of the

119

23rd European Workshop on Computational Geometry, 2007

intra-cluster constraints Distance in all 3-clusters, re-
spectively. There are three such constraints in each
3-cluster and, consequently, |E’| = 3q. (N’, E’) is cer-
tainly not structurally over-constrained because none
of the triangles (3-clusters) constrained by three side
lengths is not structurally over-constrained. There-
fore, |E’| ≤ 2|N ′| − 3. We now use 0 ≤ |N’| ≤ p < q,
derived from the initial hypothesis, and |E’| = 3q. We
obtain 3q < 2q − 3. The solution q < −3 proves that
the initial hypothesis was incorrect since the number
of k-clusters is not allowed to be negative. �

4 A heuristic determination of minimal mergeable
subproblems

The recombination phase searches for pairs or triples
of clusters that can be merged by employing pre-
defined construction rules. We use 7 different con-
struction rules, three of them addressing a pair of
clusters, and four of them aimed to merge triples of
clusters. Simultaneously with cluster merging, the
process of merging CA sets is running. This process
usually results in newly determined angles between
pairs of clusters from the merged CA sets, and these
angles may then encourage further cluster merging.

If the described process does not result in a single
cluster then we must cope with larger k-tuples of clus-
ters. Before we perform a cluster merging operation,
we must be sure that the observed subproblem does
not contain smaller mergeable subproblems. Our 7
construction rules are designed for patterns that au-
tomatically fulfill this requirement but, generally, we
have to search for a so-called minimal mergeable sub-
problem. The brute force approach traverses all pos-
sible combinations. This strategy is reliable but it
requires exponential time and is, therefore, applica-
ble only when the number of clusters is considerably
low. We could handle this problem by some general
constructive solver [1, 6]. Here we introduce a simple
heuristic approach that serves quite well and remark-
ably fast for this purpose.

Definition 6 A subproblem is called minimal merge-
able subproblem if it is structurally rigid and it does
not contain smaller structurally rigid subproblems.

Our heuristic algorithm sequentially eliminates
clusters and checks the structural rigidity of the re-
maining subgraph. If a structurally rigid subgraph
is identified then we extract it and deal with it in-
dependently. Let us suppose that the inter-cluster
constraints link m points organized into k clusters. If
a subgraph is structurally rigid then it must contain
at least 2m − 3 constraints. 2m − 3k intra-cluster
constraints provide structural rigidity of the clusters,
and the surplus of 3(k− 1) constraints represents the
inter-cluster constraints. This value is updated and

compared to the number of scalar equations NSE af-
ter each cluster elimination. NSE nearly corresponds
to the number of inter-cluster constraints, but three
situations require special treatment.

1. The constraint Coincidence contributes 2 to NSE.

2. A point shared by k clusters contributes 2(k− 1)
to NSE.

3. In a group of k clusters from the same CA set,
k(k − 1)/2 angles between pairs of clusters con-
tribute only k − 1 to NSE.

The heuristic criterion for selection of a cluster for
elimination is based on the clusters’ valences. The va-
lence generally means the number of scalar equations
obtained from the inter-cluster constraints addressing
the cluster, but here we also meet two exceptions.

1. A point shared by k clusters contributes 2(k −
1)/k to the valence of each of the k clusters.

2. In a group of k clusters from the same CA set,
angles between these clusters increase valences of
each of the k clusters for (k − 1)/k when k > 2,
or for 1 when k = 2.

Let us remark that we may ignore those clusters with
the valence 3 or less. Since a cluster has three de-
grees of freedom, three equations are only sufficient
to position a single cluster and cannot contribute to
positioning of the remaining clusters.

The six rules listed below determine the cluster to
be eliminated. If the first rule finds more candidates
for elimination then the second rule is employed etc.
The priorities of the rules have been experimentally
established during some hundreds of tests:

1. the lowest valence in the updated subgraph,

2. the lowest number of neighbours in the updated
subgraph,

3. the cluster updated the most recently,

4. the lowest initial valence,

5. the lowest initial number of neighbours, and

6. the lowest index.

The goal of cluster elimination is to isolate a mini-
mal mergeable subproblem by removing structurally
under-constrained subproblems. The heuristic crite-
rion is based on the assumption that a structurally
under-constrained subgraph is intuitively less dense
than the minimal mergeable subgraph. A cluster
with low valence and a low number of neighbours
is, therefore, a good candidate for belonging to some
structurally under-constrained part. The third rule

120

EWCG 2007, Graz, March 19–21, 2007

is particularly interesting. It tries to hold the elim-
ination process in a presumably structurally under-
constrained part close to the preceding eliminations,
instead of jumping chaotically from one end of the
graph to another. However, the experimentally ob-
tained heuristic criterion does not guarantee success
in general. For this reason, we still separately consider
patterns of two and three clusters.

Let us consider the example presented in Figure
2(a). It consists of 10 clusters and 27 inter-cluster con-
straints. The algorithm sequentially eliminates clus-
ters C5, C2, C1, C3, and C4. It determines equal-
ity NSE = 3(k − 1) = 12 for the subproblem with
k = 5 remaining clusters C6 to C10. The elimination
process proceeds and determines that this subprob-
lem does not contain smaller mergeable subproblems.
The further steps are:

Figure 2: A decomposable structurally rigid problem.

1. We numerically merge the structurally rigid sub-
problem consisting of C6 to C10 (Figure 2(b)).

2. The merged cluster C6−10 may be ignored since
its valence is 3. We, therefore, deal with the sub-
problem consisting of C1 to C5.

3. This subproblem is recognised as mergeable. We
numerically merge C1 to C5 (Figure 2(c)).

4. We merge both merged clusters C6−10 and C1−5

into a single cluster by employing one of the con-
struction rules.

5 Conclusion

This paper presents two original features of our con-
structive geometric constraint solver. The cluster reg-
istration step assures that the number of clusters for
further consideration does not exceed the number of
points. Since the number of initial clusters is usu-
ally significantly reduced, the solver may often search
for minimal mergeable subproblems by employing the
most reliable brute-force approach. However, when
the number of clusters remains too high, the method
uses our original heuristic approach for determining
minimal mergeable subproblems. This approach ex-
tends the drawing scope of the method and repre-
sents an important step towards generality. However,
there are still problems open for future research. The
heuristic algorithm requires further practical tests,
theoretical confirmation or eventual correction of the
selected heuristics. Multiple solutions of the cluster
registration also require future investigation.

Acknowledgments

The authors are grateful to the Slovenian Research Agency

for supporting this research under the project P2-0041

Computer systems, methodologies and intelligent services.

References

[1] C.M. Hoffmann, A. Lomonosov, M. Sitharam. De-
composition Plans for Geometric Constraint Systems,
Part II: New Algorithms. J Symb Comp 2001;31:409-
27.

[2] J.-X. Ge, S.-C. Chou, and X.-S. Gao. Geometric
constraint satisfaction using optimization methods.
Comput-Aided Des 1999;31:867-79.

[3] X.-S. Gao, S.-C. Chou. Solving geometric constraint
systems. II. A symbolic approach and decision of Rc-
constructibility. Comput-Aided Des 1998;30:115-22.

[4] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta,
J. Vilaplana-Pastó. Revisiting Decomposition Anal-
ysis of Geometric Constraint Graphs. ACM Solid
Modeling 02, New York: ACM Press; 2003. p. 105-15.

[5] G. Sunde. Eurographics workshop on Intelligent CAD
Systems. Noordwijkerhout, The Nederlands; 1987. p.
90-104.

[6] X.-S. Gao, G.-F. Zhang. Geometric Constraint Solv-
ing via C-tree Decomposition. ACM Solid Modeling
02, New York: ACM Press; 2003. p. 45-55.

[7] D. Podgorelec. A new constructive approach to
constraint-based geometric design. Comput-Aided
Des 2002;34:769-85.

[8] C.M. Hoffmann, M. Sitharam, B. Yuan. Making con-
straint solvers more usable: overconstraint problem.
Comput-Aided Des 2004;36:377-99.

121

23rd European Workshop on Computational Geometry, 2007

New Upper Bounds on the Quality of the
PCA Bounding Boxes in R2 and R3

Darko Dimitrov∗ Christian Knauer∗ Klaus Kriegel∗ Günter Rote∗∗

Abstract

Bounding boxes obtained by principal component
analysis (PCA) usually quite well approximate the
minimum-volume bounding boxes of a point set in
Rd. Here, we analize the worst case ratio of the vol-
ume of the PCA bounding box and the volume of the
minimum-volume bounding box. Since there are ex-
amples of discrete points sets in the plane, where the
worst case ratio tends to infinity, we consider PCA
bounding boxes for continuous sets, especially for the
convex hull of a point set. We contribute new upper
bounds on the approximation factor of PCA bounding
boxes of convex sets in R2 and R3.

1 Introduction

A frequently used heuristic for computing a bounding
box of a set of points is based on principal component
analysis (PCA) [3]. The principal components of the
point set define the axes of the bounding box. Once
the axis directions are given, the dimension of the
bounding box is easily found by the extreme values
of the projection of the points on the corresponding
axis. Computing a bounding box of a set of points in
R2 and R3 by PCA is simple and requires linear time.
To avoid the influence of the distribution of the point
set on the directions of the PCs, a possible approach
is to consider the convex hull, or the boundary of the
convex hull CH(P) of the point set P . Thus, the
complexity of the algorithm increases to O(n log n).
The popularity of this heuristic, besides its speed, lies
in its easy implementation and in the fact that usually
PCA bounding boxes are tight-fitting.

Given a point set P ⊆ Rd we denote by BBpca(P)
the PCA bounding box of P and by BBopt(P)
the bounding box of P with smallest possible vol-
ume. The ratio of the two volumes λd(P) =
Vol(BBpca(P))/Vol(BBopt(P)) defines the approxi-
mation factor for P , and

λd = sup
{
λd(P) | P ⊆ Rd,Vol(CH(P)) > 0

}
defines the general PCA approximation factor.

Since bounding boxes of a point set P (with re-
spect to any orthogonal coordinate system) depend

∗Institut für Informatik, Freie Universität Berlin, Germany,
{darko, knauer, kriegel, rote}@inf.fu-berlin.de

only on the convex hull of CH(P), the computation
of the principal components should be based only on
CH(P) and not on the distribution of the points in-
side. Using the vertices, i.e., the 0-dimensional faces
of CH(P) to compute the principal components we
obtain a bounding box BBpca(d,0)(P). We denote by
λd,0(P) the approximation factor for the given point
set P and by

λd,0 = sup
{
λd,0(P) | P ⊆ Rd,Vol(CH(P)) > 0

}
the approximation factor in general. In [1] it is shown
that λd,0 = ∞ for any d ≥ 2. To overcome
this problem, one can apply a continuous version of
PCA taking into account (the dense set of) all points
on the boundary of CH(P), or even all points in
CH(P). Since the first case corresponds to the 1-
dimensional faces of CH(P) and the second case to
the 2-dimensional face of CH(P), the generalization
to dimension d > 2 leads to a series of d−1 continuous
PCA versions. For a point set P ∈ Rd, BBpca(d,i)(P)
denotes the PCA bounding box obtained by the i-
dimensional faces of CH(P). The approximation fac-
tors λd,i(P) and λd,i are defined as

λd,i(P) = Vol(BBpca(d,i)(P))

Vol(BBopt(P))
, and

λd,i = sup
{
λd,i(P) | P ⊆ Rd,Vol(CH(P)) > 0

}
.

To the best of our knowledge, the only known results
about the quality of the PCA bounding boxes were
given in [1], where it was shown that λd,i = ∞ for
any d ≥ 2 and any 0 ≤ i < d− 1. Additionally, lower
bounds on λd,d and λd,d−1 for arbitrary dimension
d, and an upper bound on λ2,1 were given. In what
follows we present the first upper bounds on λ2,2 and
λ3,3.

2 An Upper Bound for λ2,2

Given a point set P ⊆ R2 and an arbitrary bounding
box BB(P), we will denote the two side lengths of
BB(P) by a and b, where a ≥ b. We are interested
in the side lengths aopt(P) ≥ bopt(P) and apca(P) ≥
bpca(P) of BBopt(P) and BBpca(2,2)(P). The param-
eters α = α(P) = apca(P)/aopt(P) and β = β(P) =
bpca(P)/bopt(P) denote the ratios between the corre-
sponding side lengths, so that λ2,2(P) = α(P) · β(P).

122

EWCG 2007, Graz, March 19–21, 2007

If the relation to P is clear, we will omit the reference
to P in the notations introduced above.

Since the side lengths of any bounding box are
bounded by the diameter of P , we can observe that in
general bpca(P) ≤ apca(P) ≤ diam(P) ≤

√
2aopt(P),

and in the special case when the optimal bounding
box is a square λ2,2(P) ≤ 2. This observation can
be generalized, introducing an additional parameter
η(P) = aopt(P)/bopt(P).

Lemma 1 λ2,2(P) ≤ η + 1
η for any point set P with

aspect ratio η(P) = η.

Proof. For both apca and bpca, we have the up-

per bound diam(P) ≤
√

a2
opt + b2

opt = aopt

√
1 + 1

η2 .

Thus, αβ = apcabpca

aoptbopt
≤

“
aopt

q
1+ 1

η2

”2

aoptbopt
= aopt

bopt
(1 + 1

η2).

Replacing aopt by η · bopt, we get αβ = η
(
1 + 1

η2

)
=

η + 1
η . �

Unfortunately, this parametrized upper bound tends
to infinity for η → ∞. Therefore, we are going to
derive another upper bound that is better for large
values of η. We derive such a bound by finding a
constant that bounds β from above. In this pro-
cess we will make essential use of the properties of
BBpca(2,2)(P). We denote by d2(CH(P), l) the inte-
gral of the squared distances of the points on CH(P)
to a line l, i.e., d2(CH(P), l) =

∫
s∈CH(P)

d2(s, l)ds.
Let lpca be the line going through the center of grav-
ity, parallel to the longer side of BBpca(2,2)(P), and
lopt be the line going through the center of gravity,
parallel to the longer side of BBopt(P). From princi-
pal component analysis [3], we know that lpca is the
best fitting line of P and therefore

d2(CH(P), lpca) ≤ d2(CH(P), lopt). (1)

We obtain an estimate for β by determining a lower
bound on d2(CH(P), lpca) that depends on bpca, and
an upper bound on d2(CH(P), lopt) that depends on
bopt. Having an arbitrary bounding box of CH(P)
(with side lengths a and b, a ≥ b) the area of CH(P)
can be expressed as

A = A(CH(P))
=

∫ b

0

∫ a

0
χCH(P)(x, y)dxdy =

∫ b

0
g(y)dy,

where χCH(P)(x, y) is the characteristic function of
CH(P) defined as

χCH(P)(x, y) =
{

1 (x, y) ∈ CH(P)
0 (x, y) /∈ CH(P),

and g(y) =
∫ a

0
χCH(P)(x, y)dx is the length of the in-

tersection of CH(P) with a horizontal line at height
y. In the following we call g(y) the density function

of CH(P) for computing the area with the integral∫ b

0
g(y)dy. Note that g(y) is continuous and convex

in the interval [0, b] (see Figure 1 (a) for an illustra-
tion). Let b1 denote the y-coordinate of the center of
gravity of CH(P). The line lb1 (y = b1) divides the
area of CH(P) into A1 and A2. The following result,

(a)

ybb1

A1 A2
A

g(y)

(b)

ybb1

A1

f1(y)

b′

(c)

ybb1

A2

f2(y)

∆2

∆2

b′′

h1

h2

∆1

∆1

Figure 1: Construction of the lower bound for
d2(CH(P), lb1).

which is derived from the generalized first mean value
theorem of integral calculus, is our central technical
tool in derivation of the lower and the upper bound
on d2(CH(P), lb1):

Theorem 2 Let f(x) and g(x) be positive continu-

ous functions on the interval [a, b] with
∫ b

a
f(x)dx =∫ b

a
g(x)dx, and assume that there is some c ∈ [a, b]

such that f(x) ≤ g(x), for all x ≤ c and f(x) ≥
g(x), for all x ≥ c. Then∫ b

a

(x− b)2f(x)dx ≤
∫ b

a

(x− b)2g(x)dx and.

∫ b

a

(x− a)2f(x)dx ≥
∫ b

a

(x− a)2g(x)dx

Lemma 3 The variance d2(CH(P), lb1) is bounded
from below by 10

243Ab2.

Proof. We split the integral
∫ b

0
(y − b1)2g(y)dy at

b1, and prove lower bounds for both parts in the
following way: For the left part consider the lin-
ear function f1(y) = h1

b1
y such that

∫ b1
0

f1(y)dy =∫ b1
0

g(y)dy = A1 (see Figure 1 (b) for an illustration).
From

∫ b1
0

f1(y)dy = A1, it follows that f1(y) = 2A1y
b21

.
Since g(y) is convex, g(y) and f1(y) intersect only
once, at point b′ ∈ (0, b1). By Theorem 2, we have

∫ b1
0

(y − b1)2g(y)dy ≥
∫ b1
0

(y − b1)2f1(y)dy =∫ b1
0

(y − b)2 2A1
b12 dy = A1b21

6 .

(2)
Analogously, we obtain∫ b

b1

(y − b1)2g(y)dy ≥ A2b
2
2

6
. (3)

123

23rd European Workshop on Computational Geometry, 2007

From (2) and (3) we obtain that

d2(CH(P), lb1) =
∫ b1
0

(y − b1)2g(y)dy +∫ b

b1
(y − b1)2g(y)dy ≥ A1b21

6 + A2b22
6 .

From the Grünbaum-Hammer-Mityagin theorem [2],
we know that A1, A2 ∈ [49A, 5

9A]. Also, we know that
b1, b2 ∈ [13b, 2

3b]. It is not hard to show that, under

these constrains, the expression A1b21
6 + A2b21

6 achieves
its minimum of 10

243Ab2 for A1 = 4
9A, b1 = 5

9b or A1 =
5
9A, b1 = 4

9b. �

The derivation of the result in the following lemma
is similar to that in Lemma 3.

Lemma 4 The variance d2(CH(P), lb1) is bounded
from above by 29

243Ab2.

Now, we are ready to derive an alternative
parametrized upper bound on λ2,2(P) which is bet-
ter than the bound from Lemma 1 for big values of
η.

Lemma 5 λ2,2(P) ≤
√

2.9
(
1 + 1

η2

)
for any point

set P with aspect ratio η(P) = η.

Proof. Applying Lemma 3 and Lemma 4 in (1) we
obtain

10
243

Ab2
pca ≤ d2(P, lpca) ≤ d2(P, lopt) ≤

29
243

Ab2
opt.

(4)
From (4) it follows that β = bpca

bopt
≤
√

2.9. We have

for apca the upper bound diam(P) ≤
√

a2
opt + b2

opt =

aopt

√
1 + 1

η2 . From this, it follows that α ≤√
1 + 1

η2 . Putting this together, we obtain αβ ≤√
2.9
(
1 + 1

η2

)
. �

Theorem 6 The PCA bounding box of a point set
P in R2 computed over CH(P) has a guaranteed ap-
proximation factor λ2,2 ≤ 2.104.

Proof. The theorem follows from the combination
of the two parametrized bounds from Lemma 1 and
Lemma 5:

λ2,2 ≤ sup
η≥1

{
min

(
η +

1
η
,

√
2.9
(

1 +
1
η2

))}
.

It is easy to check that the supremum s ≈ 2.1038 is
obtained for η ≈ 1.3784. �

3 An Upper Bound for λ3,3

Some of the techniques used here are similar to those
used in Subsection 2 where we derive an upper bound
on λ2,2. For this reason and due to space limitations,
we omit some of the technical proofs (e.g., the deriva-
tion of the bounds for the ratios of the longest and
the shortest sides of BBpca(3,3)(P) and BBopt(P)).

Given a point set P ⊆ R3 and an arbitrary bound-
ing box BB(P), we will denote the three side lengths
of BB(P) by a,b and c, where a ≥ b ≥ c. We are
interested in the side lengths aopt ≥ bopt ≥ copt and
apca ≥ bpca ≥ cpca of BBopt(P) and BBpca(3,3)(P).
The parameters α = α(P) = apca/aopt, β = β(P) =
bpca/bopt and γ = γ(P) = cpca/copt denote the ratios
between the corresponding side lengths. Hence, we
have λ3,3(P) = α · β · γ. We introduce two additional
parameters η(P) = aopt/bopt and θ(P) = aopt/copt.

Lemma 7 λ3,3(P) ≤ η θ
(
1 + 1

η2 + 1
θ2

) 3
2

for any

point set P with aspect ratios η(P) = η and θ(P) = θ.

Proof. We have for apca, bpca and cpca the up-

per bound diam(P) ≤
√

a2
opt + b2

opt + c2
opt =

aopt

√
1 + 1

η2 + 1
θ2 . Thus, α β γ ≤ apca bpca cpca

aopt bopt copt
≤

a3
opt

“
1+ 1

η2

” 3
2

aoptboptcopt
. Replacing aopt in the nominator once

by η bopt and once by θ copt we obtain λ3,3(P) ≤

η θ
(
1 + 1

η2 + 1
θ2

) 3
2
. �

Unfortunately, this parametrized upper bound
tends to infinity for η → ∞ or θ → ∞. Therefore
we are going to derive another upper bound that is
better for large values of η and θ. We derive such
a bound by finding constants that bound β and γ
from above. In this process we will make essential
use of the properties of BBpca(3,3)(P). We denote
by d2(CH(P),H) the integral of the squared dis-
tances of the points on CH(P) to a plane H, i.e.,
d2(CH(P),H) =

∫
s∈CH(P)

d2(s,H)ds. Let Hpca be
the plane going through the center of gravity, par-
allel to the side apca × bpca of BBpca(3,3)(P), and
Hopt be the bisector of BBopt(P) parallel to the side
aopt × bopt. From principal component analysis we
know that Hpca is the best fitting plane of P and
therefore

d2(CH(P),Hpca) ≤ d2(CH(P),Hopt). (5)

We obtain an estimation for β by determining a lower
bound on d2(CH(P),Hpca) that depends on bpca, and
an upper bound on d2(CH(P),Hopt) that depends on
bopt. Having an arbitrary bounding box of CH(P)
(with side lengths a, b, and c, a ≥ b ≥ c) the volume

124

EWCG 2007, Graz, March 19–21, 2007

of CH(P) can be expressed as

V = V (CH(P)) =∫ c

0

∫ b

0

∫ a

0
χCH(P)(x, y, z)dxdydz =

∫ c

0
g(z)dz,

where χCH(P)(x, y, z) is the characteristic function of
CH(P) defined as

χCH(P)(x, y, z) =
{

1 (x, y, z) ∈ CH(P)
0 (x, y, z) /∈ CH(P),

and g(z) =
∫ b

0

∫ a

0
χCH(P)(x, y, z)dxdy is the area of

the intersection of CH(P) with the horizontal plane
at height z. As before we call g(z) the density function
of CH(P). Let c1 denote the z-coordinate of the cen-
ter of gravity of CH(P). Note that g(z) is continuous,
but in general not convex in the interval [0, b]. There-
fore, we can not use linear functions to derive a lower
and an upper bound of the function d2(CH(P),Hab),
as we did in Section 2, because a linear function can
intersect g(z) more than once, and we can not ap-
ply Theorem 2. Instead of linear functions, we use
quadratic functions.

Proposition 8 Let g(z) be the density function of
CH(P) defined as above, and let f(z) = kz2 be the
parabola such that

∫ c1

0
f(z)dz =

∫ c1

0
g(z)dz. Then,

∃c0 ∈ [0, c1] such that f(z) ≤ g(x) for all z ≤ c0 and
f(z) ≥ g(z) for all z ≥ c0.

Proof. We give a constructive proof. Let c0 :=
inf{d | ∀z ∈ [d, c1] g(z) ≤ f(z)}. If c0 = 0, then
f(z) = g(z), and the proposition holds. If c0 > 0,
then consider the polygon which is the intersection of
CH(P) with the plane z = c0. We fix a point p0 in
CH(P) with z-coordinate 0 and construct a pyramid
Q by extending all rays from p0 through the polygon
up to the plane z = c1 (see Figure 2 for an illustra-
tion). Since, f(c0) = g(c0) the quadratic function

y

z

c0

xf (c0) = g(c0)

Q
CH(P)

p0

Figure 2: Construction of the intersection of f(z) and
g(z).

f(z) is the density function of Q. Therefore, since
the part of Q below c0 is completely included in the
CH(P), we can conclude that f(z) ≤ g(z) for all
z ≤ c0. On the other side, f(z) ≥ g(x) for all z ≥ c0

by the definition of c0. �

Using Proposition 8, we can derive a lower and
an upper bound on d2(CH(P),Hab) (Lemma 9
and Lemma 10), from which we can derive a new
parametrized bound on λ3,3(P), (Lemma 11). We
exploit similar ideas as those shown in Lemma 3 and
Lemma 5, therefore we leave the proofs of Lemma 9,
Lemma 10 and Lemma 11 to a full paper version.

Lemma 9 The variance d2(CH(P),Hab) is bounded
from below by 7

256V c2.

Lemma 10 The variance d2(CH(P),Hab) is
bounded from above by 12729

71680V c2.

Lemma 11 λ3,3(P) ≤ 6.43
√

1 + 1
η2 + 1

θ2 for any

point set P with aspect ratios η(P) = η and θ(P) = θ.

Lemma 7 gives us a bound on λ3,3(P) which is good
for small values of η and θ. In contrary, the bound
from Lemma 11 behaves worse for small values of η
and θ, but better for big values of η and θ. Therefore,
we combine both of them to obtain the final upper
bound.

Theorem 12 The PCA bounding box of a point set
P in R3 computed over CH(P) has a guaranteed ap-
proximation factor λ3,3 ≤ 7.72.

Proof. The theorem follows from the combination
of the two parametrized bounds from Lemma 7 and
Lemma 11:

λ3,3 ≤ supη≥1, θ≥1

{
min

(
η θ
(
1 + 1

η2 + 1
θ2

) 3
2
,

6.43
√

1 + 1
η2 + 1

θ2

)}
.

By numerical verification we obtained that the supre-
mum occurs at ≈ 7.72. �

4 Future Work and Open Problems

Improving the upper bound for λ3,3, λ2,2 and λ2,1,
as well as obtaining an upper bound for λ3,2 is of
interest. A very demanding open problem is to get an
approximation factor on the quality of PCA bounding
boxes in higher dimensions.

References

[1] D. Dimitrov, C. Knauer, K. Kriegel and G. Rote.
Upper and Lower Bounds on the Quality of the PCA
Bounding Boxes. Technical report B 06-10, Freie Uni-
versität Berlin, September 2006.

[2] B. Grünbaum. Partitions of mass-distributions and
convex bodies by hyperplanes. Pacific J. Math. 1960,
vol. 10, pages 1257–1261.

[3] I. Jolliffe. Principal Component Analysis. Springer-
Verlag, New York, 2nd ed., 2002.

125

23rd European Workshop on Computational Geometry, 2007

Kinetic kd-Trees

Mohammad Ali Abam∗ Mark de Berg∗ Bettina Speckmann∗

Abstract

We propose a simple variant of kd-trees, called rank-
based kd-trees, for sets of points in Rd. We show
that a rank-based kd-tree, like an ordinary kd-tree,
supports range search queries in O(n1−1/d + k) time,
where k is the output size. The main advantage of
rank-based kd-trees is that they can be efficiently
kinetized: the KDS processes O(n2) events in the
worst case, assuming that the points follow constant-
degree algebraic trajectories, each event can be han-
dled in O(log n) time, and each point is involved
in O(1) certificates.

1 Introduction

Background. Due to the increased availability of
GPS systems and to other technological advances,
motion data is becoming more and more available in a
variety of application areas: air-traffic control, mobile
communication, geographic information systems, and
so on. In many of these areas, the data are moving
points in 2- or higher-dimensional space, and what is
needed is to store these points in such a way that range
queries (“Report all the points lying currently inside
a query range”) can be answered efficiently. Hence,
there has been a lot of work on developing data struc-
tures for moving point data, both in the database
community as well as in the computational-geometry
community.

Within computational geometry, the standard
model for designing and analyzing data structures for
moving objects is the kinetic-data-structure frame-
work introduced by Basch et al. [3]. A kinetic data
structure (KDS) maintains a discrete attribute of a
set of moving objects—the convex hull, for example,
or the closest pair—where each object has a known
motion trajectory. The basic idea is, that although all
objects move continuously, there are only certain dis-
crete moments in time when the combinatorial struc-
ture of the attribute—the ordered set of convex-hull
vertices, or the pair that is closest—changes. A KDS
contains a set of certificates that constitutes a proof

∗Department of Mathematics and Computer Science, TU
Eindhoven, {mabam, mdberg, speckman}@win.tue.nl. M.A.
was supported by the Netherlands’ Organisation for Scientific
Research (NWO) under project no. 612.065.307. M.d.B. was
supported by the Netherlands’ Organisation for Scientific Re-
search (NWO) under project no. 639.023.301.

that the maintained structure is correct. These cer-
tificates are inserted in a priority queue based on
their time of expiration. The KDS then performs an
event-driven simulation of the motion of the objects,
updating the structure whenever an event happens,
that is, when a certificate fails—see the surveys by
Guibas [6, 7] for more details.

Related work. There are several papers that de-
scribe KDS’s for the orthogonal range-searching prob-
lem, where the query range is an axis-parallel box.
Basch et al. [4] kinetized d-dimensional range trees.
Their KDS supports range queries in O(logd n + k)
time and uses O(n logd−1 n) storage. If the points fol-
low constant-degree algebraic trajectories then their
KDS processes O(n2) events and each event can be
handled in O(logd−1 n) time. In the plane, Agar-
wal et al. [1] obtained an improved solution: their
KDS supports range searching queries in O(log n+k)
time, it uses O(n log n/ log log n) storage, and the
amortized cost of processing an event is O(log2 n).

Although these results are nice from a theoretical
perspective, their practical value is limited for several
reasons. First of all, they use super-linear storage,
which is often undesirable. Second, they can per-
form only orthogonal range queries; queries with other
types of ranges or nearest-neighbor searches are not
supported. Finally, especially the solution by Agar-
wal et al. [1] is rather complicated. Indeed, in the set-
ting where the points do not move, the static counter-
parts of these structures are usually not used in prac-
tice. Instead, simpler structures such as quadtrees,
kd-trees, or bounding-volume hierarchies (R-trees, for
instance) are used. In this paper we consider one of
these structures, namely the kd-tree.

Kd-trees were initially introduced by Bentley [5].
A kd-tree for a set of points in the plane is obtained
recursively as follows. At each node of the tree, the
current point set is split into two equal-sized subsets
with a line. When the depth of the node is even the
splitting line is orthogonal to the x-axis, and when it
is odd the splitting line is orthogonal to the y-axis.
In d-dimensional space, the orientations of the split-
ting planes cycle through the d axes in a similar man-
ner. Kd-trees use O(n) storage and support range
searching queries in O(n1−1/d + k) time, where k is
the number of reported points. Maintaining a stan-
dard kd-tree kinetically is not efficient. The problem
is that a single event—two points swapping their order

126

EWCG 2007, Graz, March 19–21, 2007

on x- or y-coordinate—can have a dramatic effect: a
new point entering the region corresponding to a node
could mean that almost the entire subtree must be re-
structured. Hence, a variant of the kd-tree is needed
when the points are moving.

Agarwal et al. [2] proposed two such variants: the δ-
pseudo kd-tree and the δ-overlapping kd-tree. In a
δ-pseudo kd-tree each child of a node ν can be as-
sociated with at most (1/2 + δ)nν points, where nν

is the number of points in the subtree of ν. In a δ-
overlapping kd-tree the regions corresponding to the
children of ν can overlap as long as the overlapping
region contains at most δnν points. Both kd-trees
support range queries in time O(n1/2+ε + k), where k
is the number of reported points. Here ε is a posi-
tive constant that can be made arbitrarily small by
choosing δ appropriately. These KDS’s process O(n2)
events if the points follow constant-degree algebraic
trajectories. Although it can take up to O(n) time to
handle a single event, the amortized cost is O(log n)
time per event. Neither of these two solutions are
completely satisfactory: their query time is worse by
a factor O(nε) than the query time in standard kd-
trees, there is only a good amortized bound on the
time to process events, and only a solution for the 2-
dimensional case is given. The goal of our paper is to
developed a kinetic kd-tree variant that does not have
these drawbacks.

Our results. We present a new and simple variant
of the standard kd-tree for a set of n points in d-
dimensional space. Our rank-based kd-tree supports
orthogonal range searching in time O(n1−1/d +k) and
it uses O(n) storage—just like the original. But ad-
ditionally it can be kinetized easily and efficiently.
The rank-based kd-tree processes O(n2) events in the
worst case if the points follow constant-degree alge-
braic trajectories and each event can be handled in
O(log n) worst-case time. Moreover, each point is in-
volved only in a constant number of certificates. Thus
we improve the both the query time and the event-
handling time as compared to the planar kd-tree vari-
ants of Agarwal et al. [2], and in addition our results
work in any fixed dimension.

2 Rank-based kd-trees

Let P be a set of n points in Rd and let us denote
the coordinate-axes with x1, · · · , xd. To simplify the
discussion we assume that no two points share any
coordinate, that is, no two points have the same x1-
coordinate, or the same x2-coordinate, etc. (Of course
coordinates will temporarily be equal when two points
swap their order, but the description below refers to
the time intervals in between such events.) In this
section we describe a variant of a kd-tree for P, the
rank-based kd-tree. A rank-based kd-tree preserves all

main properties of a kd-tree and, additionally, it can
be kinetized efficiently.

Before we describe the actual rank-base kd-tree for
P, we first introduce another tree, namely the skeleton
of a rank-base kd-tree, denoted by S(P). Like a stan-
dard kd-tree, S(P) uses axis-orthogonal splitting hy-
perplanes to divide the set of points associated with a
node. As usual, the orientation of the axis-orthogonal
splitting hyperplanes is alternated between the coor-
dinate axes, that is, we first split with a hyperplane
orthogonal to the x1-axis, then with a hyperplane or-
thogonal to the x2-axis, and so on. Let ν be node
of S(P). h(ν) is the splitting hyperplane stored at
ν, axis(ν) is the coordinate-axis to which h(ν) is or-
thogonal, and P(ν) is the set of points stored in the
subtree rooted at ν. A node ν is called an xi-node
if axis(ν) = xi and a node ω is referred to as an xi-
ancestor of a node ν if ω is an ancestor of ν and
axis(ω) = xi. The first xi-ancestor of a node ν is the
xi-parent(ν) of ν.

A standard kd-tree chooses h(ν) such that P(ν) is
divided roughly in half. In contrast, S(P) chooses
h(ν) based on a range of ranks associated with ν,
which can have the effect that the sizes of the chil-
dren of ν are completely unbalanced. We now ex-
plain this construction in detail. We use d arrays
A1, · · · ,Ad to store the points of P in d sorted lists;
the array Ai[1, n] stores the sorted list based on the
xi-coordinate. As mentioned above, we associate a
range [r, r′] of ranks with each node ν, denoted by
range(ν), with 1 ≤ r ≤ r′ ≤ n. Let ν be an xi-
node. If xi-parent(ν) does not exist, then range(ν) is
equal to [1, n]. Otherwise, if ν is contained in the left
subtree of xi-parent(ν), then range(ν) is equal to the
first half of range(xi-parent(ν)), and if ν is contained
in the right subtree of xi-parent(ν), then range(ν) is
equal to the second half of range(xi-parent(ν)). If
range(ν) = [r, r′] then P(ν) contains at most r′−r+1
points. We explicitly ignore all nodes (both internal
as well as leaf nodes) that do not contain any points,
they are not part of S(P), independent of their range
of ranks. A node ν is a leaf of S(P) if range(ν) = [j, j]
for some j. Clearly a leaf contains exactly one point,
but not every node that contains only one point is a
leaf. (We could prune these nodes, which always have
a range [j, k] with j < k, but we chose to keep them
in the skeleton for ease of description.) If ν is not a
leaf and axis(ν) = xi then h(ν) is defined by the point
whose rank in Ai is equal to the median of range(ν).

We construct S(P) incrementally by inserting the
points of P one by one. Let p be the point that we
are currently inserting into the tree and let ν be the
last node visited by p; initially ν = root. Depending
on which side of h(ν) contains p we select the ap-
propriate child ω of ν to be visited next. If ω does
not exist, then we create it and compute range(ω)
as described above. We recurse with ν = ω un-

127

23rd European Workshop on Computational Geometry, 2007

p1 p2 p3 p4 p5 p6 p7 p8

[1, 8]

[1, 8]

[5, 8]

[5, 8]

[5, 6]

[7, 8]

[6, 6]

p1

p2

p3

p4

p7

p8

p5

p6

(a)

p1 p2 p3 p4 p5 p6 p7 p8

[1, 8]

[1, 8]

[5, 8]

[5, 8]

[6, 6]

(b)

p1

p2

p3

p4

p7

p8

p5

p6

[5, 8]

[5, 8]

Figure 1: (a) The skeleton of a rank-based kd-tree and (b) the rank-based kd-tree itself.

til range(ν) = [j, j] for some j. We always reach
such a node after d log n steps, because the length of
range(ν) is a half of the length of range(xi-parent(ν))
and depth(ν) = depth(xi-parent(ν)) + d for an xi-
node ν. Figure 1(a) illustrates S(P) for eight points.
Since the depth of each leaf is d log n, the size of S(P)
is O(n log n).

Lemma 1 The depth of S(P) is O(log n) and the size
of S(P) is O(n log n) for any fixed dimension d. S(P)
can be constructed in O(n log n) time.

A node ν ∈ S(P) is active if and only if both its
children exist, that is, both its children contain points.
A node ν is useful if it is either active, or a leaf, or its
first d−1 ancestors contain an active node. Otherwise
a node is useless. We derive the rank-based kd-tree
for P from the skeleton by pruning all useless nodes
from S(P). The parent of a node ν in the rank-based
kd-tree is the first unpruned ancestor of ν in S(P).
Roughly speaking, in the pruning phase every long
path whose nodes have only one child each is shrunk
to a path whose length is less than d. The rank-
based kd-tree has exactly n leaves and each contains
exactly one point of P. Moreover, every node ν in the
rank-based kd-tree is either active or it has an active
ancestor among its first d − 1 ancestors. The rank-

based kd-tree derived from Figure 1(a) is illustrated
in Figure 1(b).

Lemma 2 A rank-based kd-tree on a set of n points
in Rd has depth O(log n) and size O(n).

Proof. A rank-based kd-tree is at most as deep as its
skeleton S(P). Since the depth of S(P) is O(log n)
by Lemma 1, the depth of a rank-base kd-tree is
also O(log n). To prove the second claim, we charge
every node that has only one child to its first active
ancestor—recall that each active node has two chil-
dren. We charge at most 2(d−1) nodes to each active
node, because after pruning there is no path in the
rank-based kd-tree whose length is at least d and in
which all nodes have one child. Therefore, to bound
the size of the rank-based kd-tree it is sufficient to
bound the number of active nodes. Let T be a tree
containing all active nodes and all leaves of the rank-
based kd-tree. A node ν is the parent of a node ω
in T if and only if ν is the first active ancestor of ω in
the rank-based kd-tree. Obviously, T is a binary tree
with n leaves where each internal node has two chil-
dren. Hence, the size of T is O(n) and consequently
the size of the rank-based kd-tree is O(n). �

Like a kd-tree, a rank-based kd-tree can be used to re-
port all points inside a given orthogonal range search

128

EWCG 2007, Graz, March 19–21, 2007

query—the reporting algorithm is exactly the same.
At first sight, the fact that the splits in our rank-based
kd-tree can be very unbalanced may seem to have a
big, negative impact on the query time. Fortunately
this is not the case, since we can bound the number
of cells intersected by an axis-parallel plane h. The
following theorem summarizes our results.

Theorem 3 A rank-based kd-tree for a set P of n
points in d dimensions uses O(n) storage and can be
built in O(n log n) time. An orthogonal range search
query on a rank-based kd-tree takes O(n1−1/d + k)
time where k is the number of reported points.

The KDS. We now describe how to kinetize a rank-
base kd-tree for a set of continuously moving points
P. The combinatorial structure of a rank-base kd-
tree depends only on the ranks of the points in the
arrays Ai, that is, it does not change as long as the
order of the points in the arrays Ai remains the same.
Hence it suffices to maintain a certificate for each pair
p and q of consecutive points in every array Ai, which
fails when p and q change their order. Now assume
that a certificate, involving two points p and q and
the xi-axis, fails at time t. To handle the event, we
simply delete p and q and re-insert them in their new
order. These deletions and insertions do not change
anything for the other points, because their ranks are
not influenced by the swap and the deletion and re-
insertion of p and q. Hence the rank-based kd-tree
remains unchanged except for a small part that in-
volves p and q. A detailed description of this “small
part” can be found below.

Deletion. Let ν be the first active ancestor of the
leaf µ containing p—see Figure 2(a). Leaf µ and all
nodes on the path from µ to ν must be deleted, since
they do not contain any points anymore (they only
contained p and p is now deleted). Furthermore, ν
stops being active. Let ω be the first active descendent
of ν. There are at most d nodes on the path from ν
to ω. Since ν is not active anymore, any of the nodes
on this path might become useless and hence have to
be deleted.

Insertion. Let ν be the highest node in the rank-
based kd-tree such that its region contains p and the
region corresponding to its only child ω does not con-
tain p—note that p cannot reach a leaf when we re-
insert p, because the range of a leaf is [j, j] for some
j and there cannot be two points in this range. Let
ν′ and ω′ be the nodes in S(P) corresponding to ν
and ω. Let u′ be the lowest node on the path from ν′

to ω′ whose region contains both region(ω′) and p as
illustrated in Figure 2(b)—note that we do not main-
tain S(P) explicitly but with the information main-
tained in ν and ω the path between ν′ and ω′ can

ν

ω
p

p

ν′

ω′

u′

u′
1

(a) (b)

µ

Figure 2: Inserting and deleting a point p.

be constructed temporarily. Because u′ will become
an active node, it must be added to the rank-based
kd-tree and also every node on the path from u′ to
ω′ must be added to the rank-based kd-tree if they
are useful. From u′, the point p follows a new path
u′1, · · · , u′k which is created during the insertion. All
first d − 1 nodes in the list u′1, · · · , u′k and the leaf
u′k must be added to the rank-based kd-tree—note
that range(u′k) = [j, j] for some j.

Theorem 4 A kinetic rank-based kd-tree for a set P
of n moving points in d dimensions uses O(n) storage
and processes O(n2) events in the worst case, assum-
ing that the points follow constant-degree algebraic
trajectories. Each event can be handled in O(log n)
time and each point is involved in O(1) certificates.

References

[1] P. Agarwal, L. Arge, and J. Erickson. Indexing mov-
ing points. Journal of Computer and System Sciences,
66(1):207-243, 2003.

[2] P. Agarwal, J. Gao, and L. Guibas. Kinetic medians
and kd-trees. In Proc. 10th European Symposium on
Algorithms, pages 5–16, Lecture Notes in Computer
Science 2461, Springer Verlag, 2002.

[3] J. Basch, L. Guibas, and J. Hershberger. Data struc-
tures for mobile data. Journal of Algorithms, 31:1–28,
1999.

[4] J. Basch, L. Guibas, and L. Zhang. Proximity prob-
lems on moving points. In Proc. 13th Symposium on
Computational Geometry, pages 344–351, 1997.

[5] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[6] L. Guibas. Kinetic data structures: A state of the art
report. In Proc. 3rd Workshop on Algorithmic Foun-
dations of Robotics, pages 191–209, 1998.

[7] L. Guibas. Modeling motion. In J. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Com-
putational Geometry, pages 1117–1134. CRC Press,
2nd edition, 2004.

129

23rd European Workshop on Computational Geometry, 2007

Approximating Boundary-Triangulated Objects with Balls∗

O. Aichholzer† F. Aurenhammer‡ T. Hackl† B. Kornberger† M. Peternell§ H. Pottmann§

Abstract

We compute a set of balls that approximates a given
3D object, and we derive small additive bounds for
the overhead in balls with respect to the minimal so-
lution with the same quality. The algorithm has been
implemented and tested using the CGAL library [7].

1 Introduction

Representing a complex geometric object with prim-
itives is a fundamental task in computational geom-
etry and computer graphics. A general distinction is
between exact representation, like slab decomposition
or triangulation, and approximate representation, like
spline boundary conversion or approximate covering.
The choice of the primitives used depends on the ap-
plication, for example, whether the object is to be
processed for visualization or for subsequent manipu-
lation.

In the present note, we deal with the problem of
converting a 3D object into a set of balls. While such
a representation may be less advantageous for visual-
ization (than, e.g., a conversion into ellipsoids [4]) it
is sometimes particularly convenient for further pro-
cessing. The main applications we have in mind are
computing Minkowski sums and detecting collisions.

Calculating the Minkowski sum of two nonconvex
3D objects is a complicated task with various appli-
cations to problems where proximity is involved [14].
For instance, planning a translational motion of a
robot A in a workspace B can be based on construct-
ing their Minkowski sum A⊕B. A common approach
is to decompose the (polyhedral) objects A and B into
convex parts and adding them up pairwise. Using
few but complex parts leads to the need of invoking
Minkowski sum algorithms for general convex polyhe-
dra [10, 8], and decomposition is a challenging ques-
tion in itself even when tetrahedra are used [6, 18].
As an alternative, the objects to be summed may
be approximately covered by balls. Calculating the

∗Research supported by the FWF Joint Research Project
’Industrial Geometry’ S9205-N12.

†Institute for Software Technology, Graz University of Tech-
nology, Austria, {oaich,thackl,bkorn}@ist.tugraz.at

‡Institute for Theoretical Computer Science, Graz Univer-
sity of Technology, Austria, auren@igi.tugraz.at

§Institute of Discrete Mathematics and Geom-
etry, Vienna University of Technology, Austria,
{peternell,pottmann}@geometrie.tuwien.ac.at

Minkowski sum of two balls is trivial; the main objec-
tive is finding a small set of covering balls.

In collision detection, object handling is typically
based on hierarchical representations. Common data
structures in this context are so-called sphere-trees
which, as an easy possibility, can be derived from
octrees [17, 16]. This approach does not make explicit
use of the geometry of the objects, however. Refined
methods for constructing sphere-trees have been pro-
posed [11, 5], utilizing the medial axes of the objects.
Again, the problem of converting an object into a min-
imum number of balls arises. The reverse process of
extracting the boundary of an approximating set of
balls is treated in [3].

We develop an algorithm that takes as input a 3D
object with triangulated boundary, and generates an
almost-minimal set of balls that covers all the trian-
gle endpoints, ensuring that no such point is covered
with more than a user-specified offset ε. The qual-
ity of the approximation thus will also depend on the
quality of the boundary mesh. If the object bound-
ary is not covered completely, this can be achieved if
desired, with a simple postprocessing step. Follow-
ing known paths [1, 2], we first generate a candidate
set of approximating balls centered on the triangles
endpoints’ Voronoi diagram. Correct labeling of balls
as having their centers inside or outside the object
becomes an issue, and we propose a simple though
efficient labeling algorithm using the boundary trian-
gulation. A method for reducing the candidate set of
balls is then applied as an instance of the set covering
problem. The heuristic we use allows us to determine
how close to the optimum is the produced set of balls.
Experimental results for practical data are described.

2 Ball generation

We specify the input object, A, as a bounded and
interior-connected 3-manifold whose boundary is con-
nected and triangulated. Thus A may have tunnels,
but holes are disallowed. For each boundary triangle
of A its orientation with respect to A is given. This
is a common representation of an object, sufficiently
general for many applications. Let P be the set of ver-
tices of A, called sample points in the following. Our
first aim is to produce a candidate set of balls which
covers P and at the same time approximates A.

Call a ball b ⊆ A maximal if there exists no
ball b′ ⊆ A such that b′) b. The medial axis of A

130

EWCG 2007, Graz, March 19–21, 2007

is defined as the set of centers of all its maximal balls.
As A is just the union of all maximal balls, a set
of n sufficiently large balls centered close to the me-
dial axis of A will serve the desired purpose. This
observation has been made use of in various papers in
computational geometry and computer graphics; see,
for example, [11, 5] and [1, 2], respectively.

Following the approach in [2], we consider the
Voronoi diagram, V (P), of the given point sample P .
For a point p ∈ P , let πp be an (inner) pole of p,
that is, a vertex of the region of p in V (P) that lies
inside A and maximizes ‖p−πp‖. In contrast to arbi-
trary Voronoi vertices, the value of poles is that they
are located near the medial axis of A if the sample P
is sufficiently dense [1]. (Let us temporarily ignore the
fact that πp does not exist if all region vertices for p
happen to lie outside of A.) If we take, for each p ∈ P ,
the (closed) Delaunay ball with center πp and radius
‖p − πp‖ then the resulting set, B, of balls covers P .
Also, B approximates A with a quality which depends
on that of the boundary mesh. Observe that B is op-
timal in the sense that any other set of balls which
’touches’ P and is of the same cardinality will be in-
ferior to B in approximating A.

Identifying poles among the vertices of a Voronoi
diagram is a problem in itself. In [2], for the sake of
subsequent power crust construction, two vertices per
sample point are identified using an angle criterion
that works for dense samplings. (At most) one of
these two vertices is located in A and is the pole we
are looking for. We need to exactly find the poles, as
balls centered outside A will lead to a violation of any
approximation property. To this end, we utilize the
given triangular mesh that bounds A (which is not
part of the input in [2]). After having computed all
the vertices of V (P), we use ray shooting to determine
their location with respect to A. Among those lying
inside A, one vertex per region which is at maximal
distance from the respective sample point is selected.
This direct method will work correctly regardless of
the quality of the sample mesh.

The outcome of the ray shooting procedure is cru-
cial, hence a correct and efficient implementation is
needed. To decide u ∈ A for a vertex u of point p’s
Voronoi region, we use the ray −→up and determine the
first point of intersection of −→up with the boundary
of A. Clearly, if this point is p, then decision can be
made locally from the orientations of the incident tri-
angles. Otherwise, the boundary triangle hit first is
not incident to p, and we adopt the following strategy
for finding it. Let Su be the sphere with center u and
radius ‖p − u‖. Define a critical sphere Sp centered
at p, as below. Let L be the length of the longest
edge of the boundary mesh, and put R = 1√

3
L. If

‖p− u‖ ≥ R then choose Sp so as to intersect Su in a
circle of radius R. Otherwise, define the radius of Sp

as
√
‖p− u‖2 + R2. Consult Figure 1.

p u

S S
p u

p u

R

Su

R

q

S’u

Sp

Figure 1: Defining the critical sphere Sp

Lemma 1 If the ray −→up intersects a boundary trian-
gle ∆ of A then at least one endpoint of ∆ is enclosed
by Sp.

Proof. Let ∆ be intersected by −→up. Consider the
smallest disk, D∆, that contains ∆. All edges of ∆
are of length at most L, so the radius of D∆ is at
most R = 1√

3
L. We treat the case ‖p− u‖ ≥ R first.

As the (Delaunay) sphere Su does not enclose any
endpoint of ∆, we get that ∆ intersects −→up between
p and the center, q, of the circle Su ∩ Sp. On the
other hand, assuming that no endpoint of ∆ is en-
closed by Sp implies that ∆ intersects −→up between q
and u, a contradiction. Now let ‖p− u‖ < R. In this
case, the plane normal to −→up at u intersects Sp in
a circle of radius R. Assuming that Sp encloses no
endpoint of ∆ now implies that ∆ avoids the ray −→up
altogether, a contradiction again. �

By Lemma 1, the first triangle hit by −→up can be
detected once the subset Q of P enclosed by the criti-
cal sphere Sp has been reported. This spherical range
search problem has a practically efficient implementa-
tion based on kd-trees. Observe that the radius of Sp

is Θ(L); it lies between R and
√

2 ·R. Thus only O(1)
points will be reported if P obeys a minimum distance
of c · L for some constant c.

To facilitate later decisions v ∈ A, we make use
of the following property, which holds if the (prac-
tically more relevant) case ‖p− u‖ ≥ 1√

3
L occurs for

the present vertex u. See Figure 1, left-hand side.

Lemma 2 Let S′u be the sphere centered at u and
passing through the center of the circle Su ∩ Sp. All
Voronoi vertices v enclosed by S′u have the same rel-
ative position to A as the vertex u.

Proof. By the bound on the smallest containing disk
for a mesh triangle, no such triangle intersects the
sphere S′u. Thus S′u either lies completely inside or
completely outside of A. Also, S′u does not enclose A
because S′u is empty of points from P , as is Su. �

The output is a set of Delaunay balls for P whose
union approximates the object A. We observed a run-
time linear in |P | in all our examples. In particular,

131

23rd European Workshop on Computational Geometry, 2007

the number of vertices of V (P) stayed below 9 · |P |.
Each produced ball covers at least four points in P
with its boundary. There may be uncovered points
(at rare cases), due to the lack of their poles. Such
points are added to the set as balls of radius zero. In
order to be able to delete a large fraction of balls later
on, we increase redundancy in covering by enlarging
the radius of each ball by a user-specified constant ε.
Each point in P is now covered with an offset of at
most ε. It will turn out that the obtained set of balls
is highly redundant even for small offsets ε.

3 Reduction algorithm

Let Bε denote the set of ε-offset balls produced in
Section 2. We aim at finding a subset of Bε of min-
imal cardinality that still covers the set P of sample
points. This is an instance of the classical set cover-
ing problem, shown to be NP-complete in [13]. We are
going to describe a hybrid heuristic that reduces Bε

almost to the optimum in many cases, and that allows
to bound the produced overhead.

In a first step, we arrange P in a kd-tree and
determine which points of P are covered by which
balls in Bε. The result is stored in an incidence ma-
trix, where entry (i, j) is put to 1 or 0 depending on
whether the i-th ball contains the j-th point. Stan-
dard reduction rules are then applied iteratively to
the rows and columns of this matrix: (1) If column j
has exactly one entry 1, say (i, j), then delete row i
and all columns having entry 1 in that row. Sphere i
has to be taken for any solution. (2) If row i1 is dom-
inated (in 1s) by row i2 then delete row i1. All points
covered by sphere i1 are also covered by sphere i2.
(3) If column j1 dominates column j2 then delete col-
umn j1. Every solution that covers point j2 has to
cover point j1 as well. We speed up these operations
by using hashing techniques, and avoid excessive stor-
age by sparse matrix representation.

If the reduced matrix is nonempty, we try to decom-
pose it into independent submatrices. These are given
by the connected components in the corresponding
(bipartite) incidence graph. For each submatrix M ,
if small enough, the respective set covering problem
is solved exactly, using branch-and-bound [15] for its
integer programming formulation: Minimize∑

xj w.r.t. MT · x ≥ (1, . . . , 1)T , xj ∈ {0, 1}.

Whereas up to this point optimality is ensured, we
have to resort to a heuristic for approximating sub-
problems too large for exact solving. To this end,
we next choose one ball covering the most yet uncov-
ered points. When applied repeatedly, this is a sim-
ple greedy algorithm, yielding an O(log n) approxima-
tion [12]. In fact, the set covering problem is unlikely
to be approximable beyond a factor of c log n in poly-
nomial time; see [9]. Here n denotes the number of

covering sets (i.e., balls in our case). Our algorithm,
after each single greedy pick, runs through the steps
before again. Figure 2 displays its flow chart.

Success?

Finished?

Decomposition

IP Solution

Reduction

Greedy Pick

Y N

Y N

B

B f

ε

Figure 2: Control flow of the algorithm

There are several ways of checking the overhead in
balls for the produced set, Bf . An obvious though
quite effective way is to solve the linear program
above under the relaxation xj ≥ 0. Unfortunately,
even when being applied after the first reduction and
decomposition, this method becomes very time con-
suming for larger offsets ε, and it also suffers from
numerical problems. We therefore consider two alter-
native methods where a lower bound is easy to obtain.

Theorem 3 Let n∗ be the size of the optimal solu-
tion. If the algorithm takes k greedy picks then

|Bf | ≤ n∗ + k .

Proof. After the last greedy pick, bk, let B̃ be the set
of balls still to choose from. Assume that the optimal
solution for B̃ uses m balls. Taking no more greedy
picks, our algorithm solves B̃ ∪ {bk} with m + 1 balls,
whereas the optimal solution for B̃ ∪ {bk} uses at
least m balls. The theorem follows by induction. �

To get another bound, consider any set B of balls
which covers P . For a ball b ∈ B put α(b) = |P ∩ b|.
Further, for a point p ∈ P , define its share as

share(p) =
1

maxp∈b∈B α(b)
.

Let b(p) be a ball that achieves the maximum in the
denominator above. Under the (ideal) assumption
that B is a disjoint covering of P (and hence covers
each point p with b(p) and no other ball), share(p) ex-
presses the amount that p contributes to |B|. Thus,
for any solution B, we have the lower bound⌈∑

p∈P

share(p)
⌉
≤ |B| .

132

EWCG 2007, Graz, March 19–21, 2007

Let now B̂ denote the set of balls being selected before
the first greedy pick. Clearly, the size of the optimal
solution for Bε \ B̂ differs from that for Bε by ex-
actly |B̂|. If we fix the shares for the points in P with
respect to the set Bε \ B̂, then the following holds.

Theorem 4 The overhead in the set Bf is at most

|Bf | − |B̂| −
⌈∑

p∈P

share(p)
⌉

.

4 Experimental results

We applied the ball generation method to various data
sets, including the two benchmark examples below. In
the following tables, the first column displays the al-
lowed offset in percent of the (longest edge of the)
bounding box. The second column shows the number
of balls produced by a pure greedy algorithm, as op-
posed to our algorithm, shown in column three. The
remaining columns list the three bounds for the over-
head, described in Section 3. The LP bound, though
mostly dominant, turned out to be too time expensive
for the software [15] at entries ’•’.

Offset % Greedy Hybrid LP Thm 3 Thm 4
.00001 4326 4085 3 0 3
.0001 3653 3209 24 62 51
.001 3564 3159 21 55 44
.01 3151 2836 17 42 40
.1 1458 1304 10 46 58
1 168 135 12 31 68
2 73 55 • 8 31
3 45 34 3 8 22

Table 1: Bunny model, |Bε| = 8820

Figure 3: Bunny for offsets .00001%, 1%, and 3%

Offset % Greedy Hybrid LP Thm 3 Thm 4
.00001 16009 15092 39 105 55
.0001 13235 11699 326 1008 863
.001 12502 11193 317 996 864
.01 8995 8142 226 768 828
.1 2749 2378 221 612 928
1 321 255 • 78 162
2 136 107 • 25 74
3 86 65 • 12 37

Table 2: Dragon model, |Bε| = 34636

Figure 4: Dragon for offsets .00001% and 1%

References

[1] N. Amenta, M. Bern. Surface reconstruction by Voronoi
filtering. Discrete & Computational Geometry 22 (1999),
481-504.

[2] N. Amenta, S. Choi, R.K. Kolluri. The power crust,
unions of balls, and the medial axis transform. Compu-
tational Geometry: Theory and Applications 19 (2001),
127-153.

[3] F. Aurenhammer. Improved algorithms for discs and balls
using power diagrams. J. Algorithms 9 (1988), 151-161.

[4] S. Bischof, L. Kobbelt. Ellipsoid decomposition of 3D-
models. Proc. 1st IEEE Symp. 3D Data Processing Visu-
alization and Transmission, 2002, 480-488.

[5] G. Bradshaw, C. O’Sullivan. Adaptive medial-axis ap-
proximation for sphere-tree construction. ACM Transac-
tions on Graphics 23 (2004), 1-26.

[6] B. Chazelle. Triangulating a nonconvex polytope. Discrete
& Computational Geometry 5 (1990), 505-526.

[7] http://www.CGAL.org

[8] E. Fogel, D. Halperin. Exact and efficient construction
of Minkowski sums of convex polyhedra with applications.
8th Workshop Alg. Eng. Exper., Alenex’06, 2006.

[9] U. Feige. A threshold of ln n for approximating set cover.
Proc. 28th Ann. ACM Symp. on Theory of Computing,
1996, 314-318.

[10] K. Fukuda. From the zonotope construction to the
Minkowski addition of convex polytopes. J. Symbolic
Computation 38 (2004), 1261-1272.

[11] P.M. Hubbard. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on
Graphics 15 (1996), 179-210.

[12] D.S. Johnson. Approximation algorithms for combinato-
rial problems. J. Computer and System Sciences 9 (1974),
256-278.

[13] R.M. Karp. Reducibility among combinatorial problems.
R.E. Miller, J.W. Thatcher (eds.), Plenum Press, New
York, 1972, 85-103.

[14] M.C. Lin, D. Manocha. Collision and proximity queries.
J.E. Goodman, J. O’Rourke (eds.), Handbook of Discrete
and Computational Goemetry, 2nd Ed., CRC, 2004, 787-
807.

[15] http://lpsolve.sourceforge.net/5.5/

[16] C. O’Sullivan, J. Dingliana. Collisions and perception.
ACM Transactions on Graphics 20 (2001), 151-168.

[17] I.J. Palmer, R.L. Grimsdale. Collision detection for ani-
mation using sphere-trees. Computer Graphics Forum 14
(1995), 105-116.

[18] J. Ruppert, R. Seidel. On the difficulty of triangulating
three-dimensional nonconvex polyhedra. Discrete & Com-
putational Geometry 7 (1992), 227-253.

133

23rd European Workshop on Computational Geometry, 2007

Correcting Distortion of Laser-Sintered Parts by Means of a
Surface-Based Inverse Deformation Algorithm: An Experimental Study

Christian Pfligersdorffer∗ Martin Held†

Abstract

We present an experimental study on correcting
shrinkage deformations that occur in laser sintering.
The basic idea is to apply an inverse deformation to
a polyhedral model prior to its fabrication, and the
underlying algorithmic problem is to obtain suitable
deformation vectors and to interpolate them over the
surface of the model. We use a discretized natural
neighbor interpolation adapted to work on triangu-
lated surfaces.

1 Introduction

In Laser Sintering (LS), a laser is used to manufac-
ture a part (solid model) by sintering powder-based
materials. A thin layer of powder is spread across
the build platform (inside a process chamber). Then
the laser traces a two-dimensional cross section of the
part, thereby sintering the new layer of powder with
the previous layer. This process continues layer-by-
layer until all parts in a job are completed and is fin-
ished by a cooling phase.

Typically, the input data for LS is encoded as a
STL file. An STL (Standard Tessellation Language)
file describes a raw unstructured triangulated surface
of a three dimensional object. Despite of its short-
comings it has become the de-facto industry standard
in the entire rapid-prototyping industry; see Burns [1]
for more details on the STL format.

Laser Sintering enables the production of durable
and functional parts with very much the same prop-
erties as their “standard” molded or machined coun-
terparts, for a variety of applications, and even if only
a few parts of the same shape are needed. Further-
more, snap fits and living hinges can be produced.

Unfortunately, this heating and cooling down of the
material may cause process-inherent problems like in-
homogenous temperature fields and the “shrinkage”
phenomenon. Roughly speaking, shrinkage is the re-
sult of a change in the morphology of the molten
powder. During the cooling process the morphol-
ogy changes from amorphous to part-crystalline. The
crystalline regions thereby have a higher density than

∗EOS GmbH, Krailing bei München, Germany,
christian.pfligersdorffer@eos.info

†Department of Computer Science, University of Salzburg,
Salzburg, Austria, held@cosy.sbg.ac.at

the amorphous regions, which leads to a loss in vol-
ume. Since laser sintering is a layer-wise process, indi-
vidual layers may undergo a different shrinkage, thus
leading to inter-layer tensions between the layers. The
tensions may result in a bimetallic effect called “curl”
in the rapid prototyping industry. Summarizing, a
part may undergo a noticeable distortion, as shown
in Fig. 1 for a real-world example. (For ease of vi-
sualization the distortion has been exaggerated by a
multiplicative factor of ten in this picture.)

Figure 1: A simple test part produced by laser sinter-
ing that ends up with a slight U-shaped deformation.

Of course, process engineers do their best to re-
search the shrinkage of LS parts and to fine-tune
the process parameters. However, geometers may be
tempted to come up with a different approach to miti-
gate the effects of shrinkage: Can we apply an inverse
deformation to a model prior to its LS manufacture
such that the part actually manufactured matches the
goal shape more closely? (Similar ideas have been ap-
plied successfully in textile productions and injection
molding.)

2 Problem Studied

Consider a polyhedral part bounded by a triangulated
surface which we assume to be a closed 2-manifold. In
order to apply an inverse deformation, we (1) need to
obtain deformation vectors for at least some vertices
of the part, and (2) need to interpolate between ap-
propriate deformation vectors in order to obtain de-
formation vectors for all the other vertices of the part.
In the sequel we assume that deformation vectors are
already known for some vertices, and focus on the
appropriate interpolation of those vectors. (Deforma-
tion vectors can be obtained by means of 3D scanners
for instance.) We use the term data sites for those
vertices of the part for which deformation vectors are
known.

134

EWCG 2007, Graz, March 19–21, 2007

Let P := {p1, . . . , pn} denote the set of vertices of
the part and let S := {s1, . . . , sk} denote the sites
given, with S ⊂ P . The deformation vector to be
applied to si is denoted by vi. Our goal is to con-
struct an interpolation function f : P → R3 such that
f(si) = vi and such that decent deformation vectors
for the vertices in P \ S are obtained.

To solve this discrete interpolation problem we
adapted two well-known multivariate interpolation
schemes to make them work on triangulated surfaces:
Inverse Distance Method and Natural Neighbor In-
terpolation. Both schemes classify as distance-based,
statistical schemes [7] and, thus, seem fit for a gener-
alization to arbitrary metric spaces.

3 Inverse Distance Method

Shepard’s method of inverse distances [5] dates back
to 1968 and as such was one of the first interpolation
schemes for scattered, multi-dimensional data.

Definition 1 For a set S of k sites and a metric d,

f(p) :=
k∑

i=1

viwi(p) (1)

gives the Shepard interpolation function for p /∈ S.
The weight functions wi are parameterized by an ex-
ponent µ > 0:

wi(p) :=
d(p, si)−µ∑k

j=1 d(p, sj)−µ
. (2)

Typical values for µ are 1, 2 and 3. For a thorough
discussion of this interpolant in the Euclidean plane
we refer to [6]. Although f ∈ C∞ for even exponents
µ and f ∈ Cµ−1 otherwise, the Shepard interpolation
function is known to be of only constant precision.
Furthermore the resulting surfaces have gradient zero
in the data sites for µ > 1 which causes ‘bumps’,
see Fig. 2, and thus renders this interpolation scheme
effectively useless for our purposes.

Figure 2: A Shepard surface interpolating 121 data
points sampled from a paraboloid (with µ = 2).

A recent modification proposed in [6] achieves
higher precision and gets rid of the bumps, unfortu-
nately at the price of incorporating Taylor polyno-
mials. It remains to be seen how their work can be

generalized to interpolations on surfaces. In any case,
this modification would also require gradient values
on the data sites which are not present in our data
(and which seem difficult to estimate reliably).

4 Natural Neighbor Interpolation

Natural neighbor interpolation is a multivariate inter-
polation scheme based on natural coordinates, both
introduced by Sibson [2, 3]. The basic idea is to ex-
press a point p as a linear combination of its neigh-
boring sites, where the weights are derived from the
Voronoi diagram of the sites together with p. (Again,
a suitable metric d has to be used for the definition of
the Voronoi diagram.)

Figure 3: A Sibson surface interpolating 100 ran-
domly spaced data points sampled from a paraboloid.

Definition 2 The natural coordinates of a point p
with respect to a set of sites S = {s1, . . . , sk} are
given as a vector of weights (λ1, . . . , λk), where

λi(p) :=
|V (p, si)|
|V (p)|

. (3)

Here, |V (p)| denotes the area of the Voronoi cell of p
and |V (p, si)| corresponds to the area of the ordered
second-order Voronoi cell of p and si, i.e. the region
that lies closest to p and second-closest to si.

The so-called local coordinates property establishes
the fact that every point p within the convex hull of S
can be expressed in natural coordinates (λ1, . . . , λk):

p =
k∑

i=1

siλi(p) (4)

For a proof we refer to Sibson’s original work [2],
or to a recent study on Voronoi-based interpolation
schemes by Hiyoshi and Sugihara [4].

Definition 3 For a set S of k sites, with λi as defined
above,

f(p) :=
k∑

i=1

viλi(p). (5)

gives Sibson’s C0-interpolation function for p /∈ S.

135

23rd European Workshop on Computational Geometry, 2007

Sibson introduced this basic interpolant that is of lin-
ear precision and lies in C0, and an extended ver-
sion known as C1-interpolant that is able to repro-
duce spherical quadrics. As in the case of Shepard
interpolations, this improvement is achieved by incor-
porating gradients in first-order Taylor polynomials.
However, provided that a large enough sample of data
sites is available even the linear version is able to pro-
duce decent results, see Fig. 3.

Figure 4 illustrates why the method is also called
area stealing method. The Voronoi cell of p “steals”
area from the Voronoi cells of its natural neighbors.
The percentage of the Voronoi area around p stolen
from a site si is given by λi(p).

p

Figure 4: A vertex p is inserted into the Voronoi Di-
agram of the data sites.

5 Interpolating Deformation Vectors on Surfaces

Since our interpolation is to operate on a triangu-
lated surface the choice of a suitable metric d and the
computation of the corresponding Voronoi diagram
becomes an imminent problem. No reliable and ef-
ficient implementation of the corresponding geodesic
Voronoi diagram on a triangulated surface is known
even for the Euclidean metric. Thus, we resort to
computing discretized approximations of the Voronoi
cells. We note, however, that working on closed sur-
faces also bears the benefit that the restriction to the
convex hull of S is no restriction at all.

We apply Dijkstra’s shortest path algorithm to
compute Euclidean distances between vertices along
edges of the triangulated surface. Since the only
Voronoi information that we actually need is infor-
mation on the size of the areas we can get away with
not building the Voronoi data structure explicitly.
Rather, in a preprocessing phase we store for every
vertex a reference to its closest data site by growing
the Voronoi regions one by one. For k sites among the
n vertices this computation takes O(kn log n) time in
the worst case. Figure 5 shows such an approximate
Voronoi diagram.

The main loop iterates over all vertices in order
to calculate natural coordinates for them. For every
vertex p we grow its Voronoi cell and sum up the
area stolen from the data sites. Since we already rely

Figure 5: Voronoi diagram on the surface of the Stan-
ford dragon; the data sites are marked as red points.

on the mesh triangulation to compute the distances
among the vertices we may as well assume the vertex
density to be roughly constant over the surface and
count stolen vertices instead of evaluating the sizes
of stolen areas. This takes O(n2 log n) time in the
worst-case, and O(n2

k log n) if the k sites are uniformly
distributed among the n vertices.

Observation 1 One might be tempted to insert ver-
tices permanently into the Voronoi diagram once their
natural coordinates are known, in an attempt to let
them act as data sites for subsequent iterations of
the main loop. Tests showed that this modification
sometimes speeds up the algorithm by up to a mul-
tiplicative factor of 2–3 (as could be expected) but
also downgrades the results obtained! Since Sibson’s
interpolant is C0 in the data sites, C1 on their Delau-
nay circles, and C∞ everywhere else, this observation
is quite understandable [8].

Due to the various approximations and the dis-
crete nature of our approach it became necessary to
smooth the mesh afterwards. Using a simple mean
value smoothing this postprocessing step takes only
linear time.

6 Discussion of Results Obtained

The CPU-time consumption measured in practical
tests of our algorithm reflects the complexity bounds:
if interpolations are performed on parts of various
complexity, with 100 data sites (and deformation vec-
tors per part), our algorithm clearly runs in time
quadratic in the number of vertices, see Fig. 6.

As suggested by the complexity bound O(n2

k log n),
CPU time can indeed be saved by providing addi-
tional input data sites. Fig. 7 shows the decrease
in the CPU-time consumption (y-axis) for an STL
model with 8404 vertices as the number of data sites
distributed randomly among the vertices is increased.
Thus, for a practical application of our algorithm it
will be important to strike a good balance between the
efforts spent on obtaining data sites together with the
deformation vectors and the time consumed by the ac-
tual inverse deformation.

136

EWCG 2007, Graz, March 19–21, 2007

10000 20000 30000 40000

20

40

60

80

100

120

Figure 6: The y-axis shows the CPU time in seconds
necessary to interpolate 100 randomly placed sites on
triangulated surfaces having x vertices.

200 400 600 800 1000

10

20

30

40

50

60

70

Figure 7: Decrease of CPU-time consumption (y-axis)
as the number of data sites (x-axis) is increased (for
n = 8404).

We note that by applying ideas used for the compu-
tation of chessboard distances in 2D we could shave
a log-factor from the complexity bounds if we would
use the link distance rather than the true Euclidean
distance as a metric. However, the speed-up gained
in practice is rather small while using the link dis-
tance makes the interpolation even more susceptible
to irregularly spaced vertices.

Comparisons between parts sintered with and with-
out inverse deformation clearly showed that an inverse
deformation pays off. For instance, after applying our
algorithm to a model of the bar depicted in Fig. 1, the
resulting part matched its template better than the
one built without inverse deformation: the deviation
from the target geometry was reduced by a factor of
10. (We placed 44 data sites along the bar’s main
edges, among a total of 6708 vertices.) Similar results
were obtained for other long and thin parts.

During the practical evaluation of our algorithm
two problems quickly surfaced and turned into ma-
jor hurdles for a large-scale test:

• How can the deformation vectors be obtained in
an automated way?

• How can we re-triangulate surfaces such that we
obtain meshes that are suitable for a deforma-
tion?

All commercial 3D scanners available to us do a point-
to-surface matching but do not support a point-to-
point matching. Thus, we need a surface registration
mechanism to directly match automatically scanned
data with the STL model in order to obtain a suitable
set of deformation vectors fully automatically. (The
current approach to getting deformation vectors for
points on the part’s surface that do indeed coincide
with vertices of the part involves operations done by
hand and is far too time consuming.)

The availability of decent input triangulations also
is a critical problem: STL models are generated by en-
gineers using various CAD packages, but few of them
are suitable for a (surface-based) deformation. First
of all, it is obvious that one cannot hope to deform
the bar depicted in Fig. 1 appropriately if its sur-
face consists of a bunch of long rectangles. (Recall
that we only shift vertices but do not bend edges!)
Similarly, long but skinny triangles or highly irregu-
lar sizes of the triangles downgrade the quality of the
deformation achieved by our algorithm. Thus, prior
to fine-tuning our inverse deformation algorithm (or
prior to considering switching to a volume-based in-
terpolation) we will have to include a good re-meshing
software into our test set-up.

Acknowledgments

We thank EOS GmbH for sponsoring our work and pro-

viding an EOSINT P 385 laser sintering machine for our

experiments together with the personnel to handle pro-

duction and post-production measurement.

References

[1] M. Burns. Automated Fabrication. Improving Pro-
ductivity in Manufacturing. Prentice Hall, 1993.

[2] R. Sibson. A Vector Identity for the Dirichlet Tessela-
tion. Mathematical Proceedings of Cambridge Philo-
sophical Society 87, 151–155, 1980.

[3] R. Sibson. A Brief Description of Natural Neighbor
Interpolation. Interpreting Multivariate Data, John
Wiley & Sons, Chichester 1981.

[4] H. Hiyoshi, K. Sugihara. Voronoi-Based Interpola-
tion with Higher Continuity. Annual Symposium on
Computational Geometry, 242–250, 2000.

[5] D. Shepard. A Two-dimensional Interpolation Func-
tion for Irregularly-Spaced Data. 23rd ACM National
Conference, 1968.

[6] R. Barnhill, R. Dube, F. Little. Properties of Shep-
ard’s Surfaces. Rocky Mountain Journal of Mathe-
matics 13 (2), 365–382, 1983.

[7] F. Sárközy. GIS Functions – Interpolation. Periodica
Polytechnica Civil Engineering 43 (1), 63–86, 1999.

[8] G. Farin. Surfaces over Dirichlet Tesselations. Com-
puter Aided Geometric Design 7, 281–292, 1990.

137

23rd European Workshop on Computational Geometry, 2007

Complexity of Approximation by Conic Splines
(Extended Abstract)

Sylvain Petitjean∗ Sunayana Ghosh † Gert Vegter‡

Abstract

In this paper we show that the complexity, i.e., the
number of elements, of a parabolic or conic spline
approximating a sufficiently smooth curve with non-
vanishing curvature to within Hausdorff distance ε is
c1ε

−1/4 + O(1), or c2ε
−1/5 + O(1), respectively. The

constants c1 and c2 are expressed in the Euclidean and
affine curvature of the curve. We also prove that the
Hausdorff distance between a curve and an optimal
conic arc tangent at its endpoints is increasing with
its arc-length, provided the affine curvature along the
arc is monotone. We use this property in a simple bi-
section algorithm for computing an optimal parabolic
or conic spline.

1 Introduction

Complexity of conic approximants. We show that
the complexity—the number of elements—of an opti-
mal conic spline approximating a sufficiently smooth
curve to within Hausdorff distance (See [6] for a defini-
tion) ε, is of the form c1 ε−

1
5 +O(1), where we express

the value of the constant c1 in terms of the Euclidean
and affine curvature (See Corollary 2). An optimal
parabolic spline approximates a curve to fourth order,
so its complexity is of the form c2 ε−

1
4 +O(1). Also in

this case the constant c2 is expressed in the Euclidean
and affine curvature. These bounds are obtained by
first deriving an expression for the Hausdorff distance
of a conic arc that is tangent to a (sufficiently short)
curve at its endpoints, and that minimizes the Haus-
dorff distance among all such bitangent conics. Ap-
plying well-known methods like those of [2] it follows
that this Hausdorff distance is of fifth order in the
length of the curve, and of fourth order if the conic
is a parabola. We derive explicit constants in these
asymptotic expansions in terms of the Euclidean and
affine curvature of the curve.

Algorithmic issues. For curves with monotone affine
curvature, called affine spirals, we consider conic arcs

∗CNRS/Nancy, France; email: petitjea@loria.fr
†University of Groningen, The Netherlands;

email: S.Ghosh@cs.rug.nl
‡Corresponding author. University of Groningen, The

Netherlands; email: G.Vegter@cs.rug.nl

tangent to the curve at its endpoints, and show that
among such bitangent conic arcs there is a unique one
minimizing the Hausdorff distance. This optimal bi-
tangent conic arc Copt intersects the curve at its end-
points and at one interior point, but nowhere else. If
α : I → R2 is an affine spiral, its displacement func-
tion d : I → R measures the signed distance between
the affine spiral and the optimal bitangent conic along
the normal lines of the spiral. This displacement func-
tion has an equioscillation property (See Section 3)
and the Hausdorff distance between a section of an
affine spiral and its optimal approximating bitangent
conic arc is a monotone function of the arc length of
the spiral section. This useful property gives rise to a
bisection based algorithm for the computation of an
optimal interpolating tangent continuous conic spline.
The scheme reproduces conics. We implemented such
an algorithm, and compare its theoretical complex-
ity with the actual number of elements in an optimal
approximating parabolic or conic spline.

Related work. In [4] Fejes Tóth considers the prob-
lem of approximating a convex C2-curve C in the
plane by an inscribed n-gon. Fejes Tóth proves that,
with regard to the Hausdorff distance, the optimal n-

gon Pn satisfies δH(C,Pn) = 1
8

(∫ l

0
κ1/2(s)ds

)2
1

n2 +

O(1
n4). Here l is the length of the curve, s its arc

length parameter, and κ(s) its curvature. Ludwig [8]
extends this result by deriving the second term in this
asymptotic expansion.

These problems fall in the context of geometric Her-
mite interpolation, in which approximation problems
for curves are treated independent of their specific
parametrization. The seminal paper De Boor, Höllig
and Sabin [2] also fits in this context. Floater [5] gives
a method that, for any conic arc and any odd inte-
ger n, yields a geometric Hermite interpolant with 2n
contacts, counted with multiplicity. This scheme gives
a Gn−1-spline, and has approximation order O(h2n),
where h is the length of the conic arc. Degen [3]
presents an overview of geometric Hermite interpola-
tion, also emphasizing differential geometry aspects.

Overview. Section 2 reviews some notions from
affine differential geometry that we use in this paper.
Section 3 introduces affine spirals, a class of curves

138

EWCG 2007, Graz, March 19–21, 2007

which have a unique optimal bitangent conic. These
optimal bitangent conic arcs have some nice prop-
erties giving rise to a bisection algorithm for their
computation. The complexity analysis of optimal
parabolic and conic splines is presented in Section 4.
Section 5 presents the output of the algorithm in a
specific example.

2 Mathematical preliminaries

Circular arcs and straight line segments are the only
regular smooth curves in the plane with constant Eu-
clidean curvature. Conic arcs are the only smooth
curves in the plane with constant affine curvature.
The latter property is crucial for our approach, so
we briefly review some concepts and properties from
affine differential geometry of planar curves. See also
Blaschke [1].

Affine curvature. Recall that a regular curve α :
J → R2 defined on a closed real interval J , i.e., a curve
with non-vanishing tangent vector T (u) := α′(u), is
parametrized according to Euclidean arc length if its
tangent vector T has unit length. In this case, the
derivative of the tangent vector is in the direction of
the unit normal vector N(u), and the Euclidean cur-
vature κ(u) measures the rate of change of T , i.e.,
T ′(u) = κ(u)N(u). Euclidean curvature is a differen-
tial invariant of regular curves under the group of rigid
motions of the plane, i.e., a regular curve is uniquely
determined by its Euclidean curvature, up to a rigid
motion.

The larger group of equi-affine transformations of
the plane, i.e., linear transformations with determi-
nant one (in other words, area preserving linear trans-
formations), also gives rise to a differential invariant,
called the affine curvature of the curve. To intro-
duce this invariant, let I ⊂ R be an interval, and let
γ : I → R2 be a smooth, regular plane curve. The
curve γ is parametrized according to affine arc length
if

[γ′(r), γ′′(r)] = 1. (1)

Here [v, w] denotes the determinant of the pair of
vectors {v, w}. It follows from (1) that γ has non-
zero Euclidean curvature. Conversely, every curve
α : J ⊂ R → R2 with non-zero Euclidean curvature
satisfies [α′(u), α′′(u)] 6= 0, for u ∈ J , so it can be
reparametrized according to affine arc length.

Note that the property of being parametrized ac-
cording to affine arc length is an invariant of the
curve under equi-affine transformations. If γ is
parametrized according to affine arc length, then dif-
ferention of (1) yields [γ′(r), γ′′′(r)] = 0, so there is a
scalar function k such that

γ′′′(r) + k(r) γ′(r) = 0. (2)

The quantity k(r) is called the affine curvature of the
curve γ at γ(r). A regular curve is uniquely deter-
mined by its affine curvature, up to an equi-affine
transformation of the plane.

The affine curvature can be expressed in terms of
the derivatives of γ up to and including order four.
We refer to the full version of the paper for details.

At a point of non-vanishing Euclidean curvature
there is a unique conic, called the osculating conic,
having fourth order contact with the curve at that
point (or, in other words, having five coinciding points
of intersection with the curve). The affine curvature
of this conic is equal to the affine curvature of the
curve at the point of contact. Moreover, the contact
is of order five if the affine curvature has vanishing
derivative at the point of contact. (The curve has to
be C5.) In that case the point of contact is a sextactic
point. See [1] for further details.

Conics have constant affine curvature. Solving the
differential equation (2) shows that a curve of con-
stant affine curvature is a conic arc. More precisely,
a curve with constant negative affine curvature is a
hyperbolic, parabolic, or elliptic arc iff its affine cur-
vature is negative, zero, or positive, respectively.

3 Approximation of affine spirals

Displacement function. A bitangent conic of a reg-
ular curve α : I → R2 is a conic arc which is tangent
to α at its endpoints, such that each normal line of α
intersects the conic arc in a unique point. Therefore,
a bitangent conic has a parametrization β : I → R2 of
the form β(u) = α(u)+d(u) N(u), where d : I → R is
the displacement function of the conic arc. The Haus-
dorff distance between α and a bitangent conic C is
equal to

δH(α, C) = maxu∈I |d(u)|. (3)

There is a one-parameter family of bitangent conics,
so the goal is to determine an optimal bitangent conic,
i.e., a conic in this family that minimizes the Haus-
dorff distance.

Equioscillation property. An affine spiral is a regu-
lar curve without sextactic points, in other words, a
curve with monotone affine curvature. Affine spirals
have a unique optimal bitangent conic, which is tan-
gent to the curve at its endpoints, and intersects the
curve in one additional interior point, but at no other
interior point. Moreover, the displacement function
of this optimal bitangent conic has an equioscillation
property : there are exactly two parameter values at
which the maximum in (3) is attained. More precisely,
there are u+, u− ∈ I such that d(u+) = −d(u−) =
δH(α, Copt) and |d(u)| < δH(α, Copt) if u 6= u±. The

139

23rd European Workshop on Computational Geometry, 2007

points α(u−) and α(u+) are separated by the inte-
rior point of intersection of α and Copt. The optimal
bitangent conic is the unique bitangent conic having
this equioscillation property, a property that gives rise
to a simple algorithm for computing it. See the full
paper for details.

Monotonicity of optimal Hausdorff distance. If one
endpoint of the affine spiral moves along the curve
α, the Hausdorff distance between the affine spiral
and its optimal bitangent conic arc is monotone in
the arc length of the affine spiral. More precisely,
let α : [u0, u1] → R2 be an affine spiral arc. For
u0 ≤ u ≤ u1, let αu be the sub-arc between α(u0) and
α(u), and let βu be the (unique) optimal bitangent
conic arc of αu. Then the Hausdorff-distance between
αu and βu is a monotonically increasing function of
u.

This property gives rise to a bisection method for
the computation of an optimal conic spline approxi-
mating a spiral arc to within a given Hausdorff dis-
tance. Section 5 presents the output of this algorithm
in a specific example.

4 Complexity of conic splines.

In this section our goal is to determine the Hausdorff
distance of a conic arc of best approximation to an
arc of α of Euclidean length σ > 0, that is tangent to
α at its endpoints. If the conic is a parabola, these
conditions uniquely determine the parabolic arc. If
we approximate by a general conic, there is one de-
gree of freedom left, which we use to minimize the
Hausdorff distance between the the arc of α and the
approximating conic arc β.

The main result of this section gives an asymptotic
bound on this Hausdorff distance.

Theorem 1 (Optimal Hausdorff distance)
Let β be a conic arc tangent at its endpoints to an arc
of a regular curve α of length σ, with non-vanishing
Euclidean curvature.

1. If α is a C8-curve, and β is a parabolic arc, then the
Hausdorff distance between these arcs has asymptotic
expansion

δH(α, β) = 1
128 |k0|κ

5
3
0 σ4 + O(σ5), (4)

where κ0 and k0 are the Euclidean and affine curva-
ture of α at one of its endpoints, respectively.

2. If α is a C9-curve, and β is a conic arc, then the
Hausdorff distance between these arcs is minimized if
the affine curvature of β is equal to the average of the
affine curvatures of α at its endpoints, up to quadratic
terms in the length of α. In this case the Hausdorff
distance has asymptotic expansion

δH(α, β) = 1
2000

√
5
|k′0|κ2

0 σ5 + O(σ6), (5)

where κ0 is the Euclidean curvature of α at one of
its endpoints, and k′0 is the derivative of the affine
curvature of α at one of its endpoints.

The proof of this result is quite involved, but the
main idea is rather simple. Let α : [0, %] → R2 be
parametrized according to affine arc length. In par-
ticular, % is the affine arc length of α. One can show
that

% = κ
1
3
0 σ + O(σ2). (6)

The parabolic arc, which is bitangent to α at α(0) and
α(%), is an offset curve depending on %. Therefore it
has a parametrization u 7→ β(u, %) of the form

β(u, %) = α(u) + d(u, %) N(u), (7)

where the displacement function d is of the form
d(u, %) = u2(u− %)2 D(u, %). Then

δH(α, β) = max0≤u≤% |d(u, %)| = 1
16 %4|D(0, 0)|+O(%5).

(8)
In the full paper we show that the affine curvature of
a curve of the form (7) is of the form

kβ = k0 + 8 κ
− 1

3
0 D(0, 0) + O(%). (9)

Since β is a parabolic arc, its affine curvature is zero,
i.e., kβ = 0. Combining (6), (8), and (9) yields the
asymptotic expression for the Hausdorff distance be-
tween the curve and its bitangent parabolic arc as
stated in the first part of the theorem. The proof of
the second part is more involved, but follows the same
line of reasoning.

The preceding result gives an asymptotic expression
for the minimal number of elements of an optimal
parabolic or conic spline in terms of the maximal
Hausdorff distance.

Corollary 2 (Complexity of conic splines)
Let α : [0, L] → R2 be a regular curve of length L,
with non-vanishing Euclidean curvature parametrized
by Euclidean arc length, and let κ(s) and k(s) be its
Euclidean and affine curvature at α(s), respectively.

1. If α is a C8-curve, then the minimal number of arcs
in a tangent continuous parabolic spline approximat-
ing α to within Hausdorff distance ε is

N(ε) = c1

(∫ L

0

|k(s)| 14 κ(s)
5
12 ds

)
ε−

1
4 (1 + O(ε

1
4)),

(10)
where c1 = 128−

1
4 ≈ 0.297.

2. If α is a C9-curve, then the minimal number of arcs
in a tangent continuous conic spline approximating
α to within Hausdorff distance ε is

N(ε) = c2

(∫ L

0

|k′(s)| 15 κ(s)
2
5 ds
)
ε−

1
5 (1 + O(ε

1
5)),

(11)
where c2 = (2000

√
5)−

1
5 ≈ 0.186.

140

EWCG 2007, Graz, March 19–21, 2007

We only sketch the proof, and refer to the papers
by McClure and Vitale [9] and Ludwig [8] for details
about this proof technique in similar situations. Con-
sider a small arc of α, centered at α(s). Let σ(s) be
its Euclidean arc length. Then the Hausdorff distance
between this curve and a bitangent parabolic arc is
1

128 |k0|κ
5
3
0 σ(s)4 + O(σ(s)5), cf˙ Theorem 1. There-

fore,

σ(s) = 4
√

128 |k(s)|− 1
4 κ(s)−

5
12 ε

1
4 (1 + O(ε

1
4)).

The first part follows from the observation that
N(ε) =

∫ L

s=0
1

σ(s) ds. The proof of the second part
is similar.

5 Implementation

We implemented an algorithm for the computation
of an optimal parabolic or conic spline, based on the
monotonicity property. For computing the optimal
parabolic spline, the curve is subdivided into affine
spirals. Then for a given maximal Hausdorff dis-
tance ε, the algorithm iteratively computes optimal
parabolic arcs starting at one endpoint. At each step
of this iteration the next breakpoint is computed via a
standard bisection procedure, starting from the most
recently computed breakpoint. The bisection proce-
dure yields a parabolic spline whose Hausdorff dis-
tance to the subtended arc is ε. An optimal conic
spline is computed similarly. The bisection step is
slightly more complicated, since the algorithm has
to select the optimal conic arc from a one-parameter
family. Here the equioscillation property gives the cri-
terion for deciding whether the computed conic arc is
optimal.

A Spiral Curve. We present the results of our al-
gorithm applied to the spiral curve, parametrized by
α(t) = (t cos(t), t sin(t)), with 1

6π ≤ t ≤ 2π.
Table 1 gives the number of arcs computed by the

algorithm, and the theoretical bounds on the number
of arcs for varying values of ε, both for the parabolic
and for the conic spline.

References

[1] W. Blaschke. Vorlesungen über Differentialgeometrie
II. Affine Differential Geometrie, volume VII of Die
Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen. Springer-Verlag, 1923.

[2] C. de Boor, K. Höllig, and M. Sabin. High accuracy
geometric Hermite interpolation. Computer Aided
Geometric Design, 4:269–278, 1987.

[3] W. Degen. Geometric Hermite interpolation – in
memoriam Josef Hoschek. Computer Aided Geomet-
ric Design, 22:573–592, 2005.

[4] L. Fejes Tóth. Approximations by polygons and poly-
hedra. Bull. Amer. Math. Soc., 54:431–438, 1948.

ε Parabolic Conic
Exp. Th. Exp. Th.

10−1 5 3 3 2
10−2 9 5 4 3
10−3 15 9 6 5
10−4 26 16 9 7
10−5 46 28 13 11
10−6 82 50 21 17
10−7 145 88 32 26
10−8 254 157 50 41

Table 1: The complexity of the parabolic spline and
the conic spline approximating the Spiral Curve, com-
paring the theoretical complexity with the complex-
ity measured in experiments, for various values of the
maximal Hausdorff distance ε.

32−1

2

0

−2

−4

4

1

5

−1

−3

−5

61−2 0−3
2 3−1

0

6

−4

4

1

−3

1−3 5

−2

−1

0−2 0

−3

5−1 6−2

1

−3

−2

4

−1

0

2 3

−4

1

−1

1

43−1−3

0

−4

−2

20−2 51

−3

6

−1

20 4−2

1

−3

3 6

−4

1−1−3 5

0

−2

5

−4

−2 6

−2

1

1

−3

−1

0

−1

0 3−3 2 4

Figure 1: Row 1 shows the parabolic spline and row
2 shows conic spline approximation for the Spiral for
ε = 10−1, 10−2 and 10−3

[5] M. Floater. An O(h2n) Hermite approximation for
conic sections. Computer Aided Geometric Design,
14:135–151, 1997.

[6] J.E. Goodman and J. O’Rourke, editors. Handbook
of Discrete and Computational Geometry. CRC Press
LLC, Boca Raton, FL, 2nd edition, 2004.

[7] M. Ludwig. Asymptotic approximation of convex
curves. Arch. Math., 63:377—384, 1994.

[8] M. Ludwig. Asymptotic approximation of convex
curves; the Hausdorff metric case. Arch. Math.,
70:331–336, 1998.

[9] D. McClure and R. Vitale. Polygonal approximation
of plane convex bodies. J. Math. Anal. Appl., 51:326–
358, 1975.

[10] R. Schaback. Planar curve interpolation by piecewise
conics of arbitrary type. Constructive Approximation,
9:373–389, 1993.

141

23rd European Workshop on Computational Geometry, 2007

Automatic Local Remeshing of Unstructured Quadrilateral Meshes
in Problems with Large Deformations

Alexander V. Skovpen∗ Vladimir A. Bychenkov Irina I. Kuznetsova

Abstract

Automatic local remeshing is used to maintain mesh
quality in 2D problems which are modeled on the
moving meshes. The mesh is first smoothed in local
regions selected for remeshing. If smoothing does not
help improve the mesh, we construct a new one using
the advancing front method of unstructured quadri-
lateral meshing.

1 Introduction

When problems with large deformations are mod-
eled with Lagrangian meshes, quality of cells degrades
and may become unacceptable for further calcula-
tion. This problem can be resolved by using remesh-
ing/rezoning techniques. Triangles can be remeshed
using topological operations such as splitting and
elimination of cells and edges and merging of cells.
However, for many modeling problems, it is prefer-
able to use quadrilaterals. Direct topological opera-
tions with quadrilateral elements are not usually suit-
able for remeshing (but can be used for adaptive re-
finement). “Topological” remeshing may be based on
splitting quads into triangles; optimization of triangu-
lar mesh and further transformation of triangles into
quads. But this approach usually generates mesh with
nonuniformly oriented cells and poor topological qual-
ity (if it is not the advancing front method based on
triangle transformations). Another technique widely
used for remeshing (especially in 3D) is a grid-based
approach proposed by Schneiders [1]. This method is
robust but it generates poor quality elements near the
boundary and mesh orientation depends on the inte-
rior grid only. The grid-based approach is suitable for
remeshing of the entire domain but its use for local
remeshing tends mesh to be not uniform in topology
and element sizes. Local remeshing is more effective
because only small region of domain often needs to
be remeshed. Remeshing of regions with good ele-
ments causes diffusion of state variables in the pro-
cess of rezoning which leads to unjustified losses in
accuracy. It is especially undesirable in numerical
analysis of shock waves propagation. In this paper
we suggest automatic local remeshing based on the

∗Russian Federal Nuclear Center – Zababakhin Institute
of Technical Physics (RFNC-VNIITF) Snezhinsk, Russia,
alex.skovpen@gmail.com, a.v.skovpen@vniitf.ru

advancing front method of unstructured quadrilateral
meshing. Mesh quality is continuously controlled dur-
ing numerical simulation. If the mesh becomes “bad”
in a local sub-domain, it is smoothed. If smoothing
does not help, overall remeshing is done in the bad
sub-domain. The orientation of new cells depends on
the boundaries of the sub-domain, therefore new mesh
is partly adapted to the entire mesh of the domain.
This approach has successfully been implemented and
is used in a number of 2D codes of numerical analy-
sis. An example of problems solved with the use of
automatic local remeshing is provided.

2 The meshing algorithm

We use the QMV method [2] for remeshing. The
QMV borrows the basic scheme of the Q-Morph
method [3], but differs from it mainly in the following:

a) In topologically difficult cases, it uses an addi-
tional procedure which forms the new cell from
the active front edge. The procedure is based
on exhaustive search for all possible variants of
cell formation using edges adjacent to active edge
nodes as lateral edges of the new cell.

b) Front closing technology is based on splitting of
front closing cells according to several patterns.

c) A new topological cleanup procedure was devel-
oped. It is based on elementary topological op-
erations and topological operations with cell sets
enclosed in six-edge contours.

3 Local remeshing

The local remeshing procedure is called after each
computational step. It first checks mesh quality. If
it is satisfactory, nothing more is done and the calcu-
lation continues.
The local remeshing algorithm consists of the follow-
ing basic steps:

1. Check the measure of quality M of cells Ci in the
computational domain Ω (the measure of quality
is described in Section 3.1). If “bad” cells, with
quality measure below the limiting value Mlim are
found, the algorithm determines the remeshing
sub-domain ΩR. The “bad” cells (subset Ωr) and

142

EWCG 2007, Graz, March 19–21, 2007

a number of neighbor cells which are, as a rule,
“almost bad” (subset Ω+

r) are included in ΩR. In
addition, the sub-domain is extended according
to criteria formulated in Section 3.2. Let Ωr be
a subset of cells such that M(Ci) < Mlim, Ω+

r be
a subset of cells such that M(Ci) < M+

lim. Then
Ω′r = Ωr ∪ Ω+

r and ΩR = Ψ(Ω′r), where Ψ is a
function of the extension of the cell subset.

2. For cells in ΩR, the mesh is smoothed using a bar-
rier variational method with regularization [4].

3. The repeated check of cell quality in ΩR and
re-determination of ΩR. If there are no “bad”
cells and, accordingly, ΩR has become empty, we
do rezoning for cells, which nodes coordinates
changed, and the calculation continues.

4. The CR – boundary contour of ΩR is formed and
cells of ΩR are removed from Ω (CR is a con-
nected set of boundary edges).

5. Adjustment of CR. Only edges which are bound-
ary in Ω can be modified. Too long edges are
splitted and too short ones are eliminated.

6. A new mesh Ω′R is generated for CR, using the
QMV method.

7. The sub-domain Ω′R is inserted into Ω, topologi-
cal connections between new and old cells being
recovered.

8. The modification of the mesh in Ω (Section 3.3).

9. The mesh is smoothed for cells of Ω′R plus 2-3
layers of old cells around them.

10. Rezoning for new cells and for the cells with
changed nodal coordinates.

A mesh generated with the QMV method will be
fully quadrilateral if the initial boundary consists of
an even number of edges. If the number is odd, at
least one triangle will exist in the generated mesh.
Since the number of edges may become odd after the
boundary adjustment, there may be triangles in the
domain. If domain boundaries are locally pinched,
i.e., one layer of cells can be generated between them,
quadrilateral cells with angles close to π may appear
there. These cells are unsuitable for modeling and are
transformed into triangular cells.

3.1 Cell quality measure

The measure of cell quality M is used to decide
whether remeshing is needed. In general, the mea-
sure is arbitrary and may differ for different classes
of problems. Here M is a set of quality criteria µj .
To satisfy the measure M a cell must satisfy each
of the criteria included in M , i.e., M(Ci) ≥ Mlim is

equivalent to µj(Ci) ≥ µj,lim for all µj j = 1 . . .m.
Therefore, M(Ci) < Mlim if µj(Ci) < µj,lim even for
one µj .
In this paper, 4 quality criteria were used:
- A measure of shape quality µ1. This measure was
proposed in [5] and [6] for, respectively, triangu-
lar and quadrilateral cells. Measure for triangle ABC:

µ1(ABC) = 2
√

3

(
AB×AC · n

|AB|2 + |BC|2 + |CA|2

)
,

where n is the unit normal vector of the triangle ABC.
The measure for quadrilateral is equal to the mini-
mal measure of triangles which can be built inside
the quad splitting it by diagonals.
- A measure µ2 estimates the angles of the cell. Let
the i -th cell angle equals αi; the ideal angle for the cell
is αI . For a quadrilateral, αI = π/2; for a triangle,
αI = π/3.

µ2 = min
i=1...n

µ2,i ,

where µ2,i =
{

(π − αi)/(π − αI), if αi ≥ αI

αi/αI , if αi < αI
,

n is the number of angles in a cell.
- A cell “stretching” measure µ3. For a triangular cell,
µ3 = l3/l1, where li are edge lengths sorted so as l1 ≥
l2 ≥ l3. For a quadrilateral cell, µ3 = (l3+l4)/(l1+l2),
where l1 ≥ l2 ≥ l3 ≥ l4.
- Consistency of edge lengths with the specified range:

µ4 = min
i=1...n

[min(li/Ls, Lb/li)] ,

where li are edge lengths. Ls and Lb are lower and
upper limits of edge length.

3.2 The extension of the remeshing sub-domain

The choice of the remeshing sub-domain is an impor-
tant part of the remeshing algorithm. On one hand,
it must not be too large to avoid redundant rezoning.
On the other hand, if the sub-domain is too small and
narrow, the quality of a new mesh generated within
its boundaries won’t be good.
The extension of the remeshing sub-domain is done
to make it “more convex” and to expand “narrow”
regions. The main extension procedure is based on
the expansion of “own” narrow regions and on ab-
sorbing “alien” narrow regions. Let Od(Ci) be a
set of cells enclosing cell Ci, where d is the num-
ber of cell layers around Ci. If d = 1, these are the
cells which are connected to the cell Ci via a node
or edge. The next layers are defined by iterations:
Od+1(Ci) = O1(Od(Ci)). Initially ΩR is taken to be
equal to Ω′r. Further extension of ΩR is performed
so as to satisfy the following conditions: for each cell
Ci of ΩR, there must exist a cell Cj ∈ ΩR such that
Cj ∈ Od(Ci), Od(Cj) ⊂ ΩR, d = D1; the number of
cells added to ΩR during extension must be minimal.

143

23rd European Workshop on Computational Geometry, 2007

Here D1 characterizes the “attachment” of the cell Ci

to ΩR. This parameter helps to control the extension
of ΩR. Usually D1 is taken to be 2−4. For exam-
ple, if D1 = 2, then the minimal “thickness” of ΩR

will be equal to 2D1 + 1 = 5 cells. A similar algo-
rithm is used to absorb the “alien” narrow regions.
The cells of Ω which do not belong to ΩR and have
their “attachment” parameter D2 = 0 (for the subset
Ωs = Ω \ ΩR), are included in ΩR.

The remeshing sub-domain can also be extended
in order to limit the ratio between the maximum and
minimum lengths of its boundary edges and to extend
regions along the boundary of domain Ω.

3.3 Mesh modification after local remeshing

If position of boundaries in the domain Ω significantly
changes, it may become necessary to topologically dis-
connect some of its regions or to remove singularities
on the boundary. Here “singularities” means thin,
wedge-shaped boundary cells. Mesh modification is
done using the following operations:

a) Disconnection of inner edges between boundary
nodes if l < Ls, where l is edge length, Ls is the
lower bound of edge length (Figure 1,a).

b) Transformation and elimination of cells whose
characteristic size lh < Ls (Figure 1,b-c). For
a triangular cell lh is the length of minimal
height located inside the cell, for quadrilat-
eral lh = mini=1...n [max(h1(Ei), h2(Ei))], where
h1(Ei) and h2(Ei) are heights drawn to edge Ei

from nodes opposite this edge. Heights located
outside the cell are not taken into account.

sL

a) c)b)

sL sL

Figure 1: Mesh modification operations.

4 Implementation and example of local remeshing

The proposed method of automatic local remeshing
is implemented as a dynamic link library. In case of
remeshing, the calling program receives information
on all removed, changed and new nodes and cells and
also on intersections of new and old cells which are
needed for rezoning.

local remeshing

local remeshing
with boundary modification

b)

a)

Figure 2: Examples of local remeshing.

Figure 2 shows two moments of remeshing and Fig-
ure 3 shows the results of a 2D numerical simulation of
perforation of an aluminum plate by a uranium cylin-
der. The plate is 10mm thick and 200mm in diameter;
the cylinder is 20mm in diameter and its velocity is
500 m/s. The numerical simulation was carried out
using code SPRUT (RFNC-VNIITF) based on an ex-
plicit Lagrangian finite difference scheme with mod-
els of elasto-plasticity, material damage, porosity and
cracking. Local remeshing was done 18 times, includ-
ing 2 in which only smoothing was performed. The
total number of computational steps was ∼ 2000. The
calculation was done in an axially symmetric setup.
The mesh was mirror-reflected below the axis of sym-
metry to make Figure 3 more demonstrative. The
nodes marked with circles at Figure 2 were added to
the boundary of the domain (step 5 of the algorithm).
It is seen from Figure 2,b that the modification of the
mesh (step 8 of the algorithm) resulted in the topo-
logical break of the region. Before the break of Ω2,
there is no mass disbalance; after the break the mass
of the plate reduced due to the elimination of several
cells. Mass disbalance of Ω2 was ∆M/M = 1.21e-4.
The coefficient of remeshing for Ω2 was Kr = 0.07%
which is equivalent to remeshing of 7% of cells of a do-
main at every hundredth step. If nr

c(s) is the number
of cells changed or generated in remeshing at step s,
nc(s) is the number of cells of a domain at step s and
S is the total number of computational steps then

Kr =

(
S∑

s=1

nr
c(s)

) / (
S∑

s=1

nc(s)

)
.

144

EWCG 2007, Graz, March 19–21, 2007

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-2
.0

-1
.0

0
.0

1
.0

2
.0

-4.0

t = 2.9 ms

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-2
.0

-1
.0

0
.0

1
.0

2
.0

-4.0

t = 6.8 ms

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-2
.0

-1
.0

0
.0

1
.0

2
.0

-4.0

t = 25.3 ms

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-2
.0

-1
.0

0
.0

1
.0

2
.0

-4.0

t = 38.1 ms

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-2
.0

-1
.0

0
.0

1
.0

2
.0

-4.0

t = 49.0 ms

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-2
.0

-1
.0

0
.0

1
.0

2
.0

-4.0

t = 52.8 ms

Figure 3: Local remeshing in the perforation problem.

5 Conclusion

Local remeshing helps automatically to maintain
geometric quality of computational meshes. This
significantly extends the class of problems which can
be solved and reduces the time required for the simu-
lation of complex, strongly deformable systems.

Acknowledgments

The authors are thankful to Garanzha V.A.,

Kozmanov M.Yu., Barabanov S.N., Zyryanova I.L.,

Pavlov I.V. and Melnikova S.N. for help and support.

References

[1] Schneiders R. A Grid-based algorithm for the genera-
tion of hexahedral element meshes. Engineering with
Computers, 1996, V. 12, p. 168-177.

[2] Skovpen A.V. Modified algorithm for un-
structured quadrilateral meshing. Snezhinsk,
RFNC-VNIITF, ISBN 5-902278-07-4, 2004, 62p.
(http://www.vniitf.ru/gridgen/2004 skovpen.pdf).

[3] Owen S.J., Staten M.L., Canann S.A., Sunil S. Ad-
vancing Front Quadrilateral Meshing Using Trian-
gle Transformations. Proceedings 7th International
Meshing Roundtable, 1998, p.409-428.

[4] Garanzha V.A., Kaporin I.E. Regularization of
the barrier variational method of grid generation.
J. Comp. Math. M. Phys. 1999, V. 39, p.1426-1440.

[5] Lo S.H. A new mesh generation scheme for arbitrary
planar domains. Int. J. Numer. Meth. Engng. 1985,
V. 21, p.1403-1426.

[6] Canann S.A., Tristano J.R., Staten M.L. An ap-
proach to combined Laplacian and optimization-based
smoothing for triangular, quadrilateral and tetrahe-
dral meshes. Proceedings 7th International Meshing
Roundtable, 1998, p.479-494.

145

23rd European Workshop on Computational Geometry, 2007

Edges and Switches, Tunnels and Bridges

David Eppstein∗ Marc van Kreveld† Elena Mumford‡ Bettina Speckmann‡

Abstract

Edge casing is a well-known method to improve the
readability of drawings of non-planar graphs. A cased
drawing orders the edges of each edge crossing and
interrupts the lower edge in an appropriate neighbor-
hood of the crossing. Certain orders will lead to a
more readable drawing than others. We formulate
several optimization criteria that try to capture the
concept of a “good” cased drawing. Further, we ad-
dress the algorithmic question of how to turn a given
drawing into an optimal cased drawing. For many
of the resulting optimization problems, we either find
polynomial time algorithms or NP-hardness results.

1 Introduction

Drawings of non-planar graphs necessarily contain
edge crossings. The vertices of a drawing are com-
monly marked with a disk, but it can still be difficult
to detect a vertex within a dense cluster of edge cross-
ings. Edge casing is a well-known method—used, for
example, in electrical drawings and, more generally,
in information visualization—to alleviate this prob-
lem and to improve the readability of a drawing. A
cased drawing orders the edges of each crossing and
interrupts the lower edge in an appropriate neighbor-
hood of the crossing. One can also envision that every
edge is encased in a strip of the background color and
that the casing of the upper edge covers the lower edge
at the crossing. See Fig. 1 for an example.

If there are no application specific restrictions that
dictate the order of the edges at each crossing, then
we can in principle choose freely how to arrange them.
Certain orders will lead to a more readable drawing
than others. In this paper we formulate several opti-
mization criteria that try to capture the concept of a
“good” cased drawing. Further, we address the algo-
rithmic question of how to turn a given drawing into
an optimal cased drawing.

Definitions. Let G be a graph with n vertices and m
edges and let D be a drawing of G with k crossings.

∗Department of Computer Science, University of California,
Irvine, eppstein@ics.uci.edu

†Department of Information and Computing Sciences,
Utrecht University, marc@cs.uu.nl

‡Department of Mathematics and Computer Science, TU
Eindhoven, e.mumford@tue.nl and speckman@win.tue.nl

Figure 1: Normal and cased drawing of a graph.

We assume that no vertex v of D lies on (or very close
to) an edge e of D unless v is an end-point of e. Fur-
ther, no more than two edges of D cross in one point
and any two crossings are far enough apart so that the
casings of the edges involved do not interfere. With
these assumptions we can consider crossings indepen-
dently. We define the edge crossing graph GDC for D
as follows. GDC contains a vertex for every edge of D
and an edge for any two edges of D that cross.

Let C be a crossing between two edges e1 and e2.
In a cased drawing either e1 is drawn on top of e2

or vice versa. If e1 is drawn on top of e2 then we
say that C is a bridge for e1 and a tunnel for e2. In
Fig. 2, C1 is a bridge for e1 and a tunnel for e2. A
pair of consecutive crossings C1 and C2 along an edge
e is called a switch if C1 is a bridge for e and C2 is
a tunnel for e, or vice versa. In Fig. 2, (C1, C2) is a
switch.

e1

e2

C1

C2

Figure 2: Tunnels and bridges.

Stacking and weaving. When we turn a given draw-
ing into a cased drawing then we need to define a
drawing order for every edge crossing. We can choose
to either establish a global top-to-bottom order on the
edges or to treat each edge crossing individually. We
call the first option the stacking model and the second
one the weaving model, since cyclic overlap of three or
more edges can occur (see Fig. 3).

Figure 3: Stacking and weaving.

146

EWCG 2007, Graz, March 19–21, 2007

Quality of a drawing. Globally speaking two factors
may influence the readability of a cased drawing in a
negative way. Firstly, if there are many switches along
an edge then it might become difficult to follow that
edge. Drawings that have many switches can appear
somewhat chaotic. Secondly, if an edge is frequently
below other edges, then it might become hardly vis-
ible. These two considerations lead to the following
optimization problems for a drawing D.

MinTotalSwitches Minimize the total number of
switches.

MinMaxSwitches Minimize the maximum number
of switches for any edge.

MinMaxTunnels Minimize the maximum number
of tunnels for any edge.

MinMaxTunnelLength Minimize the maximum
total length of tunnels for any edge; the length of
a tunnel is casingwidth/ sinα, where α ≤ π/2 is
the angle of the edges at the crossing.

MaxMinTunnelDistance Maximize the minimum
distance between any two consecutive tunnels.

Fig. 4 illustrates that the weaving model is stronger
than the stacking model for MinTotalSwitches—
no cased drawing of this graph in the stacking model
can reach the optimum of four switches. For, the
thickly drawn bundles of c > 4 parallel edges must
be cased as shown (or its mirror image) else there
would be at least c switches in a bundle, the four
vertical and horizontal segments must cross the bun-
dles consistently with the casing of the bundles, and
this already leads to the four switches that occur as
drawn near the midpoint of each vertical or horizon-
tal segment. Thus, any deviation from the drawing in
the casing of the four crossings between vertical and
horizontal segments would create additional switches.
However, the drawing shown is not a stacked drawing.

c edges

Figure 4: Optimal drawing in the weaving model for
MinTotalSwitches.

Results. For many of the problems described above,
we either find polynomial time algorithms or NP-
hardness results in both the stacking and weaving
models. We summarize our results in Table 1.

Model Stacking Weaving
MinTotalSwitches open polyn.
MinMaxSwitches open open
MinMaxTunnels polyn. polyn.
MinMaxTunnelLength polyn. NP-hard
MaxMinTunnelDistance polyn. polyn.

Table 1: Table of results.

2 Minimizing switches

In this section we discuss results related to the
MinTotalSwitches and MinMaxSwitches prob-
lems. We first discuss some non-algorithmic results
giving simple bounds on the number of switches
needed, and recognition algorithms for graphs needing
no switches. As we know little about these problems
for the stacking model, all results stated in this sec-
tion will be for the weaving model.

Lemma 1 Given a drawing D of a graph we can turn
D into a cased drawing without any switches if and
only if the edge crossing graph GDC is bipartite.

Corollary 2 Given a drawing D of a graph we can
decide in O((n + m) log(n + m)) time if D can be
turned into a cased drawing without any switches.

Proof. We apply the bipartiteness algorithm of [2].
Note that this does not construct the arrangement, so
there is no factor of k in the runtime. �

Lemma 3 Given a drawing D of a graph the min-
imum number of switches of any cased drawing ob-
tained from D is at least half of the number of odd
length face cycles in the arrangement of edges (we
only count odd-length cycles that do not include a
graph vertex).

Proof. Every odd-length cycle must have a switch.
If two odd-length cycles are adjacent, this switch may
occur on their shared edge. �

Lemma 4 For any n large enough, a drawing of a
graph G with n vertices and O(n) edges exists, for
which any crossing choice gives rise to Ω(n2) switches.

Proof. A construction with
three sets of parallel lines, each
of linear size, gives Ω(n2) trian-
gles, and each triangle gives at
least one switch. �

Lemma 5 For any n large enough, a drawing of a
graph G with n vertices and O(n2) edges exists for
which any crossing choice gives rise to Ω(n4) switches.

147

23rd European Workshop on Computational Geometry, 2007

Proof. We build our graph in the following way.
Make a very elongated rectangle, place n/6 vertices
equally spaced on each short edge, and make the com-
plete bipartite graph. This graph has (n/6)2 edges.
One can prove that there is a strip parallel to the short
side of the rectangle, such that the parts of the edges
inside the strip behave in the same way as parallel
ones do with respect to creating triangles when over-
lapped the way it is described in the previous lemma.
This gives us the desired graph with Ω(n4) triangles,
and hence with Ω(n4) switches. �

Theorem 6 MinTotalSwitches can be solved in
polynomial time in the weaving model.

Proof. Let D be the drawing which we wish to case
for the minimum number of switches. We may as-
sume without loss of generality that each vertex of
D has degree one, for we may replace any degree-k
vertex v by a set of k degree-one vertices placed on
a small circle surrounding v, minimize the number of
switches in the resulting modified drawing, and then
reconnect each edge to v, without changing the num-
ber of switches. Define a segment of the drawing to
be a maximal component of an edge of D that does
not include any crossing point with another edge, and
define the parity of a cycle in D to be the number of
segments along the cycle, plus the number of vertices
of D contained within the cycle, modulo two.

We apply a solution technique related to the Chi-
nese Postman problem, and also to the problem of
via minimization in VLSI design [1]: form an aux-
iliary graph G, and include in G a single vertex for
each odd-parity face cycle in D. Also include in G an
edge connecting each pair of vertices, and label this
edge by the number of segments of the drawing that
are crossed in a path connecting the corresponding
two faces in D that crosses as few segments as possi-
ble. We claim that the minimum weight of a perfect
matching in G equals the minimum total number of
switches in any casing of D.

In one direction, we can case D with a number of
switches equal to or better than the weight of the
matching, as follows: for each edge of the matching,
insert a small break into each of the segments in the
path corresponding to the edge. The resulting bro-
ken arrangement can be shown to have no odd face
cycles, for the breaks connect pairs of odd face cy-
cles in D to form larger even cycles. More strongly,
it has no odd cycles at all, for in any graph drawing
in which all vertices have degree one, the parity of
any cycle is the sum (modulo two) of the face cycles
within it. Therefore, it has a bipartite edge crossing
graph, and can be drawn without switches. Forming
a drawing of D by reconnecting all the break points
adds at most one switch per break point, so the total
number of switches equals at most the weight of the
perfect matching.

In the other direction, from any casing of D we can
derive a set of paths connecting odd cycles via switch
points, showing that the number of switch points is
at least as large as the weight of the optimal perfect
matching; we omit the details. �

3 Minimizing tunnels

In this section we present three algorithms that
solve MinMaxTunnels, MinMaxTunnelLength,
and MaxMinTunnelDistance in the stacking
model. We also present algorithms for MinMaxTun-
nels and MaxMinTunnelDistance in the weaving
model. MinMaxTunnelLength is NP-hard in the
weaving model.

3.1 Stacking model

In the stacking model, some edge e has to be bot-
tommost. This immediately gives the number of tun-
nels of e, the total length of tunnels of e, and the
shortest distance between two tunnels of e. The idea
of the algorithm is to determine for each edge what
its value would be if it were bottommost, and then
choose the edge that is best for the optimization to
be bottommost (smallest value for MinMaxTunnels
and MinMaxTunnelLength, and largest value for
MaxMinTunnelDistance). The other m− 1 edges
are stacked iteratively above this edge. It is easy to
see that such an approach indeed maximizes the min-
imum, or minimizes the maximum. We next give an
efficient implementation of the approach. The idea is
to maintain the values of all not yet selected edges
under consecutive selections of bottommost edges in-
stead of recomputing it.

We start by computing the arrangement of edges
in O(m log m + k) expected time, for instance using
Mulmuley’s algorithm [4]. This allows us to determine
the value for all edges in O(k) additional time.

For MinMaxTunnels and MinMaxTunnel-
Length, we keep all edges in a Fibonnacci heap on
this value. One selection involves an extract-min,
giving an edge e, and traversing e in the arrangement
to find all edges it crosses. For these edges we up-
date the value and perform a decrease-key opera-
tion on the Fibonnacci heap. For MinMaxTunnels
we decrease the value by one and for MinMaxTun-
nelLength we decrease by the length of the cross-
ing, which is casingwidth/ sinα, where α is the angle
the crossing edges make. For MinMaxTunnels and
MinMaxTunnelLength this is all that we need.
We perform m extract-min and k decrease-key
operations. The total traversal time along the edges
throughout the whole algorithm is O(k). Thus, the
algorithm runs in O(m log m + k) expected time.

For MaxMinTunnelDistance we use a Fibon-
nacci heap that allows extract-max and increase-

148

EWCG 2007, Graz, March 19–21, 2007

key. For the selected edge we again traverse the ar-
rangement to update the values of the crossing edges.
However, we cannot update the value of an edge in
constant time for this optimization. We maintain a
data structure for each edge that maintains the mini-
mum tunnel distance in O(log m) time under updates.
The structure is an augmented balanced binary search
tree that stores the edge parts in between consecutive
crossings in its leaves. Each leaf stores the distance
between these crossings. Each internal node is aug-
mented such that it stores the minimum distance for
the subtree in a variable. The root stores the mini-
mum distance of the edge if it were the bottommost
one of the remaining edges. An update involves merg-
ing two adjacent leaves of the tree and computing the
distance between two crossings. Augmentation allows
us to have the new minimum in the root of the tree
in O(log m) time per update. The whole algorithm
therefore takes O(m log m + k log m) expected time.

Theorem 7 Given a straight-line drawing of a graph
with n vertices, m = Ω(n) edges, and k edge cross-
ings, we can solve MinMaxTunnels and MinMax-
TunnelLength in O(m log m+k) expected time and
MaxMinTunnelDistance in O(m log m + k log m)
expected time in the stacking model.

3.2 Weaving model

In the weaving model, the polynomial time algorithm
for MinMaxTunnels comes from the fact that the
problem of directing an undirected graph, and mini-
mizing the maximum indegree, can be solved in time
quadratic in the number of edges [5]. We apply this
on the edge crossing graph of the drawing, and hence
we get O(m4) time. For minimizing tunnel length per
edge, we can show:

Theorem 8 MinMaxTunnelLength is NP-hard
in the weaving model.

In the remainder of this section we show how to solve
MaxMinTunnelDistance. We observe that there
are polynomially many possible values for the smallest
tunnel distance, and perform a binary search on these,
using 2-SAT instances as the decision tool.

Our algorithm first computes the arrangement of
the m edges to determine all crossings. Only distances
between two—not necessarily consecutive—crossings
along any edge can give the minimum tunnel distance.
One edge crosses at most m−1 other edges, and hence
the number of candidate distances, K, is O(m3). Ob-
viously, K is also O(k2). From the arrangement
of edges we can determine all of these distances in
O(m log m + K) time. We sort them in O(K log K)
time to set up a binary search. We will show that
the decision step takes O(m + K) time, and hence

δ

e1

e2

e3

e4

e5

Figure 5: Example where the 2-SAT formula is (x13∨
x23) ∧ (x23 ∨ x34) ∧ (x23 ∨ x35) ∧ (x34 ∨ x35).

the whole algorithm takes O(m log m + K log K) =
O((m + K) log m) time.

Let δ be a value and we wish to decide if we can set
the crossings of edges such that all distances between
two tunnels along any edge is at least δ. For every
two edges ei and ej that cross and i < j, we have
a Boolean variable xij . We associate xij with true
if ei has a bridge at its crossing with ej , and with
false otherwise. Now we traverse the arrangement
of edges and construct a 2-SAT formula. Let ei, ej ,
and eh be three edges such that the latter two cross
ei. If the distance between the crossings is less than
δ, then ei should not have the crossings with ej and
eh as tunnels. Hence, we make a clause for the 2-SAT
formula as follows (Fig. 5): if i < j and i < h, then
the clause is (xij ∨ xih); the other three cases (i > j
and/or i > h) are similar. The conjunction of all
clauses gives a 2-SAT formula that is satisfiable if and
only if we can set the crossings such that the minimum
tunnel distance is at least δ. We can construct the
whole 2-SAT instance in O(m+K) time since we have
the arrangement, and satisfiability of 2-SAT can be
determined in linear time [3].

Theorem 9 Given a straight-line drawing of a graph
with n vertices and m = Ω(n) edges, we can solve
MaxMinTunnelDistance in O((m + K) log m) ex-
pected time in the weaving model, where K = O(m3)
is the total number of pairs of crossings on the same
edge.

References

[1] R.-W. Chen, Y. Kajitani, and S.-P. Chan. A graph-
theoretic via minimization algorithm for two-layer
printed circuit boards. IEEE Trans. Circuits and Sys-
tems, 30(5):284–299, 1983.

[2] D. Eppstein. Testing bipartiteness of geometric in-
tersection graphs. In Proc. 15th ACM-SIAM Sympos.
Discrete Algorithms, pages 853–861, 2004.

[3] S. Even, A. Itai, and A. Shamir. On the complexity of
timetable and multicommodity flow problems. SIAM
J. Comput., 5(4):691–703, 1976.

[4] K. Mulmuley. Computational Geometry: An Introduc-
tion through Randomized Algorithms. Prentice Hall,
1994.

[5] V. Venkateswaran. Minimizing maximum indegree.
Discrete Applied Mathematics, 143:374–378, 2004.

149

23rd European Workshop on Computational Geometry, 2007

Rendering the Flow of Comparabilities in Ordered Sets

Guy-Vincent Jourdan∗ Livaniaina Rakotomalala Nejib Zaguia†

Abstract

In this paper, we introduce a new concept to draw
an ordered set: the LR-Upward drawing is an upward
drawing based on a chain decomposition of the or-
der such that elements drawn on the same vertical
line are always comparable and all other comparabil-
ities flow from left to right. We describe a particu-
lar technique for automatically generating enhanced
LR-Upward drawing for N-Free orders that are X-
Cycle-Free. This technique first enhances locally the
drawing, around a particular chain, and then expands
the enhancement on the remaining part of the order.
This technique can be used to enhance the usability
of some complex pictures.

1 Introduction

When a complex and potentially confusing informa-
tion should be presented to a user, one option is to use
a graph showing all the relevant elements and their
relationships in a visual way. In some cases, the rela-
tionships between elements is a hierarchy (i.e. an an-
tisymmetric and transitive relation), in which case the
graph is an ordered set. Several methods for the auto-
matic, computer generated drawing of ordered sets are
available in the literature (see [1] for a survey on the
question), but none of them is fully satisfying. The
most common drawing technique used to represent or-
dered sets is the upward drawing (or Hasse diagram).
An upward drawing suppresses all nonessential edges
(those implied by transitivity and the loops at each
vertex due to reflexivity) and draws only the directed
covering graph of the order in such a way that cover-
ing relations are all directed upward. In other words,
an upward drawing contains no horizontal edges, and
no nonessential edges, and if an element x is smaller
than y then there exists a path from x to y that is
directed upwards.

Short of having a general definition of what a
“good” upward drawing of a given order is, several
standard criteria have been identified and analyzed
in isolation or combined. These criteria include pla-
narity [2], the slope of the edges, the number of di-
rections, the number of edge crossing [3] etc. Among

∗School of Information Technology and Engineering (SITE),
University of Ottawa,Canada, gvj@site.uottawa.ca

†School of Information Technology and Engineering (SITE),
University of Ottawa,Canada, zaguia@site.uottawa.ca

the qualities that are expected from a good drawing,
one obviously important one is how easy it is to see if
two elements are comparable in the order.

In this paper we propose a modified version of the
upward drawing: the LR-Upward drawing concept. It
is a new way to visualize ordered sets. Our approach
is to use a chain decomposition of the ordered set as
the underlying structure for positioning the vertices
of the order. We focus particularly on N-Free and X-
Cycle-Free orders. For that class, we detail a complete
technique to generate and improve automatically an
LR-Upward drawing. A Java implementation of the
algorithms described in this paper is available. Due
to the space constraint and a part from some simple
lemmas, none of the technical results that are behind
the algorithms will be presented here.

2 Definitions

An ordered set P = (X,≤) is a pair consisting of a
non-empty set X and a binary relation ≤ on X, satis-
fying reflexivity, antisymmetry and transitivity. Two
elements x and y are comparable in P if either x ≤ y
(x is a predecessor of y) or y ≤ x (x is a successor
of y); otherwise, x and y are incomparable, which we
note x‖y. The covering relation of an ordered set P
is the transitive reflexive reduction of P . An element
y of P covers another element x, and we note x ≺ y
(x is a immediate predecessor of y), if ∀z, x ≤ z ≤ y
and x 6= z implies z = y.

A chain in P is a set of pairwise comparable el-
ements. An antichain in P is a set of pairwise in-
comparable elements. The width of P , width(P), is
the size of its longest antichain. A chain decomposi-
tion of P is a partition of P into chains. Every order
P can be partitioned into width(P) chains, and this
is the smallest possible partition . A linear exten-
sion of P is a total ordering x1, x2, · · · , xn of P such
that if xi ≤ xj in P then i ≤ j. A linear extension
L = {x1 < x2 < · · · < xn} of P is greedy if it is con-
structed inductively such that the i + 1th element is
chosen minimal in P \ {x1, · · · , xi} so that it is com-
parable to xi whenever possible. Intuitively, a greedy
linear extension is built by always “climbing as high
as you can” along the chains.

150

EWCG 2007, Graz, March 19–21, 2007

3 LR-Upward drawing

The fundamental idea of LR-Upward drawing of an
ordered set P is to start from a chain decomposition
of P and draw each chain along a different vertical
line. The goal is to have comparability information
more implicit: if two elements are on the same vertical
line, then they are comparable. This very simple idea
provides a good visual rendering for some classes of
ordered sets, e.g. the ones than can be decomposed
into a small number of chains. However, this idea
alone does not help when it comes to figuring out
the comparability of two elements that are not on the
same chain in the initial chain decomposition.

In order to improve the readability of the compara-
bility of elements that are not on the same chain, we
propose to use a chain decomposition derived from a
linear extension of the order. Thanks to that choice,
we are able to ensure that in addition to the usual
“bottom to top” direction, all covering relations go
from left to right (hence the name of LR-Upward, for
“left to right, upward”). This technique introduces
a sense of “flow” in the figure, which helps with the
reading of the comparabilities. As one can see from
Figure 1, and for this example, the flow of information
is much better rendered with the LR-Upward draw-
ing.

a b

Figure 1: A 24 vertex order drawing generated with
LatDraw (a) and with our LR-Upward drawing sys-
tem (b).

The basic algorithm used to obtain an LR-Upward
drawing of an ordered set P can be informally
sketched as follows (Ci[k] stands for the kth element
of the chain Ci, |Ci| stands for the number of ele-
ments in the chain Ci, and xx and xy are the x and
y coordinate of the element x in the figure):

Because L is a linear extension of P , it is clear that
when x is selected at line 4, all of its predecessors have
been already selected, thus the line 12 can be achieved
and the resulting edges go either vertically on chain
Ci or from left to right for the predecessors that are
not in Ci.

4 N-Free and X-Cycle-Free ordered sets

We now investigate the LR-Upward drawing using
the approach described above on N-Free and X-Cycle-
Free ordered sets. N-Free orders define an important
class in the theory of ordered sets that has been very
well investigated due to its relations with many appli-
cations [5].

The N ordered set is an ordered set of four distinct
elements a, b, c and d such that a ≺ c, b ≺ d, b ≺ c and
a‖d. An ordered set is N-Free if its diagram contains
no sub-diagram isomorphic to N .

The X-cycle ordered set is an ordered set of four
distinct elements a, b, c and d such that a ≺ c, b ≺ d,
b ≺ c and a ≺ d. An ordered set is X-Cycle-Free if its
diagram contains no sub-diagram isomorphic to the
X-cycle.

Every finite ordered set can be embedded into an N-
Free and/or X-Cycle-Free ordered set in a linear time
for an extra O(n) space in the worst-case (e.g. by
adding an element on each covering relation). Thus,
an upward drawing solution for this family of orders
is also an upward drawing solution for general orders
(although it is not necessarily a straight edge upward
drawing).

The following are preliminary and important facts:
we prove that N-Free ordered sets can be drawn us-
ing the LR-Upward Drawing in such a way that the
only relationships between elements that are not on
the same chain are between the bottom of a chain
and a single smaller element, and between the top of
the chain and a single larger element. In addition we
show, that if the order is also X-Cycle-Free, a given
chain can only have one such a relation from its bot-
tom element to another (smaller) chain, and one such
relation from its top element to another (larger) chain.

4.1 The “chains interchange” technique

The chain interchanging is a systematic technique
that allows us to manipulate the chains of a greedy
linear extension without affecting its basic property
of being greedy. It only works for N-Free ordered
sets and does not affect the number of chains in the
decomposition. This operation has been introduced
by Rival [4] to successfully prove that any greedy lin-
ear extension is optimal for the jump number prob-
lem. Moreover, every optimal linear extension for the
jump number problem is actually a greedy linear ex-
tension [6].

This technique will allow us to “navigate” among
the greedy linear extensions in order to find the “ap-
propriate” one that could be used as the underlying
structure for our upward drawing.

Let P be an N-Free ordered set and let L be a
greedy linear extension of P where L = C1 ⊕ C2 ⊕
C3 · · · ⊕ Cn. For every index i such that 0 ≤ i < n,

151

23rd European Workshop on Computational Geometry, 2007

there are at most two covering relations between the
chains Ci and Ci+1, that is, Top(Ci) ≺ u for some
u ∈ Ci+1 \ Bottom(Ci+1) and v ≺ Bottom(Ci+1) for
some v ∈ Ci \ Top(Ci).

Let C ′
i = {x ∈ Ci : x ≤ v} ∪ {x ∈ Ci+1 : x < u}

and C ′
i+1 = {x ∈ Ci : x > v} ∪ {x ∈ Ci+1 : x ≥ u}.

We transform the greedy linear extension L = C1⊕
C2⊕· · ·⊕Ci⊕Ci+1 · · ·⊕Cn into another greedy linear
extension L = C1⊕C2⊕· · ·⊕C ′

i⊕C ′
i+1 · · ·⊕Cn. We

denote this operation by IC(L, i) = L′ (see Figure 2).

Top(Ci)

v

u

Bottom(Ci+1)

Ci Ci+1

Top(Ci)

C’ i

Bottom(Ci)

Top(Ci+1)

Bottom(Ci)

IC(L, i) =L’

v

u

Top(Ci+1)

Bottom(Ci+1)

C’i+1

Figure 2: The chains interchange between two con-
secutive chains.

5 LR-Upward drawing of N-Free and X-Cycle-Free
ordered sets

5.1 Local drawing improvement

Contrary to many conventional approaches, our aim is
not to directly improve globally the upward drawing.
Instead, we first approach the problem with a local
improvement of certain parts of the drawing and then
we recursively try to expand this local enhancement
to the remaining parts of the diagram.

Our goal is to enhance the local display around a
chain Ci: reduce the number of edges crossing and
give a sense of a flow from the bottom left to the top
right. To achieve this, we rearrange the chains on
both sides of the chain Ci so that these chains are
ordered according to the position in which they are
connected to Ci. In other words, we want to reach
a chain decomposition C1 ⊕ C2 ⊕ · · · ⊕ Ci ⊕ · · · ⊕ Cn

such that ∀j, k ≤ n, if ∃x, y ∈ Ci such that x < y,
Top(Cj) ≺ x and Top(Ck) ≺ y, then j > k. Con-
versely, if ∃x, y ∈ Ci such that x < y, x ≺ Bottom(Cj)
and y ≺ Bottom(Ck), then j > k.

The left-neighbors chains have to be ordered as
displayed in the Figure 3. To accomplish this, we
“pull” successively each left neighbor until it reaches
its “targeted” place. We start the process by pulling
the neighbor chain which is linked by the smaller el-
ement in Ci. The general formula for the position is
as follows: if Ck is linked by the dth element of Ci

(among these elements that are linked to a chain to
the left), then the targeted place of Ck is the position
i − d. However, the place exchange between Ck and
the chain currently located at position i − d cannot
always be done immediately, since our chain exchange
algorithm requires the chains to be consecutive in the

linear extension. Consequently, we will need i− d− k
chain exchanges to achieve our goal.

4

3

1

2

5
7

6

9

8

Step 4: Final Drawing: after pulling
in order 5, 7, 6 and finally 9.

Initial configuration from
a greedy linear extension L

Bottom(Ci)

Top(Ci)

4

3

1

2

5
7

6

9
8

- L = C1+ Ci+ … + Cn

- Ci={Bottom(Ci), …,1, 2,
 3, 4, …, Top(Ci)}

- Left-
Links(Ci)={5,7,6,9}

- Ci-2 is not linked to Ci

Ci

Ci-1
Ci-2

Ci-3

Ci-4

Ci-5

Figure 3: The Left neighbors chains restructuring.

Formally, let L = C1 ⊕ C2 ⊕ · · · ⊕ Ci ⊕ · · · ⊕ Cn

be a greedy linear extension of P , and let i < n. We
define the set Left-Links(L, Ci) as the set of elements
x ∈ P , such that x = Top(Ck) for some k < i and x is
covered by some element in Ci. The reorganization of
the left-neighborhood of a chain Ci in a greedy linear
extension can be established as follows:

Lemma 1 Let P be a finite ordered set which is N-
Free and X-Cycle-Free. Let L = C1⊕C2⊕· · ·⊕Ci−1⊕
Ci⊕· · ·⊕Cn be a greedy linear extension of P , and let
i ≤ n. There exists another greedy linear extension
L′ = C ′

1 ⊕ C ′
2 ⊕ · · · ⊕ C ′

i−1 ⊕ Ci ⊕ · · · ⊕ Cn of P such
that:

1. Left-Links(L,Ci) = Left-Links(L′, Ci)

2. If Top(C ′
k) < u and Top(C ′

j) < v for some ele-
ments u, v ∈ Ci and u < v, then j < k

3. All chains having their top element in
Left-Links(L′, Ci) are consecutive: let j such
that Top(C ′

j) ∈ Left-Links(L′, Ci), ∀k such that
j ≤ k < i, Top(C ′

k) ∈ Left-Links(L′, Ci).

Clearly, the same idea can be applied to the “right”
side of the chain Ci.

5.2 The global picture enhancement algorithm

One of the main issues with generalizing the local im-
provement presented above is that “improving” one
chain may deteriorate the improvement already done
on another chain. However, restructuring the “left”
neighbors of a chain Cj will never conflict with the
left-neighborhood of a chain Ci already arranged as
long as Cj is on the left of Ci (i.e. j < i). Conversely,
restructuring the “right” neighbors of a chain Ck will
never conflict with the right-neighborhood of a chain
Ci already arranged as long as Ck is on the right of
Ci (i.e. i < k).

152

EWCG 2007, Graz, March 19–21, 2007

5.2.1 The “heaviest” chain approach

The technique we suggest to improve globally the
drawing is to automatically select a chain that “splits”
our drawing in two parts. Such a chain must have
the most “connections” in terms of left-neighbors and
right-neighbors. We choose that particular chain be-
cause it is the one that will most benefit from a “com-
plete” local enhancement, and that will have the most
chances of producing edge crossing.

Once such a starting chain Ci is selected, we then
restructure left-neighborhood “decreasingly” from the
index i to the first chain and the right-neighborhood
“increasingly” from the index i to the last chain. The
index k of the heaviest chain can be computed before-
hand during the initial drawing of P .

6 Conclusion

In this paper, we introduce a new technique for
drawing ordered sets: the LR-Upward drawing is
an upward drawing that has its edges flowing from
the bottom left to the top right. The technique
can be used on any ordered set, but we give a
specific algorithm that is effective at producing
an improved LR-Upward drawing for the ordered
sets that are N-Free and X-Cycle-Free. A full Java
implementation of the techniques introduced in
this paper and several examples are available from
http://www.site.uottawa.ca/~zaguia. The exam-
ple of Figure 4 was produced with that software, while
the same order is shown in Figure 5 rendered with
two other tools, LatDraw which is available from
http://www.math.hawaii.edu/~ralph/LatDraw
and GraphWin which is available from
http://www.algorithmic-solutions.
info/leda_guide/graphwin.html.

Figure 4: A 12 vertex order as rendered by our tool.

In future work, we intend to investigate in further
details the properties of such a diagram. In particular,
one intriguing direction is the possibility to omit in

1

2
58

11

3

9 4

10

6

7

12

Figure 5: The order of Figure 4 rendered with Lat-
Draw and with two versions of GraphWin.

the figure all the vertical edges, since comparabilities
on vertical lines are implied. Under that new context,
what are the orders that are planar? Can it be decided
in polynomial time?

References

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G.
Tollis. Algorithms for drawing graphs: an an-
notated bibliography. Comput. Geom. Theory
Appl., 4:235–282, 1994.

[2] A. Garg and R. Tamassia. Upward planarity test-
ing. Order, 12:109–133, 1995.

[3] C. Lin. The crossing number of posets. Order,
11:1–25, 1994.

[4] I. Rival. Optimal linear extensions by inter-
changing chains. Proc. American Math. Society,
(89):387–394, 1983.

[5] I. Rival. Stories about order and the letter n (en).
Contemporary Mathematics, (57), 1986.

[6] I. Rival and N. Zaguia. Constructing greedy lin-
ear extensions by interchanging chains. Order,
(3):107–121, 1986.

153

23rd European Workshop on Computational Geometry, 2007

An Algorithm for 3D-biplanar Graph Drawing

Meysam Tavassoli∗ Mohammad Ghodsi† Farnoosh Khodakarami ‡ S. Mehdi Hashemi §

Abstract

We introduce the concept of 3D-biplanar drawing in
which we partition a graph into two planar induced
subgraphs. Our goal is to find such a partition with
the minimum number of edges between the two par-
titions. We prove that this problem is NP-complete
and present a randomized parameterized algorithm
with O(nk) time, where k is the ratio of the optimal
solution to the min-cut size of the graph.

1 Introduction

Layered graph drawing [1, 14] is a popular paradigm
for drawing graphs which has applications in visual-
ization [15], in DNA mapping, and in VLSI layout [9].
In a layered drawing of a graph, vertices are arranged
in horizontal layers, and edges are routed as polygonal
lines between distinct layers. For acyclic digraphs, it
may be required that edges point downward. Figure 1
shows a sample graph with its 3-Layer drawing.

The quality of layered drawings is assessed in terms
of criteria to be minimized, such as the number of edge
crossings; the number of edges when removed elimi-
nates all crossings; the number of layers; the maxi-
mum span of an edge, i.e., the number of layers it
crosses; the total span of the edges; and the maxi-
mum number of vertices in one layer.

Research on layered graph drawing has been mainly
focused on drawing a graph which admits a 2-layer
drawing with no edge crossings. There are some well
known problems in this area:

Biplanar drawing: Given a bipartite graph G =
(A,B;E), G is said to be biplanar if the vertices can
be drawn on two layers so that none of the edges of
G cross. Eades and Whitesides proved that determin-
ing whether a given G has a biplanar subgraph with
at least K edges is NP-complete. This remains true
when the positions of the vertices on one layer are
specified [5].

∗Department of Computer Engineering, Sharif University of
Technology, tavassoli@ce.sharif.edu

†Department of Computer Engineering, Sharif University
of Technology, and IPM School of Computer Science (No.
CS1382-2-02), ghodsi@sharif.edu

‡Department of Mathematics and computer science, AmirK-
abir University of Technology, khodakarami@aut.ac.ir

§Department of Mathematics and computer science, AmirK-
abir University of Technology, hashemi@aut.ac.ir

Planarization: 2-Layer Planarization prob-
lem, in which given a graph G (not necessarily bi-
partite), and an integer k called its parameter, the
question is whether G can be made biplanar by delet-
ing at most k edges. If a permutation π of A is given,
this problem is called 1-Layer Planarization.

Crossing Minimization: Instead of deleting
edges, one can seek to minimize the number of cross-
ings in a 2-layer drawing (here the input graph must
be bipartite). The corresponding problems are called
1- and 2-Layer Crossing Minimization.

Unfortunately, the question of whether a graph G
can be drawn in two layers with at most k crossings
(Crossing Minimization), where k is a part of the in-
put, is NP-complete [6], as is the question of whether
r or fewer edges can be removed from G so that the
remaining graph has a crossing-free drawing on two
layers (Planarization) [5]. Both problems remain NP-
complete when the permutation of vertices in one of
the layers is given [5, 6].

Two-layer drawings are of fundamental importance
to Sugiyama approach to multilayer drawing [14].
There are numerous different algorithms for pla-
narization and crossing minimization problems, such
as integer linear programming algorithms [8, 16],
heuristic methods [6, 8, 14], approximation algorithms
[12], and fixed parameter algorithms [3, 2].

We extend biplanar drawing method on 3D space,
and instead of line layers we use the plane layers. Note
that a kind of drawing similar to 3D-biplanar draw-
ing, has been purposed before for clustered graphs [4].
We let vertices be placed in two parallel planes, and
the edges can connect two vertices in the same layer or
in different layers, but in each layer the induced sub-
graph must be planar as illustrated in Figure 2. We
call such drawing 3D-biplanar, and define 3D-biplanar
cut as the number of edges between the two different
layers. Our goal is to find such partition with mini-
mum number of edges between these two partitions.
In other words, we want to find 3D-biplanar cut with
minimum size.

We prove that this problem is NP-complete and
present a randomized parameterized algorithm for it
with O(nk) time, where k is the ratio of the optimal
solution to the min-cut size of graph.

This paper is organized as follows. After proving
the NP-hardness of this problem in Section 2, we
present our randomized parameterized algorithm in

154

EWCG 2007, Graz, March 19–21, 2007

����

������

����

����

������

��
��
��
����

��
��
������

����

������
������

���
���
���
���

����

����
��
��
��
��

����

������ ��
��
��
��

������ ���
���
���
���

��������������
��
��
��

����������
��
��
��

�������
���
���
���

��
��
��
��

���
���
���
���

(a) (b)

Figure 1: (a)A sample graph and (b)its 3-Layer draw-
ing

Section 3. In Section 4 we analyze our algorithm. Fi-
nally, in Section 5 we draw some conclusions.

2 Hardness of 3D-biplanar Drawing

In this section we prove that finding a 3D-biplanar
drawing with minimum 3D-biplanar cut, is NP-
complete as many other layered graph drawing prob-
lems.

To prove that finding a 3D-biplanar drawing with
minimum 3D-biplanar cut is NP-complete, we use
a theorem from Lewis and Yannakakis [10] which is
based on independent work by the two authors that
actually proves a more general result. They use this
result to prove that Maximum Induced Planar Sub-
graph 1 is NP-complete.

Theorem 1 [10] Supposeπ is a graph property satis-
fying the following conditions:

1. There are infinitely many graphs for which π
holds.

2. There are infinitely many graphs for which π does
not hold.

3. If π holds for a graph G and if G′ is an induced
subgraph of G, then π holds for G′. This is called
hereditary property.

Then, the following problem is NP-complete: Given
a graph G = (V,E) and a positive integer k ≤ |V |,
is there a subset V ′ ⊆ V with |V ′| ≥ k such that π
holds for the subgraph of G induced by V ′?

Theorem 2 Given a graph G = (V,E), the problem
of finding a cut C that splits vertex set V into two
subsets V1 and V2 such that each subset being planar
is NP-complete.

Proof. Consider planarity property for a graph G.
Planarity satisfies the following three conditions:

1Given a graph G = (V, E) and a positive integer k ≤ |V |,
is there a subset V ′ ⊆ V with |V ′| ≥ k such that the subgraph
of G induced by V ′ is planar?

Figure 2: A 3D-biplanar drawing

1. It is straightforward that there are infinitely
many planar graphs. For example all trees are
planar.

2. There are infinitely many graphs that has K3,3

or K5 as a subgraph. Each graph that has K3,3

or K5 as a subgraph is not planar.

3. Each induced subgraph G′ of a planar graph G
is planar too.

Hence, planarity property satisfies the three condi-
tions discussed in theorem 1. So, finding a planar in-
duced subgraph with vertex set V ′ such that |V ′| ≥ k
for some k ≤ |V | is NP-complete. We know that
|V1| + |V2| = |V | thus one of |V1| or |V2| is greater
than or equal to |V |/2. If we choose k = |V |/2, we
are done. �

We can’t find a 3D-biplanar drawing for all graphs.
So, in the following lemma we will show a necessary
condition for graphs that have a 3D-biplanar drawing.

Lemma 3 If a graph G has a 3D-biplanar drawing,
then G can not contain K9 as a subgraph.

Proof. Suppose graph G contains K9 as a subgraph.
Hence, when we split vertex set V into two subsets
V1 and V2, the induced subgraph with one of vertex
subsets V1 or V2 contains Kr with r ≥ 5 as a subgraph.
We know that planar graphs can not contain K5 as a
subgraph. So graph G can not split into two induced
planar subgraphs. �

3 Randomized Parameterized Algorithm

In this section we introduce our main algorithm for
finding a minimum 3D-biplanar cut for a graph G if
it exists. With lemma 3, we can first skip graphs
that doesn’t have necessary condition for 3D-biplanar
drawing.

We repeat the following step: pick an edge uni-
formly at random and merge the two vertices at its

155

23rd European Workshop on Computational Geometry, 2007

end-points as illustrated in Figure 3. If as a result
there are several edges between some pairs of (newly
formed) vertices, retain them all. Edges between ver-
tices that are merged are removed, so that there are
never any self-loops. We refer to this process of merg-
ing the two end-points of an edge into a single vertex
as contraction of that edge. With each contraction,
the number of vertices of G decreases by one. The
crucial observation is that an edge contraction does
not reduce the 3D-biplanar cut size of graph G. This
is because every cut in the graph at any intermediate
stage is a cut in the original graph. The algorithm
continues the contraction step until only two vertices
remain. At this point, the set of edges between these
two vertices is a cut in G and is output as a candidate
3D-biplanar cut.

Now, there are two subsets V1 and V2 with a cut-
edge C. Consider two induced subgraphs G1, G2 with
respectively vertex sets V1 and V2. We can easily test
the planarity of these two induced subgraphs by one
of the planarity test algorithms like [7, 11, 13]. These
algorithms take linear time in the worst case.

If G1 or G2 are not planar, we should repeat
this algorithm to find two induced planar subgraphs.
This algorithm does not always find a minimum 3D-
biplanar cut even we find two induced planar sub-
graphs. So, we need to repeat this algorithm to
achieve the minimum 3D-biplanar cut. In the next
section we will compute the number of times needed
to repeat this algorithm until to find a minimum 3D-
biplanar cut, if it exists.

4 Analysis of the Algorithm

Let k denote the minimum biplanar cut size. We fix
our attention to a particular minimum biplanar cut
C with k edges. We will bound from below the prob-
ability that no edge of C is ever contracted during an
execution of the algorithm, so that the edges surviving
till the end are exactly the edges in C.

Suppose the min-cut size in graph G = (V,E) is k′.
So k ≥ k′ and k = hk′ (h is a positive constant factor
that is not dependent on input size, it depends on
only the minimum biplanar cut size and the min-cut
size). Clearly, G has at least k′n/2 edges; otherwise
there would be a vertex of degree less than k′, and its
incident edges would be a min-cut of size less than k′.

Let Ei denote the event of not picking an edge of C
at the ith step, for 1 ≤ i ≤ n−2. The probability that
the edge randomly chosen in the first step is in C is at
most k/(nk′/2) = 2h/n, so that Pr[E1] ≥ 1 − 2h/n.
Assuming that E1 occurs, during the second step there
are at least k′(n − 1)/2 = k(n − 1)/2h edges, so the
probability of picking an edge in C is at most 2h/(n−
1), so that Pr[E2|E1] ≥ 1−2h/(n−1). At the ith step,
the number of remaining vertices is n− i+1. The size
of the min-cut is still at least k′, so the graph has at

e

1

3

2

3

1,24

5

5

4

Figure 3: contraction of edge e

least k′(n− i+1)/2 = k(n− i+1)/2h edges remaining
at this step. Thus, Pr[Ei|∩i−1

j=1Ej] ≥ 1−2h/(n−i+1).
We use the basics to compute probability that no

edges of C is ever picked in the process:

Pr[∩n−2
j=1 Ei] ≥

n−2∏
i=1

(1− 2h

n− i + 1
) ≥ 2

n2h

The probability of discovering a particular 3D-
biplanar drawing (which may in fact be the unique
3D-biplanar drawing in G) is larger than 2/n2h. Thus,
our algorithm may err in declaring the drawing it out-
puts to be a optimum 3D-biplanar drawing. Suppose
we were to repeat the above algorithm n2h/2 times,
where h is the ratio of optimal solution to min-cut size
of graph, making independent random choices each
time. Obviously, the probability that a min-cut is not
found in any of the n2h/2 attempts is at most

(
1− 2

n2h

)n2h

2

≤ 1
e
.

By this process of repetition, we have managed to
reduce the probability of failure from 1 − 2/n2h to
a more respectable 1/e. Further, executions of the
algorithm will make the failure probability arbitrar-
ily small–the only consideration being that repetitions
increase the running time.

5 Conclusion

This paper introduces the concept of 3D-biplanar
drawing in which a graph partitioned into two pla-
nar induced subgraphs. By straightforward reduction
from a more general result, the paper shows that de-
ciding whether a given graph can be cut into two pla-
nar graphs is NP-complete. A randomized algorithm
for finding an optimal cut is given, whose running
time depends on the ratio of the optimal solution and
the min-cut size, as a parameter.

A further step will be to design an efficient algo-
rithm or an approximation algorithm with a good
approximation factor for finding a minimum 3D-
biplanar cut.

156

EWCG 2007, Graz, March 19–21, 2007

References

[1] M. J. Carpano. Automatic display of hierarchized
graphs for computer aided decision analysis. IEEE
Trans. Syst. Man Cybern., SMC-10(11):705–715,
1980.

[2] V. Dujmovic, M. R. Fellows, M. T. Hallett, M. Kitch-
ing, G. Liotta, C. McCartin, N. Nishimura, P. Ragde,
F. A. Rosamond, M. Suderman, S. Whitesides, and
D. R. Wood. On the parameterized complexity of
layered graph drawing. In ESA ’01: Proceedings of
the 9th Annual European Symposium on Algorithms,
pages 488–499, London, UK, 2001. Springer-Verlag.

[3] V. Dujmovic, M. R. Fellows, M. T. Hallett, M. Kitch-
ing, G. Liotta, C. McCartin, N. Nishimura, P. Ragde,
F. A. Rosamond, M. Suderman, S. Whitesides, and
D. R. Wood. A fixed-parameter approach to two-
layer planarization. In GD ’01: Revised Papers from
the 9th International Symposium on Graph Drawing,
pages 1–15, London, UK, 2002. Springer-Verlag.

[4] P. Eades and Q.-W. Feng. Multilevel visualization of
clustered graphs. In S. North, editor, Graph Drawing,
Berkeley, California, USA, September 18-20, 1996,
pages pp. 101–112. Springer, 1997.

[5] P. Eades and S. Whitesides. Drawing graphs in two
layers. Theoretical Computer Science 131, pages 361–
374, 1994.

[6] P. Eades and N. Wormald. Edge crossings in drawings
of bipartite graphs. Algorithmica, 10:379–403, 1994.

[7] J. Hopcroft and R. Tarjan. Efficient planarity testing.
J. ACM, 21(4):549–568, 1974.

[8] M. Jünger and P. Mutzel. 2-layer straightline cross-
ing minimization: performance of exact and heuristic
algorithms. Graph Algorithms Appl., 1(1):1–25, 1997.

[9] T. Lengauer. Combinatorial Algorithms for Inte-
grated Circuit Layout. Teubner, Stuttgart, 1990. Also
published by Wiley in Chichester UK.

[10] J. M. Lewis and M. Yannakakis. The node-
deletion problem for hereditary properties is NP-
complete. Journal of Computer and System Sciences,
20(2):219–230, 1980.

[11] K. Mehlhorn and P. Mutzel. On the embedding phase
of the hopcroft and tarjan planarity testing algo-
rithm. Algorithmica, 16(2):233–242, 1996.

[12] F. Shahrokhi, O. Sýkora, L. A. Székely, and I. Vrto.
On bipartite drawings and the linear arrangement
problem. SIAM Journal on Computing, 30(6):1773–
1789, 2001.

[13] W.-K. Shih and W.-L. Hsu. A new planarity test.
Theor. Comput. Sci., 223(1-2):179–191, 1999.

[14] K. Sugiyama, S. Tagawa, and M. Toda. Methods
for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man Cyber-
netics, 11(2):109–125, 1981.

[15] I. G. Tollis, G. D. Battista, P. E. (Editor), and
R. Tamassia. Graph Drawing: Algorithms for the
Visualization of Graphs. PH, 1998. ISBN: 0–133–
01615–3.

[16] V. Valls, R. Marti, and P. Lino. A branch and bound
algorithm for minimizing the number of crossing arcs
in bipartite graphs. Journal of Operational Research,
90:303–319, 1996.

157

23rd European Workshop on Computational Geometry, 2007

A linear bound on the expected number of rectilinear full Steiner tree
components spanning a fixed number of terminals

Christian Wulff-Nilsen∗

Abstract

The best exact algorithm to date for the rectilinear
Steiner tree problem in the plane uses a two-phase
approach: in the first phase, so called full compo-
nents are generated and in the second phase, a subset
of these components are concatenated to form a recti-
linear Steiner minimal tree. Given n points randomly
distributed in a square with uniform distribution, we
prove that the expected number of generated full com-
ponents with Hwang form satisfying the empty lune
property and spanning exactly K of the given points
is O(n) for fixed K > 2.

1 Introduction

The rectilinear Steiner tree problem (RSTP) in the
plane asks for a tree of minimal L1-length spanning
a given finite set of points, where the L1-metric is
defined as

L1(p, q) = |px − qx|+ |py − qy|

for points p = (px, py) and q = (qx, qy). New points
may be incorporated to shorten the tree. A feasi-
ble solution is called a rectilinear Steiner tree (RST)
and an optimal solution is called a rectilinear Steiner
minimal tree (RSMT). Given points are referred to
as terminals and new points are called Steiner points.
Figure 1 shows an example of an RSMT of a set of
ten terminals.

RSMTs have applications in VLSI design where an
important objective is to minimize the total length of
a network of wires interconnecting a set of pins on
a chip. Due to manufacturing limitations, wires are
typically restricted to having horizontal and vertical
orientations only, making the L1-metric suitable for
measuring wire length.

The RSTP is NP-complete [2]. Currently, the
best known exact algorithm for the problem is
the GeoSteiner algorithm by Warme, Winter, and
Zachariasen [7]. It can solve randomly generated in-
stances of the RSTP consisting of thousands of ter-
minals in a reasonable amount of time.

A full Steiner tree component (FST) of an RST is a
subtree in which all leaves are terminals and all inte-

∗Department of Computer Science, University of Copen-
hagen, koolooz@diku.dk

Figure 1: An RSMT of a set of ten terminals. Black
nodes are terminals and white nodes are Steiner
points. The RSMT consists of four full components.

rior nodes are Steiner points. By splitting at terminals
of degree greater than one, it is easy to see that any
RSMT has a (unique) decomposition into FSTs, see
Figure 1. If an FST spans exactly K ≥ 2 terminals,
we refer to it as a K-FST.

The GeoSteiner algorithm solves the RSTP in two
phases. In the first phase, a set F of FSTs is generated
such that some subset of F is guaranteed to form an
RSMT of the given set of terminals. Strong pruning
techniques are applied to reduce the cardinality of F .
In the second phase, FSTs of F are concatenated to
form an RSMT.

Although the worst-case bound on the number of
generated FSTs is exponential in the number n of
terminals [1], experimental results suggest that when
terminals are randomly distributed in a square with
uniform distribution, the expected number of FSTs
generated is only O(n).

A theoretical polynomial bound on the expected
number of generated FSTs for randomly generated
terminal sets has not yet been found. However, it
has been shown that, for any K > 2, the expected
number of K-FSTs is O(n(log log n)K−2) [8], and an
O(1) bound on the expected number of FSTs span-
ning Ω(n) terminals is given in [5]. Note that the
expected number of 2-FSTs is n−1 for randomly gen-
erated terminal sets since any 2-FST is an MST edge
and since MST edges are unique with probability 1.

158

EWCG 2007, Graz, March 19–21, 2007

In this paper, we show that for K > 2, the expected
number of K-FSTs generated is O(nπK−1), thereby
improving the bound given in [8].

2 Hwang Form of Full Components

Hwang [3] showed that FSTs of an RSMT can be as-
sumed to have a very restricted form known as the
Hwang form. An FST with this form consists of a
backbone defined by two terminals, a root z1 and a
tip zk, see Figure 2. The backbone consists of a long

z1

zk

z1

zk

Figure 2: The two types of FSTs with Hwang form
(up to rotation by a multiple of 90◦ and reflection
through the axes).

and a short leg. Terminal z1 is incident to the long
leg and zk is incident to the short leg. Alternating
line segments attach terminals to the long leg. There
are two main types of FSTs with Hwang form: a type
one FST has no terminals attached to the short leg
(except the tip), and a type two FST has exactly one
terminal attached to the short leg (in addition to the
tip).

In [8], an algorithm computing FSTs is presented.
It grows FSTs along their backbones as follows. First,
a root and a direction of the long leg is selected. Then
a line is swept in the direction of the backbone and
terminals intersected by this line are recursively at-
tached to the backbone. At each step, various prun-
ing techniques are applied to the partially generated
FST. If pruned, the partial FST is not grown any fur-
ther. If a partial FST defines an FST, it is stored in
a set of candidate FSTs.

This algorithm, used in GeoSteiner, is very power-
ful. For random terminal sets, its observed running
time is O(n2).

3 Empty Lune Property

The algorithm of [8] makes use of several properties of
RSMTs, including the so called empty lune property.
This property states that, for any edge (u, v) of an
RSMT T , the lune L(u, v) of (u, v), defined by

L(u, v) = {p ∈ R2|max{L1(u, p), L1(v, p)} ≤ L1(u, v)},

contains no terminals in its interior.
To see that this property holds, suppose for the

sake of contradiction that a terminal z belongs to the
interior of L(u, v). The removal of (u, v) splits T into
two components, one containing u and one containing
v. Assume w.l.o.g. that z and u belong to the same
component. Then adding edge (v, z) reconnects T and
shortens its L1-length, a contradiction.

Figure 3: The lunes of the edges of a partially grown
FST.

Hence, if an edge of a partially generated FST has
a lune containing a terminal in its interior, the partial
FST is pruned.

We will need the following Lemma.

Lemma 1 The lunes of two distinct edges belonging
to the same FST of an RSMT have disjoint interiors.

Proof. If one of the edges is a backbone edge or if the
two edges are not on the same side of the backbone
then the Lemma is clearly satisfied.

Now, consider two edges (s, z) and (s′, z′), where s
and s′ are Steiner points on the backbone and z and
z′ are terminals on the same side of the backbone,
see Figure 4. Assume w.l.o.g. that the backbone is
horizontal, that L1(s, z) ≥ L1(s′, z′), and that (s, z)
is to the left of (s′, z′). Let zp be the horizontal line
segment to the left of z having length |sz|.

Suppose for the sake of contradiction that L(s, z)
and L(s′, z′) share interior points. Then z′ must be-
long to triangle ∆szp and not to line segment sp.
This implies that L1(z, z′) < L1(z, s). Removing edge
(s, z) and adding edge (z, z′) therefore shortens the
RSMT, a contradiction. �

4 Bounding the Expected Number of FSTs

Let K > 2 be given. In this section, we show that the
expected number of K-FSTs with Hwang form satis-
fying the empty lune property is linear in the number

159

23rd European Workshop on Computational Geometry, 2007

z

s s’

z’
p

Figure 4: The lunes of an FST of an RSMT have
disjoint interiors.

of terminals when terminals are randomly distributed
in a square with uniform distribution.

Suppose we have grown a partial FST F with ter-
minals z1, . . . , zk−1, where zk−1 is the last terminal
added. Let zk be the next terminal to be added.

Lemma 2 The expected number of candidates for zk

when terminals are randomly distributed in a square
with uniform distribution is less than π.

Proof. Let B be the square in which the n terminals
are distributed and let L be the union of lunes of edges
in the partially grown FST F . Then the remaining
n− k + 1 terminals are randomly distributed in B \L
with uniform distribution. Let A be the area of B\L.

Let zk = (xk, yk) be a candidate terminal. For con-
venience, assume that the Steiner point sk−1 attached
to zk−1 is located at the origin and that zk belongs
to the first quadrant. Letting sk be the new Steiner
point attached to sk−1 and zk, we have sk = (xk, 0).

Since zk is a candidate terminal, lunes L(sk−1, sk)
and L(sk, zk) contain no terminals in their interiors.

The area of L(sk−1, sk) ∪ L(sk, zk) is 1
2 (x2

k + y2
k) =

1
2r2, where r is the Euclidean distance from zk to
the origin. Since sk−1, sk, zk ∈ B, at least half of
L(sk−1, sk) ∪ L(sk, zk) is contained in B. Thus, by
Lemma 1, at least half of L(sk−1, sk) ∪ L(sk, zk) is
contained in B \ L.

By the above, if a terminal in the first quadrant
has Euclidean distance r to the origin, the probability
that it is a zk-candidate is no more than(

1− r2

4A

)n−k+1

,

and we see that 1 − r2/(4A) > 0, giving the upper
bound 2

√
A on r.

Given r, h > 0 and letting |p| denote the Euclidean
distance from point p to the origin, the region

C(r, h) = {p ∈ R2
+|r ≤ |p| ≤ r + h}.

has area

π

4
((r + h)2 − r2) =

π

2
rh +

π

4
h2.

A terminal in C(r, h) has Euclidean distance at least
r to the origin, see Figure 5.. By the above, the

zk−1

sk
sk−1

zk

h

r

C(r,h)

Figure 5: The situation in the proof of Lemma 2.

probability that it is a zk-candidate is no more than
(1− r2/(4A))n−k+1.

Since the expected number of terminals in C(r, h)
is at most

(n− k + 1)
(π

2
rh +

π

4
h2
)

/A,

the expected number of candidate terminals in C(r, h)
is bounded by(

1− r2

4A

)n−k+1

(n− k + 1)
(π

2
rh +

π

4
h2
)

/A.

Integrating, we obtain a bound E on the expected
number of zk-candidates,

E ≤
∫ 2

√
A

r=0

(
1− r2

4A

)n−k+1

(n− k + 1)
π

2A
rdr

=
π(n− k + 1)

2A

∫ 2
√

A

r=0

(
1− r2

4A

)n−k+1

rdr

=
π(n− k + 1)

2A

−2A

(
1− r2

4A

)n−k+2

n− k + 2

2
√

A

r=0

=
π(n− k + 1)

n− k + 2
< π.

�

Our main result follows easily from Lemma 2.

Theorem 3 Given n terminals randomly distributed
in a square with uniform distribution, the expected
number of K-FSTs satisfying the empty lune property
is O(nπK−1) for any K > 2.

160

EWCG 2007, Graz, March 19–21, 2007

Proof. Let z be a terminal. By Lemma 2, the ex-
pected number of K-FSTs of type one with root z is
less than

8πK−1,

since there are four possible directions of the back-
bone, and for each direction, there are two quadrants
in which the first backbone terminal can be chosen.
The expected number of K-FSTs of type two with
root z is O(πK−2) since the terminal attached to the
short leg is unique once the other terminals are cho-
sen [8]. Since z can be chosen in n ways, the theorem
follows. �

5 Conclusion

Given n terminals randomly distributed in a square
with uniform distribution, we proved that the ex-
pected number of K-FSTs of these terminals with
Hwang form satisfying the empty lune property is
O(nπK−1).

6 Future research

Lemma 2 gives the upper bound π on the expected
number of candidates for the next terminal to be
added to the backbone. If this could be improved
to a constant below 1, it would give a proof that the
total expected number of full components generated is
linear in the number of terminals when terminals are
randomly distributed in a square with uniform distri-
bution. To obtain such an improved constant bound,
other properties of RSMTs, such as the empty corner
rectangle property and the bottleneck property [8],
should be considered.

Acknowledgments

I thank Pawel Winter and Martin Zachariasen for their

comments and remarks.

References

[1] U. Fößmeier and M. Kaufmann. On Exact Solutions
for the Rectilinear Steiner Tree Problem. Technical
Report WSI-96-09, Universität Tübingen, 1996.

[2] M. R. Garey and D. S. Johnson. The Rectilinear
Steiner Tree Problem is NP-Complete. SIAM J. Appl.
Math, 32(4): 826-834, 1977.

[3] F. K. Hwang. On Steiner minimal trees with recti-
linear distance. SIAM J. Appl. Math, 30: 104-114,
1976.

[4] F. K. Hwang, D. S. Richards, and P. Winter. The
Steiner Tree Problem. Annals of Discrete Mathe-
matics 53, Elsevier Science Publishers, Netherlands,
1992.

[5] J. S. Salowe and D. M. Warme. Thirty-Five Point
Rectilinear Steiner Minimal Trees in a Day. Net-
works, 25, 1995.

[6] D. M. Warme Spanning Trees in Hypergraphs with
Applications to Steiner Trees. Ph.D. Thesis, Com-
puter Science Dept., The University of Virginia, 1998.

[7] D. M. Warme, P. Winter, and M. Zachari-
asen. GeoSteiner 3.1. Department of Com-
puter Science, University of Copenhagen,
http://www.diku.dk/geosteiner/, 2001.

[8] M. Zachariasen. Rectilinear Full Steiner Tree Gener-
ation. Networks, 33: 125-143, 1999.

161

23rd European Workshop on Computational Geometry, 2007

Planar Bichromatic Minimum Spanning Trees∗

Magdalene G. Borgelt† Marc van Kreveld† Maarten Löffler† Jun Luo† Damian Merrick‡

Rodrigo I. Silveira† Mostafa Vahedi†

Abstract

Given a set S of n red and blue points in the plane,
a planar bichromatic minimum spanning tree is the
shortest possible spanning tree of S, such that every
edge connects a red and a blue point, and no two edges
intersect. Computing this tree is NP-hard in general.
We present an O(n3) time algorithm for the special
case when all points are in convex position. For the
general case, we present a factor O(

√
n) approxima-

tion algorithm.

1 Introduction

Let S be a set of n points in the plane, where every
point has one of two possible colors (red or blue).
In computational geometry, several papers have
discussed problems that concern such a bichromatic
input, see for instance Kaneko and Kano [5] for
an overview. This paper discusses bichromatic
spanning trees. We obtain a spanning tree T of S
by finding a set of n− 1 edges, which connect points
of different colors (“color conforming”) and form an
acyclic connected component. If T does not contain
intersections it is a planar spanning tree. In this
paper we assume that no three points are collinear,
otherwise a planar bichromatic spanning tree does
not always exist.

A minimum weight spanning tree (MST) of S is a
spanning tree of minimum total length. Note that
a MST needs not be unique. It is well known that
the (monochromatic) MST of a set of points in the
plane can be found using a greedy algorithm like
Kruskal’s [6]. Kruskal’s algorithm adds edges in
the order of increasing length, and discards edges
that would create a cycle in the graph built so
far. The (monochromatic) MST of a set of points

∗This research has been partially funded by the Nether-
lands Organisation for Scientific Research (NWO) under FO-
CUS/BRICKS grant number 642.065.503, and also through the
project GOGO.

†Department of Information and Computing Science,
Utrecht University, the Netherlands, { magdalene, marc,

loffler, ljroger, rodrigo, vahedi}@cs.uu.nl
‡National ICT Australia; School of Informa-

tion Technologies, University of Sydney, Australia,
dmerrick@it.usyd.edu.au

or line segments in the plane cannot contain in-
tersections [2, 4]. It is shown that the problem of
finding the Euclidean (monochromatic) MST of a
set of n points in d-dimensional space is related to
the problem of finding the bichromatic closest pair
among n red and m blue points in d-dimensional
space [1].

Recently it was shown that a color conforming
spanning tree of S can always be found [4]. It was
also shown by illustration that the MST of a given
point set S may contain intersections if one uses
a greedy algorithm like Kruskal’s [3]. Modifying
Kruskal’s algorithm to check for intersections and
discarding an edge if it causes an intersection, leads
to a greedy algorithm which we will refer to as the
greedy planar algorithm or the augmented Kruskal
algorithm. It was shown that the greedy planar
algorithm does not always yield the optimal planar
solution [3], and can even be a linear factor off. The
problem of finding a superlinear bound for the ratio
of the weight of the greedy planar solution to the
weight of the optimal planar solution was left open.
Another open problem was to find an approximation
algorithm for the planar bichromatic MST of S.

In this paper we show that a planar bichromatic span-
ning tree of a set of red and blue points may not al-
ways be obtainable using a greedy algorithm like the
augmented Kruskal algorithm (hence, this algorithm
has no approximation factor at all). We can show that
the planar bichromatic minimum spanning tree prob-
lem is NP-hard in the general case (the proof is in the
full paper), but we show that the optimal tree can be
constructed in cubic time when the points are in con-
vex position. Finally, we present an approximation
algorithm that computes an O(

√
n)-approximation in

O(n2) time.

2 Greedy Planar Bichromatic Spanning Trees

One approach to create planar bichromatic spanning
trees is by using a greedy algorithm. The algorithm
proposed by Kruskal [6] and augmented for bichro-
matic trees [3] is an example of this. In this section
we show that a greedy algorithm may in some cases
not find any planar bichromatic spanning tree at all,

162

EWCG 2007, Graz, March 19–21, 2007

r0

r1
r2

r3

r4

r5 r6

r7

r8

b1

b2

b3

b4

b5

b6

b7

b8

Figure 1: An example of a set of bichromatic vertices
and bichromatic edges that are selected by an aug-
mented Kruskal algorithm.

because at some stage there are points that cannot
be connected to any point of the other color anymore.
Specifically, we show that Kruskal’s algorithm may
get stuck in this way.

Consider the set of nine red points (ri, i = 0, . . . , 8)
and eight blue points (bi, i = 1, . . . , 8), as in Figure 1.
Here the point bi lies slightly to the left of the
directed line from r0 to ri, for any i, so once all the
black edges in the figure have been included by some
greedy algorithm, the central point r0 cannot be
connected to any blue point anymore, and therefore
the existing tree cannot be extended to a valid planar
bichromatic spanning tree.

The augmented Kruskal algorithm adds edges in
the order of increasing length, discarding edges that
would cause intersections as well as edges that would
create a cycle in the graph built so far. In this
situation, the algorithm will create the edges shown
in the figure. This is because for any edge from r0 to
one of the blue points, there is another edge cross-
ing it that is shorter and therefore will be chosen first.

To see why this happens, consider for any i the group
of points ri−1, ri, bi−1, and bi. Of the two edges
(ri−1, bi) and (bi−1, ri) the former must be shorter in
order to obtain the desired structure (that is, a struc-
ture in which the edge (ri−1, bi) shields r0 from seeing
bi−1, so that (r0, bi−1) would lead to an intersection).
To simplify the situation, let us assume that r0, ri−1,
and bi−1 are collinear, and that r0, ri, and bi are
collinear. In addition, let us assume that the angle

(a) (b)

Figure 2: Example of the input (left) and output
(right) for a set of bichromatic points in convex posi-
tion.

between the two directions is exactly π
4 . If we place

the red points on a spiral where the distance between
r0 and ri is

√
2 times larger than the distance between

r0 and ri−1, and we place the bi at carefully chosen
locations at the outside of the construction, we get
the required property.

Theorem 1 A planar bichromatic minimum span-
ning tree of a set of red and blue points may not
always be obtainable using a greedy algorithm like
the augmented Kruskal algorithm.

3 NP-hardness

We show in the full paper that the problem is NP-
hard, by reduction from planar 3-SAT.

Theorem 2 The problem of computing a planar
bichromatic minimum spanning tree of a set of red
and blue points, is NP-hard.

4 Dynamic programming for points in convex po-
sition

If we have a set of red and blue points in the plane
that are in convex position, then we can compute the
planar bichromatic minimum spanning tree in O(n3)
time, see Figure 2(b). This is because in this case,
any edge of the tree partitions the plane into two
independent subproblems.

We are given a set of points in convex position, see
Figure 2(a). Let them be ordered cyclicly counter-
clockwise. For any pair of points p and q (possibly
of the same color, but not necessarily) we define Tpq

as the planar bichromatic minimum spanning tree of
the points {p, . . . , q} (the set of points encountered
when walking from p to q, in counterclockwise order).
Then the answer for the whole point set is Tpq, for
any pair of consecutive points q and p.

163

23rd European Workshop on Computational Geometry, 2007

We can compute all lengths of Tpq by dynamic pro-
gramming, starting from the simplest ones. The
length of Tpp is zero. For a given pair of points p 6= q
we observe the following cases:

• p and q are neighbors. If they have different col-
ors, then Tpq = pq. Otherwise, Tpq does not exist.

• p and q are of the same color. There exists a point
r between p and q such that Tpq = Tpr ∪ Trq, or
Tpq does not exist.

• p and q are of different colors, but they are not
connected by a direct edge. There exists a point
r between p and q such that Tpq = Tpr ∪ Trq.

• p and q are of different colors, and they are con-
nected by a direct edge. There exist two neigh-
boring points r and s (one of which may be p or
q), such that Tpq = pq ∪ Tpr ∪ Tsq.

In any case, we can compute Tpq in linear time by
guessing the position of r and taking the best over
the possible results. Since there are O(n2) possible
choices for p and q, we solve the problem in O(n3)
time.

Theorem 3 A planar bichromatic minimum span-
ning tree of a set of n red and blue points in convex
position can be computed in O(n3) time.

5 An O(
√

n)-approximation

Since the problem cannot be solved exactly in
polynomial time unless P=NP, we will now describe
an approximation algorithm that computes a planar
bichromatic spanning tree that is at most O(

√
n)

times larger than the optimal one, in polynomial time.

We start by taking a bounding square around the
point set, such that the set either touches the square
on both the top and bottom edges, or on both the left
and right edges. After this we scale the input, such
that the bounding square becomes the unit square.

Lemma 4 The length of the optimal planar bichro-
matic spanning tree of the scaled point set is at
least 1.

Proof. There are two points on opposite borders of
the bounding squares, so they are at least 1 away from
each other. �

Next, we create a grid by dividing the unit square into√
n ×
√

n square cells, of side 1√
n
. The point set is

also divided by the grid, see Figure 3(b).

Lemma 5 If m of the n grid cells contain at least a
point, then the length of the optimal planar bichro-
matic spanning tree is at least O(m√

n
).

Proof. If m grid cells contain a point, then at least
1
4m cells that are not adjacent contain a point. To
connect these points with any spanning tree, a connec-
tion of length at least 1√

n
is needed per grid cell. �

We classify the cells according to what points are
inside them. There are three possibilities. Each grid
cell is either empty, contains only points of one color,
or contains points of both colors.

We will now define a set of core regions as follows. A
core region is either a single grid cell, two adjacent
grid cells or four grid cells adjacent to a grid vertex.
Each core region contains both red and blue points.
Apart from that, the following crucial property
should hold.

Crucial Property: Every point is either a distance
of at most O(1/

√
n) (a constant number of grid cells)

away from a core region, or a distance of at least
1/
√

n (one grid cell) away from the closest point of
the other color.

This crucial property guarantees the approximation
factor: points in the first category will be connected
by an edge of O(1/

√
n) length, so all of these together

will not be more than O(
√

n). Points in the second
category will be connected by an edge of length at
most O(1), but in the optimal solution they are
connected by some edge of at least length Ω(1/

√
n),

so they are at most a factor O(
√

n) too long.

We compute the core regions iteratively as follows.

• Every grid cell that contains points of two colors
is a core region.

• For every grid cell that contains only points of
one color and that is not adjacent to a core region,
do the following: if it has a neighboring grid cell
that contains points of the other color, make a
new core region out of those two grid cells (and
possibly two more if they were vertex-adjacent),
otherwise do nothing.

This procedure results in a set of core regions with
the properties just described. Figure 3(c) gives an
example.

We want to get rid of the core regions that touch
each other, so we compute a maximal independent
set of the core regions with respect to the adjacency
(edge or vertex) relation. After this we have a
smaller set of core regions, with the property that
the regions are separated by a band at least one grid
cell wide. Furthermore, the discarded core regions
are all adjacent to a core region that belongs to the
independent set, so the crucial property still holds.

164

EWCG 2007, Graz, March 19–21, 2007

(a) (b) (c) (d)

Figure 3: (a) A set of red and blue points. (a) The points divided by a grid. (b) Core regions are shaded and
bounded by fat edges. (c) The Voronoi regions of an independent subset of the core regions.

Next, we compute the Voronoi diagram of the centers
of the core regions. This is a subdivision of the plane
into convex cells that all have one core region inside
them, because any point inside a core region is at
most

√
2/
√

n away from the center of its own region,
and at least 1.5/

√
n away from the center of any

other region, see Figure 3(d).

Inside each Voronoi cell we compute a factor O(
√

n)
approximation spanning tree as follows. First we com-
pute any tree for the points inside the core region.
Then we sort the other points on their distance to
the core region, and add them in that order. This is
always possible, as the following lemma shows.

Lemma 6 If T is a planar bichromatic spanning tree,
and q is a point in one of the colors that is outside
the convex hull of T , then T can be extended by one
more edge to a planar bichromatic spanning tree that
includes q.

The insertion order ensures that the length of each
new connection is at most the distance to the core
region plus the size of the core region times some
constant. This means that the points that are near
the borders of the core regions will have a connection
of length O(1√

n
), which is what we need for the

approximation.

After building the trees inside all Voronoi cells, we
combine them and extend them to one tree using
the O(n log n) algorithm described in [4]. The length
of the edges used by the algorithm to connect each
component does not matter, because the number
of Voronoi cells is at most the number of grid
cells with points inside them, m, and even if all
these connections are as bad as possible, we still
only have a length of at most m. By Lemma 5,
this is a factor O(

√
n) approximation of the optimum.

All steps of the algorithm take quadratic time in the
number of occupied grid cells, so the algorithm runs
in O(n2) time.

Theorem 7 An O(
√

n)-approximation of a planar
bichromatic minimum spanning tree of a set of n red
and blue points can be computed in O(n2) time.

6 Conclusions

We studied the problem of computing a planar bichro-
matic minimum spanning tree of a set of red and blue
points in the plane. We showed that this problem
is NP-hard, and gave an O(

√
n)-approximation algo-

rithm. An interesting open problem is whether a con-
stant factor approximation algorithm for this problem
that runs in polynomial time exists.

References

[1] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf,
and E. Welzl. Euclidean minimum spanning trees and
bichromatic closest pairs. In Discrete and Computa-
tional Geometry, 6(5):407-422, 1991.

[2] P. Bose and G. Toussaint. Growing a Tree from its
Branches. Journal of Algorithms 19(1):86-103, 1995.

[3] M. Grantson, H. Meijer, and D. Rappaport. Bi-
Chromatic Minimum Spanning Trees. In Proc. 21st
European Workshop on Computational Geometry (Eu-
roCG05), pages 199–202, 2005.

[4] F. Hurtado, M. Kano, D. Rappaport and C.D. Tòth.
Encompassing Colored Crossing-Free Geometric
Graphs. In 16th Canadian Conference on Computa-
tional Geometry, pages 48–52, 2004.

[5] A. Kaneko and M. Kano. Discrete Geometry on Red
and Blue Points in the Plane – A Survey. In Discrete
and Computational Geometry (B. Aronov et al., eds.),
Springer-Verlag, Berlin, pages 551–570, 2004.

[6] J.B. Kruskal. On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem. In Proc.
of the American Mathematical Society, 7:48–50, 1956.

165

23rd European Workshop on Computational Geometry, 2007

Transforming Spanning Trees: A Lower Bound

Kevin Buchin∗ Andreas Razen† Takeaki Uno‡ Uli Wagner†

Abstract

For a planar point set we consider the graph of
crossing-free straight-line spanning trees where two
spanning trees are adjacent in the graph if their union
is crossing-free. An upper bound on the diameter of
this graph implies an upper bound on the diameter of
the flip graph of pseudo-triangulations of the under-
lying point set.

We prove a lower bound of Ω
(
log(n)/ log(log(n))

)
for the diameter of the graph of spanning trees on
a planar set of n points. This nearly matches the
known upper bound of O(log(n)). If we measure the
diameter in terms of the number of convex layers k of
the point set, our lower bound construction is tight,
i.e., the diameter is in Ω(log(k)) which matches the
known upper bound of O(log(k)). So far only constant
lower bounds were known.

1 Introduction

Given a set S of n points in the plane let TS denote
the set of all crossing-free straight-line spanning trees
of S. A straight-line embedded graph is crossing-free
if every pair of its edges does not share any point
other than common endpoints. We call two crossing-
free spanning trees T1 and T2 of S compatible if their
union, i.e. the graph on S with edge set E(T1)∪E(T2),
is crossing-free.

Aichholzer, Aurenhammer, and Hurtado [2] investi-
gate how fast two spanning trees can be transformed
into each other by a sequence of spanning trees with
any two consecutive trees being compatible. They
prove that the maximum length of a sequence needed
is in O(log(n)).

Let TS denote the graph with TS as vertex set
and edges between compatible spanning trees. The
maximum length of a sequence needed to transform
two spanning trees corresponds to the diameter of
this graph. Aichholzer, Aurenhammer, Huemer, and
Krasser [1] refine the above bound on the diameter
of TS to a bound of O(log(k)), where k denotes the
number of convex layers of S. The convex layers of

∗Institute of Computer Science, Freie Universität Berlin,
buchin@inf.fu-berlin.de

†Institute of Theoretical Computer Science, ETH Zurich,
{arazen, wagneru}@inf.ethz.ch

‡National Institute of Informatics, Tokyo, Japan,
uno@nii.jp

a point set S are defined inductively: the first convex
layer U1 consists of the boundary points of the convex
hull of S and, for i > 1, the i-th convex layer Ui is
defined as the set of boundary points of the convex
hull of S \

⋃
j<i Uj . The number k of convex layers of

a point set S is the minimum i such that Ui+1 = ∅.
Aichholzer et al. [1] also prove that an upper bound

of d on the diameter of TS yields an upper bound of
O(nd) on the diameter of the flip graph of pseudo-
triangulations of S. They conjecture that the diam-
eter of TS is sublogarithmic. So far no example was
known where the diameter is not constant.

We give a sublogarithmic but considerably tighter
lower bound: we complement the O(log(n)) upper
bound with a lower bound of Ω

(
log(n)/ log(log(n))

)
.

We do this constructively by providing point sets of
increasing size, and on each point set we specify two
spanning trees achieving this bound. For these exam-
ples the bound in the number of convex layers is tight,
i.e., the distance between the two trees is in Ω(log(k)),
where k is the number of convex layers.

2 The Lower Bound

In this section we construct point sets in the plane and
consider pairs of spanning trees which need a large
number of transformation steps to transform one tree
into the other.

We will first develop a general scheme to construct
such trees. Based on this we present two recursive
constructions using this scheme in different ways. The
first yields a lower bound of Ω(

√
log(n)) on the num-

ber of transformations needed, where n is the size
of the point set. The second gives a lower bound of
Ω
(
log(n)/ log(log(n))

)
. Both constructions use point

sets with more than two points on a line, i.e., the
points are not in general position. However, they can
easily be changed to do so by applying a small pertur-
bation, without losing any of the relevant properties
of the construction.

The basic concept of the constructions is that by
placing the topmost vertex of the point set very far
away from the others, we consider a first tree with
only near vertical edges and a second tree with many
near horizontal edges crossing the vertical edges of
the first tree. Furthermore, there are dependencies
between the horizontal edges such that, when trans-
forming one tree into the other, a vertex that connects
to the rest of the tree by a horizontal edge may con-

166

EWCG 2007, Graz, March 19–21, 2007

f

a

b

e

c

hg

d
f

a

b

e

c

hg

d

(a) T1 (b) T2

f

a

b

e

c

hg

d
f

a

b

e

c

hg

d

(c) Two vertical strips (d) One vertical strip
defined by b, c, . . . , f is blocked

Figure 1: The trees T1 and T2 have distance 3 in TS .

nect to the topmost vertex by a vertical edge only
if certain other horizontal edges are no longer in the
tree.

We illustrate this by the example in Figure 1 with
S = {a, b, . . . , h} being the underlying point set. The
first tree T1 (Figure 1(a)) has near vertical edges, the
second tree T2 (Figure 1(b)) has mostly near hori-
zontal edges. The points b, c, d, e, and f subdivide
the space in which the points of S lie into two vertical
strips. In each such strip there is one point at the bot-
tom (g and h) which needs to connect to the topmost
point a through the corresponding strip (Figure 1(c)).
At the beginning the edges {b, c} and {e, f} block
both strips completely, i.e., the bottommost points
g and h cannot connect to a in any neighbor of T2

in TS . Furthermore, whatever the first transforma-
tion is, thereafter the point d will have an edge to at
least one of b, c, e, or f (as in the example of the tree
in Figure 1(d)). Thus, after one transformation the
edge {a, g} or {a, h} still crosses an edge of the current
tree and cannot be present in the next transformation.
In total, three transformations are necessary and also
suffice to transform T2 to T1, and the diameter of TS

is at least 3.

2.1 Blocking Vertical Strips

Before turning to the construction of a point set, we
further develop the concept of blocking vertical strips.
A vertical strip R is a subset of R2 such that there
exist a, b ∈ R with

R =
{
(x, y) ∈ R2

∣∣a ≤ x ≤ b
}

=: [a, b]× R;

the width of the vertical strip R is b − a. An edge
blocks a vertical strip if the end points of the edge

A

A

A

(a) Stacking three (b) After 1
1-of-2-blockers transformation

Figure 2: A 3-of-8-blocker after 2 steps.

lie on different sides (possibly on the border) of the
strip. For instance, in Figure 1(b) (assuming a proper
coordinate system) the edges {b, c} and {e, f} of the
tree T2 both block the vertical strip [0, 1]×R and the
edge {d, c} blocks the vertical strip [1/2, 1]× R.

A point set A together with a set E of straight-line
edges on A blocks a vertical strip of width w > 0 after
k steps, if for any point set S containing A (and no
further point in the convex hull of A) the following
holds: if a spanning tree T ∈ TS contains the edges E
then in any spanning tree in the k–neighborhood of T
in TS some vertical strip of width at least w is blocked
(not necessarily by an edge in E). For instance, in
T2 in Figure 1(b) the points b, c, d, e, and f together
with the edges {b, c} and {e, f} block a vertical strip
of width 1/2 after 1 step: either the strip [0, 1/2]×R
is blocked by the edge {b, d} or {e, d}, or the strip
[1/2, 1]× R is blocked by {d, c} or {d, f}.

Note that this concept now implies the following:
assume that we have a point set S with the topmost
point p0 ∈ S placed very far away from the rest, and
A ⊂ S with edges E on A blocks some vertical strip
R after k steps. Let T1 ∈ TS be the tree where p0

connects to every other point by a near vertical edge
and let T2 ∈ TS contain the edges E. If there is a
point in S∩R lying strictly below the edge responsible
for blocking R after k steps then T1 cannot be in the
(k+1)–neighborhood of T2 in TS . Thus, the diameter
of TS is at least k + 2.

The point sets we are about to construct reside in
the strip [0, 1] × R, and therein we consider specific
vertical strips that might be blocked. We call a point
set A together with a set of edges E an l-of-m-blocker
after k steps if A blocks at least l of the vertical strips
[(i−1)/m, i/m]×R (for i = 1, . . . ,m) after k steps, not
necessarily the same strips for different trees contain-
ing E in their respective k–neighborhood in TS . In the
example of T2 in Figure 1(b) the points b, c, d, e, f to-
gether with the edges {b, c}, {e, f} are a 1-of-2-blocker
after 1 step. We call l/m the density of the blocker.

167

23rd European Workshop on Computational Geometry, 2007

Given a blocker we can construct further blockers
with a larger number of steps by stacking the blocker
and spreading in further points. Consider for instance
the construction in Figure 2(a). It contains three
copies of the 1-of-2-blocker after 1 step, A, together
with the corresponding horizontal edges, and between
two adjacent copies of A additional points subdivide
each (of two) strips into four smaller strips resulting in
a total of eight vertical strips. After 1 step each copy
of A blocks one vertical strip of width 1/2. Since there
are three copies of A by the pigeon-hole principle one
strip is blocked twice (in the example, Figure 2(b),
the right vertical strip). No matter how the points
in-between these blocking edges are connected to the
rest of the tree at least three of the four corresponding
vertical strips of width 1/8 are blocked, and this can
only change after the edges blocking the strip of width
1/2 are removed. This is the case at the earliest after
2 steps, thus the construction is a 3-of-8-blocker after
2 steps, and for a point set S containing this blocker
the diameter of TS is at least 4.

This construction is generalized in the following.

Lemma 1 Let A be an l-of-m-blocker after k steps
of density l/m > 1/u for some u ∈ N. Stacking
u copies of A on top of each other with additional
points (equidistantly) subdividing each of the m ver-
tical strips into m′ vertical strips between each pair of
adjacent copies yields an (m′ − 1)-of-(m ·m′)-blocker
after k + 1 steps.

Proof. After k steps the u copies of A block within
the m vertical strips l ·u > m times, thus at least one
of the m strips is blocked twice. The points in this
vertical strip blocked from above and below subdivide
this strip into m′ smaller strips, hence in order to
connect these points to the rest at least m′ − 1 of the
small strips are blocked. This changes at the earliest
after k +1 steps, thus the construction is an (m′−1)-
of-(m ·m′)-blocker after k + 1 steps. �

2.2 Construction 1

We construct a point set S depending on an integer
variable d together with two trees T1, T2 ∈ TS such
that at least d steps are needed to transform one of
the trees into the other, and the size of S is in O(2d2

),
i.e., d ∈ Ω(

√
log(n)), where n = |S|.

All points of S lie in the infinite strip [0, 1] × R.
A special point p0 has a larger y-coordinate than all
other points, and will be chosen such that the slope of
any line through p0 and any other point in S is larger
than the slopes of all non-vertical lines through two
points in S \ p0.

Let L0 be defined as L0 := {(0, 0), (1, 0)} and Lk

for k ∈ N, k ≥ 1 as

Lk :=
{(2i− 1

2k
, 0
)∣∣∣∣i = 1, . . . , 2k−1

}
.

Thus,
⋃

0≤k′≤k Lk′ subdivides the line segment from
(0, 0) to (1, 0) into 2k equal parts by 2k + 1 points.
The set Lk+1 places one point in the center of each of
these parts.

We define point sets Ak, k ∈ N, inductively. Let

A1 := L0 ∪ L1 ⊕ 1 ∪ L0 ⊕ 2,

where P ⊕ t := {(x, y + t)|(x, y) ∈ P} is a vertical
shift of the point set P ⊂ R2 by t ∈ N. Note that A1

corresponds to the point set A from Figure 2(a).
For k ∈ N, let Ak+1 be defined by stacking 2k + 1

copies of Ak with a copy of Lk+1 between each pair
of adjacent copies of Ak. Formally,

Ak+1 :=
2k⋃
i=0

Ak ⊕ i · (hk + 1)

∪
2k−1⋃
i=0

Lk+1 ⊕
(
i · (hk + 1) + hk

)
,

where hk := 2 ·
∏k−1

i=0 (2i + 1)− 1.
It follows directly from Lemma 1 that the point set

Ak together with edges between every pair of points
with coordinates (0, y), (1, y), for some y ∈ N, is a
1-of-2k-blocker after k steps.

Given d ∈ N define S := Ld+1 ∪ Ad ⊕ 1 ∪ {p0}
with p0 chosen as described above. Let T1 be the star
connecting p0 to every other point by an edge. Let
T2 be a tree on S obtained by taking all (exactly)
horizontal edges blocking the complete vertical strip
[0, 1] × R and adding further edges such that T2 is a
crossing-free straight-line spanning tree. We already
know that Ad together with the corresponding hori-
zontal edges is a 1-of-2d-blocker after d steps. Thus,
when transforming T2 into T1 there will be one of the
points in Ld+1 blocked away from p0 after d steps.
Therefore, at least d + 2 transformations are needed.

The cardinality sd of Ad is given by s1 = 5 and the
recursion sk+1 = (2k + 1)sk + 2k · 2k. Thus, we have
sk+1 ≤ 22k+1sk and by induction sd ≤ 5 · 2d2

. The
size of S is 2d + sd + 1, hence d ∈ Ω(

√
log(|S|)).

Next we consider the number of convex layers. The
first layer of S consists of the topmost point, the
points of the bottom row, the points in the left most
and the right most column of points. With each ad-
ditional convex layer two more rows and two more
columns are considered until only one row or one
column is left. If m1 is the number of different
x-coordinates used and m2 the number of different
y-coordinates used in the construction then we can
bound the number of convex layers from above by

1 +
1
2

min (m1,m2).

The number of different x-coordinates in S is bounded
by 2d, thus d is logarithmic in the number of convex
layers.

168

EWCG 2007, Graz, March 19–21, 2007

Theorem 2 There is a point set S in the plane for
which the diameter of TS is in Ω(log(k)), where k is
the number of convex layers of S.

2.3 Construction 2

The point set Ak from Construction 1 suffered from
an exponential growth in both, the number of copies
of Ak−1 and the number of points in Lk placed in-
between. Note that the recursive construction we
present in the following will only require a constant
number of copies of previously constructed point sets.

We construct a point set S ⊂ [0, 1] × R depending
on an integer variable d > 1 together with two trees
T1, T2 ∈ TS such that d ∈ Ω

(
log(n)/ log(log(n))

)
,

where n is the size of S, and the distance of the trees
in TS is at least bd/2c.

Again, a special point p0 is included in S with a far
larger y-coordinate than any other point in S.

However, contrary to the first construction where
the density of the blockers dropped by a factor of 1/2
in every step, we will now keep the density above 1/2
as long as possible by spreading in more points. For
this purpose let L0 := {(0, 0), (1, 0)}, and for k ≥ 1
define

Lk :=
{

(i/dk−1 + j/dk, 0)
∣∣∣∣ i = 0, . . . , dk−1 − 1

j = 1, . . . , d− 1

}
,

i.e.,
⋃

0≤k′≤k Lk′ subdivides the line segment from
(0, 0) to (1, 0) into dk equal parts by dk + 1 points.

We define the point sets Ak inductively. Let

A1 := L0 ∪ L1 ⊕ 1 ∪ L0 ⊕ 2,

and for k ∈ {1, . . . , bd/2c − 1} and hk := 4 · 3k−1 − 1,

Ak+1 := Ak ∪ Lk+1 ⊕ hk ∪ Ak ⊕ (hk + 1)
∪ Lk+1 ⊕ (2hk + 1) ∪ Ak ⊕ (2hk + 2).

Note that here Ak+1 only uses three copies of the
previously constructed Ak.

The point set A1 and the horizontal edges between
points with coordinates (0, y) and (1, y), for some
y ∈ N, form a (d−1)-of-d-blocker after 1 step. Apply-
ing Lemma 1 at this time gives that Ak together with
the corresponding edges is a (d−1)-of-dk-blocker after
k steps. However, taking a closer look we can prove
something stronger: recall that for the blocker A1 at
most one vertical strip of width 1/d is not blocked af-
ter 1 step. Placing three copies of A1 on top of each
other implies that after 1 step there cannot be more
than one vertical strip of width 1/d that is not blocked
at least twice. Hence, each of the d− 1 vertical strips
of width 1/d that are blocked twice, together with
the points from L2 in-between, behave like a (hori-
zontally) scaled blocker A1.

See for instance Figure 3 with the corresponding
construction for d = 4. In Figure 3(b) only blocking
edges (of the scaled blockers) are drawn as solid lines.

A1

A1

A1

L2

L2

(a) The blocker A2 and (b) Blocking edges
the horizontal edges, (drawn as solid lines)

for d = 4 after 1 step

Figure 3: A2 is a 9-of-16-blocker after 2 steps.

Therefore, A2 together with the horizontal edges is
a (d− 1)2-of-d2-blocker after 2 steps (since d ≥ 2).

Inductively we find that Ak with the corresponding
edges is a (d− 1)k-of-dk-blocker after k steps as long
as the density (d − 1)k−1/dk−1 of the blocker Ak−1

is at least 1/2 such that the three copies suffice to
guarantee the existence of some blocked vertical strip.

As d ≥ 2, this holds for k = bd/2c. Thus, Abd/2c is
a blocker with density at least 1/2 after bd/2c rounds.
With S := Lbd/2c+1 ∪ Abd/2c ⊕ 1 ∪ {p0} and T1 and
T2 defined as in the first construction, the distance
of the two trees in TS is bd/2c + 2. The size s1

of A1 is d + 3 and the size sk+1 of Ak+1 can be
bounded by the recursion sk+1 < 3 · sk + 2 · dk+1.
For d ≥ 3 we get by induction sk < 2kdk. This
yields |S| < dbd/2c+1 + 2bd/2cdbd/2c + 1 and hence
d ∈ Ω

(
log(|S|)/ log(log(|S|))

)
.

To express the diameter of the set S in terms of the
number of convex layers we use the same argument as
in Construction 1 but now count the rows instead of
the columns. The number of rows is of order 3bd/2c,
thus the diameter is again logarithmic in the number
of convex layers.

Theorem 3 There exists a set S of n points in the
plane for which the diameter of the graph TS is in
Ω
(
log(n)/ log(log(n))

)
.

We have the feeling that the 1/ log(log(n)) factor
in the lower bound from Theorem 3 is more likely
to be an artifact of our construction than the truth
about the diameter of TS which we think should be in
Θ(log(n)), for a suited S with n = |S|.

References

[1] O. Aichholzer, F. Aurenhammer, C. Huemer, and
H. Krasser. Transforming spanning trees and pseudo-
triangulations. Inf. Process. Lett. 97, 1 (2006), 19–22.

[2] O. Aichholzer, F. Aurenhammer, and F. Hurtado. Se-
quences of spanning trees and a fixed tree theorem.
Comput. Geom. Theory Appl. 21, 1 (2002), 3–20.

169

23rd European Workshop on Computational Geometry, 2007

How Difficult is it to Walk the Dog?

Kevin Buchin∗ Maike Buchin∗ Christian Knauer∗ Günter Rote∗ Carola Wenk †

Abstract

We study the complexity of computing the Fréchet
distance (also called dog-leash distance) between two
polygonal curves with a total number of n vertices.
For two polygonal curves in the plane we prove an
Ω(n log n) lower bound for the decision problem in the
algebraic computation tree model allowing arithmetic
operations and tests. Up to now only a O(n2) upper
bound for the decision problem was known.

The Ω(n log n) lower bound extends to variants of
the Fréchet distance such as the weak as well as the
discrete Fréchet distance. For the one-dimensional
case we give a linear-time algorithm to solve the de-
cision problem for the weak Fréchet distance between
one-dimensional polygonal curves.

1 Introduction

The Fréchet distance is a metric for comparing pa-
rameterized shapes. In this paper we consider the
Fréchet distance between polygonal curves. We also
study variants of the Fréchet distance, namely the
weak Fréchet distance, the discrete Fréchet distance,
and the weak discrete Fréchet distance. There is
a quadratic upper bound for solving the decision
problem for the Fréchet distance between polygonal
curves [2] and its variants, but so far no non-trivial
lower bound was known.

In this paper we prove the following lower bound:

Theorem 1 Determining whether or not the Fréchet
distance between two polygonal curves in the plane of
total complexity (i.e., number of vertices) n is less
than a value ε takes Ω(n log n) time in the algebraic
computation tree model allowing arithmetic opera-
tions (+,−,×, /) and tests (>,≥,=).

The same holds for the weak Fréchet distance
with and without the restriction that endpoints are
mapped to endpoints, the discrete Fréchet distance,
and the weak, discrete Fréchet distance with and
without endpoint restriction.

We prove Theorem 1 by reducing a problem with an
Ω(n log n) lower bound in linear time to the decision

∗Institute of Computer Science, Freie Universität Berlin,
Berlin {buchin, mbuchin, knauer, rote}@inf.fu-berlin.de

†Computer Science Department, University of Texas at San
Antonio, carola@cs.utsa.edu

problem for the Fréchet distance. The problem we
reduce from is set inclusion for which the lower bound
in the above model has been proved by Ben-Or [3].

The lower bound in the theorem holds for polygonal
curves in the plane. For the one-dimensional case we
show that the lower bound for the weak Fréchet dis-
tance between one-dimensional polygonal curves does
not hold. We give a linear-time algorithm for this
case.

Note that the definition of the weak Fréchet dis-
tance does not require endpoints to be mapped to
endpoints as does the definition of the non-monotone
Fréchet distance in [2] which coincides with the weak
Fréchet distance with endpoint restriction.

Theorem 2 The weak Fréchet distance between one-
dimensional polygonal curves can be computed in lin-
ear time.

For the weak Fréchet distance with endpoint re-
striction Theorem 2 holds if the polygonal curves lie
between their endpoints. It remains open whether
the lower bound holds if the endpoints lie inside and
whether the lower bound holds for the Fréchet dis-
tance between one-dimensional curves.

2 Fréchet Distance

In this section we recall the definitions of the Fréchet
distance and its variants. For two parameterized
curves f1, f2 : [0, 1] → Rd their Fréchet distance is
defined as

inf
α:[0,1]→[0,1]

β:[0,1]→[0,1]

max
t∈[0,1]

|f1(α(t))− f2(β(t))|

where | · | denotes the Euclidean metric in Rd and
the reparametrizations α, β range over all orientation-
preserving homeomorphisms.

Figure 1: Fréchet Distance: length of shortest leash.

170

EWCG 2007, Graz, March 19–21, 2007

The Fréchet distance can be illustrated by a man
and a dog walking on the two curves as in Figure 1.
The man has the dog on a leash. Both may choose
their speed and may stop but not walk backwards.
Then the Fréchet distance corresponds to the length
of the shortest leash that allows them to walk on their
respective curves from beginning to end. The Fréchet
distance is therefore also called the dog-leash distance.

We focus on polygonal curves. Since the Fréchet
distance is invariant under reparametrization we can
assume a polygonal curve P to be given by the ordered
list of its vertices, i.e., P = (p1, . . . , pl).

The weak Fréchet distance between polygonal
curves is defined in the same way except that the
reparametrizations α, β range over all surjective con-
tinuous functions. For the weak Fréchet distance with
endpoint restriction the reparametrizations are fur-
ther required to map 0 to 0 and 1 to 1, respectively.
In the man-dog illustration the weak Fréchet distance
with endpoint restriction allows the man and dog to
walk also backwards. In the weak Fréchet distance
they may also choose their starting and ending point,
but must cover both curves.

Since the weak versions of the Fréchet distance are
defined as the Fréchet distance but with less con-
straints, the weak Fréchet distance with endpoint re-
striction is less or equal to the Fréchet distance, and
the weak Fréchet distance is less or equal to the weak
Fréchet distance with endpoint restriction.

The discrete Fréchet distance is defined using dis-
crete maps on the vertices instead of homeomorphisms
on the parameter spaces. Let P = (p1, . . . , pl) and
Q = (q1, . . . , qm) be two polygonal curves given by
their ordered lists of vertices. A coupling of the ver-
tices is an ordered sequence of pairs of vertices in P,Q,
i.e., C = (c1, . . . , ck) with

cr = (a, b), a ∈ P, b ∈ Q for 1 ≤ r ≤ k,

fulfilling (0, 0), (l,m) ∈ C and for 1 ≤ r < k

cr = (ai, bj) ⇒
cr+1 ∈

{
(ai + 1, bj), (ai, bj + 1), (ai + 1, bj + 1)

}
.

The discrete Fréchet distance between polygonal
curves is defined by taking the minimum over all cou-
plings and the maximum over all distances between
coupled vertices, i.e.,

min
C coupling

max
(ai,bj)∈C

|ai − bj |.

A coupling of the vertices can be extended to a limit
of homeomorphisms on the parameter spaces of the
curves. This implies that the Fréchet distance is less
than or equal to the discrete Fréchet distance. Fur-
thermore, for any homeomorphism there exists a cou-
pling which yields a distance that is not more than the

distance of the homeomorphism plus half the length
of the longest edge of either curve. Thus, if we add
vertices to the curves P,Q so that their edge lengths
tend to zero, their discrete Fréchet distance will tend
to the Fréchet distance. The weak versions of the dis-
crete Fréchet distance are defined analogously to the
continuous case, i.e., a coupling can also make back-
ward steps in the sense that from ai it can step to
ai − 1, ai, or ai + 1.

3 Lower Bound

We reduce the problem of set inclusion to the decision
problem for the Fréchet Distance.

Fréchet Distance Given two polygonal curves in Rd

with vertices P = (p1, . . . , pl), Q = (q1, . . . , qm), l +
m ≤ n and ε > 0, determine whether or not the
Fréchet distance between the curves is less than ε.

Set Inclusion Given two sets A = a1, . . . , an ⊂ R,
B = b1, . . . , bn ⊂ R, determine whether or not A ⊆ B.

In terms of distance measures the problem of set in-
clusion corresponds to deciding whether the directed
Hausdorff distance between the point sets is 0, i.e.,
deciding whether

max
a∈A

min
b∈B
|a− b| = 0.

Given sets A and B for which we want to determine
whether or not A ⊆ B, we first scale A and B such
that A ∪ B ⊂ [0, 1] holds. This can be done in linear
time. In the following we assume A ∪ B ⊂ [0, 1]. For
ai ∈ A we define

pi :=
(
2ai/(1 + a2

i), (1− a2
i)/(1 + a2

i)
)
∈ R2

and for bi ∈ B we define

qi :=
(
− 2bi/(1 + b2

i), −(1− b2
i)/(1 + b2

i)
)
∈ R2.

The coordinates of all pi and qi can be determined
in linear time in total. We define p0 := (1, 1) and
q0 := (0, 0). Let CA be the polygonal curve with ver-
tices (p0, p1, p0, p2, . . . , p0, pn, p0) and CB be the poly-
gonal curve with vertices (q0, q1, q2, . . . , qn, q0). The
construction is illustrated in Figure 2.

Theorem 1 directly follows from the following
lemma:

Lemma 3 Let the curves CA, CB be constructed as
above from two finite sets A,B ⊂ R. Then A 6⊆ B
holds if and only if the Fréchet distance between CA

and CB is less than 2.

171

23rd European Workshop on Computational Geometry, 2007

q0

p0

p1

p2

p3

p4

q1

q2

q3

q4

Figure 2: Polygonal curves CA and CB . The curves
go through p0 and q0 but are drawn slightly perturbed
for illustration purposes.

The same holds for the discrete Fréchet distance,
the weak Fréchet distance with and without end-
point restriction, and the weak variants of the discrete
Fréchet distance.

Proof. We prove the lemma first for the Fréchet dis-
tance, and then generalize it to the weak and discrete
variants of the Fréchet distance. An important prop-
erty of our construction is that the Euclidean distance
between pi and qj equals 2 if and only if ai = bj , oth-
erwise it is strictly less than 2.

Now assume A 6⊆ B, i.e., there is an ak 6∈
{b1, . . . , bn}. Consider the following parametrizations
of CA and CB : First traverse CA until pk is reached.
So far the distance between pairs of points on the
two curves is clearly less than 2 (actually at most

√
2

since on CB we stay in q0). Then CB is traversed com-
pletely. Since no bi equals ak, all pairwise distances
are less than 2. Now the rest of CA is traversed but
since on CB we are again in q0 the distance stays less
than 2. In total these parametrizations yield a dis-
tance less than 2, therefore the Fréchet distance is
less than 2.

For the other direction assume the Fréchet distance
between the two curves is less than 2. Then there are
parametrizations yielding a distance less than 2. Con-
sider such parametrizations. At the point when the
parametrization of CB reaches q1, the parametriza-
tion of CA must be in the neighborhood of some pk.
The neighborhood of pk is the subcurve of CA with
the vertices p0, pk, p0 excluding the two endpoints p0.
Now, until the parametrization of CB reaches qn, the
parametrization of CA cannot leave the neighborhood
of pk because the closest possible point on CB to p0

is the point (−1/2,−1/2), which still has distance
3/2 ·

√
2 > 2 to p0.

It follows that all points in the neighborhood of
pk have distance less than 2 to q1, . . . , qn. Since pk

is the closest point in its neighborhood to all of the
qi, 1 ≤ i ≤ n, the distance from pk to all of them is
less than 2. From this we get that ak 6= bi for all
1 ≤ i ≤ n, thus A 6⊆ B.

This proves the lemma for the Fréchet distance.
Since we did not use the monotonicity of the
parametrizations the proof directly transfers to the
weak Fréchet distance with and without endpoint re-
striction.

For the discrete Fréchet distance, consider again
the two directions of the proof. For A 6⊆ B we con-
structed parametrizations realizing a Fréchet distance
less than two. But these parametrizations also give a
discrete Fréchet distance less than two since they al-
ways map vertices to vertices. For the other direction,
we need to show that a discrete Fréchet distance less
than two implies that A 6⊆ B. This is equivalent to
showing that A ⊆ B implies a discrete Fréchet dis-
tance greater than or equal to two. This follows from
the fact that the discrete Fréchet distance is always
greater than or equal to the Fréchet distance. Com-
bining the arguments for the weak Fréchet distance
and the discrete Fréchet distance yields the result for
the weak discrete Fréchet distance with and without
endpoint restriction. �

4 Curves on a Line

In the previous section we showed an Ω(n log n) lower
bound for the decision problem for various variants of
the Fréchet distance between polygonal curves in 2D.
A natural question is whether these bounds still hold
in 1D, i.e., in the case that the curves are restricted
to lie on a line.

For the weak Fréchet distance we show that the
lower bound does not hold. We show instead (Propo-
sition 5) that the weak Fréchet distance can be com-
puted in linear time by simply considering the differ-
ences of the extremal vertices. If the extremal vertices
are the endpoints of the curves then this equals also
the weak Fréchet distance with endpoint restriction.

Thus, the distance between polygonal curves is sim-
pler to compute if we weaken the constraints of the
Fréchet distance and restrict the dimension of the
curves. Interestingly, there are similar results for the
Fréchet distance between surfaces. While comput-
ing the Fréchet distance between simplicial surfaces is
NP-hard [5], the weak Fréchet distance between sim-
plicial surfaces in 3D can be computed in polynomial
time [1]. If the surfaces are restricted to lie in a plane
and to not self-intersect, i.e., to be simple polygons,
then even the Fréchet distance can be computed in
polynomial time [4].

The weak Fréchet distance between curves in 1D is
closely related to the Mountain Climbing Problem.

172

EWCG 2007, Graz, March 19–21, 2007

The Mountain Climbing Problem.
Two climbers start at sea-level on opposite sides of a
mountain range and want to meet at the highest peak
without resting on the way. Can they travel in a way
that they stay on equal altitude at all times?

highest

peak

equal

altitude

Figure 3: Mountain Climbing.

This problem is illustrated in Figure 3. It has been
answered many times (see [8]). Homma [6] proved in
1952 that the climbers can stay at equal altitude if
the mountains are locally non-constant. He also gave
an example where it is not possible for the climbers,
where one mountain range has a plateau while the
other mountain range oscillates infinitely often.

In mathematical terms the problem asks for a
characterization of the continuous functions f1, f2 :
[0, 1] → [0, 1] with 0 = f1(0) = f2(0) and 1 =
f1(1) = f2(1) for which there are continuous func-
tions g1, g2 : [0, 1]→ [0, 1] with 0 = g1(0) = g2(0) and
1 = g1(1) = g2(1) and

f1 ◦ g1 = f2 ◦ g2.

Weak Fréchet Distance in 1D The mountain climb-
ing problem can be interpreted in terms of the weak
Fréchet distance: Are there reparametrizations of f1

and f2 mapping endpoints to endpoints that realize a
distance of 0?

The answer above directly yields that the weak
Fréchet distance with endpoint restriction is 0 for
curves f1 and f2 which take values in [0, 1], are lo-
cally non-constant, and satisfy 0 = f1(0) = f2(0) and
1 = f1(1) = f2(1). For curves fi, i = 1, 2, which take
values in [ai, bi], are locally non-constant, and satisfy
ai = fi(0) and bi = fi(1), i = 1, 2, this implies that
the weak Fréchet distance with endpoint restriction
of f1 and f2 is max(|a2 − a1|, |b2 − b1|).

A characterization of the functions f1, f2 [7] for
which such reparametrizations exist implies that the
weak Fréchet distance between continuous functions
with the same image is 0 even in the general case, i.e.,
where f1, f2 may be locally constant. In this case the
“climbers” can maintain almost the same altitude.

Corollary 4 (Huneke [7]) For any two continuous,
surjective functions f1, f2 : [0, 1] → [0, 1] and for any
ε > 0, there exist continuous, surjective functions

g1, g2 : [0, 1]→ [0, 1] such that for all x ∈ [0, 1]

|f1 ◦ g1(x)− f2 ◦ g2(x)| < ε.

Note that f1 and f2 no longer need to start at 0 and
end at 1. For the weak Fréchet distance this implies:

Proposition 5 Let f1, f2 : [0, 1] → R be continuous
functions with fi([0, 1]) = [ai, bi] for i = 1, 2. The
weak Fréchet distance between f1 and f2 is

max(|a2 − a1|, |b2 − b1|).

Theorem 2 directly follows from Proposition 5. If a1,
a2, b1, and b2 are known, the weak Fréchet distance
can even be computed in constant time.

5 Discussion

We presented an Ω(n log n) lower bound for the deci-
sion problem for the Fréchet distance between poly-
gonal curves in the plane. An open problem is to close
the gap to the known quadratic upper bound. Fur-
thermore, it is open whether the lower bound holds for
underlying metrics other than the Euclidean metric.

We showed that the lower bound does not hold for
the weak Fréchet distance between curves on a line. It
remains to investigate the complexity of the Fréchet
distance for curves on a line for which we only know
the quadratic upper and trivial linear lower bound.

Acknowledgment

We would like to thank Helmut Alt and Rom Pinchasi
for helpful discussions.

References

[1] H. Alt and M. Buchin. Can we compute the similarity
between surfaces? In preparation.

[2] H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Internat. J.
Comput. Geom. Appl., 5:75–91, 1995.

[3] M. Ben-Or. Lower bounds for algebraic computation
trees. In Proc. 15th Annu. ACM Sympos. Theory
Comput., pages 80–86, 1983.

[4] K. Buchin, M. Buchin, and C. Wenk. Computing the
Fréchet distance between simple polygons in polyno-
mial time. In Proc. 22nd Annu. ACM Sympos. Com-
put. Geom., pages 80–87, 2006.

[5] M. Godau. On the complexity of measuring the simi-
larity between geometric objects in higher dimensions.
PhD thesis, Freie Universität Berlin, Germany, 1998.

[6] T. Homma. A theorem on continuous functions. Ko-
dai Math. Semin. Rep., 4(1):13–16, 1952.

[7] J. P. Huneke. Mountain climbing. Trans. Am. Math.
Soc., 139:383–391, 1969.

[8] V. Jiménez López. An elementary solution to the
mountain climbers’ problem. Aequationes Math.,
57(1):45–49, 1999.

173

23rd European Workshop on Computational Geometry, 2007

Small Manhattan Networks and
Algorithmic Applications for the Earth Mover’s Distance

Joachim Gudmundsson∗ Oliver Klein† Christian Knauer† Michiel Smid‡

Abstract

Given a set S of n points in the plane, a Manhattan
network on S is a (not necessarily planar) rectilinear
network G with the property that for every pair of
points in S the network G contains a path between
them whose length is equal to the Manhattan distance
between the points. A Manhattan network on S can
be thought of as a graph G = (V,E) where the ver-
tex set V corresponds to the points of S and a set of
Steiner points S′. The edges in E correspond to hori-
zontal and vertical line segments connecting points in
S ∪ S′. A Manhattan network can also be thought of
as a 1-spanner (for the L1-metric) for the points in S.

We will show that there is a Manhattan network
on S with O(n log n) vertices and edges which can be
constructed in O(n log n) time. This allows us to to
compute the L1-Earth Mover’s Distance on weighted
planar point sets in O(n2 log3 n) time, which improves
the currently best known result of O(n4 log n). At the
expense of a slightly higher time and space complex-
ity we are able to extend our approach to any dimen-
sion d ≥ 3. We will further show that our construc-
tion is optimal in the sense that there are point sets
in the plane where every Manhattan network needs
Ω(n log n) vertices and edges.

1 Introduction

The problem to compute a minimum length Manhat-
tan network is a well-researched area, see Gudmunds-
son et al. [7], Benkert et al. [1] and Chepoi et al. [3].
Even though the problem has received considerable
attention the variant of minimizing the number of ver-
tices and edges of the graph has not been considered
(to the best of the authors’ knowledge).

Here we will show that for every point set in the

∗National ICT Australia Ltd, Sydney, Australia. NICTA
is funded through the Australian Government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian Re-
search Council. joachim.gudmundsson@nicta.com.au

†Institut für Informatik, Freie Universität Berlin. This
research was supported by the Deutsche Forschungsgemein-
schaft within the European graduate program ’Combina-
torics, Geometry and Computation’ (No. GRK 588/3),
{oklein,christian}@inf.fu-berlin.de

‡This research was supported by NSERC. School
of Computer Science, Carleton University, Ottawa.
michiel@scs.carleton.ca

plane there is a Manhattan network with O(n log n)
vertices and edges. This graph can be constructed
in O(n log n) time. We will also show that this up-
per bound is tight, meaning that there are point
sets where every Manhattan network on these points
will need at least Ω(n log n) vertices and edges. As
it turns out, the Manhattan network constructed is
not planar. We will show that if we force the net-
work to be planar, there are point sets where ev-
ery Manhattan network needs at least Ω(n2) vertices
and edges. Further we will show how to generalize
the construction of the network to higher dimensions.
Finally, we will show that one can reduce the time
to compute the L1-Earth Mover’s Distance (EMD)
for weighted point sets. The EMD is a useful dis-
tance measure for, e.g., shape matching, color-based
image retrieval and music score matching, see Co-
hen and Guibas [4], Giannopoulos and Veltkamp [5],
Graumann and Darell [6], and Typke, Giannopou-
los, Veltkamp, Wiering and van Oostrum [11] for
more information. Work on the optimization prob-
lem for the EMD under transformations has been
done by Cabelloet al. [2] and Klein and Veltkamp [9].
An upper bound for the time to compute the EMD
is O(n4 log n) using a strongly polynomial minimum
cost flow algorithm by Orlin [10]. Cabello et al. [2]
gave a (1 + ε)-approximation algorithm with runtime
O(n2ε−2 log2(nε−1)). Recently, Indyk [8] gave an
O(n logO(1) n)-time randomized O(1)-approximation
algorithm if the two point sets consist of an equal
number of points in R2 of weight 1. Using the Man-
hattan network as a 1-spanner for the L1-distance,
we can compute the L1-EMD in d dimensions in
O(n2 log2d−1 n) time using Orlin’s algorithm on the
reduced graph. This improves the previously best
known runtime of O(n4 log n) significantly. Further,
it immediately leads to a

√
2-approximation with the

same runtime for the important case when the EMD
is based on the Euclidean distance. This algorithm
is conceptually easier than the slightly faster (1 + ε)-
approximation given by Cabello et al. [2].

2 Manhattan Networks

We will start formulating and proving the main result
of this paper.

174

EWCG 2007, Graz, March 19–21, 2007

p1

p2

p3

p4

p5

p6

p7

p8

l2 l1 l′
2

Figure 1: Construction of the Network.

Theorem 1 Let S be a set of n points in the plane.
Then, there is a Manhattan network on S with
O(n log n) vertices and edges. It can be computed
in O(n log n) time.

Proof. Let S be a set of n points in the plane
and assume that the points are sorted w.r.t. y-
coordinates S = {p1, . . . , pn}. Otherwise, the sort-
ing can be done in O(n log n) time. In the follow-
ing, L always denotes a list of points which is sorted
by y-coordinate. The i-th point in L will be de-
noted by L[i]. Now, run the following routine on S.
Algorithm 1 (ConstructNetwork(L))

1. Find median p∗ with respect to x-coordinate.
2. Set L1 := ∅, L2 := ∅.
3. For i = 1, . . . , |L| do

(a) Construct vertex v[i] := (p∗x, L[i]y).
(b) Construct edge eh[i] := (L[i], v[i]).
(c) If i ≥ 2:

Construct edge ev[i] := (v[i− 1], v[i]).
(d) If L[i]x ≤ p∗x: add L[i] at the end of L1

Else: add L[i] at the end of L2.

4. ConstructNetwork(L1)
5. ConstructNetwork(L2)

See Figure 1 for an illustration of the algorithm. We
have to prove that the algorithm constructs a Man-
hattan network.

Let p, q ∈ S be two arbitrary points. Let p∗ be
the first point chosen as a median in Step 1 with
px ≤ p∗x ≤ qx. Clearly, p and q are both contained
in L. W.l.o.g., let p = L[i] =: pi and q = L[j] =: pj

with i < j. In Step 3, pi is considered before
pj . Therefore, by construction, there are vertices
v[i], v[j], edges (v[i], pi), (v[j], qj) and a y-monotone
sequence of vertices v[i], . . . , v[j]. Now, the sequence
pi, v[i], . . . , v[j], pj is an x- and y-monotone path con-
sisting of two horizontal edges connected by a path of
vertical edges and therefore a Manhattan path. This
proves that the resulting graph is a Manhattan net-
work on S.

The median in a list of k := |L| numbers can be
computed in O(k). Steps (a) to (d) can be done in

constant time. Therefore, the runtime of Algorithm 1
without the two recursive calls is O(k). The insertion
in the lists L1, L2 is done in sorted order with respect
to the y-coordinate. No re-sorting is needed after the
initial sorting step.

The overall runtime can be described by the recur-
sion T (n) = O(n) + 2 · T (n/2), which gives T (n) =
O(n log n). The number of Steiner points and edges
in the construction obeys the same recursion, since in
every recursive call of Algorithm 1 O(k) vertices and
edges are added. �

In practice, paths with a small number of links are
often desirable. We will show how to construct a net-
work such that for every pair of points there is a short-
est path with a small number of links. Let α(n) denote
the inverse of Ackermann’s function, see [12].

Theorem 2 Let S be a set of n points in the plane.
Then, there is a Manhattan network on S with
O(n log n) vertices and edges, where the number of
edges on a shortest Manhattan path between any pair
of points is bounded by O(α(n)). The network can be
computed in O(n log n) time.

Proof. Consider one call of Algorithm 1. The Man-
hattan path between two input points pi, pj with
i < j always has the form pi, v[i], . . . , v[j], pj , where
v[i], . . . , v[j] is a sequence of Steiner points lying on a
vertical line. Now, using a result of Yao [12], we can
compute O(k) edges in O(k) time, each connecting
two Steiner points, such that for any pair of Steiner
points the number of links on the shortest path is
O(α(k)). That is, the total length of any path con-
structed is O(α(n))+2 = O(α(n)). Since we can com-
pute these O(k) edges in every recursive call in O(k)
time, the asymptotic runtime and number of Steiner
points does not change. �

At the expense of a slightly higher runtime we can
reduce the length of a shortest Manhattan path to a
constant number of edges.

Theorem 3 Let S be a set of n points in the plane.
Then, there is a Manhattan network on S with
O(n log2 n), O(n log n log log n) and O(n log n log∗ n)
vertices and edges where the number of edges on a
shortest Manhattan path between any pair of points
is bounded by 6, 7 and 8, respectively. The runtimes
are linear in the number of vertices and edges.

Proof. The proof is analogous to that of Theorem 2,
again using results of Yao [12]. �

The upper bound given in Theorem 1 is tight.

Theorem 4 There are n-point sets in R2 where ev-
ery Manhattan network needs Ω(n log n) vertices and
edges.

175

23rd European Workshop on Computational Geometry, 2007

Proof. We construct a point set P in general po-
sition, such that any Manhattan network for P
consists of Ω(n log n) vertices and edges. We as-
sume that n is a power of two. Let ` be a ver-
tical line separating P into two point sets U :=
{u1, . . . , un/2} and V := {v1, . . . , vn/2}, such that
the points u1, v1, u2, v2, . . . , un/2, vn/2 are sorted by
y-coordinates, from top to bottom, see Figure 2. For

R3

R4

v2

R2

v3

v4

R1

u2

u3

u4

v1

u1

l

Figure 2: Lower Bound

1 ≤ i ≤ n/2, let Ri be the axes-parallel rectangle
with top-left corner ui and bottom-right corner vi.
Any Manhattan network on P must contain a path
between ui and vi that crosses ` and is completely
contained in Ri. Since the rectangles Ri are pairwise
disjoint, it follows that any Manhattan network on P
contains at least n/2 edges that cross `. Observe that
this remains true if we move the points of U and V
horizontally, as long as U stays to the left of ` and V
stays to the right of `. Thus, we can move the points
of U , such that they can be split into two subsets U1

and U2 that are separated by a vertical line `′ such
that the sorted y-order alternates between a point in
U1 and a point in U2. Any Manhattan network on
P must contain at least n/4 edges that cross `′ and
that are distinct from the above n/2 edges. Simi-
larly, we can move the points of V , and split them
into two subsets V1 and V2 that are separated by a
vertical line `′′ in such a way that any Manhattan
network on P must contain at least n/4 edges that
cross `′′ and are distinct from the above n/2 + n/4
edges. We continue this moving in a recursive way
and it can be shown that all these edges are distinct.
We omit a rigorous proof due to space limitations.
Then, it follows that the number T (n) of vertices and
edges in any Manhattan network on the final set P
satisfies T (n) ≥ n/2 + 2 · T (n/2), which proves that
T (n) = Ω(n log n). �

If the network is required to be planar the lower
bound can be improved.

Figure 3: Planar Construction.

Theorem 5 There are n-point sets in R2 where every
planar Manhattan network needs Ω(n2) vertices and
edges.

Proof. Let the set P of points in R2 be defined as
follows, see Figure 3:

P :=
n−1⋃
i=1

({(i

n
, 0)} ∪ {(i

n
, 1)} ∪ {(0,

i

n
)} ∪ {(1,

i

n
)})

Let G be a Manhattan network for this point set.
There must be a Manhattan path between every pair
of points (i

n , 0), (i
n , 1) and (0, i

n), (1, i
n). These paths

have to be straight lines, since in the first case the
x-coordinate and in the second case the y-coordinate
is the same. This forces the O(n2) cross points of the
straight lines to be Steiner points. �

A point set in general position giving the same lower
bound can be constructed easily by perturbing the
points slightly.

3 Higher Dimensions

The extension of the definition of a Manhattan path
and therefore of a Manhattan network to dimensions
d ≥ 3 is straightforward. In dimension d we can use a
similar divide-and-conquer approach as in the plane.

Theorem 6 Let S be a set of n points in Rd.
Then, there is a Manhattan network on S with
O(n logd−1 n) vertices and edges. It can be computed
in O(n logd−1 n) time.

Proof. Consider Algorithm 2 for point sets in Rd:
Algorithm 2 (ConstructNetwork(L, d))

1. Find median p∗ with respect to the d-th co-
ordinate.

2. Project any point on the hyperplane contain-
ing p∗ and orthogonal to the d-th coordinate.
Let P be the set of projected points.

3. Add an edge between the original points and
their projection.

4. ConstructNetwork(P, d − 1) (Compute the
Manhattan network on this hyperplane).

5. L1 := {p ∈ L : pd ≤ p∗d}. L2 := L \ L1.
6. ConstructNetwork(L1, d)
7. ConstructNetwork(L2, d)

176

EWCG 2007, Graz, March 19–21, 2007

Except for the recursive calls in the algorithm, any
call can be done in O(|L|) time. There are three recur-
sive calls, one call of the routine for the same number
of points in one dimension less and two calls for the
number of points halved in the same dimension. Anal-
ogous to the earlier proof, the runtime of this can be
expressed like

T (n, d) = O(n) + T (n, d− 1) + 2 · T (n/2, d)
= O(n logd−1 n).

The bound on the number of points and edges follows
analogously. �

4 Earth Mover’s Distance

We will now show that we can reduce the time to
compute the L1-Earth Mover’s Distance on weighted
point sets to O(n2 log2d−1 n), which improves the pre-
viously best known result of O(n4 log n).

A set A = {a1, . . . , an} is called a weighted point
set in Rd if ai = (pi, αi) for i = 1, . . . , n, where pi is
a point in Rd and αi ∈ R+

0 its corresponding weight;
WA =

∑n
i=1 αi denotes the total weight of A. Now,

let A = {(pi, αi)i=1,...,n} and B = {(qj , βj)j=1,...,m}
be two weighted point sets with total weights WA,
WB ∈ R+ and m ≤ n. Let D : Rd × Rd → R+

0 be a
distance measure on Rd. The D-EMD between A and
B is defined as

D-EMD(A,B) =
minF∈F

∑n
i=1

∑m
j=1 fijD(pi, qj)

min{WA,WB}
,

where F = {fij} is a feasible flow, i.e., for every
i = 1, . . . , n and j = 1, . . . ,m we have fij ≥ 0,∑m

j=1 fij ≤ αi,
∑n

i=1 fij ≤ βj and
∑n

i=1

∑m
j=1 fij =

min{WA,WB}.

Theorem 7 The L1-EMD can be computed in
O(n2 log2d−1 n) time.

Proof. Let A,B be weighted point sets. Using The-
orem 6 we can construct a 1-spanner of the complete
bipartite graph between the points of A and B for
the L1-metric in O(n logd−1 n) time. The number of
points and edges in the resulting network is bounded
by O(n logd−1 n). Now we proceed as in Cabello et
al. [2]. By the standard method of doubling each edge
and orienting the two copies in different directions we
get a flow network where between any pair of points
there is a directed path of minimum L1-length. Now
we can use the minimum cost flow algorithm by Or-
lin [10] on the 1-spanner. Given a network G = (V,E),
Orlin’s algorithm solves the minimum cost flow prob-
lem in O((|E| log |V |)(|E|+ log |V |)). Since the num-
ber of points and edges in our spanner is bounded
by |E| = |V | = O(n logd−1 n), the overall runtime is
bounded by O(n2 log2d−1 n). �

Theorem 7 immediately leads to a
√

2-
approximation with the same runtime for the
important case when the EMD is based on the
Euclidean distance. This algorithm is conceptually
easier than the slightly faster (1 + ε)-approximation
given by Cabello et al. [2].

Acknowledgments

We thank Günter Rote for the idea in Theorem 5.

References

[1] M. Benkert, A. Wolff, F. Widmann, and T. Shirabe.
The minimum Manhattan network problem: Approx-
imations and exact solution. Computational Geome-
try - Theory and Applications, 2006.

[2] S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote.
Matching point sets with respect to the earth mover’s
distance. In Proc. 13th ESA, 2005.

[3] V. Chepoi, K. Nouioua, and Y. Vaxes. A rounding al-
gorithm for approximating minimum manhattan net-
works. In Proc. 8th APPROX, 2005.

[4] S. D. Cohen and L. J. Guibas. The earth mover’s dis-
tance under transformation sets. In Proc. 7th IEEE
Int. Conf. Comp. Vision, 1999.

[5] P. Giannopoulos and R. C. Veltkamp. A pseudo-
metric for weighted point sets. In Proc. 7th Europ.
Conf. on Comp. Vision, 2002.

[6] K. Graumann and T. Darell. Fast contour matching
using approximate earth mover’s distance. In Proc.
1991 IEEE Comp. Society Conf. on Comp. Vision
and Pattern Recognition, 2004.

[7] J. Gudmundsson, C. Levcopoulos, and
G. Narasimhan. Approximating a minimum
Manhattan network. Nordic J. Comput. 8, 2001.

[8] P. Indyk. A near linear time constant factor approx-
imation for Euclidean bichromatic matching (cost),
to appear. In Proc. 18th Symp. on Disc. Alg., 2007.

[9] O. Klein and R. C. Veltkamp. Approximation algo-
rithms for the earth mover’s distance under transfor-
mations using reference points. In Proc. 16th ISAAC,
2005.

[10] J. B. Orlin. A faster strongly polynomial minimum
cost flow algorithm. Operations Research 41, 1993.

[11] R. Typke, P. Giannopoulos, R. C. Veltkamp, F. Wier-
ing, and R. Oostrum. Using transportation distances
for measuring melodic similarity. In Proc. 4th Int.
Conf. on Music Information Retrieval, 2003.

[12] A. C. Yao. Space-time trade-off for answering range
queries. In Proc. 14th STOC, 1982.

177

23rd European Workshop on Computational Geometry, 2007

Applying graphics hardware to achieve extremely fast geometric pattern
matching in low dimensional transformation space ∗

Dror Aiger† Klara Kedem‡

Abstract

We present a GPU-based approach to geometric pat-
tern matching. We reduce this problem to finding the
depth (maximally covered point) of an arrangement of
polytopes in transformation space and describe hard-
ware assisted (GPU) algorithms, which exploit the
available set of graphics operations to perform a fast
rasterized depth computation.

1 Introduction

A central problem in pattern recognition, computer
vision, and robotics, is the question of whether two
point sets P and Q resemble each other. One approach
to this problem, first used by Huttenlocher et al.[8, 2]
is based on the minimum Hausdorff distance between
point sets in the plane under translation.

The Hausdorff distance between two point sets P
and Q is defined as H(P,Q) = max(h(P,Q), h(Q,P))
where h(P,Q) = maxp∈P minq∈Q d(p, q) and d(·, ·) is
a standard metric on points.

In this paper we consider the following geomet-
ric pattern matching problem: Given two point sets
P and Q in the plane, and some δ > 0, find a 3-
parameters transformation T ∈ G that brings the
largest subset S of P to distance h(T (S), Q) ≤ δ,
where h(., .) is the directional Hausdorff distance with
L∞ as the underlying metric. We describe two alter-
natives, in one G is the set of translation + scale trans-
formations, and in the other the set of rigid transfor-
mations. We reduce this problem to finding the depth
(maximally covered point) of an arrangement of poly-
topes in transformation space. This reduction is quite
common (see, e.g. [7, 9]).

In [3] we gave a randomized algorithm for approx-
imating the Pattern Matching problem for point sets
under similarity transformation. We refer the reader
to that paper for description of related problems and
previous work. The geometric pattern matching prob-
lem we solve in this paper is also termed the Largest

∗This work was partly supported by the MAGNET program
of the Israel Ministry of Industry and Trade (IMG4 consortium)

†Department of Computer Science, Ben Gurion
University, Be’er Sheva, Israel and Orbotech LTD
aiger@cs.bgu.ac.il,dror-ai@orbotech.com

‡Department of Computer Science, Ben Gurion University
and Cornell University, klara@cs.bgu.ac.il

Common Pointset (LCP) problem.
Based on the reduction to depth in a polytopes ar-

rangement, we show that the problem can be solved
very fast using a modern standard graphics hardware.
Though translation + scale is a linear transformation
rigid transformation (rotation and translation) is not.
We will discuss approximating the regions in trans-
formation space by a union of convex polytopes with
linear boundaries. We use the so called depth peeling
algorithm[1] implemented on the GPU to get the k-
levels one after another while maintaining some struc-
tures. This enables us to get the deepest point in the
arrangement (with a bounded error which depends on
the rasterization) in O(L) passes over the data where
L is the number of levels in the arrangement.

2 The GPU as a stream computer

Recently, many GPU-based algorithms for geometry,
image processing and other problems have been con-
sidered by researchers (see, e.g. [6, 4]). In partic-
ular, the GPU as a stream computer for geometric
optimization was considered by [5]. In many appli-
cations, performing a computation on the graphics
card is far faster than performing it on the CPU. The
GPU provides spatial parallelism where each pixel on
the screen can be viewed as a stream processor, en-
abling an application to be computed in highly paral-
lel mode.

3 The Largest Common Point set problem (LCP)
and its reduction to depth in an arrangement

We reduce the LCP problem to depth in arrange-
ment as follows: All the transformations that bring
a point p in P up to L∞ distance δ from q in Q cor-
respond to a region in transformation space [3]. The
region in transformation space is the intersection of
four constraints defined by the the square of size 2δ
around q (see Figure 1). For linear transformations,
one such region forms a convex polytope in transfor-
mation space where each polytope is the Minkowski
sum of a 3D line by a planar square of side size 2δ.
The 3D line in transformation space corresponds to
all transformations that bring a point in P exactly
to a point in Q and its Minkowski sum corresponds
to all transformations that bring a point p in P to a

178

EWCG 2007, Graz, March 19–21, 2007

point q in Q such that h(T (p), q) ≤ δ using the L∞
metric. For rigid transformation, this region forms a
Minkowski sum of an arc with the same square, since
the transformation is not linear in the angle param-
eter. In this case we approximate the region with
the union of convex polytopes. The solution is then
approximated in the sense that the distance of the so-
lution from the true optimal solution is bounded by
the maximum error of our approximation (see Section
4.3).

(a) (b) (c)

Figure 1: Polytopes in transformation space: (a) p
in P and q in Q, (b) polytope created for a single
match (c) arrangement of polytopes for a point p and
all points of Q.

For each pair (p, q), p ∈ P and q ∈ Q, there is a
polytope. We assume that the polytopes that corre-
spond to one point p in P are disjoint in their interior
(if this is not the case, we can decompose the union of
squares of size 2δ around points in Q to O(|Q|) squares
disjoint in their interiors as in [7]). We investigate the
depth of the polytope arrangement: the depth of a
point t in transformation space is the number of poly-
topes that cover t. A point of maximum depth corre-
sponds to a transformation that brings the maximum
number of points in P close to Q [7]. The regions in
transformation space that are covered by |P | of these
|P ||Q| polytopes are thus the locus of transformations
that bring all points of P close enough to a point of Q.
Since we are looking for matching the largest subset
S of P to points of Q, we will search for the maximal
depth of that arrangement.

4 Computing the maximum depth

4.1 Using k-levels

In this section we show how we compute the maximum
depth in 3D transformation space using the GPU.

Definition 1 Given a set C of hyperplanes, a point
p is said to be at k-level, if there are exactly k hyper-
planes in C lying strictly below p.

In an arrangement of convex polytopes, the depth is
the number of objects that a ray down to −∞ crosses
only once (see Figure 2). The depth can be computed
by going through the k-levels, one by one and counting
the number of “entering into” and “exiting” polytope

Figure 2: k-levels in arrangement of lines. The bold
line is the 1-level.

events. If we count and remember the maximum, we
end up with the point of maximum depth.

4.2 Applying the GPU in the computation of k-
levels

We use the GPU to compute a rasterized version of
the k-levels for 3D transformation space. (The ras-
terization induces an error bounded by the pixel size.)
Simple rendering using the depth buffer computes the
0-level using the standard z-buffer. The z-buffer per-
forms the test “is x < a” in its standard process for
hidden surface removal[10] while surfaces or planes
are being rendered.

Our goal is to “peel” the k-levels one by one when
our scene is built from all the polytopes defined above.
During this process we count for every pixel all the
objects that cover it by counting entry into and exit
of polytopes. Using two depth buffers simultaneously
plus the previous level, we can perform the test “is
a < x < b” and thus we get the 1-level for all the
pixels simultaneously. Similarly we follow to all k-
levels.

This process is known as depth peeling and uses
the shadow map as a secondary depth buffer (see [1]
for the detailed algorithm). Throughout the process
we count the number of entries and exits (from poly-
topes) for each pixel, thus getting the maximum depth
in the polytope arrangement. By applying fragment
program (FPs) [10] we compute the maximum depth
at each pixel. The entire process requires L passes
over the input scene when L is the number of levels
and no CPU involvement is needed during the pro-
cess.

Once we finish, we have the translation (tx, ty) at
which the maximum depth is attained but we still
have to compute the third parameter of the transfor-
mation (scale, or rotation in the rigid case).

For finding the right scale efficiently we have to find
the scale coordinate for (tx, ty). We perform another
pass similar to the one above but now only on the
pixel (tx, ty) applying selection mode on that pixel.
Selection mode is a mode of rendering in which the
depth order of the objects within a given window is
saved during the rendering and can be obtained by
the application afterwards. The output of the selec-
tion mode are the ordered faces in the arrangement
that meet the ray from (tx, ty) to −∞. The scale

179

23rd European Workshop on Computational Geometry, 2007

coordinate of maximum depth in the arrangement is
thus found.

4.3 Computing the depth for rigid transformations

The only difference between rigid transformations and
scale + rotation transformations is that the rigid is
not a linear transformation. Thus a linear constraint
of the rectangle of size 2δ around points of Q in the
plane does no longer correspond to a hyperplane in
transformation space. The transformations that bring
a point p ∈ P to a point q ∈ Q form an arc in 3D
instead of a line as before. For a given error bound,
we can approximate this arc by a set of segments.

By evaluating the allowed error we divide our rota-
tion axis into a set of slices such that in any slice
the arc is approximated by a line segment. The
Minkowski sums of the polygonal lines approximating
the arcs with a square of size 2δ yield the polytopes on
which we apply the method described in the previous
subsection.

4.4 Speeding up by randomization and oriented
points

For simplicity we assume |P | = |Q| = n. The com-
plexity of the peeling algorithm is O(L) rendering
passes over the data which contains n2 polytopes
where L is the number of levels. The number of levels
is view dependent but can be O(n2). Thus we have
runtime complexity of O(n4) (it is typically close to
O(n3) in practical cases since L = O(n) in most of
the cases). A significant speed up can be achieved
by applying randomization and oriented points, com-
bined with stencil buffer and occlusion query. (The
stencil buffer is used to mask a specific region in the
frame buffer to which we want to restrict the render-
ing. Occlusion query is an Open GL operation [10]
that enables the application to count the pixels in the
frame buffer which have been updated during a spe-
cific rendering process.)

We decompose the problem to a set of smaller prob-
lems and use the GPU to quickly reject polytopes that
cannot contribute to the optimal solution. Since our
polytopes are the Minkowski sum of a 3D line (in
the scale + translation case) and a planar square of
side size 2δ, the polytopes are actually sticks and
the intersection of a pair of them is expected to be a
small region in 3D (especially if the angle between the
3D lines is large enough). To decompose the problem
to smaller problems we use randomization as follows:
Given N = n·n polytopes (each p ∈ P transformed to
a square around each point q ∈ Q), we know that the
depth is bounded by n. If we assume that a constant
fraction of the points of P are matched to points in
Q, the probability that the intersection of two random
polytopes contains the desired solution is constant/N .
We sample O(N log N) pairs of polytopes to get high

probability that the intersection of one pair contains
the desired solution. We now have O(N log N) small
regions in transformation space. For each region we
mask the intersected region on the stencil, rendering
all polytopes and using the occlusion query to reject
polytopes that do not intersect these regions (their
number is expected to be large).

The number of polytopes intersecting the regions is
typically O(n) instead of the original size N = n · n,
thus we need only O(n) passes over O(n) polytopes.
In the worst case, we can still get a high number of
polytopes if there is a large number of optimal solu-
tions but this is rare in practice.

We can further speed up the process by using ori-
ented points. In many real life applications we get ori-
entation at each point (e.g. from edge detection). We
construct only polytopes that correspond to validly
matching orientations of points p ∈ P and q ∈ Q
(when the difference between orientations after trans-
formation, up to a threshold). The number of poly-
topes is thus reduced dramatically in the translation
+ scale problem. For rigid transformations, the size
of the polytopes is reduced dramatically.

5 Experiments and results

The tests we present here are all under translation and
scale. Rigid transformation is essentially the same
and was not implemented. We implement the peel-
ing algorithm with randomization and orientations on
points. We used a PC running at 3Ghz with Windows
XP and OpenGL. The GPU is the Nvidia GEforce
6600. Below we show a synthetic example where we
graph the runtime as a function of pattern points and
a real time object recognition example that demon-
strates the power of the GPU in real life application.

5.1 Synthetic data

For the synthetic test, we randomly create 1000 ori-
ented points in the range [−1, 1] (the orientations were
randomly selected from the range [0,2π]) as the set Q.
For the set P we randomly select a subset of points
of Q and perturb each point with a uniformly distri-
bution in a small neighborhood of the selected point.
For the square size around each point of Q we picked
δ = 0.004. For a pair (p, q) we create a polytope if
the difference of orientations of p and q is up to 5 de-
grees. The raster resolution (pixel size) is 0.002. The
scale was bounded to be in the range [0.5, 2.0]. We
note that for the GPU implementation the runtime is
almost not affected by the size of the search space.

The error on the various axes differs as in transla-
tion it is determined by pixel size and in scale axis
it depends on the number of bits in each pixel in the
depth buffer which is 32 bits in our implementation,
and thus pretty precise.

180

EWCG 2007, Graz, March 19–21, 2007

The running times using this data are shown in Fig-
ure 3, where we picked P to be of 50, 100, 200 and
400 points. Notice that the graph shows linear de-
pendency of runtime as a function of the number of
points in P .

Figure 3: runtime(milliseconds) vs. different number
of pattern points, while Q=1000. We used all the
speed up methods to reduce the computation time

5.2 Application in real time object recognition

We tested our geometric matching method in a real
application of model based object recognition. For
a 512x512 gray level input image (Figure 4(a)) and
a given geometry model (Figure 4(b)), an edge de-
tection was first applied to the input image (Figure
4(c)), and oriented points were extracted from both
the image and the model. For the similarly oriented
points we constructed the polytope arrangement and
applied our method to compute the region of maxi-
mum depth in this arrangement and then retrieved the
best transformation from this region. The matching
was performed allowing translation and scale change.
The parameters are the same as in the synthetic case
after normalization of the image data to the range
[-1,1] as before. The results are shown in Figure 4(d).

(a) (b) (c) (d)

Figure 4: Model based object recognition: (a) input
image, (b) model, (c) edge map, (d) detection results.
The whole recognition (edge detection + matching)
was done in 20 milliseconds while the matching alone
took 4 milliseconds

6 Summary

Based on our theoretical work [3], on GPU capabil-
ities and on some caveats we present practical real
time algorithms and implementations of shape resem-
blance. The algorithms work for any three parameters
transformation (rigid and scale + translation). Our
future plans are to investigate the expansion to higher
degree of transformation space and to allow the use
of line segments instead of points.

References

[1] C. Everitt, “Interactive order-independent
transparency”. Technical report, NVIDIA Cor-
poration, May 2001.

[2] D.P. Huttenlocher, K. Kedem, and M. Sharir,
“The upper envelope of Voronoi surfaces and
its applications”, Discrete and Computational
Geometry, 9(1993), pp 267–291.

[3] D. Aiger, Klara Kedem, “Exact and Approxi-
mate Geometric Pattern Matching for point sets
in the plane under similarity transformations”,
submitted.

[4] Kenneth E. Hoff III, Andrew Zaferakis, Ming C.
Lin, Dinesh Manocha, “Fast and simple 2D ge-
ometric proximity queries using graphics hard-
ware”. SI3D 2001: 145-148

[5] P. K. Agarwal, S. Krishnan, N. H. Mustafa,
S. Venkatasubramanian, “Streaming Geometric
Optimization Using Graphics Hardware”. ESA
2003: 544-555.

[6] J. D. Owens, D. Luebke, N. Govindaraju, M.
Harris, J. Krager, A. E. Lefohn, T. Purcell.
“A Survey of General-Purpose Computation on
Graphics Hardware”. Eurographics 2005, State
of the Art Reports, August 2005, pp. 21-51.

[7] L. P. Chew, K. Kedem, “Getting around a lower
bound for the minimum Hausdorff distance”,
Comput. Geom. 10(3): 197-202 (1998).

[8] D.P. Huttenlocher and K. Kedem, “Comput-
ing the Hausdorff distance for point sets un-
der translation”, Proceedings of the Sixth ACM
Symposium on Computational Geometry, 1990,
pp 340–349.

[9] H. S. Baird, “Model Based Image Matching
Using Location”, MIT press, Cambridge, MA,
1985.

[10] The Industry’s Foundation for High Perfor-
mance Graphics - http://www.opengl.org

181

23rd European Workshop on Computational Geometry, 2007

Computing Geodesic Disks in a Simple Polygon∗

Magdalene G. Borgelt† Marc van Kreveld† Jun Luo†

Abstract

Let P be a simple polygon of n vertices and let S be a
set of N points lying in the interior of P . A geodesic
disk GD(p, r) with center p and radius r is the set
of points inside P that have a geodesic distance ≤ r
from p (where the geodesic distance is the length of
the shortest polygonal path connection that lies inside
P) plus the set of points on the perimeter of P that
have a geodesic distance of at most r from p. In this
paper we propose an output sensitive algorithm for
finding all N geodesic disks centered at the points
of S, for a given value of r. Our algorithm runs in
O((n + (kn)

2
3 + k) logc n) time, for some constant c

and output size k.

1 Introduction

The geodesic distance between two points p and q in-
side P (or on its perimeter) is the length of the short-
est path connecting p and q, such that no point of
this path lies outside P . Let p be a point inside P or
on the perimeter of P . Then a geodesic disk GD(p, r)
with radius r and center p is the set of points inside P
that have a geodesic distance ≤ r from p plus the set
of points on the perimeter of P that have a geodesic
distance of at most r from p. It is easy to see that a
geodesic disk is a shape that is bounded by circular
arcs (not necessarily of the same radius) and pieces of
the perimeter of P (see Figure 1).

Given a set S = {p1, p2, · · · , pN} of N points in-
side or on the perimeter of a simple polygon P =
{v1, v2, · · · vn} with n vertices, and r a fixed real num-
ber, we present an output sensitive algorithm that
computes all geodesic disks GD(pi, r), i = 1, . . . , N .
Our algorithm runs in O((n + (kn)

2
3 + k) logc n) time

for some constant c and output size k. Note that
k = Ω(N) and O(n ·N).

To appreciate this result, note that a direct ap-
proach to computing a geodesic disk would treat each
point p ∈ S separately by computing the shortest path
tree of p inside P , and then determining the circular
arcs and boundary parts inside each funnel [6]. This
procedure would take at least O(n) time per geodesic

∗This research has been partially funded by the Nether-
lands Organisation for Scientific Research (NWO) under FO-
CUS/BRICKS grant number 642.065.503.

†Department of Information and Computing Sciences,
Utrecht University, {magdalene,marc,ljroger}@cs.uu.nl

P

p
r

Figure 1: Example of a geodesic disk in a simple poly-
gon. The dotted circle is the boundary of a normal
disk centered at p with radius r.

disk. Therefore computing all N geodesic disks would
take Θ(n ·N) time, which is proportional to the worst
case output complexity.

There is a large variety of problems concerning the
geodesic distance with respect to a given simple poly-
gon that have been studied in the past. Among them
are the computation of the geodesic center of a given
simple polygon and its geodesic diameter [5, 7]. Given
a simple polygon P with n edges in the plane and a
set of point sites in its interior or on its perimeter,
Aronov [4] studied computing the Voronoi diagram of
the set of sites with respect to geodesic distance, and
Toussaint [8] considered finding the geodesic convex
hull of a set of points inside P .

2 Algorithm

Let vertices v1, v2, ..., vn of P be in clockwise order.
The boundary of P is denoted as ∂P . For two points
x, y ∈ ∂P , let ∂P [vi, vj] be the part of boudary of P in
clockwise order from vi to vj . A ray

−→
pvi is a half line

which starts at p and goes through vi. For a point
p in P that is visible from vi, vj , we have two rays
−→
pvi and

−→
pvj . We use wedge(p, vi, vj) to denote the

wedge which starts from ray
−→
pvi and rotates around p

clockwise until it reaches ray
−→
pvj . Before illustrating

our algorithm to compute a geodesic disk GD(p, r) in
P , we assume there exist two query algorithms that
use preprocessed data structures. We will discuss the
details of the data structures and query algorithms in
Section 3.

182

EWCG 2007, Graz, March 19–21, 2007

1. CLSF(p, vi, vj): the inputs are a point p in P
and two vertices vi, vj of P , where p can see vi, vj .
The query reports the closest line segment or ver-
tex from p among the line segments and vertices
of ∂P [xi, xj] that are visible from p. If the output
is a vertex, then we can use either line segment
which is on ∂P [xi, xj] and is incident to that ver-
tex as the output.

2. FVSP(p, vi): the inputs are a point p in P and a
vertex vi of P , the query reports the first vertex
of the shortest path from p to vi.

The inputs of the algorithm GD(p, vi, vj , r
′) are a

point p inside P , two vertices vi, vj of P such that
p is visible to vi, vj , and the radius r′. The output
is the set of line segments of ∂P [vi, vj] such that the
shortest path distances from p to those line segments
are ≤ r′. To compute the geodesic disk itself, some
straightforward extra work is needed; this is deferred
to the full paper. At the beginning, p is some point of
S, r′ = r, and vi = vj , where vi is a vertex of P that is
visible to p, which means the query range is the whole
boundary of P . The algorithm runs as follows: using
CLSF(p, vi, vj) we find the closest line segment from p
among all line segments of ∂P [vi, vj]. Let that closest
line segment be vqvq+1. If the distance from p to
vqvq+1 is larger than r, then we are done. Otherwise
vqvq+1 is reported and there exists a closest point a ∈
vqvq+1.

Lemma 1 The closest point a to p (by geodesic
distance in P) of the line segment reported by
CLSF(p, vi, vj) is visible from p.

We assume without loss of generality that a is verti-
cally above p (see Figure 2). The shortest path from
p to vq is a convex chain and its vertices are ver-
tices of P . Let this convex chain be pvl1vl2vl3 . . . vlkvq.
We know that pvl1vl2vl3 . . . vlkvq is on the left side of
the line though p, a. Similarly, we have the short-
est path from p to vq+1 which is a convex chain
pvh1vh2vh3 . . . vhk′ vq+1 on the right side of the line
through p, a.

∂P [vi, vj] is partitioned into several parts:
∂P [vi, vl1], ∂P [vl1 , vl2], ∂P [vl2 , vl3], . . . , ∂P [vlk , vq],
∂P [vq+1, vhk′], . . . , ∂P [vh2 , vh1], ∂P [vh1 , vj]; see
Figure 2. They give rise to subproblems that
we solve sequentially and recursively. Since the
subproblems on the left are the same as those
on the right, we discuss the situation on the
left. First, we solve subproblems GD(p, vi, vl1 , r)
and GD(p, vh1 , vj , r) recursively. For all other
parts ∂P [vl1 , vl2], ∂P [vl2 , vl3], . . . , ∂P [vlk , vq], as
long as the shortest path distance from p to vlt

(1 ≤ t ≤ k) is < r′, we solve the subproblem
GD(vlt , vlt+1, vlt+1 , r

′ − (|pvl1 | + · · · + |vlt−1vlt |))
recursively. We don’t need to compute the whole

shortest path from p to vq. We only need to find pvl1

by FVSP(p, vq). If the distance from p to vl1 is < r′,
then we find vl1vl2 by FVSP(vl1 , vq), and so on.

There is one special case. If the output of
CLSF(p, vi, vj) is vi or vj , then there are two cases:
(assume that vi is the one reported by CLSF(p, vi, vj))

1. If vi+1 is inside wedge(p, vi, vj), then the algo-
rithm continues normally.

2. If vi+1 is outside wedge(p, vi, vj), then we need
to do a ray shooting query with

−→
pvi. Suppose

−→
pvi first hits vkvk+1, which is a line segment of
∂P [vi, vj]. Then the shortest paths from p to vk

and vk+1 separate ∂P [vi, vj] into several subparts
and the problem becomes several subproblems.
We can solve those subproblems sequentially and
recursively as above.

Pvq−1 vq+2

vl1−1

vl2−1

vh1−1

a

p

vq
vq+1vl2+1

vl2

vl1+1

vl1

vh1+1

vh1

vj

vi

Figure 2: Illustration of the algorithm.

Lemma 2 The algorithm GD(p, vi, vj , r
′) reports all

line segments of ∂P [vi, vj] that have geodesic distance
at most r′ from p at most once, and vertices at most
twice.

Proof (sketch). All recursive problems use a par-
tition of the boundary into disjoint parts, except
at the vertices vl1vl2vl3 ...vlk and vh1vh2vh3 ...vhk′ vq+1

themselves. In all recursive problems of the form
GD(vlt , vlt+1, vlt+1 , r

′ − (|pvl1 |+ · · ·+ |vlt−1vlt |)), all
line segments of ∂P [vlt+1, vlt+1] will have vl1 , . . . , vlt

as the last vertices on the geodesic shortest path to p.
Hence the recursive problem statements are valid. �

3 Data structures for CLSF and FVSP

In this section we describe the two data structures and
query algorithms needed in the algorithm for geodesic
disks. We also used a ray shooting data structure; this
is standard with O(log n) query time in preprocessed
simple polygons [3].

3.1 Closest boundary point in subpolygon queries

In this section we discuss how to find, for a given
query point p and two vertices vi and vj of a simple

183

23rd European Workshop on Computational Geometry, 2007

polygon P , the point of the boundary of P between
vi and vj that is closest to p. Vertices vi and vj can
also be the answer to the query. We assume that pvi

and pvj lie completely inside P (in other words: p sees
vi and vj). To compute geodesic disks, we only need
to solve the query problem with this restriction. The
closest point q that is found must also be such that
segment pq lies inside P .

Assume that some point q on the boundary of P
between vi and vj is the point closest to p. Because
pq lies inside P and p sees vi and vj , the angle of

−→
pq

must be between the angles of
−→
pvi and

−→
pvj .

Without the restriction that pq must be inside
P , we could have built a binary search tree T on
v1, . . . , vn, and construct a Voronoi diagram prepro-
cessed for planar point location as associated struc-
ture with every internal node of T . A query would
be answered by determining the search paths in T to
vi and vj , and for all maximal subtrees strictly be-
tween these search paths, query the associated struc-
ture. But then a point may be found that does not
see p inside the whole polygon P (see Figure 3).

p

vi

vj

case 3

case 2

case 4

P
W

Figure 3: Edges of P of cases 2, 3, and 4 (cases 3 and 4
are shown thicker). Note that the vertex of ∂P [vi, vj]
closest to p, the square, is not in W .

The solution is to adapt the data structure so that
we only query inside the wedge W bounded by the
rays

−→
pvi and

−→
pvj . We have to take care to treat edges

that lie partially inside this wedge correctly. We use
five different data structures to handle all cases. In
each case the main tree T is a binary search tree on
v1, . . . , vn, and the final associated structure is a pla-
nar point location structure on some Voronoi diagram.
The first few associated structures (levels between the
main tree and the point location structure) allow us
to select the vertices or edges to which the case ap-
plies [1, 2]. The five cases are the following.

• Vertices inside W .
• Edges of which both endpoints lie inside W .
• Edges that intersect the ray

−→
pvi, have one end-

point inside W , and whose angle with
−→
pvi is less

than π/2, measured inside the wedge and closer
to p (see Figure 3).

• Edges that intersect the ray
−→
pvj , have one end-

point inside W , and whose angle with
−→
pvj is less

than π/2, measured inside the wedge and closer
to p (see Figure 3).

• Edges that intersect both rays
−→
pvi and

−→
pvj , and

both angles are less than π/2.

For the first case we use a partition tree as the
main tree. For the second case we use two levels of
partition trees. We treat the third case in more detail,
the fourth case is the same and the fifth case can be
treated in the same manner.

For the third case, let T be the main tree with
v1, . . . , vn in the leaves. An internal node µ corre-
sponds to a subchain vs, . . . , vt of the boundary of P .
Let Eµ = {vsvs+1, . . . , vt−1vt} be the edges in this
subchain. To be able to select all edges that have
one endpoint in the wedge W we take one endpoint
of each edge and use a partition tree as the second
level structure. To select the edges that intersect

−→
pvi

among these, we store the other endpoints in a parti-
tion tree as well as the third level structure, and the
points dual to the supporting lines of the edges as
the fourth level structure. In the fifth level structure
we select further on the angle condition. This can be
done using a binary search tree on the orientations
of the edges. The sixth and last level structure is
the point location structure on the Voronoi diagram
of the edges. The fourth and fifth cases use similar
multi-level trees.

For any query wedge, we can use the levels of the
tree to select the edges for which each of the cases ap-
ply, and query in the Voronoi diagram to find the clos-
est one. Each of the five cases may give an answer, and
we can simply take the closest one as the actual closest
vertex or edge. All structures use storage O(n logc n)
and query time O(

√
n logc n) for some constant c.

Combinations of cutting trees and partition trees al-
low us to get faster query times at the expense of stor-
age and preprocessing [1, 2]. For any n ≤ m ≤ n2, we
can get storage and preprocessing time of O(m logc n)
and query time O((n/

√
m) logc n).

3.2 First vertex of the shortest path queries

We partition P into O(n) geodesic triangles in O(n)
time [3]. The three vertices of a geodesic triangle are
vertices of P . The three edge chains are three shortest
concave paths inside P . In [3] Chazelle et al. show
that any line segment interior to P crosses at most
O(log n) geodesic triangles. So the line segment pa in
Figure 2 crosses at most O(log n) geodesic triangles.
Suppose pa crosses a geodesic triangle bcd. If we walk
along pa from p to a, we first hit an edge of geodesic
triangle bcd. Assume this edge is the shortest path
c–d. There are two cases for the other intersection
point of pa with geodesic triangle bcd:

184

EWCG 2007, Graz, March 19–21, 2007

1. pa intersects the shortest path b–c (see Figure 4).
Suppose the line segment of the shortest path
from b to c intersecting pa is b′b′′, and b′ is on
the same side of the line through p, a as vq. So
b′ is the only possible vertex that can be the first
vertex of the shortest path from p to vq. Given
the shortest path b–c, we can find b′b′′ in O(log n)
time.

p

a

b

c d

vq
vq+1

b′

b′′

Figure 4: pa intersects the shortest path b–c.

2. pa intersects the shortest path b–d (see Figure 5).
The only candidate for the first vertex is the one
on a line through p that is tangent to the shortest
path b–c. Given the shortest path b–c, we can
find that tangent vertex in O(log n) time.

p

a

b

c d

vq vq+1

Figure 5: pa intersects the shortest path b–d.

To decide whether a vertex y is the first vertex of
the shortest path from p to vq, we do a ray shooting
query with

−→
py . The first vertex of the shortest path

from p to vq is y if and only if py does not intersect
any other line segment of ∂P and the first intersection
point of

−→
py after y with ∂P is on vqvq+1. This can

also be done in O(log n) time. Since there are O(log n)
geodesic triangles we need to check, the total running
time of FVSP(p, vq) is O(log2 n).

4 Complexity analysis

If the output size of N geodesic disks is O(k), then the
algorithm will perform O(k) FVSP and CLSF queries.
The preprocessing is O(n) time, plus the time needed
to build the multi-level trees of Subsection 3.1. We

observed that a preprocessing time/query time trade-
off exists: O(m logc n) preprocessing time leads to
O((n/

√
m) logc n) query time. Assume we know k

in advance. Then we can choose m to be such that
the total query time and preprocessing time are of
the same order: k · (n/

√
m) logc n = m logc n, giving

m = (kn)
2
3 (provided n ≤ m ≤ n2).

Unfortunately, the output size k is not known, so we
can not balance query time and preprocessing time.
To overcome this problem, we will guess k, run the
algorithm, and if it turns out that the guess was too
low, we double our guess of k and start again: We
build a data structure with slightly higher preprocess-
ing time and slightly faster queries. Our initial guess
is k′ = max(n

1
3 , 2N), since we know that k ≥ N .

Since we also know that k ≤ n ·N , we will restart the
algorithm at most log2 n times. The running time is
O((n+(k′n)

2
3 +k′) logc n) in each round. Summation

over the rounds yields O((n+(kn)
2
3 +k) logc n) time,

for some constant c.

References

[1] P.K. Agarwal. Range searching. In J.E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 36, pages 809–838.
Chapman & Hall/CRC, Boca Raton, 2nd ed., 2004.

[2] P.K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In B. Chazelle, J.E. Good-
man, and R. Pollack, editors, Advances in Discrete
and Computational Geometry, volume 223 of Con-
temporary Mathematics, pages 1–56. American Math-
ematical Society, Providence, RI, 1999.

[3] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas,
J. Hershberger, M. Sharir, and J. Snoeyink. Ray
Shooting in Polygons Using Geodesic Triangulations.
Algorithmica 12:54–68, 1994

[4] B. Aronov. On the Geodesic Voronoi Diagram of
Point Sites in a Simple Polygon. Algorithmica 4:109–
140, 1989.

[5] T. Asano, and G. Toussaint. Computing the Geodesic
Center of a Simple Polygon. In Perspectives in Com-
puting: Discrete Algorithms and Complexity, D.S.
Johnson, A. Nozaki, T. Nishizeki, and H. Willis
(eds.), pages 65–79, 1987.

[6] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. Tarjan. Linear-time Algorithms for Visibility and
Shortest Path Problems inside Triangulated Simple
Polygons. Algorithmica 2:209–233, 1987.

[7] R. Pollack, M. Sharir, and G. Rote. Computing the
Geodesic Center of a Simple Polygon. Discrete and
Computational Geometry 4:611–626, 1989.

[8] G. Toussaint. Computing geodesic properties inside
a simple polygon. Revue D’Intelligence Artificielle,
3(2):9–42, 1989.

185

23rd European Workshop on Computational Geometry, 2007

Generalized Source Shortest Paths on Polyhedral Surfaces

Marta Fort∗ J. Antoni Sellarès∗

Abstract

We present an algorithm for computing shortest paths
and distances from a single generalized source (point,
segment, polygonal chain or polygon) to any query
point on a possibly non-convex polyhedral surface.
The algorithm also handles the case in which poly-
gonal chain or polygon obstacles on the polyhedral
surface are allowed. Moreover, it easily extends to
the case of several generalized sources to compute the
(implicitly represented) Voronoi diagram of a set of
generalized sites on the polyhedral surface.

1 Introduction

Computing shortest paths on polyhedral surfaces is
a fundamental problem in computational geometry
with important applications in computer graphics,
robotics and geographical information systems [5].

Let P be a, possibly non-convex, polyhedral surface
represented as a mesh consisting of n triangular faces.
The single point source shortest path problem consists
on finding a shortest path in the Euclidean metric
from a source point to any target point such that the
path stays on P.

Mitchell et al. [4] present an algorithm for solving
the single point source shortest path problem by de-
veloping a ”continuous Dijkstra” method which prop-
agates distances from the source to the rest of P. The
algorithm constructs a data structure that implicitly
encodes the shortest paths from a given source point
to all other points of P in O(n2 log n) time. The struc-
ture allows single-source shortest path queries, where
the length of the path and the actual path can be re-
ported in O(log n) and O(log n+k) time respectively,
k is the number of mesh edges crossed by the path.
Different improvements of this algorithm have been
proposed. In [6] a simple way to implement the algo-
rithm is described and shown to run much faster on
most polyhedral surfaces than the O(n2 log n) theo-
retical worst case time. In [1], Chen and Han, using a
rather different approach improved this to an O(n2)
time algorithm. Their algorithm constructs a search
tree and works by unfolding the facets of the polyhe-
dral surface. The algorithm also answers single-source
shortest path queries in O(log n + k) time. In [2],

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {mfort,sellares}@ima.udg.es. Partially supported by
grant TIN2004-08065-C02-02. Marta Fort is also partially sup-
ported by grant AP2003-4305.

Kaneva and O’Rourke implemented Chen and Han’s
algorithm and reported that the implementation is
difficult for non-convex polyhedral surfaces and that
memory size is a limiting factor of the algorithm. In
[3], Kapoor presented an algorithm following ”con-
tinuous Dijkstra” paradigm that computes a short-
est path from a source point to a target point in
O(n log2 n) time. The difficulties of such an algorithm
make complicated its implementation.

In this paper we present an algorithm for com-
puting exact shortest paths, and consequently dis-
tances, from single generalized sources (points, seg-
ments, polygonal chains or polygonal regions) on a
possibly non-convex polyhedral surface represented as
a triangular mesh. We also study the case in which
obstacles represented by polygonal chains or poly-
gons on the polyhedral surface are allowed. The al-
gorithm easily extends to the case of several gener-
alized sources and gives an implicit representation of
the Voronoi diagram of a set of generalized sites on the
polyhedral surface. Our algorithm extends the ideas
developed in [6] for the efficient implementation of the
algorithm of Mitchell et al. to the general source case.

2 Previous Work

The shortest path distance function defined by a
source point p on P is a function Dp such that for
any point q ∈ P, Dp(q) is the Euclidean length of
the shortest path along P from q back to point p. A
geodesic is a path that is locally a shortest path, thus,
shortest paths are all geodesics, but the converse need
not hold. Geodesics on non-convex triangulated sur-
faces have the following characterization [4]: 1) in the
interior of a triangle the shortest path is a straight
line; 2) when crossing an edge a shortest path corre-
sponds to a straight line if the two adjacent triangles
are unfolded into a common plane; 3) shortest paths
can go through a vertex if and only if it is a boundary
vertex or its total angle is at least 2π (saddle vertex).
The basic idea of the algorithm of Mitchell et al. [4]
for solving the shortest path problem from a mesh
vertex v, as implemented by Surazhsky et al. [6], is
to track together groups of shortest paths by parti-
tioning each triangle edge into a set of intervals (win-
dows) so that all shortest paths that cross a window
can be encoded locally using a parameterization of
the distance function Dv. After an initialization step,
where windows encoding Dv in the edges of the tri-
angles containing v are created, the distance function

186

EWCG 2007, Graz, March 19–21, 2007

is propagated across mesh triangles in a ”continuous
Dijkstra” fashion by repeatedly using a window prop-
agation process. A complete intrinsic representation
of Dv is obtained when the propagation process ends.
From this representation the shortest path from any
point q to the vertex source v is computed by using a
”backtracing” algorithm.

3 Exact Generalized Shortest Paths Computation

From now on, a generalized source s on P refers to
a point, segment, polygonal chain or polygon. The
shortest path distance function defined by a gener-
alized source s is a function Ds such that for any
point q ∈ P, Ds(q) is the length of the shortest path
from q back to source s. Since Ds(q) = minp∈sDq(p),
the shortest path from the generalized source s to
any point destination q has the same characteriza-
tion as the shortest path between two points that we
described previously. Notice that if s′ is a subsegment
of a generalized source s contained in a triangle t of
P, the part of a shortest path interior to t starting at
an interior point of s′ is orthogonal to s′.

3.1 Point Source

For a punctual source p contained in a triangle t we
basically use the algorithm developed in [6] for a ver-
tex source with only a few changes in the initialization
step. When p is interior to t we create windows encod-
ing the distance function on the edges of t. If p is on
an edge e of t and possibly another triangle t′, we cre-
ate: two windows on e going from p to each endpoint
of e, respectively; windows on the remaining edges of
t and possibly the edges of t′.

3.2 Segment Source

To compute the distance function Ds for a segment
source s, as is done in the case of a source point, we
track together groups of geodesic paths by partition-
ing the edges of P into windows. Geodesic paths that
cross a window go through the same triangles and
bend at the same vertices of P. In the initialization
step, windows defining Ds in the triangle(s) contain-
ing s are created. Then the distance field is propa-
gated across triangles in a Dijkstra-like sweep in such
a way that over each window, Ds can be represented
compactly using an appropriate parameterization.

3.2.1 Distance Function Codification

Consider a shortest path from the source segment s
to some point q on an edge e, and let us assume that
this path does not bend at any mesh vertex. When all
the triangles intersecting the path are unfolded in a
common plane, the path forms a straight line. The set
of neighboring points of q on e whose shortest paths
back to s pass through the same sequence of triangles
form: a) a pencil of rays emanating from an endpoint
of s; b) a pencil of orthogonal rays emanating from the
interior of s (see Figure 1). In both cases we represent

the group of shortest paths over a window of the edge
e.

Suppose now that the shortest path from p ∈ s to
q bends on one or more vertices on its way to the
source s, and let v be the nearest such vertex to q.
Again, consider the set of neighboring points on e
whose shortest paths back to v go through the same
strip of triangles. In the unfolding of the strip between
e and v, these shortest paths will form a pencil of rays
emanating from the pseudosource vertex v, as seen
in Figure 1. As before, we represent this group of
shortest paths over a window on the edge e.

a) b)

Figure 1: An unfolded strip of triangles with: a) a seg-

ment source; b) a polygonal chain source.

Windows representing a group of geodesics emanat-
ing from a punctual source p (an endpoint of s or a
mesh pseudosource vertex) are called p-windows, and
windows representing a group of geodesics emanating
from interior points of s are called s-windows.

p-windows

Following the strategy of Surazhsky et al. [6], the
group of geodesics associated to a p-window w orig-
inated on a point p (an endpoint of s or a pseu-
dosource vertex) is locally encoded by using a 6-tuple
(b0, b1, d0, d1, σ, τ). Where b0, b1 ∈ [0, |e|] measure the
Euclidian distance from the endpoints of w to the ori-
gin of e (the lexicographically smallest endpoint of e).
Distances d0 and d1 measure the Euclidean distance
from the endpoints of w to p, direction τ specifies the
side of e on which p lies, and σ gives the distance
from p to s. From the 6-tuple (b0, b1, d0, d1, σ, τ) it
is easy to position the source p and to recover the
distance function within w. It is done by considering
the planar unfolding adjacent to e in the rectangular
coordinate system Se that aligns e with the x-axis as
it is shown in Figure 2 a.

s-windows

The group of geodesics associated to an s-window w
is locally encoded by using a 5-tuple (b0, b1, d0, d1, φ).
Where b0, b1 ∈ [0, |e|] are the distances of the end-
points of w to the origin of e, d0 and d1 mea-
sure the distance of the endpoints of w to s, finally
the angle determined by e and the rays emanating
from s is stored in φ ∈ [0, 2π]. From the 5-tuple
(b0, b1, d0, d1, φ) it is easy to position the part s′ of

187

23rd European Workshop on Computational Geometry, 2007

s from which geodesics to w emanate (the visible part
of s through the unfolding). Again it is done by con-
sidering the planar unfolding adjacent to e in the rect-
angular coordinate system Se that aligns e with the
x-axis as it is shown in Figure 2 b. Notice that we do
not need d1 to position s′ but it is useful in order to
obtain the distance function within w.

a) b)
Figure 2: The source s is positioned using the information

stored in a: a) p-window, b) s-window.

3.2.2 Window Propagation
We propagate the distance function Ds encoded in a
window on an edge e to the next adjacent triangle t by
creating new (potential) windows on the two opposing
edges of t. They are potential windows because they
may overlap previously computed windows. Conse-
quently, we must intersect the potential window with
previous windows and determine the combined mini-
mum distance function.

Given a p-window or s-window w on an edge e,
we propagate Ds by computing how the pencil of
straight rays representing geodesics associated to w
extends across one more unfolded triangle t adjacent
to e. New potential windows can be created on the
opposing edges of t (see Figures 3 a and 3 b). To en-
code Ds in a new potential window e′ first, we obtain
the position of the source in the coordinate system
Se′ . Then, we consider the rays emanating from the
source through the endpoints of w to determine the
new window interval [b′0, b

′
1] on e′. New distances d′0

and d′1 from the window endpoints to the source are
computed. For p-windows σ′ does not change, and
for s-windows the angle φ′ is the angle defined by
the rays and edge e′. When the window w is adja-
cent to a boundary or saddle vertex v, geodesics may
go through it. Vertex v is a new pseudosource and
generates new potential p-windows with σ′ given by
d0(d0 + σ) or d1(d1 + σ) for s-windows(p-windows)
(see vertex v of Figure 3 c).

a) b) c)
Figure 3: Examples of s-window propagation resulting in

a: a) new single window, b) two new windows, c) a new

single window and a pseudosource vertex v.

After the propagation, each new potential window

w′ on edge e′ may overlap with previously created
windows. Let w be a previously created window which
overlaps with w′, notice that both w and w′ can be
either s-windows or p-windows. We have to decide
which window defines the minimal distance on the
overlapped subsegment δ = [b0, b1] ∩ [b′0, b

′
1]. To cor-

rectly obtain the windows we have to compute the
point ξ in δ where the two distance functions coin-
cide. We are discarding the geodesics encoded in w
and w′ that cannot be shortest paths.

In order to obtain ξ, we define the rectangular co-
ordinate system Se′ that aligns e′ with the x-axis in
the planar unfolding adjacent to e′. When w and w′

are:

• p-windows: we obtain the position of their pseu-
dosources v and v′ in Se′ and solve the equation
|v − p|+ σ = |v′ − p|+ σ′, as it is done in [6].

• an s-window and a p-window: we obtain the po-
sition of the segment source s and pseudosource
v on Se′ , and solve d(s, p) = |v − p| + σ′, where
d(s, p) is the Euclidean distance from p to s.

• s-windows: we obtain the position of both seg-
ment sources s and s′ in Se′ and solve the equa-
tion d(s, p) = d(s′, p).

In all three cases the resulting equation has a single
solution.

3.2.3 Continuous Dijkstra
The algorithm uses a Dijkstra-like propagation strat-
egy. In the initialization step, we create windows en-
coding the distance function on the edges of the trian-
gle(s) containing the segment source s. Those points
closer to points in the interior of the segment source
are contained in s-windows. On the other hand, those
points whose closest point of s is an endpoint of s are
contained in p-windows. When windows are created,
they are stored in a priority queue which contains
both s-windows and p-windows. Windows are stored
by increasing distance to the source. The minimum
distance from an s-window to source s is min(d0, d1).
For p-windows we use min(d0, d1)+σ as weight in the
priority queue, although it may not be the minimal
distance. It can be done because the obtained solu-
tion does not depend on the order in which windows
are removed from the queue. However, this weight
yields good experimental results according to [6].

The first window of the priority queue is selected,
deleted and propagated. Next, overlays are checked,
intersections are computed and the new windows are
added to the priority queue. Notice that when there
is an overlay, windows may be modified or deleted and
the priority queue has to be updated accordingly.

3.3 Polygonal Sources
The distance function defined by a polygonal chain
is obtained by simultaneously considering all the seg-

188

EWCG 2007, Graz, March 19–21, 2007

ments of the polygonal chain in the initialization step.
For each segment s of the polygonal chain we create
potential s-windows in the face(s) containing s and for
each vertex we create potential p-windows. We han-
dle one segment/point after the other and the new
potential windows are intersected with the already
created ones to ensure that they define the actual dis-
tance function. The other parts of the algorithm do
not need changes. The distance function defined by
a polygonal region r, a connected region of P whose
boundary is a closed polygonal chain, is the distance
function of its boundary in the complementary of r,
and is 0 in the interior of r. We compute the distance
function produced by its boundary polygonal chain
creating, in the initialization step, windows only in
the complementary of r.

4 Shortest Paths With Polygonal Obstacles.

Given a triangulated non-convex polyhedral surface P
(which may represent a terrain) we consider some ob-
stacles modeled as polygonal chains or polygonal re-
gions (which may represent rivers, lakes, etc). Paths
cannot traverse the polygonal obstacles, however, we
let paths go along them. Now, geodesic paths can go
through a vertex not only if it is a saddle or bound-
ary vertex but also when it is an obstacle vertex. To
compute shortest paths we only need to make some
modifications in the window propagation process. On
the one hand, windows on an obstacle edge are not
propagated. On the other, obstacle vertices are new
pseudosource vertices regardless of their total angle.

5 Shortest Path Construction

When the propagation of the distance field has fin-
ished, the shortest path from any point q on a face f
to the source can be obtained by using a backtracing
technique similar to the one described in [6]. First,
the window w′ on the edges of f defining the mini-
mum distance to q is chosen. The distance to q given
by a window w is dw(q) = dw(q′)+ |q−q′| with q′ ∈ w
the closest point to q and dw the distance function
generated by w. From w′, we jump to the adjacent
face f ′ by using the direction τ when w′ is a p-window
or the angle φ when w′ is an s-window. We keep on
jumping to the adjacent face until we get s.

6 The Case of Several Generalized Sources

The algorithm extends naturally to the case of sev-
eral generalized sources. In this case we obtain a gen-
eralized distance function, which for any point gives
the shortest path distance to its nearest source. It is
only necessary to change the initialization step where
we generate windows for each single source and store
them in a unique priority-queue. Thus, we propa-
gate the distance field defined by each single source
simultaneously. We automatically obtain a codifica-
tion of the generalized distance function that yields

an implicit representation of the Voronoi diagram of
the set of generalized sources.

7 Complexity analysis

Let D be the distance function for a set of generalized
sources on a non-convex polyhedral surface P with
polygonal obstacles represented as a mesh consisting
of n triangles. It can be proven, following the discus-
sion given in [4], that D can be intrinsically obtained
in O(N2 log N) time and O(N2) space, where N is
the maximum of n and the total number of segments
conforming the generalized sources.

A distance query reporting the length of the short-
est path from a point of P to its nearest source, can
be solved by standard methods in O(log N) time. Fi-
nally, the shortest path can be obtained in additional
O(k) time, when the path crosses k triangles.

8 Final Comments

We are finishing the implementation of the algorithm
for the special case of polyhedral terrains. We ex-
pect that in practice the algorithm will run in sub-
quadratic time as in [6]. We are also designing an
algorithm to obtain an explicit representation of the
Voronoi diagram of a set of generalized sources on the
polyhedral surface that is heavily based on the algo-
rithm that computes generalized distance functions.

Finally, we want to mention that the algorithm of
Chen and Han can also be adapted to support gener-
alized sources without increasing the time and storage
complexity of the original algorithm because the ”one
angle one split” observation holds. We have chosen to
follow Surazhsky et al. strategy because of its easier
implementation and good performance in practice.

References

[1] J. Chen, Y. Han. Shortest paths on a polyhedron.
Int.J. Comput. Geom. Appl., 1996, Vol. 6., 127–144.

[2] B. Kaneva, J. O’Rourke. An Implementation of Chen
& Han’s Shortest Paths Algorithm. Proc. of the 12th
Canadian Conf. on Comput. Geom., 2000, 139–146.

[3] S. Kapoor. Efficient Computation of Geodesic Short-
est Paths. Proc. 32nd Annu. ACM Sympos. Theory
Comput., 1999 770–779.

[4] J. Mitchell, D. Mount, H. Paparimitriou. The discrete
geodesic problem. SIAM J. Computation, 16(4),
1987, 647–668.

[5] J. S. B. Mitchell. Geometric shortest paths and net-
work optimization. In Jörg-Rüdiger Sack and Jorge
Urrutia, editors, Handbook of computational geome-
try, Elsevier, 2000, pages 633–701.

[6] V, Surazhsky, T. Surazhsky, D. Kirsanov, S. J.
Gortler, H. Hoppe. Fast Exact and Approximate
Geodesics on Meshes. In ACM Transactions on
Graphics (TOG), Proc. of ACM SIGGRAPH, 24:3,
2005, 553 - 560.

189

23rd European Workshop on Computational Geometry, 2007

Improved Algorithms for length-minimal one-sided boundary labeling

Marc Benkert∗ Martin Nöllenburg?

Abstract

We present algorithms for labeling n points that are
contained in a rectangle R by labels that lie on one
side of R. The points are connected to their labels
by non-intersecting curves (leaders) that each have
at most one bend. We consider two types of curves:
rectilinear leaders, called po-leaders, and leaders that
consist of a horizontal and a diagonal segment, called
do-leaders. To obtain a good readability of the la-
beling we minimize the total leader length. For the
po-leaders we give an O(n log n) and for do-leaders an
O(n2)-time algorithm. This type of labeling has ap-
plications for geographic maps or illustrations in med-
ical atlases in which the labels should not be inserted
directly because labels would obscure important in-
formation or if points lie too dense.

1 Introduction

Our work ties up to a work of Bekos et al. [2]: for n
points contained in a rectangle R and n labels that lie
either on one, two or all four sides of R they gave sev-
eral algorithms for different types of polygonal lines
that are allowed to connect the points with the labels.
For a good readibility of the labeling they demand
that the leaders should be non-intersecting. Further
criteria that serve for a good quality are minimiz-
ing the total leader length and the total number of
bends. One of the leader types that they introduced
are the po-leaders: the leader starts with a (possibly
empty) vertical segment followed by a horizontal seg-
ment that connects to the label, see Figure 1(a). For
the case that the labels are located only on one side
of R, they gave a quadratic algorithm that computes
the length-minimum labeling with po-leaders. Ali et
al. [1] propose several heuristic labeling methods us-
ing straight-line and rectilinear leaders. They first
compute an initial labeling and then eliminate inter-
sections between leaders. In Section 2 we improve the
po-leader result of Bekos et al. by giving an O(n log n)
algorithm. Furthermore, we introduce the notion of a
do-leader. The only difference to a po-leader is that
the leader starts with a diagonal segment of fixed an-
gle oriented towards the label, see Figure 1(b). To our

∗Fakultät für Informatik, Universität Karlsruhe,
P.O. Box 6980, D-76128 Karlsruhe, Germany,
http://i11www.iti.uni-karlsruhe.de/research/geonet/,
GeoNet is supported by grant WO 758/4-2 of the DFG.

best knowledge, there is no literature yet that algo-
rithmically deals with do-leaders. In practice the do-
leaders seem to produce nicer labelings because their
smoother shape makes the comprehension of the as-
signment from points to labels easier. In Section 3
we present a quadratic algorithm that computes the
length-minimum do-labeling with labels on one side.

R

(a) po-leaders.

Rp

`

(b) do-leaders.

Figure 1: Valid labelings for labels on the left side.

2 po-leaders

For simplicity we assume that the labels are uniform
and located on the left side of R. We briefly sketch
Bekos et al. quadratic algorithm [2] as we will prove
the correctness of our algorithm by showing that it
produces exactly the same labeling.

Their algorithm proceeds in two steps: first, they
produce a non-crossing-free labeling that obviously
minimizes the total leader length. This labeling
is simply found by sorting the points according to
their y-coordinate and then assigning the bottommost
point to the bottommost label, the second bottom-
most point to the second bottommost label and so on.
Then, in the second step, they purge all crossings by
changing the assignment of two points at a time in an
appropiate order. In this second step the total leader
length does not change, see Figure 2. Hence, their
output is a valid length-minimum labeling. However,
in the second step their algorithm potentially has to
deal with a quadratic number of crossings which is the
bottleneck for the running time.

`1

`2

`3

s1

s2

s3

Figure 2: Exchanging the labels of two intersecting
leaders without changing the total length.

190

EWCG 2007, Graz, March 19–21, 2007

The key idea for bringing the running time down
to O(n log n) is to couple these two steps and to not
make an assignment for a point until we know that
this assignment will not produce any crossings in the
remainder of the algorithm. We accomplish this by a
sweep-line algorithm.

Let `1, . . . , `n be the numbering of the labels from
bottom to top and let s1, . . . , sn denote the horizontal
strips to the right of the according labels, see Figure 2.
In a preprocessing step that takes O(n log n) time we
determine point lists P1, . . . , Pn, where Pi contains
exactly the points in si, and sort each list according
to increasing y-coordinate. Throughout the algorithm
we maintain a list L of points that are ordered accord-
ing to increasing x-coordinate, L contains the points
that, for some state of the algorithm, all have to be
labeled by a label above or below the current sweep
line, initially L is empty. For the sweep itself, there
is one event point for every label, namely the hori-
zontal line through the upper horizontal side of the
label rectangle. We denote the event point for `i by ı̂
and the number of points in s1 ∪ · · · ∪ si by n∪i . We
distinguish three possible states for an event point ı̂:

Need if i > n∪i ,
Surplus if i < n∪i and

Equilibrium if i = n∪i .
The three states are illustrated in Figure 3. Need

means that there are too few points in s1 ∪ · · · ∪ si

for labeling `1, . . . , `i. Surplus means that there are
too many points in s1 ∪ · · · ∪ si for labeling `1, . . . , `i

and Equilibrium means that there are exactly i points
in s1 ∪ · · · ∪ si. Note that then, in the length-
minimum labeling, these points are assigned to the
labels `1, . . . , `i. We can see this by Bekos et al.’ al-
gorithm: in their first step the i points are obviously
assigned to `1, . . . , `i, meaning that they could have
crossings amongst each other but never with other
points above. Since Bekos et al. switch labels only of
points whose leaders intersect, this means that in the
end, these i points remain assigned to `1, . . . , `i.

`i

(a) Need

`i

(b) Surplus

`i

(c) Equilibrium

Figure 3: The three possible states at event point ı̂.

According to the state that we found at ı̂ we do the
following: For Need we do nothing at all and proceed
with the next event point. The label `i will get its
assigned point during a backtracking later on.

For Surplus we check the state of the previous event
point. If it was Equilibrium we assign the bottommost

point in Pi to `i, insert the remaining points of Pi in
the then empty list L, remove the first point of L and
assign it to `i+1. If it was Surplus, label `i will already
have its point assigned by the processing of ı̂− 1. We
insert the points Pi into L. After that L must be
non-empty because either there were points in Pi or
L was still non-empty after processing ı̂ − 1. Again,
we remove the first point of L and assign it to `i+1.
If it was Need, we check for which point p in si we
have an ’artificial’ Equilibrium and assign p to `i. We
insert the points below p into L and backtrack : we set
a counter c to i− 1, as long as L is not empty we do
the following: we assign the first point of L to `c and
delete it from L. Then we insert the points Pc into L
and decrease c by one. After the backtrack we insert
the points above p into L and proceed as above.

For Equilibrium we look at Pi. If Pi = ∅ the pre-
vious state was Surplus and `i will already have its
point assigned. we have nothing to do. If |Pi| = 1, we
assign the point in Pi to `i. If |Pi| > 1, the previous
state was Need, we assign the topmost point of Pi to
`i, insert the remaining points in Pi into the list L
and backtrack as described above.

Theorem 1 For labels on one side, the length-
minimum labeling using po-leaders can be computed
in O(n log n) time requiring O(n) space.

Proof. Obviously, each point is inserted in and
deleted from L at most once, which establishs the
running time since an insertion in the ordered list L
is in O(log n). The linear space requirement is also
obvious. It remains to prove that the algorithm finds
a valid labeling and that this labeling has indeed mini-
mum length. As mentioned earlier we do this by show-
ing that our algorithm computes exactly the same la-
beling as Bekos et al.’ algorithm. We omit the details
but point out that taking the first point of L, i.e.
the point with minimum x-coordinate in L, for as-
signing it to `c (backtracking) or to `i+1 (treating a
Surplus state) is necessary for the prevention of pro-
ducing crossings in the further run of the algorithm.

�

3 do-leaders

For simplicity we assume that the labels are uniform
and located on the left side of R. We note that the al-
gorithm will work for any fixed angle for the diagonal
segments between 0◦ and 90◦ to the x-axis.

We cannot use the same approach as for the po-
leaders simply as not every point can connect to any
label by a do-leader, look e.g. back to Figure 1(b)
where p cannot connect to `. Roughly speaking we
will use a generalization of Bekos et al.’ algorithm
for the po-leaders that takes these restrictions into
account.

191

23rd European Workshop on Computational Geometry, 2007

We start by introducing necessary conditions for
the existence of a do-labeling and show how to algo-
rithmically make use of them. In the end, we con-
structively get that the conditions are even sufficient.

Each label ` induces a funnel-shaped subregion R`

in which all points that could be assigned to this label
are located. The arrangement of all these regions de-
fines O(n2) cells, see Figure 4. All points in the same
cell of this arrangement can connect to the same set
of labels and these sets are distinct for any two cells.

cell (5, 6)

1 2 3 4 5 6 70

1 2 3 4 5 6 70

△
5
,
6

{L5,6

Figure 4: The cell arrangement.

A cell itself is the intersection of an ascending and a
descending diagonal strip and after numbering these
strips we can index each cell, e.g. the white cell in Fig-
ure 4 has index (5, 6), when we take the index of the
descending strip as first coordinate. For a cell (i, j) we
denote the label set that can be reached by Li,j and
the smallest triangle bordering to Li,j and containing
(i, j) by 4i,j , see Figure 4. Now, a necessary condi-
tion for the existence of a do-labeling is obviously that
the number ni,j of points in 4i,j does not exceed the
number of labels in Li,j which is i + j−n. Otherwise
there will be unassigned points left over in 4i,j that
cannot connect to any other labels beside Li,j . We
say that i + j − n is the level of cell (i, j).

Lemma 2 There can only be a valid do-labeling if
for each k-level cell (i, j) it holds that ni,j ≤ k.

We can check these necessary conditions in O(n2)
time. For this we have to compute all numbers ni,j :
initially we set each ni,j to zero. For each input point
we determine its containing cell (i, j) and increment
ni,j by one. Then, each ni,j gives the number of points
in the cell (i, j) but we aim for the number of points in
4i,j . We traverse the cells in increasing order of their
levels. Apparently, all 1-level cells already contain the
desired values, for all other cells ni,j is updated based
on three predecessor values (see Figure 4):

ni,j ← ni,j + ni,j−1 + ni−1,j − ni−1,j−1.

This counts each point in 4i,j exactly once. The time
complexity per cell is obviously constant.

Now, we present our algorithm to compute the
length-minimum labeling. We assume that we com-
puted the numbers ni,j in a preprocessing and neither
of the necessary conditions has been violated. For a
k-level cell (i, j) for which ni,j is k we say that 4i,j is
full, meaning that in any valid do-labeling each of the
ni,j points in 4i,j connects to a label in Li,j . For the
algorithm we generalize the above definition: a trian-
gle 4i,j is full if the numbers of points in 4i,j and
labels in Li,j that have not been assigned yet match.
From now on we call such points and labels open.

The algorithm traverses the cells in increasing order
of their levels and for each level from bottom to top.
Whenever we find a k-level cell (i, j) for which 4i,j

is full, we call the subroutine complete(4i,j) which
computes a length-minimum valid labeling for the re-
maining open items in 4i,j . Then, 4i,j is marked
as completed. Eventually the traversal will examine
the n-level cell (n, n) and if not all points have been
assigned yet, an assignment for the remaining open
points and labels will be found.

In the procedure complete(4i,j) we process the
open labels from bottom to top. Basically for each
open label ` the point that we assign to ` is the first
open point that we find when we sweep R`∩4i,j by a
horizontal line from bottom to top. If the placement
of the leader inserts any crossing with earlier drawn-
in leaders we purge the crossings by flipping assigned
labels without changing the total leader length.

However, we have to pay attention during the com-
pletion of a triangle 4i,j : each time we assign a point
that does not lie in a 1-level cell, we artificially shift
this point into the 1-level cell adjacent to the assigned
label, see Figure 7. This decreases the number of open
labels for incompleted subtriangles of 4i,j while the
number of open points in them stays the same, thus,
these triangles can become full. If this happens we
have to bring the completion of these recently filled
subtriangles forward to the usual completion of 4i,j .

For describing the full operation mode of com-
plete(4i,j) we have to distinguish two cases:

complete(4i,j): First, we traverse the incom-
pleted cells of 4i,j by a breadth-first search starting
from (i, j). This yields lists of the remaining open
points and labels in 4i,j . If the lists of points and
labels are empty we mark (i, j) as completed and are
done, otherwise we sort both lists according to in-
creasing y-coordinate.

Together with the BFS we purge redundant cells:
due to already completed subtriangles of 4i,j cells
can have become equivalent in the sense that they
now can reach the same set of open labels. We merge
these equivalent cells and assign the number and level
of the topmost-level cell to the newly emerged cell.
Obviously, this maintains the number of points and
labels in the triangle associated with the new cell, see
Figure 5. This step is indispensable for the mainte-

192

EWCG 2007, Graz, March 19–21, 2007

nance of a quadratic running time as the update of
the cell entries that we have to do when we make an
assignment later on would cause the runtime to get
super-quadratic if the number of cells was quadratic.

1
2

0
1

2
3

2

2
3

Figure 5: Merging redundant cells.

After finishing these initilizations we start with as-
signing points to the open labels. For this, we sweep
the labels from bottom to top. For an open label ` we
do the following: we traverse the list of open points
and assign the first point p that we find and that is
in R` to `. We remove ` and p from the lists of open
labels and points. If the leader from p to ` intersects
earlier drawn-in leaders we take the leader of the top-
most label among them and flip the assigned points
with `, we repeat this step until there are no crossings
anymore, see Figure 6.

` ``

p

Figure 6: Purging crossings after assigning p→ `.

After making an assignment, we update the cell
structure and data of4i,j . For cells that have become
redundant by the assigment this works analogously as
for the initilization. For the numbers ni′,j′ we have
shifted the assigned point from its original cell to the
cell c` adjacent to `. We trace the leader from ` back
to p and update the affected cells accordingly, see Fig-
ure 7. This update can cause subtriangles (i′, j′) to
become full. If this happens we have to bring their
completion forward. For this, we prepare the lists of
open labels and points in 4i′,j′ and start the sub-
routine subtriangle-complete(4i′,j′). Then, we mark
(i′, j′) including the according points and labels as
completed and proceed with the completion of 4i,j .

Finally, after the last open label in 4i,j is assigned
we mark 4i,j as completed.

subtriangle-complete(4i′,j′): As before, only
the lists of open points and labels are handed over
by the overall procedure.

4i′,j′6 7
`

`′
pq

Figure 7: 4i′,j′ becomes full by assigning p→ `. The
open point q in 4i′,j′ now has to be assigned to `′ in
order to find a valid labeling.

Theorem 3 For labels on one side, a valid length-
minimum labeling using do-leaders can be computed
in O(n2) time requiring O(n2) space, if there is any.

Proof. We assume that the necessary conditions
from Lemma 2 hold, otherwise we report infeasibil-
ity after the O(n2)-time preprocessing.

For the correctness of the described algorithm it is
obviously sufficient to show that the procedure com-
plete(4i,j), not called within the completion of a su-
pertriangle, computes a valid length-minimum label-
ing within 4i,j . We do this in the following stages:
after complete(4i,j) has finished it holds that ...

1. ... each of the labels Li,j is assigned to a distinct
point in 4i,j .

2. ... the computed labeling is valid. Any flip that
is performed to purge crossings leaves the total
leader length unchanged.

3. ... the computed labeling is length-minimum.

For space reasons we have to omit the details of
1.–3. and conclude the proof by showing that the
algorithm requires quadratic time and space. Storing
the cell structure dominates the space consumption
and is quadratic. A call to complete(4i,j), where4i,j

has κ open points, requires at most O(κ2) time: after
the lists of open points in 4i,j have been generated
and sorted in O(κ log κ) time, finding the point for an
open label and updating the list of remaining items is
in O(κ). For the crossing purges we have to deal with
at most O(κ2) crossings in total. Since each point
appears as an open point for exactly one full triangle
this settles the total running time to O(n2). �

References

[1] K. Ali, K. Hartmann, and T. Strothotte. Label layout
for interactive 3D illustrations. J. of WSCG, 13:1–8,
2005.

[2] M. A. Bekos, M. Kaufmann, A. Symvonis, and
A. Wolff. Boundary labeling: Models and efficient al-
gorithms for rectangular maps. Computational Geom-
etry: Theory & Applications, 36:215–236, 2007.

193

23rd European Workshop on Computational Geometry, 2007

Optimal Higher Order Delaunay Triangulations of Polygons ∗

Rodrigo I. Silveira† Marc van Kreveld‡

Abstract

This paper presents an algorithm to triangulate poly-
gons optimally using order-k Delaunay triangulations,
for a number of quality measures. The algorithm
uses properties of higher order Delaunay triangula-
tions to improve the O(n3) running time required for
normal triangulations to O(k2n log k + kn log n) ex-
pected time, where n is the number of vertices of the
polygon. An extension to polygons with points inside
is also presented.

1 Introduction

One of the best studied topics in computational geom-
etry is the triangulation. When the input is a point
set P , it is defined as a subdivision of the plane whose
bounded faces are triangles and whose vertices are
points of P . In this paper we focus mainly on trian-
gulations of polygons. The goal is to decompose the
polygon into triangles by drawing diagonals. For a
given point set or polygon, many triangulations ex-
ist, so it is possible to try to find one that is the best
according to some criterion that measures some prop-
erty of the triangulation. Typical properties are local
properties of the triangles (like area, height or mini-
mum angle) or global properties of the triangulation
(such as total edge length or maximum vertex degree).

For a given set of points P , a well-known triangula-
tion is the Delaunay triangulation. It is defined as a
triangulation where the circumcircle of the three ver-
tices of any triangle does not contain any other point
of P . It is unique when no four points are cocircu-
lar, and can be computed in O(n log n) time for n
points. The Delaunay triangulation optimizes several
measures, like max min angle or minmax smallest en-
closing circle, among others. This is the reason why
its triangles are said to be well-shaped. Gudmunds-
son et al. [6] define higher order Delaunay triangu-
lations, a class of well-shaped triangulations where a
few points are allowed inside the circumcircles of the
triangles. A triangulation is order-k Delaunay if the

∗This research has been partially funded by the Nether-
lands Organisation for Scientific Research (NWO) under FO-
CUS/BRICKS grant number 642.065.503 (GADGET) and un-
der the project GOGO.

†Department of Information and Computing Science,
Utrecht University, the Netherlands, rodrigo@cs.uu.nl

‡Department of Information and Computing Science,
Utrecht University, the Netherlands, marc@cs.uu.nl

Figure 1: A Delaunay triangulation (k = 0) (left), and
an order-2 triangulation (right). Light gray triangles
are first order, the medium grey ones are second order.

circumcircle of the three vertices of any triangle con-
tains at most k other points (see Figure 1).

When the goal is to optimize only one criterion,
optimal polygon triangulations can be computed in
polynomial time for many measures. The main tool
for this is a dynamic programming algorithm at-
tributed to Klincsek [9], that allows to find in O(n3)
time an optimal triangulation of a simple polygon for
any decomposable measure. Intuitively, a measure is
decomposable if the measure of the whole triangula-
tion can be computed efficiently from the measures of
two pieces, together with the information on how the
pieces are glued together. Decomposable measures in-
clude the following: min / max angle, min / max cir-
cumcircle, min / max length of an edge, min / max
area of triangle, and the sum of the edge lengths. The
algorithm by Klincsek can be extended to other mea-
sures that are not decomposable, like maximum ver-
tex degree. For convex polygons, the min/max area
of triangle measures can be optimized faster, in O(n2)
time [8]. A few methods exist for optimally triangu-
lating point sets, and can be applied also to polygons.
The edge insertion paradigm [1] can be used to opti-
mize several (decomposable) measures in O(n2 log n)
or O(n3) time (depending on the measure). A trian-
gulation of a point set minimizing the maximum edge
length can be computed in O(n2) time [4]. The greedy
triangulation, which lexicographically minimizes the
sorted vector of length edges, can be constructed in
O(n2) time [10].

Our problem is more involved, since we aim at op-
timizing a measure over higher order Delaunay tri-
angulations, therefore enforcing well-shaped triangles
at the same time as optimizing some other measure.
There are not many results on optimal higher order
Delaunay triangulations. For the case k = 1, the

194

EWCG 2007, Graz, March 19–21, 2007

triangulations have a special structure that allows a
number of measures (for example min / max area tri-
angle, total edge length, number of local minima in a
terrain) to be optimized in O(n log n) time [6]. When
k > 1, fewer results are known. Minimizing local
minima in a terrain is NP-hard for orders at least nε,
where ε is any positive constant [3].

In this paper we extend the algorithm of Klincsek
[9] to allow to optimize a decomposable measure for a
simple polygon over order-k Delaunay triangulations.
A straightforward extension of Klincsek’s algorithm
leads to O(n3 log n) running time. Our main contribu-
tion is improving this time to O(k2n log k + kn log n),
by exploiting properties of this special class of trian-
gulations. This represents an important improvement
given that the small values of k are the ones that are
most interesting [3]. An extension to triangulate poly-
gons with points inside is also presented.

2 Higher Order Delaunay Triangulations

We begin by presenting some basic concepts on order-
k Delaunay triangulations, together with some results
that will be needed later. We assume non-degeneracy
of the input set P : no four points are cocircular.

Definition 1 A triangle 4uvw in a point set P is
order-k Delaunay if its circumcircle C(u, v, w) con-
tains at most k points of P . A triangulation of a set
P of points is an order-k Delaunay triangulation if
every triangle of the triangulation is order-k.

Definition 2 For a set P of points, the order of an
edge pq between two points p, q ∈ P is the minimum
number of points inside any circle that passes through
p and q. The useful order of an edge is the lowest order
of a triangulation that includes that edge.

For brevity, we will sometimes write order-k instead
of order-k Delaunay, and k-OD edge instead of order-
k Delaunay edge.

Lemma 1 (from [6]) Let uv be a k-OD edge, let s1

be the point to the left of −→vu, such that the circle
C(u, s1, v) contains no points to the left of −→vu. Let s2

be defined similarly but to the right of −→vu. Edge uv is
a useful k-OD edge if and only if 4uvs1 and 4uvs2

are k-OD triangles.

Lemma 2 (from [6]) Let uv be any Delaunay edge.
The number of useful k-OD edges in a triangulation
T that intersect uv is O(k).

We extend these results with one more lemma.

Lemma 3 Let uv be a useful k-OD edge. Then there
are at most O(k) order-k triangles that have uv as one
of their edges.

We provide only a sketch of the proof here. We
slide a circle in contact with u and v until it touches
a first point r1 to the right of edge −→uv. This could
be a third point of a triangle incident to −→uv because
it is possible for C(u, v, r1) to contain less than k + 1
points. We slide the circle again until it touches a
second point r2. Now C(u, v, r2) contains at least one
point (r1). Continuing in this way it can be seen
that C(u, v, rk+1) contains at least k points, hence
no further point can be a third point. An identical
argument applies to the left side.

Next we show that all order-k triangles can be com-
puted efficiently.

Lemma 4 Let P be a set of n points in the plane. In
O(k2n log k+kn log n) expected time one can compute
all order-k triangles of P .

We provide a sketch of the algorithm. There are
O(kn) useful k-OD edges [6], with O(k) incident
order-k triangles each (Lemma 3), therefore the to-
tal number of order-k triangles is O(k2n).

All the useful edges can be computed in O(k2n +
kn log n) expected time [6]. Moreover, within the
same running time we can store for every useful edge
−→uv, the two sets of points that are contained in the two
circles that determine its usefulness (see Lemma 1).
There are at most k of these points on each side. For
each side, we will sort the points according to the or-
der in which they are touched when sliding a circle in
contact with u and v (as in the proof of Lemma 3).
This can be done in O(k log k) time by sorting the
centers of the circles. By going through these sorted
lists from left to right, we can count the number of
points inside all the circumcircles in O(k) time.

Still, some of these triangles may contain points
inside, so we need to discard them. Let 4uvx and
4uvy be two triangles, and let αu (αv) denote the
angle of 4uvx at u (at v), and βu (βv) the same for
4uvy. It is easy to see that 4uvx contains point y if
and only if βu < αu and βv < αv. Each triangle can
be represented by a point in the plane using its angles
at u and at v. The empty triangles are the ones laying
in the lower-left staircase of the point set, and can be
found in O(k log k) time by a sweep line algorithm.

The time needed to find the triangles for one useful
edge is O(k log k). Hence the useful edges and order-k
triangles can be found in O(k2n log k+kn log n) time.

3 Triangulating polygons

As mentioned in the introduction, Klincsek’s algo-
rithm allows to triangulate polygons in an optimal
fashion for a large number of measures using dynamic
programming. In this paper we have the additional
requirement that the triangulation must be order-k,
therefore only order-k triangles can be used.

195

23rd European Workshop on Computational Geometry, 2007

P1,6

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

P3,6

P1,3

Figure 2: Dynamic programming method. The value
of an optimal triangulation of P1,6 is stored in L[1, 6].

The input is a polygon P defined by its vertices
in clockwise order {p0, p1, ..., pn−1}. The output is a
k-OD triangulation of optimum cost.

The dynamic programming algorithm finds an op-
timal solution by combining solutions of smaller prob-
lems in a systematic way. The typical algorithms use
an n× n matrix L, which in our problem would have
the following meaning: L[i, i + j] contains the cost of
the optimal k-OD triangulation of the polygon Pi,i+j ,
defined by the edges between pi and pi+j , plus edge
pi+jpi. See Figure 2 for an example.

The matrix can be filled in a recursive way. The
simplest entries are the ones of the form L[i, i + 1],
which have cost 0. The formula for L[i, i + j] is:

L[i, i + j] = min
q=1,2,...,j−1

(Cost(pi, pi+q, pi+j)+

L[i, i + q] + L[i + q, i + j])
(1)

Where pipi+q and pi+qpi+j must not intersect the
boundary of P . The expression Cost(pi, pi+q, pi+j) is
the cost of the triangle 4pipi+qpi+j . Triangles that
are not k-OD have cost +∞. Checking the order of
the triangle would take O(log n + k) time [6], but if
we precompute all the order-k triangles for each useful
edge and store them in a perfect hashing table [5], we
can answer the question in O(1) time.

The idea behind the formula is that if edge pipi+j

is part of an optimal triangulation, then it must also
contain some triangle incident to it, dividing the poly-
gon into two subpolygons that can be solved indepen-
dently, see Figure 2. Note that measures of the type
minmax(. . .) can also be optimized with the same
method by a recursive formula similar to (1).

This algorithm has O(n3) running time because if
the matrix is computed in the right way, we always
have the required elements of L calculated when com-
puting L[i, i + j]. Filling in one cell takes O(n) time,
leading to O(n3) time for the whole matrix.

The special properties of order-k Delaunay triangu-
lation allow to reduce the running time significantly.

First of all, for a given edge pipj , the number of pos-
sible third points is not O(n) but O(k) (see Lemma 3).
If for every edge we precompute these O(k) points, we

can improve the running time to O(kn2), after spend-
ing O(k2n log k + kn log n) in the precomputation of
the useful edges and the order-k triangles (Lemma 4).

Secondly, matrix L has O(n2) cells, each corre-
sponding to one edge. However, only O(kn) can be
useful, so it is not necessary to keep a data structure
of quadratic size. We will use memoization instead.
We will apply the recursive formula (1) to compute
L[0, n− 1], but to avoid solving the same subproblem
L[i, j] more than once, we will use a perfect hash-
ing table to store all the subproblems already solved.
Since each subproblem L[i, j] is associated with a k-
OD edge pipj , only O(kn) subproblems will be com-
puted and stored. Each particular problem is solved
in O(k) time, yielding a total running time of O(k2n),
plus O(k2n log k + kn log n) preprocessing time.

Finally, every edge considered must not intersect
the polygon boundary and must not lie outside the
polygon. This can be checked in O(log n) time per
edge using an algorithm for ray shooting in polygons
[7]. This adds an O(kn log n) preprocessing term,
which does not increase the asymptotic running time.

Theorem 5 An optimal order-k Delaunay triangu-
lation of a simple polygon with n vertices that opti-
mizes a decomposable measure can be computed in
O(k2n log k + kn log n) expected time.

4 Triangulating polygons with points inside

In this section we consider the more general problem
of finding an optimal triangulation of a simple poly-
gon that contains h ≥ 1 components in its interior. A
component can be either a point or a connected com-
ponent made of several points connected by edges. We
can reuse the algorithm from the previous section if
we connect each component to some other vertex in
order to remove all the loose parts. To find the op-
timal triangulation we must try, in principle, all the
possible ways to make these connections.

In principle, there are O(n) ways to connect each
component. However, since what we need is to find
only one edge to connect the component to the poly-
gon, it is enough to try only O(k) edges. The reason
is as follows. Let u be the top-most point inside the
polygon. Everything above u is part of the polygon
boundary. Let uv be a Delaunay edge of the con-
strained Delaunay triangulation of the polygon and
its components, with v above u. By Lemma 2, a De-
launay edge can be crossed by only O(k) useful k-OD
edges. If uv is not part of the optimal triangulation,
at least one of the O(k) edges that cross it must be.
Let xy be the first of these edges (the first one en-
countered when going from u to v along uv), then
triangle 4uxy must be part of the optimal triangula-
tion. This implies that edges ux and uy are part of
it as well. Then in our algorithm we can try uv and

196

EWCG 2007, Graz, March 19–21, 2007

for each of the O(k) possible edges xy, either ux or
uy (any of them as long as it connects u to a higher
point). At least one of these edges must be part of
any optimal triangulation,1 and connects v to the tri-
angulated part.

Trying every possible way to connect each inner
component to the boundary of the polygon involves
trying O(kh) cases. Let P1, · · · , Pη be the O(kh) dif-
ferent polygons that are tried, and let Hi be the set
of new boundary edges of Pi. For each Pi, besides
computing the boundary, we must compute the inter-
sections between the O(kn) useful edges and the new
h edges in Hi, which were added to remove the loose
components. The computation of these intersections
can be done once and maintained between successive
polygons without increasing the asymptotic running
time. Though we omit the details here, we can com-
pute during the preprocessing phase an intersection
graph for the useful k-OD edges, in O(kn log n+k3n)
time, and then update it in O(k2) time per polygon
by iterating through the polygons in a certain order.

Triangulating each generated polygon using the al-
gorithm from the previous section takes O(k2n) time,
yielding a total time of O(kn log n+k3n+kh(k2+k2n))
=O(kn log n + kh+2n) (because h ≥ 1).

Theorem 6 An optimal order-k Delaunay triangula-
tion of a simple polygon with n boundary vertices and
h ≥ 1 components inside that optimizes a decompos-
able measure can be computed in O(nk log n+kh+2n)
expected time.

5 Application to point sets

Any point set can be triangulated using the results
from the previous sections if it is seen as a polygon
made of its convex hull with points inside. In gen-
eral, this will lead to a running time exponential in
n, so this is of no practical use. For higher order De-
launay triangulations, the situation might be better.
Given a point set and an order k, there is always a
set of fixed edges that are present in any order-k tri-
angulation, and partition the convex hull of the point
set into a number of polygons with components in-
side. For k = 1, it is known that these components
are always empty triangles or quadrilaterals [6]. For
k > 1 this is not true anymore, but preliminary ex-
perimental results suggest that in practice, for small
values of k, the polygons created contain only a few
components (Figure 3). Therefore it is possible that
the algorithms presented here can be used in practice
to triangulate point sets for small values of k.

1Actually, it may happen that none of these edges are in
any optimal triangulation. That can occur only if uv crosses a
boundary edge of the polygon that is not useful order-k. There-
fore our algorithm we will also consider that boundary edge.

Figure 3: Fixed edges: k = 2 (left) and k = 4 (right).

6 Discussion

We studied algorithms to find higher order Delaunay
triangulations for polygons that optimize a decom-
posable measure. An existing algorithm for polygon
triangulation was extended to optimize over this spe-
cial class of triangulations. Their specific properties
allowed to improve the running time substantially, re-
ducing a O(n2) factor to O(k2), a considerable im-
provement since k will be, in general, significantly
smaller than n [3]. Even though not discussed here,
other measures, like maximum vertex degree or num-
ber of local minima in a terrain, can also be optimized
using a similar approach.

References

[1] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell,
and T. S. Tan. Edge insertion for optimal triangula-
tions. Discrete Comput. Geom., 10(1):47–65, 1993.

[2] B. Chazelle and H. Edelsbrunner. An optimal al-
gorithm for intersecting line segments in the plane.
In Proc. 29th Annu. IEEE Sympos. Found. Comput.
Sci., pages 590–600, 1988.

[3] T. de Kok, M. van Kreveld, and M. Löffler. Gen-
erating realistic terrains with higher-order Delaunay
triangulations. Comput. Geom. Theory Appl., 36:52–
65, 2007.

[4] H. Edelsbrunner and T. S. Tan. A quadratic time
algorithm for the minmax length triangulation. SIAM
J. Comput., 22:527–551, 1993.

[5] M. L. Fredman, J. Komlos, and E. Szemeredi. Storing
a sparse table with O(1) worst case access time. J.
ACM, 31(3):538–544, July 1984.

[6] J. Gudmundsson, M. Hammar, and M. van Krev-
eld. Higher order Delaunay triangulations. Comput.
Geom. Theory Appl., 23:85–98, 2002.

[7] J. Hershberger and S. Suri. A pedestrian approach to
ray shooting: Shoot a ray, take a walk. J. Algorithms,
18:403–431, 1995.

[8] J. M. Keil and T. S. Vassilev. Algorithms for optimal
area triangulations of a convex polygon. Comput.
Geom. Theory Appl., 35(3):173–187, 2006.

[9] G. T. Klincsek. Minimal triangulations of polygonal
domains. Discrete Math., 9:121–123, 1980.

[10] C. Levcopoulos and A. Lingas. Fast algorithms for
greedy triangulation. BIT, 32(2):280–296, 1992.

197

23rd European Workshop on Computational Geometry, 2007

Notes on the Dynamic Bichromatic All-Nearest-Neighbors Problem

Magdalene G. Borgelt∗ Christian Borgelt†

Abstract

Given a set S of n points in the plane, each point
having one of c colors, the bichromatic all-nearest-
neighbors problem is the task to find (in the set S) a
closest point of different color for each of the n points
in S. We consider a dynamic variant of this prob-
lem where the points are fixed but can change color.
More precisely, we consider restricted problem in-
stances, which allow us to improve over the time
needed for solving the problem from scratch after each
color change. In these variants we maintain, in O(n)
time per color change, a data structure of size O(cn)
or O(n), with which the closest neighbor of different
color of any point in S can be found in time O(log n),
and the restrictions allow us to bound the number of
look ups that are necessary in each step.

1 Introduction

Point proximity problems have been studied intensely
over the years. One of the simplest instances is the
closest pair problem, which consists in the task to find
a closest pair of points from a set S of n points in d-
dimensional space. It can be solved in O(n log n) time
[5]. Its colored counterpart can be solved by comput-
ing a Euclidean minimum spanning tree, thus bound-
ing the time complexity by the one of computing such
a tree [10]. Better results are known for the special
cases of 2 colors and 2 as well as 3 dimensions [1].

There are two dynamic versions of this problem. In
the uncolored variant, the set S is modified by insert-
ing or deleting points. [6] presents a data structure of
size O(n) that maintains a closest pair of S in O(log n)
update time per insertion or deletion of a point. In the
colored variant, the points in S are fixed, but they can
change color dynamically. [10] showed that for an ar-
bitrary number of colors the bichromatic closest pair
can be maintained in O(d+log log n) update time per
color change with a data structure of size O(n).

A natural extension of the closest pair problem is
the all-nearest-neighbors problem, which is the task of
finding the nearest neighbors for all points of a set S of
n points. It can be solved, for arbitrary dimension d,
in O(n log n) time [18]. The colored variant of this

∗Department of Information and Computing Sciences,
Utrecht University, Netherlands, magdalene@cs.uu.nl

†European Center for Soft Computing, Edificio Cientifico-
Tecnologico, c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres,
Asturias, Spain, christian.borgelt@softcomputing.es

problem consists in the following task: given a set S
of n points, each having one of c colors, find (in the
set S) a closest point of different color for each of
the n points in S. It can be solved in the plane in
O(n log n) time for an arbitrary number of colors [2].
The static colored all-nearest-neighbor problem has
applications in spatial databases and data mining [15,
13, 8, 19] and in information retrieval [7, 9].

Again there are two dynamic versions of this prob-
lem. In the uncolored variant, S is modified by in-
serting or deleting points. It can be solved by main-
taining a Voronoi diagram for the set of points, thus
bounding the time complexity to that of updating a
Voronoi diagram (which in 2 dimensions takes O(n)
time per insertion or deletion, see Section 4). In the
colored version the points in S are fixed, but they
can change color dynamically. We consider this prob-
lem only in the plane (d = 2) and confine ourselves
to restricted problem instances, which allow us to im-
prove on the time that would be needed for solving the
problem from scratch for each color change (leading
to O(n log n) time per color change, since the static,
colored all-nearest-neighbors problem can be solved
in the plane with this time complexity).

2 A Closer Look at the Problem

Suppose that we obtained, by some algorithm, the
closest bichromatic neighbor for each point in S for a
given coloring of the points. What makes it difficult to
maintain these closest neighbors under color changes?
Obviously it is not that a point that changed from
color i to color j is now eligible as the closest bichro-
matic neighbor of (other) points of color i. This type
of update could easily be achieved in linear time: tra-
verse all points of color i and replace their previously
closest bichromatic neighbor if the point that changed
color is closer. The difficulty comes from the comple-
mentary situation (see Figure 1): if the point that
changed color from i to j was the closest bichromatic
neighbor of some points of color j, a new bichromatic
closest neighbor has to be found for each of these
points. This is difficult, because all points not having
color j are candidates for the new bichromatic clos-
est neighbor, and simply searching them would take
linear time per point that lost its closest neighbor.

The first idea to handle this problem is to maintain
a data structure for all differently colored neighbors of
a point, so that the next closest can be found quickly

198

EWCG 2007, Graz, March 19–21, 2007

Figure 1: If the white point in
the middle changes color, all black
points need a new closest neighbor.

if the closest becomes invalid due to a color change.
A natural choice for such a data structure would be a
heap—like a binomial heap or a Fibonacci heap—for
each point, which contains the bichromatic neighbors
of that point. Unfortunately, this would not lead to a
time complexity per color change that is better than
solving the problem from scratch: in the worst case a
linear number of heaps have to be updated by delet-
ing points from them, and even the amortized time
complexity of a deletion is O(log n), thus leading to
a time complexity of O(n log n) per color change. In
addition, the total size of all heaps would be O(n2).

3 Restricted Problem Instances

The efficiency of solutions to dynamic point proximity
problems is measured by parameters like the prepro-
cessing time, the space needed to store the data struc-
tures, the time needed to update the data structures,
and the time needed to answer a user-defined query.
When we studied the dynamic all-nearest-neighbor
problem, we discovered that some options concerning
the last two items in this list had not been investi-
gated fully, and that there was room for improvement
in certain restricted problem instances. Our ratio-
nale is that not all applications require solutions to
the general problem and therefore faster solutions to
restricted instances may be useful in practice.

Our ideas mainly rest on the insight that the stan-
dard problem can be seen as the task to maintain
a data structure that allows a user to query for the
closest, differently colored neighbor of any point in
constant time. Unfortunately, this turns out to be
surprisingly difficult. However, we found that it is ac-
tually fairly easy to maintain, in linear time, data
structures that allow a user to query for the clos-
est neighbor of any point in S in time O(log n) per
point. Hence, if we have an application in which a
user queries for the closest neighbor of, say, only a
constant number of points after each color change,
such a data structure is already very useful.

In addition, if we actually want to maintain, at any
point in time, knowledge about the closest neighbor
of each point in S, then such a solution can lead to
an improvement under constraints. For example, if
we face a restricted problem instance in which a color
change only invalidates a sub-linear number of bichro-
matic neighbors (at least on average), having to look
up the new neighbors still improves on the time com-
plexity of solving the problem from scratch.

This reasoning led us to two restricted problem in-
stances, in which improvements are possible. Sup-

pose, in the first place, that the number of points that
may have the same color is limited to kn

c , where n is
the total number of points, c the number of colors, and
k a real-valued constant greater than 1. Intuitively,
this means that the color distribution may not devi-
ate (upwards) more than a factor k from a uniform
one. In this case we show that the update, maintain-
ing knowledge of all closest neighbors (i.e., lookup in
constant time per point), can be done in O(n

c log n)
time per color change, while solving the problem from
scratch still incurs O(n log n) time.

Alternatively, suppose that the sequence of points
that change color is a concatenation of arbitrary per-
mutations of the point set. In other words, in each
section of n color changes that starts at index kn,
k ∈ IN0, each point appears at most once. Thus on
average each point changes color every n steps, with
0 being the minimum and 2n− 2 being the maximum
number of steps. For this case we show that an up-
date takes O(n) time on average, even though it can
be as bad as O(n2) in the worst case. (It should be
noted that, in principle, it is possible to generalize this
result beyond concatenations of permutations, pro-
vided that on average a point still changes color every
n steps. However, we confine ourselves to the more
restricted version as this simplifies the analysis.)

4 Preliminaries

The data structures we use are always sets of Voronoi
diagrams in the plane. Therefore we recall some prop-
erties of Voronoi diagrams that we need to show the
properties of the update algorithms.

Given a set S of points in the plane, the Voronoi
region VR(p) of a point p in S is the set of all points
in the plane that are closer to the point p than to any
other point in S. The Voronoi diagram VD(S) of S is
the collection of all Voronoi regions of the points in S.
Two points in S are said to be Voronoi neighbors if
the closures of their regions have more than one point
in common. These common points form a so-called
Voronoi edge. Sometimes a Voronoi diagram is also
defined as the union of all Voronoi edges.
Observation 1 The number of Voronoi neighbor
pairs in a Voronoi diagram for a set S of n points
is at most 3n− 6 if n > 3.

This observation follows immediately from the fact
that the Voronoi diagram of a set S of points is closely
related to the Delaunay triangulation of S: each mid-
perpendicular of an edge in the Delaunay triangula-
tion gives rise to at most one Voronoi edge. Therefore
the neighbor graph of the Voronoi diagram (which is
obtained by connecting all Voronoi neighbors in S by
an edge) is a subgraph of the Delaunay triangulation.
As a consequence the neighbor graph has at most as
many edges as the Delaunay triangulation, which, as
any triangulation, has 3n− 6 edges.

199

23rd European Workshop on Computational Geometry, 2007

Observation 2 The sum of degrees in the neighbor
graph, over all points in S, is at most 6n− 12.

This observation follows trivially from the preceding
one, since each edge (Voronoi neighbor pair) con-
tributes to the degree of exactly two points.

The Voronoi diagram of n points can be computed
in O(n log n) time and stored in O(n) space and these
bounds have been shown to be optimal in the worst
case [16]. They can also easily be preprocessed for
point location queries. The methods of [14] and [11],
when combined with a linear time algorithm for trian-
gulating simple polygons [17], need O(n) preprocess-
ing time. After preprocessing the Voronoi diagram,
a point location query can be answered in O(log n)
time [4]. It was also shown that n-point Voronoi di-
agrams can be updated in O(n) worst case time per
insertion or deletion of a point [12]. Consequently, a
data structure allowing for point location queries in
Voronoi diagrams can be maintained in O(n) update
time per insertion or deletion of a point.

5 Constrained Color Distribution

For the cases where the user queries only for the
closest neighbors of a restricted number of points af-
ter each color change or the number of points hav-
ing the same color is bounded by kn

c , we form the
sets Si = {p ∈ S | p has color i}, i = 1, . . . , c, and
Ci = S − Si (that is, the complement sets of points
for each color). Then we build the Voronoi diagrams
VD(Ci), i = 1, . . . , c, which takes O(n log n) time per
Voronoi diagram and thus O(cn log n) total time. Pre-
processing these Voronoi diagrams for point location
adds O(cn) time and thus does not change the overall
time complexity. The total size of the Voronoi dia-
grams is O(cn), since each has worst case size O(n).

In order to maintain this data structure when a
point p changes color from i to j, we have to update
two Voronoi diagrams, namely VD(Ci) and VD(Cj).
The former has to be updated by inserting p, since p
now has color j and thus is in the complement of Si,
the latter by deleting p, since p is now in Sj . These
two updates take O(n) time each (see Section 4).

Of course, updating the two Voronoi diagrams only
yields a data structure that allows us to query for the
closest neighbor of each point in O(log n) time. How-
ever, suppose we queried the initial Voronoi diagrams
with all points and recorded the closest bichromatic
neighbor of each point. In order to update this di-
rect knowledge about closest bichromatic neighbors,
we distinguish again the two situations discussed in
Section 2. For all points in Ci (except p), we check
whether p is now the closest bichromatic neighbor
and update accordingly. This obviously takes at most
O(n) time. For all points in Sj that had p as theirs
closest bichromatic neighbor (which may be all points
of Sj in the worst case), we have to look up new closest

bichromatic neighbors. Due to the restricted problem
instance we consider, we know that |Sj | ≤ kn

c and
thus that we have to execute at most O(n

c) queries,
each of which takes O(log n) time. Therefore the to-
tal update time is O(n

c log n) if we maintain a data
structure in which the closest neighbor of any point
can be found in constant time.

6 Constrained Update Sequence

For the case where the sequence of points that change
color changes is a concatenation of arbitrary permu-
tations of all points in S, we use the algorithm of
[2] for the static colored all-nearest-neighbors prob-
lem. This algorithm builds c + 1 Voronoi diagrams:
one for all points in S (that is, VD(S)) and one for
each of the c colors. The latter are formed for the
sets Ti = {p ∈ Ci | p has a Voronoi neighbor in Si},
where “Voronoi neighbor” is meant w.r.t. VD(S). The
reason is that in order to find a closest neighbor of dif-
ferent color for each point, it suffices to locate every
point pi ∈ Si in the Voronoi diagram of Ti [2]. Hence
the Voronoi diagrams VD(Ti), i = 1, . . . , c, are built.
In addition, since we need this information for the
update, we record for each (occurrence of a) point in
each set Ti how many Voronoi neighbors it has in Si.

Due to Observation 2 we have
∑c

i=1 |Ti| ∈ O(n)
and thus building all Voronoi diagrams VD(Ti), i =
1, . . . , c, takes O(n log n) time. Preparing them for the
queries takes O(n) time, hence the overall time com-
plexity is still O(n log n). The total size of all Voronoi
diagrams is O(n), and the total number of counters
for the Voronoi neighbors in VD(S) is also O(n).

In order to maintain this data structure when a
point p changes color from i to j, we have to update
two Voronoi diagrams, namely VD(Ti) and VD(Tj).
Let VN(p) be the set of all Voronoi neighbors (w.r.t.
VD(S)) of p in Si, that is, VN(p) = {q ∈ S |
q is a Voronoi neighbor of p}. Since p is now in Sj ,
we have to add to Tj all points of VN(p) that are not
yet in Tj (and must update VD(Tj) accordingly), and
since p is no longer in Si, we have to remove those
points in VN(p) that do not have any other Voronoi
neighbor in Si from Ti (and must update VD(Ti) ac-
cordingly) — see Figure 2 for an example. Especially
for the latter operation the Voronoi neighbor counters
are important, because they make it easy to deter-
mine whether a point has another Voronoi neighbor
that entitles it to stay in the set Ti.

Updating the Voronoi diagrams takes O(n) time per
point that has to be added or deleted. Since, in the
worst case, a point can have O(n) Voronoi neighbors,
all of which may have to be added or deleted, the
worst case time complexity of an update due to a color
change is O(n2). However, one may also consider a
scheme where the Voronoi diagrams are rebuild if too
many points (more than k log n for some constant k)

200

EWCG 2007, Graz, March 19–21, 2007

a

b c

d
Figure 2: If a changes color from
grey to black, b and c are re-
moved from VD(Tgrey) and c and
d are inserted into V D(Tblack).

have to be added or deleted, thus reducing the worst
case time complexity to O(n log n).

However, if the sequence of points that change color
is a concatenation of arbitrary permutations of all
points in S, we obtain a much better average time
complexity. In order to demonstrate this, we con-
sider one permutation of all points from the sequence
of color changes, say, the section from step kn to step
(k+1)n−1, k ∈ IN0. Let ps be the point that changed
color in step s. Then we know from Observation 2
that

∑n
s=1 VN(ps) ∈ O(n). Consequently, at most a

linear number of points have to be inserted into and
deleted from Voronoi diagrams in n steps. Since each
of these updates take O(n) time each, the total up-
date time in n steps is bounded by O(n2). Therefore
the average update time is linear per color change.

Of course, this procedure only maintains a data
structure with which the closest bichromatic neigh-
bor can be found in (log n) time. In order to improve
the situation for a constant time lookup, we have to
draw again on the restriction of the number of points
that may have the same color. However, the advan-
tage of this procedure is the smaller size of the data
structure that needs to be maintained (namely O(n)
space instead of O(cn)).

7 Conclusions

We described two restrictions that may be introduced
for the dynamic version of the all-nearest neighbor
problem, in which points are fixed, but can change
color. These restrictions allowed us to improve the
time complexity of the update operations compared
to that needed for solving the problem from scratch
after each color change.

Acknowledgments

Partially funded by the Netherlands Organization for Sci-

entific Research (NWO) under FOCUS/BRICKS grant

number 642.065.503.

References

[1] P. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and
E. Welzl. Euclidean Minimum Spanning Trees and
Bichromatic Closest Pairs. Discrete and Computa-
tional Geometry 6:407–422. 1991

[2] A. Aggarwal, H. Edelsbrunner, P. Raghavan, and
P. Tiwari. Optimal Time Bounds for Some Prox-
imity Problems in the Plane. Information Processing
Letters 42:55–60. 1992

[3] F. Aurenhammer. Voronoi Diagrams — A Survey
of a Fundamental Geometric Data Structure. ACM
Computing Surveys 23(3):345–405. 1991

[4] F. Aurenhammer and R. Klein. Voronoi Diagrams.
In: J.-R. Sack and J. Urrutia, eds. Handbook of Com-
putational Geometry, 210–290. Elsevier Science, Am-
sterdam, Netherlands, 2000

[5] J. Bentley and M. Shames. Divide and Conquer in
Multidimensional Space. Proc. 8th Ann. ACM Symp.
Theory of Computing, 220–230. 1976

[6] S. Bespamyatnikh. An Optimal Algorithm for Closest
Pair Maintenance. Proc. 11th Ann. Symp. Computa-
tional Geometry, 152–161. 1995

[7] W. Burkhard and R. Keller. Some Approaches to
Best-match File Searching. Communications of the
ACM, 230–236. 1973

[8] F. Cazals. Effective Nearest Neighbours Searching
on the Hyper-cube, with Applications to Molecular
Clustering. Proc. 14th Ann. ACM Symp. Computa-
tional Geometry. 1998

[9] L. Devroye and T. Wagner. Nearest Neighbor Meth-
ods in Discrimination. In: P.R. Krishnaiah and L.N.
Kanal, eds. Handbook of Statistics, Vol. 2. North-
Holland, Netherlands, 1982

[10] A. Dumitrescu and S. Guha. Extreme Distances in
Multicolored Point Sets. Proc. Int. Conf. Computa-
tional Science (ICCS 2002), Part III , LNCS 2331,
14–25. Springer-Verlag, Heidelberg, Germany 2002

[11] H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal
Point Location in a Monotone Subdivision. Report 2,
Digital Systems Research Center, Palo Alto, Califo-
nia, USA 1984

[12] I. Gowda, D. Kirkpatrick, D. Lee, and A. Naamad.
Dynamic Voronoi Diagrams. Information Theory,
IEEE Transactions 29:724–731. 1983

[13] T. Hastie and R. Tibshirani. Discriminant Adap-
tive Nearest Neighbor Classification. Proc. 1st Int.
Conf. Knowledge Discovery and Data Mining, 142–
149. 1995

[14] D. Kirkpatrick. Optimal Search in Planar Subdivi-
sions. SIAM Journal Comp. Sci. 28–35. 1983

[15] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, USA 1989

[16] M. Shamos and D. Hoey. Closest Point Problems.
Proc. 16th Ann. IEEE Symp. Foundations of Com-
puter Science, 151–162. 1975

[17] R. Tarjan and C. van Wyk. A Linear-time Algorithm
for Triangulating Simple Polygons. Proc. 18th Ann.
ACM Symp. Theory of Computing. 1985

[18] P. Vaidya. An O(n log n) Algorithm for the All-
Nearest-Neighbors Problem. Discrete and Compu-
tational Geometry 4:101–115. 1989

[19] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao.
All-Nearest-Neighbors Queries in Spatial Databases.
Proc. 16th Int. Conf. Scientific and Statistical
Database Management, 297–306. 2004

201

23rd European Workshop on Computational Geometry, 2007

Improving the Construction of
the Visibility–Voronoi Diagram

Mojtaba Nouri Bygi∗ Mohammad Ghodsi†

Abstract

Ron Wein et al. [4] introduced the Visibility-Voronoi
diagram for clearance c, denoted by V V (c), which is
a hybrid between the visibility graph and the Voronoi
diagram of polygons in the plane. It evolves from the
visibility graph to the Voronoi diagram as the param-
eter c grows from 0 to ∞. This diagram can be used
for planning natural-looking paths for a robot trans-
lating amidst polygonal obstacles in the plane. They
also proposed an algorithm that is capable of pre-
processing a scene of configuration-space polygonal
obstacles and constructs a data structure called the
VV-complex.

As [4] used a straightforward approach for con-
structing VV(c)-diagram, its construction time is
O(n2 log n), which is not optimum. In this paper we
improve this time to O(k log n), where k is the num-
ber of visibility edges, based on the method used for
the preprocessing of the VV-complex in [4].

1 Introduction

Ron Wein et al. [4] have studied the problem of plan-
ning a natural-looking collision-free path for a robot
with two degrees of motion freedom moving in the
plane among polygonal obstacles. By “natural- look-
ing” they mean that the robot should select a path
that will be as close as possible to the path a human
would take in the same scene to reach the goal config-
uration from the start configuration. They introduced
a new data structure, called the VV(c)-diagram, yield-
ing natural-looking motion paths, meeting all three
criteria mentioned above. It evolves from the visibil-
ity graph to the Voronoi diagram as c grows from 0
to ∞, where c is the preferred amount of clearance.
Beside the straightforward algorithm for construct-
ing the VV(c)-diagram for a given clearance value c,
they also propose an algorithm for preprocessing a
scene of configuration-space polygonal obstacles and
constructing a data structure called the VV-complex.

∗Department of Computer Engineering, Sharif Univer-
sity of Technology, P.O. Box 11365-9517, Tehran, Iran,
nouribaygi@ce.sharif.edu

†Department of Computer Engineering, Sharif Univer-
sity of Technology, and IPM School of Computer Science
(No. CS1382-2-02), P.O. Box 19395-5746, Tehran, Iran,
ghodsi@sharif.edu

The VV-complex can be used to efficiently plan mo-
tion paths for any start and goal configuration and
any given c.

In this paper we reduce the time needed to con-
struct the VV(c)-diagram for a given c-value to
O(k log n) where k is the number of visibility edges
of the polygons, based on the method used for the
preprocessing of the VV-complex in [4].

2 Constructing the VV(c)-Diagram

Here we give the outline of our algorithm for con-
structing the VV(c)-diagram of an input set P of pair-
wise interior-disjoint polygons with n vertices in total
for a given c-value, say cm, in O(k log n) where k is
the number of visibility edges of the initial visibility
graph of the polygons.

Our approach is to construct the visibility graph of
the polygons, grow c while stopping at critical events
that would change the visibility graph, until we get
to cm. This approach is very similar to that of [4]
in preprocessing of VV-complex, in which they spend
O(n2 log n) time in computing the validity range of
any possible edge of VV-diagram, while we only need
the valid edges at cm.

We start with a set of visibility edges containing
all pairs of the polygonal obstacles. We also include
the original obstacle edges in this set, and treat our
visibility edges as directed, such that if the vertex u
sees the vertex v, we will have two directed visibility
edges ~uv and ~vu.

As c grows larger than zero, each of the original
visibility edges potentially spawns as many as four
bitangent visibility edges. These edges are the bi-
tangents to the circles Bc(u) and Bc(v) (where Br(p)
denotes a circle centered at p whose radius is r) that
we name ~uvll, ~uvlr, ~uvrl and ~uvrr, according to the
relative position (left or right) of the bitangent with
respect to u and to v.

Let αuv be the angle between the vector ~uv and the
x-axis, and d(u, v) the Euclidean distance between u
and v, then it is easy to see that the two edges ~uvll

and ~uvrr retain the same slope αuv for increasing c-
values. The slope of the other two edges changes as
c grows: ~uvrl rotates counterclockwise and ~uvlr ro-
tates clockwise by the same amount, both around the
midpoint 1

2 (u+ v) of the original edge, so their slopes

202

EWCG 2007, Graz, March 19–21, 2007

become αuv + ϕuv(c) and αuv − ϕuv(c), respectively,
where ϕuv(c) = arcsin(2c

d(u,v)).
Note that for a given c-value, it is impossible that

all four edges are valid (at most three can be valid,
and the ll- and rr-edges can never be valid simulta-
neously). Our goal is to proceed in growing c while
keeping track of valid visibility edges until we reach
the final cm value.

If an edge is valid, then it must be tangent to both
circular arcs associated with its end-vertices. There
are several reasons for an edge to change its validity
status:

• The tangency point of e to either Bc(u) or to
Bc(v) leaves one of the respective circular arcs.

• The tangency point of e to either Bc(u) or to
Bc(v) enters one of the respective circular arcs.

• The visibility edge becomes blocked by the inte-
rior of a dilated obstacle.

The important observation is that at the moment that
a visibility edge ~uv gets blocked, it becomes tangent
to another dilated obstacle vertex w, so essentially
one of the edges associated with ~uv becomes equally
sloped with one of the edges associated with ~uw. The
first two cases mentioned above can also be realized
as events of the same nature, as they occur when one
of the ~uv edges becomes equally sloped with ~uwlr (or
uwrl), when v and w are neighboring vertices in a
polygonal obstacle.

This observation stands at the basis of the algo-
rithm we devise for constructing the VV(c)-diagram:
We sweep through increasing c-values, stopping at
critical visibility events, which occur when two edges
become equally sloped, until we reach the goal clear-
ance cm. We note that the edge ~uvll (or ~uvlr) can only
have events with arcs of the form ~uwll or ~uwlr, while
the edge ~uvrl (or ~uvrr) can only have events with arcs
of the form ~uwrl or ~uwrr. Hence, we can associate two
circular lists Ll(u) and Lr(u) of the left and right-
edges of the vertex u, respectively, both sorted by the
slopes of the edges. Two edges can have an event at
some c-value only if they are neighbors in the list for
infinitesimally smaller c. At these event points, we
should update the validity of the edges involved, and
also update the adjacencies in their appropriate lists,
resulting in new events.

In the rest of the paper, we will use the notation
~uv to represent any of the four edges ~uvll, ~uvlr, ~uvrl

or ~uvrr. Moreover, we will use L(u) to denote either
Ll(u) or Lr(u) (whether we choose the left or the right
list depends on the type of edge involved).

As mentioned in [4], an endpoint of a visibility
edge in the VV(c)-diagram may also be an intersec-
tion point of dilated obstacle boundaries, which by
definition also lies on the Voronoi diagram. Such an
endpoint that lies on the Voronoi diagram is called a

chain point, as it can be associated with a Voronoi
chain in fact, as a Voronoi chain is either monotone
or has a single point with minimal clearance, we can
associate at most two chain points with every Voronoi
chain. Our algorithm will also have to compute the
validity for edges connecting a chain point with a di-
lated vertex or with another chain point. For that
purpose, we will have a list L(p) of the outgoing edges
of each chain point p, sorted by their slopes (notice
that we do not have to separate the “left” edges from
the “right” edges in this case).

2.1 Construction

2.1.1 Initialization

Our algorithm start as follows:

1. Compute the visibility graph of the polygonal ob-
stacles. This can be done in O(k + n log n) [3]
where k is the number of visibility edges, but a
simpler O(k log n) algorithm [3] is also sufficient
for our algorithm.

2. Examine each bitangent edge in the visibility
graph: For an infinitesimally small c only one
of the four edges it spawns is valid - assign true
to be the value of the validity of this edge.

3. Initialize an empty event queue Q, storing events
by their increasing c-order. Hereafter, we only
add events with c-order less than cm to the queue.

4. For each obstacle vertex u:

(a) Construct Ll(u) and Lr(u), based on the
edges obtained in step 2. This can be done
in total k log n time.

(b) Examine each pair of the neighboring edges
e1, e2 in Ll(u) and in Lr(u), compute the
c-value at which e1 and e2 become equally
sloped, if one exists. If the computed c is less
than cm, insert the visibility event 〈c, e1, e2〉
to Q. There are O(k) of such events and
updating the queue takes O(k log n) time.

5. Compute the Voronoi diagram of the polygonal
obstacles (O(n log n))

6. For each non-monotone Voronoi chain, locate the
arc a that contains the minimal clearance value
cmin of the chain in its interior, and insert the
chain event 〈cmin, a〉 to Q.

2.1.2 Event Handling

While the event queue is not empty, we proceed by
extracting the event in the front of Q, associated with
minimal c-value, and handle it according to its type.
We note that the visibility events (created, for exam-
ple, by step 4b of the initialization stage) always come

203

23rd European Workshop on Computational Geometry, 2007

in pairs - that is, if ~uv becomes equally sloped with
~uw, we will either have an event for the opposite edges
~vu and ~vw, or for the opposite edges ~wu and ~wv. We
therefore handle a pair of visibility events as a single
event:

Visibility event: The edges ~uv and ~uw become
equally sloped for a clearance value c′, and at the same
time the edges ~vu and ~vw become equally sloped.

1. The edges ~uv and ~vu are blocked. Delete them
from the edges of the visibility graph.

2. Remove the other event involving ~uv (based on
its other adjacency in L(u)) from Q, and delete
this edge from L(u). Examine the new adjacency
created in L(u) and insert its visibility event if is
less than cm into the event queue Q.

3. Repeat step 2 for the opposite edge ~vu.

4. If the edge ~uv used to be valid before it was
deleted and the edges ~uw and ~vw do not have
a true validity value yet, assign it to true, be-
cause these edges have become bitangent for this
c-value.

The operations above can be done in O(k log n) be-
cause each O(k) edges of the visibility graph can be
blocked at most once and deleting such edge would
produce O(1) new events.

Chain event: The value c equals the minimal
clearance of a Voronoi chain χa, obtained on the arc
a, which is equidistant from an obstacle vertex u and
another obstacle feature. Let z1 and z2 be a’s end-
points.

1. Initiate two chain points p1(χa) and p2(χa) as-
sociated with the Voronoi chain χa. As c grows,
p1(χa) moves toward z1 and p2(χa) moves toward
z2.

2. For all edges e = ~ux incident to u, compute the
c-value c′ for which e becomes incident to one of
the chain points pi(χa) of a. If c′ is less than
cm and is within the range of the Voronoi arc a,
then insert the tangency event 〈c′, e, pi(χa)〉 to
the event queue.

3. If a is equidistant to u and to another obstacle
vertex v, repeat the last step for the edges inci-
dent to v.

4. Let c1 and c2 be the clearance values of z1

and z2, respectively. Insert the endpoint events
〈c1, p1(χa), z1〉 and 〈c2, p2(χa), z2〉 to the event
queue.

As each edge of the visibility graph is became inci-
dent to a chain point at most twice (one for each of its

vertices), so the total time spent in processing chain
events is O(k log n).

When dealing with a chain event, we introduced
two additional types of events: tangency events and
endpoint events. We next explain how we deal with
these events.

Tangency event: An edge e = ~ux (the endpoint x
may either represent a dilated vertex or a chain point)
becomes tangent to Bc(u) at a chain point p(χa) as-
sociated with the Voronoi arc a.

1. Remove all events involving the edge e from Q.

2. The edge e is blocked, so remove this edge from
L(u). Note that it is possible to disregard the
new adjacency created in u’s list.

3. Insert a reincarnate of e to L(p(χa)), and as-
sign its validity value to true. Examine the new
adjacencies in L(p(χa)) and insert new visibility
events, if they are smaller than cm, into Q.

4. Replace the edge ~xu in L(x) by ~xp(χa) and
recompute the critical c-values of the visibility
events of this edge with its neighbors. Modify
the corresponding visibility events in Q.

5. In case x is a dilated obstacle vertex, we may have
another tangency event in the queue, associated
with ~xu, which was computed under the (false)
assumption that tangency point of the edge on
x coincides with a chain point before the one on
u does. In this case, we have to locate the tan-
gency event from Q that is associated with ~xu
and recompute the c-value associated with it.

Again, each edge of the visibility graph leaves a
L(u) list and enters a L(χa) list at most twice, so
the total time spent in processing tangency events is
O(k log n).

Endpoint event: A chain point p(χa) reaches the
endpoint z of a. If z is a local maximum of the clear-
ance function, there are multiple event points associ-
ated with it, so we should just assign a false validity
value to all edges in the edge lists of all chain points
coinciding with z and delete them from the visibility
graph. If z is not a local maximum, we have to deal
with one of the following two cases:

• z is incident only to two Voronoi arcs a and a′

belonging to the same chain (χa = χa′). In this
case the chain point p(χa) is transferred from a to
a′, and we only have to examine the adjacencies
in L(p(χa′)) and modify the corresponding visi-
bility events in the queue (as the slopes of these
arc become a different function of c from now on).
We also have to deal with the opposite edges, as
we did in step 4 of the tangency-event procedure.
If one of the polygon features associated with the

204

EWCG 2007, Graz, March 19–21, 2007

new arc a′ is a vertex u, iterate over all edges in-
cident to u and check whether each edge has a
tangency event in the range of the new Voronoi
arc a′ – if so, add this event to the queue Q. If
a′ is associated with two vertices u and v, repeat
the procedure above for v as well.

• z is the endpoint of the chain χa (i.e. a Voronoi
vertex) and it is not a local maximum of the
clearance function. In this case we may have sev-
eral chains χ1, χ2 . . . ending at z, having a syn-
chronous endpoint event, and a single monotone
chain χ̂ beginning at z:

1. Create a new chain point p(χ̂) associated
with the monotone chain.

2. Assign the validity value of each edge in
L(p(χ1)),L(p(χ2)), . . . to false at clearance
c, where c is the clearance value at z. Re-
move all visibility events associated with
these edges from Q.

3. Insert reincarnates of all edges from
L(p(χ1)) into L(p(χ̂)), and assign their va-
lidity value to true. Examine all adjacencies
in L(p(χ̂)) and add the appropriate visibil-
ity event to Q. We also have to deal with
the opposite edges, as we did in step 4 of
the chain-event procedure.

Note that in the last step all edge lists of the
chain points ending at z should be equal (L(p(χ1)) =
L(p(χ2)) = . . .), thus we consider only one of these
lists. This event should be dealt with before any vis-
ibility event occurring at the same c-value, in order
to avoid handling visibility events involving duplicate
edges. In fact, when we have several events occurring
at the same c-value, we deal with endpoint events first,
then with visibility events, then chain events and fi-
nally tangency events.

As we stated earlier, the complexity of each obstacle
is O(1), so the complexity of each Voronoi chain is
O(1). Therefore the number of chain events is O(n)
in total and O(1) for each Voronoi chain, and the
number of times an edge would participate in a chain
event is O(1), so the time needed to process all the
chain events is O(k log n).

2.2 Complexity Analysis and Proof of Correctness

As we mentioned before, the algorithm described in
section 2 is based on the algorithm given in [4] for
preprocessing stage of computing VV-complex, so the
proof of correctness would be similar.

Proposition 1 The construction takes O(k log n) in
total, where n is the total number of obstacle vertices
and k is the number of visibility edges in the visibility
graph.

Proof: We first have to compute the visibility
graph, which can be performed in O(k +n log n) time
[1], though the O(k log n) is sufficient for us. This also
accounts for the time needed to construct the initial
edge lists L(u) for each obstacle vertex u (there are
k edges and n edge lists) and label the valid visibility
edges. The construction of the Voronoi diagram can
be performed in O(n log n), and the complexity of the
diagram (the number of arcs) is linear.

After the initialization, the priority queue Q con-
tains O(1) events associated with each of the O(k)
visibility edges, and in addition O(n) chain events.
Any operation on the event queue thus takes O(log n).
The initialization takes O(k log n) time in total.

As the construction algorithm proceeds, it starts
handling events: In total we have O(k) visibility
events, each of them can be handled in O(log n) time.
There are O(n) chain events, and as we said earlier,
they can be handled in O(k log n) time in total. Each
visibility edge can participate in a tangency event
at most twice , so in total there are O(k) tangency
events, each of them can be handled in O(log n) time.
Finally, there are O(n) endpoint events and they will
deal with at most O(k) visibility edges, so we need
O(k log n) time to handle them in total.

3 Conclusion

It this paper we studied VV(c)-diagram designed by
Wein et al. [4] for finding natural-looking paths
amid polygonal obstacles. We presented an algo-
rithm for constructing this data structure that runs
in O(k log n) time, where n is the number of vertices
of the polygons and k is the number of visibility edges
of the visibility graph of the polygons, which is an im-
provement to current result that works in O(n2 log n)
time.

It seems that the VV(c)-diagram for a fixed c-value
may be constructed in O(k + n log n) time, based on
the work of [2], so it may seem we do not need any
preprocessing stage, and it is better to construct the
VV(c)-diagram from scratch whenever we are given a
preferred clearance value.

References

[1] S. K. Ghosh and D. M. Mount. An output sensitive
algorithm for computing visibility graphs. Proc. 28th
Annual IEEE Sympos. Found. Comput. Sci., 1987.

[2] M. Pocchiola and G. Vegter. The visibility complex.
International J. Comput. Geom., 1996.

[3] M. Pocchiola and G. Vegter. Computing the visibility
graph via pseudo-triangulation. In Proc. Annu. ACM
Sympos. Comput. Geom., 1995.

[4] R. Wein, J. P. van den Berg, and D. Halperin. The
Visibility–Voronoi Complex and Its Applications. In
Proc. Annu. ACM Sympos. Comput. Geom., 2005.

205

23rd European Workshop on Computational Geometry, 2007

Polar Diagram with respect to a Near Pole

Bahram Sadeghi Bigham ∗ Ali Mohades †

Abstract

Polar diagram of a set of points on the plane, the
dual and applications of which has been introduced
recently[1, 2]. In this paper we define the Near pole
polar diagram and survey some properties of it. Then
we present an optimal algorithm to obtain it and dis-
cuss the complexity of the algorithm. Also we intro-
duce applications and future works.

Keywords: Polar Diagram, Near Pole Polar Dia-
gram, Voronoi Diagram, Computational Geometry.

1 Introduction

The Voronoi diagram is one of the most funda-
mental concepts in Computational Geometry and
its algorithms and applications have been studied
extensively[6]. This concept has also been generalized
in a variety of directions by replacing the Euclidean
distance with other metrics such as Lp-distance,
weighted distances [9], the geodesic distance[3], the
power distance[8, 10], and a skew distance. However,
some of them are difficult to compute. As the so-
lution to many problems in computational geometry
requires some kind of angle processing of the input,
some other generalizations of Voronoi diagram based
on angle have been studied in [2, 1]. Grima et al.
propose a new locus approach for problems process-
ing angles, the polar diagram. For any position q in
the plane (represented by a point) the site with small-
est polar angle, is the owner of the region where q lies
in. Using this portion, it can be solved by an O(n)
search problem in an optimal O(logn) location prob-
lem and so the polar diagram principle can be used in
some important problems requiring angle processing
in computational geometry. Grima et al. [2] proved
that polar diagram, used as preprocessing, can be ap-
plied to many problems in computational geometry
in order to speed up their processing times. Some of
these applications are the convex hull, visibility prob-
lems, and Path Planning problems. Jarvis’s March

∗Department of Applied Mathematics, Faculty of
Mathematics and Computer Science, Amirkabir Univer-
sity of Technology, No.424, Hafez Ave., Tehran, Iran,
b sadeghi b@aut.ac.ir Corresponding author(B.Sadeghi

B.) Tel:+982164542545, Fax: +982144468109
†Department of Applied Mathematics, Faculty of Mathe-

matics and Computer Science, Amirkabir University of Tech-
nology, No.424, Hafez Ave., Tehran, Iran, mohades@aut.ac.ir

approach can be improved to become an optimal time
process and visibility problems can take advantage of
polar diagram principles as well. Also Sadeghi et al.
introduced in [1] the dual of polar diagram and some
properties and applications.

Polar Diagram is the plane partition with similar
features to those of the Voronoi diagram. In fact,
the polar diagram can be seen in the context of the
generalized Voronoi diagram. The Polar Angle of the
point p with respect to si, denoted as angsi

(p), is the
angle formed by the positive horizontal line of p and
the straight line linking p and si.

Given a set S of n points in the plane, the locus of
points having smaller positive polar angle with respect
to si ∈ S is called Polar Region of si. Thus,

PS(si) = {(x, y) ∈ E2|angSi
(x, y) <

angSj
(x, y);∀j 6= i.

The plane is divided into different regions in such
a way that if the point (x, y) ∈ E2 lies into PS(si), it
is known that si is the first site found performing an
angular scanning starting from (x, y). We can draw
an analogy between this angular sweep and the be-
havior of a radar. Figure 1 depicts the polar diagram
of a set of points in the plane and the final division
constructed using the smallest polar angle criterion.

Although the polar diagram of n points in the plane
is not a graph, we define its dual as well as a dual of
graph. We said, two points (sites) are joined by the
edge e∗ in the dual of polar diagram if and only if their
corresponding faces are separated by the edge e in po-
lar diagram. So we may have some parallel edges or
loops in the dual of a polar diagram. If we omit the
loops and replace the parallel edges with one edge,
then we will have another graph named Extracted
Dual of polar diagram(EDPD) (Figure 2). There is
an optimal algorithm to draw EDPD in [1].

In this paper, we define a new extension of
Voronoi diagram and call it Near Pole Polar Diagram
(NPPD). Then we present an optimal algorithm to
find it and apply NPPD for some applications.

This paper is structured as follows: in Section 2 we
introduce the problem Near Pole Polar Diagram and
present an optimal algorithm to draw it. In Section 3
we present some applications and finally in Section 4
we state some feature works and open problems.

206

EWCG 2007, Graz, March 19–21, 2007

Figure 1: Polar diagram of 6 point sites.

Figure 2: Extracted dual of polar diagram.

2 Polar diagram with respect to a near pole

In this section we introduce the Near pole polar dia-
gram of a set of n point sites in the plane. Also we
are going to present an optimal algorithm to draw it.
Our approach is an incremental approach.

2.1 Near Pole Polar Diagram (NPPD)

We introduce the Near pole polar diagram with sim-
ilar features to those of the Polar diagram that can
be seen in the context of the generalized Voronoi di-
agram [6]. As described in [1, 2], the pole mentioned
lies on the left hand side of the plane at −∞. In the
polar diagram with respect to a near pole, it is as-
sumed that the pole is located on the left hand side
of the sites close to them. This allows us to find more
applications for the problem. For example, the pole
can be considered as the center of vision (eye) of a
robot.

In addition to the given point sites, the point p in
the plane is also given as a pole, and the partitioning
of the plane will depend on the position of p. W.L.O.G
assume that the pole p is located on the left-hand side
of the sites. Figure 3 shows an example of NPPD for
7 points with respect to pole p.

In short, a Near pole polar diagram can be de-
scribed as follows. Initially there is a radar at each
of the point sites looking at the pole. They simulta-
neously start to rotate in counterclockwise direction
and scan their periphery. The region in the plane ob-
served by radar pi before other radars will be called
the region of pi’s NPPD.

Figure 3: Near pole polar diagram of 7 points.

In Figure 4, we are given sites s1 and s2, pole p
and point x in the plane. Since p̂s1x < p̂s2x, in the
plane’s partition, x will belong to the region of s1.
However this partitioning will produce disconnected
regions with curved boundaries and makes the prob-
lem more complex and drawing the corresponding di-
agram more difficult. In this paper we have made an
assumption which not only makes the problem sim-
pler, but also increases its applications.

Figure 4: Our assumption: the line segment ps2

blocks s1’s line of view.

2.2 Incremental approach

In this paper, we are going to present an incremen-
tal algorithm for drawing NPPD, working in optimal
time. In this paradigm, we first compute the tangent
of the line segments sip : i = 1, ..., n and sort them.
Then a straight half line starting at pole p rotates in
clockwise direction around the pole p and sweeps the
plane. The NPPD region of si is built according to
the following theorem.

Theorem 1 Let S′i denote the set of processed points
when point si is reached, S′i = S′i−1 ∪ si. If si ∈

207

23rd European Workshop on Computational Geometry, 2007

NPPDS(sk), sk ∈ S′i−1 then the near pole polar re-
gion of si is the angular sector defined by the half line
from si to the pole p and the half line defined by si

and sk, which does not contain sk.

Proof. Consider point x within the region mentioned
in the theorem. Since according to our initial assump-
tion the line segment psi blocks other sites’ (and spe-
cially sk’s) line of view, then the above mentioned
region in NPPD belongs to si. Also as ŝkpy < ŝipy,
there can not exist any other points such as y within
si’s region (see Figure 5). �

Theorem 1 is the key to compute the NPPD
using the Incremental method. Algorithm 1 de-
scribes the process: S = {s0, s1, ..., sn−1} is given.
TS = {ts0, ts1, ..., tsn−1} is sorted from the largest
member to the smallest one. The NPPD region
of si (NPPDS(si)) is computed when NPPDS(s0),
NPPDS(s1),...,NPPDS(si−1) have been already
processed according to theorem 1.

In what follows an algorithm for drawing NPPD in
the plane is presented which takes optimal θ(nlogn)
time.

Algorithm 1
Input: A set S = {s0, s1, ..., sn−1} of n point sites
and a point p as pole in E2.
Output: NPPD(S, p).
Begin

Step 1: Calculate the tangent of all lines sip
and make new set TS.

Step 2: Sort TS by decreasing order obtaining
TS = {ts0, ts1, ..., tsn−1}

Step 3: Let be TS′ := {ts0}
Step 4: TS := TS − {ts0}
Step 5: While {TS 6= ∅}Do

(a): Let tsi be the maximum value of TS
(b): Do TS′ := TS′ ∪ {tsi} and

TS := TS − {tsi}
(c): Construct NPPDS(si) according to
theorem 1.
(d): Discard all edges inside NPPDS(si)

Endwhile
End.

We can solve a sorting operation in O(nlogn) time
and theorem 1 ensures this time complexity after com-
puting all near pole polar regions.

Assume that n numbers xi; i = 1, ..., n are given.
We can find a function to map the numbers into in-
terval [−1, 1] and calculate n new numbers x′i; i =
1, ..., n. Lets locate n point sites in the plane on
(1, x′i); i = 1, ..., n coordination and the pole p on
the (0, 0) (Figure 6). Now using NPPD for these
point sites with respect to the pole p we can sort the
points (1, x′i); i = 1, ..., n. So in this way we can sort

Figure 5: Incremental approach to drawing NPPD.

Figure 6: Contradiction: sorting n given numbers at
a time less than O(nlogn) .

n given numbers at such time and this is a contradic-
tion. Therefore this time complexity is a lower bound
and we have the following:

Theorem 2 The near pole polar diagram of a set of
n points in the plane with respect to a given pole p
must be computed in θ(nlogn).

3 Some applications

In this section we are going to briefly address a num-
ber of applications for NPPD. But before that, it is
worth mentioning that as in [1], it is possible to define
and solve the extracted dual of NPPD. It can also
be defined for other objects in the plane such as for
line segments, convex polygons and circles.

Let S be a set of n disjoint line segments in the
plane, and let p be a point not on any of the line
segments of S. Using the NPPD of the line segments
with respect to pole p and the extracted dual of it, we

208

EWCG 2007, Graz, March 19–21, 2007

can find all line segments of S that p can see, that is,
all line segments of S that contain some point q so
that the open segment pq does not intersect any line
segment of S.

In addition to the applications of NPPD to com-
puter graphics, visibility and path planning prob-
lems, it is also possible to draw decorative patterns
by assigning certain points in the plane and drawing
NPPD in two directions (with point sites lying on
the left-hand side or the right-hand side of the pole),
with application in architecture. A sample of such
patterns is shown in Figures 7, 8 in which the sites lie
on some concentric circles.

Figure 7: NPPD for some sites which lie on some
concentric circles.

Figure 8: NPPD (in two directions) for some sites
which lie on some concentric circles.

4 Conclusion and future works

We defined in this paper the Near pole polar diagram
(NPPD) and presented an optimal algorithm to find
it. The algorithm runs in θ(nlogn) time for n given
point sites and a given pole p in the plane. We also
briefly introduced some applications of NPPD.

Some problems related to robots’ vision can
be modeled using NPPD and its extracted dual.
NPPD is also closely related to the collision detection
problems, allowing one to employ methods similar to
those in [4].

References

[1] B. Sadeghi Bigham, A. Mohades, The dual of polar
diagram and its extraction. in: International Con-
ference of Computational Methods in Sciences and
Engineering (ICCMSE), Greece, 2006.

[2] C. I. Grima, A. Marquez and L. Ortega, A new 2D
tessellation for angle problems: The polar diagram.
Computational Geometry, 34 ,2006, 58-74.

[3] Zahra Nilforoushan, Ali Mohades, Hyperbolic
Voronoi diagram. ICCSA (5), 2006, 735-742.

[4] L. Ortega, F. Feito, Collision detection using Polar
diagram. Computers and Graphics 29, 2005, 726-737.

[5] C.I. Grima, A. Mrquez, Computational Geometry on
Surfaces. Kluwer Academic Publishers, 2001.

[6] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu,
SpatialTessellationsConcepts and Applications of
Voronoi diagrams, second ed., Wiley, Chichester,
2000.

[7] C.I. Grima, A. Mrquez, L. Ortega, Polar diagrams
of geometric objects’ in: 15th European Workshop in
Computational Geometry, Antibes, France, 1999.

[8] F. Aurenhammer, Power diagrams-properties, algo-
rithms and applications. SIAM J. Comput. 16 ,1987,
78-96.

[9] P.F. Ash, E.D. Bolker, Generalized Dirichlet tessel-
lations. Geom. Dedicata 20 ,1986, 209-243.

[10] H. Imai, M. Iri, K. Murota, Voronoi diagram in
the Laguerre geometry and its applications. SIAM
J. Comput. 14 ,1985, 93-105.

209

23rd European Workshop on Computational Geometry, 2007

Net-aware Critical Area extraction for VLSI opens via Voronoi diagrams

Evanthia Papadopoulou∗

Abstract

We address the problem of computing critical area
for opens in a circuit layout in the presence of loops
and redundant interconnects. The extraction of crit-
ical area is the main computational problem in VLSI
yield prediction for random manufacturing defects.
Our approach first models the problem as a graph
problem and solves it efficiently by exploiting its ge-
ometric nature. The approach expands the Voronoi
critical area computation paradigm [10, 7] with the
ability to accurately compute critical area for missing
material defects in a net-aware fashion. Generalized
Voronoi diagrams used in the solution are combinato-
rial structures of independent interest.

1 Introduction

Catastrophic yield loss in integrated circuits is heav-
ily attributed to random particle defects interfering
with the manufacturing process resulting in functional
failures such as open or short circuits. Random defect
yield loss has been studied extensively resulting in sev-
eral yield models (see e.g. [12, 11, 1]). The focus of all
random defect yield models is the concept of critical
area, a measure reflecting the sensitivity of a design to
random defects during manufacturing. Reliable crit-
ical area extraction is essential for IC manufacturing
especially when design for manufacturability (DFM)
initiatives are under consideration.

The critical area of a circuit layout on a layer A is
defined as

Ac =
∫ ∞

0

A(r)D(r)dr

where A(r) denotes the area in which the center of a
defect of radius r must fall in order to cause a circuit
failure and D(r) is the density function of the defect
size. Critical area analysis is typically performed on
a per layer basis and results are combined to estimate
total yield. The defect density function has been es-
timated as follows [1, 5, 11, 14]:

D(r) =
{

crq/rq+1
0 , 0 ≤ r ≤ r0

crp−1
0 /rp, r0 ≤ r ≤ ∞ (1)

where p, q are real numbers (typically p = 3, q = 1),
c = (q+1)(p−1)/(q+p), and r0 is some minimum opti-
cally resolvable size. Using typical values for p, q, and

∗IBM T.J. Watson Research Center, Yorktown Heights NY
10598, evanthia@acm.org

c, the widely used defect size distribution is derived,
D(r) = r2

0/r3. (r0 is typically smaller than the min-
imum feature size thus, D(r) is ignored for r < r0).
Following a common practice to facilitate critical area
computation, a defect of size r is modeled throughout
this paper as a square of radius r i.e., a square of side
2r. Modeling defects as squares corresponds to com-
puting critical area in the L∞ metric. A formal bound
for critical area between square and circular defects is
given in [7]. For computational simplicity [9] the L∞
metric is used throughout the paper.

In this paper we focus on critical area extraction
for opens resulting from broken interconnects. The
results are a generalization of the results presented
in [7]. Opens are net-aware, that is, a defect forms a
fault if it is actually breaking a net. A net is said to be
broken if terminal points of the net get disconnected.
An open circuit may also be caused by a via-block
i.e., a defect on a via or contact layer that entirely de-
stroys a connection (a via or cluster of vias) between
neighboring conducting layers (see [7, 8]). In order
to increase design reliability and reduce the potential
for open circuits designers are increasingly introduc-
ing redundant interconnects creating loops that may
span over a number of layers (see e.g. [4]). Redun-
dant interconnects reduce the potential for opens at
the expense of increasing the potential for shorts. The
ability to perform trade-offs is important requiring
accurate critical area computation for both. In this
paper we accurately compute critical area for opens
even in the presence of loops. Note that a loop reduces
the potential for open faults but does not necessarily
provide immunity to opens: a defect may still create
an open by breaking two or more wires disconnecting
the loop. The problem is modeled as a graph problem
and solved efficiently by exploiting the geometric na-
ture of it. A Voronoi diagram of the layout modeling
opens allows accurate critical area computation. The
algorithms are being integrated into the IBM Voronoi
Critical Area Analysis tool (Voronoi CAA) currently
used in production mode for chip manufacturing by
IBM microelectronics (see [6] for results on the indus-
trial use of the tool).

2 Problem Formulation

From a layout perspective a net is a collection of in-
terconnected shapes spanning over a number of lay-
ers. Some of those shapes are designated as terminal

210

EWCG 2007, Graz, March 19–21, 2007

(b)(a)

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Figure 1: (a) A net N spanning over two layers. (b)
Dark defects create opens while transparent defects
are no faults.

shapes representing the entities that must remain in-
terconnected. A net remains functional as long as
all terminal shapes comprising the net are intercon-
nected. Otherwise the net is said to be broken. Fig-
ure 1(a) illustrates a simple net spanning over two
metal layers (say M1 and M2, where M2 is illustrated
shaded). The two contacts illustrated as black squares
have been designated as terminal shapes. Figure 1(b)
illustrates defects that create opens by breaking the
net as dark squares and defects causing no fault as
transparent squares in dashed lines.

Given a net N , the portion of N on a layer X, de-
noted NX = N∩X, consists of a number of connected
components. Every connected component is a collec-
tion of overlapping shapes that can be unioned into
a single polygon (a simple one or one with holes). A
compact graph representation for N , denoted G(N),
can be defined as follows. There is a graph node
for every connected component of N on a conduct-
ing layer such as Metal, Poly etc. A node contain-
ing terminal shapes is designated as a terminal node.
Two graph nodes are connected by a graph edge iff
there is at least one contact or via connecting the re-
spective components of N . Given a layer A where
critical area analysis needs to be performed, the ex-
tended graph of N on layer A denoted as G(N,A) can
be obtained from G(N) by expanding all components
of NA by their medial axis. For every via or contact
that connects a component of NA to a component of
NB , B 6= A, introduce an approximate point along the
medial axis representing that via or contact, referred
to as a via-point. In addition, introduce an edge in
G(N,A) connecting the via-point with the respective
node of NB . If a contact or via has been designated
as terminal shape, designate also the corresponding
via point as terminal. Any portion of the medial axis
induced by edges of terminal shapes is also identified
as terminal. For the purposes of this paper we assume
that G(N) can be readily available by a built in net
tracing capability. Then G(N,A) can be easily ob-
tained using well known Voronoi algorithms (e.g. [9]
for L∞). Net extraction is a well known topic beyond
the scope of this paper.

We use the extended net graph G(N,A) to detect
loops. For this purpose we partition G(N,A) into bi-

(a) (b)

Figure 2: The net graph of Figure 1 before (a) and
after (b) cleanup of trivial parts.

connected components, bridges and articulation points
using depth-first search (DFS) as described in [13, 3].
For our problem we only need to keep some addi-
tional terminal information to determine whether the
removal of a vertex or edge actually breaks G(N,A)
i.e., whether it disconnects G(N,A) leaving terminals
in both sides. Any bridges or articulation points that
do not disconnect terminals are called trivial and can
be removed form G(N,A). Figure 2(b) illustrates the
net graph after cleaning all trivial parts. Circles indi-
cate terminal and articulation points.

Definition 1 A defect D is a minimal break of a sim-
ple shape P if D breaks P into at least two pieces and
D has minimal size, that is, if D is shrunk by ε ≥ 0
then D will be entirely contained in the interior of P .
A piece of P may trivially consist of a single edge. A
minimal break is called strictly minimal if it contains
no other minimal break in its interior. A break is any
defect totally overlapping a minimal break.[7].

Definition 2 A minimal open is a defect D that
breaks a net N and D has minimal size, that is, if
D is shrunk by ε > 0 then D no longer breaks N . D
breaks N if any two terminal shapes of N get discon-
nected or if a terminal shape itself gets destroyed. A
minimal open is called strictly minimal if it contains
no other minimal open in its interior. An open is any
defect entirely covering a minimal open.

Definition 3 The center of an open D is a genera-
tor point for D weighted by the size (radius) of D.
A generator point is of order k, k ≥ 1, if D creates
an open by breaking k polygonal paths (wires). A
segment formed as a union of (kth order) generator
points is called a (kth order) generator segment.

Definition 4 The core of the extended net graph
G(N,A) on layer A, denoted core(N,A), is the set
of all medial axis vertices, including articulation, via,
and terminal points, and all medial axis edges except
the standard 45◦ edges1. G(N,A) is assumed to have

1The 45◦ edges of the L∞ medial axis bisecting axis parallel
polygon edges are referred to as standard 45◦

211

23rd European Workshop on Computational Geometry, 2007

g

1g

2

3

g

Figure 3: V (Ci).

been cleaned up from any trivial components, trivial
bridges, or trivial articulation points.

Lemma 1 The 1st order generators for strictly mini-
mal opens on layer A for net N , denoted Gen1(N,A),
are the bridges, terminal edges, articulation points,
and terminal points of G(N,A) ∩ core(N,A).

2.1 Determining higher order generators for opens

Consider a bi-connected component of G(N,A) de-
noted as Ci. Let core(Ci) = Ci ∩ core(N,A). For
the purposes of this problem the endpoints and the
open portion of a core segment are treated sepa-
rately giving higher priority to the endpoints. Let the
(weighted) Voronoi diagram of core(Ci) be denoted
V (Ci), where any point p along a core segment s is
weighted with w(p) = d(p, el) = d(p, er), where el, er

are the polygonal elements inducing s. Any Voronoi
region equidistant from a core segment and its end-
point is assigned to the endpoint. Regions belonging
to articulation or terminal points are colored red. See
Figure 3.

We can identify the higher order generators
for opens using higher order Voronoi diagrams of
core(Ci). In particular we can use V i(Ci), i ≥ 1,
(V 1(Ci) = V (Ci)) to identify the (i + 1)-order gen-
erators. It is not hard to see that a 2nd order strictly
minimal open involving Ci must be generated by a
point along a non-red, non-standard-45 Voronoi edge
or a non-red Voronoi vertex of V (Ci). The potential
2nd order generators of our example are illustrated in
Figure 3 as {g1, g2, g3}.

Let g be a Voronoi edge or vertex of V (Ci) rep-
resenting a potential opens generator. Let core(g)
be the set of core elements inducing g. There are
three possible outcomes with respect to the connec-
tivity of Ci after removing the elements of core(g): 1)
Removing core(g) does not disconnect Ci; label no-
disconnect. 2) Removing core(g) disconnects the com-
ponent but does not break it; label trivial-disconnect.
3) Removing core(g) breaks the component; label
break. If potential generator g is labeled break then
g must be a 2nd order opens generator. Otherwise, g
can not be a pure 2nd order generator (however por-

tions of g might still be k > 2-order generators). The
set of 2nd order generators determined form V (Ci) by
being labeled break is denoted Gen2(Ci). In figure 3
Gen2(Ci) = {g1, g2}. All elements of Gen2(Ci) are
colored red.

To determine (k > 2)-order generators (if any)
we can repeat this process until all regions are col-
ored red. In particular V k(Ci) can be obtained from
V k−1(Ci) with an iterative process computing a slight
modification of order k Voronoi diagrams. Red re-
gions of V k−1(Ci) remain red in V k(Ci) and no fur-
ther k-order subdivision is performed within. For
every non-red region of V k−1(Ci) we compute the
(slightly modified) k-order Voronoi subdivision as fol-
lows: Let Hk−1 be the set of core elements owning the
region of V k−1(Ci) under consideration (reg(Hk−1)).
Let s(Hk−1) be the superset of Hk−1 including all
core segments that are incident to core points in
Hk−1. Let N(s(Hk−1)) denote the union of core el-
ements owning Voronoi regions incident to regions
of core segments in s(Hk−1) excluding any core el-
ements already in s(Hk−1). Compute the (weighted)
L∞ Voronoi diagram of N(s(Hk−1)) and truncate
it within the interior of reg(Hk−1). This gives the
kth order subdivision within reg(Hk−1). Edges of
V k−1(Ci) whose neighboring k-order regions have the
same owners get removed from V k(Ci).

Given V k(Ci), k ≥ 1, the set of potential (k + 1)-
order generators for strictly minimal opens must be
the set of non-red, non-standard-45◦ Voronoi edges
and vertices of V k(Ci). Thus, the set Genk+1(Ci) of
(k+1)-order generators for opens can be derived using
a direct generalization of the process for k = 1.

To determine the labeling of Voronoi edges bound-
ing a Voronoi region reg(H) of V k(Ci), we can simply
remove from Ci the tuple H of core elements own-
ing reg(H), and determine new bi-connected compo-
nents, bridges and articulation points. In the case
of 2nd order generators (k = 2) more advanced al-
gorithmic techniques could be employed to derive a
faster algorithm (see e.g. [2]). We do not attempt
any such improvement in this simple version however.
The time bound is O(kn2 + k2n log n). In practice
most biconnected components are sparse graphs due
to the standard goal of minimizing wire length, in
their majority just simple cycles, thus in any realistic
situation k will be kept small. In case of biconnected
components forming simple cycles the algorithm can
easily simplify to O(n log n).

3 The Voronoi diagram for opens

Once generators for opens on a layer A are determined
we can compute their Voronoi diagram and obtain a
subdivision of the layout that allows fast critical area
computation for opens.

Theorem 2 Let V (G) be the (weighted) L∞ Voronoi

212

EWCG 2007, Graz, March 19–21, 2007

diagram of the set G of all of generators for opens on
layer A. The critical radius2 for opens for any point
t on layer A is rc(t) = dw(t, s), where t ∈ reg(s) in
V (G).

V (G) is a generalization of the Voronoi diagram
for breaks and via-blocks introduced in [7]. In L∞
it is equivalent to the weighted Voronoi diagram of
additively weighted segments, where the weight func-
tion along any segment s corresponds to an L∞ dis-
tance from a line. For a Manhattan layout, generators
are axis parallel segments and points with constant
weights. The Voronoi region of a generator need not
be connected, thus the size of V (G) need not be linear.

Let K denote the number of interacting pairs of
generators. A generator si is said to be interacting
with generator sj if w(si) < w(sj) and R(si) inter-
sects R(sj) in a non-trivial way, where R(s) is the
shape representing the union of all defects generated
by a generator s. The intersection R(si) ∩ R(sj) is
non-trivial if it at least encloses an entire defect gen-
erated by some point p ∈ si. An upper bound for K
is O(n2). In practice the number of interacting higher
order generators must be small and thus K must also
be small. A natural upper bound on the size of V (G)
is O(n + K), where n is the complexity of layer A.
V (G) can be computed in O((n + K) log n) time by
plane sweep by an algorithm similar to the one pre-
sented in [8] for the Hausdorff Voronoi diagram.

4 Critical Area Computation

Once the opens Voronoi diagram is available the en-
tire critical area integral can be easily computed as
shown in [10, 9, 7]. In particular, assuming the 1/r3

defect distribution, the critical area integral can be
discretized as a summation of simple terms derived
from Voronoi edges. For any other distribution, the
Voronoi diagram still allows for analytical critical area
integration within regions reducing the critical area
integral to a summation of formulas. See [10, 9, 7] for
details.

Critical Area for general missing material defects on
layer A can be obtained by combining generators for
opens on layer A and generators for via-blocks on the
neighboring via/contact layers for the computation of
the final opens Voronoi diagram. Generators for via
blocks are axis parallel weighted segments (core seg-
ments) corresponding to portions of the farthest point
Voronoi diagram of via clusters (see [7]). Thus, the
Voronoi subdivision for opens on layer A can be easily
extended to a Voronoi subdivision for general miss-
ing material defects combining opens and via blocks.
Critical area computation can then be performed in
an identical manner.

2The critical radius at a point t is the size of the smallest
defect centered at t causing an open.

Acknowledgments

I would like to thank Dr. L. F. Heng of IBM T.J. Watson

Research center for helpful discussions on the definition

of a net graph. The IBM Voronoi EDA group including

R. Allen, S.C. Braasch, J.D. Hibbeler and M.Y. Tan are

greatly acknowledged for co-developing, supporting, and

expanding the Voronoi Critical Area Analysis Tool.

References

[1] A. Ferris-Prabhu. Defect size variations and their
effect on the critical area of VLSI devices. IEEE J.
of Solid State Circuits, 20(4):878–880, Aug. 1985.

[2] J. Hopcroft and R. Tarjan. Dividing a graph into
triconnected components. SIAM Journal on Com-
puting, 1973.

[3] J. Hopcroft and R. Tarjan. Efficient algorithms for
graph manipulation. Comm. ACM, 16(6):372–378,
1973.

[4] A. B. Kahng, B. Liu, and I. I. Mandoiu. Non-tree
routing for reliability and yield improvement. IEEE
Trans. on Comp. Aided Design of Int. Circuits and
Systems, 23(1):148 – 156, 2004.

[5] I. Koren. Yield Modeling and defect Tolerance in
VLSI circuits, “The effect of scaling on the yield of
VLSI circuits”, pages 91–99. Adam-Hilger Ltd., 1988.

[6] D. N. Maynard and J. D. Hibbeler. Measurement and
reduction of critical area using Voronoi diagrams. In
Advanced Semiconductor Manufacturing IEEE Con-
ference and Workshop, 2005.

[7] E. Papadopoulou. Critical area computation for miss-
ing material defects in VLSI circuits. IEEE Trans. on
Computer-Aided Design, 20(5):583–597, 2001.

[8] E. Papadopoulou. The Hausdorff Voronoi diagram of
point clusters in the plane. Algorithmica, 40:63–82,
2004.

[9] E. Papadopoulou and D. T. Lee. The l∞ Voronoi di-
agram of segments and VLSI applications. Interna-
tional Journal of Computational Geometry and Ap-
plications, 11(5):503–528, 2001.

[10] E. Papadopoulou and D. T. Lee. Critical area com-
putation via Voronoi diagrams. IEEE Transactions
on Computer-Aided Design, 1999.

[11] C. H. Stapper. Modeling of defects in integrated cir-
cuit photolithographic patterns. IBM J. Res. De-
velop., 28(4):461–475, 1984.

[12] C. H. Stapper and R. J. Rosner. Integrated circuit
yield management and yield analysis: Development
and implementation. IEEE Trans. Semiconductor
Manufacturing, 8(2):95–102, May 1995.

[13] R. Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing, 1972.

[14] I. A. Wagner and I. Koren. An interactive VLSI CAD
tool for yield estimation. IEEE Trans. on Semicon-
ductor Manufacturing, 8(2):130–138, 1995.

213

23rd European Workshop on Computational Geometry, 2007

Linear Axis Computation for Polygons with Holes

Vadim Trofimov∗ Kira Vyatkina†

Abstract

We generalize an algorithm that constructs a linear
axis of a simple polygon to the case of a polygon with
holes. We show that a linear axis ε-equivalent to the
medial axis can be computed from the latter in linear
time for almost all polygons with holes.

1 Introduction

Skeletons have nowadays a wide range of applications
in computer graphics, medical imaging, and shape re-
trieval.

The most widely used skeleton is the medial axis –
a subset of a Voronoi diagram V D(P) of a polygon P .
More precisely, the medial axis M(P) can be obtained
from V D(P) by restricting the latter to the interior
of P and discarding its edges incident to the reflex
vertices of P (see e.g. [3]).

Another well-known type of skeletons is a so-called
straight skeleton [1] traced by the polygon’s vertices
during a shrinking process, when the edges move in-
side at constant speed. The corresponding process
is also referred to as linear wavefront propagation
(see [5]).

A recently proposed linear axis [5] is defined in
the following way. Let {v1, v2, . . . , vn} denote the
set of reflex vertices of a polygon P , and let k =
(k1, k2, . . . , kn) be a sequence of non-negative inte-
gers. Replace each vertex vi with ki + 1 coinciding
vertices connected by ki zero-lengths edges called hid-
den edges; choose the directions of the hidden edges
so that internal edges at all the ki + 1 vertices would
be equal. Denote the resulting polygon by P k.

Definition 1 The linear axis Lk(P), corresponding
to the sequence k of hidden edges, is the trace of
the convex vertices of P k during the linear wavefront
propagation.

In [5], the linear axis was defined only for simple
polygons, but the above definition can be applied to
polygons with holes as well (Figure 1).

The larger are the values assigned to ki, 1 ≤ i ≤ n,
the better Lk(P) approximates the medial axis M(P).
This observation is formalized in [5] by means of

∗SPE “Air and Marine Electronics”, hermit239@mail.ru
†Research Institute for Mathematics and Mechanics, Saint

Petersburg State University, kira@meta.math.spbu.ru

Figure 1: The linear axis of a polygon with two holes,
which has exactly one hidden edge at each reflex ver-
tex.

a notion of ε-equivalence between a linear axis and
the medial axis. Moreover, for a simple polygon P ,
an efficient algorithm was proposed, which allowed
computation of the values of ki needed to achieve ε-
equivalence for a given ε ≥ 0, along with reconstruc-
tion of the corresponding linear axis from the medial
axis in linear time – under condition that P has a
constant number of “nearly co-circular” sites.

Still, criteria developed and used in [5] are inappli-
cable if polygons with holes are considered.

In this work, we propose a new criterion, which
guarantees ε-equivalence of a linear axis and the me-
dial axis for polygons with holes, and show how to
adapt the algorithms to this case.

2 Preliminaries

The terminology introduced in this section is bor-
rowed from [4].

Definition 2 A geometric graph (V,E) is a set
in R2 that consists of a finite set V of points, called
vertices, and a finite set E of mutually disjoint, sim-
ple curves called arcs. Each arc connects two vertices
of V .

Let P be a polygon with holes. Let us denote
by (VM , EM) the geometric graph of the medial axis
M(P), and by (VLk , ELk) – the geometric graph of
the linear axis Lk(P). Both VM and VLk contain as a
subset the set of convex vertices of P , and the vertices
of degree at least three of M and Lk, respectively.

A site S of polygon P is either an edge or a reflex
vertex of P .

214

EWCG 2007, Graz, March 19–21, 2007

Definition 3 A Voronoi edge between node vi gen-
erated by Sk, Si and Sl, and node vj generated by Sk,
Sj and Sl is an ε-edge if d(vi, Sj) < (1 + ε)d(vi, Si)
or d(vj , Si) < (1 + ε)d(vj , Sj).

A Voronoi edge that is not an ε-edge is called a
non-ε-edge. A path between two nodes of M is an
ε-path if it consists only of ε-edges. For any node v
of M , a node w is an ε-neighbour of v if v and w are
connected by an ε-path. Let Nε(v) be the set of all ε-
neighbours of v. The set C(v) = {v}∪Nε(v) is called
an ε-cluster.

Definition 4 M(P) and Lk(P) are ε-equivalent if
there exists a bijection f : VM → VLk such that:

1. f(p) = p, for all convex p of P ;
2. ∀vi, vj ∈ VM with vj /∈ Nε(vi), ∃ an arc in EM

connecting vi and vj ⇔ ∃ an arc in ELk connecting
f(v′i) and f(v′j), where v′i ∈ C(vi) and v′j ∈ C(vj).

(Note: in [4], function f was required to be surjec-
tion, but our results hold for a stronger definition of
ε-equivalence – with f being bijection.)

In the following, we will say that the medial axis
partitions P into Voronoi cells, and will denote by
V C(S) the Voronoi cell generated by site S. Similarly,
the linear axis partitions P into linear cells, where
LC(S) denotes a linear cell generated by S.

3 Topological equivalence

In order to rule out degenerated cases, for any graph,
let us interpret a node of degree d ≥ 4 as (p − 2)
coinciding nodes connected by (p − 3) edges of zero
length in such a manner that the subgraph induced
by these nodes is a tree (Figure 2).

Figure 2: Interpretation of graph nodes having de-
grees 4 and 5, respectively .

Before we can formulate a criterion of ε-equivalence
for polygons with holes, we need to introduce two new
concepts.

Definition 5 Let (u, v) ∈ EM be an edge incident to
V C(S1) and V C(S2). A barrier b for (u, v) is formed

by two segments connecting a point c ∈ (u, v) with the
two closest points from S1 and S2, respectively. The
point c is a center of the barrier. (Figure 3.)

 b

c

Figure 3: A barrier b for an edge (u, v) centered at
point c ∈ (u, v) .

Under intersection with a barrier we will assume
existence of more than one common point with it.

Definition 6 An obstacle for an ε-cluster C is a set
of barriers for all non-ε-edges having one endpoint in
C and the other – in VM \ C. (Figure 4.)

Figure 4: An obstacle for an ε-cluster consisting of
two vertices.

Theorem 1 Let P be a polygon with holes. Let
M(P) be the medial axis of P , and Lk(P) – a lin-
ear axis of P corresponding to the sequence k of hid-
den edges. If for any non-ε-edge e ∈ EM , there ex-
ists a barrier be: be ⊂ LC(S1) ∪ LC(S2), where e ⊂
∂(V C(S1)) ∩ ∂(V C(S2)), then Lk(P) is ε-equivalent
to M(P).

(Note: the condition for the above Theorem can be
weakened. It is sufficient to require existence of bar-
riers only for the non-ε-edges having their endpoints
in different ε-clusters.)

4 Conflicting pairs

Theorem 1 implies that in order to assure ε-
equivalence of the axes, is is sufficient to have for any

215

23rd European Workshop on Computational Geometry, 2007

non-ε-edge e ∈ EM a barrier be lying in the union
of linear cells of the two sites, Voronoi cells of which
are incident to e. We will show that instead, we may
ensure existence of barriers, which would separate cer-
tain pairs of linear cells – and namely, those generated
by so-called conflicting pairs of sites.

The notion of a conflicting pair of sites was intro-
duced in [5]. However, we will need to redefine it.

Let us consider an edge (u, v) ∈ EM . Suppose that
its leftmost endpoint is denoted by u. (If u and v
have the same x-coordinate, the choice of u does not
matter.)

Definition 7 Let (u, v) ∈ EM be a non-ε-edge; de-
note by S1 and S2 the two sites that generated (u, v)
(that is, (u, v) ⊂ ∂(V C(S1)) ∩ ∂(V C(S2))). Any site
S 6= S1, S2, such that at least one vertex of V C(S)
belongs to C(u), is a left neighbour of (u, v).

The definition of a right neighbour of (u, v) is anal-
ogous.

Definition 8 A conflicting pair for a non-ε-edge
(u, v) ∈ EM is a pair of its left neighbour and its right
neighbour, such that at least one of those neighbours
is a reflex vertex.

5 Computation of hidden edges

The framework of the algorithms will remain the same
as proposed in [5].

The conflicting pairs of sites for all non-ε-edges are
handled in an arbitrary order. For each pair for any
such edge e, the maximal speed of the wavefront at its
reflex vertex (or vertices) is bounded in order to assure
existence of a barrier for e, which would separate the
linear cells of the sites being considered.

A detailed analysis of the possible combinations of
site types is carried out in [4]. It follows that there
always exists a speed, for which one can construct
such a barrier lying in the union of the two linear
cells generated by the sites, Voronoi cells of which are
incident to e.

To bound the speed of a reflex vertex as desired, we
must insert at it a sufficient number of hidden edges.

Below we outline the algorithm. For a reflex vertex
Sj , we denote by αj the inner angle of P at Sj , and
by sj – the speed, with which Sj moves inside the
polygon. For further details, the reader is referred
to [5].

Algorithm ComputeHiddenEdges (P, ε)

Input : A polygon P and a real constant ε ≥ 0.
Output : The number of hidden edges for each re-
flex vertex such that the resulting linear axis is ε-
equivalent to the medial axis.

1. Compute the medial axis M of P

2. For each reflex vertex Sj of P :

if αj ≥ 3π/2 then sj = 1
cos((αj−π)/4)

else sj = 1
cos((αj−π)/2)

3. ComputeConflictingSites (ε)

4. For each non-ε-edge w,

for each pair of conflicting sites Si, Sj :

HandleConflictingPair(w,Si, Sj)

5. For each reflex vertex Sj of P :

kj = d αj−π
2 cos−1(1/sj)

e.

ComputeConflictingSites(ε) determines all
pairs of conflicting sites for all non-ε-edges from EM .
For any such edge (u, v), ε-clusters C(u) and C(v)
are computed, and the right and the left neighbours
of (u, v) are retrieved. The pairs consisting of a left
and a right neighbour, one of those being a reflex
vertex, are conflicting.

HandleConflictingPair(w,Si, Sj) examines posi-
tions of Si and Sj , where (Si, Sj) is a conflicting pair
for w, and of the sites – generators of the Voronoi cells
incident to w (let us denote these sites by Sk and Sl).
As a result, it bounds the speed sj of any reflex vertex
Sj so that there would exist a barrier on w lying in
LC(Sk)∪LC(Sl) – in a similar manner as it was done
in [4].

6 Correctness of the algorithm

First of all, we state that for a non-conflicting pair
(Si, Sj) formed by a left and a right neighbor of a
non-ε-edge e, there exists a barrier on e separating
LC(Si) and LC(Sj).

Lemma 2 Let two edges Si and Sj be a left and a
right neighbor of a non-ε-edge e, and let be be a barrier
centered at an arbitrary point of e. Then both LC(Si)
and LC(Sj) do not intersect be.

Because of presence of holes in a polygon, we need
to introduce a more elaborated classification of inter-
sections of a barrier with cells.

Definition 9 Let us say that cell C(S) intersects a
barrier b on the edge (u, v) from the left, if the part
of C(S), which lies on the same side from b as u,
contains S.

The definition of an intersection from the right is
analogous (Figure 5).

Note that an intersection cannot be simultaneously
from the left and from the right.

216

EWCG 2007, Graz, March 19–21, 2007

 from the right

 from the left

b

Figure 5: Cell C(S1) intersects barrier b from the
right, and cell C(S2) intersects b from the left.

Lemma 3 For any non-ε-edge e ∈ EM , there exists
a barrier be on e, which the cells generated by the left
neighbours of e do not intersect from the left, and the
cells generated by the right neighbours of e do not
intersect from the right.

Lemma 4 For any non-ε-edge e ∈ EM , the barrier,
which satisfies conditions of Lemma 3, does not in-
tersect the linear cell of any site S 6= S1, S2, where
e ⊂ ∂(V C(S1)) ∩ ∂(V C(S2).

Along with Theorem 1, this proves correctness of
the algorithm.

Theorem 5 Let P be an arbitrary polygon with
holes, and ε ≥ 0 – a real constant. Let k denote
the sequence of hidden edges built by the algorithm
ComputeHiddenEdges(P , ε). Then the linear axis
Lk(P) is ε-equivalent to the medial axis M(P).

Thus, given a polygon P with holes, its medial axis
M(P) and a real ε ≥ 0, one can compute the linear
axis ε-equivalent to M(P) in linear time, provided
that all ε-clusters have constant size. All the details
remain identical to those described in [5] for the case
of a simple polygon.

7 Conclusion

We generalized an algorithm for computation of a lin-
ear axis ε-equivalent to the medial axis, initially pro-
posed for a simple polygon [5], to the case of polygons
with holes. If the polygon has a constant number of
“nearly co-circular” sites, the computation of a lin-
ear axis from the medial axis will require only linear
time. As the medial axis of a polygon with holes can
itself be computed in O(n log n) time [2], this results
in O(n log n) total time.

Acknowledgment

The second author was supported by Human Capital

Foundation.

References

[1] O. Aichholzer, F. Aurenhammer, D. Alberts,
B. Gärtner. A novel type of skeleton for polygons.
The Journal of Universal Computer Science, 1:752-
761, 1995.

[2] D. G. Kirkpatrick. Efficient computation of contin-
uous skeletons. Proc. 20th IEEE Annual Symp. on
Foundations of Comput. Sci., pp. 18-27 (Oct.1979).

[3] F. P. Preparata, M. I. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, 1985.

[4] M. Tǎnase. Shape Decomposition and Retrieval.
Ph.D. Thesis, Utrecht University, 2005.

[5] M. Tǎnase, R. C. Veltkamp. Straight skeleton approx-
imating the medial axis. Proc. 12th Annual European
Symposium on Algorithms, pp. 809-821, 2004.

217

23rd European Workshop on Computational Geometry, 2007

Data-Powered Geometric Computing

Bernard Chazelle

Professor of Computer Science
Princeton University,

Department of Computer Science
35 Olden Street, Princeton, NJ 08540, USA

chazelle@cs.princeton.edu

Advances in data acquisition technology – together with the imminent demise of Moore’s
Law – are prompting a rethink of basic algorithm design principles. I will discuss a few
examples of this phenomenon in the context of low-entropy computation and dimension
reduction.

218

EWCG 2007, Graz, March 19–21, 2007

Exact and efficient computations on circles in CGAL (abstract) ∗†

Pedro M. M. de Castro‡ Sylvain Pion Monique Teillaud§

Abstract

cgal (Computational Geometry Algorithms Library)
is a large collection of geometric objects, data struc-
tures and algorithms. cgal currently offers func-
tionalities mostly for linear objects (points, segments,
lines, triangles...).

The first version of a kernel for circles and circular
arcs in 2D was recently released in cgal 3.2. We show
in this paper a variety of techniques that we tested
to improve the efficiency of the 2D circular kernel.
These improvements are motivated by applications to
vlsi design, and real vlsi industrial data are used to
measure the impact of the techniques used to enhance
this kernel. The improvements will be integrated in
cgal 3.3.

1 Introduction

The goal of the cgal Open Source Project is to pro-
vide easy access to efficient and reliable geometric al-
gorithms to users in industry and academia. This is
achieved in the form of the C++ Computational Ge-
ometry Algorithms Library [2]. The cgal packages
adopt the generic programming paradigm [12], mak-
ing extensive use of C++ class templates and function
templates, and their design is heavily inspired from
the C++ Standard Template Library [5].

For instance, let us consider the case of geomet-
ric arrangements: an arrangement of a finite set of
curves in the plane is the partition of the plane into
faces, edges and vertices, that is induced by these
curves [15, 3, 11]. A generic implementation of a data
structure that handles arrangements is achieved by
the CGAL::Arrangement 2 class:
template <class Traits> class Arrangement 2

This class must be instantiated with a class, referred

∗The full version of this work is available at
https://hal.inria.fr/inria-00123259/en/ as INRIA re-
search report RR-6091 .

†This work is partially supported by the IST Programme of
the 6th Framework Programme of the EU as a STREP (FET
Open Scheme) Project under Contract No IST-006413 - ACS
(Algorithms for Complex Shapes with certified topology and
numerics) - http://acs.cs.rug.nl/

‡current address: Center of Computer Sciences, Universi-
dade Federal de Pernambuco, Brazil. pmmc@cin.ufpe.br

§INRIA, BP93, 06902 Sophia Antipolis cedex, France,
{Sylvain.Pion,Monique.Teillaud}@sophia.inria.fr,
http://www-sop.inria.fr/geometrica/team/

to as a traits class [19], that must define a type repre-
senting a certain family of curves, and some functions
operating on curves of this family.

The cgal kernels provide the users with ba-
sic geometric objects and basic functionalities on
them. cgal currently offers kernels for linear objects
(points, segments, lines, triangles. . .), and the first
version of a kernel for circles and circular arcs in 2D,
called 2D circular kernel in the sequel, was recently
released in cgal 3.2 [20]. A kernel can be wrapped
into a traits class offering the interface for some geo-
metric algorithms; this was done for the cgal circular
kernel and CGAL::Arrangement 2. However, a kernel is
meant to offer general purpose functionalities, while
a traits class offers the minimum set of functionalities
required by a specific class.

Robustness, achieved through the exact geomet-
ric computation paradigm [23], is probably the first
strength of cgal. The cgal arrangement pack-
age, completely redesigned for cgal 3.2 [22, 21] of-
fers a robust and efficient implementation. Other li-
braries like esolid [18] may crash on degenerate input
data1. Real vlsi data sets consist of line segments and
circular arcs, containing many degenerate, or close
to degenerate, cases (junctions, identical intersection
points, tangencies. . .) requiring highly robust code.
Typically, the question is to compute boolean opera-
tions on these data, that can be easily performed on
top of the computation of the input curves arrange-
ment [13]. Efficiency is also a crucial quality for the
use of cgal on real industrial data. vlsi inputs con-
sist of very large data sets, which leads to the need
for improvements in the efficiency of the 2D circular
kernel.

We show in this paper a variety of techniques from
different nature that we tested to improve the 2D cir-
cular kernel, and experimental evidence of their im-
pact is studied by benchmarking on real vlsi indus-
trial data. The techniques resulting in measurable
improvements will be integrated in cgal 3.3.

2 The 2D Circular Kernel

To answer the need for robustness on manipulations
of circular objects, a first version of the 2D circular
kernel was released in cgal 3.2.

1see http://research.cs.tamu.edu/keyser/geom/esolid/

219

23rd European Workshop on Computational Geometry, 2007

The design of the 2D circular kernel [10] uses the
extensibility and adaptability properties of the cgal
linear kernel [16]. The circular kernel is parameter-
ized by, and inherits from, a LinearKernel parameter,
for objects like points, circles and number types. It
has a second parameter, AlgebraicKernel, providing
algebraic operations that are necessary for computa-
tions on circles. The geometric level interface provides
types already defined by the linear kernel, plus three
new types: Circular arc point 2 for points on circles,
and Circular arc 2 and Line arc 2 respectively repre-
senting circular arcs and line segments delimited by
such points.

Intersections involving circles lead to manipulating
algebraic numbers of degree two on this ring. More-
over, most geometric predicates on circular arcs are
expressed as comparisons involving such roots. We
rely on exact handling using polynomial representa-
tion of these roots and algebraic methods (like resul-
tants and Descarte’s rule of sign) which reduce the
computations to comparisons of polynomial expres-
sions [8, 17, 9]. It was shown that the latter choice, for
this specific small degree two, was more efficient than
using a general library like core or leda.A template
class Root of 2<RT> is provided for algebraic numbers
of degree 2, using the following internal representa-
tion: three coefficients of type RT specifying the poly-
nomial of degree 2, plus one boolean value specifying
whether the smaller of the roots is considered, or the
other root.

The cgal arrangement package comes with a de-
fault traits class for line segments and circular arcs,
called Def traits in the sequel. We wrapped the circu-
lar kernel into a traits class offering the same interface.
Since the arrangement package requires the traits to
provide a unique type Curve 2, the default traits class
does not offer separate types for line segments and
circular arcs. The circular kernel, meant to be gen-
eral purpose, offers two different types, Circular arc 2

and Line arc 2. The traits class built on the circular
kernel uses the boost::variant class2 [1], that allows
to wrap the two complex types in one unique type
Curve 2. Moreover, since arrangements algorithms im-
plemented in this package start by cutting all curves
into x-monotone arcs, functionalities like intersection
computations are provided only for x-monotone arcs
in a traits class for arrangements. The circular kernel
implements these functionalities for general arcs.

3 VLSI Data Sets and Conditions of Experiments

We conducted experiments to evaluate the practical
influence of several improvement techniques on the
cgal 2D circular kernel. Our experiments consist

2http://www.boost.org/libs/variant/index.html

Input cgal 3.2 Def traits cgal 3.3

vlsi 1 28.0 8.55 4.61
vlsi 2 48.0 2.59 1.31
vlsi 3 135 26.7 21.8
vlsi 4 569 26.9 25.4
vlsi 5 125 14.3 14.8
vlsi 6 611 137 134
vlsi 7 690 192 169
vlsi 8 3, 650 220 136
vlsi 9 2, 320 581 492

Very dense 335 77.9 76.2
Sparse 0.91 0.51 0.21

Table 1: Time, in seconds, spent to compute the ar-
rangement with the cgal 3.2 circular kernel, with
Def traits, and after the improvements presented in
this paper.

in computing arrangements of real industrial data of
vlsi models3 representing electronic circuits, with the
efficient sweep-line algorithm provided by the new
cgal arrangement package [22].

The vlsi data have many cases of junctions, degen-
eracies and tangencies, causing approximate compu-
tation to fail due to rounding errors, and which make
them appropriate for exact computation. See Figure 1
for an illustration. The table gives the sizes of the in-
put files we are using for the experiments, together
with the sizes of the corresponding arrangements.

We complete our experiments with synthetic input
(see also Figure 1): a very dense distribution where
circles are centered on a grid and all pairs of circles
intersect (a), and a sparse distribution without inter-
section (b).

The hardware of our experiments was a Pentium 4
at 2.5 GHz with 1GB of memory, running Linux
(2.4.20 Kernel). The compiler was g++4.0.2; all con-
figurations were compiled with the -DNDEBUG -O2
flags.

In the sequel, the default traits class Def traits

will be used as a reference for measuring the per-
formances of the circular kernel. Both of them are
used with the same basic exact ring number type:
CGAL::MP Float. Note however that the default traits
class is already optimized and uses arithmetic filter-
ing (see Section 4.3.2) which makes it quite efficient.
The cgal 3.2 circular kernel is not yet filtered at all.
Note also that the use of boost::variant (see Sec-
tion 2) introduces a slight overhead in the running
times obtained by the circular kernel.

These elements partly explain the poor perfor-
mance of this kernel shown in Table 1. The rest of
this work is devoted to show how several techniques
can be combined to produce an important improve-
ment in the running times.

3Thanks to Mania Barco and GeometryFactory.

220

EWCG 2007, Graz, March 19–21, 2007

4 Tuning the 2D Circular Kernel

4.1 Caching Using Bit-Field

The results of some costly operations can be stored to
avoid recomputing them several times. When those
operations return symbolic values, like boolean, the
memory space used can be very low: the results can
be efficiently stored in a bit-field which consists in the
manipulation of individual bits of an entire block of
data [4].

vlsi N V E F

vlsi 1 11,929 20,649 26,468 6,385
vlsi 2 9,663 8,556 9,439 887
vlsi 3 35,449 101,758 163,316 61,887
vlsi 4 12,937 81,096 143,049 61,986
vlsi 5 4,063 40,636 77,598 36,965
vlsi 6 74,052 547,250 1,016,460 470,480
vlsi 7 89,918 495,209 878,799 383,871
vlsi 8 123,175 370,304 555,412 190,031
vlsi 9 139,908 1,433,248 2,690,530 1,257,684

Distributions N V E F

very dense (a) 400 160,400 320,000 159,602
sparse (b) 441 882 882 442

Figure 1: An example of vlsi data (vlsi 7), composed
of 22,406 polygons and 294 circles, for a total number
of 89,918 arcs. The zooms show the complexity of the
data. The bottom picture shows the two synthetic
data sets. The tables give the characteristics of the
data sets: N is the number of arcs (line segments
or circular arcs), V is the number of vertices of the
arrangement, E is the number of edges and F the
number of faces.

We introduce a bit-field as an additional data mem-
ber of Circular arc 2, to store whether an arc is
x-monotone, the complement of an x-monotone arc
(same for y), and whether its endpoints are on the
upper part of the supporting circle (same with left
part). The bit-field has 2 bytes (in fact, only 12 from
the total 16 bits are used).

The bit-field can be quickly computed when arcs
are computed by cutting previous arcs into monotone
arcs.

4.2 Caching Intersections of Supporting Circles

We tried to use a std::map which takes a pair of circles
and returns their (at most two) intersection points.
Experiments on vlsi files showed that this was not
an interesting contribution.

4.3 Enhancing the Algebraic Number Type

The Root of 2 number type was improved by following
two directions.

4.3.1 Optimizing Particular Cases

Every time when the rationality of a Root of 2 is de-
tectable in constant time, we use a specific construc-
tor that will allow to take advantage of this property.
Those cases appear in the intersection of two tangent
circles, in the intersection of a line and a circle that
are tangent, in the intersection of a vertical/horizontal
line with a circle.

4.3.2 Arithmetic Filtering

The general idea of filtering comparisons consists in
computing an approximate result, together with an
error bound. If the error bound is small enough, com-
paring the approximate values is enough to give the
result of the comparison of the exact values, which
allows to conclude very quickly. Otherwise, we say
that the filter fails, and the computation is done us-
ing exact arithmetic. Clearly, the errors need to be
kept as small as possible to avoid too many filter fail-
ures, since expensive exact computation must be used
in that case, and the computations of error bound
only induce an overhead [6]. The combination of ex-
act computation and filtering techniques allows to get
both fast and exact results.

4.4 Reference Counting

After the previous improvements, we profiled the cir-
cular kernel using gprof4 and valgrind5 and we dis-
covered that around 15% of the whole running time

4http://www.gnu.org/software/binutils/manual/gprof-2.9.1
5http://valgrind.kde.org/

221

23rd European Workshop on Computational Geometry, 2007

was spent on calling the CGAL::MP Float copy con-
structor. A good option to handle this copy construc-
tion bottleneck is to use a reference counting tech-
nique [7].

4.5 Different Algebraic Number Type Represen-
tation

In spite of the overall good performance obtained with
the previous improvements, high execution times are
obtained on the vlsi 8 data set, which is a show-
stopper for the use of the circular kernel on industrial
data.

A number of type Root of 2 is a root of a polynomial
ax2+bx+c and is represented by the three coefficients
a, b, c of a ring type RT and a boolean (see Section 2).
The basic computations on such an algebraic number
reduce to manipulations of the coefficients. When RT
is a multi-precision number type (which is necessary
to achieve exact computations), the time complexity
of these manipulations grows with the length of the
numbers. The length increases when computations
are cascaded.

Storing α, β, γ as numbers of a field type FT, such
that α+β

√
γ is the root, allows to reduce the lengths

of multi-precision numbers.

4.6 Geometric Filtering

We mentioned interval arithmetic filtering techniques
in Section 4.3.2. A similar scheme can be applied at
the geometric level [14] for filtering predicates: fast
approximate computation is done first; most of the
time, the error bounds allow to certify the result; in
bad cases, the filter fails and the result is computed
exactly. Using axis-aligned bounding boxes as enclos-
ing shapes is very appropriate for our application.

References

[1] Boost, C++ libraries. http://www.boost.org.

[2] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

[3] Pankaj K. Agarwal and Micha Sharir. Arrangements and
their applications. In Jörg-Rüdiger Sack and Jorge Urru-
tia, editors, Handbook of Computational Geometry, pages
49–119. Elsevier Science Publishers B.V. North-Holland,
Amsterdam, 2000.

[4] Paul Anderson and Gail Anderson. Navigating C++ and
Object-Oriented Design. Prentice Hall, 2003.

[5] Matthew H. Austern. Generic Programming and the STL.
Addison Wesley, 1998.

[6] H. Brönnimann, C. Burnikel, and S. Pion. Interval arith-
metic yields efficient dynamic filters for computational ge-
ometry. Discrete Applied Mathematics, 109:25–47, 2001.

[7] George E. Collins. A method for overlapping and erasure
of lists. Communications of the ACM, 3(12):655–657, De-
cember 1960.

[8] Olivier Devillers, Alexandra Fronville, Bernard Mourrain,
and Monique Teillaud. Algebraic methods and arithmetic
filtering for exact predicates on circle arcs. Comput. Geom.
Theory Appl., 22:119–142, 2002.

[9] I. Emiris and E. P. Tsigaridas. Computing with real al-
gebraic numbers of small degree. In Proc. 12th European
Symposium on Algorithms, LNCS 3221, pages 652–663.
Springer-Verlag, 2004.

[10] Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion,
Monique Teillaud, and Elias P. Tsigaridas. Towards an
open curved kernel. In Proc. 20th Annu. ACM Sympos.
Comput. Geom., pages 438–446, 2004.

[11] Efi Fogel, Dan Halperin, Lutz Kettner, Monique Teillaud,
Ron Wein, and Nicola Wolpert. Arrangements. In Jean-
Daniel Boissonnat and Monique Teillaud, editors, Effec-
tive Computational Geometry for Curves and Surfaces.
Springer-Verlag, Mathematics and Visualization, 2006.

[12] Efi Fogel and Monique Teillaud. Generic programming
and the CGAL library. In Jean-Daniel Boissonnat and
Monique Teillaud, editors, Effective Computational Ge-
ometry for Curves and Surfaces. Springer-Verlag, Mathe-
matics and Visualization, 2006.

[13] Efi Fogel, Ron Wein, Baruch Zukerman, and Dan
Halperin. 2D regularized boolean set-operations. In
CGAL Editorial Board, editor, CGAL-3.2 User and Ref-
erence Manual. 2006.

[14] Stefan Funke and Kurt Mehlhorn. Look: A lazy object-
oriented kernel for geometric computation. In Proc. 16th
Annu. ACM Sympos. Comput. Geom., pages 156–165,
2000.

[15] D. Halperin. Arrangements. In Jacob E. Goodman and
Joseph O’Rourke, editors, Handbook of Discrete and Com-
putational Geometry, chapter 21, pages 389–412. CRC
Press LLC, Boca Raton, FL, 1997.

[16] Susan Hert, Michael Hoffmann, Lutz Kettner, Sylvain
Pion, and Michael Seel. An adaptable and extensible ge-
ometry kernel. Computational Geometry: Theory and Ap-
plications, To appear. Special issue on CGAL.

[17] Menelaos I. Karavelas and Ioannis Z. Emiris. Root com-
parison techniques applied to computing the additively
weighted Voronoi diagram. In Proc. 14th ACM-SIAM
Sympos. Discrete Algorithms (SODA), pages 320–329,
2003.

[18] J. Keyser, T. Culver, M. Foskey, S. Krishnan, and
D. Manocha. ESOLID - a system for exact boundary eval-
uation. Computer-Aided Design, 26(2):175–193, 2004.

[19] N.C. Myers. Traits: a new and useful template technique.
C++ Report, June 1995.

[20] Sylvain Pion and Monique Teillaud. 2D circular kernel. In
CGAL Editorial Board, editor, CGAL User and Reference
Manual. 3.2 edition, 2006.

[21] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan
Halperin. 2D arrangements. In CGAL Editorial Board,
editor, CGAL User and Reference Manual. 3.2 edition,
2006.

[22] Ron Wein, Efi Fogel, Baruch Zukerman, and Dan
Halperin. Advanced programming techniques applied to
CGAL’s arrangement package. Computational Geome-
try: Theory and Applications, To appear. Special issue
on CGAL.

[23] C. K. Yap and T. Dubé. The exact computation paradigm.
In D.-Z. Du and F. K. Hwang, editors, Computing in Eu-
clidean Geometry, volume 4 of Lecture Notes Series on
Computing, pages 452–492. World Scientific, Singapore,
2nd edition, 1995.

222

EWCG 2007, Graz, March 19–21, 2007

Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces∗

Eric Berberich† Efi Fogel‡ Dan Halperin‡ Ron Wein‡

Abstract

We introduce a general framework for processing a
set of curves defined on a continuous two-dimensional
parametric surface, while sweeping the parameter
space. A major goal of our work is to maximize
code reuse in implementing algorithms that employ
the prevalent sweep-line paradigm, and consequently
to minimize the effort needed to extend the implemen-
tation of the paradigm to various surfaces and fami-
lies of curves embedded on them. We show how the
sweep-line paradigm is used to construct an arrange-
ment of curves embedded on an orientable parametric
surface, and explain how the arrangement package of
Cgal, which previously handled only arrangements of
bounded planar curves, is extended to handle curves
embedded on a general surface. To the best of our
knowledge, this is the first software implementation
of generic algorithms that can handle arrangements
on general parametric surfaces.

1 Introduction

We are given a surface S in IR3 and a set C of curves
that all lie on this surface. The arrangement of the
curves of C, denoted A(C) is the subdivision these
curves induce on the surface S into cells of dimension
0 (vertices), 1 (edges) and 2 (faces).

Cgal, the Computational Geometry Algorithms
Library,1 is the product of a collaborative effort of
several sites in Europe and Israel, aiming to provide
a generic and robust, yet efficient, implementation
of widely used geometric data structures and algo-
rithms. The arrangement package [9] included in the
latest public release of Cgal (Version 3.2) is capable
of constructing and maintaining planar arrangements
of bounded curves. That is, the surface S is the xy-
plane, and all curves in C are bounded. When working
with unbounded curves, users are required to properly
clip them as a preprocessing step, so that no essen-
tial information about the arrangements (e.g., a finite

∗This work has been supported in part by the IST Pro-
gramme of the EU as Shared-cost RTD (FET Open) Project
under Contract No IST-006413 (ACS - Algorithms for Complex
Shapes), by the Israel Science Foundation (grant no. 236/06),
and by the Hermann Minkowski–Minerva Center for Geometry
at Tel Aviv University.

†Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many, eric@mpi-inf.mpg.de .

‡School of Computer Science, Tel-Aviv University, Israel,
{efif,danha,wein}@post.tau.ac.il .

1http://www.cgal.org/ .

intersection point) is lost. However, this solution is
insufficient for some applications. For example, it is
possible to represent the minimization diagram of a
set of surfaces in IR3 as a planar arrangement, where
each face is labeled with the surface that induces the
lower envelope over that face [8]. As an arrangement
of bounded curves has only a single unbounded face, it
is impossible to represent the minimization diagram of
a set of unbounded surfaces, where several unbounded
faces might be required.

We have recently enhanced the arrangement pack-
age to support planar arrangements of unbounded
curves. This extension will be included in the forth-
coming release of Cgal (Version 3.3). The same
principles we used for handling unbounded curves,
or more precisely curve-ends that lie at infinity, can
be nicely generalized for the case of a set of curves
embedded on a parametric surface. An orientable
parametric surface S is a surface defined by para-
metric equations involving two parameters u and v,
namely: fS(u, v) = (x(u, v), y(u, v), z(u, v)). Thus,
fS : IP −→ IR3 and S = fS(IP), where IP is a continu-
ous and simply connected two-dimensional parameter
space. The general case is currently implemented as
a prototypical package in Cgal.

Related work: Effective algorithms for manip-
ulating arrangements of curves have been a topic of
considerable interest in recent years, with an empha-
sis on exactness and efficiency of implementation [5].
Mehlhorn and Seel [7] propose a general framework
for extending the sweep-line algorithm to handle un-
bounded curves. Note that they do not address the
case of surfaces other than the plane. Andrade and
Stolfi [1] develop exact algorithms for manipulating
circular arcs on a sphere. Cazals and Loriot [4]
compute exact arrangements of circles on a sphere.
Halperin and Shelton [6] incrementally construct ar-
rangements of circles on a sphere, using floating-point
arithmetic and assuming general position. The latter
two works are motivated by molecular modeling.

2 Sweeping on Surfaces

Recall that the main idea behind the Bentley-
Ottmann sweep-line algorithm [2] is to sweep a verti-
cal line starting from x = −∞ onward and maintain
the set of x-monotone curves that intersect it. These
curves are ordered according to the y-coordinate of
their intersection with the vertical line and stored in a
balanced search tree named the status structure. The

223

23rd European Workshop on Computational Geometry, 2007

contents of the status line change only at a finite num-
ber of event points, where an event point may corre-
spond to a curve endpoint or to an intersection of two
curves. The event points are sorted in ascending xy-
lexicographic order and stored in an event queue. This
event queue is initialized with all curve endpoints, and
is updated dynamically during the sweep process as
new intersection points are discovered.

2.1 Augmenting the Parameter Space

Our goal is to study the subdivision induced on a
parametric surface by sweeping over its parameter
space. However, to conveniently do so, we must con-
sider a subspace of IP. Sweeping over the entire pa-
rameter space raises, in general, several difficulties ei-
ther when the parameter space is unbounded, or when
there is no inverse mapping from the surface to the
parameter space. We eliminate these difficulties by
cutting out portions of the parameter space and sym-
bolically keeping track of these modifications.

We next formally define three aspects that require
special attention when generalizing the sweep proce-
dure. In all cases, S is a parametric surface defined
over IP in the uv-plane. We give the definitions using
the u-parameter; the definitions with respect to the
v-parameter are similar.

Definition 1 (Infinite boundary:) Let û be one of
the values defining the u-range of IP (û may be finite
or û = ±∞). We say that the surface has an infinite
boundary in u if: ∀v limu→û fS(u, v) = ±∞ .

Definition 2 (Curve of discontinuity:) If u is de-
fined over a bounded parameter range [umin, umax)
such that: ∀v limu→umax fS(u, v) = fS(umin, v) , then
the curve defined by fS(umin, v) forms a curve of dis-
continuity in u on the surface S.

Definition 3 (Singularity point:) A point p0 =
fS(u0, v0) ∈ S is a singularity point in u if u0 is
either umin or umax, and for each δ > 0 we have:
∀v ∃u ‖fS(u, v)− p0‖ < δ .

The xy-plane (see Fig. 1(a)), for example, has an
infinite boundary in the minimal and the maximal
values of u and in the minimal and maximal val-
ues of v. A canonical 3D cylinder of radius r (see
Fig. 1(b)), parameterized for IP = [−π, π) × IR such
that fS(u, v) = (r cos u, r sinu, v), contains a line of
discontinuity that is parallel to the z-axis and passes
through (−r, 0, 0). The unit sphere (see Fig. 1(c)),
parameterized over IP = [−π, π) × [−π

2 , π
2] using

fS(u, v) = (cos u sin v, sinu sin v, cos v), contains a
semicircle of discontinuity that connects the two poles
(0, 0,−1) and (0, 0, 1) through (−1, 0, 0). In addition,
the two poles are singularity points in v.

Given a surface containing curves of discontinuity
and singularity points we modify the parameter space

as follows: In case of discontinuity in u, we consider
the open u-range (umin + ε, umax − ε) for an infinites-
imally small ε > 0. In case of a singularity point in
umin we augment the u-parameter range to be lower
bounded by umin + ε (or upper bounded by umax − ε
in case of a singularity point in umax), for an infinites-
imally small ε > 0. We handle singularities in v in a
similar fashion. As a result, we obtain an augmented
parameter space ĨP, for which it is possible to define
the inverse mapping f−1

S : IR3 −→ ĨP.
It is now possible to apply an augmented sweep-

line algorithm to our parametric surface, where we
actually perform a plane sweep over ĨP. Let S̃ denote
the image of the augmented parameter space, namely
fS(ĨP). Given a set C of curves defined on S, we start
by computing C ′ = C ∩ S̃ for each C ∈ C, and by
subdividing C ′ into u-monotone subcurves. We refer
to the resulting subcurves as sweepable curves. Note
that in particular, the interior of a sweepable curve
cannot intersect a curve of discontinuity or contain
a singularity point. However, the curve-ends may be
incident to the modified surface boundaries.

We start the sweep with the curve fS(u0, v), for
some initial fixed u-value u0 (e.g., u0 = umin + ε in
the example of the cylinder). We now sweep the curve
over the surface S̃. For each u-value u′, a subset
of the sweepable curves induced by C intersect the
sweep-curve fS(u′, v), at the points p1, . . . , pk ∈ S.
The status structure stores these curves ordered in
ascending v of f−1

S (p1), . . . , f−1
S (pk). Similarly, when

we detect an intersection point p, we insert it into the
event queue, considering the lexicographic uv-order of
f−1

S (p). The event queue must contain events associ-
ated with curve-ends incident to the surface bound-
aries for its proper maintenance.

2.2 Sweeping Unbounded Curves

The main difficulty in adapting the Bentley-Ottmann
sweep algorithm [2] to the unbounded case, lies in
handling its initialization step, and symmetrically in
completing the sweep after all the finite event points
were encountered. Let us revise the terminology used
so far. Instead of considering the endpoints of a curve,
we refer to the two curve-ends. A curve-end may be
unbounded or bounded, and only in the latter case we
have a valid endpoint. In order to perform the sweep-
line procedure, we require the two following compar-
isons involving unbounded curve-ends (in addition to
the operations listed in [5] for bounded curves): (i) de-
termine the relative vertical position of two curve-ends
defined at x = ±∞,2 and (ii) determine the relative
horizontal positions of two curve-ends with finite x-
coordinates that lie at y = ±∞.

2For two lines this amounts to comparing their slopes, and
in case of equality we can compare their vertical position at
x = 0. Other curves may require more careful analysis.

224

EWCG 2007, Graz, March 19–21, 2007

h2

h1

`2

`1

cr
2

cr
1

c`
2

c`
1

w
c2

c1

(a) (b) (c)

Figure 1: Comparing curve-ends with boundary conditions: (a) Comparing at infinity. (b) Comparing near the
line of discontinuity. (c) Comparing near a singularity point.

Having defined the geometric primitives, we are
ready to modify the sweep-line algorithm to handle
infinite curves. First, we store extra information with
the events: an event may be associated with a (finite)
point, or it may be associated with an unbounded
curve-end at x = ±∞ or at y = ±∞. We begin
the sweep process by constructing events that repre-
sent all unbounded and bounded curve-ends. To sort
these events we use a simple procedure based on the
two primitive comparison operations listed above: if
one event lies at x = −∞ and the other is a (finite)
point, then the first event is obviously smaller; if both
events lie at x = −∞ we compare their associated
curve-ends there, etc. For instance, in Fig. 1(a) we
have `1 < `2 < h1 when the sweep is initialized. We
omit further details of the process in this abstract, and
remark that whenever infinity in x or in y is involved,
barely any geometric operations are required.

2.3 Sweeping on General Surfaces

We can now generalize the sweep-line procedure for
sweeping over curves embedded on a surface in IR3.
So far we swept over the parameter space IP = IR2,
and treated curve-ends that coincide with the infi-
nite boundaries symbolically. We can use the same
set of geometric primitives for sweeping over a set of
curves on a surface. However, we have to re-interpret
the geometric predicates as if they are given on the
uv-plane. For instance, instead of comparing two
points p1 and p2 by their xy-lexicographic order, we
compare f−1

S (p1) and f−1
S (p2) according to their uv-

lexicographic order in ĨP.
A sweepable curve-end may have boundary condi-

tions. In the previous subsection we have already en-
countered curves with unbounded ends, and we say
that the boundary condition of such an end in x
(or in y) is of type minus infinity or plus infinity.
In the general case, we may also encounter curve-
ends whose boundary condition is leaving disconti-
nuity (or approaching discontinuity), or leaving sin-
gularity (or approaching singularity). For instance,
in the example depicted in Fig. 1(b), all sweepable

curve-ends may start right after the line of disconti-
nuity or may end right before this line, as we have
removed the line of discontinuity from S̃. The two
curves C1 and C2 are split at the line of disconti-
nuity, forming the sweepable curves c`

1, c
r
1 and c`

2, c
r
2,

respectively. Yet when we compare the curve-ends we
consider an ε-neighborhood around the line of discon-
tinuity (shaded). Thus, c`

1 is above c`
2 after the line of

discontinuity, when the sweep starts. Fig. 1(c) shows
how we symbolically handle curve-ends that are inci-
dent to a singularity point (the north pole of a sphere
in this case): c1 lies to the left of c2, as we compare
the ends of sweepable curves in an ε-neighborhood
below the north pole (shaded). Note that this means
that we have a different event for every curve-end that
coincides with a pole.

3 Constructing Arrangements on Surfaces

Constructing an arrangement of curves on a paramet-
ric surface boils down to properly handling the sub-
curves the sweep-line procedure detects and inserting
them into the doubly-connected edge-list (Dcel for
short) that represents the arrangement; see, e.g., [3,
Chap. 2]. As the only modification of the sweep-line
algorithm involves curve-ends with boundary condi-
tions, we have to augment the curve-insertion proce-
dures to properly handle such curve-ends.

Already when moving to unbounded curves we
should consider a representation of the arrange-
ment that caters for more than one unbounded face.
Fig. 2(a) demonstrates one possibility, where we use
an implicit bounding rectangle embedded in the Dcel
structure using fictitious edges that are not associated
with any concrete planar curve. It is also possible to
choose a different representation of a planar arrange-
ment of bounded curves that uses a single vertex at
infinity vinf , such that all unbounded curve-ends are
incident to this vertex; see illustration in Fig. 2(b).

Aiming for modularity, we wish to decou-
ple the implementation of the basic arrangement
operations (e.g., inserting a new edge associ-
ated with a subcurve, removing an edge, etc.)

225

23rd European Workshop on Computational Geometry, 2007

vbl v4 vbr

v6

v7

v8
f8 f1

f2

f3

f4
f5

f6

vtrvtl
v5

v2

v3

v1

f7

f̃

f7

f8

f6

f5
f4

f3

f2

f1

vinf

(a) (b)

Figure 2: Possible Dcel representations of an arrangement of four lines in the plane.

from the actual representation of the arrange-
ment. We do this by introducing the class-
template Arrangement on surface 2<GeomTraits,
TopTraits>, which should be instantiated by two
types. The first is the geometry-traits class, which
defines the family of curves that induce the arrange-
ment, and encapsulates all primitive geometric pred-
icates and constructions (e.g, comparing two points
by their uv-lexicographic order, computing intersec-
tion points, etc.) on curves of this family. The second
type is a topology-traits class, which encapsulates the
topology of the surface on which the arrangement is
embedded, and determines the underlying Dcel rep-
resentation of the arrangement. It does so by supply-
ing predicates and operations related to curve-ends
with boundary conditions. For example, it is respon-
sible for initializing a Dcel structure that represents
an empty arrangement, and for locating the Dcel
feature that represents a given curve-end (this fea-
ture may be a fictitious edge as in Fig. 2(a), a vertex
at infinity as in Fig. 2(b), etc.). Using the topology-
traits primitives, we can use the sweep-line procedure
to construct the arrangement of a set of curves on a
surface: When we detect a subcurve with boundary
conditions, we query the topology-traits class to ob-
tain the Dcel feature containing the curve-end, then
insert the subcurve accordingly. For example, if we
sweep over the cylinder depicted in Fig. 1(b), a ver-
tex w is created on the line of discontinuity when we
insert c`

1 into the arrangement. The topology-traits
class keeps track of this vertex, so it will associate w
as the minimal end of c`

2 and as the maximal end of cr
1

and cr
2. Similarly, in the example shown in Fig. 1(c),

the north pole will eventually be represented as a sin-
gle Dcel vertex, with c1 and c2 incident to it.

We have already implemented a topology-traits
class for handling unbounded curves on the plane,
along with geometry-traits classes for handling lines
and rays, and with Exacus3 based geometry-traits
classes for algebraic curves. We have also designed
and implemented two other topology-traits classes

3http://www.mpi-sb.mpg.de/projects/EXACUS/ .

along with corresponding geometry-traits classes, that
define curves on surfaces: the first maintains arrange-
ments of arcs of great circles embedded on a sphere,
and the other constructs arrangements of intersec-
tion curves between quadric surfaces embedded on a
quadric surface. For lack of space, we omit the imple-
mentation details.

References

[1] M. V. A. Andrade and J. Stolfi. Exact algorithms for
circles on the sphere. Internat. J. Comp. Geom. Appl.,
11(3):267–290, 2001.

[2] J. L. Bentley and T. Ottmann. Algorithms for report-
ing and counting geometric intersections. IEEE Trans.
on Computers, 28(9):643–647, 1979.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer, Berlin, Germany,
2nd edition, 2000.

[4] F. Cazals and S. Loriot. Computing the exact arrange-
ment of circles on a sphere, with applications in struc-
tural biology. Technical Report 6049, INRIA Sophia-
Antipolis, 2006.

[5] E. Fogel, D. Halperin, L. Kettner, M. Teillaud,
R. Wein, and N. Wolpert. Arrangements. In J.-D.
Boissonnat and M. Teillaud, editors, Effective Com-
putational Geometry for Curves and Surfaces, chap. 1,
pages 1–66. Spinger, 2006.

[6] D. Halperin and C. R. Shelton. A perturbation scheme
for spherical arrangements with application to molec-
ular modeling. Comput. Geom. Theory Appl., 10:273–
287, 1998.

[7] K. Mehlhorn and M. Seel. Infimaximal frames: A tech-
nique for making lines look like segments. Internat. J.
Comp. Geom. Appl., 13(3):241–255, 2003.

[8] M. Meyerovitch. Robust, generic and efficient con-
struction of envelopes of surfaces in three-dimensional
space. In Proc. 14th Europ. Sympos. Alg., pages 792–
803, 2006.

[9] R. Wein, E. Fogel, B. Zukerman, and D. Halperin.
Advanced programming techniques applied to Cgal’s
arrangement package. Comp. Geom. Theory Appl. To
appear.

226

EWCG 2007, Graz, March 19–21, 2007

Efficient Spatial Indexes for Approximate Range Searching

Micha Streppel∗ Ke Yi†

Abstract

Building efficient spatial indexes for range searching
is a central problem in spatial databases. The R-
tree has been a popular spatial index thanks to its
simplicity, ability to answer various queries, and the
flexibility to store spatial objects of different shapes.
However, the R-tree is known to be a heuristic-based
structure and no guarantees can be made on its query
performance. In this paper, we present two disk-based
indexes for approximate range searching that are as
versatile as the R-tree, and at the same time provide
good guarantees on the query performance, albeit in
the approximate sense.

1 Introduction

The very basic operation in a spatial database is to
retrieve all objects intersected by a query range. For
this purpose many access methods, or spatial indexes,
have been proposed in the past decades, to organize
the spatial objects stored in the database so that such
a range searching query can be answered efficiently.
See the survey by Gaede and Günther [12] and the
book by Samet [16].

The R-tree [13] and its many variants [14] have been
used heavily in practice. Unfortunately, the R-trees
are known to be heuristic-based structures and do not
have good guarantees on the query performance. In
fact it was shown [2] that in the worst case, a query
has to visit Ω((N/B)1−1/d + k/B) blocks using any
variant of R-tree built on N points in Rd, where B
is the disk block size, and k is the output size. This
lower bound is reached by a recently developed R-tree
variant, called the PR-tree [4], but the result holds
only if both the queries and objects are axis-parallel
hypercubes.

Ideally one would like a logarithmic query bound si-
milar to that of the B-tree answering one-dimensional
range searching queries. Given the negative result on
R-trees, many other types of (theoretical) spatial in-
dexes have been proposed. However, they often requi-
re non-linear space or super-logarithmic query costs,
and/or can only answer a specific type of queries.

∗Department of Computer Science, TU Eindhoven, P.O.Box
513, 5600 MB Eindhoven, the Netherlands. Supported by the
Netherlands Organisation for Scientific Research (N.W.O.) un-
der project no. 612.065.203.

†AT&T Labs - Research, Florham Park, NJ 07932, USA.

Approximate range searching. Exact range search-
ing either uses non-linear storage or incurs super-
logarithmic query time [5], it is therefore natural
to seek for approximate solutions. The concept ε-
approximate range searching was first introduced by
Arya and Mount [6]. Here one considers, for a pa-
rameter ε > 0 and a query range Q of constant com-
plexity, the ε-extended query range Qε, which is the
locus of points lying at distance at most ε · diam(Q)
from Q, where diam(Q) is the diameter of Q. For
a point set P of N points in Rd, the approximate
range searching problem is to return a set P ∗ such
that P ∩Q ⊆ P ∗ ⊆ P ∩Qε.

The first structure for approximate range searching,
the BBD-tree, was proposed by Arya and Mount [6].
Later, a similar, but simpler structure, called the
BAR-tree, was proposed by Duncan et al. [11]. In
this paper, we extend these results to external mem-
ory, and design new disk-based indexes for answering
these queries. Furthermore, we generalize the struc-
ture to accommodate arbitrary shapes rather than
just points, so that our index can serve as an alter-
native of R-trees, but with provable and potentially
much better bounds.

The I/O-model and previous work. For the analy-
sis of external memory data structures, the standard
I/O model by Aggarwal and Vitter [3] is often used.
In this model, the memory has a limited size M but
any computation in memory is free. Only the number
of I/Os is considered when analyzing the cost of an al-
gorithm. In one I/O a disk block consisting of B items
are read from or written to the external memory.

There has been some work on an efficient disk lay-
out of the BAR-tree. In his thesis [10] Duncan gave
an I/O-efficient variant of the BAR-tree, which uses
a breadth-first blocking scheme. The number of I/Os
for the construction is O((N/B) log N) and the num-
ber of I/Os to answer an approximate range searching
query is claimed to be O(logB N+εγ+kε/B). However
Duncan made the implicit assumption that all blocks
contain Θ(B) nodes, which is not necessarily the case.
Some leaves may contain a small number of points and
the query bound is in fact O(logB N + εγ + kε) in the
worst case.

Agarwal et al. [1] gave a general framework for ex-
ternalizing and dynamizing weight-balanced partition-
ing trees such as the BAR-tree. They describe how
a weight-balanced partition tree can be constructed

227

23rd European Workshop on Computational Geometry, 2007

in the optimal O(N/B logM/B N/B) I/Os. Like Dun-
can [10], they use a breadth-first blocking scheme for
storing the resulted tree on disk. To remove the as-
sumption made by Duncan they group blocks together
which contain too few nodes. As a result there is
at most one block containing too few nodes. This
improvement ensures that the resulted layout only
uses O(N/B) disk blocks, but the approximate range
searching cost is still O(logB N + εγ + kε), since there
can be Θ(B) blocks containing one (or a few) sub-
trees of constant size whose stored points have to be
reported.

Our results. We obtain two main results in this pa-
per. We first give a new blocking scheme for the BAR-
tree that yields the first disk-based index structure,
the BAR-B-tree. It answers an approximate range
searching query in the desired O(logB N + εγ +kε/B)
I/Os, i.e., achieving an O(logB N) search term and
an O(kε/B) output term simultaneously. Such terms
are optimal when disk-based indexes are concerned.
Unfortunately it seems difficult to reduce the error
term O(εγ). We can also bulk load the BAR-B-tree
efficiently.

Next, we generalize the BAR-B-tree to the object-
BAR-B-tree, which indexes not just points, but arbi-
trary spatial objects of constant complexity. Our idea
is based on range searching data structures for low-
density scenes [9, 8]. It is believed that many realistic
inputs are low-density scenes.

2 The BAR-B-tree

In this section we describe the BAR-B-tree, an effi-
cient layout for the BAR-tree on disk. We introduce
our two-stage blocking scheme and analyze its query
cost when answering an approximate range searching
query in Section 2.1. We give an efficient bulk load-
ing algorithm in Section 2.2. For the remainder of the
paper we assume that T has at least B/2 nodes.

2.1 The blocking scheme

For any node u ∈ T , let Tu be the subtree rooted
at u, and we define |Tu|, the size of Tu, to be the
number of nodes in Tu (including u). Our blocking
scheme consists of two stages. In the first stage the
tree is blocked such that for any u ∈ T , Tu is stored
in O(d|Tu|/Be) blocks. In the second stage we make
sure that any root-to-leaf path can be traversed by
accessing O(logB N) blocks.

Tree-blocks. In the first stage we block the tree T
into tree-blocks such that T is stored in O(d|T |/Be)
blocks. The blocking procedure is detailed in Algo-
rithm 3. We traverse the tree T in a top-down fash-
ion, and keep in a set S all nodes u for which a block

Algorithm 3 Algorithm to construct tree-blocks
Input: a binary tree T
Output: a set of tree-blocks stored on disk

1: initialize S := {root of T }, and a block B := ∅
2: while S 6= ∅ do
3: remove any node u from S
4: initialize a queue Q := {u}
5: while Q 6= ∅ do
6: remove the first node v from Q, let v1, v2 be

v’s children
7: if |Tv| ≤ B then
8: put Tv in a new block B′
9: write B′ to disk

10: else if |Tv1 | ≥ B/2 and |Tv2 | ≥ B/2 then
11: add v to B
12: add v1, v2 to Q
13: else
14: suppose |Tv1 | < B/2
15: if |B|+ |Tv1 |+ 1 ≤ B then
16: add v and Tv1 to B
17: add v2 to Q
18: else
19: add v to S
20: if |B| = B then
21: write B to disk and reset B := ∅
22: add all nodes of Q to S
23: set Q := ∅
24: if |B| 6= ∅ then
25: write B to disk and reset B := ∅

will be allocated such that u is the topmost node in
the block. Initially S only contains the root of T . For
any node u ∈ S, we find a connected subtree rooted
at u to fit in one block using an adapted breadth-first
strategy with a queue Q. Throughout the blocking
algorithm we maintain the invariant that |Tu| ≥ B/2
for any u that is ever added to S or Q. The invariant
is certainly true when the algorithm initializes (line
1).

For a node u ∈ S, we fill a block with a top portion
of Tu by an adapted breadth-first search (line 4–23).
The BFS starts with Q = {u} (line 4), which is con-
sistent with the invariant since u is a node from S.
For each node v encountered in the BFS search, we
distinguish among the following three cases. (a) If
|Tv| ≤ B, then we allocate a new block to store the
entire Tv (line 7–9). Note that this block contains at
least B/2 nodes by the invariant. (b) Let v1, v2 be
the two children of v. If both Tv1 and Tv2 have more
than B/2 nodes, then we add v to the block and con-
tinue the BFS process (line 10–12). It is safe to add
v1, v2 to Q as we have ensured the invariant. (c) Oth-
erwise, it must be the case that one of the subtrees is
smaller than B/2 nodes while the other one has more
than B/2 nodes. Without loss of generality we as-

228

EWCG 2007, Graz, March 19–21, 2007

sume |Tv1 | < B/2, and then check if Tv1 plus v itself
still fits in the current block. If so we add v and the
entire Tv1 to the current block, add v2 to Q and con-
tinue the BFS; else we put v into S, and will allocate a
new block for v (line 14–19). Notice that the blocking
process for v will not go back to line 19 again since
with a new empty block, Tv1 and v must be able to
fit. Please refer to Figure 1 for an illustration of this
blocking algorithm.

ν

µ

Figure 1: Three tree-blocks (white, light gray and
dark gray) obtained using the blocking scheme for
B = 8. The black triangles denote the existence of
a subtree of size at least B/2. The right subtree of ν
is placed completely in the white block. The node µ
and its right subtree do not fit in the light gray block
so a new block must be started at µ.

Lemma 1 For any u ∈ T , the nodes in Tu are stored
in O(d|Tu|/Be) blocks.

The blocked BAR-tree resulting after the first stage
might have depth as bad as Θ(log N). In the sec-
ond stage we introduce path-blocks which ensure that
O(logB N) blocks have to be accessed in order to visit
all nodes on any root-to-leaf path.

Path-blocks. To identify the places where a path-
block has to be introduced we visit T in a top-down
fashion. For a node u, if |Tu| ≤ B we stop. From
Lemma 1 we know that Tu is already stored in O(1)
tree-blocks. Otherwise we consider the top subtree of
B nodes of Tu obtained by a BFS starting from u. We
denote this subtree by T̂u. We check all root-to-leaf
paths in T̂u. If there is at least one such path that
is divided among more than c tree-blocks for some
integer constant c ≥ 2, then we introduce a path-
block that stores T̂u. We also remove all nodes of T̂u

from the tree-blocks where they are stored. Finally
we continue this process recursively with each subtree
below T̂u.

This completes our two-stage blocking scheme.
With the introduction of path-blocks, now we have
the following.

Theorem 2 A BAR-B-tree on N points in Rd takes
O(N/B) disk blocks and any root-to-leaf path in T
can be traversed by accessing O(logB N) blocks.

Since no node is stored in multiple blocks we can use
the standard query algorithm for BSPs. The traversal
can be performed in either a BFS or DFS manner,
with the use of an I/O-efficient stack or queue such
that the extra overhead is O(1) I/Os per B nodes.

Theorem 3 A range searching query Q in a BAR-
B-tree can be answered by accessing O(logB N + εγ +
kε/B) blocks.

2.2 An efficient construction algorithm

We are left with giving an I/O-efficient bulk load-
ing algorithm to build a BAR-B-tree with a set of
N points in Rd. We use the “grid” technique intro-
duced by Agarwal et al. [1], which we briefly review
here. The grid technique can be used to construct a
class of space partitioning structures I/O-efficiently,
including the BAR-tree. The idea is to first build
a grid of size Θ((M/B)c) in memory for some con-
stant 0 < c ≤ 1/2, which is then used to build the
top Θ(log(M/B)) levels of the BSP. Next the data
set is partitioned into subsets that correspond to the
subtrees below. This process can be completed with
a constant number of scans of the data set. Finally
we recurse to build the subtrees. The recursion stops
when we have less than M points to deal with, for
which we just build the entire subtree in memory.
The overall cost is then O(N/B logM/B N/B) I/Os.
Observing that each recursive call to the grid method
must still have at least B points to deal with, since
M/(M/B)c ≥ B, our top-down algorithm for the con-
struction of the tree-blocks can easily be coupled with
the also top-down grid technique. After we have built
T̂ , the top Θ(log(M/B)) levels of T using the grid the
technique, since the grid also gives us all the subtree
sizes of T̂ [1], we can run Algorithm 3 on T̂ . However,
some tree-blocks at the bottom of T̂ are not complete,
i.e., they include some nodes below T̂ that have not
been built yet. Then we simply push these incom-
plete tree-blocks into the corresponding subtrees for
which the grid method will recurse. Later when the
grid method recurses on a subtree Tu, we will be able
to resume Algorithm 3 from the incomplete tree-block
that contains u. This modification to the grid method
incurs at most O(N/B) additional I/Os. After con-
structing the tree-blocks, we build the path-blocks as
described above. It takes O(N/B) I/Os to build all
the path-blocks. This completes the analysis of our
bulk loading algorithm.

229

23rd European Workshop on Computational Geometry, 2007

Theorem 4 It takes O(N/B logM/B N/B) I/Os to

bulk load a BAR-B-tree on a set of N points in Rd.

3 Extension to objects: the object-BAR-B-tree

In this section we show how to externalize the object-
BAR-tree [9] for a λ-low-density set S of objects of
constant complexity. The object-BAR-tree is based
on the idea of guarding sets [7, 15]. For a subset X ⊆
S, a set of points GX is called a guarding set of X if
the region associated with any leaf in the BAR-tree
constructed on GX intersects at most O(λ) objects of
X.

We first build all the guards with a scan over S. For
R2 we can use the simple construction of De Berg et
al. [9]. For Rd, d ≥ 3 there also exists a guarding set
but due to lack of space we will not mention it here1.

Next we build the BAR-B-tree on the set of all
guards G using Algorithm 3. The adaptation of re-
moving guards during the construction as described
above can be easily accommodated in the algorithm,
and we can build and lay out the tree T on disk in
O(λN/B logM/B λN/B) I/Os. During the process we
can also compute for each leaf v of T , the set of at
most O(λ) objects that intersect the region Rv. We
omit the technical details.

Finally, for each leaf block B of T , we store all the
intersecting objects consecutively on disk. More pre-
cisely, consider a block B and let L be the set of leaves
stored in B. The objects intersecting the regions of the
nodes in L are stored together in one list as follows.
Let v1, · · · , v|L| be the leaves in L ordered according to
an in-order traversal of T . We first store the objects
intersecting Rv1 , then the objects intersecting Rv2 ,
etc. Note that an object might be stored more than
once in the list. At every leaf vi we store a pointer to
the first and last object in the list intersecting Rvi

.

Theorem 5 Let S be a set of N objects in Rd

with density λ. An object-BAR-B-tree on S takes
O(λN/B) blocks and can be constructed using
O(λN/B logM/B λN/B) I/Os. An object-BAR-B-
tree for S answers an approximate range searching
query Q using O(logB N + dλ/Beεγ + λkε/B) I/Os,
where kε is the number of objects intersecting Qε.

References

[1] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vit-
ter. A framework for index bulk loading and dy-
namization. In Proc. International Colloquium on
Automata, Languages, and Programming, pages 115–
127, 2001.

1The guarding set construction for Rd, d ≥ 3 mentioned
in [9] is incorrect since there is no direct relation between the
guards and the objects in any subset X of S.

[2] P. K. Agarwal, M. de Berg, J. Gudmundsson,
M. Hammar, and H. J. Haverkort. Box-trees and
R-trees with near-optimal query time. Discrete and
Computational Geometry, 28(3):291–312, 2002.

[3] A. Aggarwal and J. S. Vitter. The input/output com-
plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116–1127, 1988.

[4] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi.
The priority R-tree: A practically efficient and worst-
case optimal R-tree. In Proc. SIGMOD International
Conference on Management of Data, pages 347–358,
2004.

[5] L. Arge, V. Samoladas, and J. S. Vitter. On two-
dimensional indexability and optimal range search in-
dexing. In Proc. ACM Symposium on Principles of
Database Systems, pages 346–357, 1999.

[6] S. Arya and D. M. Mount. Approximate range search-
ing. In Proc. 11th Annu. ACM Sympos. Comput.
Geom., pages 172–181, 1995.

[7] M. de Berg, H. David, M. J. Katz, M. Overmars,
A. F. van der Stappen, and J. Vleugels. Guard-
ing scenes againt invasive hypercubes. Computa-
tional Geometry: Theory and Applications, 26:99–
117, 2003.

[8] M. de Berg, M. J. Katz, A. F. van der Stappen, and
J. Vleugels. Realistic input models for geometric algo-
rithms. In Proc. 13th Annu. ACM Sympos. Comput.
Geom., pages 294–303, 1997.

[9] M. de Berg and M. Streppel. Approximate range
searching using binary space partitions. Computa-
tional Geometry Theory and Applications, 33(3):139–
151, 2006.

[10] C. Duncan. Balanced Aspect Ratio Trees. PhD thesis,
John Hopkins University, 1999.

[11] C. Duncan, M. Goodrich, and S. Kobourov. Balanced
aspect ratio trees: Combining the advantages of k-d
trees and octrees. Journal of Algorithms, 38:303–333,
2001.

[12] V. Gaede and O. Günther. Multidimensional access
methods. ACM Comput. Surv., 30:170–231, 1998.

[13] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proc. SIGMOD International
Conference on Management of Data, pages 47–57,
1984.

[14] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopou-
los, and Y. Theodoridis. R-trees: Theory and Appli-
cations. Springer, 2005.

[15] J. Nievergelt and P. Widmayer. Guard files: Stab-
bing and intersection queries on fat spatial objects.
Comput. J., 36:107–116, 1993.

[16] H. Samet. Spatial data structures. In W. Kim, editor,
Modern Database Systems, The Object Model, Inter-
operability and Beyond, pages 361–385. ACM Press
and Addison-Wesley, 1995.

230

EWCG 2007, Graz, March 19–21, 2007

Exact Computation of Arrangements of Rotated Conics∗

Eric Berberich† Manuel Caroli† Nicola Wolpert‡

Abstract

Transformations of geometric objects, like translation
and rotation, are fundamental operations in CAD-
systems. Rotations trigger the need to deal with
trigonometric functions, which is hard to achieve
when aiming for exact and robust implementation.

We show how we efficiently compute the planar ar-
rangement of conics rotated by angles that can be con-
structed with straightedge and compass. Well-known
examples are multiples of 45◦, 30◦, and 15◦. The main
problem one has to solve is root-isolation of univari-
ate polynomials p(x) ∈ Q(

√
c1) . . . (

√
cd)[x], for which

we use a modified version of the Descartes method.
For d = 1, we additionally present a new method that
isolates the real roots of p by using root isolation for
polynomials q(x) ∈ Q[x] only. We show results of our
benchmark experiences comparing both methods.

1 Introduction

We construct a set of transformed conics C ′ by ap-
plying an individual sequence of translations and ro-
tations to each conic of a given set C. We aim to
compute the subdivision of the plane induced by C ′

into cells of dimension 0 (vertices), of dimension 1
(edges), and of dimension 2 (faces) — commonly re-
ferred to as the arrangement of C ′. Arrangements
are well-studied in the field of computational geome-
try and serve as a basis for different applications [12].
In the past years, research concentrated on finding
exact, robust, and efficient solutions to compute the
arrangement of non-linear objects. Emiris et al. [11]
concentrated on circles, while arrangements of conics
have been considered in Cgal1 by Wein [16] and in
Exacus2 by Berberich et al. [3], all using a modified
version [14] of the sweep-line algorithm [1].

Performing arbitrary rotations requires evaluation
of trigonometric functions. Canny et al. [5] introduced
a rotation scheme to approximate rotations by α with

∗This work has been supported in part by the IST Pro-
gramme of the EU as Shared-cost RTD (FET Open) Project
under Contract No IST-006413 (ACS - Algorithms for Complex
Shapes)

†Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many, {eric, mcaroli}@mpi-inf.mpg.de

‡University of Applied Sciences, Stuttgart, Germany
nicola.wolpert@hft-stuttgart.de

1http://www.cgal.org/
2http://www.mpi-inf.mpg.de/projects/EXACUS/

angles ᾱ whose sine and cosine are rational. Such
angles ᾱ are dense in [0, 2π), which can be be eas-
ily seen by the parameterization (2t

1+t2 , 1−t2

1+t2) of the
unit circle. Each desired angle can be arbitrarily ap-
proximated by existing implementations. But this
method leads to increased bitlengths of the involved
coefficients and still does not compute the exact so-
lutions as expected by the exact geometric computa-
tion paradigm [18]. Each exact solution recalls the
question whether trigonometric computations can be
made “geometrically exact” – first tackled by [7]. We
give a positive answer for rotations by angles that can
be constructed with straightedge and compass. Such
rotations are discussed in Section 2. We explain in
Section 3 how to compute the intersection points of
such rotated conics and present details of the new im-
plementation within Exacus in Section 4. This work
concludes in Section 5 with a selection of experiments.

Figure 1: The arrangement of a hyperbola and an ellipse,
both rotated by angles of 0◦, 36◦, 72◦, 108◦, and 144◦.

2 Transformations of Conics

Definition 1 (Conic) Let K be a field and f(x, y) ∈
K[x, y] a bivariate polynomial. If deg(f) ≤ 2 we call
the zero set V(f) := {(x, y) | f(x, y) = 0} a conic and
denote it by c.3

A usual choice is K = Q. Since computations with
integers are much faster than using rational arith-

3For convenience, we also use c to denote the polynomial f .

231

23rd European Workshop on Computational Geometry, 2007

metic, we always multiply rational coefficients by their
common denominator keeping the curve unchanged.

Definition 2 (Euclidean Transformations) Let
x, b ∈ Kn, and let A ∈ Kn×n an orthogonal n × n-
matrix. Transformations of the form E(x) := Ax + b
are called Euclidean Transformations.

We aim for the coefficients of the new conic c̄ when
applying E on c, i. e., for each (x, y) ∈ V(c) we want
that E(x, y) ∈ V(c̄). This condition is fulfilled if we
choose c̄ := c ◦ E−1. Since A is orthogonal we get
E−1(x, y) = AT

(
x
y

)
− AT b. Let us consider rotations

by an angle α. Then

A =
(

cos α − sinα
sinα cos α

)
, b =

(
0
0

)
.

If the entries of A are rational we can use the exist-
ing implementations. Otherwise the entries of A are
non-rational and in most cases they are even tran-
scendental. For some angles α we have sin(α) and
cos(α) ∈ Q(

√
c1) . . . (

√
cd), for a constant d and all

0 < ci ∈ Q. This holds for all angles that can be
constructed by straightedge and compass, e. g., mul-
tiples of α = 2π

k , with k = 2nF1 . . . Fl, l, n ∈ N, where
the Fi are Fermat primes. Fermat primes are of the
form Fi = 22ei + 1 for some natural ei 6= ej . Since
the Fermat primes grow very fast, it is clear that we
can get very small angles, e. g., 1.5◦ = 360◦

24F0F1
. Note

that angles can be halved by straightedge and com-
pass (one additional square root). In the following
sections we only consider angles for rotations con-
structible by straightedge and compass. Observe that
the angle α = 1◦ is not constructible this way [15].

3 Intersection Points of Rotated Conics

Newer implementations of the sweep-line algorithm
require a set of basic geometric predicates on the
curves to be swept [17]. It even can be reduced to
the topological analysis of single curves and pairs of
curves [2]. A basic step is to find all x-coordinates of
intersection points of two curves. These are usually
computed by real root isolation of a univariate poly-
nomial p that is obtained by a resultant computation
[19]. In case of conics deg(p) ≤ 4. Real root isolation
means to determine for every real root of p a (ratio-
nal) interval [l, r], that contains exactly one root of
p. A well-known technique for real root isolation is
the Descartes method [8, 10] that we adapted for our
purpose. Although intended for integral polynomials,
it is also applicable to polynomials with non-rational
coefficients, as in our case p ∈ Q(

√
c1) . . . (

√
cd)[x].

If only one root is adjoined, we additionally explore
another technique to isolate the real roots:

Theorem 1 The roots of a polynomial p ∈ Q(
√

c)[x]
with deg(p) ≤ 4 can be isolated by only using real
root isolation on polynomials p̄ ∈ Q[x].

We sketch a constructive proof by giving the main
ideas of the algorithm. Note that for p ∈ Q(

√
c)[x]

we have

p(x) =
4∑

i=0

(ai +
√

c · bi)xi

=
4∑

i=0

aix
i +
√

c ·
4∑

i=0

bix
i

= α(x) +
√

c · β(x)

with α, β ∈ Q[x]. We consider the bivariate poly-
nomial q(x, u) := α(x) + uβ(x) and our goal is to
isolate the real roots of q(x,

√
c) = p(x). Note that

q is linear in u with coefficients in Q[x]. If con(q) :=
gcd(α(x), β(x)) is constant, V(q) defines the graph of
a function in x. Otherwise, for each root xi of con(q)
we have: ∀u q(xi, u) = 0. More intuitively: q defines
an algebraic curve of degree 4 in the xu-plane that ei-
ther comprises of the graph of a function or the graph
of a function multiplied with some vertical lines.

To isolate the roots of q(x,
√

c) we approximate
√

c
by an interval [s, t], s, t ∈ Q, such that at most

√
c is

a root of ρ(u) := resx(q, ∂
∂xq) in [s, t]. We infer the

desired isolating intervals from the isolating intervals
of ps(x) := q(x, s) and pt(x) := q(x, t). Observe that
ps, pt ∈ Q[x]. Depending on whether ρ(

√
c) = 0 we

have two distinguish two cases:

p square-free: It is easy to see that
√

c is not a root
of ρ(u). The number of roots of ps and pt is equal
and bounded by 4. Since q is continuous and locally
either the graph of a function or a vertical line, and
due to the choice of s and t, we have, for each root xi,
i ≤ 4, lims↗

√
c q(xi, s) = q(xi,

√
c) = limt↘

√
c q(xi, t).

The convex hull of properly refined isolating intervals
for q(xi, s) and q(xi, t) forms the isolating interval of
q(xi,

√
c).

[

[[

[

[

[

[]

]

]

]]

]

[]

]

√
c

s

t

x

qu

Figure 2: The isolating intervals for q(xi, s) and q(xi, t)
define the isolating interval for q(xi,

√
c), after the ones

for q(xi, s) are refined (examples indicated by ↔) with
respect to q(xi−1, t) and q(xi+1, t). Similar for q(xi, t).

232

EWCG 2007, Graz, March 19–21, 2007

p not square-free: We have ρ(
√

c) = 0 which dis-
ables us to infer the desired isolating intervals di-
rectly from the isolating intervals of roots of ps

and pt, since the number of roots may differ. Let
σ(u) := resx(∂

∂xq, ∂2

∂x2 q). Both, ρ(u)′ and σ(u) help
to distinguish different cases for the number of roots
of p and their multiplicities listed in the given table.

ρ′(
√

c) σ(
√

c) # of multiplicities
1 2 3 4

A 6= 0 ≤ 2 1 0 0
B = 0 6= 0 0 2 0 0
C ≤ 1 0 1 0
D

= 0 = 0
0 0 0 1

Note that in case A and C we still need to assign
the correct multiplicity to each root. We omit the
full case distinction conducted in [6], e. g., additional
criteria that help to distinguish between case C and
D, and exemplarily, we present case A.

The double root, denoted by ¯̄x, may or may not
induce roots in ps and pt. Consider the case of a ver-
tical line at ¯̄x. Then the numbers of roots are positive
and equal. Let qx(x, u) := ∂

∂xq(x, u). Then (x − ¯̄x)
is a double factor of q and a simple factor of qx that
can be computed by means of the greatest common
divisor.

[

[]

]

[] []
[

][

]
[]

][

[] s

√
c

t

u qx q

x

q, qx

Figure 3: ps and pt show 3 roots that do not determine
the double root of p(x,

√
c), but gcd(q, qx) gives it.

Otherwise, ¯̄x induces no root in ps and two in pt,
or vice versa. It suffices to isolate all roots of ps with
respect to the roots of pt until we can locate ¯̄x.

] []]

] []]

[]

[][

[

[]

[

[

q
t

√
c

s

¯̄x

Figure 4: The isolating and cross-refined intervals for
roots of ps and pt determine the simple roots and the
double root ¯̄x of p(x).

When analyzing the topology of a pair of conics,
we also require to compare y-coordinates of points on

conics (x, y) whose x-coordinates are equal. This has
to be done only in cases where the coordinates can be
represented and exactly as well as efficiently compared
by number types like leda::real [4] or CORE::Expr
[13]. This also holds for the case of rotated conics.

4 Implementation

To compute arrangements of rotated conics we ex-
tend the Exacus libraries by the two real root
isolators mentioned in Section 3: A modified ver-
sion of the Descartes method that works on poly-
nomials p ∈ Q(

√
c1) . . . (

√
cd)[x], and the isolator

that infers the isolating intervals from roots of in-
tegral polynomials. We also introduce a new rep-
resentation class template for transformed conics
(CnX::Rotated conic 2), that provides access to a
transformation history, i. e., a sequence of rotations
and translations applied to the original integral poly-
nomial. Its actual behavior is determined by a model
of the RotatedConicTraits concept. It especially de-
fines the allowed rotation angles, the number type
used for the coefficients of the bivariate polynomial,
and the method to isolate the real roots of its uni-
variate counterparts. For the number type of the co-
efficients we rely on NiX::Sqrt extension. It rep-
resents (nested) square root extensions, i. e., num-
bers of the form a + b ·

√
c, where a, b, and c are of

type Integer or, if nested, even another instance of
NiX::Sqrt extension again. A such equipped ver-
sion of Rotated conic 2 inherits all the functional-
ity from the generic Conic 2 class which is required
for arrangement computations (e. g., with Cgal’s
Arrangement 2 package) or even to compute boolean
set operations on polygons bounded by arcs of rotated
conics. Exacus 1.0 contains traits classes to rotate
conics by multiples of 45◦, 30◦, and 15◦, dealing with
all degenerate cases. Rotations by other angles con-
structible with straightedge and compass can be im-
plemented straightforward, as we recently did for 36◦.

5 Benchmark Results

We provide a selected excerpt of the benchmark re-
sults from [6]. We compute the arrangement of n
(varying from 10 to 200) randomly chosen conics with
the generic implementation of the sweep-line algo-
rithm in Exacus. Three approaches have been tested:
CnX: non-rotated conics using the Descartes

method for real root isolation
s-t: rotated conics using the Descartes method

twice for integral ps and pt to isolate the real roots of
p ∈ Q(

√
c)[x]

Des: rotated conics using the Descartes method
directly on p ∈ Q(

√
c)[x]

All conics are rotated by 45◦. The running times
are taken from runs on an Intel Pentium 4 CPU,

233

23rd European Workshop on Computational Geometry, 2007

clocked at 2.8 GHz with 512 kB cache. We list and
illustrate the results in Figure 5 and Table 1. As
one expects, the computation of arrangements of non-
rotated conics is fastest. Running times roughly dou-
ble when we switch to rotated conics. The com-

 0

 200

 400

 600

 800

 50 100 150 200

CnX
s-t
Des

Figure 5: Comparison of running times for arrangement
computation of non-rotated and rotated conics

No. CnX s-t Des
10 0.6 1.5 1.3

100 67.8 190.9 158.8
200 302.5 821.2 686.3

Table 1: Running times in seconds.

parison of Des versus s-t shows that Des usually is
measurably faster, such that we recommend to use
the extended Descartes method when computing ar-
rangements of rotated conics. The running times in
general increase remarkable if more sophisticated ro-
tation angles are involved, like rotations by 36◦.

We next plan to apply the Descartes method for bit-
stream coefficients by Eigenwillig et al. [9] to compute
intersection points of rotated conics.

Acknowledgments

We thank all Exacus developers, especially Arno Eigen-

willig, Michael Hemmer, and Tobias Reithmann, and we

thank Michael Sagraloff for fruitful discussions.

References

[1] J. L. Bentley and T. Ottmann. Algorithms for reporting
and counting geometric intersections. IEEE Transactions
on Computers, 28(9):643–647, 1979.

[2] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Ket-
tner, K. Mehlhorn, J. Reichel, S. Schmitt, E. Schömer, and
N. Wolpert. Exacus: Efficient and exact algorithms for
curves and surfaces. In Proc. 13th Europ. Sympos. Alg.
(ESA), volume 3669 of LNCS, pages 155–166, 2005.

[3] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert,
K. Mehlhorn, and E. Schömer. A computational basis
for conic arcs and Boolean operations on conic polygons.
In Proc. 10th Europ. Sympos. Alg. (ESA), volume 2461
of LNCS, pages 174–186, 2002.

[4] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra.
Efficient exact geometric computation made easy. In 15th
ACM Symposium on Computational Geometry (SCG’99),
pages 341–350, New York, NY, USA, 1999. ACM Press.

[5] J. Canny, B. Donald, and E. K. Ressler. A rational rota-
tion method for robust geometric algorithms. In SCG ’92:
Proceedings of the eighth annual symposium on Compu-
tational geometry, pages 251–260, New York, NY, USA,
1992. ACM Press.

[6] M. Caroli. Exakte Arrangement-Berechnung gedrehter
quadratischer Kurven. Bachelor’s thesis, Universität des
Saarlandes, Saarbrücken, Germany, 2005.

[7] E.-C. Chang, S. W. Choi, D. Kwon, H. Park, and C. K.
Yap. Shortest path amidst disc obstacles is computable.
In SCG ’05: Proceedings of the twenty-first annual sym-
posium on Computational geometry, pages 116–125, New
York, NY, USA, 2005. ACM Press.

[8] G. E. Collins and A. G. Akritas. Polynomial real root iso-
lation using descarte’s rule of signs. In SYMSAC ’76: Pro-
ceedings of the third ACM symposium on Symbolic and al-
gebraic computation, pages 272–275, New York, NY, USA,
1976. ACM Press.

[9] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn,
S. Schmitt, and N. Wolpert. A descartes algorithm for
polynomials with bit-stream coefficients. In CASC, pages
138–149, 2005.

[10] A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight
recursion tree bounds for the descartes method. In ISSAC
’06: Proceedings of the 2006 international symposium on
Symbolic and algebraic computation, pages 71–78, New
York, NY, USA, 2006. ACM Press.

[11] I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P.
Tsigaridas. Towards an open curved kernel. In Proc. 20th
Annu. ACM Sympos. Comput. Geom. (SCG), pages 438–
446, 2004.

[12] E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein,
and N. Wolpert. Arrangements. In J.-D. Boissonnat and
M. Teillaud, editors, Effective Computational Geometry
for Curves and Surfaces, chapter 1, pages 1–66. Springer,
2006.

[13] V. Karamcheti, C. Li, I. Pechtchanski, and C. K. Yap. A
core library for robust numeric and geometric computa-
tion. In 15th ACM Symposium on Computational Geom-
etry (SCG’99), pages 351–359, 1999.

[14] J. Snoeyink and J. Hershberger. Sweeping arrangements
of curves. In Proc. 5th Annu. ACM Sympos. Comput.
Geom. (SCG), pages 354–363, 1989.

[15] I. Stewart. Galois theory. Chapman and Hall, 2nd ed.
edition, 1992.

[16] R. Wein. High-level filtering for arrangements of conic
arcs. In Proc. 10th Europ. Sympos. Alg. (ESA), vol-
ume 2461 of LNCS, pages 884–895, 2002.

[17] R. Wein, E. Fogel, B. Zukerman, and D. Halperin. Ad-
vanced programming techniques applied to Cgal’s ar-
rangement package. In 1st Wrkshp. Library-Centric Soft-
ware Design. (LCSD’06), 2005.

[18] C. K. Yap. Towards exact geometric computation. CGTA:
Computational Geometry: Theory and Applications, 7,
1997.

[19] C. K. Yap. Fundamental problems of algorithmic algebra.
Oxford University Press, Inc., New York, NY, USA, 2000.

234

EWCG 2007, Graz, March 19–21, 2007

Computing Envelopes of Quadrics∗

Eric Berberich† Michal Meyerovitch‡

Abstract

We present the computation of envelopes of a set of
quadratic surfaces defined in IR3. Our solution is
based on the new Cgal Envelope 3 package that pro-
vides a generic and robust implementation of a divide-
and-conquer algorithm. This work concentrates on
the theory of algebraic and combinatorial tasks that
occur for quadratic surfaces and their implementa-
tion. The implementation is exact and efficient.

Figure 1: Cutout of the lower envelope of 400 quadrics,
hyperboloids and ellipsoids. It consists of 30 faces, 4 of
which are unbounded, 101 edges, and 76 vertices.

1 Envelopes

Lower envelopes are fundamental structures in com-
putational geometry, which have many applications
like computing general Voronoi diagrams, or perform-
ing hidden surface removal. Let S = {s1, . . . , sn} be
a set of n (hyper)surface patches in IRd. Let x1, . . . , xd

denote the axes of IRd, and assume that each si is
monotone in (x1, . . . , xd−1), namely every line parallel
to the xd-axis intersects si in at most one point (with-

∗This work has been supported in part by the IST Pro-
gramme of the EU as Shared-cost RTD (FET Open) Project
under Contract No IST-006413 (ACS - Algorithms for Complex
Shapes), by the Israel Science Foundation (grant no. 236/06),
and by the Hermann Minkowski–Minerva Center for Geometry
at Tel Aviv University.

†Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many, eric@mpi-inf.mpg.de

‡School of Computer Science, Tel-Aviv University, Israel,
gorgymic@post.tau.ac.il

out multiplicities). Regard each patch si as a partially
defined (d− 1)-variate function si(x1, . . . , xd−1).

Definition 1 (Envelope) The lower envelope ES
of S is the pointwise minimum of these functions:
ES(x1, . . . , xd−1) := min si(x1, . . . , xd−1), where the
minimum is taken over all functions defined at
(x1, . . . , xd−1).

Similarly, the upper envelope is defined as the point-
wise maximum of these functions. Throughout the
remaining parts we refer for the sake of simplicity to
lower envelopes only.

Definition 2 (Minimization Diagram) The min-
imization diagramMS of S is the subdivision of IRd−1

into maximal connected cells such that ES is attained
by a fixed (possibly empty) subset of functions over
the interior of each cell.

The complexity of an envelope [10, 19, 20] is given
by the complexity of its minimization diagram. The
computation of an envelope is a non-trivial task.
Note that the minimization diagram can be easily ex-
tracted from the cylindrical algebraic decomposition
(cad) scheme [7]. Several more efficient algorithms
have been developed for d = 3. Agarwal et at. [1]
gave a divide-and-conquer method, Boissonnat and
Dobrindt [5] showed a randomized incremental algo-
rithm. Both algorithms run in time O(n2+ε), with
ε > 0. For special cases there also exist output-
sensitive algorithms [8, 12, 17]. Meyerovitch recently
presented the generic and exact implementation of a
divide-and-conquer algorithm that decouples the com-
binatorial part from the geometric predicates [15]. In
order to support a new class of surface patches it suf-
fices to implement a set of geometric types and opera-
tions on them, as we do in Section 3 for quadrics. A
full description of the implementation is given in [14].
We only repeat that all the families of surfaces that
are supported benefit from combinatorial deductions
carried out by the algorithm. These deductions signif-
icantly reduce the amount of geometric constructions
and comparisons. Such operations are usually expen-
sive, especially when using exact geometric compu-
tation [23]. The implementation will be available as
the Envelope 3 package of the upcoming release (3.3)
of Cgal.1 It is based on the mature Arrangement 2

1http://www.cgal.org/

235

23rd European Workshop on Computational Geometry, 2007

package, which is a well-taken choice, since the prob-
lem actually is two-and-a-half-dimensional: The input
S consists of objects in IR3, while their minimization
diagram is represented by an augmented planar ar-
rangement in IR2.

2 Quadrics

Definition 3 (Quadratic Algebraic Surface)
Let K be a field and f(x, y) ∈ K[x, y, z] a trivariate
polynomial. If deg(f) ≤ 2 we call the zero set
V(f) := {(x, y, z) | f(x, y, z) = 0} a quadric.

Usually one chooses K = Q. Quadrics are at the
front of research of three-dimensional geometric mod-
elling. For recent results in the computational study
of quadrics see [4, 13, 16]. The main difficulty in com-
puting arrangements of quadrics exactly is that high-
degree algebraic numbers are involved, even when
the quadrics are defined by rational coefficients. An
important task is to robustly deal with the three-
dimensional intersection curves of quadrics, either by
a parameterization or by a projection step. We notice
that especially the projection method turns out to be
a fundamental basis when computing envelopes. Let
us briefly review the results of [4].

Let Q := {q1, . . . , qn} be a set of n quadrics,2

among which we select one base quadric, w. l. o. g.
q1. The intersection curves q1 ∩ qi, 2 ≤ i ≤ n, in-
duce a two-dimensional arrangement on the surface
of q1. The computation of such an arrangement is
motivated by the cylindrical algebraic decomposition
method [7]. By resultant computations [24] the in-

q1

q2

q3

sil(q1)
cut(q1, q2)

cut(q1, q3)

Figure 2: q1 is the base quadric. To the right, we see the
silhouette-curve of q1 and the corresponding cut-curves.

tersection curves are projected onto the xy-plane re-
sulting in plane algebraic curves of degree at most 4,
and we call them cut-curves. The silhouette of q1, de-
fined by gcd(q1,

∂
∂z

q1), partitions q1 into a lower and
an upper part. We also project the silhouette onto the
xy-plane. The corresponding curve has degree at most
2 and is called the silhouette-curve. See Figure 2 for
an illustration. Cut-curves can be decomposed into
maximal subcurves that are x-monotone and whose
interior can be assigned to the lower or upper part of
q1 uniquely. To do so we also have to split them at
their intersection points with the silhouette-curve of

2For convenience, we use qi to denote both the quadratic
surface as well as the underlying polynomial.

q1. Note that this decomposition is conservative in the
sense that we may split at projected points of q1 ∩ qi

where this intersection curve only touches the silhou-
ette of q1, but does not cross it. The implementation
uses the topology of pairs of projected curves to effi-
ciently obtain such intersections, but also to provide
the predicates needed to compute (sweep) the pro-
jected arrangement [3]. For Cgal’s Arrangement 2
package, a valid model of the ArrangementTraits 2
concept [21] is also provided.

The analysis of curves and pairs of curves is de-
manding. Some conditions on the coordinate system
are required which can be attained by applying a shear
transformation [2]. Note that in such a case we still
compute an envelope, but with respect to a slightly
different direction. Shearing is planned to become
transparent to the user. The implementation of [4] is
contained in the QuadriX library of Exacus.3

3 The Traits

The combinatorial divide-and-conquer algorithm-
template is instantiated with a traits class [18] that
encapsulates the geometric objects and operations on
them. It must be a model of the EnvelopeTraits 3
concept [15]. We provide such a class for quadrics
that extends the model of the ArrangementTraits 2
mentioned in Section 2 in the following way.

We map both basic surface types Surface 3 and
Xy monotone surface 3 to the quadric type taken
from QuadriX. This may be surprising at first, since
a quadric in general is not xy-monotone. However, it
is only an implementation detail to simplify matters.
All the operations that work on an xy-monotone sur-
face si consider only the lower part of the appropriate
quadric.
• Extracting xy-monotone surfaces from a general

surface. The implementation is trivial according to
our types choice.

Two operations benefit from silhouette- and cut-
curves that we already introduced in Section 2.
• Constructing all subcurves and possibly isolated

points that form the projection of the boundary of a
given xy-monotone surface si onto the xy-plane. The
decomposition of the silhouette-curve into maximal
x-monotone subcurves is the natural implementation
for quadrics.
• Constructing the projection of the intersection of

two xy-monotone surfaces s1, s2 onto the xy-plane,
which consists of x-monotone curves and possibly iso-
lated points. The cut-curve already gives the projec-
tion. Again, the intersection points of the silhouette-
curves with the cut-curve help to obtain a decom-
position such that we can select the correct sub-
curves, namely the ones that can be assigned to the

3http://www.mpi-inf.mpg.de/projects/EXACUS/

236

EWCG 2007, Graz, March 19–21, 2007

lower parts of both quadrics. Ray-shooting in the z-
direction is used to compute these assignments [2].

The EnvelopeTraits 3 concept also expects to
determine the relative z-order of two xy-monotone
surface patches s1, s2 with respect to some pro-
jected geometric objects. It distinguishes five meth-
ods for such comparisons, all of which use ray-
shooting in the z-direction as a basic technique.
Consider a point (x0, y0) ∈ IR2 with Ri(x0, y0) :=
{z |0 = qi(x0, y0, z) ∈ IR[z]} 6= ∅. Observe that
deg(qi(x0, y0, z)) ≤ 2, which means that the line par-
allel to the z-axis running through (x0, y0) intersects
qi either once or twice. Then the relative z-order of
s1 and s2 is given by the order of minR1(x0, y0) and
minR2(x0, y0). The following methods are expected
by the traits concept and we mainly explain for each
of them how to find a suitable point p(x0, y0) from
which to apply ray-shooting.
• Comparing the relative z-order of two surface

patches s1, s2 over the planar region immediately
above4 a given subcurve of the projected intersection
curve of s1 and s2. A planar point p is above a pro-
jected x-monotone curve c if it is in the x-range of
c and lies to the left when the c is traversed from
its xy-lexicographical smaller endpoint to its larger
endpoint. The envelope algorithm only invokes this
function if R1 and R2 are non-empty for all points of
a ε-strip above c. Therefore we choose rational x0, y0,
e.g., by real root isolation, such that p lies above c and
the vertical planar segment starting at p and ending
on c does not intersect the silhouette-curves nor any
other part of the cut-curve.
• Comparing the relative z-order of two unbounded,

non-intersecting surface patches s1 and s2 that are
defined over the entire plane. We choose p = (0, 0).
• Comparing the relative z-order of s1 and s2 over

a projected x-monotone curve c where s1 and s2 do
not intersect. If c forms a cut-curve (not of s1 and s2)
we choose as before a rational point p(x0, y0) in the
valid ε-neighborhood of c. More precisely, p is chosen
such that the interior of the vertical planar segment
from p to c neither intersects the cut-curve of s1 and
s2, nor the silhouette-curves, nor the curve defining c.
c can also be a part of a projected boundary. In such
case, its supporting curve has degree at most 2, and
we are able to find y0 of the form y0 := y1 + y2 ·

√
y3,

with y1, y2, y3 ∈ Q for a rational x0 in the x-range
of c. The correct relative z-order of s1 and s2 can
then be derived using repeated squaring on rationals
or with the help of number types like leda::real [6]
or CORE::Expr [11].
• Comparing the relative z-order over a projected

point p. It turns out that this operation is the most
expensive one, because the coordinates of such points
are usually defined by high-degree algebraic numbers
and there is no guarantee to find a “nice” point nearby

4The analog below version is also needed.

where s1 and s2 have the same order. It helps, that
the envelope algorithm invokes this function only in
some degenerate cases. Either p is isolated. Then we
know that we can find x0, y0 that can be represented
by (nested) square-root expressions [22] and we again
use the number types provided by Leda or Core to
represent the coordinates of p. If, otherwise, p lies on
a silhouette-curve, then its x-coordinate has degree
at most 8. Both Leda and Core can currently cope
with such numbers. To compute the y-coordinate we
have to solve a quadratic equation. The ray-shooting
requires an additional square-root. Both steps still
can be handled using the mentioned number types.
As expected, this comparison is the most expensive
one, especially when the z-coordinates are equal. We
plan to adapt the bit-stream Descartes method [9]
on this task and check its performance. Note that,
in general, the comparison over an arbitrary point is
possible using the same techniques, but not expected
during the execution of the divide-and-conquer algo-
rithm, because of the special care taken in designing
the algorithm [14].

4 Results

The traits class has been implemented as part of the
QuadriX library. Since Exacus currently merge to
Cgal, all presented components will become available
as packages of Cgal in one of its future releases.

We measured the running time of the divide-and-
conquer algorithm when computing lower envelopes
of quadrics.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1000 800 600 400 200

S
ec

on
ds

Number of Quadrics

Quadrics
No Ellipsoids

Only Ellipsoids

Figure 3: The running time of computing the lower en-
velope of sets of quadrics as a function of the number of
input quadrics.

For increasing n we generated five sets of n random
quadrics whose coefficients are ten-bit integers. We
further distinguish between mixed quadrics, ellipsoids
only, and sets that do not contain ellipsoids. Figure 3
shows the resulting running times on a 3 GHz Pentium
IV machine with 2 MB of cache, averaged over all the
sets of the same size. Note that computing the lower

237

23rd European Workshop on Computational Geometry, 2007

Number of comparisons over
Set Point Curve Curve Side

quadrics 0 (18315) 2804 (31373) 1273 (4638)

non-ellipsoids 0 (18087) 2386 (30777) 1273 (4640)

ellipsoids 0 (22747) 1292 (38172) 1282 (3798)

Table 1: The number of times each of the three main com-

parison operations is invoked when computing the lower

envelope of 1000 quadrics of different input sets. The huge

number of operations invoked by a less sophisticated algo-

rithm is shown in parenthesis.

envelope of 1000 quadrics takes less than 10 minutes,
using exact arithmetic of Leda. Computing the lower
envelope of ellipsoids is faster.

Table 1 shows the number of times each of the three
main comparison operations is invoked by the algo-
rithm of [15]. The number of times the same opera-
tions are invoked when not using the combinatorial
deductions of the algorithm is given in parenthesis.
As one can see, computing lower envelopes of quadrics
benefits significantly from propagation of information
about the relative z order of surface patches.

References

[1] P. K. Agarwal, O. Schwarzkopf, and M. Sharir. The
overlay of lower envelopes and its applications. Dis-
crete Comput. Geom., 15:1–13, 1996.

[2] E. Berberich. Exact arrangements of quadric intersec-
tion curves. M.Sc. thesis, Universität des Saarlandes,
Saarbrücken, Germany, January 2004.

[3] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert,
L. Kettner, K. Mehlhorn, J. Reichel, S. Schmitt,
E. Schömer, and N. Wolpert. Exacus: Efficient
and exact algorithms for curves and surfaces. In
Proc. 13th Annual European Symposium on Algo-
rithms (ESA), volume 3669 of LNCS, pages 155–166,
2005.

[4] E. Berberich, M. Hemmer, L. Kettner, E. Schömer,
and N. Wolpert. An exact, complete and efficient im-
plementation for computing planar maps of quadric
intersection curves. In 21st ACM Symposium on
Computational Geometry (SCG’05), pages 99–106,
June 2005.

[5] J.-D. Boissonnat and K. T. G. Dobrindt. On-line
construction of the upper envelope of triangles and
surface patches in three dimensions. Comput. Geom.
Theory Appl., 5(6):303–320, 1996.

[6] C. Burnikel, R. Fleischer, K. Mehlhorn, and
S. Schirra. Efficient exact geometric computation
made easy. In 15th ACM Symposium on Computa-
tional Geometry (SCG’99), pages 341–350, 1999.

[7] G. E. Collins. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In Au-
tomata Theory and Formal Languages, volume 33 of
LNCS, pages 134–183, 1975.

[8] M. de Berg, D. Halperin, M. Overmars, J. Snoeyink,
and M. van Kreveld. Efficient ray shooting and hid-
den surface removal. Algorithmica, 12:30–53, 1994.

[9] A. Eigenwillig, L. Kettner, W. Krandick,
K. Mehlhorn, S. Schmitt, and N. Wolpert. A
descartes algorithm for polynomials with bit-stream
coefficients. In CASC, pages 138–149, 2005.

[10] D. Halperin and M. Sharir. New bounds for lower en-
velopes in three dimensions, with applications to vis-
ibility in terrains. Discrete Comput. Geom., 12:313–
326, 1994.

[11] V. Karamcheti, C. Li, I. Pechtchanski, and C. K.
Yap. A core library for robust numeric and geometric
computation. In 15th ACM Symposium on Compu-
tational Geometry (SCG’99), pages 351–359, 1999.

[12] M. J. Katz, M. H. Overmars, and M. Sharir. Efficient
hidden surface removal for objects with small union
size. Comput. Geom. Theory Appl., 2:223–234, 1992.

[13] S. Lazard, L. M. Peñaranda, and S. Petitjean. In-
tersecting quadrics: an efficient and exact implemen-
tation. In 20th ACM Symposium on Computational
Geometry (SCG’04), pages 419–428, 2004.

[14] M. Meyerovitch. Robust, generic and efficient con-
struction of envelopes of surfaces in three-dimensional
space. M.Sc. thesis, School of Computer Science, Tel
Aviv University, Tel Aviv, Israel, July 2006.

[15] M. Meyerovitch. Robust, generic and efficient con-
struction of envelopes of surfaces in three-dimensional
spaces. In Proc. 14th Annual European Symposium
on Algorithms (ESA), volume 4168 of LNCS, pages
792–803, 2006.

[16] B. Mourrain, J.-P. Técourt, and M. Teillaud. On
the computation of an arrangement of quadrics in 3d.
Comput. Geom. Theory Appl., 30(2):145–164, 2005.

[17] K. Mulmuley. An efficient algorithm for hidden sur-
face removal, II. J. Comput. Syst. Sci., 49(3):427–
453, 1994.

[18] N. Myers. “Traits”: A new and useful template tech-
nique. pages 451–457, 1996.

[19] M. Sharir. Almost tight upper bounds for lower
envelopes in higher dimensions. Discrete Comput.
Geom., 12:327–345, 1994.

[20] M. Sharir and P. K. Agarwal. Davenport-Schinzel
Sequences and Their Geometric Applications. Cam-
bridge University Press, Cambridge-New York-
Melbourne, 1995.

[21] R. Wein, E. Fogel, B. Zukerman, and D. Halperin.
Advanced programming techniques applied to Cgal’s
arrangement package. 2006. To appear in Comput.
Geom. Theory Appl.

[22] N. Wolpert. An Exact and Efficient Approach for
Computing a Cell in an Arrangement of Quadrics.
PhD thesis, Universität des Saarlandes, October
2002.

[23] C. K. Yap. Towards exact geometric computation.
Comput. Geom. Theory Appl., 7, 1997.

[24] C. K. Yap. Fundamental problems of algorithmic al-
gebra. Oxford University Press, Inc., New York, NY,
USA, 2000.

238

EWCG 2007, Graz, March 19–21, 2007

An Efficient Algorithm for the InCircle Predicate among Smooth Closed
Curves

Ioannis Z. Emiris∗ George M. Tzoumas†

Abstract

This paper concentrates on the InCircle predicate
which is used for the computation of the Voronoi di-
agram of smooth closed curves. The predicate de-
cides the position of a query object relative to the
Voronoi circle of three given ones. We focus on (non-
intersecting) ellipses but our method extends to arbi-
trary closed smooth curves, given in parametric rep-
resentation. We describe an efficient algorithm for In-
Circle based on a certified numeric algorithm. The
algorithm relies on a geometric preprocessing that
guarantees a unique solution in a box of parametric
space, where a customized subdivision-based method
approximates the Voronoi circle tracing the bisectors.
Our subdivision method achieves quadratic conver-
gence by exploiting the geometric characteristics of
the problem. The paper concludes with experiments
showing that most instances run in less than 0.1 sec
using floating-point arithmetic, on a 2.6GHz Pentium-
4.

1 Introduction

The InCircle predicate is used in the incremental
computation of the Voronoi diagram of curved ob-
jects [5]. Exact computation of this predicate is hard,
since there may exist up to 184 (complex) tritangent
circles to 3 conic curves; see [3] for a proof in the
case of ellipses. In that work, the authors sketched a
subdivision scheme for InCircle that worked better
than generic solvers, although it had linear conver-
gence. Notice that solving the algebraic system that
defines the Voronoi circle is not enough to decide In-
Circle; one must take into account the query ellipse
as well, which is equivalent to solving another simi-
lar system. In this approach, the computation of the
Voronoi circle is the most computationally demanding
task of InCircle.

The work coming closest to ours towards a complete
Voronoi diagram is [4]. The authors essentially trace
the bisectors in order to compute the Voronoi cells of
arbitrary curves up to machine precision. Their al-
gorithm uses floating point arithmetic and their soft-

∗Department of Informatics and Telecoms, National Univer-
sity of Athens

†Department of Informatics and Telecoms, National Univer-
sity of Athens, geotz@di.uoa.gr

ware1 works well in practice, with runtimes ranging
from a few seconds to a few minutes.

In this paper, we focus on the computation of In-
Circle which is clearly the most challenging pred-
icate and the only one that is not satisfactorily an-
swered yet. Our main contribution is a new numeric
algorithm that exhibits quadratic convergence in order
to approximate the Voronoi circle, by exploiting sev-
eral geometric properties of the problem. Not only is
our method faster than generic solvers and other exist-
ing implementations, including the one in [3], but also
allows us to decide InCircle before full precision has
been achieved. An advantage of this method is that
it can be generalized to arbitrary parametric curves
and arcs. The algorithm proved to be very efficient,
approximating the root with precision up to 10−15 in
less than 0.1 sec, when using standard floating-point
arithmetic. This work has been presented in a more
complete context in [2].

We assume that an ellipse is given in rational para-
metric form, i.e. constructively, in terms of its rational
axes, center and rotation:

x(t) = xc +
−α(1− w2)t2 − 4βwt + α(1− w2)

(1 + w2)(1 + t2)
,

y(t) = yc + 2
−αwt2 + β(1− w2)t + αw

(1 + w2)(1 + t2)
,

(1)

where 2α, 2β are the lengths of the major and minor
axes, respectively, t = tan(θ/2) ∈ (−∞,∞), θ is the
angle that traces the ellipse, w = tan(ω/2), ω is the
rotation angle between the major and horizontal axes
and (xc, yc) is its center. We assume that all ellipses
are parameterized in the same direction, i.e. CCW.

The bisector of two ellipses is the locus of points
at equal distance from the two ellipses. It can be
shown that the bisector of two ellipses in the para-
metric space, is a bivariate polynomial B1(t, r) of to-
tal degree 12, six in each variable. Each point on the
bisector corresponds to the center of a circle which is
bitangent to the two ellipses. For InCircle we are
interested in that part of the bisector which is the
locus of centers of externally bitangent circles.

Lemma 1 Given two smooth closed curves and a
point on the first, there is a bounded number of real
bitangent circles, tangent at the specific point. This
number is 6 for conics and is tight for ellipses.

1www.cs.technion.ac.il/˜irit/

239

23rd European Workshop on Computational Geometry, 2007

The proof of the above lemma (for ellipses) as well
as more details on bisectors of ellipses can be found
in [3]. For parametric bisectors, the reader may also
refer to [1]. The smoothness property implies that
a unique normal line is defined at every point of the
curve.

Note that from the circles in the previous lemma,
only one is external to both ellipses. We call this
unique external bitangent circle the Apollonius circle
of the two ellipses. We denote the Apollonius circle
of Et and Er tangent at points t̂ and r̂ respectively
by Atr(t̂, r̂). Since r̂ depends on t̂, we may omit the
latter and write only Atr(t̂).

In the parametric space, the intersection of two bi-
sectors involves three variables. In order to express
the Voronoi circle, we consider the intersection of
three bisectors by solving the system:

B1(t, r) = B2(s, t) = B3(r, s) = 0. (2)

2 Voronoi circle using subdivision

We have tried the Alias2 [6] built-in subdivision
solvers. The naive subdivision algorithm failed to con-
verge, while gradient based methods converged within
a few seconds depending on the initial interval.

Here we present a subdivision scheme to approx-
imate the solution of system (2) which is simpler,
exhibits quadratic convergence, and exploits the sys-
tem’s geometric symmetry.

Lemma 2 Consider Atr(t, r), which means that
B1(t, r) = 0. If we slide this circle along the boundary
of the ellipses for a sufficiently small amount, while
varying its radius and keeping it tangent to t′ and r′

respectively, then t′ > t =⇒ r′ < r.

Proof. This lemma can be proved by contradiction.
See figure 2 for a sketch of the proof. �

The basic idea of our algorithm is the following: Let
(t̂, r̂, ŝ) be the solution of (2) we are looking for. Now
consider the following system:

B1(t1, r2) = B3(r2, s1) = B2(s1, t2) = 0 (3)
B1(t2, r1) = B3(r1, s2) = B2(s2, t1) = 0 (4)

These two systems look like (2). The difference is
that we have considered t1 6= t2 in the general case
and thus we can start solving the above equations
in the given order. Doing so and keeping solutions
that correspond to Apollonius circles (using the ge-
ometric arguments described in [3]), leads to a con-
struction as in fig. 1. All bitangent circles coincide
with the Voronoi circle when t1 = t̂ = t2. Other-
wise, we have found an interval [t1, t2] that contains

2www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS.html

t1
t2

r1

r2
s1

s2

t̂

r̂ ŝ

Figure 1: All-pair bitangent circles

t

r

t
′

r
′

V
V

′

Figure 2: t′ > t =⇒ r′ < r

t̂. We can refine it by choosing a new point t′1 inside
this interval and computing [t′1, t

′
2] (suppose without

any harm that t′1 < t′2). As a consequence of lemma
2, t1 approaches t̂ from the left ⇒ r2 approaches r̂
from the right ⇒ s1 approaches ŝ from the left ⇒
t2 approaches t̂ from the right (see fig. 1). Therefore
t′1 ∈ [t1, t2] =⇒ t̂ ∈ [t′1, t

′
2] ⊂ [t1, t2]. Note that com-

puting a smaller interval on dimension t allows us to
compute smaller intervals on dimensions r and s as
well. Therefore we maintain exactly one box that
contains our solution, contrary to generic interval-
arithmetic techniques that may need to maintain a
large number of boxes.

2.1 Starting interval

First, we show that it is possible to find a box
that contains a unique solution. Consider the half-
planes l1, l2 which do not contain the ellipses and are
bounded by the two external bitangents of E1 and E2.

240

EWCG 2007, Graz, March 19–21, 2007

h

l1

l2

Figure 3: The cases on the number of Voronoi circles,
depending on the position of the third dotted ellipse

Consider also a query ellipse E that does not intersect
the other two. (cf. fig. 3) Let |li| = 0 or 1 depending
on whether E ∩ li = ∅ or not. Let C be the inte-
rior of the convex hull of E1, E2. Then, the number
of Voronoi circles is 0, 1 or 2, namely |l1| + |l2|, if
E ∩ C = ∅ and 2− |l1| − |l2| otherwise.

We can find a starting interval that contains the
tangency point of the Voronoi circle by computing the
external bitangents of each pair of ellipses and taking
the intersection of the interior of their convex hulls.
After computing the initial interval, we can pick any
random point t1 to start our algorithm.

These intervals’ endpoints may not correspond to
the same bitangent circle. Then, it is necessary to
“normalize” them so that they contain some solution
of (3) and (4), cf. fig. 1. We start from value t1. At
any given step, we have computed a value for parame-
ter t, say t̄ and then compute the Apollonius circle at
point r̄ of the next ellipse, that is we computeAtr(t̄, r̄)
(by solving B1(t̄, r) with respect to r). If r̄ ∈ [r1, r2],
then we update one appropriate endpoint to r̄. If
r̄ 6∈ [r1, r2], then we update t̄ by computing the Apol-
lonius circle tangent to the corresponding endpoint of
[r1, r2]. This process is analogous for the other pa-
rameter pairs (r, s) and (s, t).

There is also the case where two Voronoi circles ex-
ist. In this case the overall algorithm indicates which
one is needed and therefore we pick a proper sub-
interval.

2.2 Subdivision

The subdivision algorithm in pseudo-code is as fol-
lows:

Subdivision Algorithm

∗ Input: Initial intervals [t1, t2], [r1, r2], [s1, s2] that
contain unique (t̂, r̂, ŝ) and σ ∈ R, σ > 0.

t1

t2

r2

s1

t̂

Figure 4: Computing t2 from t1 encloses t̂

∗ Output: Subintervals [t1, t2], [r1, r2], [s1, s2] of the
given ones, which contain (t̂, r̂, ŝ) and t2 − t1 < σ.

1. Start from point t1 on the first ellipse and solve sys-
tem (3), with the additional constraint that r2, s1,
t2 correspond to Apollonius circles. After comput-
ing t2, also solve (4) in order to obtain intervals for
[r1, r2] and [s1, s2] respectively. For each interval, set
the left endpoint to be smaller than the right one, by
swapping them if necessary.

2. If t2 − t1 < σ then stop.

3. Set t1 := t1+t2
2

. Note that the midpoint of [t1, t2]
could be on the left or on the right of t̂. Go to step
1.

Eliminating r2, s1 from (3) yields resultant R(t1, t2)
as a bivariate polynomial equation. Similarly, elim-
inating r1, s2 from (4) yields R(t2, t1) as a bivariate
polynomial equation. Now we observe that R(t1, t2) =
R(t2, t1), since they have been derived from the same
equations with the same coefficients. When t1 6= t2,
systems (3) and (4) express a family of circles bitan-
gent to each pair of ellipses, as in fig. 1.

Looking at R(t1, t2) we see that t2 is an implicit
function of t1, say f , that is f(t1) = t2. Given value
t1, f(t1) is the value of t2 after solving (3), shown in
fig. 4. Obviously f(t̂) = t̂. From lemma 2 it follows
that t1 < t′ < t̂ =⇒ f(t1) > f(t′) > f(t̂). That is,
as t1 approaches t̂ from the left, t2 approaches t̂ from
the right and t̂ ∈ [t1, t2].

Lemma 3 In the above notation f ′(t̂) = −1.

Proof. From the Implicit Function Theorem we have
that df

dt1
exists and (by chain rule): df

dt1
= f ′(t1) =

−∂R/∂t1
∂R/∂t2

where R is the resultant polynomial. Since
R(t1, t2) = R(t2, t1), at point t1 = t2 = t̂ we have
∂R(t1,t2)

∂t1

∣∣∣
t1=t2=t̂

= ∂R(t1,t2)
∂t2

∣∣∣
t1=t2=t̂

, therefore f ′(t̂) =

− ∂R/∂t1
∂R/∂t2

∣∣∣
t1=t2=t̂

= −1. �

241

23rd European Workshop on Computational Geometry, 2007

Theorem 4 (Convergence) The above subdivision
algorithm converges quadratically.

Proof. For the proof, t1, t2 are not generic variables,
but have specific values, as is the case during the ex-
ecution of the algorithm. Let

ε = |f(t1)− t1|

be the error at one iteration of the method. At the
next iteration, the new error is ε′ = |f(t1+f(t1)

2) −
t1+f(t1)

2 | or equivalently: ε′ = |f(t1 + f(t1)−t1
2) −

t1 − f(t1)−t1
2 |. Applying Taylor expansion around

point t1 for f(t1 + f(t1)−t1
2) yields ε′ = |f(t1) +

f(t1)−t1
2 f ′(t1) + (f(t1)−t1)

2

8 f ′′(ξ)− t1 − f(t1)−t1
2 |, with

ξ between t1 and t1+t2
2 . Notice that, from the the-

ory of Taylor expansion, the use of ξ allows us to
omit less significant terms. Now ε′ becomes: ε′ =∣∣∣ f(t1)−t1

2 (1 + f ′(t1)) + ε2

8 f ′′(ξ)
∣∣∣ . This time we com-

bine the Taylor expansion around point t̂ for f ′(t1)
with lemma 3: f ′(t1) = f ′(t̂) + (t1 − t̂)f ′′(ξ′) =
−1 + (t1 − t̂)f ′′(ξ′), with ξ′ between t1 and t̂, such
that it allows us to omit less significant terms. Now
remember that t̂ ∈ [t1, t2] which means that |t1 −
t̂| ≤ |t2 − t1| = |f(t1) − t1|. Therefore: ε′ =∣∣∣ f(t1)−t1

2 (t1 − t̂)f ′′(ξ′) + ε2

8 f ′′(ξ)
∣∣∣ =⇒

ε′ ≤ ε2

2
|f ′′(ξ′)|+ ε2

8
|f ′′(ξ)| .

Given that f ′′(t) is a continuous function it takes a
minimum and maximum value inside [t1, t2], there-
fore |f ′′(ξ)| and |f ′′(ξ′)| are bounded by a positive
constant C and eventually ε′ ≤ 5C

8 ε2. �

3 Conclusion

We have implemented the subdivision algorithm in
C++ using the interval-arithmetic library Alias,
therefore the results are certified up to floating-point
precision. At each iteration we have to solve the bi-
sector polynomial B1(t, r) for a fixed t. Fortunately
Alias provides a fast univariate polynomial solver for
this task. Computing the diameter of the approximat-
ing intervals during each iteration of the algorithm
verified its quadratic convergence. For instance, a di-
ameter sequence was: [3.01679, 0.978522, 0.303665,
0.0381727, 0.000628676, 1.70776e-07, 1.17684e-14].
Our experiments show that about 8 iterations are
enough to approximate the roots of the system with
a precision of 10−15 in about 80 msec on a Pentium-4
2.6GHz.

The presented algorithm can be readily generalized
in order to compute the Voronoi circle of arbitrary
parametric curves, as shown in fig. 5. A subdivi-
sion algorithm alone does not suffice to decide the

Figure 5: Voronoi circle of three arbitrary curves

predicate in degenerate cases. To handle those cases,
we apply resultants and real solving [3]. Along these
lines, we plan to develop C++ code that will lead to
a complete CGAL3 package.

Acknowledgments

George Tzoumas is partially supported by State Scholar-

ship Foundation of Greece, Grant No. 4631. Both authors

acknowledge support by IST Programme of the EU as a

Shared-cost RTD (FET Open) Project under Contract No

IST-006413-2 (ACS – Algorithms for Complex Shapes).

References

[1] G. Elbert and M.-S. Kim. Bisector curves of planar ra-
tional curves. Computer-Aided Design, 30:1089–1096,
1998.

[2] I. Emiris and G. Tzoumas. A real-time and exact im-
plementation of the predicates for the Voronoi diagram
of parametric ellipses. Submitted. Manuscript avail-
able from http://www.di.uoa.gr/∼geotz/.

[3] I. Z. Emiris, E. P. Tsigaridas, and G. M. Tzoumas.
The predicates for the voronoi diagram of ellipses.
In Proc. ACM 22th Annual Symposium on Computa-
tional Ceometry (SoCG), pages 227–236, Sedona, Ari-
zona, USA, 2006. ACM Press.

[4] I. Hanniel, R. Muthuganapathy, G. Elber, and M.-S.
Kim. Precise Voronoi cell extraction of free-form ra-
tional planar closed curves. In Proc. 2005 ACM Symp.
Solid and phys. modeling, pages 51–59, Cambridge,
Massachusetts, 2005. (Best paper award).

[5] M. Karavelas and M. Yvinec. Voronoi diagram of con-
vex objects in the plane. In Proc. ESA, pages 337–348,
2003.

[6] J.-P. Merlet. ALIAS: an interval analysis based li-
brary for solving and analyzing system of equations. In
Systèmes d’Équations Algébriques, Toulouse, France,
2000.

3www.cgal.org

242

EWCG 2007, Graz, March 19–21, 2007

Author Index

Abam, Mohammad Ali . 77, 126
Abellanas, Manuel . 61
Aichholzer, Oswin . 98, 130
Aiger, Dror . 178
Aurenhammer, Franz . 130

Bajuelos, Antonio . 61
Bar-Noy, Amotz . 106
Benkert, Marc . 6, 190
Berberich, Eric . 223, 231, 235
Berg, Mark de . 73, 77, 126
Bhattacharya, Binay . 42
Borgelt, Christian. .198
Borgelt, Magdalene G. 162, 182, 198
Brüggemann, Bernd. .90
Buchin, Kevin . 26, 46, 166, 170
Buchin, Maike . 170
Buzer, Lilian .114
Bychenkov, Vladimir . 142

Caroli, Manuel . 231
Chaudhuri, Siddhartha . 82
Chazelle, Bernard . 218
Cheilaris, Panagiotis . 106
Coll, Narćıs . 65

de Castro, Pedro M. M. 219
Demaine, Erik D. 10, 14, 81
Demaine, Martin L. 10, 14
Demouth, Julien . 57
Devillers, Olivier . 57
Dimitrov, Darko . 122
Dinitz, Yefim . 30

Edelsbrunner, Herbert. .1
Emiris, Ioannis. .239
Eppstein, David . 146
Escalona, Francisco . 50
Everett, Hazel . 57

Fabila-Monroy, Ruy . 50, 110
Fekete, Sándor P. 86
Flores Peñaloza, David. .110
Fogel, Efi . 38, 223
Fort, Marta . 65, 186
Fukuda, Komei . 54

Gaur, Daya . 42
Ghodsi, Mohammad. .154, 202
Ghosh, Sunayana . 138
Giannopoulos, Panos . 18
Gudmundsson, Joachim . 174

Hachenberger, Peter . 77
Hackl, Thomas . 98, 130

Halperin, Dan . 38, 223
Hashemi, S. Mehdi . 154
Haverkort, Herman. .73
Held, Martin .134
Hoffmann, Michael . 98
Huemer, Clemens . 98, 110
Hurtado, Ferran . 110

Iacono, John . 14

Jourdan, Guy-Vincent . 150

Kamphans, Tom . 90
Katz, Matthew. .30
Kedem, Klara .178
Khodakarami, Farnoosh . 154
Klein, Oliver . 34, 174
Knauer, Christian 18, 122, 170, 174
Koltun, Vladlen . 82
Kornberger, Bernhard. .130
Krakovski, Roi’ . 30
Kriegel, Klaus . 122
Kuznetsova, Irina . 142

Löffler, Maarten . 22, 162
Lammersen, Christiane. .69
Langerman, Stefan . 14
Langetepe, Elmar . 90
Lazard, Sylvain . 57
Lenz, Tobias . 34
Luo, Jun . 162, 182

Madern, Narćıs . 65
Marx, Dániel .18
Matos, Inês . 61
Merrick, Damian . 6, 162
Meyerovitch, Michal . 235
Mohades, Ali . 206
Mumford, Elena . 146

Nouri Bygi, Mojtaba . 202
Nöllenburg, Martin . 6, 190

Olonetsky, Svetlana . 106

Pak, Igor . 46
Papadopoulou, Evanthia . 210
Peternell, Martin . 130
Petitjean, Sylvain . 138
Pfligersdorffer, Christian . 134
Pion, Sylvain . 219
Plantinga, Simon. .26
Podgorelec, David . 118
Poon, Sheung-Hung . 2
Pottmann, Helmut . 130

243

23rd European Workshop on Computational Geometry, 2007

Rakotomalala, Livaniaina . 150
Razen, Andreas . 166
Rote, Günter . 26, 122, 170

Sabariego, Pilar . 102
Sadeghi Bigham, Bahram . 206
Santos, Francisco . 98, 102
Schmidt, Christiane . 86
Schulz, André . 46
Seidel, Raimund . 57
Sellarès, J. Antoni .65, 186
Silveira, Rodrigo I. 162, 194
Skovpen, Alexander . 142
Smid, Michiel . 174
Smorodinsky, Shakhar . 106
Sohler, Christian . 69
Souvaine, Diane L. 10
Speckmann, Bettina 98, 126, 146
Streppel, Micha . 227
Sturm, Astrid . 26

Taslakian, Perouz . 10
Tavassoli, Meysam . 154
Teillaud, Monique. .219
Thite, Shripad . 73
Toma, Laura . 73
Trofimov, Vadim . 214
Tzoumas, George . 239

Uno, Takeaki . 166
Urrutia, Jorge . 50, 110

Vahedi, Mostafa . 162
van Kreveld, Marc 146, 162, 182, 194
Vegter, Gert . 26, 138
Vogtenhuber, Birgit . 98
Vyatkina, Kira .214

Wagner, Uli .166
Weibel, Christophe . 38, 54
Wein, Ron . 223
Wenk, Carola . 170
Wolff, Alexander . 6
Wolpert, Nicola . 231
Wood, David R. 110
Wulff-Nilsen, Christian .158

Yi, Ke . 227

Zaguia, Nejib . 150
Žalik, Borut . 118
Zarei, Alireza . 77
Zhang, John Z.. .94

244

