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Preface

The 32nd European Workshop on Computational Geometry (EuroCG ’16), was held at the Università della
Svizzera italiana (USI), Lugano, Switzerland, on March 30 – April 1, 2016.

EuroCG is an annual workshop that combines a strong scientific tradition with a friendly and informal atmo-
sphere. The workshop is a forum where researchers can meet, discuss their work, present their results, and
establish scientific collaborations, in order to promote research in the field of Computational Geometry, within
Europe and beyond.

We received 77 submissions, which underwent a limited refereeing process by the program committee in order to
ensure some minimal standards and to check for plausibility. We selected 65 submissions for presentation at the
workshop. EuroCG does not have formally published proceedings; therefore, we expect most of the results pre-
sented here to be also submitted to peer-reviewed conferences and/or journals. This book of abstracts, available
through the EuroCG ’16 web site http://www.eurocg2016.usi.ch, should be regarded as a collection of preprints.
In addition to the 65 contributed talks, this book also contains abstracts of the three invited lectures, given by
Dan Halperin, Dorothea Wagner, and Emo Welzl.

Many thanks to all authors, speakers, and invited speakers for their participation, and to the members of the
program committee and all external reviewers for their insightful comments. We gratefully thank the sponsors of
EuroCG ’16 for their support which made this event possible and helped keep the registration fees low: the Uni-
versità della Svizzera italiana, the Hasler Foundation, and the Swiss National Science Foundation for sponsoring
the travel of the invited speakers. Special thanks to all members of the organizing committee and members of
the Dean’s office at the Università della Svizzera italiana, for their work that made EuroCG ’16 possible.

March 2016 Evanthia Papadopoulou
EuroCG ’16 Chair
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Hard versus Easy in Robot Motion Planning: Closing the Ring

Dan Halperin∗

Abstract

Early results in robot motion planning had forecast a bleak future for the field by showing that problems
with many degrees of freedom are intractable. Then came sampling-based planners that have been successfully,
and often easily, solving a large variety of problems with many degrees of freedom.

We strive to formally determine what makes a motion-planning problem with many degrees of freedom
easy or hard. I’ll describe our quest to resolve this (still wide open) problem, and some progress we have
made in the context of multi-robot motion planning.

∗School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: danha@post.tau.ac.il

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Route Planning in Transportation—When the Metric Matters

Dorothea Wagner∗

Abstract

Nowadays, route planning systems belong to the most frequently used information systems at all. The al-
gorithmic core problem of such systems is the classical shortest paths problem that can be solved by Disjkstra’s
algorithm in almost linear time. However, Dijkstra’s algorithm still takes a few seconds in continental-sized
graphs, which is too slow for practical scenarios. Algorithms for route planning in transportation networks
have recently undergone a rapid development, leading to methods that are up to several million times faster
than Dijkstra’s algorithm. The metric considered is typically driving time, but could be also something else
like distance, costs, number of left turns or energy consumption. This talk provides a condensed survey of
recent advances in algorithms for route planning in transportation networks. In particular, we will discuss
scenarios where the metric matters, including customizable route planning which supports, e.g., real-time
traffic updates.

∗Institut für Theoretische Informatik, Karlsruher Institut für Technologie, D-76128 Karlsruhe, Germany. E-mail:
dorothea.wagner@kit.edu

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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From Crossing-Free Graphs on Wheel Sets to Polytopes with Few Vertices

Emo Welzl∗

Abstract

A perfect matching on a finite planar point set S is crossing-free if all of its edges are disjoint in the
straight-line embedding on S. In 1948 Motzkin was interested in the number of such crossing-free perfect
matchings for S the 2m vertices of a convex polygon and he proved that to be the m-th Catalan number.

S is called a wheel set if all but exactly one point in S are vertices of its convex hull. Again we start by
asking for the number of crossing-free perfect matchings of such a wheel set S, going the smallest possible step
beyond Motzkins endeavor. Since position matters now, in the sense that the number is not determined by
the cardinality of the wheel set alone, this immediately raises extremal and algorithmic questions. Answering
these comes with all kinds of surprises. In fact, it turns out that for the purpose of counting crossing-free
geometric graphs (of any type, e.g. triangulations or crossing-free spanning trees) on such a set P it suffices
to know the so-called frequency vector of P (as opposed to the full order type information) – a simple formula
dependent on this frequency vector exists. Interestingly, the number of order types of n points in almost
convex position is roughly 2n, compared to the number of frequency vectors which is about 2n/2.

Finally, this takes us on a journey to the rectilinear crossing-number of the complete graph, to counting
of origin-embracing triangles and simplices (simplicial depth) and to counting facets of high-dimensional
polytopes with few vertices.

(Based on recent joint work with Andres J. Ruiz-Vargas, Alexander Pilz, and Manuel Wettstein.)

∗Department of Computer Science, Institute of Theoretical Computer Science, ETH Zürich, Switzerland. E-mail: emo@inf.ethz.ch

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Grouping Time-varying Data for Interactive Exploration

Arthur van Goethem∗ Marc van Kreveld† Maarten Löffler† Bettina Speckmann∗ Frank Staals‡

1 Introduction

We present algorithms and data structures that sup-
port the interactive analysis of the grouping structure
of one-, two-, or higher-dimensional time-varying data
while varying all defining parameters. Grouping struc-
tures (which track the formation and dissolution of
groups) characterize important patterns in the evolu-
tion of sets of time-varying data. We follow Buchin et
al. [4] who define groups using three parameters: group-
size, group-duration, and inter-entity distance.

Trajectory grouping structure [4]. Let X be a set
of n entities moving in Rd and let T denote time.
The entities trace trajectories in T× Rd. We assume
that each individual trajectory is piecewise linear and
consists of at most τ vertices. Two entities a and b
are ε-connected at time t if there is a chain of entities
a = c1,.., ck = b such that for any pair of consecutive
entities ci and ci+1 the distance at time t is at most
ε. A set G is ε-connected, if for any pair a, b ∈ G,
the entities are ε-connected. Given parameters m, ε,
and δ, a set of entities G is an (m, ε, δ)-group during
time interval I if (and only if) (i) G has size at least
m, (ii) duration(I) ≥ δ, and (iii) G is ε-connected at
any time t ∈ I. An (m, ε, δ)-group (G, I) is maximal
if G is maximal in size or I is maximal in duration,
that is, if there is no group H ⊃ G that is also ε-
connected during I, and no interval J ⊃ I such that
G is ε-connected during J .

Results and Organisation. We describe a data struc-
ture D that represents the grouping structure, that
is, its maximal groups, while allowing efficient change
of the parameters. The complexity of the problem
appears already in one-dimensional time-varying data.
Hence we restrict our description to R1, the full paper
extends our results to higher dimensions.

If all three parameters m, ε, and δ can vary inde-
pendently the question arises what constitutes a mean-
ingful maximal group. Consider a maximal (m, ε, δ)-
group (G, I). If we slightly increase ε to ε′, and con-
sider a slightly longer time interval I ′ ⊇ I then (G, I ′)
is a maximal (m, ε′, δ)-group. Intuitively, these groups
(G, I) and (G, I ′) are the same. Thus, we are interested

∗Department of Mathematics and Computer Science, TU
Eindhoven, [a.i.v.goethem|b.speckmann]@tue.nl
†Dept. of Computing and Information Sciences, Utrecht Uni-

versity, The Netherlands, [m.j.vankreveld|m.loffler]@uu.nl
‡MADALGO, Aarhus University, Denmark,

f.staals@cs.au.dk

only in (maximal) groups that are “combinatorially
different”. The set of entities G may also be a maximal
(m, ε, δ)-group during a time interval J completely dis-
joint from I, we also wish to consider (G, I) and (G, J)
to be combinatorially different groups. In Section 2 we
formally define when two (maximal) (m, ε, δ)-groups
are (combinatorially) different. We prove that there
are at most O(|A|n2) such groups, where A is the
arrangement of the trajectories in T× R1, and |A| is
its complexity. We also argue that the number of max-
imal groups may be as large as Ω(τn3), even for fixed
parameters m, ε, and δ and in R1. This significantly
strengthens the lower bound of Buchin et al. [4]. In Sec-
tion 3 we present an O(|A|n2 log2 n) time algorithm to
compute all combinatorially different maximal groups.

In the full paper we describe a data structure that
allows us to efficiently obtain all groups for a given set
of parameter values. We also describe data structures
for the interactive exploration of the data. Specifically,
given the set of maximal (m, ε, δ)-groups we want to
change one or more of the parameters and efficiently
report only those maximal groups which either ceased
to be a maximal group or became one. Our data
structures can answer symmetric-difference queries [5].

2 Combinatorially Different Maximal Groups

We consider entities moving in R1, hence the trajecto-
ries form an arrangement A in T× R1. Consider the
four-dimensional parameter space P with axes time,
size, distance, and duration. A set of entities G defines
a region AG in which it is alive: a point (t,m, ε, δ) lies
in AG if and only if G is an (m, ε, δ)-group at time t.
These regions help define when groups are combinato-
rially different. We start by fixing m = 1 and δ = 0
to define and count the number of combinatorially
different maximal (1, ε, 0)-groups, over all choices of
parameter ε. Theorem 6 and Lemma 7 extend these
results to include other values of δ and m.

Consider the (t, ε)-plane in P through δ = 0 andm =
1. The intersection of all regions AG with this plane
are the points (t, ε) for which G is a (1, ε, 0)-group.
Note that G is a (1, ε, 0)-group at time t if and only
if the set G is ε-connected at time t. AG, restricted
to this plane, is simply connected. Furthermore, as
the distance between any pair of entities moving in
R1 varies linearly, AG is bounded from below by a t-
monotone polyline fG. The region is unbounded from
above: if G is ε-connected (at time t) for some value ε,

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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then it is also ε′-connected for any ε′ ≥ ε (see Fig. 1).
Every maximal length segment in the intersection
between (the restricted) AG and the horizontal line `ε
at height ε corresponds to a (maximal) time interval I
during which (G, I) is a (1, ε, 0)-group, or an ε-group
for short. Every such a segment corresponds to an
instance of ε-group G.

Observation 1 Set G is a maximal ε-group on I, iff
the line segment sε,I = {(t, ε) | t ∈ I} is a maximal
length segment in AG, and is not contained in AH , for
a supergroup H ⊃ G.

Two instances of ε-group G may merge. Let v be a
local maximum of fG and I1 = [t1, vt] and I2 = [vt, t2]
be two instances of group G meeting at v. At vε,
the two instances G that are alive during [t1, vt] and
[vt, t2] merge and we now have a single time interval
I = [t1, t2] on which G is a group. We say that I is
a new instance of G, different from I1 and I2. We
can thus decompose AG into maximally-connected
regions, each corresponding to a distinct instance of
group G, using horizontal segments through the local
maxima of fG. We further split each region at the
values ε where G changes between being maximal and
being dominated. Let PG denote the obtained set of
regions in which G is maximal. Each such a region
P corresponds to a combinatorially distinct instance
on which G is a maximal group (with at least one
member and duration at least zero). The region P is
bounded by at most two horizontal line segments and
two ε-monotone chains (see Fig. 1(b)).

Counting maximal ε-groups. To bound the number
of distinct maximal ε-groups, over all values of ε, we
count the number of polygons in PG over all sets G.
Consider a distinct instance (a set of entities G and a
region P ∈ PG) of the maximal ε-group G. All vertices
of P lie on the polyline fG: they are either vertices of
fG, or they are points (t, ε) on the edges of fG where
G starts or stops being maximal. Any vertex is used
by at most a constant number of regions from PG.

Below we show that the complexity of the arrange-
ment H, of all polylines fG over all G, is bounded by

O(|A|n). Furthermore, we show that each vertex of
H can be incident to at most O(n) regions. It follows
that the complexity of all polygons P ∈ PG, over all
groups (sets) G, and thus also the number of such sets,
is at most O(|A|n2).

The complexity of H. The span SG(t) = {a | a ∈
X ∧ a(t) ∈ [minb∈G b(t),maxb∈G b(t)]} of a set of
entities G at time t is the set of entities between the
lowest and highest entity of G at time t. Let ha(t)
denote the distance from entity a to the entity directly
above a at time t, that is, ha(t) is the height of the
face in A that has a on its lower boundary at time t.

Observation 2 A set G is ε-connected at time t, if
and only if the largest nearest neighbor distance among
the entities in SG(t) is at most ε. Hence

fG(t) = max
a∈SG(t)

ha(t)

It follows that H is actually the arrangement of the
n functions ha, for a ∈ X . We use this fact to show
that H has complexity at most O(|A|n):

Lemma 1 Let A be an arrangement of n line seg-
ments, and let k be the maximum number of line
segments intersected by a vertical line. The number
of triplets (F, F ′, x) such that the faces F ∈ A and
F ′ ∈ A have equal height h at x-coordinate x is at
most O(|A|k) ⊆ O(|A|n) ⊆ O(n3).

Lemma 2 The arrangement H has size O(|A|n).

It remains to show that each vertex v of H can be
incident to at most O(n) polygons from different sets.
Lemma 3 follows from Buchin et al. [4]:

Lemma 3 Let R be the Reeb graph for a fixed value
ε capturing the movement of a set of n entities mov-
ing along piecewise-linear trajectories in Rd (for some
constant d), and let v be a vertex of R. There are at
most O(n) maximal groups that start or end at v.

Lemma 4 Let v be a vertex ofH. Vertex v is incident
to at most O(n) polygons from P =

⋃
G⊆X PG.

R

(a) (b)

o

r

p

v

timetime

Figure 1: (a) A set of trajectories for a set of entities moving in R1 (b) The region A{r,v} during which {r, v} is
alive, and its decomposition into polygons, each corresponding to a distinct instance. In all such regions, except
the top one {r, v} is a maximal group: in the top region {r, v} is dominated by {r, v, o} (darker region).
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Lemma 5 The number of distinct ε-groups, over all
values ε, and the total complexity of all regions P =⋃

G⊆X PG, are both at most O(|H|n) = O(|A|n2).

Theorem 6 Let X be a set of n entities, in which
each entity travels along a piecewise-linear trajectory
of τ edges in R1, and let A be the resulting trajectory
arrangement. The number of distinct maximal groups
is at most O(|A|n2) = O(τn4), and the total complex-
ity of all regions in the parameter space corresponding
to these groups is also O(|A|n2) = O(τn4).

Lemma 7 For a set X of n entities, in which each
entity travels along a piecewise-linear trajectory of τ
edges in R1, there can be Ω(τn3) maximal ε-groups.

3 Algorithm

We now refer to combinatorially different maximal
groups simply as groups. Our algorithm computes a
representation (of size O(|A|n2)) of all groups, which
we can use to list all groups and, given a pointer to a
group G, list all its members and the grouping polygon
QG ∈ PG. We assume δ = 0 and m = 1.

We use the arrangement H in the (t, ε)-plane. Line
segments in H correspond to the height function of
the faces in A. Let a, b ∈ SG(t) be the pair of consec-
utive entities in the span of a group G with maximum
vertical distance at time t. The critical pair (a, b) de-
termines the minimal value of ε such that the group G
is ε-connected at time t. The distance between (a, b)
defines an edge of the polygon bounding G in H.

Our representation consists of the arrangement H
in which each edge e is annotated with a data struc-
ture Te, a list L with the top edge in each grouping
polygon QG ∈ PG, and a data structure S to support
reconstructing the grouping polygons.

We compute H in O(|H|) = O(τn3) time [1]. Given
H we use a sweep line algorithm to construct the
representation. A horizontal line `(ε) is swept at height
ε upwards, and all groups G whose grouping polygon
QG currently intersects ` are maintained. To achieve
this we maintain a two-part status structure. First, a
set S with for each group G the time interval I(G, ε) =
QG ∩ `(ε). We can implement S using any standard
balanced binary search tree. Second, for each edge
e ∈ H intersected by `(ε) a data structure Te with the
sets of entities whose time interval starts or ends at
e, that is, G ∈ Te if and only if I(G, ε) = [s, t] with
s = e ∩ `(ε) or t = e ∩ `(ε). The data structures Te
support the operations listed below.

In addition, we store with each interval I(G, ε) a
pointer to the previous version of the interval I(G, ε′)
if (and only if) the starting time (ending time) of G
changed to a different edge at ε′.

The data structure Te. We need a data structure T =
Te that supports Filter, Insert, Delete, Merge,
Contains, and HasSuperSet efficiently. We describe
a structure of size O(n), that supports Contains and
HasSuperSet in O(log n) time, Filter in O(n) time,
and Insert and Delete in amortized O(log2 n) time.
In general, answering Contains and HasSuperSet
queries in a dynamic setting is hard and may require
O(n2) space [6].

Lemma 8 Let G and H be two non-empty ε-groups
that both end at time t. We have:

(G ∩H 6= ∅ ∧ |G| ≤ |H|)⇐⇒ G ⊆ H ∧G 6= ∅.

We implement T with a tree similar to the grouping-
tree used by Buchin et al. [4]. Let {G1,.., Gk} denote
the groups stored in T , and let X ′ =

⋃
i∈[1,..,k]Gi de-

note the entities in these groups. Our tree T has a leaf

Operation Input Action

Filter(Te, X) A data structure Te
A set of entities X

Create a data structure T ′ = {G ∩ X |
G ∈ Te}

Insert(Te, G) A data structure Te
A pointer to a representation of G

Create a data structure T ′ = Te ∪ {G}.

Delete(Te, G) A data structure Te
A pointer to a representation of G

Create a data structure T ′ = Te \ {G}.

Merge(Te, Tf ) Two data structures Te, Tf , belonging to
two edges e, f having the same starting
or ending vertex

Create a data structure T ′ = Te ∪ Tf .

Contains(Te, G) A data structure Te
A pointer to a representation of G ending
or starting on edge e

Test if Te contains set G.

HasSuperSet(Te, G) A data structure Te
A pointer to a representation of G ending
or starting on edge e

Test if Te contains a set H ⊇ G, and
return the smallest such set if so.
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for every entity in X ′. Each group Gi is represented by
an internal node vi. For each internal node vi the set of
leaves in the subtree rooted at vi corresponds exactly
to the entities in Gi. By Lemma 8 these sets indeed
form a tree. With each node vi, we store the size of
Gi, and an arbitrary entity in Gi. We preprocess T in
O(n) time to support level-ancestor (LA) queries as
well as lowest common ancestor (LCA) queries, using
the methods of Bender and Farach-Colton [2, 3]. Both
methods work only for static trees, whereas we need
updates to T as well. Since we query Te only when
processing the upper end vertex of e, we can be lazy
in updating Te and simply rebuild Te when needed.

HasSuperSet and Contains queries. Using LA
queries we can do a binary search on the ancestors
of a given node. This allows us to implement both
HasSuperSet(Te, G) queries and Contains(Te, G)
in O(log n) time for a group G ending or starting on
edge e. Let a be an arbitrary element from group G.
If the data structure Te contains a node matching the
elements in G then it must be an ancestor of the leaf
containing a in T . That is, it is the ancestor that has
exactly |G| elements. By Lemma 8 there is at most
one such node. As ancestors get only more elements
as we move up the tree, we find this node in O(log n)
time by binary search. Similarly, we can implement
the HasSuperSet function in O(log n) time.

Insert, Delete, and Merge queries. The Insert,
Delete, and Merge operations on Te are performed
lazily; we execute them only when we get to the upper
vertex of edge e. At such a time we may have to
process a batch of O(n) such operations which we can
handle in O(n log2 n) time.

Lemma 9 Let G1,.., Gm be maximal ε-groups, or-
dered by decreasing size, such that: (i) all groups end
at time t, (ii) G1 ⊇ Gi, for all i, (iii) the largest group
G1 has size s, and (iv) the smallest group has size
|Gm| > s/2. We then have that Gi ⊇ Gi+1 for all
i ∈ [1,..,m− 1].

Lemma 10 Given two nodes vG ∈ T and vH ∈ T ′,
representing the set G respectively H, both ending at
time t, we can test if G ⊆ H in O(1) time.

Lemma 11 Givenm = O(n) nodes representing max-
imal ε-groups G1,.., Gm, possibly in different data
structures T1,.., Tm, that all share ending time t, we
can construct a new data structure T representing
G1,.., Gm in O(n log2 n) time.

The final function Filter can easily be implemented
in linear time by pruning the tree from the bottom up.

Lemma 12 We can handle each event in O(n log2 n)
time.

Reconstructing the grouping polygons. Given a
group G we can construct the complete grouping poly-
gon QG in O(|QG|) time, and list all group members
of G in O(|G|) time. We have access to the top edge
of QG. This is an interval I(G, ε̂) in S, specifically,
the version corresponding to ε̂, where ε̂ is the value at
which G dies as a maximal group. We then follow the
pointers to the previous versions of I(G, ·) to construct
the left and right chains of QG. When we encounter
the value ε̌ at which G is born, these chains either
meet at the same vertex, or we add the final bottom
edge of QG connecting them. To report the group
members of G, we follow the pointer to I(G, ε̂) in S.
This interval stores a pointer to its starting edge e,
and to a subtree in Te of which the leaves represent
the entities in G.

Analysis. The list L contains O(g) = O(|A|n2) entries
(Theorem 6), each of constant size. The total size
of all S’s is O(|H|n): at each vertex of H, there are
only a linear number of changes in the intervals in S.
Each edge e of H stores a data structure Te of size
O(n). It follows that our representation uses a total
of O(|H|n) = O(|A|n2) space. Handling each of the
O(|H|) nodes requires O(n log2 n) time, so the total
running time is O(|A|n2 log2 n).

Theorem 13 Given a set X of n entities, in which
each entity travels along a trajectory of τ edges, we can
compute a representation of all g = O(|A|n2) combina-
torial maximal groups G such that for each group G ∈
G we can report its grouping polygon and its mem-
bers in time linear in its complexity and size, respec-
tively. The representation has size O(|A|n2) and takes
O(|A|n2 log2 n) time to compute, where |A| = O(τn2)
is the complexity of the trajectory arrangement.
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Abstract

We study grouping of entities moving amidst obsta-
cles, extending the recent work of Kostitsyna et al. [5].
We present an alternative algorithm that can compute
the Reeb-graph, a graph which captures when and
how the partition of the entities into groups changes,
when the entities move amidst arbitrary polygonal ob-
stacles. Our new algorithm is significantly faster than
the algorithm of Kostitsyna et al. when the number
of entities is significantly larger than the total com-
plexity of the obstacles. Furthermore, we consider a
restricted setting in which the obstacles are big com-
pared to ε: the parameter determining when entities
are close enough together to be in the same group.
We show that in this setting the Reeb-graph is much
smaller, and we can compute it much faster, than in
the case of general obstacles.

1 Introduction

In recent years, trajectory analysis has become a pop-
ular and well studied topic in computational geome-
try [1, 2, 3, 5]. We consider the problem of finding
all (maximal) groups from the trajectory data. In-
tuitively, a group is a sufficiently large set of enti-
ties that travel together for a sufficiently long time.
Buchin et al. [2] formalize this notion of groups, and
show how to compute all maximal groups efficiently.
A group is said to be maximal if the time interval on
which the entities are together is maximal in length,
and there is no group that contains it and stays to-
gether during the same time interval. Recently, Kos-
titsyna et al. [5] significantly extended the work of
Buchin et al. by considering the environment in which
the entities move. In particular, they study grouping
when the entities move amidst various types of obsta-
cles (see Table 1). So, when we decide if two entities
are close enough together, we measure the distance us-
ing the geodesic distance (i.e. the length of the small-
est obstacle-avoiding path) rather than the Euclidean
distance. We continue the work of Kostitsyna et al. in
two ways. First, we present an improved algorithm for
the case in which the entities move amidst arbitrary

∗FS is supported by the Danish National Research Founda-
tion under grant nr. DNRF84.
†Dept. of Information and Computing Sciences, Utrecht

University, m.loffler@uu.nl
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a b c

ε

ε

ε

ε

(a) Entities a, b and c move
along a linear trajectory
around an obstacle. The
colors of the entities indicate
their positions at important
moments. The circular forms
indicate the groups at those
moments.

a

b
c

a, b

a, b, c

b, c

(b) The Reeb graph for
entities a, b, and c. The
colors of the vertices cor-
respond to the colors used
in the figure on the left
in order to indicate times-
tamps.

Figure 1: Example of entities moving in the two-
dimensional space with obstacles and the correspond-
ing Reed graph.

obstacles, but their total complexity m is small com-
pared to the number of entities n. Second, we consider
a new environment setting, in which the obstacles are
“large” (but may be arbitrarily complex and close to-
gether). This allows us to give a much faster algo-
rithm than in the case of arbitrary obstacles. Next,
we present the required notation and definitions fol-
lowing Buchin et al. [2] and Kostitsyna et al. [5], and
formally define our problem, so that we can state our
results more precisely.

Notation and Problem Definition. We are given a
set X of n entities, each moving along a piecewise
linear trajectory with τ vertices, and a set of pairwise
disjoint polygonal obstacles O = {O1, ..,Oh}. Let m
denote the total complexity of O.

To determine if a set of entities may form a group,
we have to decide if they are close together. We model
this by a parameter ε. Two entities a and b are di-
rectly connected at time t if they are within geodesic
distance ε from each other, that is, ςab(t) ≤ ε. A set
of entities X ′ is ε-connected at time t if for any pair

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Simple polygon O(τn2(log2m+ log n) +m)
Well-spaced
obstacles

O(τn2m log n)

General
obstacles

O(τn2m2 log n+m2 logm)

2ε-big obstacles O(τ(n2(log n+ log2m)
+nm logm))

ε-big obstacles O(τn2(polylogm+ log n)
+m2 logm)

General O(τ(n2m+ λ4(n)m3)
obstacles (log n+ logm))

Table 1: The running time for computing the Reeb
graph for various obstacle configurations. The top
ones are from [5], the bottom ones are new. The λs(n)
term denotes the maximum length of a Davenport-
Schinzel sequence of order s consisting of n symbols.

a, b ∈ X ′ there is a sequence a = a0, a1, .., ak = b such
that ai and ai+1 are directly connected. We refer to
a time at which a and b become directly connected
or disconnected as an ε-event. At such a time the
distance between a and b is exactly ε. If an ε-event
also connects or disconnects the maximal ε-connected
set(s) containing a and b, it is a critical event. A
(maximal) ε-connected set of entities X ′ is a group if
it is ε-connected at any time t in a time interval of
length at least δ, and it has at least a certain size.

The algorithm of Buchin et al. [2] proceeds in two
phases. In the first phase, it computes the Reeb-graph
R capturing the connectivity between the entities. In
the second phase, it computes all maximal groups us-
ing only information in the Reeb-graph. So, once we
compute R, we can use the algorithm from Buchin
et al. [2] to compute all maximal groups. An edge
(u, v) in R corresponds to a maximal set of entities
that is ε-connected during time interval [tu, tv]. The
Reeb-graph has a vertex v at time tv if (and only
if) two maximal sets of ε-connected entities merge
or split. A vertex corresponds uniquely to a critical
event. See Fig. 1.

Results and Organisation. We start in Section 2
with the new algorithm for the case that the entities
move amidst general obstacles. In Section 3 we for-
malize what it means for an obstacle to be ε-big, and
show that if the obstacles are ε-big, the Reeb graph
has low complexity. Furthermore, we show that we
can compute the Reeb-graph efficiently in such a set-
ting. Omitted proofs and details can be found in [8].

2 An Algorithm for General Obstacles

In this section we present an O(τ(n2m +
λ4(n)m3)(log n + logm)) time algorithm to compute

the Reeb-graph when the entities move amidst
arbitrary polygonal obstacles. This improves the al-
gorithm of Kostitsyna et al. [5] if the total complexity
m of the obstacles is ω(n2/λ4(n)).

Most existing algorithms to compute the Reeb
graph R first determine all ε-events, and use them
to maintain the entity-graph while varying the time
t. The entity-graph G(t) at time t is the graph whose
vertices are the entities, and whose edges connect two
entities if and only if they are directly connected at
time t. Clearly, G(t) changes only at ε-events. The
Reeb graph corresponds exactly to the changes in con-
nected components in the entity-graph. That is, there
is a critical event at time t if and only if the con-
nected components in the entity graph change at time
t. However, the number of critical events, and thus
the size of R, is much smaller than the number of ε-
events [5]. Hence, we wish to reduce the number of
ε-events that we have to consider.

The ER-graph. Our new algorithm will still use the
idea of the entity-graph, but we add new vertices, cor-
responding to regions, that allow us to handle multiple
ε-events at once. For our new graph, the entity-region
graph (ER-graph), we still require that two entities
are in the same connected component if and only if
they are ε-connected.

The regions corresponding to the new vertices are
built around the obstacles such that multiple ε-events
involving entities in these regions only induce few crit-
ical events. To achieve that, we subdivide for each
obstacle vertex v the area within geodesic ε-distance
of v using the shortest path map originating at v [4].

Claim. We can further subdivide the shortest path
maps into O(m2) regions such that

• each region has constant complexity,
• each region has (geodesic) diameter at most ε,

and
• each entity enters and exits a region at most once

per time step.

In the ER-graph we then only directly connect en-
tities by an edge if they are closer than ε and can see
each other, i.e. if the shortest path between them does
not use an obstacle vertex. All other connections use
region vertices. We connect a region to all the enti-
ties it contains and we connect two regions belonging
to the same obstacle vertex v if and only if they con-
tain entities for which the shortest path between them
passing through v has length at most ε. See Fig. 2 for
an example. The use of regions drastically reduces
the number of events to handle.

There are O(τn2m) events at which an edge be-
tween two entities appears or disappears in the ER-
graph. For edges between an entity and a region there
are O(τnm2) such events and for edges between two
regions there are O(τλ4(n)m3) such events.
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ε
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R

≤ε

>ε

Figure 2: Entities inside regions corresponding to an
obstacle vertex v at a fixed time t. Two shortest paths
passing through v between entities in different regions
are indicated in red and green. In the corresponding
ER-graph the regions Q and R are connected by an
edge, but P and R are not.

Algorithm The algorithm runs as follows. We first
build the regions for each obstacle vertex. This gives
us all the vertices of the ER-graph. Then we deter-
mine the events at which the edges of the ER-graph
are added or removed and sort them. Using these
events we keep an updated version of the ER-graph
which allows us to build the Reeb graph. The re-
gions can be built in O(m2 logm) time. The deter-
mination and sorting of the events takes O(τ(n2m +
λ4(n)m3) log(nm)) time. In order to keep the con-
nected components of the ER-graph updated we need
O(τ(n2m+ λ4(n)m3) log(n+m2)) time with the ap-
proach proposed by Parsa [7], because the ER-graph
has at most O(n+m2) vertices.

Theorem 1 Let X be a set of n entities, each mov-
ing amidst a set of obstacles O along a piecewise lin-
ear trajectory with τ vertices. The Reeb graph can
be computed in O(τ(n2m+ λ4(n)m3)(log n+ logm))
time.

3 Big Obstacles

In this section we investigate a new class of obstacles
for which we can compute the Reeb graph efficiently.
Namely, ε-big obstacles. An ε-big obstacle is an ob-
stacle that does not fit into a strip of width ε of any
orientation. We now show that if all obstacles are big
there are only few ε-events, and thus the Reeb-graph
is small, and we can compute it efficiently.

Two obstacle avoiding paths P1 and P2 have the
same homotopy type, if and only if we can continuously
deform P1 into P2 while remaining obstacle avoiding.

Lemma 2 Let a and b be two entities moving amidst
a set of ε-big obstacles. Let I be a time interval in
which both a and b move linearly, and t1, t2 ∈ I be
two times at which their geodesic distance is at most

ε

a

b

`1

`2

P1

P2

Figure 3: The construction showing that the obstacle
can not be ε-big.

ε. The geodesics P1 = ςab(t1) and P2 = ςab(t2) have
the same homotopy type.

Proof. Assume, by contradiction, that P1 and P2

have different homotopy types. It follows that the
region R bounded by a(t1)a(t2), P2, b(t2)b(t1), and
P1 contains at least one obstacle. Let `1 be an outer
tangent to P1 and P2 (See Fig. 3), and assume with-
out loss of generality that `1 is horizontal, and that
P1 and P2 lie below `1. Let `2 be the horizontal line
at distance ε below `1.

We know that for i = 1, 2, every two points on
Pi are at Euclidean distance at most ε, because the
length of Pi is at most ε. Since both P1 and P2 have a
common point with `1, all points on P1 and P2 lie on
or above `2. It follows that a(t1)a(t2) and b(t2)b(t1)
also lie on or above `2. This means that the strip
between `1 and `2 contains the region R, and thus
at least one ε-big obstacle. Contradiction. It follows
that P1 and P2 have the same homotopy type. �

Theorem 3 Let X be a set of n entities, each moving
amidst a set of ε-big obstacles O along a piecewise
linear trajectory with τ vertices. The number of ε-
events, and thus the size of the Reeb-graph, is at most
O(τn2).

Proof. There are O(n2) pairs of entities and for each
pair a, b there are O(τ) time intervals in which both of
them move along a line with constant speed. Consider
such an interval I, and let t1, t2 ∈ I be two ε-events
involving a and b. By Lemma 2, the geodesics ςab(t1)
and ςab(t2) have the same homotopy type. Kostitsyna
et al. [5] effectively show that if the homotopy type of
the path between a and b is fixed, the length of such
a path is a convex function in t, and thus, there are
at most two ε-events involving a and b in interval I.
The theorem then follows. �

3.1 Computing ε-events among 2ε-big obstacles

When all obstacles are 2ε-big we can efficiently com-
pute the ε-events as follows. For each entity a and
each interval I when a moves along an edge s, consider
the geodesic ε-surrounding S of s, that is, all points

13
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ε

s

Figure 4: A simple polygon (green) containing the
geodesic ε-surrounding (blue) of a trajectory edge s.

whose geodesic distance to s is at most ε. Clearly, all
ε-events involving a in interval I are contained in S.
Furthermore, since all obstacles are 2ε-big, S is sim-
ple; i.e. it contains no holes. See Fig. 4. We now con-
struct a simple polygon P containing S, and compute
ε-events involving a using the algorithm for entities
moving in a simple polygon by Kostitsyna et al. [5].

We can construct P in O(m logm) time as follows.
We first approximate the Euclidean ε-surrounding of
s with the smallest rectangle possible. Then we cal-
culate the intersections between the rectangle and the
obstacle edges and sort them clockwise. Starting from
the obstacle vertex that is the closest to s we can then
walk along the boundary of the simple polygon P us-
ing these intersection points.

Since we have O(τn) trajectory edges, building all
these polygons takes O(τnm logm) time. Then, for
each pair of entities and each time interval in which
they travel at constant speed, we take the polygon of
one of the entities and determine the interval during
which the other entity is inside this polygon. There-
fore computing each of the O(τn2) ε-events can then
be made using parametric search in O(log2m) time
per event [6]. Once we have determined and sorted all
ε-events we can build the Reeb graph using O(log n)
time per event. We conclude:

Theorem 4 Let X be a set of n entities, each moving
amidst a set of 2ε-big obstacles O along a piecewise
linear trajectory with τ vertices. The Reeb graph can
be computed in O(τ(n2(log n+ log2m) + nm logm))
time, where m is the total complexity of O.

3.2 Computing ε-events among ε-big obstacles

The main difference to the previous case is that an
ε-big obstacle can be completely contained inside the
Euclidean ε-surrounding of the segment. This means
that the previously taken approach of building a poly-
gon by approximating the Euclidean ε-surrounding
yields a polygon with holes. Thus for a pair of enti-
ties we do not know the homotopy type of the shortest
path yet. Therefore another approach is taken here.

The global idea of our approach is as follows. We
compute all Euclidean ε-events, ignoring the obsta-

cles. This gives us O(τn2) time intervals during which
two entities, say a and b, are within Euclidean dis-
tance ε and move linearly. Any geodesic ε-event oc-
curs within such intervals [tf , tg]. Furthermore, by
Lemma 2 there are at most two such events per inter-
val. Then the following claim holds.
Claim. For any time t ∈ [tf , tg], there are only O(1)
choices for the first and last vertex on the geodesic
between a(t) and b(t).

The algorithm tries all such pairs using the short-
est path maps [4] to find the true geodesic at time t.
Hence, for a given time t, we can test if the shortest
path between a(t) and b(t) has length at most ε and if
the derivative is positive or negative in O(polylogm)
time. This means that we can use parametric search
to find the times at which the geodesic distance is
exactly ε [5]. Overall, we conclude:

Theorem 5 Let X be a set of n entities, each mov-
ing amidst a set of ε-big obstacles O along a piecewise
linear trajectory with τ vertices. The Reeb graph can
be computed in O(τn2(polylogm+ log n) +m2 logm)
time, using O(m2) space, where m is the total com-
plexity of O.
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Abstract

We propose a refined definition of a group of moving
entities which corresponds better to human intuition.
We also present algorithms to compute all maximal
groups from a set of moving entities.

1 Introduction

Nowadays, inexpensive modern devices with advanced
tracking technologies make it easy to track movements
of an entity. This has led to the availability of move-
ment data for various types of moving entities (hu-
man, animals, vehicles, etc.). Since a tracking device
typically returns a single location at each time stamp,
each moving entity will be represented as a moving
point. The data may consist of just one trajectory
tracked over a period, or a whole collection of trajec-
tories that are all tracked over a period. It is common
to denote the number of trajectories (or moving en-
tities) by n and the number of time stamps used for
each by τ . Hence, the input size is Θ(τn).

To analyze moving object data, a number of meth-
ods have been developed in recent times. These
methods may concern similarity analysis, clustering,
outlier detection, segmentation, and various patterns
that may emerge from the movement of the entities
(for surveys see [3, 14]). These methods are often
based on geometric algorithms, because the data is
essentially spatial.

One particular type of pattern that has been well-
studied is flocking [1, 4, 5]. Intuitively, a flock is a sub-
set of the entities moving together (or simply being
together) over a period of time. Other names for this
and closely related concepts with slightly different def-
initions are herds [6], convoys [8], moving clusters [9],
mobile groups [7], swarms [11], and groups [2]. The
last of these defines a group in a simple and formal
way. In [2] a model is introduced called the trajectory
grouping structure which not only defines groups, but
also the splitting of a group into subgroups and its op-
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posite, merging. The algorithmic problem of report-
ing all maximal groups that occur in the trajectories is
solved in O(τn3 +N) time, where N = O(τn4) is the
output size (the summed size of all groups reported).
The algorithm also considers times in between the τ
time stamps where the locations are recorded as rel-
evant. In between these time stamps, locations are
inferred by linear interpolation over time.

In this paper we continue the study of such groups,
but we propose a refined definition to the one in [2].
We motivate why it captures our intuition better and
present algorithms to compute all maximal groups.

2 Problem Description

The definition of a group by Buchin et al. [2] relies on
three parameters: one for distance between entities,
one for the duration of a group, and one for the size
of a group. We review their definitions next.

For a set of moving entities X , two entities x and y
are directly ε-connected at time t if the Euclidean dis-
tance between x and y is at most ε at time t, for some
given ε ≥ 0. Two entities x and y are ε-connected
in X if there is a sequence x = x0, ..., xk = y, with
{x0, ..., xk} ⊆ X and for all i, xi and xi+1 are directly
ε-connected at the same time t.

In [2], a group for an entity inter-distance ε, a min-
imum required duration δ, and a minimum required
size m, is defined as a subset G ⊆ X and correspond-
ing time interval I for which three conditions hold:

(i) G contains at least m entities.
(ii) I has a duration at least δ.

(iii) Every two entities x, y ∈ G are ε-connected in
X during I.

Furthermore, a group G with time interval I is max-
imal if there is no time interval I ′ properly containing
I for which G is also a group, and there is no proper
supergroup G′ of G that is also a group during I [2].

One issue with this definition is that it does not
correspond fully to our intuition. Two entities x and
y may form a maximal group in an interval I even if
they are always far apart, as long as there are always
entities of X in between to make x and y ε-connected
in X . This can have counter-intuitive effects espe-
cially in dense crowds. To avoid such issues, we refine
the definition of a group. In particular, we replace
condition (iii) above by:
(iii’ ) Every two entities x, y ∈ G are ε-connected in

G during I.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: In the definition by [2], x and y are ε-
connected during [t0, t2]
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Figure 2: Entities in G = {a, h} are ε-connected using
entities not in G.

We define maximal groups in the same way as before.

We give two examples that show the difference in
these definitions. First, consider a number of station-
ary entities S and two entities x and y, see Figure 1.

Entity x starts (t0) to the North of S and moves
around its perimeter to the East. Entity y starts (t0)
to the South and also moves around the perimeter
to the East. After encountering (t1) each other at
the East side, both continue together eastward, away
from the stationary entities in S (ending at t2).

By the definition in [2], x and y form a maximal
group in the interval [t0, t2]. In our refined definition,
they form a maximal group during [t1, t2], starting
when x and y actually encounter each other.

Second, the previous definition can even see groups
of entities that were never close, see Figure 2. Here,
{a, h} is a maximal group in the interval I = [t1, t3]
using the definition in [2]. At each time, a and h are
ε-connected, but through different subsets of entities.
Although a and h move in the same direction with
the same speed, intuitively they do not form a group
because they are too far apart and separated by other
entities that move in the opposite direction. With
the new, refined definition, we do not consider {a, h}
a group in the interval I.

Results and Organization. In this paper, we show
that for a set X of n moving entities in R1 with τ time
stamps each, the number of maximal groups by the
refined definition is O(τn3), which is tight in the worst
case. We present algorithms to compute all maximal
groups, beginning with a basic algorithm that runs
in O(τ3n6) time. Subsequent improvements lead to
a running time of O(τ2n4). For moving entities in
Rd (d > 1), we show that all maximal groups can
be computed in O(τ2n5 log n) time. From now on, we
will use the term “group” to denote a group of entities
that comply with our refined definition.

3 Preliminaries

Let X be a set of n entities moving in R1, given by
locations at τ time stamps. A trajectory of an entity
in X can be expressed by a piecewise-linear function
which maps time to a point in R1. If R1 is associated
with the vertical axis and time with the horizontal
axis of a 2-dimensional plane, the trajectories of enti-
ties in X are polylines with τ vertices each. We will
use the same notation to denote an entity and its tra-
jectory. We assume that all trajectories have their
vertices at the same times and that there are no two
parallel edges.

Let dij(t) be the Euclidean distance between i ∈ X
and j ∈ X at time t. When dij(t) = ε, we say that
an ε-event occurs. For any ε-event v, we denote by
tv the time when v occurs and ω(v) the function that
returns the two entities that create v. We assume that
no two or more ε-events occur at the same time.

Consider an ε-event v; let ω(v) = {i, j}. If i and j
are further than ε immediately before tv, then v is a
start ε-event; if they are further immediately after tv
it is an end ε-event. If there is no entity k ∈ X located
strictly in between i and j at tv (so dik(tv)+djk(tv) =
ε), then we say that v is a free ε-event.

Observation 1 The number of ε-events is O(τn2).

Let G be a group of entities in time interval I that
is maximal in size. All entities in G are pairwise ε-
connected in the interval I, and hence, there are no
free ε-events in G during I. In the arrangement of
trajectories from G, no face has height greater than ε.

It is also clear that G can begin only at a start ε-
event and end only at an end ε-event. Furthermore,
we observe that if a start ε-event (or end ε-event) of
G is not a free ε-event with respect to the entities in
G, then before (or after) the interval I, entities in G
are still pairwise ε-connected and we can extend the
interval of G. Therefore, G can be a maximal group
only if both the start ε-event and end ε-event are free
ε-events (but this is not a sufficient condition).

Observation 2 There can be at most one maximal
group that starts and ends at a particular pair of start
ε-event and end ε-event.

Theorem 1 For a set X of n entities, each entity
moving along a piecewise-linear trajectory of τ edges,
the maximum number of maximal group is Θ(τn3).

Proof. Any group G that starts at a start ε-event
contains at most n entities. When a free end ε-event
involving G occurs, only group G ends but a subgroup
of G with fewer entites may continue. This can hap-
pen at most n − 1 times. Therefore, the number of
maximal groups is O(τn3). Furthermore, there can be
Ω(τn3) maximal groups because the lower bound for
the definition of a group in [2] still applies [13]. �
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Figure 3: Removing trajectory p (and γ) introduces
a new free ε-event: π.

The approach to compute all maximal groups is to
work on the arrangement A of line segments that are
the trajectories. For a subset G ⊆ X and interval I,
we can remove entities from G that are separated at
a face with height larger than ε in I (corresponding
to a free ε-event). Only if there are no such faces, the
remaining entities in G can be a group. Note that
removing entities in G involves removing the corre-
sponding trajectories from the arrangement A, which
can cause new faces that are free ε-events.

4 Basic Algorithm

Next, we describe a simple algorithm to compute all
maximal groups. Let ξs and ξe be the sets of all start
ε-events and all end ε-events respectively. Fix α ∈
ξs and β ∈ ξe. By Observation 2, there is only one
maximal group G that starts at α and ends at β.
Furthermore, observe that G necessarily contains the
entities ω(α) = {a, b} and ω(β) = {c, d}, and that if
G is a maximal group on I = [tα, tβ ], then all entities
in G are on the same side at time tγ ∈ (tα, tβ) when
a free ε-event γ occurs. We then use the following
approach to find G (if it exists):

1. Initialize a set G containing all entities in X .
2. Build an arrangement A induced by the trajecto-

ries of the entities in G in the interval I.
3. A face f in A contains a free ε-event γ if (and only

if) the height of f is more than ε. If f has height
larger than ε, test if (the trajectories of) a, b, c, and
d, all lie on the same side of f . If not, there is no
maximal group G that starts at α and ends at β. If
they do pass on the same side, let S denote the set
of entities whose trajectories lie on the other side
of f . Remove these entities from S, and remove
their trajectories from A. Observe that new free ε-
events may appear because removal of a trajectory
from A merges two faces of A into a larger one. See
Figure 3. Repeat this step until there is no more
free ε-events γ with tγ ∈ (tα, tβ).

4. Check that α and β are now free. If so, G is a
maximal group on I, and hence we can report it.
If not, G is actually a group during a time interval
I ′ ⊃ I. Hence, G may be maximal in size, but not
in duration. We do not report G in this case.

Theorem 2 Given a set X of n entities in which each
entity moves in R1 along a trajectory of τ edges, all
maximal groups can be computed in O(τ3n6) time
using the Basic Algorithm.

Proof. The number of combination of a pair of start
and end ε-events is O(τ2n4). Building an arrange-
ment from trajectories of entities takes O(τn2) time.
Removing a trajectory e and checking new faces in A
takes time proportional to the zone complexity of e:
O(τn). Since there are at most n trajectories to be
removed, the whole process to remove entities for each
interval I takes O(τn2) time. Therefore, the running
time of the algorithm is O(τ3n6) time. �

5 Improved Algorithm

The previous algorithm checks every pair of possible
start and end ε-events α and β to potentially find one
maximal group. To improve the running time, we fix a
start ε-event α and consider the O(τn2) end ε-events
β in increasing order. We show that we can check for
a maximal group on [tα, tβ ] in amortized O(1) time.

We build the arrangement A for all trajectories,
starting from time tα, and sort the end ε-events β,
with tβ > tα on increasing time. We then consider
the end ε-events β in this order, while maintaining a
maximal set G that is ε-connected in G throughout
the time interval [tα, tβ ].

Let ω(α) = {a, b} be the entities defining the
start ε-event α, and let G ⊇ {a, b} be the largest
ε-connected set on [tα, tβ ]. We compute the largest
ε-connected set on [tα, tβ′ ] for the next ending event
β′ as follows. Note that this set will be a subset of G.

Let S be the set of entities that separate from a and
b at β. We remove all trajectories from the entities
in S from A. As before, this may introduce faces of
height larger than ε. For every such face f , we check
if a and b still pass f on the same side. If not, there
can be no maximal groups that contain a and b, start
at tα, and end after tβ . If a and b lie on the same
side of f , we add all entities that lie on the other side
of f to S and remove their trajectories from A. We
repeat this until all faces in A that have non-empty
intersection with the vertical strip defined by [tα, tβ′ ]
have height at most ε (or until we have found a face
that splits a and b). It follows that the set G′ = G\S
is the largest set containing a and b that is ε-connected
throughout [tα, tβ′ ]. If α and β′ are free with respect
to G′ then we report G′ as a maximal group.

Building the arrangementA takesO(τn2) time, and
sorting the ending-events takes O(τn2 log(τn)) time.
By the Zone Theorem, we can remove each trajectory
in O(τn) time. Checking the height of the new faces
can be done in the same time bound. It follows that
the total running time is O(τn2(τn2 + τn2 log(τn) +
R)) where R is the total time for removing trajectories
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from the arrangement. Clearly, R is bounded by the
complexity of the arrangement: O(τn2). So, the total
running time is O(τ2n4 log(τn)).

Further Improvement We can avoid repeated sort-
ing of end ε-events by pre-sorting them in a list, and
for each start ε-event, use this list. The list will con-
tain events that do not concern the entities involved
in the start ε-event, but this can be tested easily in
constant time. Thus, we conclude:

Theorem 3 Given a set X of n entities in which each
entity moves in R1 along a trajectory of τ edges, all
maximal groups can be computed in O(τ2n4) time.

6 Algorithms for Entities in Rd

In Rd (d > 1), it is harder to test whether an ε-event
really connects or disconnects because the two enti-
ties may be ε-connected through other entities in the
group. This observation immediately gives the con-
dition for an ε-event to be free. We model our mov-
ing entities in a graph where vertices represent en-
tities and an edge exists if two entities are directly
ε-connected. As in Parsa [12], we can maintain the
graph under edge updates, while allowing same com-
ponent queries, in O(log n) time per operation.

To compute maximal groups, we start at a start ε-
event α (ω(α) = {a, b}) and maintain the connected
component C throughout the sequence of sorted ε-
events. At each ε-event β, we remove any vertices
that are disconnected from C and start again from α
in case we remove anything. We stop if a and b are
disconnected. If α is a free ε-event when we reach β
again, we report C as a maximal group and continue.

We start at O(τn2) ε-events, process O(τn2) ε-
events for each, and may need to restart up to n − 1
times. Hence, we obtain:

Theorem 4 Given a set X of n entities move in Rd
along a trajectory of τ edges, all maximal groups can
be computed in O(τ2n5 log n) time.

7 Conclusions and Future Work

In this paper we introduced a variation on the group-
ing structure definition [2] and argued that it corre-
sponds better to our intuition. We have given an algo-
rithm for trajectories moving in R1 that computes all
maximal groups and runs in O(τ2n4) time. In Rd, our
algorithm runs in O(τ2n5 log n) time. The number of
maximal groups is Θ(τn3) in the worst case.

The main challenges include reducing the depen-
dency on τ to subquadratic, and the dependency on
n. It would also be interesting to develop an output-
sensitive algorithm that uses considerably less time
if the output is small. Finally, we may be able to

develop algorithms that take geodesic distance into
account, like was done for the previous definition of a
group [10].
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Fine-Grained Analysis of Problems on Curves

Kevin Buchin1 Maike Buchin2 Maximilian Konzack3 Wolfgang Mulzer4 André Schulz5

Abstract

We provide conditional lower bounds on two problems
on polygonal curves. First, we generalize a recent
result on the (discrete) Fréchet distance to k curves.
Specifically, we show that, assuming the Strong Expo-
nential Time Hypothesis, the Fréchet distance between
k polygonal curves in the plane with n edges cannot be
computed in O(nk−ε) time, for any ε > 0. Our second
construction shows that under the same assumption
a polygonal curve with n edges in dimension Ω(log n)
cannot be simplified optimally in O(n2−ε) time.

1 Introduction

The fine-grained complexity of the (discrete) Fréchet
distance between two curves has recently attracted
a lot of attention. After a long period without ma-
jor progress, Agarwal et al. devised a subquadratic

O
(

mn log logn
logn

)
-time algorithm for the discrete Fréchet

distance on the word RAM [2]. Buchin et al. [10] gave
a randomized algorithm for the continuous Fréchet
distance with a running time slightly better than the
classic bound of O(n2 log n) [4]. Answering a ques-
tion by Buchin et al. [10], Bringmann [6] showed that
the (discrete) Fréchet distance cannot be computed
in O(n2−ε) time, for any ε > 0, assuming the Strong
Exponential Time Hypothesis (SETH). This result was
later refined and extended [8]. SETH states that for
every ε > 0, there is a k ∈ N such that the satisfiability
problem on k-CNF formulas with n variables and m
clauses cannot be solved in time mO(1)2(1−ε)n.

Bringmann’s work [6] triggered a lot of activity,
leading to new conditional lower bounds for famous
problems such as edit distance, dynamic-time warping,
or longest common subsequence (LCS) [1,7]. For LCS,
a more general bound states the non-existence of a
O(nk−ε)-time algorithm for k strings over an alphabet
of size O(k). Our first result generalizes the lower
bound on the discrete Fréchet distance to k curves.

Theorem 1 For any ε > 0, the discrete Fréchet dis-
tance of k planar point sequences of length n cannot
be decided in O(nk−ε) time, unless SETH fails.

1TU Eindhoven, the Netherlands k.a.buchin@tue.nl
2RU Bochum, Germany maike.buchin@rub.de
3TU Eindhoven, the Netherlands m.p.konzack@tue.nl
4FU Berlin, Germany mulzer@inf.fu-berlin.de
5FeU Hagen, Germany andre.schulz@fernuni-hagen.de

The Fréchet distance between k curves was considered
previously by Rote and Dumitrescu [12], who provide a
near-quadratic time 2-approximation for the problem.
Measuring the distance and analyzing the similarity
between a set of parameterized curves in this way is
also relevant for movement data analysis. For instance,
it can be used in the analysis of collective movement,
e.g., within a flock of birds, or to detect clusters of
similar movement sequences [9].

Our second result is on simplifying a d-dimensional
polygonal curve 〈a0, . . . , an〉. We consider the com-
mon variant [13] where the vertices of the simplified
curve should be an ordered subsequence of the orig-
inal vertices, and if ai and aj are consecutive in the
simplification, then the distance between the subcurve
〈ai, ai+1, . . . , aj〉 and the line segment aiaj should be
at most a given ε > 0. We focus on the Hausdorff
distance, although the reduction also applies to the
Fréchet distance. There are two common variants of
the simplification problem: min-#, in which ε is given
and the number of vertices is to be minimized, and
min-ε in which an upper bound on the number of
vertices is given and ε is to be minimized.

Algorithms for the min-ε and the min-# problems
with running time O(n2 log n) and O(n2), respectively,
are known for polygonal curves in the plane [11]. For
the L1-metric, Agarwal and Varadarajan [3] presented
an O(n4/3+ε)-time algorithm. For curves in Rd, Bare-
quet et al. [5] developed efficient algorithms. Their
algorithms run in near-quadratic time for d = 3 and
in subcubic time for d = 4. If distance is measured
according to the L1- or the L∞-metric, they achieve
a running time of O(n2) and O(n2 log n) for min-ε
and min-#, respectively, in any fixed dimension. In
particular, for L∞ the dependency on the dimension is
only a small-degree polynomial. It is a long-standing
open problem whether the (near-)quadratic running
time can be improved for the Euclidean distance [3].1

We show that, at least in sufficiently high (non-
constant) dimension, this is not possible unless SETH
fails. For L∞, our construction shows that the algo-
rithm by Barequet et al. is essentially optimal in high
dimensions, assuming SETH.

Theorem 2 There is no algorithm that optimally,
min-# or min-ε, simplifies a polygonal curve with n
edges in Rd with d = Ω(log n) using ε-tolerance regions

1See also http://cs.smith.edu/~orourke/TOPP/P24.html.
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in the L1-, L2- or L∞-metric that runs inO(n2−ε) time,
for any ε > 0, unless SETH fails.

To prove the lower bounds, we use a reduction from
the k-Orthogonal Vectors problem (as stated in [1]),
using the notation [n] := {1, . . . , n}.

Definition 1 (k-Orthogonal-Vectors) Suppose
we are given k lists {α1

i }i∈[n], {α2
i }i∈[n], . . .,

{αk
i }i∈[n] of vectors in {0, 1}d. We need to decide

whether there are k vectors α1
i1

, α2
i2

, . . ., αk
ik

with∑d
h=1

∏
t∈[k] α

t
it

[h] = 0. Any such collection of vectors
is called orthogonal.

The following lemma is well known [1,14].

Lemma 3 If there is an ε > 0 such that k-Orthogonal
Vectors on n vectors in {0, 1}d with d = Ω(log n) can
be solved in O(nk−ε) time, then SETH is false.

2 Fréchet distance between k curves

We show the lower bound on the discrete Fréchet
distance between k curves by a reduction from the
k-Orthogonal Vectors problem. We begin with some
notation. Let A1, . . . , Ak be k sequences of points in
the plane, Ai = 〈ai1, . . . , aini

〉. By aij [h], for h = 1, 2,

we denote the h-th coordinate of aij . We set S =
[n1]× [n2]× · · · × [nk].

We define a coupling of length m on S as a
sequence C = 〈C1, . . . , Cm〉 such that we have
Ci ∈ S, C1 = (0, 0, . . . , 0), Cm = (n1, n2, . . . , nk),
and Ci+1[h] = Ci[h] or Ci+1[h] = Ci[h] + 1, for all
i = 0, . . . ,m − 1 and h = 1, . . . , k. A coupling C
defines an alignment of the curves A1, . . . , Ak, and
we define the coupled distance as dC(A1, . . . , Ak) :=

max
{
d(ahCi[h], a

h′
Ci[h′]) | 0 ≤ i ≤ m, 1 ≤ h, h

′ ≤ k
}

,

where d denotes the Euclidean distance. The discrete
Fréchet distance dF (A1, . . . , Ak) between the k curves
is the minimal coupled distance over all possible
couplings.

Next, we describe our reduction. Suppose we
have k lists {βi}i∈[n], {αt

i}i∈[n], t ∈ [k − 1], of

vectors αt
i, βi ∈ {0, 1}d. We construct k curves

B,A1, A2, . . . , Ak−1. Their discrete Fréchet dis-
tance will be 1 if the given vector lists contain
a collection of k orthogonal vectors, and strictly
larger than 1, otherwise. The coordinates of the
vectors are encoded by coordinate gadgets (CG), see
Figure 1. Set δ := 1/100, and for i = 1, . . . , k − 1,
let CG i(0) := 〈(−0.5 − δ, 0), (0.5, 0), (−0.5 −
δ, 0), . . . , (0.5, 0), (−0.5 − δ, 0)〉 be a curve with
2k − 1 vertices. We define CG i(1) to have the same
vertices as CG i(0), except that the 2i-th vertex is
replaced by (0.5 + δ, 0). Further we define CGB(0) :=
〈(−0.5, 0), (0.5, 0), (−0.5, 0), . . . , (0.5, 0), (−0.5, 0)〉
with 2k − 1 vertices and CGB(1) in the same way

but with only 2k − 3 vertices. We call the vertices at
(0.5, 0) short spikes and at (0.5 + δ, 0) long spikes.

−0.5− δ 0.5

k
−

1
sp
ik
es

−0.5− δ 0.5 0.5 + δ
CGi(0) CGi(1)

-0.5 0.5

k
−

1
sp
ik
es

CGB(0)

k
−

2
sp
ik
es

-0.5 0.5
CGB(1)

(long)
spike i

Figure 1: Coordinate gadgets (distorted vertically for
the purpose of illustration).

Suppose that there were a coupling of CG1(1),
CG2(1), . . . ,CGk−1(1), CGB(1) achieving a distance
of at most 1. Then, k − 1 spikes of CG1(1),. . .,
CGk−1(1) need to be coupled, but there is one long
spike in each coupled spike. We need to couple ev-
ery long spike with a different spike of CGB(1). This
is not possible, since CGB(1) has only k − 2 spikes.
Thus, dF (CG1(1), . . . ,CGB(1)) > 1. If we replace any
CG∗(1) with a respective curve CG∗(0), the distance
becomes 1.

Next, we encode the vectors and the vector lists.
To “synchronize” coordinates, we will use the point
c := (0, 0.8661). The start of vectors will be demar-
cated by vA := (−0.499,−1) and vB := (0,−0.8661).
Additionally, we will use the points tA = (0.48,−0.01)
and tB = (0.57, 1.005) to mark a successful synchro-
nized traversal, and s = (−0.499, 0) as a point that is
close to all except tB , see Figure 2.

xs

y

tA

vBvA

c

∈ CG∗

tB

∈ CG∗

Figure 2: The points used as vertices of the curves.

Two points are close if their distance is at most 1:
s is close to all points except tB , and tA is close to all
except vA. The point c is close only to s and tA (and
itself); tB is close only to tA and vB ; vA is close only
to s and vB ; vB only to s, tA and tB .

Let Aj
i := s◦vA ◦©d

h=1(CGj(α
j
i [h])◦ c) ◦ tA, where

we use ◦ to denote the operation of adding a vertex
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to a curve or of concatenating curves. We set Aj :=(
©n

i=1A
j
i

)
◦ s. Furthermore, we define Bi := vB ◦

©d
h=1(CGj(βi[h])◦c) and B := s◦vA◦©n

i=1Bi ◦tB ◦s.
First, we argue that k vectors α1

i1
, α2

i2
, . . . , αk−1

ik−1
, βik

are orthogonal if and only if the corresponding con-
catenated coordinate gadgets have Fréchet distance
at most 1. If the vectors are orthogonal, then in each
coordinate, at least one vector has a 0-entry, and a
coupling of distance at most 1 is possible. On the
other hand, if the vectors are not orthogonal, there is
one coordinate in which all vectors have 1-entries. The
c vertices force us to traverse all coordinates simulte-
nously, so that we will have to couple k one-coordinate
gadgets, giving a Fréchet distance larger than 1.

Now, let us consider the vector lists and the com-
plete curves. If the vector lists contain a k-tuple
α1
i1
, α2

i2
, . . . , αk−1

ik−1
, βik of orthogonal vectors, then the

curves A1, . . . , Ak−1, B have Fréchet distance at most
1. This can be seen by the following coupling: first,
A1 walks to the first point s of A1

i1
, while all other

curves wait at s. Then, A2 walks to the first point s
of A2

i2
, while all other curves wait at s, etc. Finally,

B walks to the first point vB of Bik , while all other
curves wait at s. Since s is close to all points except
for tB, the distance so far is 1. Then, the Aj curves
simultaneously jump to vA while B waits at vB, and
then the coordinate gadgets are traversed simultane-
ously. Next, the Aj curves wait at tA while B walks
to the last point s. The Aj then simultaneously go to
the next s, and finish the walk to the final vertex one
after another while the other curves wait at s.

Next, suppose that the curves have Fréchet distance
larger than 1. We argue that then there is a k-tuple
of orthogonal vectors. Indeed, suppose that no such k-
tuple exists, and consider the first time that B reaches
tB . Since tB is close only to tA and vB , at this point,
all Aj must be at tA. It follows that before that, all
Aj ’s must have been simultaneously at vA, because
on the Aj ’s, vA comes before tA, and vA is close only
to s and vB. For the same reason, at this point, B
also must be at vB . Then, the coordinate gadgets of a
k-tuple of vectors are traversed simultaneously, leading
to Fréchet distance larger than 1, as all k-tuples are
non-orthogonal. Theorem 1 follows.

Our construction also rules out a faster polynomial-
time approximation scheme unless SETH fails. The
coordinates were computed by hand and could be opti-
mized to prove a specific approximation lower bound.

3 Curve Simplification

In this section, we reduce the 2-Orthogonal Vectors
problem to the curve simplification problem. Given
two lists of 0/1-vectors {αi}i∈[n] and {βi}i∈[n] in di-
mension d, we interpret each vector as a point in
dimensions d+ 1, as follows: we define α̂i[h] := αi[h]

(0, . . . , 0,−δ) (0, . . . , 0, δ)

{0, 1}d × {−δ} {0, 1}d × {δ}

start, end: 0

α̂i ∈ β̂i ∈

checkpoints

Figure 3: Construction for simplification lower bound.

for 1 ≤ h ≤ d and α̂i[d+ 1] := −δ with δ = 2d2. We

define β̂i[h] analogously, except that β̂i[d+ 1] := δ.

The idea of the reduction is illustrated in Figure 3.
We construct a curve that moves from a starting point
through all α̂i, then through d “checkpoints”, through
all β̂i, and finally to an endpoint. The threshold ε
for the simplification is chosen such that all points α̂i

have pairwise distance smaller than ε, and similarly
for the points β̂i. Thus, the intended simplification
uses the starting point, one point α̂i, one point β̂j ,
and the endpoint. The checkpoints will have distance
at most ε to the edge from α̂i to β̂j exactly if the two
corresponding vectors are orthogonal.

For 1 ≤ i ≤ d, let qi ∈ Rd+1 be defined as qi[i] = −δ′,
qi[d+ 1] = 0, and qi[·] = 1/4, otherwise, where δ′ will
be chosen later depending on the metric. We define a
curve A = 〈a0, . . . , am〉 with m = 2n+2+d vertices by
a0 = am = (0, . . . , 0), ai = α̂i, for 1 ≤ i ≤ n, an+i =

qi, for 1 ≤ i ≤ d, and an+d+i = β̂i, for 1 ≤ i ≤ n.

We first consider a simplification under the L∞-
metric. We set ε = 1 and δ′ = 1/2. By the choice of
ε and δ, the simplification needs to include at least
a0, one point α̂i, one point β̂j , and am. Assume there
are orthogonal vectors αi and βj . Let `(t) be the line

segment between α̂i and β̂j parameterized by t in the
(d + 1)-th coordinate. For the midpoint `(0) of the

segment we have `(0)[h] = (α̂i + β̂j)/2 ∈ {0, 1/2}, for
1 ≤ h ≤ d (and `(0)[d + 1] = 0). Hence all qi have
distance less than 1 to `(0) and are therefore within
distance ε to the segment. In contrast, let us assume
αi and βj are nonorthogonal. In this case there is a

coordinate 1 ≤ h ≤ d such that α̂i[h] = β̂j [h] = 1.
It follows that `(t)[h] = 1 for all t ∈ [−δ, δ], and
therefore d∞(`(t), qh) ≥ 1 − qh[h] > 1 = ε. Thus, if
we choose this segment, qh has distance larger than
ε to the segment. Consequently, if there is no pair
of orthogonal vectors, a simplification for distance ε
requires at least 5 vertices.

For the L1-metric we set ε = d and δ′ = 3/4d −
1/4. By the same argument as for L∞, we get that
if there are orthogonal vectors, then they induce a
simplification with 4 vertices, since d1(qi, `(0)) ≤ (d−
1)/4 + δ′ + 1/2 = d = ε. Now again consider the case
that all αi and βj are nonorthogonal, so there is a

coordinate 1 ≤ h0 ≤ d, such that α̂i[h0] = β̂j [h0] =
1. We show that d1(`(t), qh) > ε for all t ∈ [−δ, δ].
We can restrict our attention to t ∈ [−ε, ε] due to
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the (d+ 1)-th coordinate. Now consider a coordinate
h 6= h0, d + 1. If αi[h] = βj [h] = 0, then `(t)[h] = 0.
Otherwise `(0)[h] ≥ 1/2 and `(t)[h] ≥ `(0)[h](1− ε/δ)
for t ∈ [−ε, ε]. Consequently, for any t we get that
d1(`(t), qh) ≥ (d − 1)(1/2(1 − ε/δ) − 1/4) + 1 − δ′ =
[(d− 1)/4 + δ′ + 1/2] + 1/2− (d− 1)ε/δ = ε+ 1/2−
(d− 1)ε/δ > ε. Thus, there is a simplification using 4
vertices exactly if there is an orthogonal pair.

For the L2-metric we set ε =
√
d. Further we fix

δ′ = −1/2 +
√

15d+ 1/4, which implies that δ′ > 0
and that

√
(d− 1)/4 + (1/2 + δ′)2 = ε. By the choice

of δ′ orthogonal vectors, we induce points with all
qi having distance at most ε to the segment. Now
again consider a pair of nonorthogonal vectors with
αi[h0] = βj [h0] = 1. It is sufficient then to prove
that d2(`(t), qh)2 > ε2 = d for t ∈ [−ε, ε]. Using the
same derivation as for L1, we obtain d2(`(t), qh)2 ≥
(1 + δ′)2 + (d− 1)(1/4− ε/δ/2)2. The first summand
is larger than 15/16d+ 1/16 + 1/4 while the second is
larger than (d−1)/16−(d−1)ε/δ/4 > (d−1)/16−1/8.
Hence, qh has a distance larger than ε to the segment.

As a result of this, we can reduce the 2-Orthogonal
Vectors problem in dimension d to curve simplification,
min-# or min-ε, in dimension d+ 1 for the L1, L2 and
L∞ metrics. Theorem 2 follows.

4 Conclusion and Open Problems

We have extended the recent conditional fine-grained
hardness results for the Fréchet distance to the case
of k curves and to the curve simplification setting,
showing that any significant improvement on known
methods would result in a major breakthrough in
satisfiability algorithms.

We find the curve simplification result particularly
intriguing, since in seems to offer a qualitative differ-
ence from the previous work: in the curve simplifica-
tion setting, we have only one input object that needs
to be compared to itself. Are there problems of similar
flavor where analogous conditional hardness results
can be obtained?
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Time-Space Trade-offs for Triangulating a Simple Polygon∗

Boris Aronov† Matias Korman‡ Simon Pratt§ André van Renssen¶ ‖ Marcel Roeloffzen¶ ‖

Abstract

An s-workspace algorithm is an algorithm that has
read-only access to the values of the input, write-only
access to the output and only uses O(s) additional
words of space. We give a randomized s-workspace
algorithm for triangulating a simple polygon P of n
vertices, for any s ∈ Ω(log n) ∩O(n). The algorithm
runs in O(n2/s) expected time. We also extend the
approach to compute other similar structures such as
the shortest-path map (or tree) of any point p ∈ P ,
or to partition P using only diagonals of the polygon
so that the resulting sub-polygons have Θ(s) vertices
each.

1 Introduction

Triangulation of a simple polygon, often used as a
preprocessing step in computer graphics, is performed
in a wide range of settings including on embedded
systems like the Raspberry Pi or mobile phones. Such
systems frequently run read-only filesystems for secu-
rity reasons and have very limited working memory.
An ideal triangulation algorithm for such an environ-
ment would allow for a trade-off in performance in
time versus working space.

These memory constraints can be modeled by the
so-called s-workspace model of computation frequently
used in the literature (see, for example, [2, 5, 6, 10]).
In this model the input data is given in a read-only
array or similar structure, and the output we produce
must be written to write-only memory.

In our case, the input is a simple polygon P ; let
v1, v2, . . . , vn be the vertices of P in clockwise order
along the boundary of P . We assume that, given an
index i, in constant time we can access the coordinates
of the vertex vi. We also assume that the usual word
RAM operations can be performed in constant time

∗Work on this paper by B. A. has been partially supported
by NSF Grants CCF-11-17336 and CCF-12-18791. M. K. was
supported in part by the ELC project (MEXT KAKENHI No.
24106008). S. P. was supported in part by the Ontario Graduate
Scholarship and The Natural Sciences and Engineering Research
Council of Canada.
†Tandon School of Engineering, New York University, New

York, USA.
‡Tohoku University, Sendai, Japan.
§Cheriton School of Computer Science, University of Water-

loo, Canada.
¶National Institute of Informatics (NII), Tokyo, Japan.
‖JST, ERATO, Kawarabayashi Large Graph Project.

(such as, given i, j, k, finding the intersection point
of the line passing through vertices vi and vj and the
horizontal line passing through vk).

In addition to the read-only data, an s-workspace
algorithm can use O(s) variables during its execution,
for some parameter s determined by the user. Implicit
memory consumption (such as the stack space needed
in recursive algorithms) must be taken into account
when determining the size of a workspace. We assume
that each variable or pointer is stored in a data word of
Θ(log n) bits. Thus, equivalently, we can say that an
s-workspace algorithm uses O(s log n) bits of storage.
In this model, the aim is to design an algorithm whose
running time decreases as s grows. Such algorithms
are called time-space trade-off algorithms [14].

Previous Work

Several variants of this model have been studied (we
refer the interested reader to [11] for an overview). In
the following we discuss the results related to triangula-
tions. The concept of memory-constrained algorithms
was introduced to the computational geometry com-
munity by the work of Asano et al. [4]. Among other
results, they presented an algorithm for triangulating
a set of n points in O(n2) time using O(1) variables.
More recently, Korman et al. [12] introduced two differ-
ent time-space trade-off algorithms for the same prob-
lem: the first one computes an arbitrary triangulation
in O(n2/s + n log n log s) time using O(s) variables.
The second is a randomized algorithm that computes
the Delaunay triangulation of the given point set in
expected O((n2/s) log s + n log s log∗ s) time within
the same space bounds.

The first algorithm for triangulating simple poly-
gons was due to Asano et al. [2], and runs in O(n2)
time using O(1) variables. Faster algorithms for some
particular cases (such as monotone polygons [5, 3])
are also known. To the best of our knowledge, no
general time-space trade-off algorithm for simple poly-
gons was previously known. In this paper we introduce
a randomized algorithm with expected running time
O(n2/s) that uses O(s) variables to triangulate a sim-
ple n-gon, for any s ∈ Ω(log n) ∩O(n). Our approach
uses a recent result by Har-Peled [10], which computes
the shortest path between two vertices of a simple
polygon in expected O(n2/s) time. Due to lack of
space, proofs in this paper are omitted or sketched.
Details can be found in the extended version [1].

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Preliminaries

We study the problem of computing a triangulation
of a simple polygon P in the s-workspace model. A
triangulation of P is a maximal crossing-free straight-
line graph whose vertices are the vertices of P and
whose edges lie inside P . Since our workspace is not
large enough to store the triangulation explicitly, the
goal is to report a triangulation of P in a write-only
data structure. After a value is reported, it cannot be
accessed or modified.

In preceding similar research [2, 3], the triangulation
is reported as a list of edges in no particular order
(with no information on neighboring edges or faces).
Moreover, it is not clear how to modify these algo-
rithms to obtain such information. Our approach has
the advantage that, in addition to the list of edges,
we can report adjacency information as well. More
details can be found in [1].

Given two points p, q ∈ P , the geodesic between
them is defined as the shortest path that connects p
and q and that stays within P (viewing P as a closed
set). The length of that path is called the geodesic
distance. It is well known that, for any two points of P ,
their geodesic π always exists and is unique (hence, the
geodesic is also often simply referred as the shortest
path between p and q). Moreover, such a path is a
polygonal chain whose vertices (other than p and q)
are reflex vertices of P . Thus, we often identify π with
the ordered sequence of reflex vertices traversed by
the path from p to q. When that sequence is empty
(i.e., the shortest path consists of the straight segment
pq) we say that p sees q (and vice versa).

3 Algorithm

Let π be the geodesic connecting v1 and vbn/2c. From a
high-level perspective, the algorithm uses the approach
of Har-Peled [10] to compute π, and reports the edges
of the shortest path one by one, in order. Our aim is to
use this path to subdivide P into smaller subproblems
that can be solved recursively.

We start by introducing some definitions that will
help in recording which portion of the polygon has
already been triangulated. Vertices v1 and vbn/2c split
the boundary of P into two chains. We say that a
vertex (other than v1 and vbn/2c) is a top vertex if it is
in the chain that is traversed when walking along the
boundary of P from v1 to vbn/2c in clockwise fashion
or a bottom vertex if it lies in the other chain. Note
that all vertices, other than v1 and vbn/2c are either
top or bottom vertices. We say that a diagonal c is
an alternating diagonal if one of its endpoints is a top
vertex and the other a bottom vertex (or one of its
vertices is either v1 or vbn/2c). Otherwise we say that
the diagonal is a non-alternating diagonal.

We will use these diagonals to partition P into two

parts. Since any two vertices consecutive along the
boundary of P can see each other, the partition in-
duced by the “diagonal” connecting them is trivial
(i.e., one subpolygon is P and the other is a segment).

Observation 1 Let c be a diagonal of P such that
neither endpoint is v1 or vbn/2c. Vertices v1 and vbn/2c
belong to different components of P \ c if and only if c
is an alternating diagonal.

Corollary 1 Let c be a non-alternating diagonal of
P . The component of P \ c that contains neither v1
nor vbn/2c has at most dn/2e vertices.

While triangulating the polygon, we maintain an
alternating diagonal ac. Intuitively, the connected
component of P \ ac that does not contain vbn/2c has
already been triangulated. Since it will prove useful
that ac is not necessarily part of π, we also maintain
the property that at least one of the endpoints of ac
will be a vertex of π that has already been computed
in the execution of the shortest-path algorithm. Let
vc denote the endpoint of ac that is on π and that is
closest to vbn/2c.

With these definitions in place, we can give an intu-
itive description of our algorithm: we start by setting
ac as the degenerate diagonal from v1 to v1. We then
use the shortest-path computation approach of Har-
Peled. Our aim is to walk along π until we find a new
alternating diagonal anew. At this moment we pause
the execution of the shortest-path algorithm, trian-
gulate the subpolygons of P that have been created
(and contain neither v1 nor vbn/2c) recursively, update
ac to the newly found alternating diagonal, and then
resume the execution of the shortest-path algorithm.

Although our approach is intuitively simple, there
are several technical difficulties that must be carefully
considered. Ideally, the number of diagonals we walked
along π is small and can be stored explicitly. But if we
do not find an alternating diagonal in just a few steps
(indeed, it could even be that there is no alternating
diagonal in π), we need to use other diagonals. We
also need to make sure that the complexity of each
recursive subproblem is reduced by a constant fraction,
that we never exceed space bounds, and that no part
of the triangulation is reported more than once.

Recall that, at any instant of time, vc denotes the
endpoint of ac that is in π, and that the subpolygon
defined by ac containing v1 has already been trian-
gulated. Let w0, . . . , wk be the portion of π up to
the next alternating diagonal. That is, path π is of
the form π = (v1, . . . , vc = w0, w1, . . . , wk, . . . , vbn/2c)
where w0w1, . . . , wk−2wk−1 are non-alternating diag-
onals, and wk−1wk is an alternating diagonal (or
wk = vbn/2c if no pair of vertices consecutive on π
between vc and vbn/2c forms an alternating diagonal).

Consider the partition of P that these diagonals
create, see Figure 1. Let P1 be the subpolygon induced
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R
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vc = w0
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Figure 1: Partitioning P into subpolygons P1, Pbn/2c,
R, Q1, . . ., Qk−2. The two alternating diagonals are
marked by thick red lines.

by ac that does not contain vbn/2c. Similarly, let Pbn/2c
be the subpolygon that is induced by the alternating
diagonal wk−1wk and does not contain v1. For any
i < k − 1 we define Qi as the subpolygon induced
by the non-alternating diagonal wiwi+1 that contains
neither v1 nor vbn/2c. Finally, let R be the remaining
component of P . Note that some of these subpolygons
may be degenerate and consist only of a line segment
(for example, when wiwi+1 is an edge of P ).

Lemma 2 Each of the subpolygons R, Q1, Q2, . . .,
Qk−2 has at most dn/2e + k vertices. Moreover, if
wk = vbn/2c, then the subpolygon Pbn/2c has at most
dn/2e vertices.

This result allows us to treat the easy case of our
algorithm. When k is small (say, a constant number of
vertices), we can pause the shortest-path computation
algorithm, explicitly store all vertices wi, recursively
triangulate R as well as the subpolygons Qi (for all
i ≤ k− 2), update ac to the edge wk−1wk, and resume
the shortest-path algorithm.

Handling the case where k is large is more involved.
Note that we do not know the value of k until we
find the next alternating diagonal, but we need not
compute it directly. We will be given a parameter τ
related to the workspace allowed for our algorithms,
and when k > τ , we say that the path is long. Ini-
tially we set τ = s but the value of this parameter
will change as we descend the recursion tree. We say
that the distance between two alternating diagonals
is long whenever we have computed τ vertices of π
besides vc and no pair of consecutive vertices forms
an alternating diagonal. That is, path π is of the
form π = (v1, . . . , vc = w0, w1, . . . , wτ , . . . vbn/2c) and
w0w1, . . . , wτ−1wτ are all non-alternating diagonals.
In particular, the vertices w0, . . . , wτ must form a con-
vex chain (see Figure 1). Rather than continue walking
along π, we look for a vertex u of P that together with
wτ forms an alternating diagonal. Once we have found
this diagonal, we will partition P into τ − 2 subpoly-
gons using the diagonals ac, w0w1, w1w2, . . . , wτ−1wτ ,
and uwτ similarly to the easy case: P1 is the part
induced by ac which does not contain vbn/2c, Pbn/2c

is the part induced by uwτ which does not contain
v1, Qi is the part induced by the edge wiwi+1 on its
boundary, which contains neither v1 nor vbn/2c, and
R is the remaining component.

Lemma 3 We can find a vertex u that together with
wτ forms an alternating diagonal in O(n) time using
O(1) space. Moreover, each of the subpolygons R, Q1,
Q2, . . ., Qτ−2 has at most dn/2e+ τ vertices.

Proof sketch. We use ray shooting to find an edge e
outside P1 which is partially visible to wτ . Let pN be
one of the endpoints of e. Note that pN need not be
visible to wτ . However, the triangle formed by wτ , pN ,
and the visible point of e contains one or more reflex
vertices. Among those vertices, we know that the
vertex r that maximizes the angle ∠pNwτr must be
visible (see Lemma 1 of [6]). As described in Lemma 1
of [6], in order to find such a reflex vertex we need to
scan the input polygon at most three times, each time
storing a constant amount of information. �

At high level, our algorithm walks from v1 to vbn/2c.
We stop after walking τ steps or when we find an
alternating diagonal (whichever comes first). This
generates several subproblems of smaller complexity
that are solved recursively. Once the recursion is done
we update ac (to keep track of the portion of P that
has been triangulated), and continue walking along
π. The walking process ends when the walk reaches
vbn/2c. In this case, in addition to triangulating R and
the Qi subpolygons, we must also triangulate Pbn/2c.

The algorithm on the deeper levels of recursion is
almost identical. There are only three minor changes
that need to be introduced. First, we compare the
size of the polygon to τ rather than s. Recall that τ
denotes the amount of space available to the current
instance of the algorithm. Thus, if τ is comparable
to n (say, 10τ ≥ n), then the whole polygon fits into
memory and can be triangulated in linear time [7]. If
τ is significantly smaller, then we continue with the
recursive algorithm as usual.

For ease in handling subproblems, at each step we
also indicate the vertex that fulfills the role of v1 (i.e.,
one of the vertices from which the shortest path must
be computed). Recall that we have random access to
the vertices of the input. Thus, once we know which
vertex takes the role of v1, we can find the vertex that
will satisfy the role of vbn/2c in constant time as well.

In order to avoid exceeding the space bounds, at
each level of the recursion we will decrease the value
of τ by a factor of κ < 1.

Theorem 4 Let P be a simple polygon of n ver-
tices. We can compute a triangulation of P in
O(n2/s) expected time using O(s) variables, for any
s ∈ Ω(log n) ∩O(n).
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4 Other Applications

The above algorithm introduces a general approach
for partitioning P into subpolygons, each of which
has at most O(s) vertices. Since our final objective
is computing a triangulation, at the bottom level of
recursion we use Chazelle’s algorithm [7]. However,
the same approach can be used for other structures: it
suffices to replace the base case of the recursion with
an appropriate algorithm. In this section, we mention
two examples: computing the shortest-path map and
splitting the polygon into pieces of size Θ(n).

Given a simple polygon P and a point p ∈ P (which
need not be a vertex of P ), the shortest-path tree of p
(denoted by SPT(p)) is the tree formed as the union of
all shortest paths from p to vertices of P . ElGindy [8]
and later Guibas et al. [9] showed how to compute the
shortest-path tree in linear time.

The shortest-path map of p (denoted by SPM(p)) is
the subdivision of P into maximal cells so that points
in the same cell have topologically equivalent paths to
p. It is well known that SPM(p) is a finer subdivision
than the one induced by SPT(p). Guibas et al. [9,
Section 2] showed how to further refine the shortest-
path tree so as to obtain the shortest-path map. We
refer the interested reader to Lee and Preparata [13] or
Guibas et al. [9] for more information on shortest-path
trees, maps, and their applications.

Theorem 5 Let P be a simple polygon of n vertices
and let p be any point of P (vertex, boundary or
interior). We can compute the shortest-path map or
shortest-path tree of p in O(n2/s) expected time using
O(s) variables, for any s ∈ Ω(log n) ∩O(n).

Theorem 6 Let P be a simple polygon of n vertices.
For any s ≤ n, we can partition P with Θ(n/s) diago-
nals, so that each subpolygon consists of Θ(s) vertices,
in O(n2/s) expected time using O(s) variables, for any
s ∈ Ω(log n) ∩O(n).

We note that both Asano et al. [2] and Har-Peled [10]
already gave methods of partitioning P into subpoly-
gons of roughly the same size. The first one is deter-
ministic, runs in O(n2) and uses O(1) variables. The
one of Har-Peled is a proper trade-off and also runs
in O(n2/s) expected time using O(s) variables. This
method introduces additional Steiner points. Our al-
gorithm removes the need for these additional points
(since it partitions only by diagonals between visible
vertices), while preserving the same running time.
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Abstract

We describe an O(nd) time algorithm for computing
the exact probability that two probabilistic point sets
are linearly separable in dimension d ≥ 2, and prove
its hardness via reduction from the k-SUM problem.
We also show that d-dimensional separability is com-
putationally equivalent to a (d+ 1)-dimensional con-
vex hull membership problem.

1 Introduction

We consider the problems of linear separability and
convex hull membership for probabilistic point sets,
where a probabilistic point is a tuple (p, π) consisting
of a point p ∈ IRd and its associated probability of
existence π. This abstract representation is a con-
venient way to model data uncertainty in a number
of applications including uncertain databases, sensor
networks, data cleansing, scientific computing, and
machine learning [4, 5]. We present algorithms and
hardness results for computing the exact probability
that two such probabilistic sets in IRd are linearly sep-
arable (separability problem) or that a point lies in-
side the convex hull of a probabilistic set (convex hull
membership problem). Specifically, our results include
the following.

1. An O(nd) time and O(n) space algorithm for
computing the probability of separation of two
probabilistic point sets with a total of n points
in d dimensions, for d ≥ 2.

2. A reduction from the k-SUM problem to the d-
dimensional separability problem, for k = d + 1,
as evidence that our O(n2) bound for d = 2 may
be almost tight. We also prove #P -hardness of
the problem when d = Ω(n).

3. A linear-time reduction between the convex hull
membership problem in d-space and the separa-
bility problem in dimension (d− 1).

4. Finally, related problems such as probability of
non-empty intersection among n probabilistic
halfspaces can also be solved in O(nd) time. We
also show how to extend our result to point sets
containing degeneracies.

∗An expanded version of this work appears in [7].
†University of California, Santa Barbara, CA, USA
‡Mentor Graphics Corp., Wilsonville, OR, USA

Related work. The topic of algorithms for prob-
abilistic (uncertain) data is a subject of extensive
and ongoing research in many areas of computer sci-
ence including databases, data mining, machine learn-
ing, combinatorial optimization, theory, and compu-
tational geometry. Within computational geometry
and databases, a number of papers address nearest
neighbor searching, minimum spanning trees, Voronoi
diagrams, indexing and skyline queries under the
probabilistic model of our paper as well as the lo-
cational uncertainty model [1, 2, 10, 11, 13, 12]. Our
convex hull membership bound improves upon a re-
cent result of [3], both in time complexity and elimi-
nation of the non-degeneracy assumption.

2 Separability of Probabilistic Point Sets

2.1 Preliminaries

Let A and B be two probabilistic point sets in IRd

with a total of n points. For notational convenience,
we denote a generic probabilistic point as p with the
implicit understanding that π(p) is the probability as-
sociated with p and that all the point probabilities are
independent. By the independence of probabilities, a
subset A occurs as a random sample of A with prob-
ability

Pr
[
A
]

=
∏

p∈A
π(p) ·

∏

p∈A\A
(1− π(p)).

We say that the subsets A ⊆ A and B ⊆ B are lin-
early separable if there is a hyperplane H containing
A and B in opposite (open) halfspaces. (The open
halfspace separation means that no point of A ∪ B
lies on H, thus enforcing a strict separation.) Define
an indicator function σ(A,B) for linear separability

σ(A,B) =

{
1 if A,B are linearly separable

0 otherwise,

with σ(∅, ∅) = 1 to handle the trivial case. Then the
separation probability of A and B is the joint sum over
all possible samples:

Pr
[
σ(A,B)

]
=

∑

A⊆A,B⊆B
Pr
[
A
]
·Pr

[
B
]
· σ(A,B)

This is also the expectation of the random variable
σ(A,B). We are interested in the complexity of com-
puting this quantity exactly.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2.2 Reduction to Anchored Separability

There are O(nd) combinatorially distinct separating
hyperplanes induced by A ∪ B, so a natural idea is
to decompose the sum into probabilities over these
planes. However, many different hyperplanes may
be separating for the same sample pair, so we must
avoid over-counting by assigning each pair to a unique
canonical hyperplane.1 Our main insight is the follow-
ing: if we introduce an extra point z into the input,
then the canonical hyperplane can be defined uniquely
(and computed efficiently) with respect to z. We call
this additional point z the anchor point.

We initially assume that the input points are in gen-
eral position, and choose z above (in the dth coordi-
nate) all the input points and in general position with
respect to A∪B. The non-degeneracy assumption can
be eliminated, as briefly explained in Section 5. We
assign π(z) = 1 so that the anchor is always included
in the sample.

If A ⊆ A and B ⊆ B are two random samples and
H a hyperplane separating them, then z lies either (i)
on the same side as A, (ii) on the same side as B, or
(iii) on the hyperplane H. The following lemma shows
that case (iii) precisely counts the double-counting be-
tween cases (i) and (ii).

Lemma 1 There exist separating hyperplanes
H1, H2 with z lying on the same side of H1 as A
but on the same side of H2 as B if and only if there
is another hyperplane H that passes through z and
separates A from B.

Let P + z be the shorthand for the probabilistic
point set P ∪ {z}, with π(z) = 1. Let Pr

[
σ(z,A,B)

]

denote the probability that sets A and B are linearly
separable by a hyperplane passing through z. By the
preceding lemma, we have the following.

Lemma 2 Given two probabilistic point sets A and
B, we have the following equality:

Pr
[
σ(A,B)

]
= Pr

[
σ(A+ z,B)

]
+ Pr

[
σ(A,B + z)

]

− Pr
[
σ(z,A,B)

]
.

Computing Pr
[
σ(A + z,B)

]
and Pr

[
σ(A,B + z)

]

requires solving two instances of anchored separability,
once with z included in A and once in B, and this is
the problem we solve in the following subsection. The
calculation of the remaining term Pr

[
σ(z,A,B)

]
can

be reduced to an instance of separability in dimension
d− 1, as shown below.

Consider any sample A ⊆ A and B ⊆ B. We
centrally project all these points onto the hyperplane
xd = 0 from the anchor point z: the image of a point

1Dualizing the points to hyperplanes can simplify the enu-
meration of separating planes for the summation but does not
address the over-counting problem.

p ∈ IRd is the point p′ ∈ IRd−1 at which the line con-
necting z to p intersects the hyperplane xd = 0. All
points of A∪B have a well-defined projection because
z lies above all of them.

Lemma 3 Let A ⊆ A and B ⊆ B be two sample
sets, and let A′, B′ be their projections onto xd = 0
with respect to z. Then A and B are separable by a
hyperplane passing through z if and only if A′ and B′

are linearly separable in xd = 0.

3 Computing Anchored Separability

We now describe our main technical result, namely,
how to compute the probability of anchored separa-
bility Pr

[
σ(A + z,B)

]
. Given a hyperplane H, we

can easily compute the probability that A+ z lies in
H+ and B lies in H−. The separation probabilities
for different hyperplanes, however, are not indepen-
dent, and so our algorithm “assigns” each separable
sample to a unique hyperplane, which geometrically
is the hyperplane that separates A+z from B and lies
at maximum distance from the anchor z. We intro-
duce the concept of a shadow cone to formalize these
canonical hyperplanes (see Fig. 1).

C(A,B)

Figure 1: A shadow cone in two dimensions.

Given two points u, v ∈ IRd, let shadow(u, v) =
{λv + (1 − λ)u | λ ≥ 1} be the ray originating at v
and directed along the line uv away from u. Given two
sets of points A and B, with A∩B = ∅, we define their
shadow cone C(A,B) as the union of shadow(u, v) for
all u ∈ CH (A) and v ∈ CH (B), where CH () denotes
the convex hull.

C(A,B) is a (possibly unbounded) convex polytope,
each of whose faces is defined by a subset of (at most
d) points in A∪B, and the defining set always includes
at least one point of B. The following lemma states
the important connection between the shadow cone
and hyperplane separability.

Lemma 4 A+z and B can be separated by a hyper-
plane if and only if z 6∈ C(A,B).

3.1 Canonical Separating Hyperplanes

Since C(A,B) is a convex set, there is a unique nearest
point p = np(z,C(A,B)) on the boundary of C(A,B)
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with minimum distance to z. We define our canonical
hyperplane H(z,A,B) as the one that passes through
p and is orthogonal to the vector p− z. The following
lemma states the definition of canonical separators.

Lemma 5 Let C be a d-dimensional convex polyhe-
dron, z a point not contained in C, and p the point
of C at minimum distance from z. If p lies in the rel-
ative interior of the face F of C, then the hyperplane
H through p that is orthogonal to p − z contains F .
This hyperplane contains C in one of its closed halfs-
paces, and is the hyperplane farthest from z with this
property.

We turn the separation question around and instead
of asking “which hyperplane separates a particular
sample pair A,B,” we ask “for which pairs of samples
A,B is H a canonical separator?” The latter formu-
lation allows us to compute the separation probability
Pr
[
σ(A+z,B)

]
by considering at most O(nd) possible

hyperplanes.

3.2 The Algorithm

Our algorithm enumerates all subsets I ⊆ A and J ⊆
B, with |I ∪ J | ≤ d and |J | ≥ 1, and assigns to the
hyperplane H(z, I, J) the separation probability of all
those samples A∪B that are separable and for which
H(z, I, J) is the canonical separator H(z,A,B). Let
Pr
[
H(z, I, J)

]
denote the probability that the points

defining the hyperplane H(z, I, J) are in the sample
and none of the remaining points of A ∪ B lies on its
incorrect side. Then, it’s easy to check that

Pr
[
H(z, I, J)

]
=

∏

u∈I∪J
π(u)×

∏

u∈A∩H−

(1− π(u))

×
∏

u∈B∩H+

(1− π(u)).

The pseudo-code below describes our algorithm.

Algorithm AnchoredSep:

Input: The point sets A+ z and B
Output: Their separation probability

α = Pr
[
σ(A+ z,B)

]

α =
∏

u∈B(1− π(u)) ;
forall the
I ⊆ A, J ⊆ B where |I ∪ J | ≤ d, J 6= ∅ do

let p = np(z,C(I, J));
if p lies in the relative interior of C(I, J)
then

α = α+ Pr
[
H(z, I, J)

]
;

end

end
return α;

Theorem 6 AnchoredSep correctly computes the
probability Pr

[
σ(A+ z,B)

]
.

A näıve implementation of AnchoredSep runs in
O(nd+1) time and O(n) space, but it can be improved
to O(nd) time using duality and topological sweep.

Theorem 7 Let A,B ⊆ IRd be two probabilistic sets
of n points in general position, for d ≥ 2. We can
compute their probability of hyperplane separation
Pr
[
σ(A,B)

]
in O(nd) worst-case time.

4 Lower Bounds

We now argue that the separability problem is at least
as hard as the k-SUM problem for k = d+ 1, for any
fixed d. We also show that the problem is #P -hard
when d = Ω(n).

The k-SUM problem is a generalization of 3-SUM,
which is a classical hard problem in computational
geometry [8, 9]. We use the following variant: Given
k sets containing a total of n real numbers, grouped
into a single set Q and k − 1 sets R1, R2, . . . , Rk−1,
determine whether there exist k − 1 elements ri ∈
Ri, one per set Ri, and an element q ∈ Q such that∑k−1

i=1 ri = q. We have the following result.

Theorem 8 The d-dimensional hyperplane separa-
bility problem is at least as hard as (d+ 1)-SUM.

The problem is #P -hard for d = Ω(n).

Lemma 9 ComputingPr
[
σ(A,B)

]
is #P -hard if the

dimension d is not a constant.

Proof. We reduce the #P -hard problem of counting
independent sets in a graph [14] to the separability
problem. Consider an undirected graph G = (V,E)
on the vertex set {1, 2, . . . , n}. For each i, we con-
struct an n-dimensional point ai = (0, . . . , 1, . . . , 0),
namely, the unit vector along the ith axis. The col-
lection of points {a1, . . . , ai, . . . , an}, each with asso-
ciated probability πi = 1/2, is our point set A. Next,
for each edge e = (i, j) ∈ E, we construct a point
bij at the midpoint of the line segment connecting
ai and aj . The set of points bij , each with associ-
ated probability 1, is the set B. It is easy to see that
there is a one-to-one correspondence between separa-
ble subsets of A ∪ B and the independent sets of G.
Each separable sample occurs precisely with proba-
bility (1/2)n, and therefore we can count the number
of independent sets using the separation probability
Pr
[
σ(A,B)

]
. �

5 Handling Input Degeneracies

We deal with degenerate inputs through a problem-
specific symbolic perturbation within the framework
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of Simulation of Simplicity [6]. We convert degener-
ate non-separable samples into non-degenerate sam-
ples that are still non-separable. We first choose the
anchor z above all points in P = A ∪ B and outside
the affine span of every d-tuple of P. For each a ∈ A,
we define a perturbed point a′ = a + ε · (a − z), and
for each b ∈ B, define b′ = b+ ε · (z − b), where ε > 0
is infinitesimally small. Let A′,B′ be the sets of per-
turbed points corresponding to A and B. We prove
that A + z and B are strictly separable by a hyper-
plane if and only if A′ + z and B′ are. Furthermore,
if some hyperplane H with z /∈ H is a non-strict sep-
arator of A′ + z and B′ for some ε, then H is a strict
separator for any ε0 < ε.

6 Convexity and Related Problems

Given a probabilistic set of points P, the convex hull
membership probability of a query point z is the prob-
ability that z lies in the convex hull of P. We write
this as Pr

[
z ∈ CH (P)

]
=
∑

P⊆P, z∈CH (P ) Pr
[
P
]
.

Without loss of generality, assume that the query
point is z = (0, 0, . . . , 1), and define the central pro-
jection of p ∈ P as the point p′ at which the line pz
meets the plane xd = 0. Let the set A (resp. B) be
the central projections of all those points in P with
xd > 1 (resp. with xd < 1), where each point inherits
the associated probability of its corresponding point
in P. The sets A and B are (d−1)-dimensional prob-
abilistic points, with |A| + |B| = n. We show the
following equality

Pr
[
z ∈ CH (P)

]
= 1−Pr

[
σ(A,B)

]
,

which proves that d-dimensional convex hull member-
ship can be computed in the same time bound as the
(d−1)-dimensional separability. Similarly, the proba-
bility that n probabilistic halfspaces have non-empty
intersection can be computed in the same time bound
as d-dimensional separability.

7 Concluding Remarks

We considered the problem of hyperplane separabil-
ity for probabilistic point sets. Our main result is
that, given two sets of n probabilistic points in IRd,
we can compute in O(nd) time the exact probabil-
ity that their random samples are linearly separable.
The same technique and result lead to similar bounds
for several other problems, including the probability
that a query point lies inside the convex hull of n
probabilistic points, or the probability that n prob-
abilistic halfspaces have non-empty intersection. We
also proved that the d-dimensional separability prob-
lem is at least as hard as the (d + 1)-SUM prob-
lem [8, 9], which implies that our O(n2) algorithms
for 2-dimensional separability or 3-dimensional con-
vex hull membership are nearly optimal.
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Finding Plurality Points in Rd∗

Mark de Berg† Joachim Gudmundsson‡ Mehran Mehr§

Abstract

Let V be a set of n points in Rd, which we call voters,
where d is a fixed constant. A point p ∈ Rd is pre-
ferred over another point p′ ∈ Rd by a voter v ∈ V if
dist(v, p) < dist(v, p′). A point p is called a plurality
point if it is preferred by at least as many voters as
any other point p′.

We present an algorithm that decides in O(n log n)
time whether V admits a plurality point in the L2

norm and, if so, finds the (unique) plurality point.

1 Introduction

We study computational problems concerning plurality
points, a concept arising in social choice and voting
theory, defined as follows. Let V be a set of n voters
and let C be a space of possible choices. Each voter
v ∈ V has a utility function indicating how much v
likes a certain choice. Thus the utility function of v
determines for any two choices from C which one is
preferred by v or whether both choices are equally
preferable. A (weak) plurality point is now defined
as a choice p ∈ C such that no alternative p′ ∈ C is
preferred by more voters.

When there are different issues on which the vot-
ers can decide, then the space C becomes a multi-
dimensional space. This has led to the study of plu-
rality points in the setting where C = Rd and each
voter has an ideal choice which is a point in Rd. To
simplify the presentation, from now on we will not
distinguish the voters from their ideal choice and so
we view each voter v ∈ V as being a point in Rd, the
so-called spatial model in voting theory [10]. Thus
the utility of a point p ∈ Rd for a voter v is inversely
proportional to dist(v, p), the distance from v to p un-
der a given distance function, and v prefers a point p
over a point p′ if dist(v, p) < dist(v, p′). Now a point
p ∈ Rd is a plurality point if for any point p′ ∈ Rd
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we have |{v ∈ V : dist(v, p) < dist(v, p′)}| > |{v ∈ V :
dist(v, p′) < dist(v, p)}|.

Plurality points and related concepts were already
studied in the 1970s in voting theory [4, 6, 7, 10, 12].
McKelvey and Wendell [10] define three different no-
tions of plurality points—majority Condorcet, plural-
ity Condorcet, and majority core—and for each notion
they define a weak and a strong variant. Under certain
assumptions on the utility functions, which are satis-
fied for the L2 norm, the three notions are equivalent.
Thus for the L2 norm we only have two variants: weak
plurality points (which should be at least as popular
as any alternative) and strong plurality points (which
should be strictly more popular than any alternative).
We focus on weak plurality points, since they are more
challenging from an algorithmic point of view. From
now on, whenever we speak of plurality points we refer
to weak plurality points.

Plurality points represent a stable choice with re-
spect to the opinions of the voters. One can also look
at the concept from the viewpoint of competitive facil-
ity location. Here one player wants to place a facility
in the space C such that she always wins at least as
many clients (voters) as her competitor, no matter
where the competitor places his facility. Competitive
facility location problems have been studied widely in
a discrete setting, where the clients and the possible
locations for the facilities are nodes in a network; see
the survey by Kress and Pesch [8]. Competitive facility
location has also been studied in a geometric, continu-
ous setting under the name Voronoi games [1, 3]. Here
one is given a region R in R2, say the unit square, and
the goal is to win the maximum area within R. In
other words, the set V of voters is no longer finite, but
we have V = C = R. The plurality-point problem in
a geometric space lies in between the network setting
and the fully continuous setting: the space C of choices
is Rd, but the set V of voters is finite.

When the L2 norm defines the distance between
voters and potential plurality points, then plurality
points can be defined in terms of Tukey depth [11].
The Tukey depth of a point p ∈ Rd with respect to
a given set V of n points is defined as the minimum
number of points from V lying in any closed halfspace
containing p. A point of maximum Tukey depth is
called a Tukey median. It is known that for any set V ,
the depth of the Tukey median is at least dn/(d+ 1)e
and at most dn/2e. Wu et al. [13] showed that a
point p ∈ Rd is a plurality point in the L2 norm if

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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and only if any open halfspace with p on its boundary
contains at most n/2 voters. This is equivalent to
saying that the Tukey depth of p is dn/2e. They used
this observation to present an algorithm that decides
in O(nd−1 log n) time if a given set V of n voters in
Rd admits a plurality point with respect to the L2

norm and, if so, finds such a point. A slightly better
result can be obtained using a randomized algorithm
by Chan [2], which computes a Tukey median (together
with its depth) in O(n log n+ nd−1) time.

Our results. Currently the fastest algorithm for
deciding whether a plurality point exists runs in
O(n log n+ nd−1) randomized time and actually com-
putes a Tukey median. However, in the case of plural-
ity points we are only interested in the Tukey median
if its depth is the maximum possible, namely dn/2e.
Wu et al. [13] exploited this to obtain a determinis-
tic algorithm, but their running time is O(nd−1 log n).
This raises the question: can we decide whether a plu-
rality point exists faster than by computing the depth
of the Tukey median? We show that this is indeed
possible: we present a deterministic algorithm that
decides if a plurality point exists (and, if so, computes
one) in O(n log n) time.

2 Plurality points in the L2 norm

Let V be a set of n voters in Rd. In this section we
show how to compute a plurality point for V with
respect to the L2 norm in O(n log n) time, if it exists.
We start by proving several properties of the plurality
point in higher dimensions, which generalize similar
properties that Lin et al. [9] proved in R2. These
properties imply that if a plurality point exists, it is
unique (unless all points are collinear). Our algorithm
then consists of two steps: first it computes a single
candidate point p ∈ Rd, and then it decides if p is a
plurality point.

2.1 Properties of plurality points in the L2 norm

As remarked in the introduction, plurality points can
be characterized as follows.

Fact 1 (Wu et al. [13]) A point p is a plurality
point for a set V of n voters in Rd with respect to the
L2 norm if and only if every open halfspace with p on
its boundary contains at most n/2 voters.

Verifying the condition in Fact 1 directly is not efficient.
Hence, we will prove alternative conditions for a point
p to be a plurality point in Rd, which generalize the
conditions Lin et al. [9] stated for the planar case.
First, we define some concepts introduced by Lin et
al.

Let V be a set of n voters in Rd, and consider a
point p ∈ Rd. Let L(p) be the set of all lines passing

through p and at least one voter v 6= p. The point p
partitions each line ` ∈ L(p) into two opposite rays,
which we denote by ρ(`) and ρ(`). (The point p itself
is not part of these rays.) We say that a line ` ∈ L(p)
is balanced if |ρ(`) ∩ V | = |ρ(`) ∩ V |. If n is odd, then
p is a plurality point if and only if every line ` ∈ L(p)
is balanced (which implies that we must have p ∈ V ).
When n is even the situation is more complicated. Let
R(p) be the set of all rays ρ(`) and ρ(`). Label each
ray in R(p) with an integer, which is the number of
voters on the ray minus the number of voters from
V on the opposite ray. Thus, a line ` is balanced if
and only if its rays ρ(`) and ρ(`) have label zero. Let
L∗(p) be the set of all unbalanced lines in L(p) and
let R∗(p) be the corresponding set of rays. We now
define the so-called alternating property, as introduced
by Lin et al. [9]. This property is restricted to the
2-dimensional setting, where we can order the rays in
R∗(p) around p. In this setting, the point p is said to
have the alternating property if the following holds:
the circular sequence of labels of the rays in R∗(p),
which we obtain when we visit the rays in R∗(p) in
clockwise order around p, alternates between labels +1
and −1. Note that if p has the alternating property
then the number of unbalanced lines must be odd.

Theorem 2 Let V be a set of n voters in Rd, with
d > 1, and let p be an arbitrary point.

a. If n is odd, p is a plurality point if and only if
p ∈ V and every line in L(p) is balanced.

b. If n is even and p /∈ V , then p is a plurality point
if and only if every line in L(p) is balanced.

c. If n is even and p ∈ V , then p is a plurality point
if and only if all unbalanced lines in L(p) are
contained in a single 2-dimensional flat f and p
has the alternating property for the set V ∩ f .

For d = 1 the theorem is trivial, and for d = 2—
the condition in case c then simply states that p has
the alternating property—the theorem was proved by
Lin et al. [9] Our contribution is the extension to higher
dimensions. Before proving Theorem 2, we need the
following lemma regarding the robustness of plurality
points to dimension reduction.

Lemma 3 Let p be a plurality point for a set V in
Rd, with d > 1, and let f be any lower-dimensional
flat containing p. Then p is a plurality point for V ∩ f .

Proof. We prove the statement by induction on d.
For d = 1 the lemma is trivially true, so now consider
the case d > 1. We consider two cases.

The first case is that f is a hyperplane, that is,
dim(f) = d − 1. Let f+ and f− denote the open
halfspaces bounded by f , and assume without loss of
generality that |f+ ∩ V | > |f− ∩ V |. Suppose for a
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contradiction that p is not a plurality point for f ∩ V .
Then there must be a (d − 2)-flat g ⊂ f containing
p such that, within the (d − 1)-dimensional space f ,
the number of voters lying strictly to one side of g is
greater than |f ∩ V |/2. Let g+ ⊂ f denote the part
of f lying to this side of g. Now imagine rotating f
around g by an infinitesimal amount. Let f̂ denote
the rotated hyperplane. Then all voters in f+ ∩V end
up in f̂+. Moreover, we can choose the direction of
the rotation such that the voters in g+ ∩ V end up
in f̂+. But then |f̂+ ∩ V | = |f+ ∩ V | + |g+ ∩ V | >
|f+ ∩ V | + |f ∩ V |/2 > n/2, which contradicts the
assumption that p is a plurality point.

The second case is that dim(f) < d − 1. Let h be
a hyperplane that contains f . From the first case we
know that p must be a plurality point for h∩V . Hence,
we can apply our induction hypothesis to conclude that
p must be a plurality point for f ∩ V . �

Now we are ready to prove Theorem 2.

Proof. [Proof of Theorem 2] Since the case d = 2 was
already proved by Lin et al. [9], and the case d = 1 is
trivial, we assume d > 3. Below we prove part c. The
proof of parts a and b is given in the full version.

(c,⇐). Assume n is even and let p be a point such
that all unbalanced lines in L(p) are contained in a
single 2-dimensional flat f and p has the alternating
property for the set V ∩ f . Consider an arbitrary
open halfspace h+ whose bounding hyperplane h
contains p, and let h− be the opposite open halfspace.
If h contains f then all unbalanced lines lie in h and
so |h+∩V | = |h−∩V |, which implies |h+∩V | 6 n/2.
If h does not contain f , we can argue as follows. Let
` := h ∩ f . Since the theorem is true for d = 2 and
we have the alternating property on f , we know that
p is a plurality point on f . Hence, the number of
voters on f on either side of ` is at most |f ∩ V |/2.
But then we have |h+ ∩ V | 6 n/2, because all voters
not in f lie on balanced lines. We conclude that for
any open halfspace h+ we have |h+ ∩ V | 6 n/2, and
so p is a plurality point.

(c,⇒). Assume n is even and let p be a plurality
point. We first argue that all unbalanced lines must
lie on a single 2-flat. Assume for a contradiction that
there are three unbalanced lines that do not lie on
a common 2-flat. Let g be the 3-flat spanned by
these lines, and let L∗(g) ⊂ L∗(p) be the set of all
unbalanced lines contained in g. Let f1 ⊂ g be a
2-flat not containing p and not parallel to any of the
lines in L∗(g). Each of the lines in L∗(g) intersects
f1 in a single point, and these intersection points are
not all collinear. According to the Sylvester-Gallai
Theorem [5] this implies there is an ordinary line
in f1, that is, a line containing exactly two of the
intersection points. Thus we have an ordinary 2-flat
in g, that is, a flat f2 containing exactly two lines

from L∗(p). This implies that f2 ∩ V does not have
the alternating property, and since we know by the
result of Lin et al. that the theorem holds when
d = 2 this implies that p is not a plurality point in f2.
However, this contradicts Lemma 3.

We just argued that all unbalanced lines must lie on a
single 2-flat f . By Lemma 3 the point p is a plurality
point on f . Since the theorem holds for d = 2, we
conclude that f ∩ V has the alternating property.

�

2.2 Finding plurality points in the L2 norm

We now turn our attention to finding a plurality point.
Our algorithm needs a subroutine for finding a median
hyperplane h for V , which is a hyperplane such that
|h+∩V | < n/2 and |h−∩V | < n/2, where h+ and h−

denote the two open halfspaces bounded by h. The
following lemma is easy to prove.

Lemma 4 Let v ∈ V be a voter that lies on a hyper-
plane h0 such that all voters either lie on h0 or in h+0 .
Then we can find a median hyperplane h containing v
in O(n) time.

For d > 2 the plurality point is unique, if it exists
(the proof is given in the full version). The algorithm
below either reports a single candidate point p—we
show later how to test if the candidate is actually
a plurality point or not—or it returns ∅ to indicate
that it already discovered that a plurality point does
not exist. When called with a set V of n collinear
voters, the algorithm will return the set of all plurality
points; if n is even the set is a segment connecting the
two median voters, if n is odd the set is a degenerate
segment consisting of the (in this case unique) median
voter. We call this segment the median segment.

FindCandidates(V )

1. If all voters in V are collinear, then return the
median segment of V .

2. Otherwise, proceed as follow.

(a) Let v0 ∈ V be a voter with minimum xd-
coordinate. Find a median hyperplane h0
containing v0 using Lemma 4, and let
cand0 := FindCandidates(h0 ∩ V ).

(b) If cand0 is a single point or cand0 = ∅ then
return cand0.

(c) If cand0 is a (non-degenerate) segment then
let v1 ∈ V be a voter whose distance to
h0 is maximized. Find a median hyper-
plane h1 containing v1 using Lemma 4, and
let cand1 := FindCandidates(h1∩V ). Re-
turn cand0 ∩ cand1.
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Lemma 5 Algorithm FindCandidates(V ) returns
in O(n) time a set cand of candidate plurality points
such that (i) if all voters in V are collinear then cand
is the set of all plurality points of V ; (ii) otherwise
cand contains at most one point, and no other point
can be a plurality point of V .

Proof. If all voters in V are collinear then the algo-
rithm returns the correct result in Step 1, so assume
not all voters are collinear. Consider the median hy-
perplane computed in Step 2a. Since |h+0 ∩ V | < n/2
and |h−0 ∩ V | < n/2, for any point p /∈ h there is an
open halfspace containing p and bounded by a hyper-
plane parallel to h0 that contains more than n/2 voters.
Hence, by Fact 1 any plurality point for V must lie
on h0. By Lemma 3, if a plurality point exists for V
it must also be a plurality point for h0 ∩ V . By induc-
tion we can assume that FindCandidates(h0 ∩V ) is
correct. Hence, the result of the algorithm is correct
when cand0 is a single point or cand0 = ∅. Note that
when cand0 is a (non-degenerate) segment—this only
happens when all voters in h0 ∩ V are collinear—we
must have V 6= h0∩V , otherwise V would be collinear
and we would be done after Step 1. Hence, v1 /∈ h0. By
the same reasoning as above the median hyperplane h1
must contain the plurality point of V (if it exist). But
then the plurality point must lie in cand0∩cand1, and
since v1 /∈ h0 we know that cand0 ∩ cand1 is either a
single point or it is empty. This proves the correctness.

To prove the time bound, we note that we only
have two recursive calls when the first recursive call
reports a non-degenerate candidate segment. This
only happens when all voters in h0 ∩ V are collinear,
which implies the recursive call just needs to compute
a median segment in O(n) time—it does not make
further recursive calls. Thus we can imagine adding
this time to the original call, so that we never make
more than one recursive call. Since the recursion depth
is at most d, and each call needs O(n) time, the bound
follows. �

Our algorithm to find a plurality point first calls
FindCandidates(V ). If all points in V are collinear
we are done—FindCandidates(V ) then reports the
correct answer. Otherwise we either get a single can-
didate point p, or we already know that a plurality
point does not exist. It remains to test if a candidate
point p is a plurality point or not.

To this end we have to check the conditions of The-
orem 2, which can easily be done in O(n log n) time.

Lemma 6 Given a set V of n voters in Rd and a
candidate point p, we can test in O(n log n) time if p
is a plurality point in the L2 norm.

We obtain the following theorem.

Theorem 7 Let V be a set of n voters in Rd, where
d > 2 is a fixed constant. Then we can find in
O(n log n) time the plurality point for V in the L2

norm, if it exists, and this time bound is optimal.

3 Conclusion

Most point sets do not admit a plurality point in the
L2 norm. Hence, in the full version of the paper we
also study several other problems concerning plurality
points: we give fast algorithms to find the smallest
subset W ⊂ V such that V \W admits a plurality
point, we show how to compute a so-called plurality
ball in the plane, and we study plurality points in the
L1 norm.
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On the space of Minkowski summands of a convex polytope

Ioannis Z. Emiris ∗ Anna Karasoulou ∗ Eleni Tzanaki† Zafeirakis Zafeirakopoulos‡

Abstract

We present an algorithm for computing all Minkowski
Decompositions (MinkDecomp) of a given convex, in-
tegral d-dimensional polytope, using the cone of com-
binatorially equivalent polytopes. An implementation
is given in sage.

1 Introduction

Let A ∈ Zm×d be a matrix whose row vectors ai ∈ Zd
positively span Rd. For b ∈ Rm the set

Pb = {x ∈ Rd : Ax ≤ b}

is a polytope. The set of all non-empty polytopes Pb
arising this way can be parameterized by their right-
hand side vectors b. Let us denote the set of such
right hand side vectors b by

U (A) = {b ∈ Rm : Pb 6= ∅} . (1)

Problem 1 Minkowski Summands. Given A ∈
Zm×d and b ∈ Rm, such that Ax ≤ b is the H-
representation of a convex integral polytope Pb, com-
pute all integral MinkDecomp of Pb.

In the classical problem of MinkDecomp, which
is NP-complete, we are seeking a pair of polytopes
whose Minkowski sum equals the input polytope. In
this work, we compute instead all possible Minkowski
summands. In the first step, we compute the cone of
combinatorially equivalent polytopes U(A)b, a sub-
cone of U(A) whose rays and lines generate all the
Minkowski summands of Pb. Then, we appropriately
shift these rays so that they correspond to integer
Minkowski summands. We give an algorithm and its
implementation in sage [9] performing the computa-
tion of all Minkowski summands in any dimension d,
extending ideas from [5].
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We focus on the integral decomposition of poly-
topes. The integral decomposition of polytopes has
applications in various areas of mathematics such as
integer and mixed integer programming [5], polyno-
mial factorization [4] or implicitization [3]. Since it
may happen that an integral polytope has a rational
but not an integral decomposition, such a distinction
does make sense. Although, qualitatively, a dilation
resolves this problem, in many applications, e.g., fac-
torization of polynomials, such a step is not allowed.

Previous work on MinkDecomp algorithms mainly
focuses in low dimension [2, 3, 4]. The problem of
computing a Minkowski summand in general dimen-
sion is reduced to the feasibility of a linear program
[6], thus deciding if a polytope is decomposable in
order to test polynomial irreducibility. In [1, 5] is
explored the cone of combinatorially equivalent poly-
topes and its computational aspects. Some classical
work on polytope decomposition is presented in [7].

2 Computing the Space of Minkowski Summands

A system of inequalities Ax ≤ b is feasible if it has
a solution. Feasibility is characterized by Farkas’
lemma.

Lemma 1 (Farkas 1894) The system of inequali-
ties Ax ≤ b is feasible if and only if y>b ≥ 0 for
each y ≥ 0 with A>y = 0.

The dual, U∗(A) = {y ∈ Rm : y>b ≥ 0 ∀b ∈ U(A)},
in view of Lemma 1 becomes

U∗(A) = {y ∈ Rm : A>y = 0 and y ≥ 0}. (2)

It is immediate from Equation (2) that U∗(A) is the
intersection of ker(A>) with the positive orthant Rm+
of Rm. Therefore, U∗(A) is a cone and its primal set
U(A) is a cone as well and both contain the origin.

Throughout we will use the following example.

Example Consider the matrix A ∈ Z10×3 and the
vector b ∈ Z10




0 1 1
1 0 1
1 0 0
0 1 0
0 0 −1
0 0 1
0 −1 0
0 −1 1
−1 0 0
−1 0 1







x
y
z


 ≤




4
4
3
3
0
2
0
1
0
1




(3)

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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defining the polytope in Figure 1.

x
y

z

x
y

z

x y

z

Figure 1: The polytope defined by System (3) and its
2 Minkowski summands.

The inequalities defining the cone U(A) are:
b5 + b6 ≥ 0 b4 + b5 + b8 ≥ 0 b2 + 2b5 + b10 ≥ 0
b4 + b7 ≥ 0 b4 + b5 + b10 ≥ 0 b2 + b5 + b9 ≥ 0
b4 + b5 + b8 ≥ 0 b1 + b5 + b7 ≥ 0 b1 + 2b5 + b8 ≥ 0

Switching from the H-representation to its V -
representation, the cone U (A) is generated by 9 rays
and 3 lines in Z10.

The normal cone of a face F of a polytope P in Rd
is the set

N (F ;P ) = {v ∈ Rd : v>x = h(P, v) for all x ∈ F}.

The dimension of the normal cone of a k-dimensional
face is (d − k). The normal fan N (P ) of P, which is
the collection of the normal cones of all faces of P , is
a complete fan in Rd.

The support function of a polytope P in Rd,
h(P, ; ), is defined over all u ∈ Rd as h(P, u) =
max{u>x : x ∈ P}. In geometric terms, the evalu-
ation of the support function at u ∈ Rd implies that
the hyperplane Hu : x>u = h(P, u) contains P in one
of its closed halfspaces and Hu∩P 6= ∅. We call every
such Hu an active or supporting hyperplane of P .

Definition 1 Two polytopes P,Q in Rd are strongly
combinatorially equivalent if, for all v ∈ Rd

dim{y ∈ P : v>y = h(P, v)} =

= dim{y ∈ Q : v>y = h(Q, v)}.

If polytopes P,Q have the same defining hyper-
planes, as in our setup, their normal fans are related
by inclusion, i.e., one fan is a subfan of the other. If,
in addition, P,Q are strongly combinatorially equiv-
alent, Definition 1 implies N (P ) = N (Q). We can
therefore say that two polytopes are strongly combi-
natorially equivalent if and only if they have the same
normal fan.

Let us give some definitions related to MinkDe-
comp. Polytopes P1, P2 in Rd are homothetic if
P1 = ρP2 + v for some v ∈ Rd and ρ > 0.

Definition 2 A polytope P in Rd is called (homo-
thetically) decomposable if two polytopes P1 and P2

exist with P = P1 + P2, where Pi in not homothetic
to P for i ∈ {1, 2}. Otherwise P is (homothetically)
indecomposable.
A polytope P1 is a summand of a polytope P

(denoted as P1 ≺ P ) if there exists a scalar ρ > 0 and
a polytope P2 such that P = ρP1 + P2.

In view of the definition above, trivial polytopes,
i.e., points, are indecomposable.

For b ∈ U(A), we define the support vector ηb of
the polytope Pb as

ηb = (h(Pb, a1), h(Pb, a2), . . . , h(Pb, ad)) .

We note that ηb ∈ Zm is the componentwise-least
right hand side for which Pb = Pηb . Let us now define
the set

U (A)b := {ηv : v ∈ U (A) such that Pv ≺ Pb}. (4)

In [5, 7, 8], the authors show that U (A)b is a ra-
tional polyhedral subcone of U (A) whose structure
and extreme rays convey important information on
decomposability.

Theorem 2 [7],[8] The set U(A)b := {ηv : v ∈
U(A) such that Pv ≺ Pb} is a rational polyhedral
subcone of U(A) whose extreme rays correspond to
indecomposable polytopes and its interior consists of
all b′ for which Pb′ is strongly combinatorially equiv-
alent to Pb.

Since U(A)b is a subcone of the homogeneous (i.e.,
defined by linear halfspaces) cone U(A), we wish to
express U(A)b as a set of linear inequalities of type
a>v ≥ 0 where a, v ∈ Rm. These inequalities should
be imposed from the feasibility of Ax ≤ v but, more
importantly, they should incorporate the fact that
strong combinatorial equivalence is preserved over all
faces as well.

Since each face F of Pb can be viewed as a polytope,
we can express it as a set {x ∈ Rd : AF x ≤ bF} where
AF ∈ Zλ×d, bF ∈ Zλ and λ ∈ N. In this context,
we can define U(AF ) and find its subcone U(A)bF
containing all those y ∈ Zλ for which the polytope
{x ∈ Rd : AF x ≤ y} is combinatorially equivalent to
F . However, without reference to the original poly-
tope Pb, the computation of U(AF )bF does not keep
track of the restrictions imposed on the elements of
U(A)b. This indicates that F should be expressed us-
ing equalities and inequalities from the original sys-
tem Ax ≤ b.

Example (Cont’d) We will apply the procedure de-
scribed above on a face of our example. Let us pick
the facet F defined by [1, 0, 1]>[x, y, z] = b1. Then
the system AFx ≤ b for the facet F is
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0 1 1
1 0 1
1 0 0
0 1 0
0 0 −1
0 0 1
0 −1 0
0 −1 1
−1 0 0
−1 0 1
−1 0 −1







x
y
z


 ≤




b0
b1
b2
b3
b4
b5
b6
b7
b8
b9
−b1




(5)

For the polyhedron defined by System (5), we obtain
the following H-representation of U (AF ):


0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 1 0 0


 b̃ ≥




0
0
0


 ,

and by mapping the b̃i’s back to the corresponding bi’s
of the input system (note that b̃ = (b0, . . . , b9,−b1))
we obtain the following two constraints: b2 + b8 ≥ 0
and b1 + b4 + b8 ≥ 0.

The idea in Algorithm 1 is to repeat the above pro-
cedure for every face of the input polytope so that
none of them “loses support”. Note that visiting each
face of Pb is essential. If, for example, in the polytope
of Figure 1 the algorithm does not visit the top facet,
then some b′ in the interior of U (A)b corresponds to
the square pyramid. This happens because no restric-
tion prevents the four top vertices to behave as one.
This, however, is not acceptable since the square pyra-
mid is not strongly combinatorially equivalent to Pb.
Also, starting with U (A) is necessary, since it deter-
mines the orientation of the outer normals of Pb. If in
our example we started the algorithm with U (A) = ∅,
then we would get the reverse square pyramid as a
summand of the polytope, which is not true.

Using the knowledge of the structure of the cone
of combinatorially equivalent polytopes, we can com-
pute all indecomposable Minkowski summands of a
given polytope. It is however essential, once we have
computed the rays of U (A)b, to read out those which
produce non-trivial indecomposable polytopes. This
is the content of Proposition 3.

We say that Ax ≤ b, A ∈ Zm×d is an irredundant
description of Pb = {x : Ax ≤ b}, if the removal of
any of the inequalities of the linear system, results in
a different polytope (or polyhedron). Notice that this
is stronger than requiring b to be the support vec-
tor ηb of Pb. The irredundant description of a full
dimensional polytope Pb is unique and each of its in-
equalities supports Pb along a facet. Thus, if Ax ≤ b
is an irredundant description of a d-polytope with m
facets then A ∈ Zm×d.

Below we show that, if the input is an irredundant
description of Pb, then it is only the rays of U(A)b
that account for the (in)decomposability of Pb.

Proposition 3 Assume Pb = {x : Ax ≤ b}, A ∈
Rm×d is a d-polytope with m facets. Then, the gener-
ating rays b1, . . . , bk of U (A)b correspond to nontrivial

indecomposable polytopes, while the generating lines
±c1, . . . ,±cd of U (A)b correspond to points.

Combining Proposition 3 and Theorem 2, we de-
duce that each MinkDecomp of Pb into non-trivial
indecomposable polytopes is a sum:

Pb = λ1Pb1 + · · ·+ λkPbk + T (6)

where λ1, . . . , λk ≥ 0 and T = µ1Pc1 + · · · + µdPcd ,
µ1, . . . , µd ∈ R, is a translation.

Lemma 4 For each polytope Pc = {x ∈ Rd : Ax ≤
c}, A ∈ Rm×d, 0 6= c ∈ Rd, such that Ax ≤ c is
feasible,

1. if Ax ≤ −c is feasible then Pc is a point

2. if Ax ≤ −c is not feasible then Pc is a non-trivial
polytope or Pc is a point whose description Ax ≤
c contains a non-active inequality (c 6= ηc).

Proof. Since Ax ≤ c is a polytope, feasibility of
Ax ≤ −c implies the existence of a point beyond all
faces of Pc. This cannot happen unless Pc is a point.
Arguing as above, we see that point 2 is true when Pc
is nontrivial. If, however, Pc is a point, the feasibility
of both Ax ≤ ±c fails only if the description Ax ≤ c
contains a hyperplane that does not support Pc. �
Proof. [Proof of Proposition 3] If a polytope Pbi cor-
responds to an extreme ray of U(A)b, then Ax ≤ bi
is feasible whereas Ax ≤ −bi is not. Since, by defi-
nition, the cone U(A)b contains polytopes all whose
inequalities are active, Lemma 4.2 rules out the case
where dim(Pbi) = 0. Thus, Pbi is a non-trivial inde-
composable summand of Pb. If, on the other hand, a
polytope Pci corresponds to an extreme line of U(A)b,
then both Ax ≤ ci and Ax ≤ −ci are feasible. In this
case, Lemma 4.1 implies that Pci is a point. �

If we only want to decide whether Pb is indecom-
posable, Proposition 3 is simplified as follows.

Corollary 5 Let Pb = {x : Ax ≤ b}, A ∈ Zm×d be a
d-polytope withm facets. Then, Pb is indecomposable
if and only if cone U(A)b has a single generating ray.

Example (Cont’d) We consider the intersection I =
U(A)∩iFi of all cones corresponging to faces Fi of the
polytope. We compute the V -representation of U(A)b
and get its rays; I is a 7-dimensional cone, with rays:

bi Ax ≤ bi vertex set:

±(1, 1, 0, 0,−1, 1, 0, 1, 0, 1) 0-dim {(0, 0,±1)}
±(1, 1, 0, 0,−1, 1, 0, 1, 0, 1) 0-dim {(±1, 0, 0)}
±(1, 0, 0, 1, 0, 0,−1,−1, 0, 0) 0-dim {(0,±1, 0)}

(0, 0, 0, 0, 0, 0, 1, 1, 0, 0) 1-dim {(0, 0, 0), (0,−1, 0)}
(0, 0, 0, 0, 0, 0, 0, 0, 1, 1) 1-dim {(0, 0, 0), (−1, 0, 0)}
(1, 1, 0, 0, 0, 1, 0, 1, 0, 1) 1-dim {(0, 0, 0), (0, 0, 1)}
(0, 0, 0, 0, 0, 1, 2, 2, 2, 2) 2-dim {(0, 0, 0), (−2, 0, 0),

(0,−2, 0), (−2,−2, 0), }
(−1,−1, 1)}
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The rays ±b1,±b2,±b3 correspond to points. The
next three rays correspond to line segments and the
last ray corresponds to a square pyramid, which are
exactly the Minkowski summands of the polytope de-
fined by System (3).

In order to find integer indecomposable summands,
the rays of U (A)b may not suffice since they only
convey information about the combinatorial type of a
polytope.

To resolve this issue, we find an appropriate in-
teger polytope corresponding to each Pbi in Equa-
tion (6). More precisely, we find an integer polytope
Pb′i , combinatorially equivalent to Pbi , such that for

all 0 < λ < 1 and all v ∈ Rd the polytope λPb′i + v is
not integer.

The first step is to dilate/shrink Pbi enough, so that
we get the “smallest possible” integer polytope corre-
sponding to bi. This can be achieved in the follow-
ing way: First ensure that one of the vertices of Pbi
is the origin, by translating the polytope if needed.
Now consider the vertices vj = (

aj1
bj1
, . . . ,

ajd
bjd

) ∈ Qd,
1 ≤ j ≤ s, of Pbi , where each

ajk
bjk

is in reduced form.

Then, define:

gcd(v1, . . . , vs) := gcd{ajk : 1 ≤ j ≤ s, 1 ≤ k ≤ d},
lcm(v1, . . . , vs) := lcm{bjk : 1 ≤ j ≤ s, 1 ≤ k ≤ d}.

It is not hard to see that P ′bi := {x : Ax ≤ λ′bi} where

λ′ = λ′(Pbi) := lcm(v1,...,vs)
gcd(v1,...,vs)

is an integer polytope

with the additional property that for any 0 < λ < 1
the polytope λP ′bi is not.

The second and final step is to find a generating
set of integer translations. Rather than repeating the
above procedure for the trivial polytopes Pci in Equa-
tion (6), we show that the columns c̃1, . . . , c̃d ofA form
a set of integer translation generators in U (A)b.

Lemma 6 Let Pb = {x : Ax ≤ b}, A ∈ Zm×d be
a d-polytope with m facets. For each 1 ≤ i ≤ d set
c̃i := Aei where e1, . . . , ed is the standard basis of Rd.
The polytope {x : Ax ≤ c̃i} is the unique point ei.

Proof. Since the rows of A positively span Rd, the
system Ax ≤ 0 has a unique solution. Thus, the same
holds for Ax ≤ Aei, with unique solution ei. �

We therefore use the vectors c̃1, . . . , c̃d ∈ U(A)b as
generators of the integer translations in Rd.

Summarizing, we have the following algorithm:
The above algorithm returns a finite set b1, . . . , bk ∈

Rm which, together with c̃1, . . . , c̃d, produces all
MinkDecomp of the input polytope Pb. Thus, each
way to write b =

∑
i λibi +

∑
j µj c̃j yields a decom-

position of Pb as in Equation (6). If we want to find
integral decompositions of Pb, then the choices for the
above λi, µj should be integers. This allows only a fi-
nite number of decompositions.

Algorithm 1 MinkowskiSummands(A, b)

1: H−i ← {x ∈ R : aix ≤ bi}
2: Hi ← {x ∈ R : aix = bi}
3: R ← rays of ker

(
A>
)
∩ Rm+

4: U (A) ←
{
x ∈ Rm : r>x ≥ 0 for r ∈ R

}

5: U (A)b ← U (A)
6: for k ← 0 . . . dim(P )− 1 do
7: for F face with dim(F ) = k do
8: I ← {i1, . . . , i`} ⊆ [m] such that F ⊆ His

9: AF ←



ai
−ai
aj


 for i ∈ I and j ∈ [m] \ I

10: R ← rays of ker
(
A>F
)
∩ Rm+`

+

11: U (AF ) ←
{
b̃ ∈ Rm+` : r>b̃ ≥ 0 for r ∈ R

}

12: Substitute using {b̃1, b̃2, . . . , b̃d+`} =

{bi1 ,−bi1 , . . . , bi` ,−bi` , bi`+1 , . . . , bid}
13: Compute H-rep of U(AF ) wrt (b1, . . . , bm)
14: U(A)b ←− U(A)b ∩ U(AF )

15: R ← rays of U(A)b
16: Summands=∅
17: for ri in R do
18: Ensure the origin is a vertex of Pri

19: Compute the vertices (
aj1

bj1
, . . . ,

ajd

bjd
) of Pri

20: λ′ ← lcm(v1,...,vs)
gcd(v1,...,vs)

21: Summands ← λ′ri
22: return Summands
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Approximating the Simplicial Depth in High Dimensions

Peyman Afshani∗ Donald R. Sheehy† Yannik Stein‡

Abstract

Let P be a set of n points in d-dimensions. The sim-
plicial depth σP (q) of a point q is the number of d-
simplices with vertices in P that contain q in their
convex hulls. The simplicial depth is a notion of data
depth with many applications in robust statistics and
computational geometry. Computing the simplicial
depth of a point is known to be a challenging problem.
The trivial solution requires O(nd+1) time whereas it
is generally believed that one cannot do better than
O(nd−1).

We present two approximation algorithms for com-
puting the simplicial depth of a point in high dimen-
sions with different worst-case scenarios. By com-
bining these approaches, we can compute a (1 +
ε)-approximation of the simplicial depth in time
Õ(nd/2+1) with high probability ignoring polyloga-
rithmic factors. Furthermore, we present a simple
strategy to compute the simplicial depth exactly in
O(nd log n) time, which provides the first improve-
ment over the trivial O(nd+1) time algorithm for
d > 4. Finally, we show that computing the sim-
plicial depth exactly is #P-complete and W[1]-hard if
the dimension is part of the input.

1 Introduction

Let P ⊂ Rd be a point set and q ∈ Rd be a point.
The simplicial depth [14] σP (q) of q with respect to
P is the number of subsets P ′ ⊆ P , |P ′| = d + 1,
that contain q in their convex hull (see also [4] for
an alternate definition). This is one of the important
definitions of data depth and has generated interest
in both robust statistics and computational geometry
since its introduction. Designing efficient algorithms
to compute (or approximate) the simplicial depth of
a point remains an intriguing task in this area.

Computing the simplicial depth of a single point
in 2D was considered even before its formal defini-
tion [11] almost three decades ago, perhaps because it
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part by the Danish National Research Foundation grant
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translates into an “intuitive” problem of counting the
number of triangles containing a given point. In fact,
at least three independent papers study this problem
in 2D and show how to compute the simplicial depth
in O(n log n) time [9, 11, 14]. This running time is
optimal [1]. In 2003, Burr et al. [4] presented an al-
ternate definition for the simplicial depth to overcome
some unpleasant behaviors that emerge when deal-
ing with degeneracies. Since we will be dealing with
approximations, we will assume general position and
thus avoid issues with degeneracy. In 3D, the first
non-trivial result offered the bound of O(n2) [9] but
it was flawed; fortunately, the running time of O(n2)
could still be obtained with proper modifications [7].
The same authors presented an algorithm with run-
ning time of O(n4) in 4D. For dimensions beyond 4
there seems to be no significant improvements over the
trivial O(nd+1) brute-force solution. Furthermore, it
is natural to conjecture that computing the simpli-
cial depth should require Ω(nd−1) time: given a set P
of n points, it is generally conjectured that detecting
whether or not d+1 points lie on a hyperplane requires
Ω(nd) time [8] and this conjecture would imply that
detecting whether d points of P and a fixed point q lie
on a hyperplane should require Ω(nd−1) time. This is
one motivation to consider the approximate version
of the problem. In fact, Burr et al. [4] have already
expressed interest in computing an approximation to
the simplicial depth and they propose a potential ap-
proach, although without any worst-case analysis [3].

Here, we only consider relative approximation; ad-
ditive approximation (with additive error of εnd+1)
can be obtained using ε-nets and ε-approximations
(see [5, 2] for more details).

Another motivation for computing a relative ap-
proximation comes from applications in outlier re-
moval. Intuitively, statistical depth measures how
deep a point is embedded in the data cloud with
outliers corresponding to points with small values of
depth. In such applications, if a small relative error
of (1 + ε) is tolerable, then faster outlier removal can
be possible using approximations.

2 Approximation in High Dimensions

In this section, we present two approximation algo-
rithms for simplicial depth in high dimensions, each
with a different worst case scenario. By combining
these strategies, we obtain a constant factor approxi-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be
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mation algorithm with Õ(nd/2+1) running time.

2.1 Small Simplicial Depth: Enumeration

Let P ⊂ Rd be a set and q ∈ Rd a query point. We
denote with ∆P the set of all d-simplices with vertices
in P . If σP (q) is small, a simple counting approach
that iterates through all simplices ∆ ∈ ∆P leads to an
efficient algorithm. The key is to construct a graph
that contains exactly one node per simplex ∆ ∈ ∆P .
Then, counting can be carried out by a breadth-first
search and we avoid looking at subsets of P that do
not contain q in their convex hull. For this, we use the
Gale transform to dualize the problem. We shortly
restate important properties of the Gale transform.
For more details see [13]. Let in the following 0 denote
the origin.

Lemma 1 Let P = {p1, . . . , pn} ⊂ Rd be a point
set with σP (0) > 0. Then, there is a set P̄ =
{p̄1, . . . , p̄n} ⊂ Rn−d−1 such that a (d+1)-subset P ′ ⊆
P contains 0 in its convex hull iff P̄ \ {p̄i | pi ∈ P ′}
defines a facet of conv(P̄ ).

Consider now the graph GP (q) = (V,E) with V =
∆P . Two simplices ∆,∆′ are adjacent iff ∆′ can be
obtained from ∆ by swapping one point in ∆ with
a different point in P . We call GP (q) the simplicial
graph of P with respect to q.

Lemma 2 Let P ⊂ Rd be a set of size n. Then,
GP (q) is (n−d−1)-connected and (n−d−1)-regular.

Proof. We assume w.l.o.g. that q = 0. Let ∆,∆′

be two adjacent nodes in GP (q). Furthermore let P̄
denote the Gale transform of P . Set ∆̄ = {p̄ | p ∈
P \∆} and ∆̄′ = {p̄ | p ∈ P \∆′}. By Lemma 1, the
two sets ∆̄ and ∆̄′ define facets of conv(P̄ ). Since ∆
and ∆′ are adjacent, we have |∆ ∩∆′| = d and hence
|∆̄ ∩ ∆̄′| = n − d − 2. Thus, the facets defined by
∆̄ and ∆̄′ share a ridge. Hence, GP (q) is isomorph
to the 1-skeleton of the polytope dual to conv(P̄ ).
In particular, this implies that GP (q) is (n − d − 1)-
connected. It remains to show that the graph is (n−
d − 1)-regular. Let ∆ ∈ V be a node. It is easy
to see that each of the n − d − 1 points in P \ ∆
can be swapped in, each time resulting in a distinct
simplex. �

Since GP (q) is connected, we can count the number
of vertices using BFS.

Lemma 3 Let P ⊂ Rd be a set of size n and q ∈
Rd a query point. Then, σP (q) can be computed in
O(nσP (q)) time.

2.2 Large Simplicial Depth: Sampling

If the simplicial depth is large, the enumeration ap-
proach becomes infeasible. In this case we apply a
simple random sampling algorithm.

Lemma 4 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Furthermore, let ε, δ > 0 be constants and let
m ∈ N be a parameter. If σP (q) ≥ m, then σP (q)
can be (1 + ε)-approximated in Õ(nd+1/m) time with
error probability O(n−δ).

Proof. Let ∆1, . . . ,∆k be k random (d + 1)-subsets
of P for k =

⌈
4δnd+1 logn

ε2m

⌉
. For each random sub-

set ∆i, let Xi be 1 iff q ∈ conv(∆i) and 0 oth-
erwise. We have µ = E[

∑k
i=1Xi] = k σP (q)

nd+1 =
4δσP (q) logn

ε2m ≥ 4δ
ε2 log n. Applying the Chernoff bound,

we get Pr[|∑k
i=1Xi − µ| ≥ εµ] = O(n−δ). Thus,

nd+1

k X is a (1 + ε)-approximation of σP (q) with error
probability O(n−δ).

For d = O(1), we can test in O(1) whether a given
(d+1)-subset of P contains a point in its convex hull.
Hence, the running time is dominated by the number
of samples. �

2.3 Combining the Strategies

Theorem 5 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Furthermore, let ε > 0 and δ > 0 be constants.
Then, σP (q) can be (1+ε)-approximated in Õ(nd/2+1)
time with error probability O(n−δ).

Proof. We apply the algorithm from Lemma 3 and
stop it once nd/2 nodes of GP (q) are explored. This
requires O(nd/2+1) time. If the graph is not yet fully
explored, we know σP (q) ≥ nd/2. We can now apply
the algorithm from Lemma 4 and compute a (1 + ε)-
approximation in Õ(nd/2+1) time with error probabil-
ity O(n−δ). �

3 An Exact Algorithm in High Dimensions

In this section we describe a simple strategy to com-
pute the simplicial depth exactly in O(nd log n) time.
While we do not achieve the conjectured lower bound
of Ω(nd−1), we cut down roughly a factor n compared
to the trivial upper bound of O(nd+1). Note that this
almost matches the best previous bound of O(n4) in
4D as well [7].

W.l.o.g, assume q is the origin, 0. Our main idea
is very simple: consider d points p1, . . . , pd ∈ P . Let−→ri be the ray that originates from 0 towards −pi. We
would like to count how many points p ∈ P can cre-
ate a simplex with p1, . . . , pd that contains 0. We ob-
serve that this is equivalent to counting the number of
points of P that lie inside the simplex created by rays
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−→r1 , . . . ,
−→rd . We can count this number in polylogarith-

mic time if we spend Õ(nd) time to build a simplex
range counting data structure on P . This would give
an algorithm with overall running time of Õ(nd). We
can cut the log factors down to one by employing a
slightly more intelligent approach.

We use the following observation made by Gil et
al. [9].

Observation 1 Let q be a point inside a simplex
a1 . . . ad+1 and let a′i be a point on the ray

→
qai. Then,

q ∈ conv{a1, . . . , ai−1, a
′
i, ai+1, . . . , ad+1}.

Pick two arbitrary parallel hyperplanes h1 and h2

such that P lies between them. This can be done
easily in O(n) time. Next, using central projection
from 0, we map the points onto the hyperplanes h1

and h2: for every point pi ∈ P , we create the ray
−→
0pi

and let p′i be the intersection of the ray with h1 or h2.
Thus, the point set P can be mapped to two point sets
P1 and P2 where P1 lies on h1 and p2 lies on P2 and
furthermore, by Observation 1, σP (q) = σP1∪P2

(q).
Now we use the following result from the simplex

range counting literature.

Theorem 6 [6] Given a set of n points in d-
dimensional space, and any constant ε > 0, one can
build a data structure of size O(nd+ε) in O(nd+ε) ex-
pected preprocessing time, such that given any query
simplex ∆, the number of points in ∆ can be counted
in O(log n) time.

We build the above data structure on P1 and P2.
However, since both of these point sets lie on a
(d − 1)-dimensional flat, the preprocessing time is
O(nd−1+ε) = O(nd) if we choose ε = 1/2. Next,
for any d tuples of points p1, . . . , pd, we create the
rays −→r1 , . . . ,

−→rd and the corresponding simplex ∆. We
find the intersection of ∆ in O(1) time with hyper-
planes h1 and h2 and issue two simplex range count-
ing queries, one in each hyperplane. Thus, in O(log n)
time, we can count how many simplices contain 0 that
are made by points p1, . . . , pd. We add all these num-
bers over all d tuples, which counts each simplex con-
taining 0 exactly (d + 1) times. The number of d-
tuples is O(nd) and for each we spend O(log n) time
querying the data structures. Thus, we obtain the
following theorem.

Theorem 7 Given a set P of n points in Rd, the
simplicial depth of a point p can be computed in
O(nd log n) expected time.

4 Complexity

Let P ⊂ Rd be a set of n points and q ∈ Rd a query
point. If the dimension is constant, then clearly com-
puting σP (q) can be carried out in polynomial time.

We now consider the case that d is part of the input.
We show that in this case computing the simplicial
depth is #P-complete by a reduction from counting
the number of perfect matchings in bipartite graphs.

Theorem 8 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Then, computing σP (q) is #P-complete if the
dimension is part of the input.

Proof. Let G = (V,E) be a bipartite graph with
|V | = n and |E| = m. It is well known that com-
puting the number of perfect matchings in G is #P-
complete [15]. Let PH ⊂ Rm be the perfect match-
ing polytope for G [10, Chapter 30]. It is defined by
m+ 2n half-spaces. Furthermore, the number of ver-
tices of PH equals the number k of perfect matchings
in G. Consider now the dual polytope PV ⊂ Rm.
It is the convex hull of m + 2n points P ⊂ Rm and
the number of facets equals k. Let P̄ ⊂ R2n−1 be the
Gale transform of P . By Lemma 1, there is a bijection
between the facets of PV and the (2n − 1)-simplices
with vertices in P̄ that contain 0 in their convex hull.
Hence, σP̄ (0) = k. �

Next, we show that computing the simplicial depth
is W[1]-hard with respect to the parameter d by a re-
duction to d-Carathéodory. In d-Carathéodory, we are
given a set P ⊂ Rd and have to decide whether there
is a (d−1)-simplex with vertices in P that contains 0
in its convex hull. Knauer et al. [12] proved that this
problem is W[1]-hard with respect to the parameter
d.

Theorem 9 Let P ⊂ Rd be a set and q ∈ Rd a query
point. Then, computing σP (q) is W[1]-hard with re-
spect to the parameter d.

Proof. Assume we have access to an oracle that,
given a query point q and a setQ ⊂ Rd, returns σQ(q).
We show that #d-Carathéodory can be decided with
two oracle queries.

Let kd denote the number of (d− 1)-simplices with
vertices in P that contain 0 in their convex hulls
and let kd+1 denote the number of d-simplices with
vertices in P that contain 0 in their interior. Then
σP (0) can be written as (|P | − d)kd + kd+1. We want
to decide whether kd > 0. For each point p ∈ P
let p̃ ∈ Rd+1 denote the (d + 1)-dimensional point
that is obtained by appending a 1-coordinate and
similarly, for each subset P ′ ⊂ P let P̃ ′ denote the
set {p̃ | p ∈ P ′} ⊂ Rd+1. We denote with S the
set {(0, . . . , 0,−1)T , (0, . . . , 0,−2)T } ⊂ Rd+1 and set
Q = P̃ ∪ S. Again, we want to express σQ(0) as a
function of kd and kd+1. Let Q′ ⊂ Q, |Q′| = d+ 2, be
a subset that contains 0 in its convex hull. Clearly,
Q′ has to contain a point from S. Let P̃ ′ = Q′ ∩ P̃
denote the part from P̃ and let S′ = Q′ ∩ S de-
note the part from S. By construction of S, we have
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(0, . . . , 0, 1)T ∈ conv(P̃ ′) and hence 0 ∈ conv(P ′).
That is, each (d+ 2)-simplex with vertices in Q that
contains 0 in its convex hull corresponds to either
a d-simplex or a (d − 1)-simplex with vertices in P
that contains 0 in its convex hull. Consider now a set
P ′ ⊂ P with |P ′| = d+1 and 0 ∈ conv(P ). Then, the
corresponding set P̃ ′ can be extended in two ways to a
subset Q′ ⊂ Q, |Q′| = d+2, with 0 ∈ conv(Q′) by tak-
ing either point in S. On the other hand, if P ′ ⊂ P is a
subset of size d with 0 ∈ conv(P ′), then we can extend
P̃ ′ to a set Q′ ⊂ Q, |Q′| = d + 2, with 0 ∈ conv(Q′)
by either taking both points in S or by taking one ar-
bitrary point in P̃ \ P̃ ′ and either point in S. Hence,
we have σQ(0) = 2kd+1 +kd−1 +2(|P |−d)kd−1. Since
kd = σQ(0) − 2σP (0), we can decide whether kd > 0
with two oracle queries. �

The following theorem is now immediate.

Theorem 10 Let P ⊂ Rd be a set of d-dimensional
points and q ∈ Rd a query point. Then, computing
σP (q) is #P-complete and W[1]-hard with respect to
the parameter d.

We conclude the section with a constructive re-
sult: although computing the simplicial depth is #P-
complete, it is possible to determine the parity in
polynomial-time.

Theorem 11 Let P ⊂ Rd be a set of points and
q ∈ Rd a query point. If n − d − 1 is odd or

(
n
d

)

is even, then σP (q) is even. Otherwise, σP (q) is odd.

Proof. We assume w.l.o.g. that q is the origin. Since
the simplicial graph GP (0) is (n− d− 1)-regular, the
product (n− d− 1)|V | = (n− d− 1)σP (0) is even. If
(n−d− 1) is odd, σP (q) has to be even. Assume now
(n − d − 1) is even. We construct a new point set Q
in Rd+1 similar as in the proof of Theorem 9. Let R
denote the set {(0, . . . , 0,−1)T , (0, . . . , 0, 2)T } ⊂ Rd+1

and set Q = P̃ ∪ R ⊂ Rd+1, where P̃ is defined as in
the proof of Theorem 9. Let us now consider the graph
GQ(0). Since n− d− 1 is even, (|Q| − (d+ 1)− 1) =
n − d is odd. Now, GQ(0) is (n − d)-regular and
thus σQ(0) is even. Let Q′ ⊂ Q, |Q| = d + 2, be
a subset that contains the origin in its convex hull.
Then either (i) R ⊂ Q′ or (ii) Q′ contains the point
r = (0, . . . , 0,−1)T ∈ R and d + 1 points P̃ ′ ⊆ P̃
with (0, . . . , 0, 1)T ∈ conv(P̃ ′). There are

(
n
d

)
sets Q′

with Property (i) and σP (0) sets Q′ with Property
(ii). Hence, we have σQ(0) = σP (0) +

(
n
d

)
is even and

thus σP (0) is odd iff
(
n
d

)
is odd. �
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Bottleneck Distances and Steiner Trees in the Euclidean d-Space

Stephan S. Lorenzen Pawel Winter ∗

Abstract

Some of the most efficient heuristics for the Euclidean
Steiner minimal trees in the d-dimensional space,
d ≥ 2, use Delaunay tessellations and minimum span-
ning trees to determine small subsets of geometrically
close terminals. Their low-cost Steiner trees are deter-
mined and concatenated in a greedy fashion to obtain
low cost trees spanning all terminals. The weakness
of this approach is that obtained solutions are topo-
logically related to minimum spanning trees. To ob-
tain better solutions, bottleneck distances are utilized
to determine good subsets of terminals without being
constrained by the topologies of minimum spanning
trees. Computational experiments show a significant
solution quality improvement.

1 Introduction

Given a set of terminals N = {t1, t2, ..., tn} in the
Euclidean d-dimensional space Rd, d ≥ 2, the Eu-
clidean Steiner minimal tree (ESMT) problem asks
for a shortest connected network T = (V,E), where
N ⊆ V . The points in S = V \ N are called Steiner
points. The length |uv| of an edge (u, v) ∈ E is the
Euclidean distance between u and v. The length |T | of
T is the sum of the lengths of the edges in T . T must
be a tree. It is called the Euclidean Steiner minimal
tree and is denoted by SMT(N). Many variants with
important applications in the design of transportation
and communication networks and in the VLSI design
have been investigated. While the ESMT problem is
one of the oldest optimization problems, it remains an
active research area due to its difficulty, many open
questions and challenging applications. The reader is
referred to [3] for the fascinating history of the ESMT
problem.

The ESMT problem is NP-hard [4]. A good ex-
act method for solving problem instances with up to
50.000 terminals in R2 is available [9]. However, no
analytical method can exist for d ≥ 3 [1]. Further-
more, no numerical approximation seems to be able
to solve instances with more than 15-20 terminals [6].
It is therefore essential to develop good quality heuris-
tics for d ≥ 3. Several heuristics have been proposed
in the literature [15, 7, 10]. In particular, the heuristic

∗Dept. of Computer Science, Univ. of Copenhagen,
stephan.lorenzen@gmail.com, pawel@di.ku.dk, full version of
the paper: http://www.diku.dk/˜pawel/bottleneck.pdf

suggested in [10] builds on a R2-heuristic [13]. Both
use Delaunay tessellations and Minimum spanning
trees and are therefore referred to as DM-heuristics.

SMT(N) must have n − 2 Steiner points, each in-
cident with 3 edges [8]. Terminals must be incident
with exactly 1 edge (possible of zero-length). Non-
zero-length edges must meet at Steiner points at an-
gles that are at least 120o. If a pair of Steiner points
si and sj is connected by a zero-length edge, then si
or sj is connected via a zero-length edge to a termi-
nal and the three non-zero-length edges incident with
si and sj must make 120o with each other. Any ge-
ometric network ST(N) satisfying the above degree
and angle conditions is called a Steiner tree. The
underlying undirected graph (where the coordinates
of Steiner points are immaterial) is called a Steiner
topology of N . If ST(N) has no zero-length edges,
then it is called a full Steiner tree. Every Steiner
tree ST(N) can be decomposed into one or more full
Steiner subtrees whose degree one points are either
terminals or Steiner points overlapping with termi-
nals.

A reasonable approach to find a good suboptimal
solution to the ESMT problem is therefore to identify
few subsets N1, N2, ..., Nz, and their low cost Steiner
trees ST(N1),ST(N2), ...,ST(Nz), such that a union
ST(N) of some of them will be a good approximation
of SMT(N).

The Delaunay tessellation of N in Rd is denoted by
DT(N) [2]. It is well-known that a minimum span-
ning tree of N , denoted by MST(N), is a subgraph of
DT(N). A face σ of DT(N) is covered if the subgraph
of MST(N) induced by the corners of σ is a tree.

Let Nσ ⊆ N denote the corners of a face σ of
DT(N). Let ST(Nσ) denote a Steiner tree spanning
Nσ. Let F be a forest whose vertices form a superset
of N . Suppose that the terminals of Nσ are in differ-
ent subtrees of F . The concatenation F ⊕ ST(Nσ) of
F with ST(Nσ) is a forest obtained by adding to F
all Steiner points and all edges of ST(Nσ).

Let T = MST(N). The contraction T 	Nσ of T by
Nσ is obtained by replacing the vertices in Nσ by a
single vertex nσ. Cycles in T 	 Nσ are destroyed by
removing their longest edges.

The DM-heuristic constructs DT(N) and MST(N)
in the preprocessing phase. For corners Nσ of ev-
ery covered face σ of DT(N), a low cost Steiner tree
ST(Nσ) is determined [10]. If full, it is stored in a
priority queue Q ordered by non-decreasing Steiner
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ratios ρ(ST(Nσ)) = |ST(Nσ)|/|MST(Nσ)|. Greedy
concatenation, starting with the forest F of isolated
terminals in N , is then used to form ST(N).

The weakness of the DM-heuristic is that it relies
on covered faces of DT(N). The Steiner topology
of ST(N) is therefore dictated by the topology of T .
This is a good strategy in many cases but there are
also cases where this will exclude good solutions. Con-

TDM

ρ(TDM) = 0.97665

TDB

ρ(TDB) = 0.96645

Figure 1: Uncovered faces of DT(N) can improve so-
lutions. Edges of T not in Steiner trees are red.

sider for example the two Steiner trees in Fig. 1. Only
covered faces of DT(N) are considered in TDM . By
considering some uncovered faces (shaded), a better
Steiner tree TDB can be obtained.

We wish to detect useful uncovered faces and in-
clude them into the greedy concatenation. However,
some uncovered faces of DT(N) can be harmful in
the greedy concatenation even though they seem to
be useful locally. As illustrated in Fig. 2, use of the
uncovered face σ of DT(N) in R2 with the set of
corners Nσ = {ti, tj , tk} will lead to a Steiner tree
ST(N) longer than T while the ratio ρ(ST(Nσ)) is
lowest among all faces of DT(N).

ti

tj

tk

ti

tj

tk

Figure 2: ρ(ST(Nσ)) for Nσ = {ti, tj , tk} is low but
the inclusion of ST(Nσ) increases its length beyond
|T |.

2 DB-Heuristic in Rd

The bottleneck distance |titj |T between two terminals
ti, tj ∈ N is the length of the longest edge on the path
from ti to tj in T = MST(N). Note that |titj |T =
|titj | if (ti, tj) ∈ T .

The bottleneck minimum spanning tree BT (Nσ) of
a set of points Nσ ⊆ N is defined as the minimum
spanning tree of the complete graph with Nσ as its

vertices and with |titj |T being the cost of an edge
(ti, tj), ti, tj ∈ Nσ. If Nσ is covered by T , then
|BT (Nσ)| = |MST(Nσ)|.

Consider a Steiner tree ST(Nσ) spanning Nσ ⊆
N . Let the bottleneck Steiner ratio βT (ST(Nσ)) =
|ST(Nσ)|/|BT (Nσ)| If Nσ is covered by T , then
βT (ST(Nσ)) = ρ(ST(Nσ)).

The DB-heuristic constructs the Delaunay tessela-
tion DT(N) and uses T to determine Bottleneck dis-
tances. For corners Nσ of each k-face σ of DT(N),
2 ≤ k ≤ d + 1, a low cost Steiner tree ST(Nσ) is
determined using a heuristic [10]. Each full ST(Nσ)
is stored in a priority queue QB ordered by non-
decreasing bottleneck Steiner ratios. If σ is a 1-face,
then ST(Nσ) is the edge connecting the two corners
of σ. Such ST(Nσ) is added to QB only if it is an
edge in T .

Let F be the forest of isolated terminals from N .
A greedy concatenation is then applied repeatedly
until F becomes a tree. Let ST(Nσ) be a Steiner
tree with currently smallest bottleneck Steiner ratio
in QB . If any pair of terminals in Nσ is connected in
F , ST(Nσ) is discarded. Otherwise, F = F ⊕ST(Nσ)
and T = T 	 Nσ, see Fig. 3. Such contraction of T
may reduce bottleneck distances between up to O(n2)
pairs of terminals. Hence, bottleneck Steiner ratios of
some Steiner trees still in QB need to be updated,
preferrably in a lazy fashion, see Section 3.

ti

tj

tk

e1

e2

σ
ti

tj

tk

ST(Nσ)

Figure 3: The insertion of ST (Nσ), Nσ = {ti, tj , tk}

3 Contractions and Bottleneck Distances

As face-spanning Steiner trees are added to F , their
corners are contracted in the current minimum span-
ning tree T . Contractions will reduce bottleneck dis-
tances between some pairs of terminals. As a con-
sequence, bottleneck Steiner ratios of face-spanning
Steiner trees still in QB will increase. A face-spanning
Steiner tree subsequently extracted from QB will not
necessarily have the smallest bottleneck Steiner ratio
unless QB has been rearranged or appropriate lazy
updating is carried out.

Steiner trees of faces of DT(N) are extracted from
QB one by one. A face σ is discarded if some of its
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corners are already connected in F . The bottleneck
Steiner ratio βT (ST(Nσ)) of the extracted Steiner tree
ST(Nσ) may have changed since the last time ST(Nσ)
was pushed onto QB . Hence, βT (ST(Nσ)) has to be
recomputed. If it increased, ST(Nσ) is pushed back
onto QB (with the new bottleneck Steiner ratio). If
not, ST(Nσ) is used to update F and to contract T .

A modified version of a dynamic rooted tree [12]
to maintain a changing minimum spanning tree T
(caused by contractions) and to answer bottleneck dis-
tance querries has been used. When using balanced
binary trees to implement dynamic rooted trees, a
bottleneck distance query takes O((log n)2) amortized
time. Since only faces of DT(N) are considered, a
contraction takes O((d log n)2) time.

4 Computational results

The DB-heuristic was compared with the DM-
heuristic. Both Steiner ratios and CPU times were
examined. To get reliable comparisons, they were av-
eraged over several runs. Furthermore, the results in
R2 were compared with the results achieved by the
exact GeoSteiner algorithm [9].

The DM- and DB-heuristics were implemented in
C++ 1 and run on a Lenovo ThinkPad S540 with a 2
GHz Intel Core i7-4510U processor and 8 GB RAM.

Both heuristics were tested on randomly generated
problem instances in Rd, d = 2, 3, ..., 6, as well as
on library problem instances. Randomly generated
instances were points uniformly distributed in Rd-
hypercubes.

The library problem instances consisted of the
benchmark instances from the 11-th DIMACS Chal-
lenge [5]. For comparing the DB-heuristic with the
GeoSteiner algorithm, ESTEIN instances in R2 were
used [5].

The new DB-heuristic outperforms the DM-
heuristic by 0.2−0.3% for d = 2, 0.4−0.5% for d = 3,
0.6−0.7% for d = 4, 0.7−0.8% for d = 5 and 0.8−0.9%
for d = 6. This is a significant improvement for the
ESMT problem as will be seen below, when compar-
ing R2-results to the optimal solutions obtained by
the exact GeoSteiner algorithm [9].

CPU times for the DM- and DB-heuristics for d =
2, 3, ..., 6, are shown in Fig. 4. It can be seen that the
improved quality comes at a cost for d ≥ 4. This is
due to the fact that the DB-heuristic constructs low
cost Steiner trees for all O(ndd/2e) faces of DT(N) [11]
while the DM-heuristic does it for covered faces only.

Fig. 5 shows how DB-, DM-heuristic and
GeoSteiner (GS) performed on ESTEIN instances in
R2. Steiner ratios and CPU times averaged over all
15 ESTEIN instances of the given size, except for

1The DB-heuristic code and instructions on how to run
it can be found at https://github.com/StephanLorenzen/

ESMT-heuristic-using-bottleneck-distances
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Figure 4: CPU times for DM (red) and DB (blue),
d = 2, 3, ..., 6.

n = 10.000 which has only one instance. It can be seen
that the DB-heuristic produces better solutions than
the DM-heuristic without any significant increase of
the CPU time. It is also worth noticing that the DB-
heuristic gets very close to the optimal solutions. This
may indicate that the DB-heuristic also produces high
quality solutions when d > 2, where optimal solutions
are only known for instances with at most 20 termi-
nals.
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Figure 5: Averaged ratios and CPU times for ESTEIN
instances in R2. DM (red), DB (blue), GeoSteiner
(green).

The results for ESTEIN instances in R3 are pre-
sented in Fig. 6. The green plot for n = 10 is the av-
erage ratio and CPU time of the exact solutions [14].
Once again, the DB-heuristic outperforms the DM-
heuristic when comparing the quality of solutions.
However, the running times are now up to four times
worse.

The DB-heuristic starts to struggle when d ≥ 4.
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Figure 6: Averaged ratios and CPU times for ESTEIN
instances in R3. DM (red), DB (blue), exact (green).

This is caused by the number of faces of DT(N) for
which low cost Steiner trees must be determined. The
DB-heuristic was therefore modified to consider only
faces with less than k terminals, for k = 3, 4, ..., d+ 1.
Fig. 7 shows the performance of this modified DBk-
heuristic for k = 3, 4, ..., 7, on a set with 100 terminals
in R6. Note that DB7 = DB.

DM DB3 DB4 DB5 DB6 DB7

0.905

0.910

0.915

0.920

ρ(ST(N))
Method t

BM 0.4714
DB3 0.6000
DB4 6.0525
DB5 26.2374
DB6 51.3653

DB7 = DB 62.8098

Figure 7: DBk for k = 3, 4, ..., 7, d = 6 and n = 100.

As expected, the DBk-heuristic runs much faster
when larger faces of DT(N) are disregarded. Already
the DB4-heuristic seems to be a reasonable alternative
since solutions obtained by DBk-heuristic, 5 ≤ k ≤ 7
are not significantly better.

5 Summary and conclusion

Computational results show a significant improve-
ment in the quality of the Steiner trees produced by
the DB-heuristic where the topologies of the solutions
are no longer constrained by minimum spanning trees.
Its CPU times are comparable to the CPU times of the
DM-heuristic in Rd, d = 2, 3. It runs slower for d ≥ 4.
However, CPU times can be significantly improved by
skipping larger faces of DT(N). This results in only
small decrease of quality of solutions obtained.

References

[1] C. Bajaj, The algebraic degree of geometric opti-
mization problems, Discrete and Computational
Geometry 3 (1988), 177–191.

[2] M. de Berg, O. Cheong, M. van Krevald, and
M. Overmars, Computational Geometry - Algo-
rithms and Applications (3. ed.), Springer (2008).

[3] M. Brazil, R. Graham, D. Thomas, and
M. Zachariasen, On the history of the Euclidean
Steiner tree problem, Archive for History of Ex-
act Sciences 68 (2014), 327–354.

[4] M. Brazil and M. Zachariasen, Optimal Intercon-
nection Trees in the Plane, Springer (2015).

[5] DIMACS and ICERM, 11th DIMACS Implemen-
tation Challenge: Steiner Tree Problems, http:
//dimacs11.cs.princeton.edu/ (2014).

[6] M. Fampa, J. Lee, and N. Maculan, An overview
of exact algorithms for the Euclidean Steiner tree
problem in n-space, Int. Trans. in OR (2015).

[7] V. L. do Forte, F. M. T. Montenegro, J. A.
de Moura Brito, and N. Maculan, Iterated lo-
cal search algorithms for the Euclidean Steiner
tree problem in n dimensions, Int. Trans. in OR
(2015).

[8] F. K. Hwang, D. S. Richards, and P. Winter, The
Steiner Tree Problem, North-Holland (1992).

[9] D. Juhl, D. M. Warme, P. Winter, and
M. Zachariasen, The GeoSteiner software pack-
age for computing Steiner trees in the plane:
An updated computational study, Proc. of
the 11th DIMACS Implementation Challenge
(2014). http://dimacs11.cs.princeton.edu/

workshop.html

[10] A. Olsen, S. Lorenzen, R. Fonseca, and P. Win-
ter, Steiner tree heuristics in Euclidean d-space,
Proc. of the 11th DIMACS Implementation Chal-
lenge (2014). http://dimacs11.cs.princeton.
edu/workshop.html

[11] R. Seidel, The upper bound theorem for poly-
topes: an easy proof of its asymptotic version,
Comp. Geom.-Theor. Appl. 5 (1995), 115–116.

[12] D. D. Sleator and R. E. Tarjan, A data structure
for dynamic trees, J. Comput. and Syst. Sci. 26,
3 (1983), 362–391.

[13] J. M. Smith, An O(n log n) heuristic for Steiner
minimal tree problems on the Euclidean metric,
Networks 11, 1 (1981), 23–39.

[14] W. D. Smith, How to find Steiner minimal trees
in Euclidean d-space, Algorithmica 7 (1992),
137–177.

[15] B. Toppur and J. M. Smith, A sausage heuris-
tic for Steiner minimal trees in three-dimensional
Euclidean space, J. Math. Model. and Algorithms
4 (2005), 199–217.

46



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

An Improved Bound for Orthogeodesic Point Set Embeddings of Trees

Imre Bárány∗ Kevin Buchin† Michael Hoffmann‡ Anita Liebenau§

Abstract

In an orthogeodesic embedding of a graph, each edge
is embedded as an axis-parallel polyline that forms
a shortest path in the `1 metric. In this paper we
consider orthogeodesic plane embeddings of trees on
grids. A grid is implicitly defined by a set P ⊂ R2

of points. Denote by ΓP the arrangement induced
by all horizontal and vertical lines that pass through
a point from P . When embedding a graph on the
grid defined by P , vertices are mapped to points from
P and edges are realized as polylines that bend at
vertices of ΓP only. For integers n and ∆, denote by
t∆(n) the minimum number such that for every set
P of t∆(n) points in general position, every tree on
n vertices with vertex degree at most ∆ admits an
orthogeodesic plane embedding on the grid defined
by P . We show t4(n) < 11n/8 and t3(n) < 9n/8,
improving an earlier bound of 3n/2.

1 Introduction

Given a tree T on n vertices, we want to embed T on
an N ×N grid, for some N ≥ n. In fact, we consider
a more restricted setting where possible locations for
vertices are specified in form of a set P ⊂ R2 of N
points. Denote by ΓP the arrangement induced by
all horizontal and vertical lines that pass through a
point from P . To embed a graph on the grid defined
by P , vertices are mapped to points from P and edges
are mapped to arcs that are polylines that bend at
vertices of ΓP only. A point set P is in general position
if no two points have the same x- or y-coordinate.

A common theme in the study of metric graph em-
beddings is the desire to control the length of edges.
For instance, can every edge be realized as a shortest
path? In the Euclidean plane, we arrive at straight
line embeddings. A natural counterpart of these em-
beddings on the grid is called an orthogeodesic em-
bedding. In an orthogeodesic embedding, every edge
is realized as an orthogeodesic arc, that is, a polyline
that consists of axis-parallel line segments and forms
a shortest path in the `1 metric. An L-shaped arc is
an orthogeodesic arc with exactly one bend.

∗Renyi Institute of Mathematics and University College
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†TU Eindhoven, k.a.buchin@tue.nl
‡ETH Zürich, hoffmann@inf.ethz.ch
§Monash University, Anita.Liebenau@monash.edu, work

done while at FU Berlin

An embedding is plane if no two arcs share a com-
mon point that is not a common endpoint. Clearly
an orthogeodesic plane embedding can exist only for
trees of degree at most four. As it is straightforward
to find orthogeodesic embeddings for paths, the only
interesting cases are maximum degree three and max-
imum degree four. For integers n and ∆, denote by
t∆(n) the minimum number such that for every set
P of t∆(n) points in general position, every tree on
n vertices with degree at most ∆ admits an ortho-
geodesic plane embedding on the grid defined by P .

Di Giacomo et al. [2] showed that t4(n) ≤ 4n−3 and
t3(n) ≤ 3n/2. The conference version of [2] (which is
reference [1] here) claims that n points are enough for
trees of degree at most three. But the proof turned
out to be incomplete, as commented in the journal
version. Recently, Scheucher [3] showed that t4(n) ≤
b(3n− 2)/2c. We improve these bounds as follows.

Theorem 1 For every set P ⊂ R2 of b(11n − 7)/8c
points in general position and every tree T on n ≥ 3
vertices of degree at most four, T admits an ortho-
geodesic plane embedding on the grid defined by P .

Theorem 2 For every set P ⊂ R2 of b(9n − 4)/8c
points in general position and every tree T on n ≥ 4
vertices of degree at most three, T admits an ortho-
geodesic plane embedding on the grid defined by P .

2 Proofs

For a tree T and i ∈ {1, 2, 3, 4}, denote by di(T ) the
number of degree i vertices in T . As a first step we
prove Theorem 1 with a weaker bound of b(3n−2)/2c
points and a tree T on n ≥ 2 vertices.

Proof. The idea is to spend one extra point per ver-
tex of degree three or four. Then we need f(T ) :=
|T | + d3(T ) + d4(T ) points. For n ≥ 2 we have
d1(T ) = 2d4(T )+d3(T )+2. It follows that n = |T | =∑4

i=1 di = 3d4(T )+2d3(T )+d2(T )+2 and, therefore,
f(T ) = n+ (n− 2− d2(T )− d4(T ))/2 ≤ b(3n− 2)/2c.

We inductively prove the following statement from
which the claim follows immediately: For any tree
T on n ≥ 1 vertices, any leaf ` of T , any direction
d of the four axis directions {+x,−x,+y,−y}, and
any set Γ of f(T ) points in general position, there is
an orthogeodesic plane embedding of T on the grid
defined by Γ such that ` is mapped to the extreme
point of Γ in direction d and every edge (no edge for

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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n = 1 and one edge, otherwise) connected to ` leaves it
in the opposite direction. (For instance, if ` is mapped
to the point λ with largest x-coordinate, then the only
incident arc leaves λ on the left side.)

The statement is obviously true for n ∈ {1, 2}. For
n ≥ 3 we proceed as follows. Without loss of gener-
ality let d = y. Map ` to the topmost point λ of Γ
(there is no choice, anyway), and consider the unique
child/neighbor p of ` in T . Next subdivide the remain-
ing points of Γ (other than λ) into degT (p) groups. We
distinguish three cases depending on degT (p).
Case 1: If degT (p) ≤ 2, then p is a leaf of T ′ = T \`

and we can directly apply induction to T ′, y, and
Γ \ {λ}. The edge {`, p} can be routed going down
from λ and then turning left or right to the point π
that p is mapped to (Figure 1a).

Γ

λ
π

Γ′

(a) degT (p) = 2.

Γ

λ

π

α β γ

×

(b) degT (p) = 4.

Figure 1: Embedding a vertex p of degree 2 or 4.

Case 2: If degT (p) = 4, then consider the tree T ′ =
T \`. Removal of p splits T ′ into three components A,
B and C. Obtain Γ′ from Γ by removing the topmost
two points. We partition Γ′ into three groups: the
leftmost f(A) points go into a set α, the rightmost
f(C) points go into a set γ, and the remaining f(T )−
2−f(A)−f(C) = |B|+d3(B)+d4(B)+1 = f(B)+1
points in between go into a set β. The plan is to
embed A on α, B ∪ {p} on β, and C on γ.

Let π denote the topmost point of β and map p to
π. We use the row of Γ below λ to route the edge
between λ and π, entering λ from below (as required)
and π from above. Now apply induction to three sub-
problems, where the vertex p and its corresponding
point π are included in all of them. Note that p is a
leaf in all of A′ = T ′ \ (B∪C), B′ = T ′ \ (A∪C), and
C ′ = T ′ \ (A ∪ B), and that π is the rightmost point
of α′ = α ∪ {π}, the topmost point of β′ = β, and
the leftmost point of γ′ = γ ∪ {π}. (Columns located
between the rightmost point of α and π, which belong
to β, are ignored for the purpose of handling A′. If
π lies above α, also the rows between the topmost
row of α and the one of π are ignored. Similarly,
some columns and rows are ignored for handling C ′.
Essentially we always consider square grids.)

Obtain inductively an embedding for A′ with p
placed in direction x on α′, for B′ with p placed in
direction y on β′, and for C ′ with p placed in direc-
tion −x on γ′ (Figure 1b). The overlay of these three
embeddings together with the placement of ` at λ and

p at π forms the desired embedding for T : The only
edge connected to π in α′ enters π from the left side,
the only edge connected to π in β′ enters π from be-
low, and the only edge connected to π in γ′ enters π
from the right side. As all edges within each of α′, β′,
and γ′ are orthogeodesic, no two edges from differ-
ent sub-problems interfere with each other. (As the
dotted lines in Figure 1b suggest, we do not know ex-
actly how π is connected to α and γ. But we do know
that π is accessed from one particular direction only,
and so we can rely on the part shown solid, which is
enough to guarantee that these edges do not interfere
with those of the embedding of B′.)
Case 3: If degT (p) = 3, then without loss of gener-

ality let the point of Γ in the row directly below λ be
located to the left of λ. Consider the tree T ′ = T \ `.
Removing p from T ′ splits the tree into two compo-
nents A and B. Let A′ = T ′ \ B and B′ = T ′ \ A
and partition Γ′ = Γ \ {λ} into two groups: the left-
most f(A) points go into a set α and the remaining
f(T )−2−f(A) = |B|+d3(B)+d4(B)+1 = f(B)+1
points go into a set β. Denote the topmost point of α
by φ and embed p at the topmost point π of β.

We distinguish two cases. If π is above φ, then by
assumption π lies to the left of λ. In this case we
route the edge {`, p} to go down from λ and enter π
from the right side (Figure 2a).

Γ

λ
π

α β

φ

(a) π is above φ.

Γ

λ

π

α β

φ

(b) φ is above π.

Figure 2: Embedding a degree three vertex at π.

Otherwise, φ is above π and we route the edge {`, p}
to go down from λ and turn in the row of φ to enter
π from above. This is fine, if λ lies to the right of
α (Figure 2b and 3b). But if λ lies to the left of
β, this routing uses part of the row of φ within α,
which then is not available for the embedding of A′

on α′ = α∪ {π}. To be on the safe side, we discard φ
from Γ (Figure 3a).

Γ

λ

π

α β

φ
×

(a) λ is above α.

Γ

λ

π

α β

φ

(b) λ is between α and β.

Figure 3: If λ is above α, then φ is discarded.

Analogously to Case 2 we inductively obtain em-
beddings for A′ on α ∪ {π} and for B′ on β. �
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In order to improve the bound, let us consider the
case of a degree three vertex p in the construction
more carefully. In Case 3 above we considered three
sub-cases and only in the last one (depicted in Fig-
ure 3a) a grid point needs to be discarded. If in that
case the edge {`, p} can be routed to leave λ on the
left or right side instead of on the bottom side, then
φ can be kept: If the right side of λ is free, then we
route the edge using one bend only (Figure 4a); else
if the left side of λ is free, then we move p from B
to A and move the leftmost point in β to α in order
to map p to φ instead and also route the edge {`, p}
using one bend only (Figure 4b).

Γ

λ

π

α β

φ

(a) right side free.

Γ

λ

π

α β

φ

(b) left side free.

Figure 4: Avoid discarding φ if one side of λ is free.

If ` has degree at most two in the original tree, then
obviously at least one side of λ is free. If ` has degree
four in the original tree, then obviously no side of λ
is free. The situation is less clear in case that ` has
degree three in the original tree.

In the case depicted in Figure 2a, no side of π is free
for embedding on β. But as far as α is concerned, the
top side of π may be regarded as free. Although no
orthogeodesic path from π to any point in α can leave
π on its top side, conceptually the top side is free
regardless. This point of view makes sense, because
in that case λ is located at a corner of Γ and we may
also regard λ as an extreme point on the (say) right
side. The assignment of α and β can then be done
correspondingly with respect to the right side of Γ
(Figure 5) and π can be nicely accessed from the right.

Γ

λ

π

α β

φ

(a) before

Γ

λ

πβ

α
φ

(b) after

Figure 5: Switching sides if λ is at a corner.

Similarly, it can be checked that in all cases other
than the one depicted in Figure 2a both α and β can
access λ from at least (typically exactly) one other
side. For instance, in the case depicted in Figure 3a
the embedding on β can access π from the right,

whereas the embedding on α can access π from above:
a geodesic path cannot actually enter π from above,
but it can leave α on its right side in any row above π
and then move down to the row of π once it reaches
the area above β to finally enter π on its left side (Fig-
ure 6a); from the perspective of α—which ignores all
columns in between its right side and π—that looks
like entering π from above. The path can be routed as
described, unless π is the leftmost point and, hence,
top-left corner of β (Figure 6b). But then we can treat
π as leftmost point of β and consider the top side of
π free as far as β is concerned, whereas the bottom
and left side are both accessible for α.

Γ

λ

π

α β

φ×

(a) left or “above”

Γ

λ

π

α β

φ×

(b) left or below

Figure 6: Possible ways for α to access π.

So during our recursive construction we discard a
grid point for each degree four vertex and for certain
degree three vertices. Consider a fixed processing or-
der defined by a starting leaf of the tree. We partition
the degree three vertices into two classes: For a good
vertex v we guarantee that the left or the right side of
the starting point λ is free when processing v. By the
analysis above no point needs to be discarded when
processing a good degree three vertex. In contrast, for
a bad vertex no such guarantee holds. For every bad
vertex v in a subtree we make an extra point available
that can be discarded when processing v. Our goal is
to derive a lower bound for the number of vertices
that we may regard as good.

Proposition 3 The parent of a bad degree 3 vertex
is a degree 4 vertex or a good degree 3 vertex.

Proof. Consider a bad degree 3 vertex and let p be its
parent. Clearly a child of a vertex of degree at most
two is good. Therefore it remains to exclude that p is
a bad degree 3 vertex. When processing a bad degree
3 vertex p, we discard the point φ and ensure that all
children of p are good (cf. Figure 6). �

Proposition 4 If a child of a degree 3 vertex p is a
bad degree 3 vertex, then the other child of v is a good
degree 3 vertex.

Proof. There is only one case where we cannot guar-
antee a free side at the starting point for a child of a
degree three vertex: in Figure 2a, for the child of p in
B to be embedded on β. If the other child of p does
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not have degree three, then we select A to contain the
degree three child c of p, making c good. �

Proposition 5 If a degree 3 vertex v has a child c so
that the subtree rooted at c is a path, then v is good.

Proof. When handling v, we let A be the subtree
rooted at c, to be embedded on the left point set α.
The only problematic case is the one depicted in Fig-
ure 3a, where we have to show how to avoid discarding
φ. Given that A is a path, it can be embedded on α
in a monotone fashion, from right to left: every arc
leaves the parent on the left and enters the child along
the y-direction. In particular, the part of the row of
φ to the right of φ (that is used by the arc between λ
and π) is not touched. �

Propositions 3–5 allow us to classify degree three
vertices during a top-down traversal of T as follows.
Initially, all vertices which Proposition 5 applies to
are good, and the remaining vertices are unclassified.
When encountering a degree four vertex, all its un-
classified degree three children are bad. When en-
countering a good degree three vertex for which both
children are unclassified degree three vertices, one of
the children is bad and the other is good. In all other
cases, an unclassified degree three child is good.

Proof. (of Theorem 1) Let T = (V,E) and denote
di = di(T ). Observe that d1 = 2d4 + d3 + 2. Let
V −3 denote the set of bad degree three vertices in T ,
let V +

3 denote the set of good degree three vertices in
T , and let d−3 = |V −3 | and d+

3 = |V +
3 |. Let W ⊆ V

denote the set of all vertices v ∈ V such that either
v ∈ V −3 or v is a leaf. Denote by F ⊆ E the set of
all edges in T that are incident to at least one vertex
from W . By Propositions 3 and 5 and given n ≥ 3,
every edge in F is incident to exactly one vertex from
W and one vertex from V \ W . Therefore, we can
double count by the endpoints in W to obtain |F | =
3d−3 + d1 = 2d4 + 4d−3 + d+

3 + 2 and by the endpoints
in V \W to obtain |F | ≤ 4d4 +3d+

3 +2d2. Combining
both bounds we get 2d−3 ≤ d4 + d+

3 + d2 − 1.
Setting k = d4 + d−3 , we use n + k grid points for

n = 3d4 + 2d3 + d2 + 2 vertices. Therefore

k =
3

8

(
n− 1

3
d4 +

2

3
d−3 − 2d+

3 − d2 − 2

)

≤ 3

8

(
n− 5

3
d+

3 −
2

3
d2 −

7

3

)
≤ 3n− 7

8
.

�

Proof. (of Theorem 2) Define di, V
−
3 , V +

3 , d−3 and
d+

3 as above. If d3 = 0, then T is a path and the
statement is trivial. Hence suppose d3 ≥ 1, which
implies n ≥ 4. We consider T as a directed tree by
orienting all edges away from the root. Let F denote
the set of directed edges (u, v) in T such that u ∈ V −3
and v ∈ V +

3 . We claim that d−3 + |F | ≤ d+
3 − 1.

To prove this claim, define an injective map g : V −3 ∪
F → V +

3 . For a vertex u ∈ V −3 let g(u) be the sibling
of u in T . Such a sibling g(u) exists by Proposition 3
and g(u) ∈ V +

3 by Proposition 4. As a vertex in V +
3

has at most one sibling, g is injective on V −3 .
For an edge e = (u, v) ∈ F set g(e) = v, where

v ∈ V +
3 by definition. As every vertex in V +

3 has
exactly one incoming edge, g is injective on F .

Note that for all vertices in g(V −3 ) the parent is
in V +

3 , whereas for all vertices in g(F ) the parent
is in V −3 . Therefore, g is injective on V −3 ∪ F , as
claimed. It also follows that the highest vertex in V +

3

(closest to the root) is not in g(V −3 ∪F ) and, therefore,
|g(V −3 ∪ F )| ≤ d+

3 − 1.
The claim directly generalizes to the case where F

is the set of directed paths (v0, . . . , vk) in T such that
k ≥ 1, v0 ∈ V −3 , vk ∈ V +

3 , and degT (vi) = 2, for 0 <
i < k. Then Propositions 3 and 5 imply |F | = 2d−3 . In
combination with the claim we obtain 3d−3 ≤ d+

3 − 1.
We use n+d−3 grid points for n = 2d3+d2+2 vertices.
It follows that

d−3 =
1

8

(
n+ 6d−3 − 2d+

3 − d2 − 2
)
≤ 1

8
(n− 4) .

�

3 Conclusions

As an obvious open problem it remains to tighten the
bounds for t3(n) and t4(n). Most notably, it would
be nice to prove or disprove t3(n) = n. No non-trivial
lower bound seems to be known, even for maximum
degree four and if the embedding is restricted to use
L-shaped arcs only.
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Planar L-Shaped Point Set Embeddings of Trees∗

Oswin Aichholzer† Thomas Hackl† Manfred Scheucher†

Abstract

In this paper we consider planar L-shaped embeddings
of trees in point sets, that is, planar drawings where
the vertices are mapped to a subset of the given points
and where every edge consists of two axis-aligned line
segments. We investigate the minimum number m,
such that any n vertex tree with maximum degree 4
admits a planar L-shaped embedding in any point set
of size m.

First we give an upper bound O(nc) with c =
log2 3 ≈ 1.585 for the general case, and thus answer
the question by Di Giacomo et al. [4] whether a sub-
quadratic upper bound exists.

Then we introduce the saturation function for trees
and show that trees with low saturation can be em-
bedded even more efficiently. In particular, we im-
prove the upper bound for caterpillars and extend
the class of trees that require only a linear number
of points. In addition, we present some probabilistic
results for either randomly chosen trees or randomly
chosen point sets.

1 Introduction

A point set embedding of a given graph G in a given
point set P is a drawing where all vertices are drawn
as points of P . In general, the decision problem
whether a graph admits a planar straight line point
set embedding in a given point set is NP-complete [3],
while for trees and outerplanar graphs there are ef-
ficient embedding algorithms; see for example [2].
Kaufmann and Wiese [7] have investigated a relax-
ation of this problem, namely point set embeddings
where edges can be drawn as polylines. They proved
that the decision problem remains NP-complete if at
most one bend per edge is allowed, and that any pla-
nar graph admits a planar point set embedding with
at most 2 bends per edge. Katz et al. [6] introduced
orthogeodesic point set embeddings, i.e., drawings
where edges have minimal L1-length and are drawn

∗This work is based on the Master’s thesis of Manfred
Scheucher [8]. Available from http://www.ist.tugraz.at/

scheucher/publ/masters thesis 2015.pdf. Partially sup-
ported by the ESF EUROCORES programme EuroGIGA –
CRP ComPoSe, Austrian Science Fund (FWF): I648-N18 and
FWF project P23629-N18 ‘Combinatorial Problems on Geo-
metric Graphs’.
†Institute of Software Technology, Graz University of Tech-

nology, {oaich,thackl,mscheuch}@ist.tugraz.at

as unions of axis parallel line segments. They proved
that deciding whether a graph admits a planar ortho-
geodesic point set embedding is NP-complete. Di Gi-
acomo et al. [4] introduced L-shaped point set embed-
dings, i.e., orthogeodesic point set embeddings where
every edge has at most one bend, and investigated
orthogeodesic and L-shaped point set embeddings of
trees; in particular caterpillars, i.e., trees where the
removal of all leaves results in a path.

As in [4, 6], throughout this paper we assume that
every two points in any set of m points have distinct
x- and distinct y-coordinates. Moreover, we will only
consider planar L-shaped embeddings, and thus we
can further assume that for every set P of m points,
the x- and y-coordinates of every point in P are in
{1, . . . ,m}, i.e., that P = {(i, π(i))}mi=1 holds for a
permutation π : {1, . . . ,m} → {1, . . . ,m}.

For a tree T , let f(T ) be the minimum num-
ber m such that T admits a planar L-shaped em-
bedding in any point set of size m, and let further
fd(n) := max f(T ) where the maximum is over all
trees T on n vertices with maximum degree at most
d. Point sets admitting an embedding (of a certain
type) of every n vertex graph (of a certain class) are
referred to as universal point sets, see for example [4].
Obviously, only trees with maximum degree at most
4 admit planar L-shaped embeddings, and moreover,
any n vertex path admits a trivial embedding in every
set of n points. Therefore, only trees with maximum
degree 3 or 4 are of interest. The previously best
known upper bound on f4(n) is quadratic [4]. The
best lower bound so far is fd(n) ≥ n for d = 3, 4.

In Section 2, we prove f4(n) = O(nlog2 3), using a
recursive embedding algorithm, and hence answer the
question stated by Di Giacomo et al. [4] whether a
subquadratic upper bound on f4(n) exists.

In Section 3, we introduce the saturation function σ
for trees and prove that f(T ) ≤ 2σ(T )n holds for any
n vertex tree T . For trees with saturation bounded
by a constant this clearly gives a linear upper bound,
which enlarges the set of graphs that can be embedded
in point sets of linear size. In particular, for cater-
pillars we improve the upper bound f(T ) ≤ 3n− 2
provided in [4] to 2n, which can be further improved
to (4/3 + ε)n+O(1) for ε > 0. We further show that
f(T ) = O(n1.5+ε) holds with probability at least 2ε

1+2ε
if the tree T is chosen uniformly at random among all
rooted n vertex trees with maximum degree at most 4.

In Section 4, we show that a given n-vertex com-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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plete binary tree T can be embedded in a point set
P with probability at least 1/2, if P was chosen
uniformly at random among all point sets of size
O(n log2 n). A generalization to arbitrary trees, in-
cluding an improved bound on the size of the point
sets, can be found in [8]. Even though the question by
Di Giacomo et al. [4], whether a linear upper bound
on f3(n) exists, remains open, these results give more
insight into the problem.

2 A Subquadratic Bound for the General Case

For this section, we define the integer sequence
(un)n∈N0 recursively by

u0 := 0, un+1 := max
a≥b≥c

a+b+c=n

1 + ua + 2ub + 2uc,

where N0 = N ∪ {0} denotes the set of non-negative
integers. We use a recursive approach to find a planar
L-shaped embedding of a given tree T with n vertices
and maximum degree at most 4 in a given point set
P of size un. In the recursive step subtrees of sizes a,
b, and c will be embedded in sub point sets of sizes
ua, ub, and uc, respectively. As un ≤ nlog2 3 holds for
every n, this will give a proof for f4(n) ≤ nlog2 3.

Lemma 1 un ≤ nlog2 3 holds for any n ∈ N0.

Proof. Let g(x) = xlog2 3 on [0,∞). We give a proof
by induction that un ≤ g(n) holds for n ∈ N0.

For the induction base, u0 = 0 and u1 = 1 clearly
fulfill the inequality. For the induction step, let n ≥ 1.
We assume that uk ≤ g(k) holds for any k ≤ n, and
prove that un+1 ≤ g(n+ 1) holds. Let

S = {(x, y, z) ∈ R3 : x ≥ y ≥ z ≥ 0, x+ y + z = n}.
By definition, un+1 = 1 + ua + 2ub + 2uc holds for
some integers a ≥ b ≥ c ≥ 0 with a + b + c = n. By
the induction assumption, we can write

un+1 ≤ 1 + g(a) + 2g(b) + 2g(c),

and since (a, b, c) ∈ S,

un+1 ≤ max
(x,y,z)∈S

1 + g(x) + 2g(y) + 2g(z)︸ ︷︷ ︸
=h(x,y,z)

.

As g is a convex function on [0,∞), h is a convex
function on S. Moreover, S is a convex set since
S is spanned by s1 = (n, 0, 0), s2 = (n2 ,

n
2 , 0), and

s3 = (n3 ,
n
3 ,

n
3 ); a proof can be found in [8, Lemma 10].

According to the Maximum Principle, h attains its
maximum over S in s1, s2, or s3. We now show that
h(si) ≤ g(n+ 1) holds for i = 1, 2, 3:

s1: Due to the Mean Value Theorem it holds
that g(n + 1) − g(n) = g′(ξ) for some ξ ∈
(n, n + 1). Since log2 3 > 1 and 1 ≤ ξ,
we have g′(ξ) = (log2 3)ξlog2 3−1 ≥ 1, and thus
h(s1) = 1 + g(n) ≤ g(n+ 1).

q

v

A

B1 B2C

Figure 1: The recursive embedding: lines partitioning
P are drawn dashed black; the dotted line illustrates
how to choose C ′; lines partitioning A, B, and C in
the next recursion are drawn dashed gray. Only points
used in the first and second recursive step are shown.

s2: h(s2) = 1+3(n/2)log2 3 = 1+nlog2 3 = 1+g(n) ≤
g(n+ 1).

s3: h(s3) = 1 + 5(n/3)log2 3 ≤ 1 + g(n) ≤ g(n + 1)
holds, since 5/3log2 3 < 1.

As a consequence, we have un+1 ≤ g(n+ 1). �

From the definition of un, we derive the following
algorithm:

1. Let T be an n vertex tree with maximum degree
at most 4, rooted at some degree-1-vertex r, and
let P be a set of un points.

2. We place r at the bottommost point q of P .

3. Let v be the child of r, and let TA, TB , TC be the
subtrees of v of sizes a, b, and c respectively, with
a ≥ b ≥ c ≥ 0 and a+ b+ c+ 1 = n− 1.

4. Recall that un ≥ un−1 + 1 holds by definition of
un. We partition P = A ∪ (B1 ∪ C ∪ B2) ∪ {q}
such that A contains the topmost ua points,
q is the bottommost point, |B1| = |B2| = ub,
|C| = 2uc + 1, B1 is on the left of C, and C is
on the left of B2. Figure 1 gives an illustration.

5. At least uc+1 points in C have x-coordinates less
(greater) than q. We denote this set as C ′. We
embed v as the topmost vertex q′ in C ′. As long
as not all subtrees are empty, we continue recur-
sively by embedding TA in A, TB in B1 (resp.,
B2), and TC in C ′\{q′}. The subtrees are em-
bedded with respect to an according rotation as
illustrated in Figure 1.

Together with Lemma 1 we get the following:

Theorem 2 f4(n) ≤ nlog2 3.
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For further improvements on the multiplicative fac-
tor of the nlog2 3 term we refer to [8, Chapter 3], where
f3(n) ≤ 0.5nlog2 3 +O(n) and f4(n) ≤ cnlog2 3 +O(n)
with c ≈ 0.508 have been shown.

3 Bounds for Special Cases

In this section, we introduce the saturation function σ
for trees and show how to handle trees with low sat-
uration in a more efficient way.

Definition 1 (Saturation) Let T = (V,E) be a
tree. For the rooted version T r of T with root r ∈ V ,
we define σr : V → N0 recursively, such that

σr(v) = max{0, σr(u1), σr(u2) + 1, . . . , σr(uk) + 1}

holds for every vertex v with children u1, . . . , uk
(k ≥ 0) and σr(u1) ≥ . . . ≥ σr(uk). We define the
rooted saturation σ(T r) := σr(r) = maxv∈V σr(v).
For the unrooted tree T , we define the saturation
σ(T ) := minr∈V σ(T r).

Theorem 3 f(T ) ≤ 2σ(T )n holds for every tree T
with n vertices and maximum degree at most 4.

Proof. We slightly modify the algorithm proposed in
Section 2. For the recursion, we embed a subtree with
maximum saturation in the top area instead of the
largest subtree. By definition of σ(T ), 2σ(T ) copies of
every point are sufficient for the algorithm to succeed,
and thus, the statement follows. �

We remark that it is straightforward to show that
σ(T ) ≤ log2(n+ 1)−1 holds for every n vertex tree T
(see [8, Chapter 3.3.2]), which directly gives an alter-
native proof for f4(n) = O(n2).

Di Giacomo et al. [4] have already proven that,
for caterpillars with maximum degree at most 4, any
point set of size 3n − 2 is sufficient to find a planar
L-shaped embedding. Since caterpillars have satura-
tion at most 1, 2n is an upper bound. Moreover, this
upper bound can be improved to (4/3 + ε)n + O(1)
for any fixed ε > 0; we refer to [8, Chapter 5.2].

3.1 Probabilistic Analysis

In this subsection, we make use of the register
function ρ (see e.g. Auber et al. [1]) to handle
the saturation function σ: ρ(T ) is defined analo-
gously to the saturation σ(T ), where the expres-
sion max{0, σr(u1), σr(u2)+1, σr(u3)+1, . . . , σr(uk)+
1} is changed to max{0, σr(u1), σr(u2) + 1, σr(u3) +
2, . . . , σr(uk)+k−1}. By definition, the register func-
tion gives an upper bound on the saturation function.

For n ∈ N let Tn denote the set of rooted trees
with n vertices and maximum degree at most 4. If we

suppose that every rooted tree in Tn is equally likely,
then Tn can be interpreted as a random variable.

Drmota and Prodinger [5] have shown that the
expected value of the random variable ρ(Tn) ful-
fills E(ρ(Tn)) = log4 n+O(1). It is straightforward
to deduce that a constant c ∈ R exists such that
E(σ(Tn)) ≤ log4 n+ c holds for every n.

Theorem 4 Let ε > 0. Then the probability
P[f(Tn) = O(n1.5+ε)] is at least p = 2ε

1+2ε > 0.

Proof. Let sn = E(σ(Tn)). According to Markov’s
inequality we have P[σ(Tn) ≥ sn(1 + 2ε)] ≤ 1

1+2ε , or
equivalently, P[σ(Tn) ≤ sn(1 + 2ε)] ≥ p.

Since sn ≤ log4 +c1 holds for a constant c1,
2σ(Tn) ≤ 2sn(1+2ε) ≤ 2(log4 n+c1)(1+2ε) = c2n

0.5+ε

holds with probability at least p, where c2 = 2c1(1+2ε).
The statement follows from Theorem 3. �

4 Probabilistic Approach for Trees

For a tree T let f1/2(T ) be the minimum number m
such that T admits a planar L-shaped embedding in
at least half of all point sets of size m. Furthermore,

let f
1/2
d (n) := max f1/2(T ) where the maximum is

over all trees T on n vertices with maximum degree
at most d.

4.1 Complete k-Ary Trees

We prove that f1/2(T ) ≤ 2(n+ 1) log2(n+ 1) holds if
T is a complete binary tree on n vertices. To do so,
we consider the following algorithm:

1. Let T be a complete binary tree on n ver-
tices, rooted at r, and let P be a set of
2(n+ 1) log2

2(n+ 1) points.

2. Since T is complete, ñ := n + 1 = 2h holds with
h := log2 ñ ∈ N. We define α := 2h and write
|P | = αñ log2 ñ.

3. We partition P = (A ∪ B1 ∪ B2) ∪ C such that
|A| = |C| = α( ñ2 ), |B1| = |B2| = α( ñ2 ) log2( ñ2 ),
(A ∪B1 ∪B2) is above C, A is to the left of B1,
and B1 is to the left of B2. Furthermore, let
B = B1 ∪B2. Figure 2 gives an illustration.

4. If there exists a candidate point q, i.e., a point
in C which is to the left of B, we place r in q
and continue recursively by embedding the two
subtrees in B1 and B2, respectively. Otherwise,
no solution is found and the algorithm stops.

If there exists a candidate point in every recursion
(step 4), then the algorithm clearly admits a planar L-
shaped embedding; one only needs to draw the edges
as depicted in Figure 2 after all points have been
placed.
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A B1

C

B2

r

Figure 2: Embedding of a complete binary tree: black
dashed lines illustrate the partition of P and gray
dashed lines illustrate the partition of B1 and B2 in
the next recursion, respectively.

It remains to show that all desired candidate points
exist with probability at least 1/2.

The probability that a candidate point exists is ex-

actly p := 1−∏|C|i=1

(
1− |A|+1

|A|+|B|+i

)
, because assum-

ing that neither of the points c1, . . . , ci−1 is placed on
the left of B, there are |A|+ |B|+ i positions in which
ci can be placed, and |A|+ 1 of which are to the left
of B. Since i ≤ |C| and by the partition of P , we have

p ≥ 1−
(

1− |A||P |

)|C|
= 1−

(
1− 1

2 log2 ñ

)α ñ
2

=: p̃,

which we can also write as

p̃ = 1−
((

1− 1

2 log2 ñ

)2 log2 ñ
)α ñ

4 log2 ñ

.

Recall that the function g(x) = (1 − 1
x )x on [2,∞)

fulfills 1
4 ≤ g(x) ≤ 1

e with e being Euler’s number,
and that the function h(x) = x

ln x on (1,∞) has its
minimum at x = e with h(e) = e. As a consequence

ñ
4 log2 ñ

≥ e ln 2
4 ≥ ln 2

2 holds, and thus we can bound

p ≥ p̃ ≥ 1− (1/e)
(αln 2)/2

= 1− (1/2)
α/2

.
Obviously, this lower bound on p does not depend

on the recursion level but only on α, which was chosen
depending only on the initial number of points.

Since T is a complete binary tree on n = ñ− 1
vertices, T has ñ

2 − 1 inner vertices. Furthermore,

since (1/2)α/2 = 1/ñ holds by definition of α, the
probability for the algorithm to succeed is at least

(1− 1/ñ)
ñ/2−1 ≥ (1− 1/ñ)

ñ/2 ≥ (1/4)
1/2

= 1/2.
This gives a proof of the following:

Theorem 5 f1/2(T ) ≤ 2(n + 1) log2(n + 1) holds if
T is a complete binary tree on n vertices.

In [8, Chapter 4.1], this upper bound is improved
to O(n log n(log log n)2), and in [8, Chapter 4.2]
O(n log n(log log n)2) is shown to be an upper bound
for complete ternary trees as well.

4.2 The General Case

Unfortunately, the algorithm stated in Section 4.1
can not be applied for arbitrary trees since sub-
trees might differ heavily in size. In [8, Chap-
ter 4.3] a slightly modified algorithm is proposed,
which makes use of a tree’s Jordan center to han-
dle this problem. Using that algorithm, they show

f
1/2
3 (n) = O(n log n(log log n)2).
Even though the question by Di Giacomo et al. [4],

whether a linear upper bound on f3(n) exists, remains
open, we gain some more insight by this result: as
any tree T admits an embedding in P with probabil-
ity at least 1/2 if P was chosen uniformly at random
among all point sets of sizem = O(n log n(log log n)2),
T admits an embedding in Q with probability at least
1−(1/2)k if Q was chosen uniformly at random among
all point sets of size mk. Thus, we can get arbitrary
close to probability 1. In particular, to get probability
at least 1− ε we can choose k = dlog2(1/ε)e.

Trees with maximum degree 4 are a bit tougher to
handle; while f1/2(T ) has a quasilinear upper bound
when T is a complete ternary tree, the best bound

so far for the general case is f
1/2
4 (n) = O(nc+ε) with

c ≈ 1.332; we refer to [8, Chapter 4.3.3]. The question
remains open whether a quasilinear upper bound on

f
1/2
4 (n) exists.
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Drawing trees and triangulations with few geometric primitives
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Abstract

We define the visual complexity of a plane graph draw-
ing to be the number of geometric objects needed
to represent all its edges. In particular, one ob-
ject may represent multiple edges (e.g. you need
only one line segment to draw two collinear edges
of the same vertex). We show that trees can be
drawn with 3n/4 straight-line segments on a polyno-
mial grid, and with n/2 straight-line segments on a
quasi-polynomial grid. We also study the problem of
drawing maximal planar graphs with circular arcs and
provide an algorithm to draw such graphs using only
(5n− 11)/3 arcs. This provides a significant improve-
ment over the lower bound of 2n for line segments for
a nontrivial graph class.

1 Introduction

The complexity of a graph drawing can be assessed
in a variety of ways (crossing number, bends, angu-
lar resolution, etc.). In this abstract, we consider
the visual complexity of planar graphs, that is, the
number of simple geometric objects necessary for any
drawing. For a number of graph classes, upper and
lower bounds are known for segment drawings (al-
lowing only straight-line segments) and arc drawings
(allowing circular arcs); the upper bounds are sum-
marized in Table 1. However, these upper bounds do
not require the drawings to be on the grid. A trivial
lower bound is provided by ϑ/2, where ϑ denotes the
number of odd-degree vertices. For triangulations and
general planar graphs, a lower bound of 2n+O(1) is
known [1], where n is the number of vertices.

In this abstract, we look at segment drawings of
trees on a grid and at arc drawings of triangula-
tions. We give an algorithm that draws trees on an
O(n2) × O(n1.58) grid using 3n/4 straight-line seg-
ments. This algorithm can be modified to generate
drawings with an optimal ϑ/2 segments on a quasi-
polynomial grid; so far, no algorithms on the grid have
been known. Furthermore, we prove that (5n− 11)/3
arcs are sufficient to draw any triangulation with n

∗FernUniversität in Hagen (Germany),
gregorhueltenschmidt@gmx.de [philipp.kindermann |

andre.schulz]@fernuni-hagen.de. Supported by grant SCHU
2458/4-1 (DFG).
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Table 1: Upper bounds on the visual complexity for
planar graphs. New results are marked with an aster-
isk. Here, n is the number of vertices, ϑ the number of
odd-degree vertices and e the number of edges. Con-
stant additions or subtractions have been omitted.

Class Segment Arc
Trees ϑ/2 [1] ϑ/2 [1]
3-trees 2n [1] 11e/18 [4]
3-connected 5n/2 [1] 2e/3 [4]
cubic 3-conn. n/2 [3] n/2 [3]
triangulation 7n/3 [2] 5n/3 ∗

planar 16n/3− e [2] 14n/3− e ∗

vertices. We highlight that this bound is signifi-
cantly lower than the 2n + O(1) lower bound known
for segment drawings [2] and the so far best-known
2e/3+O(1) = 2n+O(1) upper bound for circular arc
drawings [4]. A straightforward extension shows that
(14n−3e−29)/3 arcs are sufficient for general planar
graphs with e edges.

2 Trees with segments on the grid

Heavy paths. Let T = (V,E) be an undirected tree.
Our algorithm follows the basic idea of the circular
arc drawing algorithm by Schulz [4]. We make use
of the heavy path decomposition [5] of trees, which is
defined as follows. First, root the tree in some ver-
tex r. Then, for each non-leaf u, compute the size of
each subtree rooted in one of its children. Let v be
the child of u with the largest subtree (one of them in
case of a tie). Then, (u, v) is called a heavy edge and
all other outgoing edges of u are called light edges.
The maximal connected components of heavy edges
form the heavy paths of the decomposition.

We call the vertex closest to the root the top node
of a heavy path and the subtree rooted in the top
node the heavy path subtree. We define the depth of
a heavy path (subtree) as follows. We treat each leaf
that is not incident to a heavy edge as a heavy path of
depth 0. The depth of each other heavy path is by 1
larger than the maximum depth of all heavy paths
that are connected by an outgoing light edge. Heavy
path subtrees of common depth are disjoint.

Boxes. We order the heavy paths nondecreasingly by
their depth and then draw their subtrees in this or-
der. Each heavy path subtree is placed completely

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: (a) The heavy path box Bi with top node ui
and its lengths; (b) the merged box B∗i for B2i−1
and B2i and its lengths.

inside an L-shaped box (heavy path box ) with its top
node placed at the reflex angle; see Fig. 1a for an il-
lustration of a heavy path box Bi with top node ui,
width wi = `i + ri, and height hi = ti + bi. We re-
quire that (i) heavy path boxes of common depth are
disjoint, (ii) ui is the only vertex on the boundary,
and (iii) bi ≥ ti. Note that the boxes will be mirrored
horizontally and/or vertically in some steps of the al-
gorithm. We draw each heavy path subtree of depth 0
as a heavy path box Bi with `i = ri = ti = bi = 1.

Drawing. Assume that we have already drawn each
heavy path subtree of depth k. When drawing the
subtree of a heavy path 〈v1, . . . , vm〉 of depth k + 1,
we proceed as follows. The last vertex on a heavy path
has to be a leaf, so vm is a leaf. If outdeg(vm−1) is
odd, we place the vertices v1, . . . , vm on a vertical line;
otherwise, we place only the vertices v1, . . . , vm−1 on
a vertical line and treat vm as a heavy path subtree
of depth 0 that is connected to vm−1. For 1 ≤ h ≤
m − 1, all heavy path boxes adjacent to vh will be
drawn either in a rectangle on the left side of the edge
(vh, vh+1) or in a rectangle on the right side of the
edge (vh−1, vh) (a rectangle that has v1 as its bottom
left corner for h = 1); see Fig. 2a for an illustration
with even outdeg(vm−1).

We now describe how to place the heavy path
boxes B1, . . . , Bk with top node u1, . . . , uk, respec-
tively, incident to some vertex v on a heavy path into
the rectangles described above. First, assume that k is
even. Then, for 1 ≤ i ≤ k/2, we order the boxes such
that b2i ≤ b2i−1. We place the box B2i−1 in the lower
left rectangle and box B2i in the upper right rectan-
gle in such a way that the edges (v, u2i−1) and (v, u2i)
can be drawn with a single segment. To this end, we
construct a merged box B∗i as depicted in Fig. 1b
with `∗i = max{`2i−1, `2i}, r∗i = max{r2i−1, r2i}, and
w∗i = `∗i + r∗i ; the heights are defined analogously.
We mirror all merged boxes horizontally and place

them in the lower left rectangle (of width
∑k/2

i=i w
∗
i )

as follows. We place B∗1 in the top left corner of the
rectangle. For 2 ≤ j ≤ k/2, we place B∗j directly
to the right of B∗j−1 such that its top border lies ex-
actly t∗j−1 rows below the top border of B∗j−1. Sym-
metrically, we place the merged boxes (vertically mir-
rored) in the upper right rectangle. Finally, we place

B

(a)

v
w∗

1

w∗
1

t∗
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Figure 2: (a) Placement of a heavy path, its box B,
and areas for the adjacent heavy path boxes. (b)
Placement of the heavy path boxes adjacent to v.

each box B2i−1 (horizontally mirrored) in the lower
left copy of B∗i such that their inner concave angles
coincide, and we place each box B2i (vertically mir-
rored) in the upper right copy of B∗i such that their
inner concave angles coincide; see Fig. 2b. If k is odd,
we simply add a dummy box Bk+1 = Bk that we
remove afterwards.

Analysis. We will now calculate the width wv and the
height hv of this construction. For the width, we have

wv = 2

k/2∑

i=1

w∗i = 2

k/2∑

i=1

max{w2i−1, w2i} ≤ 2
k∑

i=1

wi.

The height of each rectangle in the construction is

at least 2
∑k/2

i=1 t
∗
i , but we have to add a bit more

for the bottom parts of the boxes; in the worst case,
this is max1≤j≤k/2 b2j−1 in the lower rectangle and
max1≤h≤k/2 b2h in the upper rectangle. Since we re-
quire bi ≥ ti for each i, we have

hv ≤ 2

k/2∑

i=1

t∗i + max
1≤j≤k/2

b2j−1 + max
1≤h≤k/2

b2h

≤ 2
k∑

i=1

ti +
k∑

j=1

bi ≤
3

2

k∑

i=1

hi.

Since all heavy path trees of common depth are
disjoint, the heavy path boxes of common depth are
also disjoint. Further, we place only the top vertex
of a heavy path on the boundary of its box. Finally,
since we order the boxes such that b2i ≤ b2i−1 for
each i, for the constructed box B we have b ≥ t.

Due to the properties of a heavy path decomposi-
tion, the maximum depth is dlog ne. Recall that we
place the depth-0 heavy paths in a box of width and
height 2. Hence, by induction, a heavy path subtree
of depth d with n′ vertices lies inside a box of width
2 · 2d · n′ and height 2 · (3/2)d · n′. Thus, the whole
tree is drawn in a box of width 2 · 2dlognen = O(n2)
and height 2·(3/2)dlognen = O(n1+log 3/2) ⊆ O(n1.58).
Following the analysis of Schulz [4], the drawing uses
at most d3e/4e = d3(n− 1)/4e segments.

Theorem 1 Every tree admits a straight-line draw-
ing that uses at most d3e/4e arcs on an O(n2) ×
O(n1.58) grid.

56



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

B

B′

Figure 3: Further improvement on the visual com-
plexity via increasing the size of heavy path boxes.
The old box B and the modified box B′.

We finish this section with an idea of how to get
a grid drawing with the best possible number of
straight-line segments. Due to the limited space we
give only a sketch. Observe that there is only one
situation in which the previous algorithm uses more
segments than necessary, that is the top node of each
heavy path. This suboptimality can be “repaired” by
tilting the heavy path as sketched in Fig. 3. Note that
the incident subtrees with smaller depth will only be
translated. To make this idea work, we have to blow
up the size of the heavy path boxes. We are left with
scaling in each “round” by a polynomial factor. Since
there are only log n rounds, we obtain a drawing on a
quasi-polynomial grid.

Theorem 2 Every tree admits a straight-line draw-
ing with the smallest number of straight-line segments
on a quasi-polynomial grid.

3 Triangulations with circular arcs

As used in previous articles [2, 4], a canonical order
v1, . . . , vn on the vertices of a triangulation structures
our drawing algorithm. However, we use the order
in reverse. We start by drawing v1, v2, and vn on a
circle; see Fig. 4a. We assume that they are placed as
shown and hence refer to the arc connecting v1 and v2
as the bottom arc. The interior of the circle is the un-
drawn region U which we maintain as a strictly convex
shape. The vertices incident to U are referred to as the
horizon and denoted in order, h1, h2, . . . , hk−1, hk; we
maintain that h1 = v1 and hk = v2. Initially, we have
k = 3 and h2 = vn. We iteratively take a vertex hi of
the horizon (the latest in the canonical order) to pro-
cess it. Processing a vertex means that we draw its
undrawn neighbors and edges between these, thereby
removing hi from the horizon.

Invariant. We maintain as invariant that each ver-
tex v (except v1, v2, and vn) has a segment `v in-
cident from above such that its downward extension
intersects the bottom arc strictly between v1 and v2.
Observe that, since U is strictly convex, this and h are
the only intersection points for `h with the undrawn
region’s boundary for a vertex h on the horizon.

v1 = h1 v2 = h3

h1 h4

h2 h3

(a) (b)

vn = h2

Figure 4: (a) Initial state of the algorithm. (b) State
of the algorithm after processing vn. Hatching indi-
cates undrawn region.

Processing a vertex. To process a vertex hi, we first
consider the triangle hi−1hihi+1: this triangle (except
for its corners) is strictly contained in U . We draw a
circular arc A from hi−1 to hi+1 with maximal cur-
vature, but within this triangle; see Fig. 5a. This
ensures a plane drawing, maintaining a strictly con-
vex undrawn region. Moreover, it ensures that hi can
“see” the entire arc A.

Vertex hi may have a number of neighbors that were
not yet drawn. To place these neighbors, we dedicate
a fraction of the arc A. In particular, this fraction
is determined by the intersections of segments v1hi
and v2hi with A; see Fig. 5b. By convexity of U ,
these intersections exist. If hi−1 is equal to v1, the
intersection for v1hi degenerates to v1; similarly, the
intersection of v2hi may degenerate to v2. We place
the neighbors in order along this designated part of A,
drawing the relevant edges as line segments. This im-
plies that all these neighbors obtain a line segment
that extends to intersect the bottom arc, maintaining
the invariant. We position one neighbor to be a con-
tinuation of segment `hi , which by the invariant must
extend to intersect the designated part of A as well.

Schnyder woods. Using a Schnyder realizer of the tri-
angulation, we decompose the edges into three trees:
T1, T2, and Tn rooted at v1, v2, and vn, respectively.
Following the rationale of Durocher and Mondal [2],
we assume w.l.o.g. that Tn has the smallest number
of leaves. In particular, the total number of leaves
in a minimal realizer is upper bounded by 2n− 5 [2].
Hence, Tn has at most (2n− 5)/3 leaves.

Complexity. We start with one circle and subse-
quently process vn, . . . , v4, adding one circular arc per
vertex (representing edges in T1 and T2) and a num-
ber of line segments (representing edges in Tn). Note
that processing v3 has no effect since the edge v1v2
is the bottom arc. Counting the circle as one arc, we
thus have n − 2 arcs in total. At every vertex in Tn,
one incoming edge is collinear with the outgoing one
towards the root. We charge each line segment to a
leaf of Tn: there are at most (2n− 5)/3 segments.

Thus, the total visual complexity is at most n−2+
(2n − 5)/3 = (5n − 11)/3. In particular, this shows
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hi

hi−1
hi+1

v1 v2

hi

v1 v2
(a) (b)

`hi

A

Figure 5: (a) Arc A lies inside the dashed triangle
hi−1hihi+1. (b) Undrawn neighbors of hi are placed
on A, in the section determined by v1 and v2. One
neighbor is placed to align with `hi towards a prede-
cessor of hi.

that, with circular arcs, we obtain greater expressive
power for a nontrivial class of graphs in comparison
to the 2n lower bound that is known for drawing tri-
angulations with line segments.

Degrees of freedom. One circular arc has five degrees
of freedom (DoF) which is one more than a line seg-
ment. In this light, our algorithm with circular arcs
uses roughly 5 · 5n/3 = 25n/3 DoF. We disregard any
DoF reduction arising from the need to have arcs co-
incide at vertices. This remains an improvement over
the result of Durocher and Mondal [2], using roughly
4 · 7n/3 = 28n/3 DoF. The lower bound for line seg-
ments (4 · 2n = 24n/3) is lower than what we seem
to achieve with our algorithm. However, our algo-
rithm uses line segments rather than arcs to draw the
tree Tn. Thus, the actual DoF employed by the algo-
rithm is roughly 5n + 4 · 2n/3 = 23n/3, which is in
fact below the lower bound for line segments.

Theorem 3 Every triangulation admits a circular
arc drawing that uses at most (5n− 11)/3 arcs.

4 General planar graphs

Simple bound. The algorithm for triangulations eas-
ily adapts to draw a general planar graph G with n
vertices and e edges. As connected components can be
drawn independently, we assume G is connected. We
need to only triangulate G, thereby adding 3n− e− 6
chords. We then run the algorithm described in the
previous section, using (5n − 11)/3 arcs. Finally, we
remove the chords from the drawing. Each chord may
split an arc into two arcs, thereby increasing the total
complexity by one. We obtain a drawing of G using
(5n− 11)/3 + 3n− e− 6 = (14n− 3e− 29)/3 arcs.

Improved bound. We may do slightly better by find-
ing a “good” triangulation, using the property that
at most two arcs at every vertex continue: one for
the horizon and one for Tn. We reduce the neces-
sary geometric primitives by picking a single vertex
on every face and connecting all chords to that par-
ticular vertex. (We may even further save on com-

plexity by selecting the same vertex for two adjacent
faces.) This saves us an additional max{0, |f | − 5} on
complexity for a face f of size |f |: it needs |f | − 3
chords, but only two of these can increase the com-
plexity on removal. We can thus obtain a complexity
of (14n−3e−29)/3−∑f∈G max{0, |f |−5}. In other
words, this approach reduces the complexity upper
bound by R =

∑
f∈G max{0, |f |−5}. Below, we show

that R ≥ max{0, 5n − 3e}, thus implying an overall
upper bound of (14n− 3e− 29)/3−max{0, 5n− 3e}.

If 3e ≥ 5n, all faces may have size 5 and thus R = 0
is possible. We find that (14n− 3e− 29)/3 ≤ (14n−
5n− 29)/3 = 3n− 29/3.

Since sparsity increases the upper bound, we con-
struct a worst-case sparse graph to determine the low-
est value of R. Consider an arbitrary connected graph
G on n vertices with e edges and consider the sizes of
all faces. If there there are two faces f ′ and f ′′ with
|f ′′| < 5 < |f ′|, we can reduce R by one by “reassign-
ing” one chord of f ′ to f ′′. We ignore here whether
the new graph with the given face sizes can actually
be realized. We can also reassign a chord from f ′ to
f ′′ if |f ′′| ≥ |f ′| > 5 without effecting R. Hence, a
worst-case can be obtained if all faces but one have
size at most 5; let f denote this one other face. This
effectively reduces R to max{0, |f | − 5}.

Double counting of edges along faces gives us 2e =∑
f ′∈G |f ′| ≤ |f | + 5(F − 1), where F = 2 + e − n is

the total number of faces in G. Hence, we find that
|f | ≥ 5n−3e+5. For R = max{0, |f |−5} to be equal
to |f | − 5, we need that |f | ≥ 5, which is implied by
3e ≤ 5n. If this is indeed the case, then R is equal to
5n−3e. The upper bound is then (14n−3e−29)/3−
(5n − 3e) = 2e − n/3 − 29/3. Using 3e < 5n we find
that this is at most 2(5n/3)−n/3−29/3 = 3n−29/3.

Theorem 4 Every planar graph admits a circular arc
drawing with at most min{3n, 14n/3−e}−29/3 arcs.
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Strongly Monotone Drawings of Planar Graphs∗
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Abstract

A straight-line drawing of a graph is called monotone
if for each pair of vertices there exists a path which is
monotonically increasing in some direction, and it is
called a strongly monotone if the direction of mono-
tonicity is given by the direction of the line segment
connecting the two vertices.

We present algorithms to compute crossing-free
strongly monotone drawings for some classes of planar
graphs; namely, 3-connected planar graphs, outerpla-
nar graphs, and 2-trees. The drawings of 3-connected
planar graphs are based on primal-dual circle pack-
ings. Our drawings of outerplanar graphs depend on
a new algorithm that constructs strongly monotone
drawings of trees which are also convex. For trees
without degree-2 vertices, these drawings are strictly
convex.

1 Introduction

When reading data visualized as a drawing of a graph,
a common task is to find a path between a source
vertex and a target vertex. This task serves as the
motivation for the following quality criterion for graph
drawings.

Let Γ be a straight-line drawing of graph G =
(V,E). We say that a path P in Γ is monotone with
respect to a direction (or vector) d if the orthogonal
projections of the vertices of P on a line with direc-
tion d appear in the same order as in P . Drawing Γ
is called monotone if for each pair of vertices u, v ∈ V
∗This research was initiated during the Geometric Graphs
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there is a connecting path that is monotone with re-
spect to some direction. To support the path-finding
tasks it is useful to restrict the monotone direction for
each path to the direction of the line segment connect-
ing the source and the target vertex: a path v1v2 . . . vk
is called strongly monotone if it is monotone with re-
spect to the vector −−→v1vk. Drawing Γ is called strongly
monotone if each pair of vertices u, v ∈ V is con-
nected by a strongly monotone path. We are inter-
ested in strongly monotone drawings which are also
planar. If crossings are allowed, then any strongly
monotone drawing of a spanning tree of G yields a
strongly monotone drawing of G [1]. For the results
stated in this abstract we interpret monotonicity in a
strict sense, i.e., we do not allow edges on the path
that are orthogonal to the segment between the end-
points.

Is has been shown that every connected planar
graph admits a monotone drawing on a grid of size
O(n)×O(n2) [4]. On the other hand, there exists an
infinite class of 1-connected graphs that do not admit
strongly monotone drawings [5]. Any tree and any
2-connected outerplanar graph has a strongly mono-
tone drawing [5]. It is known that the area required
for strongly monotone drawings of trees and binary
cacti is exponential [6].

In this work, we show that any 3-connected pla-
nar graph admits a strongly monotone drawing (Sec-
tion 2). Then, we answer in the affirmative the open
question of Kindermann et al. [5] on whether ev-
ery tree has a strongly monotone drawing which is
(strictly) convex. We use this result to show that
every outerplanar graph admits a strongly monotone
drawing (Section 3). Finally, we prove that 2-trees
can be drawn strongly monotone (Section 4). All our
proofs are constructive and admit efficient drawing
algorithms. Our main open question is whether ev-
ery planar 2-connected graph admits a plane strongly
monotone drawing. Due to space constraints we ei-
ther sketch or omit the proofs; detailed proofs can be
found in the full preprint version [3].

2 3-Connected Planar Graphs

In this section, we prove the following:

Theorem 1 Every 3-connected planar graph has a
strongly monotone drawing.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: A primal-dual circle packing. Vertex circles
in red, face circles in blue, regions of faces in white
and regions of vertices in gray.

We show that the straight-line drawing correspond-
ing to a primal-dual circle packing of a graph G is
strongly monotone. The theorem then follows from
the fact that any 3-connected planar graph G =
(V,E) admits a primal-dual circle packing [2].

A primal-dual circle packing of a plane graph G
consists of two families CV and CF of circles such that,
there is a bijection v ↔ Cv between the set V of
vertices of G and circles of CV and a bijection f ↔ Cf

between the set F of faces of G and circles of CF .
Moreover, the following three properties hold: (I) The
circles in the family CV are interiorly disjoint and their
contact graph is G, i.e., Cu ∩ Cv 6= ∅ if and only
if (u, v) ∈ E(G). (II) If Co ∈ CF is the circle of the
outer face o, then the circles of CF \{Co} are interiorly
disjoint while Co contains all of them. The contact
graph of CF is the dual G∗ of G, i.e., Cf∩Cg 6= ∅ if and
only if (f, g) ∈ E(G∗). (III) The circle packings CV

and CF are orthogonal, i.e., if e = (u, v) and the dual
of e is e∗ = (f, g), then there is a point pe = Cu∩Cv =
Cf∩Cg; moreover, the common tangents te∗ of Cu, Cv

and te of Cf , Cg cross perpendicularly in pe.

Let a primal-dual circle packing of a graph G be given.
For each vertex v, let pv be the center of the corre-
sponding circle Cv. By placing each vertex v at pv, we
obtain a planar straight-line drawing Γ of G. In this
drawing, the edge e = (u, v) is represented by the seg-
ment with end-points pu and pv on te. The face circles
are inscribed circles of the faces of Γ; moreover, Cf is
touching each boundary edge of the face f ; see Fig-
ure 1. A straight-line drawing Γ∗ of the dual G∗ of G
with the dual vertex of the outer face o at infinity can
be obtained similarly by placing the dual vertex of
each bounded face f at the center of the correspond-
ing circle Cf . In this drawing, a dual edge e∗ = (f, o)
is represented by the ray supported by te∗ that starts
at pf and contains pe.

We make use of a specific partition Π of the plane;
Figure 1 gives an illustration. The regions of Π corre-
spond to the vertices and the faces of G. For a vertex
or face x, let Dx be the interior of the disk Cx. We
define the region Rf of a bounded face f as Df . The

pi−1

pi
`s

e1

e2
e3

Rwi−1

Rwi
pf

Cf

pe3pe1
pe2

Figure 2: The path Pi connecting pi−1 and pi.

region Rv of a vertex v is obtained from the diskDv by
removing the intersections with the disks of bounded
faces, i.e., Rv = Dv \

⋃
f 6=oRf = Dv \

⋃
f 6=oDf . To

get a partition of the whole plane, we assign the com-
plement of the already defined regions to the outer
face. Note that the edge-points pe are part of the
boundary of four regions of Π. Additionally, if two
regions of Π share more than one point on the bound-
ary, then one of them is a vertex region Rv, the other
is a face-region Df , and v is incident to f in G.

We are now prepared to prove the strong mono-
tonicity of Γ. Consider two vertices u and v and let `
be the line spanned by pu and pv. W.l.o.g., assume
that ` is horizontal and pu lies left of pv. Let `s be
the directed segment from pu to pv. Since pu ∈ Ru

and pv ∈ Rv, the segment `s starts and ends in these
regions. In between, the segment will traverse some
other regions of Π. This is true unless (u, v) is an
edge of G whence the strong monotonicity for the
pair is trivial. We assume non-degeneracy in the sense
that the interior of the segment `s contains no vertex-
point pw, edge-point pe, or face-point pf .

Let u = w0, w1, . . . , wk = v be the sequence of ver-
tices whose region is intersected by `s, in the order of
intersection from left to right and let pi = pwi

. We
will construct a strongly monotone path P from pu
to pv in Γ that contains pu = p0, p1, . . . , pk = pv in
this order. We show how to construct Pi, the sub-
path of P from pi−1 to pi. Since `s may revisit a
vertex-region, it is possible that pi−1 = pi; in this
case we set Pi = pi. Now suppose that pi−1 6= pi.
Non-degeneracy implies that the segment `s alter-
nates between vertex-regions and face-regions; hence,
a unique disk Df is intersected by `s between the re-
gions of wi−1 and wi. It follows that wi−1 and wi

are vertices on the boundary of f . The boundary of f
contains two paths from wi−1 to wi. In Γ, one of these
two paths from pi−1 to pi is above Df ; we call it the
upper path, the other one is below Df , this is the lower
path. If the center pf of Df lies below `, we choose
the upper path from pi−1 to pi as Pi; otherwise, we
choose the lower path.

Suppose that this rule led to the choice of the up-
per path; see Figure 2. The case that the lower

60



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

path was chosen works analogously. We have to
show that Pi is monotone with respect to `s, i.e., to
the x-axis. Let e1, . . . , er be the edges of this path
and let ej = (qj−1, qj); in particular q0 = pi−1 and
qr = pi. Since Rwi−1

is star-shaped with center pi−1,
the segment connecting pi−1 with the first intersec-
tion point of ` with Cf belongs to Rwi−1 . There-
fore, the point pe1 of tangency of edge e1 at Cf lies
above `. Similarly, per and, hence, all the points pej
lie above `. Since the points pe1 , . . . , per appear in
this order on Cf and the center of Cf lies below `,
we obtain that their x-coordinates are increasing in
this order. This sequence is interleaved with the x-
coordinates of q0, q1, . . . , qr, whence this is also mono-
tone. This proves that the chosen path Pi is mono-
tone with respect to `. Monotonicity also holds for
the concatenation P = P1 + P2 + . . .+ Pk.

Even if degenerancy is allowed, there still exists a
strongly monotone path consisting of the edges tan-
gent to the circles intersected by ls. This can be shown
by carefully examining the arising special cases.

3 Trees and Outerplanar Graphs

Consider a straight-line, crossing-free drawing Γ of a
tree and replace each edge that leads to a leaf by a
ray that begins with the edge and extends accross
the leaf. If all the unbounded polygonal regions in
the obtained drawing Γ′ are convex, then drawing Γ
is called convex. If all angles in Γ′ are less than π,
then Γ is called strictly convex.

Kindermann et al. [5] have shown that any tree has
a strongly monotone drawing and that any binary
tree has a strictly convex strongly monotone draw-
ing. They left as an open question whether every tree
admits a convex strongly monotone drawing; noticing
that, in the positive case, this would imply that every
Halin graph has a convex strongly monotone draw-
ing. We give an affirmative answer to this question
by stating the following:

Theorem 2 Every tree has a convex strongly mono-
tone drawing. If the tree has no degree-2 vertex, then
the drawing is strictly convex.

The theorem can be proven by inductively generat-
ing a corresponding drawing. In the beginning some
root vertex v0 is placed in the plane and its k children
are placed at the corners of a regular k-gon with cen-
ter v0. The drawing if then generated by iteratively
expanding leafs while maintaining the following:
Invariant: (I) Every leaf is located on a corner of

the convex hull of the vertices. (II) If a1, . . . , a` is
the counterclockwise order of the leaves on the con-
vex hull, then for i = 1, . . . , ` the vectors (−−−−→aiai−1)⊥,−−−→pi, ai, (−−−−→ai+1ai)

⊥ appear in counterclockwise radial or-
der, where pi denotes the unique vertex adjacent to ai.

(III) The angle between two consecutive edges inci-
dent to a vertex v is at most π and is equal to π only
when v has degree two. (IV) Γ is strongly monotone.

We can utilize Theorem 2 to show that every outer-
planar graph has a strongly monotone drawing that is
convex, i.e. every internal face is realized as a convex
region.

Theorem 3 Every outerplanar graph has a convex
strongly monotone drawing.

Proof. Let G be an outerplanar graph with at least 2
vertices. For every vertex v ∈ V , we add two dummy
vertices v′, v′′ and edges (v, v′), (v, v′′). By construc-
tion, the resulting graph H is outerplanar and does
not contain vertices of degree 2. Let ΓH be an out-
erplanar drawing of H. We will construct a convex
strongly monotone drawing Γ′H of H with the same
combinatorial embedding as ΓH .

Let T be an arbitrary spanning tree of H. By con-
struction, no vertex in T has degree 2. Thus, ac-
cording to Theorem 2, T admits a strongly monotone
drawing ΓT which is strictly convex and which also
preserves the order of the children for every vertex,
i.e., the rotation system coincides with the one in ΓH .

Now, we insert all the missing edges. Recall that,
by removing an edge from a planar drawing, the two
adjacent faces are merged. Since the drawing ΓT of T
is strictly convex and since ΓT preserves the rotation
system of ΓH , by inserting an edge e of the graph H
into ΓT one strictly convex face is partitioned into two
strictly convex faces. Furthermore, the insertion of
an edge does not destroy strong monotonicity. We re-
insert all edges ofH iteratively. The resulting drawing
Γ′H of H is a strictly convex and strongly monotone.

Finally, we remove all the dummy vertices and ob-
tain a strongly monotone drawing of G. Since Γ′H
has the same combinatorial embedding as ΓH , every
dummy vertex lies in the outer face. Hence, no inter-
nal face is affected by the removal of dummy vertices,
and thus all interior faces remain strictly convex. �

4 2-Trees

A 2-tree is a graph produced by starting with a K3

and then repeatedly adding vertices such that each
added vertex v has exactly two neighbours v1, v2 and
there is an edge e = (v1, v2). We say that v is stacked
on e. In this section, we provide a proof sketch for
the following theorem:

Theorem 4 Every 2-tree admits a strongly mono-
tone drawing.

We begin by introducing some notation. A drawing
with bubbles of a graph G = (V,E) is a straight-line
drawing of G in the plane such that, for some E′ ⊆ E,
every edge e ∈ E′ is associated with a circular region
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Figure 3: A drawing with bubbles (a) together with
an extension (b). Stacking vertices into a bubble (c).

in the plane, called a bubble Be; see Figure 3(a). An
extension of a drawing with bubbles is a straight-line
drawing that is obtained by taking some subset of
edges with bubbles E′′ ⊆ E′ and stacking one vertex
on top of each edge e ∈ E′′ into the corresponding
bubble Be; see Figure 3(b). (Since every bubble is as-
sociated with a unique edge we often simply say that
a vertex is stacked into a bubble without mention-
ing the corresponding edge.) We call a drawing with
bubbles Γ strongly monotone if every extension of Γ
is strongly monotone. Note that this implies that if a
vertex w is stacked on top of edge e into bubble Be,
then there exists a strongly monotone path from w
to any other vertex in the drawing and, furthermore,
there exists a strongly monotone path from w to any
of the current bubbles, i.e., to any vertex that might
be stacked into another bubble.

Every 2-tree T = (V,E) can be constructed through
the following iterative procedure: 1. Start with one
edge and tag it as active. During the entire proce-
dure, every present edge is tagged either as active or
inactive. 2. Pick one active edge e and stack vertices
w1, . . . , wk on top of this edge for some k ≥ 0 (we
note that k might equal 0). Edge e is then tagged
as inactive and all new edges incident to the stacked
vertices w1, . . . , wk are tagged as active. 3. If there
are active edges remaining, repeat Step 2.

Observe that Step 2 is performed exactly once per
edge and that an according decomposition for T can
always be found by the definition of 2-trees. We con-
struct a strongly monotone drawing of T by geometri-
cally implementing the iterative procedure described
above, so that after every step of the algorithm the
present part of the graph is realized as a drawing with
bubbles. We maintain the following:

Invariant: After each step of the algorithm every
active edge comes with a bubble and the drawing with
bubbles is strongly monotone. Additionaly, for an
edge e = (u, v) with bubble Be for each point w ∈ Be,
the angle ∠(−→uw,−→wv) is obtuse.

In Step 1, we arbitrarily draw the edge e0 in the
plane. Clearly, it is possible to define a bubble for e0
that only allows obtuse angles. In Step 2, we place
the vertices w1, . . . , wk over an edge e = (u, v) as fol-

lows. The fact that stacking a vertex into Be gives
an obtuse angle allows us to place the to-be stacked
vertices w1, . . . wk in Be on a circular arc around u
such that, for any 1 ≤ i, j ≤ k, there exists a strongly
monotone path between wi and wj ; see Figure 3(c).
Due to our invariant, there also exists a strongly
monotone path between any of the newly stacked ver-
tices and any vertex of an extension of the previous
drawing with bubbles. Hence, after removing the bub-
ble Be, the resulting drawing is a strongly monotone
drawing with bubbles.

In order to maintain the invariant, it remains to
describe how to define the bubbles for the new active
edges incident to the stacked vertices. For this pur-
pose, we state the following Lemma 5, which enables
us to define the two bubbles for the edges incident to
any degree-2 vertex with an obtuse angle. The Lemma
is then iteratively applied to the vertices w1, . . . , wk

and after every usage of the Lemma the produced
drawing with bubbles is strongly monotone. This it-
erative approach is used to ensure that, when defining
bubbles for some vertex wi, the previously added bub-
bles for w1, . . . , wi−1 are taken into account.

Lemma 5 Let Γ be a strongly monotone drawing
with bubbles and let w be a vertex of degree 2 with
an obtuse angle such that the two incident edges e1 =
(u,w) and e2 = (v, w) have no bubbles. Then, there
exist bubbles Be1 and Be2 for edges e1 and e2 respec-
tively that only allow obtuse angles such that Γ re-
mains strongly monotone with bubbles if we add Be1

and Be2 .
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1-bend Upward Planar Drawings of SP-digraphs
with the Optimal Number of Slopes∗

Emilio Di Giacomo† Giuseppe Liotta† Fabrizio Montecchiani†

Abstract

It is proved that every series-parallel digraph whose
maximum vertex-degree is ∆ admits an upward pla-
nar drawing with at most one bend per edge such that
each segment along each edge has one of ∆ distinct
slopes. This is shown to be worst-case optimal in
terms of the number of slopes. Furthermore, our con-
struction gives rise to drawings with optimal angular
resolution π

∆ .

1 Introduction

The k-bend planar slope number of a family of planar
graphs with maximum vertex-degree ∆ is the min-
imum number of distinct slopes used for the edges
when computing a crossing-free drawing with at most
k > 0 bends per edge of any graph in the family. For
example, if ∆ = 4, a classic result is that every pla-
nar graph has a crossing-free drawing such that every
edge segment is either horizontal or vertical and each
edge has at most two bends (see, e.g., [1]). Clearly
this bound on the number of slopes is optimal. This
result has been extended to values of ∆ larger than
four by Keszegh et al. [5], who prove that d∆

2 e slopes
suffice to construct a planar drawing with at most two
bends per edge for any planar graph.

However if additional geometric constraints are im-
posed on the crossing-free drawing, only a few tight
bounds on the planar slope number are known. For
example, if one requires that the edges cannot have
bends, the best known upper bound on the pla-
nar slope number is O(c∆) (for a constant c > 1)
while a general lower bound of just 3∆ − 6 has been
proved [5]. Tight bounds are only known for outerpla-
nar graphs [6] and subcubic graphs [3], while the gap
between upper and lower bound has been reduced for
planar graphs with treewidth two [8] or three [4]. If
one bend per edge is allowed, Keszegh et al. [5] show
an upper bound of 2∆ and a lower bound of 3

4 (∆−1)
on the planar slope number of the planar graphs with
maximum vertex-degree ∆. In a recent paper, Knauer
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†Dipartimento di Ingegneria, Università degli Studi
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and Walczak [7] lower the upper bound to 3
2 (∆− 1);

in the same paper, it is also proved that a tight bound
of d∆

2 e can be achieved for outerplanar graphs.
In this paper we focus on the 1-bend planar slope

number of directed graphs with the additional require-
ment that the computed drawings are upward, i.e.,
each edge is drawn as a curve monotonically increas-
ing in the y-direction. We recall that upward draw-
ings are a classic research topic in graph drawing, see
e.g. [2]. We show that every series-parallel digraph
G whose maximum vertex-degree is ∆ has 1-bend up-
ward planar slope number ∆. That is, G admits an
upward planar drawing with at most one bend per
edge where at most ∆ distinct slopes are used for the
edges. This is shown to be worst-case optimal in terms
of the number of slopes.

To prove the above results, we first construct a
suitable contact representation of a series-parallel
(di)graph where each vertex is represented as a cross,
i.e. a horizontal segment properly intersected by a
vertical segment (Section 3); then, we transform such
contact representation into a 1-bend (upward) pla-
nar drawing optimizing the number of slopes used in
such transformation (Section 4). Our construction
gives rise to drawings with optimal angular resolution
(i.e. the minimum angle between any two consecutive
edges around a vertex); namely, the angular resolu-
tion is at least π

∆ . Preliminaries are in Section 2. We
conclude with some open problems in Section 5.

2 Preliminaries

A series-parallel digraph (SP-digraph for short) [2] is
a simple planar digraph that has one source and one
sink, called poles, and it is recursively defined as fol-
lows. A single edge is an SP-digraph. The digraph
obtained by identifying the sources and the sinks of
two SP-digraphs is an SP-digraph (parallel composi-
tion). The digraph obtained by identifying the sink
of one SP-digraph with the source of a second SP-
digraph is an SP-digraph (series composition). A re-
duced SP-digraph is a SP-digraph without transitive
edges. The underlying undirected graph of an SP-
digraph is called an SP-graph. An SP-digraph G is
naturally associated with a binary tree T , which is
called the decomposition tree of G. The nodes of T are
of three types, Q-nodes, S-nodes, and P -nodes, rep-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: (a) An SP-graph G and its decomposition
tree. (b) The slope-set S4. (c) The safe-region (dot-
ted) of a cross (when ∆=4).

resenting single edges, series compositions, and par-
allel compositions, respectively. An SP-graph G and
its decomposition tree are shown in Fig. 1(a). The
decomposition tree of G has O(n) nodes and can be
constructed in O(n) time [2].

The slope s of a line ` is the angle that a horizontal
line needs to be rotated counter-clockwise in order to
make it overlap with `. The slope of a segment is the
slope of the supporting line containing it. We denote
by S∆ the set of slopes: si = π

2 +i π∆ (i = 0, . . . ,∆−1)
(see Fig. 1(b)).

3 Cross Contact Representations

Basic definitions. A cross is composed of one hori-
zontal segment and one vertical segment that share an
interior point, the center of the cross. A cross is de-
generate if either its horizontal or its vertical segment
has zero length. The center of a degenerate cross is its
midpoint. A point p of a cross c is an end-point (inte-
rior point) of c if it is an end-point (interior point) of
the horizontal or vertical segment of c. Two crosses
c1 and c2 touch if they share a point p, called contact,
such that p is an end-point of the vertical (horizontal)
segment of c1 and an interior point of the horizontal
(vertical) segment of c2. A cross-contact representa-
tion (CCR) of a graph G, is a drawing γ such that:
(i) Every vertex v of G is represented by a (possibly
degenerate) cross c(v); (ii) All intersections of crosses
are touches, and (iii) Two crosses c(u) and c(v) touch
if and only if G contains the edge (u, v).

We now consider CCRs of digraphs, and define
properties that will be useful to transform the com-
puted CCR into a 1-bend upward drawing of the cor-
responding digraph with few slopes and good angular
resolution. Let γ be a CCR of a digraph G with max-
imum vertex-degree ∆. Let (u, v) be an edge of G
oriented from u to v. Let p be the contact between
c(u) and c(v). The point p is an upward contact if
the following two conditions hold: (a) p is an end-
point of the vertical segment of one of the two crosses
and an interior point of the other cross, and (b) the
center of c(v) is above the center of c(u). A CCR of
a digraph G such that all its contacts are upward is
an upward CCR (UCCR). An UCCR γ is balanced if
for every non-degenerate cross c(u) of γ, we have that
|nl(u) − nr(u)| ≤ 1, where nl(u) (nr(u)) is the num-
ber of contacts on the left (right) of the center of c(u).
Also, let {p1, p2, . . . , pδ} be the δ ≥ 1 contacts along
the horizontal segment of c(u), in this order from the
leftmost one (p1) to the rightmost one (pδ). Let t be
the intersection point between the vertical line passing
through pδ and the line with slope π

2 − π
∆ and passing

through p1. Similarly, let t′ be the intersection point
between the vertical line passing through p1 and the
line with slope π

2 − π
∆ and passing through pδ. The

safe-region of c(u) is the rectangle having t and t′ as
the top-right and bottom-left corner, respectively. See
Fig. 1(c) for an illustration. If δ = 1, the safe-region
degenerates to a point. An UCCR γ is well-spaced if
no two safe-regions intersect each other.

Algorithm overview. In the remainder of this sec-
tion we describe a linear-time algorithm, UCCRDrawer,
that takes as input a reduced SP-digraph G, and com-
putes an UCCR γ of G which is balanced and well-
spaced. The algorithm computes γ through a bottom-
up visit of the decomposition tree T of G. For each
node µ of T , UCCRDrawer computes an UCCR γµ of
the graph Gµ associated with µ such that the follow-
ing properties hold:

P1. γµ is balanced.
P2. γµ is well-spaced.
P3. Let sµ and tµ be the two poles of Gµ. If

µ is a P - or an S-node, then γµ is contained in a
rectangle Rµ such that its bottomost (topmost) side is
the cross representing c(sµ) (c(tµ)), which is therefore
degenerate.

Drawing construction. As already said,
UCCRDrawer computes γ through a bottom-up
visit of the decomposition tree T of G. For each leaf
node µ (which is a Q-node) the associated graph
Gµ consists of a single edge (sµ, tµ). In this case,
we define two possible types of UCCR, γAµ (type A)

and γBµ (type B), of Gµ, as in Figs. 2(a) and 2(b).
Properties P1 – P2 trivially hold in this case, while
property P3 does not apply.
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Figure 2: Illustration for algorithm UCCRDrawer. The
safe-regions are dotted (they are not in scale).

For each non-leaf node µ of T , UCCRDrawer com-
putes the UCCR γµ by suitably combining the (al-
ready) computed UCCRs γν1 and γν2 of the two
graphs associated with the children ν1 and ν2 of µ.
If µ is an S-node of T , we distinguish between the
following cases, where we assume that tν1 = sν2 is the
pole shared by ν1 and ν2.
Case 1. Both ν1 and ν2 are Q-nodes. Then an UCCR
of Gµ is computed by combining γAν1 and γBν2 as in
Fig. 2(c). Properties P1 – P3 trivially hold.
Case 2. ν1 is a Q-node , while ν2 is not (the case
when ν2 is a Q-node and ν1 is not, is symmetric).
We combine the drawing γAν1 of Gν1 and the drawing
γν2 of Gν2 as in Fig. 2(d). Notice that, to combine
the two drawings we may need to scale one of them
so that their widths are the same. To ensure P1,
we move the vertical segment s of c(tν1) = c(sν2) so
that |nl(tν1) − nr(tν1)| ≤ 1. We may also need to
shorten its upper part in order to avoid crossings with
other segments, and to extend its lower part so that
c(sν1) is outside the safe-region of c(tν1) = c(sν2),
thus guaranteeing property P2. Property P3 holds
by construction.
Case 3. If none of ν1 and ν2 is a Q-node, then we
combine γν1 and γν2 as in Fig. 2(e). Also in this case
we may need to scale one of the two drawings so that
their widths are the same. Property P1 holds, as it
holds for γν1 and γν2 . Property P2 may not hold
for c(tν1) = c(sν2). We can ensure P2 by performing
the following stretching operation. Let `a and `b be
two horizontal lines slightly above and slightly below
the horizontal segment of c(tν1) = c(sν2), respectively.
We extend all the vertical segments intersected by `a
or `b until the safe-region of c(tν1) = c(sν2) does not
intersect any other safe-region. Property P3 holds by
construction.

Finally, suppose that µ is a P -node of T , having

ν1 and ν2 as children (recall that neither ν1 nor ν2

is a Q-node, since G is a reduced SP-digraph). We
combine γν1 and γν2 as in Fig. 2(f). We may need to
scale one of the two drawings so that their heights are
the same. Property P1 holds, as it holds for γν1 and
γν2 . To ensure P2, a stretching operation similar to
the one described in Case 3 is possibly performed by
using a horizontal line slightly above (below) the hor-
izontal segment of c(sµ) (c(tµ)). Property P3 holds
by construction.

It is possible to show that algorithm UCCRDrawer

can be implemented to run in linear time. The above
discussion can be used to prove the following.

Lemma 1 Let G be an n-vertex reduced SP-digraph.
Algorithm UCCRDrawer computes a balanced and well-
spaced UCCR γ of G in O(n) time.

4 1-bend Upward Planar Drawings

In this section we first describe how to transform an
UCCR of a reduced SP-digraph into an upward 1-
bend planar drawing that uses the slopes in the slope-
set S∆. We then explain how to deal with general
SP-digraphs.

Let γ be an UCCR of a reduced SP-digraph G and
let c(u) be the cross representing a vertex u of G in γ.
Let p1, . . . , pδ (δ ≥ 1) be the contacts along the hori-
zontal segment of c(u). We assume that these contacts
are ordered such that we first have all the contacts
corresponding to the outgoing edges of u from left to
right, and then we have all the contacts corresponding
to the incoming edges of u from right to left. Let c be
either the center of c(u), if c(u) is non-degenerate, or
pb δ2 c+1 if c(u) is degenerate. Consider the set of lines

`0, . . . , `∆−1, such that `i passes through c and has
slope si ∈ S∆ (for i = 0, . . . ,∆−1). These lines inter-
sect all the vertical segments forming a contact on the
horizontal segment of c(u). In particular, each quad-
rant of c(u) contains a number of lines that is at least
the number of vertical segments touching c(u) in that
quadrant. Since γ is well-spaced, all these intersec-
tions are inside the safe-region of c(u). Hence we can
replace each contact of c(u) with two segments hav-
ing slope in S∆ as shown in Fig. 3(a) and 3(b). More
precisely, each contact pi of c(u) is replaced with two
segments that are both in the quadrant of c(u) that
contains the vertical segment defining pi. This guar-
antees the upwardness of the resulting drawing. Also,
each edge has at most one bend. Namely, each edge
is represented by a single contact between a horizon-
tal and a vertical segment and we introduce one bend
only when dealing with the cross containing the hor-
izontal segment. Finally, Γ is planar. Namely, there
is no crossing in γ and each cross is only modified lo-
cally inside its safe-region which, by the well-spaced
property, is disjoint by any other safe-region.

65



32nd European Workshop on Computational Geometry, 2016

c(u)

(a)

u

(b)

u

v

x

(c)

∆− 1

s

t

∆− 1

(d)

Figure 3: (a)-(b) Transforming an UCCR into a 1-
bend drawing. (c) Drawing of a transitive edge. (d)
A SP-digraph requiring at least ∆ slopes in any 1-
bend upward planar drawing.

Using the technique described above, we can com-
pute an 1-bend upward planar drawing with slopes in
the slope-set S∆ for reduced SP-digraphs. We now ex-
plain how to deal with a general SP-digraph G. First,
we change the embedding of G as follows. Let (u, v)
be a transitive edge, and let G′ be the maximal sub-
graph of G having u and v as poles. We change the
embedding of G′ so that (u, v) is the rightmost out-
going edge of u and the rightmost incoming edge of v.
Second, we subdivide (u, v) with a dummy vertex x.
The resulting graph Gr is a reduced SP-digraph and
therefore we can compute an 1-bend upward planar
drawing Γr of Gr as described above. When doing
so, we take care of guaranteeing that the drawings of
(u, x) and (x, v) (for each transitive edge (u, v)) do
not use the horizontal slope (it is not hard to see that
this is always possible). Each transitive edge (u, v) of
G is represented in Γr by a path of two edges (u, x)
and (x, v). If at least one between (u, x) and (x, v)
is drawn with no bend, then it is sufficient to remove
x to obtain a 1-bend drawing of (u, v). If both (u, x)
and (x, v) have one bend, then simply removing the
subdivision vertex would lead to a 2-bend drawing of
(u, v). In this case we have to modify the drawing of
(u, v). Let `u be the straight line passing through u
and the bend of (u, x) and let `v be the straight line
passing through v and the bend of (x, v). We obtain
a 1-bend drawing of (u, v) by placing a single bend at
the intersection point of `u and `v (see Figure 3(c)).
Since we did not use the horizontal slope in the draw-
ing of (u, x) and (x, v) such a point exists. With this
operation, the drawing of (u, v) has been extended to
the right, and it is possible to modify the construction
of the UCCR γ so that (u, v) does not cross any other
edge. The modification of UCCRDrawer is such that
when a P -node is processed, it additionally ensures
the existence of an empty region where (u, v) can be
drawn without crossings. Details are omitted.

We conclude by exhibiting in Fig. 3(d) a family of
SP-digraphs, such that, for every value of ∆, there
exists a graph in this family with maximum vertex-
degree ∆ and that requires at least ∆ slopes in any
1-bend upward planar drawing. Namely, if a graph G

has a source (or a sink) of degree ∆, then it requires
at least ∆− 1 slopes in any upward drawing because
each slope, with the only possible exception of the
horizontal one, can be used for a single edge. In the
graph of Fig. 3(d) however, the edge (s, t) must be
either the leftmost or the rightmost edge of s and t in
any upward drawing. Therefore, if only ∆− 1 slopes
are allowed, such edge cannot be drawn planarly and
with one bend. Thus, the following theorem holds.

Theorem 2 Every n-vertex SP-digraph G with max-
imum vertex-degree ∆ admits a 1-bend upward planar
drawing Γ with at most ∆ slopes and angular resolu-
tion at least π

∆ . These bounds on the number of slopes
and on the angular resolution are worst-case optimal.
Also, Γ can be computed in O(n) time.

Since every SP-graph can be oriented to an SP-
digraph, next corollary is implied by Theorem 2 and
lowers the upper bound for planar graphs in [7].

Corollary 1 The 1-bend planar slope number of SP-
graphs with maximum vertex-degree ∆ is at most ∆.

5 Conclusions and Open Problems

We proved that the 1-bend upward planar slope num-
ber of SP-digraphs with maximum vertex-degree ∆ is
at most ∆ and this is a tight bound. Is the bound of
Corollary 1 also tight? Moreover, can it be extended
to any partial 2-tree?
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Improved Bounds on the Growth Constant of Polyiamonds∗

Gill Barequet† Mira Shalah∗

Abstract

A polyiamond is an edge-connected set of cells on
the triangular lattice. In this paper we provide im-
proved lower and upper bounds on the asymptotic
growth constant of polyiamonds, proving that it is
between 2.8424 and 3.6050.

1 Introduction

(a) n = 1: Two moniamonds

(b) n = 2: Three diamonds

(c) n = 3: 6 triamonds

(d) n = 4: 14 tetriamonds

A polyomino of size n is an edge-connected set of n
cells on the square lattice Z2. Similarly, a polyiamond
of size n is an edge-connected set of n cells on the
triangular lattice. Fixed polyiamonds are considered
distinct if they have different shapes or orientations.
In this paper we consider only fixed polyiamonds, and
so we refer to them simply as “polyiamonds.” Figure 1
shows polyiamonds of size 1–4.

In general, a connected set of cells on a lattice is
called a lattice animal. The fundamental combinato-
rial problem concerning lattice animals is “How many
animals with n cells are there?” The study of lattice
animals began in parallel more than half a century ago
in two different communities. In statistical physics,
Temperley [19] investigated the mechanics of macro-
molecules, and Broadbent and Hammersley [5] stud-
ied percolation processes. In mathematics, Eden [6]

∗Work on this paper by both authors has been supported in
part by ISF Grant 575/15.
†Dept. of Computer Science, The Technion, Haifa 32000,

Israel. E-mail: {barequet,mshalah}@cs.technion.ac.il

and others analyzed cell growth problems. Since then,
counting animals has attracted much attention in the
literature. However, despite serious efforts over the
last 50 years, counting polyominoes is still far from be-
ing solved, and is considered one of the long-standing
open problems in combinatorial geometry.

The symbol A(n) usually denotes the number of
polyominoes of size n; See sequence A001168 in the
On-line Encyclopedia of Integer Sequences (OEIS) [1].
Since no analytic formula for the number of ani-
mals is yet known for any nontrivial lattice, a great
portion of the research has so far focused on effi-
cient algorithms for counting animals on lattices, pri-
marily on the square lattice. Elements of the se-
quence A(n) are currently known up to n = 56 [11].
The growth constant of polyominoes was also treated
extensively in the literature, and a few asymptotic
results are known. Klarner [12] showed that the
limit λ := limn→∞ n

√
A(n) exists, and the main prob-

lem so far has been to evaluate this constant. The
convergence of A(n + 1)/A(n) to λ (as n→∞) was
proven only three decades later by Madras [15], us-
ing a novel pattern-frequency argument. The best-
known lower and upper bounds on λ are 4.0025 [4]
and 4.6496 [13], respectively. It is widely believed
(see, e.g., [7, 8]) that λ ≈ 4.06, and the currently
best estimate, λ = 4.0625696 ± 0.0000005, is due to
Jensen [11].

In the same manner, let T (n) denote the number
of polyiamonds of size n (sequence A001420 in the
OEIS). Elements of the sequence T (n) were computed
up to n = 75 [9, p. 479] using a transfer-matrix al-
gorithn by Jensen [ibid., p. 173], adapting his origi-
nal polyomino-counting algorithm [11]. Earlier counts
were given by Lunnon [14] up to size 16, by Sykes
and Glen [18] up to size 22, and by Aleksandrowicz
and Barequet [2] (extending Redelmeier’s polyomino-
counting algorithm [17]) up to size 31.

Similarly to polyominoes, the limits
limn→∞ n

√
T (n) and limn→∞ T (n + 1)/T (n) ex-

ist and are equal. Let, then, λT denote the growth
constant of polyiamonds. Klarner [12, p. 857] showed
that λT ≥ 2.13 by taking the square root of 4.54, a
lower bound he computed for the growth constant
of animals on the rhomboidal lattice, using the
fact that a rhombus is made of two neighboring
equilateral triangles. This bound is also mentioned
by Lunnon [14, p. 98]. Rands and Welsh [16] used
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renewal sequences in order to show that

λT ≥ (T (n)/(2(1 + λT )))1/n (1)

for any n ∈ N. Substituting the easy upper bound
λT ≤ 4 (see below) in the right-hand side of this
relation, and knowing at that time elements of the
sequence T (n) for 1 ≤ n ≤ 20 only (data pro-
vided by Sykes and Glen [18]), they used T (20) =
173, 338, 962 to show that λT ≥ (T (20)/10)1/20 ≈
2.3011. Nowadays, since we know T (n) up to n = 75,1

we can obtain, using the same method, that λT ≥
(T (75)/10)1/75 ≈ 2.7714. We can even do slightly
better than that. Substituting in Equation (1) the
upper bound we obtain in Section 3 (λT ≤ 3.6050), we
see that λT ≥ (T (75)/(2(1 + 3.6050)))1/75 ≈ 2.7744.
However, we can still improve on this.

An easy upper bound, based on an idea of Eden [6]
(originally applied to the square lattice for setting an
upper bound on λ), was described by Lunnon [14,
p. 98]. Every polyiamond P can be built according to
a set of n−1 “instructions” taken from a superset of
size 2(n−1). Each instruction tells us how to choose a
lattice cell c, neighboring a cell already in P , and add c
to P . (Some of these instruction sets are illegal, and
other sets produce the same polyiamonds, but this

only helps.) Hence, λT ≤ limn→∞
(

2(n−1)
n−1

)1/n
= 4.

As can be seen, there is a large gap between the
lower and upper bounds on λT . Based on existing
data, it is believed [18] (but has never been proven)
that λT = 3.04 ± 0.02. In this paper we improve
both lower and upper bounds on λT , showing that
2.8424 ≤ λT ≤ 3.6050. The new lower bound is ob-
tained by using a concatenation argument tailored
to the triangular lattice, and the new upper bound
is obtained by investigating the growth constant of
a sequence dominating the enumerating sequence of
polyiamonds.

2 Lower Bound

A concatenation of two polyiamonds P1, P2 is the
translation of P1 relative to P2, so that P1, P2 do not
overlap but their union is a valid (connected) polyia-
mond, and all the translated versions of the cells of P1

are smaller than the cells of P2 under a proper defini-
tion of a lexicographic order on the cells of the lattice.
We use a concatenation argument in order to improve
the lower bound on λT .

Theorem 1 λT ≥ 2.8424.

Proof. We orient the triangular lattice as is shown
in Figure 1(a), and define a lexicographic order on
the cells of the lattice as follows: A cell c1 is smaller
than cell c2 6= c1 (denoted as c1 < c2) if the lattice

1T (75) = 15, 936, 363, 137, 225, 733, 301, 433, 441, 827, 683, 823.

(b) Left arrow

(a) A polyiamond (c) Right arrow

Figure 1: Polyiamonds on the triangular lattice

column of c1 is to the left of the column of c2, or
if c1, c2 are in the same column and c1 is below c2.
Denote triangles which look like a “left arrow” (Fig-
ure 1(b)) as triangles of Type 1, and triangles which
look like a “right arrow” (Figure 1(c)) as triangles of
Type 2. Let T1(n) be the number of polyiamonds of
size n whose largest (top-right) triangle is of Type 1,
and let T2(n) be the number of polyiamonds of size
n whose largest triangle is of Type 2. Obviously, we
have T (n) = T1(n) + T2(n).2 An interesting obser-
vation is that by rotational symmetry, the number of
polyiamonds of size n, whose smallest (bottom-left)
triangle is of Type 2, is also T1(n), and so the number
of polyiamonds, whose smallest triangle is of Type 1,
is T2(n).

We now proceed with a standard concatenation ar-
gument, tailored to the specific case of the triangular
lattice. Interestingly, not all pairs of polyiamonds of
size n can be concatenated. In addition, there exist
many polyiamonds of size 2n which cannot be rep-
resented as the concatenation of two polyiamonds of
size n. Let us count carefully the amount of pairs of
polyiamonds that can be concatenated.

• Polyiamonds, whose largest triangle is of Type 1,
can be concatenated only to polyiamonds whose
smallest triangle is of Type 2, and this can be
done in two different ways (see Figure 2(a)).
There are 2(T1(n))2 concatenations of this kind.

• Polyiamonds, whose largest triangle is of Type 2,
can be concatenated, in a single way, only to
polyiamonds whose smallest triangle is of Type 1
(see Figure 2(b)). There are (T2(n))2 concatena-
tions of this kind.

Altogether, we have 2(T1(n))2+(T2(n))2 possible con-
catenations, and, as argued above,

2(T1(n))2 + (T2(n))2 ≤ T (2n). (2)

2Observe that T1(n) = T2(n−1) and, hence, T (n) = T2(n)+
T2(n − 1). Indeed, when the largest cell of a polyiamond P is
of Type 1, its only possible neighboring cell within P is the cell
immediately below it. Therefore, the number of polyiamonds
of size n whose largest cell is of Type 1 is equal to the number
of polyiamonds of size n−1 whose largest cell is of Type 2.
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Two polyiamonds

Vertical concatenation Horizontal concatenation

(a) Two concatenations of Type-1 and Type-2
triangles

Two polyiamonds

Vertical concatenation

(b) A single concatenation of Type-2 and Type-1
triangles

Figure 2: Possible concatenations of polyiamonds

Let us now find a lower bound on the number of con-
catenations. Let x = x(n) be the fraction of polyi-
amonds of Type 1 out of all polyiamonds of size n,
i.e., T1(n) = xT (n) and T2(n) = (1− x)T (n). Eq. (2)
can then be rewritten as T (2n) ≥ 2(xT (n))2 + ((1 −
x)T (n))2 = (3x2−2x+1)T 2(n). Elementary calculus
shows that the function f(x) = 3x2−2x+1 assumes its
minimum at x = 1/3 and that f(1/3) = 2/3. Hence,

2

3
T 2(n) ≤ T (2n).

By manipulating this relation, we obtain that

(2

3
T (n)

)1/n ≤
(2

3
T (2n)

)1/(2n)

This implies that the sequence
(

2
3T (k)

)1/k
,(

2
3T (2k)

)1/(2k)
,
(

2
3T (4k)

)1/(4k)
, . . . is monotone

increasing for any value of k, and, as a subsequence of((
2
3T (n)

)1/n)
, it converges to λT too. Therefore, any

term of the form
(

2
3T (n)

)1/n
is a lower bound on λT .

In particular, λT ≥ ( 2
3T (75))1/75 ≈ 2.8424. �

3 Upper Bound

We follow the method used recently [3] for polyomi-
noes (animals on the square lattice).3

3.1 Number of Compositions

Definition 2 A polyiamond P can be decomposed
into two polyiamonds P1, P2 if the cell set of P can
be split into two complementing non-empty subsets,
such that each subset is a valid (connected) polyia-
mond. We also say that the polyiamonds P1, P2 can
be composed so as to yield the polyiamond P .

A composition of two polyiamonds is a natural gen-
eralization of the widely-used notion of the concate-
nation of polyiamonds. In fact, concatenation is a
composition in lexicographic order.

Theorem 3 (Composition) Let P1, P2 be two polyi-
amonds of sizes n1 and n2, respectively. Then, P1 and
P2 can be composed and yield at most (n1 + 2)(n2 +
2)/2 different polyiamonds.4

Proof. Refer again to Figure 1(a). A boundary edge
of a polyiamond can be either vertical, ascending, or
descending. The inside of the polyiamond can be ei-
ther to the left or to the right of a boundary edge,5

where the latter case is marked below by overlining.
Denote, then, the number of boundary edges of the
various types by x and x̄, where x ∈ {v, a, d}. Thus,
if the perimeter of a polyiamond is p, we can clas-
sify its boundary by the vector (v, a, d, v̄, ā, d̄), where
v+a+d+v̄+ā+d̄ = p. Suppose we are given two polyi-
amonds P1, P2 with respective perimeters p1, p2 and
associated perimeter vectors (vi, ai, di, v̄i, āi, d̄i) (for
i = 1, 2). Then, a trivial upper bound on the num-
ber of compositions of P1, P2 is

∑
t∈{v,a,d,v̄,ā,d̄} t1t̄2,

using the convention ¯̄ti = ti. Note that the num-
ber of boundary edges of any type of a polyiamond of
perimeter p cannot exceed p/2. Therefore, by convex-
ity, the number of compositions of P1, P2 is bounded
from above by 2(p1/2 · p2/2) = p1p2/2. (A slightly
sharper upper bound which takes into account odd
perimeters is dp1/2e dp2/2e + bp1/2c bp2/2c.) The
perimeter of a polyiamond of size n is maximized
when the cell-adjacency graph of the polyiamond is
a tree, in which case the perimeter is n+ 2. (Indeed,
the perimeter of a single triangle is 3, and each of
the additional n−1 triangles adds at most 1 to the
perimeter.) The claim follows. �

3There is a gap in Theorem 3 in this reference. Therefore,
we take a different approach in Theorem 3 below.

4A slightly sharper upper bound is (dn1/2e + 1)(dn2/2e +
1) + (bn1/2c+ 1)(bn2/2c+ 1).

5The “left” (resp., “right”) side of an ascending edge means
above (resp., below) the edge, while the “left” (resp., “right”)
side of a descending edge means below (resp., above) the edge.
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3.2 Balanced Decompositions

Definition 4 A decomposition of a polyiamond of
size n into two polyiamonds P1, P2 is k-balanced if
k ≤ |Pi| ≤ n− k (for i = 1, 2).

Theorem 5 Every polyiamond of size n has at least
one d(n− 1)/3e-balanced decomposition.

Proof. Let us rephrase the claim in graph terminol-
ogy. In fact, we prove a stronger claim which states
that every connected graph G, for which ∆(G) ≤ 3,
can be partitioned into two vertex-disjoint subgraphs
G1, G2, such that (1) G1, G2 are connected; and
(2) d(n− 1)/3e ≤ |Gi| ≤ b(2n+ 1)/3c (for i = 1, 2).
This can be done constructively by considering a
spanning tree of G, marking an arbitrary vertex as its
root, and traversing the tree downwards from the root
while keeping the invariant that either the already-
traversed subgraph meets the size requirement or the
untraversed part contains a subgraph with this prop-
erty. When the process stops, which must be the case,
the desired decomposition is found. �

3.3 The Bound

Theorem 6 λT ≤ 3.6050.

Proof. First, the combination of Theorems 3 and 5
implies that

T (n) ≤
bn/2c∑

k=dn−1
3 e

(1− δk,n/2

2
)
(k + 2)(n− k + 2)

2
T (k)T (n− k).

Indeed, every polyiamond of size n can be decom-
posed in at least one d(n− 1)/3e-balanced way into
a pair of polyiamonds P1, P2 of sizes n1 and n2, re-
spectively (where n1 + n2 = n), and a code with up
to (n1 +2)(n2 +2)/2 options will tell us uniquely how
to compose P1, P2 in order to reconstruct P . (The
factor (1− δk,n/2/2) compensates for double counting
which occurs when P1, P2 are of the same size.) Natu-
rally, P can be decomposed in more than one way, and
the number of compositions of P1, P2 can be smaller
than (n1 + 2)(n2 + 2)/2, but this only helps.

Second, define the sequence T ′(n) as follows.

T ′(n) =



T (n) 1≤n≤75;
bn/2c∑

k=
⌈
n−1
3

⌉
(1− δk,n/2

2
)
(k+2)(n−k+2)

2
T ′(k)T ′(n− k) n>75.

(Recall that the sequence T (n) is known for 1 ≤ n ≤
75.) Since T ′(n) ≥ T (n) for any value of n ∈ N (this
can be proven by a simple induction on n), the growth
constant of T ′(n), if it exists, is an upper bound on λT .

Numerical calculations show that T ′(n) does have an
asymptotic growth constant which is about 3.6050,
implying the claim. �
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Colouring Contact Graphs of Squares and Rectilinear Polygons

Mark de Berg∗ Aleksandar Markovic∗ Gerhard Woeginger∗

Abstract

We study colourings of contact graphs of squares and
rectilinear polygons. Our main results are that (i) it
is np-hard to decide if a contact graph of unit squares
is 3-colourable, and (ii) any contact graph of a set of
rectilinear polygons is 6-colourable.

1 Introduction

In graph-colouring problems the goal is to assign a
colour to each node in a graph G = (V,E) such that
the resulting colouring satisfies certain properties.
The standard property is that for any edge (u, v) ∈ E
the nodes u and v have different colours. From now
on, whenever we speak of a colouring of a graph
we mean a colouring with this property. The min-
imum number of colours needed to colour a given
graph is called the chromatic number of the graph.
Two main questions regarding graph colouring are:
(i) Given a graph G from a certain class of graphs,
how quickly can we compute its chromatic number?
(ii) What is the chromatic number of a given graph
class, that is, the smallest number of colours such that
any graph from the class can be coloured with that
many colours?

We are interested in these questions for graphs in-
duced by geometric objects in the plane and, in par-
ticular, by contact graphs. Let S = {P1, . . . , Pn} be
a set of geometric objects in the plane. The inter-
section graph induced by S is the graph whose nodes
correspond to the objects in S and where there is an
edge (Pi, Pj) if and only if Pi and Pj intersect. If
the objects in S are closed and have disjoint interiors,
then the intersection graph is called a contact graph.
It has been shown that the class of contact graphs of
discs is the same as the class of planar graphs: any
contact graph of discs is planar and any planar graph
can be drawn as a contact graph of discs [6]. By the
Four-Colour Theorem [1] this implies that any contact
graph of discs is 4-colourable. More generally, contact
graphs of compact objects with smooth boundaries
are planar, and so they are 4-colourable.

We are interested in colouring contact graphs of
squares and rectilinear polygons. (Unless explicitly
stated otherwise, whenever we speak of squares or rec-

∗Department of Math and CS, TU Eindhoven. MdB, AM
and GW are supported by the Netherlands’ Organisation for
Scientific Research (NWO) under project no. 024.002.003.

tilinear polygons we mean axis-parallel squares and
axis-parallel rectilinear polygons.) Contact graphs of
squares are different from contact graphs of smooth
objects, because four (interior-disjoint) squares can all
meet in a common point. Thus the obvious embed-
ding of such a contact graph—where we put a node at
the center of each square and we connect the centers
of two touching squares by a two-link path through a
touching point—is not necessarily plane.

Eppstein et al. [4] studied colourings of contact
graphs of squares for the special cases where the
squares form a quadtree subdivision, that is, the set
S of squares is obtained by recursively subdividing
an initial square in four equal-sized quadrants. They
proved that any such contact graph is 6-colourable
and they gave an example of a quadtree subdivision
that requires five colours. (They also considered the
variant where two squares that only touch in a single
vertex are not considered neighbours.)

Our results. We start by studying the computa-
tional complexity of colouring contact graphs. We
show that already for a set of unit squares, it is np-
complete to decide if the contact graph is 3-colourable.

Next we study the chromatic number of various
classes of contact graphs. Recall that the obvious em-
bedding of the contact graph of squares need not be
plane. We first prove contact graphs of unit squares
can have a Km as a minor for an arbitrarily large m
and, hence, need not be planar. Nevertheless, contact
graphs of unit squares are 4-colourable and finding a
4-colouring is quite easy, so our np-completeness re-
sult on 3-colouring completely characterizes the com-
putational complexity of colouring unit squares. Con-
tact graphs of arbitrarily-sized squares are not always
4-colourable—the quadtree example of Eppstein et
al. [4] requiring five colours shows this. We prove that
the chromatic number of the class of contact graphs of
arbitrarily-sized squares is at most 6. In fact, we prove
that any contact graph of a set of rectilinear polygons
is 6-colourable. (Even more generally, contact graphs
of polygons whose interior angles are strictly greater
than 2π/5 are 6-colourable.) Thus we obtain the same
bound of Eppstein et al., but for a much larger class
of objects. Moreover, for this class the bound is tight.
To prove our result, we charaterize contact graphs of
rectilinear polygons as a certain subset of 1-planar
graphs, which are known to be 6-colourable [2].

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 NP-Completeness of 3-Colourability

In this section we establish the hardness of 3-
Colourability on contact graphs of unit squares.

Theorem 1 3-Colourability on contact graphs of
unit squares is np-complete.

Proof. 3-Colourability on contact graphs is ob-
viously in np. To prove that the problem is np-hard
we use a reduction from the np-complete problem of
3-colouring planar graphs of degree at most 4 [5].

Let G = (V,E) be any planar graph on n vertices
with degree at most 4. Rosenstiehl and Tarjan [7]
showed that we can compute in polynomial time a
visibility representation of G, in which every vertex
u ∈ V is represented by a horizontal vertex segment su
and every edge (u, v) ∈ E is represented by a vertical
edge segment that connects su and sv and does not
intersect any other vertex segment.

a1

c1

a2

c2

b0
b1 b2 b3

a1
a2

b0
b1

b2

b3

c1
c2

The construction can be done so that (i) all y-
coordinates of the vertex segments are multiples of 10,
and (ii) all x-coordinates of the edge segments are
multiples of 3 and all x-coordinates of the left and
right endpoints of the vertex segments are of the form
3i− 1

2 and 3j+ 1
2 , respectively, for some integers i < j.

The vertex gadget that replaces a vertex segment
is as follows; the example shows the gadget for a seg-
ment of length 7.

vertex segment

The grey squares in the construction are called con-
nector squares. In order to 3-colour a vertex gadget,
all connector squares must receive the same colour.
This colour represents the colour of the correspond-
ing vertex in G. Note that each edge segment passes
through the center of a connector square on both ver-
tex gadgets it connects.

The edge gadget that replaces an edge segment con-
sists of a basic edge gadget plus zero or more exten-
sion blocks. Note that we can generate edge gadgets
of vertical length 7 + 2j for any integer j > 0, by
using j extension blocks. This suffices because the
y-coordinates of the vertex segments are multiples
of 10, and so the distance in between any two con-
nector squares we need to connect by an edge is of
the form 10k − 3, for some integer k > 1. Our edge

connector squares
of vertex gadgets

c

c

c

¬c

¬c
basic edge gadget

¬c

¬c

extension block

gadget forces the connector squares of the two ver-
tex gadgets it connects to have different colours. It is
easily checked that this implies that the contact graph
of the generated set of squares is 3-colourable if and
only if the original graph G is. Moreover, the entire
construction can be done in polynomial time. �

Using a similar proof we can show that 3-
Colourability is np-complete for contact graphs of
discs, or of any other fixed convex and compact shape.
Note that for discs (or other smooth shapes) this set-
tles the complexity of the problem completely: con-
tact graphs of smooth convex shapes are planar and so
they are 4-colourable, and checking for 2-colourability
is easy.

3 Unit Squares

If we draw the contact graph of a set of unit squares
by putting vertices at the centers of the squares and
drawing edges as straight segments, then the resulting
drawing obviously need not be plane. The following
theorem shows a stronger result, namely that contact
graphs of unit squares are not planar and that in fact
they can have a Km-minor for arbitrarily large m.

Theorem 2 For any m > 1, there are contact graphs
of unit squares with a Km-minor.

Proof. The squares we will generate to obtain a con-
tact graph with a Km as minor will all have integer co-
ordinates. The following picture shows the construc-
tion for m = 4.

Next we explain the various components in the con-
struction. Consider Km. We call the nodes of the
Km super nodes and the edges super edges. For each
super node u we put a block of 2m − 3 unit squares
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whose lower edges all lie on the same horizontal line.
The distance between two adjacent blocks is one unit.
In the figure above, the blocks are the four light grey
rectangles.

For each super edge (u, v) we create a path of
squares as follows. We put two vertical columns of
an even number of squares—one on top of the block
created for u and one on top of the block created
for v—which have the same height, and we connect
the topmost squares of these columns by a row of
squares. We can do this such that we do not create
any adjacencies between squares from different paths,
except where a column of one path crosses the row of
another path. Note that in this case the two paths ac-
tually share a square. Where this happens we add one
more square to the top-right of the shared square—
see the three dark grey squares in the picture above.
These extra square allow us to obtain a minor in which
all super edges are represented by disjoint paths, as
the next figure shows.

. . . . . .

...

...

By contracting the (nodes corresponding to the)
square in each block to a super node and contracting
the paths connecting pairs of nodes into super edges
we can now obtain our Km as a minor. Note that the
construction can be done with O(m4) squares (and
we can show that at least Ω(m4) are needed). �

Despite the fact that contact graphs of unit squares
are not planar, they are 4-colourable.

Theorem 3 Any contact graph of set of unit squares
is 4-colourable, and this number is tight in the worst
case.

Proof. The lower bound construction is easy—just
take four squares touching in a common point. For
the upper bound, we divide the plane into horizontal
strips of the form (−∞,+∞) × [i, i + 1) and assign
each square to the strip containing its bottom edge.
The squares assigned to a single strip can be coloured
with only two colours, and by using the colour pair
1,2 for the strips with even i and 3,4 for the strips
with odd i we obtain a 4-colouring. �

4 Arbitrarily-Sized Squares

We now turn our attention to arbitrarily-sized
squares.

Theorem 4 Any contact graph of a set of squares is
6-colourable, and there are contact graphs of squares
that need at least five colours.

Proof. The upper bound follows from the result in
the next section, where we show that even contact
graphs of rectilinear polygons are 6-colourable. It re-
mains to give an example of a set of squares that
induces a contact graph that needs five colours. Epp-
stein et al. [4] already gave such an example (where
the squares form a quadtree subdivision). For com-
pleteness we provide a different (and slightly smaller)
example. We claim that the following graph (which
is also the subgraph of a quadtree) needs at least 5
colours.

Suppose for a contradiction that the graph is 4-
colourable. Then, without loss of generality, we can
colour the four squares of the middle clique (consisting
of four squares of different sizes) as depicted in the
following picture (left). We claim that then the top
left inner square has colour 4.

1
2

4
3

1
2

4
3

4

Indeed, if it has colour 2, none of the four squares
on its right could use colour 2 and so one of these
squares would need a fifth colour. Similarly, if it has
colour 3, none of the four squares below it could use
colour 3 and of those squares would need a fifth colour.
Hence, it has to use colour 4 since it touches a square
coloured with 1. Using similar arguments and simple
deduction, we arrive to the following partial colouring:

1
2

4
3

4

3

2

Now we observe that the four gray squares form
a cycle that surrounds a 4-clique. Moreover, we can
easily deduce that none of the squares in the cycle can
be coloured 2 or 3. Hence they have to use colour 1
and 4. But then the surrounded clique cannot use 1
or 4, a contradiction. We conclude that the graph is
not 4-colourable. �
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5 Rectilinear Polygons

We now turn our attention to contact squares of recti-
linear polygons, where we allow the polygons to have
holes. We will prove that such contact graphs are
6-colourable by showing that they are 1-planar graphs
[3], that is, graphs that can be drawn in the plane
such that each edge has at most one crossing (that
is, it crosses at most one other edge and this crossing
then consists of a single point).

The following theorem establishes the exact relation
between contact graphs of rectilinear polygons and
1-planar graphs. (We recently learned that a similar
result, on the relation between 1-planar graphs and
so-called 4-map graphs was already known [3]. Our
proof concerns rectilinear maps and is more direct.)

Theorem 5 The class of contact graphs of rectilin-
ear polygons is exactly the class of 1-plane graphs in
which every pair of crossing edges is part of a K4.

Proof. Let S := {P1, . . . , Pn} be a set of interior-
disjoint rectilinear polygons. To prove that the con-
tact graph of S is 1-planar, we proceed as follows.
First we add a point vi in the interior of every poly-
gon Pi, which is the embedding of the node corre-
sponding to Pi. Next, for each pair of touching poly-
gons Pi, Pj we pick a connection point qij ∈ ∂Pi∩∂Pj .
If ∂Pi∩∂Pj has non-zero length, we pick qij in the rel-
ative interior of ∂Pi ∩ ∂Pj . We then embed the edge
(vi, vj) by the union of two paths from qij : a path
π(qij , vi) ⊂ Pi to vi and a path π(qij , vj) ⊂ Pj to vj .
We do this in such a way that, for each Pi, the paths
from the connection points on ∂Pi to vi are pairwise
disjoint (except at their shared endpoint vi). This

connection point

v1

v2

v3
v4

v5
v6

can always be done, for example by taking a shortest-
path tree rooted at vi whose leaves are the connection
points on ∂Pi. Thus an edge (vi, vj) can only intersect
an edge (vk, v`) when qij = qk`. Since any point can
be a connection point for at most two pairs of poly-
gons, this means that in our embedding every edge
intersects at most one other edge. Moreover, since
all four polygons meet on the crossing point, they are
part of a 4-clique.

Next we show that every 1-planar graph G = (V,E)
with every pair of crossing edges forming a K4 is the
contact graph of a set of rectilinear polygons. Such
a set can be obtained from a “pixelised” image of a
1-planar drawing of G.

Each polygon is obtained by the vertex it repre-
sents and half of each of its edges, as shown in the
picture above. If the edge is not crossing any other,
we can decide arbitrarily where to divide it into the
two polygons. If it crosses another edge, we cut it at
the crossing point, as depicted above.

We can actually obtain a suitable set of polygons
whose total number of vertices is linear in O(|V |),
but the proof is more complex. This bound is tight
since we can construct an instance where one of the
polygons has linear complexity: since for each crossing
we need a corner, it suffices to have a vertex with a
linear number of edges crossing other edges. �
Note that this proof works for non-rectilinear poly-
gons as long as no five of them touch on a single point,
which is always satisfied when the interior angles are
strictly bigger than 2π/5.

Since 1-planar graphs are 6-colourable and the fig-
ure below shows a rectilinear representation of K6,
Theorem 5 immediately implies the following.

Corollary 6 Any contact graph of a set of rectilinear
polygons is 6-colourable, and this number is tight in
the worst case.
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Connected Dominating Set in Unit-Disk Graphs is W[1]-hard∗

Mark de Berg† Hans Bodlaender‡† Sándor Kisfaludi-Bak†

Abstract

We prove that connected dominating set is W[1]-hard
for unit-disk graphs.

1 Introduction

Wireless networks give rise to a host of interesting
algorithmic problems. In the traditional model of a
wireless network each node u corresponds to a disk Du

in the plane, whose radius equals the transmission
range of u. Thus u can send a message to another
node v if and only if v ∈ Du. If each node has the
same transmission range and we shrink each disk by
a factor two, this condition is equivalent to requiring
that the (shrunk) disksDu andDv intersect. Thus the
communication graph is the intersection graph of a
collection of congruent disks or, in other words, a unit-
disk graph (UDG). Because of their relation to wireless
networks, UDGs have been studied extensively.

Let D be a set of disks in the plane, and let
GD = (D, E) be the UDG induced by D. A broad-
cast tree is a rooted spanning tree for G. To send
a message from the root of the broadcast tree to all
other nodes, each internal node of the tree has to send
the message to its children. Hence, the cost of broad-
casting is related to the number of internal nodes in
the broadcast tree. A cheapest broadcast tree thus
corresponds to a minimum-size connected dominating
set on GD, that is, a minimum-size subset ∆ ⊂ D such
that the subgraph induced by ∆ is connected and each
node in GD is either in ∆ or it is a neighbor of a node
in ∆. Thus we are interested in the following problem:
given a set D of n disks and a parameter k, does GD
admit a connected dominating set of size at most k?

In the following we denote the dominating-set prob-
lem by ds, the connected dominating-set problem by
cds, and we denote these problems on UDGs by ds-
udg and cds-udg, respectively. It is well known that
ds and cds are np-hard, even for planar graphs [5].
ds-udg and cds-udg are also np-hard [6, 8]. In this
paper we are interested in the parameterized complex-
ity [4] of these problems, with k being the parameter.
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Figure 1: Left: the construction of Marx for k = 2.
Right: example of disks inside a single block (X2).

For general graphs ds and cds are well-known W[2]-
complete problems, but for planar graphs both prob-
lems are fixed-parameter tractable [1, 3]. The ques-
tion is what happens for unit-disk graphs, which are in
between general graphs and planar graphs. Marx [7]
showed that ds-udg is W[1]-hard; in this paper we ex-
tend his construction to show that cds-udg is W[1]-
hard as well. The membership in W[1] remains open
for both ds-udg and cds-udg.

2 The construction by Marx for ds-udg

Our W[1]-hardness proof for cds-udg has the
same global structure as the W[1]-hardness proof of
Marx [7] for ds-udg. Hence, we first describe his
proof. He uses a reduction from Grid Tiling [2] (al-
though Marx does not explicitly state it this way).
In a grid-tiling problem we are given an integer k,
an integer n, and a collection S of k2 non-empty sets
Sa,b ⊆ [n]× [n] (1 6 a, b 6 k), and the goal is to select
an element sa,b ∈ Sa,b for each 1 6 a, b 6 k such that

• If sa,b = (x, y) and sa+1,b = (x′, y′), then x = x′.

• If sa,b = (x, y) and sa,b+1 = (x′, x′), then y = y′.

One can picture these sets in a k × k matrix: in each
cell (a, b), we need to select a representative from the
set Sa,b so that the representatives selected from hor-
izontally neighboring cells agree in the first coordi-
nate, and representatives from vertically neighboring
sets agree in the second coordinate.

The reduction places k2 gadgets, one for each
Sa,b. A gadget contains sixteen blocks, labeled
X1, Y1, X2, Y2, . . . , X8, Y8, that are arranged in a grid.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Initially, each block X` contains n2 disks, denoted by
X`(1), . . . , X`(n

2) and each block Y` contains n2 + 1
disks denoted by Y`(0), . . . , Y`(n

2). The argument
j of X`(j) can be thought of as a pair (x, y) with
1 6 x, y 6 n for which f(x, y) = (x−1)n+y = j. Let
f−1(j) = (ι1(j), ι2(j)) = (1 + bj/nc, 1 + (j mod n)).

For the final construction, in each gadget at posi-
tion (a, b), delete all disks X`(j) for each ` = 1, . . . , 8
and (ι1(j), ι2(j)) 6∈ Sa,b. This deletion ensures that
the gadgets represent the corresponding set Sa,b. (The
disks of a minimum dominating set in the gadget (a, b)
will signify a specific choice sa,b = (x, y).)

Moreover, there are special connector blocks (de-
noted by A,B,C and D) between neighboring gad-
gets, each of them containing n + 1 disks. A picture
of the construction for k = 3 can be seen in Figure 1,
where each block is represented by a square.

In every block, the place of each disk center is de-
fined with regard to the midpoint of the block, (r, s).
The center of each circle is of the form (r+αε, s+βε)
where r, s, α and β are integers, and ε > 0 a small
constant. We say that the offset of the disk centered
at (r + αε, s + βε) is (α, β). Note that |α|, |β| 6 n,
and ε < n−2, so the disks in a block all intersect
each other. The disks of a block can be thought of
as slightly shifted versions of the inscribed disk of the
square in Figure 1. The exact offsets for each disk are
defined in [7]. We only describe the important prop-
erties. First, two disks can intersect only if they are
in the same or in neighboring blocks. Consequently,
one needs at least 8 disks to dominate a gadget. The
second important property is that disk X`(j) dom-
inates exactly Y`(j), . . . , Y`(n

2) from the “previous”
block Y`, and Y`+1(0), . . . , Y`+1(j−1) from the “next”
block Y`+1). This property can be used to prove the
following key lemma.

Lemma 1 Assume that a gadget is part of an in-
stance such that none of the blocks Yi are intersected
by disks outside the gadget. If there is a dominat-
ing set ∆ of the instance that contains exactly 8k2

disks, then there is a canonical dominating set ∆′ with
|∆′| = |∆|, such that for each gadget G, there is an
integer 1 6 jG 6 n such that ∆′ contains exactly the
disks X1(jG), . . . , X8(jG) from G.

In the gadget Ga,b, the value j defined in the above
lemma represents the choice of sa,b = (ι1(j), ι2(j))
in the grid tiling problem. Our deletion of certain
disks in X-blocks ensures that (ι1(j), ι2(j)) ∈ Sa,b.
Finally, in order to get a feasible grid tiling, gadgets in
the same row must agree on the first coordinate, and
gadgets in the same column must agree on the second
coordinate. This depends on the following lemma.

Lemma 2 Let ∆ be a canonical dominating set. For
horizontally neighboring gadgets G and H represent-
ing jG and jH , the disks of the connector block A are
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Figure 2: Connecting neighbouring blocks

dominated if and only if ι1(jG) 6 ι1(jH); the disks
of B are dominated if and only if ι1(jG) > ι1(jH).
Similarly, for vertically neighboring blocks G′ and H ′,
the disks of block C are dominated if and only if
ι2(jG′) 6 ι2(jH′); the disks of D are dominated if
and only if ι2(jG′) > ι2(jH′).

With the above lemmas, it is easy to see how the
reduction works. A feasible grid tiling defines a domi-
nating set of size 8k2: in gadget Ga,b, the dominating
disks are X` (f(sa,b)) , ` = 1, . . . , 8. On the other
hand, if there is a dominating set of size 8k2, then
there is a canonical dominating set of the same size
that defines a feasible grid tiling.

3 New construction for cds-udg

To extend the construction to cds-udg, we want to
make sure that minimum-size dominating set is con-
nected. This requires two things. First, we must add
new disks “inside” the gadgets — that is, in the empty
space surrounded by the X and Y -blocks — such that
a canonical minimum dominating set includes some
new disks that connect the chosen X`(j) disks with-
out interfering with disks in the Y -blocks. Second, we
need to connect all the different gadgets. This time
in addition to avoiding the Y -blocks, we also need to
avoid interfering with the connector blocks.

In order to have enough space, our gadgets contain
32 blocks instead of 16. The offsets of disks inside
the blocks are not modified: we use the same building
blocks. Figure 2 shows how we arrange these blocks,
and depicts the connector-block placement.

The analogue of Lemma 1 and Lemma 2 are true
here; we have a construction that could be used to
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Figure 3: Left: connecting horizontally; right: connecting one side to the middle.

prove the W[1]-hardness of ds-udg, with canonical
sets of size 16k2, that contain one disk from each X-
block and X ′-block. We extend this construction so
that we have canonical dominating sets that span a
connected subgraph.

The disks we add are always in pairs. One of these
disks (the parent) “connects” some other disks, or
more specifically, the set of parents together with one
arbitrary disk from each X and X ′ block is a con-
nected subgraph of our construction. The other disk
(called leaf ) only intersects its parent and it is dis-
joint from all other disks. Let ∆ be a dominating set.
In ∆, at least one of the parent or the leaf has to
be included so that the leaf is dominated. Hence, we
can assume that a minimum size dominating set con-
tains all parent disks, which (as we will ensure) form
a connected set.

The most important property of the blocks that we
use is that for a small enough value ε, the boundaries
of the disks in a block all lie inside a small width
annulus - for this reason, the blocks in our pictures
are depicted with thick boundary disks. In order for
a parent disk p to intersect every disk in a block it is
sufficient if the boundary of p crosses this annulus.

We are going to add 72 extra disks to every gadget,
and 4 “connector” disks between every pair of hori-
zontally or vertically neighboring gadgets, resulting in
canonical dominating sets of size 16k2+36k2+4k(k−
1) = 56k2−4k (Note that only the parent disks are in-
cluded in the canonical set). In other words, the new
construction has a connected dominating set of size
56k2 − 4k if and only if there is a feasible grid tiling.
Due to length constraints we will not be able to list
the coordinates of these disks and prove all the inter-
sections/disjointness that is required. These details
will be available in the final version of this paper.

Connecting neighboring gadgets. For a pair of horizon-
tally neighboring gadgets, we add two pairs of disks
that connect X ′3 from the left gadget to X ′8 in the
right gadget. This arrangement is depicted on the
left of Figure 3. The parent disk with center T1 in-
tersects every disk in the block X ′3 of the left gadget,
and the other parent intersects every disk in the block
X ′8. The two leaf disks (red disks in the figure) only
intersect their parent. We use a rotated version of
these 4 disks for vertical connections, where the par-
ents connect X ′5 from the upper gadget and X ′2 from
the lower gadget.

Disks inside gadgets. We begin by adding 8 disk pairs
to the center. The parents are arranged in a square,
touching the neighbors, and the leafs are placed so
that it is possible to connect from the outside on each
side. See the middle of Figure 4 for a picture: the
corresponding leaf disks have a darker shade of red.

In order to connect the X-blocks, we need to con-
nect the blocks of each side to the central disks. For
this purpose, we are going to use a zigzag pattern of
disks. The first parent disk intersect all disks in X6

and X7 (i.e., it crosses both annuli), the second parent
is above the block Y6, but it is disjoint from it. The
next with center P3 intersects all disks in X ′6 , and
the disk around P4 is disjoint from the disks in Y ′6 .
Finally, the disk around P5 intersects all disks in X ′5.
The leafs follow a more complicated pattern. This
pattern is depicted on the right side of Figure 3. Our
final gadget can be attained by rotating the above
seven disk pairs around the center (8, 8) by 90, 180
and 270 degrees: see Figure 4. We added the spanned
edges of a canonical dominating set to this picture.
This concludes the proof of our main theorem.

Theorem 3 The cds-udg problem is W[1]-hard.
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Figure 4: A gadget in the final construction. The dashed lines are spanned edges of a canonical dominating set.
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Flip Distance to a Non-crossing Perfect Matching

Édouard Bonnet ∗ Tillmann Miltzow †

Abstract

A perfect straight-line matching M on a finite set P
of points in the plane is a set of segments such that
each point in P is an endpoint of exactly one seg-
ment. M is non-crossing if no two segments in M
cross each other. Given a perfect straight-line match-
ing M with at least one crossing, we can remove this
crossing by a flip operation. The flip operation re-
moves two crossing segments on a point set Q and
adds two non-crossing segments to attain a new per-
fect matching M ′. It is well known that after a finite
number of flips, a non-crossing matching is attained
and no further flip is possible. However, prior to this
work, no non-trivial upper bound on the number of
flips was known. If g(n) (resp. k(n)) is the maximum
length of the longest (resp. shortest) sequence of flips
starting from any matching of size n, we show that
g(n) = O(n3) and g(n) = Ω(n2) (resp. k(n) = O(n2)
and k(n) = Ω(n)).

Van Leeuwen and Schoone showed with the same
argument and the same definition of flip how to trans-
form a Hamilton cycle to a non-crossing Hamilton cy-
cle on a set of n points within O(n3) flips [17]. There-
fore, we do not consider the main result (our upper
bound on g(n)) as a new contribution, because the
used technique is exactly the same.

We want to use these proceedings to draw attention
again on this old problem and hope to stimulate re-
search that will close the gap between the upper and
lower bound.

1 Introduction

a

b
c

d

or

a

b
c

d a

b
c

d

Figure 1: Two crossing segments are replaced by two
non-crossing segments. There are two ways to flip.
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Given 2n points in the plane in general position (no
three points on a line), we define a perfect straight-line
non-crossing matching as a set of n segments such
that each point is incident to exactly one segment
and no two segments intersect. Given 2n points in
the plane, it is well-known that a perfect straight-line
non-crossing matching always exists. One elegant ar-
gument to see this is to start with any perfect straight-
line matching, potentially self-intersecting, and re-
move any crossing by a flip (see Figure 1). Although
the total number of crossings might increase (see Fig-
ure 5), the sum of the length of all the segments de-
creases (see Figure 2). Thus, the process will eventu-
ally end with a perfect non-crossing matching.

Figure 2: The two new edges (dotted) are shorter than
the old edges (solid) since the dashed part to the left
(resp. to the right) of the crossing is longer than the
dotted segment on the left (resp. on the right).

A simpler argument is to take the first two points
with lowest x-coordinate and connect them with a seg-
ment and continue with the remaining points by in-
duction. Contrary to the first argument, this does not
carry over to the bichromatic setting. In the bichro-
matic setting, we are given n red and n blue points
and a bichromatic matching is a matching as above
with the additional property that only segments link-
ing points of different colors are allowed.

Motivated by this old folklore result, we investigate
the question on the maximum and minimum number
of flips that are necessary and sufficient to reach a
straight-line non-crossing matching.

1.1 Preliminaries

From here on, P always denotes a set of 2n points in
the plane and M a perfect straight-line matching on
P . Given two points a and b we denote by seg(a, b)
the segment with endpoints a and b. Given a per-
fect straight-line matching M with at least one cross-
ing, we can remove this crossing by a flip operation.
The flip operation removes any two crossing segments

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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seg(a, b) and seg(c, d) on a point set Q = {a, b, c, d}
and adds two non-crossing segments (seg(a, c) and
seg(b, d)) or (seg(a, d) and seg(b, c)) to attain a new
matching M ′. Matching M is a successor of matching
M ′ if we can construct M from M ′ by a single flip.
We say that M = (M0, . . . ,Mk) is a valid sequence
of matchings, if each matching Mi+1 is a successor of
Mi and Mk is non-crossing. The number k denotes
the length of M. Given a set P of 2n points in the
plane, we define:

f(M) = max{ k : ∃M of length k with M = M0 };

h(M) = min{ k : ∃M of length k with M = M0 }.
Consequently functions g(n) and k(n) are defined as:

g(n) = max{ f(M) : M is a matching on 2n points };

k(n) = max{h(M) : M is a matching on 2n points }.

1.2 Results

We establish the following result:

Theorem 1 ([17]) Let n be a large enough natural
number. Then it holds:

n2 − n
2

=

(
n

2

)
≤ g(n) ≤ n3.

This result immediately carries over to bichromatic
matchings. We conjecture that g(n) = Θ(n2).

Theorem 2 Let n be a large enough natural number.
Then it holds:

n− 1 ≤ k(n) ≤ n2

2
,

for some constants C.

Our proof of Theorem 2 does not carry over to the
bichromatic case. However, we will see that the upper
bound further holds if the crossing to flip is imposed
at each step by an adversary and we may only choose
which of the two flips (see Figure 1) we perform.

1.3 Related Work

The most relevant work is by van Leeuwen and
Schoone, who showed the same upper bound on g(n)
for Hamilton cycles instead of matchings [17]. The
study of Hamilton cycles is motivated as a post-
processing step for algorithms that find a traveling
salesman tour on a set of points. They show that
they can improve the solution to be non-crossing in
O(n3) steps.

For points in convex position, Oda and Watanabe
established linear upper and lower bounds on g(n),
again on Hamilton cycles instead of matchings [15].

The combinatorial work on flip graphs of geometric
structures is fairly large. See the survey by Bose and
Hurtado [11] for an overview and some motivations.

Matchings, triangulations and spanning trees are
commonly studied in recent work [1–9, 12, 13, 16].
Particularly interesting are triangulations of points
that are in convex positions as they correspond to
Catalan structures. Another interesting application
comes from Lawson flips, which can be used to reach
the Delaunay triangulation in O(n2) flips [14]. This
can be used for the reverse search technique to enu-
merate triangulations [10].

2 Lower Bounds

We start with the lower bound for Theorem 1 and 2.
Let ` and `′ be two parallel horizontal lines and let P
be a set of 2n points, n of which are on ` and `′ respec-
tively. In the following, we consider only matchings
that connect points from ` to `′ (see Figure 3). Every

`

`′

1 2 3

1 2 3

Figure 3: Matching corresponding to cycle (123).

such matching M can be interpreted as a permuta-
tion πM and M is crossing free if and only if πM is
the identity. We can always do flips that correspond
to an elementary step in bubble sort. Bubble sort on
permutation π needs as many steps as the number
of inversions of π. And, the number of inversions is
at most

(
n
2

)
. A small perturbation of the point set

ensures general position.

For the lower bound of Theorem 2, we define a
Schoone matching on 2n points in convex position de-
noted by p1, p2, . . . , p2n in counterclockwise order as
follows. The points p1 is linked to pn+1 and for each
i ∈ [2, n], pi to p2n+2−i (see Figure 4). Observe that

 

Figure 4: An initial configuration guaranteeing the
lower bound of Theorem 2, and a possible flip.

a Schoone matching decomposes into two Schoone
matchings after any flip. By this the total number of
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crossings decreases by exactly one. This implies by in-
duction that h(M) equals the number of crossings mi-
nus one, for all Schoone matchings. Thus n−1 ≤ k(n).

3 Upper Bounds

Before we prove the upper bound, observe in Figure 5
that the number of crossings might increase after a
flip. It is also possible that a segment that has dis-

Figure 5: After the depicted flip, the number of cross-
ings goes from 1 to 3.

appeared after a flip reappear after some more flips
(see Figure 6). These two observations suggest that

 
A

  
A

Figure 6: Segment A disappears and reappears.

there is no straightforward way of getting a good up-
per bound.

For the upper bound of Theorem 1, we define a po-
tential function ΦL(M) that depends on a well-chosen
set of lines L. We show that ΦL(M) ≤ 4n3 and that
ΦL decreases by at least four after any flip. The po-
tential function ΦL(M) is defined as the number of
intersections between a line of L and a segment of M .
We define L as follows. Given two points p, q ∈ P let
` be the supporting line of p and q. We add to L the
two lines slightly above and below ` (see Figure 7).

Figure 7: Construction of L.

It holds that |L| = 2
(
2n
2

)
≤ 4n2. As any line and

segment can cross at most once it follows ΦL(M) ≤
|L| · |M | = 4n3. It remains to show that the number
of segment-line intersections decreases by at least four
in any flip. Consider two crossing segments A and B

A
B

`1
`2

`3

p1

p2
p3

p4

Figure 8: Flipping A and B yields fewer segment-line
intersections.

on points Q = { p1, . . . , p4 } as in Figure 8. Note that
there are only three combinatorial types of lines inter-
secting the convex hull of Q. Either a line separates
p1 and p2 from p3 and p4 as `1; a line separates p1
and p4 from p2 and p3 as `2; or a line separates one
point from the other three as `3. For every type of
lines the number of intersections does not increase af-
ter flipping A and B. It is also easy to see that the
number of intersections decreases by two for lines of
type `1 or `2 after flipping A and B. By definition
of L, there exists for every crossing of two segments
at least two lines of type `1 and at least two lines of
type `2. Thus ΦL(M) decreases by at least four as
claimed.

For the upper bound of Theorem 2, we define a
different set of lines K ,which contains one vertical
line between any two consecutive points ordered in
x-direction, see Figure 9. It follows that ΦK(M) ≤

Figure 9: The set K.

n2 since |K| = n − 1. We have to show that ΦK
decreases by at least two after each flip. Let A and B
be two crossing segments on the points p1, p2, p3, p4
ordered by x-coordinate. Then we replace A and B
by seg(p1, p2) and seg(p3, p4), see Figure 10. It is clear
that at least one line ` between p2 and p3 is not crossed
after the flip and was crossed twice before the flip.
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p1

p2

p3

p4

`

Figure 10: The number of crossings between ` and the
segments of the matchings decreases by 2.
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Coloring and L(2, 1)-labeling of unit disk intersection graphs

Konstanty Junosza-Szaniawski∗† Pawe Rza̧żewski∗‡ Joanna Sokó l∗ Krzysztof Wȩsek∗

Abstract

In this paper we give a family of on-line algorithms for
the classical coloring problem and the L(2, 1)-labeling
of unit disc intersection graphs. Our algorithms make
use of a geometric representation of such graphs and
are inspired by an algorithm of Fiala et al., but have
better competitive ratios. The improvement comes
from an application of a fractional and a b-fold color-
ing of the plane. Moreover, we give an off-line algo-
rithm improving the bound of the L(2, 1)-span of unit
disk intersection graphs in terms of the maximum de-
gree.

1 Introduction

Intersection graphs of families of geometric objects
attracted much attention of researches both for their
theoretical properties and practical applications (c.f.
McKee and McMorris [10]). For example intersection
graphs of families of discs, and in particular discs of
unit diameter (called unit disk intersection graphs),
play a crucial role in modeling radio networks. Apart
from the classical coloring, other labeling schemes
such as T -coloring and distance-constrained labeling
of such graphs are applied to frequency assignment in
radio networks [9, 13].

In this paper we consider the classical coloring and
the L(2, 1)-labeling. The latter asks for a vertex la-
beling with non-negative integers, such that adjacent
vertices get labels that differ by at least two, and ver-
tices at distance two get different labels. The span of
an L(2, 1)-labeling is the maximum label used. The
L(2, 1)-span of a graph G, denoted by λ(G), is the
minimum span of an L(2, 1)-labeling of G (note that
the number of available labels is λ(G) + 1, but some
may not be used).

We say that a graph coloring algorithm is on-line
if the input graph is not known a priori, but is given
vertex by vertex (with all edges adjacent to already
revealed vertices). Each vertex is colored at the mo-
ment when it is presented and its color cannot be

∗Faculty of Mathematics and Information Science, Warsaw
University of Technology, Poland. E-mail: {k.szaniawski,
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changed later. On the other hand, off-line coloring
algorithms know the whole graph before they start
assigning colors. The on-line coloring can be much
harder than off-line coloring, even for paths. For an
off-line coloring algorithm (off-line L(2, 1)-labeling al-
gorithm, resp.), by the approximation ratio we mean
the worst-case ratio of the number of colors used by
this algorithm (the largest label used by this algo-
rithm, resp.) to the chromatic number of the graph
(λ(G), respectively). For on-line algorithms, the same
value is called the competitive ratio.

A unit disk intersection graph G can be colored
off-line in polynomial time with 3ω(G) colors [12]
(where ω(G) denotes the size of a maximum clique)
and on-line with 5ω(G) colors [11, 12]. Fiala et al. [3]
presented an on-line algorithm that finds an L(2, 1)-
labeling of a unit disk intersection graph with span
not exceeding 25ω(G). The algorithm is based on a
special pre-coloring of the plane, that resembles col-
orings studied by Exoo [2], inspired by the classical
Hadwiger-Nelson problem [8]. Our main result are
on-line algorithms for the coloring and the L(2, 1)-
labeling of unit disc intersection graphs with better
competitive ratios than previous algorithms. They
are inspired by [3], although a b-fold coloring of the
plane (see [7]) is used instead of a classical coloring. In
particular, in the case of using 1-fold coloring we ob-
tain the algorithm from [3]. Our algorithm colors (in
the classical sense) unit disc intersection graphs with
large maximum clique, using less than 5ω(G) colors
and hence it is the best currently known approxima-
tion on-line coloring algorithm for such graphs. For
L(2, 1)-labeling, in the case of 1-fold coloring of the
plane, our algorithm gives a labeling with span not
exceeding 20ω(G). Using b-fold coloring for b > 1 we
obtain even better results.

For general graphs, Griggs and Yeh proved that
λ(G) ≤ ∆(G)2 + 2∆(G) and conjectured that λ(G) ≤
∆(G)2. Shao et al.[14] showed λ(G) ≤ 4

5∆(G)2 +
2∆(G) if G ∈ UDG. Actually, they gave an on-line
algorithm that finds an L(2, 1)-labeling ofG with span
at most 4

5∆(G)2 + 2∆(G). We managed to improve
this bound to 3

4∆2 + 3(∆ − 1), in the off-line case.
Moreover, we show that the algorithm from [3] im-
plies the bound 18∆ + 18, which is better for ∆ ≥ 22.

Throughout the paper we always assume that the
input unit disk intersection graph is given along with
its geometric representation. In practical application
for mobile Wi-Fi routers representation can be found

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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with methods from [5].

2 Preliminaries

For an integer n, we define [n] := {1, . . . , n}. A func-
tion c : V → [k] is a k-coloring of G = (V,E) if for
any xy ∈ E holds c(x) 6= c(y). By d(u, v) we denote
the number of edges on the shortest u-v–path in G.

For a sequence of unit discs in the plane (Di)i∈[n] we
define its intersection graph by G((Di)i∈[n]) = ({vi :
i ∈ [n]}, E), where vi is the center of Di for every
i ∈ [n] and vivj ∈ E iff Dvi ∩ Dvj 6= ∅. Notice that
vivj ∈ E if and only if the Euclidean distance be-
tween vi and vj , denoted by dist(v1, v2), is at most
one. By UDG we mean the class of graphs that admit
a representation by intersecting unit disks.

For a minimization on-line algorithm alg, by cr(alg)
we denote its competitive radio, which is the supre-

mum of alg(G)
opt(G) over all instances G, where alg(G) is

the value of the solution given by the algorithm for
instance G and opt(G) is the optimal solution for in-
stance G. For the classical coloring we use fact that
any coloring requires at least ω(G) colors, where ω(G)
denotes the size of the largest clique of G. By Gω we
denote the class of graphs with largest clique of size at
least ω and by cr(alg(Gω)) we denote the supremum

of alg(G)
opt(G) over all graphs G ∈ Gω.

A tiling is a partition of the plane into convex poly-
gons with partially removed boundary, called tiles,
such that every two points from one tile are at dis-
tance less than one. If we have b tilings, then by a
subtile we mean a non-empty intersection of b tiles,
one from each tiling. We will use a hexagon as a tile
and hexagon tiling, just as Fiala et al. [3].

A function ϕ : R2 → [k] is called a coloring of
the plane with the color set [k] if for any two points
p1, p2 ∈ R2 with dist(p1, p2) = 1 holds ϕ(p1) 6= ϕ(p2).

Definition 1 A function ϕ = (ϕ1, . . . , ϕb) where ϕi :
R2 → [k] for i ∈ [b] is called a b-fold coloring of the
plane with color set [k] if

• for any point p ∈ R2 and i, j ∈ [b], if i 6= j, then
ϕi(p) 6= ϕj(p),

• for any two points p1, p2 ∈ R2 with dist(p1, p2) =
1 and i, j ∈ [b] holds ϕi(p1) 6= ϕj(p2).

The function ϕi for i ∈ [b] is called an i-th layer of ϕ.

Notice that a coloring of the plane is a 1-fold coloring
of the plane. A coloring of a plane ϕ is called tiling-
based if there exists a tiling such that each tile is
monochromatic and adjacent tiles have different col-
ors. A b-fold coloring of a plane ϕ = (ϕ1, . . . , ϕb) is
called tiling-based if for every i ∈ [b] coloring ϕi is
tiling-based.

For technical reasons, we shall consider L(2, 1)-
labelings with labels starting with one. To avoid con-
fusion, we shall call such labelings L(2, 1)-colorings.
Formally, a k-L(2, 1)-coloring of a graphG is any func-
tion c : V → [k] such that

1. |c(v) − c(w)| ≥ 1 for all v, w ∈ V (G) such that
d(u,w) = 2,

2. |c(v) − c(w)| ≥ 2 for all v, w ∈ V (G) such that
vw ∈ E(G).

Definition 2 A b-fold coloring of the plane ϕ is called
a b-fold L∗(2, 1)-coloring of the plane with color set
[k] if for any two points p1, p2 ∈ R2:

• dist(p1, p2) = 1 ⇒ ∀i1,i2∈{1,...,b} 2 ≤ |ϕi1(p1) −
ϕi2(p2)| < k − 1,

• 1 < dist(p1, p2) ≤ 2 ⇒ ∀i1,i2∈{1,...,b} 1 ≤
|ϕi1(p1)− ϕi2(p2)|.

By L∗(2, 1)-coloring of the plane we mean 1-fold
L∗(2, 1)-coloring of the plane.

3 On-line coloring

The main idea of the algorithm is as follows. We
start with some fixed tiling-based b-fold coloring ϕ =
(ϕ1, . . . , ϕb) of the plane with colors [kϕ]. When a
disc D is read, it is assigned to one of the b layers of
ϕ (we try to distribute discs to layers as uniformly as
possible). Then a tile from this layer that contains a
center of D is found. The vertex corresponding to D
is colored with the color of this tile plus kϕ multiplied
by the number of vertices previously assigned to this
tile.

Algorithm Colorϕ((Di)i∈[n])
1. ForEach i ∈ [n]
2. Read Di, let vi be the center of Di

3. ForEach r ∈ [b] let Tr(vi) be the tile from the layer
r containing vi
4. `(vi)← 1+(|{v1, . . . vi−1}∩

⋂
r∈[b] Tr(vi)| (mod b))

5. t(vi) ← |{u ∈ {v1, . . . vi−1} ∩ T`(vi)(vi) : `(u) =
`(vi)}|
6. c(vi)← ϕ`(vi)(vi) + kϕ · t(vi)
7. Return c

Theorem 1 Let ϕ be a tiling-based b-fold coloring
of the plane with color set [kϕ], and (Di)i∈[n] be a
sequence of unit discs. Algorithm Colorϕ((Di)i∈[n])
returns a coloring of G := G((Di)i∈[n]). Moreover, if
ϕ is a b-fold L∗(2, 1)-coloring of the plane, then Algo-
rithm Colorϕ((Di)i∈[n]) returns an L(2, 1)-coloring of
G.

Theorem 2 Let ϕ be a b-fold coloring of the plane
with color set [kϕ], with at most γϕ subtiles in one
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tile, and let (Di)i∈[n] be a sequence of unit discs. Al-
gorithm Colorϕ( (Di)i∈[n]) returns coloring of G :=
G((Di)i∈[n]) with the highest color not exceeding

kϕ · bω(G)+(b−1)γϕ
b c.

Proof. Let γ = γϕ and let vi be a vertex that got
the biggest color. Consider the moment of the course
of the algorithm when vertex vi was colored. Let
`(vi), t(vi), c(vi) be defined as in the algorithm. Let
T = T`(vi) be the tile from the `(vi)-th layer con-
taining vi. Let S1, . . . Sγ be the subtiles of T . Let
sq = |{u ∈ {v1, . . . vi} : u ∈ Sq}| and sq(`(vi)) =
|{u ∈ {v1, . . . vi} : u ∈ Sq, `(u) = `(vi)}| for q ∈ [γ].

Notice that, thanks to the formula in line 4 of the
algorithm, vertices in the subtile

⋂
r∈[b] Tr(vi) are al-

most uniformly distributed among layers.
The key observation is that by the definition of `(vi)

we get sq ≥ b·(sq(`(vi))−1)+`(vi). Now we are ready
to estimate the number of vertices from {v1, . . . , vi}
contained in T`(vi). Notice that these vertices are pair-
wise at distance less than one and hence they form a
clique. We obtain

ω(G) ≥
γ∑

q=1

sq ≥
γ∑

q=1

b · (sq(`(vi))− 1) + `(vi)

≥b ·
[

γ∑

q=1

(sq(`(vi))− 1)

]
+ γ

=b · (t(vi) + 1)− (b− 1)γ

and thus

t(vi) ≤
⌊
ω(G) + (b− 1)γ

b
− 1

⌋
.

Finally we obtain c(vi) ≤ kϕ · bω(G)+(b−1)γ
b c which, by

the choice of vi, is the highest color used. �

This shows that is it crucial to construct good b-
fold colorings of the plane. We are able to do this if b
is a square number.

Theorem 3 For h ∈ N+ there exists a tiling-based

h2-fold coloring of the plane with
⌈
( 2√

3
+ 1) · h

⌉2
col-

ors and γϕ = 6h2.

Directly from Theorems 2 and 3 we obtain:

Corollary 4 For the h2-fold ϕ coloring of the plane
from Theorem 3 we have

cr(Colorϕ(Gω)) ≤
⌈
( 2√

3
+ 1) · h

⌉2

ω
·
⌊
ω + (h2 − 1)6h2

h2

⌋

= 4.65 +O

(
1

h

)
+O

(
h4

ω

)
.

Notice that for h = 5 and graphs G with ω(G) ≥
108901, the competitive ratio of the algorithm is less
than 5.

Analogously to Theorem 3, we are able to construct
a good b-fold L∗(2, 1)-coloring of the plane.

Theorem 5 There exists b-fold tiling-based L∗(2, 1)-
coloring ϕ of the plane for

1. b = 1 with color set [20] (see Figure 1),

2. b = 2 with color set [34] and the parameter γϕ =
4 (see Figure 2),

3. b = 3 with color set [49] and the parameter γϕ =
6,

4. b = h2 for h ∈ N with 3ρ2 + 1 colors, where

ρ =
⌈
h( 2√

3
+ 1) + 1

⌉
, and γϕ = 6h2

1 4 7 10 3 6 9 2 5 8 1

14 17 20 13 16 19 12 15 18 11

6 9 2 5 8 1 4 7 10 3 6

1 1

Figure 1: 1-fold L∗(2, 1)-coloring of the plane

1 9 7 15 5 13 3 11 1

11

14 4 12 2 10 8 16 6 14

18 26 24 32 22 30 20 28

31 21 29 19 27 25 33 23

Figure 2: 2-fold L∗(2, 1)-coloring of the plane

Corollary 6 For b ∈ N and b-fold L∗(2, 1)-
colorings ϕ of the plane from Theorem 5, the value
cr(Colorϕ(Gω)) is at most:

1. 10 + 10
2ω−1 for ϕ from Theorem 5.1,

2. 8.5 + 76.5
2ω−1 for ϕ from Theorem 5.2,

3. 8 1
6 + 204.17

2ω−1 for ϕ from Theorem 5.3,

4. (3dh( 2√
3

+ 1) + 1e2 + 1)ω+6h2(h2−1)
h2(2ω−1)

= 6.97+O
(
1
h

)
+O

(
h4

ω

)
for ϕ from Theorem 5.4.
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4 Off-line L(2, 1)-labeling

In this section we give an improvement for the fol-
lowing theorem by Shao et al. [14], which partially
answers the question of Calamoneri [1, Section 4.7.1].

Theorem 7 (Shao et al. [14]) If G ∈ UDG, then
λ(G) ≤ 4

5∆2 + 2∆.

By ∆ we denote the maximum degree of the input
graph G. Fix some vertex v. By VL we denote the
half-plane lying left of v (including the boundary). A
neighbor w of v is a left neighbor if w ∈ VL. A neigh-
bor w of v is important, if it is a left neighbor of v, or
w has a neighbor w′ ∈ VL, such that dist(w′, u) > 1
for every left neighbor u of v (in particular, w′ is not
a neighbor of v). It is easy to verify that each vertex
v has at most 3 pairwise non-adjacent left neighbors.
The following lemma is the strengthening of this ob-
servation.

Lemma 8 Let G ∈ UDG. Each vertex has at most
4 pairwise non-adjacent important neighbors.

Now we can present the first bound.

Lemma 9 Let G ∈ UDG and ∆ ≥ 7. Then λ(G) ≤
3
4∆2 + 3(∆− 1).

Proof. We use a greedy algorithm, processing ver-
tices from left to right. Consider a vertex v. By N1

we denote the set of the left neighbors of v, and by
N2 we denote the set of important right neighbors of
v and by N2 we denote the set of vertices left of v,
which are not in N1, but share a common neighbor
with v. Observe that our algorithm will never use a
label bigger than 3|N1|+|N2|. Let d := |N1∪N2| ≤ ∆.

Suppose that N2 6= ∅. Let H = G[N1 ∪ N2]. By
Lemma 8, it does not contain an independent set of
size 5, so its complement, H̄, is K5-free. By the
famous theorem of Turán, the maximum number of

edges in H̄ is 3
4
d2

2 . So the number of edges in H is

at least
(
d
2

)
− 3

4
d2

2 = d
2

(
d
4 − 1

)
. This gives us the

following: |N2| ≤ d(∆ − 1) − 2 · d2
(
d
4 − 1

)
≤ 3

4∆2.
Since |N2| > 0 and thus |N1| ≤ ∆− 1, we obtain that
3|N1|+ |N2| ≤ 3(∆− 1) + 3

4∆2 = 3
4∆2 + 3∆− 3.

It is easy to verify that if N2 = ∅, then 3|N1| +
|N2| ≤ 2

3∆2 + 3∆ < 3
4∆2 + 3∆− 3 for ∆ ≥ 7. �

Fiala et al. [3] proved that if G ∈ UDG, then
λ(G) ≤ 18ω(G). Since ω(G) ≤ ∆ + 1, we obtain
the following corollary.

Corollary 10 Let G be a unit disk graph with max-
imum degree at most ∆. Then λ(G) ≤ 18∆ + 18.

Combining the bound λ(G) ≤ ∆2 + 2∆ − 2 by
Gonçalves [4], the bound from Lemma 9 and the
bound from Corollary 10, we get the following.

Theorem 11 If G ∈ UDG, then λ(G) ≤ f(∆) for

f(∆) =





∆2 + 2∆− 2 if ∆ < 7,
3
4∆2 + 3∆− 3 if 7 ≤ ∆ < 22,

18∆ + 18 if ∆ ≥ 22.
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Approximating Smallest Containers for Packing Three-dimensional
Convex Objects

Helmut Alt∗ Nadja Scharf∗

Abstract

We investigate the problem of computing a minimum
volume container for the non-overlapping packing of
a given set of three-dimensional convex objects. Al-
ready the simplest versions of the problem are NP-
hard so that we cannot expect to find exact polyno-
mial time algorithms. We give constant ratio approx-
imation algorithms for packing axis-parallel (rectan-
gular) cuboids under translation into an axis-parallel
(rectangular) cuboid as container, for cuboids under
rigid motions into an axis-parallel cuboid or into an
arbitrary convex container, and for packing convex
polyhedra under rigid motions into an axis-parallel
cuboid or arbitrary convex container. This work gives
the first approximability results for the computation
of minimum volume containers for the objects de-
scribed.

1 Introduction

The problem of efficiently packing objects arises in
a large variety of contexts. Apart from the obvious
ones, like transportation or storage, there are more
abstract ones, for example cutting stock or schedul-
ing. Consequently, packing problems have been inves-
tigated in mathematics and operations research for a
long time (for a survey and references, see [1]).

In this work, we consider the problem of packing
three-dimensional convex polyhedra into a minimum-
volume container. All variants of this problem are
NP-hard. We will develop constant factor approxi-
mation algorithms for some of them. The worst case
constant factors are still very high, but probably they
will be much lower for realistic inputs. The major
aim of this paper, however, is to show the existence of
constant factors at all, i.e., that the problems belong
to the complexity class APX. For a complete version,
see [3].

Related Work. So far, there are only few results
about finding containers of minimum volume. Re-
lated problems include strip packing and bin packing.
In two-dimensional strip packing the width of a strip

∗Institute of Computer Science, Freie Universität Berlin,
alt@mi.fu-berlin.de, nadja.scharf@fu-berlin.de. This re-
search was partially funded by DFG (Deutsche Forschungsge-
meinschaft) under grant no. AL 253/7-2.

is given and the objects should be packed in order to
minimize the length of the strip used. In three di-
mensions, the rectangular cross section of the strip is
fixed. Bin-packing is the problem where the complete
container is fixed and the objective is to minimize the
number of containers to pack all objects.

Approximation algorithms have been developed for
two- and three-dimensional bin and strip packing (e.g.
[4, 5, 6, 7]). Approximation algorithms for mini-
mum area containers in two dimensions were given
by v.Niederhäusern [8] and Alt et al. [2].

The well-known NP-complete problem PARTI-
TION can be reduced to our problem showing NP-
hardness.

2 Preliminaries and Notation

For most algorithms considered here, the input is a set
of rectangular boxes B = {b1, b2, . . . bn}. We denote a
box bi in axis-parallel orientation by its height, width
and depth (hi, wi, di).

half
filled

Figure 1: Re-
sult of Alg. 1

We define:
hmax = max {hi | bi ∈ B},
wmax = max {wi | bi ∈ B}, and
dmax = max {di | bi ∈ B}.

Definition 1 (OMCOP) An
instance of orthogonal minimal
container packing (OMCOP) is
a set of convex polyhedra. The
aim is to pack these polyhedra
non-overlapping such that the
minimal axis-parallel container
has minimal volume Vopt. Vari-
ants include the kind of motions
allowed or that more specialized
objects are to be packed.

Algorithm 1 was first given in [8]. We describe it here
in detail since it will be used later as a subroutine.
For an example see Figure 1.

Observation 1 The resulting strip of Algorithm 1 is
half filled with rectangles up to the bottom edge of
the highest rectangle ri touching the upper end of the
packing. Otherwise, ri could have been placed lower.
Thus, the strip is half filled except for a part with area
at most w · hmax.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Algorithm 1:

Input: List S of rectangles ri = (wi, hi), a width
for the strip w

1. Split S in sublists

Sj =
{
ri ∈ S | w

2j−1 ≥ wi > w
2j

}
for j ≥ 1.

2. Start with packing the rectangles in S1 on top of
each other in the strip [0, w]× [0,∞).
Split the remaining strip in two substrips with

width w
2 and pack the rectangles in S2 one after

another into these substrips. Each ri is packed in
the substrip with current minimal height.

3. Again split the substrips into two and pack S3.
Iterate that process until everything is packed.

3 Reduction from 3D-OMCOP to Strip Packing

In this section we consider the version of OMCOP
where the given objects are axis-parallel boxes that
are to be packed under translation. The idea of
the reduction of OMCOP to strip packing is to test
different base areas for the strip and to return the
result with minimal volume. The base area of an
optimal solution is a rectangle of width within the
interval

[
wmax,W∑] and depth within the interval[

dmax, D∑], where W∑ (D∑) denotes the sum of
width (depth) of all boxes to be packed. We subdivide
these intervals logarithmically depending on some pa-
rameter ε and call for all resulting width-depth-pairs
as base area a strip packing algorithm with the given
boxes. For a possible subdivision see Figure 2. With
a more detailed elaboration and analysis (see [3]) we
obtain the following theorem.

dmax

D∑

wmax W∑

Figure 2: Example for a subdivision. The tested base
areas have their lower left corner in common, candi-
dates for the upper right corner are the grid points.

Theorem 1 If we use an α-approximation algorithm
to pack the boxes under translation into the strips
with the base areas defined above, we obtain for
any fixed ε > 0 an (α+ ε)-approximation for the
OMCOP variant where n axis aligned boxes are
to be packed under translation. Its runtime is

O
(
T (n) log2 n

ε2

)
where T (n) is the runtime of the strip

packing algorithm.

If we use the algorithm given by Diedrich et al. [5]
which gives a 29

4 -approximation for three-dimensional
strip packing, we obtain the following corollary.

Corollary 2 There exists a (7.25 + ε)-approxima-
tion algorithm for packing axis-parallel boxes under
translation into a minimum volume axis-parallel box
with runtime polynomial in the input size and 1

ε .

4 Algorithms for Variants of OMCOP

In this section we will give algorithms for variants of
OMCOP. The basic idea is to get rid of the third
dimension by partitioning the set of objects into sets
of objects with similar height and then packing those
using an algorithm for two-dimensional boxes. These
containers then get cut into pieces with equal base
area. The pieces will be stacked on top of each other,
see Algorithm 2.

4.1 Cuboids under Translation

Although this algorithm gets outperformed by the
construction in the previous section, we state it here
as base for the algorithms for the other variants. For
an illustration of steps 3 to 5 see Figure 3.

Algorithm 2:

Input: Set of axis parallel boxes
B = {b1, . . . , bn}, α ∈ (0, 1), c > 1

1. Partition B into subsets of boxes that have
almost the same height:
Bj =

{
bi ∈ B | hmax · αj < hi ≤ hmax · αj−1

}

2. Use Algorithm 1 to pack every Bj into a strip
with width wmax and height hmax · αj−1 by
taking the base areas of the boxes as rectangles
and applying Algorithm 1 to them.

3. Divide the strips into pieces with depth
(c− 1) · dmax, ignoring the last part of the strip
of depth dmax. (Parts of boxes contained in this
part of the strip will be covered in step 4.)

4. Extend each piece to depth c · dmax such that
every box lies entirely in the piece its front lies in.

5. Stack the pieces on top of each other.

dmax

Figure 3: Cut strip and obtained pieces stacked.
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Theorem 3 For suitable values of c and α Algo-
rithm 2 computes a 11.542-approximation for the vari-
ant of OMCOP where n axis parallel cuboids are
packed under translation in O(n log n) time.

Proof. Let Dj denote the depth of the strip obtained
in step 2 for the boxes in Bj . Then we get by step 3

k =
⌈
Dj−dmax

(c−1)dmax

⌉
pieces. After step 4 each piece has

volume c · dmaxwmaxhmax (α)
j−1

. Then the total vol-
ume of the pieces obtained for the subset Bj is:

Vj =k · c · dmaxwmaxhmax (α)
j−1

<
c

c− 1
(Dj − dmax)wmaxhmax (α)

j−1

+ c · dmaxwmaxhmax (α)
j−1

.

We know from Algorithm 1 that the base area of the
strip is half filled with boxes except for the last part of
depth dmax (Observation 1), so (Dj − dmax)wmax ≤
2
∑
bi∈Bj

AB (bi) where AB (b) denotes the base area
of box b. Also, for every bi ∈ Bj the inequality

hmax (α)
j−1

< hi

α holds. Thus, we get for the total
volume of the packing V that

V ≤
∞∑

j=1

(
c

c− 1
(Dj − dmax)wmaxhmaxα

j−1

+ c · dmaxwmaxhmax · αj−1
)

≤
∞∑

j=1

(
2c

α (c− 1)

∑

bi∈Bj

V (bi)

+ c · wmaxdmaxhmax · αj−1
)

≤ 2c

α (c− 1)

∑

b∈B
V (b)

︸ ︷︷ ︸
≤Vopt

+ c · wmax · dmax · hmax︸ ︷︷ ︸
≤Vopt

·
∞∑

l=0

αl (1)

≤
(

2c

α (c− 1)
+

c

1− α

)
Vopt. (2)

The factor before Vopt in term (2) is minimized if the
partial derivatives with respect to c and α are 0. This
gives an approximation ratio of 3

3√2−1 ≈ 11.542. �

4.2 Cuboids under Rigid Motions

Now we consider the variant of OMCOP where the
objects to be packed are boxes and rigid motions are
allowed. We use the algorithm stated above but with
an extra preprocessing step, namely rotating every
box bi ∈ B such that it becomes axis parallel and
hi ≥ wi ≥ di. This can be done in O(n) time. To
prove the performance bound we need Lemma 4.

Lemma 4 If every bi ∈ B is oriented such that
hi ≥ wi ≥ di, then hmax · wmax · dmax ≤

√
6 · Vopt.

Proof. An optimal container has to contain the box
determining hmax, so it contains a line segment l1 of
length hmax. The projection of l1 on one of the axes
has a length of at least 1√

3
hmax. W.l.o.g. let this axis

be the x-axis. Thus, the optimal container has an ex-
pansion of at least 1√

3
hmax in x-direction. Since every

box is higher then wide, a box with width wmax con-
tains a disk D with diameter wmax and so the optimal
container does. D contains a diametric line segment
l2 which is parallel to the y-z-plane. The projection of
l2 and thus the one of the whole box on the y-axis or
on the z-axis has a length of at least 1√

2
wmax. W.l.o.g.

let this be the y-axis. A box with depth dmax contains
a sphere s with diameter dmax. The projection of s on
any axis, in particular the z-axis, has length at least
dmax. �

Observe that every argument leading to inequal-
ity (1) still holds for this variant of the algorithm.
Using Lemma 4 to estimate hmax ·wmax · dmax we get

an approximation factor of 2c
α(c−1) + c·

√
6

1−α . Minimizing

this expression as before yields:

Theorem 5 The given algorithm computes a 17.738-
approximation for the variant of 3D OMCOP where
n axis parallel cuboids are packed under rigid motions
in O(n log n) time.

Convex Container. If we allow a convex container
instead of an orthogonal container, we can use the
same algorithm but adapt the analysis. The argu-
ments leading to inequality (1) still hold since they
only use the total volume of the boxes as estimate for
the volume of an optimal container. But we can only
show hmax · wmax · dmax ≤ 6 · Vopt, so we get with a
detailed analysis the following theorem.

Theorem 6 Using the algorithm described in sec-
tion 4.2 we get a 29.135-approximation for packing n
axis parallel boxes under rigid motions into a smallest-
volume convex container in time O(n log n).

4.3 Convex Polyhedra under Rigid Motions

We use the algorithm from section 4.2 to pack convex
polyhedra under rigid motions into an axis-parallel
minimal volume box. To do so, we add another pre-
processing step where we compute an enclosing box
for every polyhedron. We then pack these boxes with
the algorithm discussed in section 4.2. For a convex
polyhedron p the enclosing box is built as follows: Let
B and T be two points of p with largest distance h and
π a hyperplane normal to the line segment BT . Let
p′ be the orthogonal projection of p onto π, R′ and L′
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be two points of p′ with largest distance w, and R and
L its preimages. Let l be a line normal to R′L′, the
projection of p′ onto l a line segment of length d with
endpoints F ′′ and D′′, and F and D its perimages in
p. Then the enclosing box is Bp = (h,w, d). See Fig-
ure 4 for an example. Checking all pairs of vertices as
candidates for B and T , and R′ and L′, we get a total
running time of O

(
m2
)

for computing the bounding
boxes of polyhedra with m vertices in total. For the
analysis of this algorithm we need two lemmata that
follow.

T

L

R

B

F

D

D′

T ′

R′L′

F ′

Figure 4: Box with a point of the enclosed polyhedron
in every facet and the projection of the box on its base.

Lemma 7 Let b = (h,w, d) with h ≥ w ≥ d be the
enclosing box obtained for polyhedron p. Then, par-
allel to any given plane, p contains a line segment of
length at least w · 1√

5
.

This lemma can be proven by showing that either each
height in triangle (TBL) or triangle (TBR) is at least
w√
5
. The complete proof can be found in [3].

Lemma 8 Let b = (h,w, d) be the enclosing box ob-
tained for a polyhedron p. The projection of p onto
an arbitrary line g has length at least d

8
√
3
.

This Lemma is shown by an elaborate construction,
where we find four line segments inside p such that the
projection of at least one of them onto g has length at
least 1

8
√
3
d. The complete proof can be found in [3].

Just as in the proof of Lemma 4 any container, in
particular the optimal one, must contain a line seg-
ment of length hmax whose projection on one axis,
say the x-axis, has length at least hmax√

3
. Applying

Lemma 7 to the y-z-plane and the polyhedron defin-
ing wmax gives a line segment of length at least wmax√

5

whose projection onto at least one axis, say the y-axis,
has length at least wmax√

10
. By Lemma 8, the projection

of the polyhedron defining dmax onto the z-axis has
length at least dmax

8
√
3

. Summarizing, we obtain that

Vopt ≥ 1
24
√
10
hmax · wmax · dmax. Using this in-

equality and the fact that the volume of each enclos-
ing box is at most 6 times the volume of the enclosed

polyhedron, we derive the following approximation ra-

tio from inequality (1): 12c
α(c−1) + c·24

√
10

1−α . We get by
minimization:

Theorem 9 The given algorithm computes a 277.59-
approximation for the variant of OMCOP where n
convex polyhedra having m vertices in total are to be
packed under rigid motions in time O

(
m2 + n log n

)
.

Convex Container. We use the the result of the
algorithm given in Section 4.3 to compute an ap-
proximation for a minimum volume arbitrary con-
vex container. The approximation ratio becomes
a different expression since we can only show
hmax · wmax · dmax ≤ 24

√
60Vopt. A detailed analysis

yields the following theorem.

Theorem 10 The algorithm given in section 4.3
computes a convex container with volume at most
511.37 times the volume of an optimal convex
container for packing n convex polyhedra having
m vertices in total under rigid motions in time
O
(
m2 + n log n

)
.
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Packing Plane Spanning Double Stars into Complete Geometric Graphs

Patrick Schnider∗

Abstract

Consider the following problem: Given a complete ge-
ometric graph, how many plane spanning trees can be
packed into its edge set?

We investigate this question for plane spanning dou-
ble stars instead of general spanning trees. We give
a necessary, as well as a sufficient condition for the
existence of packings with a given number of plane
spanning double stars. We also construct complete
geometric graphs with an even number of vertices
that cannot be partitioned into plane spanning double
stars.

1 Introduction

A geometric graph is a drawing of a graph in R2 where
the vertex set is drawn as a point set in general po-
sition, that is, no three points lie on a line, and each
edge is drawn as a straight-line segment. A geometric
graph is called plane if no pair of edges crosses. For
two vertices v and w in a geometric graph G, we say
that v sees w in G if the line segment between v and w
is not crossed by any edge of G. In this paper we will
assume all point sets to be in general position, and
for a point set P, we denote by K(P) the complete
geometric graph with vertex set P.

It is a long-standing open question whether any
complete geometric graph with an even number of
vertices has a partition of its edge set into plane span-
ning trees. If the vertices lie in convex position, the
question can be answered in the affirmative, and all
possible partitions can be characterized, as was done
by Bose et al. [3]. The authors also give a sufficient
condition for a complete geometric graph to have a
partition of its edge set into plane spanning trees:

Theorem 1 ([3]) Let P be a point set with n = 2m
points. Suppose that there is a set L of pairwise non-
parallel lines with exactly one point of P in each open
unbounded region formed by L. Then K(P) can be
partitioned into m plane spanning trees.

The trees they construct in this case are double
stars: A double star is either a single edge or a tree
such that the induced subgraph of the vertex set with-
out the leaves is a single edge, called the spine.

∗Department of Computer Science, ETH Zürich,
schnpatr@inf.ethz.ch

More generally, one can ask how many plane span-
ning trees can be packed into the edge set of a com-
plete geometric graph. Aichholzer et al. [1] show that
at least b

√
n
12c plane spanning trees can be packed

into any complete geometric graph. This result was
very recently improved to dn3 e spanning trees by Gar-
cia [4]. Whereas the trees that Garcia uses for his
packing have diameter 4, the trees that Aichholzer et
al. construct are again double stars. It seems natural
to restrict the open question above to the question
whether any complete geometric graph can be parti-
tioned into plane spanning double stars. However, the
answer to this question is no. We will show this by
proving that for any packing with plane spanning dou-
ble stars, the spines of the double stars form a match-
ing, which we call the spine matching. In the case of
a partition, this spine matching is a perfect matching.
In Section 3 we then show a necessary condition for
a matching to be a spine matching and construct a
point set which has no perfect matching that satisfies
this necessary condition. In Section 4 we show a suffi-
cient condition for a matching to be a spine matching.
Finally, in Section 5 we show that we can decide in
polynomial time whether a given matching is a spine
matching. Due to space restrictions we cannot give
all the proofs. We refer the interested reader to the
full version [5].

2 Partitions and Packings

Consider a point set P of size n and a packing of k
plane spanning double stars into K(P). Let M be the
set of spines of the double stars.

Lemma 2 The set of spinesM of a packing of k plane
spanning double stars into K(P) is a matching.

As mentioned before, we call this matching the
spine matching.

Proof. We want to show that no two edges of M
are incident. Assume for the sake of contradiction
that two edges e = (p, q) and f = (p, r) share an
endpoint p. Let E and F be the spanning double
stars with spines e and f , respectively. Consider the
edge g = (q, r). As all double stars in the partition
must be spanning, the point r must be connected to
the edge e, which means that f ∈ E or g ∈ E. As f is
already the spine of F , we conclude that g ∈ E. On
the other hand q must also be connected to the edge

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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f and with the same argument we conclude g ∈ F ,
which is a contradiction. �

Note that for a partition of K(P) into plane span-
ning double stars, we need n

2 double stars, i.e. the
spine matching is a perfect matching. We call a per-
fect matching on a point set P expandable if it is the
spine matching of a partition of K(P) into plane span-
ning double stars.

Corollary 3 Let P be a point set that allows a pack-
ing of k plane spanning double stars into K(P). Then
there is a subset P ′ of P of size 2k that allows a par-
tition of K(P ′) into plane spanning double stars.

Proof. Choose P ′ as the set of vertices of the spine
matching M . �

On the other hand, we can expand a partition on a
subset to a packing on the whole point set.

Lemma 4 Let P be a point set and let P ′ be a subset
of P of size 2k that allows a partition of K(P ′) into
plane spanning double stars. Then P allows a packing
of k plane spanning double stars into K(P).

For an illustration of the proof see Figure 1

Proof. Consider an edge e in the spine matching M
and a point p in P\P ′. Let E be the plane double star
with spine e = (q, r) and let f = (p, q) and g = (p, r)
be the edges connecting the point p to the spine e. In
order to expand E to a plane spanning double star,
we have to add either f or g to E without creating
a crossing. Assume for the sake of contradiction that
both f and g cross an edge of E. Let s and t be the
intersections of f and g with E, respectively. Note
that the edge of E that crosses f must be incident to
r. Similarly, the edge of E that crosses g is incident
to q. As q, r, s and t form a convex quadrilateral, we
deduce that E is not plane, which is a contradiction.
By induction we can therefore expand E to a plane
spanning double star. As the spines form a matching
we can do this for every double star in the partition
of the subset and the claim follows. �

q r

p

e

f
g

s

t

Figure 1: Illustration of the proof of Lemma 4.

Combining Corollary 3 and Lemma 4 we get the
following result:

Theorem 5 Let P be a point set. Then K(P) allows
a packing of k plane spanning double stars if and only
if there is a subset P ′ of P of size 2k that allows a
partition of K(P ′) into plane spanning double stars.

Thus the problem of finding a large packing with
plane spanning double stars is equivalent to finding
a large subset of the vertex set whose induced graph
can be partitioned into plane spanning double stars,
i.e. a large expandable matching.

3 A necessary condition

We start by showing that any subset of an expandable
matching is again expandable:

Lemma 6 Let K(P) be partitioned into plane span-
ning double stars and let P ′ be the vertices of any
subset of the spine matching M . Then the induced
subgraph on P ′ inherits a partition into plane span-
ning double stars.

Proof. Color each double star in the partition with a
different color, including red. Now delete the vertices
incident to the red spine and consider the colored sub-
graph induced by the remaining vertices. This sub-
graph contains no red edges, as each red edge is inci-
dent to the red spine. Also, all deleted edges that are
not red cannot be spines. Thus the remaining graph
is still partitioned into plane spanning double stars.
The result follows by induction. �

Let e be an edge between two points p and q. The
supporting line `e of e is the line through p and q.

Let e and f be two edges and let s be the intersec-
tion of their supporting lines. If s lies in both e and
f , we say that e and f cross. If s lies in f but not
in e, we say that e stabs f and we call the vertex of
e that is closer to s the stabbing vertex of e. If s lies
neither in e nor in f , or even at infinity, we say that
e and f are parallel. See Figure 2 for an illustration.

e

f f
e

f
e

v

Figure 2: Left: e and f cross; Middle: e stabs f with
stabbing vertex v; Right: e and f are parallel.

It can easily be seen that a matching consisting of
two parallel edges is not expandable. On the other
hand, a matching consisting of two non-parallel edges
is expandable, as can be seen in Figure 3.
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Lemma 7 A matching M consisting of two edges e
and f is expandable if and only if e and f are not
parallel.

L R L R

Figure 3: Any pair of crossing or stabbing edges is
expandable. The spines are drawn thick.

In Figure 3 we can also see that for two non-parallel
edges there are exactly two ways to expand the match-
ing consisting of the two edges into a partition of the
induced complete graph. We call them left-oriented
(L) and right-oriented (R).

For larger matchings, the situation is more compli-
cated, but we can still find some configurations that
cannot occur in the matching. See Figure 4 for a
drawing of these configurations:

A cross-blocker is a triple C = {e, f, g} of three
pairwise non-incident edges such that e and f cross,
g stabs both e and f , g does not intersect the convex
hull of e and f , and both vertices of g see only one
vertex p of e and one vertex q of f in C.

A stab-blocker is a triple S = {e, f, g} of three pair-
wise non-incident edges such that f stabs e, g stabs
both f and e, g does not intersect the convex hull of
e and f , and both vertices of g see only one vertex p
of e in S.

Lemma 8 Let M be a cross-blocker or a stab-
blocker. Then M is not expandable.

For the proof we refer to [5].

e

f

g

e

f

g
p

q
r

s

p r

q

s

Figure 4: A cross-blocker (left) and a stab-blocker
(right).

Combining this with Lemma 7 and Lemma 6, we
get a necessary condition for a matching to be ex-
pandable.

Theorem 9 Let K(P) be partitioned into plane
spanning double stars. Then the corresponding spine
matching M

• does not contain two parallel edges,

• does not contain a cross-blocker and

• does not contain a stab-blocker.

This allows us to construct a point set whose
complete geometric graph cannot be partitioned into
plane spanning double stars. For every k > 0, we
define the bumpy wheel set BWk as follows:

Place k − 1 points in convex position and parti-
tion them into three sets A1, A2, A3 of consecutive
points such that ||Ai| − |Aj || ≤ 1, i 6= j. Let Hi,
be the convex hull of ∪j 6=iAj . Place the last point p
in the interior such that it lies outside of Hi for all
i ∈ {1, 2, 3}. See Figure 5 for a depiction of BW10.

It can be shown that every parallel-free perfect
matching on BWk, for k ≥ 10 even, contains a cross-
blocker. Thus no perfect matching on these BWk is
expandable. For k odd there cannot even be a perfect
matching.

Theorem 10 For every k ≥ 9, the complete geomet-
ric graph K(BWk) cannot be partitioned into plane
spanning double stars.

A1
A2

A3

H1

Figure 5: The point set BW10 (left) and a cross
blocker in a parallel-free matching on this point set
(right).

4 A sufficient condition

We will now state a sufficient condition for a matching
to be expandable.

A stabbing chain are three edges, e, f and g, where
e stabs f and f stabs g. We call f the middle edge of
the stabbing chain. See Figure 6 for a drawing of some
stabbing chains. Note that in the rightmost drawing
there are three stabbing chains and each edge is the
middle edge in one of the stabbing chains.

Theorem 11 Let P be a point set and let M be a
perfect matching on P, such that

(a) no two edges are parallel,

(b) if an edge e stabs two other edges f and g, then
the respective stabbing vertices of e lie inside the
convex hull of f and g, and
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e

e

e

f f
fg

g g

Figure 6: Different stabbing chains.

(c) if there is a stabbing chain, then the stabbing
vertex of the middle edge lies inside the convex
hull of the other two edges.

Then M is expandable.

Note that a stab-blocker is a stabbing chain that
satisfies condition (c), but not (b).

We get a partition of K(P) into plane spanning
double stars by expanding every pair of edges in M in
such a way that the induced K4 is left-oriented. For a
complete proof, we refer to [5]. There it is also shown
that the sufficient condition from Bose et al. follows
from this result.

Note that this result in particular implies that a set
of pairwise crossing edges is expandable. Aronov et al.
[2] have shown that every complete geometric graph
has a set of at least b

√
n
12c pairwise crossing edges.

This proves again the result from Aichholzer et al. [1]
that at least b

√
n
12c plane spanning double stars can

be packed into any complete geometric graph.

5 Recognizing expandable matchings

In this section we will consider the decision problem
where, given a perfect matching on a point set P, we
want to decide whether it is expandable. We will show
that we can solve this problem in polynomial time.

Recall that there are exactly two ways to expand
a pair of non-parallel edges to a partition of their in-
duced K4 into spanning double stars. We called the
two options “left-oriented” and “right-oriented”. Ex-
panding a parallel-free perfect matching to a partition
into spanning double stars is thus just choosing for
each pair of edges in the matching, whether the pair
is left-oriented or right-oriented. The given perfect
matching is then the spine matching of the partition.

We can check whether a matching of size n is
parallel-free by looking at all pairs of edges. As there
are O(n2) pairs, this can be done in time O(n2). If
a matching is not parallel-free, it cannot be expand-
able. So it is enough to only consider parallel-free
matchings.

Consider now the partition given by a choice of
orientation of each pair of spines in M , where M is
parallel-free and has size n, and color each double star
with a different color. Assume there is a monochro-
matic crossing, let us say of color red. Then, as M is

parallel-free, the two crossing red edges a and b are
incident to exactly three spines: both edges are in-
cident to the red spine e, and each edge is incident
to another spine, let us assume that a is incident to
the blue spine f , and b is incident to the green spine
g. The fact that both a and b are red already deter-
mines the orientation of the pairs {e, f} and {e, g}, as
a is part of the K4 induced by e and f and b is part
of the K4 induced by e and g. Also, changing one
or both orientations would give a partition where a
and b have different colors. Thus each monochromatic
crossing can be prevented by forbidding the combina-
tion of the orientations of {e, f} and {e, g} that leads
to the crossing being monochromatic. Doing this for
every possible monochromatic crossing that could oc-
cur in some orientation translates into a 2-CNF with
O(n2) variables and O(n3) clauses, where every vari-
able corresponds to a pair of edges in the matching.
For a 2-CNF we can decide whether it is satisfiable
in time linear in the number of clauses, so we can de-
cide in time O(n3) whether a parallel-free matching is
expandable or not. This proves the following theorem:

Theorem 12 Given a perfect matchingM on a point
set P of size n, it is possible to decide in polynomial
time whether this perfect matching can be expanded
to a partition of K(P) into plane spanning double
stars.
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ε-covering is NP-complete

Dominique Attali∗ Tuong-Bach Nguyen† Isabelle Sivignon‡

Abstract

Consider the dilation and erosion of a shape S by a
ball of radius ε. We call ε-covering of S any collec-
tion of balls whose union lies between the dilation and
erosion of S. We prove that finding an ε-covering of
minimum cardinality is NP-complete, using a reduc-
tion from vertex cover.

1 Introduction

Unions of balls are common shape representations,
useful for instance to describe molecules in biochem-
istry [3], to quickly detect collisions [1] between shapes
or to derive higher-level representations such as me-
dial axis descriptions. The ubiquity of unions of balls
is largely due to the existence of provably good conver-
sion algorithms that allow us to derive them from var-
ious representations such as point clouds and polygo-
nal meshes [7]. In that case, the union of balls output
by the conversion process generally provides only an
approximation of the original shape. The quality of
the approximation can be measured by its geometric
error. In this paper, we introduce a parameter ε that
controls the admissible geometric error in a novel way.
We say that a collection of balls provides an ε-covering
of a shape if its union is contained in the dilation of
the shape by bε and contains the erosion of the shape
by bε, where bε refers to the ball with radius ε cen-
tered at the origin. We are interested in the problem
of computing such a collection of balls with minimum
cardinality. Our main result is that this problem is
NP-complete.

2 Statement of result

In this paper, we suppose that Rd is endowed with the
Euclidean distance. For any point c and real r > 0, we
denote by b(c, r) the open ball centered at c with ra-
dius r. Let S ⊆ Rd and ε > 0 a real number. The di-
lation of S (by ε) is S⊕ε = ∪x∈Sb(x, ε). The erosion
of S (by ε) is S	ε = {x | b(x, ε) ⊆ S}. For any collec-
tion of balls B, we adopt the notation

⋃
B = ∪b∈Bb.

A collection of balls is rational if each of its balls has
a rational radius and a center with rational coordi-
nates. We also assume that these rationals can be
∗Gipsa-lab, dominique.attali@gipsa-lab.grenoble-inp.fr
†Gipsa-lab, tuong-bach.nguyen@gipsa-lab.grenoble-inp.fr
‡Gipsa-lab, isabelle.sivignon@gipsa-lab.grenoble-inp.fr

represented by integers bounded by a given constant.

Definition 1 An ε-covering of S is a collection of
balls B such that S	ε ⊆ ⋃B ⊆ S⊕ε. Additionally if
B is rational, it is a rational ε-covering.

We are interested in ε-coverings that achieve mini-
mum cardinality and must solve this problem:

Problem 1 (Rational ε-covering problem) Let
S be a finite rational collection of balls in Rd, ε > 0
a rational and k a positive integer. Does

⋃
S have a

rational ε-covering with at most k balls?

The purpose of this paper is to prove the following:

Theorem 1 The rational ε-covering problem in R2

is NP-complete.

To prove our theorem, we need to establish that the ε-
covering problem is both in NP and NP-hard. For lack
of space, we only sketch the proof of the NP property
in Section 3 and focus on the NP-hardness in Sec-
tion 4. Indeed, a formal proof of the former property
requires several technical results we will not detail.
Note however that the purpose of the rational and R2

restrictions is to clear these technical hurdles. As for
the latter property, it is obtained through a reduction
from a variant of the vertex cover problem, which re-
mains valid in all dimensions.

3 NP

The ε-covering problem is in NP if one can verify in
polynomial time in the size of S whether a collection
of balls is a solution. Given a shape S =

⋃
S , a

parameter ε > 0 and some collection of balls B, is
it possible to check the two inclusions S	ε ⊆ ⋃B ⊆
S⊕ε in polynomial time? Since we only address the
R2 case in this section, balls are simply disks whose
boundaries are circles. We propose a method that
relies on the arrangement of those boundary circles.

In general, the exact computation of these arrange-
ments requires an exact handling of real numbers.
Though, with our restriction to rationals, we only
need to handle algebraic numbers. This can be done
using the isolating interval representation [8].

An arrangement of circles is the subdivision of R2

into open connected cells which is induced by these
circles. If we consider the original disk supported by

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be
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each circle, each cell can then be characterized by two
sets of disks: the disks that contain the cell, and those
that do not. Along with the arrangement itself, this
information can be computed in polynomial time for
each cell [5, 4]. Owing to this, one can test whether a
particular disk b is contained in a finite union of disks⋃

S . Indeed, it suffices to compute the arrangement
of S ∪ {b} and then check for every cell covered by
b if it is also covered by some disk of S . This can
obviously be extended to verifying if a finite union
of disks contains another such union. Since S⊕ε is
the union of the dilated balls of S , we can test if B
satisfies

⋃
B ⊆ S⊕ε. As for the second condition, it

requires the following technical result.

Proposition 2 Let V be the set of vertices of the
boundary of S. Consider S ′ = {b	ε | b ∈ S } ∪
{b(v, ε) | v ∈ V }. Then there exists a collection C of
cells of the arrangement of S ′ such that S	ε =

⋃
C ,

and these cells can be found in polynomial time.

Thus, by computing the arrangement of S ′ ∪ B
we can test whether S	ε ⊆ ⋃

B by inspecting the
cells that belong to S	ε. Though a generalization
of Proposition 2 to higher dimension seems feasible,
the computation of the arrangement of S ′ ∪B is not
straightforward.

4 NP-hardness

We prove NP-hardness through a reduction from a
variant of the vertex cover problem. Recall that for
a graph G = (V,E), a subset F ⊆ V is a vertex
cover of G if every edge of E is incident to a vertex of
F . Finding a minimum vertex cover is NP-hard, even
when restricted to cubic planar graphs [6]. We shall
perform the reduction from this particular variant.
Let G = (V,E) be a planar graph of degree at most 3.
For any ε > 0, we show how to build a finite collection
of balls S (G, ε) such that G has a vertex cover of
cardinality k if and only if S(G, ε) =

⋃
S (G, ε) has an

ε-covering of cardinality k+N , where N is a constant
depending on S (G, ε). To simplify notations, we shall
refer to S (G, ε) and S(G, ε) simply as S and S.

4.1 Reduction from vertex cover

Our construction of S uses two types of balls: rotula
balls and ghost balls. Rotula balls are balls of radius
ε; their centers are called rotulae. They are used in
finite sequences of odd length at least 3 that we will
call edge gadgets. Two subsequent rotulae of an edge
gadget are said to be neighbours of each other. We
distinguish two types of rotulae: linking rotulae that
are the endpoints of each edge gadget and have only
one neighbour, and regular rotulae which are all other
rotulae and have two neighbours. See Figure 1b. Be-
sides rotula balls, our construction uses a second type

of balls, the ghost balls. These balls have radii λε,
λ < 1; their centers are called ghosts. A single one of
these ghost balls constitutes a vertex gadget, which
is connected to different edge gadgets through one of
their linking rotulae. Thus each linking rotula is as-
sociated with one unique ghost, whereas a ghost may
be associated with up to 3 linking rotulae depending
on the degree of the vertex it was converted from.

Thus, each edge (resp. vertex) in G is converted
into an edge gadget (resp. vertex gadget) and we de-
fine S as the collection of all rotula balls and ghost
balls resulting from that conversion. At this point,
we haven’t yet specified the number of rotula balls
per edge that we need (only that it should be an odd
number) nor the location of rotulae and ghosts. This
will be done in Section 4.2 where we build S from
an orthogonal grid drawing of G so that it fulfills the
properties below; see Figure 1 for an example.

(i) The erosion of S is exactly the collection of rotu-
lae, S	ε = {c | c is a rotula}.

(ii) Any ball b ⊆ S⊕ε contains at most 2 regular ro-
tulae.

(iii) If a ball b ⊆ S⊕ε contains 2 regular rotulae, then
they are neighbours and b does not contain any
other rotula, neither regular nor linking.

(iv) Let c be a regular rotula, c+ and c− its two neigh-
bours. There exist two balls b+, b− ⊆ S⊕ε such
that {c+, c} ⊆ b+ and {c−, c} ⊆ b−.

(v) Any ball b ⊆ S⊕ε contains at most 3 linking ro-
tulae.

(vi) If a ball b ⊆ S⊕ε contains 2 or 3 linking rotulae,
then these linking rotulae are associated with the
same ghost and b only contains linking rotulae
associated with this ghost.

(vii) Let cg be a ghost. There exists a ball b ⊆ S⊕ε

that contains all linking rotulae associated with
cg.

(viii) If a ball b ⊆ S⊕ε contains both a regular rotula
and a linking rotula, then these are neighbours
and b does not contain any other rotula, neither
regular nor linking.

Henceforth, we shall make no distinction between
an edge of G and its conversion into an edge gadget,
and likewise for a vertex of G and its corresponding
ghost. Recall that an edge gadget e ∈ E is a finite
sequence of rotula balls of odd length at least 3. We
denote by n(e) ≥ 1 the integer such that 2n(e) + 1 is
the length of the edge gadget e. Thus, e has 2n(e)−1
regular rotulae. From property (ii) we need at least
d(2n(e)− 1)/2e = n(e) balls in S⊕ε in order to cover
these regular rotulae. By (iv) there always exists a
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v1 v2 v3

v4 v5
(a)

(b)

Figure 1: An example of conversion from (a) an orthogonal
grid drawing of a graph with 5 vertices and 5 edges to (b)
a good collection of balls: blue disks are regular rotulae
balls, purple are linking rotulae balls and yellow are ghosts
balls. The dilation is bounded by the dashed blue lines.
All figures use ghost balls with radius λε, λ = 0.8.

collection of n(e) balls in S⊕ε which covers these ro-
tulae plus one of the two linking rotulae of e, and that
linking rotula can be chosen arbitrarily. Indeed, it suf-
fices to cover pairs of neighbouring rotulae of e with
non-overlapping balls in S⊕ε, while making sure that
the linking rotula to cover and its neighbour are one
of these pairs (see Figure 2). This gives two possible
coverings of regular rotulae of e (one for each linking
rotulae) which we shall refer to as canonical for e.
Furthermore, properties (iii) and (viii) guarantee that
any ball containing a regular rotula will only contain
rotulae belonging to the same edge gadget. Therefore
it is necessary and sufficient to use n(e) balls to cover
the regular rotulae of an edge gadget e, and these
n(e) balls exclusively cover rotulae of e. However,
to entirely cover an edge gadget, one extra ball is re-
quired to cover the second linking rotula, for a total of
n(e)+1 balls. Contrary to the previous n(e) balls, by
(v) that extra ball may be shared among several edge
gadgets to cover their last linking rotulae. We define
N =

∑
e∈E n(e). N is the number of balls needed to

cover all regular rotulae with canonical coverings.

Figure 2: A canonical covering of an edge gadget (green
disks). Same color convention as in Figure 1b.

Proposition 3 If G has a vertex cover F ⊆ V , then
S has an ε-covering B with |B| = N + |F |.

Proof. For each vertex u ∈ F , we use property (vii)
and select a ball covering all linking rotulae associ-
ated with u. By the vertex cover property, this yields
|F | balls that cover at least one linking rotula per
edge. Using the appropriate canonical coverings of
each edge, we then complete the ε-covering with N
more balls to cover the regular rotulae and any re-
maining linking rotulae. By (i), this collection of balls
is an ε-covering since it contains every rotula. �

Proposition 4 If S has an ε-covering B′, then G has
a vertex cover F with |F | ≤ |B′| −N .

Proof. Without loss of generality, we may assume
that all balls in B′ cover at least one rotula. In-
deed, if a ball b does not cover any rotula, it can
be removed from B′ while keeping the property that
B′ is an ε-covering. Starting from B′, we first
deduce an ε-covering B of S having the property
that it contains one of the two canonical coverings
of each edge e ∈ E. For e ∈ E, let H (e,B′) =
{b ∈ B′ | b contains a regular rotula of e}. Note that
for different edges the H (e,B′) are disjoint and that
|H (e,B′)| ≥ n(e). Given a linking rotula u of e ∈ E,
we denote by Ce(u) the canonical covering that con-
tains u and all the regular rotulae of e. Initializing B
to B′, we then transform B as follows, replacing each
H (e,B′) according to the following three cases:

• ⋃H (e,B′) contains 0 linking rotula. We
choose an arbitrary linking rotula u and replace
H (e,B′) with Ce(u).

• ⋃H (e,B′) contains 1 linking rotula u. Then we
simply replace H (e,B′) with Ce(u).

• ⋃H (e,B′) contains both linking rotulae. Then,
|H (e,B′)| ≥ n(e) + 1. We choose an arbitrary
linking rotula u, and let b be a ball containing
the other linking rotula but no regular rotula.
We replace H (e,B′) with Ce(u) ∪ {b}.

Each of these substitutions preserves the ε-covering
property and does not increase the cardinality of the
resulting collection of balls. Consider the balls of B
that do not contain any regular rotula, F = B \
(∪e∈EH (e,B)). By construction, |F | = |B| −N ≤
|B′| − N . Let F = {u ∈ V | ∃b ∈ F , b contains a
linking rotula associated with the ghost u}. We claim
that F is a vertex cover of G and that its cardinality
satisfies |F | ≤ |F |. All b ∈ F must contain at least
one linking rotula, thus F is empty if and only if F
is empty. In this particular case, the empty set is a
vertex cover of G: indeed, G must have no edges be-
cause otherwise B would only cover half of the linking
rotulae. Assume now that F is not empty. By (vi),
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any b ∈ F yields at most one vertex in F . As for the
vertex cover property, recall that ∪e∈EH (e,B) cov-
ers exactly all regular rotulae and one linking rotula
per edge. Hence F must cover the remaining linking
rotula of each edge. The definition of F thus ensures
it contains at least one endpoint of each edge. �

4.2 Practical construction of S

All that remains is to build a collection S fulfilling
properties (i) to (viii) given G and ε. To do so, we
rely on the following result.

Theorem 5 ([2]) There is a linear time and space
algorithm to draw a connected at most cubic graph
on an orthogonal grid.

Given such a drawing of G, we now describe a way
to convert it into an appropriate collection of balls.
We rely on the orthogonal drawing in Figure 1a as an
example. To perform the conversion, we fix the size of
the grid to 16ε so that we can fit square blocks of size
8ε×8ε as in Figure 3. There are two different ways in

16ε 8ε

Figure 3: Grid division into blocks. Gray lines represent
the grid, dashed red lines are the blocks and the example
graph is in blue.

which the blocks meet the graph drawing: the block
either contains one vertex or only a portion of one
edge. Blocks containing a vertex only vary depending
on the number and layout of incident edges. Similarly,
blocks containing a portion of edge vary depending on
whether the edge bends within the block or not. In
each case, we convert the graph drawing covered by
the block into a set of balls that satisfies properties
(i) to (viii). For blocks containing a vertex, see Figure
4 for the four subcases. Similarly for edges, we have
two subcases. However, recall that edge gadgets must
have an odd number of rotulae. To achieve this, we
use the fact that every edge necessarily crosses at least
one block in a straight line and provide an odd and
an even conversion for this type of block. The three
block conversions are presented in Figure 5.

5 Conclusion

Finding an ε-covering of minimum cardinality is NP-
complete. Though the proof presented here relies on
a family of shapes with many connected components
and whose erosion does not preserve the genus, the

(a) (b) (c) (d)

Figure 4: Block conversions for a vertex of degree (a) 3,
(b) 1, (c) 2 in a bend and (d) 2 in a straight line. The red
dashed square delimit the block. Same color convention
as in Figure 1b.

(a) (b) (c)

Figure 5: Block conversions for (a) a bent edge, (b) an
even and (c) odd straight edge. Same color convention as
in Figure 4.

result does not depend on it. Indeed, a similar albeit
more intricate construction shows that the problem
is still hard when restricted to connected shapes that
are homotopy equivalent to their erosion.
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On the Separation of a Polyhedron from Its Single-Part Mold∗

Dan Halperin† Shahar Shamai†

Abstract

Casting is a manufacturing process where liquid mate-
rial is poured into a mold having the shape of a desired
product. After the material solidifies, the product is
pulled out of the mold. We study the case in which
the mold is made of a single part and the object to be
produced is a three-dimensional polyhedron. We give
an algorithm that decides whether a given polyhedron
with n facets can indeed be produced that way, and if
so indicates how to orient the polyhedron in the mold
and in what directions can the product be pulled out
without breaking the mold. Our algorithm runs in
O(n log n) time. The best previous algorithm for this
problem that we are aware of runs in O(n2) time. For
a convex polyhedron we present a linear-time algo-
rithm.

1 Introduction

Casting is a widely-used manufacturing process,
where liquid material is poured into a cavity inside
a mold, which has the shape of a desired product. Af-
ter the material solidifies, the product is taken out
of the mold. Typically a mold is used to manufac-
ture numerous copies of a product, in which case we
need to make sure that the solidified product can be
separated from its mold without breaking it.

The problems that we study here belongs to the
larger topic termed Movable Separability of Sets by
Toussaint [7]. Problems in this area are often
exceedingly challenging from a combinatorial- and
computational-geometry point of view (see, e.g., [6]).
At the same time solutions to these problems are
needed in mold design [1], assembly planning [5], and
3D printing to mention a few application areas.

We focus in this paper on a fairly basic movable-
separability question. We are given a polyhedron P
in R3 with n facets. We do not make any particular
assumptions about the polyhedron besides that it is
a closed regular set, namely it does not have dangling
edges or facets. The mold is box-shaped and the cav-
ity has the shape of P such that one of P ’s facets is

∗This work has been supported in part by the Israel Sci-
ence Foundation (grant no. 1102/11), by the German-Israeli
Foundation (grant no. 1150-82.6/2011), and by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv Univer-
sity.
†The Blavatnik School of Computer Science, Tel Aviv Uni-

versity, danha@post.tau.ac.il, shasha94@gmail.com.

the top facet of the cavity. See Figure 1 for an illustra-
tion in 2D. Once the top facet has been determined,
we wish to detect whether there is a direction in which
the solidified object could be pulled out of the mold,
namely to find a direction that has a positive compo-
nent in the positive z-direction and such that P could
be pulled out of the mold without colliding into the
mold. If a direction is found we say that the corre-
sponding top facet is valid, and that the polyhedron
P is castable.

Figure 1: Polygons (light grey) in their molds (darker
grey) and valid pull-out directions.

We address two problems:

All Facets Single Direction (AFSD):
Determine which facets of P can serve as a
valid top facet and for each such facet indicate
one direction in which P can be pulled out of
the mold.

All Facets All Directions (AFAD): Same as
above but for each valid facet indicate all the
directions in which P can be pulled out of the
mold.

Why would anyone bother to solve AFAD and not
suffice with AFSD? There could be advantages to
computing all possible directions. First, it is a more
stable solution if there is a continuum of directions
rather than a single direction of separation. Second,
we could use the availability of many possible direc-
tions to impose some direction-related optimality cri-
teria.

Contribution The current algorithms that we are
aware of [2, Chapter 4] solve AFSD in O(n2), and im-
ply an O(n2 log n) time solution for AFAD. Both solu-
tions rely on handling each candidate facet to be a top
facet separately. Both algorithms, as well as the algo-
rithms that we present below use linear storage space.
Our contribution in this paper is an O(n log n)-time
algorithm for the AFAD problem. We also present an

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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O(n)-time solution to the AFAD problem when the
input polyhedron is restricted to be convex.

2 One Structure for All Facets

Instead of handling each candidate top facet sepa-
rately, as in [2, Chapter 4], we handle all candidate top
facets simultaneously using an arrangement of great
circles on the unit sphere S2. Each point p on S2 rep-
resent a direction in R3—the direction of the vector
from the center of S2 to p. We will use the terms
points and directions on S2 interchangeably.

Let F1, . . . , Fn be the facets of the given polyhe-
dron P . Let ν(Fi) be the normal to the facet Fi

pointing into the polyhedron.
A valid mold is described by Fi as its top facet and

a valid pull-out direction ~d′. Since we wish to argue
about all candidate top facets simultaneously, we will
describe a mold by the pair (Fi, ~d) which should be
interpreted as follows. The top facet of the mold is Fi.
To achieve this, the polyhedron needs to be rotated
such that Fi becomes the top facet. We apply the
same rotation matrix Ri to ~d to obtain a pull-out
direction ~d′ := Ri

~d.

Lemma 1 The pair (Fi, ~d) represents a valid mold

and pull-out direction if and only if (i) ~d · ν(Fi) < 0

and (ii) ∀j 6= i, ~d · ν(Fj) ≥ 0.

Proof. For the case where Fi is the top facet of P ,
this fact is proved in Lemma 4.1 in [2]. It remains to
notice that the Conditions (i) and (ii) are invariant
under rotation. They hold in P ’s given orientation if
and only if they hold when P is rotated such that Fi

becomes the top facet. �

Henceforth, we will call a pair (Fi, ~d) that obeys
the conditions of Lemma 1 a valid pair. Notice that
the actual pull-out direction is Ri

~d, where Ri is the
matrix that rotates P such that Fi becomes the top
facet, or equivalently such that ν(Fi) points vertically
downwards.

Denote by hi the closed hemisphere of directions ~d
on S2 for which ~d · ν(Fi) ≥ 0, and by h̄i the open
complement hemisphere. Let H̄ = {h̄1, . . . , h̄n}. Let
ci denote the boundary great circle of hi, and let C =
{c1, c2, . . . , cn}. Consider the arrangement A(C) on
S2, namely the subdivision of S2 induced by the great
circles in C into cells of dimensions 0, 1 and 2, which
we refer to as vertices, edges, and faces respectively.

Definition 1 The depth of a point p on S2 is the
number of hemispheres in H̄ in which p is contained.

Observation 1 All the points in any fixed cell of the
arrangement A(C) have the same depth.

The key observation leading to our efficient solution
is expressed in the following theorem.

Theorem 2 The polyhedron P is castable with a
single-part mold if and only if the arrangement A(C)
contains a point of depth 1. A cell ξ of depth 1 in
A(C), which is covered by the hemisphere h̄i, repre-

sents a mold whose top facet is Fi and each point ~d in
ξ represents the valid pull-out direction Ri

~d, where Ri

is the orthonormal matrix that rotates ν(Fi) to point
vertically down (in the negative z direction).

Proof. Let ξ be a cell of depth 1 in A(C) covered

by h̄i, and let ~d be a point in ξ. We establish that
the pair (Fi, ~d) is a valid pair by verifying that the
conditions of Lemma 1 above hold for it.

It remains to show that no point in any cell of dif-
ferent depth can represent a valid pull-out direction
for any top facet. Consider a cell ψ of depth greater
than 1 and a point ~d in it. Let J be the index set of
the hemispheres h̄i that cover ψ: J = {i|~d ∈ h̄i}. One
of the facets Fj , j ∈ J must serve as the top facet for
Condition (i) of Lemma 1 to hold. But then for each
of the remaining facets Fk, k ∈ J, k 6= j Condition (ii)
of the lemma is violated. Finally, if a cell has zero
depth, then no facet can serve as top facet for any
pull-out direction described by points in this cell. �

Remark. Notice that in our setting there cannot be
a face of zero depth in A(C). Similarly, in Lemma 1,
Condition (i) follows from Condition (ii).

Our goal is then to compute the cells of A(C) of
depth 1. We first investigate the overall complexity
of all these cells.

Proposition 3 The overall complexity of the depth-
1 cells in A(C) is O(n).

Proof. We refer to the horizontal great circle of S2 as
the equator. The equator splits S2 into the open lower
hemisphere and the open upper hemisphere. We will
handle each of these three parts of S2 separately.

Assume temporarily that no hemisphere hi has the
equator as it bounding great circle.

We start with the upper hemisphere of S2. Cen-
trally project the intersection of the upper hemisphere
with each of the hemispheres h̄i onto the plane z = 1.
For each h̄i we obtain a halfplane ḡi. Let gi denote
the complementary closed half plane, and `i the line
bounding each of them. Let G, Ḡ, and L be the cor-
responding sets of n elements each. See Figure 2 for
an illustration.

We call a vertex v of the arrangements A(L), which
is the intersection point of two distinct lines in L, a
configuration. We say that such a vertex v is in con-
flict with the halfplane ḡ ∈ Ḡ if v ∈ ḡ. We are in-
terested in counting all the vertices of A(L) that have
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hi

gi
`i

gj

`j

Figure 2: Central projection of hemispheres onto the
plane z = 1.

exactly one conflict. These will correspond to vertices
of depth 1 in the upper hemisphere of A(C); more gen-
erally the number of conflicts of a configuration is the
depth of the vertex. Let Nk(L) denote the number
of vertices of depth k, and N≤k(L) denote the num-
ber of vertices of depth at most k. Let Nk(n) (resp.
N≤k(n)) denote the maximum Nk(L) (resp. N≤k(L))
over all sets L of n lines. To bound the maximum
number of vertices of depth 1 we use the Clarkson-
Shor framework [3], which asserts that

N≤k(n) = O(kdN0(n/k)) ,

where d is the number of objects in the set that define
a configuration. In our case d = 2 and k = 1.

What we still need to bound is N0(n), namely the
maximum number of configurations with no conflicts
in any set L of n lines. However, this is easy: these
are the vertices on the boundary of the intersection of
the halfplanes in G. Therefore N0(n) = n. It follows
that N≤1 = O(n) as asserted.

Analogous arguments apply to the lower hemi-
sphere.

Next, we consider A(L) restricted to the equator
as a one-dimensional arrangement consisting of ver-
tices and arcs, namely 0- and 1-dimensional cells. It
is not difficult to see that the complexity of the cells
of depth 1 in this arrangement is O(1). There can
be at most four such cells—in a degenerate situa-
tion where there are two pairs of complementary half-
circles, which in turn induce two pairs of antipodal
0-cells of depth 1.

We now relax the assumption that there are no
hemispheres whose bounding circle is the equator.
Notice that the introduction of such hemispheres does
not affect the asymptotic upper bounds derived so far.
There is the possible introduction of a constant num-
ber of extra vertices of depth 1 on the equator. �

Can one compute these faces efficiently? The
Clarkson-Shor framework [3] also gives a randomized

algorithm to compute these faces in expected near-
linear time. However, we will next describe a simple
deterministic algorithm running in O(n log n) time for
that purpose.

3 The Algorithm

We now compute all the valid pairs (Fi, ~d), by com-
puting all the cells of depth 1 in the arrangement
A(C). We handle each of the upper hemisphere, the
equator, and the lower hemisphere separately.

For the upper hemisphere we use the projection de-
scribed above, the set Ḡ of half-planes, and the set L
of their bounding lines. Notice that there is one-to-
one correspondence between the points on the plane
z = 1 and the points of the open upper hemisphere.
Thus once we find the cells of depth 1 in A(L) we
immediately get the desired pairs. Hence we focus on
the plane z = 1.

We subdivide the set Ḡ into the disjoint union of
three subsets: Ḡ1, Ḡ2, and Ḡ3, having their half-
planes above their bounding line, below their bound-
ing line, or having a vertical bounding line, respec-
tively. Let Li be the set of bounding lines of Ḡi, i =
1, 2, 3. Let λi be the number of lines in Li.

Recall the definition of levels in arrangements,
which we will need below. Given a set L of lines in
the plane, we define the level of a point p in the plane
to be the number of lines in L strictly below p [4].
We say that an edge e in the arrangement A(L) is
at level k if there is a point in the interior of e at
level k (and hence all interior points of e are at level
k). The k-level of the arrangement A(L) is the clo-
sure of the union of edges of A(L) that are at level k.
See Figure 3.

Back to the depth-1 faces, we handle the three sets
separately and then merge the results. We start with
Ḡ1. If we restrict our attention to the half-planes in
Ḡ1, the points of depth k in the plane correspond ex-
actly to points in the plane at level k. Thus our goal
is to compute the points at levels 0 and 1. (We need
level 0 as well since we will later merge this result
with the results for the other sets.) We use divide-
and-conquer on the lines in L1. Assume that we have
already computed the points at levels 0 and 1 for each
of the arrangements A(La

1) and A(Lb
1), where La

1 and
Lb
1 are two disjoint subsets of L1 of size λ1/2 each.

The complexity of level 0 in each is obviously O(λ1)
and so is the complexity of level 1 (this is well known;
it follows for example as a special case of Proposi-
tion 3 above). What we actually compute are the lev-
els 0 and 1 of the arrangements, namely two polygonal
lines rather than a planar subdivision. (This will no
longer be true when we merge the final result for Ḡ1

with the results for the other subsets of Ḡ.) There-
fore we can easily carry out the current merge step
by projecting the breakpoints of both levels in each
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arrangement onto the x-axis and merging these lists
of projected points into one list. We then handle in
constant time the slab above each interval between
two consecutive breakpoint projections. This way we
obtain the level 0 and level 1 faces of the arrangement
in time O(λ1 log λ1).

Figure 3: Levels in an arrangement of lines.

We operate analogously on the set Ḡ2, and merge
the results with those already computed for Ḡ1 in a
merge step that is similar to the merge step we have
just described for Ḡ1, still keeping the faces of lev-
els 0 and 1. Now, however, we need to maintain a
planar subdivision, say by using a DCEL [2, Chap-
ter 2]. From this point on, we also record with each
cell of depth 1 which is the half-plane that covers it.

Next we compute the relevant faces for Ḡ3. This is
easier and can be carried out in O(λ3) time , resulting
in only a constant number of faces. We omit the de-
tails here. We finally merge this constant size result
with the result of the preceding step in O(n) time.
This concludes the handling of the upper hemisphere
of S2.

The lower hemisphere is handled analogously.
Computing the depth-1 cells on the equator is simpler
yet and can be carried out in O(n) time by an incre-
mental algorithm adding the circular arcs describing
forbidden directions one after the other. At any time
during the algorithm there is a constant number of
arcs of depth 0 and 1.

At all times our algorithm does not require more
than O(n) storage as we keep a constant number of
linear lists (describing levels 0 and 1 of certain ar-
rangements), or a planar subdivision of linear size. In
summary

Theorem 4 Given a polyhedron P with n facets, we
can find in O(n log n) time all the valid pairs (Fi, ~d),

where P can be pulled in direction Ri
~d out of a mold

having Fi as a top facet, and Ri is the matrix that
rotates P such that Fi becomes the top facet. The
algorithm requires linear space.

Finally we state our more efficient algorithm for the
analogous AFAD problem for an arbitrary polygon in
the plane. The proof is omitted for lack of space.

Theorem 5 Given a polygon Q with n edges in the
plane, we can find in O(n) time all the valid pairs of
top edge and pull-out directions. The algorithm uses
only constant-size working storage.

4 Casting Convex Polyhedra

In this section we show how to determine the castabil-
ity of a convex polyhedron more efficiently, still solv-
ing the AFAD problem for this case.

We say that two facets of the input polyhedron P
are neighbors if their closures intersect in an edge.
Denote by Mi the set of neighbors of the facet Fi,
by mi the cardinality of this set, and by Ji the index
set of the facets inMi. The efficient algorithm stems
from the following observation (proof omitted).

Proposition 6 For a convex polyhedron, the pair
(Fi, ~d) represents a valid mold and pull-out direction

iff (i) ~d · ν(Fi) < 0 and (ii) ∀j ∈ Ji, ~d · ν(Fj) ≥ 0.

The algorithm proceeds by fixing a face Fi, com-
puting its edge-neighboring facets and computing the
intersection of allowable directions (half-planes on
z = 1) in O(mi) time, using the order of the neighbors
along the boundary of f . We repeat the procedure for
each facet of P . Notice that mi is in fact the num-
ber of edges on the boundary of Fi. The overall cost
O(mi) over all candidate top facets Fi is O(n) by Eu-
ler’s formula. In summary

Theorem 7 The AFAD problem for a convex poly-
hedron P with n facets is solvable in time O(n).
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Covering points with rotating polygons
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Abstract

We study the problem of rotating a simple polygon
to contain the maximum number of elements from a
given point set. We consider variations of this prob-
lem where the rotation center is a given point or lies
on a line segment, a line, or a polygonal chain.

1 Introduction

Given a simple polygon P , the Polygon Placement
Problem consists in finding a function τ such that a
placement τ(P ) satisfies a certain property, for τ com-
bining certain allowed types of movements. The old-
est problem of this family we are aware of was studied
in the early eighties by Chazelle [5], who given two
polygons P and Q explored the problem of finding,
if it exists, a placement τ(P ) that contains Q using
translation and rotation.

The most recent contribution to these problems is
due to Barequet and Goryachev [3]. Among other re-
sults, for a point set S, a simple polygon P , and τ
a composition of translation and rotation, they show
how to compute a maximum cover placement for P ,
that is, a placement τ(P ) containing the maximum
number of points of S. For n and m being the sizes
of S and P respectively, their algorithm runs in
O(n3m3 log(nm)) time and O(nm) space.

Although translation-only problems have also being
considered [1], to the best of our knowledge there are
no previous results where τ is only a rotation1. In this
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1Existing results where τ is a composition of either rota-
tion, translation, and scaling, reduce the search space complex-
ity by only considering placements where a constant number of
points from S lie on the boundary of P (see for example refer-

paper we thus study the following Maximum Cover
under Rotation (MCR) problems:

Problem 1 (Fixed MCR) Given a point r in the
plane, compute an angle θ ∈ [0, 2π) such that, after
counterclockwise rotating P by θ around r, the num-
ber of points of S contained in P is maximized.

Problem 2 (Segment Restricted MCR) Given
a line segment `, compute a point r on ` and an
angle θ ∈ [0, 2π) such that, after counterclockwise
rotating P by θ around r, the number of points of S
contained in P is maximized.

Applications of polygon placement problems in-
clude global localization of mobile robots, pattern
matching, and geometric tolerance (see the references
in [3]). Rotation-only versions arise in robot localiza-
tion using a rotating camera [7] or quality control of
objects manufactured around a vertical axis.

We show that Problem 1 is 3SUM-hard (an o(n2−ε)-
time solution for it implies an affirmative answer to
the open question of whether an o(n2−ε)-time algo-
rithm for 3SUM exists [6]) and present two algo-
rithms to solve it: one requiring O(nm log(nm)) time
and O(nm) space, the other taking O((n+ k) log n+
m logm) time and O(n + m + k) space, where k =
O(nm) is the number of events. We also describe an
algorithm that solves Problem 2 in O(n2m2 log(nm))
time and O(n2m2) space. This algorithm can be eas-
ily extended to solve variations of Problem 2 where r
lies on a line or a polygonal chain.

2 Fixed MCR (Problem 1)

Let cp be the circle with center r and radius |rp|,
where p is a point in S. If instead of rotating P coun-
terclockwise we rotate S in clockwise direction, cp
is the curve described by p during a 2π rotation
around r. The endpoints of the circular arcs resulting
from intersecting P and cp mark the rotation angles
where p enters (in-event) and leaves (out-event) the
polygon P . In the worst case, the number of such
events per element of S is O(m), for a total of O(nm)
if we consider all the points in S. See Figure 1.

ences [3] and [4] for algorithms based respectively, on two-point
and one-point placements). Rotation-only adaptations of these
results would not allow the rotation center to be fixed or re-
stricted to lie on a given curve and therefore, cannot be applied
to the problems we deal with in this paper.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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p

Figure 1: A comb-shaped simple polygon can generate
Ω(m) in- and out-events per point in S.

2.1 A 3SUM-Hard reduction

We show next that Problem 1 is 3SUM-hard by a
reduction from the Segments Containing Points prob-
lem that was proved to be 3SUM-hard by Barequet
and Har-Peled [2].

Problem 3 (Segments Containing Points)
Given a set A of n real numbers and a set B of
m = O(n) pairwise-disjoint intervals on the real line,
is there a real number u such that A+ u ⊆ B?

Theorem 1 Fixed MCR is 3SUM-hard2.

Proof. Let I be an interval of the real line that con-
tains the set A of points and the set B of intervals of
an instance of the Segments Containing Points prob-
lem. Wrap I on a circle C whose perimeter has length
at least twice the length of I. This effectively maps
the points in A and the intervals in B into a set A′ of
points and a set B′ of intervals on C.

Clearly, finding a translation (if it exists) of the el-
ements of A such that A + u ⊆ B, is equivalent to
finding a rotation of the set of points A′ such that
all of the elements of A′ are mapped to points con-
tained in the intervals of B′. To finish our reduction,
construct a polygon as shown in Figure 2.

(a)

(b)

Figure 2: Wrapping I from (a) the real line to (b) a
circle C. Intervals forming B and B′ are highlighted
with blue. Elements of A and A′ are represented by
white points. Additional vertices forming the polygon
are the intersection points between the tangents to C
at the endpoints of each interval in B′.

�
2The proof of this theorem is based on the proof of Theo-

rem 4 from Barequet and Har-Peled [2].

2.2 An O(nm log(nm)) algorithm.

By Theorem 1 it is unlikely that we could solve Prob-
lem 1 in less than quadratic time. We outline now our
best solution.

1. Intersect rotation circles. Compute the inter-
section points of cp and P , for every p in S.

2. Compute the sequence of events. Choose a
common reference and translate every intersection
point into a rotation angle in S1. Sort all the events
by increasing angular order into an event sequence,
and determine if they define in- or out-events (see Fig-
ure 3). Note that, for each element pj of S, we obtain
a sequence of sorted intervals Ij = {Ij,1, . . . , Ij,ij}
that determine the rotation angles for which pj be-
longs to P .

x
y

Figure 3: An in-event at x (left turn), and an out-event
at y (right turn).

3. Compute the angle of maximum coverage.
Using standard techniques, we can now perform a
sweep on the set obtained by joining all of the in-
tervals in I1 ∪ · · · ∪ In.

0 2π

p1

pn

`

...

pj

... Ij,1 Ij,ij· · ·

Figure 4: The events sequence and the sweeping line
at angle θ. Highlighted with a red circle, the intersec-
tion of line ` with an interval corresponding to p1 (p1 is
inside P ). Highlighted with a blue circle, the intersec-
tion of line ` with one of the endpoints of an interval
corresponding to pn (an in-event).

During the sweeping process, we keep a counter con-
taining the number of points of S in P . If an in-event
or an out-event occurs, the counter is increased or de-
creased by one, respectively. At the end of the sweep-
ing process, we report the angular interval(s) where
the count is maximized.

Since the complexity of our algorithm is dominated
by items 1 and 2, which take O(nm log(nm)) time:
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Theorem 2 The Fixed MCR problem can be solved
in O(nm log(nm)) time and O(nm) space.

2.3 A more efficient algorithm.

Performing a plane sweep using a circular sweepline
outwards from the rotation center r, it is possible to
intersect P and the set of rotation circles in a more
efficient way. The idea is to maintain a list of the
edges intersecting the sweepline, ordered by appear-
ance while the sweepline is traversed in clockwise di-
rection around r. Using the same technique shown in
Figure 3, the edges are labeled as defining in- or out-
events. The algorithm is outlined next.

1. Normalize P . In the following steps, we con-
sider P to have no edges intersecting a rotation circle
more than once. This can be guaranteed by perform-
ing a preprocessing step on P : For every edge e = ab
of P , let pe be the intersection point between the line
` containing e and the line perpendicular to ` passing
through r. If pe belongs to the relative interior of e,
subdivide it into the edges ape and peb. In the worst
case, each edge of P gets subdivided in two parts. See
Figure 5.

a

r

b

Figure 5: Splitting an edge of P .

2. Process a vertex of P . When the sweepline
stops at a vertex of P , we update the ordered list of
edges intersected by the sweepline.

3. Compute the intervals sequence for each el-
ement of S. When the sweepline reaches a point pj
in S, we are ready to compute the sequence Ij of
sorted intervals of pj . It suffices to walk along the
ordered list of edges intersected by the sweepline, and
compute the corresponding angles clockwise from the
ray emanating from r towards pj .

4. Construct the events sequence. Since for each
point in S we have computed the corresponding se-
quence of sorted intervals, all we need to do is to
merge these (at most n) sequences into a complete
sequence of events. We do that in a balanced fashion
as in the merge sort algorithm.

The normalization process takes O(m) time. Sort-
ing the points in S and the vertices of P by dis-
tance from r takes O(n log n) and O(m logm) time,

respectively. The ordered list of edges intersect-
ing the sweepline is maintained in a balanced bi-
nary search tree, so we can process all the vertices
of P in O(m logm) time. On the other hand, pro-
cessing all the points in S takes O(k) time (recall
that k denotes the total number of in- and out-
events in a Fixed MCR problem). Finally, merging
the O(n) sequences of sorted intervals takes O(k log n)
time from which in O(k) time we obtain a solu-
tion. In total, the time complexity of the algorithm
is O(n log n+m logm+k log n) time. The space com-
plexity is O(n+m+ k). We have thus proved:

Theorem 3 The Fixed MCR problem can be solved
in O((n+ k) log n+m logm) time and O(n+m+ k)
space.

3 Segment Restricted MCR (Problem 2)

Let ` = ab be the line segment restricting the position
of the rotation center r. Our approach to solve Prob-
lem 2 is to characterize, for each p in S, the inter-
section between P and the rotation circle cp while r
moves along ` from a to b. For each edge e = uv of P ,
we parametrize the intersection between cp and e us-
ing a function ω = f(t), for ω being the clockwise an-
gle shown in Figure 6, and t the y-coordinate of r. For
simplicity, we assume that a lies on the origin (0, 0)
and b on the positive y-axis.

r
t

a

b

θ

ω

φ

p

u

v

q

Figure 6: Parametrizing the intersection between cp
and uv while r moves along ab.

If we consider clockwise and counterclockwise an-
gles being positive and negative respectively, we have
from Figure 6 that ω = θ+φ. The angle θ can be eas-
ily computed in terms of t. By equating the distances
from r to p and q and invoking z = tanφ, we get an
equation of the form

Az2+Bt2+Ctz2+Dt2z+Etz+Ft+Gz+H = 0, (1)

where A, . . . ,H are constants depending on the coor-
dinates of p, u, and v. By resolving Equation (1) for
t we obtain

t =
f(z)±

√
g(z)

h(z)
, (2)
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where f(z), g(z), and h(z) are polynomials of de-
grees 2, 4, and 1, respectively. The motion of r along `
thus corresponds to a set of points (t, ω) for which p
belongs to P . These points form a set of simple re-
gions in the t-ω plane which are bounded by O(m)
curves. Any pair of such regions have disjoint interi-
ors, whereas their boundaries may intersect at most
at a common vertex. See Figure 7.

10 20 30-10-20

10

20

30

40

-10
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b P

(a)

1 2 3 4

10
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30

t

a

b

ω

(b)

Figure 7: (a) A Segment Restricted MCR instance for
a point p in S and (b) its corresponding t-ω diagram,
where the ω axis is measured in radians.

By processing all the points in S we end up with
a set of O(nm) regions bounded by O(nm) curves
in the t-ω plane. From Equation (2) we can show
that any two such curves intersect at most a constant
number of times, for a total of O(n2m2) intersection
points in the worst case. Using standard techniques,
in O(n2m2 log(nm)) time the arrangement of all these
regions can be computed, and the dual graph of the
resulting arrangement can be traversed looking for the
sub-region of maximum depth. Any point in this sub-
region determines a position of r and a rotation an-
gle ω that constitute a solution to the problem. In
summary we have:

Theorem 4 The Segment Restricted MCR problem
can be solved in O(n2m2 log(nm)) time and O(n2m2)
space.

Note that Problem 2 can also be solved in
O(n2m2 log(nm)) time even when r is restricted to
lie on a line L: Compute the Voronoi diagram of S
and the vertices of P , and apply the algorithm we just
described to a segment of L containing all the inter-
section points of L and the Voronoi edges. Moreover,
if we restrict r to lie on a polygonal chain with s seg-
ments, we can trivially obtain the optimal placement
of P using O(sn2m2 log(nm)) time. In both cases the
space complexity is O(n2m2).

4 Concluding remarks

We studied the problem of finding a rotation of a
simple polygon that covers the maximum number of
points from a given point set. We described algo-
rithms to solve the problem when the rotation center
is fixed, or lies on a line segment, a line, or a polyg-
onal chain. Without much effort our algorithms can
also be applied when the polygon has holes, and can
be easily modified to solve minimization versions of
the same problems.
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Trash Compaction
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Abstract

Let P be a set of n objects on a square grid. A
push is a transformation of P that involves sweep-
ing a horizontal or vertical line by one unit, starting
from the hull of P , displacing objects in the direc-
tion of the sweep. For example, when pushing to the
right, all the leftmost objects are displaced one unit to
the right. This in turn displaces other objects further
right. Given P , we want to find a sequence of pushes
that will produce a rectangle of a given height and
width. We show that deciding whether a square can
be produced is NP-hard, but it takes polynomial time
to decide if a rectangle of height 2 can be produced.

1 Introduction

There is a rich history in computational and combi-
natorial geometry on packing unit squares as tightly
as possible into various domains. In 1975, Erdös and
Graham asked how many unit squares may be packed
into a square of given dimensions, allowing arbitrary
rotations [6]. This sparked a string of results [8], as
well as new questions and variations. Of particular
interest is the version where unit squares are not al-
lowed to rotate [7]. The problem has recently been
shown to be NP-complete when the domain is a rec-
tilinear polygon with half-integer side lengths [5, 10].

Pushing objects is a vital task in certain mo-
tion planning settings with obstacles. Dhagat and
O’Rourke first considered the problem of pushing
square obstacles on a grid [4]. Many versions of the
problem are NP-hard [3], in particular various popu-
lar games involving pushing blocks. Recently, the mo-
tion planning community has shown interest in con-
trolling configurations of objects using only global in-
teractions, motivated from swarm robotics [1, 2].

In this paper, we consider the trash compaction
problem: given a set P of n objects (pieces of trash)
at integer coordinates in the plane, can we we push
them into a more compact configuration using only
axis-aligned global push operations? In each of the
four cardinal directions, we can perform a push oper-
ation on P . This involves sweeping a line in the given
direction by one unit. Any object swept by the line is
displaced, thus moving to the next integer coordinate.
If another object occupies that coordinate, it is also

∗Tufts University, Medford, MA, USA
†Utrecht University, The Netherlands

displaced by one unit, etc. An example of a left push
is shown in Figure 1. We focus on pushing objects
into rectangular configurations. Trivially, this cannot
always be done, as shown in Figure 1c.

(a) (b) (c)

Figure 1: (a) Configuration of objects. (b) Configura-
tion after a left push. (c) Configuration that cannot
be pushed into an axis-aligned square.

1.1 General observations

There are some characteristics of this problem that
we use in the proof of the main results in this paper.
Due to space constraints, some proofs are omitted;
they can be found in the full version.

If we are interested in pushing a configuration into
a rectangle with dimensions k × n

k , then trivially we
require that k divides n.

Observation 1 Suppose that a push causes j objects
to be displaced within a row. This is equivalent to
moving the first object to the closest available empty
space in the row, j positions away.

Observation 2 Pushing horizontally (resp. verti-
cally) cannot decrease the number of objects in any
column (resp. row).

Observation 3 If any column contains more than k
objects, or any row contains more than n

k objects,
then it is not possible to produce a k × n

k rectangle.

In general, pushing horizontally then vertically is
not equivalent to pushing vertically then horizontally
(consider switching the last two pushes in Figure 2).

(a) (b) (c) (d) (e)

Figure 2: Four pushes to create a square.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Lemma 1 Pushing left then right is equivalent to
pushing right then left.

Lemma 2 Suppose a configuration occupies exactly
k rows (not necessarily consecutive). Then if a rect-
angle of dimensions k × n

k can be created, one way
to do so is to push left until the configuration occu-
pies n

k consecutive columns, then push down until the
configuration occupies k consecutive rows.

2 Pushing into any rectangle

We show hardness of a restricted version of the
problem, where only top and left pushes are allowed.
Then we extend the result for the original question.
Our reduction is from Exact-Hitting-Set (which
is NP-hard [9]): Given a set S = {1, . . . , n}, and m
sets S1, . . . , Sm, each a subset of S, decide if there is
a subset S′ ⊂ S of exactly k elements, such that each
Si has exactly one element in common with S′.

Construction. We build a rectangle with dimensions
Θ(nm)×Θ(n+m). We fill this rectangle with objects,
except for several empty holes. We then place the
same number of objects as is needed to fill all the
holes, above and to the left of the construction, in such
a way that any sequence of top and left pushes that
correctly fills the holes must correspond to a solution
for Exact-Hitting-Set. To make the proof easier
to follow, we color the objects that start outside the
main rectangle. Figure 3 is an example for n=4, m=3,
k=2. S1={1, 3, 4}, S2={1, 2, 3}, S3={3, 4}.

(a) n=4,m=3, k=2. S1={1, 3, 4}, S2={1, 2, 3}, S3={3, 4}

(b) S′={2, 4}

Figure 3: Reduction from Exact-Hitting-Set. For
a larger copy with labeled regions, see the full version.

For our description, we use the convention de-
scribed in Observation 1. There are eight main
regions of the rectangle in which we insert holes.
The upper-left Staircase region contains n horizontal
holes, each of length m. To the right of the Staircase
are three big holes: Green-triangle, Green-overflow
and k-check. To the bottom of the Staircase is a
big hole called Red-triangle, followed by a region
of small holes called Hit-check and two big holes:
Red-overflow and Yellow-buffer. The Staircase is nm
wide and n tall. We consider that S is arbitrarily
ordered and the i-th element (i ∈ {1, . . . , n}) is
represented by a hole of height 1 in the i-th row
of the Staircase ranging from column (i−1)m+1
to im. The Green-triangle and Red-triangle are
(n−1)m wide and n−1 tall and the difference of the
number of empty columns between adjacent rows is
m. The Green-overflow, k-check, Red-overflow and
Yellow-buffer are rectangular holes of dimensions
n × (n−k+1)m, n×m, 1×nm and k×nm, resp. In
the Hit-check region, make an n×m matrix of holes
encoding the sets Sj . Each row represents a set.
One element is represented by m columns. If the
i-th element of S is in Sj , row i has a 1×1 hole
in column (i−1)m+j. Outside the rectangle, right
above the Staircase, place a k × nm rectangle of
yellow objects. Right above, place n rows of red
objects, each containing m less objects than the
previous (starting with nm). Above the k-check
region, place a k ×m rectangle of yellow objects. To
the left of the Staircase, place n × (n−k+1)m blue
objects. To the left of the i-th row of blue objects,
place nm−(i−1)m green objects. To the left of the
i-th row of the Hit-check region add |Si| − 1 blue
objects. Finally, to the left of the Red-overflow, add
1× (n−k+1)m blue objects.

Correctness. First consider that the hitting set
problem has a positive solution S′. We convert S′

into a sequence of moves that result in a rectangle.
For i ∈ {1, . . . , n}, if the i-th element of S is in S′,
left-push m times then down-push once. If the i-
th element of S is not in S′, down-push once then
left-push m times. Left-push (n−k+1)m times then
down-push k times. This sequence will fill the holes
in the Staircase corresponding to elements in S′ with
green objects and other holes with red objects. The
Green-triangle and Red-triangle are filled with green
and red objects respectively. The Green-overflow will
be filled mostly with blue objects. Since |S′| = k, ex-
actly n−k rows of the Green-overflow will contain m
green objects and, therefore, the k-check hole is filled
with n−k rows of blue and k rows of yellow objects.
Because S′ hits each subset exactly once, the objects
to the left of the Hit-check and Red-Overflow will fill
the holes that are not filled with red objects. Thus,
this sequence compacts all objects into a rectangle.
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Now, consider that there exists a sequence that
results in a rectangle. The k-check hole can only be
filled by yellow and blue objects and, since yellow
objects can only be pushed into the rectangle after all
red objects, there must be n−k rows completely filled
with blue objects in the k-check hole. That implies
that each hole in the Staircase can only be filled with
objects of the same color (either green or red) and
that exactly k such holes are filled with green objects.
Holes in the Hit-check region can only be filled with
red or blue objects. A hole in such a region is filled
with red objects only if the hole directly above it in
the Staircase is filled with green objects. Since there
are |Si|−1 blue objects to the left of the i-th line,
exactly one hole in each line must be filled with a red
object. Therefore, the set S′ of holes filled with green
objects in the Staircase corresponds to a solution to
the Exact-Hitting-Set instance.

Four-sided trash compaction. The reduction can
be adapted to the model that allows pushes from all
four cardinal directions. We remove one object from
the top-left of the rectangle and add a blocker object
at the bottom-right of the construction, which will
prevent us from pushing from the right or bottom,
because it would cause a row or column to become too
long. However, once we resolve all pushes from the top
and left, one top push and one left push incorporate
the blocker filling the gap at the top-left corner.

Theorem 3 Given a configuration P of n objects,
and two integers w and h, deciding whether P can be
pushed into a w × h configuration is NP-hard.

Corollary 4 Deciding if a configuration can be
pushed into a

√
n×√n configuration is NP-hard.

3 Pushing into a rectangle of height 2

It is trivial to decide if P can be pushed into a sin-
gle row. This can be done if and only if each column
contains at most one element. To decide if P can be
pushed into a rectangle of height 2 requires more ef-
fort, even if P initially occupies only three rows. Let
r1, r2, and r3 denote the number of elements in the
top, middle, and bottom rows respectively. We can
trivially check in linear time whether any row con-
tains more than half of the objects; if so, we report
that no solution is possible. We now assume there are
at most n/2 objects per row. Suppose that P occupies
m columns and assume that the input is not trivial.
(See Observation 3 and Lemma 2.) Since we want to
compress the configuration into a rectangle of width
n
2 , we perform at most m− n

2 (i.e., at most n
2 ) horizon-

tal pushes. Notice that we will push vertically exactly
once. As soon as that happens, by Lemma 2, it is triv-
ial to check if a rectangle can be formed. Without loss

of generality, we may assume that we are never push-
ing up, since we perform at most one vertical push.
We need to determine the number of left pushes and
the number of right pushes that should be performed
before the single vertical push. By Lemma 1, we can
perform those left and right pushes in any order. Thus
we characterize each potential solution by its push sig-
nature (`, r), where ` is the number of left pushes and
r is the number of right pushes. Since ` + r ≤ n, we
can simply try all possible push signatures with these
constraints, of which there are a quadratic number.
Checking if a push signature is feasible takes amor-
tized constant time by maintaining, for each row, a
pointer to the last empty space in the configuration,
so this would yield a total time complexity of O(n2).

Consider a push signature G = (`, r), after perform-
ing ` left pushes and r right pushes. G is feasible if
there is no column containing 3 objects. G is conform-
ing (resp. sub-conforming) if the number of columns
where there are two objects in the top two rows is
equal to (resp. less than) (r1 + r2 − r3)/2.

Lemma 5 A configuration of n objects can be com-
pressed into a 2 × n

2 rectangle iff there exists a push
signature (`, r) that is both feasible and conforming.

Now, we introduce the feasibility diagram. It is a
2-dimensional matrix where the number of left pushes
and the number of right pushes are on the axes (see
Figure 4). We mark the feasible cells.

R

L
(b)(a)

Figure 4: (a) A configuration (n1=5, n2=6,n3=7) and
(b) its feasibility diagram. The vertical axis is the
number of right pushes, and the horizontal is the num-
ber of left pushes. The ×’s represent a computed fea-
sibility push signature, where green is ‘feasible’ and
red is ‘not feasible’. The green shaded region shows
the region of feasibility, which is all points below the
staircase outlined by the computed feasible points.
The blue ◦’s mark a conforming push signature.

Lemma 6 Any cells below and to the left of a feasible
cell are also feasible.

Proof. Let a feasible cell have coordinates (`, r). If
(`−1, r) were not feasible, we could take that config-
uration and push left to produce a feasible configura-
tion. This means that we would have decreased the
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number of elements in a column, which is not possi-
ble by Observation 2. Therefore (`−1, r) must also be
feasible. The same applies to (`, r−1). �

This property implies the Pareto-maximal cells form
a staircase. We also mark the conforming cells,
which form a x, y-monotone path. Finally, we check
whether there is any feasible conforming cell.

Computing the feasible cells. A column of height
3 can only be created where an empty space is, and
therefore, by keeping track of these spaces, we do
not need to search the entire configuration every
time we push. Using this fact, we can compute the
feasibility of all push signatures that consist of only
left or only right pushes in linear time, which will
give us a maximum number of right and left pushes
that are feasible. Given the maximum number R
of right pushes that yield a feasible solution, we
can then begin constructing the staircase; refer to
Figure 4. We know that (0, R) is feasible. If pushing
left from the resulting configuration still yields a
feasible solution, we note that (1, R) is also feasible
and continue. If pushing left is non-feasible, we
decrement the number of right pushes we make, and
see if pushing right that many times and then pushing
left once yields a feasible solution. The crucial point
is that we can test this in constant time, even though
we cannot “unpush”, by using the above observation.
We continue in this way until we have drawn out a
staircase in our diagram. By Lemma 6, we will char-
acterize all feasible cells in the diagram in linear time.

Computing the conforming cells. After each push
we add one element to one column for each row,
which means that we can keep track of the num-
ber of columns we add elements to in constant time
per push. At each push, we maintain the number
of columns with two elements in the following way.
If there is a column with one element in the mid-
dle row and one in the bottom row, then any push
down will not change the number of elements in the
resulting rows for this column. If there is a column
with one element in the top row and one in the bot-
tom row, then the same is true. However, if there
is a column with one element in the top row and
one element in the middle row, then when we push
downward, the element from the middle row will be
displaced into the bottom, and the element from the
top row will be in the resulting top row. At each
push, we maintain the number of columns that have
a top-middle configuration, as well as the number of
columns with the bottom-middle and top-bottom con-
figurations. The number of top-middle configurations
tells us how many objects will be added to the bot-
tom row upon pushing, which will give us the point
at which a push signature is conforming.

Any push-signature representing a solution will lie

in the intersection of the conforming and feasible re-
gions of the diagram. We compute both sets in linear
time, and check if their intersection is empty.

Theorem 7 Given any configuration P of n objects
that occupy at most 3 rows, we can decide in O(n)
time whether P can be pushed into a 2× n

2 rectangle.

3.1 Rectangles of height k

The brute-force O(n2)-time algorithm easily extends
to rectangles of height k > 2. A solution now consists
of exactly k−2 vertical pushes, and a number of left
and right pushes between pairs of vertical pushes. We
can encode this by a sequence of k−2 push signatures;
since there are at most n2(k−2) such sequences.

Theorem 8 If P has n objects occupying at most k
rows, we can decide in O(n2(k−2)) time whether P can
be pushed into a 2× n

2 rectangle.
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An Approximation Algorithm for the Two-Watchman Route in a Simple
Polygon

Bengt J. Nilsson∗ Eli Packer†

Abstract

The two-watchman route problem is that of comput-
ing a pair of closed tours in an environment so that
the two tours together see the whole environment and
some length measure on the two tours is minimized.
Two standard measures are: the minmax measure,
where we want the tours where the longest of them
has minimal length, and the minsum measure, where
we want the tours for which the sum of their lengths
is smallest. It is known that computing the minmax
two-watchman route is NP-hard for simple rectilinear
polygons and thus also for simple polygons. We ex-
hibit a polynomial time 7.1416-factor approximation
algorithm for computing the minmax two-watchman
route in simple polygons.

1 Introduction

Some of the most intriguing problems in computa-
tional geometry concern visibility and motion plan-
ning in polygonal environments. A classical prob-
lem is that of computing a shortest watchman route
in an environment, i.e., the shortest closed tour
that sees the complete free-space of the environment.
This problem has been shown NP-hard [5] and even
Ω(log n)-inapproximable unless P=NP [7] for poly-
gons with holes having a total of n segments.

Watchman route algorithms either compute a fixed
watchman route which requires the tour to pass a
given boundary point or they compute a floating
watchman route, with no requirement to pass any
specific point. Tan et al. [11] prove an O(n4) time
algorithm based on dynamic programming for com-
puting a shortest fixed watchman route through a
given boundary point in a simple polygon. This is
later improved to O(n3 log n) time by Dror et al. [4].
Carlsson et al. [2] show how to generalize algorithms
for the shortest fixed watchman route to compute a
shortest floating watchman route in a simple polygon
with a quadratic factor overhead. Tan [10] improves
this to a linear factor overhead. Hence, the currently
best algorithm for a shortest floating watchman route
in a simple polygon uses O(n4 log n) time.

∗Department of Computer Science, Malmö University,
SE-205 06 Malmö, Sweden. bengt.nilsson.TS@mah.se

†Proactive Location Intelligence Team, IBM, Haifa, Israel.
ELIP@il.ibm.com

The problem of computing multiple watchman
routes that together see the environment has received
much less attention. Mitchell and Wynters [8] show
that already computing the pair of tours that together
see a simple rectilinear polygon is NP-hard, if we
want to minimize the length of the longest of the two
tours, the minmax measure. It is still an open prob-
lem whether it is possible to compute a pair of tours
for which the sum of the lengths of the two tours is
minimal, the minsum measure, in polynomial time.
Packer [9] give some experimental results for multiple
watchman routes in simple polygons. In the case when
the watchmen are point sized, Belleville [1] shows an
efficiently computable characterization of all simple
polygons that are two-guardable with point guards.

We give a polynomial time 7.1416-factor approxi-
mation algorithm to compute a minmax pair of tours
that together see a simple polygon.

2 Preliminaries

Let P be a simple polygon having n vertices and let
∂P denote the boundary of P. We say that two points
in P see each other, if the line segment connecting the
points does not intersect the exterior of P. For any
connected object X inside P, we denote by VP(X )
the weak visibility polygon of X in P, i.e., the set of
points in P that see some point of X . VP(X ) when
X is a point, a segment, or a polygonal curve in P
can be efficiently computed [6].

We define a cut to be a directed line segment in P
with both end points on ∂P and having at least one
interior point not on ∂P. Hence, a polygon edge is
not a cut. A cut separates P into two sub-polygons.
If a cut is represented by the segment [p, q] we say
that the cut is directed from p to q and we call p the
start point of the cut. For a cut c in P, we let the left
polygon, L(c), be the set of points in P locally to the
left of c.

Assume a counterclockwise walk of ∂P. Such a walk
imposes a direction on each of the edges of P in the
direction of the walk. Consider a reflex vertex of P.
The two edges incident to the vertex can each be ex-
tended inside P until the extensions reach a boundary
point. These extended segments form cuts given the
same direction as the edge they are collinear to. We
call these cuts extensions.

A guard set is any set of points that together see

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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all of P. Any guard set must have points intersecting
L(e) for every extension e of P, since otherwise the
edge collinear to e will not be seen by the guard set.
Chin and Ntafos [3] prove that this is indeed also a suf-
ficient requirement when the guard set is connected,
as it is for a shortest watchman route.

Let c be a cut. If a guard set G intersects L(c), we
say that c is covered by G. Furthermore, if G inter-
sects the interior of L(c), then G properly covers c. If
G properly covers c and intersects c, we say that G
crosses c. Finally, if G covers c, but does not properly
cover c, then G reflects on c.

For two cuts, c and c′, we say that c dominates c′,
if L(c) ⊆ L(c′) An extension that is not dominated
by any other extension is called essential. By the
transitivity of the domination relation, if a guard set
has points to the left of each essential extension, it
also has points to the left of every extension [3].

All exact watchman route algorithms for simple
polygons [2, 3, 4, 10, 11] compute closed tours that
cover every essential extension. They can also be used
with any set of cuts C to compute the shortest tour
that covers each cut in C, in polynomial time. We
call such a tour the shortest visiting tour of the cuts
in C inside P and denote it SVTC . For the case that
C consists of the essential extensions of P, the tour is
a shortest watchman route, WS.

We also make use of the fact that shortest paths in
P between combinations of segments and points can
be computed efficiently [6]. We denote the shortest
path between two objects X and Y in P by SP(X, Y ).

Let X1 and X2 be two closed polygonal cycles con-
tained in a simple polygon P, such that any point
in P sees some point on X1 or X2. We call such
a pair X = (X1,X2), a two-watchman route. The
length of a cycle X in P is denoted ||X || and we let

||X ||sum

def
= ||X1|| + ||X2|| be the sum length of X and

||X ||max

def
= max{||X1||, ||X2||} be the max length of X .

Let S = (S1, S2) and T = (T1,T2) be two two-
watchman routes such that ||S||sum ≤ ||X ||sum and
||T ||max ≤ ||X ||max for any two-watchman route X in P.
We say that S is a minsum two-watchman route and
T is a minmax two-watchman route. The following
inequalities are immediate from the definitions,

||T ||max ≤ ||S||sum ≤ 2||T ||max.

3 Approximating a Minimum Two-Watchman
Route

Our algorithm is illustrated in pseudo-code in Fig-
ure 1 and we show that it approximates a minmax
two-watchman route.

The algorithm begins by running Belleville’s algo-
rithm [1] to establish if the polygon is guardable by
two point guards. If this is the case, it returns the
two point guards computed by the algorithm. Other-
wise, it computes, the set of essential extensions E , a

Algorithm Two-Watchman-Route

Input: A simple polygon P

Output: A two-watchman route WT that sees P

1 Run Belleville’s algorithm [1] to establish if the polygon is
guardable by two point guards. If this is the case, return
the two point guards computed by the algorithm

2 Compute the set of essential extensions E in P

3 Compute a shortest watchman route WS = SVTE in P

4 Let W∗
T := (WS,WS)

5 for every pair of extensions e1, e2 ∈ E, e1 6= e2 do

5.1 Compute the V-structure Ve1,e2 and establish its
bases q1 and q2

5.2 Let F1 := ∅ and F2 := ∅
5.3 for every boundary edge b = [v, v′] do

Compute the minimum tentacle pair Zmin
q1,q2

(b) =

Zr
q1,q2

(b) giving r on b

if b is a double edge (r 6= v, v′) then

Let c1 and c2 be the cuts through r and the
end points of Zmin

q1
(b) and Zmin

q2
(b)

Add c1 to F1 and c2 to F2

else /* b is a single edge (r = v or r = v′) */

if Zmin
q1

(b) sees b then

Let c and c′ be the cuts through v, v′ and
the end point of Zmin

q1
(b)

Add c and c′ to F1

else /* Zmin
q2

(b) sees b */

Let c and c′ be the cuts through v, v′ and
the end point of Zmin

q2
(b)

Add c and c′ to F2

5.4 Compute the two tours WT = (SVTF1 , SVTF2 )

5.5 if ||WT||max < ||W∗
T ||max then W∗

T := WT

6 return W∗
T

End Two-Watchman-Route

Figure 1: The Two-Watchman-Route algorithm.

shortest watchman route WS and initializes the solu-
tion to be two copies of WS. The rest of this section
is devoted to showing how to implement Step 5 of the
algorithm.

We claim the following lemma without proof.

Lemma 1 If two tours in P see all of ∂P, then they
see all of P.

The lemma implies that it is sufficient to construct
two tours that see the whole boundary of P to guar-
antee that all of P is guarded.

There is a partitioning of the extensions in E into
nonempty subsets E1 and E2, such that each tour Ti of
a minmax two-watchman route covers the extensions
in Ei, i ∈ {1, 2}. We even have a stronger claim.

Lemma 2 Each tour Ti in a minmax two-watchman
route T = (T1,T2) intersects some extension in Ei.

Consider two tours X1 and X2 and a polygon
boundary edge b. We claim the following lemma.

Lemma 3 For any two tours X1 and X2 and a poly-
gon boundary edge b, the sets VP(Xi) ∩ b and
VP(X1) ∩ VP(X2) ∩ b are each connected.

For a point q (or an extension e) in P and a (pos-
sibly point sized) subsegment sb of boundary edge b,
we call the shortest path from q (or e) to some point
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(b)

q q′

(c)

e2

e1

b

(a)

r∗
b

q q′

Figure 2: (a) A tentacle pair Zmin
q,q′ (b), (b) a jellyfish

pair Jq,q′ , (c) a minimum jellyfish pair Jmin
e1,e2 .

in P that sees all points of sb a tentacle from q (or e)
to sb , denoted Zq(sb)

(
or Ze(sb)

)
.

For a boundary segment b = [v, v′] and a point r
on b, we let b(r) be the subsegment [v, r] and b̄(r)
be the subsegment [r, v′]. For two points q and q′

and a point r on b, the tentacle pair that sees b
is the shorter of the pairs (Zq(b(r)),Zq′ (b̄(r))) and
(Zq(b̄(r)),Zq′ (b(r))). We denote this pair Zr

q,q′ (b) and
define its length to be the length of the longer of the
two tentacles in the pair.

For some point r∗ on b, it holds that ||Zr∗
q,q′(b)|| ≤

minr∈b{||Zr
q,q′(b)||}. If r∗ is one of the end points of

b, one of the tentacles in the tentacle pair degenerates
into a single point q or q′. We denote this minimum
tentacle pair by Zmin

q,q′ (b). The two tentacles attached

to q and q′ are denoted Zmin
q (b) and Zmin

q′ (b) respec-
tively; see Figure 2(a); and we have that

||Zmin
u1,u2

(b)|| ≤ ||(T1,T2)||max/2, (1)

where u1 and u2 are intersection points of T1 and T2

with e1 and e2 respectively. The inequality holds since
T1 and T2 together see b.

For two points q and q′ in P, we call Jq,q′ =
{Zmin

q,q′ (b) | b ∈ ∂P} the jellyfish pair with origins
q and q′; see Figure 2(b). We define the length of a
jellyfish pair to be the length of its longest tentacle.

We define the bases along segments s and s′ to be
a pair of points (q∗, q

′
∗) = arg minq∈s,q′∈s′{||Jq,q′ ||},

i.e., two points q∗ on s and q′
∗ on s′ where ||Jq∗,q′

∗ || is
minimal. We denote the jellyfish pair Jq∗,q′

∗ by J min
s,s′ .

From this definition and (1), we have

||J min
e1,e2 ||≤||Ju1,u2 ||≤||(T1,T2)||max/2. (2)

We can select two longest tentacle pairs of J min
e1,e2 ,

at least one pair of which attains the length ||J min
e1,e2 ||.

The two tentacle pairs have two bases q1 on e1 and q2

on e2, one pair is the shortest tentacle pair Zmin
q1,q2(b),

the other is the shortest tentacle pair Zmin
q1,q2(b′), for

boundary edges b and b′. We call the two tentacle
pairs that attain the maximum length a V-structure
on e1 and e2, and denote it Ve1,e2 . The length of
Ve1,e2 is the length of its longest tentacle. From this
definition and (2) we have

||Ve1,e2 || = ||J min
e1,e2|| ≤ ||(T1,T2)||max/2. (3)

The algorithm needs to find the two bases q1 on
e1 and q2 on e2. Therefore, the algorithm must de-
termine the two boundary edges b and b′, and the

two points r and r′ on b and b′ for which the maxi-
mum length of the V-structure is attained. Since we
do not know which pair of boundary edges produce
the V-structure that attains the length of J min

e1,e2 , we
try all possible pairs of boundary edges bi = [vi, v

′
i]

and bj = [vj , v
′
j ], 1 ≤ i ≤ j ≤ n in Step 5.1 of the

algorithm. We allow i = j to take care of the case
when the longest tentacle in J min

e1,e2 is unique.
In Step 5.1, we begin by computing Ze1(bi) and

Ze1(bj) as well as the two pairs Ze2(vi), Ze2(v′
i) and

Ze2(vj), Ze2(v′
j). Assume that Ze2(vi) and Ze2(vj) are

the shorter of the two tentacles in each pair.
We obtain the two points q and q′ on the extensions

e1 and e2 that minimize max{||Zq(bi)||, ||Zq(bj)||} and
max{||Zq′(vi)||, ||Zq′(vj)||}. We let two points ri on bi

and rj on bj slide independently, ri from vi to v′
i and

rj from vj to v′
j . We can express the position on e1 of

q and on e2 of q′ as functions of ri and rj , and hence
also the expressions max{||Zq(bi(ri))||, ||Zq(bj(rj))||}
and max{||Zq′(b̄i(ri))||, ||Zq′ (b̄j(rj))||}.

The difference between these two expressions is a
multivariate function Dij(ri, rj) on ri and rj that
locally only depends on the contact points of the
supporting segments for ri and rj and the corre-
sponding paths Zq(bi(ri)), Zq(bj(rj)), Zq′(b̄i(ri)), and
Zq′(b̄j(rj)), a total of at most eight polygon vertices.
We compute the values of ri and rj that produce the
minimum absolute value |Dij(ri, rj)| in all intervals
for ri and rj where the contact points do not change.1

As ri moves from vi to v′
i, the supporting lines for ri

can change at most O(n) times and the same holds
for rj so in at most O(n2) time the minimum can be
obtained. We maintain the pair of bases q and q′ for
which the corresponding V-structure Ve1,e2 has maxi-
mum length. We denote these points by q1 and q2.

Given q1 and q2, we compute, in Step 5.3, the min-
imum tentacle pairs Zmin

q1,q2(b) = Zr
q1,q2(b) for every

boundary edge b = [v, v′], giving us the minimum
jellyfish pair on e1 and e2, J min

e1,e2 . If the expression

max{||Zmin
q1 (b)||, ||Zmin

q2 (b)||} is minimized for r = v
or r = v′, then b is a single edge, otherwise it is a
double edge. If b is a double edge, the point r and the
endpoint of Zmin

q1 (b) different from q1 defines a cut in
P that passes through the two points. The direction
of the cut is such that q1 does not lie to the left of
the cut and is added to the set F1. We also construct
the cut through r and the endpoint of Zmin

q2 (b) differ-
ent from q2. This cut is directed so that q2 does not
lie to the left of the cut and is added to the set F2.
The green segments in Figure 2(c) are the two cuts
for boundary edge b.

Similarly, if b is a single edge, it is seen by one of
Zmin

q1 (b) or Zmin
q2 (b). If it is seen by Zmin

q1 (b), the end-
points v and v′ of b together with the endpoint of

1We assume a real RAM computational model that allows us
to compute arbitrary algebraic functions and roots of algebraic
functions.
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Zmin
q1 (b) different from q1 define two cuts. The direc-

tion of the cuts are such that q1 does not lie to the
left of them and they are added to the set F1. If b is
seen by Zmin

q2 (b), we construct two cuts in the same
way and add these to F2.

To finalize, we let W1 = SVTF1 and W2 = SVTF2 ,
two shortest visiting tours of the cut sets F1 and F2,
and return the pair (W1,W2) as our two-watchman
route.

Lemma 4 The tours (W1,W2) obtained by algo-
rithm Two-Watchman-Route form a two-watchman
route and ||(W1,W2)||max ≤ (π + 4)||(T1,T2)||max.

Proof. (Sketch) It follows from Lemma 1 and the fact
that the two tours together see every boundary edge
that they form a two-watchman route.

The algorithm computes the minimum jellyfish pair
J min
e1,e2 in the loop of Step 5.3. By trying all pairs of

extensions in Step 5, the algorithm must necessarily
consider a pair intersected by the tours T1 and T2;
see Lemma 2. Consider the tentacles attached to the
base q1 on e1. If we follow the shortest path from
each tentacle endpoint not on q1 to the next, cyclically
around q1, we obtain a tour U1 that visits every cut
in the set F1. Every tentacle has length at most R =
||(T1,T2)||max/2 by (2), hence U1 is inscribed in a circle
of radius R. Since ||W1|| ≤ ||U1||, the convex chains
of W1 together have length ≤ 2πR.

If T1 intersects T2, then ||WS|| ≤ ||T1|| +
||T2|| ≤ 2||(T1,T2)||max proving the lemma since
||(W1,W2)||max ≤ ||WS||.

If T1 does not intersect T2 and W1 has at most
four reflex chains, then ||W1|| ≤ 2πR + 8R ≤ (π + 4) ·
||(T1,T2)||max.

If T1 does not intersect T2, W1 has at least five
reflex chains and W1 does not intersect T2, then use
the segments of W1 to cut P, thus partitioning P
into separate components. Let Q be the component
containing T2. The convex chain WC of W1 bounding
Q has length ≤ 2πR. The two reflex chains of W1

adjacent to WC have length ≤ 4R and the remainder
of W1 follows the same path as T1, giving us ||W1|| ≤
||T1|| + 4R + 2πR ≤ (π + 3)||(T1,T2)||max.

Finally, if W1 intersects T2, then use T2 to cut P,
partitioning it into components. Let Q′ be the com-
ponent containing T1. The intersection W ′

C = W1∩Q′

follows the same path as T1, the two reflex chains of
W1 adjacent to W ′

C have length ≤ 4R and the remain-
ing reflex chains of W ′′

C = W1 ∩ (P \ Q′) follow T2.
The convex chains of W ′′

C
have total length ≤ 2πR

so we have ||W1|| ≤ ||T1|| + 4R + 2πR + ||T2|| ≤
(π + 4)||(T1,T2)||max.

We bound W2 similarly, proving the lemma. �

The analysis of the algorithm is straightforward.
The for-loop in Step 5 considers O(n2) pairs of exten-
sions. Computing Ve1,e2 takes O(n4) time by going

through all pairs of boundary edges. The work in
the remaining steps of the outermost for-loop is dom-
inated by the cost of computing the shortest visiting
tours in Step 5.4 taking O(n4 log n) time. Hence, the
total time complexity for the algorithm is O(n6 log n).

Theorem 5 The Two-Watchman-Route algorithm
computes a 7.1416-approximation of the minmax two-
watchman route in O(n6 log n) time.

4 Conclusions

Our algorithm relies heavily on the fact that for two
tours it is sufficient to guarantee that the boundary is
seen to ensure that the complete polygon is seen. This
does not hold for three or more tours. It is therefore
very possible that the problem is inapproximable for
three watchmen.

Establishing the complexity for the minsum two-
watchman route is still open although our algorithm
provides a polynomial 14.2832-approximation.

The authors would like to thank Pawe l Żyliński for
fruitful discussions.
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A PTAS for Euclidean Maximum Scatter TSP

László Kozma∗ Tobias Mömke∗†

Abstract. We study the problem of finding a tour of
n points in Rd in which every edge is long. More pre-
cisely, we wish to find a tour that maximizes the length
of the shortest edge in the tour. The problem is known
as Maximum Scatter TSP, and it was introduced by
Arkin et al. (SODA 1997), motivated by applications in
manufacturing and medical imaging. Arkin et al. gave
a 2-approximation for the metric version of the prob-
lem and showed that this is the best possible ratio
achievable in polynomial time (assuming P 6= NP).
They raised the question of whether one can obtain
a better approximation ratio in the planar Euclidean
case. We answer this question in the affirmative in
a more general setting, by giving a polynomial-time
approximation scheme (PTAS) for Maximum Scatter
TSP in an arbitrary fixed-dimensional Euclidean space.

1 Introduction

Let P = {p1, . . . , pn} be a set of points in Rd.
A tour T of P is a sequence T = (pi1 , . . . , pin),
where {i1, . . . , in} = {1, . . . , n}. The scatter of tour
T is the minimum distance between neighboring points
of T , i. e., min{d(pi1 , pi2), . . . , d(pin−1

, pin), d(pin , pi1)}.
The Maximum Scatter Travelling Salesman Problem
(MSTSP) asks for a tour of P with maximum scatter.
We study this problem in the geometric setting where
the distance function d is the Euclidean distance
between points.

Arkin et al. [1] initiated the study of MSTSP in
1997, motivated by problems in manufacturing (riv-
eting) and medical imaging. They gave a simple 2-
approximation algorithm for the more general metric
problem (where distances are only required to satisfy
the triangle inequality). They also showed that for
the metric variant, the approximation ratio of 2 is op-
timal (assuming P 6= NP). It was left open whether a
better approximation ratio can be obtained in polyno-
mial time if the problem has more geometric structure
(e. g., if distances are Euclidean). Arkin et al. raise
this question for the planar case (see also [6] and [13,
p. 681]).

It is natural to expect that geometric structure
should lead to stronger approximation-guarantees.
The same phenomenon has been observed for the stan-
dard TSP problem: for metric TSP the best known

∗Department of Computer Science, Saarland University,
kozma@cs.uni-saarland.de, moemke@cs.uni-saarland.de
†Partially funded by Deutsche Forschungsgemeinschaft grant

BL511/10-1 and MO 2889/1-1.

approximation ratio is 1.5 (Christofides [5]), with a cur-
rent lower bound of 123

122 (Karpinski et al. [9]), whereas
for Euclidean TSP Arora [2] and Mitchell [11] inde-
pendently obtained polynomial-time approximation
schemes (PTAS). Similarly, the Euclidean MaxTSP
problem (where the goal is to maximize the total length
of the tour) admits a PTAS (Barvinok [3]), but the
metric version is currently known to admit only a
7
8 -approximation (Kowalik and Mucha [10]).

In this paper we answer the open question about
planar MSTSP, by giving a polynomial-time (1− ε)-
approximation, for arbitrary fixed ε > 0. In fact,
we present a PTAS for MSTSP in arbitrary fixed-
dimensional Euclidean spaces. Since MSTSP is known
to be strongly NP-complete in dimensions 3 and
above [7], our result settles the classical complexity
status of the problem in these dimensions. We show
the following result.

Theorem 1 Let P be a set of n points in Rd. A tour
of P whose scatter is at least a (1 − ε) factor of the

MSTSP optimum can be found in time O
(
n(100d/ε

2)d
)

.

Further related work. TSP is one of the cornerstones
of combinatorial optimization and several variants have
been considered in the literature (we refer to [8] for a
survey). Minimizing variants are more common, but
there exist natural settings in which tours with long
edges are desirable. This is the case in certain manufac-
turing operations where nearby elements in a sequence
are required to be geometrically well-separated in order
to avoid interferences [1].

MSTSP (a.k.a. max min TSP) appears similar to
Bottleneck TSP (a.k.a. min max TSP), a problem
known to be NP-complete already in the planar Eu-
clidean case [8]. For metric Bottleneck TSP, 2-
approximation is the best possible [12], and we are not
aware of stronger approximation-results for geometric
variants. Despite the similarity between MSTSP and
Bottleneck TSP, it is unclear whether any techniques
can be transferred from one problem to the other.

Open question. Our current work does not address
the complexity status of solving MSTSP exactly in
the planar Euclidean case. It remains open whether
this problem is NP-hard (the situation is the same for
MaxTSP). We note that this question has a natural
equivalent formulation: is checking for existence of
a Hamiltonian cycle NP-complete in complements of
unit disk graphs?

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 The PTAS (Proof of Theorem 1)

Consider a set P of n points in Rd, a threshold value `,
and a precision parameter ε > 0. Given these inputs,
a PTAS for the MSTSP problem is an algorithm with
running time polynomial in n, required to return “yes”
if a tour of P exists with scatter (i. e., shortest length)
at least `. The algorithm is required to return “no” if
there is no tour of P with scatter at least `(1− ε), and
is otherwise allowed to return “yes” or “no” arbitrarily.

Such a PTAS is an approximation algorithm for the
decision version of the MSTSP problem. Observe that
the optimum value of the MSTSP problem can only
take one of

(
n
2

)
possible values (the distances between

points in P ). Thus, a binary search over the possible
values turns a PTAS of the above kind into a PTAS
for the optimization problem. In the following, we
focus on the decision problem. Before proceeding to
the algorithm, we present some structural observations
upon which the algorithm relies.

Given a point set P ∈ Rd, let GP be a graph with
vertex set V (GP ) = P and edge set E(GP ) = {{x, y} |
x, y ∈ P ∧ d(x, y) ≥ `}. In words, GP contains all
edges with length at least `. The MSTSP decision
problem asks whether GP contains a Hamiltonian
cycle. The following result is well-known (see e. g., [4]),
and is also used by Arkin et al.

Lemma 2 (Dirac’s theorem) A graph G with n
vertices has a Hamiltonian cycle if the degree of every
vertex in G is at least n

2 . Furthermore, in such a case,
a Hamiltonian cycle can be found in O(n2) time.

Observe that if the condition of Lemma 2 holds for
GP , then we are done. If that is not the case, then
there is a vertex in GP , whose degree is less than
n
2 . In other words, there is a point p ∈ P , such that
|Bp ∩ P | > n

2 , where Bp is the open ball of radius `
with center p. Let us fix p to be such a point, and let
B′p be the open ball of radius 2` with center p. We
show that the optimal solution can be assumed to have
a certain structure in relation to Bp and B′p.

Lemma 3 Suppose a tour T of P with scatter at
least ` exists. Then there exists a tour T ′ of P with
scatter at least `, such that for every pair x, y ∈ P of
neighboring points in T ′, at least one of x and y is
contained in B′p.

Proof. Suppose this is not the case. Since Bp contains
more than half of the points in P , it must contain
at least one edge of T entirely. Let {z, t} be such
an edge. Since both x and y are outside of B′p we
have d(x, t), d(x, z), d(y, t), d(y, z) ≥ `. Thus, we can
replace the edges {x, y} and {z, t} in T , with either
{x, z} and {y, t}, or {x, t} and {y, z}, depending on
the ordering of the points in T . We obtain another
tour with scatter at least `, that no longer contains
the edge {x, y}. We proceed in the same way until we

have removed all edges with both endpoints outside
of B′p. See Fig. 1 for an illustration. �

Fig. 1: Illustration of Lemma 3. The dashed edges can
replace {x,y} and {z,t} in the optimal tour.

The next ingredient of the algorithm is a coarsening
of the input, by rounding points in P to points of a grid.
Let Gδ be a δ-scaling of the d-dimensional unit grid,
i. e., Gδ = {δ(n1, . . . , nd) | n1, . . . , nd ∈ Z}, for an
arbitrary δ > 0. Let fδ (or simply f) be the mapping
from Rd to Gδ that maps each point to its nearest
grid point (breaking ties arbitrarily). The following
properties result from basic geometric considerations.

Lemma 4 With f and δ as defined earlier, we have:
(i) d(x, y) ≥ d(f(x), y)− δ

√
d/2 for all x, y ∈ Rd,

(ii) |B ∩Gδ| ≤ (2`/δ + 1)d for every open ball B of
radius `.

Observe that f maps the graph GP to a multi-
graph HP defined as follows. Let V (HP ) = {v | v =
f(x), x ∈ P}, i. e., the set of grid points with at least
one mapped point of P , and let E(HP ) = {{u, v} |
u = f(x), v = f(y), {x, y} ∈ E(GP )}, i. e., the pairs
of grid points to which edges of GP are mapped. We
also maintain multiplicities on edges of HP , i. e., we
keep track of how many edges of GP are mapped to
each edge of HP .

A tour T of P (i. e., a Hamiltonian cycle of GP ) is
mapped by f to an Eulerian tour of HP . It is not hard
to see that given this Eulerian tour of HP , a tour of
P can be recovered (by replacing multiple occurrences
of a grid point with the points in P that are mapped
to it). Moreover, the scatter of the recovered tour is
not far from that of T (by Lemma 4(i)). However, the
edges of HP are not available to us, and thus it seems
prohibitively expensive to guess a correct Eulerian tour
on the vertices of HP (there may be Ω(n) vertices).
The key insight of the algorithm is that it is sufficient
to consider the portion of HP that falls inside B′p.

At a high level, the strategy to obtain an approxi-
mation is the following (see Fig. 2 for an illustration).
Assuming that the optimal tour has the property from
Lemma 3, it consists of edges inside B′p, and “hops” of
two consecutive edges, connecting a point outside B′p
with two points inside B′p. We replace such hops with
virtual edges, both of whose endpoints are in B′p. The
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Fig. 2: Illustration of the algorithm. (i) Input point set with open balls Bp and B′p with center p and radii ` and 2`
respectively. (ii) Points inside B′p mapped to grid points (shown as squares), and “guessed” edges. Filled squares indicate
grid points to which more than one point is mapped. Dotted lines indicate virtual edges, and the number indicates the
multiplicity of an edge (omitted if 1). (iii) Virtual edges matched to points outside of B′p and extended to hops, resulting
in a multigraph. (iv) An Eulerian tour of the multigraph, expanded to a tour on the initial point set.

resulting tour is entirely in B′p, and we can “guess” its
image under f . This is now feasible, since the number
of grid points involved is bounded by Lemma 4(ii).
We also guess the multiplicities of all edges, i. e., how
many original edges have been mapped to each edge,
and how many edges are virtual.

We then disambiguate the virtual edges, i. e., we
find a suitable midpoint outside of B′p for each hop.
This is achieved by solving a perfect matching problem.
We obtain a multigraph on which we find an Eulerian
tour. Finally, from the Eulerian tour we recover a tour
of P . The distortion in distances due to rounding (i. e.,
the approximation ratio) is controlled by the choice of
the grid resolution δ.

We only focus on answering whether a tour with
the required scatter value exists. It will be clear that
constructing such a tour can be achieved with minor
changes to the algorithm. More details follow.

Algorithm. Input: a set P of n points in Rd, a
threshold `, and a precision parameter ε > 0.

1. Set δ = ε`/(2
√
d), and let `′ = `(1− ε/2).

2. Find p ∈ P such that |Bp ∩ P | > n
2 , where Bp

and B′p are the open balls with center p of radius
` and 2`. If no such p exists, output Yes.

3. Let f : P → Gδ map points to their nearest
grid point. Compute the set C = {f(x) | x ∈
(P ∩B′p)}, and for each v ∈ C, compute the sets
f−1(v) = {x | f(x) = v}.

4. Let m, v :
(
C
2

)
→ N. For all {u, v} ⊆ C, guess

m({u, v}) and v({u, v}), such that
(i) m({u, v}) = 0 if d(u, v) < `′, and
(ii) for all v ∈ C:∑

u∈C\{v}

(
m({u, v}) + v({u, v})

)
= 2|f−1(v)|.

5. Construct a bipartite graph B as follows:
- for each {u, v} ⊆ C, add v({u, v}) vertices la-
beled {u, v} to left vertex set L(B).
- for each x ∈ P \ B′p add a vertex labeled x to
the right vertex set R(B).

- add an edge ({u, v}, x) between {u, v} ∈ L(B)
and x ∈ R(B) to E(B) iff d(u, x), d(v, x) ≥ `′.

6. Find a perfect matching M of B; if there is none,
output No.

7. Construct a multigraph H as follows:
- let V (H) = C ∪ (P \B′p).
- for all {u, v} ⊆ C add m({u, v}) copies of the
edge {u, v} to E(H).
- for all ({u, v}, x) ∈M add the edges {u, x} and
{v, x} to E(H).

8. Find an Eulerian tour Q of H; if there is none,
output No.

9. Transform Q into a tour T of P , by replacing
multiple occurrences of every point v ∈ C, with
the points in f−1(v) in arbitrary order.

10. Output Yes.

Note. The “guessing” in step 4 should be thought of
as a loop over all possible values of m and v satisfying
the requirements. The overall output is No if the
output is No for all possible values of step 4.

Correctness. We prove two claims which together
imply that the algorithm is a PTAS for MSTSP: (1)
if the algorithm outputs Yes, then there is a tour of
P with scatter at least `(1− ε), and (2) if there is a
tour of P with scatter at least `, then the algorithm
outputs Yes.

(1) If we obtain Yes in step 2, then we have a tour
with scatter at least ` by Lemma 2. Suppose that the
algorithm returns Yes in step 10. This means that
steps 5–9 were successful with the values of m and
v chosen in step 4, and T is a tour of P . Consider
an arbitrary edge {x, y} of T . By step 9, there is a
corresponding edge {u, v} in the Eulerian tour Q of H.
By construction of H in step 7, either (a) u, v ∈ C, or
(b) ({u,w}, v) ∈M or ({v, w}, u) ∈M , for some grid
point w ∈ C.

In case (a) by condition (i) of step 4, we have
d(u, v) ≥ `′. Since {u, v} = {f(x), f(y)}, from
Lemma 4(i) we obtain d(x, y) ≥ `′ − δ

√
d = `(1− ε).
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In case (b) by the construction of B in step 5, we
have d(u, v) ≥ `′. Since {u, v} equals either {f(x), y}
or {x, f(y)}, from Lemma 4(i) we obtain d(x, y) ≥
`′ − δ

√
d/2 ≥ `(1− ε).

(2) Assume now that a tour T of P with scatter
at least ` exists, and that the solution is not trivially
found in step 1. Assume also w. l. o. g. that T has the
special structure described in Lemma 3, i. e., it consists
of hops and of edges entirely inside B′p. Consider an
edge {x, y} of T , such that x, y ∈ B′p. Then, after step
3, f(x), f(y) ∈ C holds, and we say that {x, y} maps
to {f(x), f(y)}. Consider now a hop of T , i. e., two
consecutive edges {x,w} and {w, y}, such that x, y ∈
B′p and w ∈ P \B′p. Then, after step 3, f(x), f(y) ∈ C
holds, and we say that the hop {x,w, y} virtually maps
to {f(x), f(y)}.

Consider now the values m and v guessed in step 4,
and let m∗({u, v}) be the number of edges in T that
map to {u, v}, and let v∗({u, v}) be the number of
hops in T that virtually map to {u, v}. Since every
point in T has degree 2, it follows that the number of
edges and hops mapped to an edge incident to some
u ∈ C is twice the number of points in P mapped to
u. Furthermore, for all edges {x, y} ⊆ B′p of T , we

have d(f(x), f(y)) ≥ ` − δ
√
d = `′ (by Lemma 4(i)).

Therefore, guessing the correct values m = m∗ and
v = v∗ is consistent with the conditions in step 4.

Let {x1, w1, y1}, . . . , {xk, wk, yk} denote all the hops
in T , where wi ∈ P \B′p, for all i. Let ui = f(xi), and

vi = f(yi), and let us call M(T ) =
{(
{ui, vi}, wi

)
| i =

1, . . . , k
}

the hop-matching of T . Observe that M(T )
is a valid perfect matching for the graph B constructed
in step 5, therefore, step 6 will succeed. We cannot,
however, guarantee that M(T ) will be revovered in
step 6. Observe that any other perfect matching M
of B corresponds to a shuffling of the points wi in B,
and thus it is a hop-matching of a tour T ′ in which
the points wi have been correspondingly shuffled. T ′

differs from T only in its hops, and by construction
of B in step 5, we see that T ′ must have a scatter at
least `′ − δ

√
d/2.

It can be seen easily that the edges of T ′ are mapped
to an Eulerian tour of the multigraph H constructed
in step 7, and thus, step 8 succeeds. Again, we cannot
guarantee that the recovered Eulerian tour is the same
as the one to which T ′ maps. Any Eulerian tour of
H, however, must respect the edge-multiplicities of H,
which in turn are determined by the number of points
that map to each vertex of H. Therefore, step 9 must
succeed, and the output is Yes.

Note. The restrictions on m and v in step 4
can be strengthened, resulting in a smaller number
of iterations (and thus better running time). For
instance, since each virtual edge corresponds to a
hop via a point outside of B′p, we could require
the values of v to sum to |P \ B′p|. We ignore
such technicalities, as they do not affect the cor-

rectness of the algorithm – in the case of wrong
values, we get the No output in some of the later steps.

Running time. The cost of steps 1–3 is dominated
by the cost of the loop starting in step 4. We observe
that by Lemma 4(ii), |C| ≤ (9.8

√
d/ε)d. Steps 5 and

6 amount to finding a perfect matching, and steps 7
and 8 amount to finding an Eulerian tour, both in a
graph with O(n) vertices. As for step 4, observe that
the values of the functions m and v over all pairs in C
sum to |P ∩B′p| ≤ n, so we need to consider at most(
n
|C|2
)

ways of distributing a value of at most n into

the integer values of m and v. Multiplying, and using
a standard bound on the binomial, we obtain that the

running time is at most O(n|C|
2+3) = O

(
n(100d/ε

2)d
)

.

This concludes the proof of Theorem 1.
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Approximating Multidimensional Subset Sum and the Minkowski
Decomposition of Polygons ∗

Ioannis Z. Emiris † Anna Karasoulou † Charilaos Tzovas‡

Abstract

We consider the approximation of two NP-hard prob-
lems: Minkowski Decomposition (MinkDecomp) of in-
tegral lattice polygons, and the related Multidimen-
sional Subset Sum (kD-SS). We prove, through a
gap-preserving reduction, that, for general dimension
k, kD-SS does not have an FPTAS. For 2D-SS, we
present an O(n7/ε4) approximation algorithm, where
n is the set cardinality and ε bounds the approxima-
tion, and use it to approximate MinkDecomp.

1 Introduction

A polygon Q is called lattice polygon when all its ver-
tices are integer points.

Problem 1 Minkowski Decomposition
(MinkDecomp). Given a lattice convex poly-
gon Q, decide if it is decomposable, that is, if there
are nontrivial lattice polygons A and B such that
A + B = Q, where + denotes Minkowski sum. The
polygons A and B are called the summands.

Problem 2 MinkDecomp-µ-approx

Input: A lattice polygon Q and a parameter 0 <
ε < 1 and µ is a measure of polygons.

Output: Lattice polygons A,B such that µ(Q) −
εX < µ(A+B) < µ(Q)+ εX. We call such an output
an εX-solution.

Problem 1 is proven NP-complete in [5] and can be
reduced to 2D-SS. For the reduction see Section 4.

Problem 3 kD-Subset Sum (kD-SS)
Input: A vector set S = {vi | vi ∈ Zk, 1 ≤ i ≤ n} and
a target vector t ∈ Zk.

Output: Decide whether there exist a vector subset
Sτ = {v1, v2, . . . , vτ} ⊆ S such that

∑τ
i=1 vi = t.
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sity of Athens, {emiris,akarasou}@di.uoa.gr
‡Department of Mathematics, University of Athens,
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This is a generalization of the classic 1D-SS problem,
and as such, is also NP-complete.

Let Pi be the set of all possible vector sums that can
be produced by adding at most i elements from the
first i vectors in S. Then, Pn is the set of all possible
vector sums. Here is the approximation version:

Problem 4 kD-SS-approx
Input: A set S = {vi | vi ∈ Zk, 1 ≤ i ≤ n, k ≥ 1}, a

nonzero target t ∈ Pn and 0 < ε < 1.
Output: Find a subset Sτ = {v1, v2, . . . , vτ} ⊆ S

whose vector sum t′ satisfies dist(t, t′) ≤ ε|t|, where
|t| is the length of t.

We consider Euclidean distance l2 but the discussion
is easily generalized to any lp, 1 ≤ p <∞.

Definition 1 A PTAS (Polynomial Time Approxi-
mation Scheme) is an algorithm which takes an in-
stance of an optimization problem and a parameter
ε > 0 and, in polynomial time, produces a solution
that is within a factor 1 + ε of being optimal for min-
imazation problems, or 1 − ε for maximization. One
further defines class FPTAS (Fully PTAS) where the
time complexity is polynomial in both input size and
parameter ε.

Previous work 1D-SS and kD-SS are not strongly
NP-complete and can be solved exactly in pseudo-
polynomial time: 1D-SS is solved in O(nt) and, gener-
alizing this idea, kD-SS is solved in O(n|M |k), where
M = maxPn is the farthest reachable point; informa-
tion for k = 2 in [8]. Moreover, 1D-SS is in FPTAS
[6].

A similar problem to kD-SS is the Closest Vector
Problem (CVP): we are given a set of basis vectors
B = {b1, . . . , bn}, where bi ∈ Zk, and a target vector
t ∈ Zk, and we ask what is the closest vector to t
in the lattice L generated by B. The lattice of B
is L(B) = {∑m

1 aibi | ai ∈ Z} and thus kD-SS is a
special case of CVP, where ai ∈ {0, 1}. CVP cannot

be approximated within a factor of 2log
1−ε n [1, 3].

MinkDecomp has its fair share of attention. One
application is in the factorization of bivariate polyno-
mials through their Newton polygons. If a polynomial
factors, then its Newton polygon has a Minkowski
decomposition. Here, we are interested in find-
ing approximate solutions of the latter: polygons

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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whose Minkowski Sum is almost the original poly-
gon. MinkDecomp is NP-complete for integral poly-
gons, and a pseudopolynomial algorithm exists [5].
An algorithm for polynomial irreducibility testing us-
ing MinkDecomp is presented in [7]. They present a
criterion for MinkDecomp that reduces the decision
problem into a question in linear programming. Con-
tinuing the work in [4], we propose a poly-time algo-
rithm that solves MinkDecomp approximately using
a solver for 2D-SS.

Our contribution We introduce the kD-SS prob-
lem. It is clearly NP-complete; we prove that it cannot
be approximated efficiently. We design an algorithm
for 2D-SS-approx: given a set S, |S| = n, target t
and 0 < ε < 1, the algorithm returns, in O(n7ε−4),
a subset of S whose vectors sum to t′ such that
dist(t, t′) ≤ εM , where M is the length of the largest
possible sum of vectors in any subset of S. This algo-
rithm yields an approximation algorithm for MinkDe-
comp: If Q is the input polygon the algorithm returns
polygons A and B whose Minkowski sum defines poly-
gon Q′ such that vol(Q) ≤ vol(Q′) ≤ vol(Q) + εD2

and per(Q) ≤ per(Q′) ≤ per(Q) + 2εD, where D is
the diameter of Q, i.e., the maximum distance be-
tween two vertices of Q.

2 kD-SS is not in FPTAS

To prove that kD-SS is not in FPTAS we will apply
the idea for the CVP, which is not in PTAS [1]. We
will change their proof and apply it to our problem to
prove something weaker for kD-SS.

Given a CNF formula φ we invoke Proposition 1 and
get an instance of the Set Cover problem. This is a
gap introducing reduction, because if φ is statisfiable
then the instance of Set Cover has a solution of size
exactly K and if φ is not statisfiable every solution has
size at least cK for a constant c. From this instance
of Set Cover we create an instance for kD-SS that
preserves the gap. Now, if φ is satisfiable, the closest
vector to a given target t has distance exactly K. If
φ is not statisfiable, the closest vector in target t has
distance at least cK.

We reduce kD-SS to Set Cover for norm l1, but
this can easily be generalized to any lp, where p is a
positive integer. We say that a cover is exact if the
sets in the cover are pairwise disjoint.

Proposition 1 [2] For every c > 1 there is a polyno-
mial time reduction that, given an instance φ of SAT,
produces an instance of Set Cover {U , (S1, . . . , Sm)}
where U is the input set of integers and S1, . . . , Sm
are subsets of U , and integer K with the property:
If φ is satisfiable, there is an exact cover of size K,
otherwise all set covers have size more than cK.

Theorem 2 Given a CNF formula φ and c > 1 we
create an instance {v1, . . . , vn, t} of kD-SS. If φ is sat-
isfiable, then the minimum distance from t is less than
K or otherwise, it is more than cK.

Proof. Let {U , (S1, . . . , Sm),K} be the instance of
Set-Cover obtained in Proposition 1 for the formula
φ. We transform it to an instance of kD-SS with input
set S and target t, such that the distance of t from
the nearest point in the set of all possible points Pn
is either K or ≥ cK.

Let vi be the vectors of the reduction that will have
n+m coordinates, where |U| = n. We will create such
a vector vi for every set Si. Let L = cK. Then the
first n coordinates of each vector vi have their j’th-
coordinate (j ≤ n) equal to L, if the corresponding
j’th-element belongs to set Si, or 0 otherwise. The
remaining m coordinates have 1 in the (n + i)’th-
coordinate and zeros everywhere else:

vi = (L · χSi , 0, . . . , 1, . . . 0) = (L · χSi , ei)

The target vector t has in the first n coordinates L
and the last m are zeros, t = (L, . . . , L, 0, . . . , 0).

Now, let the instance of Set-Cover have an exact
cover of size K. We will prove that the minimum
distance from target t is less than K. Without loss of
generality, name the solution {S1, . . . , SK}. For each
Si, 1 ≤ i ≤ K sum the corresponding vectors vi and
let this be ζ ∈ Zn+m:

ζ =
K∑

i=1

vi = (L, . . . , L,︸ ︷︷ ︸
n

1, . . . , 1︸ ︷︷ ︸
K

0, . . . , 0︸ ︷︷ ︸
m−K

).

The first n variables must sum up to (L,L . . . , L),
because if one of the coordinates was 0, the solution
would not be a cover and if one of them was greater
than L, then some element is covered more than once
and the solution would not be exact. The key point
is that in the last m coordinates we will have exactly
K ones. The distance of this vector ζ from t is

‖ − t+ ζ‖1 = ‖(0, . . . , 0,︸ ︷︷ ︸
n

1, . . . , 1︸ ︷︷ ︸
K

0, . . . , 0︸ ︷︷ ︸
m−K

)‖1 = K

Thus, there is a point in Pn that its distance from t
is at most K.

Let us consider the other direction, where the Set
Cover instance has a solution set greater than cK =
L. We will show that the closest vector in t has dis-
tance at least L. This solution must have at least
cK = L sets. As before, ‖ − t + ζ‖1 ≥ L (this time
the cover need not be exact).

Towards a contradiction, suppose there exists a vec-
tor ξ such that ‖ − t+ ξ‖1 < L. If the corresponding
sets do not form a cover of S then one of the first
n coordinates of ξ is 0 and this alone is enough for
‖ − t + ξ‖1 > L. If the sets form a cover that is not
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exact, then in at least one of the first n coordinates
of ξ will be greater than L (for the element that is
covered more than once) and will force ‖ − t+ ξ‖1 to
be greater than L. Finally, if the sets form an exact
cover, the first n coordinates of ‖ − t+ ξ‖1 will be 0.
For the distance to be less than L, in the last m coor-
dinates there must be less than L units implying that
the sets in the cover are less than L contradicting our
hypothesis.

In all cases, there cannot exist a vector whose dis-
tance from t is < cK. �

Theorem 3 There is no FPTAS for kD-SS-approx
unless P=NP.

Proof. φ is a given formula. Suppose there exists an
FPTAS for kD-SS-approx. Run the algorithm with
ε = 1/cn and target t. Since ‖t‖1 = ncK, we are
looking for possible solutions within distance εncK =
K from t. By Theorem 2, we distinguish whether φ
is satisfiable or not in polynomial time. �

3 The approximation algorithm for 2D-SS

In this section we discuss the approximation algo-
rithm for 2D-SS. The idea is to create all possible
vectors step by step. At each step, if two vectors are
close to each other, one is deleted. Whenever we re-
fer to distance it is the Euclidean distance. We begin
with notation.

• Input: the set S = {v1, v2, . . . , vn} with vi =
(xi, yi) ∈ Z2 and |S| = n, parameter 0 < ε < 1.

• Pi is the set of all possible vectors that can be
produced by adding at most i elements from the
first i vectors in S. Pn is the set of all possible
vector sums.

• Ei = Li−1 ∪ {Li−1 + vi} is the list created at the
beginning of every step and that is about to get
trimmed.

• Li = trim(Ei, δ) is the trimmed list.

At the beginning of the i-th step we create the list
Ei = Li−1 ∪ {Li−1 + vi}. Notice that, addition is
over Z2, and after a point is found we calculate its
length and sort Ei based on the lengths. For each
vector u ∈ Ei with length |u| and angle θ(u), check
all the vectors u′ ∈ Ei that have length |u| ≤ |u′| ≤
(1 + δ)|u|. If also θ(u)− δ ≤ θ(u′) ≤ θ(u) + δ, remove
u′. Li is the trimmed list, that is, from the list Ei
we remove vectors that are close to each other. The
two conditions ensure that dist(u′, u) ≤ αδ|u|, where
1 ≤ α ≤ 2 is a constant. Every vector that is deleted
from Ei is not very far away from a vector in Li:

∀u ∈ Ei,∃w ∈ Li : u = w + rw, |rw| ≤ αδ|w| (1)

hence, |w| ≤ |u| ≤ (1 + δ)|w|. See fig. 1.

Lemma 4 Call function Li =trim(Ei, δ) where Ei is
an input list of vectors and δ = ε/2n the parameter.
Then |Li| = O(n3ε−2) for 1 ≤ i ≤ n.

Proof. Let Mi = max{|xk| : xk ∈ Ei}, the vector
in Ei with the largest magnitude. Every vector in Ei
has length between (1+δ)k and (1+δ)k+1 that forms
an annulus, called zone. Solving (1 + δ)k ≥Mi for k,
there are O(n2/ε) many zones.

Every zone can be divided in cells. Each cell is
taken in such a way that it will cover 2δR of the lower
circle, where R is the radius of the circle. Thus every
zone has at most 2πR/δR = 4πn/ε cells. List Li has
at most an entry for every cell created and size can
be |Li| ≤ (n2/ε) · (4πn/ε) = O(n3ε−2). �

δ|v|

δ|v|
δ|v|

αδ|v|
v

Figure 1: One cell
for vector v.

The running time for
2D-SS-approx is O(n|Ln|2)
and overall it requires time
O(n7ε−4).

Theorem 5 For a set of
vectors S = {vi | vi ∈
Z2, 0 ≤ i ≤ n}, every vector
sum v ∈ Pn can be approxi-
mated by a vector w

∀v ∈ Pn,∃w ∈ Ln,∃rw : v = w + rw,

|rw| ≤ nδmax{Ln},

where max{Li} is the length of the largest vector.

Proof. The proof is by induction. �

Setting δ = ε/2n we can ensure that every possible
vector sum will be approximated by a vector in Ln
at most εmax{Ln} far. Implementing and testing the
algorithm, much better bounds are obtained.

Lemma 6 Let S = {vi | vi ∈ Z2, 0 ≤ i ≤ n} be
the input set of vectors. If also all vectors are in one
quadrant and for all vi ∈ S : |vi| ≥ δ

∑n
1 |vi| then

∀v ∈ Pn, ∃w ∈ Ln, ∃rw : v = w + rw, |rw| ≤ nδ|w|

Proof. The proof is by induction. �

In the special case, where all vectors are within an
angle of 90 degrees and there are no short vectors,
this algorithm gives an (1+ε)-approximation solution
meaning an FPTAS for δ = ε/2n.

4 Minkowski Decomposition using 2D-SS

In this section we will describe an algorithm for ap-
proximating MinkDecomp. The algorithm takes an
input polygon Q, transform it to an instance {S, t}
of 2D-SS-approx and calls our algorithm for 2D-SS-
approx to solve MinkDecomp.
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Let Q be the input to MinkDecomp: Q = {vi |
vi ∈ Z2, 0 ≤ i ≤ n}. First we create the vector set
U by subtracting successive vertices (in clockwise or-
der): U = {v1 − v2, . . . , vn − v0}. We call U the edge
sequence and each vector is called an edge vector. Its
edge sequence is denoted by s(Q). For each edge vec-
tor v in s(Q) we calculate its primitive vector.

Definition 2 Let v = (a, b) be a vector and d =
gcd(a, b). The primitive vector of v is e = (a/d, b/d).

We get an edge vector (x, y) ∈ s(Q) and calcu-
late its primitive vector e = (x/d, y/d), where d =
gcd(x, y). The scalars d1, . . . , dk are computed by:

di = 2i, i = 0, . . . , blog2 d/2c and dk = d−
blog2 d/2c∑

i=1

di

We create the set S by adding the vectors die and
repeat the procedure for all vectors v ∈ s(Q). Notice

that
∑k

1 di = d, so the primitive edge sequence also
sums to (0, 0). Using this construction, the primitive
vectors added are log d for every v ∈ s(Q). The prim-
itive edge sequence uniquely identifies the polygon up
to translation determined by v0. This is a standard
procedure as in [5, 4].

The main defect in this approach is that the algo-
rithm returns a sequence of vectors S′ ⊂ S that sum
close to (0, 0) but possibly not (0, 0). This means the
corresponding edge sequence does not form a closed
polygon. To overcome this, we just add to s(A) the
vector v, from the last point to the first, to close the
gap. If s(A) sums to a point (a, b), by adding vector
v = (−a,−b) to s(A) the edge sequence s(A) ∪ {v}
now sums to (0, 0). If we rearrange the vectors by
their angles, they form a closed, convex polygon that
is summand A. We do the same for the sequence s(B).
Notice that the vector added in s(B) is −v = (a, b)
and this sequence (rearranged) also forms a closed,
convex polygon. We name s(A′) = s(A) ∪ {v},
s(B′) = s(B) ∪ {v} and take their Minkowski Sum
Q′ = A′ + B′, where A′ and B′ are the convex poly-
gons formed by s(A′) and s(B′). We measure how
close Q′ is to the input Q. Let D be the diameter of
Q, the maximum distance between two vertices of Q.

Lemma 7 Let the summands A′ and B′ of Q′, as
discussed. We deduce that vol(Q′) ≤ vol(Q) + εD2

and per(Q′) ≤ per(Q) + 2εD.

Proof. We observe that

s(Q′) = s(A′) ∪ s(B′) = s(A) ∪ s(B) ∪ {v,−v} =⇒
s(Q′) = s(Q) ∪ {v,−v}.

This equals adding to Q a single segment s of length
|s| = |v| and Q′ = Q+s. Since per(Q) =

∑
v∈s(Q) |v|,

it follows per(Q′) = per(Q) + 2|v|. For the volume of

Q′, at worst, where v is perpendicular to D, a rect-
angle with sides v and D is added to Q. This ex-
tra volume is ≤ |v|D, thus vol(Q′) ≤ vol(Q) + |v|D.
It is also easily observed that vol(Q) ≤ vol(Q′) and
per(Q) ≤ per(Q′) since Q′ = Q+ s.

The length of vector v we add to close the gap, is the
key factor to bound polygon Q′. From the guarantee
of the 2D-SS-approx algorithm we know that s(A)
(and respectively s(B)) sum to a vector with length
at most εmax{Ln}. This is vector v and thus |v| ≤
εmax{Ln}. Since max{Ln} ≤ D, we get |v| ≤ εD.
This yields per(Q) ≤ per(Q′) ≤ per(Q) + 2εD and
vol(Q) ≤ vol(Q′) ≤ vol(Q) + εD2. �

Corollary 8 The proposed algorithm provides a
2εD-solution for MinkDecomp-per-approx and an
εD2-solution for MinkDecomp-vol-approx.

This algorithm is implemented in Python 3, it is
openly available through Github and Sage1 and tested
for polygons with up to 100 vertices and ε ∈ [0.1, 0.5]
giving much better errors than the bounds proven.
For instances with 50 vertices and ε=0.2, the algo-
rithm needs around 60 minutes to find the summands.
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Fair and Square: Cake-Cutting in Two Dimensions

Erel Segal-Halevi Shmuel Nitzan Avinatan Hassidim Yonatan Aumann∗

Abstract

A polygonal land-estate (“cake”) has to be divided
among n agents. The division should satisfy the fol-
lowing two requirements: (a) Each piece should have
a pre-specified geometric shape, such as a square. (b)
Each agent should receive a piece with a value above
a given threshold. The value of a piece is defined
as the integral of a given value-density function over
the piece. Each agent has a possibly different value-
density, yet each agent should agree that the value of
his piece is above the fairness threshold. Each of the
two requirements has been studied before on its own:
the geometric requirement is common in polygon de-
composition problems, and the value requirement is
common in the classic economics problem known as
“fair cake-cutting”. Our research combines these re-
quirements. We present algorithms for dividing a
square cake in a way both fair (in value) and square
(in shape). The value guarantee per agent is Θ(1/n),
where the constants depend on the cake shape.

1 Introduction

Several people inherited a land-estate. How can they
divide it fairly among them?

Geometric division. Division problems are abun-
dant in computational geometry. A survey from 2000
[5] lists over 100 papers about different variants of
such problems. A typical problem involves a given
polygon C and a given family S of polygons (trian-
gles, squares, rectangles, star-shapes, spirals, etc). C
should be partitioned to several components which are
elements of S (henceforth S-elements). The partition
should satisfy such requirements as: minimizing the
number of pieces, minimizing the total perimeter of
the pieces, etc. Sometimes it is also required that the
pieces have the same area, e.g. [2, 6]. But the value
of land is much more than its shape and area. For
example, a land-plot near the sea may have a very
different value than a land-plot with exactly the same
shape and area in the middle of the desert. Geometric
partition problems do not handle such considerations.

Economic division. Division problems are also
abundant in economics and social choice. The land

∗Bar-Ilan University, Ramat-Gan, Israel.
{erelsgl,shmuelnitzan,avinatanh,yaumann}@gmail.com.
Research is partially funded by ISF grant 1083/13, Doctoral
Fellowships of Excellence Program and Mordecai and Monique
Katz Graduate Fellowship Program at Bar-Ilan University.

a. b. c.

Figure 1: Dividing a square fairly to two agents.

division problem is often called cake-cutting [3, 8].
There, value considerations are of key importance.
Moreover, economists acknowledge that different peo-
ple have different valuations. One person may pre-
fer the sea-shore while another person may prefer the
mountains. Hence, value is defined on an agent-by-
agent basis: each agent i has a bounded and integrable
value-density function on the cake, vi : C → R. The
value of a piece X to agent i is defined as the integral
of the value-density: Vi(X) :=

∫
x∈X vi(x)dx. The Vi

thus defined are nonatomic measures, so there are no
atoms which cannot be fairly divided.

An allocation of C is an n-tuple X1, . . . , Xn of
pairwise-disjoint subsets of C: X1 ∪ · · · ∪ Xn ⊆ C.
An allocation is called fair or proportional if every
agent is allotted a piece he values as at least 1/n the
total cake value: ∀i : Vi(Xi)/Vi(C) ≥ 1/n. Algo-
rithms for finding fair allocations have been used since
Biblical times. A famous algorithm for two agents
is ”cut and choose”: the cake C is partitioned to
two parts C ′, C ′′ which have the same value for Al-
ice (VA(C ′) = VA(C ′′) = VA(C)/2); the part more
valuable to Bob is given to Bob and the other part is
given to Alice. Thus both Alice and Bob are guaran-
teed a piece worth at least half their total cake value.
This algorithm has been generalized to n agents in
the 1940s [10] and many new algorithms have been
published over the years [7]. But in contrast to the ge-
ometric partition problems, most of these algorithms
do not pay much attention to the geometric shape
of the pieces. Typically, C is assumed to be a 1-
dimensional interval and the pieces are either intervals
or a countable collection thereof (see the full paper [9]
for some exceptions). While a 1-dimensional division
can be projected on a two-dimensional cake, the re-
sulting pieces might be long and narrow slivers that
are unusable in practice.

Our division. We claim that both geometric
shape and fair value are important. The input in our
problem is a polygonal cake C, a family S of polygons

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
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a.UncovNum(C, S, 1) ≥ 3 b.UncovNum(C, S, 2) ≥ 3

x

c.UncovNum(C,S,2) ≥ 4

x

d.UncovNum(C, S, 3) ≥ 5 e.UncovNum(C,S,3) ≥ 6

Figure 2: Uncover numbers of various cakes. S is the family of squares.

and n nonatomic value-measures V1, . . . , Vn. We are
looking for S-allocations - allocations of C in which
∀i : Xi ∈ S. A simple example, illustrated in Figure
1, shows that the ideal of fairness, giving each agent
at least 1/n of the total cake value, cannot always be
satisfied. Here C is square and there are n = 2 agents,
Disc and Triangle. The value-density of the Disc agent
is 1 inside the discs and 0 outside; the value-density of
the Triangle agent is 1 inside the triangles and 0 out-
side (a). When S is the family of rectangles, it is easy
to give each agent 1/2 of the total value (b). When S
is the family of squares, it is easy to give each agent
1/4 of the total value (c), but impossible to give both
agents more than 1/4. This motivates the following:

Definition 1 Prop(C, S, n) is the largest proportion
f ∈ [0, 1] such that, for every set of n nonatomic value-
measures (V1, . . . , Vn), there exists an S-allocation
(X1, ..., Xn) of C for which ∀i : Vi(Xi)/Vi(C) ≥ f .

One-dimensional cake-cutting algorithms, e.g. [4],
imply that Prop(Interval, Intervals, n) = 1/n.
By a projection argument, this also implies that
Prop(Rectangle,Rectangles, n) = 1/n. As we have
just seen (Figure 1), Prop(Square, Squares, 2) ≤ 1/4.

Prop(C, S, n) is a purely geometric function: its
value depends only on n and the geometric shapes of
C and S. Intuitively, it describes how well the family
S can be used to fairly divide C. This function is the
focus of our research. We study many different com-
binations of C and S. For every such combination,
we look for impossibility results like Figure 1 prov-
ing upper bounds on Prop, and division algorithms
proving lower bounds on Prop. In the present ab-
stract we illustrate some of our methods focusing on
several simple cases: the cake C is a square, a quarter-
plane or an unbounded plane (where the value-density
functions always have a bounded support), and S is
the family of squares. Section 2 presents impossibil-
ity results and Section 3 presents division algorithms.
Many other combinations are described in [9], includ-
ing arbitrarily-shaped cakes and arbitrary fat pieces.

2 Impossibility results

The key geometric tools used in our impossibility re-
sults are uncovers and uncover-numbers. They gen-

eralize the anti-squares studied e.g. by [1], who also
show the duality between them and square-covers.

Definition 2 (a) Let I be a set of discs contained in
C. I is called an n-S-uncover in C if in any set of n
pairwise-disjoint S-elements contained in C, at least
one S-element overlaps only at most one disc of I.
(b) The n-S-uncover number of C,

UncovNum(C, S, n), is the maximum cardinality
of an n-S-uncover in C.

Some examples are illustrated in Figure 2. In (a),
C is a rectilinear hexagon. The three discs are a 1-
square-uncover, because any 1 square contained in C
overlaps at most one disc. In (b), C is a quarter-plane
and the three discs are a 2-square-uncover: any square
that overlaps two or more discs must contain the “x”
in its interior. Hence, in any set of 2 disjoint squares
contained in C, at least one square overlaps at most
one disc. Similarly in (c), C is a square and the four
discs are a 2-square-uncover.

New uncovers can be constructed from existing ones
using deflation. Let IK and IM be two copies of the
2-square-uncover of (b). Remove the bottom-left disc
of IM and deflate IK such that all its three discs are
contained in the previous location of that bottom-left
disc. The result is the set of 5 discs in (d). We claim
that it is a 3-square-uncover: there is at most one
square overlapping two discs of the deflated IK and at
most one square overlapping two discs of IM , so all in
all there are at most two disjoint squares overlapping
two discs of the arrangement in (d).

In general, we can prove the following Deflation
Lemma: if IK is a k-S-uncover containing K discs
and IM is an m-S-uncover containing M discs, then
(under certain conditions that we omit here) it is pos-
sible to deflate IK into IM to get a (k + m − 1)-S-
uncover containing K + M − 1 discs. This lemma
allows us to construct (d) from (b) (with m = k = 2
and M = K = 3) and to construct (e) from (b)+(c)
(m = k = 2 and M = 4 and K = 3).

Let IM be an m-S-uncover with M discs. By recur-
sively applying the Deflation Lemma, we can (under
certain conditions) deflate IM into one of its own discs
to get uncovers with as many discs as we want. For
every n ≥ 1, it is possible to get an (n−1)(m−1)+1-
S-uncover having (n − 1)(M − 1) + 1 discs. Tak-
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Figure 3: Division algorithm for dividing a square cake to 2 agents who want square pieces.

ing IM to be the 2-square-uncover in (b), we build,
for every n ≥ 2, an n-square-uncover I2n−1 having
2n− 1 discs in a quarter-plane, proving that ∀n ≥ 1 :
UncovNum(QuarterP lane, Squares, n) ≥ 2n− 1.

Deflating the set I2n−3 into the bottom-left disc
of (c) gives, for every n ≥ 2, an n-square-uncover
having 2n discs in a square. This proves that ∀n ≥
2 : UncovNum(Square, Squares, n) ≥ 2n.

The following lemma links the uncover numbers to
fair cake-cutting:

Lemma 1 For every cake C, family S and n ≥ 1:

Prop(C, S, n) ≤ 1/UncovNum(C, S, n)

Proof. Let m = UncovNum(C, n, S) and let Im be
an n-S-uncover of cardinality m in C. Assume that
the cake C is a desert and the elements of Im are
water-pools. Assume that all n agents have the same
value-density function, which assigns a value of 1 to
each pool and is 0 outside the pools. By Definition
2, in every allocation of n S-elements, at least one S-
element overlaps at most one pool. The agent receiv-
ing this piece has a value of at most 1 = V (C)/m. �

With the uncover numbers from above, we get:

Corollary 2 a. Prop(Square, Squares, n) ≤ 1/(2n);
b. Prop(QuarterP lane, Squares, n) ≤ 1/(2n− 1).

3 Division algorithms

The key geometric tools used in our positive results
are covers and cover numbers.

Definition 3 (a) An S-cover of C is a set of S-
elements whose union equals C.
(b) The S-cover number of C, CoverNum(C, S), is
the minimum cardinality of an S-cover of C.

For example, it is easy to see that for the hexagon in
Figure 2/a, CoverNum(C, Squares) = 3, since it can
be covered by a set of 3 squares (and no set of 1 or 2
squares can cover it).

Lemma 3 For every cake C and family S:

Prop(C, S, 1) ≥ 1/CoverNum(C, S)

Proof. By the pigeonhole principle, if there is an S-
cover of C withm elements, then one of these elements
must have a value of at least V (C)/m. �

We now present an introductory division algorithm.
C is a square, S the family of squares and there are
n = 2 agents, Alice and Bob. Without loss of gener-
ality, we scale the value-densities of the agents such
that the value of the entire cake is exactly 4 for both
of them. By the example of Figure 1 and by Corollary
2, we already know that the largest value that can be
guaranteed to both agents is 1. Our algorithm indeed
guarantees each agent a value of at least 1.

The algorithm is illustrated in Figure 3 and it pro-
ceeds as follows. (a) Partition C to 4 quarters in a 2×2
grid and calculate the value of each quarter according
to each agent. For each agent, select a quarter with a
value of at least 1 (such a quarter must exist by the
pigeonhole principle). (b) If the selected quarters are
different, then give each agent his/her selected quar-
ter and finish. Here it is easy to satisfy both agents
since each agent prefers a different geographic region
- Alice likes the south-west and Bob likes the north-
east. (c) If the selected quarter is the same, then (d)
for each agent, mark inside the selected quarter, a
corner-square with a value of exactly 1 for that agent.
(e) Cut a corner-square between the two marks. Give
it to the agent associated with the smaller mark (Al-
ice, in this case); that agent obviously receives a value
of at least 1. For the other agent (Bob), the value of
the remaining L-shape is at least 3. Cut a square
from the remaining L-shape with a value of at least
1 (such a square must exist by Lemma 3) and give it
to Bob. Note that Bob’s square is larger than Alice’s
square; this makes sense, since Alice won a square in
the south-west, which, according to both agents, is a
valuable region. So Bob is compensated by winning a
larger plot.

This algorithm proves Prop(Square, Squares, 2) ≥
1/4, which matches the upper bound of Corollary 2.

There are several ways to generalize this algorithm
to n agents. We present here high-level sketches of the
algorithms and refer the reader to [9] for more details.

Algorithm 1. For dividing a square cake, we use
a ”recursive quartering” technique. The cake is par-
titioned to four quarters as in Figure 3/a. The value
of each quarter according to each agent is calculated.
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Figure 4: Dividing a 4-staircase.

The agents are assigned to quarters based on their
values: each agent is assigned to a quarter which is
more valuable to that agent (considering the number
of other agents assigned to that quarter). Then, each
quarter is divided recursively to the agents assigned to
it (handling some special cases which we omit here).
If done correctly, this algorithm guarantees to each
agent a value of at least 1, when the value of the orig-
inal cake is normalized to 4n − 4. This proves that:
Prop(Square, Squares, n) ≥ 1/(4n − 4). This has a
multiplicative gap of 2 from the upper bound of Corol-
lary 2. We know how to close this gap in the special
case of n agents with identical value measures.

Algorithm 2. For dividing a quarter-plane cake,
we use a ”staircase carving” technique. We want
to match the upper bound of Corollary 2 which is
1/(2n − 1). To do this, we generalize and handle
a cake in the shape of a staircase. A staircase is
a polygonal domain which is bounded in two sides
(e.g. left and bottom) but open in the other two
sides. A k-staircase is a staircase that has k inner
corners (see Figure 4/a). A quarter-plane is a 1-
staircase. In every k-staircase, it is easy to find an
n-square-uncover with 2n− 2 + k discs, so by Lemma
1, Prop(k staircase, Squares, n) ≤ 1/(2n−2+k). The
following algorithm matches this bound.

Assume that n agents (with different value-
densities) value the k-staircase as 2n − 2 + k. For
each corner j and agent i, mark a corner-square in
corner j with a value of exactly 1 for agent i. In
each corner, keep only one smallest square. There
are two cases. Easy case: at least one square is en-
tirely contained in its corner (like the square in corner
4 in Figure 4/b). Cut this square and give it to its
agent. The remaining cake is a (k + 1)-staircase and
its value for the remaining n − 1 agents is at least
2n− 3 + k = 2(n− 1)− 2 + (k+ 1) so we can divide it
to them recursively. Hard case: all squares flow over
their corners, casting ”shadows” on the corners above
and/or to their right. We cannot just cut a square be-
cause the result will not be a staircase. Fortunately,
we can prove the following geometric lemma: there al-
ways exists a square whose shadows are entirely con-
tained in the other squares (like the square in corner
2 in Figure 4/c). Cut this square, give it to its agent,
and discard its shadow/s. The value of each shadow
to the other agents is at most 1; each removed shadow

removes one corner and decreases k by 1; hence, the
remaining n− 1 agents still value the remaining cake
as at least 2(n−1)−2+k′ (where k′ is the new number
of corners) and we can proceed recursively.

This shows that Prop(k staircase, Squares, n) =
1/(2n− 2 + k). By letting k = 1 we get a tight result:
Prop(QuarterP lane, Squares, n) = 1/(2n− 1).

Algorithm 3. Assume that C is an unbounded
plane. Similarly to Algorithm 1, partition it to
four quarter-planes and partition the agents to four
groups according to their valuations. Then, di-
vide each quarter-plane to its agents using Algo-
rithm 2. A calculation in [9] gives, for all n ≥ 4:
Prop(Plane, Squares, n) ≥ 1/(2n− 4). The table be-
low summarizes the results presented in this abstract:

Cake Lower Upper

Square 1/(4n− 4) 1/(2n)
1/4-plane 1/(2n− 1) 1/(2n− 1)

Plane 1/n 1/(2n− 4)

For an unbounded plane we do not have an upper
bound (other than the trivial upper bound of 1/n).
Hence, we conclude with an open question: Is it pos-
sible to divide an unbounded plane such that each of
n agents receives a square piece worth at least 1/n?
Is it possible to divide the plane “fair and square”?
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Voronoi Diagrams for Parallel Halflines in 3D
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Abstract

We consider the Euclidean Voronoi diagram for a set
of n parallel halflines in R3. A relation of this di-
agram to planar power diagrams is shown, and is
used to analyze its geometric and topological prop-
erties. Moreover, a simple plane-sweep algorithm is
given that computes the Voronoi diagram for parallel
halflines at logarithmic cost per face.

1 Introduction

The Voronoi diagram is a powerful and widely used
geometric partitioning structure. Many of its proper-
ties are well understood, also in generalized settings
of various kinds; see e.g. [5].

Still, knowledge becomes quite sparse in dimensions
larger than two, when sites of more general shape
are allowed. This concerns the structural as well as
the algorithmic properties, and is already true for the
generalization from point sites to line segments. The
combinatorial complexity of the Voronoi diagram for
n line segments, and in particular, for n straight lines
in Euclidean d-space Rd can be as large as Ω(nd−1);
see [3]. The only known upper bound follows from a
general result on lower envelopes of hypersurfaces [12],
and is O(nd+ε) for any ε > 0.

Even in R3, no better bounds than Ω(n2) and
O(n3+ε), respectively, are known up to date. This
may be partially due to the complicated shape of the
arising bisector surfaces. They contain, among other
components, parabolic and hyperbolic patches, and
can lead to a diagram of fairly complicated topologi-
cal structure. Already for three straight lines as sites,
the induced structure gets so intricate that a separate
paper has been devoted to its exploration [8].

To make the problem more tractable, several re-
stricted scenarios have been considered. For exam-
ple, if the line segment sites are confined to have
constantly many orientations [10], then the size of
the diagram reduces to O(n2+ε). If, on the other
hand, the underlying distance function is polyhedral
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†Institute for Theoretical Computer Science, University of
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and convex, then the diagram becomes piecewise-
linear. The upper bound then can be tightened
to O(n2α(n) log n), even when constant-sized convex
polyhedra are allowed as sites; see [6] and [9], respec-
tively. A practical algorithm for computing the me-
dial axis of a nonconvex polytope in R3 under a con-
vex polyhedral distance function is given in [2].

In the present note, we discuss a simple though non-
trivial special case for the Euclidean distance, namely,
the case where all sites are parallel halflines in R3,
being unbounded in the same direction. Apart from
the theoretical interest, practical applications arise in
certain problems in the drilling industry (mining ex-
ploitation, offshore drilling, hydraulics, etc.), as is re-
ported by Adamou [1]. In particular, such Voronoi
diagrams serve in the exploration of the nearest lay-
ers to avoid collision between wells and identifying
unwanted plies. A related problem where this dia-
gram may be useful is approximate nearest-neighbor
searching among a set of parallel line segments in R3,
which has been studied in Emiris et al. [7].

As an interesting fact, the Voronoi diagram for par-
allel halflines is related to planar power diagrams. We
describe this correspondence in Section 2, along with
its structural implications. On the algorithmic side,
a simple plane-sweep algorithm is obtained in Sec-
tion 3. Basically, a power diagram for fixed sites
has to be updated under continuous changes of site
weights. Section 4 studies the behavior of the trisec-
tor curves for the halfline Voronoi diagram, motivated
by an attempt to reduce the O(n2+ε) upper bound on
its combinatorial complexity (which follows from the
result in [10]) to O(n2). Some extensions of our results
are mentioned in Section 5.

2 Diagram

Let H = {h1, . . . , hn} be a set of parallel halflines
in R3. We assume that each hi is vertical, and un-
bounded in negative z-direction. The upper endpoint
of hi is denoted by zi. We call zi the tip of hi, and
(by slight abuse of notation) we will use zi also to
denote the z-coordinate of the tip. The distance of a
point x ∈ R3 to a halfline hi is defined as

d(x, hi) = min{δ(x, q) | q ∈ hi}

where δ denotes the Euclidean distance function. This
distance is the normal distance of x to the supporting

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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line, ℓi, of hi, unless d(x, hi) is attained at the tip zi.
The region of a halfline in the Voronoi diagram, V(H),
of H is given by

reg(hi) = {x ∈ R3 | d(x, hi) ≤ d(x, hj), for all j}.

Regions are bounded by bisectors, Bij , for pairs of
halflines hi, hj . Let the respective tips satisfy zi ≥ zj.
Then Bij is composed of three parts: A planar patch,
contained in the (vertical) bisecting plane of the
lines ℓi and ℓj , a piece of a parabolic cylinder equidis-
tant from line ℓi and point zj , and another planar
patch in the bisecting plane of the points zi and zj.
In the case zi = zj , Bij is a single vertical plane.

The analysis of the structure of V(H) is eased by
the fact that the generators of the parabolic patches
are horizontal lines. This gives the following property:

Observation 1 The intersection of Bij with any hor-
izontal plane is a straight line.

Denote with E∆ the horizontal plane z = ∆, and
consider the lines bij = Bij ∩ E∆. As bisectors inter-
sect 3 by 3 in trisectors tijk = Bij ∩ Bik ∩ Bjk, the
lines bij , bik, and bjk concur in a common point (or
are parallel), for any pairwise different indices i, j, k.
This implies, by a result in [4], that the line system
(bij)1≤i<j≤n is the set of power lines defined by n
weighted points in E∆. A more direct argument fol-
lows from the lemma below.

Lemma 1 Consider the point pi = ℓi ∩ E∆, and as-
sign the weight wi = − max{0, (∆ − zi)}2 to it. For
any x ∈ E∆, we have d(x, hi)

2 = δ(x, pi)
2 − wi.

Proof. If E∆ lie below zi then pi ∈ hi and wi = 0,
and the assertion is trivial. Otherwise, it follows
from the Pythagorean theorem, because hi is normal
to E∆. �

In other words, the squared distance of x to hi is
the power distance of x to the point pi with weight wi.
We therefore have the following geometric relation:

Theorem 2 For all values ∆, the sectional diagram
V(H) ∩ E∆ is identical to the power diagram of the
points p1, . . . , pn, for the weights wi in Lemma 1.

In particular, if E∆ lies below all tips then the Eu-
clidean Voronoi diagram of p1, . . . , pn is obtained.

Figure 1 displays the trisector arcs of V(H) for a
set H of 10 halflines. A corresponding sectional power
diagram is shown in Figure 2.

Theorem 2 indicates that V(H) must have a rela-
tively simple structure, which we will study now in
more detail. First of all, the weights wi, when seen
as functions wi(∆), are continuous. wi(∆) is zero for
∆ ≤ zi, and decreases quadratically for ∆ > zi.

Figure 1: A halfline diagram with sectional plane,
projected normal to the z-axis.

We watch the interplay on E∆ when ∆ is increased
from −∞ to ∞. The power cells Ci(∆) = reg(hi)∩E∆

are convex polygons, whose vertices move continu-
ously. For sufficiently small ∆, each cell Ci(∆) is a
planar Voronoi region, and therefore is non-empty. Its
edges first poise, and then move self-parallely because
p1, . . . , pn stay fixed, and movement is in a fixed direc-
tion by the shape of the bisectors Bij . So each point
x ∈ E∆ can enter or leave Ci(∆) at most once. Also,
if Ci(∆) disappears from the diagram it cannot reap-
pear, by the monotone movement of its edges. We
summarize:

Property 1 The intersection of reg(hi) with every
vertical line is connected or empty. Moreover, reg(hi)
is a simply-connected set.

Note that a power cell Ci(∆) survives for ∆ → ∞
if and only if the tip zi appears on the upper convex
hull of {h1, . . . , hn}. Property 1 does not imply that
the combinatorial size of reg(hi) is O(n): Although
the number of bisectors Bij that border reg(hi) is
trivially limited to n − 1, a single bisector may de-
fine more than one facet (connected boundary patch)
of reg(hi). Indeed, there are multiple adjacencies be-
tween the regions in V(H) in general; see Section 4.

Figure 2: The sectional power diagram.
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Let us now have a look at the Voronoi diagram
V({hi, hj , hk}) for only three halflines. The trisec-
tor curve tijk corresponds to a power diagram vertex
u∆ = tijk ∩E∆ for all ∆, unless the points pi, pj , and
pk are collinear (which we will exclude for the ease of
description). This implies:

Property 2 Each trisector tijk is a connected curve,
unbounded in both z-directions, and monotone.

In particular, tijk does not contain cycles. For pair-
wise different tip heights, the curve tijk is composed
of 4 pieces, as can be easily verified: a halfline, two
quadratic arcs, and another halfline. Therefore the
algebraic degree of tijk is only two. Still, trisectors
show a complicated intersection pattern in general.
We will address this issue in Section 4.

3 Algorithm

Theorem 2 suggests a plane-sweep algorithm that
computes the diagram V(H) in ascending z-direction.

The task is to maintain a power diagram for fixed
points in the plane, under variation of their weights.
The incidence structure of V(H) then can be inferred
from the combinatorial changes that take place in the
power diagram: When a power diagram edge appears
(or disappears, respectively), then a facet of V(H)
is born (or completed). Moreover, the collapse of a
power cell signals the completion of a region in V(H).

An entirely two-dimensional implementation has
been done, which avoids computing (costly) intersec-
tions of three-dimensional bisectors. Once the com-
binatorial structure of V(H) has been extracted, the
bisector patches and trisector arcs that determine the
geometry of V(H) are calculated in a final step.

To describe the combinatorial part of the algorithm
in more detail, let PD(∆) be the power diagram for
the points p1, . . . , pn with weights w1(∆), . . . , wn(∆),
as defined in Section 2. We start with any value ∆ <
min{z1, . . . , zn}, and initialize PD(∆) as the planar
Voronoi diagram of {p1, . . . , pn}.

There is only one type of events (z-values) where
the power diagram can change. These are the antici-
pated life ends aij of its edges eij .

More specifically, aij is the z-value of the lowest
intersection point above E∆ of the respective two tri-
sector curves tijk and tijm, which define the endpoints
of eij . This value can be calculated in O(1) time, by
solving a quadratic equation in z for each of the inter-
vals given by zi, zj , zk, zm. In the diagram PD(aij), an
update of constant complexity has to be performed.
This update is either a flip that replaces the edge eij

by the edge ekm (and a facet of V(H) in Bij gets com-
pleted), or a collapse of a triangular cell incident to
the edge eij , say Ci(aij) (and the region reg(hi) gets
completed).

The tips zi of the halflines hi do not lead to combi-
natorial changes in PD(zi). They only alter the speeds
of the edges in the power cell Ci(zi). This information
is already incorporated in the trisector intersection
task above.

We use a priority queue organized by z-values to
maintain the order of events. Only O(n) entries need
to be stored at a time, by the linear number of edges
in the power diagram PD(∆). The next event to be
performed then is accessible in O(log n) time. More-
over, the total number of entries aij is bounded by
the number of facets of V(H).

Note finally that the numbers of facets, arcs, and
nodes of V(H) are linearly related: A region with f
facets has O(f) arcs and nodes, because the degree of
its nodes is at least 3. We conclude:

Theorem 3 V(H) can be computed in logarithmic
time per face, using O(n) extra storage.

4 Trisectors

The combinatorial size of V(H) tends to be near-linear
for many data, as has been observed in our experi-
ments. Thus the output-sensitive algorithm in Sec-
tion 3 can be expected to run fast in practice. On the
other hand, V(H) can attain a complexity of Ω(n2),
for example, when the tips zi are arranged like in a
worst-case example for the Voronoi diagram of point
sites in R3. This almost matches the upper bound
of O(n2+ε) for V(H), which follows from the more
general bound in [10]; see Section 1. Proving a possi-
ble quadratic upper bound is complicated by the fact
that the trisector curves of V(H) do not behave like
pseudo-lines. Let us briefly comment on this fact.

For the halfline hi with lowest tip, its region is al-
ways convex; all the bisectors Bij either ‘bend’ to-
wards hi or are vertical planes. If the size of reg(hi)
can be shown to be O(n), then an insertion argument
for regions in ascending order of tip heights implies
an overall O(n2) diagram size. Unfortunately, the re-
sult in [11] on the linear size of surface envelopes does
not apply, because two trisector curves can intersect
in more than one point.

To see an example, consider four halflines h1, h2,
h3, and h4 arranged as is illustrated in Figure 3, from
the top view (left) and from the front view (right).
The two trisector curves t123 and t234 (and two oth-
ers) concur in a point x, if and only if there exists a
sphere centered at x that simultaneously touches all
four halflines. There are two such spheres, a smaller
one resting on the tip of the rightmost halfline, and
bigger one passing through all four tips.1

1Thanks go to Peter Widmayer’s group for pointing us to
this example.
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Figure 3: Two touching spheres for 4 halflines.

The trisectors defined by 4 halflines can have at
most 3 intersection points, by a simple algebraic
case analysis. This bound is actually attained, and
even worse, there are constellations of n halflines for
any n ≥ 4 where every quadruple of related trisectors
shows such an intersection behavior.

As another approach, one can try to bound the
overall number of edges that appear in the power di-
agram PD(∆) for varying ∆. There are

(
n
2

)
potential

power edges. However, once having disappeared, an
edge between the same two power cells can appear
again. In fact this can happen n − 2 times, which
is the maximum possible. Stated differently, a fixed
bisector Bij can define Θ(n) facets where the two re-
gions reg(hi) and reg(hj) are adjacent.

On the other hand, edge speeds in PD(∆) are not
arbitrary. Starting with 0, the speed of an edge in-
creases at constant acceleration, until it stays con-
stant forever.

By the relationship between power diagrams and
convex hulls (see e.g. [5]), the problem above can
be transformed into a dynamic convex hull problem
in R3. Starting from the paraboloid of revolution
z = x2 +y2 at different times, n points move upwards
vertically and at constant accelerations. The question
of interest is now to bound the number of combinato-
rial changes that occur on their convex hull.

5 Extensions

An obvious extension of the results in this note
concerns the Voronoi diagram of parallel line seg-
ments that are bounded in both directions. Whereas
Lemma 1 can be generalized straightforwardly such
that Theorem 2 still holds, the resulting plane-sweep
algorithm now has to deal with the detection of new
regions, which cannot be done locally. A simple so-
lution is to calculate the respective ∆-values directly
and beforehand, in O(n log n) time each.

Theorem 4 The Voronoi diagram of n parallel line
segments in R3 can be computed in O((n2 +K) logn)
time and optimal space, where K denotes the size of
the output.

Our results also generalize to higher dimensions.
For example, for computing the Voronoi diagram of
parallel line segments in R4, a power diagram in R3

can be maintained. The sweep algorithm then con-
structs the desired diagram 2-face by 2-face and re-
tains its output-sensitivity, though details get more
involved.
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Additive Weights for Straight Skeletons

Martin Held∗ Peter Palfrader∗

Abstract

We introduce an additively-weighted straight skeleton
as a new generalization of straight skeletons. It is
induced by a wavefront propagation process where,
unlike in standard variants, wavefront edges do not
necessarily start to move at the begin of the propaga-
tion process but at later points in time.

1 Introduction

Straight skeletons were introduced to computational
geometry over 20 years ago by Aichholzer et al. [2].
They have diverse applications such as in tool path
generation, mathematical origami, roof design, and
terrain generation. (See, for example, [7] and the ref-
erences cited therein.)

The multiplicatively-weighted straight skeleton was
first mentioned by Aichholzer and Aurenhammer [1]
and then by Eppstein and Erickson [5]. Recently it
was studied in more detail by Biedl et al. [3] who
analyzed under which conditions properties of the un-
weighted skeleton carry over to the weighted pendant.

2 Preliminaries

A straight skeleton is defined as the outcome of a
wavefront propagation process. For a simple poly-
gon P , its wavefront WP (t) changes with time t and
is a set of simple polygons. Initially, at time zero,
WP (0) consists only of P . Then, as time increases,
the edges of WP (t) move towards the interior of P at
unit speed in a self-parallel manner, preserving inci-
dences. Thus, the vertices of WP (t) move along the
bisectors of polygon edges.

In order to maintain planarity of the wavefront
during the propagation process, special processing is
required to resolve non-planarities when they occur:
In an edge event, an edge of the wavefront that has
shrunk to zero length is removed. In a split event, a
reflex vertex v reaches another part of the wavefront.
The wavefront is split at this locus, and two separate
polygons replace the previous polygon to restore pla-
narity of the wavefront after the event. Typically this
will happen when v reaches the interior of a wavefront
edge. However, if v reaches another vertex then more

∗Universität Salzburg, FB Computerwissenschaften, 5020
Salzburg, Austria; supported by Austrian Science Fund (FWF)
Grant P25816-N15; {held,palfrader}@cosy.sbg.ac.at.

complex interactions are possible [4]. The propaga-
tion process ends when all wavefront polygons have
collapsed.

The traces of all vertices of WP (t) over the propa-
gation period then make up the edges of the straight
skeleton S(P ). In addition, if two parallel wavefront
edges move into each other during the wavefront prop-
agation, then the portion common to them is added
to the straight skeleton while the portions that belong
to only one of them remain in the wavefront [3].

To avoid ambiguities, we generally refer to the edges
of the straight skeleton as arcs and reserve edges for
the input polygon and the wavefront. Likewise, we
call the vertices of the straight skeleton nodes.

The wavefront fragments of the polygon edge e at
time t are contained in e+ t · ne, where e is the sup-
porting line of e and ne is its inward facing unit nor-
mal. We denote by e(t) the (possibly empty) set of
these wavefront fragments of edge e at time t. Ev-
ery face of the straight skeleton is traced out by the
fragments of exactly one input edge over time, i.e.,
f(e) :=

⋃
t≥0 e(t) for the face f(e) of edge e.

Straight Skeletons with Multiplicative Weights.
Multiplicatively-weighted straight skeletons, although
introduced very early on, have been studied in de-
tail only recently by Biedl et al. [3]. In the presence
of multiplicative weights, wavefront edges no longer
move at unit speed but instead move at different
speeds depending on a weight function σ : E → R
where E is the edge-set of P . The wavefront frag-
ments of the line e are contained in e+ t · σ(e) · ne.

If all weights are required to be positive, then most
of the well-known properties of straight skeletons are
preserved. One prominent exception is that a face
need not be monotone to its defining input edge any
more. For negative weights, S(P ) need not even be a
tree and may contain crossings [3].

Please visit Held’s CGA Lab [6] for references to
prior work on straight skeletons and several examples.

3 Additively-Weighted Straight Skeletons

3.1 Definition

Given a simple polygon P and an additive-weight
function δ : E → R+

0 , we define the additively-
weighted wavefront WP,δ(t) as follows. As in the un-
weighted case, WP,δ(0) is identical to P . However,

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
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wavefront edges do not all start to move immediately.
Rather, an edge of the wavefront that is emanated
from polygon edge e will only start to move inwards
at unit speed at time δ(e).

Since wavefront edges no longer move all at once,
wavefront vertices will not travel exclusively along bi-
sectors of input edges. If both incident wavefront
edges have not yet started to move, then the wavefront
vertex will obviously remain stationary. If exactly one
incident wavefront edge has started to move, then the
wavefront vertex will travel on the supporting line of
the other; see Figure 2.

During its propagation process the wavefront will
see instances of edge and split events, and it needs
to be updated accordingly to restore planarity after
the event. Note that even edges and vertices that
have not yet started to move can be involved in both
types of events. (See for instance the edge in the top
right of Figure 1, which collapses before it starts mov-
ing.) The wavefront propagation process ends when
all wavefront polygons have collapsed.

The additively-weighted straight skeleton S(P, δ) is
then defined as the geometric graph whose edges are
the traces of vertices of WP,δ(t) over its propagation
period.

As in the unweighted case, we call edges of S(P, δ)
arcs and its vertices nodes. Similarly, we again call
the loci traced out by the wavefront segments e(t) of
edge e the face f(e) of e, defined as f(e) :=

⋃
t≥0 e(t).

We call the instance when an edge starts to move a
speed-change event.

3.2 Properties

Node Degrees. In unweighted or multiplicatively-
weighted straight skeletons, a node will be of degree
one when it is a leaf of the straight skeleton (its locus
will then be at a vertex of the input polygon) or of
degree three when it is the result of an elementary
edge or split event. Higher node degrees are also pos-
sible and are induced by non-elementary events where
more than three wavefront edges are involved [4].

In addition to these types of nodes, the additively-
weighted straight skeleton can have nodes of degree
two. These occur when a vertex of the wavefront
changes its speed due to an incident wavefront edge
starting to move.

∗ ∗

∗

Figure 1: Polygon(black) with an additively-weighted
straight skeleton (blue). The edges marked by ∗ have
non-zero additive weights. A family of offset curves is
shown in gray and dotted.

Nested Wavefronts. As in the case of unweighted
or multiplicatively weighted straight skeletons with
non-negative weights, the wavefronts of additively
weighted straight skeletons are nested inside each
other.

Lemma 1 Let t1, t2 ∈ R+
0 with t1 < t2. Then

WP,δ(t2) lies within WP,δ(t1).

Proof. Edges that are already moving at time t1 keep
moving towards the interior of WP,δ(t1). Edges that
are still stationary do not move towards the outside
either: Their incident vertices may move, however, as
long as they stay on the same supporting line. As
illustrated in Figure 2, these vertices do not move to
the outside of the wavefront polygon either. �

Crossings, Planarity, and Connectedness. At time
zero, the wavefrontWP,δ(0) is a single simple polygon.
Let t1 be the earliest time at which an edge starts to
move that was not moving initially, i.e., the time of
the first non-trivial speed-change event. Then in the
time interval [0, t1] the wavefront will propagate the
same as if it were the wavefront of a multiplicatively-
weighted polygon, where the weight of each edge is
either 1 if it is already moving, or 0 if it is not yet
moving.

Biedl et al. [3] show that the multiplicatively-
weighted straight skeleton is free of crossings1 for pos-
itive edge weights σ. This result extends to weights
including zero. Therefore, the wavefront propagation
in the time interval [0, t1] will not trace out any wave-
front arcs that cross other arcs.

Now suppose that the wavefront propagation has
not ended by time t1. Then at time t1 one or more
edges will start to move and the wavefront WP,δ(t1)
will consist of one or more polygons. Lemma 1 implies
that we can apply our reasoning to each wavefront
polygon individually. If t2 is the time of the next
speed-change event, then by the same argument no
wavefront arcs traced out during [t1, t2] will cross ei-
ther. Furthermore, arcs traced out during [t0, t1] and
[t1, t2] will be confined to the areas that the wave-
front traced out during their respective time. So no
arc traced out during the latter interval can cross an
arc traced out during the former. By induction, this
claim holds for the entire wavefront propagation pro-
cess.

Lemma 2 The additively-weighted straight skeleton
of a simple polygon is free of crossings.

Note however, that we cannot infer strict planarity
from being free of crossings: Assume v is a wavefront

1Roughly, a geometric graph G contains a crossing if there
exists an arbitrarily small disk B centered on the interior of an
arc such that no (open) half of B is empty of elements of the
graph, or if two nodes of G share the same locus.
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vertex where one incident edge e has not yet started
to move. Let e′ be the other edge incident at v. Then
v travels on the supporting line of e, and the direction
of this movement depends on the angle that e spans
with e′; see Figure 2.

e

e
e′

e′

Figure 2: Vertex v moving on the supporting line of
wavefront edge e that has not started to move yet.

Now let e′ collapse in an edge event. Let e′′ be
the new neighbor of e and let v′ be the new vertex
that was created in this edge event. (At the time of
the event, v′ will be in the same locus as v, which it
replaces in the wavefront.) If the angle at v′ is now
convex where at v it previously was reflex, then v′

will move in the opposite direction of v. This results
in the arc being traced out by v′ to overlap the arc
already traced out by v; see Figure 3.

e
e′ e′′

e
e′ e′′

e
e′ e′′

Figure 3: After an edge event, a wavefront vertex may
backtrack along an arc previously traced out.

Lemma 3 Let SP,δ(t) be the straight-skeleton fea-
tures traced by the wavefront until time t. If two
points p, q ∈ SP,δ(t) are path-connected on SP,δ(t) ∪
WP,δ(t), then they are path-connected on S(P, δ).

Proof. This is shown for multiplicatively-weighted
straight skeletons in Lemma 13 of [3] by induction on
the events of the wavefront propagation in chronolog-
ical order. We know from their proof that connectiv-
ity of p and q is not broken by edge and split events.
Therefore, it only remains to show that connectivity
is maintained across speed-change events.

First, a speed-change event does not change the
combinatorial properties of the wavefront. It will
only result in vertices potentially moving at different
speeds. Thus, a path between p and q cannot be split
by changes to the wavefront.

Second, let us consider arcs being traced out by a
vertex v of the wavefront. If v is not incident to a
wavefront edge affected by a speed-change event at
time t, it will just continue across the event with no
change, tracing out a continuous arc. If, however, v
is incident to an affected edge, then it will change
direction, and therefore the arc that it traced out up
until t will end at the position of v at time t. However,
there it will connect via a node of degree two to the
arc that v is tracing out after t. Thus, a path that
goes over an arc currently being traced out by the
wavefront cannot be disconnected by a speed-change
event. �

Corollary 4 The additively-weighted straight skele-
ton of a simple polygon is connected.

Faces. For each edge e of P , we defined its face as
f(e) :=

⋃
t≥0 e(t), where e(t) is the set of segments

of the wavefront at time t that were emanated by e.
Initially, e(0) will consist of only one segment that co-
incides with e, but as the wavefront propagates, seg-
ments may get split and segments may get dropped
from e(t) when they collapse. However, at no time
will a segment just jump into existence. Hence each
face is connected.

Note, however, that f(e) is not necessarily a sim-
ple polygon for edges that do not immediately start
to move. The faces in Figure 1 that correspond to
the edges with non-zero additive weights demonstrate
this fact. In clockwise order from the top left, we
have a face whose interior is disconnected, a face with
an empty interior because its corresponding edge col-
lapsed before it started to move, and a face whose
interior is not adjacent to e itself.

In the unweighted straight skeleton, the face of an
edge e is a monotone polygon with respect to the sup-
porting line of e. This is however not always the case
for additively-weighted straight skeletons; see for ex-
ample the topmost face in Figure 1.

Lemma 5 A face of an additively-weighted straight
skeleton need not be monotone with respect to the
edge that emanated it.

Roof Model. The roof model [2] raises the wave-
front propagation into three-space, with the (third)
z-coordinate being the time t. With P embedded in
the t = 0 plane, the wavefronts over time thus form
a polytope over P . This piecewise linear and contin-
uous polytope R(P ) :=

⋃
t≥0(WP (t) × {t}) is called

the roof of P . For unweighted straight skeletons the
roof is a terrain (z-monotone).

The roof model is a useful theoretical tool when
dealing with straight skeletons as it makes some proofs
easier. It is also directly useful as a solution for mod-
eling terrains or actual roofs of buildings.

The roof in the additively-weighted case is defined
similarly as R(P, δ) :=

⋃
t≥0(WP,δ(t)×{t}). It clearly

is no longer strictly z-monotone, since wavefront edges
may stay on the same supporting line during the
propagation, resulting in vertical facets. The house
depicted in Figure 4 has many such facets, namely
the walls, as all input edges have (different) additive
weights assigned to them. The weight assigned to
some edges is larger, resulting in some walls contin-
uing upwards while inclined roof facets already exist
at the same height.

Lemma 6 The roof R(P, δ) induced by an
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Figure 4: A house with a roof induced by an
additively-weighted straight skeleton.

additively-weighted straight skeleton is weakly
z-monotone.

Proof. This is a direct consequence of Lemma 1. �

For each edge e of the polygon, the roof will have at
least one facet, the one incident to e. If the segments
of e see a speed-change event during the propagation
process, one additional facet per segment will be visi-
ble in the roof. Note that all facets of e correspond to
only a single face in the straight skeleton as the “bend”
caused by the speed-change event is not apparent in
S(P, δ). Also note that the total number of facets is
still linear in the size of the input polygon since addi-
tional wavefront segments can only be caused by split
events which are bounded linearly in the input size.

4 Generalizations

Several generalizations seem natural. First, one can
combine multiplicative weights with additive weights.
We postulate that no properties change as long as the
multiplicative weights remain non-negative. If nega-
tive additive weights are allowed then the wavefront
propagation would simply start at a time correspond-
ing to the smallest negative weight. In terms of the
roof model, negative weights merely mean shifting the
whole structure along the z-axis.

Second, the additively-weighted straight skeleton
can of course be defined not only for simple polygons
but for planar straight-line graphs also.

Third, one could even allow more than a single
speed-change per edge. As long as the speed func-
tion for an edge remains piecewise constant, vertices
would still move along straight lines and the straight
skeleton would be quite recognizable.

5 Computation

A simple method is described by Aichholzer et al. [2]
to compute the unweighted straight skeleton: Com-
pute theO(n) many collapse times of all edges and the
O(n2) times of all potential split events, and maintain
them in a priority queue. On events, only a constant
number of edge collapses have to be recomputed at

constant cost each. Since the total number of events is
linear, the overall algorithm runs in O(n2 log n) time
at the cost of O(n2) memory, where n is the size of
the input polygon.

For the additively-weighted straight skeleton, the
same approach can be used. The computation of po-
tential split event times is slightly more involved but
still in O(n2). On speed-change events, a possibly lin-
ear number of collapses have to be recomputed, but
the amortized cost for these is still only linear. There-
fore, the additively-weighted straight skeleton can also
be computed in O(n2 log n) time and O(n2) space.

As in our prior work [8], we use a variant of Aich-
holzer and Aurenhammer’s triangulation-based algo-
rithm [1] for our implementation. Their core idea is
to maintain a kinetic triangulation of the wavefront
polygons, and keep track of triangle collapses in a pri-
ority queue as these signal events. We augmented the
priority queue with the times of speed-change events,
and are thus able to compute the additively-weighted
straight skeleton.

Our implementation is based on CGAL and is ca-
pable of exactly computing the straight skeleton of a
planar straight-line graph with non-negative additive
and multiplicative weights. For instance, the straight
skeletons and offsets in Figures 1 and 4 were produced
by our code.
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Abstract

Piecewise-linear terrains (“roofs”) over simple poly-
gons were studied by Aichholzer et al. (1995) in their
work on straight skeletons of polygons. We show how
to construct a roof over a simple polygon that has
minimum (or maximum) volume among all roofs that
drain water. Such a maximum-volume (minimum-
volume) roof can have quadratic (maybe cubic, resp.)
number of facets. Our algorithm for computing such
a roof extends the standard wavefront propagation
known from the theory of straight skeletons by two
additional events. Both the minimum-volume and the
maximum-volume roof of a simple polygon with n ver-
tices can be computed in O(n3 log n) time.

1 Introduction

1.1 Motivation and Prior Work

In 1995 Aichholzer et al. [3] introduced straight skele-
tons of simple polygons. Their work also highlights
the intimate connection between straight skeletons
— as a special form of a bisector graph — of poly-
gons in the two-dimensional plane and a 3D structure
called “roof”. The bisector graph and the roof model
are used to demonstrate straight skeleton properties.
They mention that its roof volume is neither maxi-
mized nor minimized. Their algorithm uses a sweep-
plane approach to compute the straight skeleton of a
simple polygon in O(n2 log n) time. Aichholzer and
Aurenhammer [2] apply a wavefront propagation to
compute straight skeletons of general planar straight-
line graphs.

While every straight skeleton of a simple polygon
has its corresponding roof [3], it seems natural to
study also other types of roofs. Indeed, so-called “re-
alistic roofs” were introduced in recent work by sev-
eral authors [6, 1]. Their approach enumerates all
possible realistic roofs over a rectilinear polygon in
O(n5) time. A side result of their work is the compu-
tation of a realistic roof that has minimum height or
minimum volume (under the roof).

We pick up this lead and generalize realistic roofs
to “natural roofs”: Roughly, we still require a natu-
ral roof to drain water but wave the restriction that
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every facet of the roof has to be connected to its defin-
ing boundary edge. (See the gray triangular area in
Fig. 1b.) We show how to employ a wavefront prop-
agation to compute a minimum-volume (maximum-
volume) roof of a simple polygon with n vertices in
O(n3 log n) time.

1.2 Basics

Throughout this paper we let P denote a simple poly-
gon in the xy-plane, Π0, of R3. The interior side of an
edge e of P is the half-plane (within Π0) induced by
its supporting line `(e) which locally (close to e) over-
laps with the interior of P . We associate a half-plane
Π(e) with e in the following way: (i) The intersection
of Π(e) with Π0 is given by `(e), (ii) Π(e) lies within
the half-space z ≥ 0 of R3, (iii) the normal projection
of Π(e) onto Π0 coincides with the interior side of e;
i.e., Π(e) is inclined towards the interior of P , and
(iv) Π(e) forms a 45◦ angle with Π0.

Consider two different edges e1, e2 of P . The (an-
gular) bisector of e1, e2 is the set of all points within
the intersection of the interior sides of e1 and e2 that
are equidistant from `(e1) and `(e2).

For the sake of (mostly descriptional) simplicity we
assume that P is in general position: (i) No two edges
of P are parallel to each other, and (ii) not more than
three bisectors of edges of P meet in one point. Under
this assumption, the bisector of two edges e1, e2 of P
is a ray that starts at the point of intersection `(e1)∩
`(e2) and leads into the common interior of e1 and e2.

Definition 1 (Bisector Graph [3]) A connected
planar straight-line graph is a bisector graph, B(P ),
of P if (i), all its edges are portions of bisectors of
edges of P , (ii) it has no degree-two node, and (iii)
there is a bijection between its degree-one nodes and
the vertices of P .

The straight skeleton of P is known to be one spe-
cific bisector graph of P [3]; cf. Fig. 1a and 1b. The
edges of a bisector graph are called B-arcs, and com-
mon end-points of B-arcs are called B-nodes. By let-
ting a B-arc of B(P ) inherit the orientation of its sup-
porting bisector ray we impose an orientation onto
every B-arc, thus turning a bisector graph into a di-
rected bisector graph. Naturally, B-nodes in a directed
bisector graph have an in-degree and out-degree.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: In (a), we see the straight skeleton of a simple polygon P , in (b) we see another bisector graph of P .
In (c), we see a create event while in (d), due to an internal angle greater than π (red), no create event is given.
In (e), we see how a create event modifies the wavefront polygon.

Definition 2 (Roof Model [3]) A roof for P ,
R(P ), is a terrain over P , i.e., the graph of a
piecewise-linear continuous function over P , such
that (i) every facet of R(P ) is a maximal connected
subset of a half-plane Π(e) of some edge e of P , and
(ii) the intersection of R(P ) with Π0 is equal to the
boundary of P .

Theorem 1 ([3]) Every roof for P corresponds to a
unique bisector graph of P , and vice versa.

We say that an edge e of P defines a facet f ofR(P )
if f is contained in Π(e). Note that some edge may
define multiple facets. As usual, a vertex v of P is
called reflex if the internal angle at v is greater than
π; convex otherwise. We call an edge e between two
neighboring facets of a roof valley or ridge depending
on whether e originates from a reflex or convex vertex.

Consider a facet f of a roof of P , and let f ′ be
its normal projection onto Π0. The truncated prism
defined by f is the solid bounded by f , f ′ and by
trapezoids between all pairs of corresponding edges of
f and f ′.

If all facets of the roof of a house have the so-called
gradient property then water is guaranteed to drain
and local minima are omitted [3]. Since the gradient
property requires every point on a facet of an edge
e to have a steepest path to e this is a sufficient but
not a necessary condition condition for water to drain.
We consider a less stringent requirement for a roof to
drain water and still omit local minima.

Definition 3 (Natural Gradient Property) Let
R(P ) be a roof for P . We say that a facet f of R(P )
has the natural gradient property (NGP) if, for every
point p ∈ f , there exists a path g(p) that (i) starts at
p, (ii) follows the steepest gradient, and (iii) reaches
the boundary of P .

Definition 4 (Natural Roof) A roof R(P ) for a
polygon P is called a natural roof for P if all its facets
have the natural gradient property.

Definition 5 (Min-/Max-Vol. Bisector Graph)
The maximum-volume bisector graph Bmax(P ) of a
polygon P is a bisector graph B(P ) whose associated

roof R(P ) is a natural roof that maximizes the vol-
ume over all possible natural roofs for P . Similarly
for the minimum-volume bisector graph Bmin(P ).

Definition 6 (Capped Roof) A capped (natural)
roof with height t ≥ 0 for a polygon P is the set
of all points of a (natural) roof R(P ) of P whose z-
coordinate does not exceed t.

2 Computing Min-/Max-Volume Roofs

Wavefront propagation [3, 2] is a well-known strat-
egy for computing straight skeletons. Roughly, the
wavefront propagation of P is a shrinking process in
which every input edge of P is offset inwards in a self-
parallel manner. Initially, the segments of the wave-
front correspond to the edges of the polygon. During
the wavefront propagation every wavefront segment
moves at unit speed towards the interior of P . It is
common to regard the wavefront as a function of time
t and to write WP (t) to denote the shrinking (wave-
front) polygons at time t. At time t every wavefront
segment is at normal distance t from its input edge.
As time progresses, the normal distance of each wave-
front segment to its defining input edge grows. The
points of intersection between consecutive wavefront
segments lie on the bisectors of their defining input
edges.

The wavefront vertices move along these bisectors
and trace out the desired bisector graph. In order
to maintain the planarity of WP (t), and to obtain a
straight skeleton, one has to handle two events: An
edge event occurs when a wavefront segment shrinks
to zero length. A split event occurs when a wavefront
vertex crashes into a wavefront edge which moves in
the opposite direction. A split event results in the
split of the wavefront polygon into two sub-polygons.

Observation 1 (Vertex Speed [4]) The speed of
a wavefront vertex v is given by s(v) = 1

sin(α/2) , where

α is the exterior angle of v.

We will also employ a wavefront propagation to
compute a min-/max-volume bisector graph. Our
process involves four event types: edge event, split
event, as in the straight skeleton computation [3], and
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Figure 2: In (a–b), we see create events and in (c–d) we see divide events; and (e) shows a bisector graph that
is not produced by our propagation scheme. Note that the (red) dashed line in (b) is part of the bisector bi,j on
which a stealth vertex moves.

divide event and create event as two new event types.
In addition, we employ so-called stealth vertices.

Definition 7 (Stealth Vertex) Let pi,j := `(ei) ∩
`(ej) be the point of intersection of the supporting
lines of two edges ei, ej of P . As the wavefront prop-
agates, pi,j moves inwards along the bisector bi,j of
ei, ej , at a speed given by Observation 1. At any time
when pi,j is not part of the wavefront polygon we call
it a stealth vertex of P . (See Fig. 2b.)

Definition 8 (Create Event) If (1) the supporting
line of a wavefront edge e becomes incident with a
reflex wavefront vertex v, where e is not incident at
v, or (2) a stealth vertex v becomes incident with a
wavefront edge e, and for either (1) or (2) the interior
angle between the two bisectors between e and the
two edges incident at v is smaller than π, then we call
it a create event. (See Fig. 1c and 1d.)

In the former case we insert an edge with zero
length between the two edges defining the reflex ver-
tex. The new edge belongs to the same input edge as
the one defining the supporting line; cf. Fig. 2a. In
the latter case we insert two edges with zero length
at the point of intersection, thus splitting the inter-
sected wavefront edge. The two edges associated with
the stealth vertex define the two new edges and the
stealth vertex becomes a wavefront vertex; cf. Fig. 2b.

We recall that the general position of P prohibits
parallel input segments. However, according to its
definition a create event adds parallel wavefront seg-
ments to a wavefront polygon. This is a necessary
condition for the divide event.

Definition 9 (Divide Event) When two or three
reflex wavefront vertices become incident and all in-
cident wavefront edges originate from three common
input edges we call it a divide event.

In the former case the two parallel edges (associated
with one input edge) join into one edge and the two
remaining edges become adjacent; cf. Fig. 2c. In the
latter case three parallel edge pairs become incident
and all edges change adjacencies to their neighbor; cf.
Fig. 2d.

We point out that the divide event is not a “vertex-
event” [5] in disguise where reflex wavefront vertices
become incident as well. Note that all events but
the create event are compulsory: Ignoring only one of
them during the wavefront propagation would result
in a self-intersecting wavefront. Only create events are
optional: Accepting or ignoring such an event gives us
the freedom to construct different roofs and, thus, to
influence the volume of the resulting roof.

Every event takes place at the intersection of three
bisectors and forms a B-node in the bisector graph.
Three B-arcs start or end at every B-node, except for
three cases: (i) at the vertices of P ; (ii) degree-six
nodes that occur in a divide event where three reflex
wavefront vertices become incident; cf. Fig. 2d; and
(iii) another degree-six node which is not listed as an
event; cf. Fig. 2e. However, in (i) no event takes place
and in (ii) the in-degrees and the out-degrees both
are three and the directions of the incident B-arcs
alternate when one moves around the node. Lastly,
(iii) is not relevant in our propagation schema as it
can be omitted due to the goal of min-/maximizing.

Besides these exceptions, no two B-arcs can lie on a
common bisector and intersect at a common B-node.
In the full paper we list all combinatorically possible
bisector embeddings for a B-node and show that every
combination is considered.

By definition, all events occur at intersections of
bisectors of P . Furthermore, before and after each
event all wavefront vertices advance on bisectors of
P . The proofs of the subsequent claims are contained
in the full paper.

Lemma 2 Any wavefront propagation results in a bi-
sector graph.

Lemma 3 Any wavefront propagation results in a
roof.

Lemma 4 A capped roof of height t, constructed us-
ing a wavefront propagation, fulfills the natural gra-
dient property for all its facets.

Lemma 5 A bisector graph can be seen as a directed
acyclic graph (DAG).
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Lemma 6 The speed of a wavefront vertex v defines
the slope of its associated ridge or valley, with respect
to v and Π0.

Corollary 7 A slower wavefront vertex leads to a lo-
cally larger slope of its associated ridge or valley, and
vice versa.

Lemma 8 The volume of a natural roof created by
a wavefront propagation can only be influenced by a
create event.

Lemma 9 A create event takes place at a reflex
wavefront vertex p. A small disc c centered at p is
partitioned into three wedges by the three B-arcs in-
cident at p. If one wedge has an angle greater than
π it involves a wavefront vertex, starting at p, that
moves faster than the wavefront vertex which ends at
p; cf. Fig. 1e.

Definition 10 (De-/Accelerating Create Event)
Accepting a create event during the wavefront prop-
agation results in new wavefront vertices. If one of
the new wavefront vertices moves faster than the
intersected wavefront edge or vertex then we call it
an “accelerating” create event. If all new wavefront
vertices move slower than the intersected wavefront
vertex then we call it a “decelerating” create event.

Lemma 10 A create event with out-degree three is
always an accelerating create event.

Note that this implies that decelerating create
events can only occur on reflex wavefront vertices,
i.e., for the first case of Definition 8(1). Furthermore,
Lemma 9 implies that Definition 10 is complete; there
is no third class of create events.

Lemma 11 A decelerating (accelerating) create
event increases (decreases, resp.) the roof volume.

Summarizing, a faster moving vertex increases the
area that is swept by the wavefront, thus resulting
in a locally reduced roof volume. Other propagation
events that occur earlier can, at most, lead to a re-
duction of the roof volume. Conversely for a slower
moving vertex. Hence, one run of the wavefront prop-
agation (without backtracking) suffices to obtain a
minimum-volume or maximum-volume roof. We sum-
marize our result in the following theorem.

Theorem 12 Accepting all decelerating (accelerat-
ing) create events during the wavefront propagation
leads to Bmax (Bmin, respectively).

3 Analysis

We use a wavefront propagation for both Bmin(P ) and
Bmax(P ). The complexity is dominated by the com-
putation of all create events. For Bmax(P ), one re-
flex input vertex can result in O(n) create events.
Thus, we can get a quadratic number of facets. To
handle one create event during the propagation takes
O(n log n) time. The overall complexity is therefore
O(n3 log n) time and O(n2) space. For Bmin(P ), it
is unclear if more than O(n2) create events can oc-
cur. Hence, Bmin(P ) may admit a cubic number of
facets which leads to O(n3) space, but the same time
complexity.

4 Extensions

Our natural roofs can be regarded as a generaliza-
tion of realistic roofs [6, 1], but our current defini-
tions prevent a clean mathematical statement regard-
ing any subset relation among these two types of roofs:
The work of [6, 1] is restricted to rectilinear polygons,
while we exclude parallel input edges explicitly. How-
ever, since parallel segments might occur during the
wavefront propagation, we suspect that the restriction
on the input edges can be waived. This would permit
to apply our approach to the setting of [6, 1], thus
reducing the time complexity for finding a minimum-
volume realistic roof from O(n5) to O(n3 log n). Ob-
taining a minimum-height roof is ongoing work, too.
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Stabbing circles for some sets of Delaunay segments

Mercè Claverol† Elena Khramtcova‡ Evanthia Papadopoulou‡ Maria Saumell§ Carlos Seara†

Abstract

Let S be a set of n disjoint segments in the plane that
correspond to edges of the Delaunay triangulation of
some fixed point set. Our goal is to compute all the
combinatorially different stabbing circles for S, and
the ones with maximum and minimum radius. We ex-
ploit a recent result to solve this problem in O(n log n)
time in two cases: (i) all segments in S are parallel;
(ii) all segments in S have the same length. We also
show that the problem of computing the stabbing cir-
cle of minimum radius of a set of n parallel segments
of equal length (not necessarily edges of a Delaunay
triangulation) has an Ω(n log n) lower bound.

1 Introduction

The stabbing circle problem is formulated as follows:
Let S be a set of n segments in R2 in general posi-
tion (segments have 2n distinct endpoints, no three
endpoints are collinear, and no four of them are co-
circular). A circle c is a stabbing circle for S if exactly
one endpoint of each segment of S is contained in the
exterior of the closed disk induced by c; see Fig. 1.
The stabbing circle problem consists of (1) reporting
a representation of all the combinatorially different
stabbing circles for S (two circles are combinatorially
different if the sets of endpoints in the exterior of
the corresponding disks are different); and (2) finding
stabbing circles with minimum and maximum radius.

Figure 1: Left: Segment set with a stabbing circle.
Right: Segment set with no stabbing circle.

The stabbing circle problem has antecedents in the
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stabbing line problem, which was solved in optimal
Θ(n log n) time by Edelsbrunner et al. [6]. Other stab-
bing shapes (wedges, isothetic rectangles, etc.) have
also been considered; see [4] for an overview.

The problem of stabbing a set S of n segments in
the plane by a circle can be solved in O(n2) time by a
combination of known results, and this is worst-case
optimal [4]. Recently, we presented an alternative al-
gorithm based on connecting the problem to cluster
Voronoi diagrams [4]. We identified conditions un-
der which the algorithm is subquadratic; these condi-
tions are: (1) the Hausdorff Voronoi diagram and the
farthest-color Voronoi diagram have linear structural
complexity and can be constructed in subquadratic
time (see Section 2 for the definition of these dia-
grams); (2) a technical condition related to the num-
ber of times an edge of the Hausdorff Voronoi diagram
contains centers of combinatorially different stabbing
circles. If the segments in S are parallel, conditions
(1) and (2) are satisfied, and the stabbing circle prob-
lem for S can be solved in O(n log2 n) time.

In this note we continue investigating special in-
stances of segment sets for which the algorithm in [4]
is subquadratic, in order to understand the stabbing
circle problem better. We focus on sets S of disjoint
segments that correspond to edges in the Delaunay
triangulation of a fixed point set. We solve the stab-
bing circle problem in O(n log n) time when all seg-
ments in S are either parallel or have the same length.
We also show an Ω(n log n) lower bound for the prob-
lem of computing the stabbing circle of minimum ra-
dius of a set of n parallel segments of equal length
(not necessarily edges of a Delaunay triangulation).

2 Preliminaries

In what follows, xx′ denotes either a segment in S, or
the pair of its endpoints as convenient.

Definition 1 [5, 9] The Hausdorff Voronoi diagram
of S is a partitioning of R2 into the following regions:

hreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} :

max{d(p, a), d(p, a′)} < max{d(p, b), d(p, b′)}};
hreg(a) = {p ∈ hreg(aa′) | d(p, a) > d(p, a′)}.

The graph structure of this diagram is HVD(S) =
R2 \⋃aa′∈S (hreg(a) ∪ hreg(a′)). An edge of HVD(S)
is pure if it is incident to regions of two distinct seg-
ments.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Definition 2 [1, 7] The farthest-color Voronoi dia-
gram is a partitioning of R2 into the following regions:

fcreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} :

min{d(p, a), d(p, a′)} > min{d(p, b), d(p, b′)}};
fcreg(a) = {p ∈ fcreg(aa′) | d(p, a) < d(p, a′)}.

The graph structure of this diagram is FCVD(S) =
R2 \⋃aa′∈S (fcreg(a) ∪ fcreg(a′)).

For arbitrary segments, the combinatorial complex-
ity of both diagrams is O(n2) [9, 1]. If the segments
are disjoint, the complexity of HVD(S) is O(n) [5].

Let hreg(·) and fcreg(·) denote the closures of the
respective Voronoi regions.

Definition 3 Given a point p, the Hausdorff disk of
p, denoted Dh(p), is the closed disk centered at p of
radius d(p, a), where p ∈ hreg(a).

Let S be a set of n pairwise disjoint segments in R2

in general position; let S have no stabbing line. In [4]
we presented an algorithm to solve the stabbing circle
problem for S. To state it, we need some notation.

Let e be a pure edge of HVD(S) and let w be a
point in e. In [4] we defined a set type(w), whose
elements might be l̃, r̃, mm, in, and out. The meaning
of type(w) is not essential for this note; it is enough
to point out that type(w) can be found in O(1) time
if w is located in FCVD(S).

The find-change query is defined as follows: Given
two points t, s in e such that type(t) contains r̃ but
not l̃, and type(s) contains l̃ but not r̃, the query
returns a point w in the segment ts such that one
of the following holds: (i) {r̃, l̃} ⊆ type(w); (ii) in ∈
type(w); (iii) out ∈ type(w).

Suppose that e = uv is a portion of the border of
hreg(a) and hreg(b), for aa′, bb′ ∈ S. We say that a
segment cc′ ∈ S \ {aa′, bb′} is of type middle for e if
either c or c′ is contained in Dh(u) \ Dh(v) and the
other endpoint in Dh(v) \Dh(u).

Let m denote the number of pairs formed by a seg-
ment cc′ ∈ S and a pure edge e of HVD(S) such that
cc′ is of type middle for e. We build the results of
Section 3 of this abstract on the following result.

Theorem 1 [4] The stabbing circle problem for S
can be solved in O(THVD(S)+TFCVD(S)+|HVD(S)|Tfc+
|FCVD(S)| log n + mTfc) time, where THVD(S) (resp.,
TFCVD(S)) is the time to compute HVD(S) (resp.,
FCVD(S)), |HVD(S)| (resp., |FCVD(S)|) is the num-
ber of edges of HVD(S) (resp., FCVD(S)), and Tfc is
the time to answer a find-change query.

3 Segments with the Delaunay property

We say that S satisfies the Delaunay property if its
segments correspond to edges of some Delaunay trian-
gulation. Let us assume that S satisfies this property.

p
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Dx rp
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(a)

p
a
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Dqy

a′

Dy

ru

(b)

Figure 2: (a) rp ∩ bis(a, a′) = ∅ and Dp ⊂ Dx. (b)
rp ∩ bis(a, a′) = {q} and Dq` ⊂ Dy.

Lemma 2 FCVD(S) is a tree of O(n) complexity.

Proof. We show that FCVD(S) for such a segment
set S is an instance of the farthest abstract Voronoi
diagram (FAVD); the claim then follows automati-
cally from [8]. To prove that FCVD(S) is FAVD,
we consider the nearest-color Voronoi diagram of S,
which reveals the nearest site (segment in S), where
the distance from a point p ∈ R2 to some aa′ ∈ S
is min{d(p, a), d(p, a′)}. We need to prove that the
system of bisectors for farthest/nearest color Voronoi
diagram satisfies the following axioms: (1) each bi-
sector is an unbounded Jordan curve; (2) any two bi-
sectors intersect finite number of times; (3) regions of
the nearest-color Voronoi diagram are (a) non-empty,
(b) path-connected, and (c) cover R2. Note that
the nearest-color Voronoi diagram is related to the
nearest-point Voronoi diagram of all endpoints of S:
the region of aa′ ∈ S in the former diagram is the
union of the regions of a and a′ in the latter.

Our bisector system satisfies axioms (2), (3a) and
(3c) since so does the bisector system of the near-
est/farthest point Voronoi diagram. Further, since
each aa′ ∈ S is an edge of the Delaunay triangula-
tion of all endpoints of S, the regions of a and a′ in
the nearest-point Voronoi diagram are adjacent, thus
their union is path-connected, implying axiom (3b).
A bisector in our system satisfies axiom (1), since it
separates two unions of pairs of adjacent regions in
the diagram of four points. �

The faces of FCVD(S) near infinity coincide with
the faces of the farthest-segment Voronoi diagram of
S, thus, their sequence at infinity can be computed
in O(n log n) time by divide and conquer (and other
methods) [10]. Based on this observation, it is simple
to derive a divide and conquer algorithm for FCVD(S).
(Note that the approach in [8] yields an expected
O(n log n) time algorithm for FCVD(S).)

Lemma 3 FCVD(S) can be constructed in O(n log n)
time and O(n) space.

Let bis(a, b) denote the bisector of a and b.

Lemma 4 For a point p ∈ R2, let rp be the open
ray with origin at p and direction −→ap, where a is the
endpoint of aa′ ∈ S such that p ∈ fcreg(a). Let
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p 6∈ bis(a, a′). If rp ∩ bis(a, a′) = {q}, then fcreg(aa′)
contains the open segment pq, as well as one of the
two (unbounded) portions of bis(a, a′) starting at q.
Otherwise, rp ⊂ fcreg(aa′).

Proof. For any point z ∈ R2, let Dz be the disk
centered at z of radius d(z, a); see Fig. 2.

Suppose that rp does not intersect bis(a, a′). Since
p ∈ fcreg(a), disk Dp contains an endpoint of every
segment in S. For a point x ∈ rp, x 6= p, Dp ⊂ Dx.
Thus Dx contains in its interior an endpoint of every
segment in S\{aa′}, that is, x ∈ fcreg(a) ⊆ fcreg(aa′).

Suppose next that rp intersects bis(a, a′) in a point
q. For any point x ∈ pq, x 6= p, we have x ∈ fcreg(a) ⊂
fcreg(aa′) by the above argument. In particular, disk
Dq contains an endpoint of every segment in S. Point
q breaks bis(a, a′) into two rays ru and r`, which are
respectively above and below q (see Fig. 2b), and aa′

breaks disk Dq into two parts Dqu and Dq` that are
above and below aa′ respectively. (We assume that
aa′ is not vertical, otherwise the above/below rela-
tion can be replaced by left/right.) Observe that, if
fcreg(aa′) does not contain ru (resp., r`), then Dq`

(resp., Dqu) contains an endpoint of some segment in
S \ {aa′}. If fcreg(aa′) contained neither ru nor r`,
there would be an endpoint of a segment in S \ {aa′}
inside Dq`, and an endpoint inside Dqu. A contradic-
tion to aa′ being an edge of the Delaunay triangula-
tion of the set of endpoints of S. �

Lemma 5 FCVD(S) can be preprocessed in
O(n log n) time and O(n) space so that a find-
change query is answered in O(log n) time.

Proof. By Lemma 2 FCVD(S) is a tree, and thus
the centroid decomposition [3] can be built for it, and
used to answer the find-change query. This decom-
position is a (graph-theoretical) balanced tree with
n nodes, one for each vertex of FCVD(S), built in
O(n log n) time by finding the centroid vertex c of the
tree FCVD(S), making it a root, and recursing into the
three connected components of FCVD(S) \ {c}. The
subtree of each node v corresponds to a connected
portion of FCVD(S), adjacent to the vertex v. To per-
form a query, we follow a root-to-leaf path (of length
O(log n)) in this balanced tree, at every node of the
path one of the node’s three subtrees is to be chosen.

We can make a decision related to one node in O(1)
time, thus answering a find-change query in O(log n)
time. Indeed, Lemma 4 if applied to v and each of
the three regions of FCVD(S) incident to v, induces a
decomposition of R2 into three regions of O(1) combi-
natorial complexity, each of which contains one sub-
tree of v in FCVD(S), see Fig. 3a. Out of these three
regions, in constant time we choose the only one that
may contain the answer to the find-change query. �

We next bound the parameter m in Theorem 1.
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e

(b)

Figure 3: (a) S = {aa′, bb′, cc′} (black); FCVD(S)
(gray); the decomposition of R2 induced by its vertex
v (red, dashed); (b) Figure for the proof of Lemma 7.

Consider a pure edge e = uv of HVD(S) separat-
ing hreg(a) and hreg(b), for two segments aa′, bb′ ∈ S.
Then e ⊆ bis(a, b). We assume that segment ab is
vertical with a on top of b, and that ab does not in-
tersect the interior of e (otherwise e could be broken
into two parts, considered separately). For any seg-
ment cc′ ∈ S, we denote its supporting line by `(cc′).

Lemma 6 If cc′ ∈ S is of type middle for S, then
`(cc′) lies either above both aa′, bb′ or below them.

Proof. One endpoint of cc′ is in Dh(u) \Dh(v), and
the other in Dh(v) \Dh(u). These two areas are sep-
arated by the vertical line `(ab), so cc′ is not vertical.

We first prove that it is impossible that a, b, c, c′ are
in convex position with c and c′ not consecutive along
the convex hull of the four points. Assume otherwise.
The center of the circle through a, b and c lies on e;
hence c′ is outside this circle. Thus a and b are adja-
cent in the Delaunay triangulation of a, b, c, c′. Since
this triangulation is plane, c and c′ are not adjacent,
and therefore they are not adjacent in the Delaunay
triangulation of all endpoints of S; a contradiction.

Since c′ (resp., c) is outside the circle through a, b
and c (resp., c′), the convex hull of a, b, c, c′ cannot be
a triangle with c′ (resp., c) in its interior. Hence, a
and b are on the same side of `(cc′). Recall that a′ and
b′ lie in Dh(u) ∩Dh(v). Segment cc′ either does not
intersect Dh(u) ∩Dh(v), or it divides Dh(u) ∩Dh(v)
in two portions, and both a, b lie in one of them. In
both cases, the claim follows. �

Lemma 7 If S satisfies the Delaunay property and
all segments in S are of the same length, then an edge
e of HVD(S) has at most two segments of type middle.

Proof. We show that there is at most one segment
of type middle whose supporting line is above aa′, bb′.
Then the claim follows from Lemma 6.

Suppose for contradiction that cc′, dd′ are segments
of type middle for e such that `(cc′) and `(dd′) lie
above aa′, bb′. A vertical ray shot from a hits both
cc′ and dd′. Assume that it hits cc′ first. Let D denote
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the disk through c, c′, a. See Fig. 3b. Since cc′ is a
Delaunay edge, cc′ and dd′ are pairwise disjoint, and
a and at least one of d, d′ are on opposite sides of cc′,
disk D contains none of d, d′.

We have ∠dad′ > π/2: it is greater than the angle
β formed by the two tangents to Dh(u) and Dh(v) at
a (see blue dashed lines in Fig. 3b) and β ≥ π/2 by
our assumption that segment ab does not intersect e
in its interior. Let s(cc′) be the closed strip formed by
two lines perpendicular to `(cc′) and passing through
c and c′ (tiled area in Fig. 3b). We have: d, d′ are
outside D; d, d′ are separated by `(ab); ∠dad′ > π/2;
and `(dd′) lies above cc′. All this together imply that
d and d′ lie outside s(cc′) and on different sides of it.
Thus d(d, d′) < d(c, c′); a contradiction. �

Recall Theorem 1. By Lemma 5, Tfc = O(log n).
Both TFCVD(S) and THVD(S) are O(n log n), see
Lemma 3 and [4]. If all segments in S are parallel,
then m = O(n) [4]. By Lemma 7, m is also O(n) if
the segments in S have the same length. We conclude:

Theorem 8 If S satisfies the Delaunay property and
either all segments in S are parallel, or all segments in
S are of equal length, then the stabbing circle problem
can be solved in O(n log n) time and O(n) space.

4 Lower bound

We finally prove a lower bound for sets of segments
possibly without the Delaunay property, but with the
other two conditions considered in this note.

Theorem 9 The problem of computing a stabbing
circle of minimum radius for a set of n parallel seg-
ments of equal length has an Ω(n log n) lower bound
in the algebraic decision tree model.

Proof. The reduction, very similar to that of Theo-
rem 6 in [2], is from MAXGAP(X). In our version, the
input X consists of a set of n integers x1, . . . , xn, and
MAXGAP(X) is the problem of finding the maximum
difference between consecutive elements of X.

Without loss of generality, we may assume minX =
1. Let x′1 < x′2 < · · · < x′n be the sorting of the el-
ements of X. Then x′1 = 1, and let M = x′n. We
construct a set S of parallel segments of equal length
as follows: For every xi ∈ X, we add a segment con-
necting point (xi, 0) to (−(M + 1) + xi, 0). Addi-
tionally, we add two segments aa′ and bb′ such that
a = (−1/2, 0), a′ = (−(M + 1)− 1/2, 0), b = (1/2, 0),
and b′ = ((M + 1) + 1/2, 0).

Any stabbing circle for S of minimum radius con-
tains a, b in its interior. Thus the possibilities for
such a stabbing circle are: If the associated disk con-
tains a, b, (x′1, 0), . . . , (x′n, 0), or (−(M+1)+x′1, 0), . . . ,
(−(M+1)+x′n, 0), a, b, then it has diameter M+1/2.

If it contains (−(M + 1) + x′i+1, 0), . . . , (−(M + 1) +
x′n, 0), a, b, (x′1, 0), . . . , (x′i, 0) for i < n, then it has di-
ameter M + 1− (x′i+1 − xi). Since MAXGAP(X) ≥ 1,
the stabbing circles of minimum radius belong to the
last family. Thus MAXGAP(X) is equivalent to find-
ing the stabbing circle for S of minimum radius.

The set S does not satisfy all the assumptions of
this paper, since all endpoints are collinear and the
segments are not pairwise disjoint. We construct a
set S′ obtained from S by translating every segment
vertically by distinct values of at most ε = 1/10. Since
ε is small compared to the difference between distinct
values of diameters of different stabbing circles for S
(which is at least 1/2), a minimum stabbing circle
for S′ corresponds to a minimum stabbing circle for
S which is combinatorially “the same”. This proves
that the lower bound also holds for the more restricted
sets of segments considered in this paper. �
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Approximation of a Spherical Tessellation by the Laguerre Voronoi
Diagram
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Abstract

This paper presents a method for approximating
spherical tessellations, the edges of which are geodesic
arcs, using spherical Laguerre Voronoi diagrams. The
approximation method involves fitting the polyhedron
corresponding to the spherical Laguerre Voronoi dia-
gram to the observed tessellation using optimization
techniques.

1 Introduction

There are many natural phenomena that can be rep-
resented with polygonal patterns on a sphere, such as
the patterns found on fruit skins. If the tessellation
is similar to a Voronoi diagram, then a mathematical
model can be constructed to assist with understand-
ing the polygonal pattern formation.

Since the ordinary Voronoi diagram does not pro-
vide a good representation of most naturally occur-
ring tessellations, consideration needs to be given to
a weighting for the cells. One generalization of the
Voronoi diagram is the Laguerre Voronoi diagram,
a weighted Voronoi diagram, the edges of which are
straight lines. This concept was introduced by [7, 2].
In brief, for a set S of n spheres si = (xi, ri) in Rd,
where xi is the center of the sphere and ri is the sphere
radius, which is interpreted as the generator weight,
the Laguerre distance of x ∈ Rd from si is defined by

dL(x, si) = ‖x− xi‖2 − r2i .

This concept was extended to the spherical Laguerre
Voronoi diagram (SLVD) in [8].

Active areas of research related to Voronoi diagrams
are Voronoi recognition and approximation. The
recognition problem is the determination of whether
or not a tessellation is the Voronoi diagram. If it
is not, we approximate it using the Voronoi diagram
that provides the best fit. Many studies have also fo-
cused on planar tessellation. Recently, we proposed
a method for fitting planar photographic images of
spike-contining objects containing the generators in
polygons, using ordinary spherical Voronoi diagrams,
and applied it to fruit skin pattern analysis in [3].

∗Graduate School of Advanced Mathematical Sciences, Meiji
University, Japan, {schaidee, kokichis}@meiji.ac.jp

Regarding the Laguerre Voronoi diagram, Duan et
al. studied a method for the recognition of planar tes-
sellations in [6]. The SLVD recognition problem was
recently proposed in [5] using the polyhedron corre-
sponding to the SLVD. Some studies have focused on
the 3D structure of the Laguerre approximation. The
tessellation fitting problem, which was considered in
[3], was solved using the SLVD in [4] by approximat-
ing the weights of the generators when the locations
are known.

This study proposes a method for approximating
the SLVD for a spherical tessellation when the genera-
tor locations cannot be derived by conventional meth-
ods, as in [5]. In this situation, it is necessary to ap-
proximate both generator locations and weights. The
remainder of this paper is organized as follows. First,
we recall some definitions and theorems related to the
SLVD. The algorithms for recognizing the SLVD are
then presented. For the case that the given tessella-
tion is not represented exactly by the SLVD, the dif-
ference between the tessellation and the constructed
SLVD is quantified, and an optimization method is
employed to find the best fit SLVD. Since the SLVD
corresponds to a convex polyhedron, the optimization
is applied to adjust this polyhedron to fit the observed
tessellation. Finally, we conduct experiments using
simulated data to confirm the validity of our method.

2 Preliminaries

We assume that the tessellation and the SLVD are
on the unit sphere U in R3, where the center of the
sphere is located at the origin O(0, 0, 0) of the Carte-
sian coordinate system.

We assume a tessellation T = {T1, ..., Tn} consist-
ing of n cells is a 3-regular spherical tessellation, where
Ti is a convex spherical polygon, i.e., the polygon
edges are sections of geodesic arcs.

Let pi be a point on U . The sphere c̃i centered at
pi is defined by

c̃i = {p ∈ U |d̃(pi, p) = ri},

where d̃(pi, p) is the geodesic distance between pi and
p. If 0 ≤ ri < π/2, ri is defined as the spherefs radius.
Otherwise, ri is the imaginary spherefs radius, whose
details were given in [5].

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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The Laguerre Proximity, the distance used for
Voronoi construction, is defined by

d̃L(p, c̃i) =
cos d̃(p, pi)

cos ri
.

The Laguerre bisector of two circles c̃i, c̃j is defined

by BL(c̃i, c̃j) = {p ∈ U |d̃L(p, c̃i) = d̃L(p, c̃j)}.
For a set of n sphere circles G̃ = {c̃1, ..., c̃n} on

U , the regions Li := R̃(G̃, c̃i) = {p ∈ U |d̃L(p, c̃i) <
d̃L(p, c̃j), j 6= i} for all i, including their boundaries,
constitute the SLVD. We denote the SLVD with n
regions L1, ..., Ln as L = {L1, ..., Ln}.

Sugihara presented algorithms for constructing the
SLVD for a given set of sphere circles in [8]. Let π(c̃i)
be the plane passing through c̃i and H(c̃i) the half-
space bounded by π(c̃i) including the origin of the
sphere. The intersection of π(c̃i) and π(c̃j) is denoted
by `i,j . The following theorem gives the relation be-
tween `i,j and the Laguerre bisector.

Theorem 1 ([8]) The bisector BL(c̃i, c̃j) is the in-
tersection of U and the plane containing `ij and O.

From Theorem 1, the SLVD can be constructed
from the intersection of all halfspaces H(c̃i) for all
i to obtain the convex polyhedron, and by project-
ing the edges of the polyhedron onto the sphere with
respect to the center O.

3 SLVD Recognition

For a given SLVD L, there exists a polyhedron P
whose central projection onto the sphere coincides
with L. For any tessellation T , we can construct the
SLVD with the following algorithms, whose details
were provided in [5].

Let V be the set of tessellation vertices. Let Ûei,j
be the tessellation edge separating cells i and j, Pi,j

be the plane passing through the edge Ûei,j , vi,j,k the
tessellation vertex corresponding to cells i, j, k, and
Pi := π(c̃i) of the i-th cell.

The following algorithm is for the construction of
the first three planes in the recognition process.

Algorithm 1 [5]: Plane Construction with
Three Adjacent Sites
Input: The sphere c̃i centered at pi(xi, yi,

√
x2i + y2i )

with radius ri, tessellation edges Ûei,j , Ûej,k, Ûei,k, and
tessellation vertex vi,j,k.
Output: The three planes Pi, Pj , Pk with respect to
polygons i, j, k.
Procedure:

1. Construct the plane Pi containing c̃i.

2. Construct the planes Pi,j , Pi,k, Pj,k.

3. Find the intersections `i,j of Pi and Pi,j , and `i,k
of Pi and Pi,k.

4. Construct a geodesic arc Ûeci,j such that Ûeci,j passes
through pi and is perpendicular to Ûei,j .

5. Choose a point qj in polygon j on the arc Ûeci,j .
6. Construct the plane Pj passing through `i,j , qj .

7. Find the intersection `j,k of the planes Pj and
Pj,k.

8. Construct the plane Pk passing through the lines
`i,k and `j,k.

end Procedure

The following algorithm is for the generation of
n planes for the tessellation.

Algorithm 2 [5]: Construction of n Planes
Input: Spherical tessellation T with tessellation
vertices V.
Output: The planes P1, ..., Pn with respect to the
polygons 1, ..., n.
Comment: P is the set of constructed planes.
Procedure:

1. make P empty;

2. Choose an arbitrary vertex vi,j,k ∈ V and employ
Algorithm 1 to construct planes Pi, Pj , Pk.

3. Add the planes Pi, Pj , Pk to the set P.

4. Mark vi,j,k as a used vertex.

5. while there exists an unmarked vertex vl,p,q ∈ V
such that exactly two planes among Pl, Pp and
Pq are included in P.
do

Apply steps 2, 3,and 7 of Algorithm 1 to find
`l,q

and `p,q.
Construct a plane Pq.
Add Pq to the set P.
Mark the vertex vl,p,q.

end while

end Procedure

For each plane Pi ∈ P, we consider the halfs-
pace H(Pi) which includes the sphere origin O, and
find the intersection of all such halfspaces to obtain
the convex polyhedron P.

From Algorithm 1 the construction of the polyhe-
dron P depends on the initial sphere and the point
qj . However, even if we choose them arbitrarily, the
polyhedron construction can still be carried out. This
can be formalized with the following theorem.

Theorem 2 ([5]) For a given tessellation T , the con-
struction of a polyhedron corresponding to the SLVD
L is possible with an arbitrary choice of the initial
plane Pi in step 1 and the point qj in step 5 of Algo-
rithm 1.

The proof of this theorem uses the transformation
of a polyhedron in the projective space of R3 and the
construction processes in Algorithm 1.
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Let L be the tessellation obtained from the intersec-
tion of all halfspaces bounded by P1, ..Pn constructed
by Algorithm 2 and projected onto a sphere. If the
given tessellation T is exactly the SLVD, the tessella-
tion L is identical to the tessellation T , and arbitrary
choice of Theorem 2 gives us the same SLVD. Other-
wise, we get a different SLVD to T .

The construction of the polyhedron P correspond-
ing to the tessellation T shown in Algorithm 2 requires
time complexity O(n log n).

4 SLVD Approximation Method

Note that almost all real world spherical tessellations
cannot be represented exactly with an SLVD. In such
instances, there exists a difference between T and L.
In this section, we define an index for this discrepancy,
and provide a method for minimizing the discrepancy
to obtain the best fit SLVD.

4.1 Discrepancy

For the tessellations T and L, suppose that Ti corre-
sponds to Li for all i. For the i-th cell, let Ai = Ti∩Li

be the intersecting convex spherical polygon. Suppose
that the polygon is ki-gon, which we denote by the an-
ticlockwise sequence of vertices Ai = (Ai,1, ..., Ai,ki).
Also, let αi,1, ..., αi,ki be the angles between two ad-
jacent spherical k-gon edges. The area of the spher-
ical polygon Ai is denoted by area(Ai) If Ai = ∅,
area(Ai) = 0. Otherwise, area(Ai) =

∑ki
j=1 αi,j −

(ki − 2)π.
Let AT , AL be the areas of spherical tessellations T

and L, respectively. The difference between the areas
for the tessellations T and L are defined by DT =
AT −A and DL = AL−A, where A =

∑n
i=1 area(Ai).

The discrepancy between T and L is defined by

∆T ,L =(DT +DL)/(AT +AL)

=1− 1

4π

n∑

i=1

(
ki∑

j=1

αi,j − (ki − 2)π

)
. (1)

4.2 The Procedure for Obtaining an SLVD Corre-
sponding to a Given Tessellation

For the tessellation T , we employ Algorithms 1 and 2
to construct the polyhedron and the SLVD. We com-
pute the discrepancy by the following procedure.

1. For the tessellation T = {T1, ..., Tn}, determine
the area of each cell. The set of all areas is de-
noted AT = {area(T1), ..., area(Tn)}.

2. Choose the cell i such that area(Ti) :=
max area(Tj), j = 1, ..., n.

3. Starting from the i-th cell, define the center of
the first generator from the centroid pi of the
cell. Define the weight of the cell as zero which,
is the plane tangent to the i-th cell at pi.

4. Without loss of generality, choose the location of
the second generator from a point inside this cell.

5. Employ Algorithms 1 and 2 to construct a poly-
hedron P and project P onto the center of the
sphere U .

6. For each i, find the intersection Ai of two spheri-
cal polygons Ti, Li, and compute the discrepancy
D(x) := ∆T ,L.

4.3 Tessellation Fitting

To find the best fit SLVD, we find the minimum dis-
crepancy from Equation (1). The discrepancy ∆T ,L
is related to the angle of the intersecting spherical
polygons and the number of spherical polygon ver-
tices which will change when the SLVD changes.

The main factor which affects the SLVD L is the
alignment of planes P1, ..., Pn composing the polyhe-
dron P of L.

Let the plane Pi be

Pi : aix+ biy + ciz = di. (2)

Since the plane Pi does not pass through the sphere’s
origin, the plane equation (2) can be expressed as

Pi : Aix+Biy + Ciz = 1. (3)

The parameters Ai, Bi, Ci involve the alignment of
the plane Pi. Therefore, the adjustment of the
SLVD of n planes requires the parameters x =
(A1, ..., An, B1, ..., Bn, C1, ..., Cn).

We define the discrepancy function of x using the
procedure in Section 4.2 by D(x) := ∆T ,L.

However, it is complicated to find the relation be-
tween the planes and the angles as defined in (1).
Therefore, we employ the Nelder-Mead method to find
minD(x) numerically, where D(x) is computed in a
pointwise manner. The details of the method are pro-
vided in Chapter 18 of [1].

In brief, we first construct a simplex S =
{S1, ..., Sm+1} of m dimensional parameter space
composed of m+ 1 vertices and compute the discrep-
ancy function value for each simplex vertex. For each
iteration, the worst vertex which yields the maximum
discrepancy will be replaced with a new vertex by
reflection, expansion, or contraction of the centroid
points among the remaining m vertices with ratios
αR, αE , αC . If we cannot replace the worst vertex, we
shrink the simplex to the vertex that has the smallest
discrepancy, with ratio αS . Therefore, the direction
of the simplex is moved to the local minimum of the
discrepancy function. The iteration is terminated if
it meets the convergence criteria.

For a tessellation of n cells, the number of param-
eters considered is m = 3n. Therefore, we consider a
simplex of 3n+1 vertices. The convergence condition
is determined by the number of iterations.
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We choose the first vertex S1 of the initial simplex
from the parameters of the planes constructed by the
procedure provided in Section 4.2. The remaining 3n
vertices are determined by Si = S1 + βei, where ei is
the i-th standard basis of Rm, and β is the positive
number.

5 Experiments and Numerical Results

We conducted the experiments using simulated data.
We used Wolfram Mathematicar10.3 to implement
the algorithms.

To validate Algorithms 1 and 2, we generated the
SLVD for the tessellation T . From the experiments,
we can find the tessellation L which coincides with
the tessellation T . The accuracy was measured using
the discrepancy function value.

For the approximation, we separated the experi-
ment into 2 parts, testing the validity of the frame-
work, and fitting an SLVD to an arbitrary tessellation.
The tessellation had 10 cells. We set αR = 1, αE =
2, αC = −0.5, αS = −0.5, and iterated 4,000 times.

We checked the validity of the approximation
framework by generating the SLVD. After that, we
perturbed some of the initial plane parameters, which
yielded a different SLVD to the initial one. After
that, we employed the Nelder-Mead method to opti-
mize the discrepancy function. From the experiment,
we found that we can find the local minimum that
has the smallest discrepancy, and the estimated SLVD
converges to the tessellation. The results for the dis-
crepancy minimization are shown in Figure 1 (left).
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Figure 1: The change in the discrepancy of the ini-
tial simplex when (left) the initial simplex vertex was
perturbed; (right) arbitrary spherical tessellation

After that, we conducted the experiment for an
arbitrary spherical tessellation and employed the
Nelder-Mead method. From the experiment, we can
find the parameter that best fits the given tessellation.
The change in the discrepancy is shown in Figure 1
(right), and the results for the fitted SLVD is shown
in Figure 2.

6 Concluding Remarks

We proposed a framework for finding an SLVD that
can be fitted to a given spherical tessellation. The

Figure 2: (Left) Solid lines: the spherical tessellation;
dashed lines: SLVD from the S1 parameter; (Right)
dotted lines: the fitted SLVD from the optimization

optimization of the discrepancy function was shown
to rely on the orientation of the polyhedron of the
SLVD.

The proposed framework can be used for recog-
nizing whether the given tessellation is close to the
Voronoi diagram. For the 3D real world spherical tes-
sellation, we can extract the tessellation, project it
onto a sphere and employ our framework. However,
similar to [3, 4], this can be considered as a new prob-
lem when we use a planar photographic image instead
of the information of 3D tessellation.
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One Round Voronoi Game on Grids

Rebvar Hosseini ∗ Mehdi Khosravian Mansoor Davoodi Bahram Sadeghi Bigham

Abstract

Recently there has been a great deal of interest in
Voronoi Game: Two players insert a certain number
of facilities in a determined number of rounds. The
Voronoi Diagram of the inserted facilities is calculated
and the winner is settled based on the Voronoi Region
occupied by either of the players. A special version
of the game in which the players insert their facili-
ties in a single round is called ”One Round Voronoi
Game”. Most of the previous studies in this area are
performed in continuous game regions and facilities
are considered as single points in the region with no
area. In this paper, a new approach to One Round
Voronoi Game is presented. Two players insert their
facilities on a rectangular grid in one round. The area
of the grid is shared between the players based on the
nearest neighbor rule with Manhattan metric. Win-
ning strategies are proposed for the first player in both
one and two dimensional grids and the optimality of
the strategy is proven in the one-dimensional case.
Furthermore, the lower bound of winning margin is
presented in both cases.

1 Introduction

Facility location is an optimization problem, concern-
ing with placing a set of facilities which serve a set of
customers based on an optimality measure. Adding
competitive market players to this context and com-
bining it with the arguments of game theory leads to
the competitive facility location problem. This prob-
lem has been extensively studied in different fields
such as computational geometry, mathematics, indus-
trial engineering and operation research. The Voronoi
game is a simple geometric model for the competi-
tive facility location problem. From the viewpoint of
rounds, there are two types of Voronoi game. In the
one round version, the first player (White denoted
by W ) places a set of k facilities in the game region,
followed by the second player (Black denoted by B)
having the same number of facilities. In the other
variation which is called k-round game, two players
place one facility each alternately for k rounds in the
game area.

∗Department of Computer Science and Informa-
tion Technology, Institute for Advanced Studies in
Basic Sciences (IASBS), Zanjan, rebvar@oulu.fi,

{m khosravian,mdmonfared,b sadeghi b}@iasbs.ac.ir

Voronoi game has been widely studied in the continu-
ous space domain. One dimensional k -round Voronoi
game where the game region is a line segment or a cir-
cle was studied by Ahn et al. [1]. The second player
(B) always wins the game by a winning margin of
arbitrary small ε > 0. Their defined k -round game is
different from the one round game on the continues
line segment where W can achieve a win by placing
his facilities at the odd integer points. Also, similar
to the k -round case, W can limit the loss margin as
much as he wishes. Fekete and Meijer [2] proposed a
model for two dimensional one round game played on
a rectangular continuous demand region. They stud-
ied the winning conditions in terms of facility count
and aspect ratio of the game board. The discrete
Voronoi game was introduced by Teramoto et al. [3].
Two players place n facilities each in a graph which
contains at least 2n nodes. They showed that in a
complete k − ary tree which is large enough with re-
spect to n and k, the first player has a winning strat-
egy. The Voronoi game on graphs and particularly on
trees were later studied by Kiyomi et al. [4]. They
showed that the game played on a path containing n
vertexes and continued for t < n

2 rounds will end in
a tie if either n is even or t is not one. When n is
odd and t = 1, the first player wins the game. Banik
et al. [5] studied another variation of the discrete
Voronoi game which is played on a simple polygon.
They proposed the complexity results when the num-
ber of facilities for each player is limited to one. They
also studied one round discrete Voronoi game on a line
segment [6]. In this problem, the players are compet-
ing for owning a set of n users by placing a set of m
points each. They proved that if the sorted order of
the n points on the line segment is known, the optimal
strategy for the second player and first player can be
computed in O(n) and O(nm−λm) respectively where
0 < λm < 1 is a constant. Gerbner et al. [7] studied
t-round voronoi game on graphs. They proved that
there are graphs for which the second player gets al-
most all vertices in the game, but this is not possible
for bounded-degree graphs. Further they showed that
for trees, the first player can get at least one quarter
of the vertices.
In this paper, we study the one round discrete Voronoi
game on a grid G(m,n). To achieve a better model,
facilities are considered to have area. The problem is
studied in one dimensional grid first and a winning
strategy that guarantees the winning margin of one is
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proposed for W . Further, the optimality of W ’s strat-
egy is shown as well. Two dimensional case in which
the width of the grid, m, is an odd number is studied
as well and condition of W ’s win are computed. These
computations provide lower bounds in a way that W
wins the game by a margin of m. It is clear that in
the grid with even m, the symmetry play by B ends
the game in a tie in most cases. However, proposing
a winning strategy for even m seems much harder.
The rest of this paper is organized as follows: In the
next section, the game definitions and formulation are
presented. In Section 3, Voronoi game on the one di-
mensional grid is studied. The game in two dimen-
sional grid board is discussed in Section 4. Finally,
the last section summarizes some open issues which
are introduced by this problem. Please see [8] for the
complete proofs.

2 Voronoi Game on Grid

Grid Voronoi Game is denoted by GV Gr(G, k) in
which k is the number of facilities for either of the
players and r is the number of play rounds. In the
rest of this paper G(m,n) is considered as the game
play board. G is a rectangular grid with the length
of n and the width of m and consists of m × n unit
squares called cells. All of the distances are measured
using Manhattan metric. In the one round game vari-
ation (r = 1) each of the players (White denoted by
W as the first player and Black denoted by B as the
second player) chooses a set of k facilities disjoint from
each other. One or both of the players will own the
total area or a part of a cell respectively based on
the nearest neighbor rule. Hence, the area of a cell
which has the same distance from some cells occupied
by W or B, is shared among them. Furthermore, by
placing a facility in a cell, the corresponding player
will own all the area of that specific cell. The player
owning the largest part of the region is the winner of
the game.

3 One Dimensional Grid Voronoi Game

In this section, G(1, n) is considered as a one dimen-
sional grid with the length of n (and the width of
m = 1). Without the loss of generality, suppose that
the orientation of the grid is horizontal as illustrated
in Figure 1.

Definition 1 The distance between two consecutive
inserted facilities of W is called an interval. The hor-
izontal distance between the left side of the game re-
gion and the leftmost occupied cell by W is called left
half interval and is denoted by LHI. Likewise, the half
interval between the right side of the game region and
the rightmost occupied cell by W is called right half

Figure 1: One dimensional grid Voronoi game
GV Gr=1(G(m = 1, n = 16), k = 3)

interval and is denoted by RHI. The length of any
full/half interval I is denoted by |I|.

Considering the definitions we show that selecting the
position of facilities according to

⌊
(2i− 1)× n

2k

⌋
; i = 1, ..., k (1)

in GV G1(G(1, n), k) is a winning strategy for W . To
prove it, the following propositions are required. Note
that counting the grid cells is started from zero (see
[8] for the extended versions and their proofs).

Proposition 1 It is obvious that the distance be-
tween two optional cells is an integer number. If
Eq. (1) is used the maximum length of a full in-
terval in case of existence is

⌊
n
k

⌋
. An interval with

the maximum length is denoted by IMAX. The min-
imum length of a full interval in case of existence is⌊
n
k

⌋
− 1. IMIN indicates a full interval with the min-

imum length. For any n, |RHI| ≤ |LHI| holds. As a
result |RHI|+ |LHI| ≤

⌊
n
k

⌋
.

Proposition 2 B will own at least |LHI| of the game
region by placing a facility in an IMIN interval. This
means that selecting LHI or RHI is dominated by the
selection of an empty IMIN interval. Further, Placing
two facilities in one IMIN or IMAX interval is not an
efficient placing strategy for B.

Theorem 3 W wins GV G1(G, k) in G(1, n) by se-
lecting the position of his facilities according to Eq.
(1) where 2k - n. The game ends in a tie when 2k | n.

Proof. Assume that t is the number of IMIN inter-
vals when W places his facilities according to Eq. (1).
The number of IMAX intervals will be k−1− t. Con-
sidering Propositions 1 and 2, B is forced to place a
facility in each interval and finally places a facility in
LHI. Hence, the Voronoi region of W and B can be
calculated. For the complete proof see [8]. �

3.1 Proof of Optimality

In this section, we prove that the placing based on Eq.
(1) is an optimal placement strategy for W . It is clear
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that different arrangements of IMIN and IMAX inter-
vals between LHI and RHI are also optimal placement
strategies if placement based on Eq. (1) is optimal.
The number of different ways to arrange t objects of
one kind (IMAX intervals) and k − 1 − t objects of
another kind (IMIN intervals) in a row (all optimal
placement strategies) is (k − 1)!/(t!(k − 1− t)!). In
the following Eq. (1) is used since different arrange-
ments of IMIN and IMAX intervals are equivalent.

Theorem 4 Placing facilities according to Eq. (1) is
an optimal placement strategy for W .

Proof. Suppose that W uses an arbitrary placement
strategy other than Eq. (1) (and its other equiva-
lents). Also, denote the length of created half/full
intervals by L0, L1, ..., Lk from left to the right side
of the grid. It is clear that by inserting a facility in
each one of the white intervals, the difference between
Voronoi region of B and W is

MIN(L0, Lk)−MAX(L0, Lk) + 1. (2)

If MIN(L0, Lk) 6= MAX(L0, Lk) is true, B
will not lose the game (because MIN(L0, Lk) ≤
MAX(L0, Lk)). As a result and since |LHI| = |RHI|
must holds, the loss margin of B is not more than
one if he plays optimally. Also note in previous equa-
tions that the length of each interval is at least one.
Otherwise, B always can achieve a tie by following
the symmetry play (number of intervals is less than
k+ 1). Now, suppose that the length of one of the in-
tervals, I, is bigger than |IMAX| (|I| = |IMAX|+L).
We investigate this problem in two cases :L ≥ 2 and

L = 1. First, suppose that L = 2. B gains |IMAX|+3
2

by placing one facility in this interval. Suppose that
L0 = Lk <

⌊
n
2k

⌋
. If L0 = Lk >

⌊
n
2k

⌋
, placing a facility

in an IMIN interval (there exist at least one if k > 2) is
not efficient, because |LHI| = |RHI| ≥

⌊
n
2k

⌋
> 1

2

⌊
n
k

⌋

and as a result |LHI| = |RHI| =
⌊
n
2k

⌋
.

Since
⌊
n
2k

⌋
< |IMAX|+1

2 , placing two facilities in I
when |I| ≥ |IMAX| + 2 guarantees equality for B.
The complete proof can be found in [8]. �

4 Two Dimensional Grid Voronoi Game

The game play scenario in two dimensional game is
fundamentally different. Both of the players can freely
choose the location of their facilities in two directions
and as a result the winning strategies will change.
Since the facilities in the grid Voronoi game have area,
proposing winning strategy is much harder. Further-
more, in the grid Voronoi game more precise winning
margin can be calculated and unlike the continuous
case, none of the players can limit the loss margin ar-
bitrarily. In the following, the winning condition for

W will be discussed. Note however that, these condi-
tions do not mean that B wins the game in the rest
of cases (unlike the continuous region [2]). It is not
difficult to show that B does not lose the game in the
grid with even width (symmetry play in many cases).
In this section suppose that m ≥ 3 is an odd number.

We denote the
(
m+1
2

)th
row of the grid by Rmid and

we call it the middle row. Furthermore, similar to the
one dimensional case, the horizontal distance between
two consecutive facilities of W (which is a rectangle)
is called an interval. In this section, assume that W
will place his facilities according to Eq. (1) horizon-
tally and in Rmid vertically. Therefore, the position of
every facility of W is selected based on the following
equation:

(
m+ 1

2
,

⌊
(2i− 1)× n

2k

⌋)
; i = 1, ..., k. (3)

Lemma 5 Let n1 = 5
3m× k − 7

3k + 1 and W places
his facilities in G(m,n) according to Eq. (3). Also,
suppose that B has placed a facility in Rmid in a full
interval. For every n ≥ n1, this position is the most
efficient place for the B’s facility in that interval.

Lemma 6 Assume that B places a facility in an in-
terval I in a way that the total Voronoi region of that
facility remains inside the bounds of I. Also suppose
that the vertical distance from this facility to Rmid
is a > 0. Transferring this facility vertically to Rmid
will increase the Voronoi region and the amount of
increment is a2.

Similar calculation for the case when the Voronoi re-
gion of a facility is in more than just one interval con-
firms the result of the previous lemmas. It is obvious
now that for any n ≥ n1, moving a facility to another
cell in the same interval decreases the Voronoi region
for the facility (except for Rmid). But n1 is not a tight
lower bound (for example GV G1(G(7, 29), 3)). Based
on the number of cells which 1

3 of them are owned by
B, it is easy to show that a lower bound for the width
of the grid (for win margin of m) can be calculated as
follows:

nm =





n1 ;
(
m+1
2

)
mod 3 = 0

n1 − (k − 2) ;
(
m+1
2

)
mod 3 = 1

n1 ;
(
m+1
2

)
mod 3 = 2

(4)

This equation along with the previous lemmas, de-
creases the number of possible facility movements to
two cases called valid movements.

• Transferring a facility from LHI to its neighbor-
ing interval (IMIN or IMAX) including the col-
umn containing W ’s facility.
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(a) Zigzag strategy

(b) Simple strategy

Figure 2: Zigzag vs. Simple strategy.

• Transferring a facility from an IMIN interval to
a neighboring IMAX one including the column
containing W ’s facility.

Definition 2 The intersection of the Voronoi regions
of two facilities is called the overlapping of these fa-
cilities. Possible cases of overlapping (7 cases) are
presented in [8].

Lemma 7 Suppose G(m,n) is a grid in which n ≥
nm. W wins GV G1(G, 2) with the winning margin of
m if 2k - n. The game will end in a tie when 2k | n.

Lemma 8 Let G(m,n) be a grid in which n ≥ nm.
B loses GV G1(G, 3) with the minimum loss margin
of m if 2k - n.

We started to move the facilities by one of the valid
movements. Similar calculations indicate that when
a movement starts with a valid one it can only con-
tinue for at most three facility movements. Theorem
9 covers this problem.

Theorem 9 For any odd m, any optional k and any
n ≥ nm, W wins GV G1(G(m,n), k) with winning
margin of m if 2k - n.

Proof. It is clear that if B plays according to the
simple strategy he loses the game by a loss margin
of m. We are interested in the possibility of win
or a smaller loss margin. To achieve either of these
goals consider the first two facilities of B. Assume
that the Voronoi region of the first move by B is
P ′ and the second one is Q′. Also suppose that by
placing the same facilities in Rmid (according to the
simple strategy), B gains P and Q respectively. It
is clear that for a zigzag movement to be efficient,
|P ′| + |Q′| > |P | + |Q|. Considering this, for any k
and m in a grid with n = nm a zigzag movement must
start with one of the valid movements and only grows
if these conditions hold. One first starts from the left-
most facility of B and proceeds to the right side of
the grid one interval at a time and checks whether one
or both of the valid movements are possible. Assume

that the first valid movement is possible starting from
the left half interval. If k = 2 or k = 3 by Lemma 7
and Lemma 8 we know that B loses the game with
a loss margin of m. Similar reasoning for k > 3 indi-
cates that moving more than three consecutive facil-
ities from Rmid starting with a first valid movement
and independent of the neighboring intervals type is
a non efficient action (Figure 2). Likewise, the second
valid movement will become non efficient in at most
three moves: the Zigzag movement of just two facili-
ties is not efficient (for k = 2 in all cases). Similarly,
three movements in all cases are non efficient. �

5 Conclusion and Future Works

An optimal winning strategy for White (the first
player) in both one and two dimensional grids is pro-
posed. Like other variations of the Voronoi game
problem several questions arise in this context as well.
The most interesting problem is probably the case of
a grid with even width. Showing that B does not lose
is not difficult. B can gain at least half of the game
region in most cases by symmetry play (not possible in
all cases). Two dimensional k -round game which is a
challenging problem in most contexts is an interesting
open problem as well.
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Generalized Colorful Linear Programming and Further Applications
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Abstract

Colorful linear programming (CLP) is a generalization
of linear programming that was introduced by Bárány
and Onn. Given k point sets C1, . . . , Ck ⊂ Rd that
each contain a point b ∈ Rd in their positive span, the
problem is to compute a set C ⊆ C1 ∪ · · · ∪ Ck that
contains at most one point from each set Ci and that
also contains b in its positive span, or to state that
no such set exists. CLP is known to be NP-hard.

We consider a generalization of CLP in which we
are given additionally for each set Ci a number li ∈ N,
i = 1, . . . , k, and we want to find a set that contains
at most li points from Ci. We call this problem gen-
eralized colorful linear programming (GCLP). While
we show that even seemingly simple cases of GCLP
remain NP-hard, we present a weakly-polynomial al-
gorithm for the special case that there are only two
colors and that the vectors of each set Ci contain
b in their positive span. This case is particularly
interesting due to its connection with the colorful
Carathéodory theorem. Furthermore, we consider ad-
ditional applications of CLP to problems on colored
graphs.

1 Introduction

The colorful Carathéodory theorem [2] states that
given C1, . . . , Cd+1 ⊂ Rd point sets that all contain
the origin in their convex hulls, there always exists a
set C ⊂ C1 ∪ · · · ∪ Cd+1 that contains at most one
point from each set Ci, i = 1, . . . , d + 1, and that
also contains the origin in its convex hull. We call the
sets Ci, i = 1, . . . , d+1, color classes and we call a set
with at most one point from each color class a colorful
choice. Bárány also gave the following more general
version.

Theorem 1 ([2]) Let C1, . . . , Cd ⊂ Rd be point sets
and b ∈ Rd a point with b ∈ pos(Ci), for i = 1, . . . , d.
Then, there is a colorful choice C with b ∈ pos(C).

∗Université Paris Est, CERMICS (ENPC),
{frederic.meunier,pauline.sarrabezolles}@enpc.fr.
†Institut für Informatik, Freie Universität Berlin,
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ported in part by DFG Grants MU 3501/1 and MU 3501/2.
YS was supported by the Deutsche Forschungsgemeinschaft
within the research training group ‘Methods for Discrete
Structures’ (GRK 1408).

Here, we denote with pos(P ) = {∑pi∈P αipi | αi ≥
0 for all pi ∈ P} for a set P ⊂ Rd the set of all non-
negative linear combinations of points in P . Using a
simple lifting argument, it can be shown that Theo-
rem 1 implies the classic (convex) version of the color-
ful Carathéodory theorem as stated in the beginning.

In the spirit of the colorful Carathéodory theorem,
Bárány and Onn [3] generalized linear programming
to the colorful setting: given a point b ∈ Rd and point
sets C1, . . . , Ck ⊂ Rd, we want to find a colorful choice
C with b ∈ pos(C) or state that there is none. We
call this problem colorful linear programming (CLP)
and we call the decision problem to decide whether
there exists such a colorful choice DCLP. Bárány and
Onn [3] showed that DCLP is NP-complete even if
k = d and each Ci contains 0 in its convex hull. This
was extended by Mulzer and Stein [8] who showed
that DCLP is NP-complete even if k = d+1 and each
Ci does not necessarily contain 0 in its convex hull,
and by Meunier and Sarrabezolles [7] who showed that
DCLP is NP-complete for all values of k if each Ci
does not necessarily contain 0 in its convex hull. We
define the following generalization of CLP (GCLP):
given a point b ∈ Rd, point sets C1, . . . , Ck ⊂ Rd, and
numbers l1, . . . , lk ∈ N, we want to find a set C such
that |C ∩Ci| ≤ li for i ∈ [k] and such that b ∈ pos(C)
or state that there is none. We obtain CLP by setting
l1 = · · · = lk = 1.

Since CLP is NP-hard, GCLP is NP-hard as well.
However, as with regular linear programming and in-
teger programming, GCLP is very versatile and can
be used to model colorful versions of many combina-
torial problems. Therefore, it is of interest to identify
special cases of GCLP that can be solved in poly-
nomial time or to show that even the more restricted
version of the problem remains NP-hard. We consider
several such examples and delineate a more precise
boundary between easy and hard colorful problems.

2 Generalized Colorful Linear Programming

In CLP, we want to find a set that contains at most
one point from each color class. In generalized col-
orful linear programming (GCLP) we allow addition-
ally to be given k nonnegative integers l1, . . . , lk that
determine the number of points that we are allowed
to take from each color class. We call a set C with
|C∩Ci| ≤ li for i ∈ [k] an (l1, . . . , lk)-colorful choice or
(with a slight abuse of notation) just a colorful choice.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2.1 Complexity

Since GCLP is a generalization of CLP, it remains NP-
hard. However, even seemingly simple special cases
such as k = 1∧l1 = d [3, 6] or k = 2∧l1 = l2 = d/2 [3]
have been show to be NP-hard as well. We show that
even if the number of colors is fixed and each li is a
constant fraction of |Ci|, i ∈ [k], the problem remains
NP-hard. We prove this for the convex version of
GCLP. That is, we want to find a colorful choice C
that contains b in its convex hull instead of just in
its positive span. Without loss of generality, we can
assume b = 0. By a lifting argument, it can be easily
shown that the convex version of GCLP is a special
case of GCLP as stated in the introduction. Hence,
any hardness results for the convex version hold for
the cone version as well. The following theorem is
the main tool in the reduction. The theorem was first
obtained by Knauer et al. [6], albeit with a different
proof. We compare both proofs below.

Theorem 2 Let P ⊂ Rd be a set of size 2d. It is NP-
complete to decide whether there is a subset P ′ ⊂ P
of size d containing the origin in its convex hull.

Proof. Let A = {a1, . . . , ad} be an instance of Par-
tition, for d even. For i ∈ {1, . . . , d − 1}, we de-
fine the vector vi ∈ Rd as having its ith coordinate
equal to 1, its last coordinate equal to ai, and all
other coordinates equal to 0. The vector vd has all
its coordinates equal to −1 except for the last co-
ordinate, which is equal to ad. Similarly, we define
vectors wi ∈ Rd, and just replace the last coordi-
nate by −ai. Assume there is a partition A1, A2

of A with
∑
a∈A1

a =
∑
a∈A2

a. Then, we have∑
ai∈A1

vi = −∑ai∈A2
wi and hence 0 ∈ conv({vi |

ai ∈ A1} ∪ {wi | ai ∈ A2}). On the other hand,
let V ′ ⊆ {v1, . . . ,vd} and W ′ ⊆ {w1, . . . ,wd} be
s.t. |V ′| + |W ′| = d and s.t. 0 =

∑
v∈V ′ λvv +∑

w∈W ′ λww, where
∑

v∈V ′ λv +
∑

w∈W ′ λw = 1 and
λv, λw ≥ 0 for all v ∈ V ′,w ∈ W ′. By construction,
for all i = 1, . . . , d, we have either vi ∈ V ′ or wi ∈W ′
and furthermore, all coefficients λv, λw, v ∈ V ′, w ∈
W ′, are equal. Hence, the sets A1 = {ai | vi ∈ V ′},
A2 = {ai | wi ∈ W ′} form a partition of A with∑
a∈A1

a =
∑
a∈A2

a. �

We note that the set P constructed in the proof of
Theorem 2 was first described by Bárány and Onn [3,
Theorem 5.1]. However, they used it to prove the
weaker statement DCLP is NP-complete even for k =
d. This result is a consequence from Theorem 2 by
setting C1 = · · · = Cd = P . Also, NP-hardness of the
two special cases k = 1∧ l1 = d and k = 2∧ l1 = l2 =
d/2 follows from Theorem 2 by setting C1 = P∧l1 = d
and C1 = C2 = P ∧ l1 = l2 = d/2, respectively.

Note further that the problem from Theorem 2 was
first shown to be NP-complete by Knauer et al. [6].

Additionally, the proof of Theorem 2 gives an alter-
native proof for the #P-completeness of computing
the simplicial depth. This hardness result was first
obtained by Afshani et al. [1] and the alternative re-
duction is analogous to the proof of [1, Theorem 9].
It is not immediate that the reduction from Knauer
et al. [6] has similar implications.

In the following, let GCLPk(r1, . . . , rk), ri ∈ (0, 1),
denote GCLP restricted to instances with exactly k
color classes and the li’s are given by li = drinie for
i ∈ [k], where ni = |Ci|. That is, we are allowed to
take a constant fraction of each color class.

Theorem 3 For any fixed k ∈ N and any fixed ratios
r1, . . . , rk ∈ (0, 1), GCLPk(r1, . . . , rk) is NP-hard.

Proof. We prove the statement by a reduction simi-
lar to the proof of Theorem 2. Given some partition
instance A = {a1, . . . , ad}, let P ⊂ Rd, |P | = 2d,
denote the same point set as in the proof of The-
orem 2. If r1|P | = d, we set C1 = P and create
“dummy” points for C2, . . . , Ck that will never be part
of a convex combination of 0. To ensure this, we lift
P to Rd+1 by appending a 0-coordinate. Now, we set
Ci = {ci} for i = 2, . . . , k, where the coordinates of
ci ∈ Rd+1 are 0 in dimensions j = 1, . . . , d and some
positive number in dimension d+ 1.

Now, assume dr1|P |e < d and hence |P | < d/r1.
We add bd/r1 − |P |c dummy points together with P
to C1 and create the other color classes as before.
Then, we have dr1|C1|e = d as desired.

The last case is dr1|P |e > d. Again, we set C1 = P
and construct C2, . . . , Ck as above. To ensure that we
only take d points from P , we add “mandatory” points
to C1 that have to be part of any convex combination
of 0. We construct a mandatory point q by introduc-
ing a new dimension in which we set the coordinates
of all other points to 1. The new point q has coordi-
nates set to 0 in all but the new dimension, where it is
set to −1. A short calculation reveals that we have to

add m =
⌊
r1|P |−d
1−r1

⌋
mandatory points together with

P to C1 in order to ensure that dr1|C1|e = d+m.
Thus, the existence of a (r1|C1|, . . . , rk|Ck|)-colorful

choice is equivalent to the existence of a partition of
A into two sets A1, A2 with

∑
a∈A1

a =
∑
a∈A2

a.
Since r1 is constant, we can create the additional
dummy/mandatory points in polynomial time. �

2.2 A Special Case

We now consider the following special case of GCLP:
given a point b ∈ Rd, a ratio r ∈ [0, 1], and point sets
C1, C2 ⊂ Rd of size d with b ∈ pos(Ci) for i = 1, 2,
we want to find an (drde, brdc)-colorful choice C with
b ∈ pos(C), or state that there is none.

Theorem 1 guarantees the existence of such a color-
ful choice: we set the first drde color classes to copies
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of C1, and the next brdc color classes to copies of C2.
Hence, this simple case of only two colors is particu-
larly interesting as we know that there always exists a
solution, but computing it is already nontrivial. Note
that for l1 = drde − 1 or l2 = brdc − 1 the problem
becomes NP-hard as a consequence of Theorem 2.

We give a weakly-polynomial algorithm for the two-
color case that is based on constructing a family of
linear programs. Let L denote the linear system Ax =
b,x ≥ 0, where A ∈ Rd×2d contains C1 as its first
d columns and C2 as its second d columns. In the
following, we assume that L is in general position.
Given a cost vector c ∈ Rd, we denote with Lc the
linear program that maximizes the objective function
cTx subject to the equalities and inequalities from L.
Let c1 and c2 be two generic cost vectors such that C1

and C2 are optimal bases. One can show that c1 and
c2 can be obtained in polynomial time. For λ ∈ [0, 1],
we denote with cλ the cost vector λc1 + (1 − λ)c2
and with Lλ the linear program Lcλ . That is, the
linear programs Lλ, λ ∈ [0, 1], differ only in their cost
functions which are convex combinations of c1 and c2.
Our construction has the following properties.

Lemma 4 There is a finite number of ordered in-
tervals I1, . . . , Is with pairwise disjoint interiors such
that

⋃s
i=1 Ii = [0, 1] and such that

(i) The length of each interval Ii, i ∈ [s], is at least
1/K, where K ∈ N and logK is bounded by a
polynomial in the description size of L.

(ii) For each i ∈ {1, . . . , s}, there is a unique feasi-
ble basis that is optimal for all Lλ, where λ is
contained in the interior of Ii.

(iii) For λ belonging to two distinct intervals Ii, Ii+1,
there are exactly two optimal bases that differ
exactly by one column.

Proof. (i): This follows from standard tools such as
Cramer’s rule and the Leibniz formula for determi-
nants. (ii) & (iii): Let λ ∈ [0, 1] and let B be an
optimal basis for Lλ. We denote with N the set of
columns from A not in B. Then, the reduced cost vec-
tor [5] is given by rB,λ = (cλ)N − ATN (A−1B )T , where
(cλ)N denotes the subvector of cλ restricted to the
coordinates corresponding to columns in N , AN de-
notes the submatrix of A with columns in N , and AB
denotes the submatrix of A with columns in B. If
the sign of the ith coordinate of rB,λ is positive, then
swapping the corresponding column from N into B
increases the cost and otherwise (if the sign is non-
positive), the cost remains equal or decreases. Since
we want to maximize the objective function, a basis
is optimal iff all coordinates of rB,λ are non-positive,
and it is unique if all coordinates of rB,λ are negative.

We obtain the intervals I1, . . . , Is iteratively as fol-
lows: initially we set λ = 0. By general position and

genericity of c1, the unique optimal basis for Lλ is
C1, i.e., all coordinates of rB,λ are negative. Now, we
continuously increase λ until one of the coordinates of
rB,λ becomes 0. Let λ1 denote this value and let i be
the coordinate of rB,λ1 that is 0 (by general position
and genericity, i is unique). Since C1 is not an opti-
mal basis for L1, λ1 exists. Because each coordinate
of rb,λ is a linear function in λ, (rb,λ′)i is positive
for all λ′ > λ1. Then, there exists an ε > 0 such
that i is the only nonnegative coordinate of rb,λ′ for
λ′ ∈ I = (λ1, λ1 + ε). Hence, for all λ′ ∈ I, the ba-
sis B′ that is obtained by swapping the column from
N that corresponds to coordinate i of rb,λ into B is
the unique optimal basis. Note further, that both B′

and B are optimal for Lλ1
. Set I1 = [0, λ1] and con-

struct iteratively the next intervals until B′ = C2.
Let λs ∈ [0, 1] be the minimum value for which C2

is an optimal basis for Lλs . Then, C2 is optimal for
every λ′ ∈ [λs, 1]. We set Is = [λs, 1] and conclude
the construction of the intervals. �

We now describe the complete algorithm. In round
i, we maintain an interval [ai, bi] ⊂ [0, 1], such that the
optimal basis for Lai contains at least drde columns
from C1 (and due to the general position assumption,
at most b(1−r)dc columns from C2) and such that the
optimal basis for Lbi contains at most drde columns
from C1. We maintain the following invariant: there
exists a λ ∈ [ai, bi] such that the optimal basis for Lλ
is the desired (drde, brdc)-colorful choice.

Initially, we set [a1, b1] = [0, 1]. By definition, C1 is
the optimal basis for L0 and C2 is the optimal basis
for L1. By Lemma 4(iii) optimal bases for two adja-
cent intervals differ only in one column, and hence the
invariant holds for [a1, b1]. We solve then the linear
program Lλ for λ = (ak+bk)/2 and let B∗ denote the
optimal basis. If B∗ contains at least drde columns
from C1, we set ai+1 to λ and bi+1 = bi. Otherwise,
we set ak+1 = ak and bk+1 = λ. Let B1 be the opti-
mal basis for Lai+1

and let B2 be the optimal basis for
Lbi+1 . Since B1 contains at least drde columns of C1

and since B2 contains at most drde columns of C1, the
invariant holds for [ai+1, bi+1] again by Lemma 4 (iii).

After i∗ = O(logK) iterations, the interval [ai∗ , bi∗ ]
is contained in the union of two adjacent intervals
Ij , Ij+1 with j ∈ [s − 1]. Let Bj and Bj+1 be the
optimal bases for Ij and Ij+1, respectively. Hence, by
Lemma 4 (ii), either Bj or Bj+1 is the desired basis.

Each round requires polynomial time, and the num-
ber of rounds is bounded by a polynomial in the bit-
size of the input. The following theorem is immediate.

Theorem 5 Let b ∈ Rd be a vector and let C1, C2 ⊂
Rd be two sets of size d with b ∈ pos(Ci) for
i = 1, 2. Furthermore, let r ∈ [0, 1] be a param-
eter. Then, there is an algorithm that computes
an (drde, brdc)-colorful choice C with b ∈ pos(C) in
weakly-polynomial time.
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3 Applications of Colorful Linear Programming

We consider two problems on colored graphs that
can be cast as a CLP and analyze their complexity.
The first problem is called ColorfulPath: given
a directed graph G = (V,E) whose edges are parti-
tioned into k color classes C1, . . . , Ck and two vertices
s, t ∈ V , the problem is to decide whether there ex-
ists a directed path from s to t with at most one edge
from each color class. ColorfulPath is a special
case of CLP, since the existence of an s-t path can be
modeled as a flow. Chakraborty et al. [4] showed this
problem to be NP-complete by a reduction from 3-
SAT. We present a similar but simplified proof, that
reduces the number of necessary colors from O(mn2)
to O(m), where m is the number of clauses and n is
the number of variables in the 3-SAT formula.

Theorem 6 ColorfulPath is NP-complete, even
if the graph G = (V,E) is acyclic and |E| = O(|V |).

Proof. Consider a 3-SAT formula Φ, with n variables
x1, . . . , xn and m clauses C1, . . . , Cm, each containing
exactly three literals. Our directed graph has 3m col-
ors cjk, j = 1, . . . ,m and k = 1, 2, 3, one for each
literal in each clause. We allow multiple edges be-
tween two vertices. However, our construction can be
easily modified to at most one edge per vertex-pair by
introducing new vertices. For each clause Cj we have
one clause gadget Gj and for each variable xi, we have
one variable gadget G′i. The clause gadget Gj for a
clause Cj consists of two vertices {sj , tj} and three
directed edges from sj to tj with colors cj1, cj2, and
cj3. The variable gadget G′i for a variable xi consists
of two edge-disjoint paths that are vertex disjoint ex-
cept at the start and the end vertex. The first path
contains one edge for each positive occurrence of xi
in Φ, colored with the color that corresponds to this
literal. The second path contains one analogous edge
for each negative occurrence of xi in Φ. The graph
G is obtained by concatenating all clause gadgets and
all vertex gadgets and by identifying the last vertex
in each gadget with the first vertex in the following
gadget. This construction can be performed in poly-
nomial time, and there is a colorful path through all
gadgets if and only if Φ is satisfiable. �

We conclude with AnotherColorfulCycle
(ACC): given a graph G = (V,E), where |E| = 2|V |
and all edges are colored with n = |V | colors such
that exactly two edges have the same color, and a
colorful Hamilton cycle in G, we want to find another
colorful cycle (not necessarily Hamiltonian). This is a
special case of the PPAD-complete problem Anoth-
erColorfulSimplex [7] (ACS) and related to the
PPA-problem AnotherHamiltonPath [9] (AHP),
in which we are given a graph G and a Hamilton path
in G, and we want to find another Hamilton path in G

or in its complement. While there are no polynomial-
time algorithms known for ACS and AHP, we show
that ACC can be solved efficiently.

Theorem 7 AnotherColorfulCycle can be
solved in polynomial time.

Proof. Consider the bipartite graph G′ = (V ′, E′)
with vertices V ′ = V ∪ {C1, . . . , Cn}. There is an
edge (v, Ci) ∈ E′ if there is an outgoing edge from a
vertex v ∈ V with color Ci in G. Note that there is a
bijection between E′ and E. Furthermore, the edges
M ⊂ E′ in G′ that correspond to the edges of the
Hamiltonian cycle in G are a perfect matching in G′.

Since |E| ≥ |V |, there is a cycle C in G′. As each
vertex Ci ∈ V ′, i ∈ [n], is incident to two edges,
and since one of them is contained in M , C is of even
length and its edges alternate between M and E′ \M .
Then, M ′ = M ⊕ C is a perfect matching different
from M . It induces a colorful set of edges where each
vertex v ∈ V has exactly one outgoing edge in M ′.
Hence, M ′ corresponds to a colorful cycle in G. �
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Random Sampling with Removal

Bernd Gärtner ∗ Johannes Lengler ∗ May Szedlák ∗

Abstract

Random sampling is a classical tool in constrained
optimization. Under favorable conditions, the opti-
mal solution subject to a small subset of randomly
chosen constraints violates only a small subset of the
remaining constraints. Here we study the following
variant that we call random sampling with removal:
suppose that after sampling the subset, we remove
a fixed number of constraints from the sample, ac-
cording to an arbitrary rule. Is it still true that the
optimal solution of the reduced sample violates only
a small subset of the constraints? The question natu-
rally comes up in situations where the solution subject
to the sampled constraints is used as an approximate
solution to the original problem.

We study random sampling with removal in a gen-
eralized, completely abstract setting where we assign
to each subset R of the constraints an arbitrary set
V (R) of constraints disjoint from R; in applications,
V (R) corresponds to the constraints violated by the
optimal solution subject to only the constraints in R.
Furthermore, our results are parametrized by the di-
mension δ, i.e., we assume that every set R has a sub-
set B of size at most δ with the same set of violated
constraints. This is the first time this generalized set-
ting is studied.

In this setting, we prove matching upper and lower
bounds for the expected number of constraints vio-
lated by a random sample, after the removal of k ele-
ments. For a large range of values of k, the new upper
bounds improve the previously best bounds for LP-
type problems, which moreover had only been known
in special cases. We show that this bound on special
LP-type problems can be derived in the much more
general setting of violator spaces, and with very ele-
mentary proofs.

1 Introduction

On a high level, random sampling can be described as
an efficient way of learning something about a prob-
lem, by first solving a subproblem of much smaller
size. A classical example is the problem of finding the
smallest element in a sorted compact list [2, Problem
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{gaertner, johannes.lengler, may.szedlak}@inf.ethz.ch.
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11-3]. Such a list stores its elements in an array, but in
arbitrary order. Additional pointers are used to link
each element to the next smaller one in the list. Given
a sorted compact list of size n, the smallest element
can be found in expected time O(

√
n) as follows: sam-

ple a set of b√nc array elements at random. Starting
from their minimum, follow the predecessor pointers
to the global minimum. The key fact is that the ex-
pected number of pointers to be followed is bounded
by
√
n, and this yields the expected runtime.

On an abstract level, the situation can be modeled
as follows. Let H be a set of size n that we can think
of as the set of constraints in an optimization problem,
for example the elements in a sorted compact list. Let
V : 2H → 2H be a function that assigns to each subset
R ⊆ H of constraints a set V (R) ⊆ H \ R. We can
think of V (R) as the set of constraints violated by the
optimal solution subject to only the constraints in R.
In the sorted compact list example, V (R) is the set of
elements that are smaller than the minimum of R.

In this setting, the above “key fact” is a concrete
answer to the following abstract question: Suppose
that we sample a set R ⊆ H of size r ≤ n uniformly
at random. What can we say about the quantity vr,
the expected size of V (R)? What are conditions on
V under which vr is small?

The main workhorse in this context is the Sampling
Lemma [6]. It states that vr = n−r

r+1 ·xr+1, where xr is
the expected size ofX(R) = {h ∈ R : h ∈ V (R\{h})}.
In other words, h ∈ X(R) is a constraint that is not
automatically satisfied if the problem is solved with-
out enforcing it. In the sorted compact list example,
every nonempty set R has one such “extreme” con-
straint, namely its minimum. Consequently, we have
xr+1 = 1, and hence vr = (n − r)/(r + 1). With
r = b√nc, vr <

√
n follows. The Sampling Lemma

has many other applications in computational geom-
etry when xr+1 can be bounded [6].

In this paper, we address the following more gen-
eral question in the abstract setting: Suppose that we
sample a set R ⊆ H of size r ≤ n uniformly at ran-
dom, but then we remove a subset KR ⊆ R of a fixed
size k, according to an arbitrary but fixed rule. What
can we still say about the expected size of V (R\KR)?
IfKR is a random subset of R, the expectation is vr−k,
but if KR is chosen by another (deterministic) rule,
then R \KR is no longer a uniformly random subset,
and the Sampling Lemma does not apply.

Our work is originally motivated by chance-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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constrained optimization, see [6] and the explanations
and references therein, but we also believe that the
question is natural and interesting in itself.

A first bound on the change of the expected num-
ber of violated constraints was given in [3] in the case
where (H,V ) is a nondegenerate LP-type problem.
The results are parametrized by the dimension δ (for
definition of dimension see Definition 3 below). LP-
type problems have been introduced and analyzed by
Matoušek, Sharir and Welzl as a combinatorial frame-
work that encompasses linear programming and other
geometric optimization problems [9, 7]. The quantita-
tive result was that under removal of k elements, the
expected number of violated constraints increases by
a factor of δk at most, which is constant if both δ and
k are constant. It was left open whether this factor
can be improved for interesting sample sizes (for very
specific and rather irrelevant values of δ, r, k, it was
shown to be best possible).

In this paper, we improve over the results in [3] in
several respects. In Theorem 6 we show that the in-
crease factor δk can be replaced by log n + k, which
is a vast improvement for a large range of values of k.
Moreover, the new bound neither requires the ma-
chinery of LP-type problems, nor nondegeneracy. It
holds in the completely abstract setting considered
above. In this setting, we can also show that the
bound is best possible for all sample sizes of the form
r = nα, 0 < α < 1. We also show that this bound
is best possible for violator spaces, in the case where
k = Ω(δ log n). In general, for violator spaces the gap
to the lower bound is log n.

Hence, if anything can be gained over the new
bound, additional properties of the violator function
V have to be used. Indeed, for small values of k, the
increase factor in [3] is better than our new bound for
nondegenerate LP-type problems, and most notably,
it does not depend on the problem size n. We show in
Theorem 9 that the same factor can be derived under
the much weaker conditions of a nondegenerate vio-
lator space, and with a much simpler proof, based on
a “removal version” of the Sampling Lemma (Lemma
8). Furthermore the proof of [3] is given for a specific
rule to remove k, whereas our proof works for any
rule.

Intuitively, violator spaces are LP-type problems
without objective function, and they were introduced
to show that many combinatorial properties of LP-
type problems and algorithms for LP-type problems
do not require the objective function at all [5, 1].

In Section 3, Theorem 10 we show tight upper and
lower bounds for the case δ = 1, which shows that the
improved bound for nondegenerate violator spaces is
best possible for all violator spaces. For smaller (and
in particular constant) k, the quest for the best bound
on the increase factor remains open.

What also remains open is the role of nondegen-

eracy. In many geometric situations, nondegeneracy
can be attained through symbolic perturbation and
can therefore be assumed without loss of generality
for most purposes. In the abstract setting, this is
not necessarily true, as there are examples of LP-type
problems for which any “combinatorial perturbation”
increases the dimension [8].

2 Basics and Definitions

Throughout the paper we will work with three combi-
natorial concepts, the LP-type problem, the violator
space and the consistent space.

Definition 1 (LP-type Problems) An LP-type
problem is a triple P = (H,Ω, ω) that satisfies the
following. H is a finite set (the constraints), Ω a
totally ordered set with a smallest element −∞ and
ω : 2H → Ω a function that assigns an objective
function value to G ⊆ H, such that ω(∅) = −∞.
For all F ⊆ G ⊆ H and h ∈ H, it holds that (1)
ω(F ) ≤ ω(G), and (2) if ω(F ) = ω(G) > −∞, then
ω(G ∪ {h}) > ω(G)⇒ ω(F ∪ {h}) > ω(F ). The first
condition is called monotonicity, the second locality.

A constraint h ∈ H \ G is violated by G if ω(G ∪
{h}) > ω(G). We denote the set of violated con-
straints by V (G). The classic example of an LP-type
problem is the problem of computing the smallest en-
closing ball (SEB) of a finite set of points P in Rd [10].
For SEB, the violated constraints of G are exactly the
points lying outside the smallest enclosing ball of G.

Intuitively a violator space is an LP-type problem
without an objective function.

Definition 2 (Violator Space) A violator space is
a pair (H,V ), |H| = n finite and V : 2H → 2H such
that for all F ⊆ G ⊆ H, it holds that (1) G∩V (G) = ∅
and (2) if G∩V (F ) = ∅, then V (G) = V (F ). The first
condition is called consistency, the second locality.

The notion of a violator space is more general than
the LP-type problem, since every LP-type problem
can naturally be converted into a violator space. On
the other hand, not every violator space can be con-
verted into an LP-type problem [5].

Definition 3 Let (H,V ) be a violator space.

1. B ⊆ H is called a basis in (H,V ), if for all F ( B,
B ∩ V (F ) 6= ∅ (or equivalently, V (F ) 6= V (B)).

2. A basis of G ⊆ H is a basis B in (H,V ) such that
B ⊆ G and V (B) = V (G).

3. The combinatorial dimension of (H,V ), denoted
δ := δ(H,V ) is defined by the size of the largest
basis in (H,V ).
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For SEB, a basis of G is a minimal subset of points
with the same enclosing ball of G. In particular, all
points of the basis are on the ball’s boundary. In
d-dimensional space, the combinatorial dimension of
any SEB-instance is at most d+1, since any enclosing
ball can be defined by at most d + 1 points on its
boundary. However, a basis can be smaller than the
combinatorial dimension, and a point set can have
more than one basis: in R2 the set of four corners of
a square has two bases, the two pairs of diagonally
opposite points.

The set of extreme constraints X(G) ⊆ G is defined
by r ∈ X(G)⇔ r ∈ V (G \ {r}).

In the SEB case, h is extreme in G if its removal
allows for a smaller enclosing ball. Therefore h is
necessarily on the boundary of the smallest enclosing
ball, but this is not sufficient. For the case R2, if G
consists of the four points on a circle, then G has no
extreme point.

It is not hard to see that X(G) is the intersection
of all bases of G, hence |X(G)| ≤ δ. To bound the ex-
pected number of violators, the following result from
[6] is known.

Lemma 4 [Sampling Lemma] Let (H,V ) be a vi-
olator space with combinatorial dimension δ. Let
R ⊆ H a u.a.r. set of size r, vr = E[|V (R)|] and
xr = E[|X(R)|]. Then vr = n−r

r+1 · xr+1 ≤ n−r
r+1 · δ.

The Sampling Lemma can be used to argue that
vr is small if the expected number xr+1 of extreme
constraints of a random sample of size r + 1 is small.

Hence in the SEB case every set has at most d+ 1
extreme points and therefore vr ≤ n−r

r+1 · (d + 1). If
d = 2, then the smallest enclosing ball of a random
sample of size

√
n has in expectation at most 3

√
n

points outside.

A violator space (H,V ) is called nondegenerate if
every set G ⊆ H has a unique basis. Note that SEB
it not nondegenerate, since as mentioned in R2, four
points on a circle have two bases.

A consistent space is a violator space without the
locality condition.

Definition 5 (Consistent Spaces) A consistent
space is a pair (H,V ), |H| = n finite and V a
function 2H → 2H such that for all G ⊆ H it holds
that G ∩ V (G) = ∅.

The basis, combinatorial dimension and extreme
constraints of a consistent space can be defined equiv-
alently as in the violator space.

In consistent spaces the first equality vr = n−r
r+1 ·

xr+1 of the Sampling Lemma 4 still holds. However,
in general it does not hold that |X(R)| ≤ δ for all R ⊆
H. One can construct examples where X(R) = R [4].

3 Results

As already introduced in [3] for LP-type problems,
we are interested in sampling with removal. We de-
fine the concept here for the most general case of
consistent spaces. All results will then naturally ex-
tend for violator spaces and LP-type problems. Sup-
pose we sample uniformly at random R ⊆ H of size
r. By some fixed rule Pk, we remove k < r el-
ements of R and obtain a set RPk

of size r − k.
We define VPk

(R) := V (RPk
). Note that in general

(H,VPk
) is not a consistent space. We are interested

in E[|VPk
(R)|], for which we will give several bounds.

In Theorem 6 we give a tight bound for consistent
spaces. In Theorem 9 we give a tight bound for non-
degenerate violator spaces, which is an improvement
to the result given in [3]. It depends on the values of
δ and k whether the bound of Theorem 6 or Theorem
9 is stronger. Finally, in Theorem 10 we give a tight
bound for violator spaces for the case where δ = 1.

Tight Bounds on Consistent Spaces. The following
result is proven by counting, the main argument is,
that very few sets can have a large set of violators,
i.e., Pr[|VPk

(R)| ≥ x] ≤ n−1 for x and n as defined
below. For a full version of the proof see [4, Theorem
10].

Theorem 6 Let (H,V ), with |H| = n, a consistent
space, δ, k, Pk and R with |R| = r ≤ n as above.

E[|VPk
(R)|] ≤ c ·max

{n
r
δ log n,

n

r
k
}

=: x

where c is some suitable constant (e.g. c = 33).

For δ log n = Ω(k) tightness of the bound can be
shown by choosing for every set of size at most δ, a
set of violators of size Θ(nr δ log n) independently and
u.a.r. [4, Lemma 15]. For δ log n = o(k) the bound is
even tight for violator spaces [4, Lemma 17].

Extreme Constraints after Removal. Let (H,V ) be
a violator space of combinatorial dimension δ. In par-
ticular, every set has at most δ extreme constraints.
For a given natural number k, we want to understand
the following quantity:

∆k(H,V ) := max
R⊆X

|{X(R \K) : K ⊆ R, |K| = k}| .

In other words, how many sets of extreme constraints
can we get by removing k elements from some set R?

We obviously have ∆0(H,V ) = 1 for any violator
space (H,V ). Moreover for (H,V ) nondegenerate we
have ∆1(H,V ) ≤ δ + 1. Indeed one can show that if
we remove a non-extreme element x from R, we end
up with the same set X(R \ {x}) = X(R) of extreme
elements, so only in at most δ cases, we will get a
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different set. Note that this does not hold in general
[4]. Continuing with the same argument the following
bound follows (for a full proof see [4]).

Lemma 7 Let (H,V ) be a nondegenerate violator

space. Then ∆k(H,V ) ≤∑k
i=0 δ

i.

Sampling Lemma after Removal. Let (H,V ) be a
violator space. For R ⊆ H and a natural number k,
we define the following two quantities: Vk(R) = {x ∈
H \ R : x ∈ V (R \ K) for some K ⊆ R, |K| = k}
and Xk(R) = {x ∈ R : x ∈ X(R \ K) for some
K ⊆ R, |K| = k}. Clearly, V (R) = V0(R) and
X(R) = X0(R). Furthermore, we let vr,k = E[Vk(R)]
and similarly xr,k = E[Xk(R)].

Lemma 8 [Sampling Lemma after Removal]

vr,k =
n− r
r + 1

xr+1,k.

The proof goes like the one for the “normal” Sam-
pling Lemma 4 [6]. The main idea is to define a bi-
partite graph on the vertex set

(
X
r

)
∪
(
X
r+1

)
, where we

connect R and R ∪ {x} with an edge if and only if
x ∈ Vk(R). By counting the outgoing edges on both
sides the lemma follows [4]. Again this equality holds
for consistent spaces as well.

Violators after Removal. For R ⊆ H, let KR be
the k-element set removed by Pk, i.e., RPk

= R \
KR. Then E[|VPk

(R)|] ≤ vr,k + k. This follows since
vr,k counts the expected number of violators in H \R
that we can possibly get by removing any set of k
elements and the removed elements in KR can also be
in V (RPk

).

Theorem 9 Let (H,V ) be a nondegenerate violator
space, δ, k, Pk and R with |R| = r ≤ n as above.
Then

E[|VPk
(R)|] ≤ vr,k + k ≤

k+1∑

i=1

δi · n− r
r + 1

+ k.

Proof. By Lemma 8 it suffices to show that
|Xk(R)| ≤ ∑k+1

i=1 δ
i. This holds, since by Lemma 7,

at most
∑k
i=0 δ

i many sets of extreme elements can
be obtained by removing k elements from R, and each
of these sets has at most δ elements. �

By [3, Section 7.2], there exists an LP-type problem
and a rule Pk, such that |Xk(R)| = Θ(δk+1), for |R| =
n−1. However, the behavior of the bound is unknown
for general r.

Combinatorial Dimension 1. In the case of violator
spaces it is open whether (or when) the upper bound
of Theorem 6 is tight for k < δ log n. In this case,
there is a gap of up to log n between upper and lower
bounds [4, Lemma 17]. For k = 0 we know a stronger
upper bound of O(n−rr+1 δ) by the Sampling Lemma 4.

For the case δ = 1 one can show that there exists
only one class of violator spaces of dimension 1 [4,
Lemma 21], namely the class of the smallest number
with repetitions violator space, which is defined as fol-
lows: Let |H| = n and H a multiset of [n], i.e., every
element of H is in [n] and there might be repetitions.
For R ⊆ H, let V (R) = {x ∈ H | x < mini∈R i}. Fi-
nally we require that either V (∅) = H or V (∅) = V (i)
for some i ∈ H. In this setting one can prove that
E[|VPk

(R)|] = O(nr k) and that this bound is tight
[4, Theorem 18]. The theorem below follows immedi-
ately.

Theorem 10 Let (H,V ) be a violator space with di-
mension δ = 1. Let k, Pk and R with |R| = r ≤ n as
above. Then E[|VPk

(R)|] = O(nr k), and this bound is
tight.
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Characterizing the Distortion of Some Simple Euclidean Embeddings
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Abstract

We consider two related families of problems. First we
consider the embedding of finite point sets on a circle into
one or more lines, or finite point sets on a sphere onto one
or more planes. Next we consider the problem of embed-
ding N + 1 points from RK+1 into RK where all but one
of the N + 1 points are in RK . Given such point sets, in
the worst case, how much distortion must necessarily be
incurred, by the best embedding?

1 Introduction

Various authors have studied the problem of minimizing
the distortion of embedding points from one metric space
into another metric space. In this work we consider two
related families of problems. First we consider the embed-
ding of finite point sets on a circle into one or more lines,
or finite point sets on a sphere onto one or more planes.
Next we consider the problem of embedding N + 1 points
from RK+1 into RK where all but one of the N + 1 points
are in RK . Given such point sets, in the worst case, how
much distortion must necessarily be incurred, by the best
embedding? In the case of the N + 1 points, how does
the maximum distortion compare to the case where an un-
bounded number of points can lie outside any particular
hyperplane of RK+1? Questions of this nature are impor-
tant in many application areas, from data compression to
machine learning.
Notation: Let Π be an embedding of one metric space,
M1 into a second metric space, M2. Let d1(x,y) denote
the distance between two points x,y ∈M1 and let d2(x,y)
denote the distance between two points x,y ∈M2.
Definition: Let P be a finite point set in a metric space
M1, and let Π : P→M2 be a mapping (embedding) of P
into M2. Then the distortion of the mapping Π, Dist(Π)
is given by

Dist(Π) =

max
(

max
x,y∈P

d2(Π(x),Π(y))

d1(x,y)
,max

x,y∈P

d1(x,y)

d2(Π(x),Π(y))

)
.

2 Background and Related Work

A fundamental reference that discusses the Lipschitz ex-
tension theorem of Kirszbraun (see next section) and the
∗IBM T.J. Watson Research Center, Yorktown Heights, NY 10598,

{lenchner,konak,yangli}@us.ibm.com
†University of Connecticut, Storrs, CT 06269

don.r.sheehy@gmail.com

now classical Johnson-Lindenstrauss-Schechtman Lem-
mas is [4]. [1] and [2] study embedding metric spaces
into a line, and into the two-dimensional plane. Our work
is most closely related to [3], which discusses online met-
ric embeddings. [5] and [6] are two older works that study
the embedding of finite metric spaces into low dimensional
Euclidean spaces.

3 Embeddings Points on a Circle into a Line and
Points on a Sphere into a Plane

Definition: Call a set of N points on the unit sphere
SK dense if the radius of the largest empty cap is of size
O
(

1
N1/K

)
.

Unless otherwise stated, all metrics are assumed to be
the Euclidean metric of the ambient spaces. Badiou et
al. [2] showed that any embedding of N points on the
sphere into a plane has distortion O(

√
N) and that a dense

set of points on the unit sphere embeds into R2 with dis-
tortion Θ(

√
N). The proof of the latter uses the Borsuk-

Ulam Theorem together with Kirszbraun’s Theorem [4],
which says that a Liptschitz embedding of a subset of a
Hilbert Space into another Hilbert Space can be extended
to a Liptschitz embedding of the full space, with the same
Liptschitz constant. The same arguments can be used to
show that any embedding of N points on a circle into a
line has distortion O(N) and that a dense set of points on
the unit circle embeds into the line with distortion that is
Θ(N).

4 Embeddings Points on a Circle into Multiple
Lines and Points on a Sphere into Multiple
Planes

We first consider the problem of embedding points on a
circle into two lines.

Lemma 1 A set of N points on a circle can be embedded
into two lines selected by the problem solver with distor-
tion that is O(

√
N).

Proof. Consider an origin-centered disk of unit radius and
a set P of N points on the disk. To this set of points add
their antipodal points −P. Among the points in P∪−P
there is some pair of adjacent points p, p′ that are Ω( 1

N )
from one another. The antipodals to these points are also
adjacent to one another with the same separation. Split the
circle with a diametric cut that passes between p and p′,
and also between −p and −p′.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a preprint rather than
a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Half of the points of P∪−P will be on one side of this
cut and half on the other side. Without loss of generality
suppose the cut is the line y = 0. Now consider the two
lines y = 1√

N
and y = − 1√

N
. Define an embedding Π of

the points on the circle to the two lines as follows. Embed
the points on the top half of the circle, say that in left to
right order they are p, ....,−p′, onto y = 1√

N
, also in left to

right order, so that their sequential distances from one an-
other are the same as their geodetic distances on the circle.
Then embed the points on the bottom half of the circle,
i.e. −p, ..., p′, this time in their natural right to left order-
ing, onto y =− 1√

N
, so that their sequential distances from

one another are again the same as their geodetic distances
on the circle, and moreover, such that the image of −p is
directly below the image of −p′.

For points q,q′ that are mapped to the same line,
Π introduces just a constant amount of distortion since
the geodetic distance along the circle is an O(1)-
approximation to the Euclidean distance. To see this for-
mally we need show that the ratio of the length of an arc of
the unit circle to the associated chord length is bounded by
a constant. On a unit circle the length of an arc associated
with a central angle θ is also θ, while the associated chord
length is

√
2−2cosθ = 2sin θ

2 . So we must determine the
supremum of

f (θ) =
θ

2sin θ
2

. (1)

By L’Hôpital’s Rule,

lim
θ→0

f (θ) = 1, (2)

and

f ′(θ) =
2sin θ

2 −θcos θ
2

4sin2 θ
2

(3)

and the numerator is never 0. It follows that the supremum
of f is the maximum of 1 (the effective value of f (0)) and
f (π) = π

2 , establishing that the geodetic distance along the
circle is an O(1)-approximation to the Euclidean distance.

Thus the biggest distortion is either the distortion intro-
duced at Π(p),Π(p′) (equivalently, at Π(−p),Π(−p′)),
which is potentially the most pronounced expansion, or by
the most pronounced contraction, which can be no more
substantial than if there were points at (0,1),(0,−1) with
(0,1) embedding into the line y = 1√

N
and (0,−1) embed-

ding into the line y =− 1√
N

.
However the distortion at Π(p),Π(p′) is

O

( 1√
N

1
N

)
= O(

√
N), (4)

while the distortion assuming there were points at
(0,1),(0,−1) would be

O

(
1
1√
N

)
= O(

√
N). (5)

Thus the lemma is established. �

Lemma 2 A set of N points on a circle can be embedded
into three lines selected by the problem solver with con-
stant distortion.

Proof. We consider the unit circle, C, and an associated
circumscribed equilateral triangle, T . We map the N points
on C to N geodetically proportionally spaced points on T ,
respecting the ordering of the points on C. Call this map
Π. We show that Π can neither expand nor contract dis-
tances by too much. The proof that Π does not expand too
much breaks down into a series of three fairly trivial ob-
servations, namely: (i) The geodesic distance on the circle
is an O(1)-APX to the associated Euclidean distance, (ii)
the geodesic distance on the triangle is an O(1)-APX to
the geodesic distance on the circle, and (iii) the Euclidean
distance between two points on a triangle is never greater
than the geodesic distance on the triangle (obvious). That
Π is at most a constant factor expansion means that the Eu-
clidean distance on the triangle is at most a constant factor
expansion to the associated Euclidean distance on the cir-
cle. The result follows by the transitivity of the O(1)-APX
relation if we can establish (i) and (ii).

We established the truth of (i) in our proof of Lemma 1.
(ii) is even easier since the approximation ratio is just the
ratio of the associated perimeters, which is 3

√
3

π . The fact
that Π expands by at most a constant factor follows.

To show that Π contracts by at most a constant factor,
it suffices that (a) the geodesic distance on the circle does
not decrease distances relative to the Euclidean distance
on the circle, (b) the geodesic distance on the triangle does
not decrease distances relative to the geodesic distance on
the circle, and (c) the Euclidean distance on the triangle
does not contract distances by more than a constant factor
relative to the geodesic distance on the triangle. (a) and
(b) are obvious. For (c) consider Figure 1. By the law of

Figure 1. Comparison of the Euclidean distance, C, between two points
on an equilateral triangle, and the geodesic distance A + B.

cosines,

C2 = A2 + B2−2ABcos
π
3

= A2 + B2−AB. (6)

Now, without loss of generality, assume that A ≥ B and
that A = m+ε, B = m−ε (where m = A+B

2 and ε = A−B
2 ).

Then

C2 = (m + ε)2 +(m− ε)2 +(m + ε)(m− ε)

= m2 + 3ε2,
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and so C≥ A+B
2 . Thus the Euclidean distance contracts by

no more than a factor of 2 relative to the geodesic distance
on the equilateral triangle and so Π contracts by at most a
constant factor, and the lemma is established. �

We observe that it is not possible to extend Lemma 2
to an annulus of constant thickness. If it were possible
to make such an extension then it would be possible to
embed points on an ε-thick annulus into a disk with con-
stant distortion. However, in what is a variant of a rather
usual argument/counterexample, consider N points in the
annulus contained within a

√
N x
√

N square grid, each
grid point at a distance of δ = ε/N from the next. If we
embed these points onto the circle so that the distortion
of each point with its neighbor on the circle gets constant
distortion, then they must be placed at distance no smaller
than kδ from one another from some constant k. However,
the two furthest apart points on the circle will be approx-
imately Nkδ from one another, while they started at dis-
tance no greater than

√
2Nδ from one another. Thus they

incur a distortion of at least
√

N.
It is conceivable, however, that Lemma 1 can be ex-

tended to cover the case of an annulus of constant thick-
ness.
Definition: Say that a set of N points on the sphere is
distributed approximately uniformly if the geodetic dis-
tance between any two points in the set is Ω( 1√

N
) and there

is no empty patch (cap) of radius Ω( 1√
N

).
We believe the next lemma holds for an arbitrary set of

N points on the sphere but the best we can prove at present
is the following:

Lemma 3 An approximately uniformly distributed set of
N points on a sphere can be embedded into two planes
selected by the problem solver with distortion that is
O(N1/4).

Proof. Place N points approximately uniformly on a unit
radius sphere. We will embed the points on the surface
of the sphere onto two planes at z = ± 1

N1/4 . Points on the
bottom half of he sphere will be embedded onto the z =
− 1

N1/4 plane via the following two step process: (1) Project
each such point p first to the z = −1 plane via the unique
line through p that makes a 45◦ angle with the z-axis. Map
the south pole to the south pole. (2) Map points from the
z =−1 plane to the z =− 1

N1/4 via vertical projection. Do
analogously to embed points on the northern hemisphere
into the z = 1

N1/4 plane.
As in the case of the circle, projection of points on

a common hemisphere onto a plane incurs a constant
amount of distortion. For points near the equator and near
the south pole there is essentially no distortion while the
distortion is maximized for points midway between the
equator and the south pole, when the distortion is easily
seen to be

√
2.

Thus the biggest possible distortion either arises at the
mapping of potential points (pN , pS) where pN denotes a

point at the north (top) pole of the sphere and pS denotes its
antipodal point, or at pairs of points (p(θ,φ)top

, p(θ′,φ′)bottom
),

which denote a pair of points initially as close as possible
but on opposite hemispheres, and which therefore get em-
bedded into different planes. The distortion in the case of
(pN , pS) is:

Dist =
2
2

N1/4

= N1/4. (7)

While the distortion at (p(θ,φ)top
, p(θ′,φ′)bottom

) is

Dist =

2
N1/4

O( 1√
N

)
= O(N1/4), (8)

establishing the lemma. �

Lemma 4 Any set of N points on the surface of a sphere
can be embedded into four planes selected by the problem
solver with constant distortion.

The proof of this lemma proceeds by projecting the N
points on the sphere outward onto the regular tetrahedron
that has the given sphere as its inscribed sphere. One then
verifies that the Euclidean distance between two projected
points is both bounded above and below by a constant fac-
tor times the Euclidean distance determined by the original
points. The proof, the details of which we omit, is similar
in spirit, though a bit more cumbersome than the proof of
Lemma 2.

5 Embedding N Points on a Line and One Point
off the Line onto a Line or N Points on a Plane
and One Point off the Plane onto a Plane

Lemma 5 Consider a collection of an odd number, N, of
points on a line, each point one unit from the next, together
with one additional point at height

√
N above the center

point of the points on the line. Then any embedding of
these points into a line has distortion Ω(

√
N)

Proof (sketch). Label the points consecutively along the
line by P = {p1, ..., pN}, and refer to the point above the
line at distance

√
N by q. Further, denote the central point

among the points in P, p N+1
2

, by pcent.
We prove the lemma by contradiction. Suppose we have

a non-contracting embedding Π of P ∪ {q} into a line,
which has distortion o(

√
N). Consider first that some of

the points in P are mapped under Π to one side of Π(q) and
some to the other. It must then be the case that some pair
of adjacent points pi and pi+1 are mapped by Π to oppo-
site sides of Π(q). But if pi is mapped to one side of Π(q)
and pi+1 is mapped to the other, then, by non-contraction,
the distance between Π(q) and each of its closest neigh-
bors is at least

√
N and thus d(Π(pi),Π(pi+1))≥ 2

√
N so

the distortion in Π is at least 2
√

N. Thus, for Π to have
distortion o(

√
N) all points Π(pi) must be to one side of

Π(q).
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Since all points Π(pi) are to one side of Π(q) there is
a closest neighbor Π(p∗) to Π(q). Divide the points of
P, as evenly as possible into four sequential quarters. p∗

either comes from one of the outer quarters of {p1, ..., pN}
or from one of the two inner quarters. Label these quarters
P1/4,P2/4,P3/4 and P4/4, respectively.

On the one hand, if p∗ ∈ P1/4∪P4/4, a calculation shows

that the distortion in the mapping of q, pcent is at least
√

N
2 .

On the other hand, if p∗ ∈ P2/4 ∪ P3/4, an analogous
computation shows that there must be a pair of consecu-
tive points pi, pi+1 whose distortion is at least N/2, estab-
lishing the lemma.

Lemma 6 Consider a set of N points inside a disk of ra-
dius
√

N with largest empty subdisk of size O(1), together
with one additional point at height N1/4 above the center
point of the points in the disk. Then any embedding of
these points into the plane has distortion Ω(N1/4).

Proof (sketch). Suppose we have a non-expanding em-
bedding Π of the N points, P, in the disk, together with
the point above the center of the disk, which we again call
q, into the plane. Extend Π to be a non-expanding em-
bedding of all of R3 into R2 by Kirszbraun’s Theorem.
Since Π is Lipschitz (with Lipschitz constant at most 1),
Π is continuous. Let pcent be the centerpoint in P directly
below q. Consider the image under Π of the vertical di-
ameter of the disk Π(diam). This image is a continuous
curve through Π(pcent). Color the top half of Π(diam)
red and the bottom half green. Now consider the image
Π(diam) as the diameter turns through 180 degrees. Con-
tinue to color Π(top-half) red and Π(bottom-half) green.
A straight forward argument shows that either the end-
points of the red and green halves of these curves col-
lectively form a closed curve with Π(pcent) in its inte-
rior or at some point in the turning of the diameter ei-
ther the end point of the green curve intersects the red
curve or the end point of the red curve intersects the green
curve. Suppose one of these latter two cases holds, say it
is that the end point of the red curve intersects the green
curve. If pre is the pre-image of the end point of the red
curve at this juncture, then there is a point pg which is
the pre-image of a point along the green curve such that
d(Π(pre),Π(pg)) ≈ 1 while the points pre , pg lie along a
diameter and are at least

√
N apart in the pre-image. Thus,

in this case, Dist(Π) = Ω(
√

N).
On the other hand, if Π(pcent) is in the interior of the im-

age of the disk then consider Π(q), the image of the point
above pcent. If Π(q) lies inside the image of the boundary
of the disk, then since Π is non-expanding there is a point
of the disk that is approximately distance 1 or less from
Π(q). Since the point started at least at distance N1/4, the
incurred distortion is Ω(N1/4). On the other hand, if the
boundary of the disk lies between Π(q) and Π(pcent) then
we again find a distortion of Ω(N1/4).

Future Work

These results are just the first of a hoped for more detailed
characterization of how one incurs distortion on a point-
by-point basis embedding from one Euclidean space into
another of smaller dimension. In general if N points in Rk

can incur some maximum distortion when the points are
embedded in Rk′ , for k′ < k, how much distortion can be
incurred from a point set of the same size N, but where all
but M of the N points lie in some k′-flat, and M = o(N)?

Many questions also remain regarding the low distor-
tion embedding of points on an N-sphere into hyperplanes.
For the 2-sphere we have results for one, two and four
planes selected by the problem solver, but how about three
planes? Can one achieve lesser order of magnitude dis-
tortion using three planes than two? We currently do not
know how to do this and speculate that it is not possible.
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A New Modular Parametric Search Framework

Christian Knauer∗ David Kübel† Fabian Stehn∗

Abstract

Parametric search is a technique to develop efficient
deterministic algorithms for optimization problems.
The strategy requires an algorithm for the decision
variant of the problem at hand. Given this decision
algorithm, the strategy can be seen as a black box
that does not really exploit characteristics of the un-
derlying problem: It computes an optimal solution by
keeping track of the values that appear in comparisons
of the decision algorithm.

In this abstract, we present a new parametric search
framework written in Java. We show how parametric
search based algorithms can be implemented and ex-
plored with the framework. It allows to quickly spec-
ify or change crucial functionalities which influence
the specific behaviour (and performance) of the re-
sulting optimization algorithm. We focus on a trans-
parent, simple-to-use, and modular design, and dis-
cuss the implementation of a specific algorithm that
computes an optimal shortcut of a polygonal curve.

1 Introduction

Parametric search is a powerful and fairly general
method to compute the (exact) optimal solution λopt
of an optimization problem P in one variable. Let P
be a minimization problem whose objective function
is monotone, that is, for the decision variant decP of
P there is a value λopt such that decP (λ) = true⇔
λ ≥ λopt. In oder to apply Megiddo’s [6] parametric
search technique, two ingredients are required:

1. A sequential algorithm As that solves decP for
any value λ in Ts time, and

2. a parallel algorithm Ap using k processes, solving
decP for an unknown value of λopt in Tp time.

Ap is an algorithm that uses k (independent) pro-
cesses whose control-flow depends on the outcome of
comparisons. Each comparison can be resolved by re-
lating a value that is derived from the input to the
(unknown) value of λopt. The basic idea is to fol-
low the control-flow of each process until it requires
the solution to such a comparison and to collect these
comparisons in batches (these collected values are usu-
ally called critical values). A batch hence consists of k

∗Institut für Informatik, Universität Bayreuth,
{christian.knauer, fabian.stehn}@uni-bayreuth.de,
†Institut für Informatik, Abteilung I, Universität Bonn,
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values, representing k comparisons to λopt. Exploiting
the monotonicity of P , all comparisons of a batch can
be resolved by O (log k) calls to As. After resolving
a batch of critical values, each process can continue
until a new batch of k comparisons is collected and
resolved in the same way.

Throughout this process, an interval I = (λ−,λ+] is
maintained, where λ− is the largest value encountered
so far such that decP (λ−) = false and λ+ is the
smallest value encountered so far with decP (λ+) =
true; this implies that λopt ∈ I. Through the course
of this process, at least one instance of the parallel
algorithm Ap has to carry out a comparison with the
actual optimal value λopt, which implies that λopt will
appear as a critical value. Since P is a minimization
problem, we have that λopt = λ+ after all processes of
Ap terminated. This gives a combined minimization
algorithm C that computes λopt in O(Tp·(k+Ts·log k))
deterministic time; see [6] for details.

1.1 Applications

The technique has been applied to a wide range of
problems. In the field of computational geometry,
e.g., the technique has been used to compute the
Fréchet Distance [2] between two polygonal curves.
Recently, Große et al. [4] showed how to efficiently
compute a diameter-optimal shortcut between ver-
tices of a polygonal curve. Agarwal et al. [1] present
several applications in context of geometric optimiza-
tion.

1.2 Related work

The first implementations of parametric search algo-
rithms are due to Toledo [9] (solving extremal polygon
placement problems) and Schwerdt et al. [8] (comput-
ing the diameter of moving points) roughly twenty
years ago. Van Oostrum and Veltkamp [7] were the
first to provide a general framework, written in C++.
Their framework includes a detailed documentation as
well as two reference implementations to compute the
Median of Lines [6] and the Fréchet distance between
two polygonal curves [2]. They experimented with dif-
ferent sorting algorithms and showed that Quicksort
can replace a parallel sorting network in practice.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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1.3 Contribution

In Chapter 2, we present a new general parametric
search framework. Two (geometric) algorithms that
have been realized in this framework are discussed in
Chapter 3.

The framework can be used as a black box to imple-
ment efficient optimization algorithms (based on de-
cision algorithms) with minimal adaptation effort for
the task at hand. It is designed to provide the capabil-
ity to easily exchange not only the sorting algorithm
(a central component of the parametric search tech-
nique) but also the strategy that is used to solve the
comparisons of a batch, or the scheduler that man-
ages the (simulated) parallel execution of the individ-
ual processes. Standard performance enhancements,
such as “Cole’s trick” [3] are built in along with other
optimizations. Several parameters can be used to fine-
tune the performance of the final algorithm.

From this point of view, our approach is twofold:
On the one hand, the framework can be used as
a black box that merely requires to provide an im-
plementation of the corresponding decision algorithm
and parts of Ap that determine and organize critical
values. On the other hand, it allows a deeper look
“under the hood” of the general mechanism of para-
metric search in order to study, analyse and compare
an algorithm and to gain deeper insight into the orig-
inal problem.

In Chapter 3, we discuss how a recent algorithm
for computing shortcuts has been realized with the
framework, and we show how the framework allows to
study the effect of optimization strategies on the ac-
tual computation times. Numerical effects which may
arise in practical applications are discussed briefly.

2 The Framework

In this section, we describe the general structure of
our framework and discuss where and why it differs
from the reference framework by van Oostrum et al.
[7]. To keep the implementation effort as small as pos-
sible, van Oostrum et al. identify essential parts of the
technique so that certain components can be reused
in different implementations. Their framework pro-
vides Quicksort and Bitonicsort together with an au-
tomated organization of the comparisons in a batch.
The framework encapsulates and hides the scheduling
of comparisons and the management of critical val-
ues. In case that Ap is a parallel sorting algorithm,
it is certainly a benefit to hide all this complexity
which reduces the implementation effort considerably.
If, however, Ap is not a sorting algorithm, the de-
veloper has to use “lower-level facilities for batching
comparisons and suspending/resuming computation”
instead which enforces the use of a rigid mechanism
specified by their framework. This has certain draw-

backs: It forces the developer to scatter code to sched-
uled methods which makes the parallel algorithm even
harder to read, understand or debug. Realizing com-
plex parallel algorithms is considerably more involved
with this design. Moreover, the developer has no
chance to control or influence the parallel steps and
the evaluation of batches separately.

With our framework we offer the chance to hook
into the scheduling or the handling of critical val-
ues, if desired or necessary. Both frameworks share
(conceptually) similar components, e.g., a scheduler,
processes or a decision algorithm. However, the de-
sign of our framework meets additional requirements.
The most striking difference is that we separate the
scheduling component from the management of crit-
ical values. We provide ready-to-use functionalities
to reduce the implementation effort; c.f. Section 2.2.
Among these are different strategies to resolve criti-
cal values of a batch which can be easily exchanged to
study their impact on the overall performance. This
provides an insight into how critical values are pro-
cessed in a certain application and may reveal char-
acteristics of the underlying problem.

The core components of the framework have already
been released online [10]. The code of the whole para-
metric search framework together with the demo ap-
plications will be released as a part of a larger frame-
work within this year.

2.1 Design Choices

Our framework is written in Java and consists of four
components. A single responsibility is assigned to
each component in order to (re-)use or interchange
them independently. In the following, we briefly de-
scribe these components and their role within the
framework.

One component is the serial decision algorithm As

which has to be provided by the developer. The im-
plementation has to support a method to decide decP

for any given value λ ≥ 0. The outcome of a call to
As is a boolean value; either true (if λ ≥ λopt) or
false (if λ < λopt).

The remaining three components constitute the
parallel algorithm Ap. We aim to restrict the ac-
cess to the decision algorithm during the execution
of Ap. Whenever decP needs to be solved for a con-
crete value λ, the component Oracle has to be asked:
In contrast to As, the oracle may also return the value
unknown, implying that λ ∈ I, which forces the call-
ing process to wait. This allows us to delay a single
evaluation of the decision problem and to batch sev-
eral critical values. Of course, at some points during
the execution of Ap it will be necessary to evaluate
the decision problem for (some of) the batched values,
e.g., when Ap has to continue with its next parallel
step. At this point, the oracle will apply a strategy

164



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

to resolve the comparisons of the current batch.

The flow of control of the parallel algorithm
branches at certain points. This is realized by in-
stances of Process, which allows for pausing and re-
suming, depending on the outcome to the calls to the
oracle.

The component that manages the (virtual) paral-
lel execution of Ap is the Scheduler: It assures that
the oracle and all processes are triggered when nec-
essary. After a certain number of parallel steps, all
processes will terminate; as soon as the last processes
becomes inactive, the scheduler and with it the entire
algorithm will terminate.

2.2 Functionality and Oracle Strategies

With the framework we provide a parallel sorting al-
gorithm based on a bitonic sorting network. It can be
used to implement sorting based parametric search
algorithms. The Scheduler is realized by a simple
serial round-robin strategy. To experiment with dif-
ferent strategies of the Oracle component, we imple-
mented the following strategies:

1. Brute force. This strategy does not store λ and
solves the decision problem, at once. We do not
maintain I. Consequently every request causes
an evaluation of As.

2. Monotonicity. This strategy only exploits the
monotonicity of decP : The decision problem is
only evaluated if λ ∈ I. Otherwise, the outcome
is determined according to the position of λ ac-
cording to I in constant time.

3. Parametric Search. If λ lies in I, we store it in
a list and return unknown. When the oracle is
triggered via the method resolveCollectedValues,
all stored values are resolved in a binary search
fashion as suggested by Megiddo [6].

4. Cole (unweighted). In contrast to the previous
strategy, the oracle evaluates decP only for the
median the of stored values. Afterwards, half
of the critical values can be resolved in constant
time. The corresponding processes are called to
produce additional critical values.

5. Cole (weighted). To guarantee that no processes
has to wait for a result for too long, a critical
value is stored together with a certain weight.
In contrast to the previous strategy, the decision
problem is now evaluated for the weighted half of
the stored values and not just for the median.

Depending on the specific application at hand, other
strategies to handle and resolve batches can be real-
ized or combined with these strategies. As a measure-
ment for the performance we suggest to look at the
total number of evaluations of As.

3 Computing Optimal Shortcuts

In this section we briefly discuss two proof-of-concept
implementations. Due to space limitations, we merely
state the first implementation, the computation of the
Fréchet Distance between two polygonal curves (c.f.
[2]). For this implementation, Bitonicsort has been
chosen to realize the parallel part of the algorithm;
the corresponding decision problem was solved in a
standard fashion via the use of free space diagrams.

The initial motivation that led to the design of
this new framework is the problem of computing a
diameter-optimal shortcut of a polygonal curve: A
shortcut (a non-edge between two vertices of the path)
is considered diameter-optimal if no other shortcut
added to the curve results in a graph with smaller di-
ameter. Große et al. [4] present a parametric search
algorithm for this problem. In contrast to the com-
putation of the Fréchet distance, their approach does
not involve a sorting algorithm for Ap.

Some Details

Let λopt denote the diameter induced by an optimal
shortcut. The main idea of the concrete decision al-
gorithm As is to check for every possible start vertex
s of the shortcut whether there exists a feasible end
vertex e. The vertex range of candidates for e is effi-
ciently restricted through binary searches. As returns
true exactly if a feasible pair (s,e) was found.

Große et al. suggest to implement the decision algo-
rithm in a generic and parallel fashion to get Ap. This
implies that each comparison in a binary search has
to be deduced from the result of the decision problem
at a critical value. For every candidate start vertex
s, the search for a feasible e is independent and can
be assigned to a separate parallel process. Conse-
quently, Cole’s weighting scheme [3] can be applied to
reduce the theoretical worst-case running time by a
log-factor.

We generated 1000 polygonal curves of 210 vertices
each, where the coordinates of the vertices were cho-
sen uniformly at random within a square. For each
curve, we computed the diameter-optimal shortcut us-
ing each of the five oracle strategies discussed above.
As stated earlier, the number of calls to As is used
to measure the performance of the individual strate-
gies. Table 1 lists the outcome of the experiments,
ordered by oracle strategy as discussed in Section 2.2.
As expected, all strategies but the first (brute force),
require a small number of evaluations of As. With
regard to the average number of calls, Strategy 2 per-
forms best by only exploiting the monotonicity of the
decision problem. As the last row of Table 1 reveals,
Strategy 5, known as “Cole’s trick” (which reduces
the theoretical worst-case runtime by a log-factor), re-
quires more calls to the decision problem than Strate-
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Strategy of the oracle
1 2 3 4 5

µ ∼ 13,872 19.43 19.66 20.32 20.05
σ ∼ 658 3.88 2.28 1.94 2.96

max 18,538 36 26 25 59
min 12,965 12 12 12 12

Table 1: Experimental results by oracle strategy. µ:
average number of calls to As; σ standard deviation;
max (min): maximum (minimum) number of calls
to As.

gies 2− 4 for some instances.

The fact that Strategy 2 performs well is probably
due to the order in which critical values are computed
by Ap. All distances from the first vertex to other
vertices along the curve are critical values of the first
batch (see [4] for details). Consequently, the interval
I is already narrowed down right after the first batch
has been resolved. The higher number of evaluations
for Cole’s weighing scheme in some instances might be
due to the fact that this strategy calls As for values
of λ that are far from λopt, as critical values of previ-
ous parallel steps are favoured over critical values of
processes that have proceeded further.

It turns out that for the problem of computing an
optimal shortcut, the critical values of the first batch
are the key to achieve a small overall number of eval-
uations. The order in which critical values are com-
puted and resolved plays an important role for the
actual performance of a parametric search algorithm.

3.1 Numerical Issues

As for the built-in components of our framework,
critical values are currently represented as double-
precision numbers. The following problem can arise
when representing critical values as finite-precision
floats: The floating point representation of the op-
timal solution λopt is slightly smaller than the ac-
tual value of λopt. As a consequence, As rejects this
value and it will be stored as the lower bound of
I = (λ−,λ+]. If the algorithm outputs λ+ as sug-
gested above, the error can be huge. To address this
problem, we can perform a final call to As with the
center of I. If the center is a valid solution, we con-
clude that λ− is closer to λopt than λ+.

We are currently working on a solution to integrate
and provide types that allow comparisons with arbi-
trary precision. Note that the general framework does
not depend on specific numerical data-types. The
specification and treatment of critical values has to be
handled by the developer in a concrete application.

4 Conclusion & future work

With the presented framework it is possible to take
a closer look into the details and the specific be-
haviour of parametric search algorithms. Different
oracle strategies allow for quantified experiments un-
der different optimization variants with no additional
implementation effort. The outcome of these exper-
iments might lead to a deeper understanding of the
structure of the underlying problem.

Future versions of the framework might include the
option to trace and visualize critical values through-
out the parallel steps. In case of the shortcut problem,
this would help to study the distribution of critical
values around λopt and to understand under which
conditions which parallel step calls As with the opti-
mal value.
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Detecting affine equivalences of planar rational curves

Michael Hauer and Bert Jüttler∗

Abstract

We derive a system of polynomial equations to de-
cide whether two rational parametric curves in the
plane are related by an affine transformation and to
detect all such affine equivalences. In order to do so,
we use homogenization in both the parameter domain
and the Euclidean plane. Furthermore, employing
barycentric coordinates leads to a simple method for
detecting affine equivalences, as these coordinates are
invariant under affine transformations. In addition
we interpret the result by relating the monomial co-
efficients to Bézier control points. Finally we provide
numerical examples.

1 Introduction

Detecting symmetries is an essential problem in Pat-
tern Recognition, Computer Graphics and Computer
Vision. First approaches concentrated on point sets
as input data. In 2004, Braß and Knauer [5] proposed
to apply a point-based method to control polygons of
Bézier curves and surfaces. For matching planar curve
segments in B-spline form, a method based on affinely
invariant moments has been described in [6]. Sánchez-
Reyes [8] recently developed a method for symmetry
detection of curves given in Bernstein-Bézier represen-
tation. Lebmeir and Richter-Gebert [7] investigated
symmetries of algebraic curves given in implicit form.
During the last two years, Alcázar et al. [1, 2, 3, 4]
published a series of papers dealing with the problem
of symmetry detection for parametric rational curves.
They use the fact that the symmetry of a curve in
proper parameterization can be related to a ratio-
nal linear transformation in the parameter domain,
see [9].

We consider properly parameterized rational curves
and investigate the more general concept of affine
equivalences. Symmetry detection can then be seen
as a special case.

2 Detecting equivalences

Before presenting our method, we recall some geomet-
ric tools and clarify our notation.

∗Institute of Applied Geometry, Johannes Kepler University
of Linz, michael.hauer@jku.at, bert.juettler@jku.at

2.1 Preliminaries

We consider curves in the projectively closed Eu-
clidean plane Ē2, whose points are given by ho-
mogeneous coordinate vectors x = (x0, x1, x2)T ∈
R3\{(0, 0, 0)}. If there exists a µ 6= 0, such that
x = µy, x and y represent the same point in Ē2.
We denote this by x ' y.

Three non-collinear base points v0, v1 and v2, none
of which is a point at infinity, define a barycentric co-
ordinate system, such that any finite point x possesses
unique barycentric coordinates λi(x), i = 0, . . . , 2,
with respect to the base points. More precisely, we
have

1

x0
x =

2∑

i=0

λi(x)
1

vi,0
vi.

The barycentric coordinates can be computed using
homogeneous coordinates

λ0(x; v0,v1,v2) = Λ(x; v0,v1,v2),
λ1(x; v0,v1,v2) = Λ(x; v1,v2,v0),
λ2(x; v0,v1,v2) = Λ(x; v2,v0,v1)

where

Λ(x; a,b, c) =
a0 det(x,b, c)

x0 det(a,b, c)
. (1)

Throughout the paper we consider two parametric
rational curves C (and C′, respectively) ⊂ Ē2, which
are considered as point sets. Both curves are given by
proper parameterizations1

p : P 1(R)→ C ⊂ Ē2,
t 7→ p(t) = (p0(t0, t1), p1(t0, t1), p2(t0, t1)) .

The parameter t = (t0, t1) is a point on the projective
line P 1(R).

The homogeneous coordinates of the curves are ho-
mogeneous polynomials of degree n,

pj(t) =
n∑

i=0

cj,it
n−i
0 ti1

with coefficient vectors

ci = (c0,i, c1,i, c2,i)
T .

Polynomials of degree n given in standard (i.e., non-
homogeneous) form are homogenized by replacing ti

with tn−i0 ti1.

1If improper parameterizations are given, one may obtain
proper ones by applying a suitable reparameterization, see [9].

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Furthermore we assume that both curves are in re-
duced form, i.e.

gcd(p0(t), p1(t), p2(t)) = gcd(p′0(t), p′1(t), p′2(t)) = 1

and of common degree n ≥ 2. Affine transformation
do not change the degree of a curve.

In particular, this implies that both curves possess
the same degree

max(degti(p0(t)),degti(p1(t)),degti(p2(t))) = n,

max(degti(p
′
0(t)),degti(p

′
1(t)),degti(p

′
2(t))) = n,

with respect to ti, i = 0, 1. Note that n ≥ 2 exludes
lines, since we consider proper parameterizations only.

Recall that using homogeneous coordinates allows
to represent any affine transformation by a matrix
multiplication

x 7→Mx, M =

(
1 0
~b A

)
,

where A is a 2 × 2 matrix and ~b ∈ R2. Any reg-
ular affine transformation is represented by a non-
singular matrix M . The class of affine transforma-
tions includes translations, rotations, uniform and
non-uniform scalings, reflections and shears.

Definition 1 Two curves C and C′ are said to be
affinely equivalent if there exists a regular affine trans-
formation matrix M such that C′ = MC. Further-
more, C is said to possess an affine symmetry if there
exists a regular affine transformation matrix M , dif-
ferent from the identity, such that C = MC.

Due to the group structure of regular affine map-
pings, affine equivalences define an equivalence rela-
tion. If the matrix A is orthogonal, i.e. ATA = I,
then affinely equivalent curves are said to be congru-
ent and an affine symmetry is simply called a sym-
metry. If A is a multiple of an orthogonal matrix,
ATA = λI with λ ∈ R, then the affinely equivalent
curves are said to be similar.

2.2 Coefficient-based detection

Lemma 1 Two rational parameterizations p(t) and
p′(t) are equivalent, i.e. p(t) ' p′(t) holds for all t ∈
P 1(R), if and only if there exists a non-zero constant
µ such that ci = µc′i, i = 0, . . . , n.

Proof. The equivalence of the two curves implies
that there exists a rational function

µ(t) =
µ1(t)

µ0(t)
=
p′0(t)

p0(t)
=
p′1(t)

p1(t)
=
p′2(t)

p2(t)

where µ0 are µ1 are relatively prime polynomials, such
that p(t) = µ(t)p′(t). Consequently, the two rational
curves satisfy

µ0(t)p(t) = µ1(t)p′(t).

This function is indeed a constant since

µ0| gcd(p′0, p
′
1, p
′
2)︸ ︷︷ ︸

=1

and µ1| gcd(p0, p1, p2)︸ ︷︷ ︸
=1

.

�

Recall that any two proper parameterizations of a
rational curve are related by a linear rational repa-
rameterization, which is simply a regular projective
transformation of the real projective line

r(t) =

(
α00 α01

α10 α11

)

︸ ︷︷ ︸
=α

t =

(
α00t0 + α01t1
α10t0 + α11t1

)

described by a regular matrix α. We investigate the
transformation of the coefficients which is caused by
such a reparameterization.

Lemma 2 The reparameterized curve p̂ = p ◦ r,

p(r(t)) = p̂(t) =
n∑

j=0

ĉjt
n−j
0 tj1

has the coefficients

ĉj(α) =

n∑

i=0

ci

j∑

`=0

(
n− i
`

)(
i

j − `

)
αn−i−`
00 α`

01α
i−j+`
10 αj−`

11

for j = 0, . . . , n.

Proof. This result is confirmed by a simple compu-
tation and by comparing the coefficients. �

We identify affine equivalences by analyzing
whether the coefficients are related by an affine trans-
formation.

Proposition 3 Let C and C′ be rational planar
curves with parameterizations p(t) and p′(t) satis-
fying our assumptions. The two curves are affinely
equivalent if and only if there exists a constant µ, an
affine transformation matrix M and a regular projec-
tive transformation α, such that the control points of
both curves satisfy

Mc′j = µ ĉj(α), j = 0, . . . , n. (2)

Proof. On the one hand, the conditions (2) imply
that the two curves are affinely equivalent. On the
other hand, we consider two affinely invariant curves
C′ and C. There exists an affine transformation M
such that

MC′ = C.
We define z(t) = Mp′(t). Consequently z(t) and
p(t) are two proper parameterizations of the same
curve C. According to Lemma 4.17 of [9] there is a
linear rational reparameterization r(t) – and hence an
associated projective transformation α – such that

z(t) ' p(r(t)).
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Thus we obtain that

n∑
i=0

Mc′it
n−i
0 ti1 = Mp′(t) = z(t) ' p(r(t))

= p̂(t) =
n∑
i=0

ĉi(α)tn−i0 ti1.

Using Lemma 1 confirms (2). �

2.3 Barycentric coordinates

The existence of the affine transformation matrix M
can be characterized with the help of barycentric co-
ordinates.

Corollary 4 Let C and C′ be two rational planar
curves as in Proposition 3. We assume that

(i) all points c′i are finite points (c′i,0 6= 0) and

(ii) the first three points c′0, c′1 and c′2 are non-
collinear.

The two curves C and C′ are affinely equivalent if and
only if there exist a regular projective transformation
α and a constant µ such that the equations

c′j,0 = µ ĉj,0(α), j = 0, . . . , n (3)

and

λi(c
′
j ; c
′
0, c
′
1, c
′
2) = λi(ĉj(α); ĉ0(α), ĉ1(α), ĉ2(α)),

i = 0, . . . , 2, j = 3, . . . , n.
(4)

are satisfied.

For any solution of the system (3) and (4), we ob-
tain the corresponding affine transformation by solv-
ing the linear system of equations in six unknowns

Mc′i = µĉi for i = 0, . . . , 2.

In order to find Euclidean congruences and Euclidean
symmetries (resp. similarities) we have to check in a
postprocessing step whether the submatrix A is or-
thogonal (resp. a multiple of an orthogonal matrix).

Clearly, it is also possible to consider other triplets
of points in (ii) and (4).

2.4 The case of Bézier control points

Rational Bézier curves of degree n

p(u) =

n∑

i=0

Bni (u)bi

generally possess the properties (proper parameteriza-
tion, reduced form, common denominator) which are
assumed by our method. These curves can be homog-
enized by simply replacing the Bernstein polynomials

Bni (u) by
(
n
i

)
tn−i0 ti1. This is equivalent to the stan-

dard homogenization u = u1

u0
and a multiplication by

un0 , followed by the projective transformation

(
t0
t1

)
=

(
1 −1
0 1

)(
u0
u1

)
=

(
u0 − u1
u1

)
.

of the parameter domain. That means that the con-
trol points bi of the Bézier curves are related to the
monomial coefficients after this transformation via

ci =

(
n

i

)
bi.

3 Implementation and Examples

If the two conditions (i) or (ii) are not all satis-
fied then we apply an arbitrary projective transfor-
mation α′ to the parameterization p′ of the second
curve. Note that the first condition is always violated
for polynomial curves, hence a reparameterization is
needed in this situation. The reparameterized curve
p̂′ = p′ ◦r′, where r′ is defined by α′, satisfies all con-
ditions in general and its control points are obtained
from Lemma 2.

From equations (3) and (4) we obtain a system of
polynomial equations in α and µ by using (1). With-
out loss of generality we may apply the normalization
|µ| = 1 and arrive at the equations

c′j,0 = ± ĉj,0(α), j = 0, . . . , n

and

λi(c
′
j ; c
′
0, c
′
1, c
′
2) = λi(ĉj(α); ĉ0(α), ĉ1(α), ĉ2(α)),

i = 0, . . . , 2, j = 3, . . . , n.

These form a system in four unknowns α consisting
of 3n− 3 equations, since we may omit the equations
obtained for i = 2 as the barycentric coordinates sum
to 1.

We performed the computations using Mathemat-
ica Version 10, where we used the built-in functions
Reduce[] and NSolve[] to solve the system by symbolic
and numeric computations, respectively. For every
example we considered affine symmetries, and affine
equivalences with (p′) and without (p′′) reparameter-
ization. More precisely, we considered a master curve
and two curves derived from it by applying affine
transformations and parameter transformations.

The first example is the lemniscate (Fig. 1), which
is a degree 4 curve given by

t 7→




1 + 4t+ 12t2 + 16t3 + 8t4

1 + 4t+ 6t2 + 4t3

2t+ 6t2 + 4t3


 .
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# of p(t) p(t) and p′(t) p(t) and p′′(t)
example deg. equiv. NSolve Reduce NSolve Reduce NSolve Reduce

lemniscate 4 4 0.33 0.25 0.33 0.23 0.41 0.45

epitrochoid 4 2 0.14 0.3 0.13 0.3 0.14 0.34

4-leaf rose 6 8 2.65 2.53 2.68 1.97 2.34 2.45

offset of a
cardioid

8 2 1.03 20.04 1.03 19.91 1.06 31.76

Table 1: Computation times (times in seconds)

Figure 1: Several lemniscate like curves

As a second example we investigate the epitrochoid
(see Fig. 2), given by

t 7→




7 + 28t+ 56t2 + 56t3 + 28t4

1 + 4t+ 24t2 + 40t3 + 12t4

4t+ 12t2 − 8t3 − 16t4


 .

Again we applied reparameterizations and affine map-
pings (not shown), similar to the previous example.

Figure 2: Epitrochoid, 4-leaf rose and offset of a car-
dioid.

The third example, the 4-leaf rose (see again Fig. 2),
is given by the parameterization

t 7→




11 + 6t+ 18t2 + 32t3 + 36t4 + 24t5 + 8t6

2t+ 10t2 + 8t3 − 16t4 − 24t5 − 8t6

1 + 6t+ 8t2 − 8t3 − 20t4 − 8t5




of degree 6. Finally we apply our algorithm to the
offset of a cardioid (see again Fig. 2),

t 7→
(

15(6561 + 2916t2 + 486t4 + 36t6 + t8)
−39366 + 61236t2 − 31104t3 + 3456t5 − 756t6 + 6t8

−18t(4374 − 1296t− 1134t2 + 864t3 − 126t4 − 16t5 + 6t6)

)

which is a rational curve of degree 8.
Table 1 presents the computation times (on a stan-

dard PC) for solving the system (3) and (4) in these
examples.

4 Conclusion

We presented a method to detect affine equivalences
of planar rational curves. For moderate degrees of the
input curve, the corresponding polynomial system can
be solved within seconds using standard computer al-
gebra tools. To the best of our knowledge, this is the
first work on detecting affine equivalences and affine
symmetries of rational curves, and it also encompasses
the computation of symmetries or similarities, which
was studied by several authors [1, 2, 3, 4, 5, 7, 8],
as special cases. Future work will be devoted to the
generalization to higher dimensions and to the detec-
tion of approximate affine equivalences via numerical
methods.
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Robustness of Zero Sets: Implementation

Peter Franek∗, Marek Krčál†, Hubert Wagner‡

Abstract

Robustness of zero of a continuous map f : X → Rn
is the maximal r > 0 such that each g : X → Rn with
‖f − g‖∞ ≤ r has a zero. We develop and implement
an efficient algorithm approximating the robustness
of zero and present computational experiments.

The main ingredient is an algorithm for deciding
the topological extension problem based on comput-
ing cohomological obstructions to extendability and
their robustness.

1 Introduction

Statement of the result. We describe an algorithm
for detecting zeros of vector valued functions f : X →
Rn on a compact space X and for approximating the
robustness of zero, that is, a maximal number r > 0
such that every continuous g : X → Rn satisfying
‖g − f‖ ≤ r has a zero. By ‖f‖ we denote the max
norm of f , that is, maxx∈X |f(x)| where | · | is a fixed
`p norm in Rn. Nontrivial cases happen if dimX ≥ n,
as otherwise arbitrarily small perturbations of f avoid
zero.

For computer representation we assume that the
space X is a simplicial complex. Then the map
f : X → Rn is specified by its values on the vertices
and by a value α > 0 such that |f(x)− f(y)| ≤ α for
arbitrary points x and y of any simplex of X. In an
alternative setting we might assume that the function
f is simplexwise linear,1 but we preferred to empha-
size that the precise knowledge of f is not needed (at
the cost of slightly worse approximation guarantees).

The main motivation for the theoretical part of this
paper was to give a rigorous analysis of an implemen-
tation that is tailored for real instances. We perceive
the contribution of this paper as follows.

• Feasibility. Our algorithm is designed to avoid
any time-costly numerical computations. Unlike
the algorithm of [3], we need neither barycentric
subdivisions nor convex optimization.

∗IST Austria. Email: peter.franek@gmail.com This re-
search has been supported by Austrian Science Fund (FWF):
M 1980
†IST Austria. Email: marek.krcal@ist.ac.at
‡IST Austria. Email: hub.wag@gmail.com
1That is, on every simplex it linearly interpolates the values

on the vertices. Such functions defined on sufficiently fine sub-
division of X can approximate any continuous map X → Rn

arbitrarily well.

• Persistent cohomology computations over inte-
gers. As an auxiliary tool, we need to extract
certain information from a persistent module
H∗(X0;Z) → H∗(X1;Z) → . . . with integral co-
efficients. To that end, we adapted the Chen’s
and Kerber’s matrix reduction algorithm “with a
twist” [2].

• Implementation. Our implementation is available
online2 and several computational experiments
are presented in our preprint [4].

Methods and the outline of the algorithm. The
main tools come from the field of computational ho-
motopy theory. In [3] we showed that any function
f : X → Rn on a compact domain X, has an r-robust
zero if and only if the map

f |A(r) :A(r)→ Rn \ {0} where

A(r) := {x ∈ X : |f(x)| ≥ r} (1)

cannot be extended to a map X → Rn \ {0}. Af-
ter replacing f by the map x 7→ f(x)/|f(x)|, we can
equivalently replace Rn \{0} by Sn−1. This extension
problem is the core of our algorithm for approximat-
ing robustness, outlined as follows.

A. First, we discretize the continuous input, that
is, convert the spaces A(r) into simplicial com-
plexes Ar. Unlike in [3], we do not aim at hav-
ing homotopy equivalence A(r) ' Ar which re-
quires additional subdivisions and thus increases
the computing time heavily. For obtaining ap-
proximate results it is sufficient to have a rela-
tion of the form A(r − α) ⊇ Ar ⊇ A(r + α) for
some reasonably small α. Such a relation can
be achieved without introducing additional sub-
divisions while using the simplexwise Lipschitz
property of f .

We also identify some smallest value r0 such that
the restriction of f to Ar0 can be easily dis-
cretized. A simple combinatorial procedure finds
a simplicial map f ′ from Ar0 to the sphere such
that f ′ is homotopic to f as map from Ar0 to the
(n− 1)-sphere.

B. In the second step, we do pure computational
homotopy theory. Namely, for a previously ob-
tained sequence of simplicial complexes X ⊇

2www.cs.cas.cz/~franek/rob-sat

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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A0 ⊇ A1 ⊇ . . . ⊇ Ah = ∅ and a simplicial
sphere-valued map f ′ we ask for robustness of
non-extendability of f ′ defined as follows.

Definition 1 Let X ⊇ A0 ⊇ A1 ⊇ . . . be a fil-
tration and f ′ : A0 → Sn−1 a sphere-valued map
that cannot be extended to all of X. The robust-
ness of non-extendability of f ′ from (Ai)i≥0 to X
is the smallest index i such that f ′|Ai

cannot be
extended to the whole of X.

2 Discretizing the geometry of the zero sets of
perturbations

Definition 2 A continuous filtration of spaces is a
family (Ar)r∈R such that Ar ⊇ As whenever r ≤ s.

A continuous filtration (Ar)r∈R is called step-like
whenever there exists a sequence of numbers −∞ =:
r−1 < r0 ≤ r1 ≤ r2 ≤ . . . ≤ rk such that for any
r, s ∈ (ri, ri+1] holds Ar = As for all i.

Note that any such step-like continuous filtration
is determined by the sequence of reals (ri)i and the
filtration A0 ⊇ A1 ⊇ . . . ⊇ Ak where each Ai denotes
Ari .

Definition 3 Continuous filtrations (Ar)r and (Br)r
are called α-interleaved whenever Br+α ⊆ Ar and
Ar+α ⊆ Br for each r ∈ R.

Definition 4 Let f : X → Rn be a continuous map
on a simplicial complex X and let | · | be a norm on
Rn.

1. Then by Ar we denote the subcomplex of X
spanned by the vertices v of X with |f(v)| ≥ r.

2. By A(r) we denote the subspace of X defined by
A(r) = {x ∈ X : |f(x)| ≥ r}.

3. We say that f is simplexwise α-Lipschitz when-
ever |f(x) − f(y)| ≤ α for each pair of points
x, y ∈ ∆ of any simplex ∆ ∈ X.

Spaces Ar form a step-like filtration where the steps
occur for each r equal to |f(v)| for some vertex v of X.

We will represent the sphere Sn−1 via a simplicial
complex Σn−1, the boundary of the n-dimensional
cros-polytope. Denoting e1, . . . , en the canonical basis
vectors of Rn, simplices of Σn−1 are all those subsets
of {±ei | i = 1, . . . , n} that do not contain a pair of
antipodal vectors {ei,−ei}.

Theorem 1 Let f : X → Rn be a simplexwise α-
Lipschitz map for some constant α > 0. Then the
following holds:

1. The continuous filtrations (Ar)r∈R and A(r)r∈R
are α-interleaved.

2. For any `p norm once r > αn1/p/2, the mapping
of vertices

f ′ : V (Ar)→ V (Σn−1)

v 7→ sgn
(
f(v)i∗

)
ei∗

where i∗ = argmax
i=1,...,n

∣∣f(v)i
∣∣

(2)

defines a simplicial map f ′ : Ar → Σn−1 (that is,
it maps simplices to simplices).

Moreover, f ′ : Ar → Σn−1 ⊆ Rn \ {0} is homo-
topic to f |Ar : A→ Rn \ {0} once r > αn1/p.

The simplicial map f ′ : A → Σn−1 as above will be
called the simplicial approximation of f |A.

3 The algorithm using an oracle for robustness of
non-extendability.

Now it is convenient to state the algorithm for ap-
proximating robustness of zero, given an oracle for
computing or bounding from below the robustness of
non-extendability.

A. (a) Label the set of real values {|f(v)| : v ∈
V (X) such that |f(v)| ≥ αn1/p} by
{r0, r1, . . . , rh} for some integer h ≥ 0.

(b) For any simplex ∆ ∈ X compute its filtra-
tion value r(∆) by

r(∆) := min
v vertex of ∆

|f(v)|.

This yields a filtration A0 = Ar0 ⊇ . . . ⊇
Ah = Arh that together with the values
r0, . . . , rh determines the step-like continu-
ous filtration (Ar)r∈R from Definition 4.

(c) For vertices v of X with |f(v)| ≥ r0 compute
f ′(v) defined by (2).

B. Use oracle to compute or bound from below
the robustness i∗ of non-extendability of f ′ from
(Ai)i≥0 to X.

(a) Once i∗ ≥ j and j > 0, output “robustness
of zero is at least rj − α.”

(b) Once also i∗ ≤ j, output “robustness of zero
is at most rj + α.”

Using the fact that the nonextendability of (1) is
equivalent to the existence of an r-robust zero com-
bined with Theorem 1, we can easily prove that the
above algorithm outputs a correct statement.

4 Robustness of obstructions to extendability.

Here we review the basic facts from obstruction the-
ory. X(k) will always refer to the k-skeleton of X,
the sub-complex spanned by simplices of dimension
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≤ k. Any map f : A→ Sn−1 can be extended to A∪
X(n−1) → Sn−1 by the connectivity of the sphere. At
some point of our extension process we need to work
on the level of cocycles. Also our implementation
operates fully on the level of cochains and cocycles,
hence we stick to that point of view for most of the
exposition as well. Let z ∈ Zn−1(Σn−1,Z) be a fixed
representative of the generator of Hn−1(Σn−1;Z). We
will use the following facts:

Proposition 2 Let f : A→ Σn−1 be simplicial, X ⊇
A, and y := f ](z) ∈ Zn−1(A;Z). Then the following
holds:

1. Any map h : A ∪ X(n−1) → Σn−1 extendable to
X(n) such that h|A = f can be described up to
a homotopy stationary on A by a cocycle x ∈
Zn−1(X;Z) such that x|A = y. If n ≤ 2, then
any map A ∪X(n) → Σn−1 extends to all of X.

2. If n ≥ 3, for any x ∈ Zn−1(X;Z) such that x|A =
y we have that x ^n−3 x vanishes3 on A, that
is, it is element of Zn+1(X,A;Z2) (or element
of Z4(X,A;Z) for n = 3) and it is a relative
coboundary if and only if the corresponding map
h can be extended to a map X(n+1) → Σn−1.

We will use the notation Ω := {x ∈
Zn−1(X;Z) : x|A = y} further below. Test 1. above
(corresponding to the primary obstruction) directly
translates to an algorithm and the second one (the
secondary obstruction) does so as well once n > 3.
(We also explain what the notions of the primary and
secondary obstructions mean exactly below.)

1. The set Ω corresponds to solutions of a linear
equation over integers. To see that, let ȳ ∈
Cn−1(X;Z) be an arbitrary cochain such that
ȳ|A = y. We have that

Ω = {ȳ−c : c ∈ Cn−1(X,A;Z) such that δc = δȳ}.
(3)

Thus the extendability of f to X(n) → Σn−1 is
equivalent to solvability of the linear equation
δc = δȳ with the unknown c ∈ Cn−1(X,A;Z).

2. Once Ω is nonempty, we fix x ∈ Ω. From (3) it
follows that there is a bijection Zn−1(X,A;Z)→
Ω given by w 7→ x−w. Thus the extendability of
f to a map X(n+1) → Σn−1 is equivalent to the
existence of w ∈ Zn−1(X,A;Z) such that

[(x− w) ^n−3 (x− w)] =

= [x ^n−3 x]− [w ^n−3 w] =

= 0 ∈ Hn+1(X,A;Z2).

3By x ^n−3 x we denote a cocycle representant of the
Steenrod square Sq2[x].

We use that the map w 7→ w ^n−3 w induces
a homomorphism on the level of cohomology for
n > 3, therefore the question reduces to a system
of linear equations again. This formulation shows
that the coset

[x ^n−3 x] + Sq2
(
Hn−1(X,A;Z)

)
︸ ︷︷ ︸

{[w^n−3w] : w∈Zn−1(X,A;Z)}

ofHn+1(X,A;Z2)—called the secondary obstruc-
tion—captures the lack of extendability to the
(n + 1)st skeleton X(n+1). In the case n = 3
the extendability condition is [(x − w) ^ (x −
w)] = 0 ∈ H4(X,A;Z) for some w which is
computationally equivalent to solving systems
of quadratic Diophantine equations—an unde-
cidable problem [5]. In many instances, the
quadratic equations are simple if not trivial and
very simple heuristics suffice to solve them.

Robustness of the primary and secondary ob-
struction. In the persistent setting the input con-
tains, in addition to above, a sequence of spaces A0 =
A,A1, . . . , Ah and we want to compute a lower-bound
on the robustness of non-extendability—a value k
such that f |Ak

cannot be extended to X for as large
k as possible.

The key concept that allows an easy modification of
the obstruction tests into the persistent setting is the
functoriality of cohomology. For instance, the cochain
extension ȳ of f ](z) is an extension of f ]|Ai

(z) for each
Ai ⊆ A. The same holds for the cocycle extension x.

We state the algorithm Primary–Secondary
Persistence for lower-bounding the robustness of
non-extendability on a high-level fashion that empha-
sizes what the algorithm does rather that how it is
done. The low level implementation is explained in
the preprint [4].

0. Compute y := f ](z) ∈ Zn−1(A0;Z). Fix an arbi-
trary extension ȳ ∈ Cn−1(X;Z) of y.

1. Find the smallest j ≥ 0 such that there is c ∈
Cn−1(X,Aj ;Z) such that δc = δȳ. If n = 1, 2
output j. Otherwise let x := ȳ − c.

2. Find the smallest k ≥ j such that there is b ∈
Cn(X,Ak;Z2) and w ∈ Zn−1(X,Ak;Z) such that
δb+ w ^n−3 w = x ^n−3 x. Output k.

Step 0 amounts to using the definition of the in-
duced map in simplicial cohomology: namely, f ](z) is
defined to evaluate to 1 on the simplices [v1, . . . , vn]
such that [f(v1), . . . , f(vn)] = [e1, . . . , en] and to eval-
uate to 0 once {f(v1), . . . , f(vn)} 6= {e1, . . . , en}.

Step 1 and 2 are more involved and are reduced to
matrix reductions over integers similar to those used
in persistent homology computations over fields.
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5 Experimental results with random fields.

One of our goals is to analyze how much “typical” is a
situation in which the secondary obstruction or higher
obstructions play a role. The lowest-dimensional case
where nontrivial secondary obstruction can occur is
(m,n) = (4, 3). We generated random continuous
functions f : [−1, 1]4 → R3 taken from different prob-
ability distributions and looked for possible nontrivial
secondary obstructions. However, while the primary
obstruction typically occurs whenever f contains a
zero, we couldn’t detect a single instance of a ran-
domly generated function with nontrivial higher ob-
struction. Still, we don’t dare to conclude that higher
obstructions are untypical or unnatural, and think
that more research is needed.4 A short description
of our first experiments follows.

First we considered random functions generated
as Gaussian random fields. Each component fi(x)
of f(x) was generated so that for any finite set of
points {x1, . . . , xk} the random vector {fi(xj) : j =
1, . . . , k} has a multivariate normal distribution with
mean zero and the covariance between fi(x) and fi(y)
was taken to be

C(x, y) = exp(−|x− y|
2

2l2
)

for suitable l > 0. We generated function values using
l = 1/2, sampled from a grid g4 = 284 ⊆ [−1, 1]4 with
the three components of f generated independently.

For each trial, we first computed the minimal r0 for
which f ′|A�

r0
is simplicial.5 From a sample of 1218

functions, the average value of the minimal simpli-
cial r0 was 0.46. This value could be made smaller
by refining the grid: however, in all cases, there was
a nontrivial primary obstruction which persisted up
to r1 > r0 whose value was in average 1.06. In all
but three cases, there was no potential for a non-
trivial secondary obstruction, because the cohomol-
ogy group H4(X,A�

r1) was trivial. It was nontrivial
in three cases, giving some hope for a nontrivial sec-
ondary obstruction, but there was no secondary ob-
struction in these cases either.6

One possible explanation for the lack of secondary
obstruction is that the cohomology in dimension 4
has typically lower robustness than in dimension 3
and most generators have already died when the pri-
mary obstruction (element of H3) dies. A similar

4While we were not able to detect higher obstructions in
random fields, they occur in relatively simple examples with
component-wise quadratic functions.

5In our implementation, we work with a triangulation A�
r

of the cubical complex that consists of all cubes c such that
|f(x)| ≥ r for all vertices of c, rather than with Ar defined
above.

6We assume that in these three cases, nontriviality of
H4(X,A�

r ) was induced by a local positive minimum of |f |
in the interior of the domain, rather then by a neighborhood of
zero set.

phenomenon occurs in persistent homology of excur-
sion sets of random scalar fields, where the persistence
barcodes in dimension 0 die before the barcodes in di-
mension 1, compare [1]. The lack of top dimensional
cohomology reflects the fact that most components
of the zero set intersect the boundary of the domain:
it will be a matter of future work to perform simi-
lar computations for functions defined on manifolds
without boundary.

We also tried to detect higher obstructions in the
vector fields f(x) − f(0) where f was generated as
above and 0 is the midpoint of the [−1, 1]4 cube, with
the hope of isolating the zero set farther from the
boundary. The top cohomology was indeed richer, but
no secondary obstruction was detected either. We also
tried to use other covariance functions but the results
were similar.

Our last attempt to detect secondary obstruction
in random fields was to generate random homogenous
quadratic polynomials. The coefficients akij in fk(x) =∑
i,j a

k
i,jxixj were generated as independent samples

from a standard normal distribution.7 The zero set
of homogenous quadratic functions is either the origin
alone or a cone intersecting the boundary ∂[−1, 1]4:
only the first case can yield a nontrivial H4(X,A�

r )
and a nontrivial secondary obstruction. We generated
around 70 thousand instances of random quadratic
functions on a 104 grid: around 2.2% of them had only
the origin as the zero set, but there was no nontrivial
secondary obstruction in a single instance.
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Non-crossing Bottleneck Matchings of Points in Convex Position

Marko Savić∗ Miloš Stojaković∗†

Abstract

Given an even number of points in a plane, we are
interested in matching all the points by straight line
segments so that the segments do not cross. Bot-
tleneck matching is a matching that minimizes the
length of the longest segment. For points in convex
position, we present a quadratic-time algorithm for
finding a bottleneck non-crossing matching, improv-
ing upon the best previously known algorithm of cubic
time complexity.

1 Introduction

Let P be a set of n points in the plane, where n is
an even number. Let M be a perfect matching of
points in P , using n/2 straight line segments to match
the points, that is, each point in P is an endpoint of
exactly one line segment. We forbid line segments to
cross. Denote the length of a longest line segment in
M with bn(M), which we also call the value of M . We
aim to find a matching that minimizes bn(M). Any
such matching is called bottleneck matching of P .

1.1 Related work

There is plentiful research on various geometric prob-
lems involving pairings without crossings, see [4, 3,
5, 7, 6, 13]. The more basic of those problems in-
volve matching pairs of points by straight line seg-
ments. It is a simple observation that there is always
such a matching with non-crossing segments since it
is straightforward to prove that a matching minimiz-
ing the total sum of lengths of its segments has to be
non-crossing.

In [10], Chang, Tang and Lee gave an O(n2)-time
algorithm for computing a bottleneck matching of a
point set, but in a context where crossings are allowed.
This result was extended by Efrat and Katz in [12] to
higher-dimensional Euclidean spaces.

Abu-Affash, Carmi, Katz and Trablesi showed in
[2] that the problem of computing non-crossing bot-
tleneck matching of a point set is NP-complete and

∗University of Novi Sad, Faculty of Sciences, Department of
Mathematics and Informatics. Partly supported by Ministry
of Education and Science, Republic of Serbia. {marko.savic,
milos.stojakovic}@dmi.uns.ac.rs
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Province of Vojvodina.

does not allow a PTAS. They gave a 2
√

10 factor ap-
proximation algorithm, and also showed that the case
where all points are in convex position can be solved
exactly in O(n3) time. In [1], Abu-Affash, Biniaz,
Carmi, Maheshwari and Smid presented an algorithm
for computing a non-crossing bottleneck plane match-
ing of size at least n/5 in O(n log2 n) time. They then
extended it to provide an O(n log n)-time approxima-
tion algorithm which computes a plane matching of
size at least 2n/5 whose edges have length at most√

2 +
√

3 times the length of a longest edge in a non-
crossing bottleneck matching.

Bichromatic (sometimes also called bipartite) ver-
sions of the bottleneck matching problem, where
only points of different colors are allowed to be
matched, have also been studied. Efrat, Itai and Katz
showed in [11] that a bottleneck matching between
two point sets, with possible crossings, can be found
in O(n3/2 log n) time. Bichromatic non-crossing bot-
tleneck problem was proved to be NP-complete by
Carlson, Armbruster, Bellam and Saladi in [9].

Biniaz, Maheshwari and Smid in [8] study special
cases of non-crossing bichromatic bottleneck match-
ings. They show that the case where all points are in
convex position can be solved in O(n3) time with an
algorithm similar to the one for monochromatic case
presented in [2]. They also consider the case where the
points of one color lie on a line and all points of the
other color are on the same side of that line, providing
an O(n4) algorithm to solve it. The same results for
these special cases are independently obtained in [9].
In [8] an even more restricted problem, a case where
all points lie on a circle, is solved by constructing an
O(n log n)-time algorithm.

Here we only deal with matchings without cross-
ings, so from now on, the word matching is used to
refer only to pairings that are crossing-free.

1.2 Convex case and our result

In what follows we consider the case where all points
of P are in convex position, i.e. they are the vertices
of a convex polygon P.

Let us label the points v0, v1, . . . , vn−1 in positive
(counterclockwise) direction. To simplify the nota-
tion, we will often use only the indices when referring
to the vertices. We write {i, . . . , j} to represent the
sequence i, i+ 1, i+ 2, . . . , j − 1, j. All operations are
calculated modulo n; note that i is not necessarily

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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less than j, and that {i, . . . , j} is not the same as
{j, . . . , i}. We say that (i, j) is a feasible pair if there
exists a matching containing (i, j), which in this case
simply means that {i, . . . , j} is of even size.

The problem of finding a bottleneck matching of
points in convex position can be solved in polynomial
time by a fairly straightforward dynamic program-
ming algorithm, as presented in [2]. Similar algorithm
for bichromatic case is presented in [8] and [9].

We present a faster algorithm for finding a bottle-
neck matching in the monochromatic case, with only
O(n2) time complexity.

2 Structure of bottleneck matching

Our aim is to show the existence of a bottleneck
matching with a certain structure that we can utilize
to construct an efficient algorithm. We do so by prov-
ing a sequence of lemmas, with each lemma imposing
an increasingly stronger condition on the structure.

Let us split all point pairs into the two categories.
Pairs consisting of two neighboring vertices of P are
called edges, and all other pairs are called diagonals.
Each matching is, thus, comprised of edges and diag-
onals.

The turning angle of {i, . . . , j}, denoted by τ(i, j),
is the angle by which the vector −−−→vivi+1 should be ro-
tated in positive direction to align with vector −−−−→vj−1vj ,
see Figure 1.

Figure 1: Turning angle.

We start by showing that there are bottleneck
matchings satisfying the following constraint on turn-
ing angles.

Lemma 1 There is a bottleneck matching M of P
such that all diagonals (i, j) ∈M have τ(i, j) > π/2.

Let us consider the division of the polygon P into
regions obtained by cutting it with diagonals (but not
edges) of the given matching M . Each region in this
division is bounded by some diagonals of M and by
some edges from the polygon’s boundary. If there are
exactly k diagonals bounding a region, we say the re-
gion is k-bounded. Any maximal sequence of diagonals

Figure 2: Diagonals inside each shaded area make a
single cascade. There are three cascades with only
one diagonal, one cascade with two diagonals, and
one cascade with three diagonals.

connected by 2-bounded regions is called a cascade,
see Figure 2. We can prove the following lemma.

Lemma 2 There is a bottleneck matching having at
most three cascades.

From Lemma 2 we know that there is a bottle-
neck matching either without 3-bounded regions and
at most one cascade, or with a single 3-bounded re-
gion and exactly three cascades. Obviously, it is not
possible for a matching to have exactly two cascades.
Next, we define a set of simpler problems that will
be used to find an optimal solution in both of these
cases.

3 Subproblems

Let Matching(i, j) be the problem of finding an op-
timal matching Mi,j of points {i, . . . , j} only, so that
Mi,j has at most one cascade, and pair (i, j) belongs
to a region bounded by at most one diagonal from
Mi,j different from (i, j).

If j − i = 1, then the solution to Matching(i, j) is
exactly the edge (i, j). If j−i > 2, we consider the fol-
lowing cases. If there is a solution to Matching(i, j)
that contains the pair (i, j), then Mi,j can be con-
structed by taking (i, j) and Mi+1,j−1 together. If
not, then at least one of the edges (i, i+1) and (j−1, j)
must be a part of Mi,j (as otherwise points i and j
would be endpoints of two different diagonals from
Mi,j , neither of which is (i, j)), which is not allowed by
the requirement that the region containing (i, j) has at
most one other bounding diagonal). If (i, i+1) ∈Mi,j ,
then Mi,j can be constructed from Mi+2,j and the
edge (i, i+ 1). Similarly, if (j − 1, j) ∈ Mi,j , then we
can get Mi,j as Mi,j−2 plus the edge (j − 1, j).

Since these problems have optimal substructure,
we can apply dynamic programming to solve them.
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If bn(Mi,j) is saved into S[i, j], the following recur-
rent formula can be used to calculate the solution to
Matching(i, j) for all feasible pairs (i, j),

S[i, j] = min





max{S[i+ 1, j − 1], |vivj |} (1a)

max{S[i+ 2, j], |vivi+1|} (1b)

max{S[i, j − 2], |vj−1vj |}. (1c)

Initially, we set S[i, i] = 0, for all i, and then we fill
values in S in order of increasing j − i, so that all
subproblems are already solved when needed.

Beside the value of a solution to Matching(i, j),
it is going to be useful to determine if pair (i, j)
is necessary for constructing Mi,j , i.e. we want to
know do all solutions to Matching(i, j) contain (i, j).
If that is true then we call such a pair necessary.
This can be easily incorporated into the calculation
of S[i, j]. Namely, if case (1a) is the only one achiev-
ing minimum among cases (1a), (1b) and (1c), we set
necessary(i, j) to >, otherwise we set it to ⊥.

We have O(n2) subproblems, each of which takes
O(1) time to be calculated. Hence, all calculations
together require O(n2) time and the same amount of
space. Note that we calculated only the values of
solutions to all subproblems, but an actual matching
can be easily reconstructed in linear time from the
data in S.

4 Finding bottleneck matching

As we concluded earlier, there is a bottleneck match-
ing of P having either at most one cascade, or exactly
three cascades. An optimal matching with at most
one cascade can be found easily from calculated solu-
tions to subproblems. We just find the minimum of
all S[i + 1, i], and take any Mi+1,i that achieves it.
This step takes only linear time.

Next, we focus on finding an optimal matching
among all matchings with exactly three cascades (de-
noted by 3-cascade matchings in the following text).

Any three distinct points i, j and k, where (i, j),
(j + 1, k) and (k + 1, i − 1) are feasible pairs, can
be used to construct a 3-cascade matching by sim-
ply taking a union of Mi,j , Mj+1,k and Mk+1,i−1.
To find the best one we could run through all pos-
sible triplets (i, j, k) and see which one minimizes
max{S[i, j], S[j+ 1, k], S[k+ 1, i− 1]}. However, that
requiresO(n3) time, and thus is not suitable, since our
goal is to design a faster algorithm. Our approach is
to show that instead of looking at all (i, j) pairs, it is
enough to select (i, j) from a set of linear size, which
would reduce the search space to quadratic number
of possibilities, so the search would take only O(n2)
time.

Next, we prove a couple of simple statements about
3-cascade matchings. In 3-cascade matching, let
us call the three diagonals bounding the single 3-
bounded region the inner diagonals.

Lemma 3 If there is no bottleneck matching with at
most one cascade, then there is a bottleneck 3-cascade
matching whose every inner diagonal is necessary.

We say that (i, j) is a candidate diagonal, if it is a
necessary diagonal and τ(i, j) ≤ 2π/3.

Lemma 4 If there is no bottleneck matching with at
most one cascade, then there is a 3-cascade bottleneck
matching M , such that at least one inner diagonal of
M is a candidate diagonal.

Let us now look at a candidate diagonal (i, j), and
examine the position of points {i+1, . . . , j−1} relative
to it. We construct the circular arc h on the right side
of the directed line vivj , from which the line segment
vivj subtends an angle of π/3, see Figure 3. We denote
the midpoint of h with A. Points vi, A and vj form an
equilateral triangle, hence we are able to construct the
arc a− between A and vi with the center in vj , and the
arc a+ between A and vj with the center in vi. These
arcs define three areas: Π−, bounded by h and a−,
Π+, bounded by h and a+, and Π0, bounded by a−,
a+ and the line segment vivj , all depicted in Figure 3.
Using these definitions we state the following lemma.

Figure 3: Points vi+1, . . . , vj−1 all lie inside either Π−

or Π+.

Lemma 5 If (i, j) is a candidate diagonal, then
points vi+1, . . . , vj−1 either all belong to Π− or all
belong to Π+.

With Π−(i, j) and Π+(i, j) we respectively denote
areas Π− and Π+ corresponding to the candidate di-
agonal (i, j).

Two possibilities for a candidate diagonal (i, j) pro-
vided by Lemma 5 bring forth a concept of polarity.
If points {i+ 1, . . . , j − 1} lie in Π−(i, j) we say that
candidate diagonal (i, j) has negative polarity and has
i as its pole. Otherwise, if these points lie in Π+(i, j),
we say that (i, j) has positive polarity and pole in j.

We arrive at the crucial observation, which will en-
able us to limit the search space of the algorithm.
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Lemma 6 No two candidate diagonals of the same
polarity can have the same point as a pole.

A simple corollary of Lemma 6 is that there is at
most linear number of candidate diagonals.

Lemma 7 There are O(n) candidate diagonals.

Finally, we combine our findings from Lemma 4 and
Lemma 7, as described in the beginning of Section 4,
to construct Algorithm 1.

Algorithm 1 Bottleneck Matching

Calculate S[i, j] and necessary(i, j) for all feasible
(i, j) pairs, as described in Section 3.
best← min{S[i+ 1, i] : i ∈ {0, . . . , n− 1}}
for all feasible (i, j) do

if necessary(i, j) and τ(i, j) ≤ 2π/3 then
for k ∈ {j+ 1, . . . , i− 1} such that (j+ 1, k)
is feasible do

best← min{best,max{S[i, j], S[j + 1, k],
S[k + 1, i− 1]}}

end for
end if

end for

Theorem 8 Algorithm 1 finds the value of bottle-
neck matching in O(n2) time.

Proof. The first step, calculating S[i, j] and
necessary(i, j) for all (i, j) pairs, is done in O(n2)
time, as described in Section 3. The second step finds
the minimal value of all matchings with at most one
cascade in O(n) time.

The rest of the algorithm finds the minimal value of
all 3-cascade matchings. Lemma 4 tells us that there
is a bottleneck matching among 3-cascade matchings
with one inner diagonal being a candidate diagonal,
so the algorithm searches through all such matchings.
We first fix the candidate diagonal (i, j) and then en-
ter the inner for-loop, where we search for an optimal
3-cascade matching having (i, j) as an inner diagonal.
Although the outer for-loop is executed O(n2) times,
Lemma 7 guarantees that the if-block is entered only
O(n) times. The inner for-loop splits {j+1, . . . , i−1}
in two parts, {j+1, . . . , k} and {k+1, . . . , i−1}, which
together with {i, . . . , j} make three parts, each to be
matched with at most one cascade. We already know
the values of optimal solutions for these three sub-
problems, so we combine them and check if we get a
better overall value. At the end, the minimum value
of examined matchings is contained in best, and that
has to be the value of a bottleneck matching, since we
surely examined at least one bottleneck matching. �

Algorithm 1 gives only the value of a bottleneck
matching, however, it is easy to reconstruct an actual

bottleneck matching by reconstructing matchings for
subproblems that led to the minimum value. This
reconstruction can be done in linear time.
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Bottleneck Matchings and Hamiltonian Cycles
in Higher-Order Gabriel Graphs∗

Ahmad Biniaz† Anil Maheshwari† Michiel Smid†

Abstract

Given a set P of n points in the plane, the order-k
Gabriel graph on P , denoted by k-GG, has an edge
between two points p and q if and only if the closed
disk with diameter pq contains at most k points of P ,
excluding p and q. It is known that 10-GG contains a
Euclidean bottleneck matching of P , while 8-GG may
not contain such a matching. We answer the following
question in the affirmative: does 9-GG contain any
Euclidean bottleneck matching of P?

It is also known that 10-GG contains a Euclidean
bottleneck Hamiltonian cycle of P , while 5-GG may
not contain such a cycle. We improve the lower bound
and show that 7-GG may not contain any Euclidean
bottleneck Hamiltonian cycle of P .

1 Introduction

Let P be a set of n points in the plane. For any
two points p, q ∈ P , let D[p, q] denote the closed disk
that has the line segment pq as diameter. Let |pq| be
the Euclidean distance between p and q. The Gabriel
graph on P , denoted by GG(P ), is a geometric graph
that has an edge between two points p and q if and
only if D[p, q] does not contain any point of P \{p, q}.
Gabriel graphs were introduced by Gabriel and Sokal
[6] and can be computed in O(n log n) time [8]. Every
Gabriel graph has at most 3n − 8 edges, for n ≥ 5,
and this bound is tight [8].

The order-k Gabriel graph on P , denoted by k-GG,
is the geometric graph that has an edge between two
points p and q if and only if D[p, q] contains at most k
points of P \{p, q}. Thus, the Gabriel graph, GG(P ),
corresponds to 0-GG. Su and Chang [9] showed that
k-GG can be constructed in O(k2n log n) time and
contains O(k(n− k)) edges. For two points p, q ∈ P ,
the lune of p and q, denoted by L(p, q), is defined as
the intersection of the two open disks of radius |pq|
centered at p and q. The order-k Relative Neighbor-
hood Graph on P , denoted by k-RNG, is the geomet-
ric graph that has an edge (p, q) if and only if L(p, q)
contains at most k points of P . Note that k-RNG on
P is a subgraph of k-GG on P .

A matching in a graph G is a set of edges without
common vertices. A perfect matching is a matching

∗Research supported by NSERC.
†Carleton University, Ottawa, Canada.

that matches all the vertices of G. A Hamiltonian cy-
cle in G is a cycle that visits each vertex of G exactly
once. In the case when G is an edge-weighted graph,
a bottleneck matching is defined to be a perfect match-
ing in G, in which the weight of the maximum-weight
edge is minimized. Moreover, a bottleneck Hamilto-
nian cycle is a Hamiltonian cycle in G, in which the
weight of the maximum-weight edge is minimized. For
a point set P , a Euclidean bottleneck matching is a per-
fect matching in the complete graph with vertex set
P that minimizes the longest edge; the weight of an
edge is defined to be the Euclidean distance between
its two endpoints. Similarly, a Euclidean bottleneck
Hamiltonian cycle is a Hamiltonian cycle that mini-
mizes the longest edge.

Chang et al. [4] proved that a Euclidean bottle-
neck matching of P is contained in 16-RNG.1 This
implies that 16-GG contains a Euclidean bottleneck
matching. In [2] the authors improved the bound for
the latter graphs by showing that 10-GG contains a
Euclidean bottleneck matching. They also show that
8-GG may not have any Euclidean bottleneck match-
ing. They asked if 9-GG contains any Euclidean bot-
tleneck matching. In Section 2, we answer this ques-
tion in the affirmative.

Theorem 1 For every point set P , 9-GG contains a
Euclidean bottleneck matching of P .

Chang et al. [3] proved that a Euclidean bottle-
neck Hamiltonian cycle of P is contained in 19-RNG,
which implies that 19-GG contains a Euclidean bot-
tleneck Hamiltonian cycle. Abellanas et al. [1] im-
proved the bound by showing that 15-GG contains
a Euclidean bottleneck Hamiltonian cycle. Kaiser et
al. [7] improved the bound further by showing that
10-GG contains a Euclidean bottleneck Hamiltonian
cycle. They also provide an example which shows
that 5-GG may not contain any Euclidean bottleneck
Hamiltonian cycle. In Section 3, we improve the lower
bound to 7 and prove the following proposition.

Proposition 1 There exist point sets P such that
7-GG does not contain any Euclidean bottleneck
Hamiltonian cycle of P .

1They defined k-RNG to have an edge (p, q) if and only if
L(p, q) contains at most k − 1 points of P .
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Therefore, it remains open to decide whether or not
8-GG or 9-GG contains a Euclidean bottleneck Hamil-
tonian cycle.

2 Proof of Theorem 1

In this section we prove Theorem 1. The proofs
for Lemmas 2 and 3 are similar to the proofs in [4]
which are adjusted for Gabriel graphs. The proof of
Lemma 4 is based on a similar technique that is used
in [7] for the Hamiltonicity of Gabriel graphs.

Let M be the set of all perfect matchings of the
complete graph with vertex set P . For a matching
M ∈M we define the weight sequence of M , WS(M),
as the sequence containing the weights of the edges of
M in non-increasing order. A matching M1 is said to
be less than a matching M2 if WS(M1) is lexicograph-
ically smaller than WS(M2). We define a total order
on the elements of M by their weight sequence. If
two elements have exactly the same weight sequence,
break ties arbitrarily to get a total order.

Let M∗ = {(a1, b1), . . . , (an
2
, bn

2
)} be a matching in

M with minimum weight sequence. Observe that M∗

is a Euclidean bottleneck matching for P . In order
to prove Theorem 1, we will show that all edges of
M∗ are in 9-GG. Consider any edge (a, b) in M∗. If
D[a, b] contains no point of P \{a, b}, then (a, b) is an
edge of 9-GG. Suppose that D[a, b] contains k points
of P \ {a, b}. We are going to prove that k ≤ 9. Let
R = {r1, r2, . . . , rk} be the set of points of P \ {a, b}
that are in D[a, b]. Let S = {s1, s2, . . . , sk} represent
the points for which (ri, si) ∈M∗.

Without loss of generality, we assume that D[a, b]
has diameter 1 and is centered at the origin o = (0, 0),
and a = (−0.5, 0) and b = (0.5, 0). For any point p
in the plane, let ‖p‖ denote the distance of p from o.
Note that |ab| = 1, and for any point x ∈ D[a, b] \
{a, b} we have max{|xa|, |xb|} < 1.

Lemma 2 For each point si ∈ S, min{|sia|, |sib|} ≥
1.

Proof. The proof is by contradiction; suppose that
|sia| < 1. Let M be the perfect matching obtained
from M∗ by deleting {(a, b), (ri, si)} and adding
{(si, a), (ri, b)}. The lengths of the two new edges
are smaller than 1, and hence both (si, a) and (ri, b)
are shorter than (a, b). Thus, WS(M) <lex WS(M∗),
which contradicts the minimality of M∗. �

As a corollary of Lemma 2, R and S are disjoint.

Lemma 3 For each pair of points si, sj ∈ S, |sisj | ≥
max{|risi|, |rjsj |, 1}.

Proof. The proof is by contradiction; suppose that
|sisj | < max{|risi|, |rjsj |, 1}. Let M be the per-
fect matching obtained from M∗ by deleting {(a, b),

(ri, si), (rj , sj)} and adding {(a, ri), (b, rj), (si, sj)}.
Note that max{|ari|, |brj |, |sisj |} < max{|risi|, |rjsj |,
|ab|}. Thus, WS(M) <lex WS(M∗), which contra-
dicts the minimality of M∗. �

Let C(x, r) (resp. D(x, r)) be the circle (resp. closed
disk) of radius r that is centered at a point x in
the plane. For i ∈ {1, . . . , k}, let s′i be the inter-
section point between C(o, 1.5) and the ray with ori-
gin at o passing through si. Let the point pi be si,
if ‖si‖ < 1.5, and s′i, otherwise. See Figure 1. Let
S′ = {a, b, p1, . . . , pk}.

Observation 1 Let sj be a point in S, where ‖sj‖ ≥
1.5. Then, the disk D(sj , ‖sj‖ − 0.5) is contained in
the disk D(sj , |sjrj |). Moreover, the disk D(pj , 1) is
contained in the disk D(sj , ‖sj‖ − 0.5). See Figure 1.

oa b

D[a, b]

D(sj, |sjrj|)

si

pi

pj

sj

C(o, 1.5)

‖sj‖-0.5

sk
pk

rj

1
s′k

α

Figure 1: Proof of Lemma 4; pi = s′i, pj = s′j , and
pk = sk.

Lemma 4 The distance between any pair of points
in S′ is at least 1.

Proof. Let x and y be two points in S′. We are going
to prove that |xy| ≥ 1. We distinguish between the
following three cases.

• {x, y} = {a, b}. In this case the claim is trivial.

• x ∈ {a, b}, y ∈ {p1, . . . , pk}. If ‖y‖ = 1.5, then y
is on C(o, 1.5), and hence |xy| ≥ 1. If ‖y‖ < 1.5,
then y is a point in S. Therefore, by Lemma 2,
|xy| ≥ 1.

• x, y ∈ {p1, . . . , pk}. Without loss of generality
assume x = pi and y = pj , where 1 ≤ i < j ≤ k.
We differentiate between three cases:
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Case (i): ‖pi‖ < 1.5 and ‖pj‖ < 1.5. In this
case pi and pj are two points in S. Therefore, by
Lemma 3, |pipj | ≥ 1.

Case (ii): ‖pi‖ < 1.5 and ‖pj‖ = 1.5. In this case
pi is a point in S. By Observation 1, the disk
D(pj , 1) is contained in the disk D(sj , |sjrj |),
and by Lemma 3, pi is not in the interior of
D(sj , |sjrj |). Therefore, pi is not in the interior
of D(pj , 1), which implies that |pipj | ≥ 1.

Case (iii): ‖pi‖ = 1.5 and ‖pj‖ = 1.5. In this
case ‖si‖ ≥ 1.5 and ‖sj‖ ≥ 1.5. Without loss
of generality assume ‖si‖ ≤ ‖sj‖. For the sake
of contradiction assume that |pipj | < 1; see Fig-
ure 1. Then, for the angle α = ∠siosj we have
sin(α/2) < 1

3 . Then, cos(α) = 1 − 2 sin2(α/2) >
7
9 . By the law of cosines in the triangle 4siosj ,
we have

|sisj |2 < ‖si‖2 + ‖sj‖2 −
14

9
‖si‖‖sj‖. (1)

By Observation 1, the disk D(sj , ‖sj‖ − 0.5)
is contained in the disk D(sj , |sjrj |), and by
Lemma 3, si is not in the interior of D(sj , |sjrj |).
Therefore, si is not in the interior of D(sj , ‖sj‖−
0.5). Thus, |sisj | ≥ ‖sj‖ − 0.5. In combination
with Inequality (1), this implies

‖sj‖
(

14

9
‖si‖ − 1

)
< ‖si‖2 −

1

4
. (2)

In combination with the assumption ‖si‖ ≤ ‖sj‖,
Inequality (2) implies

5

9
‖si‖2 − ‖si‖+

1

4
< 0,

i.e.,

5

9

(
‖si‖ −

3

10

)(
‖si‖ −

3

2

)
< 0.

This is a contradiction, because, since ‖si‖ ≥ 1.5,
the left-hand side is non-negative. Thus |pipj | ≥
1, which completes the proof of the lemma.

�

By Lemma 4, the points in S′ have mutual distance
at least 1. Moreover, the points in S′ lie in D(o, 1.5).
Fodor [5] proved that the smallest circle which con-
tains 12 points with mutual distances at least 1 has ra-
dius 1.5148. Therefore, S′ contains at most 11 points.
Since a, b ∈ S′, this implies that k ≤ 9. Therefore, S,
and consequently R, contains at most 9 points. Thus,
(a, b) is an edge in 9-GG. This completes the proof of
Theorem 1.

3 Proof of Proposition 1

In this section we prove Proposition 1. We show that
for some point sets P , 7-GG does not contain any
Euclidean bottleneck Hamiltonian cycle of P .

Figure 2 shows a configuration of a multiset P =
{a, b, x, r1, . . . , r8, s1, . . . , s7} of 26 points, where s5 is
repeated nine times. The closed disk D[a, b] is cen-
tered at o and has diameter one, i.e., |ab| = 1. D[a, b]
contains all 8 points of the set R = {r1, . . . , r8}; these
points lie on the circle with radius 1

2 − ε that is cen-
tered at o; all points of R are in the interior of D[a, b].
Let S = {s1, . . . , s7} be the multiset of 15 points,
where s5 is repeated nine times. The red circles have
radius 1 and are centered at points in S. Each point
in S is connected to its first and second closest point
(the black edges in Figure 2). Let B the chain formed
by these edges. Note that r1 and r8 are the end-
points of B. Specifically, |r1s1| = |r8s7| = 1, and for
each point ri, where 2 ≤ i ≤ 7, |sia| > 1, |sib| > 1,
|six| > 1, and |risi−1| = |risi| = 1 (here by s5 we
mean the first and last endpoints of the chain defined
by points labeled s5). Consider the Hamiltonian cy-
cle H = B∪{(r1, a), (a, b), (b, x), (x, r8)}. The longest
edge in H has length 1. Therefore, the length of the
longest edge in any bottleneck Hamiltonian cycle for
P is at most 1. In the rest we will show—by contra-
diction—that any bottleneck Hamiltonian cycle of P
contains (a, b). Since in B each point of S is connected
to its first and second closest point, every bottleneck
Hamiltonian cycle of P contains B, because other-
wise, one of the points in S should be connected to
a point that is farther than its second closest point,
and hence that edge is longer than 1. Now we consider
possible ways to construct a bottleneck Hamiltonian
cycle, say H∗, using the edges in B and the points
a, b, x. Assume (a, b) /∈ H∗. Then, in H∗, a is con-
nected to two points in {r1, r8, x}. We differentiate
between two cases:

• (a, x) ∈ H∗. In this case |ax| > 1, and hence the
longest edge in H∗ is longer than 1, which is a
contradiction.

• (a, x) /∈ H∗. In this case (a, r1) ∈ H∗ and
(a, r8) ∈ H∗. This means that H∗ does not con-
tain x and b, which is a contradiction.

Therefore, we conclude that H∗, and consequently
any bottleneck Hamiltonian cycle of P , contains (a, b).
Since D[a, b] contains 8 points of P \ {a, b}, (a, b) /∈
7-GG. Therefore 7-GG does not contain any Eu-
clidean bottleneck Hamiltonian cycle of P .

4 Conclusion

We considered the inclusion of a Euclidean bottleneck
matching and a Euclidean bottleneck Hamiltonian cy-
cle of a point set P in higher order Gabriel graphs. It
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Figure 2: Proof of Proposition 1. The bold-black edges belong to B. D[a, b] contains 8 points.

is known that 10-GG contains a bottleneck matching
and a bottleneck Hamiltonian cycle of P . We proved
that 9-GG contains a bottleneck matching of P and
7-GG may not contain any bottleneck Hamiltonian
cycle of P . It remains open to decide if 8-GG or 9-GG
contains any bottleneck Hamiltonian cycle of P .
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Dynamic Connectivity for Unit Disk Graphs∗

Haim Kaplan† Wolfgang Mulzer‡ Liam Roditty§ Paul Seiferth‡

Abstract

Let S ⊂ R2 be a set of point sites. The unit disk graph
UD(S) of S has vertex set S and an edge between two
sites s, t if and only if |st| ≤ 1.

We present a data structure that maintains the con-
nected components of UD(S) when S changes dynam-
ically. It takes O(log2 n) time to insert or delete a site
in S and O(log n/ log log n) time to determine if two
sites are in the same connected component. Here, n is
the maximum size of S at any time. A simple variant
improves the update time to O(log n log log n) at the
cost of a slightly increased query time of O(log n).

1 Introduction

Computing the connected components of a graph G
is one of the most fundamental problems in algorith-
mic graph theory. When G is static, several classic
solutions exist, e.g., BFS or DFS. However, if G can
change dynamically, the problem becomes much more
challenging. In this case, we would like a data struc-
ture for connectivity queries: given two vertices s and
t, are s and t in the same connected component of G?
Additionally, we would like to be able to insert and
delete edges or singleton vertices. For general graphs,
there is the following result due to Holm et al. [8].

Theorem 1 (Holm et al., Theorem 3) Let G be
a graph with n vertices. There is a deterministic
data structure such that edge insertions or deletions
in G take amortized time O(log2 n), and connectivity
queries take worst-case time O(log n/ log log n).

Even though Theorem 1 assumes n to be fixed, we can
use a standard rebuilding method to support vertex
insertion and deletion within the same amortized time
bounds, by rebuilding the data structure whenever
the number of vertices changes by a factor of 2. For
planar graphs, Eppstein et al. achieved O(log n) time
for both updates and queries [7].

However, the model of edge insertions and deletions
may be too restrictive. For example, one natural situ-
ation where more powerful operations are needed oc-
curs in unit disk graphs. Let S ⊂ R2 be a set of

∗Supported by GIF project 1161&DFG project MU/3501-1.
†Tel Aviv University, Israel. haimk@post.tau.ac.il
‡Institut für Informatik, Freie Universität Berlin, Germany

{mulzer,pseiferth}@inf.fu-berlin.de
§Bar Ilan University, Israel. liamr@macs.biu.ac.il

point sites. The unit disk graph UD(S) of S has ver-
tex set S and an edge between two sites s, t ∈ S if
and only if the Euclidean distance |st| is at most 1.
Now, we want to maintain the connected components
of UD(S) as the vertex set S changes dynamically.
In this case, a single update may change the graph
quite dramatically, since one site may have many in-
cident edges. Nevertheless, Chan et al. [5] observed
that by combining known results one can derive a data
structure with update time O(log10 n) and query time
O(log n/ log log n). The construction is as follows (see
Figure 1): ¬ let T be the Euclidean minimum span-

UD(S) DNN·O(log2 n)

updates

·O(log2 n) DBCP
1 2 3

Dynamic Connectivity DS

EMST

Figure 1: A solution with O(log10 n) update time.

ning tree (EMST) of S. If we remove all edges with
length larger than 1 from T , the resulting forest F is
a spanning forest for UD(S). Thus, to maintain the
components of UD(S), it suffices to maintain the com-
ponents of F . We create data structure D of Holm et
al. to maintain F . Since the EMST has maximum de-
gree 6, inserting or deleting a site from S changes O(1)
edges in T . Suppose we can efficiently find the set E
of edges that change during an update. Then, we can
update the components in F through O(1) updates in
D, taking all edges in E of length at most 1.  To
find E, we need to dynamically maintain the EMST
T when S changes. This can be done using a tech-
nique of Agarwal et al. that reduces the problem to
several instances of the dynamic bichromatic closest
pair problem (DBCP), with an overhead of O(log2 n)
in the update time [1]. ® Eppstein showed that the
DBCP problem can in turn be solved through a re-
duction to several instances of the dynamic nearest
neighbor problem (DNN) for points in the plane [6].
Again, we incur another O(log2 n) factor as overhead
in the update time. Using Chan’s DNN structure [4]
with amortized expected update time O(log6 n), we
get a total update time of O(log10 n). We can use D
to answer queries in O(log n/ log log n) time.

Our Results. We improve the previous result by fol-
lowing a similar approach, but in every step we use
a method more specifically tailored to unit disks. In-
stead of the EMST in ¬, we use a much simpler graph

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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on grid cells that also captures the connectivity of
UD(S). Then we can avoid the O(log2 n) overhead in
 and ® and substitute the DNN data structure by
a dynamic lower envelope (DLE) structure for pseu-
dolines in R2. In Section 2 we review suitable DLE
structures and their properties. In Section 3 we prove
our first main theorem:

Theorem 2 There is a dynamic connectivity struc-
ture for unit disk graphs such that the insertion
or deletion of a site takes amortized time O(log2 n)
and a connectivity query takes worst-case time
O(log n/ log log n), where n is the maximum number
of sites at any time.

In Section 4, we use a grid-based planar graph to
represent the connectivity of UD(S). Then we can
replace Theorem 1 by the result for planar graphs by
Eppstein et al. Updates now take O(log n log log n)
time, but the query time slightly increases to O(log n).

2 Dynamic Lower Envelopes

Let L be a set of pseudolines in the plane, i.e., each
element of L is a simple continuous curve and any two
distinct curves in L intersect in exactly one point.
The lower envelope of L is the pointwise minimum
of the graphs of the curves in L. In Section 3 we
need to dynamically maintain the lower envelope of
L. Overmars and van Leeuwen show how to maintain
the lower envelope of a set of lines with update time
O(log2 n) such that vertical ray shooting queries can
be answered in O(log2 n) time [10]. Chan improves
this to O(log1+ε) for updates and queries [3]. Using
the kinetic heap structure of Kaplan et al. [9] one can
obtain O(log n log log n). Brodal and Jacob showed
that the optimal bound O(log n) can be achieved [2].
Except for the last result, one can verify that all these
approaches also work with pseudolines; they only need
a total ordering of the lines along the lower envelope.

Lemma 3 Let L be a dynamic set of at most n pseu-
dolines. We can maintain the lower envelope of L with
O(log n log log n) amortized update time and O(log n)
amortized query time.

Remark. The applicability of the result by Brodal
and Jacob [2] is not clear to us, and poses an inter-
esting challenge for further investigation.

3 The Data Structure

Let S ⊂ R2 be a set of sites. We define an auxiliary
graph G that represents the connectivity of UD(S).
The vertices of G are cells of a grid. To see if two cells
form an edge, we maintain a bichromatic matching of
the sites in the grid cells. This matching is updated
with the help of two DLE data structures.

The Grid Graph (new ¬). Let G be a planar grid
whose cells are disjoint axis-aligned squares with di-
ameter 1. For any grid cell σ ∈ G, the sites σ ∩ S
induce a clique in UD(S). For S ⊂ R2, we define a
graph G whose vertices are the non-empty cells σ ∈ G,
i.e., the cells with σ ∩ S 6= ∅. The neighborhood N(σ)
of a cell σ ∈ G is the 5 × 5 block of cells in G with
σ in the center. We call two cells neighboring if they
are in each other’s neighborhood. The endpoints of
any edge in UD(S) must lie in neighboring cells. To
obtain the edges of G, we connect every pair of dis-
tinct neighboring grid cells that contain the endpoints
of an edge in UD(S). By construction, and since the
sites inside each cell form a clique, the connectivity
between two sites s, t in UD(S) is the same as for the
corresponding cells in G.

Lemma 4 Let s, t ∈ S be two sites and let σ and τ
be the cells in G that contain s and t, respectively.
There is an s-t path in UD(S) if and only if there is
a σ-τ path in G.

We build the data structure from Theorem 1 for G.
When a site s is inserted into or deleted from S, only
O(1) edges in G change, since only the neighborhood
of the cell of s is affected. Thus, once the set E of
changing edges is determined, we can update G in
time O(log2 n), by Theorem 1.

Finding the Edges E (new ). It remains to find
the edges E of G that change when we update S. For
this, we maintain for each pair of non-empty neigh-
boring cells a maximal bichromatic matching (MBM)
between their sites, similar to Eppstein’s method [6].
Let R ⊆ S and B ⊆ S be two sets of sites. An MBM
between R and B is a maximal set of vertex-disjoint
edges in (R×B)∩UD(S), the bipartite graph on R∪B
consisting of all edges of UD(S) with one endpoint in
R and one endpoint in B.

For each pair {σ, τ} of neighboring cells in G, we
build an MBM M{σ,τ} for R = σ ∩ S and B = τ ∩ S.
By definition, there is an edge between σ and τ in G
if and only if M{σ,τ} is not empty. When inserting
or deleting a site s from S, we proceed as follows:
let σ ∈ G be the cell with s ∈ σ. We go through
all cells τ ∈ N(σ) and update the MBM M{σ,τ} (by
inserting or deleting s from the relevant set). IfM{σ,τ}
becomes non-empty during an insertion or becomes
empty during a deletion, we add the edge στ to E
and mark it for insertion or deletion, respectively. We
summarize this construction in the following lemma.

Lemma 5 Suppose we can maintain an MBM for
each pair of non-empty neighboring cells with update
time O(U(n)), where n is the maximum number of
sites. Then we can dynamically maintain the adja-
cency lists of G with update time O(U(n)).
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Dynamically Maintaining an MBM (new ®). Let
σ 6= τ be two neighboring cells of G, and let R = σ∩S
and B = τ ∩ S. We show that an MBM between R
and B can be efficiently maintained using two DLE
structures for pseudolines. We fix a line ` that sep-
arates R and B. Since R,B are in two distinct grid
cells, we can take a supporting line of one of the four
boundaries of σ. We have the following lemma.

Lemma 6 Let R,B ⊆ S be two sets with a total of
at most n sites, separated by a line `. There exists a
dynamic data structure that maintains an MBM for
R and B with O(log n log log n) update time.

Proof. We rotate and translate everything such that
` is the x-axis and all sites in R have positive x-
coordinate. We consider the set UR of unit disks with
centers in R (see Figure 2). Then a site in B forms an
edge with some site in R if and only if it is contained
in the union of the disks in UR. To detect this, we
maintain the lower envelope of UR. More precisely,
consider the following set LR of pseudolines: for each
disk of UR, take the arc that defines the lower part
of the boundary of the disk and extend both ends
straight upward to ∞. We build a data structure DR

`

Figure 2: The set LR induced by R.

for LR according to Lemma 3. Analogously, we de-
fine a set of pseudolines LB and a dynamic envelope
structure DB for B.

To maintain the MBM M , we store in DR the cur-
rently unmatched sites of R, and in DB the currently
unmatched sites of B. When inserting a site r into R,
we perform a vertical ray shooting query in DB with
r to get a pseudoline of LB . Let b ∈ B the site for
that pseudoline. If |rb| ≤ 1, we add the edge rb to M ,
and delete the pseudoline of b from DB . Otherwise we
insert the pseudoline of r into DR. By construction, if
there is an edge between r and an unmatched site in
B, then there is also an edge between r and b. Hence,
the insertion procedure correctly maintains an MBM.
Now suppose we want to delete a site r from R. If
r is unmatched, we delete the pseudoline correspond-
ing to r from DR. Otherwise, we remove the edge rb
from M , and we reinsert b as above, looking for a new
unmatched site in R for b. Updating B is analogous.

Inserting and deleting a site requires O(1) inser-
tions, deletions, or queries in DR or DB , so the lemma
follows. �

To obtain Theorem 2, we combine Lemma 4,5, and 6.

4 Improving the Update Time

The bottleneck for the update time in Section 3 lies
in the use of Theorem 1. We now define a planar
graph Gp that is similar to the grid graph G: it rep-
resents the connectivity of UD(S) and an update of
S changes O(1) vertices and edges in Gp. These ver-
tices and edges can be found in O(1) time. Since Gp
is planar, we can use the result of Eppstein et al. to
maintain the connectivity of Gp with O(log n) amor-
tized update and worst-case query time [7], giving the
next theorem.

Theorem 7 There is a dynamic connectivity struc-
ture for unit disk graphs such that insertion or dele-
tion of a site takes amortized time O(log n log log n)
and a connectivity query takes worst-case time
O(log n), where n is the maximum number of sites
at any time.

The Planar Graph. Let S ⊂ R2 be a set of sites. For
any pair of non-empty grid cells σ, τ , let M{σ,τ} be the
MBM as above. For any non-empty MBM M{σ,τ}, we
pick an arbitrary edge rb ∈ M{σ,τ} with r ∈ σ and
b ∈ τ as representative edge. Let T ⊆ S be the set
of sites incident to a representative edge. We use the
unit disk graph UD(T ) as basis for our planar graph
Gp. If we contract in each grid cell σ the subgraph of
UD(T ) induced by T ∩σ to a single vertex, we get the
graph G from Section 3. Hence, by Lemma 4, UD(T )
represents the connectivity of UD(S).

To get Gp from UD(T ), we consider the straight line
drawing of UD(T ). For a crossing of two edges st and
uv in UD(T ), we add a new site x at the intersection
and call x a crossing site. We remove st and uv and
we add the four new edges sx, xt, ux, and xv. We
repeat this operation until there are no more crossings
in UD(T ). This is a standard method for making unit
disk graphs planar. The next lemma, due to Yan et
al. [11], shows that it preserves connectivity.

Lemma 8 Let ab and uv be edges in UD(T ) that
cross. Then a, b, u, and v are in the same connected
component of UD({a, b, u, v}).

Using Lemma 8 we now show that Gp has the same
connectivity as UD(T ). Thus, by Lemma 4, Gp rep-
resents the connectivity of UD(S).

Lemma 9 Let s, t ∈ T be two sites. Then s and t are
connected in UD(T ) if and only if they are connected
in Gp.

Proof. Since going from UD(T ) to Gp only increases
the connectivity, all sites s and t connected in UD(T )
are also connected in Gp.

For the other direction, let s = p1, . . . , pk = t be a
path in Gp between s, t ∈ T . For each pi, we define
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a set Vi ⊆ T as follows: if pi is a site in T , we set Vi
= {pi}. Otherwise, pi is a crossing site, created by
a crossing of two edges uv and ab in UD(T ). We set
Vi = {a, b, u, v}. By Lemma 8, the sites a, b, u, v are
in the same connected component of UD(T ). Further-
more, we have Vi−1 ∩ Vi 6= ∅, since pi−1pi is a proper
subsegment of an edge e in UD(T ), and at least one
endpoint of e lies in Vi−1.

We prove by induction that all sites in
⋃j
i=1 Vi

lie in the same connected component of UD(T ), for
j = 1, . . . , k. For j = 1, this is clear. Now, consider
Vj . If Vj−1 ∩ Vj 6= ∅, then the claim follows by induc-
tion, since all sites in Vj are in the same component.
Otherwise, Vj = {pj}, pj is a site in T , and there is

an edge in UD(T ) between pj and
⋃j−1
i=1 Vi, implying

the claim. By setting j = k, we now have that s and
t are connected in UD(T ). �

Maintaining Gp. We maintain an MBM between
any two neighboring non-empty grid cells and we pick
one representative edge for each MBM. Let s be a site
we want to insert or delete from S. Let σ be the grid
cell containing s. We update for all τ ∈ N(σ) the
MBM M{σ,τ}, and we collect the sites of all repre-
sentative edges that need to be inserted or deleted in
two sets I and D: if M{σ,τ} changes from empty to
non-empty, we pick a representative edge for M{σ,τ}
and put its two endpoints into I. If we delete the rep-
resentative edge of M{σ,τ}, we put its two endpoints
into D, and, if possible, we pick a new representative
edge for M{σ,τ}. We put the endpoints of the new
edge into I. Since |N(σ)| = O(1), the sets I and D
contain O(1) to be added or deleted from Gp.

Next, we show how to update Gp with a site s in
I or D. First we insert or delete s in UD(T ) and
determine which edges change in UD(T ). Each such
edge may create or delete several edges in Gp that
need to handled. The next lemma shows that s can
create or delete O(1) edges in Gp and that these edges
can be found in O(1) time. This finishes the proof of
Theorem 7.

Lemma 10 Let s be a site in I or D. Updating Gp
with s changes O(1) edges and vertices. They can be
found in O(1) time.

Proof. Suppose that s ∈ I, i.e., we want to insert s.
Let σ be the cell containing s. We add s to T and
collect all edges in UD(T ) incident to s in a set E as
follows: we start with E = ∅. First, for each t ∈ T ∩σ
we add the edge st to E. Since σ has diameter 1,
all these edges are valid edges in UD(T ). Next, we
go through all cells τ ∈ N(σ). We check for all sites
t ∈ τ ∩ T if |st| ≤ 1. If so, we add st to E.

To update Gp, we find all edges in Gp crossed by
edges in E. Since all edges in E and in Gp cross
O(1) grid cells, and since each grid cell contains O(1)

sites and crossing sites, this can be done in O(1) time.
We add all these edges to E, and we perform the
planarization procedure on E. This gives all edges
and vertices in Gp that need to be changed, in O(1)
time.

Deleting a site is done in a similar manner. �
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On Kinetic Range Spaces and their Applications
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Abstract

We study geometric hypergraphs in a kinetic setting
and show that for many of the static cases where
the VC-dimension of the hypergraph is bounded the
kinetic counterpart also has bounded VC-dimension.
Among other results we show that for any set of n
moving points in Rd and any parameter 1 < k < n,
one can select a non-empty subset of the points of
size O(k log k) such that each cell of the Voronoi di-
agram of this subset is “balanced” at any given time
(i.e., it contains O(n/k) of the other points). We also
show that the bound is near optimal even for the one-
dimensional case in which points move linearly.

1 Introduction

Geometric hypergraphs (also called range-spaces) are
central objects in computational geometry, statisti-
cal learning theory, combinatorial optimization, lin-
ear programming, discrepancy theory, data bases and
several other areas in mathematics and computer sci-
ence.

In most of these cases, we have a finite set P of
points in Rd and a family of simple geometric regions,
such as the family of all halfspaces in Rd. We then
consider the combinatorial structure of the set system
(P, {h∩P}) where h is any halfspace. Many optimiza-
tion problems can be formulated on such structures.
A key property of such hypergraphs is a bounded VC-
dimension (see Section 2 for exact definitions). In this
paper we study a more complex structure by allow-
ing the underlying set of points to move along some
“reasonable” trajectories. Even though the static case
is well-known, little research has been done for the
case in which the points move. We show that those
more complex hypergraphs defined as the union of
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all hypergraphs obtained at all possible times still
have a bounded VC-dimension. As a result, many
deep results that hold for arbitrary hypergraphs with
bounded VC-dimension readily apply to such kinetic
hypergraphs. By adding several other ingredients, we
are able to prove our main result about points mov-
ing with bounded description complexity (see below
for the exact definitions):

Theorem 1 Let P = {p1, . . . , pn} be any set of n
moving points in Rd with bounded description com-
plexity. For any integer 2 ≤ k ≤ n, there exists a sub-
set N ⊂ P of cardinality O(k log k), such that for any
time t ≥ 0, each cell of the Voronoi diagram Vor(N(t))
contains at most O(n/k) points of P (t).

The paper is organized as follows: in Section 2 we
introduce several key concepts as well as review known
results that hold for static range spaces. In Section 3
we extend these results to the kinetic case. In Section
4 we show several applications. Due to lack of space,
proofs in this paper are omitted or sketched. Details
can be found in the extended version of this paper [2].

2 Preliminaries and Previous Work

We consider the following families of geometric hy-
pergraphs: Let P be a set of points in Rd and let R
be a family of regions in the same space. We refer
to the hypergraph H = (P, {P ∩ r : r ∈ R}) as the
hypergraph induced by P with respect to R. In the
literature, such kind of hypergraphs are also referred
to as range spaces.

Our aim is to show that many properties that hold
for static range spaces extend to their kinetic coun-
terparts. We start by introducing some concepts that
are frequently used in (static) range spaces.

Recall the definition of an ε-net for a hypergraph:
let H = (V, E) be a hypergraph with V finite. Let ε ∈
[0, 1] be a real number. A set N ⊂ V (not necessarily
in E) is called an ε-net for H if for every hyperedge
S ∈ E with |S| ≥ ε|V | we have S ∩N 6= ∅.

A closely related concept of ε-net is the so called
Vapnik-Chervonenkis dimension [8]: let H = (V, E)
be a hypergraph. A subset X ⊂ V (not necessarily
in E) is said to be shattered by H if {X ∩ S : S ∈
E} = 2X . The Vapnik-Chervonenkis dimension, also

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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denoted the VC-dimension of H, is the maximum size
of a subset of V shattered by H.

Theorem 2 (ε-net theorem [4]) Let H = (V, E)
be a hypergraph with VC-dimension d. For every
ε ∈ (0, 1), there exists an ε-net N ⊂ V with cardi-
nality at most O(d

ε log 1
ε ).

It is known that whenever range spaces are defined
through semi-algebraic sets of constant description
complexity (i.e., sets defined as a Boolean combina-
tion of a constant number of polynomial equations
and inequalities of constant maximum degree), the
resulting hypergraph has finite VC-dimension. Halfs-
paces, balls, boxes, etc. are examples of ranges of this
kind; see, e.g., [6, 7] for more details.

Thus, by Theorem 2, these hypergraphs admit
“small” size ε-nets. Kómlos et al. [5] proved that
the bound O(d

ε log 1
ε ) on the size of an ε-net for hy-

pergraphs with VC-dimension d is best possible.

3 Kinetic hypergraphs

In this section we extend the above results to the
kinetic model. Let P = {p1, . . . , pn} denote a set
of n moving points in Rd, where each point is mov-
ing along some “simple” trajectory. That is, each pi
is a function pi : [0,∞) → Rd of the form pi(t) =
(xi1(t), . . . , xid(t)). For a given real number t ≥ 0 and
a subset P ′ ⊂ P , we denote by P ′(t) the fixed set of
points {p(t) : p ∈ P ′}. For a family of ranges R, we
define its induced kinetic hypergraph as follows:

Definition 1 (kinetic hypergraph) Let P be a set
of moving points in Rd and letR be a family of ranges.
Let (P, E) denote the hypergraph where E consists of
all subsets P ′ ⊆ P for which there exists a time t and
a range r ∈ R such that P ′(t) = P (t) ∩ r. We call
(P, E) the kinetic hypergraph induced by R.

As in the static case we abuse the notation and
denote the hypergraph by (P,R). In order to ap-
ply our techniques, we need the following “bounded
description complexity” assumption concerning the
movement of the points of P . We say that a point
pi = pi(t) = (xi1(t), . . . , xid(t)) ∈ P moves with de-
scription complexity s > 0 if for each 1 ≤ j ≤ d it
holds that xij(t) is a univariate polynomial of degree
at most s. In the remainder of this paper, we assume
that all points of P move with bounded description
complexity, that is, the description complexity s is a
constant.

3.1 VC-Dimension of kinetic hypergraphs

In this section we prove that for many of the static
range spaces that have small VC-dimension, their ki-
netic counterparts also have small VC-dimension. We
start with the family Hd of all halfspaces in Rd.

Theorem 3 Let P ⊂ Rd be a set of moving
points with bounded description complexity s. Then,
the kinetic-range space (P,Hd) has VC-dimension
bounded by O(d log d).

To prove Theorem 3, we need the following known
definition and lemma (see, e.g., [6]). The primal shat-
ter function of a hypergraph H = (V, E) denoted by
πH is a function:

πH : {1, . . . , |V |} → N

defined by πH(i) = maxV ′⊆V,|V ′|=i|H[V ′]|, where
|H[V ′]| denotes the number of hyperedges in the sub-
hypergraph H[V ′].

Lemma 4 Let H = (V, E) be a hypergraph whose
primal shatter function πH satisfies πH(m) = O(mc)
for some constant c ≥ 2. Then the VC-dimension of
H is O(c log c).

Proof. [Proof of Theorem 3] By Lemma 4 it suf-
fices to bound the primal shatter function πHd

(m)
by a polynomial of constant degree. It is a well
known fact that the number of combinatorially dis-
tinct half-spaces determined by n (static) points in
Rd is O(nd). This can be easily seen by charging hy-
perplanes to d-tuples of points (using rotations and
translations) and observing that each tuple can be
charged at most a constant (depending on the dimen-
sion d) number of times. Thus, at any given time, the
number of hyperedges is bounded by O(nd). Next,
note that as t varies, a combinatorial change in the
hypergraph (P (t),R) can occur only when d+1 points
p1(t), . . . , pd+1(t) become affinely dependent. Indeed,
a hyperedge is defined by a hyperplane that contains
d points of P (t), and that hyperedge changes when an
additional point of P (t) crosses the hyperplane (and
thus d + 1 points become affinely dependent). This
happens if and only if the following determinant con-
dition holds:

∣∣∣∣∣∣∣∣∣

x11(t) x12(t) · · · x1d(t) 1
x21(t) x22(t) · · · x2d(t) 1

...
...

. . .
...

...

xd+1
1 (t) xd+1

2 (t) · · · xd+1
d (t) 1

∣∣∣∣∣∣∣∣∣
= 0 (1)

where xji (t) denotes the i’th coordinate of pj(t). The
left side of the equation is a univariate polynomial of
degree at most ds. By our general position assump-
tion this polynomial is not zero for some instant of
time. In particular, it cannot be identically zero and
thus it can have at most ds solutions.

That is, a tuple of d + 1 points of P (t) generates
at most ds events. Hence, the total number of such
events is bounded by O(

(
n

d+1

)
) = O(nd+1). Between

any two events we have O(nd) distinct halfspaces,
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thus we can have O(n2d+1) distinct ranges distributed
along all instants of time.

Since each hyperedge is defined by the points on
its boundary, this property is hereditary. That is,
for any subset P ′ ⊆ P the hypergraph H[P ′] has at
most O(|P ′|2d+1) hyperedges. Thus, the shatter func-
tion satisfies πH(m) = O(m2d+1). Then by Lemma 4,
(P,Hd) has bounded constant VC-dimension, where
the constant depends only on d and s. �

Theorem 3 can be further generalized to arbitrary
ranges with so-called bounded description complexity
as defined below:

Theorem 5 Let R be a collection of semi-algebraic
subsets of Rd, each of which can be expressed as a
Boolean combination of a constant number of poly-
nomial equations and inequalities of maximum degree
c (for some constant c). Let P be a set of moving
points in Rd with bounded description complexity.
Then the kinetic range-space (P,R) has bounded VC-
dimension.

Proof. The proof combines Lemma 4 with Theo-
rem 3 and the so-called Veronese lifting map from
Algebraic Geometry. Proof is similar to the proof for
the static case. See, e.g., [6]. �

4 Applications

Balanced Voronoi cells for moving points

Given a set P of moving points or clients, we are in-
terested in locating k facilities so that at each instant
of time no facility serves too many clients (assuming
that each client goes to its nearest facility).

Proof. [Sketch of the proof of Theorem 1] First we
show that the kinetic hypergraph H = (P,W) in-
duced by all bounded cones (i.e. the intersection of
an infinite cone with a ball centered at the apex of
the cone) has constant VC-dimension, and construct
an ε-net N for H with ε = 1

k (this net is certified to
exist thanks to Theorems 2 and 3). We claim that N
satisfies the desired property.

Let Cd be the minimum number of sixty degrees
caps that are needed to cover the unit sphere Sd−1
(such a constant always exists and depends only on
d). Assume to the contrary that the Voronoi cell of
q(t) contains a subset P ′(t) ⊂ P (t) of more than
Cdn/k points. By the pigeonhole principle, at least
n/k + 1 of the points of P ′(t) lie in a 60-degrees in-
finite cone W and has q(t) as its apex. Consider the
(inclusionwise) smallest bounded cone W ′ ∈ W such
that W ′ ⊂W and both cones contain the same points
of P (t). Translate W ′ infinitesimally so that q(t) is
not in the cone, but no other point enters or leaves the
cone. This cone has more than n/k points of P ′(t),

so it must contain another point q′(t) of N(t). By the
triangle inequality, there must be a point in that cone
whose closest point is q′(t), contradicting the fact that
it belongs to Voronoi cell of q(t). �

Corollary 6 Let N ⊂ P , |N | = O(k log k), as in
Theorem 1. Then, for any finite point set S ⊂ Rd,
and for any t ≥ 0, the cell of any q ∈ S in the Voronoi
diagram Vor(N(t)∪S) contains at most O(n/k) points
of P (t).

Remark We note that the bound of O(k log k) in
Theorem 1 is near optimal already for d = 1 and
points moving linearly. This follows from a recent
lower-bound construction of Alon [1] for ε-nets for
static hypergraphs consisting of points with respect
to strips in the plane. See more details in [2].

Low interference for moving transmitters

In the following we define the concept of (receiver-
based) interference of a set of ad-hoc sensors [9]. Let
P = {p1, . . . , pn} be a set of n points in Rd and let
r1, . . . , rn be n non-negative reals representing the
transmission radii assigned to the points p1, . . . , pn,
respectively. Let G = (P,E) be the graph as-
sociated with this power assignment, where E =
{{p, q} : d(p, q) ≤ min{rp, rq}}. Let D = {d1, . . . , dn}
denote the family of balls where di is the ball centered
at pi and having radius ri.

Let I(D) denote the maximum depth of the ar-
rangement of the balls in D. We call I(D) the in-
terference of D. Note that both G and I(D) are de-
termined by P and r1, . . . , rn. Given a set P of points
in Rd, the interference minimization problem asks for
the power assignment with smallest possible interfer-
ence among the assignments whose underlying graph
is connected.

Empirically, it has been observed that networks
with high interference have large probability of mes-
sages colliding [9]. Thus, a significant amount of re-
search has focused in the creation of connected net-
works with low interference. Among other results, we
highlight the one of Halldórsson and Tokuyama [3]
that any pointset P of n points in Rd has a radius
assignment whose associated interference is O(

√
n).

Here, we turn our attention to the kinetic version
of the interference problem in arbitrary but fixed di-
mension. We wish to maintain a connected graph of
a set of moving points that always has low interfer-
ence. Unless the distances between sensors remain
constant, no static radii assignment can work for a
long period of time since points will eventually be far
from each other. Instead, we describe the network in
a combinatorial way. That is, we look for a function
f : P × [0,∞) → P that determines, for each sensor
of P and instant of time, its furthest away sensor that
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must be reached. Then, at time t the communication
radius of a sensor p ∈ P is simply set equal to the
distance between p and f(p, t). Ideally, we would like
to construct a network that not only has small in-
terference for all instants of time, but also limits the
number of combinatorial changes in the graph along
time.

Theorem 7 Let P be a set of n moving points in Rd

with bounded description complexity s. Then there
is a power assignment such that at any given time t
we have I(P (t)) = O(

√
n log n). Moreover, the total

number of combinatorial changes in the network is at
most O∗(n1.5

√
log n) where the O∗ notation hides a

term involving the inverse Ackermann function that
depends on d and s.

Proof. [Sketch] As in the static case [3], we use The-
orem 1 for k =

√
n/ log n to obtain a set N of size

O(k log k) with the properties guaranteed by Theo-
rem 1. The elements of N are called hubs, and we
map to each point of N its furthest point in P . We
map non-hub points p ∈ P \ N to their nearest hub.
Equivalently, if we consider the Voronoi diagram with
sites N(t), function f(p, t) will match point p(t) with
the site associated to the Voronoi cell that contains
p(t) at time t (the mapping for points of N is similar,
but we would use the farthest point Voronoi diagram
instead).

Each point of P \N has radius large enough to reach
one point of N , and all points of N form a clique,
thus the network is connected. Regarding interfer-
ence, by Corollary 6, we know that no point q ∈ Rd

can be reached by more than O(n/k) points of P \N
at any instant of time. Thus, the total interference
of any point q ∈ Rd is at most O(k log k) from hubs
(since |H| = O(k log k)), and at most O(n/k) from
non-hubs. Since k =

√
n/ log n we obtain the claimed

bound.
The bound on the number of combinatorial changes

follows from the fact that we are tracking changes
in upper and lower envelopes of a family of one-
dimensional functions (i.e., pairwise distances along
time). For any two points p, p′ ∈ P , the function
d(p(t), p′(t)) is algebraic of bounded degree. Thus,
any two such functions cross O(s) times. This allows
us to use the Davenport-Schinzel Theorem to bound
the overall number of combinatorial changes of the
network. �

5 Conclusions

We showed that for many range-spaces with bounded
VC-dimension, the kinetic version of such range-
spaces, a more complex and rich structure, still has a
bounded VC-dimension. We believe that the bound-
edness of the VC-dimension of the kinetic hypergraphs

is of independent interest and hope that further re-
search will reveal more applications (some of which
can be found in [2]).
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Finding the k-Visibility Region of a Point in a Simple Polygon in the
Memory-Constrained Model
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Abstract

We study the problem of k-visibility in the memory-
constrained model. In this model, the input resides
in a randomly accessible read-only memory of O(n)
words with O(log n) bits each. An algorithm can read
and write O(s) additional words of workspace during
its execution, and it writes its output to write-only
memory. In a given polygon P , for a given point q ∈
P , we say a point p is inside the k-visibility region
of q iff the segment pq intersects the boundary of P
at most k times. Given a simple n-vertex polygon P
stored in a read-only array and a point q ∈ P , we
give a time-space trade-off algorithm which reports a
suitable representation of the k-visibility region of q in
O(n2/s+n log s) time usingO(s) words of workspace.

1 Introduction

Memory constraints on mobile and distributed devices
have led to an increasing concern among researchers
to design algorithms that use memory efficiently. One
common model to capture this notion is the memory-
constrained model [2]. In this model, the input re-
sides in a randomly accessible read-only array of O(n)
words with O(log n) bits each. There is an addi-
tional read/write memory consisting of O(s) words
of O(log n) bits each, called the workspace of the al-
gorithm. Here, s ∈ {1, . . . , s} is a parameter of the
model. The output is written to a write-only array.

For a given polygon P and a given point q ∈ P , the
point p ∈ P is k-visible from q iff the segment pq prop-
erly intersects the boundary of P at most k times (p
and q are not counted toward k). The set of k-visible
points of P from q is called the k-visibility region of q
within P , and is denoted Vk(P, q); see Figure 1. Vis-
ibility has a rich history in computational geometry
and other fields; see [6] for an overview. While the
0-visibility region is a connected component, the k-
visibility region may be disconnected. The k-visibility
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v3

v1 v2

q

v4

Figure 1: The gray region is V2(P, q). The vertices
v1, v2, v3 and v4 are critical for q. ∂P is partitioned
into chains v2v3, v3v1, v1v4 and v4v2.

region of a point inside the plane in presence of a poly-
gon can be computed in O(n2) time [3].

Using constant workspace, the 0-visibility region of
a point q ∈ P can be computed in O(nr̄) time, where
r̄ denotes the number of the reflex vertices of P in the
output [4]. When the workspace is increased to O(s),
the running time decreases to O(nr/2s + n log2 r) or
O(nr/2s + n log r) randomized expected time, where
s ∈ O(log r). Computing the 0-visibility region with-
out workspace limitations takes O(n) time [1].

We provide time-space trade-off algorithms for com-
puting the k-visibility region of a simple polygon P
from q ∈ P using a small workspace.

2 Preliminaries and definitions

We have a simple polygon P in a read-only array as a
list of n vertices in counterclockwise order along the
boundary and a query point q ∈ P . The aim is to re-
port a suitable representation of Vk(P, q), using O(s)
words of workspace. We assume that the vertices of P
are in weak general position, i.e., q does not lie on the
line determined by any two vertices of P . W.l.o.g.,
assume that k is even and that k < n. If k is odd,
we compute Vk−1(P, q) = Vk(P, q), and if k ≥ n, then
P is completely k-visible. The boundary of Vk(P, q)
consists of part of the boundary of P and some chords
that cross the interior of P to join two points on its
boundary. We denote the boundary of planar set U
by ∂U . Let θ ∈ [0, 2π), and let rθ be the ray from
q that forms an angle θ with the positive-horizontal
axis. The jth edge of P that intersects rθ, starting
from q, is denoted eθ(j). Only the first k + 1 inter-
sections of rθ ∩ ∂P are k-visible from q in direction θ.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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If rθ does not stab any vertices of P , then the edge
lists, i.e., the list of intersecting edges, of both rθ−ε
and rθ+ε, for a small enough ε > 0, are the same as
the edge list of rθ. However, if rθ stabs a vertex v of
P , then the edge lists of rθ−ε and of rθ+ε differ, for
any small ε > 0. The difference is caused by the edges
incident to v. If these edges lie on opposite sides of
rθ, then the edge list of rθ+ε can be obtained from the
edge list of rθ−ε by exchanging the name of the cor-
responding edge. However, if both incident edges of v
lie on the same side of rθ, then there are two edges in
the edge list of either rθ−ε or rθ+ε which are not in the
edge list of the other. In this case, we call v a critical
vertex; see Figure 1. The number of critical vertices
in P is denoted by c. The angle of a vertex v refers to
the angle between the ray qv and positive-horizontal
axis. A chain is defined as a maximal sequence of
edges of P which does not contain a critical vertex,
except at the beginning and at the end. Thus, ∂P is
partitioned into disjoint chains; see Figure 1.

Observation 1 Let C be a chain on P . Suppose we
are given an edge e of C, and a ray rθ. We can find
the edge eθ ∈ C which intersects rθ (if it exists) in
O(|C|) time using O(1) workspace.

When rotating the ray rθ around q, the structure
of the edge list of rθ (i.e., the chains and their order)
changes only when rθ stabs a critical vertex. We will
see that in this case a segment of rθ may belong to
∂Vk(P, q). A critical vertex v on rθ is counted as both
eθ(j) and eθ(j+1), if there are j−1 intersecting edges
with rθ between q and v. Obviously, v is k-visible if its
position on rθ is not after eθ(k+ 1). A critical vertex
v is called an end vertex if its edges lie on the right
side of qv, and it is called a start vertex otherwise.

Lemma 1 If rθ stabs a k-visible critical vertex v,
then the segment on rθ between eθ(k+2) and eθ(k+3)
(if they exist) is an edge of Vk(P, q).

Proof. If v is an end vertex, then for small enough
ε > 0, the edges eθ(k + 2) and eθ(k + 3) are re-
spectively eθ−ε(k + 2) and eθ−ε(k + 3), so they are
not k-visible in direction θ − ε. These edges are also
eθ+ε(k) and eθ+ε(k+1), so they are k-visible in direc-
tion θ+ε. Hence, the segment on rθ between eθ(k+2)
and eθ(k+3) belongs to ∂Vk(P, q), and Vk(P, q) lies on
the side of the segment which has direction θ+ ε; see
Figure 2. Similarly, if v is a start vertex, the same seg-
ment belongs to ∂Vk(P, q); in this case, Vk(P, q) lies
on the side of the segment with direction θ − ε. �

Lemma 1 leads to the following definition: for a ray
rθ that stabs a k-visible critical vertex v, the segment
between eθ(k+2) and eθ(k+3) (if they exist) is called
the window of rθ. The window is CCW if Vk(P, q) lies
to the left of rθ;(see Figures 2), and CW, otherwise.

wq v
rθ+ε

rθ−ε

rθ

Figure 2: For the ray rθ which stabs the end vertex
v, the segment w is a CCW window of V4(P, q).

Each window is identified by its two endpoints, and
each endpoint is represented by a triple (θ, j, type),
where j is the index of either eθ(k + 2) or eθ(k + 3)
in P (depending on the position of two endpoints of
a window on these edges) and type ∈ {CCW,CW}
specifies the type of the window. The set of endpoints
of windows of Vk(P, q) is denoted by Wk(P, q).

Observation 2 ∂Vk(P, q) has O(n) vertices.

Lemma 2 If there exists an algorithm A(P, q, k) in
the memory-constrained model for computing W =
Wk(P, q) in TA(n) time using SA(n) workspace, where
n is the number of vertices of P , then there exists
an algorithm A′(P, q,W ) in the memory-constrained
model that reports ∂Vk(P, q) in O(|W |TA(n)+n) time
using O(SA(n)) workspace.

Proof. The algorithm A′ works as follows: start from
a point w0 ∈ W and walk on ∂P in CCW direction
until the next element w1 ∈ W . If this walk is on
the k-visible side of w0 (which is specified by the type
of w0), report the visited edges of P ; otherwise, re-
port only the windows with endpoint(s) w0 and/or
w1. Repeat this procedure until the entire boundary
∂P has been traversed. Specifically, in step i of A′,
run algorithm A and find wi = (θi, ji, typei) which
minimizes ji, with ji > ji−1 for i 6= 0. If there is
more than one element which minimizes ji, choose
the one among them that minimizes |θi− θi−1| (mini-
mizes θi for i = 0). Since the output of A is write-only,
in each step i of A′ we have to run A again to find
wi, requiring O(|W |TA(n)) total time. Regarding the
workspace, in step i of A′ we store only wi−1 and wi;
however, for finding wi we need as much workspace as
A does. Thus, the workspace of A′ is O(SA(n)). �

Lemma 2 shows that given Wk(P, q) and P , we can
uniquely report ∂Vk(P, q). This motivates us to focus
on algorithms for computing Wk(P, q). We assume
that P has at least one critical vertex, if not, then
∂Vk(P, q) = ∂P . From now on, ei(j) denotes the jth

intersecting edge of the ray qvi, where vi is a critical
vertex of P . However, instead of ei(j), it suffices to
find an arbitrary edge of the chain containing ei(j)
and then apply Observation 1 to find ei(j). Therefore,
we refer to any edge of the chain containing ei(j) by
ei(j). The following algorithms, for any critical vertex
vi, examine its position relative to ei(k+1) on qvi and,
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q
ei−1(5)

ei(5)

vi−1

Figure 3: vi−1 is an end vertex. ei(5) is the second
intersecting chain to the right of ei−1(5).

if it is k-visible, reports the segment on qvi which is
between ei(k + 2) and ei(k + 3) (if they exist).

3 A constant-memory algorithm

In this section, we assume that only O(1) workspace is
available. Suppose that v0 is the critical vertex with
smallest angle. The algorithm starts from qv0 and
finds e0(k + 1) in O(kn) time using O(1) workspace.
Basically, the algorithm passes over the input k + 1
times, and in each pass, it finds the next intersecting
edge of qv0 until the (k + 1)th one, e0(k + 1). If v0
does not lie after e0(k+1) on qv0, in other words, if v0
is k-visible, it reports the window of qv0. Finding the
window can be done in two passes by determining the
first and the second intersecting edge after e0(k + 1)
on qv0. Then, the algorithm finds the next critical
vertex with smallest angle after v0; we call it v1. The
algorithm determines e1(k + 1), and if v1 is k-visible,
it reports the window of qv1 (if it exists). However,
for 1 ≤ i, we find ei(k + 1) in O(n) time by using
ei−1(k + 1). More precisely, if vi−1 is an end vertex,
then the incident edges to vi−1 do not intersect qvi;
see Figure 3. If vi is a start vertex, then the incident
edges to vi do not intersect qvi−1. Except for these
edges, all the other intersecting edges of qvi−1 inter-
sect qvi in the same order, and vice versa. Hence, if
ei(k + 1) intersects qvi−1, then there is at most one
other edge between ei−1(k+ 1) and ei(k+ 1) that in-
tersects qvi−1. Thus, ei(k+1) can be found in at most
two passes over the input. More accurately, we have
found only an edge of the chain of ei(k+ 1); applying
Observation 1, the edge ei(k + 1) can be obtained.
The algorithm repeats the above procedure until all
critical vertices have been processed. Since the num-
ber of critical vertices is c, and since processing each
critical vertex takes O(n) time, except for v0, which
takes O(kn) time, the running time of the algorithm
is O(kn + cn), using O(1) workspace. This leads to
the following theorem:

Theorem 3 Given a simple polygon P with n ver-
tices in a read-only array, a point q ∈ P , and a
constant k ∈ N, there is an algorithm which reports
Wk(P, q) in O(kn+ cn) time using O(1) workspace.

4 Memory-constrained algorithms

In this section, we assume O(s) workspace is available,
and we show how to exploit this for a faster algorithm.
The following lemma is implicitly mentioned in [5]
(the second paragraph in the proof of Theorem 2.1)

Lemma 4 Given a read-only array A of size n, O(s)
additional workspace and a specific element x ∈ A,
there is an algorithm that finds the s smallest ele-
ments in A that are larger than x in O(n) time.

Proof. In the first step, insert the first 2s elements
of A that are larger than x into workspace memory
(without sorting them). Select the median of the 2s
elements in memory in O(s) time, and remove the
elements which are larger than the median. In the
next step, insert the next batch of s elements of A
that are larger than x into memory and again find
their median. Remove the elements larger than the
median. Repeat the latter step until all elements of
A are processed. Clearly, at the end of each step, the
s smallest elements among those processed so far are
in memory. Since the number of batches is O(n/s),
the running time is O(n) using O(s) workspace. �

Lemma 5 Given a read-only array A of size n and
O(s) additional workspace, there is an algorithm that
finds the kth smallest element in A in O(dk/sen) time.

Proof. In the first step, apply Lemma 4 to find the
first batch of s smallest elements in A and to insert
them into memory in O(n) time. If k < s, select the
kth smallest element in memory in O(s) time; other-
wise, find the largest element in memory. In step i,
apply Lemma 4 to find the ith batch of s smallest ele-
ments of A and insert them into memory. If k < i · s,
select the (k− (i−1)s)th smallest element in memory
in O(s) time; otherwise, find the largest element in
memory and repeat. The element being sought is in
the dk/seth batch of s smallest elements; therefore,the
running time is O(dk/sen) using O(s) workspace. �

There is an O(n log logs n) expected time random-
ized algorithm for the selection problem using O(s)
workspace in the read-only model [7]. Depending on
k, s, and n, we choose the latter algorithm or the one
in Lemma 5. In each iteration of the following algo-
rithm, we find the next batch of s critical vertices with
smallest angles and sort them in memory. Then, we
construct a data structure T that contains the possi-
ble candidates for the (k + 1)th intersecting edges of
the rays from q to the critical vertices of the batch.
In each step, when we process a critical vertex of the
batch, we use T to find the window of the critical ver-
tex, and we update T . For updating T efficiently, we
use another data structure Tθ; see below. We repeat
this procedure for the next batch of s critical vertices.
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As in the constant-memory algorithm, we find the
critical vertex v0 with smallest angle. We apply
Lemma 4 to find the batch of s critical vertices with
smallest angles after v0, and we sort them in mem-
ory. For qv0, we apply Lemma 5 to find e0(k + 1),
and if v0 is k-visible, we report the window (if it ex-
ists). Then, we apply Lemma 4 to find the two batches
of 2s adjacent intersecting edges to the right and to
the left of e0(k + 1) on qv0, we insert them in a bal-
anced search tree T . Hence, T stores all e0(j), for
k+ 1− 2s ≤ j ≤ k+ 1 + 2s, in sorted order according
to their intersection with qv0. These edges are can-
didates for the (k + 1)th intersecting edge of the next
s rays in angular order or ei(k + 1), for 1 ≤ i ≤ s.
This is because, as we explained before, if ei(k + 1)
intersects qvi−1, then there is at most one other edge
between ei−1(k+1) and ei(k+1) that intersects qvi−1.
Therefore, ei(k + 1) is either an intersecting edge of
qv0, and in this case there are at most 2i − 1 edges
between e0(k+1) and ei(k+1), or ei(k+1) is an edge
which is inserted in T later. Then for each edge in T
we determine the larger angle of its endpoints. This
angle shows the position of the endpoint between the
rays from q to the critical vertices. Specifically, if the
edge is incident to a non-critical vertex, this angle de-
termines the step in which the name of the edge in T
should be updated to the other incident edge to the
vertex. By traversing ∂P we determine these angles
for the edges in T , and we insert them in a balanced
search tree Tθ, whose entries are connected through
cross-pointers to their corresponding edges in T . We
construct Tθ in O(n+ s log s) time.

After creating T and Tθ, we start from the next
critical vertex with smallest angle after v0, called v1,
and we update T so that it contains the edge list of
qv1: If there is any angle in Tθ which is smaller than
the angle of v1, we change the corresponding edge of
the angle in T with its previous or next edge in P .
In other words, we have found a non-critical vertex
between qv0 and qv1 and so we change its incident
edge, which has been already in T , with its other in-
cident edge. Then we find the angle of the new edge
and insert it into Tθ. These two steps take O(1) and
O(log s) time for each angle that meets the condition.
By doing these steps, changes in the edge list which
are caused by non-critical vertices between qv0 and
qv1 are handled. Then we update T and consequently
Tθ according to the type of v1: if v1 is an end (start)
critical vertex, we remove (insert) the two edges which
are incident to v1. In both cases, we update T only if
the incident edges to v1 are in the interval of the 2s
intersecting edges of qv0 in T , this takes O(log s) time.
Now T contains 2s intersecting edges of qv1, and we
can find e1(k + 1) using the position of e0(k + 1) and
its neighbours in T in O(1) time. We repeat this pro-
cedure for 1 ≤ i ≤ s, and we determine ei(k + 1) and
the window of qvi by using T and ei−1(k + 1).

After processing the first batch, we apply Lemma 4
to find the next batch of s critical vertices with small-
est angle, and we sort them in memory. The last
updated T is not usable anymore, because it does
not necessarily contain any right or left neighbours of
es(k + 1). Applying Lemma 4 as before, we find the
two batches of 2s adjacent intersecting edges to the
right and to the left of es(k+ 1) on qvs and we insert
them into T . We also update Tθ. Then similarly for
each s < i ≤ 2s, we find ei(k+ 1) and its correspond-
ing window, and we update T and Tθ. In summary,
updating T considering the changes that are caused
by critical and non-critical vertices of the batch takes
respectively O(s log s) and O(n′ log s) time, where n′

is the number of non-critical vertices that lie on the
interval of the batch. In the next iteration, we re-
peat the same procedure for the next batch of critical
vertices. We stop when all critical vertices are pro-
cessed. Since the batches do not have any intersec-
tions, each non-critical vertex lies only on one batch.
Thus, updating T in all batches takes O(n log s) time.
All together, finding the batches of s critical vertices,
constructing and updating the data structures and re-
porting the windows take O(cn/s+n log s) time for all
the critical vertices, in addition to the running time
of k-selection in the first batch.

Theorem 6 Given a simple polygon P with n ver-
tices in a read-only array, a point q ∈ P , and a
constant k ∈ N, there is an algorithm which reports
Wk(P, q) in O(cn/s+n log s+min{kn/s, n log logs n})
time using O(s) workspace.
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Minimal Witness Sets For Art Gallery Problems
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Abstract

We study the problem of finding witness sets for poly-
gons which can be used as a first step to solve the
problem of guarding art galleries. For a polygon P , a
set W ⊆ P is called a witness set if every set G that
guards W , is guaranteed to guard P . Previous study
exists for computing a minimal witness set of points
for polygons. However, very few polygons admit wit-
ness sets of points. Here we propose an algorithm for
computing witness sets of points, line segments and,
if necessary, regions in O(n4) time. The output wit-
ness set is shown to be minimal if the input polygon
has one, otherwise is shown to be near-minimal (as
defined later in the paper). This algorithm also de-
termines whether guarding the boundary of a polygon
is sufficient to guard the entire polygon.

1 Introduction

The Art Gallery Problem (AGP) was proposed by
Klee to Chvatal in 1973 as a challenge to find the
point locations of a minimum number of guards such
that each point on the walls of an art gallery is seen
by at least one guard [3]. In general, gallery interior
needs to be guarded as well. Both the original [4] and
the generic [6] versions of AGP are proven to be NP-
hard. It is clear that a solution for the generic version
also guards the wall, but the reverse proposition is not
the case. Over the years many other versions of AGP
have also been studied as surveyed in [7, 9].

A common approach to solve AGP for a polygon P
employs integer programming and uses a formulation
with two parameters: AGP(X,Y ), where X,Y ⊆ P ,
X is the set of possible guard locations and Y is the
set of points to be guarded [8]. Note that AGP(X,P )
and AGP(P, Y ) are upper and lower bounds respec-
tively on the minimum number of guards. Various
heuristics are used to initialize X and Y and then
iteratively insert elements into them until lower and
upper bounds converge.

The original witnessability problem formulation is
credited to Joseph Mitchell in a paper by Chwa et
al. [2]. A witness set W of a polygon P is defined
as a set such that if any set G that guards W also
guards P . The straight-forward use of witnessabil-
ity concept is checking the visibility of a subset of a

∗CISE Department, University of Florida, Gainesville
[ayaz,ungor]@cise.ufl.edu

+ε
v v

Figure 1: Three polygons admitting no witness set
of points only. (Left) polygon has a minimal witness
set of points and segments. (Middle) polygon has no
minimal witness set but a near-minimal one, as it is
necessary to include vv+ε. (Right) polygon has a min-
imal witness set of three points and an interior region.

polygon instead of the whole polygon from a guard
set. If a witness set consists of lower dimensional el-
ements there can be further algorithmic advantages.
Another use is within the initialization step of the
integer programming approach discussed above. Us-
ing appropriate witness points as Y results in early
convergence. Unfortunately, not all polygons admit a
finite witness set of points (See Figure 1).

Here we extend the concept of witnessability us-
ing sets with points, line segments and if necessary
regions. We propose an algorithm that finds a (near)-
minimal witness set and, as a consequence, determines
whether a solution for AGP(P , ∂P ) guarantees a so-
lution for AGP(P , P ) i.e., ∂P is a witness set for P .

2 Preliminaries

The input for the witnessability problem is a sim-
ple (non-convex) polygon P with n vertices where
int(P ), and ∂P denote the interior and the bound-
ary of P , respectively. For a reflex vertex v of P ,
let v−ε, v+ε ∈ ∂P be two infinitesimally close points
to v on clockwise and counter-clockwise traversals, re-
spectively. Next, we review some concepts and results
from [2].

Two points p, q ∈ P see each other if the whole line
segment pq is in P . If a point p in P sees a reflex
vertex v of P and the ray −→pv continues in P after
hitting v then we say p sees past v. If the exterior
part of the polygon is on the left side of −→pv in the
immediate neighborhood of v then we say p sees past
left v. Similarly, if the exterior is on the right, p sees
past right v. (See Figure 2). For an edge e of P in
counter-clockwise orientation, the half-plane induced
by e is the set of points on the left side of the line

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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through e and is denoted as l+(e). For two points
p, v ∈ P such that p sees past left (right) v, let l+(p, v)
denote the half-plane that is right (left) of the line −→pv.
The closures of the half-planes l+(e) and l+(p, v) are
denoted as lc(e) and lc(p, v).

The set of points in P that can be seen from a point
p ∈ P is called the visibility polygon of p [5], denoted
as V(p). The set of points that can see every point
in V(p) is called the visibility kernel of p, denoted as
VK(p). For a set of points S, we use VK(S) as the
union of the visibility kernels of the points in S.

A witness set can also be defined as a finite set W ⊆
P such that, for any set of point guards G in P , W ⊆⋃
g∈G V(g) implies

⋃
g∈G V(g) = P . If W is a witness

set for P , then W is said to witness P . The same
verb, to witness, can also be used with other geometric
entities like points, if seeing the subject guarantees the
object to be seen. A witness set W for P is said to
be minimal if there exists no proper subset of W that
witnesses P . If there exists a minimal witness set for
P , then P is a minimalizable polygon. Otherwise, P
is a non-minimalizable polygon.

Theorem 1 [2]. A point set W is a witness set for
a polygon P if and only if VK(W ) = P . Also the
following statements are equivalent for p, q ∈ P :
(i) p witnesses q; (ii) q ∈ VK(p); (iii) VK(q) ⊆ VK(p).

Let p be a point on the boundary of P . Let E(p)
denotes the set of edges of P of which p sees at least
one interior point. We define RM(p), as the short
form of rightmost vertex of p, the first vertex that
p sees past left in counter-clockwise order from the
viewpoint of p as the rightmost vertex with respect to
p and denote as. The leftmost vertex of p, LM(p),
is defined symmetrically. If p does not see past left
(right) any vertex, then we set RM(p)(LM(p)) as the
next vertex on ∂P in (counter-)clockwise order. Then,
as proven by Chwa et al. [2], we have:

VK(p) = lc(p,RM(p)) ∩ lc(p, LM(p)) ∩
⋂

f∈E(p)

lc(f) (1)

3 Minimal and near-minimal witness sets

In this section, we define the lemmas and theorems to
be used in our algorithm that finds a (near)-minimal
witness set for a simple polygon.

3.1 Witnesses on the boundary of the polygon

We define anchor points to subdivide the boundary
of the input polygon. Anchor points consist of three
types: 1. The vertices of the polygon. 2. For each
reflex vertex, the boundary points where the exten-
sion of each of the two edges incident to it hit first.
3. For every pair of reflex vertices that see past each
other, the boundary points where the two extensions

3

p1 p2

p3

1v v2

v

Figure 2: Partition of a polygon boundary and induc-
ing line segments and their extensions. v1(Type 1),
p3(Type 2) and p1(Type 3) are three of the 32 anchor
points. The line segment v1v3 is a cross line but v1v2
is not. Here, p1 sees past right v1 while p2 sees past
left v1.

of the line segment between them hit first (See Fig-
ure 2). The line segments between two consecutive
anchor points are anchor edges.

Observation 1 Every point on an anchor edge sees
past left and right the same set of reflex vertices (due
to Type 2 anchor points). Also these points (par-
tially) sees the same set of edges (due to Type 3 an-
chor points). Moreover the leftmost and the right-
most reflex vertices a point sees past is the same for
all points within an anchor edge.

We classify the boundary points of P exclusively
into five types according to the vertices they see past
left and/or right. If a boundary point p doesn’t see
past any vertex except the ones incident to the edge(s)
p belongs to, it is of Type Z (See Figure 3). If there
exists a vertex p sees past left but there are no vertices
p sees past right, then p is of Type L. The symmetric
version of Type L is Type R. If there exist a vertex
p sees past left and another vertex p sees past right,
there are two possibilities: If VK(p) = {p}, then we
say that p is of Type D. Otherwise, p is of Type N.
Since the type of points within an anchor edge is the
same, we also use these types for anchor edges.

p

1

2

3 4

5

p

p

p p

Figure 3: p1 is of Type R, p2 is of Type Z, p3 is of
Type N, p4 is of Type L, p5 is of Type D

Lemma 2 Let e be an anchor edge, and p and p′ be
any two interior points of e in counter-clockwise order.
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If e is of Type L, then p witnesses p′. Similarly if e is
of Type R, then p′ witnesses p.

Proof. Consider the case e is of Type L. Notice that
E(p) = E(p′) from Observation 1. Hence, p′ ∈⋂
f∈E(p) lc(f) =

⋂
f∈E(p′) lc(f). Due to the orienta-

tion of p and p′ along the boundary p′ ∈ lc(p,RM(p)).
From (1), we have p′ ∈ VK(p) and from Theorem 1
p witnesses p′. The symmetric case can be proven
similarly. �

Theorem 3 Let e be an anchor edge, v1 and v2 be
the endpoints of e in counter-clockwise order, and p
be an interior point of e. Let A =

⋂
f∈E(p) l

c(f), B =

l+(v1, RM(p)) ∪ RM(p), and C = l+(v2, LM(p)) ∪
LM(p). VK(e) can be calculated using finitely many
half-plane intersections:
(a) If e is of Type D, then VK(e) = e
(b) If e is of Type Z, then VK(e) = A
(c) If e is of Type L, then VK(e) = A ∩B
(d) If e is of Type R, then VK(e) = A ∩ C
(e) If e is of Type N, then VK(e) = A ∩B ∩ C

Proof. (a) It follows from the definition of Type D.
(b) From (1) we have:

VK(e) =
⋃

q∈e
VK(q) =

⋃

q∈e

⋂

f∈E(q)

lc(f) = A

(c) From (1), Theorem 1 and Lemma 2, we have:

VK(e) =
⋃

q∈e
VK(q) =

⋃

q∈e
(lc(q,RM(q)) ∩

⋂

f∈E(q)

lc(f))

= A ∩
⋃

q∈e
lc(q,RM(q)) = A ∩B

(d) The symmetric case of part (c).
(e) From (1), we know that VK(p) ⊂ A, hence
VK(e) ⊆ A. Also, due to the orientation of the
points on e, A ∩ lc(p,RM(p)) ⊂ A ∩ B. With
this and the symmetrical equivalent, we can see that
VK(e) ⊆ A ∩B ∩ C.

To prove the equivalence, we need to show that ev-
ery point in A ∩ B ∩ C needs to be witnessed by a
point on e. When p approaches to v1, VK(p) con-
verges to A ∩ B ∩ lc(v1, LM(p)). With this and the
symmetric version, we have (A∩((B∩ lc(v1, LM(p))∪
(C ∩ lc(v2, RM(p))) ⊂ VK(e). For the rest of the
points, let r be a point in (A ∩ B ∩ C) \ (A ∩ ((B ∩
lc(v1, LM(p))∪(C∩lc(v2, RM(p))). Let r′ be the first
point the ray −→v1r hit on ∂P . Observing that r′ ∈ e
implies r ∈ VK(r′). �

3.2 Witnesses in the interior of the polygon

For every pair of reflex vertices that see past left each
other or see past right each other, line segment be-
tween them is called a cross line (See Figure 2). A

point p ∈ P \ VK(∂P ) is called a ordinary point if it
is not on a cross line.

Proofs of Lemmas 4-8 are omitted due to space lim-
itations. They can be found in the complete version.

Lemma 4 Let p is a point on the cross line vu that is
not in VK(∂P ). If p is not on the closure of VK(∂P ),
then VK(p) = {p}. Otherwise VK(p) ⊆ vu.

Lemma 5 A ordinary point p can only witness itself,
i.e., VK(p) = {p}. Moreover p is present in every
witness set of P .

3.3 Minimal witness sets

Following lemmas establish the groundwork of our re-
sults on minimal witness sets.

Lemma 6 Let p and q be distinct points. If VK(p) ⊂
VK(q), then p cannot be in any minimal witness set.

Lemma 7 If a point p is in VK(∂P ) \ ∂P then p
cannot be in any minimal witness set.

Lemma 8 If a point p on ∂P is not witnessed by an-
other point on ∂P , then p has to be in every minimal
witness set.

Theorem 9 A minimal witness set consist of a set of
boundary elements, all ordinary points, and at least
one point on each cross line that is in P \ VK(∂P ).

Proof. Let p ∈ P . Then p has to be one of these three
disjoint sets: VK(∂P ), ordinary points and points on
cross lines that are not in VK(∂P ). Lemma 5 states
that ordinary points are in any witness set including
a minimal one. Lemma 7 states that the points that
are in VK(∂P )\∂P cannot be in any minimal witness
set. Points on cross lines that are not in VK(∂P )
needs to have at least one point in a minimal witness
set according to Lemma 4. �

It is clear that not all polygons admit unique min-
imal witness sets as we can choose any point on a
Type Z anchor edge and, for some cases, any point on
a cross line. Other than those, the ordinary points are
proven to be necessary in any witness set via Lemma
5. Also the points that are witnessed by ∂P proven
not to be in any minimal witness set via Lemma 7.
Therefore miminal witness sets for P differ by finitely
many points and the cardinalities of them are equal.

3.4 Near-minimal witness sets

Suppose we have an edge segment with points Type
L (R) and the left (right) endpoint of the segment is
a reflex vertex. Using Lemma 2 we can show that for
any point p, there is another point on the left (right)
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of p that witnesses p. However the line segment is
open and we cannot reach on the left (right) endpoint
of the line segment but we need to keep at least one
point arbitrarily close to the reflex vertex. For these
cases, we use the infinitesimally short line segments
pp−ε or pp+ε in the witness set. (See Figure 1)

Definition 1 (Near-minimality) Let W be a witness
set for a non-minimalizable polygon P . W is near-
minimal if it can be divided into two disjoint sets,
Wmin and Wε such that Wε consist of finitely many
infinitesimally short line segment and removal of any
element from Wmin or Wε makes W to violate the
witnessing condition of W . We also call each element
of Wε as an ε-witness.

Analogous results to Lemmas 7, 8, and Theorem 9
for near-minimal witness sets are rather immediate,
however omitted here for the sake of brevity.

4 Algorithm

We use a subdivision of the polygon based on an ar-
rangement of line segments of following three types: 1.
Extensions of edges that are incident to reflex vertices
until they hit other boundary points. 2. For each an-
chor point p, the line segments from p to LM(p) and
RM(p). 3. For each anchor edge v1v2, let p be an
interior point of v1v2; the line segments from v1 to
RM(p) and from v2 to LM(p). We denote this sub-
division as A(P ) (stored as a doubly connected edge
list) and the contiguous regions in the interior of the
arrangement as cells.

Let W be a candidate (near-)minimal witness set
initialized to be empty. For each cell c, we record the
number of elements in W that witnesses c as count(c).
For each directed line segment s of A(P ), incident to
cells cl and cr, ∆count(s) stores count(cl)−count(cr).
Each line segment is marked once it is witnessed. The
algorithm consists of five steps:

1. Find the anchor points and the edges they (par-
tially) see: For this purpose, we simply employ a stan-
dard linear time visibility algorithm [5] per vertex re-
sulting in a total cost of O(n2) time.

2. Compute A(P ): There can be at most O(n2) line
segments, therefore it takes O(n2 log n+k) time where
k is the number of intersecting points [1], which is in
O(n4). Hence, the total time for this step is O(n4).

3. Find the elements of a (near-)minimal witness
set on ∂P : The visibility kernel of each anchor point
or edge is contiguous and inclusive. Therefore we can
traverse the boundary of the visibility kernel starting
from the anchor point or edge. When we insert an el-
ement b to W , we traverse the boundary of VK(b) in
counter-clockwise order and we increment the ∆count
value of each line segment by one and decrement the
∆count of the opposite direction. When we remove an

element fromW , which happens when another bound-
ary point witnesses an element on W , we backtrack
this increment/decrement. For Type N and D, the
whole line segments are inserted to W . To keep the
minimality of W , for Type D, we chose the middle
point to be inserted to W . For Type L (R), we in-
sert the left (right) endpoint of the line segment to
W if it is not a reflex vertex. If the endpoint is a
reflex vertex, we insert an ε-witness incident to the
corresponding end point. Note that the visibility ker-
nels of both anchor points and anchor edges are con-
vex. Therefore, each of O(n2) line segments of A(P )
can intersect a visibility kernel twice. There can be
at most O(n2) visibility kernels. Therefore this step
costs O(n4) time.

4. Find the cells of a (near-)minimal witness set
in int(P ): The count values can be retrieved start-
ing from a boundary cell and using the ∆count values
of incident line segments of A(P ). At the end, we
insert the cells that have witness count 0 and the un-
witnessed line segments of A(P ) that are not in the
closure of VK(∂P ) to W . As a last step, we traverse
each line segment s on the boundary of VK(∂P ). If
s /∈ VK(∂P ) we insert either s or a single point of s
depending if s is on a cross line. This step is done in
O(n4) time.

If there exists no ε-witness element in W then W is
minimal. Otherwise the polygon is not minimalizable
and W is near-minimal. If step 4 does not find an el-
ement in int(P ), then ∂P witnesses P . As we can see
from the steps, the algorithm works in O(n4) time.

References

[1] B. Chazelle, H. Edelsbrunner, An optimal algorithm
for intersecting line segments in the plane, Proc. 29th
IEEE Symp. on Found. of Comp. Sci., 217-225, 1988.

[2] K.-Y. Chwa, B.-C. Jo, C. Knauer, E. Moet, R. van
Oostrum, and C.-S. Shin, Guarding Art Galleries by
Guarding Witnesses. Int. J. Comp. Geometry Appl.,
16(2-3): 205-226, 2006.

[3] R. Honsberger, Mathematical Gems II, Mathematical
Association of America, 1976.

[4] A. Laurentini. Guarding the walls of an art gallery,
The Visual Computer, 15(6):265-278, 1999.

[5] D.T. Lee, Visibility of a simple polygon, Comp. Vi-
sion, Graphics, and Image Processing 207-221, 1983.

[6] D.T. Lee and A. K. Lin, Computational complexity
of art gallery problems. IEEE Trans. Inf. Theor.,
32(2):276-282, 1986.

[7] J. O’Rourke, Art Gallery Theorems and Algorithms.
Oxford University Press, 1987.

[8] P. J. de Rezende, C. C. de Souza, S. Friedrichs,M.
Hemmer, A. Krller and D. C. Tozoni, Engineering
Art Galleries. arXiv preprint arXiv:1410.8720.

[9] J. Urrutia, Art gallery and illumination problems.
Handbook on Comp. Geo., North-Holland. 973-1027,
2000.

198



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Reconstructing a Unit-Length Orthogonally Convex Polygon from its
Visibility Graph

Nodari Sitchinava∗ Darren Strash†

Abstract

Reconstructing a polygon from its visibility graph
is a fundamental problem, and it is still unknown
if simple polygons can be reconstructed in poly-
nomial time. We show that a restricted class of
polygons—orthogonally convex polygons with unit-
length edges—can be reconstructed from an n-vertex
visibility graph in O(n4) time.

1 Introduction

Recognizing visibility graphs and reconstructing their
polygons are fundamental problems that are known
to be in PSPACE [3], but it is still unknown if sim-
ple polygons can be recognized in polynomial time.
Therefore, most research has focused on finding ef-
ficient algorithms for restricted classes of polygons,
such as spiral [4] and funnel polygons [2]. Surpris-
ingly, very few results exist for even orthogonal poly-
gons: we are only aware of efficient algorithms to rec-
ognize convex fans, which consist of a single staircase
with an additional vertex [1]. Other algorithms for or-
thogonal polygons assume extra visibility information
is given, such as edge-edge visibility [7, Section 7.3],
or “vertical stabs,” which capture visibility between
vertical edges [6]. See Ghosh’s book [5] for a thorough
review of results on visibility graphs.

2 Preliminaries

Let P be a polygon on n vertices and edges. We say
that two points p and q are visible in P if line segment
pq is in P . Further, a visibility graph GP = (VP , EP )
of polygon P has a vertex vp ∈ VP for each vertex p
of P , and an edge (vp, vq) ∈ EP when vertices p and q
are visible in P . Edges in GP that are edges of P are
called boundary edges. Finally, we note that a max-
imal clique in GP corresponds to a maximal convex
region whose vertices are a subset of P ’s vertices.

Unit-Length Orthogonal Polygons. Let P be an
orthogonal polygon with unit-length edges, such that
no three consecutive vertices on P ’s boundary are
collinear. We call P a unit-length orthogonal polygon.
We call boundary edges between two convex vertices

∗Department of Information and Computer Sciences, Uni-
versity of Hawaii at Manoa, USA. E-mail: nodari@hawaii.edu
†Institute of Theoretical Informatics, Karlsruhe Institute of

Technology, Germany. E-mail: strash@kit.edu

in a unit-length orthogonal polygon P tab edges and
their vertices are called tab vertices.

We first note that there is a simple algorithm to
reconstruct a unit-length orthogonal polygon from its
visibility graph if we are given the boundary edges.

Observation 1 Given a visibility graph GP =
(VP , EP ) with n = |VP | vertices and m = |EP | edges
of a unit-length orthogonal polygon P and a Hamilto-
nian cycle H = v0, v1, . . . , vn−1 of the boundary edges
of P , we can reconstruct P in O(n+m) time.

Proof. Omitted. �

In this paper, we consider only unit-length polygons
that are orthogonally convex. That is, any two points
in P are visible via a staircase. We call such polygons
unit-length orthogonally convex polygons (UPs). We
now focus on finding the boundary edges of a UP,
which we can use to reconstruct it by Observation 1.

Properties of UPs. We assume that a UP is axis-
aligned, allowing us to use the compass analogy. Note
that UPs have four tab edges. We call the tab edge
with the largest y-coordinate the north edge, and we
similarly name the others the south, east, and west
edges. Furthermore, the remaining boundary edges
are divided into four staircases, which we refer to as
northwest, northeast, southeast, and southwest (i.e.,
staircases do not contain tab edges).

Note that, for brevity, we only consider polygons
with more than 12 vertices. This way, we avoid many
special cases in the smaller polygons.

Observation 2 In a visibility graph of a UP, there is
exactly one maximal clique containing all reflex ver-
tices. Moreover, this clique contains no tab vertex.

Lemma 1 Every convex vertex u in UP, has a convex
neighbor v such that (u, v) is in exactly one maximal
clique in the visibility graph of the UP.

Proof. If u is a tab vertex, then the other tab vertex
v is also convex and (u, v) is in exactly one maximal
clique. Otherwise, suppose w.l.o.g. that u is on the
northwest staircase. Then u has a convex neighbor v
on the southeast staircase, and (u, v) is in one maxi-
mal clique, which consists of u, v, the reflex vertices
within the rectangle R defined by u and v as the op-
posite corners, and any other corners of R that are
convex vertices of the polygon. �

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Edges incident to a reflex vertex are contained in at least two maximal cliques.

Lemma 2 For any edge (u, v) in the visibility graph
of a UP, if u or v is reflex, then (u, v) is in at least
two maximal cliques. (See Figure 1.)

Proof. Let (u, v) ∈ EP and suppose that at least one
of u and v is reflex. Suppose w.l.o.g that u is a reflex
vertex on the northwest staircase.

Case 1: Vertex v is reflex. Then u and v are in
the maximal clique containing all reflex vertices and
no tab vertex, plus u and v see a common tab vertex;
therefore (u, v) is in at least two maximal cliques.

For the remaining cases, we assume that v is convex.
Case 2a: Edge (u, v) is a boundary edge. Assume

w.l.o.g. that (u, v) is a vertical edge on the northwest
staircase and v is above u. If (u, v) is adjacent to the
north tab edge, then it is in two maximal cliques: a
rectangular clique containing the edge opposite to the
tab, and a clique containing an east tab vertex. Sup-
pose (u, v) is not adjacent to the north tab edge. Then
u and v see at least 2 convex vertices on the south-
east staircase. Thus there are at least two maximal
cliques, each containing one of these convex vertices.

We now assume that (u, v) is not a boundary edge.
Case 2b: Edge (u, v) is an axis-aligned visibility

edge. We assume w.l.o.g. that (u, v) is a horizontal
edge and overlaps boundary edge (v, w). Then v is ei-
ther on the north- or southeast staircase. If v is on the
northeast staircase, u and v are in a maximal clique
containing u’s boundary neighbor to the west, and one
containing u,w, v and all reflex vertex vertices south
of w and west of v. If v is on the southeast stair-
case, then u and v are in a maximal clique containing
u’s convex boundary neighbor to the north, and an-
other maximal clique containing u,w, v and all reflex
vertices north of w and west of v.

Case 2c: Edge (u, v) is a diagonal edge between two
adjacent staircases. Then assume w.l.o.g. that v is on
the southwest staircase. Then both u and v see a tab
vertex t on the north tab. There is a maximal clique
containing u, v, t and a maximal clique containing u, v,
the reflex vertices north and east of v, and not t.

Case 2d: Edge (u, v) is a diagonal edge between two
opposite staircases. Then there is a maximal clique
containing u, v, and u’s convex boundary neighbor to
the west, and another maximal clique containing u, v
and u’s convex boundary neighbor to the north. �

Therefore we can compute all convex vertices, lead-
ing to the following lemma.

Lemma 3 We can identify all convex and reflex ver-
tices in a visibility graph of a UP in O(n4) time.

Proof. For each edge, compute if it is in exactly one
maximal clique in O(n2) time. If so, its endvertices
are convex. The remaining vertices are reflex. Check-
ing all O(n2) edges takes O(n4) time in total. �

Definition 1 (regularity) We call a UP regular if
each of its staircase boundaries have the same number
of vertices. Otherwise, we call it irregular.

For this extended abstract, we concentrate on irreg-
ular unit-length orthogonally convex polygons (IUPs).
However, similar methods work for regular polygons.

3 Reconstructing IUPs

From now on, we assume that P is an IUP, and that
GP is its visibility graph. We note that two staircases
in an IUP have more vertices than the other two. We
call these long staircases, and the other ones short.

Lemma 4 An IUP has 4 maximal cliques of size 7
that contain more than 2 convex vertices. Further-
more, each such clique contains exactly one tab edge.

Proof. Each of the 4 tabs are in exactly one such
maximal clique. Other cliques that contain 3 convex
vertices have at least 9 vertices, each convex vertex
and its two reflex neighbors. �

Lemma 5 In an IUP, we can find a set of at most 8
edges that contains the 4 tab edges in O(n4) time.

Proof. Compute the 4 maximal cliques from
Lemma 4. These cliques have exactly 3 convex ver-
tices each, and tab edges are incident to two con-
vex vertices, narrowing our choice of tab down to
4 ·
(
3
2

)
= 12 edges. We detect and remove any ver-

tical or horizontal non-boundary edges by checking
which edges are in multiple maximal cliques. There
are 4 of these; thus, we have 8 edges to consider. �
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Furthermore these eight edges form 4 disjoint paths
on 2 edges, and the middle vertex on each path is
a tab vertex. Lastly, we note that these known tab
vertices are on the long staircases. We now show how
to eliminate the remaining 4 non-tab edges.

Lemma 6 We can compute the 4 tab edges of an IUP
in O(n4) time.

Proof. First find the 8 candidates as in Lemma 5.
Recall that we already know one vertex on each tab

edge, and that these vertices are on the long stair-
cases. Let one of them be called u. Now it remains
the find u’s neighbor on its tab edge. Vertex u has
two candidate neighbors; let’s call them v and w. Just
for concreteness, let’s say u is on the north edge and
is on the northeast staircase.

Suppose w.l.o.g. that v has more reflex neighbors
than w, then v is u’s neighbor on a tab edge, be-
cause it sees reflex vertices on the whole northeast
and southeast staircases, while w sees only a subset
of those. Otherwise v and w have the same number
of reflex neighbors. Then either v or w has more con-
vex neighbors. Suppose w.l.o.g. that v is a tab vertex,
then v has fewer convex neighbors than w. To see why,
note that since u is on northeast (long) staircase, v is
on the northwest (short) staircase. Vertex v has con-
vex neighbors u, w, and every convex vertex on the
southeast (short) staircase. Likewise, w has convex
neighbors v, u, every convex vertex on the northeast
(long) staircase (including u) and one vertex on the
southwest (long) staircase.

We can do these checks for all such pairs v and w,
giving us all tab edges. �

Now that we have the 4 tab edges, we pick one
arbitrarily to be the north edge. We show how to
orient the polygon such that the northwest staircase
is short and the northeast staircase is long. We do
this by identifying the convex vertices on the short
staircase by computing elementary cliques.

Definition 2 (elementary clique) An elementary
clique in an IUP is a maximal clique that contains
exactly 3 convex vertices and either contains a tab
edge or no tab vertices. (See Figure 2.)

Lemma 7 We can identify the elementary cliques
with vertices on the northwest staircase inO(n4) time.

Proof. First, we compute the O(n) elementary
cliques as follows. We compute all axis-aligned, non-
boundary visibility edges that have only convex end-
vertices. We then compute the 2 maximal cliques con-
taining each such edge, and keep only the cliques with
3 convex vertices.

Let C0 be the unique maximal (elementary) clique
containing the north edge. Then C0 contains 4
reflex vertices R0, 3 of which are in exactly one

C0

C1

C2

C3

C4

Figure 2: Elementary cliques of an IUP. Note that
only half of the elementary cliques are shown.

other elementary clique, which we’ll call C1. The
northwest staircase has kNW elementary cliques,
C0, . . . , CkNW−1, where each clique Ci contains reflex
vertices Ri. Then |Ri ∩Ci+1| = 3, and for j 6= i, i+ 1
Ri ∩ Cj = ∅.

Therefore, from elementary clique Ci, we can com-
pute elementary clique Ci+1 by searching for the only
other elementary clique containing reflex vertices Ri.
Once we reach an elementary clique containing a tab
edge, then we have computed all elementary cliques
on the northwest staircase. This tab edge is the west
edge and we are finished. �

We now show how to assign the convex vertices
from the elementary cliques to each staircase.

Lemma 8 We can identify the convex vertices on the
northwest staircase in O(n4) time.

Proof. First we assign all non-tab convex vertices.
Let CNW be a non-primary elementary clique contain-
ing (non-tab) convex vertices vNW, vNE and vSW from
the northwest, northeast and southwest staircases re-
spectively. Then vNW sees neither a vertex on the
north nor west edge. However, vNE sees a vertex on
the west edge, and vSW sees a vertex on the north
edge. Therefore, we can compute the non-tab convex
vertices on the northwest staircase by checking which
vertices have no neighbors on the north or west edges.
Now we assign the tab vertices to a staircase. There is
exactly one visibility edge connecting a vertex vN on
the north edge to a vertex vW on the west edge. Then
vW is on the southeast staircase, vN is on the north-
east staircase, and the remaining two tab vertices are
on the northwest staircase.

Furthermore, we can assign the remaining convex
vertices to the southwest and northeast staircases:
Convex vertices on the southwest (northeast) stair-
case cannot see vertices on the west (north) edge. �

We can repeat the above algorithm to find the con-
vex vertices on the southeast staircase. However, we

201



32nd European Workshop on Computational Geometry, 2016

a

b

Figure 3: Left: Tab vertices a and b see unique reflex
vertices on long staircases. Right: We assign the re-
maining reflex vertices with rectangles between long
staircases.

still need to assign any remaining vertices to the mid-
dle of the southwest and northeast (long) staircases.
Note that these are the vertices which cannot see
the northwest and southeast staircases and, therefore,
weren’t assigned in the above algorithm.

Lemma 9 We can assign the convex vertices to their
long staircases in O(n4) time.

Proof. Let W and E be all the convex vertices on
the southwest and northeast staircases (which we are
computing) and let W0 and E0 be the convex ver-
tices on the southwest and northeast staircases that
are already known from the elementary cliques from
Lemma 8. Let Nc(v) denote the set of convex neigh-
bors on the opposite staircase of some vertex v. Then,
for each vertex w0 ∈ W0, Nc(w0) ⊆ E , i.e., the convex
neighbors of the (convex) vertices in W0 are on the
northeast staircase. Similarly, for each vertex e0 ∈ E0,
Nc(e0) ⊆ W. Then we can iteratively define sets Ei =
Ei−1 \ ∪w∈Wi−1

Nc(w) and Wi =Wi−1 \ ∪e∈Ei−1
Nc(e)

and identify all vertices of the southwest and north-
east staircases as W = ∪iWi and E = ∪iEi.

To order the vertices along the southwest staircase,
note that the sets Wi should appear in order of in-
creasing i from top to bottom. Also note that if one
were to assign the vertices of Wi the staircase from
top to bottom, each vertex wi in this order would see
fewer vertices of Ei−1. Thus, we can order the vertices
within each Wi. The argument for ordering vertices
of Ei is symmetric. �

We can now choose the south and east edges: a
vertex on the east (south) edge can see convex vertices
on the southwest (northeast) staircase.

Lemma 10 We can assign the reflex vertices to each
staircase in O(n4) time.

Proof. Once the convex vertices are ordered on the
staircases, we can compare the reflex vertices that are
seen from the tab vertices. Let a and b be vertices
on different tab edges, that are visible along a short

staircase (see Figure 3, left), and let R be the set
of all reflex vertices of the IUP, and N(v) be a set
of all neighbors of vertex v in the visibility graph of
IUP. Then R0 = N(a) ∩N(b) ∩ R contains all reflex
vertices from the short staircase, plus two extra reflex
vertices from the neighboring long staircases. The
remaining vertices N(a)\R0 are on one long staircase
(and N(b) \R0 are on the other long staircase).

Thus, we can find many reflex vertices on the long
staircases, except the end vertices and potentially
those in the middle of the staircases. To find the re-
maining ones, we build rectangles (maximal cliques)
consisting of two convex vertices u and v on the op-
posite staircases and a known reflex vertex w, such
that (u,w) forms a boundary edge of the IUP (see
Figure 3, right). These rectangles define new reflex
vertices on the opposite staircase from w. Thus, we
iteratively discover all new reflex vertices. �

Lemma 11 We can order the reflex vertices on each
staircase in O(n4) time.

Proof. Let c0, . . . , ck be the convex vertices in order
on some staircase S containing reflex vertices R. Then
N(ci)∩N(ci+1)∩R = {ri} where ri is the reflex vertex
between ci and ci+1 on staircase S. Thus, we know the
order of the reflex vertices along each staircase. �

Therefore, we have ordered the vertices on all stair-
cases, constructing the Hamiltonian cycle of boundary
edges in GP , arriving at the following theorem:

Theorem 12 In O(n4) time, we can reconstruct an
IUP P from its visibility graph GP .
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An Approximation Algorithm for the Art Gallery Problem
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Abstract

Given a simple polygon P on n vertices, two points
x, y in P are said to be visible to each other if the
line segment between x and y is contained in P. The
point-guard art gallery problem asks for a minimum
set S such that every point in P is visible from a
point in S. Assuming integer coordinates and a spe-
cial general position assumption, we present the first
O(log OPT)-approximation algorithm for the point
guard art gallery problem. This algorithm combines
ideas of Efrat and Har-Peled [7] and Deshpande et
al. [3, 4]. In addition, we point out a mistake in the
latter.

1 Introduction

In 1973, Victor Klee posed to Chvátal the art gallery
problem as follows. Given a simple polygon P on n
vertices, two points x, y in P are said to be visible
to each other if the line segment between x and y is
contained in P. The point-guard art gallery problem
asks for a minimum set S such that every point in P
is visible from a point in S.

A huge amount of research is committed to the
studies of combinatorial and algorithmic aspects of
the art gallery problem, see the following surveys [10,
18–20]. Most of this research, however is not focused
directly on the art gallery problem but on variants,
based on different definitions of visibility, restricted
classes of polygons, different shapes and positions of
guards and so on. The arguably most natural defi-
nition of visibility is the one we defined above. One
of the first combinatorial results is the elegant proof
of Fisk that bn/3c guards are always sufficient and
sometimes necessary for a polygon with n vertices [9].

On the algorithmic side, very few variants are
solvable in polynomial time [5, 17], but most re-
sults are on approximating the minimum number of
guards [3, 4, 7, 11, 14, 15]. Many of the approxima-
tion algorithms are based on the fact that the range
space defined by the visibility regions has bounded
VC-dimension [12, 13, 21] for simple polygons. This
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makes it easy to use the algorithmic ideas of Clark-
son [1, 2].

On the lower bound side the paper of Eidenbenz
et al. showed for most relevant variants NP-hardness
and inapproximability [8]. In particular, they show for
the main variants that there is no c-approximation al-
gorithm for simple polygons, for some constant c. For
polygons with holes, they can even show that there is
no o(log n)-approximation algorithm.

Very surprisingly, there is only one exact algorithm
for the point guard art gallery problem running in
nO(k) time attributed to Micha Sharir [7]. (Here,
k is the size of the optimal solution.) And only,
we recently the authors could give an almost match-
ing lower bound by ruling out no(k/ log k), assuming
ETH [6].

Regarding approximation algorithms for the point
guard variant, the results are very sparse. For mono-
tone polygons and rectilinear polygons approxima-
tion algorithms are known [16]. For general polygons,
Deshpande et al. gave a randomized pseudopolyno-
mial time O(log n) approximation algorithm [3, 4].
However, we show that their algorithm is not cor-
rect. Efrat and Har-Peled gave a randomized polyno-
mial time algorithm, by restricting guards to a very
fine grid. They show that their grid solution Sgrid is
at most by a factor of log(OPTgrid) away from the
optimal grid solution OPTgrid. However, they could
not prove that their OPTgrid is indeed an approxima-
tion of an optimal guard placement OPT . Develop-
ing the ideas of Deshpande et al. in combination of
the algorithm of Efrat and Har-Peled we attain the
first randomized polynomial time approximation al-
gorithm for general simple polygons.

To keep the proof simple, we introduce a special
general position assumption. We say a line is an ex-
tension of a polygon if it is the supporting line of two
vertices of the polygon v, w ∈ V (P). We say a poly-
gon satisfies the special general position assumption,
if no three points lie on a line and no three extensions
meet in a point p ∈ P \ V (P).

Theorem 1 There is an O(log |OPT |) approxima-
tion algorithm for Point Guard Art Gallery that
runs in randomized polynomial time in the size of the
input, given the following assumption:

integer vertex representation: Vertices are given
by integers, represented in binary.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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special general position assumption: No three
extensions meet in a point p ∈ P \ V (P).

In this four page abstract we focus on the key ideas
and henceforth omit the proofs of most lemmas and
some technical details.

2 Preliminaries

Polygons and visibility. For any two distinct points v
and w in the plane, we denote by seg(v, w) the seg-
ment whose two endpoints are v and w, by ray(v, w)
the ray starting at v and passing through w, by `(v, w)
the supporting line passing through v and w. We also
denote by disk(v, r) the disk centered in point v and
whose radius is r, and by dist(a, b) the distance be-
tween object a and object b.

A polygon is simple if it is not self-crossing and
has no holes. For any point x in a polygon P, V (x)
denotes the visibility region of x within P, that is the
set of all the points y ∈ P such that segment seg(x, y)
is entirely contained in P.

3 Approximation

Given a polygon P, we will always assume that all its
vertices are given by positive integers in binary. We
denote by M the largest integer, by D the diameter
of the polygon and define L = 10D. Note that this
implies L ≥ 5M and logL is linear in the input size.
We set the width to w = L−20 and define the grid
Γ as (w · Z2) ∩ P. Note that all vertices of P have
integer coordinates and thus are included in Γ. We
denote byOPT an optimal solution to the point guard
art gallery problem and by k its size. We denote by
OPTgrid an optimal solution to the grid guard art
gallery problem, this is, guards are restricted to lie on
the grid Γ, and denote by kgrid = |OPTgrid|.

The idea is to show that the algorithm of Efrat
and Har-Peled gives an approximation algorithm un-
der the integer vertex representation assumption, the
grid Γ as described above and the special general po-
sition assumption.

Theorem 2 (Efrat, Har-Peled [7]) Given a sim-
ple polygon P with n vertices, one can spread a
grid Γ inside P , and compute an O(log kgrid)-
approximation to the smallest subset of Γ that sees
P. The expected running time of the algorithm is
O(nk2grid log kgrid log(nkgrid) log2 ∆), where ∆ is the
ratio between the diameter of the polygon and the
grid size.

Note that the grid size equals w = L−20, thus ∆ ≤ L21

and consequently log ∆ ≤ 21 logL, which is linear in
the size of the input. It remains to show the following
lemma given the assumptions and notation mentioned
above.

Lemma 3 ∃c ∈ N such that kgrid ≤ c · k.

The way we use the integer coordinate assumption
is to infer distance lower bounds between various ob-
jects of interest.

Lemma 4 (Distances) Let v and w be vertices of
P, `1 and `2 supporting lines of two vertices, and p and
q intersections of supporting lines. Then the following
holds:

1. dist(v, w) > 0⇒ dist(v, w) ≥ 1.

2. dist(v, `1) > 0⇒ dist(v, `1) ≥ 1/L.

3. dist(p, `1) > 0⇒ dist(p, `1) ≥ 1/L5.

4. dist(p, q) > 0⇒ dist(p, q) ≥ 1/L4.

5. Let `1 6= `2 be parallel. Then dist(`1, `2) ≥ 1/L.

6. Let a ∈ P be a point and `1 and `2 be some lines
with dist(`i, a) < d, for i = 1, 2. Then `1 and `2
intersect in a point p with dist(a, p) ≤ dL2.

Proof. The idea of the proof is very simple. We look
up the formula for each claimed distance. This for-
mula is in most cases a fraction. By the assumption
the nominator is at least one. The variables in the
denominator can be safely upper bounded by L. The
claim follows immediately. �

Grid points. See Figure 1 for the following descrip-
tion. Each point x of the optimal solution is in some
grid cell grid(x). For the sake of brevity, we assume
that the grid cell does not contain any point of the
boundary of the polygon, as in Figure 1 b) and c).

a) b) c)

Figure 1: The way that the polygon boundary might
interact with the grid cell.

Local visibility containment property. We say a
point x in the grid cell formed by g1, g2, g3, g4 has
the local visibility containment property (LVCP) if
V (x) ⊆ V (g1) ∪ V (g2) ∪ V (g3) ∪ V (g4).

Cones. Given a point x and two points r1, r2 in the
plane, we define the cone of x with respect to r1 and r2
as the unique cone C(x) with apex x that is bounded
by ray(x, r1) and ray(x, r2) and forms an angle smaller
than π.
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Opposite reflex vertices and bad regions. Given a
polygon P and two reflex vertices r1 and r2, consider
the supporting line ` = `(r1, r2) restricted to P. The
supporting line defines two halfplanes `+ and `−. We
say r1 is opposite to r2 if disk(r1, ε) ∩ ∂P ⊂ `+ and
disk(r2, ε) ∩ ∂P ⊂ `− for some ε > 0.

Given two opposite reflex vertices r1 and r2, we
define their bad regions as the stripe around `(r1, r2)
with width 8wL, see Figure 2.

r1
r28wL

Figure 2: Illustration of opposite reflex vertices and
bad regions.

Lemma 5 (Loc.Visib. Containment Prop.) Let
x ∈ P be outside any bad region then x has the local
visibility property.

Proof. Here, we give only the idea. Let x ∈ P be
some point and g1, g2, g3, g4 be the grid points sur-
rounding x. Further let r1 and r2 be any two reflex
vertices visible from x. the same fashion. We can
restrict ourselves to show C(x) ⊆ C(g1) ∪ C(g2) ∪
C(g3)∪C(g4). Further, we only have to show this for
the region behind `(r1, r2). In case that there is some
gi ∈ C(x), this is trivially true. For the other case,
see Figure 3. In Figure 3, we see that the dark red

r1

r2

x

g1

g2

Figure 3: The cones C(g1) and C(g2) are not covering
the same area as C(x), behind `(r1, r2). The reason
is that ray(g1, r2) and ray(g2, r2) intersect.

area of C(x) is not covered by by C(g1) and C(g2).
It is not so difficult to see that it is sufficient to show
that this situation will not appear. For this purpose it
is sufficient to show that ray(g1, r1) and ray(g2, r2) do
not cross. Roughly speaking, we compare the distance
between the rays close to x and close to the reflex ver-
tices. If the distance between the rays increases, we
know that they will never meet. Very helpful for us is
the distance of at least one between the reflex vertices
and that x is outside of any bad region. �

It is easy to believe that the local visibility contain-
ment property also holds inside the bad region. How-
ever this is not true. Here, we will briefly describe a
counter-example. In particular, this example shows
that the algorithm of Deshpande et al. is not correct
as it is stated. However, we want to mention that
their paper has ideas that motivated the algorithm
presented in this preprint.

Deshpande et al. described an algorithm that
worked in several steps [3, 4]. In the first step they
generate a large number of points P that they store
explicitly in memory. Thereafter, they find a solu-
tion for the point guard art gallery problem S ⊂ P .
The crucial point is the claim that their point set P
satisfies some variant of local visibility containment
property. To be more precise, we say a set of points
P has the general local visibility containment prop-
erty, if for every point x ∈ P exists a finite collection
C ⊂ P ∩ disk(x, 1), such that V (x) ⊆ ⋃

p∈C V (p).
Our example shows that it is impossible to attain any
finite point set that has this property.

Example See Figure 4, for the following description.

a1

a2

a3
t

Figure 4: Illustration of the counter-example to the
algorithm of Deshpande et al. [3, 4].

We have two opposite reflex vertices with supporting
line `. The points (ai)i∈N are chosen closer and closer
to ` on the right side of the polygon. None of the
ai can see t, as this would require to be actually on
`. We choose the points (ai)i∈N in a way that their
intervals will be all disjoint and arbitrarily close to t.

Consider now any finite set of points C in the
“vicinity” of the (ai)i∈N. We will show that there
is some ai, which sees some interval close to t, that is
not seen by any point in C. Recall that no point sees
the entire interval around t, but the visibility of the
ais come arbitrarily close to t. Thus, there is some ai
that sees something that is not visible by any point
in C.

This shows that the general local visibility con-
tainment property cannot be attained already in this
fairly straightforward polygon.

Despite the fact that it is not possible to achieve
a general local visibility containment property for all
points in P, the exceptions are only for points in the
bad regions. These cases we can handle in a different
manner.

Lemma 6 Let x ∈ P in three or more bad regions.
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Then there exists a reflex vertex r with dist(x, r) ≤
wL3. And r is one of the defining reflex vertices for
all bad regions that x belongs to.

Proof. Let `1, `2, `3 be three different extensions.
And we assume that x is in the bad region of all three
of them. In case they all have on reflex vertex in com-
mon, it must be a defining reflex vertex and x cannot
be too far away from r.

So assume that they do not have a reflex vertex
in common. We want to show that the intersection
of their corresponding bad regions is empty. These
three lines form a triangle ∆ with vertices of pairwise
distance at least L−4 by Lemma 4 Item 4. Assume
for the purpose of contradiction that x is in the bad
region of all three lines. Then x has distance at most
4wL to all lines. By Lemma 4 Item 6 x has distance
at most 4wL3 to the vertices of ∆. By the triangle
inequality the vertices have pairwise distance at most
8wL3 � L−4 – a contradiction. �

Proof. [Lemma 3] Let OPT be an optimal solu-
tion of size k. We construct a set of 6k guards
G ⊂ Γ, which see the entire polygon. For each guard
x ∈ OPT , we add the four grid points of x into G.
Further, if x is in one or two bad regions, add the cor-
responding reflex vertex for each bad region into G.
In case x is in more than two bad regions there is one
reflex vertex that is defining all of them. Add it to
G. For each x ∈ OPT the local containment property
holds, except for the bad regions it is in. These parts
are seen by the reflex vertices we added. �
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Parameterized Hardness of Art Gallery Problems

Édouard Bonnet ∗ Tillmann Miltzow †

Abstract

Given a simple polygon P on n vertices, two points
x, y in P are said to be visible to each other if the
line segment between x and y is contained in P. The
point guard art gallery problem asks for a minimum
set S such that every point in P is visible from a point
in S. The vertex guard art gallery problem asks for
such a set S subset of the vertices of P. The set S
is referred to as guards. We show W [1]-hardness of
both variants, when parameterized by the number k
of guards. We even rule out any no(k/ log k) algorithm
under the exponential time hypothesis.

1 Introduction

Given a simple polygon P on n vertices, two points
x, y in P are said to be visible to each other if the
line segment between x and y is contained in P. The
point-guard art gallery problem asks for a minimum
set S of points called guards such that every point in
P is visible from a point in S. The vertex guard art
gallery problem asks for such a set of guards S subset
of the vertices of P.

One of the first combinatorial results is the elegant
proof of Fisk that bn/3c guards are always sufficient
and sometimes necessary for a polygon with n ver-
tices [8]. On the algorithmic side, very few variants
are solvable in polynomial time [5, 11], but most re-
sults are on approximating the minimum number of
guards [3, 4, 6, 9]. On the lower bound side the paper
of Eidenbenz et al. showed for most relevant variants
NP-hardness and inapproximability [7]. In particular,
their reduction from Set-Cover implies that the art
gallery is W [2]-hard on polygons with holes and that
there is no no(k) algorithm, to determine if k guards
are sufficient for a given gallery with n vertices, under
the exponential time hypothesis [7, Sec.4]. However,
polygons with holes are very different to simple poly-
gons as they have unbounded VC-dimension [12]. In
particular none of these reductions rule out a fixed pa-
rameter tractable algorithm (i.e., whose running time
is O(f(k)nc) where f is any computable function and
c is a constant) for simple polygons (see [2] for an
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introduction to parameterized complexity.).
Obviously, the vertex guard variant can be solved

in time O(nk+2) by trying out all possible subsets of
size k of the vertices and checking if one of those sub-
sets sees the whole polygon. Not obvious at all is the
algorithm running in time nO(k) for the point guard
variant using standard tools from real algebraic geom-
etry [1]. Despite the fact that the first algorithm is
extremely basic and the second algorithm, even with
remarkably sophisticated tools, uses almost no prob-
lem specific insights, no better exact parameterized
algorithms are known.

We present the first conditional lower bounds for
the parameterized art gallery problem for simple poly-
gons:

Theorem 1 (Point guard hardness) Point
Guard Art Gallery parameterized by the number
of guards k is W [1]-hard, and is not solvable in time
no(k/ log k), under the ETH.

Theorem 2 (Vertex guard hardness) Vertex
Guard Art Gallery is W [1]-hard, and is not
solvable in time no(k/ log k), under the ETH.

2 Preliminaries

For any two integers x < y, we set [x, y] := {x, x +
1, . . . , y − 1, y}, and for any positive integer x, [x] :=
[1, x]. The Exponential Time Hypothesis (ETH) is a
conjecture by Impagliazzo et al. [10] asserting that
there is no 2o(n)-time algorithm for 3-SAT on in-
stances with n variables.

Polygons and visibility. For any two distinct points
v and w in the plane, we denote by seg(v, w) the seg-
ment whose two endpoints are v and w, by ray(v, w)
the ray starting at v and passing through w, by `(v, w)
the supporting line passing through v and w.

A polygon is simple if it is not self-crossing and has
no holes. For any point x in a polygon P, VP(x), or
simply V (x), denotes the visibility region of x within
P, that is the set of all the points y ∈ P such that
segment seg(x, y) is entirely contained in P. We say
that two vertices v and w of a polygon P are neighbors
or consecutive if vw is an edge of P. A subpolygon P ′
of a simple polygon P is defined by any l distinct con-
secutive vertices v1, v2, . . . , vl of P (that is, for every

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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i ∈ [l − 1], vi and vi+1 are neighbors in P) such that
v1vl does not cross any edge of P.

Given a vertex v and two points p and p′, we call
triangular pocket rooted at vertex v and supported by
ray(v, p) and ray(v, p′) a sub-polygon w, v, w′ such
that ray(v, w) passes through p, ray(v, w′) passes
through p′. We say that v is the root of the trian-
gular pocket that we denote P(v). We also say that
the pocket P(v) points towards p and p′.

Structured 2-Track Hitting Set. We introduce a
new problem which will constitute a handy starting
point to show Theorem 1 and 2. In the 2-Track Hit-
ting Set problem, the input consists of an integer k,
two sets A and B of the same cardinality totally or-
dered by ≤A and ≤B , and two sets SA of A-intervals
(that is a set of consecutive elements of A according to
≤A), and SB of B-intervals. In addition, the elements
of A and B are in one-to-one correspondence φ : A→
B and each pair (a, φ(a)) is called a 2-element. The
goal is to find a set S of k 2-elements such that the first
projection of S is a hitting set of A, and the second
projection of S is a hitting set of B. Structured
2-Track Hitting Set is the same problem with
color classes over the 2-elements, and a restriction on
the one-to-one mapping φ. A is partitioned into k
classes (C1, C2, . . . , Ck) where Cj = {aj1, aj2, . . . , ajt}
for each j ∈ [k], where |A| = tk, and is or-
dered: a11, a

1
2, . . . , a

1
t , a

2
1, a

2
2, . . . , a

2
t , . . . , a

k
1 , a

k
2 , . . . , a

k
t .

We define C ′j := φ(Cj) and bji := φ(aji ) for all i ∈ [t]
and j ∈ [k]. We now impose that φ is such that, for
each j ∈ [k], the t elements of C ′j are consecutive along
≤B . That is, B is ordered: C ′σ(1), C

′
σ(2), . . . , C

′
σ(k) for

some permutation on [k], σ ∈ Sk. For each j ∈ [k],
the order of the elements within C ′j can be described
by a permutation σj ∈ St such that the ordering of C ′j
is: bjσj(1)

, bjσj(2)
, . . . , bjσj(t)

. Due to space limitations,

we omit the proof of the following theorem.

Theorem 3 Structured 2-Track Hitting Set
is W [1]-hard, and not solvable in time |I|o(k/ log k),
unless the ETH fails.

3 Point Guard

Overview of the reduction. Given an instance I =
(k ∈ N, t ∈ N, σ ∈ Sk, σ1 ∈ St, . . . , σk ∈ St,SA,SB),
we build a simple polygon P with O(kt+ |SA|+ |SB |)
vertices, such that I is a YES-instance iff P can be
guarded by 3k points.

The global strategy of the reduction is to allocate,
for each color class j ∈ [k], 2t special points in the
polygon αj1, . . . , α

j
t and βj1, . . . , β

j
t . Placing a guard in

αji (resp. βji ) shall correspond to picking a 2-element

whose first (resp. second) component is aji (resp. bji ).

z1

z2

z3

z4

p1

p2

p3

p4

p5

p6

Figure 1: Interval gadgets encoding {p1, p2, p3},
{p2, p3, p4, p5}, {p4, p5}, and {p4, p5, p6}.

The points αji ’s and βji ’s ordered by increasing y-

coordinates will match the order of the aji ’s along ≤A
and then of the bji ’s along ≤B . Then, far in the hori-
zontal direction, we will place pockets to encode each
A-interval of SA, and each B-interval of SB (see Fig-
ure 1).

The critical issue will be to link point αji to point

βji . Indeed, in the Structured 2-Track Hitting
Set problem, one selects 2-elements (one per color
class), so we should prevent one from placing two
guards in αji and βji′ with i 6= i′. Due to a techni-

cality, we will introduce a copy αji of each αji . In each
part of the gallery encoding a color class j ∈ [k], the
only way of guarding all the pockets with only three
guards is to place them in αji , α

j
i , and βji for some

i ∈ [t]. Hence, 3k guards will be necessary and suffi-
cient to guard the whole P iff there is a solution to the
instance of Structured 2-Track Hitting Set.

We now sketch the construction.

Allocated points and interval gadgets. The posi-
tion of the αji ’s and βji can be seen on Figure 2 and

Figure 4. It is such that the ordering of the αji ’s

(resp. βji ) by increasing y-coordinate matches the or-

der ≤A on the aji ’s (resp. ≤B on the bji ’s). Also,

αji and βji shares the same x-coordinate for each
j ∈ [k], i ∈ [t]. There is a quite large gap D along
the x-axis between a point αjt and αj+1

t .

For each A-interval Iq = [aji , a
j′

i′ ] ∈ SA, we put, at

a very large distance F to the right of the αji ’s, one
triangular pocket P(zA,q) rooted at vertex zA,q and

supported by ray(zA,q, α
j
i ) and ray(zA,q, α

j′

i′ ). This

way, the only αj
′′

i′′ seeing vertex zA,q are all the points

such that aji ≤A aj
′′

i′′ ≤A aj
′

i′ (see Figure 1 and Fig-
ure 4). We do the same for the B-intervals.

Weak linkers. We now describe how we link each
point αji to its associate βji . See Figure 2 for a de-
scription of the following weak linker gadget.

For each j ∈ [k], let us mentally draw ray(αjt , β
j
1)

and consider points slightly to the left of this ray
and quite far. Let us call Rjleft that informal re-

gion of points. Any point in Rjleft sees, from right

to left, in this order αj1, αj2 up to αjt , and then,
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α1α2α3α4α5α6

β1β2β3β4
β5β6

d1c1 d2c2 d3c3 d4c4 d5c5 d6c6

Figure 2: Weak point linker gadget.

βj1, βj2 up to βjt . In Rjleft, for each i ∈ [t − 1], we

place a triangular pocket P(cji ) rooted at vertex cji
and supported by ray(cji , α

j
i+1) and ray(cji , β

j
i ). We

place also a triangular pocket P(cjt ) rooted at cjt sup-
ported by ray(cji , β

j
1) and ray(cji , β

j
t ). We place mir-

roring pockets P (dj1), . . . ,P(djt ) in the region slightly

to the right of ray(αj1, β
j
t ) and quite far. Finally, we

add a thin rectangular pocket Pj,r to the left of the

points αj1, . . . , α
j
t such that the uppermost longer side

of the rectangular pocket lies on the line `(αj1, α
j
t )

(see Figure 2). We denote by Pj,α,β the set of pockets

{P(cj1), . . . ,P(cjt ),P(dj1), . . . ,P(djt )} and call it weak
linker.

If one wants to guard Pj,α,β with only two points

and place the first guard on αji , one is not forced to

place the second guard on βji , as we would desire, but

anywhere on an area whose uppermost point is βji (see

the shaded areas below the bji ’s in Figure 2).

Linkers. For each j ∈ [k], we allocate t points
αj1, . . . , α

j
t on a horizontal line above and to the right

of βjt at a quite large distance. We add two weak
linkers Pj,α,α and Pj,α,β , one linking αj1, . . . , α

j
t and

αj1, . . . , α
j
t , the other linking αj1, . . . , α

j
t and βj1, . . . , β

j
t

(see Figure 3). We also add a thin horizontal pocket
whose lowermost side is in the same line as the points
αj1, . . . , α

j
t . Pockets of Pj,α,α and the two thin rect-

angular pockets force to put guards on αji and αji (for
a same i ∈ t), if we have only two guards to spare.
Now, pockets of Pj,α,β forces to place the third guard

below βji while pockets of Pj,α,β forces to place the

third guard above βji (again if we have only three
guards to spare). So, the only solution is to place the
third guard exactly on βji . The k linkers are placed
accordingly to Figure 4.

Lemma 4 ∀j ∈ [k], ∀i ∈ [t], the three associate
points αji1 , αji2 , βji3 guard entirely Pj iff i1 = i2 = i3.

Figure 3: Point linker gadget: a triangle of (three)
weak point linkers.

F. . .

F. . .

D

P1,α,β P2,α,β P3,α,β

P1,α,α P2,α,α P3,α,α

P1,α,β

P2,α,β

P3,α,β

L

P1,r

P2,r

P3,r

P1,r

P2,r

P3,r

track 1

track 2

α

α

β

Figure 4: The overall picture of the reduction with
k = 3.

4 Vertex Guard

The reduction is again from Structured 2-Track
Hitting Set.

Vertex linkers. For each j ∈ [k], permutation σj
is encoded by a sub-polygon Pj that we call vertex
linker, or simply linker (see Figure 5). We regularly
set t consecutive vertices αj1, α

j
2, . . . , α

j
t in this order,

along the x-axis. Opposite to this segment, we place
t vertices βjσj(1)

, βjσj(2)
, . . . , βjσj(t)

in this order, along

the x-axis, too. The βjσj(1)
, . . . , βjσj(t)

, contrary to

αj1, . . . , α
j
t , are not consecutive. We put reflex vertices

in between the vertices βjσj(1)
, . . . , βjσj(t)

to ensure that

the only way of seeing entirely the walls djej and xjyj

by taking two vertices αji and βji′ is that i = i′.

Lemma 5 For any j ∈ [k], the sub-polygon Pj is seen
entirely by {αjv, βjw} iff v = w.

What we should now prevent is that one puts a
guard in a reflex vertex of the linker.

Filter gadget. The only way to see all the pock-
ets of the filter gadget Fj (see Figure 6) with two
guards is to place them on ci and di for the same i.
In the overall construction, the ci’s are in fact ver-
tices βjσj(1)

, . . . , βjσj(t)
. Thus, if one wants to guard
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α1 α2 α3 α4 α5 α6

β4 β2 β5 β3 β6 β1

r↓d

e
f

a

c

r↑ x

yh

g

b

p1

p2
p3p4 q3

q4
q5

q6

Figure 5: Vertex linker gadget. We omitted the su-
perscript j in all the labels. Here, σj(1) = 4, σj(2) =
2, σj(3) = 5, σj(4) = 3, σj(5) = 6, σj(6) = 1.

all the pockets of Fj and Pj with only three guards,

one should place them at vertices αji , β
j
i , and djσj(i)

.

d1

d2

d3d4
d5

d6

x1x2x3x4x5x6

c1 c2 c3 c4 c5 c6

y1

y2

y3
y4
y5

Figure 6: The filter gadget Fj .

Overall construction. Permutation σ is encoded in
the way depicted on Figure 7 by limiting the visibil-
ity of the vertices βjσj(1)

, . . . , βjσj(t)
to only one filter

gadget, namely Fj . Finally, as for the point guard
variant, for each A- and B-interval, we place a tri-
angular pocket seeing the corresponding vertices (see
Track 1 and 2 of Figure 7).
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Visibility Testing and Counting for Uncertain Segments
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Abstract

We study two well-known planar visibility problems,
namely visibility testing and visibility counting, in
a model where there is uncertainty about the input
data. The standard versions of these problems are
defined as follows: we are given a set S of n segments
in R2, and we would like to preprocess S so that we
can quickly answer queries of the form: is the given
query segment s ∈ S visible from the given query
point q ∈ R2 (for visibility testing) and how many
segments in S are visible from the given query point
q ∈ R2 (for visibility counting).

In our model of uncertainty, each segment may or
may not exist, and if it does, it is located in one of
finitely many possible locations, given by a discrete
probability distribution. In this setting, the proba-
bilistic visibility testing problem (PVTP, for short)
is to compute the probability that a given segment
s ∈ S is visible from a given query point q and the
probabilistic visibility counting problem (PVCP, for
short) is to compute the expected number of seg-
ments in S that are visible from a query point q.
We first show that PVTP is #P -complete. In the
special case where uncertainty is only about whether
segments exist and not about their location, we show
that the problem is solvable in O(n log n) time. Us-
ing this, together with a few old tricks, we can show
that one can preprocess S in O(n5 log n) time into a
data structure of size O(n4) so that PVTP queries
can be answered in O(log n) time. Our algorithm for
PVTP combined with linearity of expectation gives an
O(n2 log n) time algorithm for PVCP. We also give a
faster 2-approximation algorithm for this problem.

1 Introduction

Background. Visibility testing and visibility count-
ing are basic problems in computational geometry.
Visibility plays an important role in robotics and com-
puter graphics. In robotics, for example, the efficient
exploration of an unknown environment requires com-
puting the visibility polygon of the robot or the num-
ber of visible objects from the robot or test whether
the robot sees a specific object. In some computer

∗Department of Computer Engineering, Sharif University of
Technology, shalipour@cs.sharif.edu
†Institute for Research in Fundamental Sciences (IPM)

School of Computer Science
‡Google research

graphics applications, also, it is important to identify
the objects in a scene that are illuminated by a light
source.

Two points p, q ∈ R2 are visible from each other
with respect to S, if there exists no segment s ∈ S
intersecting line segment pq. We say that a segment
st ∈ S is visible from a point p, if a point q ∈ st can be
found from which p is visible. In this paper, we con-
sider two planar visibility problems; visibility testing
and visibility counting. For a set S of n segments
in R2 and a point q, in visibility testing problem, we
want to test whether q sees a given segment s ∈ S.
In visibility counting problem we want to count the
number of segments in S that are visible from q. For
simplicity we assume all the segments are contained
in a bounding box.

Uncertain data. It is not surprising that in many
real-world applications we face uncertainty about the
data. For geometric problems like visibility, this
means uncertainty about the location of the input set.
There are multiple ways to model such uncertainty.
For example, we can assume each object lies inside
some region, but not exactly where in that region, and
use this assumption to prove bounds on the quantity
of interest. Such a model is used in [8]. Alterna-
tively, we can use a discrete probability distribution
to model uncertainty. This “stochastic” approach is
used in [1, 10]. We choose the latter approach in this
paper. In particular, our model of uncertainty is very
similar to the model used in [10].

Related work. There is significant prior work on the
non-stochastic version of the problems studied in this
paper. There are some works dedicated not only to
the exact computing [5, 11, 13] of the problem but
also to approximate computing [3, 4, 7, 11]. In both,
time-space trade-offs haven been considered.

In real application there are situations where we
need to model the problems based on uncertain data
(See [1, 8, 9]). In [6], they compute visibility between
imprecise points among obstacles. This leads us to
define the uncertain model of VTP and VCP and pro-
pose algorithms to solve them.

Problem statement. Suppose we are given a set S of
n uncertain segments. More precisely, we are given a
discrete probability distribution for each si ∈ S, that
is, we have a set Di = {si,1, · · · , si,mi

} ∪ {si,0 =⊥}

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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of possible locations with associated probabilities pi,j
such that Pr(si = si,j) = pi,j and

∑
j pi,j = 1. The

special segment ⊥ indicates that the segment si does
not exist in S. In this setting, the set S can be seen
as a random variable (or random set) as it consists of
probabilistic segments. This random variable gets its
value from a sample space of size Πi(mi + 1) with the
probability being equal to Πs∈SPr(s)Πs 6∈S(1−Pr(s))
. To this end, assume z = max{1+mi}, i.e., z denotes
the maximum size of the given distributions. A special
case that we will pay special attention to is when z =
2. This is the case where the uncertainty is only about
the existence of the segments, and not about their
location.

It is natural to define the probabilistic version of
visibility testing and visibility counting problems in
the above setting where S is a random set:

• Probabilistic Visibility Testing Problem (PVTP):
compute the probability that a given segment s ∈
S is visible from a given query point q.

• Probabilistic Visibility Counting Problem
(PVCP): compute the expected number of
segments in S being visible from q.

Our results. We first show that PVTP is #P -
complete. We then turn our attention to the spe-
cial case where z = 2. We present an algorithm run-
ning O(n log n) time that answers PVTP. Then, we
present a simple way of putting n uncertain segments
into a data structure of size O(n4) such that queries
can be answered in O(log n) time. Finally, we do-
nate our attention to PVCP whose complexity class
is unknown to us. Here, we present a polynomial-time
2-approximation algorithm that approximately solves
PVCP. We then show how to preprocess S into a data
structure of size O(n4) in order to approximately an-
swer each query in O(log n) time.

2 Probabilistic visibility testing

We start by a simple polynomial-time reduction from
#perfect-matching problem to PVTP in order to show
PVTP is #P -complete. The #perfect-matching prob-
lem of computing the number of perfect matching in
a given bipartite graph, is known to be #P -complete
[12]. We next explain the details.

Suppose a bipartite graph G = (U, V,E) is input to
#perfect-matching problem where U = {u1, · · · , un}
and V = {v1, · · · , vn} are vertex parts of G and E
is the edge set of G. For the given bipartite graph,
we construct an instance of PVTP and introduce a
query point q and a query segment s such that each
perfect matching uniquely corresponds to one element
of the sample space of uncertain segments in which s
is not visible from q. Consider n intervals [i, i+ 1] on

the x-axis where i changes from 0 to n − 1. Imag-
ine the interval [i, i+ 1] corresponds to the vertex vi;
denoted by I(vi). For each vertex ui ∈ U , we de-
fine an uncertain segment Di = {I(vj)|{ui, vj} ∈ E}
with the uniform distribution—note that in this in-
stance each uncertain segment always exist. We add
one more uncertain segment s consisting of one seg-
ment with probability 1 whose endpoints are (0,−1)
and (n,−1). To this end, consider the query point q is
anywhere above the x-axis with x-coordinate greater
than 0 and less than n.

Segment s is not visible from q iff the interval [0, n]
is completely covered by the uncertain segments de-
fined on the x-axis. There are n such uncertain seg-
ments and each covers exactly 1 unit of [0, n]. There-
fore, each uncertain segment must cover exactly one
of n unit intervals. This is the intuition behind one-
to-one correspondence between perfect matching and
the subset of the sample space in which s is not visible
from q. Therefore, we conclude the following theorem.

Theorem 1 PVTP is #P -complete.

From now on, we restrict ourself to the special
case where z = 2, i.e., each uncertain segment ei-
ther does not exist or exists in only one possible lo-
cation. Suppose we are given n uncertain segments
s1, · · · , sn. Let Pr(si ∈ S) = pi which of course im-
plies Pr(si 6∈ S) = 1− pi.

Next, we explain how to compute Pr(q sees s) for
the given segment s and point q. If s 6∈ S, q of
course can not see s. Therefore, Pr(q sees s) =
Pr(q sees s|s ∈ S)Pr(s ∈ S). This reduces our task to
computing of Pr(q sees s|s ∈ S). Let ∆ be a triangle
with vertex q and side s. Every other uncertain seg-
ment that does not intersect ∆, can not prevent q to
see s. Therefore, we can restrict ourself to uncertain
segments intersecting ∆. We project these uncertain
segments to s with respect to q. Now, as the main
ingredient, we must solve the following problem:

• Suppose we are given n uncertain intervals I =
{I1, · · · , In} on the real line; each Ii exists with
probability pi. Compute the probability that the
given interval [a, b] is covered by the uncertain
intervals, denoted by Pr([a, b] is covered).

Computing the desired probability seems needs
Θ(2n) time as the size of the sample space can be
Θ(2n) in the worst case. But, we next show how the
dynamic paradigm helps us to perform the computa-
tion in O(n log n) time. For simplicity, we can assume
the intervals have been sorted by their right endpoints
and intersection of each Ii with [a, b] is not empty.
Let r(Ii) (l(Ii)) be the right (left) endpoint of Ii. We
present the following recursive formula.

For each point a′ ∈ [a, b], let sol(a′) be the probabil-
ity that [a′, b] is covered. So, sol(a) is the probability
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that [a, b] is covered. Let S(a′) = {I ′1, ..., I ′l} be the
set of intervals that cover a′ and they are sorted ac-
cording to their right endpoints.

Lemma 2 We define sol(b) = 1, then we have

sol(a′) =
∑l
j=1 p

′
j(
∏j−1
i=1 (1− p′i))sol(r(I ′j)).

Proof. Suppose that a′ ∈ [a, b], so if [a′, b] is covered,
then at least one of the segments in S(a′) should be
chosen. There are l segments that cover a′. Since the
segments in S(a′) are sorted according to their right
endpoints then, the probability that I ′j is the first seg-

ment that covers a′ is p′j
∏j−1
i′=1(1 − p′i). Recursively

[a′, b] is covered with the probability of sol(r(I ′j)). So,

we have sol(a′) =
∑l
j=1 p

′
j(
∏j−1
i′=1(1− p′i))sol(r(I ′j)).

�

Each right endpoint of the intervals can be covered
by O(n) of the intervals. In the recursive formula,
we call each right endpoint at most once. For each
sol(r(I ′j)) we have to compute

∏j−1
i′=1(1−p′i), since the

segments are sorted according to their right endpoint,
for each sol(r(I ′j)) we multiply

∏j−2
i′=1(1−p′i)(the value

of previous step) by 1− p′j , which means we can com-

pute sol(a) in O(n2) time. Next we propose a faster
algorithm.

To fill the array sol, we sweep the endpoints from
right to left and keep the track of all intervals inter-
secting the sweep line in a binary search tree (BST,
for short) over the right endpoint of intervals support-
ing insertion/deletion in O(log n) time. We augment
each node of the BST with extra values in order to
expedite our computation as we explain next.

Upon processing a right end-point, say r(Ii), we
compute sol(r(Ii)), which is the sum of all the nodes
of tree. This can be computed in O(log n) time.
Then, we implicitly multiply all the nodes by (1− pi)
and then add r(Ii) to the tree with the value of
pisol(r(Ii)). For the left endpoint of an interval, l(Ii),
we delete Ii, from the tree and implicitly divide all the
right endpoints greater than r(Ii) by (1 − pi). This
also can be done in O(log n) time. There are O(n)
endpoints, so the running time is O(n log n).

Theorem 3 Given a point and a segment, PVTP can
be answered in O(n log n) time when z = 2.

Now, we preprocess the segments such that for
any given query point q, PVTP can be answered in
O(log n) time. First, connect each pair of the end-
points by a line and extend it until it hits the bound-
ing box. These lines will partition the bounding box
into O(n4) regions. For a fixed segment s ∈ S, the
answer to PVTP for all the points in a given region
is the same, because the combinatorial order of seg-
ments that cover s is the same for all the points in-
side that region. Therefore, in the preprocessing time

we choose a point qi from each region ri and com-
pute Pr(qi sees s) in O(n log n) time. So, for a given
set of segments S and a segment s ∈ S, we prepro-
cess the segments in O(n5 log n) time and O(n4) space
such that for any given query point q, we locate the
region ri containing q in O(log n) time and return
Pr(qi sees s) = Pr(q sees s).

3 Probabilistic visibility counting

In this section we study the probabilistic visibility
counting problem. We start with a few notations.
For each subset T ⊂ S, let mq(T ) be the number of
segments visible from q when the set of segments is
T . So, the expected number of segments visible from
q can be written as: E(mq) =

∑
T⊆S Pr(T )mq(T ),

where Pr(T ) denotes the probability that the set of
realized segments is T .

Another way to compute E(mq) is using linearity
of expectations: E(mq) =

∑n
i=1 Pr(q sees si).

For the case z = 2, we can use the above iden-
tity and the algorithm in the previous section to com-
pute E(mq) inO(n2 log n) time with no preprocessing.
Also as in the previous section, we can use preprocess-
ing to reduce query time: the answer of PV CP is the
same for all the points in each region in the space
partition. So, we can compute this number for all the
regions in O(n6 log n) preprocessing time and O(n4)
space, such that for any query point q, E(mq) can
be answered in O(log n) time. Now, we show how to
approximately solve this problem more efficiently.

3.1 Approximation of PVCP

In this section we propose a 2-approximation solution
for PVCP. First, we present a theorem (the prelimi-
nary version of this theorem was published in [4]):

Theorem 4 Let S be a set of disjoint line segments
in the plane and ve(q) be the number of visible end-
points of the segments and mq be the number of vis-
ible segments, then we have

mq ≤ ve(q) ≤ 2mq

Proof. We define four types of visible segments.

• R: the visible segments that their right endpoints
are visible to q and their left endpoints are not
visible to q.

• L: the visible segments that their left endpoints
are visible to q and their right endpoints are not
visible to q.

• LR: the visible segments that their right and left
endpoints are visible to q.

• Mid: the visible segments that their right end-
points and left endpoints are not visible to q.
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So, we have, mq = R + L + LR + Mid. Note that
for each segment si of type Mid or R, there should
be a segment sj of type R or LR, such that the ray
emanating from q to the right endpoint of sj cross si
after crossing the right endpoint of sj . This means
Mid+R ≤ R+ LR. So, we have

mq = R+ L+ LR+Mid ≤ R+ L+ 2LR ≤
2(R+ L+ LR+Mid) = 2mq or mq ≤ veq ≤ 2mq.

�

Now, we use Theorem 4 to approximate PVCP. Let
mq(T ) and veq(T ) be the number of visible segments
and visible endpoints, respectively in T ⊂ S w.r.t T ,
so we have mq(T ) ≤ veq(T ) ≤ 2mq(T ). So, we can
conclude that,

∑
T⊂S Pr(S = T )mq(T ) ≤∑T⊂S Pr(S =
T )veq(T ) ≤∑T⊂S Pr(S = T )2mq(T ).

Or in other words,

E(mq) ≤ E(veq) ≤ 2E(mq).

So, we compute E(veq) =
∑n
i=1 Pr(r(si) sees q) +

Pr(l(si) sees q).

Pr(r(si) sees q)) =
∑z
j=1 pi,jPr(r(si,j) sees q).

Let sk,1′ , sk,2′ , ..., sk,l′ be the possible locations of sk in

Dk that cross r(si,j)q, the probability that sk does not

intersect r(si,j)q is pi,jk = (1−pk,1′−pk,2′− ...−pk,l′).
Pr(q sees r(si)) =

∑z
j=1 pi,jp

i,j
1 .pi,j2 ....pi,jn

We have 2nz possible locations for the endpoints and
we can compute P (q sees r(si)) in O(zn), so E(ve(q))
is computed in O(n2z2).

For z = 2 we present a faster algorithm. Suppose
that a ∈ si is an endpoint of si. Let s′1, s

′
2, ..., s

′
k be the

set of segments that intersect aq, since the probability
of selection of the segments are independent, we have

Pr(q sees a) = pi.(1− p′1)(1− p′2)...(1− p′k).

Which yields: E(vep) =
∑
a∈si Pr(q sees a).

So, for each endpoint, we need the segments that
intersect aq. We use the following theorem:

Theorem 5 [2] Let S be a set of n segments in the
plane and n ≤ k ≤ n2, we can preprocess the segments
in Oε(k) such that for a given query segment s, the
number of segments crossed by s can be computed in
Oε(n/

√
k).

By Theorem 5 we can compute Pr(q sees a) in
O(n/

√
k). So, for 2n endpoints, E(vep) is computed

in n.O(n/
√
k). If k = n

4
3 , then we have:

Theorem 6 Let, S be a set of given segments and
q be a given point. If each segment is chosen with
probability pi, then, the expected number of visible
endpoints from q can be computed in O(n

4
3 ) which is

a 2-approximation of E(mq).
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Covering Polygons with Rectangles

Roland Glück∗

Abstract

A well-known and well-investigated family of hard op-
timization problems concerns variants of the cutting
stock or nesting problem, i.e. the non-overlapping
placing of polygons to be cut from a rectangle or the
plane whilst minimizing the waste. Here we consider
an in some sense inverse problem. Concretly, given
a set of polygons in the plane, we seek the minimum
number of rectangles of a given shape such that every
polygon is covered by at least one rectangle. As mo-
tions of the given rectangle we investigate the cases
of translation and of translation combined with rota-
tion.

1 Introduction

In manufacturing, one often faces the problem of cut-
ting a set of given polygons out of a piece of material
(e.g. sheet metal or cloth) in a way which produces as
less waste as possible. In this paper we investigate the
subsequent step in production technology: once the
pieces are cut out they will be picked off and trans-
ported by a suitable device. Here we restrict ourselves
to a rectangular gripper and various degrees of free-
dom: The first case is a rectangular gripper which can
be translated both in x- and y-direction; the second
case deals with a rectangular gripper which addition-
ally has the possibility of being rotated. The concrete
motivation of this paper is a machine which cuts poly-
gons out of a carbon fiber fabric and grasps the cut
pieces with a rectangular gipper with vacuum suction
devices.

Basically, this task corresponds to covering a set
of polygons by copies of a rectangle such that every
polygon is contained in at least one rectangle. There
is a lot of work about covering sets of points with
rectangles as in [4, 6] but none of them matches our
problem. Due to the NP-hardness of all these prob-
lems (see [5] for a comprehensive list) we suspect that
the problems we consider are also NP-hard. We do
not propose an approximation algorithm but a fam-
ily of exact algorithms which works well on practical
instances.

The paper is organized as follows: Section 2 pro-
vides definitions and states the problem in a generic
way. In Section 3 we prove some useful lemmata for

∗German Aerospace Center roland.glueck@dlr.de

Figure 1: The bottom side of the gripper

the further course. A generic approach to the prob-
lems is presented in Section 4, while Section 5 deals
with some implementation issues and provides exper-
imental results. The finishing Section 6 gives a short
summary and directions of future work.

2 Definitions

In order to formalize our task we introduce the con-
cept of a packing: a packing P = {P1, P2, . . . , Pn} is
a set of n possibly overlapping simple polygons P1,
P2, . . ., Pn. Clearly, |P| denotes the number of poly-
gons of P, and we use the notation ‖P‖ for the overall
number of vertices in P. We say that a packing P is
covered by a set C = {R1, R2, . . . , Rm} of rectangles
if each polygon of P is contained in at least one rect-
angle of C. If a rectangle R′ arises from a rectangle R
by a translation we call R′ a translation of R, and if R′

arises from R by a translation and a rotation we say
that R′ is a general motion of R (this is equivalent to
the term “rigid motion” in [2]). With these namings
we can define the main theme of our investigations:

Definition 1 Let P be a packing and R an axis-
aligned rectangle (the so-called gripper). We call a set
of rectangles C = {R1, R2, . . . , Rm} a translational
(general) cover of P if C covers P and all rectangles
of C are translations (general motions) of R.

Since we are interested in covering a packing with
as few as possible rectangles we call a cover of every
kind optimal if it has minimal cardinality amongst all
covers of the respective kind. To ease wording we refer
by the term cover to both a translational or general
cover. For a packing P and a rectangle R we denote
the set of polygons of P covered by R by cov(R,P).
We extend this notion to a set R of rectangles by
cov(R,P) :=

⋃
R∈R cov(R,P).

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: Translational Alignments

3 Basic Facts and Observations

In general, the set of covers of a given packing is un-
countable so we will have to discretize the search space
in a suitable manner. As tools for reducing the num-
ber of coverings to consider for computation we state
some useful properties and lemmata. The first lemma
which holds for both translational and general cov-
ers will pave the way for a recursive approach to our
problem:

Lemma 1 Let P be a packing, C an optimal cover of
P and Rj an arbitrary rectangle of C. Then C\{Rj}
is an optimal cover of P\cov(Rj ,P).

Proof. Assume there is a cover C′ of P\cov(Rj ,P)
with |C′| < |C| − 1. Then C′ ∪ {Rj} is a cover of
P with a size of |C′| + 1 < |C| which contradicts the
optimality of C. �

In the next lemma we give a first step towards dis-
cretization of the search space in the case of a trans-
lational cover:

Lemma 2 Let P be a packing and C =
{R1, R2, . . . , Rm} an optimal translational cover of P.
Then there are points p1 and p2 of P and an index
j together with an axis-aligned rectangle R′

j fulfilling
the following properties:

1. p1 has minimal x-coordinate amongst all points
of P,

2. p1 lies on the left side of R′
j ,

3. p2 lies on the upper side of R′
j ,

4. there are polygons P1, P2 ∈ P such that for i ∈
{1, 2} pi is a vertex of Pi and Pi is contained in
R′

j , and

5. C\{Rj} ∪ {R′
j} is an optimal translational cover

of P.

Figure 3: General Motion Alignments

Note that we do not require that p1 and p2, P1 and
P2 as well as Rj and R′

j are distinct. Moreover, if p1

and p2 are equal then they coincide with the upper
left vertex of R′

j .

Proof. Let p1 be a point of P with minimal x-
coordinate and P1 a polygon of P which has p1 as
a vertex. Then there is a rectangle Rj ∈ C contain-
ing P1. Now we translate Rj in positive x-direction
till p1 lies on the left side of the translated rectangle
R̂j . Clearly, we have cov(R̂j ,P) ⊇ cov(Rj ,P). Sub-

sequently, we translate R̂j in negative y-direction till
a point p2 with the following properties lies on the
upper side of the translated rectangle R′

j :

1. All polygons of P with p2 as a vertex contained
in R̂j are contained in R′

j , and

2. p2 is a point with maximal y-coordinate fulfilling
the above requirements.

Then we have cov(R′
j ,P) ⊇ cov(R̂j ,P) ⊇ cov(Rj ,P),

so C\{Rj} ∪ {R′
j} is indeed an optimal translational

cover of P. Moreover, p1, p2 and P1 meet their re-
quirements by construction, and for P2 we can choose
an arbitrary polygon with p2 as a vertex which is con-
tained in R′

j . �

The general situation is depicted in the left part of
Figure 2: Rj correponds to the dotted rectangle, R̂j

to the dashed one, and the final rectangle R′
j is drawn

with a full line. A pathological example where p1 and
p2 as well as P1 and P2 coincide can be seen in the
right part of the same figure.

A similar property can be stated for general covers
(this and the previous lemma show some similarity to
the term “stable placement” in[1]):

Lemma 3 Let P be a packing and C an optimal gen-
eral cover of P. Then for every polygon Ppi ∈ P there
are points p1, p2 and p3 of P and an index j together
with a rectangle R′

j fulfilling the following properties:
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1. R′
j contains Ppi,

2. p1 and p2 are distinct and lie on two different
adjacent sides of R′

j

3. p1, p2 and p3 lie on sides of R′
j ,

4. there are polygons P1, P2, P3 ∈ P such that for
i ∈ {1, 2, 3} pi is a vertex of Pi and Pi is contained
in R′

j ,

5. C\{Rj} ∪ {R′
j} is an optimal general cover of P.

Proof. Let Rj ∈ C be a rectangle containing Ppi. We
apply to Rj similar translations as in Lemma 2 but
do not translate in x- and y-direction but in directions
parallel to adjacent sides of Rj . Doing so, we end up

with a rectangle R̂j and two (not necessarily distinct!)
points p1 and p2 with the following properties:

1. R̂j contains Ppi,

2. p1 and p2 lie on adjacent sides of R̂j ,

3. cov(R̂j ,P) ⊇ cov(Rj ,P), and

4. there are polygons P1, P2 ∈ P such that for i ∈
{1, 2} pi is a vertex of Pi and Pi is contained in
R̂j .

Now we perform a general motion of R̂j combined of
a clockwise rotation and suitable translation which
keeps p1 and p2 on their respective sides. There are
two cases:

1. p1 and p2 coincide. Then the described general
motion is a simple rotation of R̂j around p1. This
rotation is continued as long as a point p3 lies on
a side of the resulting rectangle R′

j such that the
following properties hold:

(a) R′
j contains Ppi,

(b) there are polygons P1, P3 ∈ P such that for
i ∈ {1, 3} pi is a vertex of Pi and Pi is con-
tained in R′

j , and

(c) cov(R′
j ,P) ⊇ cov(R̂j ,P).

2. p1 and p2 are distinct. Here we continue the gen-
eral motion till one of the following two cases
concerning the arising rectangle R′

j occurs:

(a) p1 or p2 coincide with a vertex of R′
j , or

(b) there is a point on a side of R′
j such that

i. R′
j contains Ppi,

ii. there are polygons P1, P2, P3 ∈ P such
that for i ∈ {1, 2, 3} pi is a vertex of Pi

and Pi is contained in R′
j , and

iii. cov(R′
j ,P) ⊇ cov(R̂j ,P).

Now, after possibly necessary renamings, p1, p2 and
p3 together with R′

j meet the requirements of the
lemma. �

The general situation is shown in the lower left part
of Figure 3: the dotted rectangle corresponds to Rj ,

the dashed one to R̂j and the fully lined to R′
j . An

extreme situation is illustrated by the upper right part
of the same figure.

4 General Approach

We will now introduce an exact generic algorithm for
the minimal cover problem. For the sequel we fix a
rectangle R which we will use as gripper for a trans-
lational or general cover of a packing P.

Let us assume we have an algorithm
candidate rectangles which determines for every pack-
ing Q a finite set of translations or general motions of
R such that for every optimal cover C of Q and every
Rcov ∈ C there is an Rcand ∈ candidate rectangles
such that cov(Rcov,Q) ⊆ cov(Rcand,Q) holds.
Together with a function simp cov which computes
an arbitrary cover (which can be done by packing
each polygon into a rectangle of the gripper’s shape)
we can formulate the generic Algorithm 1 whose
correctness is ensured by Lemma 1.

Algorithm 1 Generic Branch and Bound Algorithm

Require: A Packing P and a Gripper R
1: set<rectangle> global cover = simp cov(R,P)
2: int global depth = |global cover|
3: Branch and Bound(0,∅)

Ensure: global cover is an optimal cover of P by R
with cardinality global depth

4: function Branch and Bound(int depth,
set<rectangle> rectangles)

5: if rectangles covers P then
6: global depth = depth
7: global cover = rectangles
8: else if depth < global depth then
9: set<rectangle> candidate rectangles =

10: candidate rectangles(P\cov(rectangles,P))
11: for all R ∈ candidate rectangles do

Branch and Bound(depth + 1,
rectangles ∪ {R})

12: end for
13: end if
14: end function

Depending on whether one is interested in an
optimal translational or general cover the function
candidate rectangles has to be implemented in differ-
ent ways. Some possibilities are described in the next
section.
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Algorithm 1 is an exact algorithm so we cannot ex-
pect a polynomial running time. In the worst case,
there are O(|P|2|P|) calls of Branch and Bound.
As we will see in the next section, the candidate rect-
angles can be computed in O(‖P‖) time for the trans-
lational and in O(‖P‖)3 time for the general case.

5 Implementation Sketch and Experimental Re-
sults

A short look at Algorithm 1 reveals that a BFS in the
induced search graph will lead to a faster implemen-
tation. As usual, the drawback of this approach is a
greater amount of space required during the compu-
tation. We implemented both versions and observed
that the BFS approach fits our practical problems bet-
ter.

Lemmata 2 and 3 provide methods for computing
the set canditate rectangles in Line 9 of Algorithm 1.

In the case of a translational cover we observe that
a translation of a rectangle is uniquely determined by
the position of its upper left vertex. Moreover, given
two distinct points, there at most one translations
which make the two points lie on adjacent sides ac-
cording to Lemma 2. In the sequel we will concentrate
on the general cover problem because our gripper can
also be rotated around the z-axis. Nevertheless, we
implemented our algorithm for the translational cover
and could solve instances with 25 polygons and 1250
vertices in less than a second on an Intel i7-4770 CPU
with 3.4 GHz.

Similarly, each pair or triple of distinct point gives
raise to only a finite number of general motions
of given rectangle meeting the requirements from
Lemma 3. So we iterate over the points or pairs or
triples of points from the packing under consideration
(concretely P\cov(rectangles,P) in Line 9 of Algo-
rithm 1) and determine all motions of R which fulfill
the conditions of Lemma 2 or 3, resp. Of course, it
suffices to keep only those rectangles which cover a
maximal set of polygons.

We refined this approach by the following idea:
first, for every polygon P from the initial nesting, we
generate a list PP

1 , PP
2 , . . . , PP

m of compatible poly-
gons which can be covered by the given gripper to-
gether with P . Second, we use these lists to com-
pute the candidate rectangles for a packing P′ aris-
ing during the execution as follows: we choose a
pivot polygon Ppi from P′ and iterate over all triples

(P
Ppi

i , P
Ppi

j , P
Ppi

k ) of compatible polygons of Ppi with
i ≤ j ≤ k. For every such triple we compute the con-
vex hull and determine for every tuple respectively
triple of points of the convex hull the rectangles ac-
cording to Lemma 3. As mentioned above, we only
keep the rectangles covering a maximal set of poly-
gons. The restriction to the points of the convex hull
is justified by the fact that the covering rectangle has

to contain all polygons of {P
Ppi

i , P
Ppi

j , P
Ppi

k } which is
equivalent to it that it contains the convex hull of
these polygons. A crucial point is the choice of the
polygon Ppi from Lemma 3 as pivot polygon in or-
der to keep the branching degree of the algorithm at
a low level. Experiments showed that a good choice
for the pivot polygon is a polygon which has minimal
distance to a vertex of an axis parallel rectangular
minimal bounding box of P′.

As one would expect, our experiments indicated
a running time cubic in the overall number of ver-
tices and roughly exponential in the number of poly-
gons. Our implementation in Java solved instances
from practice with 25 polygons and 1250 vertices in
about 20 minutes on average in the same environment
as above.

6 Conclusion and Outlook

Our algorithm seems to be applicable to practical in-
stances. However, there is room for further improve-
ments. In our setting the algorithm was run on only
one core which is clearly not optimal since it is obvi-
ously easy to construct a parallelized version. Another
idea is to compare other strategies than described
above for finding the pivot polygon. From a theo-
retical point of view, it will be interesting to show the
conjectured NP-completeness of our problems.
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Two-Dimensional Closest Pair Algorithms in the VAT-Model

Fabian Dütsch∗

Abstract

Recently, Jurkiewicz and Mehlhorn [10] observed that
the cost of virtual address translation affects the prac-
tical runtime behavior of several fundamental algo-
rithms on modern computers. We extend their results
to two dimensions by analyzing and experimentally
evaluating algorithms for the closest pair problem re-
garding the impact of address translation.

1 Introduction

Modern computer systems feature a multi-level mem-
ory hierarchy and virtual memory, which cannot be
modeled adequately with the RAM-model. Usually,
the number of cache misses in the presence of a mem-
ory hierarchy is examined in the EM- [1] and CO-
model [6]. A machine modeled in these models con-
sists of a slow main memory of unlimited size and
a fast cache of size M . Data are moved between
these levels in blocks of size B. In contrast to EM-
algorithms, cache-oblivious algorithms assume the op-
timal cache replacement strategy and must not refer
to the parameters M and B in the code.

However, these models do not cover the cost of vir-
tual address translation. Running processes access
their own linear address spaces via virtual addresses.
The operating system transparently maps virtual to
physical addresses, typically by walking a root-to-leaf
path in a process-specific translation tree. Jurkiewicz
and Mehlhorn observed impacts of the cost of virtual
address translation on the practical runtime of sev-
eral fundamental algorithms: the observed runtime of
scanning an array in random order, binary searching,
and sorting by heapsort exceeds the predicted RAM-
and I/O-complexities by a factor of O(log n) [10]. As
these results cannot be explained by any of the for-
mer models, Jurkiewicz and Mehlhorn developed a
new model of computation, that considers the cost
of virtual address translation: the Virtual Address
Translation (VAT) model. Their analyses show that
the VAT-complexities match the measured runtime
behaviors.

In this note, we revisit the two-dimensional closest
pair problem in the VAT-model. We analyze and ex-
perimentally evaluate the algorithms by Bentley and
Shamos [4], Hinrichs et al. [9] and Golin et al. [7].

∗Department of Computer Science, Westfälische Wilhelms-
Universität Münster, Germany, f.duetsch@uni-muenster.de

2 The Model

The VAT-model [10] extends the EM-model by model-
ing virtual addresses and their translation cost. A ma-
chine modeled in the VAT-model features two mem-
ory levels, both of which are partitioned into pages
of size P (corresponding to B). The single processor
cannot directly access the main memory, but first has
to load the concerned page into the translation cache
(TC) of the size of W pages (corresponding to M/B
blocks). The cost of a cache fault is τ times the cost of
a RAM-operation, where τ is some positive machine
parameter.

The program accesses the main memory via vir-
tual addresses. An address is a (d + 1)-tuple
in {0, . . . ,K − 1}d × {0, . . . , P − 1}; the first part,
called the index, determines the page and the sec-
ond part the offset within the page. To translate
a virtual address, one has to traverse a root-to-leaf
path in a K-ary translation tree of height d :=
dlogK(max used page)e. Leaves correspond to data
pages, i.e., physical pages storing the data. The trans-
lation nodes of the translation path are determined by
the components of the address index and are accessed
successively. The internal nodes of size P as well as
leaves are stored in the physical main memory and
have to be present in the TC when being accessed.

The VAT-complexity is given by the number of
cache faults incurred by accesses to data pages and
translation nodes. Hence, it may exceed the I/O-
complexity by a factor of O(d) = O(logK(m/P )) and
the RAM-complexity by a factor of O(τd), with m be-
ing the program’s memory consumption. The asymp-
totic order relations assume, among others, that fol-
lowing relations hold: [10]

(A1) 1 ≤ τd ≤ P , i.e., loading a translation path can
be amortized over P RAM-operations.

(A2) d ≤ W < mθ, for θ ∈ (0, 1), i.e., the memory
consumption is much bigger than the cache size.

Furthermore, we assume that the root of the transla-
tion tree is always present in the TC.

2.1 Previous results

To analyze cache-oblivious algorithms in the VAT-
model, Jurkiewicz and Mehlhorn interpreted the
translation tree as a (d + 1)-level memory hierarchy:
for 0 ≤ i ≤ d, the translation nodes of height i corre-
spond to blocks of size KiP and form a memory level.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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By uniformly allocating the TC to these memory lev-
els, the following statement results.

Theorem 1 ([10]) A cache-oblivious algorithm with
I/O-complexity C(M,B, n), whereM is the size of the
cache and B is the size of a block, incurs maximally∑d−1
i=0 C(bWd cKiP,KiP, n) cache faults in the VAT-

model with optimal replacement strategy.

Thus, linear scanning with I/O-complexity 1 + d nB e
causes at most 2d+ K

K−1
n
P faults in the VAT-model.

However, this theorem cannot be applied to many
cache-oblivious algorithms, as the tall-cache assump-
tion M ∈ Ω(B2) does not hold on each level of the
corresponding memory hierarchy. To address this
problem, Jurkiewicz et al. derived the upper bound
4d · C(PW4 , dP, n) for a larger class of algorithms [11].
It implies that I/O-optimal sorting algorithms sort

with at most O( nP d
logn/(PW )

logW/d e) faults in the VAT-

model. For realistic cache sizes W ∈ Ω(d2), this com-
plexity equals the optimal I/O-complexity. Further-

more, taking into account τ
P

(A1)

≤ 1
d shows, that the

VAT-cost of sorting is dominated by the RAM-cost
O(n log n).

3 Preliminaries

We start by analyzing several building blocks used in
the closest pair algorithms in the VAT-model.

3.1 Search Data Structures

When searching for a random element, at least one
random memory access is necessary. In this case, the
best strategy is to cache the upper nodes of the trans-
lation tree. We can prove:

Proposition 2 The average number of cache faults
incurred by a search for a random and uniformly dis-
tributed element in a data structure storing n ele-
ments is at least dlogK

n
P (W+1)e − 1.

This implies that the VAT-complexity of hashing, un-
like its RAM- and I/O-complexity, is not constant.
At the same time, the amortized number of faults
caused by perfect hashing with constant amortized
RAM-complexity does not exceed Θ(logK

n
PW ).

The VAT-complexity of accessing and updating
a search tree depends on its memory layout and
the cache replacement strategy. A search in a
balanced binary tree with a random layout incurs

O(log nd
W logK

n
PW )

(A2)
= O(log n

W logK
n
PW ) cache

faults, if the upper nodes of the search tree and of the
translation tree are cached. Searching in a B-tree [2]
causes O(logP

n
W logK

n
PW ) faults. The multi-level

blocking regarding blocks of sizes KiP , for 0 ≤ i ≤ d,
generates a static, cache-aware layout with search cost

of
∑d−1
i=0 dlogKiP ne ≤ d+ logP n+ logK n ln logP n

cache faults, if searches start with an empty
TC. Otherwise, the number of cache faults is
O(logP

n
W + logK

n
W log logP

n
W ), if W ≥ 2d. Apply-

ing Theorem 1 to the search in the cache-oblivious
van Emde Boas layout [12] results in the same VAT-
complexity [10]. Furthermore, the cache-oblivious
layout can be dynamized to support searches and
updates in the same worst-case complexity (see, e.g.,
[3]). As the following theorem shows, this is optimal.

Theorem 3 The average- and worst-case complexi-
ties of the number of faults incurred by comparison-
based searching is Θ(logP

n
W + logK

n
W log logP

n
W ).

Proof Sketch. To establish a lower bound, we sepa-
rately consider a problem with lower I/O-complexity
C(M,B, n) on the levels of the translation tree. Inter-
preting the levels as different levels of a memory hier-
archy shows that

∑d
i=0 C(WKiP,KiP, n) is a lower

bound for the number of cache faults in the VAT-
model. In both cases, plugging in the lower I/O-
bound Ω(logB

n
M ) of comparison-based searching re-

sults in the claimed lower VAT-complexity. �
The proof carries over to each problem for which

an optimal cache-oblivious algorithm whose I/O-
complexity does not depend on M is known. In this
case, the stated lower bound matches the upper bound
from Theorem 1.

In summary, it can be stated that the cost of vir-
tual address translation usually dominates the RAM-
complexity of searching.

3.2 Divide and Conquer

In the RAM-model, the complexity of divide-and-
conquer algorithms is often determined using the mas-
ter theorem [5]. However, it is not suitable for the
VAT-model, as it may eliminate additional parame-
ters, such as P and W . Additionally, it does not
consider that cache faults can be prevented at deep
recursive levels in certain cases. We thus adapt the
master theorem to the VAT-model.

Theorem 4 Let a ∈ N and b ∈ R be constants, with
b > 1, and let V ∈ N. Let C, f , and g be asymptotic
positive functions. Consider an in-place, divide-
and-conquer algorithm incurring C(W,P,K, d, n) ≤
a · C(W,P,K, d, dnb e) + g(W,P,K, d) · f(n) faults.
Then, the number of cache faults incurred by an
asymptotically optimal replacement strategy on a
TC of size W ≥ V ≥ 2d+ Ω(d) is at most




O((g(W,P,K, d) · f(PV ) + V )( n
PV )logb a),

if ∃c > 1∃n0 ∈ N∀n ≥ n0 : a · f(nb ) ≥ c · f(n).
O(g(W,P,K, d) · f(n) · log n

PV + ( n
PV )logb aV ),

if ∃k ≥ 0 : f(n) ∈ Θ(nlogb a logk n).
O(g(W,P,K, d) · f(n)),

if ∃c < 1∃n0 ∈ N∀n ≥ n0 : a · f(nb ) ≤ c · f(n).
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Proof Sketch. g(W,P,K, d) can be factored out,
so that the additional parameters are not being elimi-
nated. In cases 1 and 2, cache faults can be prevented
from level of recursionO(logb

n
PV ) to the base cases by

caching the translation paths to all particular input
data in V pages of the TC. As a result, the factors dif-
fer from the corresponding factors of the master the-
orem. Furthermore, accessing the input data of the
recursive calls of level O(logb

n
PV ) and deeper incurs

at most O(( n
PV )logb aV ) faults. �

The theorem also applies for out-of-place algo-
rithms, if the used memory areas fulfill the inclusion
property, i.e., if each memory area accessed by a recur-
sive call is a contiguous subset of the corresponding
memory area of the particular recursive caller. Details
will appear in a full version of this note.

A sequential accesses pattern within a divide-and-
conquer algorithm causes up to O(aid + m

P ) cache
faults on the ith level of recursion, where m is the size
of the memory area storing the data accessed. The fol-
lowing statement shows that the number decreases to
O(d+ m

P ), if a translation path of a “nearby” page is
cached at the beginning of each recursive call.

Proposition 5 Let a ∈ N and S be a sequential sub-
sequence of the accesses of a divide-and-conquer algo-
rithm. Consider the memory areas accessed by S at
a fixed level of recursion. If

• the recursive calls’ memory areas are disjoint,
each contiguous, and contained in a contiguous
memory area of overall size m,
• the translation path of the previous access of S

is still present when the particular next access of
S within the same recursive call occurs, and
• a translation path of any address between the

currently accessed page and the first page of the
(a−1)th previous memory area (ordered by their
addresses) is present when the first access of S
within any recursive call except for the one cor-
responding to the first memory area occurs,

then S maximally incurs (a + 1)d + a K
K−1

m
P cache

faults on that level of recursion.

For all but the first memory accesses within a call
of a recursive algorithm, an address of the current
memory area may already be present. Hence, if we
strengthen the third condition to require the presence
of a translation path of an address of the current mem-
ory area, the upper bound amounts to 2d+ 2 K

K−1
m
P .

In summary, it can be stated that divide and con-
quer is an important design tool for VAT-algorithms.

4 Closest Pair Algorithms

In this section, we investigate the VAT-efficiency for
algorithms representing different design paradigms.

4.1 Divide and Conquer

The divide-and-conquer algorithm by Bentley and
Shamos [4] divides the point set by the median x-
coordinate, recurses on both subsets, merges the sub-
sets by y-coordinates, and, determines the closest pair
within a certain vertical stripe around the median x-
coordinate. To efficiently compute the median, imple-
mentations usually presort the input points. We can
implement the out-of-place merging by five sequential
scans (three interleaved scans to merge the points in
an additional memory area and two interleaved scans
to copy them back to the input area). In parallel
to copying the points back, the points of the vertical
stripe can be extracted to the beginning of the addi-
tional memory by interleaved scanning. Finally, the
closest pair of points within the stripe can be found
with the cost of a single scan, as each point from the
stripe has do be compared to maximally seven subse-
quent points.

By Proposition 5, each of the seven scans incurs
O(d+ n

P ) cache faults on every level of recursion. As
both memory areas used obey the inclusion property
when being allocated appropriately, the calls at level
of recursion O(log n

PW ) and deeper maximally cause
O(( n

PW )log2 2W ) = O( nP ) faults (Thm. 4(2), V ∈
Θ(W )). Therefore, the algorithm incursO( nP log n

PW )
cache faults, provided that W ≥ 4d+ Ω(d). By (A1),
their costs amount to O(nd log n

PW ) ⊆ O(n logK).
Consequently, the overall VAT-complexity O(n log n)
is dominated by the RAM-complexity. The number
of cache faults can be decreased further to the trans-
lation cost of sorting O( nP d

logn/(PW )
logW/d e) by increasing

the branching factor to Θ(W/d), similar to distribu-
tion sweeping [8].

4.2 Plane-Sweep

The plane-sweep algorithm by Hinrichs et al. [9] in-
crementally computes the closest pair by iteratively
processing the input points in x-order. It maintains
points already considered but still relevant ordered by
their y-coordinates in a search tree. When advancing
to the next point p, points not relevant anymore are
deleted from the search tree, p is inserted, and is then
compared to a constant number of adjacent points in
the tree.

In the VAT-model, the cost of the initial sorting
step is O(n log n) [10]. Accessing the respectively
current point and the points potentially not relevant
anymore within the sorted array overall incurs
O(d+ n

P ) cache faults. Assuming a VAT-optimal
search data structure, the insert, delete, and search
operations cause O(n logP

n
W + n logK

n
W log logP

n
W )

cache faults. The overall VAT-complexity
Θ(n log n+ τn(logP

n
W + logK

n
W log logP

n
W )) is

dominated by the translation cost of searching,
provided that τ ∈ Ω(logK/ log logP

n
W ).
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4.3 Randomized Incremental Construction

The algorithm by Golin et al. [7] uses randomized
incremental construction. Initially, the points are
randomly permuted. Even a naive implementation
with RAM-complexity Θ(n) incurs O(n logK

n
PW )

cache faults, whereas sorting increases the RAM-
complexity. Next, the algorithm iteratively inserts the
points into a grid of mesh size equal to the distance
of the closest pair by then. In this way, a constant
number of queries to the grid and, if necessary, a re-
build suffice to process each point. As the probability
of a rebuild in the ith iteration amounts to O(1/i),
the expected overall RAM-complexity is Θ(n), if dy-
namic perfect hashing is used. In that case, by Propo-
sition 2, the expected number of cache faults amounts
to Θ(n logK

n
PW ) . Therefore, the translation cost of

random permuting and hashing dominate the VAT-
complexity.

5 Experimental Evaluation

To evaluate the practical impact of translation cost,
we implemented the above closest pair algorithms in
C++. The experiments were run on a single core of
an Intel Core i5-4210 CPU clocked at 2.7 GHz with
3 MiB cache and 8 GiB main memory running a 64-
bit Ubuntu 14.04.2 OS. The code was compiled with
g++ 4.8.2 and optimization level -O3. The runtimes
were averaged over 100 measurements.
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Figure 1: Normalized operation time in logarithmic
scale of closest pair algorithms

The above figure illustrates the normalized opera-
tion time, i.e., the measured running time divided by
the RAM-complexity [10]. The algorithms were ap-
plied to random point sets distributed in two different
ways. The points are uniformly distributed in the unit
square (�) and in {0} × [0, 1) (depicted as |) respec-
tively. In both cases, the normalized operation time
of the algorithm by Bentley and Shamos is constant.

Therefore, the practical runtime behavior matches the
RAM-complexity, as predicted by the VAT-model.
The implementation of the algorithm by Hinrichs et
al. uses std::set, i.e., a balanced search tree with-
out an optimal memory layout and with overall VAT-
complexity O(τn log n

W logK
n
PW ). In case of the first

distribution, it is not clear if the normalized operation
time is bounded. In the second case, the normalized
operation time seems to grow approximately linear
in the logarithm of the input size. Thus, the worst-
case runtime behavior O(n log2 n) seems to exceed the
RAM-complexity and match the VAT-complexity.

We evaluated implementations of the algorithm by
Golin et al. using hash maps of different libraries and
several different hash functions. In all cases, the shape
of the graph is just as irregular as the depicted (down-
scaled) normalized operation time of the implemen-
tation using std::unordered multimap. Because of
that, the runtime behavior does not entirely conform
with the VAT-complexity. It seems, however, to ex-
ceed the RAM-complexity. We leave the explanation
of this phenomenon as an open problem.
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Computing the maximum overlap of a disk and
a piecewise circular domain under translation

Narćıs Coll∗ Marta Fort∗ J. Antoni Sellarès∗

Abstract

We present a GPU parallel algorithm for approxi-
mately computing the maximum overlap of a disk and
a piecewise circular domain under translation. We
also provide initial experimental results obtained with
the implementation of our algorithm.

1 Introduction

The continuous maximal coverage problem consists
in siting facilities in the continuous space to maxi-
mize coverage of regional demand. We study the one-
facility case, with the assumption of uniformly dis-
tributed demand and a disk-like service area for the
facility (see Figure 1 for a motivational example).

Figure 1: a) Polygonal domain to be partially covered by circu-
lar sensors; b) Domain partially covered by two circular sensors;
c) Piecewise circular domain not yet covered; d) New sensor
partially covering the piecewise circular domain.

A piecewise circular curve is a finite ordered list
of connected circular arcs and line segments (consid-
ered as circular arcs with infinite radius). The arcs
and line segments are the edges, and the points where
these edges intersect are the vertices of the piecewise
circular curve. A piecewise circular curve is closed if
its first and last vertices coincide, and weakly simple
if some pair of non-adjacent edges may intersect but
the edges do not cross. A piecewise circular region is
a set whose boundary is a closed weakly simple piece-
wise circular curve. A piecewise circular region with
holes is a piecewise circular region from which the
union of the interiors of a finite number of enclosed

∗Departament d’Informàtica, Matemàtica Apli-
cada i Estad́ıstica. Universitat de Girona, Spain,
{coll,mfort,sellares}@ima.udg.edu.

piecewise circular regions, which define the holes, has
been removed. The boundaries of the enclosing piece-
wise circular region and the holes are pairwise disjoint,
and the holes are empty. A piecewise circular domain
is the union of a finite collection of non overlapping
piecewise circular regions with holes.

Next, we formally define the problem to be solved.
Let P be a given piecewise circular domain. For any
point q ∈ R2, denote Dr(q) the disk of center q and
radius r. The goal is to find a location q0 ∈ R2 which
maximizes the area A(q) of the overlap of Dr(q) with
P .

There has been some related work on this problem.
Given two simple polygons P and Q with n and m ver-
tices, respectively, Mount et al. [4] gave an algorithm
to compute their maximum overlap under translation
in O(n2m2) time. Cheong et al. [1] proposed an
algorithm to approximate the maximum overlap us-
ing random sampling techniques. With high proba-
bility the additive error is ε · min{area(P ), area(Q)}
and the running time is O(n+(m2ε−4 log2 m)). More
recently, Cheng and Lam [2] presented an algorithm
to approximate the maximum overlap of two poly-
gons P and Q, built upon the framework of Cheong
et al. [1]. Polygons P and Q may have multi-
ple holes. If n denotes the total number of vertices
in P and Q, the running time of the algorithm is
O(n2ε−3 log1.5 n log(n/ε)). If one of the two polygons
is convex, the additive error with high probability is
ε · area(P ) and the running time can be improved to
O(n log n + ε−3 log2.5 n log((log n)/ε)).

The prohibitive running times of the existing ap-
proximation algorithms, mainly for small ε values,
motivated us to design a GPU parallel approach to ef-
ficiently find a set of approximate solutions. An initial
version of this paper dealing with polygonal domains
was presented in [3].

2 Overlap area computation

To solve the problem we need an efficient way to com-
pute the area of the overlap between a disk and a
piecewise circular domain. It can be computed as the
area of the overlap between the disk and the outer
components of the domain minus the area of over-
lap between the disk and each one of the holes. Along
this section we provide a way to exactly and efficiently
compute the area A(q) = area(Dr(q)

∩
R) of the over-
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lap of Dr(q) with a piecewise circular region R with-
out holes. This area A(q) can be computed in time
proportional to the number n of the vertices of R as
follows. The area A(q) is equal to the area of overlap
between Dr(O) and R′, where O represents the origin

and R′ is the region R translated by the vector −−→
Oq.

Taking into account that a circular arc or a segment
intersects a circle in at most two points, the bound-
ary of R′ can be expressed as a closed piecewise curve
B =

∪m−1
i=0 Bi (m ≤ 3n). Each curve Bi connects the

points p′
i and p′

i+1 which are vertices of R′ or inter-
section points between ∂Dr(O) and the boundary of
R′. Moreover, each Bi satisfies one of the next cases:

Case 1: Bi is a piecewise circular curve exterior to
Dr(O) and its endpoints p′

i and p′
i+1 are intersec-

tion points.

Case 2: Bi is a segment contained in Dr(O).

Case 3: Bi is a circular arc contained in Dr(O).

Consider now the curve B =
∪m−1

i=0 Bi where Bi is the
radial projection of Bi onto Dr(O) when Bi is exterior
to Dr(O) and Bi otherwise. Observe that the poly-
curve B: 1) is weakly simple; 2) can be continuously
approximated by simple closed curves (see Figure 2);
3) encloses a region whose area equals A(q).

Figure 2: Approximation of B from B.

Thus, the area A(q) can be computed by using
Greens’s theorem as follows:

A(q) =
1

2

∫

B

−ydx + xdy =
1

2

m−1∑

i=0

Ii ,

where Ii =
∫

Bi
−ydx + xdy. Next, we explain how to

compute the value of Ii according to the case where
Bi belongs to:

Case 1: Bi is a piecewise circular curve exterior to
Dr(O). Let Ai be the shortest oriented arc on Dr(O)
that connects the point p′

i+1 with the point p′
i and let

Bi,i be the closed simple curve determined by Bi ∪Ai.
Then, Ii can be computed by:

Ii = Ii,i −
∫

Ai

−ydx + xdy = Ii,i − r2αi ,

where
Ii,i =

∫

Bi,i

−ydx + xdy ,

and αi denotes the oriented angle between the vectors−−−→
Op′

i+1 and
−−→
Op′

i.

The result of the integral Ii,i depends on the ori-
entation of Bi,i and on whether the disk Dr(O) is
interior or exterior to Bi,i. Let ni be the number of
intersections between Bi and the half-line with origin

O in the direction of the vector −−−→
Op′

i. According to
ni and αi, there are three cases to consider (Figure
3):

1. ni is odd and αi > 0. Then, Dr(O) is interior
to Bi,i and Bi,i is oriented counterclockwise. Conse-
quently, Ii,i = −2πr2 and Ii = r2(2π − αi).

2. ni is odd and αi < 0. Then, Dr(O) is interior
to Bi,i and Bi,i is oriented clockwise. Consequently,
Ii,i = −2πr2 and Ii = −r2(2π + αi).

3. ni is even. Then, Dr(O) is exterior to Bi,i.
Consequently, Ii,i = 0 and Ii = −r2αi.

Figure 3: Exterior chain cases.

Case 2: Bi is a segment contained in Dr(O). The
segment Bi = Bi can be parameterized by:

p′
i + t(p′

i+1 − p′
i), t ∈ [0, 1] .

Then, it holds:

Ii = det(p′
i, p

′
i+1) .

Case 3: Bi is a circular arc contained in Dr(O).
The arc Bi = Bi can be parameterized by:

ci + cos(t)
−−→
cip

′
i + sin(t)

−−→
cip

′
i
⊥, t ∈ [0, βi] ,

where ci is the center of the arc Bi and βi is the

oriented angle between the vectors
−−→
cip

′
i and

−−−→
cip

′
i+1.

Then, it holds:

Ii = det(ci, p
′
i+1 − p′

i) + r2βi .

3 Computing the maximum overlap

In this section we describe our strategy to approxi-
mately obtain the maximum overlap of a disk and a
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piecewise circular domain under translation with an
ϵ-absolute error. In subsection 3.1, we present a basic
approach that samples the minimum bounding box
of the piece circular domain by using a uniform grid.
We improve the approach locally refining the grid in
subsection 3.2.

3.1 Uniform grid solution

Lemma 1 At least a location optimizing A(q) be-
longs to the region delimited by the convex hull
CH(P ) of the piecewise circular domain P and, con-
sequently, it also belongs to the minimum bounding
box of P .

The proof of Lemma 1 can be found in [3].

Lemma 1 allows us to reduce the search space for
finding the maximum area of overlap. First, we sam-
ple the minimum bounding box of the piecewise cir-
cular domain P by using a uniform grid composed of
square cells of side length d. We choose d ≤

√
2r, so

that for each grid cell center c the disk Dr(c) covers
the cell of center c. Then, we compute the area A(c)
for each grid cell center c and pick a center c0 with
maximum area. To ensure that the absolute error be-
tween areas when choosing as optimal grid center c0

instead of the optimal point q0 is smaller than ε, we
need to choose an appropriate side length d smaller
than a threshold value dε. Let us determine dε.

The largest value of the absolute error A(q0)−A(c0)
occurs when the point q0 coincides with a vertex of a
square grid cell. It is bounded by the area of the lune
L(q0) = Dr(q0) \ Dr(c), where c is an arbitrary grid
cell center, because the lune L(q0) is a subregion of
Dr(q0)

∩
P but the lune L(c) = Dr(c) \ Dr(q0) does

not intersect Dr(q0)
∩

P (see Figure 4a). Thus:

A(q0) − A(c0) ≤ A(q0) − A(c) ≤ area(L(q0)) . (1)

In the particular worst-case in which q0 is a ver-
tex of the square grid cell of center c0, taking h =
d(c0, q0) = d/

√
(2) ≤ r and by using Taylor expan-

sion, we have:

area(L(q0)) = 2r2 arcsin

(
h

2r

)
+

h

2

√
4r2 − h2 ≤

≤ 2rh =
√

2dr .

Fixed r and ε ∈ (0, 1], and according to (1), an ε
absolute error can be guaranteed by choosing the side
length dε of a square grid cell as:

dε = min

(√
2r,

ε√
2r

)
,

because, in such a case:

A(q0) − A(c0) ≤ area(L(q0)) ≤
√

2dεr = ε .

Thus, if the bounding box of the polygon P has
dimension a × b, the number of vertices of the regu-
lar grid providing an ε absolute error is (⌈a/dε⌉ +
1)(⌈b/dε⌉ + 1) ∈ O(ab(r/ε)2).

3.2 Adaptive local grid refinement

If we use an initial grid of size dϵ over the entire
bounding box of P we may waste a lot of grid cells in
areas where they are not necessary. It may be com-
putationally demanding in time and memory require-
ments. Using a global refinement method would have
the same problems. Thus, we propose a local grid re-
finement method starting with a coarser grid of side
length d with

√
2r ≥ d ≥ dε. The local grid refine-

ment strategy identifies the cells, called parent cells,
to be refined according to a two-way filtering criterium
that allows us to quickly detect grid cells where it is
not necessary to apply the refinement process because
their points can not be optimal, Lemma 2, or are all
optimal, Lemma 3. After detecting the parent cells,
we determine a new smaller value for d, according
to the desired ε or the maximum number of desired
grid cells used per refinement step. We construct a
new regular grid of child cells on each selected parent
cell and we perform, for each child cell, the process
we followed for the initial grid. This local refinement
process can be repeated as many times as required
until d ≤ dε and the desired accuracy is obtained.

Next, we give the mentioned Lemmas:

Lemma 2 If d ≤ 2
√

2r and A(c0) − A(c) >
√

2dr for
the center c of a grid cell g, then the optimal point q0

does not belong to the cell g.

Proof. From (1) we know that if the cell g of center
c contains q0 the following inequalities are fulfilled:

A(q0) − A(c) ≤ area(L(q0)) ≤
√

2dr . (2)

If A(c0) − A(c) >
√

2dr, then also

A(q0) − A(c) ≥ A(c0) − A(c) >
√

2dr , (3)

thus q0 cannot belong to g because in this case in-
equalities (2) and (3) are in contradiction. �

Lemma 3 Assume that A(c) = area(Dr(c) ∩ P ) =
area(Dr(c)) = πr2, thus Dr(c) ⊆ P and c is an opti-
mal point. If for the center c′ of each one of the eight
cells adjacent to cell g we have A(c′) = πr2, then any
point of the cell g is optimal.

Proof. The union F of the set of all disks of radius
r whose center belongs to the cell g is the r-offset of
the cell g. Consequently, if F ⊆ P , then, Dr(c

′) ⊆ P
for any point c′ belonging to the cell g, thus c′ is
an optimal point. Observe that the union of the eight
disks of radius r centered in the center of the grid cells
adjacent to cell g together with the disk Dr(c) covers
the r-offset F (see Figure 4b)). Thus, in order to have
F ⊆ P it suffices that Dr(c

′) ⊆ P , or equivalently
Dr(c

′) = πr2, for the center c′ of each of the eight
adjacent cells to g. �
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a) b)

Figure 4: a) The maximum error occurs when the optimal point
q0 is a vertex of a cell. b) The union of the nine disks covers
the cell offset.

4 GPU Implementation

To solve the problem in the GPU we have to transfer
the piecewise circular domain to the GPU. We use:
a float array storing the vertex coordinates; three in-
teger values with the number of vertices, of enclosed
components and of holes; an integer array p in which
p[i] = −1 if the edge from vertex vi to vertex vi+1 is
a line segment and p[i] = j ≥ 0 otherwise; and two
extra float arrays with the radii and centers of the cir-
cular arcs, their jth element is the radius and center
of the edge from vi to vi+1 whenever p[i] = j ≥ 0.

The initial overlap areas, corresponding to the cir-
cles centered at a a × b grid with d ≤

√
2r, are com-

puted in parallel by finding one area per thread, the
current A(c0) value is estimated using an atomic max
operation. The threads in a block cooperate to store
the polygon vertices information to shared memory.
If a refinement step is required, we analyze the cells
in parallel using the filtering criteria, parent cells are
marked with a 1 and terminal cells with a 2 or a 0
depending on whether they are or cannot be opti-
mal. It is done by using squared B ×B blocks, whose
threads cooperate to transfer the (B + 2) × (B + 2)
potentially required areas to shared memory. After
being marked, the N parent cells are extracted and
a k × k new grid is placed in each one. We take
k = min(32, a, b, kε) in the first step, where the value
32 is due to GPU reasons and kε = d/dε. In the sub-
sequent steps k = min(32, k, kε). Note that at each
refinement step d is divided by k becoming d/k. We
add two extra rows and columns surrounding the k×k
grid, that will never be refined, to be able to properly
use the stop-refining criterium of Lemma 3 at this re-
finement step. Thus, we compute (k + 2) × (k + 2)
areas per parent cell. Finally, the N(k +2)2 areas are
computed in parallel and k × k blocks are used in the
next filtering step, if it is required.

5 Experimental results

We have implemented our algorithms in C++ and
Cuda C and run the experiments using a Inter(R)
Core(TM) i7-4790CPU with a Tesla k40 active GPU.

We have used the piece-wise circular polygon with
holes of 3569 edges and considered the orange circle
of r = 3.6 (km) that are shown in Figure 5.

We can see, represented by colored points, the cell
centers analyzed during the process. The green ones
are the centers of the cells having maximum area, in
this case πr2 ≈ 41 (km2). The blue points are the
other analyzed centers, they are painted in a blue
color gradation according to the overlap area of the
circle centered on them. The darker the point the
smaller the overlap area. The gradual refinement is
clearly seen in the figure as well as some rounding er-
rors in the points surrounding the regions with maxi-
mal area.

Figure 5: Piecewise circular domain with the analyzed grid cells
centers, the optimal locations are marked in green. Initial grid
size=11 × 10.

Considering ε = 0.144 (km2) and a 11 × 10 initial
grid, which corresponds to an initial grid cell size of
d = 4.9 (km), three refinement steps are needed until
a grid with cell size of 17 (m) is obtained, the algo-
rithm takes 0.14 (s). By using a finer 352×285 initial
grid, which has d = 211 (m), one refinement step and
0.19 (s) are needed, now the smallest d is of 26 (m).
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Beaconless geocast protocols are interesting, even in 1D

Joachim Gudmundsson∗ Irina Kostitsyna† Maarten Löffler‡ Vera Sacristán§ Rodrigo I. Silveira§

Abstract

Beaconless geocast protocols are routing protocols
used to send messages in mobile ad-hoc wireless net-
works, in which the only information available to each
node is its own location. Packets get routed in a dis-
tributed manner: each node uses local decision rules
based on the packet source and destination, and its
own location. In this paper we analyze some of the
most relevant existing protocols in a formal and struc-
tured way, focusing on two relevant 1D scenarios.

1 Introduction

In mobile ad-hoc wireless networks there is no fixed
infrastructure or global knowledge about the network
topology. Nodes communicate on a peer-to-peer basis,
using only local information. Thus messages between
nodes that are not within range of each other must be
sent through other nodes acting as relay stations. An
important particular case of ad-hoc wireless networks
are wireless sensor networks, in which a (usually large)
number of autonomous sensor nodes collaborate to
collectively gather information about a certain area.

Nodes are typically mobile devices whose location
and availability may change frequently, resulting in a
highly dynamic environment in which routing must be
done on-the-fly. Typically, messages are not sent to a
particular network address, but to some or all nodes
within a geographic region. This is called geocasting.
The main pieces of information used to send a message
are the location of the source node, and that of the
destination region (also referred as geocast region),
which is usually included in the actual message.

Many geocast protocols have been proposed. In
general, existing protocols can be divided into two
groups: those that assume that each node also knows
the location of its 1-hop neighbors (i.e., all nodes
within range) and those that don’t. In practice, the
locations of neighbors can be obtained by regularly ex-
changing beacon messages in the neighborhood. Bea-
cons imply a significant message overhead, which pre-
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vents these methods from scaling even to medium-size
networks [2]. For this reason, in this paper we are in-
terested in the second group, the so-called beaconless
geocast protocols.

Probably the most straightforward beaconless geo-
cast protocol is simple flooding: each message is
broadcasted to all neighbors, who in turn broadcast
it to all their neighbors, and so on. Even though it
is effective, the resulting message overhead is clearly
unaffordable. From there on, there have been many
improvements proposed. The ultimate goal is to re-
duce the message overhead as much as possible while
still guaranteeing delivery. Due to space limitations, a
proper review of all existing beaconless geocast proto-
cols is not possible here. We refer the reader to [4] for
a survey. Given the importance of geocast protocols
and the many options available, several comparative
studies have been presented (e.g., see those in [1, 3])
to asses the efficiency and efficacy of different methods
under different scenarios. However, previous compar-
isons are mostly based on computer simulations.

In this paper we are interested in analyzing the be-
havior of beaconless geocast protocols from a theoreti-
cal and geometric perspective, since the geocast prob-
lem is inherently geometric. To that end, we present
a structured overview of the main existing protocols
in the literature, and identify important quality cri-
teria to analyze them mathematically. The behavior
of a geocast protocol, in general, must be analyzed
in the context of a particular geometric scenario (i.e.,
a certain configuration of nodes). In this paper, we
focus on two very fundamental geometric scenarios in
1D. Even though it is clear that the full complexity
of these protocols can only be appreciated in two di-
mensions, we show that the 1D scenarios considered,
despite their apparent simplicity, already pose inter-
esting challenges, and already expose many of the es-
sential differences between the protocols studied. For
each scenario we analyze worst- and expected-case
performance of six different protocols. The results
obtained corroborate many of the findings previously
obtained by simulations, and gives some insight into
the difficulties of the 2-dimensional case.

2 Studied protocols

We have analyzed a selection of beaconless geocasting
heuristics that are representative of different widely
used strategies. These heuristics are frequently com-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal. 227
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bined in geocasting protocols, where the nodes follow
local decision rules that are disjunctions of several dif-
ferent heuristic predicates. In addition, the resulting
predicate is often combined via conjunction with a
location predicate to control the region where each
packet must travel. In this section we sketch the main
characteristics of each geocast heuristics.

Simple flooding. In this protocol, when a node re-
ceives a packet, it broadcasts it—after checking that
it has not broadcasted it before—and stores its ID in
order to make sure it will not broadcast it again. This
strategy is simple and robust, but it is non-scalable,
as it produces an excessive and unnecessary network
load. In the following, we describe several heuristics
intended to reduce such flood load. Nevertheless, it
is interesting to consider simple flooding not only for
comparison purposes, but also because it is used as a
building block in other protocols [3].

2.1 Restricted flooding

The following are two simple heuristics that can be
considered restricted versions of flooding.

M heuristic. The MinTrans (M) heuristic explicitly
controls redundancy through a parameterM : A node
broadcasts a received packet if and only if the number
of transmissions received for that ID is less than M .
The redundant propagation allowed by the parameter
M helps against problems such as message collisions
and getting out from local optima.

T heuristic. The Threshold (T) heuristic uses loca-
tion information for spreading the geocast propaga-
tion outward: A node retransmits a received packet if
and only if the closest among all transmitters of pack-
ets with the same ID is at least a distance T from it.

2.2 Distance-based heuristics.

The previous heuristics are likely to have delivery fail-
ures in the presence of obstacles. The following pro-
tocols were designed to help solving this problem.

CD heuristic. The Center-Distance (CD) heuris-
tic [1] relies on proximity: A node retransmits a re-
ceived packet if and only if its distance to the center
of the geocast region is less than that of all originators
of transmissions received for the packet ID.

CD-P heuristic. This protocol [1] uses priority
queues in order to further reduce the scalability prob-
lems of the CD heuristic. Each time the node can
transmit, it transmits any packet that has not been
transmitted at all yet (if any) or it (re)transmits,
among all heard packets, the one whose transmission
would give the largest reduction in distance to the
center of the geocast region.

2.3 Delay-based heuristics

Some strategies to further reduce redundancy com-
bine distances with retransmission delay.

BLR heuristic. In the Beacon-Less Routing (BLR)
heuristic, each node determines when to retransmit a
received packet based on a dynamic forwarding de-
lay function valued in [0,MD], for MD a constant
representing the maximum delay. The node retrans-
mits the package after such delay, unless some other
node does it before, in which case the retransmis-
sion is canceled. Three delay functions have been
suggested in [2], based on the following parameters:
r (transmission range), p (progress towards destina-
tion of the orthogonal projection of the current node
onto the previous_node-destination line), and d (dis-
tance from current node to the source-destination
line). The proposed variants are: delay1 = MD r−p

r ,

delay2 = MD p
r , and delay3 = MD e

√
p2+d2

e .

GeRaF heuristic. Based on distance, the Geomet-
ric Random Forwarding (GeRaF) protocol [6] logically
divides the area around the destination of a packet p
into np areas A1, . . . ,Anp

, where in A1 are all nodes
closest to the destination, and so on. Once p is trans-
mitted, up to np phases start, during which all nodes
listen during a fixed amount of time. In the first
phase, nodes in region A1 get to reply. If only one
node replies, then that one will forward the message.
If there are more, some collision resolution scheme
must be used. If there is no reply, then it is the turn
to reply for nodes in region A2. This process contin-
ues until some node in the non-empty region closest
to destination replies.

Greedy routing (beaconless version). Greedy
routing does not always guarantee delivery. Never-
theless, a greedy routing strategy is often used as
building block of geocast protocols. For this reason
we also consider greedy routing in our analysis. One
example is Geographic Distance Routing (GeDiR) [5].
GeDir requires to know the position of all neighbors of
a node: it is a greedy algorithm that always forwards
the message to the neighbor of the current node whose
distance to the destination is minimum.

This strategy can be made beaconless by a delay
function based on the following parameters: r (trans-
mission range), d (distance from previous node to des-
tinations), and x (distance from current node to desti-
nation), by using delay function delay4 = MD x+r−d

2r .
This strategy tries to get out of local minima by

sending the packet to the best positioned neighbor,
even if it is not closer to destination than the sender.

All protocols described in this section include a rule
that states what to do if a node receives a message al-
ready in its queue. One option, like in BLR, is to
always cancel the transmission of a message received
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Figure 1: Illustration of the scenarios. Left: with unbounded reach, the k messages arrive immediately to all nodes, but
that does not prevent intermediate nodes from forwarding the messages. Right: with range r = 2, the messages sent from
node 0 only reach up to node 2, so forwards are necessary to reach the target, n+ 1.

twice. Another option also used in practice is to can-
cel only if the sender of the duplicate message is closer
to the destination than the current node.

3 The 1D analysis

In this section we study two fundamental scenarios in
1D, in which the leftmost of n+2 nodes sends k pack-
ets to the rightmost node (i.e., to a goal region which
only contains the rightmost node). Each packet con-
tains the position of its last (re)sender and its destina-
tion. Each node stores all received packets in a queue
which is managed in one way or another depending
on the protocol used. For simplicity, nodes are evenly
spread at unit distance along the line. The n interme-
diate nodes form a dense bottleneck, a situation that
can easily arise in practice. Once the transmissions
start, collisions may happen. In order to cope with
this problem, we assume fair medium access, i.e., the
transmission is done by rounds, and in each round
each node that has some packet to transmit has the
same probability to transmit it.

Several aspects have to be taken into account when
comparing the behavior of different protocols. The
success rate measures the fraction of sent messages
that actually reach the target. For those that arrive,
the hop count indicates how many steps (forwards)
are needed. In this paper we only focus on what we
consider to be the most significant measure within
this context, RecMess, which is defined as the max-
imum number of packets that a node receives. This
parameter measures the work or energy consumption
for a node, as well as the overall network load and
therefore, its congestion.

Due to space limitation we only give the ideas of
the proofs of the theorems.

3.1 Unbounded reach scenario

In the unbounded reach scenario, all nodes are within
the range of each other. This setting recreates a rather
frequent situation in which many messages must go
through a high-density area.

Simple flooding. Under this protocol, all the
nodes will receive and retransmit all the packets:
RecMess = nk.

M heuristic. By definition, every node receives ev-
ery message at most M times: RecMess = Mk.

T heuristic. Due to the unit-distance distribution of
the nodes and assuming T ∈ N, when a node trans-
mits a packet, then this packet is deleted from the
queues of its T left and its T right neighbors. Thus:
d n
2T ek ≤ RecMess ≤ d nT ek.

CD and CD-P heuristic. We note that RecMess
in CD heuristic is higher than in CD-P heuristic. And
move to analyzing the CD-P heuristic. We prove the
following theorem.

Theorem 1 In the unbounded reach scenario under
the CD-P heuristic, RecMess = O(k log n).

Proof idea. To prove this theorem we represent the
message queues of the nodes as columns in a k×n ta-
ble, and introduce k random variables that represent
the rows’ lengths. We bound the size of the longest
row after every message transmission using probabilis-
tic analysis of the kth order statistic.

Delay-based. We assume that the delay is chosen
such that it increases by exactly one time step per
node; that is, MD = r. The nodes delete messages
from their queues when they receive them for the sec-
ond time. Thus, every message is retransmitted only
once, no matter which delay function is used. There-
fore, RecMess = k.

In the variant in which the nodes delete messages
from their queues only when they receive a duplicate
from a node that is closer to the destination, we get:

RecMess =

{
2k if k < log n ,

n+ n(k − log n) if k ≥ log n .

3.2 Bounded reach scenario

In the bounded reach scenario each node can commu-
nicate with r neighbors to its left and r to its right,
for some parameter r. This scenario generalizes the
previous one, allowing to evaluate the effect that node
density (indirectly related to r) has on the different
protocols.

Lower bound. Any heuristic will need at least kn
r

retransmissions for all messages to reach the destina-
tion, as a message cannot progress by more than r
nodes at a time. Every node receives a fraction Θ( r

n )
of all the messages, therefore, RecMess = Ω(k).
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Simple flooding. Under this protocol, every node
will receive each message from at most 2r of its neigh-
bors: RecMess = O(rk).

M heuristic. If 2r ≤M this protocol is equivalent to
the previous one. If 2r > M it is equivalent to the M
heuristic for the unbounded reach scenario. Therefore
RecMess = O(min(M, 2r)k).

T heuristic. If T ≥ r, no packet will ever be for-
warded. If T < r, then each node u can receive a
packet from at most 2r nodes. Each time it receives
one, at least T and at most 2T of the nodes within
reach of u delete the packet from their queues. Thus:
RecMess = O( rk

T ).

CD and CD-P heuristics. Consider a n × k ta-
ble, where columns represent message queues of the
nodes, and rows represent the messages that are in
the queues. All messages start in the leftmost r
columns. Whenever a node retransmits a message,
it gets deleted from all nodes to its left and added to
the r − 1 nodes to its right. Thus, each message is
always present in exactly r consecutive nodes (except
at the end of the process).

1 1 1
22 2 2

3 3 3 3
4 4 4 4

n

k

4
3

2
1 1

CD-P

CD

4 4 4 4

2

r

Figure 2: CD vs CD-P in bounded reach scenario.

When a node gets to retransmit, it picks the mes-
sage with the lowest ID from its queue in CD heuristic,
and with the highest ID in CD-P heuristic. Figure 2
illustrates the difference. On average, the progress
a message makes to the destination when it gets re-
transmitted under the CD heuristic is smaller than
under the CD-P. Thus, RecMess of CD heuristic is
again greater than that of CD-P heuristic.

Theorem 2 In the bounded reach scenario under the
CD heuristic, RecMess = O(k3/2).

Proof idea. To prove this theorem we show that the
expected progress a message makes when it is retrans-
mitted is greater than r√

k+1
, and the bound on the

RecMess follows.

In contrast, the CD-P heuristic is optimal up to a
constant factor with respect to RecMess.

Theorem 3 In the bounded reach scenario under the
CD-P heuristic, RecMess = Θ(k).

Proof idea. We observe that the average progress a
message makes on its way to the destination at each
retransmission is greater than r

2 . From which we de-
duce that RecMess = O(k).

Delay-based. We discuss the case where delay1 is
used. The other functions can be analyzed in a sim-
ilar way. Since all messages get deleted from its
queue when heard by a node for the second time,
RecMess = O(nk

r ).

4 Concluding remarks

Beaconless geocast protocols are used in practice in
2D scenarios. They differ from the 1D ones in a few
but important characteristics: the destination of a
packet is defined as a region where more than one
node may happen to be located; obstacles (like build-
ings, which cannot be traversed by the transmission
signal) need to be surrounded, and local optimization
strategies fail to guarantee delivery. Therefore, combi-
nations of different strategies need to be used in order
to achieve delivery guarantees and, at the same time,
keep the network load within reasonable bounds. The
network load analysis in this cases is difficult, and al-
most only experimental results exist. This is why we
have started studying the 1D case. It has shown to
be less trivial than we expected. Indeed, all protocols
give rise to different load bounds, the CD and the
CD-P heuristics being particularly tricky to analyze.
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Computing Minimum-Link Separating Polygons in Practice∗
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Abstract

We tackle the problem of separating two given sets of
polygons by a polygon with minimum number of seg-
ments. As the complexity in our specific setting is un-
known, we propose heuristics that are simple enough
to be implemented in practice. A key ingredient is a
new practical linear-time algorithm for minimum-link
paths in simple polygons. Experiments in a challeng-
ing realistic setting show excellent performance of our
algorithms in practice.

1 Introduction

We study a problem motivated by isocontour visual-
ization in road networks, where the goal is to separate
the reachable subgraph for a given resource limit from
the remaining unreachable part. Given an embedding
of (a planarization of) such a network into the plane,
the geometric subproblem is to separate reachable and
unreachable boundaries by a simple polygon. We con-
sider three objectives for such range polygons. They
must be exact (i. e., correctly separate the bound-
aries); they should be of low complexity (i. e., have few
segments) for an appealing visualization and efficient
rendering; the algorithms should be fast in practice,
even on large inputs. In this extended abstract, we
focus on geometric aspects of this problem; see the
full version for omitted details and proofs [1].

Fig. 1 shows an example of a border region B, the
input of the geometric subproblem. It is defined by
two sets R and U of hole-free plane polygons, contain-
ing boundaries of the reachable and unreachable part,
respectively. We seek a simple polygon with minimum
number of links that separates U from R. In general,
this is an NP-complete problem [3]. In our case, we
have |R| = 1 since the reachable part is connected by
definition, which, to the best of our knowledge, yields
an unresolved open problem [3]. First, consider a bor-
der region B with |R| = |U | = 1. A polygon of min-
imum complexity that separates the polygons can be
found in O(n log n) time [7]. However, the algorithm
is rather involved and requires computation of several
minimum-link paths. We propose a simpler algorithm
∗Partially supported by the EU FP7 under grant agreement

no. 609026 (project MOVESMART)
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U3

U2

U4

U1

R

Figure 1: A border region (white area) with a reach-
able boundary R and an unreachable boundary U
with components U1 to U4. Shaded areas show reach-
able (dark gray) and unreachable (light gray) parts.

that uses at most two additional segments, runs in lin-
ear time, and requires a single run of a minimum-link
path algorithm. It adds an edge e to B that connects
both boundaries. In the resulting polygon B′, it com-
putes a path with minimum number of segments that
connects the two sides of e. The algorithm of Suri [6]
computes such a minimum-link path π in linear time.
We obtain a separating polygon S by connecting the
endpoints of π along e. For practical performance,
Section 2 proposes a simpler linear-time algorithm for
the key ingredient of our approach, the computation
of a minimum-link path. Section 3 then covers the
general case of |U | ≥ 1. Since its complexity is un-
known, we focus on heuristic approaches that work
well in practice, but do not give guarantees on the
complexity of the resulting range polygons. We eval-
uate our algorithms on realistic input in Section 4.

2 A Practical Minimum-Link Path Algorithm

We address the subproblem of computing a minimum-
link path (a polygonal path with minimum number of
segments) between two edges a and b of a simple poly-
gon P that lies in the interior of P . The algorithm
of Suri [6] starts by triangulating the input polygon.
In our scenario, we preprocess this step by triangu-
lating all faces of the planar input graph only once.
Afterwards, in each step of Suri’s algorithm a win-
dow (which we define in a moment) is computed. To
this end, several calls to a subroutine computing vis-
ibilty polygons are necessary. While this is sufficient
to prove linear running time, it seems wasteful from a
practical point of view. In the following, we present a
simpler linear-time algorithm for computing the win-
dows. It can be seen as a generalization of an algo-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
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Figure 2: (a) Important triangles. (b) The window
w(a) is an edge of V (a) (shaded). (c) The shortest
paths (blue) intersect for i = 8 but not for i = 6.

rithm for approximating piecewise linear functions [4].
Let G be the (embedded) graph obtained by trian-

gulating P . Let ta and tb be the triangles incident
to a and b, respectively. The (weak) dual graph of G
has a unique path ta = t1, t2, . . . , tk−1, tk = tb from ta
to tb; see Fig. 2a. These triangles are important and
their position in the path is their index. The visibility
polygon V (a) of the edge a in P is the polygon that
contains a point p if and only if there is a point q
on a such that the line segment pq lies inside P . Let
j be the highest index such that the intersection of
the triangle tj with V (a) is not empty. The window
w(a) is the edge of V (a) that intersects tj closest (wrt.
minimum Euclidean distance) to the edge between tj
and tj+1; see Fig. 2b. Note that w(a) separates the
polygon P into two parts. Let P ′ be the part con-
taining b. A minimum-link path from a to b in P
is obtained by adding an edge from a to w(a) to a
minimum-link path from w(a) to b in P ′. Thus, the
next window is computed in P ′ starting from w(a).

We describe how to compute the first window. Let
Gi be the subgraph of G induced by the triangles
t1, . . . , ti and let Pi be the polygon bounding the outer
face of Gi. Then Pi has two special edges, namely a
and the edge shared by ti and ti+1, called bi. Let `(a)
and r(a), and `(bi) and r(bi) be the endpoints of a and
bi, respectively, such that their clockwise order is r(a),
`(a), `(bi), r(bi); see Fig. 2c. The left shortest path π`

i

is the shortest polygonal path (wrt. Euclidean length)
in Pi that connects `(a) with `(bi). The right shortest
path πr

i is defined symmetrically; see Fig. 2c. One can
show that ti+1 is (partially) visible from a if and only
if the left and right shortest paths in Pi have empty
intersection. Moreover, if these paths do not inter-
sect, they are outward convex, i. e., π`

i and πr
i have

only left and right bends, respectively [2]. These two
paths together with a and bi are called hourglass. To
keep track of parts of ti+1 visible from a, we use two
visibility lines. To define them, consider the shortest
path in the hourglass connecting r(a) with `(bi); see
Fig. 3a. It is the concatenation of a prefix of πr

i , a line
segment between vertices x and y, and a suffix of π`

i .
The straight line through x and y is the left visibil-
ity line denoted by λ`i . The right visibility line λri is

(a) (b)

ti+1
λ`
i λr

i

x

y
titi

ti+1

r(bi)

`(bi)

r(a)`(a)

x

y

πr
i

π`
i

Figure 3: (a) Shortest path from r(a) to `(bi). (b) Vis-
ibility lines spanning the (shaded) visibility cone.

defined symmetrically. The region between λ`i and λri
is the visibility cone; see Fig. 3b. A point in ti+1 is
visible from a if and only if it lies in the visibility cone.

These observations justify the following approach
for computing the window w(a). We iteratively in-
crease i until the left and the right shortest path of
the polygon Pi intersect. We then know that the tri-
angle ti+1 is no longer visible. As the left and the
right shortest paths did not intersect in Pi−1, the tri-
angle ti is visible from a. Recall that w(a) is the edge
of the visibility polygon V (a) that intersects ti clos-
est to the edge between ti and ti+1. Thus, w(a) is a
segment of one of the two visibility lines. It remains
to fill out the details (how to compute the paths and
the visibility lines) and describe later steps, when we
start at a window instead of an edge.

We start with the details. Assume the triangle ti is
still visible from a, i.e., π`

i−1 and πr
i−1 do not intersect.

Assume further that we computed the left and right
shortest paths π`

i−1 and πr
i−1 as well as the visibility

lines λ`i−1 and λri−1 in a previous step. Without loss
of generality, let the three corners of ti be `(bi−1),
`(bi), and r(bi) = r(bi−1) (as in Fig. 4). There are
three possibilities; see Fig. 4. The new vertex `(bi)
lies either in the visibility cone spanned by λ`i−1 and
λri−1, to the left of λ`i−1, or to the right of λri−1. We
know that a point in ti is visible from a if and only
if it lies inside the visibility cone. Thus, the edge bi
between ti and ti+1 is no longer visible if and only
if the new vertex `(bi) lies to the right of λri−1; see
Fig. 4e. In this case, we can stop and output the
desired window w(a), which is a segment of λri−1; see
Fig. 4f. In the other two cases (Fig. 4a and Fig. 4c),
we have to compute the new left and right shortest
paths π`

i and πr
i and the visibility lines λ`i and λri

(Fig. 4b and Fig. 4d). Note that the right shortest
path and the right visibility line remain unchanged,
i.e., πr

i = πr
i−1 and λri = λri−1. The new path π`

i

is obtained by concatenating the prefix of π`
i−1 with

endpoint x and the segment from x to `(bi), where
x is the latest vertex on π`

i−1 such that the result is
outward convex. To get the new left visibility line λ`i ,
we distinguish the two remaining cases. If `(bi) lies
to the left of λ`i−1 (Fig. 4c), we obtain λ`i = λ`i−1; see
Fig. 4d. If `(bi) lies in the visibility cone (Fig. 4a), the
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Figure 4: The three cases for the position of `(bi) and
the updated shortest paths and visibility lines.

visibility line changes. Let x be the latest vertex on
πr
i such that the concatenation of the subpath from
r(a) to x with the segment from x to the new vertex
`(bi) is outward convex. Then λ`i is the line through x
and `(bi); see Fig. 4b. One can show that the point x
where λ`i intersects πr

i moves forward along πr
i during

the algorithm (which is relevant for the running time).

Lemma 1 Let th be the triangle with the highest in-
dex that is visible from a. Then our algorithm com-
putes the first window w(a) in O(h) time.

The window a′ = w(a) separates P into two smaller
polygons. Let P ′ be the part including the edge b. To
get the next window w(a′), we have to apply the above
procedure to P ′ starting with a′. However, this would
require to partially retriangulate P ′. More precisely,
let th be the triangle with highest index that is visible
from a; see Fig. 5a. Then bh separates P ′ into an
initial part P ′0 and the rest (having b on its boundary).
The latter part is properly triangulated, but P ′0 is not.
While we could retriangulate P ′0, this would require an
efficient subroutine for triangulation and a dynamic
data structure. Instead, we propose a much simpler
method for computing the next window.

The idea is to compute shortest paths in P ′0 from
`(a′) to `(bh) and from r(a′) to r(bh); see Fig. 5b. We
denote these paths by π`

0 and πr
0, respectively. More-

over, we compute the corresponding visibility lines λ`0
and λr0. Afterwards, we can continue with the cor-
rectly triangulated part as before. Concerning the
shortest paths, note that the right shortest path πr

0 is
a suffix of the previous right shortest path, which we
already know. For the left shortest path π`

0, consider
the polygon induced by the triangles intersected by a′;
see Fig. 5c. Let v1, . . . , vg be the sequence of vertices
on the outer face of this polygon (in clockwise direc-
tion) from `(a′) = v1 to `(bh) = vg. To obtain π`

0,
we start with an empty path and iteratively append
the next vertex from this sequence while maintaining
the path’s outward convexity by successively remov-
ing the second to last vertex if necessary. It remains
to compute the initial visibility lines λ`0 and λr0. Note
that the whole edge bh is visible from a′, since a′ inter-
sects the triangle th. It follows that λ`0 is the line that
goes through `(bh) and through the unique vertex on

(d)

a′
bh

a′′

(c)(b)

bh
a′

π`
0

πr
0

λ`
0

λr
0

a′

v1 v2
v3
v4
v5
v6

(a)

b

a′ bh
th

Figure 5: Initial steps for computing the next window,
when starting at the previous window a′.

πr
0 such that λ`0 is tangent to πr

0; see Fig. 5b. The
same holds for the right visibility line. With these in-
sights, it is not hard to compute the paths π`

0 and πr
0

and the corresponding visibility lines in O(|P ′0|) time.
We compute subsequent windows until we find the

last edge b. A minimum-link path π is obtained by
connecting each window w(a) to its first edge a by
a straight line [6]. Lemma 1 and our considerations
concerning initial paths imply the following theorem.

Theorem 2 Given two edges a and b of a simple
polygon P , our algorithm computes a minimum-link
path from a to b contained in P in linear time.

3 Heuristics for the General Case

We outline heuristics for the case of |U | ≥ 1. Fig. 6
sketches results in a small example. First, RP-RC
(range polygon, extracted reachable components) sim-
ply returns the reachable boundary R. This approach
is similar to previous algorithms for isochrones [5].
Second, RP-TS (triangular separators) uses the trian-
gulation to separate B along edges for which both
endpoints are in R. The modified instances consist of
single unreachable components that are separated by
the algorithm from Section 2. Third, RP-CU (connect-
ing unreachable components) inserts new edges that
connect the components of U to create an instance
with |U | = 1. Finally, RP-SI (self-intersecting poly-
gons) modifies the approach described in Section 2
to compute a possibly self-intersecting minimum-link
path separating R and U . To obtain the range poly-
gon, it is rearranged at intersections.

(a) (b) (c) (d)

e2

e1

e e

Figure 6: Results (red) of RP-RC (a), RP-TS (b),
RP-CU (c), and RP-SI (d), starting at indicated edges.
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Figure 7: Real-world example of isocontours showing
the range of an electric vehicles at the black disk (near
Bern, Switzerland) and a state of charge of 2 kWh.

4 Evaluation

We evaluate our approaches (implemented in C++)
on a graph representing the road network of Europe,
with 22 million vertices and 52 million edges. Fig. 7
shows isocontours visualizing the range of an electric
vehicle. The result of RP-RC (left) has more than
10 000 segments, even in this medium-range example.
The result of RP-CU (right) uses much fewer (416) seg-
ments to represent the same isocontour. Note that the
isocontour contains holes, due to unreachable high-
ground areas. Hence, it has several border regions.

For our analysis, we focus on large ranges (roughly
500 km with 85 kWh batteries). Table 1 shows re-
sults of all heuristics from Section 3, averaged for
1 000 queries from sources picked uniformly at ran-
dom. Timings include extraction of the border region
from the input graph, which is part of the work re-
quired in our scenario. For RP-SI, we report figures
for unprocessed polygons with self-intersections. Run-
ning times are well below 30ms for all approaches.
The simpler heuristics, RP-RC and RP-TS, are faster
by a factor of 2 to 3. However, polygons computed
by RP-RC have a much higher complexity (by about a
factor of 50). Results of RP-TS have low complexity,
but the triangular separation increases the number of
components significantly (all other approaches have
the minimum number of components, i. e., the num-
ber of border regions). For RP-CU and RP-SI, the ad-
ditional effort pays off, as they keep complexity close
to the optimum (off by at most 6% according to a
lower bound induced by the results of RP-SI).

Table 1: Results for isocontours. We show the number
of components of the result (Cp.), complexity (Seg.),
self-intersections (Int.), and running time in ms.

Algorithm Cp. Seg. Int. Time

RP-RC 131 92 554 — 9.46
RP-TS 219 1 973 — 7.78
RP-CU 131 1 820 — 25.11
RP-SI 131 1 781 15.06 22.25

Table 2: Minimum-link path algorithm performance.
We report input complexity (|P |), visited triangles
(v. Tr.), links in the result (Seg.), and time in ms.

Scenario |P | v.Tr. Seg. Time

EV, 16 kWh 134 049 9 334 416 0.72
Iso, 60 min 135 112 11 965 701 1.03
EV, 85 kWh 357 335 33 030 1 329 3.14
Iso, 500 min 637 224 69 398 3 204 6.57

We evaluate the minimum-link path algorithm from
Section 2 in four scenarios (ranges for 16 kWh and
85 kWh batteries and isochrones for 60 and 500 min-
utes). For each of 1 000 random queries, we modi-
fied the largest border region such that |U | = 1 (us-
ing RP-CU). Then, we added an edge connecting the
two components and computed a minimum-link path
between its two sides. Recall that triangulation of
the input is part of preprocessing, hence it is not re-
ported in the table. As Table 2 shows, the running
time increases with input complexity. However, our
algorithm runs in less than 10 milliseconds on aver-
age in all cases. Isochrone scenarios are slightly harder
due to the different shape of the border regions.

Overall, we see that our approaches are suitable for
interactive applications on inputs of continental scale.

Acknowledgments. We thank Roman Prutkin for
interesting discussions.
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Computing Pretropisms for the Cyclic n-Roots Problem∗

Jeff Sommars† Jan Verschelde‡

Abstract

The cyclic n-roots problem is an important bench-
mark problem for polynomial system solvers. We con-
sider the pruning of cone intersections for a polyhedral
method to compute series for the solution curves.

1 Introduction

The cyclic n-roots problem asks for the solutions of a
polynomial system, commonly formulated as





x0 + x1 + · · ·+ xn−1 = 0

i = 2, 4, . . . , n− 1 :
n−1∑

j=0

j+i−1∏

k=j

xk mod n = 0

x0x1x2 · · ·xn−1 − 1 = 0.

(1)

This problem is important in the study of biunimod-
ular vectors, a notion that traces back to Gauss, as
stated in [10]. In [3], Backelin showed that if n has a
divisor that is a square, i.e. if d2 divides n for d ≥ 2,
then there are infinitely many cyclic n-roots. The con-
jecture of Björck and Saffari [5], [10, Conjecture 1.1]
is that if n is not divisible by a square, then the set
of cyclic n-roots is finite.

As shown in [1], the result of Backelin can be recov-
ered by polyhedral methods. Polyhedral methods to
solve a polynomial system consider the Newton poly-
topes of the polynomials in the system. The Newton
polytope of a polynomial in several variables is the con-
vex hull of the exponent tuples of the monomials that
appear with nonzero coefficient in the polynomial.
Looking for positive dimensional solution sets, we look
for series developments of the solutions, and in partic-
ular we look for Puiseux series. The leading exponents
of Puiseux series are called tropisms. A pretropism is
a vector that forms the minimal inner product with a
face of every one of the given polytopes, where none of
the faces are 0-faces. Pretropisms are candidates for
being tropisms, but not every pretropism is a tropism,
as pretropisms depend only on the Newton polytopes
of the system, see e.g. [13] for a mathematical back-
ground on tropical algebraic geometry.

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1440534.
†Department of Mathematics, Statistics, and Computer Sci-

ence, University of Illinois at Chicago, sommars1@uic.edu
‡Department of Mathematics, Statistics, and Computer Sci-

ence, University of Illinois at Chicago, janv@uic.edu.

Our problem can thus be stated as follows. Given a
tuple of Newton polytopes, compute all pretropisms.
In [15] we examined the case where all polytopes are
in general position with respect to each other. In this
paper we focus on the Newton polytopes of the cyclic
n-roots problem.

Prior and related work. In [6], the computation
of pretropisms is defined as the common refinement
of the normal fans of the Newton polytopes [18]. The
software Gfan [12] relies on cddlib [11] in its applica-
tion of reverse search algorithms [2].

2 Pruning Cone Intersections

To introduce our algorithms, consider Figure 1. For
three Newton polytopes (P1, P2, P3), the leaves of the
trees represent cones of pretropisms. Nodes without
children that are not leaves correspond to cone inter-
sections that contain only the zero dimensional cone.

A B C

D E F G H I F J H G

K L MNOP Q R S TUMNOP R S Q

A B C

D E F G H I F J H G

K L MNOP Q R S TU

Figure 1: Nodes A, B, C represent cones to P1. In-
tersections of those cones with the cones of P2 are
represented by nodes D through J. Duplicate nodes
are removed from the second tree.

The removal of duplicate nodes eliminates many
cone intersections at deeper levels in the tree.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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3 Algorithms

Our algorithm takes as input the edge skeletons of
a set of Newton polytopes; the edge skeleton of a
polytope can be computed by a polynomial-time al-
gorithm, presented in [9]. In our implementation, we
use edge objects that have vertices, references to their
neighboring edges, and the cone of the set of inner
normals of all of the facets on which the edge rests.
Note that since the cyclic-n polytopes are not all full
dimensional, we included generating rays of the lin-
eality spaces as needed.

Algorithm 2 sketches the outline of the algorithm
to compute all pretropisms of a tuple of n polytopes.
Along the lines of the gift wrapping algorithm, for
every edge of the first polytope we take the plane
that contains this edge and consider where this plane
touches the second polytope. Algorithm 1 starts ex-
ploring the edge skeleton defined by the edges con-
nected to the vertices in this touching plane.

Algorithm 1 Explores the skeleton of edges to find
pretropisms of a polytope P and a cone C.

1: function ExploreEdgeSkeleton(P , C)
2: r := a random ray inside C
3: m := min{〈a, r〉, a ∈ P}
4: inr(P ) := {a ∈ P, 〈a, r〉 = m}
5: EdgesToTest := edges e of P : e ∩ inr(P ) 6= ∅
6: Cones := ∅
7: TestedEdges := ∅
8: while EdgesToTest 6= ∅ do
9: E := pop an edge from EdgesToTest

10: CE := normal cone to E
11: ShouldAddCone := False
12: if CE contains C then
13: ConeToAdd := C
14: ShouldAddCone := True
15: else if C ∩ CE 6= {0} then
16: ConeToAdd := C ∩ CE

17: ShouldAddCone := True
18: end if
19: if ShouldAddCone then
20: Cones := Cones ∪ ConeToAdd
21: Edges := Edges ∪ E
22: for each neighboring edge e of E do
23: if e 6∈ TestedEdges then
24: EdgesToTest := EdgesToTest∪e
25: end if
26: end for
27: end if
28: TestedEdges := TestedEdges ∪ E
29: end while
30: return Cones
31: end function

The exploration of the neighboring edges corre-
sponds to tilting the ray r in Algorithm 1, as in rotat-

ing a hyperplane in the gift wrapping method. One
may wonder why the exploration of the edge skele-
ton in Algorithm 1 needs to continue after the state-
ment on line 5. This is because the cone C has the
potential to intersect many cones in P , particularly
if P has small cones. Furthermore it is reasonable
to wonder why we bother checking cone containment
when computing the intersection of two cones provides
more useful information. Checking cone containment
means checking if each of the generators of C is con-
tained in CE , which is a far less computationally ex-
pensive operation than computing the intersection of
two cones.

In the Newton-Puiseux algorithm to compute se-
ries expansions, we are interested only in the edges
on the lower hull of the Newton polytope, i.e. those
edges that have an upward pointing inner normal [17].
For Puiseux for space curves, the expansions are nor-
malized so that the first exponent in the tropism is
positive. Algorithm 2 is then adjusted so that calls
to the edge skeleton computation of Algorithm 1 are
made with rays that have a first component that is
positive.

Algorithm 2 Finds pretropisms for a given tuple of
polytopes (P1, P2, . . . , Pn).

1: function FindPretropisms(P1, P2, . . . , Pn)
2: Cones := set of normal cones to edges in P1

3: for i := 2 to n do
4: NewCones := ∅
5: for Cone in Cones do
6: NewCones := NewCones ∪

ExploreEdgeSkeleton(Pi, Cone)
7: end for
8: Cones := NewCones
9: end for

10: Pretropisms := set of generating rays for each
cone in Cones

11: return Pretropisms
12: end function

3.1 Correctness

To see that this algorithm will do what it claims, we
must define an additional term. A pretropism graph
is the set of edges for a polytope that have normal
cones intersecting a given cone. We will now justify
why the cones output by Algorithm 1 correspond to
the set of cones that live on a pretropism graph.

Theorem 1 Pretropism graphs are connected
graphs.

Proof. Let C be a cone, and let P be a polytope
with edges e1, e2 such that they are in the pretropism
graph of C. Let C1 be the cone of the intersection
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of the normal cone of e1 with C, and let C2 be the
cone of the intersection of the normal cone of e2 with
C. If we can show that there exists a path between
e1 and e2 that remains in the pretropism graph, then
the result will follow.

Let n1 be a normal to e1 that is also in C1 and let
n2 be a normal to e2 that is also in C2. Set n = tn1 +
(1− t)n2 where 0 ≤ t ≤ 1. Consider varying t from 0
to 1; this creates the cone Cn, a cone which must lie
within C, as both n1 and n2 lie in that cone. As n
moves from 0 to 1, it will progressively intersect new
faces of P that have all of their edges in the pretropism
graph. Eventually, this process terminates when we
reach e2, and we have constructed a path from e1 to
e2. Since a path always exists, we can conclude that
pretropism graphs are connected graphs. �

Since pretropism graphs are connected, Algorithm 1
will find all cones of edges on the pretropism graph. In
Algorithm 2, we repeatedly explore the edge skeleton
of polytope Pi, and use the pruned set of cones to
explore Pi+1. From this, it is clear that Algorithm 2
will suffice to find all pretropisms.

4 Comparison With Our Previous Algorithm

Our algorithm in [15] restricted the pruning of the
cone intersections in a vertical fashion: nodes in the
tree with cone intersections that yield only {0} will
not have any children. That algorithm works well for
polytopes with randomly generated coordinates.

In this paper we consider polytopes that are not in
generic position. In this situation, intersecting normal
cones to edges may lead to cones of normals of higher
dimensional cones. At the same level in the tree we
can then have duplicate cones or cones that are con-
tained in other cones. In those cases were one cone is
contained in another, the smaller cone can be pruned
from the tree. We call this type of pruning horizon-
tal pruning. For generic polytopes horizontal pruning
would not reduce the number of cone intersections.
However, in special cases like the cyclic n-root prob-
lem, there is the potential to dramatically reduce the
scope of the problem through horizontal pruning.

To illustrate horizontal pruning, consider Figure 1.
These graphs illustrate computing the pretropisms for
three fictitious, non-generic polytopes P1, P2, P3 with
the two distinct algorithms. Nodes A, B, C represent
the cones of the edges of P1, the row below that repre-
sents the resulting cones from performing Algorithm 1
with P2 and A, B, or C. The row below that varies in
the two figures. In the tree at the top of Figure 1, the
process iterates and Algorithm 1 is performed with
P3 and each of the input cones D through J. The tree
at the bottom of Figure 1 shows how the horizontal
pruning has the potential to improve over the previ-
ous algorithm. Since there are duplicate nodes for F,
G, and H, each of these paths only needs to be fol-

lowed once. Though this does not lead to dramatic
improvements in this fictitious case, as the number
of polytopes increases, the benefit of pruning com-
pounds.

5 Computational Experiments

We developed a preliminary version of Algorithm 2 in
Sage [16], using its modules for lattice polytopes [14],
and polyhedral cones [7]; Sage uses PPL [4] to com-
pute cone intersections. Our preliminary code is avail-
able at https://github.com/sommars/GiftWrap. We
ran the code on a Red Hat Enterprise Linux worksta-
tion of Microway, with Intel Xeon E5-2670 processors
at 2.6 GHz.

Instead of directly calculating the pretropisms of
the Newton polytopes of the cyclic n-root problem,
we chose to calculate pretropisms of the reduced cyclic
n-root problem. This reformulation [8] is obtained by
performing the substitution xi = yi

y0
for i = 0 . . . n−1.

Clearing the denominator of each equation leaves the
first n − 1 equations as polynomials in y1, . . . yn−1.
We compute pretropisms of the Newton polytopes of
these n − 1 equations because they yield meaning-
ful sets of pretropisms. Calculating with the reduced
cyclic n-roots problem has the benefit of removing
much of the symmetry present in the standard cyclic
n-roots problem, as well as decreasing the ambient
dimension by one. Unlike the standard cyclic n-roots
problem, some of the polytopes of the reduced cyclic
n-roots problem are full dimensional, which leads to
calculation speed ups. A simple transformation can
be performed on the pretropisms we calculate of re-
duced cyclic n-root problem to convert them to the
pretropisms of cyclic n-root problem, so calculating
the pretropisms of reduced cyclic n-roots problem is
equivalent to calculating the pretropisms of the cyclic
n-roots problem.

In Table 1, we have recorded the number of cone in-
tersections performed and the number of times cone
containments let us avoid performing additional inter-
sections for each of the reduced cyclic n-root systems
with n ≤ 10. Table 1 also contains a comparison be-
tween the two sums, which acts as a way of evaluating
the quality of the algorithms. We consider the unit of
work of each algorithm to be the total number of in-
tersections performed, as that is the constraining part
of the algorithm. As n increases, the ratio tends to
increase as well, demonstrating that Algorithm 2 rep-
resents a substantial improvement over our previous
algorithm. We expect that the result would become
even more dramatic with higher n, but in our testing,
our previous algorithm was too inefficient to termi-
nate for n > 10.
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n intersections containments sum intersections containments sum ratio
4 63 2 65 54 2 56 1.16071
5 750 20 770 395 5 400 1.92500
6 4,531 1,232 5,763 2,982 291 3,273 1.76076
7 105,982 5,767 111,749 18,798 343 19,141 5.83820
8 479,640 181,507 661,147 145,125 3,922 149,047 4.43582
9 9,232,384 1,993,049 11,225,433 1,101,563 16,313 1,117,876 10.04175

10 70,026,302 23,838,851 93,865,153 8,846,353 165,203 9,011,556 10.41608

Table 1: Columns two through four contain results when our previous algorithm is applied to the reduced cyclic
n-roots problem while columns five through seven contain the results of Algorithm 2. The final column represents
the ratio of the previous sum to the sum of Algorithm 2.

6 Comparison with Gfan

As we reported in [15], on randomly generated poly-
topes, our code was competitive with Gfan [12]. Al-
though the additional pruning criteria presented in
this paper are promising, on the specific cyclic n-roots
problem, our Python prototype is not as good as the
compiled code of Gfan. Our code tends to be slower
by a factor of two, but we hope to be more competi-
tive if we improve our ability to exploit the symmetry
of the polytopes.

The computational complexity is such that high
level parallelism is effective. Instead of iterating
through all of the cones from line 5 of Algorithm 2, we
can create a queue of them and then perform Algo-
rithm 1. We then initialize some number of processes
and give them successive cones from the queue until
the queue is empty. Once the queue is empty, the re-
sulting cones are pruned and combined and the algo-
rithm iterates. We have incorporated this parallelism
into our prototype Sage code.
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Computing the Fréchet Distance between Real-Valued Surfaces
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1 Introduction

The problem of measuring the similarity between
shapes has recently gained much attention. While
many measures have been defined, algorithms to com-
pute such measures have been found for only some of
them. We consider the problem of comparing real-
valued functions f : M → R on surfaces, focusing in
particular on spheres and disks of constant bound-
ary, i.e., f(x) = f(x′) for all x, x′ ∈ ∂M . The kind
of similarity we investigate is that under continuous
deformations of surfaces, such as in Figure 1. Here
shapes that can be deformed into each other have dis-
tance 0, otherwise, shapes have some meaningful pos-
itive distance. Two natural computational problems
arise for each measure, namely deciding whether two
images have distance 0, and the more general problem
of computing the distance between two images.

Figure 1: Pictures that can deform into each other.

Major applications of computing such measures are
in the comparison of medical imagery. For example,
when comparing two MRI or CT scans of lungs, the
images are often not aligned due to breathing and
gravity. It is important to align the images through
deformation to locate differences.

Definitions, background and results. Given two
functions f : M → Rk and g : M → Rk with common
parameter space M , their Fréchet distance is defined
by Equation 1, where µ : M →M ranges over orienta-
tion preserving homeomorphisms and d(·, ·) is the un-
derlying norm of Rk. Essentially, the Fréchet distance
captures the similarity between two functions by re-
aligning their parameter spaces to minimize the max-
imum difference in function value of aligned points.
We assume that f and g are piecewise-linear.

dF (f, g) = inf
µ : M→M

sup
x∈M

d(f(x), g ◦ µ(x)). (1)

∗Department of Mathematics and Computer Science, TU
Eindhoven, the Netherlands,
[k.a.buchin|t.a.e.ophelders|b.speckmann]@tue.nl

Efficient algorithms for computing dF (f, g) exist
for Lp norms if f and g are polylines [3], so if M =
[0, 1] or M = S1 for closed polylines. The computa-
tional complexity in the case that f and g : M →
Rk are (triangulated) surfaces is much less under-
stood. The problem is known to be NP-hard [7] also
when k = 2 [4, 5]. But it is not known whether it is
actually in NP, in fact it is only known to be upper
semi-computable for surfaces in Rk [2].

We show that the problem is in NP for k = 1 if M
is a topological sphere or disk with constant bound-
ary. Additionally, we show that even for k = 1, com-
puting a factor 2 − ε approximation of the Fréchet
distance is NP-hard. We achieve our results on sur-
faces (Section 3) by first defining a suitable similarity
measure between contour trees, which we show to be
NP-complete to approximate as well (Section 2).

In previous work, a few variants on the compari-
son of surfaces under the Fréchet distance have been
investigated. For instance, there are efficient algo-
rithms for computing the Fréchet distance with cer-
tain constraints on the homeomorphisms µ [5] and for
computing the weak Fréchet distance [2] between tri-
angulated surfaces homeomorphic to the disk.

2 Contour tree distance

The Reeb graph [8] of a function f : M → R is
the quotient space M/∼f (endowed with the quo-
tient topology) where a ∼f b if and only if a and b
are in the same connected component of the level
set f−1(f(a)). Denote by Rf the corresponding quo-
tient map. Because f associates a single real number
to each equivalence class of ∼f , the resulting Reeb
graph has a natural R-valued function associated with
it, namely the (unique) function f ′ : M/∼f → R sat-
isfying f ′ ◦ Rf = f . If M is the disk or the 2-sphere,
the Reeb graph forms a tree called a contour tree.

For the sake of compact representation, in this pa-
per we assume each surface to be triangulated to form
a simplicial 2-complex. Furthermore, we assume func-
tion values along edges of Reeb graphs to be linearly
interpolated between the values of the vertices at their
endpoints. In this representation, the contour tree of
a surface with n faces has complexity O(n) and can
be computed in O(n log n) time [11].

Based on the Fréchet distance between f and g, we
derive a computationally simpler measure that ab-
stracts from the realizability of the matching µ be-

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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tween spheres or disks. Throughout this paper, we
use the notation X = M/∼f and Y = M/∼g for the
contour trees of f and g, respectively. We shall de-
note the vertex set of X by V (X) (that is, the saddle
points and minima and maxima of f) and its edge
set by E(X). With slight abuse of notation, we reuse
function names f and g for the natural R-valued func-
tions associated with the contour trees X and Y. Our
distance measure dC compares the contour trees X
and Y of f and g. We define the contour tree dis-
tance dC between f : X→ R and g : Y→ R as

dC (f, g) = inf
τ∈M(X,Y)

sup
(x,y)∈τ

|f(x)− g(y)|,

where τ ⊆ X × Y is drawn from a specific class
of matchings M(X,Y), defined below. So τ de-
fines a correspondence between contour trees, such
that (x, y) ∈ τ if some points on contours x and y
are matched by a corresponding matching µ on M .
Denote τ(x) = {y | (x, y) ∈ τ} and τ−1(y) = {x |
(x, y) ∈ τ}. The classM(X,Y) captures the essential
(but not all) properties of an orientation preserving
matching µ. We define M(X,Y) as the set of match-
ings τ for which the following properties hold:

1. τ is a connected subset of X× Y;

2. τ(x) is a nonempty subtree of Y for each x : X;

3. τ−1(y) is a nonempty subtree of X for each y : Y.

a

b

c

d

e

f

1

2

3

4

5

6

a1

c3
c4

d4
d3

b2

e5

f6

Figure 2: Two trees
(left) and a matching.

Here, the term subtree is
used to denote a connected
subset of a tree, not nec-
essarily containing leaves of
that tree. By Conditions 2
and 3, each connected set
matches with a connected
set, and Condition 1 ensures
continuity.
Figure 2 shows an example
of a matching between trees.
The two-dimensional patch
of this matching represents

a many-to-many correspondence. For a match-
ing µ : M →M between surfaces f and g, define T (µ)
to be the corresponding matching between the Reeb
graphs of f and g:

T (µ) = {(Rf (x),Rg ◦ µ(x)) | x ∈M} (2)

Lemma 1 If µ : M → M is orientation preserving
and τ = T (µ), then τ ∈M(X,Y).

Proof. Consider such a matching µ and the corre-
spondence τ between X and Y. We show all three
conditions on τ hold. The set {(x, y) | µ(x) = y}
is a connected subset of S2 × S2, and hence its im-
age under the quotient map (x, y) 7→ (Rf (x),Rg(y))

is connected, so Condition 1 holds. Because µ pre-
serves orientation, τ(x) is connected, and by surjectiv-
ity nonempty. Hence, τ(x) and symmetrically τ−1(y)
is a nonempty subtree of Y and X, respectively. �

Corollary 2 dC (f, g) ≤ dF (f, g).

Lemma 3 Computing dC (f, g) is in NP.

By Lemma 1 we have for each orientation preserv-
ing homeomorphism µ, that the matching τ = T (µ)
satisfies τ ∈ M(X,Y). Hence, dC (f, g) ≤ dF (f, g).
On the other hand, a matching τ ∈ M(X,Y) does
not need to correspond to an orientation preserving
homeomorphism on M , as illustrated in Section 3.1.

To test whether the contour tree distance between
two trees is zero, one needs to test only whether the
trees are equal. We represent trees canonically by ex-
haustively removing degree 2 vertices that lie on the
segment connecting the two adjacent vertices, and re-
placing them by a single edge between those vertices.
This reduces the problem to labeled unordered un-
rooted tree isomorphism, solvable in linear time [1].

Computing the contour tree distance and Fréchet
distance between trees are different problems. In fact,
one major limitation of the Fréchet distance for trees
is that non-homeomorphic trees have infinite Fréchet
distance. Nonetheless, algorithms for computing the
Fréchet distance between trees have been investigated
before, yielding an O(n5/2) time algorithm [4].

2.1 NP-hardness

We show that approximating the contour tree distance
between R-valued trees within factor 2 is NP-hard
by a reduction from the NP-hard problem Exact
Cover by 3-sets [6].

Definition 1 Exact Cover by 3-sets (X3C)
Input: A set S of m subsets of {1, . . . , k} of size 3.
Output: Is there a subset of S consisting of k/3 dis-
joint triples whose union is {1, . . . , k}?

}
2}1

0

6k + 6

6l − 2

1

6l

6l + 2

YlXi,j Y
∗

Figure 3: Gadgets.

We introduce the gadgets
used in our reduction in Fig-
ure 3. Gadget Y ∗ is a long
segment from position 0 to
position 6k + 6. Gadget Yl
(l ∈ {1, . . . , k}) is a path from
position 1 to 6k+6 with a sin-
gle zig-zag of radius 2 around
position 6l. Similarly, gad-
get Xi,j (i ∈ {1, . . . ,m}, j ∈
{1, 2, 3}) has a single zig-zag
around position 6 · s(i, j), but
with radius 1. The function s
aligns the center of the zig-zag of Xi,j with that
of Ys(i,j), such that gadget Xi,j has a contour tree
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distance of 1 to Y ∗ and Ys(i,j), but a contour tree
distance of 2 to any gadget Yl with l 6= s(i, j).

0

1

m− k
3︷ ︸︸ ︷

︸ ︷︷ ︸
y1...yk

m︷ ︸︸ ︷

︸︷︷︸
︸︷︷︸

xi,2
xi,3xi,1

y∗

y∗
y∗ 2

f g

Figure 4: Connecting gadgets into trees f and g.

The function s can be configured such that each triple
of gadgets (Xi,1, Xi,2, Xi,3) corresponds to one of
the m subsets of S. We connect the three elements
of each triple at a common vertex at position 1, and
finally connect all triples at a common vertex at po-
sition 2 (blue in Figure 4) to form tree f : X→ R.

Similarly, all gadgets Yl correspond to an element
of {1, . . . , k}, and all Yl are connected to a common
vertex at position 1. To obtain a low contour tree dis-
tance, k/3 triples of f must match the Yl gadgets ex-
actly; then what remains in f are m−k/3 triples that
must be matched elsewhere. Each such unmatched
triple of f is then forced to match with three copies
of Y ∗, connected at a vertex at position 0 to form a
so called Y ∗-triple. We use m − k/3 such Y ∗-triples,
each connected to the Yl gadgets at position 1 to form
tree g : Y → R. We use a solution to X3C to derive
a matching using only many-to-one correspondences
between f and g, even though M(X,Y) also permits
many-to-many correspondences. In the full paper we
also show that any many-to-one matching can be real-
ized as an orientation preserving homeomorphism on
the sphere, such that computing the Fréchet distance
between R-valued spheres is NP-hard, see Theorem 5.

Theorem 4 Computing a (2 − ε)-approximation of
the contour tree distance is NP-complete.

Theorem 5 Computing a (2 − ε)-approximation of
the Fréchet distance of R-valued spheres is NP-hard.

3 Surfaces

We consider two surfaces: the disk M = [0, 1]2 and
the sphere S2. Not all matchings between the contour
trees X and Y can be realized as orientation preserv-
ing homeomorphisms on the sphere as illustrated in
Section 3.1. In the case of the disk, the boundaries
must also be matched, which imposes additional con-
straints on the matching of the interiors. We prove
that the Fréchet distance between R-valued spheres or
disks with constant boundary is in NP in Section 3.2.
For this we use properties of Euler diagrams.

3.1 An unrepresentable matching

Consider the two rooted trees X and Y of Figure 5.
The leaves of X are labeled xi,j (i ∈ {1, . . . , 6},
j ∈ {1, 2, 3}) and the leaves of Y are labeled yk,l
(k ∈ {1, . . . , 9}, l ∈ {1, 2}). For both trees, leaves with
the same i or k are grouped in subtrees. Based on the
complete bipartite graph K3,3 with vertices v1, . . . , v6
and edges e1, . . . , e9, we construct a matching τ be-
tween those subtrees as follows. For an edge ek =
(vi, vi′) of K3,3, match the path from yk,1 to yk,2
with the path between unused vertices xi,j and xi′,j′ .
Match the edge from the root to group i of X with
the edges of Y from the root to the three groups
that match with xi,1, xi,2 and xi,3. Then τ ∈
M(X,Y) does not match any path from yk,1 to yk,2
(of edge ek = (vi, vi′)) with any group of X not con-
taining any xi,j or xi′,j′ . However, because K3,3 is
not a planar graph, this matching cannot be realized
on the sphere, as illustrated in Figure 5.

x1,1 x6,3. . . y1,1 y9,2. . .

Figure 5: Top: surfaces. Bottom: trees X and Y.
Middle: a matching in which a subtree of Y must
intersect an additional subtree of X.

3.2 Fréchet distance in NP

An Euler diagram is a set of topological disks, drawn
in the plane to capture relations such as overlap or
containment between them. There are eight such rela-
tions: disjoint, equal, inside, contains, covered, cover,
meet, overlap [10]. For a set D of n disks and a rela-
tion P(a, b) between each pair a, b ∈ D of those disks,
the tuple (D,P) is called a topological expression. It
was shown by Schaefer, Sedgwick and Štefankovič [9]
that it is in NP to decide whether D can be drawn in
the plane to satisfy all relations of P.

We show that deciding whether the Fréchet dis-
tance between R-valued surfaces f and g : M → R
is at most ε is in NP if M is a sphere. First con-
sider the case where M = [0, 1]2 is a topological disk
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where f and g have constant boundary: f(p) = f(q)
and g(p) = g(q) for all p, q ∈ ∂M .

We can represent the contour trees X and Y as
rooted trees, and represent each subtree as a disk.
A vertex is represented by a disk with punctures (one
per edge to a subtree), and an edge e is represented by
two nested disks, whose difference is an annulus A(e).
Let W (·) denote the disks of a tree.

d

Figure 6: X′ (green)
refining X (blue) for
a single d ∈W (Y).

Define matching µ : M → M
to be an ε-matching if and
only if |f(x) − g(µ(x))| ≤ ε
for all x. Consider any ε-
matching µ between X and Y.
A polynomial amount of in-
formation about µ is used to
derive a topological expression
that captures the relations be-
tween the disks (of X and Y)
as drawn by µ. We construct
trees X′ and Y′ that have ad-

ditional vertices along the edges. We include for
each disk d of X the extremes p on Y of the im-
age of the boundary of d as vertices of Y′. That is,
p ∈ ∂Rg(µ(∂d)) ⊆ V (Y′), and we require the bound-
ary of these disks to touch but not intersect ∂d. Sym-
metrically, refine X into X′ and let D be the disks
of W (X′) ⊇W (X), and W (Y′) ⊇W (Y), see Figure 6.

Consider any drawing of D that satisfies the con-
straints imposed by the topological expression derived
from µ. We claim that if µ was an ε-matching, we
can parameterize f and g such that they form an ε-
matching µ′. Where boundaries of disks of X′ and Y′
intersect, both function values are fixed and differ
by at most ε. Consider any face F in the draw-
ing

⋃
d∈D ∂d of the boundaries of disks. It is bounded

by (a subset of) boundaries of either a vertex or edge
of X′ and those of a vertex or edge of Y′. By con-
struction, F is either entirely contained in the image
of a vertex, or disk boundaries of different surfaces
intersect on ∂F . In the former case, function values
are fixed for ∂F and differ by at most ε. In the lat-
ter case, linearly interpolate the function values be-
tween those at intersections. The function value (of f
and g) on each boundary of F is then either constant,
or (only if F lies in the intersection of two annuli and
has genus 0) two linear interpolations (back and forth)
between the values at the boundary of an annulus.

If either function is constant along ∂F , assign the
same constant to the interior, such that the other
function can by interpolated arbitrarily. If neither
function is constant, F ⊆ A(e)∩A(e′) lies in the inter-
section of annuli (e ∈ E(X′) and e′ ∈ E(Y′)). If F is
homeomorphic to an annulus, we interpolate f and g
in its interior linearly between the boundaries. In the
final case where both f and g are interpolated along
the boundary of F , we separate the regions where the
interpolation of f occurs from that of g, such that the

function values at any point differ by at most ε.
Deciding whether the topological expression (con-

structed using a polynomial amount of information
about µ) has a realization in the plane is decidable
in nondeterministic polynomial time. For any ε-
matching µ, this topological expression has a solu-
tion, and each such solution encodes an ε-matching.
Theorems 6 and 7 follow.

Theorem 6 Deciding whether dF (f, g) ≤ ε for
disks f and g with constant boundary is in NP.

Theorem 7 Deciding whether dF (f, g) ≤ ε for
spheres f and g is in NP.
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Discrete Fréchet Distance for Uncertain Points

Maike Buchin∗ Stef Sijben∗

Abstract

We consider the problem of computing the discrete
Fréchet distance between polygonal curves with un-
certain points, i.e. the coordinates of the vertices are
not known exactly, but are given by a probability dis-
tribution. In this case, the discrete Fréchet distance
is a random variable. We show that the distribution
function for a given coupling can be efficiently evalu-
ated and give an algorithm to compute the coupling
with maximum probability of realizing a given dis-
crete Fréchet distance.

1 Introduction

The discrete Fréchet distance is a popular measure
for the similarity of two polygonal curves with many
applications. In the standard case where the locations
of the vertices are known exactly, it can be computed
in O(n2) time for two curves of length at most n [5].
Recently, Agarwal et al. discovered a subquadratic
time algorithm for this problem [1].

In practice, the curves are often based on trajec-
tories collected from a moving entity, e.g. using a
GPS tracking device. These devices do not provide
precise locations, but rather an estimate of the loca-
tion, typically including an error margin. If the goal
is to compute the discrete Fréchet distance, a single
outlying observation may lead to a very different cou-
pling than the distance based on real locations, as is
illustrated in Figure 1. One proposed solution is the
(discrete) Fréchet distance with shortcuts [4, 3], which
can remove outliers from one of the curves. Here we
will follow the approach of including the uncertainty
in the model.

Several models have been proposed to incorporate
uncertainty in geometric problems [7]: In the impre-
cise points model each point lies in a given region.
With indecisive points, each point is selected from a
finite set of candidate locations. For uncertain points,
the location of a point is described using a probabil-
ity distribution based on the observed location. The
uncertain points model is the most general, and it is
closest to the practical applications, where a point is
likely to be close to the observed location, but large
errors are possible. The most commonly used distri-
bution is a circular normal distribution with the mean

∗Department of Mathematics, Ruhr-Universität Bochum,
{Maike.Buchin,Stef.Sijben}@rub.de
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Q

P

Q

σ

ε

Figure 1: Example of two trajectories (slightly shifted
for visual clarity) with discrete Fréchet distance ε.
With precise points, all points on the circle are
matched to a point in the middle (left). With un-
certain points (all normally distributed with standard
deviation σ), the optimal coupling matches most ver-
tices to one centered at the same location (right).

at the observed location. The variance can be given
by the tracking device’s estimated error or based on
other measurements.

In the case of imprecise points, where the points are
known to be in a given region, efficient algorithms ex-
ist to compute the smallest possible discrete Fréchet
distance if the regions are d-dimensional balls or for
axis-parallel boxes under the L∞ norm [2]. Comput-
ing an upper bound for the discrete Fréchet distance
is NP-hard in the imprecise setting [6].

2 Preliminaries

Formally, a polygonal curve with uncertain points P
is a sequence of vertices P 1, . . . ,P n. P i is a random
point in Rd distributed according to a certain (known)
distribution. For example, a vertex may be obtained
by a GPS fix at a certain time and be normally dis-
tributed around the observed location with a certain
variance: P i ∼ N (µi, σ

2
i ). We assume that all P i are

independent.
Consider two polygonal curves with uncertain

points P and Q of length n and m respectively
and assume w.l.o.g. that n ≥ m. A cou-
pling C between P and Q is a sequence of pairs
(a1, b1), (a2, b2), . . . , (ak, bk) such that a1 = b1 = 1,
ak = n, bk = m and for each i ∈ {1, . . . , k − 1} one of
the following holds:

• ai+1 = ai and bi+1 = bi + 1,

• ai+1 = ai + 1 and bi+1 = bi, or

• ai+1 = ai + 1 and bi+1 = bi + 1.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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The discrete Fréchet distance of polygonal curves
P and Q is defined as

ddF (P,Q) = min
C

max
i∈{1,...,k}

|P ai
−Qbi |,

where C ranges over all couplings between P and Q.
The discrete Fréchet distance is usually computed

using the free space matrix: A table of size n · m,
where each cell (i, j) represents a pair of points pi, qj
from P and Q, respectively. This cell is free if |pi −
qj | ≤ ε. Then, ddF (P,Q) ≤ ε if and only if there is
a bimonotone path from (1, 1) to (n,m) visiting only
free cells.

If the distribution has unbounded support, there
are no upper or lower bounds on the value of the dis-
crete Fréchet distance (other than the trivial lower
bound of 0). Instead, its value is given by a probabil-
ity distribution. Ideally, one would like to be able to
compute properties of this distribution, e.g.

• distribution function F (ε) = P [ddF (P,Q) ≤ ε],
• probability density f(ε) = d

dεF (ε),

• quantiles F−1(ρ) = inf{ε ∈ R≥0 | ρ ≤ F (ε)}.
Note that if an algorithm for the distribution func-
tion is known, the others can be approximated using
standard numerical techniques.

Figure 1 shows a pair of trajectories where un-
certain points lead to a different result than precise
points, in the sense that the coupling with the highest
probability of achieving discrete Fréchet distance ≤ ε
is different from the coupling with precise points at
distance ε. For noisy data, the coupling produced us-
ing uncertain points seems more reasonable. In prac-
tice, e.g. when studying trajectories with GPS error,
one is often not so much interested in the exact value
of ε, but in finding a reasonable value for ε with a
coupling that provides a good match between the two
trajectories. In some cases, using uncertain points
avoids intuitively unappealing couplings in favour of
a more reasonable one that has a slightly larger dis-
tance.

One option to compute F (ε) is to fix the position
of each point, test whether ddF (P,Q) ≤ ε for these
locations and integrate each point over Rd, weighted
by the probability density of the point, i.e.:

F (ε) =

∫

Rd

fP 1
(p1) . . .

∫

Rd

fPn
(pn)

∫

Rd

fQ1
(q1) . . .

∫

Rd

fQm
(qm)I(ε)

dqm . . . dq1dpn . . . dp1,

where I(ε) is the indicator function which is 1 if
ddF (P,Q) ≤ ε for the given coordinates and 0 oth-
erwise.

However, evaluating these d(n+m) nested integrals
to a reasonable precision requires time exponential in
the dimension [8], so other approaches are needed.

P5

Q2

P

Q

Q

PP5

Q2

Figure 2: Two trajectories with a coupling and the
corresponding free space matrix. The distribution
functions for the red and blue segments, as well as
each of the black points, can be computed indepen-
dently.

3 Evaluating F (ε) for a fixed coupling

We first consider how to evaluate FC(ε), i.e. the prob-
ability that a given coupling C realizes ddF (P,Q) ≤ ε.
C can be represented by a bimonotone path through
the free space matrix. We assume that this path
makes no 90◦ turns. Any path can be converted to
this form in linear time by diagonally going from the
cell before the turn to the cell after the turn. This
transformation can only increase FC(ε), since it re-
moves some diagonals in the coupling and does not
introduce any new ones.

A diagonal move from (i, j) to (i + 1, j + 1) in the
path breaks the trajectories up into two subtrajecto-
ries each such that

ddF (P,Q) = max{ddF (P [1 . . . i], Q[1 . . . j]),

ddF (P [i+ 1 . . . n], Q[j + 1 . . .m])}.

Since these are disjoint subtrajectories, the distribu-
tions of their discrete Fréchet distances are indepen-
dent. This property allows us to break the path up
into (possibly degenerate) horizontal and vertical seg-
ments which can be treated independently.

Let C1, . . . , Ck be the segments of the coupling de-
fined above and let FC`

(ε) be the probability that the
segment C` realizes a discrete Fréchet distance be-
tween the induced subtrajectories of at most ε. We
use independence to obtain FC(ε):

FC(ε) =

k∏

`=1

FC`
(ε).

As illustrated in Figure 2, there are three possible
cases for FC`

(ε), which are easy to deal with:

1. The segment contains only a single point. This
represents one point on each trajectory being
matched to each other, thus the question reduces
to FC`

(ε) = P
[
|P i −Qj | ≤ ε

]
.
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For normally distributed points the distance is
related to the noncentral chi-squared distribution
and this can be computed by evaluating its dis-
tribution function once.

2. A vertical segment represents a single point P i

being matched to several points Q[j . . . j′]. Here,
we fix P i, compute the probability that all other
points are close enough to the fixed point and
integrate P i over all possible locations:

FC`
(ε) =

∫

Rd

fP i(x)

j′∏

k=j

P [|Qk − x| ≤ ε] dx.

(1)

Evaluating these d nested integrals takes O(cd ·
(j′ − j)) time, where c depends on the number
of integration steps required, i.e. the integration
technique used, the desired precision and details
of the functions being integrated [8].

Again, for normally distributed points the prob-
ability can be computed using the distribution
function of the noncentral chi-squared distribu-
tion.

3. A horizontal segment can be processed symmet-
rically to case 2.

All FC`
(ε) and hence FC(ε) can be computed in

O(cd · (n + m)) time, where c again depends on the
number of integration steps in cases 2 and 3.

4 Computing the optimal coupling

In this section, we present a dynamic programming al-
gorithm that computes an optimal coupling for curves
P and Q and distance ε, that is a coupling C for which
FC(ε) is maximal, i.e. has the highest probability of
achieving discrete Fréchet distance at most ε. The
probability reached by this coupling is a lower bound
for the distribution function F (ε). Observe that the
optimal coupling is one of the form described before,
i.e. without 90◦ turns in the free space.

We use a table similar to the free space matrix, in
which each cell represents a prefix of each trajectory
and a path from the lower left corner to the cell rep-
resents a partial coupling. Using the independence of
path segments separated by a diagonal move, we can
decompose the optimal path to cell (i, j) into a final
horizontal or vertical segment Ck from (i′, j′) to (i, j)
(with i′ ≤ i, j′ ≤ j and either i′ = i or j′ = j), and
an optimal path to (i′ − 1, j′ − 1). These paths are
then connected using a diagonal edge.

Let p(i, j) denote the probability that the
optimal coupling ending at (i, j) realizes
ddF (τ1[1 . . . i], τ2[1 . . . j]) ≤ ε and let π(i, j) be
the coordinates (i′, j′) where this final segment

starts. If the final segment is vertical and (i′, j′) is
known, the probability is given by

pv(i, j) = p(i′ − 1, j′ − 1) · FCk
(ε)

= p(i′ − 1, j′ − 1) · P
[
ε ≥ max

k∈{j′,...,j}
|P i −Qk|

]

= p(i′ − 1, j′ − 1)

·
∫

Rd

fP i(x)

j∏

k=j′

P [|Qk − x| ≤ ε] dx.

If the final segment is horizontal, a similar expression
exists for ph(i, j) and p(i, j) = max{pv(i, j), ph(i, j)}.

To find (i′, j′) we search all possible predecessors,
i.e. all cells in the jth row or ith column preced-
ing (i, j), including (i, j) itself, select the (i′, j′) that
maximizes the probability and set p(i, j) and π(i, j)
accordingly. Then we construct the optimal coupling
by following the π(i, j) pointers back from (n,m).

The table contains O(n2) cells, for each cell we need
to test O(n) predecessors and computing p(i, j) for a
fixed predecessor takes O(cd ·(n)) time to evaluate the
integral as discussed before.

Theorem 1 Given two curves with uncertain points
P and Q of length n and a threshold ε, the cou-
pling that has maximum probability of realizing
ddF (P,Q) ≤ ε can be computed in time O(cdn4),
where c depends on the number of integration steps.

Instead of a single coupling, the best k couplings
can be computed by replacing p(i, j) and π(i, j) by
lists of length k. The running time increases by a
factor k.

Note that for fixed (i, j), FCk
(ε) is an increasing

function in i′ and j′, since fewer points are matched
to the fixed point as the segment becomes shorter.
Thus, better running times are achieved in practice
by searching predecessors backward from (i, j), stop-
ping the search when FCk

(ε) for some (i′, j′) becomes
smaller than the best known lower bound for p(i, j).

Instead of computing the optimal coupling for a
fixed distance ε, given a fixed probability ρ we can
compute the coupling C that realizes FC(ε) ≥ ρ for
the smallest value of ε among all couplings, by search-
ing over the distance values, using the dynamic pro-
gramming algorithm in each step.

5 Experiments

The algorithms described in the previous sections
were implemented in R and evaluated for several in-
puts. For the trajectories and ε shown in Figure 1,
these experiments confirm that the coupling shown on
the right indeed has a much higher probability (0.14)
of realizing ddF (P,Q) ≤ ε than the coupling used to
realize the discrete Fréchet distance for precise points
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ε

Figure 3: Probability that optimal coupling realizes
ddF (P,Q) ≤ ε for the trajectories in Figure 1. The
discrete Fréchet distance for precise points is indicated
by the blue line.

P

Q

σ

(a)

ε
(b)

Figure 4: (a) Two curves with the coupling that real-
izes the minimal ddF (P,Q). Points are normally dis-
tributed with standard deviation σ. (b) Probability
that the optimal curve realizes ddF (P,Q) ≤ ε. The
discrete Fréchet distance for precise points is indicated
by the blue line.

(0.00057). The probability that the optimal coupling
realizes ddF (P,Q) ≤ ε is plotted against ε in Fig-
ure 3. The discrete Fréchet distance with uncertain
points tends toward slightly larger values than with
precise points. This is to be expected, since the dis-
crete Fréchet distance is a bottleneck distance and a
single outlying point can cause the distance to become
larger. The same can be observed for a different set
of curves in Figure 4.

The integration method used is crucial for the accu-
racy of the algorithm. The expression in Equation 1
is strongly peaked near the mean locations of the in-
put points, and the function must be sampled suffi-
ciently densely near these locations. Our implemen-
tation uses the R package cubature1.

The running time of the algorithm depends highly
on the input trajectories and ε. The reason for this
is that the heuristic described at the end of Section 4
was implemented, which in some cases terminates the
predecessor search much earlier than in the worst case.
In general the running time is lower for small ε than
for large values. For the examples shown, with n = 9,
the running time can be up to 1 minute.

1https://cran.r-project.org/web/packages/cubature/

6 Conclusion

We discussed the problem of computing the discrete
Fréchet distance between polygonal curves with un-
certain points. Many interesting questions remain
open. The main question is whether the distribution
function F (ε) can be computed efficiently. Another
direction for future work is improving the running
time of the algorithm presented, either in general or
for specific classes of trajectories.
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1 Introduction

Transforming the representation of objects from the
real plane onto a grid has been studied for decades due
to its applications in computer graphics, computer vi-
sion, and finite-precision computational geometry [8].
Two interpretations of the grid are possible: (i) the
grid graph, consisting of vertices at all points with
integer coordinates, and horizontal and vertical edges
between vertices at unit distance; (ii) the pixel grid,
where the only elements are pixels, which are unit
squares. In the latter interpretation, one can choose
between 4-neighbor or 8-neighbor grid topology.

The issues involved when moving from the real
plane to a grid already start with the definition of
a line segment on a (pixel) grid, also called a digital
straight segment [10]. For example, it is already diffi-
cult to represent line segments such that the intersec-
tion between any pair is a connected set (or empty).
More generally, the challenge is to represent objects
on a grid in such a way that certain properties of those
objects in the real plane transfer to related properties
on the grid; connectedness of the intersection of two
line segments is an example of this.

While most of the research related to digital ge-
ometry is done from the graphics or vision perspec-
tive, computational geometry has made a number of
contributions as well. Besides finite-precision com-
putational geometry [8] these include snap round-
ing [6, 7, 9], consistent digital rays with small Haus-
dorff distance [5], mosaic maps [4], and schematization
by map matching [11].

We consider the problem of representing a simple
polygon P as a polygon in the grid with small distance
between them. A grid cycle is a simple cycle of edges
and vertices of the grid graph corresponding to the

∗Research on the topic of this paper was initiated at the
1st Workshop on Applied Geometric Algorithms (AGA 2015)
in Langbroek, The Netherlands, supported by the Netherlands
Organisation for Scientific Research (NWO) under project no.
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P Q1 Q2

Figure 1: dH(P,Q1) is small but dH(∂P, ∂Q1) is not.
dH(P,Q2) and dH(∂P, ∂Q2) are both small but the
Fréchet distance dF (∂P, ∂Q2) is not.

grid. A grid polygon is a set of pixels whose boundary
is a grid cycle. Two of the standard ways of measuring
the distance are the Hausdorff distance [1] and the
Fréchet distance [2]; we will consider both.

Let X and Y be two subsets of a metric space.
The (directed) Hausdorff distance dH(X,Y ) from X
to Y is defined as the maximum distance from any
point in X to its closest point in Y . In Section 2 we
show that for any simple polygon P , a grid polygon Q
exists with dH(P,Q) ≤ 1

2

√
2 and dH(Q,P ) ≤ 3

2

√
2 on

the unit grid. Furthermore, the constructed polygon
satisfies the same bounds for the distance between the
boundaries ∂P and ∂Q. This is not equivalent, since
the point that realizes the maximum smallest distance
to the other polygon may lie in the interior (Fig. 1).

Under the Hausdorff distance, the polygon bound-
ary ∂Q does not necessarily intuitively resemble ∂P
(Fig. 1, P and Q2). Therefore, the Fréchet distance
dF [2] between the boundaries may be a better mea-
sure for similarity. Unlike the Hausdorff distance,
however, not every polygon boundary ∂P can be rep-
resented by a grid cycle with constant Fréchet dis-
tance. In Section 3 we present a condition on the
input polygon boundary related to fatness (in fact, to
κ-straightness [3]) and show that it allows a grid cycle
representation with constant Fréchet distance.

2 Hausdorff distance

In this section, we present an algorithm that achieves
a low Hausdorff distance between both the bound-
aries and the interiors of the input polygon P and the
resulting grid polygon Q. We say that two cells are
adjacent if they share a segment. If two cells share
only a point, then they are point-adjacent.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: (a) Module M(c) (dashed) of cell c. (b)
Illustration to Lemma 1. Q1 ∩B in green; Q2 ∩B in
gray; curve C dashed.

Q

P

Figure 3: Example of the Hausdorff algorithm; the
input and output are shown on the right. Colors:
Q1, Q2, Q3, Q4.

Algorithm. We represent the grid polygon Q as a
set of cells (or pixels). If two cells c1 ∈ Q and c2 ∈ Q
are point-adjacent, and there is no cell c ∈ Q that is
adjacent to both c1 and c2, then c1 and c2 share a
point-contact. We construct Q as the union of four
sets Q1, Q2, Q3, Q4 (not necessarily disjoint). To
define these sets, we define the module M(c) of a cell c
as the two-by-two square region centered at the center
of c (see Fig. 2(a)). Furthermore, since we can number
the rows and columns, we can speak of even-even cells,
odd-odd cells, odd-even cells, and even-odd cells. The
four sets are defined as follows; see also Fig. 3.

Q1: All cells c for which M(c) ⊆ P .

Q2: All even-even cells c for which M(c) ∩ P 6= ∅.

Q3: For all cells c1, c2 ∈ Q1 ∪Q2 that share a point-
contact, the two cells that are adjacent to both
c1 and c2 are in Q3.

Q4: A maximal set of cells that does not introduce
holes, and where each cell c ∈ Q4 is adjacent to
two cells in Q2 and M(c) ∩ P 6= ∅.

We note that the set Q1∪Q2 is sufficient to achieve
the desired Hausdorff distance. We add the set Q3 to
resolve point-contacts, and the set Q4 to make the set
Q connected.

Lemma 1 The set Q1 ∪ Q2 is hole-free, even when
including point-adjacencies.

Proof. For the sake of contradiction, let H be a max-
imal set of cells comprising a hole. Consider the set B
of all cells in Q1 ∪Q2 that surround H and are adja-
cent to a cell of H. Since Q2 contains only even-even
cells, every cell in Q2∩B must be (point-)adjacent to
two cells in Q1∩B (see Fig. 2(b)). Hence, the bound-
ary of the union of all modules of cells in Q1 ∩ B is
a single closed curve C; if this union contains a hole,
P would contain a hole as well. Since C ⊂ P due to
the definition of Q1, the interior of C must also be in
P . Finally note that C is a rectilinear curve through
the centers of cells, but not through the center of a
cell in H. Hence, the module of a cell in H is com-
pletely inside C, implying H ⊂ Q1; this contradicts
our assumption. �

Lemma 2 The set Q is simply connected and does
not contain point-contacts.

Proof. Consider a point-contact between two cells
c1, c2 ∈ Q1∪Q2 and a cell c /∈ Q1∪Q2 that is adjacent
to both c1 and c2 (c ∈ Q3). Since Q2 contains only
even-even cells, we may assume that c1 ∈ Q1. Recall
that M(c1) ⊆ P by definition. We may further as-
sume that c1 is an odd-odd cell, for otherwise a cell
in Q2 would eliminate the point-contact. Hence, all
cells point-adjacent to c1 are in Q1 ∪ Q2, and thus c
has three adjacent cells in Q1 ∪Q2. This implies that
adding c ∈ Q3 to Q1 ∪ Q2 cannot introduce point-
contacts or holes. Similarly, cells in Q4 connect two
oppositely adjacent cells in Q2, and thus cannot in-
troduce point-contacts (or holes, by definition). Com-
bining this with Lemma 1 implies that Q is hole-free
and does not contain point-contacts.

It remains to show that Q is connected. For the
sake of contradiction, assume that Q is not con-
nected, so take two cells c1 and c2 in different con-
nected components. We may further assume that
c1, c2 ∈ Q2, as cells in Q1 ∪Q3 ∪Q4 must be adjacent
or point-adjacent to a cell in Q2. Let p ∈M(c1)∩ P ,
q ∈ M(c2) ∩ P and consider a path π between p and
q inside P . Every even-even cell c withM(c)∩ π 6= ∅
must be in Q2. Furthermore, the modules of even-
even cells cover the plane. Thus, there must be two
cells c, c′ ∈ Q2 in different components such that the
module of the cell adjacent to both c and c′ intersects
π. This contradicts the maximality of Q4. �

Upper bounds. To prove our bounds, note that
M(c) ∩ P 6= ∅ holds for every cell c ∈ Q. This is
explicit for cells in Q1, Q2, and Q4. For cells in Q3,
note that these cells must be adjacent to a cell in Q1,
and thus contain a point in P .

Lemma 3 dH(P,Q), dH(∂P, ∂Q) ≤ 1
2

√
2.
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3/2

3/2

P

Q

Figure 4: A polygon that does not admit a grid poly-
gon with Hausdorff distance smaller than 3/2. The
brown line signifies a very thin polygon.

Proof. Let p ∈ P and consider the even-even cell
c such that p ∈ M(c). Since c ∈ Q2, the distance
dH(p,Q) ≤ dH(p, c) ≤ 1

2

√
2. Now consider a point

p ∈ ∂P . There is a 2 × 2-set of cells whose modules
contain p. This set contains an even-even cell c ∈ Q
and an odd-odd cell c′ /∈ Q. The latter is true, because
odd-odd cells in Q must be in Q1. Therefore, the
point q shared by c and c′ must be in ∂Q. Thus,
dH(p, ∂Q) ≤ dH(p, q) ≤ 1

2

√
2. �

Lemma 4 dH(Q,P ), dH(∂Q, ∂P ) ≤ 3
2

√
2.

Proof. Let q ∈ Q and let c ∈ Q be the cell that
contains q. SinceM(c)∩P 6= ∅, we can choose a point
p ∈ M(c) ∩ P . It directly follows that dH(q, P ) ≤
dH(q, p) ≤ 3

2

√
2. Now consider a point q ∈ ∂Q, and

let c ∈ Q and c′ /∈ Q be two adjacent cells such that
q ∈ ∂c∩∂c′. We claim that (M(c)∪M(c′))∩∂P 6= ∅.
If c /∈ Q1, then the claim directly follows. Otherwise,
M(c) ⊆ P implies that M(c′) ∩ P 6= ∅ and clearly
M(c′) * P . This in turn implies thatM(c′)∩∂P 6= ∅.
Let p ∈ (M(c) ∪ M(c′)) ∩ ∂P . Then dH(q, ∂P ) ≤
dH(q, p) ≤ 3

2

√
2. �

Theorem 5 For every simple polygon P there ex-
ists a simply connected grid polygon Q without point-
contacts such that dH(P,Q), dH(∂P, ∂Q) ≤ 1

2

√
2 and

dH(Q,P ), dH(∂Q, ∂P ) ≤ 3
2

√
2.

Lower bounds. In Fig. 4 a polygon is shown for
which no grid polygon has Hausdorff distance below
3/2 between the boundaries or interiors. A naive con-
struction of a grid polygon results in the left draw-
ing of Fig. 4 which is not a simple polygon. To
make it simple, we can either remove a cell (cen-
ter) or add a cell (right). Both methods result in
dH(∂Q, ∂P ) ≥ 3/2 − ε, for any ε > 0. Alternatively,
we can fill the entire upper-right part of the grid poly-
gon (not shown), resulting in a high dH(Q,P ).

In the L∞ distance, the lower bound given in Fig. 4
also holds. Interestingly, in this measure, our algo-
rithm achieves a Hausdorff distance of 3/2 (the upper-
bound proofs can be straightforwardly modified to
show this).

3 Fréchet distance

The Fréchet distance dF between two curves is gener-
ally a better measure for similarity than the Hausdorff
distance; see [2] for a definition of the measure. We
consider computing a grid polygon Q whose boundary
has constant Fréchet distance to the boundary of the
input polygon P . We study under what conditions on
∂P this is possible and prove a bound.

Obesity. Some input polygons P do not admit a
grid polygon Q such that their boundaries have low
Fréchet distance; see for example the polygon in
Fig. 7(a). Intuitively, any grid polygon boundary ∂Q
approximating ∂P must significantly deviate from it,
because the grid is too coarse to follow ∂P closely.

However, this problem is caused only by the thin
spikes: if we assume that P does not have those, we
can do better. Let |ab|∂P be the distance from a to b
along ∂P . As defined in [3], a curve C is κ-straight if
for any two points a, b ∈ C, |ab|C ≤ κ · |ab|. In fact,
we need this property on ∂P only when |ab| ≤

√
2,

as we must deal with several parts of ∂P being in the
same grid cell. We therefore define a weaker fatness
measure called β-obesity : a polygon P is β-obese if for
any two points a, b ∈ ∂P with |ab| ≤

√
2, |ab|∂P ≤ β.

Algorithm. The algorithm constructs Q via a grid
cycle C representing ∂Q. Consider for all grid graph
vertices a 1 × 1-square centered on the vertex, and
let C ′ be the cyclic chain of vertices whose square is
intersected by ∂P , in the order in which ∂P visits
them (see Fig. 5). Note that C ′ may contain dupli-
cates. Now C is obtained by iteratively finding a du-
plicate with minimal distance along the curve between
the two occurrences, and removing the corresponding
subchain. After all the duplicates are removed, the
grid polygon Q with boundary C is returned, unless
C encloses no cells. In that case C is a single vertex

P

Q

Figure 5: Example of the Fréchet algorithm; the input
and output are shown on the right. The two crosses
mark points appearing in C twice, hence their sub-
paths (shown dashed) are removed.
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or two vertices connected by one edge, and we let the
grid polygon Q consist of a single cell intersecting P .

Upper bounds. Q cannot contain duplicate vertices,
so it must be a grid polygon. Therefore we need to
prove only the bound on the Fréchet distance.

Theorem 6 Given a β-obese polygon P with β ≥√
2, there exists a grid polygon Q such that

dF (∂P, ∂Q) ≤ (β +
√

2)/2.

Proof. Consider C (representing ∂Q) as obtained
by the algorithm described above (ignoring the case
where C did not enclose cells). We will show that
dF (∂P,C) ≤ (β +

√
2)/2. We will define a mapping

between ∂P and C that gives rise to the parameter-
izations of ∂P and C, needed to bound the Fréchet
distance, and show that the distance between mapped
points is at most (β +

√
2)/2.

c

Figure 6: Mapping between C and ∂P .

First we define a mapping between ∂P and the ver-
tices of C ′ in the natural way: by proximity. We map
the edges of C ′ to points of ∂P , namely to the points
where ∂P intersects a boundary of a 1×1-square cen-
tered on a vertex of C ′. This mapping is also simply
by proximity. We convert this mapping into one be-
tween ∂P and C: Whenever we remove a subchain
from C ′, that whole subchain is mapped to the vertex
that is the start and end of that subchain (refer to
Fig. 6). Once C is obtained, only a single connected
component of ∂P is mapped to any vertex of C and
only one edge of C is mapped to any point of ∂P . The
resulting mapping is monotone by construction.

Consider any vertex c of C. If ∂P visits the 1× 1-
square s of c only once, then exactly the part of ∂P
inside s maps to c, and the distance between c and the
part of ∂P mapped to it is at most

√
2/2. If ∂P visits

s twice, then the part of ∂P outside s between these
visits is also mapped to c. The length of this boundary
external to s is at most β, so its furthest point is at
most β/2 away from s and hence at most β/2 +

√
2/2

from c, leading to the desired bound. When ∂P visits
s more than twice, the same argument can be used.

Finally, the distance between edges of C and points
of ∂P is at most

√
2/2, which is easy to see. �

Lower bound. Though we omit a full proof of our
lower bound, its essence lies with constructing a poly-
gon as sketched in Fig. 7(a). The border ∂Q of a

√
2

(a) (b)

Figure 7: A polygon (left) for which any grid polygon
will have high Fréchet distance (right).

grid polygon with low Fréchet distance to ∂P needs
to follow the spikes in ∂P . However, as the grid is
too coarse, there is not enough vertical space to do so
(Fig. 7(b)). By using spikes of length linear in β, we
get the bound claimed below in Theorem 7.

Theorem 7 For any β >
√

2, there exists a β-
obese polygon P for which for any grid polygon Q,
dF (∂P, ∂Q) ≥ 1

4

√
β2 − 2.
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Map Simplification with Topology Constraints: Exactly and in Practice

Stefan Funke Thomas Mendel Alexander Miller Sabine Storandt Maria Wiebe

Abstract

We consider the classical line simplification problem
subject to a given error bound ε but with additional
topology constraints as they arise for example in the
map rendering domain. While theoretically inapprox-
imability has been proven for these problem variants,
we show that in practice one can solve medium sized
instances optimally using an integer linear program-
ming approach and larger instances using an heuristic
approach which for medium-sized real-world instances
yields close-to-optimal results. Our approaches are
evaluated on data sets which are synthetically gener-
ated, stem from the OpenStreetMap project, and the
2014 GIS Cup competition.

1 Introduction

In the classical line simplification problem (CLSP)
we are given a polygonal chain C = p0p1p2 . . . pn with
pi ∈ R2, an error parameter ε > 0 and ask for a sim-
plification of C, that is, indices i1 < i2 < · · · < ik
with 0 < ij < n such that the polygonal chain

C̃ = p0pi1pi2 . . . pikpn is a faithful approximation of
C. Here ’faithful’ means that for every ’shortcut’ seg-
ment sj = pijpij+1 of the simplification the furthest
distance of a point in {pij+1, . . . pij+1−1} to the short-
cut segment sj is at most ε. A natural optimization
goal is to compute a faithful approximation with as
few vertices as possible, that is, minimizing k.

Solving CLSP is of great interest in particular in
the map rendering context. One of the main chal-
lenges for rendering map data on the screen arises
from the abundance of data. Assume we want to ren-
der the road network of Germany on a mobile device
like a tablet. A cross-country Autobahn like the A7
consists of several thousands of individual road seg-
ments. Rendering all of them is certainly a waste of
time when dealing with the screen of a mobile de-
vice. So typically one would simplify the chain of seg-
ments by replacing subsequences of degree-2 nodes
along the A7 by single road segments. Depending
on the screen size and resolution, this can be done
without really affecting the visual quality of the re-
sult. Naturally, this simplification should not intro-
duce self-intersections, so a sensible generalization of
CLSP to the map rendering context (originally when
simplifying country boundaries) is the map simplifi-
cation problem (MSP), where we are given a pla-

Figure 1: A map of Western Europe with inconsis-
tencies after line simplification of country boundaries
(from [1]), courtesy of de Berg et al.

nar subdivision in form of a planar embedding of a
straight-line graph G(V,E), a parameter ε > 0 and
the goal is to solve CLSP for each degree-2 chain of
the graph such that the total number of surviving ver-
tices is minimized without introducing intersections
(within a single degree-2 chain as well as between dif-
ferent degree-2 chains).

Unfortunately, just solving MSP without additional
care might lead to undesired effects, see Figure 1. In
this simplification (right) of a map excerpt of Eu-
rope (left), some cities switched countries or ended
up in the sea. This gives rise to a more general
map simplification problem with topology constraints
(MSTOPOP): Given a planar subdivision as a pla-
nar embedding of a straight-line graph G(V,E), a pa-
rameter ε > 0 and a set of points P ⊂ R2, the goal is
to solve CLSP for each maximal degree-2 chain of the
graph such that the total number of surviving vertices
is minimized, no intersections are introduced, and ev-
ery point p ∈ P remains in the same face as before.

For our map rendering application, MSTOPOP is
the most natural formulation of the respective opti-
mization problem. Nevertheless, to allow for simpler
solution strategies and efficient solution we will define
a more local variant of this problem called MSLOC-
TOPOP in Section 2 (which still turns out to be
theoretically hard to solve and even approximate).

1.1 Related Work

For CLSP there are several known algorithms,
the most popular being the algorithm by Dou-
glas/Peucker [2], which unfortunately does not guar-
antee absence of self-intersections nor optimality (i.e.

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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minimum number of surviving points) of the result.
Its worst-case running time is Θ(n2), though better
running times are experienced in practice. The algo-
rithm by Imai/Iri [5] guarantees as a result a mini-
mum number of surviving points, but not absence of
self-intersections. Its running time is O(n3) in its orig-
inal version, but faster variants with O(n2) running
time exist. Estkowski and Mitchell [4] have shown,
that from a theoretical point of view, solving MSP or
MSTOPOP optimally is a hopeless enterprise. They
prove that for MSTOPOP it is NP-hard to obtain an
approximate solution better than within a factor of
n1/5−δ for any δ > 0. Their result carries over to MSP
since topology constraint points do not play a role in
their proof of approximation-hardness. In [1] de Berg
et al. consider heuristic solutions to MSTOPOP and
MSP, yet without a comparison with the respective
optimum solutions. For MSP, an implementation is
available in the CGAL library [6] following [3]. To
our knowledge, no study has been conducted investi-
gating how close to the optimum heuristic solutions
are for MSTOPOP (due to lack of an exact solution).

As a side note, during the GISCup’14 – a compe-
tition held during the ACM SIGSPATIAL conference
2014 – a variant of the problem (without a precision
constraint – i.e., ε =∞) was tackled by several teams.

1.2 Our Contribution

We define a local variant of the map simplification
with topology constraints problem (which theoreti-
cally is still hard to approximate) and derive a re-
spective ILP formulation which can solve instances of
moderate size optimally. We then develop a heuris-
tic algorithm based on constrained triangulations and
local simplification steps which empirically can be
shown to produce close-to-optimal results for mod-
erately sized instances (via comparison to the ILP so-
lution). In contrast to the ILP solution this heuristic
can also be used to solve large instances as they nat-
urally occur in the map rendering domain.

2 Local Topology-Consistency

At first sight one might think that solving MSTOPOP
is exactly what we want for our map rendering appli-
cation. Consider the example in Figure 2(a), where
we have a planar subdivision with two faces – one U-
shaped face bounded by v0v1 . . . v9v0 and an outer face
which also contains a topology constraint point p. For
sufficiently large value of ε, the simplification shown
in 2(b) is indeed a valid simplification according to
MSTOPOP since p still lies in the outer face. This
might be somewhat counterintuitive since p somehow
’switched sides’ (even though topologically it is, of
course, still on the right side). In particular, if we
locally inspect the shortcut v0v3 which replaces the

v0

v1 v2

v3

v4v5

v6v7

v8v9

p

(a) overview

v0 v3

v4v5v8v9

p

(b) valid simplification

v0 v3

v4v5

v6v7

v8v9

p

(c) self-intersection

v0

v1 v2

v3

v4v5v8v9

p

(d) topology constraint vi-
olated

Figure 2: Example of two simplifications, that are not
valid alone but only in conjunction with each other.

chain v0v1v2v3 there is indeed a switch of sides (c)
– which is only healed topologically by shortcutting
v5v6v7v8 by v5v8, which also is invalid on its own (d).

We believe that it is not unnatural to demand that
shortcuts locally don’t make points switch sides. To
that end we define the following local criterion to de-
cide whether a shortcut is considered topology pre-
serving.

Definition 1 For given ε > 0 and constraint point
set P , a shortcut u1uk is considered a valid shortcut
for the polygonal chain C = u1u2 . . . uk if

• the distance of ui, 1 < i < k to the segment u1uk
is at most ε.

• the polygon (possibly with self-intersections) de-
fined by the polygonal chain C ′ = u1u2 . . . uku1
does not contain1 a constraint point.

p

q

Figure 3: Example of a possible simplifciation. Point
q would make this simplification locally inconsistent,
whereas point p would allow this simplification. The
interior of the polygon is given by the shaded area.

See Figure 3 for an illustration of this definition.
Armed with this notion of a valid shortcut we can
formally define the map simplification variant that we
will be dealing with in the following.

Definition 2 (MSLOCTOPOP) For a planar sub-
division given as a straight-line embedding of a graph

1With the interior of a (possibly complex) polygon defined
by the even-odd rule. See Figure 3 for an example.
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G(V,E), a set of constraint points P ⊂ R2, and an
ε > 0, the goal of the Map Simplification with LOCal
TOPOlogy constraints Problem (MSLOCTOPOP) is
to simplify degree-2 chains of G using non-intersecting
valid shortcuts such that the total number of remain-
ing vertices is minimized.

As MSLOCTOPOP comprises MSP as a special
case (no topology constraints), the hardness of ap-
proximation result in [4] carries over, hence there is
little hope to find a polynomial-time approximation
algorithm which solves MSLOCTOPOP with an ap-
proximation ratio substantially better than n1/5.

3 An Integer Linear Programming Formulation for
MSLOCTOPOP

As we have seen, even our specialization MSLOC-
TOPOP of MSTOPOP is hard to approximate, yet
using an integer linear programming (ILP) formula-
tion one might be able to obtain optimal solutions for
many instances that occur in practice. We will de-
velop a respective ILP in the following step by step.

Let us first concentrate on a single polygonal chain
Cl = p1p2 . . . pnl

of the planar subdivision where each
pi with 1 < i < nl is a degree-2 node of the subdi-
vision, p1 and pnl

are nodes with degree 6= 2. We
first construct the set Sl := {sl1, sl2, . . . slkl} of valid

shortcuts for Cl. Note that the original edges are also
valid shortcuts and kl ∈ O(n2l ). Essentially we want
to construct a path from p1 to pnl

using as few valid
shortcuts as possible, so we introduce 0-1 variables
xl1, x

l
2, . . . x

l
kl

where xli = 1 denotes that the shortcut

sli should be realized, xli = 0 that it should not be
used. As constraints we demand:

∑

slj=(p1,.)

xlj = 1 (1)

∑

slj=(,.pnl
)

xlj = 1 (2)

that is, we select exactly one shortcut from Sl that is
adjacent to p1 and likewise for pnl

. For every other
vertex pi, 1 < i < nl of Cl we want that the number
of incoming shortcuts equals the number of outgoing
shortcuts (in fact both equal to 0 or to 1, but in our
case there is no need to explicitly enforce that):

∀1 < i < nl :
∑

slj=(.,pi)

xlj −
∑

slj=(pi,.)

xlj = 0 (3)

We construct variables and respective constraints
for each polygonal degree-2 chain in the planar sub-
division. Then for every intersecting pair of short-
cuts sli, s

g
j (of the same or different polygonal degree-2

chains) we add a constraint

xli + xgj ≤ 1 (4)

preventing the usage of both shortcuts simultane-
ously. The objective function is simply a minimization
of the sum of all variables

min
∑

xli (5)

MSLOCTOPOP being NP-hard to approximate,
we cannot expect our ILP formulation to be solvable
efficiently for every input instance. Yet, instances oc-
curring in real-world scenarios might well be solvable
with a good ILP solver.

4 A Local Simplification Heuristic

In this section we present a heuristic to solve the
MSLOCTOPOP problem. We iteratively remove sin-
gle points of the subdivision by only inspecting local
neighborhoods, yet preserving validity of the overall
simplification. The basic idea is similar to [3] but also
incorporates topology constraints.

We employ a Constrained Triangulation (CT) with
the points being all vertices of the original subdivision
as well as the constraint points, and the constraining
edges being the edges of the subdivision. Let degG(v)
denote the number the constraining edges adjacent to
a node in the current CT.

Now for a given node v with degG(v) = 2 one can
quickly decide whether it can be removed and re-
placed by a shortcut without violating any topology
constraint or creating intersections. Let v1 and v2 be
the two neighbours of v in the current subdivision.
There are two cases for which we can easily see, that
we may not discard v:

• The nodes v, v1 and v2 form a triangle in the
current planar subdivision. Removing v leads to
a collapse of the 2-dimensional face spanned by
the 3 nodes.

• The distance of v to the segment v1v2 is greater
than ε. Then the shortcut v1v2 is not valid.

If none of these cases applies we also demand that
there exists no point u 6= v1, v2 adjacent (in the tri-
angulation) to v which lies in the triangle 4v1vv2,
otherwise:

• If u is part of the constraint points in the subdi-
vision, the simplification is invalid according to
our local topology-consistency.

• If u is part of the subdivision boundary, the re-
moval of v either introduces an intersection or
changes the orientation of a face.

Given these criteria the complete algorithm is quite
simple. For every point we compute whether it is
removable with respect to these criteria and remove
it if this is the case. This procedure is repeated until
no more points can be removed.
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Figure 4: Hamburg data set, ε = 105.

Note that we have to make sure, that the distance
check is performed with respect to all the points that
have possibly been replaced by a shortcut.

5 Experimental Results

We have compared both solution approaches on syn-
thetic and real-world data, yet due to space restric-
tions we only report on some selected instances. The
experiments were run on a standard laptop with an
Intel Core i5/1.9GHz/12GB RAM. The local sim-
plification heuristic uses the CGAL library [6], the
ILPs were solved using the Gurobi solver. Clang 3.7
with the -O3 flag was used for compilation. From
the OpenStreetMap project we extracted the datasets
HAM – the administrative subdivision of the city
of Hamburg with some POIs as topology constraint
points, see Figure 4 – and GMNY – the coun-
try borders for Germany with all cities and towns
as constraint points. From the GISCup’14 (http:
//mypages.iit.edu/~xzhang22/GISCUP2014/), the
planar subdivisions GIS4 and GIS5 including topol-
ogy constraint points were used.

Table 1 lists the results. For example, for a tol-
erance of ε = 104 and the dataset HAM, the ILP
approach reduces the number of surviving degree-2-
nodes to 992 within 19 seconds. The heuristic ap-
proach, on the other hand takes only 0.4 seconds to
obtain a result with 1219 surviving degree-2-nodes.
So while not as small as the optimum ILP result,
the heuristic result is reasonably close. For the large
GMNY instance, the ILP approach could not deter-
mine a solution within one hour whereas the heuris-
tic produced a solution within 14 seconds. For GIS4
and GIS5, the heuristic also produces solutions pretty
close to the ILP optimum. For the latter two data
sets we also had running times and result sizes of the
runner-up algorithm at the 2014 GISCup – here called
CROSS (we could not get hands on the winning algo-
rithm). Note though, that the objective of the GIS-
Cup was not just minimization of the remaining sub-
division but rather the ratio of removed points per
unit of time. So while being blazingly fast, CROSS

GIS4 GIS5 HAM GMNY

# nodes 26198 25203 10233 217863
# constraints 356 1607 194 97639

ε = 10000
ILP time (s) 296 105 19 -
Heur. time(s) 1.3 1.1 0.4 14
ILP output 348 476 992 -
Heur. output 433 566 1219 ≈11k

ε = 100000
ILP time (s) 419 121 56 -
Heur. time(s) 1.3 1.2 0.4 17
ILP output 88 238 57 -
Heur. output 101 275 67 1864

ε =∞
ILP time (s) 439 130
Heur. time(s) 1.4 1.2
CROSS time(s) 0.01 0.01
ILP output 88 237
Heur. output 100 274
CROSS output 1759 2826

Table 1: Pruning results for our algorithms: running
times and size of the output.

retains a lot more points even compared to our heuris-
tic approach.
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Ramsey-type theorems for lines in 3-space

Jean Cardinal∗ Michael S. Payne† Noam Solomon‡

Abstract

We prove geometric Ramsey-type statements on col-
lections of lines in 3-space. These statements give
guarantees on the size of a clique or an independent
set in (hyper)graphs induced by incidence relations
between lines, points, and reguli in 3-space. Among
other things, we prove the following:

• The intersection graph of n lines in R3 has a
clique or independent set of size Ω(n1/3).

• Every set of n lines in R3 has a subset of
√
n

lines that are all stabbed by one line, or a subset

of Ω
(

(n/ log n)
1/5
)

lines such that no 6-subset is

stabbed by one line.

• Every set of n lines in general position in R3 has
a subset of Ω(n2/3) lines that all lie on a regulus,
or a subset of Ω(n1/3) lines such that no 4-subset
is contained in a regulus.

The proofs of these statements all follow from geomet-
ric incidence bounds – such as the Guth-Katz bound
on point-line incidences in R3 – combined with Turán-
type results on independent sets in sparse graphs and
hypergraphs. As an intermediate step towards the
third result, we also show that for a fixed family
of plane algebraic curves with s degrees of freedom,
every set of n points in the plane has a subset of
Ω(n1−1/s) points incident to a single curve, or a sub-
set of Ω(n1/s) points such that at most s of them lie
on a curve. Although similar Ramsey-type statements
can be proved using existing generic algebraic frame-
works, the lower bounds we get are much larger than
what can be obtained with these methods. The proofs
directly yield polynomial-time algorithms for finding
subsets of the claimed size.

1 Introduction

Ramsey theory studies the conditions under which
particular discrete structures must contain certain
substructures. Ramsey’s Theorem says that for every
n, every sufficiently large graph has either a clique
or an independent set of size n. Early geometric
Ramsey-type statements include the Happy Ending

∗Université libre de Bruxelles (ULB), jcardin@ulb.ac.be
†University of Melbourne, michael.payne@unimelb.edu.au
‡Tel Aviv University, noamsolomon@post.tau.ac.il

Problem on convex quadrilaterals in planar point
sets, and the Erdős-Szekeres Theorem on subsets in
convex position [7].

We prove a number of Ramsey-type statements
involving lines in R3. Our proofs combine two main
ingredients: geometric information in the form of
bounds on the number of incidences among the
objects, and a Turán-type theorem that converts this
information into a Ramsey-type statement.

Ramsey’s Theorem for graphs and hypergraphs
only guarantees the existence of rather small cliques
or independent sets. However for the geometric re-
lations we study the bounds are known to be much
larger. Therefore we are interested in finding the cor-
rect asymptotics. In particular, we are interested in
the Erdős-Hajnal property. A class of graphs has this
property if each member with n vertices has either a
clique or an independent set of size nδ for some con-
stant δ > 0. The results presented here make use of
important recent advances in combinatorial geometry,
a key example of which is the bound on the number
of incidences between points and lines in R3 given
by Guth and Katz [10] in their recent solution of the
Erdős distinct distances problem.

1.1 A general framework

In general we consider two classes of geometric ob-
jects P and Q in Rd and a binary incidence relation
contained in P × Q. For a finite set P ⊆ P and an
integer t ≥ 2, we say that a t-subset S ∈

(
P
t

)
is de-

generate whenever there exists q ∈ Q such that every
p ∈ S is incident to q. Hence the incidence relation
together with the integer t induces a t-uniform hy-
pergraph H = (P,E), where E ⊆

(
P
t

)
is the set of

all degenerate t-subsets of P . A clique in this hyper-
graph is a subset S ⊆ P such that

(
S
t

)
⊆ E. Simi-

larly, an independent set is a subset S ⊆ P such that(
S
t

)
∩ E = ∅.

In what follows, the families P and Q will mostly
consist of lines or points in 3-space. We are interested
in Erdős-Hajnal properties for the t-uniform hyper-
graph H.

1.2 Previous results

When P is a set of points, finding a large indepen-
dent set amounts to finding a large subset of points in

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
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some kind of general position defined with respect to
Q. When Q is the set of points, we are dealing with
intersections between the objects in P. In particular,
the case t = 2 corresponds to the study of geometric
intersection graphs.

A set in Rd is usually said to be in general position
whenever no d + 1 points lie on a hyperplane. For
points and lines in the plane, Payne and Wood proved
that the Erdős-Hajnal property essentially holds with
exponent 1/2 [16]. Cardinal et al. proved an analo-
gous result in Rd [3].

Theorem 1 ([16, 3]) Fix d ≥ 2. Every set of n
points in Rd contains

√
n cohyperplanar points or

Ω((n/ log n)1/d) points in general position.

In both cases, the proofs rely on incidence bounds,
in particular the Szemerédi-Trotter Theorem [19] in
the plane, and the point-hyperplane incidence bounds
due to Elekes and Tóth [6] in Rd. We streamlined the
technique used in those proofs in order to easily apply
it to other incidence relations.

A survey of Erdős-Hajnal properties for geometric
intersection graphs was produced by Fox and Pach [8].
A general Ramsey-type statement for the case where
P is the set of plane convex sets was proved by Lar-
man et al. [14] more than 20 years ago. They showed
that any family of n such sets contained at least n1/5

members that are either pairwise disjoint or pairwise
intersecting. Larman et al. also showed that there
exist arrangements of k2.3219 line segments with at
most k pairwise crossing and at most k pairwise dis-
joint segments. This lower bound was improved suc-
cessively by Károlyi et al. [12], and Kyncl [13].

More recently Fox and Pach studied intersection
graphs of a large variety of other geometric objects [9].
In particular, they proved the Erdős-Hajnal property
for families of s-intersecting curves in the plane – fam-
ilies such that no two curves cross more than s times.
Erdős-Hajnal properties for hypergraphs have been
proved by Conlon, Fox, and Sudakov [5].

A very general version of the problem for the case
t = 2 has been studied by Alon et al. [1]. Here
Ramsey-type results are provided for intersection rela-
tions between semialgebraic sets of constant descrip-
tion complexity in Rd. It was shown that intersec-
tion graphs of such objects always have the Erdős-
Hajnal property. The proof combines a linearisation
technique with a space decomposition theorem due to
Yao and Yao [20]. As an example, Alon et al. ap-
plied their machinery to prove that every family of n
pairwise skew lines in R3 contains at least k ≥ n1/6

elements `1, `2, . . . , `k such that `i passes above `j for
all i < j. For the problems we consider, however,
the exponents we obtain are significantly larger than
what can be obtained from this method.

A more general version of this problem for arbitrary
values of t has recently been studied by Conlon et

al. [4], for which the Ramsey numbers grow like towers
of height t− 1.

1.3 Our results

Section 2 deals with the case where P and Q are lines
and points in R3. A natural object to consider is the
intersection graph of lines in R3, for which we prove
the Erdős-Hajnal property with exponent 1/3. This
makes use of the Guth-Katz incidence bound between
points and lines in R3 [11].

Section 3 deals with the setting where both P and
Q are lines in R3. We prove that every set of n lines
in R3 has a subset of

√
n lines that are all stabbed by

one line, or a subset of Ω
(

(n/ log n)
1/5
)

such that no

6-subset is stabbed by one line. The proof involves
the Ramsey-type result on points and hyperplanes
due to Cardinal et al. [3], which in turn relies on a
point-hyperplane incidence bound due to Elekes and
Tóth [6].

Finally, in Section 4 we introduce the notion of a
subset of lines in general position in R3 with respect to
reguli, defined as loci of lines intersecting three pair-
wise skew lines. This uses the Pach-Sharir bound on
incidences between points and curves in the plane [15].

The large subsets whose existence our results guar-
antee can be found in polynomial time.

Omitted proofs are given in a long version of the
paper1.

2 Points and lines in R3

We consider the setting in which the family P is the
set of lines in R3 and Q = R3. The first subcase
we consider is t = 2, or in other words, intersection
graphs of lines.

Theorem 2 The intersection graph of n lines in R3

has a clique or independent set of size Ω(n1/3).

We now sketch the proof, that combines Turán’s The-
orem with the Guth-Katz bounds [11, Theorem 4.5]
and [11, Theorem 2.11]. The latter can be shown to
yield the following.

Lemma 3 Given a set L of n lines, so that no plane
or regulus contains more than s lines, and no point
is incident to more than ` lines of L, the number of
line-line incidences is O(n3/2 log `+ ns+ n`).

(We recall that ω(G) and α(G) denote the clique and
independence number of a graph G, respectively.)

Lemma 4 Consider a set L of n lines in R3, such that
no plane contains more than s lines, and no point is
incident to more than ` lines of L. Let G be the

1http://arxiv.org/abs/1512.03236
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intersection graph of L. If s, ` . n1/2, then α(G) &√
n/ log `. Moreover, if r := max{s, `} & n

1
2+ε for

some ε > 0, then α(G) & n/r.

Proof. If there is some regulus containing at least
n1/2 lines, we divide the lines into the two rulings of
the regulus. One ruling contains at least half the lines,
hence α(G) & n1/2. We may therefore assume that
the number of lines contained in a common regulus is
at most n1/2.

If s, ` ≤ n1/2, the first term in the bound in
Lemma 3 dominates, and applying Turán’s Theorem
gives α(G) & √n/ log `. If r ≥ n 1

2+ε, one of the latter
terms dominates, and we apply Turán’s Theorem to
get α(G) & n/r. �

Proof. [Theorem 2] Suppose that such a graph G has
α(G) � n1/3. Then by Lemma 4, max{s, `} & n2/3.
If ` & n2/3 we are done, so s & n2/3. Therefore,
we may assume that there is a plane containing n2/3

lines. Divide these lines into classes of pairwise paral-
lel lines. If some class contains at least n1/3 lines, we
have α(G) & n1/3. Otherwise, there are at least n1/3

distinct classes. Choosing one line from each class
yields a clique of size n1/3. �

Note that the Erdős-Hajnal property for intersec-
tion graphs of lines in R3 can be directly established
from Alon et al. [1], but with a much smaller expo-
nent. For t = 3, we also obtain a three-dimensional
version of the dual of the result of Payne and Wood
(Theorem 1 with d = 2).

Theorem 5 Consider a collection L of n lines in R3,
such that at most s lie in a plane, with s ≤ n/ log n.
Then there exists a point incident to

√
n lines, or a

subset of Ω(
√
n) lines such that at most two intersect

in one point.

3 Stabbing lines in R3

Three lines in R3 are typically intersected by a fourth
line, except in certain degenerate cases. Thus it makes
sense to study configurations of lines in R3, and to
consider a set of 4 or more lines degenerate if all its
elements are intersected by another line. Here we pro-
vide a result for 6-tuples of lines.

We define a 6-tuple of lines to be degenerate if all
six lines are intersected (or “stabbed”) by a single line
in R3. We call this line a stabbing line for the 6-tuple
of lines. So in our framework this is the setting in
which both P and Q are the set of lines in R3, and
t = 6.

We make use of the Plücker coordinates and co-
efficients for lines in R3, which are a common
tool for dealing with incidences between lines, see
e.g. Sharir [17]. We prove the following Ramsey-type
result for stabbing lines in R3.

Theorem 6 Let L be a set of n lines in R3. Then
either there is a subset of

√
n lines of L that are

all stabbed by one line, or there is a subset of

Ω
(

(n/ log n)
1/5
)

lines of L such that no 6-subset is

stabbed by one line.

Theorem 6 is an immediate consequence of the fol-
lowing generalisation of Theorem 1. The difference is
that the set of hyperplanes H is arbitrary instead of
being the set of all hyperplanes in Rd. The proof is
similar to that of Cardinal et al. [3].

Theorem 7 Let H be a set of hyperplanes in Rd.
Then, every set of n points in Rd with at most ` points
on any hyperplane in H, where ` = O(n1/2), contains

a subset of Ω
(

(n/ log `)
1/d
)
points so that every hy-

perplane in H contains at most d of these points.

We also have a simple construction for the following
upper bound.

Theorem 8 For every constant integer t ≥ 4, there
exists an arrangement L of n lines in R3 such that
there is no subset of more than O(

√
n) lines that are

all stabbed by one line, nor any subset of more than
O(
√
n) lines with no t stabbed by one line.

4 Lines and reguli in R3

Consider the case in which P is the class of lines in
R3, Q is the class of reguli, and t = 4. Let P be a set
of n lines, and assume that the lines in P are pairwise
skew. Every triple of lines in P therefore determines
a single regulus, and we may consider the set of all
reguli determined by P . We consider the containment
relation rather than intersection – we are interested
in 4-tuples that all lie in the same regulus.

In order to prove our result, we first consider the
case where P = R2 and Q is a family of algebraic
curves of bounded degree. We define the number of
degrees of freedom of a family of algebraic curves C
to be the minimum value s such that for any s points
in R2 there are a constant number of curves passing
through all of them. Moreover, C has multiplicity
type r if any two curves in C intersect in at most
r points. The proof of the following uses the Pach-
Sharir bounds on the number of incidences between
points and curves [15].

Theorem 9 Consider a family C of bounded degree
algebraic curves in R2 with constant multiplicity type
and s degrees of freedom, for some s > 2. Then in
any set of n points in R2, there exists a subset of
Ω(n1−1/s) points incident to a single curve of C, or a
subset of Ω(n1/s) points such that at most s of them
lie on a curve of C.
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We now come back to our original question in which P
is the class of lines in R3, Q is the class of reguli, and
t = 4. Here we restrict the finite arrangement P ⊂ P
to be pairwise skew, that is, pairwise nonintersecting
and nonparallel. Recall that a regulus can be defined
as a quadratic ruled surface which is the locus of all
lines that are incident to three pairwise skew lines.
There are only two kinds of reguli, both of which are
quadrics – hyperbolic paraboloids and hyperboloids
of one sheet [18].

Theorem 10 Let L be a set of n pairwise skew lines
in R3. Then there are Ω(n2/3) lines on a regulus, or
Ω(n1/3) lines, no 4-subset of which lies on a regulus.

The bounds can be shown to be tight.

Theorem 11 There exists a set P of n pairwise skew
lines in R3 such that there is no subset of more than
O(n2/3) lines on a regulus, and no more than O(n1/3)
lines such that no 4-subset lies on a regulus.

Note that Aronov et al. [2] proved an upper bound
on the number of incidences between lines and reguli
in 3-space, from which one may derive an alternative
proof of Theorem 10.

References

[1] Noga Alon, János Pach, Rom Pinchasi, Rados
Radoicic, and Micha Sharir. Crossing patterns
of semi-algebraic sets. J. Comb. Theory, Ser. A,
111(2):310–326, 2005.

[2] Boris Aronov, Vladlen Koltun, and Micha Sharir.
Incidences between points and circles in three
and higher dimensions. Discrete & Computa-
tional Geometry, 33(2):185–206, 2005.

[3] Jean Cardinal, Csaba D. Tóth, and David R.
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results on intersection patterns of geometric ob-
jects. Bolyai Society Mathematical Studies –
Horizon of Combinatorics, 17:79–103, 2008.

[9] Jacob Fox and János Pach. Coloring Kk-free
intersection graphs of geometric objects in the
plane. Eur. J. Comb., 33(5):853–866, 2012.

[10] Larry Guth and Nets H. Katz. Algebraic meth-
ods in discrete analogs of the Kakeya problem.
Advances Math., 225:2828–2839, 2010.

[11] Larry Guth and Nets H. Katz. On the Erdős
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Peeling the Cactus: Subexponential-Time Algorithms for Counting
Triangulations∗

Dániel Marx† Tillmann Miltzow‡

Abstract

Given a set of n points S in the plane, a triangulation
T of S is a maximal set of non-crossing segments with
endpoints in S. We present an algorithm that com-
putes the number of triangulations on a given set of
n points in time n(11+o(1))

√
n, significantly improving

the previous best running time of O(2nn2) by Alvarez
and Seidel [SoCG 2013]. Our main tool is identifying
separators of size O(

√
n) of a triangulation in a canon-

ical way. The definition of the separators are based
on the decomposition of the triangulation into nested
layers (“cactus graphs”).

1 Introduction

Given a set of n points in the plane, a triangulation T
of S is defined to be a maximal set of non-crossing line
segments with both endpoints in S. This set of seg-
ments together with the set S defines a plane graph.
It is easy to see that every bounded face of a triangu-
lation T is indeed a triangle. Triangulations are one
of the most studied concepts in discrete and computa-
tional geometry, studied both from combinatorial and
algorithmic perspectives. It is well known that the
number of possible triangulations of n points in con-
vex position is exactly the (n−2)-th Catalan number,
but counting the number of triangulations of arbitrary
point sets seems to be a much harder problem. There
is a long line of research devoted to finding better and
better exponential-time algorithms for counting trian-
gulations. The sequence of improvements culminated
in the O(2nn2) time algorithm of Alvarez and Seidel
[2], winning the best paper award at SoCG 2013. Our
main result significantly improves the running time of
counting triangulations by making it subexponential:

Theorem 1 (General Plane Algorithm) Given
a set S of n points in the plane, there exists an algo-
rithm that computes the number of all triangulations
of S in n(11+o(1))

√
n time.

∗Supported by the ERC grant “PARAMTIGHT: Parame-
terized complexity and the search for tight complexity results”,
no. 280152.
†Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI), dmarx@cs.bme.hu
‡Institute for Computer Science and Control, Hungarian

Academy of Sciences (MTA SZTAKI), t.miltzow@gmail.com

It is very often the case that restricting an algo-
rithmic problem to planar graphs allows us to solve it
with much better worst-case running time than what
is possible for the unrestricted problem. One can ob-
serve a certain “square root phenomenon”: in many
cases, the best known running time for a planar prob-
lem contains a square root in the exponent. For ex-
ample, the 3-Coloring problem on an n-vertex graph
can be solved in subexponential time 2O(

√
n) on pla-

nar graphs (e.g., by observing that a planar graph
on n vertices has treewidth O(

√
n)), but only 2O(n)

time algorithms are known for general graphs. More-
over, it is known that if we assume the Exponential-
Time Hypothesis (ETH), which states that there is
no 2o(n) time algorithm for n-variable 3SAT, then
there is no 2o(

√
n) time algorithm for 3-Coloring on

planar graphs and no 2o(n) time algorithm on general
graphs [7]. The situation is similar for the planar re-
strictions of many other NP-hard problems, thus it
seems that the appearance of the square root of the
running time is an essential feature of planar prob-
lems. A similar phenomenon occurs in the framework
of parameterized problems, where running times of

the form 2O(
√
k) · nO(1) or nO(

√
k) appear for many

planar problems and are known to be essentially best
possible (assuming ETH).

A triangulation of n points can be considered as a
planar graph on n vertices, hence it is a natural ques-
tion whether the square root phenomenon holds for
the problem of counting triangulations. Indeed, for
the related problem of finding a minimum weight tri-
angulation, subexponential algorithms with running
time nO(

√
n) are known [4, 5]. These algorithms are

based on the use of small balanced separators. Given
a plane triangulation on n points in the plane, it is
well known that there exists a balanced O(

√
n)-sized

separator that divides the triangulation into at least
two independent graphs [6]. The basic idea is to guess
a correct O(

√
n)-sized separator of a minimum weight

triangulation and recurse on all occurring subprob-
lems. As there are only nO(

√
n) potential graphs on

O(
√
n) vertices, one can show that the whole algo-

rithm takes nO(
√
n) time [4, 5].

Unfortunately, this approach has serious problems
when we try to apply it to counting triangulations.
The fundamental issue with this approach is that a tri-
angulation of course may have more than one O(

√
n)-
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sized balanced separators and hence we may over-
count the number of triangulations, as a triangulation
would be taken into account in more than one of the
guesses. To get around this problem, an obvious sim-
ple idea would be to say that we always try to guess a
“canonical” separator, for example, the lexicographi-
cally first separator. However, it is a complete mys-
tery how to guarantee in subsequent recursion steps
that the separator we have chosen is indeed the lex-
icographic first for all the triangulations we want to
count.

Perhaps the most important technical idea of the
paper is finding a suitable way of making the separa-
tors canonical. For this purpose, we define a decom-
position of a triangulation into nested layers of cactus
graphs. (A plane graph is a cactus graph if all ver-
tices and edges are incident to the outer face.) The
first layer is defined by the set of vertices and edges
incident to the outer face. Inductively, the i-th layer is
defined by the vertices and edges incident to the outer
faces after the first i−1 layers are removed. Note that
this definition may look similar to onion layers, but
actually is very different. The outerplanar index of a
graph is defined by the number of non-empty layers.

Given a triangulation T , we define small canonical
separators by distinguishing two cases. If T has more
than

√
n cactus layers, then one of the first

√
n layers

has size at most
√
n and we can define the one with

smallest index to be the canonical separator. Using
such a separator, we peel off some cacti to reduce the
problem size. In the case when we have only a few
cactus layers, we can define short canonical separator
paths from the interior to the outer face of the tri-
angulation. We formalize both ideas into a dynamic
programming algorithm. The main difficulty is to de-
fine the subproblems appropriately. We use the so-
called ring subproblems for the layer separators and
ring sector subproblems for the path separators.

As a byproduct of this algorithmic scheme, we can
efficiently count triangulations with a small number
of layers. This is similar to previous work on finding
a minimum weight triangulation [3] and counting tri-
angulations [1] for point sets with a small number of
onion layers.

Theorem 2 (Thin Plane Algorithm) Given a set
S of n points in the plane, there exists an algorithm
that computes the number of all triangulations of S
with outerplanar index k in nO(k) time.

2 Ring Subproblems

Our algorithm is based on dynamic programming: we
define a large number of subproblems that are more
general than the problem we are trying to solve. We
generalize the problem by considering rings: we need
to triangulate a point set in a region between two

polygons. Additionally, we may have layer constraints
prescribing that a certain number of vertices should
appear on certain layers.

In this section, we give a vague definition of the ring
subproblems used by the algorithm and sketch how an
algorithm that can solve those problems implies The-
orem 1 for counting triangulations. In Section 3 we
will sketch how to solve these subproblems for “thin
rings”. Section 4 sketches how to solve ring subprob-
lems in full generality using the algorithm from Sec-
tion 3 as an important subroutine.

outer layer Qout

inner layer Qin

free region

forbidden
region

free points P

Figure 1: A simple ring subproblem.

See Figure 1 for an illustration of the following def-
inition. A ring subproblem consists of: an outer layer
Qout, which consists of one or more simple polygons
(a ring subproblem is simple in case that there is only
one polygon.); an inner layer Qin, which is a cactus
graph and potentially empty; an inner and outer layer
index, which serve to determine the width and con-
veniently combine solutions of ring subproblems; and
potentially layer-constraints that indicate the size of
each layer. A valid triangulation of a ring subproblem
is a triangulation of the area and points between the
inner and outer layer, which satisfies the width con-
ditions and in case that layer-constraints are present:
each layer should have an appropriate size.

Theorem 3 Given a layer-unconstrained ring sub-
problem S with n free points, there exists an algo-
rithm, denoted by GeoRing, that computes the num-
ber of all triangulations of S in n(11+o(1))

√
n time.

Proof. [Sketch Theorem 1] The way, we use Theo-
rem 3 is to define for each k an layer-unconstrained
ring subproblem Ok such that each k-outerplane tri-
angulation of S corresponds to a valid k-outerplane
triangulation of Ok and vice versa. Then the algo-
rithm to count all triangulations of S is to count all
triangulations of Ok, for each k = 1, . . . , n. It takes
nO(

√
n) time for each k. We define Ok as follows. The

outer layer Qout is the boundary of the convex hull
of S. The inner layer Qin is empty. The free points
P are S without the points on the boundary of the
convex hull of S. The inner and outer layer index are
in-index(Ok) = k + 1 and out-index(Ok) = 1. �
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Figure 2: left: a simple ring subproblem right: the
transformed ring sector subproblem.

3 Thin Rings

This section is devoted to the proof of the following
theorem, which gives an algorithm for solving ring
subproblems with a certain width w. This algorithm
will be invoked by the main algorithm for values w ≤√
n. We will sketch the main ideas of the algorithm

and its runtime analysis.

Theorem 4 Given a simple (layer-constrained or
layer-unconstrained) ring subproblem S with width
w, there exists an algorithm RingSec that computes
the number of all valid triangulations of S in time
n(5+o(1))w.

Theorem 4 implies easily Theorem 2 in a similar
fashion as Theorem 3 implies Theorem 1.

We use a different kind of separator for this algo-
rithm. This requires a yet more specialized definition
of subproblems for our dynamic programming scheme:
ring sector subproblems. We sketch the proof of The-
orem 5. It easily implies Theorem 4, using a simple
transformation from ring subproblems to ring sector
subproblems, see Figure 2.

Theorem 5 Given a ring sector subproblem S with
width w on a set of n points, there exists an algorithm,
denoted RingSec that computes the number of all
valid triangulations of S in n(5+o(1))w time.

outer layer Qout

inner layer Qin

base edge base(S)

free region

boundary paths
p1 and p2

forbidden
region

free points P

Figure 3: A ring sector subproblem.

Ring Sector subproblems are defined very similar to
ring subproblems, see Figure 3. The essential differ-
ence is that some part of the outer layer is removed
and replaced by two boundary paths and a base edge.
These components are introduced for the recursion
step as illustrated in Figure 4. A valid triangulation

of a ring sector subproblem needs to satisfy some ad-
ditional boundary constraints to ensure the boundary
paths are indeed canonical separators of all counted
triangulations.

Given a valid triangulation T of a ring sector prob-
lem S it is not hard to show that every vertex on layer
i has a neighbor w.r.t.T in layer i− 1. Furthermore,
there is a unique triangle ∆ incident to the base edge.
From the vertex v of ∆ that is not incident to the base
edge, exists a path to the outer layer of S by always
choosing an adjacent vertex closer to the outer layer.
There is exactly one such path p, if we further require
that the vertex with lowest order label is taken. (The
order label is some distingued number from {1,. . . ,n}
that was fixed in advance for each vertex.) Such paths
are called canonical outgoing paths. We recurse on a
ring sector subproblem by guessing all potential such
triangles ∆ and all potential canonical paths p as de-
scribed above. For each such path, we can define two
subproblems Sright and Sleft, see Figure 4. We can

Sleft

Sright

p2

p

w1

w2

w3

u1u2

u3

u4

v1

v2

v3

v4

∆

p1

Figure 4: Splitting a ring sector subproblem.

restrict our triangulation T to these subproblems and
receive two new triangulations Tleft and Tright, and
conversely, given two triangulations Tleft and Tright,
we can combine it to a triangulation T . Thus if we
recursively count the number of valid triangulations of
subproblems Sright and Sleft, then we get exactly the
number of valid triangulations of S where ∆ is the
triangle incident to the base edge and p is the canoni-
cal outgoing path starting at vertex v or ∆. Summing
up for every possible triangle ∆ and path p, we get
exactly the number of valid triangulations of S.

If there are layer constraints in S, then we have
to do some more work. Let d, dleft, and dright be
the vectors that indicate the size of the layers for
T , Tleft, and Tright respectively. Except for the ver-
tices shared by Tleft and Tright, it holds that d equals
dleft + dright. Now, let us go back to our subproblems
Sleft and Sright. Let c be the layer-constraint vector
of S. Then, we define all pairs of compatible layer-
constraints (cleft, cright) such that two valid triangula-
tions for Sright(cright) and Sleft(cleft) respectively give
a triangulation for S with the correct number of ver-
tices on each layer. Here, the technical difficulty is
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to take into consideration the vertices shared by both
subproblems. Further we need to ensure that vertices
in the i-th layer of Sright will also be in the i-th layer
of S. We recurse on all subproblems occurring in this
way.

Proof. [Sketch Theorem 5] The correctness of the al-
gorithm follows from the correctness of the recursion.
The bound on the running time follows from bound-
ing the time required to solve a subproblem times the
number of subproblems. We save our intermediate
results in a search tree in order to prevent to handle
any subproblem more than once. The bound on the
number of subproblems follows from the fact that all
of their components are defined by at most two path
separators, and from the fact that a separator has
at most length w there are at most nO(w) of them.
The number of layer constraints is bounded by the
assumption that at most

√
n layers are non-zero. The

time for the recursive steps for one subproblem can
be asymptotically bounded by the number of recur-
sions, which in turn depends only on the number of
potential canonical paths and ways to split the layer
constraints in a compatible way. �

4 General Ring Subproblems

We briefly sketch the main algorithm in this section
and estimate its running time.

layer-constrained
simple outer ring
subproblem Sout

simple
layer-unconstrained
ring subproblem S

layer-unconstrained
inner ring

subproblem Sin

simple
layer-unconstrained ring

subproblem S1

simple
layer-unconstrained
ring subproblem S2

Figure 5: Overview of the algorithm.

The way we solve general ring subproblems is to
distinguish two cases. In the case that the ring sub-
problem is thin, that is, has only few layers (≤ √n),
we will use the algorithm of Theorem 4 as explained in
Section 3. In case that we have many layers (>

√
n),

we know that one of the outermost
√
n layers must

be of size ≤ √n by the pigeon hole principle. We use
this layer as a separator that splits the problem into
a thin outer part and an inner part.

To be more explicit, let S be a ring problem and T
be valid triangulation of S. By the outer and inner
layer index of S, we already know exactly the num-
ber of layers that T has. Consider the case that T
has more than

√
n layers. Then among the

√
n layers

closest to the outer layer, one must have size less than
or equal to

√
n. Note that the layer L that is actually

closest to the outer layer of S is uniquely determined.
We try to guess this layer L, which requires guessing
at most

√
n points. The guess defines an inner ring

subproblem Sin and an outer ring subproblem Sout,
as depicted in Figure 5. In case the cactus layer L is
disconnected or has disconnected bounded faces, the
inner ring subproblems consist of several components.
In this case, we split it into smaller subproblems, be-
fore we proceed with the recursion.

We can restrict T to Sout to attain a triangulation
Tout. It is clear that all layers different from L in
Tout have size larger than

√
n. Therefore, we want to

count only those triangulations of Sout that have all
layers (except L) of size larger than

√
n. We use layer

constraints for this purpose: we solve Sout with every
possible layer constraint where every layer is required
to have size greater than

√
n.

The running time can be estimated by bounding
the total number of ring subproblems times the time
spent per ring subproblem. Each ring subproblem
is defined by an inner and outer layer and a layer
constraint. In the course of the algorithm only inner
and outer layers of size less than or equal to

√
n are

guessed, and there are at most nO(
√
n) of them. As we

will never constrain more than
√
n layers to be non-

zero, the total number of layer constraints is bounded
by nO(

√
n). For the case of rings with width smaller

than
√
n, the runtime is given by Theorem 4. In the

other case, the bound stems from the total number of
layers of size

√
n, which is nO(

√
n).

References

[1] V. Alvarez, K. Bringmann, R. Curticapean, and
S. Ray. Counting triangulations and other crossing-
free structures via onion layers. D&C, 53(4):675–690,
2015.

[2] V. Alvarez and R. Seidel. A simple aggregative algo-
rithm for counting triangulations of planar point sets
and related problems. In SoCG’13, pages 1–8, 2013.

[3] E. Anagnostou and D. Corneil. Polynomial-time in-
stances of the minimum weight triangulation problem.
Computational Geometry, 3(5):247–259, 1993.

[4] C. Knauer and A. Spillner. A fixed-parameter algo-
rithm for the minimum weight triangulation problem
based on small graph separators. In WG’06, pages
49–57, 2006.

[5] A. Lingas. Subexponential-time algorithms for mini-
mum weight triangulations and related problems. In
CCCG’98, 1998.

[6] R. J. Lipton and R. E. Tarjan. A separator theorem
for planar graphs. SIAM Journal on Applied Mathe-
matics, 36(2):177–189, 1979.

[7] D. Lokshtanov, D. Marx, and S. Saurabh. Lower
bounds based on the Exponential Time Hypothesis.
Bulletin of the EATCS, 105:41–72, 2011.

262



EuroCG 2016, Lugano, Switzerland, March 30–April 1, 2016

Holes in 2-convex point sets∗
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Abstract

Let S be a finite set of n points in the plane in general
position. A k-hole of S is a simple polygon with
k vertices from S and no points of S in its interior.
A simple polygon P is l-convex if no straight line
intersects the interior of P in more than l connected
components. Moreover, a point set S is l-convex if
there exists an l-convex polygonalization of S.

Considering a typical Erdős-Szekeres type problem
we show that every 2-convex point set of size n contains
a convex hole of size Ω(log n). This is in contrast to
the well known fact that there exist general point sets
of arbitrary size that do not contain a convex 7-hole.
Further, we show that our bound is tight by providing
a construction for 2-convex point sets with holes of
size at most O(log n).

1 Introduction

Let S be a set of n points in the plane in general
position, i.e., S does not contain a collinear point triple.
A k-hole of S is a simple polygon whose k vertices are
a subset of S and whose interior does not contain any
point of S. Erdős [4] asked for the smallest integer
h(k) such that every set of h(k) points in the plane
contains at least one convex k-hole. Here, we consider
this question for a restricted class of point sets.

A simple polygon P with boundary ∂P is l-convex
if there exists no straight line that intersects the in-
terior of P in more than l connected components [1].
We call a line that intersects ∂P in a finite set of at
least j points a j-stabber ; for an l-convex polygon,
there cannot be a (2l + 1)-stabber. Clearly, a convex
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polygon is 1-convex. In [2], the notion of l-convexity
was transcribed to finite point sets. A point set S is
l-convex if there exists a polygonalization P (S) of S
such that P (S) is an l-convex polygon. Note that an
l-convex polygon or point set is also (l+ 1)-convex. In
this paper, we consider the following problem: What
is the smallest number f(k) such that any 2-convex
point set of size f(k) contains a convex k-hole?

Similar problems (for different generalizations of
convexity) have also been considered, see e.g. [7, 8]. It
has been shown that h(k) is finite for k ≤ 6, see e.g. [3]
for details. For general point sets Horton [6] showed
that there exist sets of arbitrary size that do not con-
tain a convex 7-hole, that is, h(7) is not bounded.
In contrast we show that every 2-convex point set of
size n contains a convex hole of size Ω(log n), implying
that f(k) is bounded for any k > 0 (Section 3). Fur-
ther, we show that our bound is tight by providing a
construction for 2-convex point sets with holes of size
at most O(log n) (Section 4). Due to space constraints,
most proofs are omitted.

2 Properties of 2-convex polygons

We follow the definitions used in [1] and [2]. A pocket
of a simple polygon P is a maximal chain on the
boundary of P not containing any vertices of CH(P )
except for its endpoints. For 2-convex polygons, the
following is known about the structure of the pockets.

Lemma 1 ([1], Lemma 12) Let K = 〈p0, . . . , pt〉
be a pocket of a 2-convex polygon between two extreme
points p0 and pt. Then K can be partitioned into three
chains C1 = 〈p0, p1, . . . , pr〉, C2 = 〈pr+1, . . . , ps〉, and
C3 = 〈ps+1, . . . , pt〉 for 0 ≤ r ≤ s < t, such that all
vertices in C1 and C3 are convex vertices of P , while
all vertices in C2 are reflex.

We call the segment p0pt the lid of the pocket. If
C2 is empty, the pocket consists solely of a convex
hull edge. Otherwise, we call the edges prpr+1 and
psps+1 the two inflection edges of the pocket. Consider
the (convex) polygons defined by C1, C2, and C3,
respectively. The next lemma follows from the proof
of Lemma 12 in [2].

Lemma 2 ([2]) The interior of a convex polygon de-
fined by C1, C2, or C3 does not intersect ∂P .

This is an extended abstract of a presentation given at EuroCG 2016. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

263



32nd European Workshop on Computational Geometry, 2016

e1 e2

kernel region

pocket region

p1

pr

pr+1
C

Figure 1: The order of the vertices defined by the
inflection edges of a pocket ([2, Figure 9], relabeled).
The gray wedge is the kernel region.

Lemma 3 ([2], Lemma 10) Let P be a 2-convex
polygon and let e1 and e2 be the inflection edges of a
pocket K directed from the convex to the reflex vertex,
with the vertices defined as in Lemma 1. Without loss
of generality, pr is left of e2, i.e., e1 = prpr+1 and
e2 = ps+1ps. Let C be the part of ∂P defined by
the vertices that are to the left of e2 and not part of
the pocket (starting at p1, the left endpoint of the lid
of K). Then the order of the points in C along ∂P is
the same as the radial order around any point p on e2.
An analogous statement holds for any point on e1 and
the points of ∂P to the right of e1.

See Figure 1 for an illustration (taken from [2, Fig-
ure 9]). The kernel region of the pocket K with non-
empty C2 is the region that is to the left of e1, to the
right of e2, and, if r + 1 6= s, to the left of pr+1ps.
Observe that, for a star-shaped 2-convex polygon, the
kernel of the polygon is the intersection of the kernel
regions of all the pockets.

3 The lower bound

Let S be a 2-convex point set in the plane in general
position and let P be a 2-convex polygon that is a
polygonalization of S. In this section, we prove the
following.

Theorem 4 Every 2-convex point set of size n con-
tains a convex k-hole for k ∈ Ω(log n).

Let us first sketch the proof: If P has a large pocket,
Lemma 2 implies the existence of a large k-hole. When
P has no large pocket, we will use Lemma 5 to find
a large set Q ⊂ S of points in convex position. If Q
forms a hole in S, we are done. Finally, if Q does not
form a hole in S, we will use Lemma 7 and Lemma 10
to find a big enough convex hole.

Lemma 5 Let m be the size of the largest pocket
in S. Then there exists a point p (probably not in S)
s.t. there is a sequence σ of

⌈
n
3m

⌉
− 1 points of S that

are separated by a line from p, and their order around

p matches the order along ∂P , where they appear
consecutively.

Proof. Suppose first that P is star-shaped and let
p /∈ S be a point in the kernel of P . Consider any
half-plane H defined by a line through p that contains⌈
n
2

⌉
points of S. The radial order of the points in

S ∩H around p is the same as the order along P .
Suppose now that P is not star-shaped, i.e., its

kernel is empty. The kernel of P is determined by the
intersection of the kernel regions of all the pockets. A
non-empty kernel region is the intersection of two half-
planes defined by inflection edges (as discussed in [2]).
By Helly’s theorem [5], we know that, if the kernel
of P is empty, there exists a triple of inflection edges
such that the intersection of the half-planes (partly)
defining their kernel regions is empty. (Similar to [2,
Lemma 11].) This means that there exists at least one
inflection edge e of a pocket K such that the open half-
plane H defined by e that contains K also contains at
least dn/3e points of S. Due to Lemma 3, the radial
order of the points in S ∩ H and not on K around
any point p on e is the same as their order along ∂P .

Hence, there is a sequence of at least
⌈
dn/3e−(m−2)

m−2

⌉
≥

⌈
n
3m

⌉
− 1 points along ∂P that are consecutive in the

order of all points of S around p (not containing a point
of K and linearly separated from p by the supporting
line of an edge of K). �

In the previous proof, when P is star-shaped, the
point p was not part of S. However, we can define
a point set S′ consisting of p and S ∩ H. Then, it
is easy to see that there is a 2-convex polygonization
P ′ of S′ in which p sees all the points in the order as
they appear along ∂P ′. Any convex k-hole of S′ is a
convex (k − 1)-hole or a convex k-hole of S. Thus, for
simplicity, we will assume that p ∈ S.

Let φ ⊆ S3 be the ternary relation representing
the cyclic order of the vertices of P as they appear
on the boundary of P traversed in counterclockwise
direction. That is, a triple (u, v, w) of points of S
is in φ if we can trace u, v, w in this order along
the boundary of P in counterclockwise direction. For
u,w ∈ S, a (closed) interval [u,w] from u to w in φ
is the set {v ∈ S : (u, v, w) ∈ φ} ∪ {u,w}. Note that
the intervals [u,w] and [w, u] are in general distinct.
Each point u ∈ S defines a linear order <u on S \ {u}
where x <u y if and only if (x, y, u) ∈ φ.

Note that vertices of a pocket K = 〈p0, . . . , pt〉 of
P induce a closed interval [p0, pt] in φ. Consequently,
φ induces a cyclic order of pockets of P . We choose
an arbitrary pocket K0 of P and use K0, . . . ,Km−1
to denote this cyclic order where m is the number of
pockets of P . In the rest of the section, the indices of
pockets are always taken modulo m.

For r, s ∈ {0, . . . ,m− 1}, we use [Kr,Ks] to denote
the interval consisting of pockets Kr,Kr+1, . . . ,Ks.
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(a) (b)
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Kr
Ks

P
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v
w

Figure 2: (a) An example of a reversed triple (u, v, w).
(b) The point w controls the interval [Kr,Ks].

The length of [Kr,Ks] is the number of pockets in
[Kr,Ks]. A subinterval of [Kr,Ks] is any interval that
can be obtained from [Kr,Ks] by deleting the first i
and the last j consecutive pockets of [Kr,Ks] for some
i, j ∈ N0.

We say that a triple (u, v, w) ∈ φ is reversed if the
triangle with the vertices u, v, w traced in this order
is oriented clockwise.

For an interval [Kr,Ks], a point v from S \
(∪s+1

i=r−1Ki) controls [Kr,Ks] if the following condi-
tions are satisfied:

(i) There is no reversed triple (x, y, v) with x and y
contained in distinct pockets of [Kr,Ks],

(ii) CH(∪si=rKi) contains no point of S \ (∪si=rKi),

(iii) CH(∪si=rKi ∪ {v}) contains no point of S \
(∪si=rKi) except of vertices of pockets contain-
ing v.

We note that Condition (i) especially implies that
there is no reversed triple (x, y, v) with x and y being
vertices of pockets in [Kr,Ks] and x or y being a con-
vex hull vertex. Hence, if v controls [Kr,Ks], then v
also controls every subinterval of [Kr,Ks]. Further,
Condition (i) implies that v is linearly separable from
[Kr,Ks].

Lemma 6 Let (u, v, w) be a reversed triple of points
in S and let ab be the lid of the pocket K of v s.t.
(a, v, b) ∈ φ. If uw separates v from ab, then the
order <v is the same as the radial order around v for
[u, a] and for [b, w].

Proof. We prove the statement for [u, a], as the ar-
gument for [b, w] follows by symmetry. Let C be the
part of ∂P defined by the interval [u, a]. Since uw sep-
arates v from ab and thus intersects K twice, its only
intersection with C is at u. Hence, any line through v
crossing C has exactly one ray starting at v crossing C.
Suppose there exists a line ` through v s.t. the ray r
crossing C has a crossing with C where it enters P .
We claim that a perturbation of ` is a 6-stabber of P ,
contradicting 2-convexity. Let r′ be the complement
of r on `.

Suppose first that r enters the interior of P at v.
Then r intersects ∂P in at least three points other than
v. Since ab is separated from v by uw, r′ crosses ∂P
in a point not on the pocket K. Thus, if r′ leaves P

at v, then ` is a 6-stabber. If r′ does not leave P
at v, then ` supports ∂P at v, in which case there is a
perturbation of ` that is a 6-stabber.

Suppose now that r leaves P at v. Since ab is an
edge of the convex hull of S and r crosses C, r cannot
cross ab. Hence, it enters P again at the pocket K,
implying that there are at least four points other than v
where r crosses ∂P . The fact that r′ intersects ∂P in
a point not on C makes ` a 6-stabber.

Therefore, there is no ray starting at v entering P
at C, which completes the proof. �

Lemma 7 Let Ki,Kj , and Kl be pockets in a se-
quence of pockets that is controlled by a point p ∈ S.
Let (u, v, w) be a reversed triple of points from S such
that u, v, and w are contained in Ki, Kj , and Kl, re-
spectively. Then v controls the intervals [Ki+1,Kj−2]
and [Kj+2,Kl−1], provided that uw separates v from
the endpoints of Kj .

Lemma 8 Let [Kr,Kr+3d+3] be an interval con-
trolled by some point p ∈ S. Then there is a subinter-
val of [Kr,Kr+3d+3] of length d controlled by a point
of a pocket that is contained in [Kr,Kr+3d+3].

Let H be a hole in S. If H contains at most one
point from every pocket of S, then H is transversal.
We say that an interval [Kr,Ks] of pockets contains
a hole H if every vertex of H is contained in some
pocket of the interval [Kr,Ks]. We call a hole H nice,
if there is no reversed triple of vertices of H.

Lemma 9 For every integer k ≥ 2, let [Kr,Ks] be
an interval of pockets that contains a nice convex
transversal (k − 1)-hole. If a point p of S controls
[Kr,Ks], then there is a pocket K containing p such
that the intervals [Kr,K] and [K,Ks] contain a nice
convex transversal k-hole.

First, we prove the following lemma and then we
show how it implies Theorem 4.

Lemma 10 For every positive integer k and every
interval [Kr,Ks] of pockets, if the length of [Kr,Ks]
is at least 2 · 3k − 2 and [Kr,Ks] is controlled by
some point of S, then [Kr,Ks] contains a nice convex
transversal k-hole.

Proof. We prove the lemma by induction on k. For
k = 1, the lemma follows from the fact that every
interval of length 1 contains a 1-hole. For the induction
step, let k > 1. For d := 2 · 3k−1 − 2, let [Kr,Ks] be
the interval of length at least 3d+ 4 = 2 · 3k− 2 that is
controlled from some point of S. By Lemma 8, there
is a point q contained in a pocket from [Kr,Ks] such
that q controls a subinterval [Ki,Kj ] of [Kr,Ks] with
length at least d. Using the induction hypothesis, it
follows that [Ki,Kj ] contains a nice convex transversal
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(k − 1)-hole H. By Lemma 9, the hole H can be
extended to a nice convex transversal k-hole contained
in [Kr,Ks]. �

Proof of Theorem 4. To show that Lemma 10
implies Theorem 4, we prove that in every 2-convex
point set S of size n there is a convex k-hole for k ≥
log n/3, or we have an interval of length Ω(n/ log3 n)
that is controlled by a point from S. In the latter case
we then apply Lemma 10 and obtain a convex k-hole
with k ≥ c log n for an absolute constant c > 0.

First, assume that there is a pocket K = 〈p0, . . . , pt〉
in P with t ≥ log n in P . By Lemma 1, the
pocket K can be partitioned into three chains C1 =
〈p0, p1, . . . , pr〉, C2 = 〈pr+1, . . . , ps〉, and C3 =
〈ps+1, . . . , pt〉 for 0 ≤ r ≤ s < t, such that all ver-
tices in C1 and C3 are convex in P , while all vertices
in C2 are reflex. Since K contains at least log n ver-
tices, at least one of the chains C1, C2, and C3 contains
at least log n/3 vertices. For some i ∈ {1, 2, 3}, let
Ci be such a chain. By Lemma 2, the vertices of Ci

are vertices of a convex k-hole for k ≥ log n/3. See
Figure 3 (a).

K

(a)

p0 pt

pr+1

pr

ps
ps+1

P
(b)

q3

q2

q1

q4

q0

Q

(c)

q3

q2

q1

q4

q0

Q

q

Figure 3: (a) A large pocket gives a large hole. (b) If
no point of S interferes, then Q is a hole. (c) If there
is a point inside Q, then we use Lemma 7 and apply
Lemma 10.

In the rest of the proof we thus assume that every
pocket of P contains less than log n vertices. In par-
ticular, there are more than n/ log n pockets in P and
CH(S) has more than n/ log n vertices. By Lemma 5,

there are at least m :=
⌈

n
3 logn

⌉
− 1 points that are

“controlled” by a point p (that is not necessarily in S).
We call these points the initial interval. However, by
the discussion after Lemma 5 we can assume for the
following that p ∈ S. Let q0, . . . , qlogn−1 be vertices
of CH(S) traced in counterclockwise direction along
the boundary of P in the initial interval such that the
points in each interval [qi, qi+1] for i = 0, . . . , log n− 1
(indices taken modulo log n) form at least m/ log2 n
pockets. Clearly, if the polygon Q with the vertices
q0, . . . , qlogn−1 is a hole, then we are done; see Fig-
ure 3 (b). Otherwise there is a point q in the interior
of Q and we have a reversed triple (qi, q, qj) for some
i, j ∈ {0, . . . , log n−1}. Let K, K ′, and K ′′ be pockets
containing qi, q, and qj , respectively. The endpoints
of K ′ are separated from q by qiqj , as qi and qj are
vertices of CH(S); See Figure 3 (c). By Lemma 7,
the point q controls the interval of pockets that are
between K and K ′ and between K ′ and K ′′. From the

choice of Q, at least one of these intervals has length
at least m/(2 log2 n) = Ω(n/ log3 n). �

4 An upper-bound construction

Theorem 11 For any n there exists a 2-convex point
set S of size n such that all convex holes it contains
have size O(log n).

Proof. The set is constructed recursively, following
the idea shown in Figure 4. We define Si = Li ∪Ri ∪
{ci}, where Li and Ri are flattened enough copies
of Si−1. For i = 0, we set L0 = R0 = ∅.

An empty convex hole K intersecting Ri cannot
intersect both the left and right part of Li, and this is
true for every level in the recursion. Of course, an ana-
logus statement is true if K intersects Li. Therefore,
|K| = O(log n). �

Si

ci

Li Ri

Figure 4: Recursive operation for the construction of
an upper bound example.
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