
																																																																																																								 	

	

	

	

���������	
���������
��
����������

����
���������������������������

������������ �
!�����"#��

$���%&�'(�����
	

Table of Contents

Session 1A

Best Laid Plans of Lions and Men . 1
Mikkel Abrahamsen, Jacob Holm, Eva Rotenberg and Christian Wulff-Nilsen

Parallel Motion Planning: Coordinating a Swarm of Labeled Robots with Bounded Stretch . 5
Christian Scheffer, Sándor Fekete, Phillip Keldenich, Erik Demaine and Henk Meijer

Forming Tile Shapes with a Single Robot . 9
Robert Gmyr, Irina Kostitsyna, Fabian Kuhn, Christian Scheideler and Thim Strothmann

Self-approaching paths in simple polygons . 13
Prosenjit Bose, Irina Kostitsyna and Stefan Langerman

Routing in Simple Polygons . 17
Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein,

Birgit Vogtenhuber and Max Willert

Kinetic All-Pairs Shortest Path in a Simple Polygon . 21
Yago Diez, Matias Korman, André van Renssen, Marcel Roeloffzen and Frank Staals

Session 1B

Competitive Analysis of the Pokemon Go Search Problem . 25
Marc Van Kreveld

Computational complexity and bounds for Norinori and LITS . 29
Michael Biro and Christiane Schmidt

How to play hot and cold on a line . 33
Herman Haverkort, David Kübel, Elmar Langetepe and Barbara Schwarzwald

Distance Measures for Embedded Graphs . 37
Maike Buchin, Stef Sijben and Carola Wenk

Frechet Isotopies to Monotone Curves . 41
Kevin Buchin, Erin Chambers, Tim Ophelders and Bettina Speckmann

Computing representative networks for braided rivers . 45
Maarten Kleinhans, Marc Van Kreveld, Tim Ophelders, Willem Sonke, Bettina Speckmann and Kevin

Verbeek

Session 2A

Weighted Discrete Surveillance Tours in Simple Polygons . 49
Bengt J Nilsson and Eli Packer

On the Traveling Salesman Problem in Solid Grid Graphs . 53
Sándor Fekete, Christian Rieck and Christian Scheffer

Covering Tours with Turn Cost: Variants, Approximation and Practical Solution . 57
Sándor Fekete and Dominik Krupke

On the Generation of Spiral Paths Within Planar Shapes . 61
Martin Held and Stefan de Lorenzo

Computing the k-resilience of a Synchronized Multi-Robot System . 65
Sergey Bereg, Luis Evaristo Caraballo de La Cruz, José Miguel Dı́az Báñez and Mario A Lopez

Session 2B

A superlinear lower bound on the number of 5-holes . 69
Oswin Aichholzer, Martin Balko, Thomas Hackl, Jan Kynčl, Irene Parada, Manfred Scheucher, Pavel

Valtr and Birgit Vogtenhuber

Classification of empty lattice 4-simplices . 73
Oscar Iglesias-Valiño and Francisco Santos

Convex Quadrangulations of Bichromatic Point Sets . 77
Carlos Seara and Alexander Pilz

Perfect k-colored matchings and k + 2-gonal tilings . 81
Oswin Aichholzer, Lukas Andritsch, Karin Baur and Birgit Vogtenhuber

A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations . 85
Anna Lubiw, Zuzana Masárová and Uli Wagner

Session 3A

Minimum Perimeter-Sum Partitions in the Plane. 89
Mikkel Abrahamsen, Kevin Buchin, Mark De Berg, Mehran Mehr and Ali D Mehrabi

Searching edges in the overlap of two plane graphs . 93
John Iacono, Elena Khramtcova and Stefan Langerman

Straight Skeletons of Monotone Surfaces in Three-Space . 97
Martin Held and Peter Palfrader

Polynomial Time Approximation Schemes for Circle Packing Problems . 101
Helmut Alt and Nadja Scharf

Subquadratic Algorithms for Algebraic Generalizations of 3SUM . 105
Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms and Noam Solomon

Session 3B

Computing Triangulations with Minimum Stabbing Number . 109
Victor Alvarez, Sándor Fekete and Arne Schmidt

Bottleneck Bichromatic Full Steiner Trees . 113
A Karim Abu-Affash, Sujoy Bhore, Paz Carmi and Dibyayan Chakraborty

Computing the Geometric Intersection Number of Curves . 117
Vincent Despré and Francis Lazarus

K-Dominance in Multidimensional Data . 121
Thomas Schibler and Subhash Suri

Largest and Smallest Area Triangles on a Given Set of Imprecise Points . 125
Vahideh Keikha, Maarten Löffler and Ali Mohades

Session 4A

Compact 1-Bend RAC Drawings of 1-Planar Graphs . 129
Franz Brandenburg

Non-crossing drawings of multiple geometric Steiner arborescences . 133
Irina Kostitsyna, Bettina Speckmann and Kevin Verbeek

Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings . 137
Lukas Barth, Benjamin Niedermann, Ignaz Rutter and Matthias Wolf

Aligned Drawings of Planar Graphs. 141
Tamara Mchedlidze, Marcel Radermacher and Ignaz Rutter

On the Relationship between k-Planar and k-Quasi Planar Graphs . 145
Patrizio Angelini, Michael A Bekos, Franz J Brandenburg, Giordano Da Lozzo, Giuseppe Di Battista,

Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani and Ignaz Rutter

Radial Contour Labeling with Straight Leaders . 149
Benjamin Niedermann, Martin Nöllenburg and Ignaz Rutter

Formulae Enumerating Polyominoes by both Area and Perimeter . 153
Gill Barequet and Yufei Zheng

Session 4B

High Dimensional Consistent Digital Segments . 157
Man Kwun Chiu and Matias Korman

Practical linear-space Approximate Near Neighbors in high dimension . 161
Georgios Samaras, Ioannis Psarros, Georgia Avarikioti and Ioannis Emiris

An Experimental Study of Algorithms for Geodesic Shortest Paths in the Constant Workspace Model 165
Jonas Cleve and Wolfgang Mulzer

Computing Wave Impact in Self-Organised Mussel Beds . 169
Johan van de Koppel, Maarten Löffler and Tim Ophelders

A Novel MIP-based Airspace Sectorization for TMAs . 173
Tobias Andersson Granberg, Tatiana Polishchuk and Christiane Schmidt

A Combinatorial Upper Bound on the Length of Twang Cascades . 177
Leon Sering

Is Area Universality ∀∃R-complete? . 181
Linda Kleist, Tillmann Miltzow and Pawe l Rza̧żewski

Session 6A

A Lower Bound for the Dynamic Conflict-Free Coloring of Intervals with Respect to Points . 185
Mark De Berg, Tim Leijssen, André van Renssen, Marcel Roeloffzen, Aleksandar Markovic and Gerhard

J Woeginger

Fine-grained complexity of coloring unit disks and balls . 189
Csaba Biro, Edouard Bonnet, Daniel Marx, Tillmann Miltzow and Pawe l Rza̧żewski

Coloring curves that cross a fixed curve . 193
Alexandre Rok and Bartosz Walczak

Conflict-free coloring of intersection graphs . 197
Sándor Fekete and Phillip Keldenich

On the Dominating Set Problem in Intersection Graphs . 201
Mark de Berg, Sándor Kisfaludi-Bak and Gerhard J Woeginger

Finding Triangles and Computing the Girth in Disk Graphs . 205
Haim Kaplan, Wolfgang Mulzer, Liam Roditty and Paul Seiferth

Session 6B

Geomasking through Perturbation, or Counting Points in Circles . 209
Maarten Löffler, Jun Luo and Rodrigo Silveira

Bounding a global red-blue proportion using local conditions . 213
Márton Naszódi, Leonardo Mart́ınez-Sandoval and Shakhar Smorodinsky

Convex allowable sequences . 217
Jean Cardinal and Udo Hoffmann

Parametrized Runtimes for Ball Tournaments . 221
Stefan Funke and Sabine Storandt

Triangles in Arrangements of Pseudocircles . 225
Stefan Felsner and Manfred Scheucher

Arrangements of Approaching Pseudo-Lines . 229
Stefan Felsner and Alexander Pilz

Session 7A

Dushnik-Miller dimension of TD-Delaunay complexes . 233
Daniel Gonçalves and Lucas Isenmann

Star covering of red and blue points in the plane . 237
Bernardo M Ábrego, Silvia Fernández-Merchant, Mikio Kano, David Orden, Pablo Pérez-Lantero, Car-

los Seara and Javier Tejel

Bounds on the angle between tangent spaces and the metric distortion for C2 manifolds with given positive reach 241
Mathijs Wintraecken

Near-Optimal eps-Kernel Construction and Related Problems . 245
Sunil Arya, Guilherme D Da Fonseca and David Mount

Session 7B

A Generic Method for Finding Coresets for Clustering Problems . 249
Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr and Ali D Mehrabi

Range-Clustering Queries . 253
Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr and Ali D Mehrabi

Delta-Fast Tries: Local Searches in Bounded Universes with Linear Space . 257
Marcel Ehrhardt and Wolfgang Mulzer

A Simple Analysis of Rabin’s Algorithm for Finding Closest Pairs . 261
Bahareh Banyassady and Wolfgang Mulzer

Session 8A

Minimizing crossings in constrained two-sided circular graph layouts . 265
Fabian Klute and Martin Nöllenburg

Ordered Level Planarity and Geodesic Planarity . 269
Boris Klemz and Günter Rote

A generalization of crossing families . 273
Patrick Schnider

Session 8B

Irrational Guards are Sometimes Needed . 277
Mikkel Abrahamsen, Anna Adamaszek and Tillmann Miltzow

Illuminating polygons by edge-aligned floodlights of uniform angle (Brocard illumination) . 281
Carlos Alegŕıa-Galicia, David Orden, Carlos Seara and Jorge Urrutia

1

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Best Laid Plans of Lions and Men

Mikkel Abrahamsen∗ Jacob Holm∗ Eva Rotenberg∗ Christian Wulff-Nilsen∗

Abstract

We answer the following question dating back to
J.E. Littlewood (1885–1977): Can two lions catch
a man in a bounded area with rectifiable lakes? The
lions and the man are all assumed to be points moving
with at most unit speed. That the lakes are rectifiable
means that their boundaries are finitely long. This
requirement is to avoid pathological examples where
the man survives forever because any path to the lions
is infinitely long. We show that the answer to the
question is not always “yes” by giving an example of a
region R in the plane where the man has a strategy to
survive forever. R is a polygonal region with 11 holes
and the exterior and interior boundaries are pairwise
disjoint, simple polygons. Our construction is the first
truly two-dimensional example where the man can
survive. We prove tightness in the sense that three
lions can catch a man in a region with finitely many
polygonal lakes. Next, we consider the following game
played on the entire plane instead of a bounded area:
There is any finite number of unit speed lions and one
fast man who can run with speed 1 + ε for some value
ε > 0. Can the man always survive? We answer the
question in the affirmative for any constant ε > 0.

1 Introduction

‘A lion and a man in a closed circular arena have equal
maximum speeds. What tactics should the lion employ
to be sure of his meal?’1 These words (including the
footnote) introduce the now famous lion and man
problem, invented by R. Rado in the late thirties, in
Littlewood’s Miscellany [12]. It was for a long time
believed that in order to avoid the lion, it was optimal
for the man to run on the boundary of the arena. A
simple argument then shows that the lion could always
catch the man by staying on the radius OM defined by
the man while approaching him as much as possible.
However, A.S. Besicovitch proved in 1952 that the man
has a very simple strategy (following which he will
approach but never reach the boundary) that enables
him to avoid capture forever no matter what the lion
does. See [12] for the details. One can prove that two
lions are enough to catch the man.
A well-known related discrete game is the cop and

∗University of Copenhagen, Denmark
1The curve of pursuit (L running always straight at M) takes

infinite time, so the wording has its point.

robber game: Let G be a finite connected undirected
graph. Two players called cop C and robber R play
a game on G according to the following rules: First
C and then R occupy some vertex of G. After that
they move alternately along edges of G. The cop
C wins if at some point in time C and R are on
the same vertex. If the robber R can prevent this
situation forever, then R wins. The robber has a
winning strategy on many graphs, including all cycles
of length at least 4. Therefore, the cop player C can
be given a better chance by allowing him, say, k cops
C1, . . . , Ck. At every turn C moves any non-empty
subset of {C1, . . . , Ck}. Now, the cop-number of G
is the minimal number of cops needed for C to win.
Aigner and Fromme [1] observes that the cop-number
of the dodecahedron graph is at least 3, since if there
are only 2 cops, the robber can always move to a vertex
not occupied by a cop and not in the neighbourhood of
any. Furthermore, they prove that the cop-number of
any planar graph is at most 3. Thus, the cop-number
of the dodecahedron is exactly 3.

Returning to the lion and man game, Bollobás [4]
writes that the following open problem was already
mentioned by J.E. Littlewood (1885–1977): Can two
lions catch a man in a bounded (planar) area with
rectifiable lakes? An informal definition of a rectifiable
curve is that it has finite length. We require that the
boundaries of the lakes and the exterior boundary are
all rectifiable curves to avoid pathological examples
where the man survives forever because any path to
the lions is inifitely long. Bollobás mentions the same
problem in a comment in his edition of Littlewood’s
Miscellany [12] and in [5]. The problem is also stated
by Fokkink et al. [9]. Berarducci and Intrigila [3] prove
that the man can survive forever (for some initial
positions of the man and lions) if the area is a planar
embedding of the dodecahedron graph where each edge
is a curve with unit length. The proof is essentially
the same as the proof by Aigner and Fromme [1] that
the cop-number of the dodecahedron is at least 3:
Whenever the man is standing at a vertex, there is one
of the neighbouring vertices which has distance more
than 1. The man can therefore safely run to that vertex.
This, however, is a one-dimensional example. They
raise the question whether it is possible to replace the
one-dimensional edges by two-dimensional thin lines.

We present a truly two-dimensional region R in the
plane where two lions are not enough to ever catch the
man. We say that R is truly two-dimensional since R

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

2

33rd European Workshop on Computational Geometry, 2017

is a polygonal region with holes and the exterior and
interior boundaries are all pairwise disjoint, simple
polygons – in particular, they are clearly rectifiable.
We were likewise inspired by the dodecahendron in
the construction of our example.

Rado and Rado [13] consider the problem where
there are many lions and one man, but where the
game is played in the entire unbounded plane. They
prove that the lions can catch the man if and only
if the man starts in the interior of the convex hull
of the lions. Inspired by that problem, we ask the
following question: What if the lions have maximum
speed 1 and the man has maximum speed 1 + ε for
some ε > 0? We prove that for any constant ε and
any finite number of lions, such a fast man can survive
forever provided that he does not start at the same
point as one of the lions. Fast evaders were also studied
in [7, 8, 11] in the man-and-lion setting, and in [2, 10]
in the cop-and-robber setting.

1.1 Definitions

We follow the conventions of Bollobás et al. [6]. Let
R ⊆ R

2 be a region in the plane on which the lion
and man game is to be played, and assume that the
lion starts at point l0 and the man at point m0. We
define a man path as a function m : [0,∞) −→ R
satisfying m(0) = m0 and the Lipschitz condition
‖m(s) − m(t)‖ ≤ V · |s − t|, where V is the speed
of the man. In our case, we either have V = 1 or,
in the case of a fast man, V = 1 + ε for some small
constant ε > 0. Note that it follows from the Lipschitz
condition that any man path is continuous. A lion

path l is defined similarly, but the lions we consider
always run with at most unit speed.

Let L be the set of all lion paths and M be the set
of all man paths. Then a strategy for the man is a
function M : L −→ M such that if l, l′ ∈ L agree on
[0, t], then M(l) and M(l′) also agree on [0, t]. This
last condition is a formal way to describe that the
man’s position M(l)(t), when he follows strategy M ,
depends only on the position of the lion at points in
time before and including time t, i.e., he is not allowed
to act based on the lion’s future movements. (By the
continuity of any man path, the man’s position at
time t is in fact determined by the lion’s position at
all times strictly before time t.) A strategy M for the
man is winning if for any l ∈ L and any t ∈ [0,∞),
it holds that M(l)(t) �= l(t). Similarly, a strategy for
the lion L : M −→ L is winning if for any m ∈ M, it
holds that L(m)(t) = m(t) for some t ∈ [0,∞). These
definitions are extended to games with more than one
lion in the natural way.

We call a man strategy M locally finite if it satisfies
the following property: if l and l′ are any two lion paths
that agree on [0, t] for some t then the corresponding
man paths M(l) and M(l′) agree on [0, t+ δ] for some

δ > 0 (we allow that δ depends on l|[0,t]). Thus,
informally, the man commits to doing something for
some positive amount of time dependent only on the
situation so far. Bollobás et al. [6] prove that if the
man has a locally finite winning strategy, then the lion
does not have any winning strategy. The argument
easily extends to games with multiple lions. At first
sight, it might sound absurd to even consider the
possibility that the lion has a winning strategy when
the man also does. However, it does not follow from
the definition that the existence of a winning strategy
for the man implies that the lion does not also have a
winning strategy. See the paper by Bollobás et al. [6]
for a detailed discussion of this (including descriptions
of natural variants of the lion and man game where
both players have winning strategies). In each of the
problems we describe, the winning strategy of the man
is locally finite, so it follows that the lions do not
have winning strategies. In fact, the strategies we
describe satisfy the much stronger condition that they
are equitemporal, i.e., there is a constant ∆ > 0 such
that the man at any point in time i ·∆, for i = 0, 1, . . .,
decides where he wants to run until time (i+ 1) ·∆.

Figure 1: How the planar embedding of the dodecahe-
dron looks in a small disk Cv centered at a vertex v.
Regardless of angles between a, b, c, we use the bends
to make the three edges meet at v in angles of size 2π

3 ,
and at the same time extend the lengths of the edges
suitably, to ensure that all edges are equally long.

1.2 Results

Firstly, we answer the question posed by Littlewood.
We construct a polygonal region with holes such that
the man has a winning strategy against two lions.

Theorem 1 There exists a polygonal region R in the

plane with 11 polygonal holes where the exterior and

interior boundaries are all pairwise disjoint and such

that the man has a winning strategy against two lions.

Secondly, we prove ”tightness” in the sense that
three lions always suffice to catch a man in a rectifiable
region with finitely many rectifiable holes.

3

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Theorem 2 For any natural number N ∈ N, for any

rectifiable region R in the plane with N rectifiable

holes, three lions have a winning strategy against one

man.

Finally, we consider the case where the man is just
slightly faster than the lions, in the unbounded plane
without obstacles. In this case, the man is able to
escape arbitrarily many lions.

Theorem 3 In the plane R
2, for any ε > 0, a man

able to run at speed 1 + ε has a locally finite strategy

to escape the convex hull of any number n ∈ N of

unit-speed lions, provided that the man does not start

at the same point as a lion. Thus, the man has a

locally finite winning strategy.

In fact, we prove that the man is able to keep some
minimum distance dε,n to any lion, where dε,n only
depends on ε, n, and the initial distances to the lions.
Thus, if the n lions and man were disks with radius
< 1

2dε,n, the man is still able to escape.

2 Techniques and insights

We will now present a quick overview of the proof
strategies for the three theorems.

Sketch of proof, Theorem 1. The idea is to ex-
tend a planar embedding of the dodecahedron to a
truly two-dimensional region R in the plane by thick-
ening the edges and vertices, such that the man can
escape two lions. We thus consider a planar embedding
D of the dodecahedron where all edges have length 4.
When thickening the graph D, the vertices are turned
into small vertex areas, and the edges become thin

strips. We have to be careful when thickening the
edges and vertices. In D, the man has a strategy to
survive by only deciding in the vertices where to run
next. However, it seems that if we define a specific
point in R to correspond to each vertex of D, then if
the man only makes decisions in such points, the lions
can catch the man. To work around this, we prove:

Claim 1 In a planar embedding of the dodecahedron

where all edges have the same length, if the lions start

out sufficiently far away from the man, there exists a

winning strategy for the man where he only needs to

take the situation into account when he is a quarter

of an edge away from the closest vertex.

Thus, in the region R, the man does not need to
decide his path when he is in a vertex area – he can
decide beforehand which neighbouring edge he wants
to proceed to, so that he ensures always to run through
the vertex areas in the shortest possible way.
The planar embedding D that we consider has the

additional property that the three edges meeting at

Figure 2: The shortest paths in the circle Dv between
any two of a, b, c that avoid crossing the red lines, all
have the same length.

each vertex create angles of size 2π
3 . We obtain such a

planar embedding from an embedding of the dodeca-
hedron where all edges are straight line segments with
length either 1 or 3. Then, in a small circle around
each vertex, we extend the edges using some zig-zag
bends and at the same time obtain the angle require-
ment, see Figure 1. We construct a thickening R of
D such that in a disk around each vertex of D, the
distances in R between the points where the adjacent
edges in D enter the disk are the same as in D, see
Figure 2.

Figure 3: Two lions (black dashed lines) guard a sub-
region. The third finds a new path (red dashed line)
to guard, increasing b or decreasing i.

Let the quarters in D be all points with distance
1 to the closest vertex. We want all quarters in D
to be points in R as well, and we want all pairs of
quarters to have the same distances in D and R. It
will then follow from the man’s winning strategy in D
that he can also survive in R. We make one lake Lf

corresponding to each face f of D. If v is a vertex on
f , then the red curve Pvf shown in Figure 2 is on the
boundary of Lf . Let the vertices on the face f of D be
uvxyz, appearing in that counterclockwise order on
f . The curves Puf , Pvf , Pxf , Pyf , Pzf appear on the
boundary of Lf in that order. We connect the end
suf of Puf with the start rvf of Pvf – the other curves
are connected in a completely analogous way. See
Figure 2. There is some edge euv of D between u and
v which is a polygonal curve. We make a polygonal

4

33rd European Workshop on Computational Geometry, 2017

curve Quv corresponding to euv. Quv starts at suf
and ends at rvf so that it connects Puf and Pvf . Quv

stays near euv inside f and touches euv at the corners
of euv which are convex corners of f . It the follows
that the shortest paths in R between the quarters of D
all have the same length as in D. Therefore, the man
can survive by using the same strategy as he would in
D. ♦

Sketch of proof for Theorem 2. The strategy is
to let lions guard certain paths in the region, thus
restricting the man to a smaller and smaller region. A
lion guards a path if she can always reach any point on
the path before the man. Whenever two lions restrict
the man to an area, the third lion starts guarding a
path inside that area, separating the area in at least
two smaller areas and making one of the first lions idle.
That lion will then start guarding a new path, etc.

We say that a lake is a boundary lake if touches a
lion-guarded path. The proof goes by induction over
the number of lakes and boundary lakes.

Inductively, the man is caught in an area R bounded
by four paths (some of which may degenerate to a
single point): A lion-guarded path, a lakeside, another
lion-guarded path, and another lakeside. Let i and
b be the number of lakes and boundary lakes in R,
respectively. The third lion starts guarding a path π

in R, thus separating R into at least two regions, one
of which contains the man and all of which containing
< i lakes or > b boundary lakes. That such a path π

exists follows nontrivially from a sweeping argument.
It then follows that after finitely many iterations, the
man is restricted to an area without any lakes. Then
the lions change to a much simpler strategy where, in
fact, only two lions are needed to catch the man. ♦

Sketch of proof for Theorem 3. We proceed by
induction on the number n of lions. We define strate-
gies Mj for the man to keep distance cj to the first j
lions. The j’th strategy yields a curve consisting of
line segments all of the same length.

Inductively, the man can keep a safety distance cn−1

to the n− 1 first lions by running at speed 1 + εn−1,
where ε1 < ε2 < . . . < εn < ε. The bends of the
curve defined by strategy Mn−1 are milestones that he
runs towards when avoiding n lions. If the n’th lion
ℓn is in the way, the man makes an avoidance move,
keeping a much smaller safety distance cn to ℓn and
running slightly faster at speed εn. Intuitively, when
performing avoidance moves, the man runs counter-
clockwise around a fixed-diameter circle centered at
the lion.
After a limited number of avoidance moves, the

man can make an escape move, where he simply runs
towards the milestone defined by the strategy Mn−1.

By choosing cn sufficiently small, we can make sure
that the detour caused by the n’th lion is so small that
it can only annoy the man once for each of the segments

of the strategy Mn−1, and thus that he is ensured to
have distance at least ci−1/2 to the position defined
by Mn−1 and hence not in danger of the (n − 1)’st
lions. ♦

ln(ti)

m(ti)
q

Figure 4: An avoidance move. At time tj , the man is
at m(tj) and runs to q.

References

[1] M. Aigner and M. Fromme. A game of cops and robbers.
Discrete Applied Mathematics, 8(1):1–12, 1984.

[2] N. Alon and A. Mehrabian. Chasing a fast robber on planar
graphs and random graphs. Journal of Graph Theory,
78(2):81–96, 2015.

[3] A. Berarducci and B. Intrigila. On the cop number of
a graph. Advanced Applied Mathematics, 14(4):389–403,
1993.

[4] B. Bollobás. The Art of Mathematics: Coffee Time in

Memphis. Cambridge University Press, 2006.

[5] B. Bollobás. The lion and the christian, and other pursuit
and evasion games. In D. Schleicher and M. Lackmann,
editors, An Invitation to Mathematics: From Competi-

tions to Research, pages 181–193. Springer-Verlag Berlin
Heidelberg, 2011.

[6] B. Bollobás, I. Leader, and M. Walters. Lion and man—can
both win? Israel Journal of Mathematics, 189(1):267–286,
2012.

[7] J. Flynn. Lion and man: The boundary constraint. SIAM

Journal on Control, 11:397–411, 1973.

[8] J. Flynn. Lion and man: The general case. SIAM Journal

on Control, 12:581–597, 1974.

[9] R. Fokkink, L. Geupel, and K. Kikuta. Open problems
on search games. In S. Alpern, R. Fokkink, L. A. Gsie-
niec, R. Lindelauf, and V. Subrahmanian, editors, Search
Theory: A Game Theoretic Perspective, chapter 5, pages
181–193. Springer-Verlag New York, 2013.

[10] F. V. Fomin, P. A. Golovach, J. Kratochv́ıl, N. Nisse, and
K. Suchan. Pursuing a fast robber on a graph. Theoretical

Computer Science, 411:1167–1181, 2010.

[11] J. Lewin. The lion and man problem revisited. Journal

of Optimization Theory and Applications, 49(3):411–430,
1986.

[12] J. E. Littlewood. Littlewood’s miscellany. Cambridge
University Press, 1986.

[13] P. A. Rado and R. Rado. More about lions and other
animals. Mathematical Spectrum, 7(3):89–93, 1974/75.

5

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Parallel Motion Planning:

Coordinating a Swarm of Labeled Robots with Bounded Stretch∗

Erik D. Demaine† Sándor P. Fekete‡ Phillip Keldenich; Henk Meijer§ Christian Scheffer;

Abstract

We present a collection of results for parallel motion
planning, in which the objective is to reconfigure a
swarm of labeled disk-shaped objects into a given
target arrangement. This problem is of significant
importance for a wide range of practical challenges,
with potential applications to coordinated motion plan-
ning of ground robots, self-driving cars, and/or drone
swarms, in addition to air traffic control, and human
team coordination (e.g., in sports, military, or fire
fighting).

We solve an open problem by Overmars dating back
to 2006 by designing a constant-factor approximation
algorithm for minimizing the execution time of a par-
allel motion plan for a rectangular grid of robots, and
a desired permutation of those robots, where, in each
round, every robot can move to any neighboring loca-
tion whose robot is simultaneously leaving to another
location. In fact, our algorithm achieves constant
stretch factor : if all robots ultimately want to move
to a location at most d units away, then the computed
parallel motion plan requires only Opdq rounds.
Furthermore, we provide lower and upper bound

results for the corresponding continuous and unlabeled
versions of the problem setting.

1 Introduction

Since the beginning of computational geometry, robot
motion planning and especially multi-robot coordina-
tion has received a considerable amount of attention.
Even in the groundbreaking work by Schwartz and
Sharir [11] from the early 1980s, one of the challenges
was coordinating the motion of several disk-shaped
objects among obstacles. Their algorithms run in time
polynomial in the complexity of the obstacles, but
exponential in the number of disks; moreover, it was
shown by Hopcroft et al. [5] that the reachability of

∗This work was partially supported by the DFG Reserach
Unit Controlling Concurrent Change, funding number FOR
1800, project FE407/17-2, Conflict Resolution and Optimiza-
tion.

†MIT Computer Science and Artificial Intelligence Labora-
tory, Cambridge, Massachusetts, USA, edemaine@mit.edu

‡Department of Computer Science, TU Braunschweig, Ger-
many, {s.fekete,p.keldenich,c.scheffer}@tu-bs.de

§Science Department, University College Roosevelt, Middel-
burg, The Netherlands, h.meijer@ucr.nl

a given target configuration is PSPACE-complete to
decide. This illustrates that a major aspect of the
complexity arises not just from dealing with obstacles,
but from interaction between the individual robots.
In addition, a growing number of applications focus
solely on robot interaction, even in settings in which
obstacles are of minor importance, such as air traffic
control or swarm robotics, where the goal is overall
efficiency, rather than individual navigation.

With the hardness of multi-robot coordination being
well known, there is still a huge demand for positive
results with provable performance guarantees. In this
paper, we provide significant progress in this direction,
with a broad spectrum of results.

1.1 Our Results

For the problem of minimizing the total time needed
to reconfigure a system of labeled circular robots in a
grid environment, we give an Op1q-approximation, i.e.
bounded stretch, for optimal parallel motion planning,
solving an open problem stated by Overmars [9] in
2006. See Theorem 1.

We extend our approach to establish constant
stretch for the generalization of colored case, for which
unlabeled disks are another special case; see Theorem 2.
For the continuous case of N disks and arbitrary den-
sity, we establish a lower bound of ΩpN1{4q and an
upper bound of Op

?
Nq on the achievable stretch, see

Theorem 3 and Theorem 4.

1.2 Related Work

Multi-object motion planning problems have received a
tremendous amount of attention from a wide spectrum
of areas. Due to limited space, we focus on algorithmic
work with a focus on geometry.

In the presence of obstacles, Aronov et al. [2] demon-
strate that for up to three robots, a path can be
constructed efficiently, if one exists. Schwartz and
Sharir [11] consider the case of several disk-shaped
objects between polygonal obstacles. They give al-
gorithms for deciding reachability of a given target
configuration. The algorithms run in time polynomial
in the complexity of the obstacles, but exponential in
the number of disks. Hopcroft et al. [5] prove that it
is PSPACE-complete to decide reachability of a given
target configuration, even when restricted to rectan-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

6

33rd European Workshop on Computational Geometry, 2017

gular objects in a rectangular region. Dumitrescu and
Jiang [4] consider minimizing the number of moves of
a set of disks into a target arrangement without obsta-
cles. They prove that the problem remains NP-hard
for congruent disks even when the motion is restricted
to sliding.

In both discrete and continuous variants of the prob-
lem, the objects can be labeled, colored or unlabeled.
In the colored case, the objects are partitioned into k

groups and each target position can only be covered by
an object with the right color. This case was recently
considered by Solovey and Halperin [12], who present
and evaluate a practical sampling-based algorithm. In
the unlabeled case, the objects are indistinguishable
and each target position can be covered by any ob-
ject. This scenario was first considered by Kloder and
Hutchinson [6], who presented a practical sampling-
based algorithm. Turpin et al. [15] prove that it is
possible to find a solution in polynomial time, if one
exists. This solution is optimal with respect to the
longest distance traveled by any one robot. However,
their results only hold for disk-shaped robots under
additional restrictive assumptions on the free space.
For unit disks and simple polygons, Adler et al. [1]
provide a polynomial-time algorithm under the addi-
tional assumption that the start and target positions
have some minimal distance from each other. Under
similar distance assumptions, Solovey et al. [14] pro-
vide a polynomial-time algorithm that produces a set
of paths that is no longer than OPT` 4m, where m is
the number of robots. However, they do not consider
the makespan, but only the total path length. On the
negative side, Solovey and Halperin [13] prove that the
unlabeled multiple-object motion planning problem
is PSPACE-hard, even when restricted to unit square
objects in a polygonal environment.
On grid graphs, approaches for the problem (see

Kunde [8] and Cheung and Lau [3]) typically assume
that at least a constant number of packets can be
held at any processor which means that a constant
number of robots may overlap in the context of our
problem setting. On the other hand, on grid graphs,
the problem resembles the generalization of the 15-
puzzle, for which Wagner [16] and Kornhauser et al. [7]
give an efficient algorithm that decides reachability of a
target configuration and provide both lower and upper
bounds on the number of moves required. Ratner and
Warmuth [10] prove finding a shortest solution for this
puzzle remains NP-hard.

2 Preliminaries

In the grid setting considered in Section 3, robots are
arranged in an nˆm-rectangle P which is dual to a grid
graph G “ pV,Eq. A configuration of P is an injective
mapping C : V Ñ t1, . . . , k,Ku, where t1, . . . , ku are
the labels of the k ď |P | robots to be moved, and

C does not have to be injective with respect to the
empty squares denoted by K. The inverse image of a
robot’s label ℓ is denoted by C´1pℓq. d is the maximum
distance between a robot’s start and target position.
A configuration C1 : V Ñ t1, . . . , k,Ku can be

transformed into another configuration C2 : V Ñ
t1, . . . , k,Ku, denoted C1 Ñ C2, if C

´1

1
pℓq “ C´1

2
pℓq

or pC´1

1
pℓq, C´1

2
pℓqq P E holds for all ℓ P t1, . . . , ku,

i.e., if each robot does not move or moves to one of the
four adjacent squares. Furthermore, two robots can-
not exchange their squares in one transformation step.
The number of steps in a sequence of transformations
is called its makespan. Given a start configuration Cs

and a target configuration Ct, the optimal makespan
is the minimum number of steps in a transformation
sequence starting with Cs and ending with Ct.
For the continuous setting of Section 4, we con-

sider N robots R :“ t1, . . . , Nu Ď N. A movement
of a robot r is a curve mr : r0, Trs Ñ R

2, such that
||m1

rptq1|2 ď 1 holds for all points in time t P r0, Trs.
Let mi : r0, Tis Ñ R

2 and mj : r0, Tjs Ñ R
2

be two movements; mi and mj are compatible if
the corresponding robots do not intersect at any
time.A movement of R is a set of compatible move-
ments tm1, . . . ,mNu, one for each robot. The (con-
tinuous) makespan of a movement tm1, . . . ,mNu is
defined as maxrPR Tr. A movement tm1, . . . ,mNu
realizes a pair of start and target configurations
S :“ pts1, . . . , sNu, tt1, . . . , tNuq if mrp0q “ sr and
mrpTrq “ tr hold for all r P R. We are searching for
a movement tm1, . . . ,mNu realizing S with minimal
makespan.

3 Labeled Grid Permutation

Let n ě m ě 2, n ě 3 and let P be a n ˆ m-rectangle.
By filling possibly empty squares with dummy robots,
we may assume k “ |P | “ nm.

Our main result is the following:

Theorem 1 There is an algorithm with runtime

Opdmnq that, given an arbitrary pair of start and

target configurations of an nˆm-rectangle with maxi-

mum distance d between any start and target position,

computes a schedule of makespan Opdq, i.e., an ap-

proximation algorithm with constant stretch.

On a high level, our algorithm first computes the
maximal Manhattan distance d between a robot’s start
and target position. Then we partition P into a set T
of pairwise disjoint rectangular tiles, where each tile
t P T is an n1 ˆ m1-rectangle for n1,m1

ď 24d. We
then use an algorithm based on flows to guarantee
that all robots are in their target tile, see Figure 1.
Once all robots are in the correct tile, we use a sorting
algorithm, rotate sort, for meshes simultaneously on
all tiles to move each robot to the correct position
within its target tile.

7

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

1

1

1 2

1

2 1

1

1

Figure 1: A tiling of an 26ˆ32-rectangle into four tiles
with d “ 1 and the corresponding dual graph. Robots
not in their target tile are illustrated by small dots.
Their target positions are depicted as white disks.

3.1 Outline of the Approximation Algorithm

We model the movements of robots between tiles as
a flow fT , using the weighted directed graph GT “
pT,ET , fT q, which is dual to the tiling T defined in the
previous section. In GT , we have an edge pv, wq P ET

if there is at least one robot that has to move from v

into w. Furthermore, we define the weight fT ppv, wqq
of an edge as the number of robots that move from
v to w. As P is fully occupied, fT is a cyclic flow,
i.e., a flow with no sources or sinks, in which flow
conservation has to hold at all vertices. We observe
that GT is a grid graph with additional diagonal edges
and thus has degree at most 8. This is due to the fact
that the side lengths of the tiles are larger than d as
enforced by construction of the tiling.

While the maximum edge value of fT may be Θpd2q,
only Opdq robots can possibly leave a tile within a
single transformation step. Therefore, we decompose
the flow fT of robots into a partition consisting of
Opdq subflows, where each individual robot’s motion is
modeled by exactly one subflow and each edge in the
subflows has value at most d. Each subflow is then re-
alized in a single transformation step. To facilitate the
decomposition into subflows, we first preprocess GT .
The algorithm consists of the following subroutines:

Step 1: Compute d, the tiling T and the flow GT , see
Figure 1 for the basic idea.

Step 2: Remove intersecting and bidirectional edges
from GT , see the Figure below for the basic idea.

v1

v2

w2

w1

1

3

v1

v2

w2

w1

1

1

2

1

3 2

Step 3: Compute a partition of GT into Opdq sub-
flows with edge flows upper bounded by d.

Step 4: Realize the Opdq subflows using Opdq trans-
formation steps, see Figures 2 and 3 for the basic
ideas.

5
4

2

2

3

3

42

2

3

1

3

3

2

Figure 2: Remove diagonal edges (top) and than apply
the main approach (bottom) for realizing a subflow.

Figure 3: Realizing a sequence of subflows by stacking
the rows of robots to be moved onto each other in the
order in which the subflows are realized. Each color
indicates a separate subflow.

Step 5: Simultaneously apply a sorting algorithm,
rotate sort, for meshes to all tiles, moving each
robot to its target position.

4 Variants on Labeling

A different version is the unlabeled variant, in which
all robots are the same. A generalization of both this
and the labeled version arises when robots belong to
one of k color classes, with robots from the same color
class being identical.

Theorem 2 There is an algorithm with running time

Opkpmnq1.5 logpmnq ` dmnq that computes, given

start and target images Is, It with maximum dis-

tance d between any start and target position, an

Op1q-approximation of the optimal makespan M and

a corresponding sequence of transformation steps.

The basic idea is to transform the given labeled
problem setting into an unlabeled problem setting by
solving a geometric bottleneck problem.

8

33rd European Workshop on Computational Geometry, 2017

5 Continuous Motion

The continuous geometric case considers N unit disks
that have to move into a target configuration in the
plane; the velocity of each robot is bounded by 1,
and we want to minimize the makespan. For dense
arrangements of disks, we can show that constant
stretch can not be achieved.

Theorem 3 There is an instance with optimal

makespan M P ΩpN1{4q “ ΩpdN1{4q where d P Θp1q,
see Figure 4.

Figure 4: The start and target configurations of our
lower-bound construction.

The basic idea of the proof of Theorem 3 is
the following. Let tm1, . . . ,mNu be an arbi-
trary movement with makespan M . We show
that there must be a point in time t P r0,M s
where the area of Convpm1ptq, . . . ,mN ptqq is lower-
bounded by cN ` ΩpN3{4q, where cN is the area
of Convpm1p0q, . . . ,mN p0qq. Assume M P o

`

N1{4
˘

and consider the area of Convpm1pt1q, . . . ,mN pt1qq
at some point t1 P r0,M s. This area is at most
cN ` Op

?
Nq ¨ o

`

N1{4
˘

which is a contradiction.
On the other hand, we can give a non-trivial but

non-constant upper bound on the possible stretch.

Theorem 4 There is an algorithm that computes

a movement plan with continuous makespan in

Opd `
?
Nq. If d P Ωp1q, this implies a Op

?
Nq-

approximation algorithm.

The approach of Theorem 4 applies an underlying
grid with mesh size 2

?
2. Our algorithm (1) moves

the robots to vertices of the grid, (2) applies our Op1q-
approximation for the discrete case, and (3) moves the
robots from the vertices of the grid to their targets.

References

[1] A. Adler, M. de Berg, D. Halperin, and K. Solovey.
Efficient multi-robot motion planning for unlabeled
discs in simple polygons. In Algorithmic Foundations
of Robotics XI, pages 1–17. Springer, 2015.

[2] B. Aronov, M. de Berg, A. F. van der Stappen,
P. Švestka, and J. Vleugels. Motion planning for
multiple robots. Discrete & Computational Geometry,
22(4):505–525, 1999.

[3] S. Cheung and F. C. M. Lau. Mesh permutation
routing with locality. Information Processing Letters,
43(2):101–105, 1992.

[4] A. Dumitrescu and M. Jiang. On reconfiguration of
disks in the plane and related problems. Computa-
tional Geometry: Theory and Applications, 46:191–
202, 2013.

[5] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On
the complexity of motion planning for multiple inde-
pendent objects; PSPACE-hardness of the warehouse-
man’s problem. Int. J. Robotics Research, 3(4):76–88,
1984.

[6] S. Kloder and S. Hutchinson. Path planning for
permutation-invariant multi-robot formations. In
IEEE Trans. Robotics, volume 22, pages 650–665.
IEEE, 2006.

[7] D. Kornhauser, G. Miller, and P. Spirakis. Coor-
dinating pebble motion on graphs, the diameter of
permutation groups, and applications. In Annual Sym-
posium on Foundations of Computer Science, 1984,
SFCS ’84, pages 241–250, 1984.

[8] M. Kunde. Routing and sorting on mesh-connected
arrays. In VLSI Algorithms and Architectures: 3rd
Aegean Workshop on Comp. (AWOC 88), pages 423–
433. Springer, 1988.

[9] M. Overmars. Contributed open problem. In
S. P. Fekete, R. Fleischer, R. Klein, and A. Lopez-
Ortiz, editors, Algorithmic Foundations of Pro-
grammable Matter, Dagstuhl Seminar 06421, 2006.
http://www.dagstuhl.de/de/programm/kalender/
semhp/?semnr=06421.

[10] D. Ratner and M. K. Warmuth. Finding a shortest
solution for the N ˆN extension of the 15-puzzle is in-
tractable. In Proc. AAAI Conf. Artificial Intelligence,
pages 168–172, 1986.

[11] J. T. Schwartz and M. Sharir. On the piano movers’
problem: III. Coordinating the motion of several in-
dependent bodies: the special case of circular bodies
moving amidst polygonal barriers. Int. J. Robotics
Research, 2(3):46–75, 1983.

[12] K. Solovey and D. Halperin. k-color multi-robot mo-
tion planning. Int. J. Robotics Research, 33(1):82–97,
2014.

[13] K. Solovey and D. Halperin. On the hardness of
unlabeled multi-robot motion planning. In Robotics:
Science and Systems (RSS), 2015.

[14] K. Solovey, J. Yu, O. Zamir, and D. Halperin. Motion
planning for unlabeled discs with optimality guaran-
tees. In Robotics: Science and Systems (RSS), 2015.

[15] M. Turpin, N. Michael, and V. Kumar. Trajectory
planning and assignment in multirobot systems. In
Algorithmic foundations of robotics X, pages 175–190.
Springer, 2013.

[16] R. M. Wilson. Graph puzzles, homotopy, and the
alternating group. Journal of Combinatorial Theory,
Series B, 16(1):86–96, 1974.

9

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Forming Tile Shapes with a Single Robot∗

Robert Gmyr† Irina Kostitsyna‡ Fabian Kuhn§ Christian Scheideler† Thim Strothmann †

1 Introduction

We investigate the problem of shape formation with
robots on tiles in which a collection of robots has to
rearrange a set of movable tiles to form a desired
shape. In this preliminary work we consider the case
of a single robot operating on an arbitrary number of
tiles and present first results towards the formation of
simple shapes. Our ultimate goal is to investigate how
multiple robots can cooperate to speed up the process
of shape formation.

Model. We consider a single robot acting on a finite
set of hexagonal tiles. The tiles are passive, i.e., they
do not perform any computation and cannot move on
their own. The tiles may form any structure so that
their centers coincide with nodes of a triangular grid
graph, as shown in Figure 1, and there is at most one
tile per node.

N

S

NE

SE

NW

SW

Figure 1: An example tile configuration. The top right
part of the figure shows the compass directions we use
to describe the movement of the robot.

The robot is active and may occupy any node of
the grid graph. It is a deterministic finite automaton

that operates in look-compute-move cycles. In the look

phase the robot can observe the node it occupies and
the six neighbors of that node. For each of these nodes
it can determine whether there is a tile placed at that
node. In the compute phase the robot can use this
information together with its state to determine its
next move and to change its state. In the move phase
the robot can take a tile from its current node, place a

∗This work was begun at the Dagstuhl Seminar on Algorith-
mic Foundations of Programmable Matter, July 3–8, 2016.

†University of Paderborn, Germany
‡Université libre de Bruxelles (ULB), Brussels, Belgium
§University of Freiburg, Germany

tile it is carrying at that node, or move to an adjacent
node while possibly carrying a tile with it. The robot
can carry at most one tile.

Note that even though we describe the algorithms
as if the robot knew its global orientation, we do not
actually require the robot to have a compass. For the
algorithms presented in this paper, it is enough for the
robot to be able to maintain its relative orientation
with respect to its original orientation.

Problem Statement. A configuration consists of the
positions (i.e., the occupied nodes) of the tiles and the
position and state of the robot. We define a config-
uration to be connected if the subgraph induced by
the nodes that are occupied by the tiles (including a
tile carried by the robot) is connected. In the triangle

formation problem we are given an arbitrary connected
configuration in an infinite grid graph with a robot
in the initial state and the goal is to rearrange the
tiles into an equilateral triangle with the help of the
robot while having a connected configuration at the
beginning of every look-compute-move cycle.

We aim at maintaining connectivity of the tile struc-
ture. Consider a scenario where a tile structure floats
in a liquid. Connected components of a disconnected
structure might float apart. Thus, we want our tech-
niques to be applicable to scenarios where it is im-
portant to maintain fixed tile positions (relative to
each other). To be applicable also to nano-systems,
we assume the robot just to have the computational
power of a finite automaton.

Note that the requirement for connectivity effec-
tively restricts the movement of the robot but there
are no restrictions concerning the grid graph since it
is assumed to be infinite in every direction. Also note
that if the number of tiles is not a triangular number,
one side of the triangle is only partially occupied by
tiles.

Related Work. There is a number of approaches to
shape formation in the literature that use agents that
fall somewhere in the spectrum between passive and
active. For example, tile-based self-assembly [8] uses
passive tiles that bond to each other to form shapes.
A variant of population protocols proposed in [7] uses
agents that are partly passive (i.e., they cannot con-
trol their movement) and partly active (i.e., upon
meeting another, they can perform a computation
and decide whether they want to form a bond). Fi-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

10

33rd European Workshop on Computational Geometry, 2017

nally, the amoebot model [4], the nubot model [11], and
the modular robotic model proposed in [6] use agents
that are completely active in that they can compute
and control their movement. All of these approaches
have in common that they consider a single type of
agent. In contrast, we investigate a model that uses a
combination of active and passive agents.

When arguing about a robot that traverses a tile
structure without moving tiles, our model essentially
reduces to an instance of the ubiquitous agents on

graphs model. The vast amount of research on this
model covers many interesting problems such as Gath-
ering and Rendezvous (e.g. [9]), Intruder Caption
and Graph Searching (e.g. [1, 5]), and Graph Explo-
ration (e.g. [2]). Some approaches are also known that
allow agents to move tiles (e.g. [3, 10]) but these focus
on computational complexity issues or agents that are
more powerful than finite automata.

2 A Naive Approach

In a naive approach to shape formation, the robot
could iteratively search for a tile that can be removed
without disconnecting the tile structure and then move
that tile to some position such that the shape under
construction is extended. While there always is a tile
that can be safely removed, the following theorem
shows that, in general, the robot cannot find it, which
makes this naive approach infeasible.

Theorem 1 The robot cannot find a tile that can be

removed without disconnecting the tile structure.

Proof. Suppose that there is an algorithm that allows
the robot to find such a tile. Let s be the number of
states used by the algorithm. Consider the execution
of the algorithm on a hollow hexagon of side length ℓ

where the robot is initially placed on a vertex of the
hexagon as depicted in the left part of Figure 2. We
subdivide the execution into phases where we define a
new phase to start whenever the robot visits a vertex of
the hexagon. Note that the algorithm runs for at most
6s phases before the robot chooses the tile because if
it would run for more phases the robot would visit the
same vertex twice in the same state and therefore the
algorithm would enter an infinite loop.

The way the robot traverses the hexagon depends on
the side length ℓ. We define the traversal sequence asso-
ciated with ℓ as ((v1, q1), (v2, q2), . . . , (vk, qk)) where
k is the number of phases the algorithm takes until
the tile is chosen, vi is the vertex occupied by the
robot at the beginning of phase i, and qi is the state
of the robot at the beginning of phase i. Since the
algorithm takes at most 6s phases to choose the tile
(independently of ℓ), there are at most (6s)6s distinct
traversal sequences. Hence, there is a finite number
of traversal sequences and an infinite number of side

Figure 2: Left: The hollow hexagon of side length
ℓ = 4. Right: An example of the tile structure S. The
red mark represents the initial position of the robot.

lengths which implies, according to the pigeonhole
principle, that there must be an infinite set of side
lengths L that have the same traversal sequence.

Based on this observation, we now define a tile
structure S for which the algorithm fails to find a
tile that can be safely removed. This tile structure
essentially consists of a spiral as depicted in the right
part of Figure 2. We start at an arbitrary node of
the triangular grid graph and construct an outward
spiral consisting of 24s line segments. The first line
segment of the spiral goes north and each following
line segment takes a 60◦ clockwise turn. The lengths
of the line segments are chosen from L in such a way
that the segments stay separated. This is possible
since L is an infinite set and therefore we can always
choose sufficiently large segment lengths. We initially
place the robot at the end of the 12s-th line segment.

It remains to show that the algorithm fails to find a
tile that can be safely removed when being executed
on S. As above, we subdivide the execution of the
algorithm into phases where we define a new phase
to start whenever the robot visits a vertex of the
spiral (i.e., a tile where two line segments meet). It
is easy to show using induction on the phases that
the robot traverses S in a way that corresponds to
the traversal sequence associated with the side lengths
in L. Consequently, the robot chooses a tile that is
neither the start tile nor the end tile of the spiral. Since
these two tiles are the only tiles that can be safely
removed from S, the algorithm fails. This contradicts
the assumption that the algorithm works correctly and
therefore shows that there is no such algorithm. �

3 Taking a Detour via a Line

We now present an approach that avoids the pitfall of
the naive approach by first rearranging the tiles into a
straight line. Whenever a tile that cannot be removed
without disconnecting the structure is picked up by
the robot during this process, the tile is placed at a
neighboring node in a way that preserves connectivity.

11

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Algorithm 1 Algorithm to form a straight line from
any tile configuration by a single robot.

1: procedure MakeLine

2: The robot moves S until there is no tile to step on.
3: do

4: Set flag is−line to TRUE.
5: Tile searching phase: at every step, until the

robot can no longer move,
6: – if there is a neighboring tile at NW, SW,

NE, or SE, set the flag is−line to FALSE;
7: – the robot repeatedly moves NW, SW or N

(in this order of preference).
8: Tile moving phase: if is−line is FALSE, the

robot picks up the tile at the current position,
and moves it to the bottom of the
adjacent column, starting at position SE.

9: while is−line is FALSE

Figure 3: First several steps of the algorithm. The
green tiles are moved to the positions marked by
dashed frames.

3.1 Line Formation

We consider the problem of rearranging the tiles into
a straight line. We will measure the efficiency of our
algorithm in the number of steps (i.e., move actions)
that the robot has to perform.

We present an algorithm for one robot to rearrange
a tile configuration into a straight line in O(n2) steps.
Throughout the algorithm we use the labels N, NE,
SE, S, SW and NW (corresponding to cardinal direc-
tions) to refer to the six neighbors of the robot (see
Figure 1). The pseudocode is given in Algorithm 1.
At the beginning of every iteration of the algorithm,
the robot is located at a locally most southern tile,
i.e., there is no tile in the S direction. During one
iteration of the algorithm, the robot finds a locally
most north-western tile and moves it to the bottom
of the column of tiles to the right from it. Figure 3
illustrates the first several iterations of the algorithm.
To check whether the desired tile configuration has
been achieved, the robot inspects neighboring tiles at
each step in the search phase.

Theorem 2 Following the procedure MakeLine, a

single robot can rearrange any tile configuration into

a straight line in O(n2) steps.

Proof. The correctness of the algorithm follows from
the following observations: (i) the tile searching phase
terminates in a locally most north-western tile, (ii) if
there is more than one column in the tile configuration,
the tile searching phase does not terminate in the top-
most tile of the rightmost column, (iii) the tile moving
phase does not disconnect the tile configuration and
(iv) the algorithm terminates when a line is formed.

The first observation is obvious by the definition of
the first phase of the algorithm. The second observa-
tion follows from the fact that the preference is given
to the NW and SW directions when searching. If the
target tile configuration has not yet been achieved,
and the robot stops at some locally north-western tile,
there must be tiles to the right from that position.

For the third observation, suppose that the tile mov-
ing phase disconnects the tile configuration. Let t be
the locally most north-western tile being moved. The
tile configuration can get disconnected after remov-
ing t only if there are neighboring tiles to NE and S
of t, but no SE neighboring tile, since otherwise the
neighboring tiles will still be locally connected after
removing t. But in that case the tile t will be placed in
the empty position at the SE neighbor and reconnect
the neighboring NE and S tiles. Therefore, during the
second phase of the algorithm the tile configuration
does not get disconnected.

To prove the last claim, assign 2-dimensional coor-
dinates to the centers of tiles. Let the x coordinate
grow from left to right, and the y coordinate grow
from top to bottom. Let 0 be the x-coordinate of a
rightmost tile, thus the x-coordinate of any tile is not
greater than 0. Consider the sum of the x-coordinates
of all tiles S =

∑n

1 xt. Initially, the value of S is nega-
tive, and it always increases by 1 after a tile is moved.
The tile configuration is a straight line at x = 0, i.e.,
S = 0. No tiles will be moved to a position with an
x-coordinate larger than 0. Therefore, the algorithm
will terminate, and the terminal tile configuration will
be a vertical straight line.

Finally, we show that the algorithm takes O(n2)
steps. The preparation steps of the algorithm (line 2
of the Algorithm) take O(n) steps. Consider the tile
moving phase (line 8). Let the initial coordinates of
some tile t be (xt,0, yt,0), and its final coordinates be
(0, yt,1). Each time the tile was moved, its coordinates
were changed from some (xt, yt) to (xt +1, yt + 1

2
+ ct),

where ct is the number of tiles in the column, at the
bottom of which the tile t was placed. The total
number of steps the robot performed to move the tile
from (xt, yt) to (xt +1, yt + 1

2
+ ct) is 1+ ct. Therefore,

the total number of steps the robot performed to move
the tile from its initial position to its final placement,

12

33rd European Workshop on Computational Geometry, 2017

is 0−xt,0+yt,1−yt,0− 1
2
(0−xt,0) = − xt,0

2
+(yt,1−yt,0).

And the total number of steps the robot performed to

move all the tiles is smove =
∑

t

(

− xt,0

2
+(yt,1−yt,0)

)

≤
∑

t
3
2
n = O(n2) . Now, consider the tile searching

phase (lines 5–7). Whereas the sum of the coordinates
of the robot was increasing at every step in the tile
moving phase, in the tile searching phase, the sum of
the coordinates of the robot is decreasing at every step.
More specifically, at each step of the tile moving phase,
the sum of the coordinates of the robot increases by
at most 3

2
, and at every step of the tile searching

phase, the sum of the coordinates decreases by at
least 1

2
. Thus, the total number of steps in the tile

searching phase can be bounded in the following way:
ssearch < 3 × smove + (x0 + y0) − mini(xi + yi) , where
(x0, y0) is the initial coordinates of the robot, and the
value min(xi +yi) is taken over all possible placements
of all tiles. As the initial tile configuration is connected,
(x0 + y0) − mini(xi + yi) = O(n), and ssearch = O(n2).
Therefore, the total number of steps is O(n2). �

Note that it is not hard to see that Ω(n2) steps are
necessary to rearrange an arbitrary initial tile config-
uration into a straight line. If starting from a initial
configuration with diameter O(

√
n), a constant frac-

tion of the tiles have to be moved by a distance linear
in n and thus, in total, Ω(n2) move steps are necessary.

3.2 Triangle Formation

Once the robot has built a line, it can construct a
triangle as follows: the robot picks up tiles from one
end of the line and assembles them into a triangle at
the other end following a zig-zag pattern, see Figure 4.
It fills each layer of the triangle with tiles until it

Figure 4: Triangle formation starting from a line

recognizes that the current position does not have a
tile in the NW direction (when moving up), or that
the current position does not have a tile in the SW
direction (when moving down). In both cases, it starts
a new layer of the triangle arrangement.

Theorem 3 A single robot can rearrange any tile

configuration into a triangle in O(n2) steps.

It is not hard to see, using similar arguments as in the
previous section, that this is asymptotically optimal.

4 Future Work

There are many directions for further research on shape
formation with robots on tiles. First, we would be very
interested to see how multiple robots can cooperate to
speed up shape formation. Another obvious direction
would be the formation of more complex shapes. Fi-
nally, it might be interesting to study an extension of
the model in which each tile can have a state that can
be read and modified by the robot.

Acknowledgments. This work was partially sup-
ported by DFG grant SCHE 1592/3-1. Irina Kostit-
syna is supported by F.R.S.-FNRS and Fabian Kuhn
is supported by ERC Grant No. 336495 (ACDC).

References

[1] A. Bonato and R. J. Nowakowski. The Game of Cops
and Robbers on Graphs. AMS, 2011.

[2] S. Das. Mobile agents in distributed computing: Net-
work exploration. Bulletin of the European Association
for Theoretical Computer Science, 109:54–69, 2013.

[3] E. Demaine, M. Demaine, M. Hoffmann, and
J. O’Rourke. Pushing blocks is hard. Computational
Geometry, 26(1):21–36, 2003.

[4] Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Schei-
deler, and T. Strothmann. Universal shape formation
for programmable matter. In 28th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), pages 289–299, 2016.

[5] F. V. Fomin and D. M. Thilikos. An annotated bibli-
ography on guaranteed graph searching. Theoretical
Computer Science, 399(3):236–245, 2008.

[6] F. Hurtado, E. Molina, S. Ramaswami, and V. Sac-
ristán. Distributed reconfiguraiton of 2D lattice-
based modular robotic systems. Autonomous Robots,
38(4):383–413, 2015.

[7] O. Michail and P. G. Spirakis. Terminating population
protocols via some minimal global knowledge assump-
tions. Journal of Parallel and Distributed Computing,
81-82:1–10, 2015.

[8] M. J. Patitz. An introduction to tile-based self-
assembly and a survey of recent results. Natural
Computing, 13(2):195–224, 2014.

[9] A. Pelc. Deterministic rendezvous in networks: A
comprehensive survey. Networks, 59(3):331–347, 2012.

[10] Y. Terada and S. Murata. Automatic modular assem-
bly system and its distributed control. International
Journal of Robotics Research, 27(3–4):445–462, 2008.

[11] D. Woods, H. Chen, S. Goodfriend, N. Dabby, E. Win-
free, and P. Yin. Active self-assembly of algorithmic
shapes and patterns in polylogarithmic time. In In-
novations in Theoretical Computer Science (ITCS),
2013.

13

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Self-approaching paths in simple polygons

Prosenjit Bose∗ Irina Kostitsyna† Stefan Langerman†

1 Introduction

The problem of finding an optimal obstacle-avoiding
path in a polygonal domain is one of the fundamen-
tal problems of computational geometry. Often a
desired path has to conform to certain constraints.
For example, a path may be required to be mono-
tone [3], curvature-constrained [9], have no more than
k links [16], etc. A natural requirement to consider is
that a point moving along a desired path must always
be getting closer to its destination. Such radially mono-

tone paths appear, for example, in greedy geographic
routing in network setting [10] and beacon routing in
geometric setting [5]. A strengthening of a radially
monotone path is a self-approaching path [12, 13, 1]: a
point moving along a self-approaching path is always
getting closer not only to its destination but also to all
the points on the path ahead of it. There are several
reasons to prefer self-approaching paths over radially
monotone paths. First, unlike for a radially mono-
tone path, any subpath of a self-approaching path is
self-approaching. Therefore, if the destination is not
known in advance and the desired path is required to
be radially monotone, one will have to resort to using
self-approaching paths. Second, the length of a radially
monotone path can be arbitrarily large in comparison
with the Euclidean distance between the source and
the destination points, whereas self-approaching paths
have a bounded detour.

In this paper we study self-approaching paths that
are contained in a simple polygon. We consider the
following questions:

• Given two points s and t inside a simple polygon
P , does there exist a self-approaching s-t path
inside P?

• Find the shortest self-approaching s-t path.
• Given a polygon P , test if it self-approaching, i.e.,

that there exists a self-approaching path between
any two points in P .

Related work. Self-approaching curves were first in-
troduced in the context of online searching for a kernel
of a polygon [12], and further studied in [13]. An
equivalent definition of a self-approaching path is that
for every point on the path there has to be a 90◦ an-

∗Carleton University, Ottawa, Canada,
jit@scs.carleton.ca

†Université libre de Bruxelles (ULB), Brussels, Belgium,
{irina.kostitsyna,stefan.langerman}@ulb.ac.be

gle containing the rest of the path. Aichholzer et al.
developed a generalization of self-approaching paths
for an arbitrarily fixed angle α instead of 90◦. A rel-
evant type of paths are increasing chords paths [18],
which are self-approaching in both directions. The nice
properties of self-approaching and increasing chords
paths and their potential to be applied in network
routing were recognized by the graph drawing commu-
nity. As a result, a number of papers appeared in the
recent years on self-approaching and increasing chords
graphs [2, 8, 17].

This paper is organized in the following way. We in-
troduce a few definitions and concepts in Section 2. In
Section 3, we characterize a shortest self-approaching
path between two points in a simple polygon. In
Section 4 we present an algorithm to construct the
shortest self-approaching path between two points if it
exists, or to report that it does not exist, by assuming
a model of computation in which we can solve cer-
tain transcendental equations. Finally, in Section 5 we
present a linear-time algorithm to decide if a polygon is
self-approaching, that is, if there is a self-approaching
path between any two point of the polygon. Refer to
the full version of this paper for the omitted proofs.

2 Preliminaries

A self-approaching path π in a continuous domain is a
piece-wise smooth1 oriented curve such that for any
three points a, b, and c that appear on the curve in this
order: |ac| ≥ |bc|, where |ac| and |bc| are Euclidean
distances.

Icking et al. showed the following normal prop-

erty of a self-approaching path, that we will be using
extensively in this paper,

Lemma 1 (the normal property [13]) An s-t
path π is self-approaching if and only if any normal
to π at any point a ∈ π does not cross π(a, t).

A normal h to a directed curve π at some point
a ∈ π defines two half-planes. Let the positive half-

plane h+ be the open half-plane which is congruent
with the direction of π at point a. We can rephrase
the normal property in the following way.

1Some previous works do not require the curve to be smooth.
However in this paper we will be mostly considering shortest
self-approaching paths, and thus the requirement on smoothness
is justified.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

14

33rd European Workshop on Computational Geometry, 2017

Lemma 2 (the half-plane property) An s-t path
π is self-approaching if and only if, for any normal
h to π at any point a ∈ π, the subpath π(a, t) lies
completely in the positive half-plane h+.

A bend of a self-approaching path π is a point of
discontinuity of the first derivative of π.

A reachable region R(s) ⊆ P , for a given point s

in a polygon P , is a set of all points t ∈ P for which
there exists a self-approaching s-t path π ∈ P .

A reverse-reachable region R−1(t) ⊆ P , for a given
point t in a polygon P , is a set of all points s ∈ P for
which there exists a self-approaching s-t path π ∈ P .

2.1 Involutes

In the following sections we will show that shortest self-
approaching paths consist of straight-line segments,
circular arcs, and involutes of circular arcs of some
order. In the full version of this paper we introduce in-
volute curves, and show the derivation of the following
formula for an involute of a circle of order k:

Ik(θ) =

⌊ k

2
⌋

∑

0

(−1)ia2i(θ)

(

cos θ
sin θ

)

−

⌈ k

2
⌉

∑

1

(−1)i−1a2i−1(θ)

(

− sin θ
cos θ

)

,

where ai(θ) = r0
θi

i!
+ c1

θi−1

(i− 1)!
+ · · ·+ ci.

Given a point pi(ri,ϕi) for each involute Ii of order
i (for all 1 ≤ i ≤ k), the constants ci can be found
from the following equations:

ri cos(θi − ϕi) = a0(θi)− a2(θi) + . . . ,

ri sin(θi − ϕi) = a1(θi)− a3(θi) + . . . ,
(1)

where θi is the parameter at which involute Ii passes
through pi. The length of the tangent segment from
the point pk to the involute Ik−1 is |ak(θk)|.

3 Properties of a shortest self-approaching path

Next, we prove that a shortest self-approaching path
is unique, and that the shortest self-approaching path
consists of straight segments, circular arcs and invo-
lutes to the later pieces of the path.

We begin with proving several lemmas:

Lemma 3 For any two points p1 and p2 (in this order)
on a self-approaching s-t path π in R

2, the perpen-
dicular bisector of straight-line segment p1p2 does not
intersect sub-path π(p2, t).

Lemma 4 Bends of a shortest self-approaching path
in a simple polygon P form a subset of vertices of P .

Lemma 5 A shortest self-approaching s-t path in a
simple polygon P cannot have an inflection point (or
an inflection segment) that is interior to P .

Define the inflection points of a directed geodesic
path γ from s to t as the first points of the inflection
segments of γ, i.e., the set of last points in the maximal
subchains of γ with the same direction of turn.

Lemma 6 A shortest self-approaching path from s

to t in a simple polygon P contains all the inflection
points of the geodesic path from s to t.

Consider two self-approaching paths π1 and π2 from
s to t in a simple polygon P that do not have other
points in common. Let γ be a geodesic path from s to
t inside the area bounded by π1 and π2.

Lemma 7 Geodesic path γ between two self-
approaching paths π1 and π2 is also self-approaching.

As a corollary to this lemma, for two self-
approaching paths from s to t, a path, composed of
geodesics in the areas bounded by subpaths of the
two paths between each pair of consecutive intersec-
tion points, is also self-approaching. In other words,
let s = p0, p1, . . . , pk, pk+1 = t be all the intersection
points of π1 and π2 in the order they appear on π1

and π2. Observe, that the intersection points must
appear in the same order along the both paths, oth-
erwise there would exist three points on one of these
paths for which the inequality in the definition of a
self-approaching path would not be satisfied. Let γi
be the geodesic from pi to pi+1 in the area between
two subpaths π1(pi, pi+1) and π2(pi, pi+1). Then,

Lemma 8 The concatenation of the geodesics γ =
γ0 ⊕ γ1 ⊕ · · ·⊕ γk is self-approaching.

Lemma 9 For a given polygon P and points s and t

in it, the convex hull of the shortest self-approaching
path π∗ is contained in the convex hull of any self-
approaching s-t path π. That is CH (π∗) ⊆ CH (π).

The next theorem is a direct corollary of Lemma 8.

Theorem 10 A shortest self-approaching s-t path is
unique.

Fig. 1 shows an example of a shortest self-approaching
path inside a polygon. In the next two theorems and
lemma we give its characterization.

Theorem 11 The shortest self-approaching s-t path
in a simple polygon consists of straight segments, cir-
cular arcs and circle involutes of some order.

A path π is called geodesically convex when the
shortest path connecting any two points of π lies com-
pletely on one (and the same side) of π.

15

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

s

t

Figure 1: The shortest self-approaching path from s

to t consists of line segments (green), circular arcs
(purple), and involutes of a circle of some order (1st
order in orange, 2nd—in blue, and 3rd—in brown).

Lemma 12 The shortest self-approaching s-t path in
a simple polygon P consists of geodesically convex
paths between inflection points of the s-t geodesic.

Theorem 13 The shortest self-approaching s-t path
in a simple polygon P consists of O(n2) segments. A
shortest self-approaching s-t path may require Ω(n2)
segments.

4 Existence of a self-approaching path

In this section we consider the question of testing
whether, for given points s and t in a polygon P , they
can be connected with a self-approaching path. In The-
orem 11 we proved that a shortest self approaching
path can consist of involutes of a circle of a high order,
and in Section 2 we showed that such an involute is de-
fined by a system of transcendental equations. In [15]
Laczkovich proved a strengthening of Richardson’s
theorem, that states that the statement ∃x : f(x) = 0
is undecidable, where f(x) is an expression generated
by the rational numbers, the variable x, the operations
of addition, multiplication, and composition, and the
sine function. The Equations (1) that we need to solve
to obtain formulas for the involutes are a special case
of the class of expressions in Laczkovich’s theorem.
Nevertheless, it strongly suggests that an involute of
a circle of order higher than one cannot be computed.

Next, we show an algorithm to test whether there
exists a self-approaching path connecting two points s

and t, and if so, to compute the shortest path, under
the assumption that we can solve Equations (1). Subse-
quently, it may be possible to release this assumption,
and modify the algorithm to build an approximation
to the shortest path.

4.1 Shortest path algorithm

The proof of Theorem 11 is constructive. Let us as-
sume that we can solve equations of the form as Equa-
tions (1) for an involute of order k in time O(f(k)),
and evaluate the formula of the involute of order k

for a given parameter θ in time O(g(k)). Then, we
can decide if two points s and t can be connected
by a self-approaching path, and we can construct the
shortest path between the points. The outline of the
algorithm:

Starting at t, move backwards along a geodesic s-t
path γ. Maintain the convex hull CH of the final
part of the shortest self-approaching path π∗ to the
destination t built so far. At every bend point pℓ:
(a) Calculate the appropriate branch of an involute

ICH of CH . If ICH intersects the opposite bound-
ary of the polygon, thus, cutting off s from t,
report that a self-approaching path from s to t

does not exist and terminate the algorithm.
(b) Otherwise, find a geodesic path γℓ from the pre-

ceding inflection point of γ to pℓ in P\ICH , and
add its last segment qpℓ as a prefix to π∗.

(c) Update CH . Repeat for the new bend point q,
until s is reached. Report the found path π∗.

To obtain an algorithm with an optimal running
time, there are a few considerations to take into ac-
count when constructing the shortest path. First,
instead of unnecessarily calculating the whole involute
ICH until the intersection point with the boundary of
P , and then discarding the part of it under the tangent
line from q, its segments can be calculated one by one
as needed until the tangent point. Second, to opti-
mally test if ICH intersects the opposite boundary of
the polygon, we can maintain a shortest path tree that
will allow us to build funnels from the opposite sides
of the polygon boundary. Third, it is not necessary to
construct the whole geodesic γℓ to be able to compute
its last segment qpℓ. Instead, we can move backwards
along γ, vertex by vertex, until we reach a point from
which a tangent to ICH can be computed (possibly
with adding new points along it).

Theorem 14 The shortest self-approaching s-t path,
if it exists, can be constructed in O(k+ n log k√

k
(g(

√
k)+

f(
√
k))) time, where k is the size of the output.

5 Self-approaching polygon

A polygon is self-approaching, if for any two points
there exists a self-approaching path connecting them.

Theorem 15 Polygon P is self-approaching if and
only if for any disk D centered at any point p ∈ P , the
intersection D ∩ P has one connected component.

Corollary 16 Any self-approaching polygon is also
increasing-chord.

16

33rd European Workshop on Computational Geometry, 2017

Next, we present an algorithm to test whether a
given simple polygon P is self-approaching. From the
proof of Theorem 15 it follows that the polygon P is
self-approaching iff, for all edges e on the boundary
of P directed in the counter-clockwise order, an area
bounded between the two normals to e at its two end
points in the right half-plane of e is free of ∂P . We call
this area the half-strip of e. We will use this property
to test efficiently if the polygon is self-approaching.

Let P be given as a set of points p0, p1, . . . , pn−1

in the counter-clockwise order around the boundary.
We will start at p0, move along the boundary in the
counter-clockwise order and maintain the union of
all the half-strips of the edges visited so far. More
precisely, we will maintain the left and the right sides,
ρl and ρr, of the hour-glass shape that is the union of
the half-strips; ρl and ρr are convex polygonal chains.
Store the segments of ρl and ρr as two lists, the last
segments in the lists are infinite rays.

At every iteration of the algorithm, perform the
following steps. Let pi be the current point of the
polygon P . The chain ρr contains the right side of the
union of all the half-strips up to point pi−1. Consider
the next boundary segment pi−1pi, and a perpendicu-
lar ray hi at the point pi. To update the chain ρr, do
the following: For each segment cjcj+1 on ρr,

• if pi−1pi intersects cjcj+1, then report that P is
not self-approaching and terminate;

• if hi intersects cjcj+1, calculate the intersection
point c′, and replace the first elements of the list
ρr up to cjcj+1 with two segments, pic′ and c′cj+1;
repeat for the next point pi+1.

Traverse the boundary of polygon P twice in the
counter-clockwise order, and then repeat the same algo-
rithm traversing the boundary of P twice in the clock-
wise order. If none of the segments pi−1pi intersected
a segment of ρr, report that P is self-approaching.

Theorem 17 Given a simple polygon P with n ver-
tices, the presented algorithm tests in O(n) time if it
is self-approaching.

Acknowledgements. This work was begun at the
CMO-BIRS Workshop on Searching and Routing in
Discrete and Continuous Domains, October 11–16,
2015. I.K. was supported in part by the NWO under
project no. 612.001.106, and by F.R.S.-FNRS.

References

[1] O. Aichholzer et al. Generalized self-approaching
curves. Discrete Applied Mathematics, 109(1-2), 2001.

[2] S. Alamdari et al. Self-approaching Graphs. In 20th
International Symposium on Graph Drawing (GD),
2012.

[3] E. M. Arkin, R. Connelly, and J. S. B. Mitchell. On
monotone paths among obstacles with applications

to planning assemblies. In 5th Annual Symposium on
Computational Geometry (SCG), 1989.

[4] M. A. Bender and M. Farach-Colton. The LCA Prob-
lem Revisited. In Latin American Symposium on
Theoretical Informatics, 2000.

[5] M. Biro et al. Beacon-Based Algorithms for Geometric
Routing. In 13th Algorithms and Data Structures
Symposium (WADS). 2013.

[6] B. Chazelle and D. P. Dobkin. Intersection of convex
objects in two and three dimensions. Journal of the
ACM, 34(1), 1987.

[7] B. Chazelle et al. Ray shooting in polygons using
geodesic triangulations. Algorithmica, 12(1), 1994.

[8] H. Dehkordi, F. Frati, and J. Gudmundsson.
Increasing-Chord Graphs On Point Sets. In 22nd
International Symposium on Graph Drawing. 2014.

[9] L. E. Dubins. On Curves of Minimal Length with
a Constraint on Average Curvature, and with Pre-
scribed Initial and Terminal Positions and Tangents.
American Journal of Mathematics, 79(3), 1957.

[10] J. Gao and L. Guibas. Geometric algorithms for sensor
networks. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 370(1958), 2012.

[11] L. Guibas et al. Linear-time algorithms for visibility
and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1-4), 1987.

[12] C. Icking and R. Klein. Searching for the kernel of
a polygon—a competitive strategy. In 11th Annual
Symposium on Computational Geometry (SCG), 1995.

[13] C. Icking, R. Klein, and E. Langetepe. Self-
approaching curves. Mathematical Proc. of the Cam-
bridge Philosophical Society, 125(3), 1999.

[14] D. Kirkpatrick and J. Snoeyink. Computing common
tangents without a separating line. In 4th Interna-
tional Workshop on Algorithms and Data Structures
(WADS), 1995.

[15] M. Laczkovich. The removal of π from some undecid-
able problems involving elementary functions. Proc.
of the American Mathematical Society, 131(07), 2003.

[16] J. S. B. Mitchell, C. Piatko, and E. M. Arkin. Com-
puting a shortest k-link path in a polygon. In 33rd
Annual Symposium on Foundations of Computer Sci-
ence. IEEE, 1992.

[17] M. Nöllenburg, R. Prutkin, and I. Rutter. On
self-approaching and increasing-chord drawings of 3-
connected planar graphs. Journal of Computational
Geometry, 7(1), 2016.

[18] G. Rote. Curves with increasing chords. Mathematical
Proc. of the Cambridge Philosophical Society, 115(01),
1994.

17

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Routing in Simple Polygons

Matias Korman∗ Wolfgang Mulzer† André van Renssen‡,§ Marcel Roeloffzen‡,§ Paul Seiferth†

Yannik Stein† Birgit Vogtenhuber¶ Max Willert†

Abstract

A routing scheme R in a network G = (V,E) is an
algorithm that allows to send messages from one node
to another in the network. We are first allowed a pre-
processing phase in which we assign a unique label to
each node p ∈ V and a routing table with additional
information. After this preprocessing, the routing al-
gorithm itself must be local (i.e., we can only use the
information from the label of the target and the rout-
ing table of the node that we are currently at).
We present a routing scheme for routing in simple

polygons: for any ε > 0 the routing scheme provides
a stretch of 1+ ε, labels have O(log n) bits, the corre-
sponding routing tables are of size O(ε−1 log n), and
the preprocessing time is O(n2 + ε−1n). This im-
proves the best known strategies for general graphs
by Roditty and Tov (Distributed Computing 2016).

1 Introduction

Routing is the act of sending a message from a node
to its desired target. We would like to design a rout-
ing protocol that, for any network, can send messages
from any node to any target. Although the problem is
easy in small networks, it provides a significant chal-
lenge for large networks [1].
There are two key features of a routing scheme.

First of all, it must be local: while the message is at a
particular node, it can only use information stored in
the memory of that node. In order to save storage, we
would like that the amount of information that each
node stores is relatively small. Second, the routing
scheme should be efficient, meaning that the message
should not travel much further than necessary.
A straight-forward solution is to explicitly store the

whole network in each node. Routing can then be
solved with a single source shortest path query, send-
ing the message one step forward, and repeating the
process until we eventually reach the final target. This

∗Tohoku University, Sendai, Japan. Partially supported
by the ELC project (MEXT KAKENHI No. 12H00855 and
15H02665).

†Department of Computer Science, Freie Universität Berlin,
Germany

‡National Institute of Informatics (NII), Tokyo, Japan.
§JST, ERATO, Kawarabayashi Large Graph Project.
¶Institute for Software Technology, Graz University of Tech-

nology, Graz, Austria.

is clearly local and efficient, but it requires a large
amount of storage. Thus, the aim is to obtain some
trade-off between the amount of information stored at
each node, and the ratio between the distance trav-
elled by messages and the shortest possible path for
them in the network.
For general graphs, this problem has been well-

studied since the 1980’s [5, 6]. The most recent result
is from Roditty and Tov [7] who developed a rout-
ing scheme for general graphs G with n nodes and
m edges. The scheme has poly-logarithmic header
size and routes a message from p to q on a path with
length O(k∆ + m1/k) for any integer k > 2, where
∆ is the distance of the shortest path between p and
q in G. Their routing tables use mnO(1/

√
log n) total

space, which is asymptotically optimal [5].
In this paper we provide a better algorithm, albeit

for a specialized graph class: the visibility graphs of
polygons. Given a simple polygon P of n vertices, we
connect two vertices by an edge if and only if they can
see each other (i.e., the segment connecting them is
contained in P). Although many shortest path prob-
lems in polygons have been considered [2, 4], there are
no routing schemes for visibility graphs of polygons.
In this paper we present the first routing scheme for
this graph class. For n vertices and any ε > 0, the
routing scheme needs at most O(ε−1 log n) bits for the
routing table of each vertex and produces a routing
path with stretch 1 + ε. Therefore, for this class, our
results provide a more efficient routing scheme than
the one of Roditty and Tov [7].

2 Preliminaries

We model a network with an undirected, connected

and simple graph G = (V,E). We assume it is embed-
ded in the Euclidean plane: a node p = (px, py) ∈ V
corresponds to a point and an edge {p, q} ∈ E is rep-
resented by the segment pq. We denote by |pq| the
Euclidean distance between the points p and q and
call |pq| the weight of the corresponding edge. The
length of a shortest path in G connecting two points
p, q ∈ V is denoted by d(p, q). From now on, we as-
sume that G is the visibility graph of the n vertices of
P (and thus, d encodes the geodesic distance in P).
There are several definitions for routing schemes

for a network [3, 7]. In the following we introduce a
restricted standard model that is comparable to the

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

18

33rd European Workshop on Computational Geometry, 2017

other definitions. Each node in G has a unique tag,
called label, that identifies the node in the network, as
well as some additional information stored in a routing
table. Starting at any node p ∈ V , the routing scheme
uses only the information of p’s routing table (and the
target’s label) to compute a node adjacent to p where
the message is forwarded to. This process is repeated
until it reaches the target.

Definition 2.1 A routing scheme R = (l, ρ, f) of a

graph G consists of the following elements: a label

l(p) ∈ {0, 1}∗ and a routing table ρ(p) ∈ {0, 1}∗ for

each node p ∈ V , as well as a routing function f : V ×
{0, 1}∗ → V .

The transition function f models the behaviour of
the routing scheme. For any two nodes p, q ∈ V ,
consider the sequence of points given by p0 = p and
pi = f(pi−1, l(q)) for i ≥ 1 (i.e., the nodes visited in
the routing scheme from p to q). We say that a routing
scheme R is correct if for any p, q ∈ V there exists a
k = k(p, q) ≥ 0 such that pk = q and pi �= q for i < k.
We call p0, p1, . . . , pk the routing path between p and
q. The routing distance between p and q is defined as
dρ(p, q) =

∑k
i=1 |pi−1pi|.

The quality of the routing scheme is measured by
several parameters:

• label size L(n) = max|V |=n maxp∈V |l(p)|,

• table size T (n) = max|V |=n maxp∈V |ρ(p)|,

• stretch ζ(n) = max|V |=n maxp �=q∈V
dρ(p,q)
d(p,q) ,

• and preprocessing time (i.e., time spent in com-
puting the labels and routing tables).

Let P be a polygon with n vertices (which need not be
in general position). Two points p, q ∈ P can see each

other if and only if pq ⊂ P . Note that p and q can
see each other even if the line segment pq touches the
boundary of P . The visibility graph VG(P) of P is
the graph whose vertex set is the vertex set of P . Two
vertices are connected with an edge in VG(P) if in P
they see each other. In this paper we show that for any
ε > 0 we can construct a routing scheme with ζ(n) =
1+ ε, L(n) = O(log n) and T (n) = O(ε−1 log n). The
preprocessing time is O(n2 + ε−1n).

3 Cones in Polygons

Let P be a polygon with n vertices and let t > 2.
Our approach is inspired by the Yao Graph construc-
tion [8].
Let p be a vertex of the polygon, p′ the clockwise

next vertex of P , α be the inner angle at p, and
ε0 := 2π

αt . We denote with r the ray emanating from
p through p′. Next, we rotate this ray as follows: let

ri(p) := rotate r clockwise by angle α ·min (i · ε0, 1)

p

p′

r0(p)

r2(p)r3(p)

r⌈ε−1

0 ⌉(p)

Figure 1: The cones and rays of a vertex p with inner
angle α.

for i ∈ {0, 1, . . . , ⌈ε−1
0 ⌉}. Let Ci(p) be the closed cone

with apex p and boundary ri−1(p) and ri(p) (see Fig-
ure 1). We also set C(p) as the set containing all such
cones (that is, C(p) = {Ci(p) | 1 ≤ i ≤ ⌈ε−1

0 ⌉}). By
construction, the apex angle of each cone is at most
αε0 = 2π/t and hence all cones are convex.

Lemma 3.1 Let p be a vertex in P and {p, q} an

edge of VG(P) in the cone Ci(p). Furthermore, let s
be the closest vertex in Ci(p) to p. Then the following

inequality holds:

d(s, q) ≤ |pq|−
(

1− 2 sin
π

t

)

|ps|.

Ci(p)

β≤ 2π

t

s
s′

q

p

γ

Figure 2: Illustration of Lemma 3.1. The points s
and s′ have the same distance to p. The dashed line
represents the shortest path from s to q.

Proof. Let s′ be the point on the line segment pq
such that |ps′| = |ps| (see Figure 2). Since p can see
q, also s′ can see q. Since s is the closest vertex to p
in the cone, s can see s′. Now the triangle inequality
yields d(s, q) ≤ |ss′|+ |s′q|. Let β and γ be the angles
at p and s′ in the triangle ∆(p, s, s′). Since ∆(p, s, s′)
is in Ci(p), we have β ≤ 2π/t. Further, ∆(p, s, s′) is
isosceles and thus γ ≥ π/2 − π/t. Applying the sine
law and sin 2x = 2 sinx cosx, we get

|ss′| ≤ 2|ps| sin
π

t
.

19

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Together with |s′q| = |pq| − |ps′| = |pq| − |ps|, the
triangle inequality from before gives the desired esti-
mation. �

4 The Routing Scheme

Let ε > 0 and P be a polygon with vertices p1, . . . , pn
in this order. We describe a routing scheme for VG(P)
with stretch 1 + ε. For each each vertex p, we will
partition the other vertices into intervals and assign
one interval to each cone. Given a target vertex q,
we look for the cone Ci(p) whose associated interval
contains q, and transmit the message to the nearest
neighbour in Ci(p).

Preprocessing In the preprocessing phase we do as
follows. First, we assign to each vertex pj of P the
binary representation of j as its label, Which needs
O(log n) bits. For the routing table of a vertex p, we
first compute the visibility polygon vis(p). This com-
putation provides a sequence of consecutive points
v0v1 . . . vk with p = v0 = vk+1. Each point of this
sequence is either a vertex of P or the first proper
intersection of a ray from p towards a reflex ver-
tex. Notice that, as we walk clockwise along the vis-
ibility polygon, the angle spanned by the ray r0(p)
and the edge {p, vj} increases monotonically. We set
t := π/ arcsin

(

0.5/
(

1 + ε−1
))

and use the subdivi-
sion of vis(p) described in Section 3. This subdivision
provides a set C(p) with a certain number of cones.
The following obvious lemma specifies this number.

Lemma 4.1 We have t ≤ 2π
(

1 + ε−1
)

.

The ray ri(p) intersects vis(p) at one or more points.
Let zi be the intersection point that is closest to p and
ei the edge of P containing it. All points zi and edges
ei can be obtained by going once through the sequence
v0v1 . . . vk (see Figure 3).

p

ri−1(p)

ri(p)

ei−1

ei

si

zi−1

zi

Figure 3: The boundaries of Ci(p) hit the boundary
of P in the points zi−1 and zi. The vertex si is the
point in Ci(p) with shortest distance to p.

For all cones Ci(p) ∈ C(p), we start from zi−1, walk
clockwise along the boundary of P until we meet zi,

and collect all the visited vertices. If we take the in-
dices modulo n, the collection forms an interval called
I(i). Among I(i) we look for the vertex si with small-
est distance to p. We store the interval boundaries of
I(i) together with the label of the vertex si in the
routing table of p. This requires O(log n) bits as well.
Hence, by Lemma 4.1, the size of each routing table
is O(ε−1 log n) bits.

Routing phase The routing strategy is simple: when
routing from a vertex p to a target q, we search in
the routing table of p for the index i whose associated
interval I(i) contains the label of q, and then transmit
the message to si. The following lemma proves that
the algorithm is well defined.

Lemma 4.2 Let p, q be two vertices of P and (p, q′)
the first edge on the shortest path from p to q. If

q ∈ I(i), then q′ ∈ Ci(p).

Proof. Suppose that q′ /∈ Ci(p). Since q is in I(i),
the shortest path π from p to q has to cross pzi−1 or
pzi at least twice. The first intersection is p itself. Let
z be the last intersection and let π′ be the subpath of
π from p to z via q′. By the triangle inequality, |pz|
is strictly smaller than the length of π′ (see Figure 4).
Thus, we can find a shortcut from p to z and hence a
shorter path from p to q. �

q

p

q′ z

Figure 4: The red line is the “shortest” path from p
to q with q′ as first step, whereas the green dashed
line represents a shortcut from p to z.

5 Analysis

The aim of this section is to show that for any polygon
P and ε > 0 the stretch 1 + ε is always preserved.
First, we show that our routing strategy decreases
the distance to the target.

Lemma 5.1 Let p and q be two vertices in P , and let

s be the next vertex computed by the routing scheme

from p to q. Then we have d(s, q) ≤ d(p, q)−|ps|/(1+ε).

20

33rd European Workshop on Computational Geometry, 2017

Proof. Our routing strategy routes from p to a vertex
s = si that is the closest in some cone Ci(p). By
Lemma 4.2, we know that the next vertex q′ on the
shortest path from p to q is also contained in Ci(p).
Thus, by Lemma 3.1 and the triangle inequality we
obtain

d(s, q) ≤ d(s, q′) + d(q′, q)

≤ |pq′|−
(

1− 2 sin
π

t

)

|ps|+ d(q′, q)

= d(p, q)−
(

1− 2 sin
π

t

)

|ps|

= d(p, q)− |ps|/(1 + ε).

�

Since the distance to the target decreases at each
step, this implies that our routing scheme terminates.
We now bound the stretch of the routing scheme.

Lemma 5.2 Let p and q be two vertices of P . Then

we have dρ(p, q) ≤ (1+ ε)d(p, q), where dρ(p, q) is the
length of the routed path.

Proof. Let π = p0p1 . . . pk be the path from p =
p0 to q = pk computed by the routing scheme. By
Lemma 5.1 we have d(pi+1, q) ≤ d(pi, q)−|pipi+1|/(1+
ε). Thus, we have

dρ(p, q) =
k−1
∑

i=0

|pipi+1|

≤ (1 + ε)

k−1
∑

i=0

(d(pi, q)− d(pi+1, q))

= (1 + ε) (d(p0, q)− d(pk, q))

= (1 + ε)d(p, q)

since p0 = p and pk = q. This finishes the proof for
the bound on the stretch. �

Thereby, we obtain our main theorem.

Theorem 5.3 Let P be a simple polygon with n ver-

tices. For any ε > 0 we can preprocess P into a rout-

ing scheme for VG(P) with labels of O(log n) bits and
routing tables of O(ε−1 log n) bits. For any two ver-

tices p, q ∈ P , the scheme produces a routing path

with stretch ≤ (1 + ε)d(p, q). The preprocessing time

is O(n2 + ε−1n).

Proof. The stretch and size bounds follow from pre-
vious arguments. We focus on the preprocessing time
bound. For any vertex p ∈ P let L be the sequence of
vertices v0v1 . . . vk of vis(p) calculated in time O(n).
Using L, we can find all intersection points zi and cor-
responding edges ei of P in time O(n + ε−1). Thus,
for each ray ri(p), we can find the boundaries of ei
in amortized constant time. Once the edges ei are

computed, we can find the interval boundaries of I(i)
in constant time. The point within the interval I(i)
with smallest distance to p can be found by going
once through I(i) in O(|I(i)|) time. For all cones of
one vertex, this step takes O(n+ ε−1) in total. In the
end, we do the same procedure for all vertices and
obtain the running time O(n2 + ε−1n). �

6 Conclusion

We still have various open questions for the routing
schemes for polygons. First of all, it would be interest-
ing, if there is a routing scheme that approximates the
hop-distance in polygons, where each pair of adjacent
vertices has edge weight 1. Using our routing scheme
we can find examples, where the stretch is in Ω(n).
Further, it would be interesting to know whether the
preprocessing time or the size of the routing table can
be improved, perhaps using a recursive strategy.
The routing scheme extends to polygonal domains

with h holes: we now need to apply the same strat-
egy to each vertex p, cone Ci(p) and the h+1 simple
polygons that form the boundary of P . This increases
the size of the routing table to O(ε−1h log n) and pre-
processing time to O(n2 log n+hn2+ ε−1hn). This is
impractical for large values of h, and thus we wonder
whether a better strategy exists for this case.

References

[1] Silvia Giordano and Ivan Stojmenovic. Position based
routing algorithms for ad hoc networks: A taxon-
omy. In Ad hoc wireless networking, pages 103–136.
Springer-Verlag, 2004.

[2] John Hershberger and Subhash Suri. An optimal algo-
rithm for Euclidean shortest paths in the plane. SIAM
J. Comput., 28(6):2215–2256, 1999.

[3] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and
Paul Seiferth. Routing in unit disk graphs. In Proc.
12th Latin American Symp. Theoretical Inf. (LATIN),
pages 536–548, 2016.

[4] Joseph S. B. Mitchell. A new algorithm for shortest
paths among obstacles in the plane. Annals of Math-
ematics and Artificial Intelligence, 3(1):83–105, 1991.

[5] David Peleg and Eli Upfal. A trade-off between space
and efficiency for routing tables. J. ACM, 36(3):510–
530, 1989.

[6] Liam Roditty and Roei Tov. New routing techniques
and their applications. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Com-
puting, pages 23–32. ACM, 2015.

[7] Liam Roditty and Roei Tov. Close to linear space
routing schemes. Distributed Computing, 29(1):65–74,
2016.

[8] Andrew Chi-Chih Yao. On constructing minimum
spanning trees in k-dimensional spaces and related
problems. SIAM J. Comput., 11(4):721–736, 1982.

21

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Kinetic All-Pairs Shortest Path in a Simple Polygon∗

Yago Diez† Matias Korman† André van Renssen‡ Marcel Roeloffzen‡ Frank Staals§

Abstract

We provide a simple data structure to compute all-
pairs shortest paths of a given collection of n sites
in a simple polygon of m corners. The structure can
be maintained as the sites move (in a linear fashion)
within the domain. For each event in which the com-
binatorial structure of the shortest path changes, we
spend O(log nm) time updating our structure. We
give upper and lower bounds on the number of such
changes, proving that our structure is efficient.

1 Introduction

Motion data is common in many modern applica-
tions. We track physical objects (animals, particles,
robots) as well as virtual ones in games and simula-
tions. Sometimes the purpose is collecting data for
later analysis, but often it must be processed directly
to maintain important properties of a larger system.
Generally these entities do not operate in a vacuum
and environmental concerns should be taken into ac-
count. Oftentimes the environment is inherently im-
portant to the properties being tracked as obstacles
may hamper navigation [1] or limit visibility [8].
Given the number of applications, much research

has been done towards maintaining properties of mov-
ing points. Much of this work, however, considers
moving entities in an open space. Only a handful
of results consider problems where obstacles form an
inherent part of the problem. Most notably, main-
taining the visibility region of a moving point [7, 2].
In this paper we focus on structures related to the
shortest paths for points moving inside a simple poly-
gon. We provide a data structure following the KDS-
framework (see below) that maintains the shortest
path between pairs of points. As an application, we
obtain a KDS to maintain the visibility graph of a set
of moving points.
KDS-framework. Our data structures are based

on the Kinetic Data Structures (KDS) framework in-
troduced by Basch et al. [3]. In this framework mo-

∗M. K. was supported in part by the ELC project (MEXT
KAKENHI No. 12H00855 and 15H02665).

†Tohoku University, Sendai, Japan. {yago,
mati}@dais.is.tohoku.ac.jp

‡National Institute of Informatics (NII), Tokyo, Japan.
{andre,marcel}@nii.ac.jp, JST, ERATO, Kawarabayashi
Large Graph Project.

§MADALGO, Aarhus University. f.staals@cs.au.dk

tions are assumed to be known in advance in order to
accurately predict when changes in the structure oc-
cur and then adjust accordingly. Each KDS maintains
a set of certificates that together certify that the KDS
correctly represents the target structure. Typically
these certificates involve a few objects each and rep-
resent some simple geometric primitive. For example
a certificate may indicate that three sites p, q, r form
a clockwise oriented triangle ∆(p, q, r). As the sites
move, these certificates may become invalid, requir-
ing the KDS to update by potentially repairing the
target structure and creating new certificates. Such
a certificate failure is called an event. An external

event is any event that changes the target structure,
whereas every event is considered an internal event.
Performance of a KDS is measured using four mea-
sures. A KDS is considered compact if it requires lit-
tle space, generally close to linear, responsive if each
event is processes quickly, generally in polylogarith-
mic time, local if each site partipates in few events,
and efficient if the ratio between external and internal
events is small, generally polylogarithmic. (Note that
for efficiency it is common to compare the worst-case
number of events for either case.) This framework
has been used to maintain many structures; see the
survey by Guibas et al. [4].

Our Results. In Section 2 we present a simple
KDS for maintaining the combinatorial structure of
the shortest path π(pi, qi) between pairs of points
pi and qi moving linearly inside a simple polygon
P . Aside from a linear size representation of P ,
our data structure uses only O(1) space per pair of
points. It processes O(m) events per pair, each tak-
ing O(log km) time, where m is the number of ver-
tices of P and k is the number of pairs tracked. This
thus gives us a KDS to maintain all-pairs shortest
paths of a set S of n moving points using O(m+ n2)
space, and processing O(n2m) events in O(log nm)
time each. By tracking when the shortest path, the
geodesic, is a single line segment we can then also
maintain which pairs of points are mutually visi-
ble. That is, we can maintain the visibility graph
G = (S, {(p, q) | q visible from p}) of S. In Section 3
we show that for these scenarios our KDS is efficient,
that is, we show that the number of visibility events,
and thus the number of changes in the combinatorial
structure of the geodesic, may be Ω(n2m).

Related Work. We are aware of only two other
results involving distances, and points moving amidst

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

22

33rd European Workshop on Computational Geometry, 2017

obstacles: the work of Karavelas and Guibas [6],
and the work of Aronov et al. [2]. Karavelas and
Guibas describe how to maintain a constrained De-
launay triangulation of a set of moving points, and
show how this can be used to maintain nearest neigh-
bors. Aronov et al. provide an O(m) space structure
that maintains the shortest path tree of a point p mov-
ing inside a simple polygon P with m vertices. That
is, their data structure maintains the shortest paths
from p to all vertices of the polygon. Our data struc-
ture shares similarities with the approach of Aronov et
al.. The main difference is that in our approach, both
end-points of a shortest path are moving, whereas in
Aronov et al. [2] one of the end-points, a vertex of P ,
is static.
Aronov et al. [2] use their data structure to main-

tain the visibility region of the moving point p. There
are some additional results specifically for this prob-
lem. In particular, Rivière [7] presents two kinetic
data structures for this problem, in one of which the
vertices of the polygon are allowed to move as well.
This data structure has size O(m2), and processes
each event in O(logm) time. No analysis of the num-
ber of events is given.

2 Maintaining geodesics between moving points

We start by preprocessing the polygon P for two point
shortest path queries [5]. This takes O(m) time, and
requires O(m) space. We now show that we can main-
tain the geodesic π(p, q) between two points p and
q moving inside P with only O(1) additional space.
Throughout the movement of p and q we process
O(m) events.
Maintaining π(p, q) explicitly may require Ω(m) to-

tal storage, so instead, we maintain the first and last
edge of the path. We show that this is sufficient to
implicitly maintain the path, in O(1) time, and report
the full path in time proportional to its length.
Denote the start- and end-point of the motion of p

(q) by ps (qs) and pe (qe), respectively. We maintain
the first edge on the geodesic from p to both qs and qe
and from q to both ps and pe. We call these the funnel
geodesics between p and q. Here a funnel is the union
of all shortest paths from a single site to every point
on a segment. In the following we first show how to
maintain the funnels from the moving site p to qsqe
and from q to pspe and then provide details of how to
maintain the path between the two moving sites.

2.1 The path between a static and a moving site

Each of the funnels consists of two geodesics from a
moving point to a static point. Here we focus on main-
taining the path from a site p moving from ps to pe
and a static point, say qs (the case for qe is analogous).
The simple, yet crucial observation, that allows us to

ps

qs
qe

ps pe

qs
qe

ps pe

qs
qe

a = u1
v2

pe

u1

u2

Figure 1: There are three cases to consider in the
funnel from p to a fixed point qs.

maintain π(p, qs) efficiently, is that this path always
consists of a single line segment followed by a tail-
section of either π(ps, qs) or π(pe, qs).

First consider the simplified case of Fig. 1 (left)
where the path from ps to qs is a convex chain and
pe can directly see qs. Let u1, u2 be the first two
vertices that are traversed from p on the path to qs.
(If u1 = qs the path no longer changes, so assume
this is not the case.) Now, during the movement
of p, this geodesic does not change while the trian-
gle ∆(p, u1, u2) remains counter-clockwise oriented.
Whenever the three points become aligned we have a
detachment event : the topology of the shortest path
between p and qs changes, as the path does not pass
through u1 anymore. Thus, we remove it from the
structure, update the values u1 and u2 (as the first
and second vertices traversed in the path from the
current position of p to qs), and continue until the
next detachment event. Eventually, all vertices of
the path are removed and the path from p to qs be-
comes segment pqs. This situation will continue until
p reaches pe (recall that we assumed that pe sees qs).

A similar situation occurs when the path from ps
to qs is a single edge and the path from pe to qs is a
convex chain as in Fig. 1 (middle). Let v2 be the first
vertex traversed on the path from u1 = qs to pe. We
have an attachment certificate that states that trian-
gle ∆(p, u1, v2) is clockwise oriented. If this certificate
breaks, we add v2 to the path from qs to p, and a new
attachment certificate can be found by computing the
first edge on the shortest path from v2 to pe.

Now the more general case where neither ps nor pe
have direct visibility of qs is essentially a combination
of the previous two (see Fig. 1 right). Consider the
pseudotriangle between ps, qs, pe with apex a where
the two paths from ps and pe to qs merge. Since the
portion of the path from a to qs is present in any path
from p to qs, it is equivalent to track the path from p
to a. Further note that the geodesics from a to both
ps and pe form two convex chains. Consider a time t
where a is directly visible from p. For the movement
before time t we can use the detachment certificates
and after time t we can use the attachment certifi-
cates. So the main issue is detecting when we are
directly connected to the apex a. We could explicitly
compute a while preprocessing, but this could require
Ω(n) preprocessing time. Instead we compute both

23

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

certificates and compute which is broken first. When-
ever a detachment certificate is broken, we update u1,
u2, and v2 (since the definition of v2 depends on u1).
In particular, this can change the point in time in
which the attachment certificate would break. The
first time we break the attachment certificate is when
p has a direct edge to the apex a. From this instant
on, we can consider only attachment certificates.

Lemma 1 Using O(m) preprocessing time and space

we can maintain the shortest path from a site p mov-

ing linearly from ps to pe to a static point within P .

Along the movement of p at most O(m) events are

processed, each one needs O(logm) time.

Proof. As described above at each event we spend
O(1) time to update the shortest path. To compute
new certificates, we use Guibas and Hershberger’s two
point query data structure for simple polygons [5],
which allows us to query for the first O(1) edges on a
geodesic from any point inside the polygon to another
in O(logm) time after O(m) time preprocessing.

The bound on the total number of events follows
from the fact that the shortest path only changes
when p crosses an edge of the shortest path map of
the static points within P , which is a O(m) complex-
ity straight-line subdivision of P . �

2.2 The path between two linearly moving sites

To maintain the geodesic between two moving sites p
and q, we track four pairs of geodesics between moving
and static points. Namely, we track the geodesics
between p and qs, qe and between q and ps, pe. First
we characterize when the geodesic π(p, q) can change.

Lemma 2 Let p and q be two sites moving linearly

from ps and qs to pe and qe, respectively. The path

π(p, q) changes only when either p gains or loses vis-

ibility to q, if the funnel from p to qsqe or the funnel

from q to pspe changes.

Proof. Let π0 and π1 be the geodesic before and after
the change, respectively. By continuity of the shortest
path, at most one vertex has been added between the
two. Moreover, this vertex must be either the first
or last in the geodesic from p to q. Without loss of
generality we assume that a vertex r was added to the
geodesic, and that p connects directly to r. That is,
π0 = (p, u0, . . . q) and π1 = (p, r, u0, . . . q). If u0 = q
then p and q were originally visible and thus we have
a loss of visibility event as claimed. Otherwise, p, r
and u0 just broke an attachment certificate. �

This characterization allows us to maintain the
geodesic between the two moving points.

Lemma 3 Using O(m) preprocessing time and space

we can maintain the shortest path between two lin-

early moving sites within a polygon P of m vertices.

Along the movement of both sites at most O(m)
events are processed, each one needs O(logm) time.

Proof. Changes in the funnels from p and q are de-
tected using the data structure detailed in Section 2.1.
It remains to show how to detect visibility events.
Since at any event only one vertex can be added to
or removed from the path, we need not worry about
visibility events until only one vertex remains on the
path from p to q. In order for p to be directly visible
from q, the funnel from p to qsqe must have p as its
apex, since otherwise it has no visibility on the whole
edge qsqe. Furthermore when p is the apex, we can
find the section of qsqe that is directly visible to p by
extending the first edge on the paths from p to qs and
qe. Hence, this interval is defined by p and the first
two points on the paths to qs and qe which do not
change unless a funnel event happens. While these
two funnel points do not change, we can compute cer-
tificates for the visibility events by computing when
q enters or leaves this moving section of qsqe that is
visible to p. �

This allows us to track the geodesic between any
pair of moving points using only O(1) additional space
and handling O(m) events. For maintaining all short-
est paths among a set of points we thus get:

Theorem 4 Let P be a simple polygon with m ver-

tices, and let S be a set of n sites each moving along a

line segment in P . There is a KDS of size O(m+ n2)
that maintains the shortest path between any pair of

sites p, q ∈ S that processes at most O(n2m) events,

each in O(logm) time. The data structure can be

built in O(n2 logm+m) time.

Note that during the full movement of p, our ap-
proach from Section 2.1 essentially runs the algorithm
to report a geodesic on the funnel geodesics π(p, qs)
and π(p, qe) (where events from different funnels may
be interleaved). This means that, at any time, we can
report these funnel geodesics by simply running the
remainder of the computation. Since the geodesic be-
tween p and q consists of constantly many pieces of
these funnel geodesics, it follows we can also report
their geodesic in time proportional to its length.
We can now easily track when the geodesic between

p and q is a single line segment, and thus p and q are
visible, and thus we obtain:

Corollary 5 Let P be a simple polygon with m ver-

tices, and let S be a set of n sites each moving along a

line segment in P . There is a KDS of size O(m+ n2)
that maintains the visibility graph of S, and processes

O(n2m) events, each in O(log nm) time. The data

structure can be built in O(n2 logm+m) time.

24

33rd European Workshop on Computational Geometry, 2017

Our data structures are responsive, and, as we show
in Section 3, efficient, but it is not local or compact.
However, it seems hard, maybe even infeasible, to
track all Θ(n2) distances using only O(n logc n) space.

3 A bound on the number of visibility events

Here, we present a lower bound for the number of
combinatorial changes to the geodesics between all
pairs of n sites in a simple polygon of m vertices.
We prove that the number of visibility events, that is,
the number of times a site can gain or lose visibility
to another is lower bounded by Ω(n2m). Since each
visibility event is also a change in the geodesic the
lower bound for geodesic changes follows.

Lemma 6 A set S of n linearly moving sites in a sim-

ple polygon of m vertices can have Ω(n2m) visibility
events.

Proof. Consider two sites p and q, initially vertically
aligned with p above q. Now p moves down vertically
and q horizontally, both at unit speed. We create a
polygon so that p and q gain and lose visiblility Ω(m)
times. Let t0, . . . tm be m arbitrary moments of time
during this movement in increasing order, with t0 the
time where p, q are at their initial positions and tm
such that p is still vertically above q. Now virtually
draw a solid line segment between points p(ti) and
q(ti) for even i and a dashed line for odd i as in Fig. 2.

p(t0)

p(t1)

p(t2)

p(t3)

p(t4)

p(t5)

p(t6)

p(t7)

q(t0) . . . q(t7)

p

q

Figure 2: A lower bound on the number of events
to maintain the visibility graph. Solid lines represent
moments when p and q are visible and the dashed
lines represent moments in time when they are not.

Observe that the upper envelope of the solid and
dashed lines alternatingly has a dashed and solid seg-
ment. Now create a polygon vertex just below each
dashed segment, but above the solid segments and
connect these in the order that the corresponding seg-
ments appear on the upper envelope. This polygonal
chain blocks visibility from p to q at time ti for odd

i, but does not do so for each time ti for even i, so p
and q gain and lose visibility Ω(m) times. The chain
can easily be extended to be a polygon containing the
full motions of p and q.

To prove the lower bound of Ω(n2m), we replace
the single sites p and q with two sets of n/2 sites
each. When these sets of sites follow trajectories that
are sufficiently close to those of p and q, each site of a
set gains and loses visibility with each site of the other
set around the same time as p and q gained and lost
visibility. Since there are n2/4 pairs of sites, this leads
to the claimed Ω(n2m) many visibility events. �

Corollary 7 A set S of n linearly moving sites in

a simple polygon of m vertices can have Ω(n2m)
geodesic-events.

References

[1] Imad Afyouni, Cyril Ray, Sergio Ilarri, and
Christophe Claramunt. Algorithms for continu-
ous location-dependent and context-aware queries
in indoor environments. In Proc. 20th Int. Conf.
Adv. in Geogr. Inf. Sys., pages 329–338, 2012.

[2] Boris Aronov, Leonidas J. Guibas, Marek Teich-
mann, and Li Zhang. Visibility queries and main-
tenance in simple polygons. Discrete Comput.
Geom., 27(4):461–483, 2002.

[3] Julien Basch, Leonidas J. Guibas, and John Her-
shberger. Data structures for mobile data. J. Al-
gorithms, 31(1):1–28, 1999.

[4] Leonidas J. Guibas. Modeling motion. In Hand-
book of Discrete and Computational Geometry,
Second Edition., pages 1117–1134. 2004.

[5] Leonidas J. Guibas and John Hershberger. Opti-
mal shortest path queries in a simple polygon. J.
of Comp. and Syst. Sci., 39(2):126–152, 1989.

[6] Menelaos I. Karavelas and Leonidas J. Guibas.
Static and kinetic geometric spanners with appli-
cations. In Proc. 12th Ann. ACM-SIAM Symp.
Discr. Alg., pages 168–176, 2001.

[7] Stéphane Rivière. Dynamic visibility in polygonal
scenes with the visibility complex. In Proc. 13th
Ann. Symp. Comput. Geom., pages 421–423, 1997.

[8] Yanqiu Wang, Rui Zhang, Chuanfei Xu,
Jianzhong Qi, Yu Gu, and Ge Yu. Continu-
ous visible k nearest neighbor query on moving
objects. Information Systems, 44:1 – 21, 2014.

25

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Competitive Analysis of the Pokémon Go Search Problem

Marc van Kreveld
Utrecht University, m.j.vankreveld@uu.nl

Abstract

Using Pokémon Go as inspiration, we define a search
problem on geometric graphs and analyse whether a
competitive strategy for it exists. Given a trainer on
the graph and a Pokémon anywhere in the plane, the
trainer has a sighting of the Pokémon if it is within
distance r. She/He can catch it when it is at distance
≤ d, which is sufficiently smaller than r but of the
same order. The problem is to catch the Pokémon
once it becomes a sighting quickly, with little detour.
We show that for general geometric graphs, there is no
constant c such that a c-competitive search strategy
for the Pokémon Go search problem exists. On the
other hand, if the geometric graph has convex faces
or constant geometric dilation, then we can design a
c-competitive search strategy for a constant c.

1 Introduction

After its introduction in the summer of 2016,
Pokémon Go quickly became the most popular game
around. The game requires players—called trainers—
to walk outside to search for and catch Pokémon. Now
that the first craze is over, it is time for scientists to
analyze various aspects of the game. Since the game
requires a mobile device with GPS and is (in part)
essentially a search problem played on the streets, we
can analyze it using competitive analysis. We model
the Pokémon Go search problem as follows:

• The streets are modeled by a geometric graph G.

• The trainer T is a point on G which can move
along the edges and vertices of G, and choose at
each vertex any incident edge.

• The Pokémon P to be caught is a point in the
plane, not necessarily on G.

• The sighting range is a disk with radius r cen-
tered on T .

• The catch range is a disk with radius d centered
on T ; we assume that there are two constants
c1, c2 with 0 < c1 < c2 < 1 such that c1 · r <
d < c2 · r. In words, d is of the same order as
r but not nearly r. In Pokémon Go, r ≈ 200m
and d ≈ 30m.

• The GPS of T is continuous and precise, that is,
T knows its exact location all the time. Further-

more, T knows G, r, and d, and T knows when
P is in the catch range.

The Pokémon Go search problem arises when T
gets P as a sighting, so T knows that P is exactly
r away. If T would know exactly where P is, then
a shortest-path computation on an augmented graph
yields the quickest way to catch P (which is to come
within distance d from P). The Pokémon Go search

problem is to get P in the catch range after T gets it
in the sighting range in an effective manner, with as
little detour as possible. It can be that G has no point
that is within distance d from P because P need not
be on the graph. Then it is impossible to catch P .

Since we do not know where P is, we can use com-
petitive analysis for a strategy that attempts to find P
quickly. A search strategy is c-competitive if it guar-
antees to find P in c · τ time (or distance) when the
quickest possible way to find P takes τ time. The
competitive ratio c is the worst-case ratio between the
time taken by a search strategy and an all-knowing
searcher who takes the shortest path.

When the trainer T moves on G and P appears in
the sightings, we know that P is somewhere on a half-
circle with T in the center. The movement direction
up to the moment when P appears determines which
half-circle. If P were anywhere on the complementing
half-circle, P would have already shown in the sight-
ings of T before.

If there were no streets G, so T could move freely
in the plane, then for any ε > 0, a (1+ ε)-competitive
search strategy exists: Suppose T is at point s when
P appears as a sighting. T moves γ further, then
moves over a circle with radius γ centered at s. This
guarantees that T finds one more position besides s
that is exactly at distance r from P . The two half-
circles on which P lies have one intersection point in
common, and this is where P is. So after moving
a distance ≤ (1 + 2π)γ, T moves r − d to catch P .
The all-knowing searcher simply moves r − d from s
towards P . To obtain a (1 + ε)-competitive search
strategy, we choose γ = ε(r − d)/8.

Related work. We list a few main results on search-
ing and competitive analysis; for a more extensive
overview see [4]. Perhaps the best-known search prob-
lem is that of finding a point on a line, not knowing
how far or to which side from the starting location it

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

26

33rd European Workshop on Computational Geometry, 2017

r − d

T

v

d

locations for P

Figure 1: Geometric graph showing that no competi-
tive search strategy can exist.

is. Baeza-Yates et al. [1] showed that a competitive
ratio of 9 can be achieved for this 1D problem and
this is optimal. Variations with turn cost [3], mul-
tiple rays [5], or additional information on the dis-
tance [2, 6] were studied as well. Kalyanasundaram
and Pruhs [8] considered visibility-based searching for
a recognizable point in an unknown scene with convex
obstacles. Their result on competitiveness is not con-
stant, but depends on number of obstacles and their
aspect ratio. Hoffmann et al. [7] showed that an un-
known simple polygon can be discovered completely
with a competitive ratio of 26.5. For searching in a
known graph for an unknown node, see e.g. [9].

Overview. The remainder of this paper assumes
that T can move only on the geometric graph G.
For brevity we will often leave out the word “geo-
metric” from “geometric graph”. When we mention c-
competitive, it is understood that c is constant. When
we speak of a competitive strategy, we imply a c-
competitive, or constant-factor competitive, strategy.
Section 2 shows that no c-competitive strategy ex-

ists for the Pokémon Go search problem that works
on all graphs. Section 3 shows that if G has convex
faces only, or G has bounded geometric dilation, a
c-competitive search strategy exists.

2 General geometric graphs

While we would ideally develop a c-competitive strat-
egy for T to find P on any graph G, we show first
that such a strategy does not exist: There are graphs
that are not competitively searchable.

Theorem 1 For any constant c ≥ 1, a geometric

graph exists that has no c-competitive search strat-

egy for the Pokémon Go problem.

Proof. We construct a graph G and m possible loca-
tions of P . The latter lie equally-spaced on a circular
arc of radius r which is one-eighth of a circle, see Fig-
ure 1. Graph G has a vertex v at the center of the
circle supporting this circular arc, so v is at distance

r from the possible locations of P . We make m more
vertices, each at distance r − d from v and on the
line segment from v to a possible location of P . Ver-
tex v is connected to these m vertices, creating a star
graph with m “dead ends”. v is also connected to one
more vertex, away from the possible locations of P .
This is where T starts, so when T reaches v, it gets
P as a sighting. The graph G can be searched m-
competitively but not better, and since m can be any
value, there cannot be a c-competitive search strategy
for any constant c. �

3 Special classes of geometric graphs

We identify two restrictions on geometric graphs
that allow us to prove c-competitiveness. First,
we show that graphs with convex faces and a con-
vex cycle bounding the outer face can be searched
c-competitively. Then we show that graphs with
constant geometric dilation can be searched c-
competitively. Notice that the two restrictions are in-
dependent: there are graphs with convex faces that do
not have bounded geometric dilation and vice versa.

Graphs with convex faces. Let G be a graph with
all faces convex. The unbounded face is obviously not
convex; instead we assume that it is the complement
of a convex polygon. Under these assumptions we
can show that a search strategy for G exists that is
c-competitive for some constant c.
Our strategy is to find a second location for T that

has P on the boundary of the sighting range. This
is easy: We let T go clockwise along the boundary
of the face to the right. The longest convex path in-
side the sighting range has length < 2πr, so within
this distance we find this second location. With two
locations at distance r from P , only one possible lo-
cation for P remains, so we can take a shortest path
to the catch range. This path has length ≤ 2πr +D,
whereD is the shortest distance from the first location
where T got P in its sighting range, because we can
always go back. So the competitive ratio is at most
(4πr+D)/D, and D ≥ r− d. The ratio is minimized
when D = r− d. By the assumptions on r and d, our
search strategy is c-competitive for a constant c.
This constant can be improved. If T really walks

nearly 2πr to find the second location for the bound-
ary of the sighting range, then T must have gone
around the face that has P inside, and T will know
this. In this case, P cannot be caught. If T does
not go around P and P does not get P into its catch
range, then T can move much less far. In any case it
is less than (π + 2)r. We omit a precise analysis in
this abstract.

Theorem 2 Given a geometric graph G with con-

vex bounded faces and a convex outer boundary, two

27

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

f
f

f
G′

R̂

l

Figure 2: The function f and its image.

constants 0 < c1 < c2 < 1, a sighting range with

radius r, a catch range with radius d, and assume

c1r < d < c2r, the Pokémon Go search problem can

be solved with competitive ratio O(1).

Graphs with bounded geometric dilation. Next we
assume that G is a graph whose geometric dilation is
bounded by δ. By definition, for any two points p, q
on G, the distance between p and q on G is at most δ
times the Euclidean distance between p and q.

When T gets P as a sighting, we know that P is at
distance r from T and on a specific, known half-circle
H. The only locations on G from where P can po-
tentially be caught lie in a half-annulus with circular
ends, the Minkowski sum of H with a disk of radius
d centered at the origin. Instead of solving the prob-
lem directly in this circular setting, we first consider
a linearized scenario and then argue that the analysis
still holds, albeit with different constants.

Consider a rectangle R with width w and height
d ≤ w. Let l be the lower edge of R, with length w.
We assume that R has its lower left vertex at the
origin and l lies on the x-axis, so x-coordinates in
[0, w] can be used to specify locations on l. Let R̂ be

a rectangle of width w+2d and height d; R̂ has a d×d
square added to the left and right of R, see Figure 2.
Assume G is a geometric graph and G′ is the part
inside R̂; edges are clipped and can be partially in
G′. In that case we add a new vertex where that edge
intersects ∂R̂ so that G′ is a proper graph again.

We imagine a disk with radius ≤ d whose center is
on l and whose boundary intersects G′ but its interior
does not. For every point on l, such a largest (interior-
)free disk is unique. The collection of disks gives rise
to a collection of points of G′ with contacts with such
disks. These contacts are isolated points (vertices) or
intervals of edges. Let f be the function that maps
each point on l to its closest point on G′, see Figure 2.
In case of multiple closest points we choose the one
most counter-clockwise. The function f has [0, w] as
its domain: the x-coordinates that specify points on l.

Lemma 3 The x-coordinates of the image of f are

monotonically increasing.

qi

qj

di

dj
qi−1

qj−1

> di

Figure 3: Illustration of the proof of Lemma 5.

Proof. When the contact is an interval, it is clear
that it can only move rightward when the largest free
disk centered on l moves rightward. When there are
two contacts and the function f has a discontinuity,
the jump is also always rightward. �

Lemma 4 The length of the image of f is O(w).

Proof. Only the contact intervals contribute to the
length, not the isolated points. Observe that any in-
terval on an edge is the image of a part of l that is at
least as long as that interval. The lemma follows. �

We will bound the summed distance of the jumps in
the image of f . As observed in the proof of Lemma 3,
every jump is rightward, so every jump is in clockwise
direction along the boundary of the largest free disk.

Lemma 5 The summed distance of all jumps in the

image of f is O(w).

Proof. We first assume that the image of f is a set of
points. Let Q = q1, . . . , qk be these points, from left
to right. Consider pairs qi−1, qi of consecutive points
and the slope of the line ℓi through qi−1, qi. For all
pairs for which this slope is ≥ −2 and ≤ 2, the sum of
the jumps is ≤

√
5w because the sum of the x-jumps

is ≤ w and the sum of the y-jumps is ≤ 2w.
Consider all pairs for which the slope of ℓi is > 2,

and let qi−1, qi be the leftmost one. Let di be the
distance of qi to l. Since the slope of ℓi > 2 and the
half-disk whose boundary passes through qi−1 and qi
has empty interior, there must be a rectangle Ri of
height di and width > di and with upper-left corner
at qi that contains no points of Q inside, see Figure 3.
The jump qi−1, qi is <

1

2

√
5di. Let qj−1, qj be the next

leftmost pair for which the slope of ℓj is > 2. By the
same argument, the distance dj of qj to l gives rise to
an empty rectangle Rj of height dj and width > dj .

If qj is vertically above Ri, then the jump qj−1, qj
is < 1

2

√
5(dj − di), so the jumps qi−1, qi and qj−1, qj

sum up to < 1

2

√
5dj . If qj is horizontally to the right

of Ri, then we charge the jump qi−1, qi to progress of
distance more than di on l.
These arguments together imply that the total

summed jump distance of all pairs with slope > 2 is
at most 1

2

√
5w. By symmetric reasoning this is true

28

33rd European Workshop on Computational Geometry, 2017

H

(0, 0) (πr, 0)

T

(0, d) (πr, d)

Figure 4: The sausage, the upper and lower sausage,
and the coordinate system illustrated.

for slopes < −2. Combining the three cases proves a
total jump distance of 2

√
5w = O(w).

If the image of f is a set of points and intervals on

line segments, the given proof still holds. �

Let us go back to the original problem where we
have a half-circle H and the Minkowski sum of H
with a disk of radius d, giving a sausage-shape region
called S. See Figure 4. We define the outer sausage as
the part of S outside the supporting circle of H; the
inner sausage is the other part. We need to analyze
distances where H has the role of l and the outer
(inner) sausage has the role of R̂. The situation is
not symmetric for the outer and inner sausage, but
the same properties hold.
Instead of left-to-right in R, we use the angle with

respect to T , the center of the (half-)circle H. We let
the ccw-most point on the half-circle have first coor-
dinate 0 and the cw-most point have first coordinate
πr. Other points in the outer or inner sausage have as
their first coordinate the same as the point on H with
the same angle from the circle center. The second co-
ordinate is the distance to T minus r, so it is zero on
H. In this coordinate system, the distance between
any two points in the sausage is at most a constant
factor off their distance in the Euclidean setting; the
precise constant depends on d and r. We can again
imagine a maximal interior-free disk with its center
on H and its contacts with G inside the outer or in-
ner sausage. These contacts are monotone in the first
coordinate. We can show that all previous properties
and proofs still hold, but with different constant fac-
tors. The added half-disk caps do not influence the
asymptotic bounds.

The competitive strategy for T to find P is as fol-
lows. Globally, T goes from the starting location (the
center of the circle supporting H) to the ccw-most
contact in the inner sausage using a shortest path
in G. Then T works its way along the contacts in the
inner sausage in clockwise direction. When a jump
occurs in the contacts, T takes the shortest path in
G. When the cw-most point is reached, T traverses
the contacts in the outer sausage in the same way, but
in ccw order. To go from the last contact in the inner
sausage to the first contact in the outer sausage, we
use the shortest path in G.

We observe that if P can be found, it will be found
if we visit all contacts because these are the points
on G closest to the possible locations of P . So the
search strategy is correct. Let δ ≥ 1 be the geometric
dilation of G. For the move from the starting location
to the first point in the inner sausage, T traverses a
distance at most rδ on G. All jumps in the inner and
outer sausage together require a distance O(rδ), and
the same is true for switching from the inner to the
outer sausage. So the traversed distance by this strat-
egy is O(rδ), whereas the optimal strategy cannot use
less distance than r − d. The assumptions on d and r
imply a competitive ratio of O(δ).

Theorem 6 Given a geometric graph G with geo-

metric dilation δ, two constants 0 < c1 < c2 < 1, a
sighting range with radius r, a catch range with radius

d, and assume c1r < d < c2r, the Pokémon Go search

problem can be solved with competitive ratio O(δ).

References

[1] Ricardo A. Baeza-Yates, Joseph C. Culberson,
and Gregory J. E. Rawlins. Searching in the plane.
Inf. Comput., 106(2):234–252, 1993.

[2] Prosenjit Bose, Jean-Lou De Carufel, and
Stephane Durocher. Searching on a line: A
complete characterization of the optimal solution.
Theor. Comput. Sci., 569:24–42, 2015.

[3] Erik D. Demaine, Sándor P. Fekete, and Shmuel
Gal. Online searching with turn cost. Theor. Com-

put. Sci., 361(2-3):342–355, 2006.

[4] Subir Kumar Ghosh and Rolf Klein. Online algo-
rithms for searching and exploration in the plane.
Computer Science Review, 4(4):189–201, 2010.

[5] Mikael Hammar, Bengt J. Nilsson, and Sven
Schuierer. Parallel searching on m rays. Comput.

Geom., 18(3):125–139, 2001.

[6] Christoph A. Hipke, Christian Icking, Rolf Klein,
and Elmar Langetepe. How to find a point on
a line within a fixed distance. Discrete Applied

Mathematics, 93(1):67–73, 1999.

[7] Frank Hoffmann, Christian Icking, Rolf Klein, and
Klaus Kriegel. The polygon exploration problem.
SIAM J. Comput., 31(2):577–600, 2001.

[8] Bala Kalyanasundaram and Kirk Pruhs. A com-
petitive analysis of algorithms for searching un-
known scenes. Comput. Geom., 3:139–155, 1993.

[9] Elias Koutsoupias, Christos H. Papadimitriou,
and Mihalis Yannakakis. Searching a fixed graph.
In Proc. 23rd ICALP, volume 1099 of LNCS, pages
280–289. Springer, 1996.

29

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computational complexity and bounds for Norinori and LITS

Michael Biro ∗ Christiane Schmidt †

Abstract

Norinori (aka Dominnocuous) and LITS (aka Nu-
ruomino) are pencil-and-paper puzzles played on m×
n square grids. In this paper we show that both Nori-
nori and LITS are NP-complete and that their asso-
ciated counting problems are #P-complete. Further-
more, we display m × n boards for each game that
have unique solutions using the minimal number of
polyomino regions.

1 Introduction

Norinori and LITS are a pair of related pencil-and-
paper puzzles, made popular by the Japanese pub-
lisher Nikoli [3, 4]. The games are each played on
an m × n square grid that has been partitioned into
connected polyomino regions. To solve each puzzle,
the player is required to place black squares in the
polyomino regions to satisfy certain conditions.

In Norinori, the solver places black squares in the
polyominos such that the final board satisfies the fol-
lowing two properties:

1. Each black square has exactly one black neighbor.
2. There are exactly 2 black squares in each poly-

omino region.

See Figure 1(a)/(b) for an example Norinori board
and its solution. When discussing placing black
squares, it is often useful to think of the player as
placing black dominos as a basic move, with no two
dominos adjacent, see Figure 2(a). A domino may
span two polyomino regions, see Figure 1(b).

In LITS, the solver places black squares in the re-
gions such that the final board satisfies the following
properties:

1. The black squares form a connected polyomino.
2. Each polyomino region contains a connected black

tetromino.
3. No two congruent tetrominos are adjacent.
4. Black squares may not build 2× 2 squares.

See Figure 1(c)/(d) for an example LITS board and
its solution. For LITS, it is useful to think of the
player as placing one of the four legal black tetro-
minos, see Figure 2(b), which resemble the letters in

∗Department of Mathematics and Statistics, Swarthmore
College, mbiro1@swarthmore.edu.

†Communications and Transport Systems, ITN, Linköping
University, christiane.schmidt@liu.se.

(a) (b) (c) (d)

Figure 1: Example Norinori board (a) and LITS board
(c) with solution in (b) and (d), respectively.

(a)
(b)

Figure 2: Basic shapes for Norinori (a) and LITS (b),
circles give white squares that may not be filled in.

LITS. A variant of LITS, without the condition that
no two congruent tetrominos are adjacent, was con-
sidered by McPhail [2] and shown to be NP-complete.
In this paper we will show that the problem of solv-

ing Norinori and LITS boards is NP-complete and
that the problem of counting the number of solu-
tions to a Norinori or LITS board is #P -complete.
For our reductions, we will use the PLANAR 1-IN-
3-SAT PROBLEM, a well known NP-complete and
#P -complete problem [1].

Definition 1 An instance F of the PLANAR 1-IN-3-

SAT problem is a Boolean formula in 3-CNF consist-

ing of a set C = {C1, C2, . . . , Cm} of m clauses over n

variables V = {x1, x2, . . . , xn}. Clauses in F contain

variables and negated variables, denoted as literals.
A clause is satisfied if and only if it contains exactly

one true literal, and the formula F is true if and only

if all its clauses are satisfied. The variable-clause inci-

dence graph G is planar and it is sufficient to consider

formulae where G has a rectilinear embedding.

In addition, we explore combinatorial questions on
both puzzles: the smallest number of regions in an
n × m board that has a unique solution. We show
that for most boards only 3 regions are required.

2 NP-completeness of Norinori

Theorem 1 Determining if a Norinori board is solv-

able is NP-complete and counting the number of so-

lutions is #P-complete.

Proof. The proof is by reduction from PLANAR
1-IN-3-SAT. Given an instance F of planar 1-in-3-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

30

33rd European Workshop on Computational Geometry, 2017

Figure 3: Gadget to fix the 2 filled-in squares in each
whitespace (here, for clarity, indicated in light gray): at
one corridor we add the region in U-shape.

(a) (b) (c) (d)

Figure 4: (a) Variable loop, with the two feasible solu-
tions (b)/(c). We associate the solution in (b) and (c)
with a truth setting of “false” and “true”, respectively.
The 2×5 region in the center face ensures that for (b) and
(c) the filled-in squares are fixed, and it renders the third
solution for the loop of the 1×3 rectangles infeasible (d).

(a) (b) (c)

Figure 5: (a) Corridor gadget with enforced white/black
pixels. The connected variable gadget is located within the
red boundary. If the variable is set to “false”, only a 2×1-
block pushed to the end of the corridor is a feasible fill-in
(b). If the variable is set to “true”, it is possible to place a
2×1-block directly at the connection to the variable loop,
leaving the last pixel of the corridor white (c).

SAT with incidence graph G, we show how to turn
a rectilinear planar embedding of G into a Norinori
board B such that a solution to B yields a solu-
tion to F , thereby showing NP-completeness. Fur-
thermore, there will be a one-to-one correspondence
between solutions of B and solutions of F , showing
#P-completeness.

We begin by constructing a representation of vari-
ables and their negations, then show how to propagate
and bend the variable values using ’wires’ and com-
bine the wires to form clauses. Note that throughout,
the constructed gadgets have a single solution for any
given variable assignment, which will make this re-
duction parsimonious.

The polyomino regions not incorporated into our
gadgets will not affect the gadget solutions, as for any
open region we use a face gadget, shown in Figure 3,
to force the region to contain two black squares, which
disallows any others. Therefore, there can be no in-
terference between our gadgets and the polyomino re-
gions surrounding them.

The basic variable gadget is created out of 1 × 3
polyominos, and forms a variable loop, shown in
Figure 4. Each variable loop has two possible solu-
tions, corresponding to setting the variable as ”true”
or ”false”, and the domino placement is completely
determined by the variable assignment. (A third solu-

(a) (b) (c)

Figure 6: (a) The bend gadget with enforced white and
black pixels. The connected variable gadget is located
within the red boundary. (b) “false”, (c) “true’.

(a) (b)

Figure 7: 1-in-3 gadget construction for Norinori (a) and
LITS (b). The red, dotted lines indicate the connectors
from the “at most”-gadget.

(a) (b) (c) (d)

Figure 8: (a) The at-most gadget: corridors from two
negated variables enter. If both corridors enter with a
setting of “true” (variable setting of “false”) (b), or if the
corridors have different truth settings (c), there exists a
feasible solution. (d) If both corridors enter with a variable
setting of “true” the board cannot be completed.

tion placing the dominoes over the region boundaries

From each variable loop, we can propagate the vari-
able value, creating a corridor gadget, shown in Fig-
ure 5. Note that a ”false” assignment for a variable
forces a domino to be placed at the far end of the
corridor, while a ”true” assignment leaves open the
possiblity of placing a domino at either end. This will
be accounted for in the final clause gadget.

By choosing the appropriate place to connect the
corridor gadget to the variable loop, we can gener-
ate wires for both the variable value and its negation.
That is, no separate negation gadget is needed. In ad-
dition, we can connect several corridor gadgets to the
variable loop. Furthermore, we can create 90◦ turns
in the corridor gadget using the bend gadget, shown
in Figure 6.

To combine the corridor gadgets into clauses, we use
the 1-in-3 gadget in Figure 7(a), where the at-most

and the clause gadget is shown in Figure 8 and 9, re-
spectively. The 1-in-3 gadget uses two negated copies
of each variable assignment and combines them with
the at-most gadgets. This forces at most one of the
variables’ truth assignments to be true, while the cen-
ter clause gadget requires at least one true assign-
ment. Together, this forces exactly 1 true assignment,
giving a solution to the instance F .

Given a solution to an m×n Norinori board, it can
obviously be verified in polynomial time. �

31

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

(a) (b) (c) (d)

Figure 9: Norinori clause gadget (a): if all variables do
not fulfill the clause, the clause region cannot be filled
(b). (c), (d): feasible solutions for three and one variable
fulfilling the clause.

(a) (b)

Figure 10: Gadget for each face of the arrangement: at
one corridor of the whitespace (here, for clarity, indicated
in light gray) we add a T in distance 4 from an S (a), this
enforces the placement of an I to connect the T.

(a) (b)

(c)

Figure 11: Variable gadget (a), with the two possible
feasible solutions (b),(c). We associate one with a truth
setting of “false” (b) and the other with “true” (c).

3 NP-completeness of LITS

Theorem 2 Determining if a LITS board is solvable

is NP-complete and counting the number of solutions

is #P-complete.

Proof. The proof is again by reduction from PLA-
NAR 1-IN-3-SAT. The structure of the LITS reduc-
tion is the same as in the previous proof for Norinori.
The properties of a final LITS board enforce unique
feasible solutions for the following gadgets.
We begin by noting that the polyomino regions not

incorporated into our gadgets will not affect the gad-
get solutions, as for any open region we use a face

gadget, shown in Figure 10, to force the region to
contain a connecting 4× 1 tetromino, which disallows
any others. Therefore, there can be no interference
between our gadgets and the polyomino regions sur-
rounding them.
The basic variable gadget is created out of a re-

peating pattern of polyominos, shown in Figure 11.
Each variable gadget has two possible solutions, cor-
responding to setting the variable as ”true” or ”false”,
which are completely determined by the tetromino
placement. The variables are connected by 4×1 tetro-
minos, similar to the face gadget. This ensures that
the resulting set of black squares can be connected.

(a) (b) (c)

Figure 12: (a) The NOT gadget. (b),(c) The wires con-
nected by the NOT gadget always satisfy opposite truth
assignments.

(a) (b) (c)

Figure 13: (a) The bend gadget. As the 3x2 rectangle
is adjacent to an enforced L, S and I (length of the 2x4
rectangle), it must be filled in with a T. In (b) the other T
would not connect to the incoming I; the other outgoing I
would leave the S unconnected. In (c) the other T would
not connect to the incoming I; the other outgoing I would
result in a filled 2x2 square shown in dashed pink.

(a) (b) (c)

(d) (e) (f)

Figure 14: (a) The split gadget, with the two different
truth settings (b), (c). The central shape (adjacent to an
L and an I) must contain either a S or a T. No position of
the T is possible (d)-(f).

We can propagate the variable assignment, creat-
ing a corridor gadget, by linearly repeating the pat-
tern in the variable gadget. Negating a variable corre-
sponds to inserting a NOT gadget into the corridor,
as in Figure 12. To create 90◦ turns in the corridor
gadget, we use the bend gadget, shown in Figure 13,
and to create copies of the variable assignment we use
the split gadget, shown in Figure 14.

To combine the corridor gadgets into clauses, we
use the 1-in-3 gadget in Figure 7(b), where the at-

most and the clause gadget is shown in Figure 15
and 16, respectively. The 1-in-3 gadget combines two
copies of each variable’s assignment with the others
using the at-most gadgets. This forces at most one
of the variables’ truth assignments to be true, while
retaining the connectivity condition. Then, the cen-
ter clause requires at least one true assignment and
together these force exactly 1 true assignment, giving
a solution to the instance F .

Given a solution to an m × n LITS board, it can
obviously be verified in polynomial time. �

32

33rd European Workshop on Computational Geometry, 2017

(a) (b) (c) (d)

Figure 15: (a) At-most gadget: the two C-shaped regions
connect to the variable corridors (as in the clause gadget);
the red I is a connector (corridor of (enforced) I- and T-
shapes that connects to an S or L of a corridor on that
face), as indicated by the red lines in Fig. 7(b). If both
variables have a truth setting fulfilling the clause (b), no
T in the central cross can be placed without filling a 2x2-
square. If both variables do not fulfill the clause (c), or
one of them does (d), a T can be placed.

4 Boards with unique solutions

Definition 2 Define UN (n,m) to be the minimal

number of regions among all n × m Norinori boards

with unique solutions. Similarly, define UL(n,m) to

be the minimal number of regions among all n ×
m LITS boards with unique solutions. Note that

UN (n,m) and UL(n,m) need not exist for all n,m,

in which case we say UN (n,m) = 0 or UL(n,m) = 0.

Theorem 3 The following values for UN (n,m) hold:

(a)

(b)

(c)

Figure 16: (a) The clause gadget: if all variables have
truth settings that do not fulfill the clause (b), no tetro-
mino in the light gray region can be connected; if at least
one variable has a truth setting fulfilling the clause (c), an
I can connect to the other tetrominoes.

(a) (b) (c)

Figure 17: (a) For m = 2,
⌈

n

4

⌉

regions can have a unique
solution. (b)/(c) For m ≥ 3 and n ≥ 5 there exist 3 poly-
omino regions, such that the board has a unique solution.

(a) (b) (c)

Figure 18: For m ≥ 2 and n ≥ 10 there exist 3 polyomino
regions (a), such that the board has a unique solution (b).
An example for m=4, n=14 (c).

1. UN (n, 1) = 0 for n �≡ 2 mod 3
2. UN (n, 1) = n+1

3
for n ≡ 2 mod 3

3. UN (n, 2) ≤
⌈

n

4

⌉

for n ≥ 3
4. UN (n,m) = 3 for all n ≥ 5,m ≥ 3.

Proof. For the case of an n × 1 board, examine the
leftmost domino in the completed board. Since the
board has a unique solution, it must consist of the
leftmost two squares, as otherwise we could move it
left without making the board infeasible. Further-
more, the leftmost region can consist of either 2 or 3
squares, as otherwise we could move the domino right
without making the board infeasible. Therefore, we
generate an (n−3)×1 board by removing the leftmost
three squares and, if necessary, modifying the second
leftmost region by removing its leftmost square. The
resulting board has the same unique solution as the
original, restricted to its squares. We can then repeat
the process until there is only one region and verify
that the only n × 1 board with one region that has
a unique solution is the 2 × 1 board. Therefore, the
only n× 1 boards with a unique solution have n ≡ 2
mod 3. Moreover, we remove one domino per three
squares, so UN (n, 1) = n+1

3
in this situation.

For the other cases, see Figure 17 for constructions
achieving the given bounds, with the observation that
UN (n,m) > 2 for n ≥ 5,m ≥ 3. �

Theorem 4 UL(n,m) = 3 for all n ≥ 10,m ≥ 2. In

other words, 3 regions suffice to completely determine

an n×m LITS board, as long as n ≥ 10 and m ≥ 2.

Proof. See Figure 18. �

References

[1] M. E. Dyer and A. M. Frieze. Planar 3DM is NP-
complete. Journal of Algorithms, 7(2):174–184, 1986.

[2] B. McPhail. Metapuzzles: Reducing SAT to your fa-
vorite puzzle. CS Theory Talk, 2007.

[3] Nikoli. http://www.nikoli.com/en/puzzles/norinori/,
NIKOLI Co., Ltd. Accessed December 6, 2016.

[4] Nikoli. http://www.nikoli.co.jp/en/puzzles/lits.html,
NIKOLI Co., Ltd. Accessed December 6, 2016.

33

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

How to play hot and cold on a line

Herman Haverkort∗ David Kübel† Elmar Langetepe† Barbara Schwarzwald†

1 Introduction

Imagine we want to set up receivers to locate an an-
imal that carries a device which sends signals. The
strength of the signals may vary, but we know one
thing: the further the distance from the animal, the
weaker the signal. Or imagine a researcher conducting
a survey, who wants to summarize respondents’ polit-
ical preferences by scoring them on several scales (for
example, from conservative to progressive, or from
favouring a small state to a large state). Respondents
may not be able to score themselves but, given a num-
ber of hypothetical party programmes, they can rank
them and say which one they like best.

In such settings, we are essentially searching for a
target that is a point in a one- or higher-dimensional
space. To pinpoint the location of the target, we issue
queries (receivers, party programmes) that are points
in the same configuration space. As a response, we
obtain an ordering of the query points according to
their distance to the target. From this we try to de-
rive the location of the target with the highest pos-
sible accuracy—or conversely, we try to reach high
accuracy with as few (expensive) queries as possible.

Searching for a stationary target is a common prob-
lem in computer science and applied mathematics.
Strategies such as evenly distributed query points or
binary search spring to mind immediately, but, as we
will see in this paper, at least in certain abstract set-
tings of the problem we can do much better. The
problem of efficiently obtaining an order on a set of
objects has been studied before in very general set-
tings [3], but note that in our case, the cost measure
is the number of query points that are used, not the
number of comparisons that are made between them.
The reconstruction of geometric objects based on a
sequence of geometric probes (points, lines, hyper-
planes, wedges, etc.) has also been investigated: the
problem was introduced by Cole and Yap [2] and the
main focus is also on the number of queries [5].

Specifically, we focus on the following setting. The
target t is a one-dimensional point located at an un-
known position in the unit interval [0, 1]. To pinpoint
the location of t, we may query the interval at points
q1, . . . , qn ∈ [0, 1]. As a response, we obtain an order-
ing of the points by ascending distance to t. This re-
stricts possible positions of t to a subinterval bounded

∗Dept. of Math. and Computer Sc., TU Eindhoven
†Dept. of Computer Sc., U. of Bonn.

by bisectors of query points or an end point of the
initial interval. We measure the efficiency or quality
of a query strategy in terms of the reciprocal of the
size of the subinterval in which the target t is found
to lie. The worst-case of this reciprocal, that is, the
minimum over all possible locations of t, is called the
accuracy of the query strategy.
With respect to the frequency of the responses,

we distinguish two variants. In the one-shot variant
(Sec. 2), the response is only given after all points
q1, . . . qn have been placed. In this case one needs to
maximize the number of different, well-spaced bisec-
tors. Such combinatorial questions are classical prob-
lems in discrete geometry; see for example [4]. In the
incremental variant (Sec. 3), a response is given after
each point placement, and may affect the choice of the
next point. This enables a binary search strategy, but
we can do much better than that. The problem can
be interpreted as a game where an adversary tries to
hide the target in the largest possible area. Geomet-
ric games about area optimization have a tradition in
Computational Geometry; see for example [1].

For both variants we present an efficient strategy
and an upper bound on the accuracy that can be
achieved. In Section 4, we briefly discuss room for
improvement and implications for higher-dimensional
settings of the problem.

2 One-shot strategies

First we consider the one-shot variant of the problem:
only after generating n query points, we get to hear
their ordering by distance to the target t. This pin-
points t to a subinterval bounded by bisectors of query
points or an end point of the interval. As the target
may lie in any subinterval, our problem is equivalent
to minimizing the maximum size of such an interval.
As n query points can produce at most 1

2n(n − 1)
distinct bisectors, there are at most 1

2n(n − 1) + 1
intervals. Thus, we get the following (trivial) upper
bound for the accuracy of one-shot strategies:

Theorem 1 The accuracy of any one-shot strategy

with n points is at most 1
2 · (n2 − n+ 2) ∈ O

(

n2
)

.

We will now develop a strategy to get close
to this upper bound. As a starting point, con-
sider the following simple strategy, which we call
EquiDist(n): place n evenly spaced query points
(q1, q2, . . . , qi, . . . , qn) := (0, 1

n−1 , . . . ,
i−1
n−1 , . . . , 1).

The accuracy of EquiDist(n) is only 2(n−1) because

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

34

33rd European Workshop on Computational Geometry, 2017

many bisectors overlap. However, for n ≥ 7 it is possi-
ble to forgo some of these query points, while the num-
ber of distinct bisectors, and so the accuracy, stays the
same. Hence, for some function ϕ(n) with ϕ(n) > n,
we can achieve the same accuracy as EquiDist(ϕ(n))
with n query points. Specifically, we now introduce a
strategy Gapx(n) that will form a subset of the query
points defined by EquiDist(ϕx(n)) for ϕx(n) :=
n(x + 1) − 2x2 − x − 2 by using only the following
n points from EquiDist(ϕx(n)): q1, q2, . . . , qx+1, as
well as q2x+1+k·(x+1) for k ∈ {0, . . . , n−(2x+3)}, and
qϕx(n)−x, . . . , qϕx(n)−1, qϕx(n). This results in widely
spaced query points throughout the search range, and
tightly spaced points near both ends, omitting at most
x consecutive query points from EquiDist(ϕx(n)).
Most bisectors will then be formed by one of the
tightly and one of the widely spaced points.

Lemma 2 For x, n ∈ N with n ≥ (2x + 3), the one-

shot query strategy Gapx has accuracy 2(ϕx(n)− 1).

Proof. It suffices to show that every distinct bisector
from EquiDist(ϕx(n)) is also created byGapx(n), as
the points chosen by Gapx(n) are a subset of those
chosen by EquiDist(ϕx(n)). For each 1 ≤ i < ϕx(n),
Gapx(n) must choose two points that form a bisector
in the middle between qi and qi+1. For each 1 < j <
ϕx(n), Gapx(n) must choose two points that form a
bisector directly on qj .
For i ≤ x and j ≤ x this is given by q1, q2, . . . , qx+1.

For x < i < ϕx(n)
2 , EquiDist(ϕx(n)) forms a

bisector between qi and qi+1 with all of the pairs
(q1, q2i), (q2, q2i−1), . . . , (qx+1, q2i−x). One of these
pairs has to be in the chosen subset of Gapx(n),
since the choosing process omits at most x consec-
utive points. Likewise, one of the pairs (q1, q2j−1),
(q2, q2j−2), . . . , (qx+1, q2j−(x+1)) must have been cho-
sen by Gapx(n). Those pairs form a bisector on qj
for x < j ≤ ϕx(n)

2 . The existence of the remaining
bisectors, that is, those in the right half of the unit
interval, follows by the symmetry of the strategy.
Hence Gapx(n) produces the same set of 2(ϕx(n)−

2) distinct equidistant bisectors as EquiDist(ϕx(n)),
resulting in an accuracy of exactly 2(ϕx(n)− 1). �

It remains to choose the optimal x, given n, max-
imizing ϕx(n). As the slope of ϕx increases with
x, Gapx is eventually surpassed by Gapx+1. The
break-even point between Gapx and Gapx+1 is at
n = 4x+ 3. Hence, xopt = ⌈n−3

4 ⌉ and we get:

Theorem 3 For any n ≥ 3 and xopt = ⌈n−3
4 ⌉,

the one-shot strategy Gapxopt
(n) has an accuracy of

2(ϕxopt
(n)− 1) ≥ 1

4 · (n2 + 6n− 27) ∈ Ω(n2).

This leaves only a gap of a factor two between the
lower and the upper bound.

3 Incremental and online strategies

In this section we consider incremental strategies, that
is, before placing any query point qi we may learn the
ordering of q1, ..., qi−1 by (increasing) distance to the
target, and we may choose the location of qi depend-
ing on that information. We will show upper and
lower bounds on the accuracy that can be achieved.

3.1 A strategy with high accuracy

A simple incremental strategy could choose the query
points such that the interval containing the target is
halved in each step. Thus, with n query points, we
achieve accuracy 2n−1. But we can do much better,
with a recursive strategy that takes advantage of more
than one new bisector in many steps. Let h(n) be the
accuracy we aim for, as a function of the number n of
query points we get to place. For ease of description,
we use the interval [0, h(n)] instead of the unit interval
and pinpoint the target to an interval of length 1.
The recursion in our strategy depends on a number
of conditions, labelled A to E and presented below.

Our strategy places the first two query points sym-
metrically. Let g(n) be the distance of the first two
query points to their common bisector, so we place q1
at 1

2h(n)−g(n) and q2 at 1
2h(n)+g(n). Now suppose

the target lies to the right of the bisector (the other
case is symmetric). We now place q3 at some distance
2f(n) to the right of q2, and find that the target lies
in one of three intervals (see Figure 1(i)):
(i) [bs(q1, q2), bs(q1, q3)] = [12h(n),

1
2h(n) + f(n)], of

size f(n).
(ii) [bs(q1, q3), bs(q2, q3)] = [12h(n) + f(n), 1

2h(n) +
g(n) + f(n)], of size g(n), or

(iii) [bs(q2, q3), h(n)] = [12h(n)+g(n)+f(n), h(n)], of
size 1

2h(n)− g(n)− f(n).
To be able to apply our strategy recursively in the
first interval, using the remaining n− 3 query points,
we choose f(n) = h(n − 3). For the third interval,
of width 1

2h(n)− g(n)− h(n− 3), we use an adapted
strategy, explained below, that places the remaining
n − 3 query points in a way that exploits the pre-
viously placed query points q2 and q3 at distance
f(n) = h(n − 3) left and right of its left boundary.
The same strategy can be applied symmetrically to
the second interval, provided the second interval is not
larger than the third, that is, g(n) ≤ 1

4h(n)−
1
2h(n−3)

for n ≥ 3 (condition A). Note that condition A
also ensures that q1 and q2 lie within the interval
[0, h(n)]. To be able to place q3, we also require
g(n) + 2h(n− 3) ≤ 1

2h(n) for n ≥ 3 (condition B).
We now describe our adapted strategy to locate a

target in an interval [0, 1
2h(n)−g(n)−h(n−3)] (mod-

ulo translation) with n−3 query points q4, ..., qn that
can be chosen freely and two predetermined query
points q2 = −h(n − 3) and q3 = h(n − 3) (see Fig-
ure 1(ii)). We place q4 at h(n− 3)+ 2h(n− 4); this is
possible if h(n−3)+2h(n−4) ≤ 1

2h(n)−g(n)−h(n−3)

35

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

q1 q2 q3

g(n) g(n) f(n) = h(n− 3)

g(n)

f(n)

1
2
h(n)− g(n)− f(n)

(i)

f(n)

(ii)
q3q2 q4

h(n− 3) h(n− 3) h(n− 4) h(n− 4)

h(n− 4) h(n− 3) 1
2h(n)− g(n)− 2h(n− 3)− h(n− 4)

Figure 1: Location of the first query points for our incremental strategy to locate a target with accuracy h(n).

for n ≥ 4 (condition C). Again, the target lies in one
of three intervals: an interval of width h(n−4) on the
left, to which we apply the overall strategy recursively,
an interval of width 1

2h(n)−g(n)−2h(n−3)−h(n−4)
on the right, with predetermined query points at dis-
tance h(n− 4) from its left boundary, and an interval
of width h(n − 3) in the middle, with predetermined
query points at distance h(n−4) from its right bound-
ary. We can apply the adapted strategy recursively to
the rightmost interval, using the remaining n−4 query
points, provided 1

2h(n)−g(n)−2h(n−3)−h(n−4) =
1
2h(n − 1) − g(n − 1) − h(n − 4) for n ≥ 4 (condi-
tion D), and we can apply the adapted strategy re-
cursively to the interval in the middle if h(n − 3) ≤
1
2h(n−1)−g(n−1)−h(n−4) for n ≥ 4 (condition E).
nn It remains to choose h and g as functions of n such
that the conditions A–E for recursion are satisfied,
and such that, when no further recursion is possible
because we have run out of query points, the remain-
ing interval is small enough: h(0) ≤ 1, h(1) ≤ 1,
h(2) ≤ 2, and 1

2h(3) − g(3) − h(0) ≤ 1. The opti-
mal choice of h and g that satisfies these conditions
turns out to be h(0) = h(1) = 1, h(2) = 2, h(3) = 6,
g(n−1) = 1

4h(n−1)− 1
2h(n−4) for all n ≥ 4 (satisfy-

ing condition A with equality), and (substituting this
in condition D) h(n) = h(n−1)+6h(n−3)+2h(n−4)
for all n ≥ 4. Thus h(n) = Ω(bn), where b > 2.2993
is the largest root of b4 − b3 − 6b− 2, and we obtain:

Theorem 4 There is an incremental strategy to lo-

cate a target in a unit interval with accuracy Ω(bn),
where b > 2.2993 is the largest root of b4−b3−6b−2.

Theorem 4 also holds in the on-line setting, where n
is unknown until the last query point has been placed.
In the on-line setting, the strategy is to take h(n) =
2bn−2 and g(n) = 1

4h(n)−
1
2h(n−3) = (12 −b−3)bn−2.

Thus, the locations of q1, ..., q4, relative to the size
of the interval, h(n), are independent of n, and can
therefore be decided without advance knowledge of n.

3.2 Upper bound

By placing a query point qi, we obtain i − 1 new bi-
sectors of qi with previously placed query points. We
learn the rank of qi among q1, ..., qi with respect to the
distance to the target, which tells us where the target

is with respect to the new bisectors. This reduces the
interval R where the target must be to one of at most
i subintervals of R, at least one of which must have
size at least 1/i times the size of R. Therefore, for any
incremental strategy, there must be targets for which
we can increase the accuracy with a factor at most i
with every query point qi, leading to an accuracy of
at most n! after placing n query points. However, this
bound is far from tight. We can show a much stronger
upper bound on the accuracy that can be achieved:

Theorem 5 For any deterministic incremental strat-

egy on the unit interval, there is a target that cannot

be located with accuracy better than O(bn), where

b < 3.652 is the greatest root of b3 − 4b2 + b+ 1.

Let Rn be the interval in which a target is known
to lie after placing n query points, let rn be the size of
Rn, and let an be the corresponding accuracy 1/rn.
Our proof of Theorem 5 is based on the following in-
sight. Suppose, for example, that we have placed n−1
query points, and placing another query point qn gen-
erates two new bisectors that divide the target interval
into three equal parts—thus improving the accuracy
by a factor three. This means that qn generates two
new bisectors bs(qn, qi) and bs(qn, qj), where qi and
qj are two previously placed query points that are
consecutive in the left-to-right order of all previously
placed points, and such that the distance between qi
and qj is 2/3 of rn−1 (the size of the target region
after n − 1 query points) and two times rn (the size
of the target region after n points).

The example illustrates that, for a large increase
in accuracy, one needs to have close pairs : pairs of
previously placed query points with a small distance
between them, compared to the size of the current re-
gion. The example also illustrates that, as the accu-
racy increases, close pairs can stop being close as their
distance relative to the current accuracy increases.
Moreover, with the placement of each query point,
one can create at most two new close pairs (one with
the left neighbour and one with the right neighbour
among the query points placed so far). To create a
close pair, one must place a query point qn close to
a previously placed query point, but then the newly

36

33rd European Workshop on Computational Geometry, 2017

created bisectors are also close to the previously cre-
ated bisectors. In particular, if a close pair is created,
most new bisectors inside Rn−1 will be relatively close
to the boundary of Rn−1 and away from the centre of
Rn−1. Thus, creating close pairs cannot go together
with substantial accuracy gains if the target is near
the centre of Rn−1. In effect, close pairs are a re-
source whose scarcity limits the accuracy that can be
obtained. Below we make this insight more precise.
We define a d-close pair as a pair of previously

placed query points that are consecutive in their left-
to-right order and with distance less than d divided
by the current accuracy. The following three lemmas
(proof omitted in this abstract) capture the trade-off
between, on the one hand, creating close pairs, and
on the other hand, using and losing them while pin-
pointing the location of the target.

Lemma 6 If, regardless of the location of the tar-

get in Rn−1, placing qn results in an accuracy gain

rn−1/rn that is at least 1 + d
2 , then at most one new

d-close pair is created.

Lemma 7 If, regardless of the location of the target

in Rn−1, placing qn results in an accuracy gain of at

least 2 + d
2 , then no new d-close pairs are created.

Lemma 8 For any h and d such that h ≥ 2 + d
2 and

2
h

≤ d ≤ 2 and for any c > 1, the following holds:

if, regardless of the location of the target in Rn−1,

placing qn results in an accuracy gain rn−1/rn that

exceeds h, then, for certain locations of the target,

there is a positive integer k such that the accuracy

gain rn−1/rn is less than ck/
(

(c− 1) · (1− 2
h
)
)

and

the number of d-close pairs decreases by at least k.

We can now derive the following formula that ex-
presses the cumulative effects of Lemmas 6, 7 and 8:

Lemma 9 Let an and pn(d) be the accuracy and the

number of d-close pairs obtained after placing n query

points. For any h, d, c, and w such that h ≥ 2 + d
2

and 2
h
≤ d ≤ 2 and 1 < c ≤ w, we have, for certain

locations of the target and for each n:

anw
pn(d) ≤ bn,

where b is the maximum of
(

1 + d
2

)

w2,
(

2 + d
2

)

w, h,

and c/
(

w(c− 1)(1− 2
h
)
)

.

Lemma 9 is proven by induction. For each query
point, we distinguish four cases depending on which
of the previous three lemmas is the last one that ap-
plies. In each case we find that, for some locations of
the target the left-hand side of the above inequality
increases at most as much as the right-hand side.
To get the most out of Lemma 9, we choose h as

the largest root of h3 − 4h2 + h + 1, d = 2
h
, and

c = w = h/(2 + 1
h
), and we get b = h ≈ 3.6511. Since

pn(d) cannot be negative, this implies that there are
targets for which an ≤ anw

pn(d) ≤ bn for all n, and
thus, such targets are not located with accuracy better
than O(bn). This concludes the proof of Theorem 5.

4 Conclusions and outlook

For the one-shot variant of our location problem, we
presented an upper bound and a constructive lower
bound on the accuracy that can be achieved. The
remaining constant-factor gap between these bounds
may be due to the fact that most bisectors formed
by pairs of both tightly or both widely spaced points
do not contribute anything to the accuracy. However,
the upper bound might also be improved.
For the incremental variant, we obtained non-trivial

upper and lower bounds but a gap that is exponen-
tial in n still remains. Our search strategy does not
seem to leave any space for substantial improvements,
so further progress must come from an entirely new
search strategy, or from tightening the upper bound.
Observe that in each step, our search strategy only
uses the bisectors that are formed with the two pre-
viously placed query points that are closest to the
target. If we could prove that there is an optimal
search strategy with this property, then this would
immediately improve the upper bound to O(3n).
To search a d-dimensional unit cube, we could place

roughly n/d query points on each coordinate axis in a
round-robin fashion; on each axis, we place the points
according to the one-shot, incremental, or on-line in-
cremental strategy. Thus, where we obtain accuracy
h(n) in one dimension, we can pinpoint a target to a
cube of width 1/h(⌊n/d⌋) in d dimensions. This ap-
proach, however, fails to take advantage of bisectors
between query points placed on different axes, not to
mention query points placed more freely. Indeed, for
d = 2, there are better solutions for n ∈ {3, 4}.

Acknowledgements

We thank all participants of the 2016 Lorentz Center

Workshop on Search Games, and, in particular, Bengt

Nilsson and Endre Csóka, for their invaluable contribu-

tions in defining the problem and initial solutions.

References

[1] H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, and
R. van Oostrum. Competitive facility location: the
Voronoi game. Th. Comp. Sc., 310(1):457–467, 2004.

[2] R. Cole R. and Ch. K. Yap. Shape from probing. J.

of Algorithms, 8(1):19– 38,1987.

[3] J. Kahn and M. Saks Balancing poset extensions
Order, 1: 113– 126, 1984.

[4] J. Matoušek. Lectures on discrete geometry, Springer,
New York, 2002.

[5] S. Skiena. Interactive reconstruction via geometric
probing. Proc. of the IEEE, 80(9):1364–1383, 1992.

37

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Distance Measures for Embedded Graphs

Maike Buchin∗ Stef Sijben∗ Carola Wenk†

Abstract

We introduce new distance measures for com-
paring plane embedded graphs based on strong
and weak Fréchet distance. These distances
use both the structure and the embedding of
the graphs. We present an algorithm to com-
pute the weak graph distance of two straight-
line graphs of complexity n each in O(n2 log n)
time and a randomized algorithm that com-
putes the graph distance in O(n5/2+δ) ex-
pected time for any δ > 0.

1 Introduction

Embedded graphs occur often in applications,
e.g., as road networks. Often they need to be
compared. A few different approaches have
been proposed in the literature for comparing
such graphs. Subgraph-isomorphism as well
as edit distance approaches [7] are NP-hard.
Other distance measures compare all paths [1]
or random samples of shortest paths [8]. In
order to capture more topological information,
Biagioni and Eriksson developed a sampling-
based distance measure [5] and Ahmed et al.
introduced the local persistent homology dis-
tance [2]. Alt et al. defined a distance based
on mapping graph traversals [3].

Let G1 = (V1, E1) and G2 = (V2, E2) be
plane embedded graphs with vertices embed-
ded as points in the plane that are connected
by straight-line edges. We define two distance
measures on such graphs, based on mappings
between the graphs that have small distance
in the embedding space.

We consider maps s : G1 → G2 that map
each vertex v ∈ V1 to a point s(v) on G2 (not
necessarily a vertex) and that map each edge
{u, v} ∈ E1 to a simple path in G2 with end-

∗Department of Mathematics, Ruhr-Universität

Bochum, {Maike.Buchin,Stef.Sijben}@rub.de
†Department of Computer Science, Tulane Univer-

sity, cwenk@tulane.edu. Work by Carola Wenk was

supported by National Science Foundation grant CCF-

1618469.

points s(u) and s(v). We require that edges
are mapped to paths such that these have
small (weak) Fréchet distance [4] in the em-
bedding space. We call the resulting defini-
tions the directed (strong) graph distance δd

and the directed weak graph distance δd,w:

δd(G1, G2) := inf
s:G1→G2

max
e∈E1

δF (e, s(e)),

δd,w(G1, G2) := inf
s:G1→G2

max
e∈E1

δwF (e, s(e)),

where s ranges over all maps as defined be-
fore and δF denotes the Fréchet distance and
δwF the weak Fréchet distance of the edge e

and its image s(e) interpreted as curves in the
embedding space. The Fréchet distance and
the weak Fréchet distance, also known as dog-
leash distances, are popular distance measures
for curves. For two polygonal curves of com-
plexity n they can be computed in O(n2 log n)
time [4]. We define the undirected distance
δu between G1 and G2 as the maximum
of the directed distances, i.e., δu(G1, G2) =
max(δd(G1, G2), δd(G2, G1)) and analogously
we define the weak undirected distance δu,w.

We observe that the graph distance and
weak graph distance are pseudo-metrics, i.e.,
are symmetric and fulfill the triangle inequal-
ity. The (weak) graph distance between two
graphs is zero if the (weak) Fréchet distance
between their embeddings is zero.

Note that we do not require the mappings
to be injective or surjective, and the mappings
in the two directions may be far from inverse
to each other.

A similar directed distance measure for
graphs was considered by Alt et. al. [3]. They
define the traversal distance of two connected
embedded straight-line graphs G1, G2 as

δT (G1, G2) = inf
f,g

max
t∈[0,1]

||f(t)− g(t)||.

where f ranges over all traversals of G1 and g

over all partial traversals of G2. A traversal of
G1 is a continuous, surjective map f : [0, 1] →
G1, and a partial traversal of G2 is a continu-
ous map g : [0, 1] → G2.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

38

33rd European Workshop on Computational Geometry, 2017

G2G1

Figure 1: Two graphs with small traversal but
large (weak) graph distance.

We observe that our distance measures
are stronger distances in the sense that
δT (G1, G2) ≤ δd,w(G1, G2) ≤ δd(G1, G2), if
G1 and G2 are connected. This follows be-
cause a map in our sense maps any traversal
of G1 to a partial traversal of G2 with distance
≤ ε, although the traversal might need to be
slightly altered for the weak distance. Figure 1
shows two graphs that have large graph dis-
tance but small traversal distance.

2 Algorithms

First we consider the decision problem, that
is deciding if the (weak) directed distance be-
tween two plane graphs G1 and G2 is at most
a given distance ε. The undirected distance is
decided by deciding both directed distances.
We always assume that G1 and G2 are plane
straight-line graphs of complexity n each. Due
to space restrictions we omit proofs in this ex-
tended abstract.

2.1 Valid placements

A mapping realizing a given distance maps
each vertex of G1 to a point in G2, and it
maps each edge of G1 to a path in G2. The
algorithm iterates over all vertices and edges
of G1, maintaining all possible placements of
vertices and of edges.

Definition 1 An ε-placement of a vertex v

is a connected component of G2 restricted to
the ε-ball Bε(v) around v. An ε-placement of
an edge e = {u, v} is a path P in G2 with
endpoints on placements Cu of u and Cv of v
such that δF (e, P) ≤ ε; in that case we say
that Cu and Cv are reachable from each other.
An ε-placement of G1 is a map s : G1 → G2

such that s maps each edge e of G1 to an ε-
placement.

Note that deciding whether δd(G1, G2) ≤

ε is equivalent to deciding whether an ε-
placement of G1 exists. In the context of the

decision algorithm, we assume ε is fixed and we
use the term placement for an ε-placement and
we use vertex-placement to refer to a place-
ment of a vertex. Weak ε-placements for edges
and graphs are defined analogously.
Our algorithm iterates once over all vertices

and edges of G1. First, we iterate over all ver-
tices v ∈ V1 and compute all their placements.
Then we iterate over all edges e = {u, v} ∈ E1

to determine which vertex-placements allow a
placement of e, i.e., we search for placements
Cu of u and Cv of v such that there is a path
P in G2 between Cu and Cv with δF (e, P) ≤ ε

(or δwF (e, P) ≤ ε).
This problem is algorithmically simpler for

the weak Fréchet distance: Here, it suffices for
P to stay within an ε-tube Tε(e) around e,
which contains all points whose distance to e

is ≤ ε. For the strong graph distance, we must
ensure that the Fréchet distance between e and
P is at most ε, i.e., a continuous and mono-
tone map exists from e to P that maintains
a distance of at most ε. This can be checked
using the original dynamic programming algo-
rithm [4] for computing the Fréchet distance.
Finally, when all vertices and edges have

been processed, the algorithm must decide
whether G1 as a whole can be mapped to G2

and construct a mapping if one exists. For
this, invalid placements of vertices are pruned
while processing vertices and edges of G1.

Definition 2 An ε-placement Cv for a vertex
v is valid if for every u adjacent to v there
exists an ε-placement Cu of u such that Cv and
Cu are connected by a (weak) ε-placement of
the edge {u, v}. Otherwise, Cv is invalid.

2.2 Computing Edge Placements

To decide which placements of vertices u and
v incident to an edge e are valid, we com-
pute which vertex-placements of v are reach-
able from those of u (and vice versa). Using
this information, we can decide which vertex-
placements are valid and which become invalid
after removing some vertex-placements in the
final step of the algorithm.
For the weak graph distance, we need to

find all pairs of placements of u and place-
ments of v that can reach one another using
paths contained in Tε({u, v}). If we restrict G2

to its intersection with the ε-tube, all vertex-
placements in the same connected component

39

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

are mutually reachable. Thus, we can process
each edge in linear time and space by comput-
ing for each such connected component a pair
of lists containing the placements of u and v in
that component, respectively. All reachability
information can be computed in O(n2) time
and space.
For the strong graph distance, existence of

a path inside the ε-tube is not sufficient. In-
stead, every placement of u stores a list of
all placements of v that are reachable. The
reachability information can be computed by
running a graph exploration starting from
each placement, which terminates if the search
leaves the ε-tube or violates the Fréchet dis-
tance. This method runs a search for every
placement of the start vertex and thus needs
O(n2) time per edge of G1. Since the connec-
tivity is explicitly stored as pairs of placements
that are mutually reachable, it needs O(n2)
space per edge. Hence in total over all edges
O(n3) time and space are needed.

2.3 Solving the Decision Problem

To compute a placement of G1 we can use
the reachability information about vertex-
placements to prune invalid placements. A
placement Cv of v is invalid if there exists a
neighbour u of v such that Cv can reach no
placements of u. All invalid placements are
deleted, which might cause other placements
to become invalid, as they were only connected
to placements that no longer exist. Thus, the
algorithm needs to iteratively delete invalid
placements and then check which placements
become invalid as a result. This is repeated
until no invalid placements exist. After this
step all remaining placements are valid.
Obviously δd(G1, G2) > ε if there is a ver-

tex that has no valid placement. We show
that the existence of at least one valid place-
ment for each vertex is a sufficient condition
for δd(G1, G2) ≤ ε.

Lemma 1 If every vertex of G1 has at least
one valid ε-placement, then G1 has a valid ε-
placement. Thus δd(G1, G2) ≤ ε.

The idea of the proof is that superfluous
valid placements of a vertex can be removed
without causing any vertex to lose all its valid
placements. If every vertex has exactly one
valid placement, it is easy to show that a place-
ment of G1 exists.

Initially there are O(n2) vertex-placements,
each of which may be deleted once.

In the weak version, reachability is stored
using connected components inside the ε-tube
Tε({u, v}). If a placement Cv is deleted, it
is deleted from the list of its component in
Tε({u, v}). If the component no longer con-
tains any placements of v, then all placements
of u in that component become invalid. A
placement Cv is deleted at most once, and on
deletion it must be removed from one list for
every edge incident to v. Thus, the time for
pruning Cv is O(deg(v)). Since G1 is planar,
the average degree is constant. Thus, all in-
valid placements can be pruned in O(n2) time.
In the strong version, every placement has a

list of placements to which it is connected. On
deleting Cv, it must be removed from the lists
of all placements Cu to which Cv is connected.
Since each vertex can have Θ(n) placements
and Cv may be connected to all of them, in
the worst case O(n) elements have to be re-
moved for each neighbour of v. Thus, pruning
a placement takes O(deg(v)·n) time and prun-
ing all invalid placements runs in O(n3) time.

Theorem 2 Given plane graphs G1, G2 with
up to n vertices each and ε > 0, the algorithms
described here decide whether δd,w(G1, G2) ≤
ε in O(n2) time and space and whether
δd(G1, G2) ≤ ε in O(n3) time and space.

2.4 Faster Algorithm for Strong Distance

We now present a more efficient randomized
algorithm to decide whether δd(G1, G2) ≤ ε.

In the initial stage, the algorithm computes
a random subset of the reachable placements
for all vertex-placements. These subsets are
then used during the pruning stage to check
whether a placement is still valid after deleting
a placement of an adjacent vertex.
Fix a number i ∈ {1, . . . , n}. When com-

puting reachability information of an edge e =
{u, v}, select a uniformly random set N(Cu)
of i reachable placements of v for each place-
ment Cu of u. If at most i placements are
reachable, N(Cu) contains all of them and we
say N(Cu) is complete. Cu stores a list, con-
taining a pointer to each placement in N(Cu),
as well as a pointer to each placement that se-
lected Cu, i.e., all Cv such that Cu ∈ N(Cv).
The average number of pointers stored with
Cu for the edge e is thus at most 2i.

40

33rd European Workshop on Computational Geometry, 2017

When deleting a placement Cu, all pointers
to it are deleted as well. Since the pointers are
symmetric, this can easily be done. Thus, the
expected number of pointers that are removed
is ≤ 2i for each edge incident to u. Since the
average degree is constant, pruning a place-
ment takes amortized O(i) time.

If the last pointer is deleted for a place-
ment Cu and edge e, its validity needs to be
checked. If N(Cu) is complete, all reachable
placements were stored initially and were sub-
sequently deleted. Thus, Cu becomes invalid
and it is marked for deletion. However, if
more than i reachable placements existed, only
a random subset was stored and there may
be more reachable placements. In this case,
G2∩Tε(e) is explored again to see if reachable
placements of v still exist and a new list of
pointers is constructed. In this re-exploration,
parts of G2 that belong to a deleted placement
are treated as not belonging to any placement.
The proper choice of i ensures that new lists

do not have to be constructed too often (in
expectation). Choosing i := n(1+δ)/2 for any
δ > 0 leads to the following result.

Theorem 3 Given graphs G1, G2 with up
to n vertices each and ε > 0, the algo-
rithm described in this section decides whether
δd(G1, G2) ≤ ε in O(n5/2+δ) expected time
and deterministic space, for any δ > 0.

2.5 Computing the Optimal Distance

For the computation of the distance we search
over a set of critical values, employing the de-
cision algorithm in each step. The following
types of critical values can occur.

• A new vertex-placement emerges: An
edge is at distance ε from a vertex.

• Two vertex-placements merge: The ver-
tex where they connect is at distance ε

from a vertex.

• The (weak) Fréchet distance of a path and
an edge is ε: as described in [4].

There are O(n2) many critical values of the
first two types, and O(n3) many of the last.
Parametric search can be used to find the dis-
tance as described in [4], leading to a running
time of O(n2 log n) for the weak graph distance
and O(n5/2+δ) for the graph distance.

3 Conclusion

We described two new distances for compar-
ing embedded graphs and presented efficient
algorithms for computing these distances. An
open question is whether the algorithm from
Section 2.4 can run faster. We suspect that
choosing i = polylog(n) leads to an expected
running time of O(n2 polylog(n)).

Another question is whether the (weak)
graph distance can be computed more effi-
ciently for restricted graph classes like trees
or paths, but we think that some of the lower
bounds for Fréchet distance [6] apply here as
well, so the distances cannot be computed in
strongly subquadratic time.

References

[1] Mahmuda Ahmed, Brittany T. Fasy, Kyle S.
Hickmann, and Carola Wenk. Path-based dis-
tance for street map comparison. ACM Trans-

actions on Spatial Algorithms and Systems, 28
pages, 2015.

[2] Mahmuda Ahmed, Brittany Terese Fasy, and
Carola Wenk. Local persistent homology
based distance between maps. In 22nd ACM

SIGSPATIAL GIS, pages 43–52, 2014.

[3] Helmut Alt, Alon Efrat, Günter Rote, and
Carola Wenk. Matching planar maps. Journal
of Algorithms, 49(2):262 – 283, 2003.

[4] Helmut Alt and Michael Godau. Comput-
ing the Fréchet distance between two polyg-
onal curves. International Journal of Compu-

tational Geometry & Applications, 5(1&2):75–
91, 1995.

[5] James Biagioni and Jakob Eriksson. Infer-
ring road maps from global positioning system
traces: Survey and comparative evaluation.
Transportation Research Record: Journal of

the Transportation Research Board, 2291:61–
71, 2012.

[6] Karl Bringmann. Why walking the dog takes
time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In
IEEE 55th Annual Symposium on Foundations

of Computer Science, pages 661–670, 2014.

[7] Otfried Cheong, Joachim Gudmundsson, Hyo-
Sil Kim, Daria Schymura, and Fabian Stehn.
Measuring the similarity of geometric graphs.
In International Symposium on Experimental

Algorithms, pages 101–112, 2009.

[8] Sophia Karagiorgou and Dieter Pfoser. On ve-
hicle tracking data-based road network gener-
ation. In 20th ACM SIGSPATIAL GIS, pages
89–98, 2012.

41

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Fréchet Isotopies to Monotone Curves∗

Kevin Buchin† Erin Chambers‡ Tim Ophelders† Bettina Speckmann†

1 Introduction

We study the isotopic Fréchet distance, which is a
distance measure between two curves f and g that
captures one notion of an optimal morph between these
two curves. The classic Fréchet distance between f and
g, also called the “dog leash distance”, measures the
length of the shortest possible straight leash needed to
connect a man and a dog which are walking forward
along f and g. Any two feasible walks using such
a shortest leash induce a Fréchet matching between
f and g. One can now imagine to build a morph
between f and g by sliding each point of f along the
leash that connects it to its matched point on g. Such
an approach will work well in unrestricted Euclidean
space, however, it is not suitable for more general
spaces that might contain obstacles. In the presence of
obstacles the leashes of the classic Fréchet distance can
jump discontinuously and hence the resulting morph
would be discontinuous as well.

The homotopic Fréchet distance [3, 6] forces leashes
to move continuously. More formally, for two
curves f and g : [0, 1] → R

2 in the plane a homo-
topy h : [0, 1]2 → R

2 is a continuous map between f
and g. Such a homotopy essentially morphs one curve
into the other: each point of f traces a path h(p, ·)
to a point on g. The length of a homotopy is the
length of the longest such path, and a Fréchet homo-

topy is one that minimizes this length. The homotopic
Fréchet distance between f and g is then the length
of a Fréchet homotopy between f and g. The homo-
topic Fréchet distance and the classic Fréchet distance
are equivalent in R

2. The morph that results from a
Fréchet homotopy is continuous, but it may change
the structure of the input curves during the morph:
intermediate curves can self-intersect or collapse to a
point, even if f and g are simple curves.
A homotopy is an isotopy if all its intermediate

curves h(·, t) are simple. The isotopic Fréchet distance

measures the length of an optimal isotopy between f

∗K. Buchin, T. Ophelders and B. Speckmann are supported
by the Netherlands Organisation for Scientific Research (NWO)
under project no. 612.001.207 (K. Buchin) and project no.
639.023.208 (T. Ophelders and B. Speckmann). E. Chambers
is supported in part by NSF grants IIS-1319944, CCF-1054779,
and CCF-1614562.

†Department of Mathematics and Computer Science,
TU Eindhoven, The Netherlands,
[k.a.buchin|t.a.e.ophelders|b.speckmann]@tue.nl

‡Department of Computer Science, Saint Louis University,
Saint Louis, MO, USA, echambe5@slu.edu

and g; we call an optimal isotopy a Fréchet isotopy.
The study of Fréchet isotopies was initiated in [4]. The
authors gave some simple observations and examples
and showed that the isotopic Fréchet distance in the
plane can be arbitrarily larger than the homotopic
Fréchet distance.

Results. In this paper we revisit the isotopic Fréchet
distance and refute a conjecture posed in [4]. We also
give the first algorithms to compute short isotopies in
some restricted cases. Specifically, we compute optimal
isotopies if there is a direction in which both input
curves are monotone. Furthermore, given a curve
in R× [0, ε] (for infinitesimally small ε), we construct
an isotopy to a monotone curve using minimal length.

Related work. Closely related are morphs based on
geodesic width [5]: the intermediate curves are not
allowed to cross the input curves f and g, and they
are restricted to the area between the leashes con-
necting the endpoints of f and g. This restriction
naturally enforces intermediate curves without self-
intersections since “geodesic leashes” do not cross each
other. Morphs based on geodesic width minimize the
maximum leash length. However, they are restricted
to input curves that do not intersect each other; in
contrast, Fréchet isotopies are also well-defined for
input curves that intersect each other.
A variety of morphs have been considered in the

graph drawing and computational geometry literature.
For instance, it is well known that any two drawings
of the same planar graphs can be morphed into one
another. More recent work focused on bounding the
number of steps in the optimal morph between any
two input graphs [1, 2]. Here the intermediate curves
are homeomorphic to the input and vary continuously.
However, in contrast to Fréchet isotopies, the morphs
do not minimize length.

2 Preliminaries

A curve in the plane is a continuous map f : [0, 1] →
R

2. We denote the x and y-coordinates of f(p) by fx(p)
and fy(p), respectively. A continuous nondecreas-
ing surjection α : [0, 1] → [0, 1] is called a reparam-

eterization of a curve. A homotopy is a continuous
map h : [0, 1]× [0, 1] → R

2. We denote its level curves
by ht : p �→ h(p, t), and say h goes from curve f to g
if h0 = f and h1 = g. A homotopy is an isotopy if
each curve ht is simple.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

42

33rd European Workshop on Computational Geometry, 2017

A homotopy from f to g traces paths λh,p : t �→
h(p, t) between the points f(p) and g(p), and such
a path is traditionally referred to as a leash. Let
the length of a homotopy h be the length length(h) =
supp length(λh,p) of its longest leash. We are interested
in homotopies h minimizing this length and define the
homotopic Fréchet distance between f and g as

dhom(f, g) = inf
α,β,h

h0=f◦α, h1=g◦β

length(h),

where h ranges over homotopies and α and β range
over reparameterizations. The isotopic Fréchet dis-

tance diso is defined similarly, except that h ranges
over isotopies.

The Fréchet distance dF (f, g) = infα,β supp ‖f ◦
α(p) − g ◦ β(p)‖ is a related measure that does not
require leashes to trace out a homotopy, so each
leash can be assumed to be a shortest path. The
pair (α,β) is called a matching. We define the cost of
a matching (α,β) between f and g as costf,g(α,β) =
supp ‖f ◦α(p)−g◦β(p)‖. A Fréchet matching between
curves f and g in the plane is one with cost dF (f, g).

In the plane, the map Aff f,g(p, t) = (1 − t) ·
f(p) + t · g(p) using line segments (shortest paths)
as leashes is a homotopy since it is an affine inter-
polation between continuous maps. We call Aff f,g

the affine homotopy from f to g, and its length
is length(Aff f,g) = supp ‖f(p)− g(p)‖. It follows that
the homotopic Fréchet distance and the Fréchet dis-
tance are equivalent in R

2. On the other hand, the
isotopic Fréchet distance in the plane can be arbitrarily
larger than the homotopic Fréchet distance [4].

We call a homotopy h from f ◦ α to g ◦ β a Fréchet

homotopy if length(h) = dhom(f, g), and call h a
Fréchet isotopy if h is an isotopy with length(h) =
diso(f, g). Since every isotopy is a homotopy, we
have dhom(f, g) ≤ diso(f, g) and any isotopy that is a
Fréchet homotopy is also a Fréchet isotopy. However,
Fréchet isotopies need not be Fréchet homotopies since
there might exist a homotopy shorter than any isotopy.

For a curve f and a unit vector (x, y) ∈ S1, we
define the directional length of f in the direction (x, y)
to be the total length that f moves forward in the
direction of the vector, given by length(x,y)(f) =
∫ 1

0
max(0, 〈df(p)dp , (x, y)〉)dp, where 〈·, ·〉 is the inner

product. We define the horizontal length of a curve
as lengthhor(f) = length(−1,0)(f) + length(1,0)(f) and
define the horizontal homotopic and isotopic Fréchet
distances using the horizontal length function. As
usual, a horizontal Fréchet homotopy (respectively
isotopy) is one minimizing the horizontal homotopic
(respectively isotopic) Fréchet distance.

Throughout the paper, we assume all input curves
to be simple.

ε

L

Figure 1: An isotopy of length L/2 (as ε approaches 0)
between two ‘opposite’ zig-zags. The fat arcs have
horizontal length roughly L/2, whereas the others
have negligible horizontal length.

3 Disproving a conjecture

In Figure 1 we show an example of two zig-zag curves,
originally presented in [4]. The Fréchet distance be-
tween these curves is at most ε, as there is a matching
whose leashes are all vertical. However, this Fréchet
mapping yields a homotopy that collapses the zig-zag
to a flat line before re-expanding to the other zig-
zag, which does not result in an isotopy, as the three
segments coincide halfway along the isotopy.

In [4], the authors conjectured that the isotopic
Fréchet distance between the zig-zags is

√
L2 + ε2.

However, the isotopy demonstrated by the green
leashes on the right side of Figure 1 has length ar-
bitrarily close to

√
L2 + ε2/2 + ε/2.

We will show that the isotopy of Figure 1 is arbi-
trarily close to optimal. Consider a convex region D
and an isotopy h between curves f and g in the
plane, where the endpoints of all intermediate curves
lie in D; that is, Im(λh,0) ⊆ D and Im(λh,1) ⊆ D.
Fix some p ∈ (0, 1) and denote by polyt the poly-
line with an edge from h(0, t) to h(p, t), and an edge
from h(p, t) to h(1, t). Let θt be the (counterclock-
wise) angle at ht(p) between the two edges of polyt

(plus a multiple of 360 degrees), such that θt varies
continuously with t. We show in Lemma 1 that (in
any isotopy from poly0 to poly1) the leash λh,p must
intersect D if θ0 and θ1 differ by at least 180 degrees,
see Figure 2.

f

D

g

θ0

θ1
g(p)

f(p)

λh,0

λh,1

Figure 2: Curves f = h0, g = h1 and polylines poly0

and poly1 with endpoints in convex region D.

43

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Lemma 1 If f is isotopic to poly0 relative to its ver-

tices1 and g is isotopic to poly1 relative to its vertices,

and |θ1 − θ0| ≥ 180, then h(p, t) ∈ D for some t.

Proof. Because f and g are isotopic to poly0 and poly1

respectively (relative to their vertices), we may assume
without loss of generality that 0 ≤ θ0 < 360 and 0 ≤
θ1 < 360. Because θt varies continuously, we have
by the intermediate value theorem that θt = 180 for
some t ∈ [0, 1]. Hence, h(p, t) lies on the line segment
between h(0, t) ∈ D and h(1, t) ∈ D. By convexity,
this segment lies completely in D, so h(p, t) ∈ D. �

L/2
︷ ︸︸ ︷

L/2
︷ ︸︸ ︷

L/2
︷ ︸︸ ︷

L/2
︷ ︸︸ ︷

a b

c

a
b

c

l l

Figure 3: The vertices and region D used to obtain a
lower bound for the curves of Figure 1.

Using Lemma 1, we can show that our isotopy for
the zig-zags of Figure 1 is optimal as ε approaches 0.
For this, we show that any Fréchet isotopy has length
at least L/2. Assume that the zig-zags f and g are
parameterized such that an isotopy h of length less
than L/2 between them exists. Let l be the vertical
line centered between the vertices, such that each
vertex has distance L/2 to l, and let D be the half-
plane to the left of l, see Figure 3. Let f(a), f(b)
and f(c) be the first three vertices of f . If length(h) <
L/2, the leashes λh,a and λh,c lie completely inside D,
and λh,b lies completely outside D. Since a < b < c
and g(b) /∈ D, a and c lie in different components
of g−1(D). Isotopy h induces a restricted isotopy
between the subcurves of f and g from a to c, and these
subcurves satisfy the conditions required by Lemma 1.
Therefore, Im(λh,b) intersects D, so length(h) ≥ L/2.

4 Isotopies between monotone curves

A curve f is strictly x-monotone if fx(p) < fx(p
′) for

all p < p′. Lemma 2 implies that for such curves, the
isotopic and homotopic Fréchet distances are equal.

Lemma 2 For strictly x-monotone curves f and g,
each curve ht of h = Aff f,g is strictly x-monotone.

Proof. Recall that ht(p) = (1 − t) · f(p) + t · g(p).
Consider the x-coordinates xt(p) of ht(p) and xt(p

′)
of ht(p

′) for p < p′. Let st = xt(p
′)−xt(p). Because f

and g are strictly x-monotone, we have x0(p) < x0(p
′)

1That is, there exists an isotopy from f to poly0 that does
not move f(0), f(p) or f(1).

and x1(p) < x1(p
′), so s0 > 0 and s1 > 0. Since s is

affine, we have s(t) > 0 for t ∈ [0, 1], so xt(p) < xt(p
′).

Hence, each level curve ht is strictly x-monotone. �

Theorem 3 For strictly x-monotone curves, the ho-

motopic and isotopic Fréchet distances are equivalent.

5 Isotopies to monotone curves

In this section, we consider the problem of monotoniz-
ing curves using minimal horizontal movement. Specifi-
cally, we show how to construct a short isotopy from an
input curve to some x-monotone curve. In Section 5.1
we argue that this problem is interesting already if
we measure only horizontal length by showing that an
optimal isotopy may have non-monotone leashes, even
though we can choose any x-monotone target curve.
We construct an isotopy of minimal horizontal length
to an x-monotone curve in Section 5.2. We first give
a lower bound for homotopies to x-monotone curves.

Lemma 4 For any homotopy h from f to any x-
monotone curve g, length

hor
(h) ≥ 1

2 supp≤p′ fx(p) −
fx(p

′).

Proof. We have lengthhor(λh,p) ≥ |fx(p) − gx(p)|
and because g is x-monotone, gx(p) ≤ gx(p

′). Be-
cause lengthhor(h) ≥ lengthhor(λh,p) ≥ fx(p) − gx(p)
and lengthhor(h) ≥ lengthhor(λh,p′) ≥ gx(p

′) − fx(p
′),

we have 2 · lengthhor(h) ≥ fx(p) − gx(p) + gx(p
′) −

fx(p
′) ≥ fx(p)− fx(p

′). �

5.1 Non-monotone isotopies

Consider the curve f = h0 of Figure 4 with f(0) =
p0 and f(1) = p5, morphing into an x-monotone
curve g = h1 as depicted. No matter how small we
pick ε > 0, the depicted isotopy has length at most r+ε

if w < r. By Lemma 4, there exists no homotopy to
an x-monotone curve of length less than r, even if we
pick a different x-monotone curve g. In this context,
the lemma states that because fx(p1) ≥ fx(p2) + 2r
and gx(p1) ≤ gx(p2), one of the leashes λh,p1

or λh,p2

has length at least r in any homotopy h.

r

r

r

r
w

εh0

h1

h 1

2

p1p2 p3p4 p0
p5

Figure 4: A curve for which any Fréchet isotopy to an x-
monotone curve moves some point for distance w/2−ε

in both the positive and the negative x-direction.

44

33rd European Workshop on Computational Geometry, 2017

0 1

Figure 5: The major critical events of our isotopy (rotated 90 degrees) on a spiral.

What makes this instance interesting is that any op-
timal isotopy moves some points in both the forward
(positive) and backward (negative x-direction) for a
considerable distance. Formally, for any isotopy h
from f to g, we have both length(1,0)(λh,p) ≥ w/2− ε

and length(−1,0)(λh,p) ≥ w/2 − ε for some p. In par-
ticular, consider the two endpoints f(p0) and f(p5)
in Figure 4. Based on Lemma 1, these points must
‘untangle’ with respect to each other somewhere in
the isotopy h. For this, the x-coordinates of ht(p0)
and ht(p5) must be equal for some value of t, say
for t = t∗. Because g is x-monotone, and an optimal
isotopy has length at most r + ε, we have gx(p0) ≤
gx(p2) ≤ fx(p2) + r + ε = fx(p0) + ε and symmetri-
cally fx(p5)− ε = fx(p3)− r − ε ≤ gx(p3) ≤ gx(p5).
Let γ = ht∗ and x∗ = γx(p0) = γx(p5).

Since fx(p5)− fx(p0) = w, we have x∗− fx(p0) ≥ w/2
or fx(p5)− x∗ ≥ w/2. If x∗ − fx(p0) ≥ w/2, we also
have gx(p0)− x∗ ≥ w/2− ε, so p0 moves forward for
a distance of at least w/2 and backwards for a dis-
tance of at least w/2 − ε. Otherwise, fx(p5) − x∗ ≥
w/2, and p5 moves backwards for w/2 and forwards
for w/2 − ε. The total distance such points move
approaches diso(f, g) as ε approaches 0.

5.2 Shrinking based isotopies

For a curve f , we define an isotopy Shrf (p, t) =
P|Im(fx)|t/2(f)(p), where Pl(f) is a curve intuitively
obtained from f by moving all local maxima of fx
in the negative x-direction, and all local minima
of fx in the positive x-direction for distance l. De-
fine Nf

l (p) to be the component of f−1((fx(p) −
l, fx(p) + l)) containing p; that is, the subpath of f
reachable from f(p) using only x-coordinates at dis-
tance less than l from fx(p). Let l

∗ be the horizontal
length of the longest monotone2 subpath of f . We
can define Pl(f) more formally by recursively defin-
ing Pl(f) = Pl−l∗(Pl∗(f)) if l > l∗; and if l ≤ l∗,
replacing, for each minimum or maximum p of fx,
the arc Nf

l (p) of f by a vertical segment between its
endpoints with fx at distance l from fx(p) (or by the
endpoint if only one such endpoint exists).

2Monotone in either the positive or the negative x-direction.

In the full paper, we show that after infinitesimal
perturbation, Shrf is an isotopy. Figure 5 illustrates
its behavior for a curve based on an example from [4].

5.3 Optimality of the isotopy to a monotone curve

Lemma 4 gave us a lower bound on lengthhor(h) for
a homotopy h turning f into an x-monotone curve.
Theorem 5 (proof in the full paper) tells us that the
horizontal length of the isotopy we construct matches
this lower bound, meaning that the isotopy yields an
x-monotone curve using minimal horizontal movement.

Theorem 5 Shrf (t) yields an x-monotone curve

at t = | Im(fx)|
−1 1

2 supp≤p′ fx(p) − fx(p
′), using

only 1
2 supp≤p′ fx(p)− fx(p

′) horizontal movement.

References

[1] P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati,
M. Patrignani, and V. Roselli. Morphing planar graph
drawings optimally. In Automata, Languages, and

Programming, LNCS 8572, pages 126–137, 2014.

[2] P. Angelini, F. Frati, M. Patrignani, and V. Roselli.
Morphing planar graph drawings efficiently. In Proc.
21st International Symposium on Graph Drawing,
LNCS 8242, pages 49–60, 2013.

[3] E. W. Chambers, É. C. de Verdière, J. Erickson,
S. Lazard, F. Lazarus, and S. Thite. Homotopic Fréchet
distance between curves or, walking your dog in the
woods in polynomial time. Computational Geometry,
43(3), 2010.

[4] E. W. Chambers, D. Letscher, T. Ju, and L. Liu. Iso-
topic Fréchet distance. In Canadian Conference on

Computational Geometry, 2011.

[5] A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell,
and T. M. Murali. New similarity measures between
polylines with applications to morphing and poly-
gon sweeping. Discrete & Computational Geometry,
28(4):535–569, 2002.

[6] S. Har-Peled, A. Nayyeri, M. Salavatipour, and
A. Sidiropoulos. How to walk your dog in the moun-
tains with no magic leash. In Proc. 28th Symposium

on Computational Geometry, pages 121–130, 2012.

45

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computing representative networks for braided rivers∗

M. Kleinhans† M. van Kreveld‡ T. Ophelders§ W. Sonke§ B. Speckmann§ K. Verbeek§

1 Introduction

Geomorphology is the study of the shape of natural
terrains and the processes that create them. One of
these processes is erosion due to water flow. The com-
bination of terrain shape and water flow gives rise to
various computational problems that have been stud-
ied in geomorphology, geographic information science
(GIS), and computational geometry.

One prominent problem is the computation of
drainage networks (flow) [1]. Here computations are
based on elevation data only and the shape of the
terrain is used to determine where rivers will form
(see [11] for an overview). A second problem concerns
local minima. Due to erosion local minima are more
rare in natural terrains than local maxima; minor local
minima are often measurement errors. Such errors are
clearly undesirable when studying flow on terrains and
hence, minor local minima are removed by computa-
tional means [6]. A third commonly studied problem
deals with watersheds and their boundaries [2, 11].

Braided rivers. The usual models for water flow in
terrains allow rivers to merge, which is natural because
side valleys join main valleys. And clearly, if water
always follows the direction of steepest descent, a
river cannot split (except due to degeneracies). Yet
splitting happens in deltas and various river types, in
particular braided river systems [4]. Such systems have
islands called bars, separating different channels of the
same river over their length after which the channels
confluence. Modeling braided rivers, where channels
can both split and merge, is considerably more complex
than modeling standard drainage networks, where all
rivers flow only downhill and do not bifurcate. In this
paper we initiate the study of braided rivers from the
perspective of computational geometry and topology.

∗T. Ophelders, W. Sonke and B. Speckmann are supported
by the Netherlands Organisation for Scientific Research (NWO)
under project no. 639.023.208, and K. Verbeek under project
no. 639.021.541. M. Kleinhans is supported by the Dutch
Technology Foundation STW (grant Vici 016.140.316/13710,
which is part of the Netherlands Organisation for Scientific
Research (NWO), and is partly funded by the Ministry of
Economic Affairs)

†Faculty of Geosciences, Utrecht University, The Netherlands,
m.g.kleinhans@uu.nl

‡Dep. of Information and Computing Sciences, Utrecht
University, The Netherlands, m.j.vankreveld@uu.nl

§Dep. of Mathematics and Computer Science, TU
Eindhoven, The Netherlands, [t.a.e.ophelders|w.m.sonke|

b.speckmann|k.a.b.verbeek]@tue.nl

To model a braided river we first need a representa-
tion of the basic geometry, independent of water level.
We hence use the elevation of the river bed as a start-
ing point. In meandering rivers the so-called thalweg

is often used as a basic representation. The thalweg is
defined as the deepest part of a continuous channel,
which is a linear feature. We are striving for a similar
representation for braided rivers, consisting of linear
features along lowest paths in each channel. These
linear features can merge and bifurcate, that is, they
form a planar graph or network. The use of graphs
to model and analyze braided rivers was recently pio-
neered in [7]. We define lowest paths intuitively as the
paths that do not go higher than they need to go to.

A representative network for a braided river should
not necessarily contain all possible channels. Topo-
logically speaking a tiny local maximum in the river
bed creates two channels. We can use persistence to
simplify our input and avoid such situations. But still,
too many channels may remain. We wish to select a
set of channels which are sufficiently different from
each other, which we model with a function (the sand

function) that relates to the volume of sediment the
river has to move before the two channels become
one. More volume needs more time to be removed [5].
A bar of very small volume separating two channels
requires insignificant time to be removed, but a large
bar with a large volume may require multiple floods
to be shaved off or cut through by a new channel,
meaning that the two channels separated by this bar
are significantly different.

Our objective now is to compute a representative
network of channels that is optimal in some sense. We
require that (i) each channel is locally lowest, (ii) any
two channels are sufficiently different (specified by a
parameter δ and the sand function), and (iii) the repre-
sentative network is maximum. Unfortunately, solving
this problem exactly is NP-hard. As an alternative
we first compute a striation: a left-bank-to-right-bank
sequence of non-crossing paths for the whole river bed.
We then define a sand function to measure how dif-
ferent two channels are, which allows us to extract
a representative network from the striation using a
greedy algorithm. Due to space restrictions we present
only one heuristic for the striation and one model for
the sand function in this short abstract. The other
heuristics, models, and omitted proofs can be found
in the full version of the paper.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

46

33rd European Workshop on Computational Geometry, 2017

2 Definitions and problem statement

Let G = (V,E) be a triangulation of a topological
disk M in the plane, and let h : M → R be the height

of the points in M , where the edges and triangles of G
interpolate h linearly between its vertices. So G can be
viewed as a simplicial 2-complex in R

3 by adding h as a
third dimension. Let σ ∈ V be a source and τ ∈ V be
a sink, both on the boundary ∂M . We refer to (G, h)
as a terrain, and to the volume {(x, y, z) | (x, y) ∈

M, z ∈ R, z ≤ h(x, y)} as sand.

Let π−
∂M and π+

∂M (respectively clockwise and coun-
terclockwise) be the two paths from σ to τ along
the boundary of M . We call a path π from σ to τ

semi-simple if it has no self-intersections, but it may
coincide with itself, see the red path in Figure 1. Let P
be a set of semi-simple, pairwise non-crossing paths
from σ to τ along edges of G. For two semi-simple
paths π0 and π1 in P, let D(π0,π1) be the region
bounded by and including π0 and π1. So two semi-
simple paths π0 and π1 from σ to τ have no proper
crossings if and only if D(π+

∂M ,π0) ⊆ D(π+

∂M ,π1)
or D(π+

∂M ,π1) ⊆ D(π+

∂M ,π0).

We measure the similarity between two paths using
a sand function d : P × P → R, and we say a path π0

is δ-dissimilar to π1 if and only if d(π0,π1) ≥ δ. Since
it is generally not a metric, we do not call d a distance.

Our goal is to compute a non-crossing set of paths
Π ⊆ P that represent channels in a river. For that
we use lowest paths, paths that minimize the distance
spent at high elevations. Formally, for a path π, let
ρ(π, z) be the length of π for which the height is at
least z. We say a path π0 is lower than π1 if and
only if there exists a z∗ ∈ R, such that for all z ≥

z∗, ρ(π0, z) = ρ(π1, z) and for all ε > 0, there is
some z′ ∈ (z∗ − ε, z) with ρ(π0, z

′) < ρ(π1, z
′) [8]. We

call Π a δ-network if no pair of paths π0,π1 ∈ Π has
proper crossings, and d(π0,π1) ≥ δ if π1 is lower than
π0. A delta-network is representative unless replacing a
subset of paths by a lower path yields a delta-network.

We assume that all vertices in our terrain have
different height, and all edges have different slope. We

∂M

σ τ

−

Figure 1: The disk M and three paths of P with-
out proper crossings, including the two paths π−

∂M

and π+

∂M and a backtracking path.

attach a vertex v∞ to the boundary of the terrain that
is higher than all other vertices. Given such a modified
terrain, a source σ, a sink τ , a parameter δ, and a
sand function d, we study the problem of computing a
representative δ-network over the edges of the terrain.

3 Morse-Smale complex and lowest paths

Let M be a smooth, compact 2-dimensional manifold
without boundary, and let h : M → R be a height
function on M. A point p on M is critical with respect
to h if all partial derivatives vanish at p. Otherwise, p is
called regular. There are three types of critical points:
(local) minima, (local) maxima, and saddle points. For
each regular point p we can define the path of steepest
ascent (or steepest descent in the opposite direction)
as the path that follows the gradient of h at p. These
paths are also known as integral lines and are open
at both ends, with at each end a critical point. Using
these integral lines, we can subdivide M as follows:
two regular points p and q belong to the same cell if
the integral lines through p and q end at the same
critical points on both sides. The resulting complex is
known as the Morse-Smale complex, or MS-complex in
short. Note that if one of the endpoints of an integral
line is a saddle point, then the corresponding cell is
1-dimensional. We refer to 2-dimensional cells of the
MS-complex as MS-cells, and 1-dimensional cells as
MS-edges. It can be shown [3] that every MS-cell is a
quadrilateral with a minimum, a saddle, a maximum,
and again a saddle along the boundary of the cell.
Note that our paths need to follow the edges of

the terrain. Therefore, instead of the standard MS-
complex, we use (a subset of) a quasi MS-complex
as defined in [3], which does follow the edges of the
terrain. Let v be a vertex, and let S(v) be the edge

star of v consisting of the set of edges incident to v.
The lower edge star S↓(v) consists of the subset of
edges whose endpoints are lower than v with respect
to h. Symmetrically, we can define the upper edge star
S↑(v) = S(v) \ S↓(v). The lower edge star can natu-
rally be subdivided into wedges of consecutive edges in
S↓(v) separated by edges in S↑(v). Given these defini-
tions, we construct a descending [10] quasi MS-complex
as follows. From every saddle point v we construct a
steepest descent path in every wedge of S↓(v) until
it reaches a minimum. Note that steepest descent
paths may partly overlap, but cannot cross. The cells
of this complex are bounded by alternating minima
and saddle points, and every cell contains exactly one
maximum. In the remainder of this paper we refer
to the descending quasi MS-complex as constructed
above simply as the MS-complex, unless stated other-
wise. The same rule applies to the components of the
complex, namely the MS-cells and MS-edges.
The relation between lowest paths and the MS-

complex is summarized in the following lemma.

47

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Lemma 1 The lowest path between two vertices u

and v in G follows MS-edges, except for the head and

tail of the path, which follow steepest descent paths.

Due to this relation, we refer to paths on the MS-
edges as locally lowest paths. As a result, all paths in
a representative δ-network must follow MS-edges.

4 Striation

Consider an input terrain consisting of a sequence of
pyramids with different heights as shown in Figure 2,
where all non-peak vertices are at height 0. Let π0 and
π1 be two paths from source to sink at height 0 and let
P be the set of pyramids in D(π0,π1). Then, for any
“reasonable” sand function, d(π0,π1) =

∑
p∈P vol(p).

It is now easy to see that computing a representative
δ-network for a terrain of this type is NP-hard by
reduction from Partition.

To make the problem tractable, we put a restriction
on the paths that can be used in a representative
δ-network. We use a striation: a left-bank-to-right-
bank sequence of non-crossing paths for the whole
terrain. Formally, a striation S is an ordered set of
non-crossing paths S = {π0, . . . ,πr} from σ to τ with
π0 = π−

∂M and πr = π+

∂M . Every path in a striation
must be composed of MS-edges and between every two
consecutive paths πi and πi+1 there can be at most one
MS-cell and possibly several one-dimensional features.
The one-dimensional features arise from overlapping
MS-edges or from the way the striation is computed.
We then restrict a representative δ-network to choose
paths only from the striation.

Computing a striation. The hardness result of the
previous section implies that computing a striation
that contains a representative δ-network (with the
most lowest paths) is NP-hard. We therefore use a
heuristic to compute a striation. Our heuristic uses
the persistence of local maxima, which can easily be
computed from the standard MS-complex [3].

The first path π is obtained by computing the lowest
path from source to sink that passes through the max-
imum q with the highest persistence (excluding v∞).
Since π actually consists of two lowest paths (from
source to q, and from q to sink), π has the form of a
path π′ with a special vertex v from which there is a
path to q and back to v (Lemma 1). We now subdivide
G as follows. Let c be the MS-cell containing q, and let

π

Figure 2: The path π forms a partition of the total
sand volume.

Figure 3: The lowest path π through q and π0.

u1 and u2 be the first and last vertices of π that are on
the boundary of c, respectively (see Fig. 3). Further-
more, let πcw and πccw be the paths between u1 and u2

along the boundary of c in clockwise and counterclock-
wise direction, respectively. We can now obtain the
path πi as the concatenation of the subpath of π from
σ to u1, the path πcw, and the subpath of π from u2

to τ . Similarly, we can obtain πi+1 by replacing πcw

by πccw in πi. If u1 = u2, then either πi or πi+1 may
backtrack from u1. In that case we can replace the
respective path with π′. The paths πi and πi+1 subdi-
vide G into three parts (see Fig. 4): D1 = D(π−

∂M ,πi),
D2 = D(πi,πi+1), and D3 = D(πi+1,π

+

∂M). Since
D2 contains only one MS-cell, we recurse only in D1

and D3 to obtain S1 and S3. The final striation then
consists of S = {π−

∂M ,S1,πi,πi+1,S3,π
+

∂M}.

5 Representative network

To compute a representative δ-network conforming to
a striation, we first need to define when two paths in
the striation are δ-dissimilar.

Sand function. To define the dissimilarity for two
paths πi and πi+1 of the striation we define a sand
function d(πi,πi+1). Intuitively, we define d(πi,πi+1)
in such a way that it measures the volume of sand that
lies between πi and πi+1. To that end we compute a
homotopy (continuous morph) η : [0, 1]2 → M between
πi and πi+1. We attach a height function ζ : [0, 1]2 →

R to this homotopy, thus defining a surface in R
3

σ τ

Figure 4: Splitting the triangulation by the striation
paths around an MS-cell.

48

33rd European Workshop on Computational Geometry, 2017

Figure 5: A modeled river with the MS-complex, the striation, and two representative δ-networks for different δ.

between πi and πi+1. We define d(πi,πi+1) as the
volume of sand above this surface. To ensure that only
sand between πi and πi+1 is measured, and without
multiplicity, we restrict η to be a monotone isotopy1.
Choosing a suitable isotopy is non-trivial; details can
be found in the full paper. We can extend the choices
for πi and πi+1 to apply to all paths πi and πj of the
striation.

Representative network. Finally, we can easily com-
pute a representative δ-network Π using a simple
greedy algorithm. We consider all paths in the stri-
ation starting with the lowest path. We add a path
π to Π if d(π,πi) ≥ δ for all πi ∈ Π. It is easy to see
that the resulting δ-network is representative.

6 Experimental results

We performed experiments on a numerically modeled
river, created by a state-of-the-art model suite that is
used in the civil engineering and fluvial and coastal
morphology disciplines worldwide, indicating its useful-
ness and quality [9]. Figure 5 shows our results. First
of all we observe that the representative networks cap-
ture the channels of the river very well. Second, we see
that the channels which are removed in the sparser net-
work cross big bars. Furthermore, the sparser network
also avoids deep short channels which are no longer
connected or did not form as a channel at all. Hence
the sparser network is indeed more representative for
the river than the more complex one.

References

[1] L. Arge, J. S. Chase, P. Halpin, L. Toma, J. S. Vitter,
D. Urban, and R. Wickremesinghe. Efficient flow

1The intermediate paths in the morph are semi-simple and
do not cross each other.

computation on massive grid terrain datasets. Geo-

Informatica, 7(4):283–313, 2003.

[2] M. de Berg and C. Tsirogiannis. Exact and approx-
imate computations of watersheds on triangulated
terrains. In Proc. 19th ACM SIGSPATIAL Confer-

ence, pages 74–83, 2011.

[3] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hi-
erarchical Morse complexes for piecewise linear 2-
manifolds. In Proc. 17th SoCG, pages 70–79, 2001.

[4] A. Howard, M. Keetch, and C. Vincent. Topological
and geometrical properties of braided streams. Water

Resources Research, 6(6), 1970.

[5] M. G. Kleinhans. Flow discharge and sediment trans-
port models for estimating a minimum timescale of
hydrological activity and channel and delta formation
on Mars. J. of Geophysical Research, 110, 2005.

[6] Y. Liu and J. Snoeyink. Flooding triangulated terrain.
In Developments in Spatial Data Handling, pages 137–
148. Springer, Berlin, 2005.

[7] W. A. Marra, M. G. Kleinhans, and E. A. Addink.
Network concepts to describe channel importance and
change in multichannel systems: test results for the
Jamuna river, Bangladesh. Earth Surface Processes

and Landforms, 39(6):766–778, 2014.

[8] Günter Rote. Lexicographic Fréchet matchings. In
Abstracts 30th EuroCG, 2014.

[9] F. Schuurman, W. A. Marra, and M. G. Kleinhans.
Physics-based modeling of large braided sand-bed
rivers: Bar pattern formation, dynamics, and sen-
sitivity. J. of Geophysical Research: Earth Surface,
118(4):2509–2527, 2013.

[10] N. Shivashankar, S. M, and V. Natarajan. Parallel
computation of 2D Morse-Smale complexes. IEEE

TVCG, 18(10):1757–1770, 2012.

[11] S. Yu, M. van Kreveld, and J. Snoeyink. Drainage
queries in TINs: from local to global and back again.
In Advances in GIS Research II, pages 829–842, 1997.

49

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Weighted Discrete Surveillance Tours in Simple Polygons

Bengt J. Nilsson ∗ Eli Packer †

Abstract

The watchman route problem is a well investigated
problem in which a closed tour inside a polygon that
satisfies visibility constraints is optimized. We ex-
plore a new variant in which a tour needs to see a set
of locations inside a polygon so that the maximum
time interval in which those locations are not guarded
(the delay) is minimized. We call such tours surveil-
lance tours. We show that an algorithm that follows
the ideas of the classic watchman problem provides
a 2-approximation to our problem. We then investi-
gate the case where each location is associated with a
weight that represents the importance of not leaving
the location unguarded for long periods. Thus, the
tour is required to see locations with larger weights
more frequently. We show that this variant is NP-
hard and present two approximation algorithms.

1 Introduction

Visibility coverage of polygons with guards (mainly
known as Art Gallery problems) have been central
geometric problems for many years. Usually guards
are defined as static points that see in any direction
for any distance and visibility is defined by the clear-
ance of straight lines between two features (in other
words, two features see each other if the segment that
connects them does not intersect (the interior of) any
other feature of the input). Coverage is achieved if
any point inside the polygon is visible by at least one
guard. Several art gallery theorems have been pro-
posed for different kind of settings [3].
Allowing a guard to move inside the polygons de-

fines a related problem but yet with very different
properties. Here, a set of mobile guards walk on closed
cycles (also called tours or routes) so that any point
inside the polygon is seen by at least one guard dur-
ing its walk along the tour. The number of guards is
a parameter of the problem and the measure criteria
relates to the length of the tours (e.g., minimize the
longest tour). Several solutions have been proposed
for the case of a single mobile guard, a shortest watch-

man route in a simple polygon. The currently fastest
one combines algorithms by Tan [4] and Dror et al. [1],
to achieve asymptotic running time O(n4 logn).

∗Dept. of Computer Science, Malmö University, Malmö,

Sweden. email: bengt.nilsson.TS@mah.se
†Intel Corporation, Israel. email: eli.packer@intel.com

A variant of the shortest watchman route problem
is where the covering is restricted to a given finite sub-
set of points inside the polygon instead of the entire
polygon. For simple polygons, this variant is solv-
able in a similar way as the shortest watchman route
problem; see Section 2.

We want to guard a given simple polygon P, but
rather than finding a shortest tour that covers the
points of P, we are interested in a tour that minimizes
the maximum duration in which any of the points in
P are not guarded. We call such a tour a minimum

surveillance route for the polygon, abbreviated MSR.
Kamphans and Langetepe [2] study a similar concept
(inspection paths) but their optimization measure is
the sum of the durations where features are not cov-
ered rather than the maximum duration.

We show that the two objective functions, mini-
mize the length of the tour and minimize the maxi-
mum duration in which any point in the polygon is
not guarded, have different optimal tours and that a
solution to the shortest watchman route problem is
a 2-approximation to the minimum surveillance route
problem. We also consider a discrete version of the
minimum surveillance tour problem where a given fi-
nite subset S of points in the polygon is to be guarded
(DMSR). We further generalize this version of the
problem by associating priorities to the points of S,
abbreviated WDMSR. Note that WDMSR may be in-
teresting in situations when not all points are equally
important; some need to be guarded more frequently
than others. We formulate this idea and show that
solving it even in simple polygons is NP-hard. We
then propose two approximation algorithms.

2 Preliminaries

The different solutions proposed for the shortest
watchman route problem in a simple polygon P iden-
tify a subset of the convex vertices of P and computes
the shortest tour that visits the visibility polygons of
these vertices [1, 4]. (The boundary of these visibil-
ity polygons are segments interior to P, collinear to
boundary edges, called essential cuts, that the short-
est watchman route needs to intersect.) Indeed, the
algorithms work completely independently from how
one defines the points to be guarded. When we just
want to guard a finite set of points S ⊂ P, we can ex-
change the visibility polygons of the convex polygon
vertices for the visibility polygons for the points in

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

50

33rd European Workshop on Computational Geometry, 2017

(a) (b)

Figure 1: Difference between the shortest watchman
route and minimum surveillance tour.

S and apply the algorithms with these changes. The
running time in this case becomes O(|S|3n logn).
Let T be a polygonal path or a closed polygonal

tour in P. We denote the length of T by ||T ||.
For a point p ∈ P and a closed polygonal tour T ,

let HT (p)
def
= {T \V(p)}, where V(p) is the visibility

polygon of p in P. Assuming that V(p) intersects T ,
the set HT (p) consists of disjoint subpaths of T , the
hidden pieces from p. We define

hcT (p)
def
=

�

∞ if T ∩V(p) = ∅,
maxX∈HT (p){||X||} if T ∩V(p) 6= ∅

to be the hiding cost of T with respect to p. For
MSR and DMSR, given a finite set of points S in
P, respectively, we define the surveillance cost, also
known as the delay, in each case as

d(T)
def
= max

p∈P

{hcT (p)} and d(T)
def
= max

p∈S
{hcT (p)}.

3 Surveillance Routes vs. Watchman Routes

The counterexample in Figure 1 (due to Langetepe)
shows that a shortest watchman route and a mini-
mum surveillance route are not necessarily the same.
With appropriate scaling, the length of the shortest
watchman route, the dotted green triangle in Fig-
ure 1(a), has length 3

√
3 ≈ 5.19615 and the delay is

the same value. The tour in Figure 1(b), the dotted
blue hexagon, has length 6 but only delay 5, since ev-
ery point in the polygon sees at least one unit length
of the tour. We next prove the following theorem.

Theorem 1 Let W be a shortest watchman route in

P. The tour W is a 2-approximation for MSR in P.

Proof. Let T be an optimal solution for MSR in P.
Pick a point on T and follow T in counterclockwise
order until the traced path has visited the visibility
polygons of each convex vertex of P. Let v be the
last convex vertex seen by the traced path and let
p be the earliest point on T that sees v. Follow T
backwards from p until v is seen again at p′. Let
X be the subpath of T as we go in counterclockwise
order from p′ to p. The path X visits the visibility
polygons of each convex vertex of P, starting at p′ ∈
V(v) and ending at p ∈ V(v) but no other point of X
except these endpoints intersects V(v). Thus, d(T) ≥
||X || and following X from p′ to p and back forms a
watchman route. Hence,

d(W) ≤ ||W || ≤ 2||X || ≤ 2d(T). �

A simple modification of the above proof allows us to
extend the relationship between the discrete variants
of the shortest watchman route and minimum surveil-
lance route problems in a simple polygon P, given a
finite set S of points to guard.

4 Weighted Discrete Surveillance Routes

To associate weights (or priorities) to the given points
of S, we modify DMSR as follows. Let P be a simple
polygon and let S be a finite set of points inside P.
To each point p ∈ S is associated a weight w(p). The
idea is that points with higher weights have higher
priority and need to be guarded more often than ones
with lower weights. Given some tour T , we define the
weighted delay as

dw(T)
def
= max

p∈S
{w(p) · hcT (p)}.

We are ready to formulate WDMSR.

Definition 1 WDMSR: Given a simple polygon P, a

finite set S of points inside P, and a weight function

w on the points in S, find a tour T such that dw(T)
is minimized.

For simplicity we assume that all weights are positive
and that the smallest weight is equal to 1.

4.1 Hardness of WDMSR

The Integer Partition problem is defined as follows.

Input: A finite set Z of positive integers.
Question: Is there a subset Z ′ ⊆ Z such
that

�
a∈Z′ a =

�
a∈Z\Z′ a?

Since Integer Partition is NP-complete we have the
following theorem.

Theorem 2 WDMSR is NP-hard.

Proof. We show a reduction from the Integer Parti-
tion problem as illustrated in Figure 2. Given a set Z
of positive integers, we construct a polygon P consist-
ing of a thin horizontal corridor of width ǫ ≪ 1 with
|Z|+1 legs, L0, . . . , L|Z|, attached to it. Each leg also
has width ǫ and has a pocket at its end; see Figure 2.
Leg Li, 1 ≤ i ≤ |Z| has length ai/2 from the corridor
to the pocket, where ai is the ith integer in Z. Leg
L0 has length 1/12 + 2ǫ and is directed upward. We
further assume that the values ai ∈ Z are sorted in
non-decreasing order.
The points of S are the convex vertices adjacent to

the horizontal edges of each pocket with pi ∈ S in Li.
Point p0 has weight w(p0) = 2, marked blue in Fig-
ure 2 and the remaining points have weight w(pi) = 1,
for 1 ≤ i ≤ |Z|. The visibility polygons V(pi) of the
points in S are the regions marked red and blue in
Figure 2.

51

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

We compress this structure horizontally so that its
width is at most 1/6 + 2ǫ and let ǫ ≤ 1/(18|Z|). The
polygon consists of 5(|Z|+ 1) vertices.
Let Z =

�
a∈Z a and we next prove that Z can be

partitioned into two equal sets if and only if there is
a tour T in P that sees the points of S and has delay
at most Z + 1. We prove the two directions of the
equivalence separately.

⇒ Suppose that Z can be partitioned into two sets of
equal magnitude, Z1 and Z2. We construct a tour T
as follows. We start from the visibility polygon V(p0)
and visit the visibility polygons of the points in Z1.
We then visit V(p0) again, followed by the visibility
polygons corresponding to points in Z2. Finally, we
go back to V(p0).
The hiding cost for p0 is at most Z/2 + 2(1/6 +

1/12) = Z/2+1/2. For any other point pi, the hiding
cost is at most 2(Z/2+1/3+1/6). The weighted delay
for T is thus

dw(T) = max

�

w(p0) · (Z/2 + 1/2),
w(pi) · (Z + 1) | 1 ≤ i ≤ |Z|

�

≤ Z + 1,

since w(p0) = 2 and w(pi) = 1 for 1 ≤ i ≤ |Z|.

⇐ Suppose there is a tour T with dw(T) ≤ Z + 1.
By the same argument as in the proof of Theorem 1,
there exists some index j such that as T leaves V(pj)
it visits each visibility polygon of the remaining points
in S at least once before returning to V(pj). We call
the trace that T follows from V(pj) until V(pj) is
reached again a cycle of T . We first claim that V(p0)
is visited at least twice during a cycle, but this must
hold, otherwise the hiding cost of p0 is at least Z and
therefore dw(T) ≥ 2Z > Z +1, giving us a contradic-
tion. This also means that j > 0.
If V(p0) is visited at least three times during a

cycle, we call each subpath between successive vis-
its at V(p0) a loop and we have at least two loops
completely contained in a cycle. We again have a
contradiction since at least one of the loops must
have horizontal width at least 1/6 to visit the right-
most leg, and at least one of the remaining loops
must have horizontal width at least 1/12, otherwise
p0 has hiding cost at least Z/2 + 1 (and therefore
dw(T) ≥ Z + 2) since the previous loop then must
visit all the |Z|/2 legs with the longest lengths, be-
cause the legs are ordered in non-decreasing order.
Any remaining loops must have horizontal width at
least ǫ. The point pj thus has hiding cost at least
Z + 2(1/6 + 1/12 + ǫ + 3/12) > Z + 1.
The visibility polygon V(p0) is therefore visited ex-

actly twice during a cycle. Consider a subpath X
of T between these two successive visits of V(p0).
Let X∗ = argmax{||X ||, ||T \X ||}. Since hcT (p0) ≤
Z/2 + 1/2, otherwise dw(T) > Z + 1, the length
||X∗|| ≤ Z/2 + 1/2 and we can let Z∗ consist of
those integers in Z corresponding to visibility poly-
gons V(pi), 1 ≤ i ≤ |Z|, that X∗ visits. The

Li

L1

L|Z|

ai

2

L0 1/61
12

Figure 2: Illustrating the proof of Theorem 2.

sum
�

a∈Z∗ a = Z/2 since all values in Z∗ are in-
tegral. By the same token

�
a∈Z\Z∗ a = Z/2, since

||T \X∗|| ≤ ||X∗|| concluding the proof. �

We note from the proof above that WDMSR remains
NP-hard if the weights are limited to be 1 and 2.

5 Approximations

We start by showing a simple relationship between
our two discrete problems.

Theorem 3 Let W be the shortest tour in P that

sees all points of S. The tour W is a 2wmax-

approximation to WDMSR in P where wmax is the

maximum weight of the points in S.

Proof. From Theorem 1, the tour W is a 2-app-
roximation for WDMSR when all the weights of the
points are 1. If we change the weight of the point
with the longest hiding cost to wmax, we get an upper
bound on the cost of the solution for the maximum
weight of wmax. It follows that the maximum weight
when using W is at most 2 times this weight and thus
a 2wmax-approximation. �

5.1 Two Weight Values

We study the case of WDMSR where points have one
of two possible associated weight values, 1 and w > 1.
From Theorem 2, we know that this restricted case is
NP-hard.
We abuse language somewhat and say that a tour

visits a point p ∈ S, when we actually mean that the
tour intersects V(p). A point p ∈ S is called low if
w(p) = 1 and high if w(p) = w > 1.
Let W be the shortest tour that visits all points in

S, let W1 be the shortest tour that visits all low points
in S, and letWw be the shortest tour that visits all the
high points in S. Each of these tours can be computed
in O(|S|3n logn) time. Let m be the number of low
points in S and we construct a set of tours U0, . . . , Um

that each visits all the points in S and at least one of
them has short delay.
Um is constructed as follows: let px be some high

point, follow Ww from a point in V(px) until all high

52

33rd European Workshop on Computational Geometry, 2017

points have been visited, then move to a low point,
go back to visit px, follow Ww around again, move
to another low point, go back to visit px, etc., until
all low points have been visited. Um makes as many
rounds around Ww as there are low points. Let d be
the length of the path along Um between V(px) and
the furthest visibility polygon of any low point and
let pz ∈ S be this low point.

The tour Uk, for 1 ≤ k ≤ m, is now constructed
as follows: let Dk = max{d, ||Ww||/2, ||W1||/k} and
follow Ww from a point in V(px) along Ww until all
high points have been visited, visit pz and move a
distance of at most Dk along W1 visiting low points
before going back to V(px), make a tour of Ww , move
to W1 at the point where we left previously and move
at most Dk along W1 before going back to V(px),
repeating until all low points have been visited. For
k = 1, U1 makes one tour around Ww and one tour
around W1. Finally, we let U0 = W .

We call a tour weight separated if every low point
is visited exactly once and it can be partitioned into
consecutive subpathsX1, . . . , Xt, such that X2i+1 vis-
its all high points exactly once but no low points and
X2i visits at least one low point but no high point.
Tours U1, . . . , Um are all weight separated.

Theorem 4 At least one of the tours U0, . . . , Um is

a 12-approximation to the two-weight WDMSR prob-

lem in a polygon P given a finite set S of points to

guard.

Proof (sketch). Let T be an optimal solution for
WDMSR in P that sees all points in S and has mini-
mum weighted delay. Pick a point on T and follow T
in counterclockwise order until the traced path finish-
ing at point q has visited each point in S. Let pj be
the last point of S seen by the trace. Follow T again
from q in clockwise order until pj is visited again at
q′ and denote this subpath by X . If w(pj) = w, then
dw(U0) ≤ 2dw(T), since dw(T) ≥ ||X || ≥ ||W ||/2 ≥
dw(U0)/2 and the path X sees all points of S. Also, if
||W ||/||Ww|| ≤ 6, then dw(U0) ≤ 12dw(T). We there-
fore assume from now on that w(pj) = 1 and that
||Ww || < ||W ||/6.
Let pj′ be the last point in S visited, moving on

T from q towards q′ in clockwise order, strictly be-
fore q′ and let q′′ be the first point of encounter with
V(pj′) (on this occasion, pj′ may have been repeat-
edly visited before). Let Y be this subpath of T from
q to q′′ and let T ′ be the tour obtained by follow-
ing Y from q to q′′ and back to q along the same
path. We ensure that T ′ does not make more than
one detour per low point by shortcutting any repe-
titions if possible. Since ||Y || ≤ hcT (pj) ≤ dw(T),
we have hcT ′(pj) ≤ 2||Y || ≤ 2dw(T) and pj is visited
only once on T ′ so this hiding cost holds for every
low point. Let K be the fewest number of repetitions

T ′

T ′′

Figure 3: Illustrating the proof of Theorem 4.

of any high points along T ′. Again, by shortcutting
any repetitions of high points, if possible, we ensure
that every high point is visited exactly K times by T ′

maintaining dw(T
′) ≤ 2dw(T) and that each of the K

sequences of high points makes a detour to visit each
high point at most once.
We transform T ′ to a weight separated tour T ′′ as

follows: find the shortest subpath H1 of T ′ that visits
all high points, then follow T ′ further from H1 un-
til a high point is reached again. We let this sub-
path be L1. We continue along T ′ until all high
points have been visited again, giving H2 followed
by L2 and continue subdividing T ′ into 2K sub-
paths, H1, L1, . . . , HK , LK , each Hi visiting all the
high points and Li only visiting low points. Follow
each path Hi shortcutting detours made to all low
points not directly on subpaths between high points,
until every high point has been visited, then go back
and visit all (unvisited) low points that were shortcut-
ted between the first and last high point and connect
to Li, giving a new path Zi; see Figure 3 where high
points are blue and low points are red. We have T ′′ =�

1≤i≤K Zi and ||Hi||+ ||Li|| ≤ ||Zi|| ≤ 3||Hi||+ ||Li||.

Choose K∗ to be the smallest of the two values
K, defined above, and K ′, the largest integer such
that ||W1||/K

′ ≥ max{d, ||Ww||/2}. The tour UK∗

has hiding cost ||Ww || + ||W1||/K
∗ + d ≤ 2||Zi|| for

each high point and each 1 ≤ i ≤ K∗, and hiding cost
K∗||Ww ||+ ||W1||+K∗d ≤ 2

�
1≤i≤K∗ ||Zi|| ≤ 2||T ′′||

for each low point, giving us dw(UK∗) ≤ 2dw(T
′′).

Hence, dw(UK∗) ≤ 12dw(T). �

Acknowledgements

The authors wish to thank Prof. Elmar Langetepe for
fruitful initial discussions on these problems.

References

[1] M. Dror, A. Efrat, A. Lubiw, and J. Mitchell. Touring
a sequence of polygons. In Proc. 35th STOC’03, pages
473–482, 2003.

[2] T. Kamphans and E. Langetepe. Inspecting a set of
strips optimally. In Proc. 11th WADS, pages 423–434,
2009.

[3] J. O’Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, 1987.

[4] X.-H. Tan. Fast computation of shortest watchman
routes in simple polygons. Information Processing Let-

ters, 77(1):27–33, 2001.

53

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

On the Traveling Salesman Problem in Solid Grid Graphs

Sándor P. Fekete ∗ Christian Rieck ∗ Christian Scheffer ∗

Abstract

We consider the Traveling Salesman Problem in solid
grid graphs, whose complexity is one of the long-
standing problems in The Open Problems Project. We
disprove a conjecture that a component-minimal 2-
factor, i.e., a minimum cardinality set of disjoint cy-
cles that cover all vertices, would yield an optimal
tour. Instead, we show that it is sufficient to find a
longest cycle to obtain optimal tours—at least in solid
grid graphs that contain a 2-factor.

1 Introduction

The Traveling Salesman Problem (TSP) is one
of the classic problems of optimization. Easy to de-
scribe but provably hard, it shows up in a wide range
of application fields, e.g., planning roadtrips, guid-
ing industrial machines, organizing data or mowing a
lawn. Discretizations to grid points are common, so
many scenarios deal with grid graphs, in which ver-
tices are points in the orthogonal integer grid, and
edges connect grid points at unit distance.
We consider the TSP in solid grid graphs

G = (V,E) that do not have any holes, i.e., graphs
for which the set N2 \ V with unit-length connections
is connected. In 1997, Umans and Lenhart showed
that the Hamiltonian Cycle Problem (HCP) is
polynomially solvable in these graphs; the more gen-
eral problem of finding a shortest tour (for which dis-
tances between non-adjacent vertices are induced by
shortest-path distances in the graph, corresponding
to Manhattan distances) has defied all attempts at
resolving its complexity. As Problem #54 in The

Open Problems Project1 (TOPP), this belongs to a
prominent list of long-standing open problems. The
complexity of the related Longest Cycle Problem

(LCP) in these graphs is also an open question.

Related Work. Itai et al. [5] showed that the HCP
is NP-complete for general grid graphs. Umans and
Lenhart [8] proved that the HCP is decidable in poly-
nomial time for solid grid graphs. Their algorithm is
based on merging components of an initial 2-factor,
which is done by flipping the edge parities of a spe-
cific class of alternating cycles between different com-

∗Department of Computer Science, TU Braunschweig, Ger-

many. {s.fekete,c.rieck,c.scheffer}@tu-bs.de
1http://cs.smith.edu/~orourke/TOPP/

ponents. Kunas [6] showed that even if there is no
Hamiltonian cycle, the edge-flipping algorithm termi-
nates with a 2-factor consisting of a minimum num-
ber of components. She also conjectured that these
component-minimal 2-factors can be used to solve the
TSP in solid grid graphs, which would be sufficient
to resolve Problem #54 of TOPP. Arkin, Fekete and
Mitchell [2] showed that grid graphs with n vertices
and without local cut vertices allow a tour of length
at most 6n/5; the results by Arora [3] and Mitchell [7]
imply the existence of polynomial-time approximation
schemes. For other classes of grid graphs, e.g., tri-
angular and hexagonal grid graphs, Arkin et al. [1]
proved that the HCP is NP-complete in the general
case, but decidable in polynomial time for solid trian-
gular grids. The complexity for solid hexagonal grids
is an open problem. Asgharian-Sardroud et al. [4]
gave a simple 2/3-approximation algorithm for the
LCP in solid grid graphs.

Our Contribution. We show that a component-
minimal 2-factor is not necessarily a substructure
of an optimal tour, disproving a conjecture that
would have resolved the long-standing Problem #54
of TOPP. Instead, we show that it is sufficient to find
a longest cycle to obtain optimal tours—at least in
solid grid graphs that contain a 2-factor. We further
give some geometric observations and bounds on the
LCP, which lead to a number of interesting questions.

2 Solid Grid Graphs with 2-Factor

Any grid graph with a Hamiltonian cycle contains a 2-
factor. As the first step in the edge-flipping algorithm
of Umans and Lenhart, its existence is easily checked
with matching techniques. Kunas [6] extends this by
proving that for this class, the edge-flipping algorithm
terminates with a component-minimal 2-factor.

2.1 Component-Minimal 2-Factors

The cells between two components of any 2-factor can
be of the different types shown in Figure 1. A simple
observation is that a type IV cell induces the occur-
rence of a type III cell, and that a type III cell can
be used to decrease the number of components of a
given 2-factor by flipping its edge parities. So it is easy
to conclude that in any component-minimal 2-factor,

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

54

33rd European Workshop on Computational Geometry, 2017

I II III IV

Figure 1: Different types of cells between any two
adjacent components of a 2-factor, i.e., not all vertices
of these cells belong to the same component. (Vertices
are black and white according to their parity in the
grid graph, while edges of a 2-factor are shown as solid
edges.)

Figure 2: On the left we see a tour that has a
component-minimal 2-factor as a substructure. This
tour contains four vertices of degree four. On the
right, we see that an optimal tour only contains two
vertices of degree four.

only cells of type I and type II can occur between its
components.
Furthermore, exactly two components are incident

to each of these cells. We can construct the dual graph
Gk of a component-minimal 2-factor Fk (with k com-
ponents), where a vertex represents a component and
an edge connects two vertices iff their respective com-
ponents share at least one border cell. Due to the
previous observations, it is clear that Gk is a tree.

2.2 First Approach for Using Edge Flips

Kunas suggests the following approach. Compute an
initial 2-factor and decrease the number of compo-
nents, using the edge-flipping algorithm of Umans
and Lenhart, until it terminates with a component-
minimal 2-factor Fk. BecauseGk is a tree, we can con-
nect the components of Fk by doubled edges in a tree-
like manner to obtain a tour of length |V |+2 (k− 1).

Lemma 1 (see [6]) Let Fk be a component-

minimal 2-factor in any solid grid graph G. There

exists a tour T in G of length at most |V |+2 (k− 1).

This is an upper bound on the length of any tour.
Kunas conjectured that it is also a lower bound: We
insert additional edges if and only if we cannot merge
another two components, so this approach produces—
due to this specific substructure—a minimum number
of vertices of degree four. It is easy to see that this
yields an optimal solution for any solid grid graph
with a 2-factor consisting of two cycles.
However, this is not true in general; even for graphs

with a 2-factor with three components.

Figure 3: The graph can be extended by adding more
W -shaped subgraphs. In the left case we need a dou-
bled edge between any pair of adjacent components,
whereas an optimal tour just has length |V |+ 2.

Theorem 2 A 2-factor with a minimum number of

components is not necessarily a substructure of an

optimal tour in solid grid graphs.

Proof. See the graph in Figure 2. �

The gap between the length of a tour constructed
by the previous approach to any optimal tour can get
arbitrarily large. An example is given in Figure 3.

2.3 What Optimal Tours Look Like

As shown in Theorem 2, a 2-factor is not necessarily a
substructure of optimal tours in solid grid graphs. In
the following we work out some important properties
of optimal tours. Putting them together establishes
the following theorem.

Theorem 3 Given a solid grid graph that contains a

2-factor. Then there is an optimal tour such that the

longest cycle is a substructure of this tour.

Lemma 4 If an edge e is used more than twice in a

tour T , then there is a shorter tour T ′, and e is used

at most twice.

The high-level idea is the following. Assume that
such an edge e is used an even number of times. Then
by removing e and all copies of e, the degree of both
incident vertices remains even; we either obtain a tour
or we just have to add e twice, which yields a shorter
tour in both cases. A similar argument holds for any
edge that is used an odd number of times. This di-
rectly implies that there is always a tour in which all
vertices have degree at most eight.

Lemma 5 In every solid grid graph that contains a

2-factor, an optimal tour cannot contain vertices of

degree eight.

Proof. We prove this by contradiction to the opti-
mality of the tour. Due to space constraints we only
show one case; the proof can be completed by similar
arguments. As a consequence of Lemma 4, a ver-
tex v of degree eight must be connected to each of its
four neighbors by doubled edges. If v is no cut vertex,

55

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 4: The modification from left to right yields a
shorter tour, because the degree of the middle vertex
decreases by two.

Figure 5: The different edge configurations of a
degree-six vertex.

then at least three vertices of its 8-neighborhood must
exist. Figure 4 shows one such possible edge configu-
ration. One can see that the transformation from left
to right yields a tour with shorter length. �

Lemma 6 Every solid grid graph with a 2-factor has

an optimal tour in which no vertex has degree six.

Proof. This can be proven by similar arguments as in
Lemma 5, checking the different configurations for a
degree-six vertex (see Figure 5) in its 8-neighborhood.
There are situations in which a degree-six vertex can
occur in an optimal tour, but there are local modifica-
tions to this tour that move a doubled edge incident to
this vertex, creating vertices of degree two and four.
Details are omitted due to limited space. �

Figure 6: The two different types of a degree-four
vertex. The dotted cycle in the right shows that the
black vertex can have degree two or four. The left
one is called a cross vertex, whereas the right one is
an isolated vertex, iff the black vertex has degree two.

In order to prove Theorem 3, we have to show that
we can modify the different types of degree-four ver-
tices in an optimal tour (see Figure 6), such that we
get a longest cycle. First consider the case in which
two subtours are connected by a doubled edge. With-
out loss of generality, let the boundary between these
subtours be neither a bridge nor a cut vertex. Then
we can easily merge both subtours to get a single cy-
cle that contains all but two vertices of the initial
subtours. There is only one kind of unmergeable com-
ponent, which is shown in Figure 7.

Lemma 7 Let G = (V,E) be solid grid graph with-

out cut vertices and let Fk be a component-minimal

2-factor in G. Then there is a cycle of length at least

|V | − 2 (k − 1 + σ), where σ denotes the number of

unmergeable components.

Figure 7: If all but the vertices of the nested C4 are
connected in a single cycle, then we cannot extend
this cycle by some of these inner vertices.

In general, given an arbitrary 2-factor, this cycle is not
a longest cycle (see Figure 3). However, if a doubled
edge connects two cycles in an optimal tour, we can
merge them into a single one—containing two isolated
vertices. Now we only have to show that the cross-

shaped vertex of degree four can be modified, such
that we get a doubled edge between a single vertex
and a bigger cycle, i.e., an isolated vertex.

Lemma 8 Let G be solid grid graph without cut ver-

tices that contains a 2-factor. In an optimal tour of

G, a cross vertex is equivalent to an isolated vertex.

Proof. See Figure 8 for the main idea; details are
omitted due to limited space. �

modify

flip

Figure 8: These are basically all possible configura-
tions in the extended neighborhood of a cross vertex.
Preserving the tour, we can either directly modify a
cross vertex to an isolated one (Top), or we can flip

it to obtain the upper configuration (Bottom).

2.4 Longest Cycles

Knowing that longest cycles yield optimal tours in
solid grid graphs with a 2-factor, makes it interest-
ing to exploit the structure of component-minimal 2-
factors Fk. Recalling Figure 3 and Lemma 7, it is
easy to argue that an upper bound for any cycle is
|V |− λ, where λ denotes the number of leaves in Gk.
It is plausible to conjecture that λ could also denote
the number of odd vertices in Gk. Unfortunately, this
is not true in general.
Instead, we analyze the color of the vertices that are

left in the leaf-corresponding vertex sets to improve
this bound. To this end, we count the leaves in Gk for
which the corresponding component in Fk has black
vertices adjacent to another component, and subtract
one for each leaf in which these vertices are white.
Let ζ denotes the absolute value of this sum, then
|V | − (λ + ζ) is an upper bound for any cycle in G.
The intuitive idea is that the number of vertices left

56

33rd European Workshop on Computational Geometry, 2017

in the leaf-corresponding sets does not suffice for con-
necting all vertices of the inner components; this is
analogous to the Tutte-Berge formula from matching
theory. Unfortunately, it is not easy to improve this
bound because there are no specific structures that
can be used to achieve this, i.e., some cutting sets of
size two or the like (see Figure 9).

Figure 9: The upper bound of |V | − (λ + ζ) on any
cycle results in |V | − (2 + 0). Analyzing the shaded
cutting sets yields an upper bound of |V |− 4 on any
cycle in this graph.

3 General Solid Grid Graphs

A general solid grid graph can be decomposed into (A)
vertex-clusters that contain a 2-factor, (B) clusters
that are 2-connected, (C) 1-dimensional paths that
connect different clusters or single vertices, and (D)
clusters that contain a cut vertex (see Figure 10). It

A

B

C

D

v

Figure 10: A general solid grid graph with the com-
ponent classification given in Section 3.

is trivial to observe that all edges on a 1-dimensional
path must be used twice in any optimal tour. It
can also be shown that the Lemmas 5 and 6 can be
adapted by similar arguments to the case that a vertex
cluster is 2-connected but does not contain a 2-factor.
Finally, it is easy to see that one can decompose a
cluster at a cut vertex, solve the problem for each
subcluster and merge them afterwards. This implies
that many of the previous results can be reused.

Unfortunately, we were not able to extend the ar-
guments of Lemma 7 and Lemma 8 for general 2-
connected solid grid graphs. Without these, we were
not able to show that a longest cycle is also part of an
optimal tour in general solid grid graphs. Neverthe-
less, we are strongly convinced that this is the case,
as stated in the following conjecture.

Conjecture 1 In general solid grid graphs, a longest

cycle is part of an optimal tour.

4 Future Work

We have shown that a component-minimal 2-factor is
not necessarily a substructure of an optimal tour in
a solid grid graph with a 2-factor. We were able to
prove that for these graphs, a longest cycle is part
of an optimal tour. We also gave a number of geo-
metric observations on longest cycles. Some of these
results can be adapted to general solid grid graphs.
We are convinced that a longest cycle is also part of
an optimal tour in general solid grid graphs.

The computational complexity of both the TSP and
the LCP in solid grid graphs is still open. It may be
useful to know whether there always exists a longest
cycle such that all vertices that are not part of this
cycle lie on the boundary of the graph. If true, it may
be possible to solve the question of how many ver-
tices of the boundary must be deleted, such that the
remaining graph is Hamiltonian. Another challenging
question is whether there is always a longest cycle for
which all unvisited vertices are adjacent to it.

References

[1] E. M. Arkin, S. P. Fekete, K. Islam, H. Meijer,
J. S. B. Mitchell, Y. N. Rodŕıguez, V. Polishchuk,
D. Rappaport, and H. Xiao. Not being (super)thin
or solid is hard: A study of grid Hamiltonicity.
Comput. Geom., 42(6-7):582–605, 2009.

[2] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell.
Approximation algorithms for lawn mowing and
milling. Comput. Geom., 17(1-2):25–50, 2000.

[3] S. Arora. Polynomial time approximation schemes
for Euclidean Traveling Salesman and other geo-
metric problems. J. ACM, 45(5):753–782, 1998.

[4] A. Asgharian-Sardroud and A. Bagheri. An ap-
proximation algorithm for the longest cycle prob-
lem in solid grid graphs. Disc. Appl. Math., 204:6–
12, 2016.

[5] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter.
Hamilton paths in grid graphs. SIAM J. Comput.,
11(4):676–686, 1982.

[6] W. Kunas. Kürzeste Rundreisen auf einfachen
Gittergraphen. Diplomarbeit, Technische Univer-
sität Braunschweig, 2003.

[7] J. S. B. Mitchell. Guillotine subdivisions ap-
proximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geo-
metric TSP, k-MST, and related problems. SIAM
J. Comput., 28(4):1298–1309, 1999.

[8] C. Umans and W. Lenhart. Hamiltonian cycles
in solid grid graphs. In 38th Ann. Symp. Found.

Comp. Sci., FOCS ’97, pages 496–505, 1997.

57

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Covering Tours with Turn Cost:

Variants, Approximation and Practical Solution

Sándor P. Fekete∗ Dominik Krupke∗

Abstract

For a given set P of points in the plane, the Angular-
Metric Traveling Salesman Problem (AM-TSP) asks
for a tour on P that minimizes the total turn along
the tour. While there exists a PTAS for the Euclidean
TSP, for the AM-TSP only a O(log n) approxima-
tion algorithm is known. We introduce a number of
generalizations and provide approximation algorithms
whose performance depend on the angular resolution.
We also develop exact methods for computing prov-
ably optimal solutions, and present an array of exper-
imental results.

1 Introduction

Consider an outdoor setting with a number of obsta-
cles. Swarms of mosquitos populate the area, with
a number of known hotspots. How can we lower the
danger of diseases by zapping the mosquitos with a
flying drone, such as the one shown in Figure 1?

���

���

���

�����

�	������

Figure 1: A drone equipped with an electrical lattice
to hunt mosquitoes. Images by Aaron Becker.

Visiting a set of points by an optimal tour is a natu-
ral and important problem, both in theory and prac-
tice. If we are only concerned with minimizing the
total distance traveled for visiting all points this is
the classic Traveling Salesman Problem (TSP). How-
ever, for path planning by a flying robot, we also in-
cur a cost for changing direction; this is related to the
Angular-Metric TSP (AM-TSP), in which the objec-
tive is to minimize the total turn. In addition, we
may want to focus on a subset of the points in order
to provide better coverage, incurring a penalty for the
uncovered ones.

∗Department of Computer Science, TU Braunschweig, Ger-

many. s.fekete@tu-bs.de, krupke@ibr.cs.tu-bs.de

0:2

3:4

0:3

0:4

1:1

2:1

0:9
1:5

0:4

Figure 2: An example instance with obstacles and
individual penalty costs for the points in P .

Related Work. Angle-restriced tour problems were
studied by Fekete and Woeginger [4]. Touring points
in the plane with minimal turn cost was considered
by Aggarwal et al. [1], who provide a O(log n) ap-
proximation algorithm, but also show that already
the cycle cover version is NP-hard. Arkin et al. [3]
consider different grid-based versions of covering with
turn cost, and provide a spectrum of approximation
algorithms. Minimizing the total turn cost can be
modeled as a special case of the quadratic TSP, which
has received a fair amount of attention; see [5, 6, 9, 8]
for research in optimal solutions and heuristics.

Our Results. We consider a number of variants for
AM-TSP, motivated by practical applications. In par-
ticular, we consider the setting in which the set of
possible headings at visited points is discretized; this
also allows it to easily add polygonal obstacles into
the environment. We also provide approximation al-
gorithms for the generalization in which a penalty can
be paid instead of covering a point. In addition, we
present computational results.

2 Preliminaries and Problems

Preliminaries. We are given a set of points P ⊂ R
2

in a polygonal environment with the obstacles O. For
every point p ∈ P a set of ω angles δ(p) ∈ [0,π)ω

that describe possible headings when covering p; each
angle corresponds to two possible, opposite headings.
A pose consists of a position and a heading. The re-
spective set of poses results in an undirected weighted
graph. There is weighted edge between any two poses
that represents the cheapest collision-free polygonal
path connecting them. The travel cost is a linear com-
bination of the sum of turn angles (with coefficient τ)
and the length (with coefficient κ).

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

58

33rd European Workshop on Computational Geometry, 2017

Problems. The Full Cycle Cover Problem (FCCP)
asks for a set of non-trivial cycles of minimum to-
tal cost, such that every point is covered. The Full
Tour Problem (FTP) asks for a single cycle of min-
imum total cost that covers all points. The Penalty
Cycle Cover Problem (PCCP) and the Penalty Tour
Problem (PTP) are defined analogously, but points
may be left uncovered by paying an individual penalty
ρ(p) ∈ R

+
0 for every omitted point p ∈ P .

All problem variants are NP-hard. The hardness of
the Full Tour Problem is implied by the hardness of
the Euclidean TSP; the Full Cycle Cover Problem is
NP-hard with ω ≥ 2 by a straightforward adaption
of the NP-hardness proof for the angular metric cycle
cover problem by Aggarwal et al. [1]. Clearly, this
implies hardness for the penalty variants. For ω = 1,
the problem can be solved using a minimum weight
perfect matching on an appropriate auxiliary graph.
A subproblem is to calculate the cheapest transi-

tion between two poses around polygonal obstacles. If
there are only distance costs, this problem equals the
Euclidean shortest path, for which only the visibilty
graph needs to be considered. It can easily be shown
that this is also true with turn costs and the graph
can easily be transformed such that the turn costs are
integrated in edge weights resulting in a complexity
of O(|VO|

2 ∗ log |VO|) for the calculation of a cheapest
transition, where VO are the vertices of the obstacles.

3 Approximation Algorithms

We now propose approximation techniques for all four
problems. Due to limited space, we only outline the
main ideas; details are left to the full paper.
Note that for all the proposed approximation al-

gorithms, the approximation factor and the runtime
both depend linearly on the maximum number of ori-
entations ω, which is assumed to be constant.

3.1 Full Coverage

Theorem 1 For a fixed ω, there is a 2 ∗ ω approxi-

mation algorithm for the FCCP. In case ω = 1, the
solution is optimal.

Proof. Solve the LP-relaxation of the integer pro-
gram (IP); select for each point the orientation of
highest variable value. Do a minimum weight perfect
matching on the vertices associated with these points.
Both takes polynomial time, with the LP-relaxation
being the dominant part.
Because every point has at most ω orientations, at

least one orientation of each point is used with a frac-
tional weight of at least 1/ω. Multiplying the solution
by ω and applying some local modifications that do
not increase the cost (like skipping a point) yields a
half-integral solution. This can be multiplied by two

to obtain an integral solution. By further local modifi-
cations that do not increase the cost (possibly even de-
crease it), we obtain a perfect matching with at most
2 ∗ ω times the cost of the LP-relaxation. This (not
minimal) perfect matching is an upper bound. �

To connect the cycles provided by Theorem 1, we
simply use a minimum spanning tree (MST). Dou-
bling the edges results in cycles with u-turns on the
original cycles, which can be connected with no addi-
tional cost (but the u-turns from the doubling involve
an extra cost).

Theorem 2 For a fixed ω, there is a 4 ∗ ω + 2 ap-

proximation algorithm for the FTP. In case of ω = 1,
there is a 4-approximation algorithm.

Proof. We compute a 2 ∗ω-approximation of the cy-
cle cover using Theorem 1, then connect these cycles
via an MST. The MST provides m − 1 edges for a
cycle cover with m cycles. An edge between two cy-
cles corresponds to the cheapest connection between
two of it points (∈ P), ignoring the headings at the
end. These m− 1 edges are doubled to create a valid
tour. The minimum spanning tree is a lower bound on
the optimal value. Connecting the edges to the cycles
involves additional turn costs (360◦ for each doubled
edge), but these can be charged to the cycles, because
every cycle has a turn angle sum of at least 360◦. �

3.2 Penalty Coverage

The adaption of the approximation algorithms to the
penalty variants is surprisingly simple.

Theorem 3 For a fixed ω, there is a 2 ∗ (ω + 1) ap-
proximation algorithm for a PCCP.

Proof. We proceed as in Theorem 1, but we add an
artificial orientation that allows a single artificial cycle
with the cost of the penalty. �

From this penalty cycle cover we use the prize-
collecting Steiner tree to select and connect good cy-
cles. The connecting of the selected cycles via the
edges of the tree is identical to full coverage. Only
the analysis is slightly more difficult.

Theorem 4 For a fixed ω, there is a 4 ∗ (ω + 1) + 4
approximation algorithm for the PTP.

Proof. We first compute a penalty cycle cover ap-
proximation with a factor of 2 ∗ (ω + 1), using Theo-
rem 3. We remove all points for which the penalty
in the cycle cover has been paid. Next we com-
pute a 2-approximation of the prize-collecting Steiner
tree, using the approximation algorithm of Goemans
and Williamson [7] that has a time complexity of
O(n2 log n). This is done on a graph that contains

59

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

all remaining points, with edge costs corresponding
to shortest paths with turn costs but arbitrary start
and goal headings. For two points that are in the
same cycle, we set the cost to zero. We remove all
cycles for which no point is in the resulting prize-
collecting Steiner tree. All other components we con-
nect by selecting edges from the tree (i.e., m−1 edges
for m cycles). This can be done by iterating over all
edges in the tree, adding an edge if it connects two
different components. Clearly, the cost of an opti-
mal prize-collecting Steiner tree is a lower bound for
the tour. Due to the 2-approximation, the sum of all
edge weights and penalties is at most twice the cost
of the optimal penalty tour. The selected edges are
transformed to cycles by doubling them and adding
180◦ turns at the ends. We can merge the cycles with
no additional cost, as in Theorem 2. This results in
at most four times the cost of the optimal tour plus
2 ∗ (m − 1) × 180◦ turns for m cycles in the cycle
cover. As every cycle in the cycle cover has also at
least 360◦, we can charge the 180◦ turns to the cy-
cles, which leads to 2 ∗ 2 ∗ (ω + 1) ∗OPT. Combined,
this results in 2 ∗ 2 ∗ (ω + 1) ∗ OPT + 2 ∗ 2 ∗ OPT =
(4 ∗ (ω + 1) + 4) ∗OPT. �

4 Integer Programming

We work on an auxiliary graph G(V,E): For every
point p ∈ P with orientations δ(p), we create the
vertices V (p) =

⋃
α∈δ(p){vp,α, vp,α+π} representing

the two poses by which a point can be left/entered
through one of its orientations. Furthermore, there is
an edge e = {v, v′} between any two v = vp,α ∈ V (p)
and v′ = vp′,α′ ∈ V (p′) with the cost c(e) representing
the minimum cost path from the pose of being at p
and heading α to the pose of being at p′ and heading
α′+π (this cost is symmetric). Entering on the vertex
for the pose of being at p′ and heading α′ + π implies
leaving through the vertex for the pose of being at p′

with the heading α′.

For the cycle cover variant, there is also an edge
e = {vp,α, vp,α+π} for every p ∈ P with the cost of
the cheapest cycle (covering it and at least one other
point). cycle cover, points can be in two unconnected
cycles even in an optimal solution. The additional
edge is used to implicitly represent this kind of cycle.

The integer programming formulation for cycle
cover can be given as follows:

min
∑

e∈E

c(e) ∗ xe (1)

s.t.
∑

e∈E(vp,α)

xe =
∑

e∈E(vp,α+π)

xe
∀p ∈ P

∀α ∈ δ(v)
(2)

∑

α∈δ(p)

∑

e∈E(vp,α)

xe = 1 ∀p ∈ P (3)

0

20

40

60

80

100

50 100 150 200 250 300 350

%
so
lv
ed

in
1
5
m
in

number of points

OPT:τ = 1,κ = 0,ω = 2
OPT:τ = 1,κ = 0,ω = 3
OPT:τ = 1,κ = 0,ω = 4
OPT:τ = 1,κ = 1

2 ,ω = 2

Figure 3: Percentage of tour instances solved to op-
timum within 15min. 10 instances for each size
50, 100, . . . , 350. The cycle cover variant is only
slightly better. i

xe ∈ {0, 1} ∀e ∈ E (4)

Eq. 2 states that if and only if there is an incoming
edge on one side, there has to be an outgoing edge
on the opposite site. Eq. 3 states that there have
to be exactly two edges entering/leaving (using the
symmetry induced by the previous equation). E(v)
represents the set of edges incident to v.
The subcycle elimination constraints for obtaining

a tour can be adapted directly from the TSP.

∑

e∈E(V (C),V (P\C))

xe ≥ 2 ∀C � P,C �= ∅ (5)

Hence, the IP for tours is given by adding Eq. 5 to
the cycle cover formulation. The penalty versions are
omitted due to space constraints.

5 Experiments

For the full coverage problem variants, we imple-
mented the integer programs and the approximation
algorithms for tour and cycle cover without obstacles.
In this section we discuss the experimental results
for these implementations. Experiments were exe-
cuted on modern desktop computers equipped with
an Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
and 64GB of RAM. The used CPLEX version was
12.5.0.0 with the parameters EpInt=0, EpGap=0,
EpOpt=1× 10−9, and EpAGap=0. No further opti-
mizations were performed. As cost parameters we
used τ = 1,κ = 0, with one additional run with
ω = 2, τ = 1,κ = 0.5. Experiments were run
for 10 random instances in the unit square per size
50, 100, . . . , 350. As passing orientations {i ∗ π

ω
|i =

0, . . . ,ω − 1} were chosen for all points equally.
Fig. 3 shows the percentage of instances solved to

optimum within 15min via the integer program for
tours. The cycle cover variant is only slightly better.
It can be seen that we can solve 50% of the instance of

60

33rd European Workshop on Computational Geometry, 2017

0
5
10
15
20
25
30
35
40
45

50 100 150 200 250 300 350

ru
n
ti
m
e
in

se
co
n
d
s

number of fields

APX:τ = 1,κ = 0,ω = 2
APX:τ = 1,κ = 0,ω = 3
APX:τ = 1,κ = 0,ω = 4
APX:τ = 1,κ = 1

2 ,ω = 2

Figure 4: Average runtime of the approximation algo-
rithm for cycle cover and tour (with nearly identical
runtime). For each size 50, 100, . . . , 350,10 instances
were tested.

size up to 200 points for ω = 2. Already for ω = 3 the
performance drops strongly such that the maximum
instance size becomes 100. For ω = 4 only the small-
est instances (50 points) have been solved in time.
Hence, with our formulation only for ω = 2 there is a
serious advantage compared with the angular metric
cycle cover and traveling salesman problem (using the
work of Aichholzer et al. [2] as reference point).

The average runtime of the approximation algo-
rithm is shown in Fig. 4. Here we do not differentiate
between cycle cover and tour because they have nearly
the same runtime. It can be seen that ω also has a
lot of influence on the runtime of the approximation
algorithm and the runtime for ω = 4 grows signifi-
cantly stronger than for ω = 2. However, the runtime
is much shorter than for the integer programs. The
run with ω = 2, τ = 1,κ = 0.5 is nearly identical to
the run with ω = 2, τ = 1,κ = 0

The objective value of the approximation algorithm
for cycle cover differs only slightly from the opti-
mum. For ω = 2 the difference is on average less
than 5%, with a maximum difference of 7.3%. The
differences are higher for ω = 3 and ω = 4, with a
maximum difference of 17.8%, but there are too few
instances solved for a reliable statement. The differ-
ence is higher for the tour version, but still close to the
optimum and far better than the proven bounds. The
maximum difference found is 1.485 times the optimal
value for ω = 4. It has to be noted that the imple-
mentation does not do a local optimization of the cy-
cle connections, i.e., the points of the connection are
visited multiple times. A removal of the redundant
visits could further improve the ratio.

We further considered random instances with ω =
2, τ = 1, and κ = 0 up to a size of 2000 points. For
instances with 1700 points and more, the memory con-
sumption of the linear program becomes problematic.
The average runtime at this point is roughly 8min.

6 Conclusion

The assumption that the discretization makes the an-
gular metric traveling salesman problem simpler is
only partially true. Surprisingly, the integer program
becomes very slow already for low resolutions, which
is also true for the cycle cover variant. Experiments
for the penalty variants are still to be performed. The
approximation algorithm is only practical for very low
resolutions. The experimental quality of the solutions
of the approximation algorithm is considerably bet-
ter than the worst-case ratio, but this evaluation is
only based on few and relatively small instances. It
would also be interesting to evaluate the quality of
the solutions compared to the optimal solutions of the
AM-TSP. The bottleneck of the approximation algo-
rithm is solving the linear program, but often there
are possibilities of replacing the blackbox LP-solver
by a more direct approach.

References

[1] A. Aggarwal, D. Coppersmith, S. Khanna, R. Mot-
wani, and B. Schieber. The angular-metric travel-
ing salesman problem. SIAM Journal on Computing,
29(3):697–711, 2000.

[2] O. Aichholzer, A. Fischer, F. Fischer, J. F. Meier,
U. Pferschy, A. Pilz, and R. Stanek. Minimization
and maximization versions of the quadratic traveling
salesman problem. Preprint of the Institute for Nu-
merical and Applied Mathematics of the University of
Goettingen, Mar. 2016.

[3] E. M. Arkin, M. A. Bender, E. D. Demaine, S. P.
Fekete, J. S. Mitchell, and S. Sethia. Optimal covering
tours with turn costs. SIAM Journal on Computing,
35(3):531–566, 2005.

[4] S. P. Fekete and G. J. Woeginger. Angle-restricted
tours in the plane. Computational Geometry, 8(4):195–
218, 1997.

[5] A. Fischer, F. Fischer, G. Jäger, J. Keilwagen, P. Moli-
tor, and I. Grosse. Exact algorithms and heuristics
for the quadratic traveling salesman problem with an
application in bioinformatics. Discrete Applied Math-
ematics, 166:97–114, 2014.

[6] A. Fischer and C. Helmberg. The symmetric quadratic
traveling salesman problem. Mathematical Program-
ming, 142(1-2):205–254, 2013.

[7] M. X. Goemans and D. P. Williamson. A general ap-
proximation technique for constrained forest problems.
SIAM Journal on Computing, 24(2):296–317, 1995.

[8] G. Jäger and P. Molitor. Algorithms and experimental
study for the traveling salesman problem of second or-
der. In Combinatorial Optimization and Applications,
pages 211–224. Springer, 2008.

[9] B. Rostami, F. Malucelli, P. Belotti, and S. Gualandi.
Quadratic TSP: A lower bounding procedure and a
column generation approach. In Computer Science
and Information Systems (FedCSIS), 2013 Federated
Conference on, pages 377–384. IEEE, 2013.

61

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

On the Generation of Spiral Paths Within Planar Shapes

Martin Held∗ Stefan de Lorenzo∗

Abstract

We simplify and extend prior work by Held and Spiel-
berger [CAD 2009, CAD&A 2014]: We use a lineariza-
tion to derive a simple algorithm that computes a spi-
ral path inside of planar shape bounded by straight-
line segments and circular arcs. Our spiral paths
are continuous and without self-intersection, respect
a user-specified maximum step-over distance, start in
the interior and end at the boundary of the shape.
We also extend this basic algorithm to double spirals
that start and end at the boundary.

1 Introduction

Several applications require to cover a planar shape
by moving a circular disk along a path. E.g., in ma-
chining applications the disk models the cross-section
of a tool and the area models a so-called pocket. Sim-
ilarly, the disk may represent the area covered by a
spray nozzle or the area of visibility of a camera device
used for aerial surveillance.
Traditional strategies for path generation include

zigzag patterns and the use of offset curves to form
contour-parallel patterns. Common to these tradi-
tional strategies is the fact that the resulting paths
contain lots of sharp corners, i.e., abrupt changes of
the direction. The higher the speed or the moment of
inertia of the moving object represented by the disk
is, the more these directional discontinuities become a
problem. E.g., for a high speed machining (HSM) ap-
plication, an abrupt change of direction requires the
tool to slow down to near-zero speed, change its direc-
tion and then accelerate until the desired maximum
speed is reached again.
In order to avoid sharp directional discontinuities,

(spiral) paths have been studied. Bieterman and
Sandstrom [2] present an approach based on partial
differential equations (PDEs) to compute spiral tool
paths inside star-shaped pockets. Abrahamsen [1]
constructs a polygonal spiral inside a pocket bounded
by straight-line segments. Held and Spielberger [4, 5]
used the medial axis of the pocket to generate spiral
paths for general non-convex pockets with or without
islands. The key ingredient of their approach are cir-
cles centered on the medial axis whose radii increase
as time progresses. Portions of these circles are inter-

∗Universität Salzburg, FB Computerwissenschaften, 5020

Salzburg, Austria.

polated and connected by other circular arcs to form
a G1-continuous path.

Since the algorithm by Held and Spielberger [4, 5]
is difficult to analyze theoretically and even more dif-
ficult to implement reliably, in this work we pick up
their overall idea but simplify it significantly: A lin-
earization of the medial axis allows to come up with
an algorithm for a raw G0-continuous spiral path that
is easy to implement. (And, indeed, an implementa-
tion of this algorithm is already in commercial use at
our industrial partner.) The spiral path is continuous,
without self-intersection, and respects a user-specified
maximum step-over distance. This raw path can then
be boosted to G1-continuity or C2-continuity by us-
ing a (one-sided) approximation by biarcs or cubic
B-splines.

As in the work by Held and Spielberger [4, 5], our
spiral path starts in the interior of the pocket and
ends at its boundary. The simplicity of our approach
allows to generalize this scheme and to devise double-
spiral paths that start and end at arbitrary points on
the boundary. This makes it easier to cover a complex
shape by one continuous spiral path by (1) decompos-
ing the shape into simpler sub-areas, (2) computing a
(double) spiral within every sub-area, and (3) linking
the individual spirals to form one continuous path.
While such a double-spiral path is unsuited for ma-
chining, it may find use in other applications, such
as spray painting, aerial surveillance, or path finding
algorithms for rescue missions.

2 Preliminaries

If a disk of radius ρ that moves has to stay within a
shape during the entire movement then it is obvious
that its center can never get closer to the boundary
then ρ, even if this constraint results in some areas of
the shape being uncovered. (E.g., at convex corners
of the boundary.) The loci of all permissible positions
of the center can be obtained as the Minkowski dif-
ference of the shape and a disk of radius ρ centered
at the origin. We call this set a pocket, P . Hence,
the area P ′ to be covered by our moving disk is given
by the Minkowski union of P with a disk of radius
ρ centered at the origin. It is well-known that (1)
the boundary of P also consists of O(n) straight-line
segments and circular arcs if the initial shape was
bounded by n straight-line segments and circular arcs,
and (2) that it can be obtained in O(n log n) time via

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

62

33rd European Workshop on Computational Geometry, 2017

Voronoi-based offsetting.

We assume that P is path-connected and simply-
connected. If P were disconnected then we would
run our algorithm separately for every connected
component. If P contains islands (i.e., is multiply-
connected) then we convert it to a simply-connected
area by introducing bridges [5].

It is natural to break a spiral that winds around
a point r for k times into a sequence of k individual
portions, where each portion corresponds to one full
turn around r. We call such a portion of a spiral
a lap. Then the step-over distance at point p of lap
ℓi+1 is the minimum distance from p to the next inner
lap ℓi. It is obvious that, in general, the step-over
distance has to be less than the diameter of the disk
that is being moved in order to avoid regions of P ′

that are not covered. In practice, considerably smaller
step-over distances are used, though. For HSM, a
good step-over value is a fraction of the diameter that
depends on the material of the cutter as well as the
workpiece. (It is largely independent of the geometry
of the pocket.) E.g., for aluminum or (non-hardened)
steel a typical maximum step-over is given by about
15% of the diameter. In any case, it is important that
the user can specify a maximum step-over ∆ that the
spiral path has to keep.

3 The Medial Axis Tree

In order to simplify the algorithm by Held and Spiel-
berger [4] we approximate every edge of the medial
axis MA(P) of the pocket P by a polygonal chain.
The vertices of such a polygonal chain are obtained
by placing uniformly distributed sample points on the
edge such that the maximum length of a segment of
the chain is less than a user-supplied or heuristically
determined value λ. This process yields the discrete
medial axis MA′(P). We refer to the sample points
on MA(P) and the original nodes of MA(P) as ver-
tices of MA′(P).

As usual, the clearance, clr(p), of a point p on
MA′(P) is the radius of the largest disk centered at
p that fits into P . For every vertex p of MA′(P) we
consider the points p1, p2, . . . , pk where the clearance
disk of p touches the boundary ∂P of P , and con-
struct the clearance line segments pp1, pp2, . . . , ppk.
(If p happens to be the center of a circular arc a of
∂P then we select finitely many points on a which are
uniformly spaced, with a spacing less than λ.)

Let L be the set of all clearance line segments de-
fined by vertices of MA′(P). We add L to MA′(P)
and get MA′′(P) := MA′(P) ∪ L.

Both MA′(P) and MA′′(P) form a tree because P
does not contain islands. By choosing one vertex r as
root we can turn MA′′(P) into a rooted tree Tr(P),
the discrete medial axis tree derived from MA′′(P).

Since all edges of Tr(P) correspond to line seg-
ments, it is easy to compute the (Euclidean) length
dTr(P)(p, q) of the path between two vertices p, q of
Tr(P). This allows to define the Euclidean height of
a vertex p of Tr(P) as

hTr(P)(p) := max
q

(

dTr(P)(p, q) + clr(q)
)

,

where the maximum is taken over all vertices q of the
sub-tree of Tr(P) rooted at p. As in [5] we assume
that Tr(P) is height-balanced, that is, that hTr(P)(r)
is assumed for two different leaves of Tr(P). (If no
such vertex exists then we insert a new vertex within
an edge of Tr(P) in order to achieve a perfect bal-
ance.) See Figure 1. (For the sake of visual clarity we
show this toy example with a very course discretiza-
tion and an unrealistically large step-over distance,
which result in spiral paths that do not look smooth.)

(a)

r

(b)

Figure 1: (a) Medial axis. (b) Height-balanced dis-
crete medial axis tree Tr(P).

4 Impulse Propagation

As in [4] we consider an impulse which starts at the
root r of the discrete medial axis tree Tr(P), which is
active during the time interval [0, 1], and which dis-
charges concurrently at the leaves of Tr(P). Let e be
an edge between the nodes p and q of Tr(P), where p
is the parent node of q inside Tr(P). The velocity ve
of the impulse at e is given by

ve :=
hTr(P)(q) + le

1− tp
,

where le is the length of e and tp is the time when
the impulse reached p. Since the impulse starts at
time tr = 0 at r, we can recursively compute the
time when the impulse reaches a specific vertex or
any point within an edge of Tr(P).
As the impulse flows through Tr(P), it covers an

increasing portion of Tr(P). The point which the im-
pulse reaches at time t on its way from r to some leaf
of Tr(P) is called corner at time t. Clearly, there exist
at most as many corners as there are leaves in Tr(P).

By computing all corners at a specific moment in
time, and arranging them in the order in which they
appear when Tr(P) is traversed in depth-first manner,
it is feasible to construct a closed polygonal chain, a
so-called wavefront w(t) at time t.

63

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

r

Figure 2: Wavefronts.

In order to guar-
antee that the user-
specified maximum
step-over ∆ is re-
spected, the spacing
of the wavefronts has
to be chosen carefully.
Roughly, we divide
the Euclidean height
hTr(P)(r) of r by ∆ in order to get a lower bound
on the number m + 1 of wavefronts. (In Figure 2,
the two longest paths in Tr(P) between r and leaves
of Tr(P) that correspond to hTr(P)(r) are shown
in orange.) This gives us a uniform decomposition
of time T := (t0, t1, ..., tm), for m ∈ N0, with
0 = t0 < t1 < ... < tm = 1. Then the corners of
the wavefront w(ti) are given by the positions of the
impulse at time ti. (We omit formulas due to lack
of space.) Note that this construction implies that
the longest paths are split by the wavefronts into
sections with length at most ∆. In particular, our
construction ensures that the (symmetric) Hausdorff
distance between w(ti) and w(ti+1) is at most ∆ and,
thus, that the maximum step-over ∆ is respected.
Note that w(tm) equals ∂P while w(t0) degenerates
to r.

5 One Spiral Path

We now focus on the generation of the actual spiral
path, which is fundamentally different to the strategy
applied by Held and Spielberger [4]. The spiral path
S(P,∆) is made up of m laps L1, L2, . . . , Lm. Each
of these laps is a polygonal chain whose corners lie on
Tr(P). (In addition, one final (trivial) lap is needed
for moving the disk along ∂P .) In a nutshell, we com-
pute the innermost lap L1 by interpolating between
the wavefronts w(t0), i.e., the root r of Tr(P), and
w(t1). Similarly, Lm constitutes an interpolation be-
tween w(tm−1) and w(tm), i.e., ∂P . All other laps
are formed by interpolations between L1 and Lm, see
Figure 3. Every lap starts and ends at one specific
clearance line incident at r. The important technical
issue is to generate these laps in such a way that the
step-over distance between neighboring laps does not
exceed the user-specified maximum step-over ∆.

(a) (b)

Figure 3: (a) First and last lap. (b) All laps.

We start with explaining how L1 is generated, see
Figure 4. Recall that w(t0) degenerates to r. Sup-
pose that q0 is the vertex of w(t1) that is intersected
by the clearance line rv0, on which all laps start and
end. Thus, L1 starts at r and ends at q0. If we want
to generate counter-clockwise (CCW) laps then we
number the vertices of w(t1) in CCW order, starting
at q0. Now consider some vertex of w(t1), e.g., q4
in Figure 4. Let d4 denote the length of the polyg-
onal chain q0q1 . . . q4, let d denote the circumference
of w(t1), and let δ4 denote the distance (along Tr(P))
from q4 to r. Then a candidate corner c of L1 is placed
on the path from q4 to r at a distance (along Tr(P))
of

(

1−
d

d4

)

· δ4

from q4. We store c at the corresponding edge of
Tr(P). Note that some vertices of w(t1) might end up
storing candidate corners on the same edge or path
towards r.

r

q0

q1

q2
q3q4

q5
q6
q7
q8

q9 q10
q11

c

Figure 4: Lap
generation.

After setting the weight d to
the circumference of ∂P and let-
ting the corners of w(tm−1) play
the role of r, we obtain candi-
date corners for Lm in a similar
way by moving from the vertices
of w(tm), i.e., ∂P , towards the
vertices of w(tm−1). If required,
we can also let Lm wind around
r a bit more than once, and let it
end at some point on ∂P other
than v0, by making d larger than the circumference of
∂P .
In order to actually generate L1 we scan Tr(P) in

a depth-first order, starting at r and moving along
rv0 as first branch of Tr(P). The recursive scan stops
whenever a candidate corner for L1 is encountered.
This depth-first scan establishes all corners of L1 in
the desired (CCW or CW) order. Then we we start
a new depth-first scan towards the leaves of Tr(P) at
every corner q of L1. The recursion of the depth-first
scan from q is stopped whenever we get to a distance
(m−2)∆ from q along Tr(P). At every such stopping
point of the recursion a new candidate corner for Lm

is placed. Then another depth-first scan starting at
r reveals all corners of Lm by stopping the recursion
whenever a candidate corner for Lm is encountered.
We note that this construction guarantees the fol-

lowing distances, where H(·, ·) denotes the symmetric
Hausdorff distance: H(r, L1) ≤ ∆ and H(∂P,Lm) ≤
∆ and H(L1, Lm) ≤ (m− 2) ·∆.
The remaining laps L2, . . . , Lm−1 can be produced

similar to the generation of the initial wavefronts if we
take the freedom to regard one lap as a special type
of wavefront between L1 and Lm: Again we let an
impulse propagate along Tr(P). However, this mod-
ified impulse propagation starts at time t = 0 at the

64

33rd European Workshop on Computational Geometry, 2017

corners of L1, and ends at time t = 1 at the corners
of Lm. Then, for properly chosen velocities of the
impulse on the edges of Tr(P), the “wavefront” that
corresponds to the time i/m−2 forms the lap Li+1, for
i ∈ {1, 2, . . . ,m− 2}.
By connecting all laps in the natural way we obtain

a polygonal path S(P,∆) inside P . Trivially, S(P,∆)
starts at r and ends on ∂P . Furthermore, S(P,∆) is
not self-intersecting, because we are gradually moving
outwards, starting at r, until we arrive at ∂P . And
due to the construction, S(P,∆) respects the maxi-
mum step-over ∆.

6 Generating a Double Spiral

We now generalize our approach to a double spiral
that starts and ends at the boundary ∂P . As in the
case of a single spiral, the user-specified step-over ∆

implies a certain minimum number of wavefronts. For
the sake of descriptional simplicity, suppose that this
number is odd and that we have 2k + 1 wavefronts
w(t0), w(t1), . . . , w(t2k), with w(t0) equal to r and
w(t2k) equal to ∂P . We use the algorithm of Sec-
tion 5 to compute one single spiral with maximum
step-over 2∆ which starts at r and ends at v0 on
∂P . Let L1, L3, . . . , L2k−1 denote the successive laps
of this spiral. Hence, L1 starts at r and ends at the
intersection q of w(t2) with rv0, L3 starts at q and
ends on w(t4), and so on. In particular, L2k−1 ends
at v0 on ∂P .
Let L2k+1 be identical to ∂P . At every corner of

lap Li, for i ∈ {1, 3, . . . , 2k − 1} we plant an impulse
that moves towards the leaves of Tr(P), starting on
Li at time t = 0 and reaching Li+2 at time t = 1.
Stopping the impulse at time t = 1/2 yields the laps
L2, L4, . . . , L2k, where L2 starts at q and L2k ends at
v0 on ∂P . As for a single spiral, the positions of the
end-points of L2k−1 and L2k on ∂P can be adjusted to
meet specific needs. In Figure 5(a), the two sequences
of laps are shown in red and blue.

(a) (b)

Figure 5: (a) Double spiral, and (b) its approximation
by cubic Bézier curves.

In order to connect the start of L2 at q with the
start of L1 at r we move from the corners of L1 to-
wards r for a distance of ∆, thus obtaining corners of
a polygonal path that connects L1 and L2. In Fig-
ure 5(a), this path is shown in orange. This construc-

tion ensures that the resulting double spiral is not
self-intersecting and respects the maximum step-over
∆.

7 Extensions

Figure 6: Shape covered
by one multi-spiral path.

As explained in [5],
we can decompose
a complex (possibly
multiply-connected)
shape into simpler
sub-shapes and then
compute spiral paths
within these sub-
shapes: Two single
spirals and several
double spirals can be
linked to form one
continuous multi-spiral path that spirals through the
entire shape, see Figure 6. We omit details due to
lack of space.

Furthermore, the polygonal spirals can be approxi-
mated by higher-order primitives. For instance, Fig-
ure 5(b) shows an approximation by cubic Bézier
curves of the double spiral of Figure 5(a). (For the
approximation we use the PowerApx package [3].)

References

[1] M. Abrahamsen. Spiral Toolpaths for High-Speed
Machining of 2D Pockets With or Without Is-
lands. In Proc. ASME IDETC/CIE 2015 Conf.,
2015.

[2] M.B. Bieterman and D.R. Sandstrom. A Curvi-
linear Tool-Path Method for Pocket Machining.
ASME J. Manufac. Science Eng., 125(4):709–715,
November 2003.

[3] M. Heimlich and M. Held. Biarc Approximation,
Simplification and Smoothing of Polygonal Curves
by Means of Voronoi-Based Tolerance Bands. In-
ternat. J. Comput. Geom. Appl., 18(3):221–250,
June 2008.

[4] M. Held and C. Spielberger. A Smooth Spiral Tool
Path for High Speed Machining of 2D Pockets.
Comput. Aided Design, 41(7):539–550, July 2009.

[5] M. Held and C. Spielberger. Improved Spi-
ral High-Speed Machining of Multiply-Connected
Pockets. Comput. Aided Design & Appl.,
11(3):346–357, 2014.

65

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computing the k-resilience of a Synchronized Multi-Robot System

S. Bereg∗ L.E. Caraballo† J.M. Dı́az-Báñez† M.A. Lopez‡

Abstract

In this work, we introduce the notion of k-resilience in
a cooperative system of mobile robots, as a measure of
the system’s ability to gather information from a set of
mobile robots with communication constraints. More
formally, the k-resilience is defined as the cardinality
of a smallest set of robots whose failure suffices to
cause that at least k surviving robots operate without
communication. Obviously, the larger the resilience,
the more fault tolerant the system is. We prove that
the problem of computing the k-resilience is NP-hard
when k is part of the input and show that for some
specific configurations the problem can be efficiently
solved.

1 Introduction

A particular type of a synchronized system of mobile
autonomous robots to perform tasks cooperatively is
presented in [3]. They consider the following simple
model that can be generalized to more realistic scenar-
ios: let T = {C1, . . . , Cn} be a set of n pairwise dis-
joint unit circles (trajectories) and a team of n robots
with a limited communication range ǫ (0 < ǫ < 0.5)
traveling along these trajectories with the same con-
stant speed while perform some task in a cooperative
way (the communication between the robots is a cru-
cial issue). The communication graph G = (V,E) on
T is a geometric graph where V is given by the centers
of the trajectories in T , and E is formed by the pairs
of indexes {i, j} such that the distance between the
centers of Ci and Cj is at most 2 + ǫ. Two circles are
neighboring if they are adjacent in the communication
graph. This work is focused on sets of trajectories
whose communication graph is connected.
The link position of Ci with respect to Cj , denoted

by φij (the angle of the ray from the center of Ci to
the center of Cj), is the point of Ci closest to Cj .
Notice that two robots in neighboring circles Ci and
Cj can exchange information if they are close enough
to the link positions φij and φji, respectively. As-
sume w.l.o.g. that a trajectory can be covered in one
time unit. If two robots in neighboring circles Ci and

∗Department of Computer Science, University of Texas at
Dallas, USA.

†Department of Applied Mathematics II, University of
Seville, SPAIN.

‡Department of Computer Science, University of Denver,
USA.

C1 C2

C4 C3

u

v

(a)

C1 C2

C4 C3

u

v

(b)

C1 C2

C4 C3

u

v

(c)

C1 C2

C4 C3

v

u

(d)

Figure 1: When the robots represented by non-solid
points leave the system then the surviving robots,
solid points, follow the paths in bold solid stroke.

Cj periodically arrive at the same time at φij and
φji respectively, we say that they are synchronized.
A system of robots is synchronized if every pair of
neighbors is synchronized.

If one or more robots leave the system (due to fail-
ure, refueling, etc.), then some trajectories are left
unattended. To handle such cases in a synchronized
system the authors of [3] propose the following shift-

ing strategy : when a live robot arrives to a link posi-
tion and detects the absence of the neighbor, it shifts
to the neighboring trajectory in order to assume the
unattended task. For synchronization reasons, when
a robot enters in a neighboring trajectory Cj , it must
follow the direction of travel assigned to Cj . Also,
during the shifting process it must accelerate to main-
tain the schedule. For simplicity, we can assume that
shifting is instantaneous and that no time or lenght
is spent. Due to the kinematic constraints imposed
by real scenarios applying this recovery strategy, the
authors of [3] propose to assign opposite movement
directions in neighboring circles (one clockwise (CW)
and one counterclockwise (CCW)). Consequently, the
underlying communication graph must be bipartite.

Figure 1a shows a system where the points on the
circles represent the robots gray ovals enclose the link
positions between neighboring trajectories. The sys-
tem is synchronized, and if the robots represented by
non-solid points leave the system then the surviving
ones, u and v, enter a starvation state, permanently
failing to meet other robots. To measure the toler-
ance of a system to this phenomenon it is defined in

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

66

33rd European Workshop on Computational Geometry, 2017

[1] the k-resilience as the minimum number of robots
whose removal may cause k live robots to starve.

2 Problem statement and properties

Definition 1 A synchronized communication system
(SCS) is a set of n robots on a set of n trajectories, one
for each trajectory, such that every pair of neighbors
are synchronized and move in opposite directions. An
m-partial SCS, 0 < m ≤ n, is a syncronized system
in which n − m robots have left the system and the
m remaining robots apply the shifting strategy.

Note that a SCS is a partial SCS where no robots
have left. Thus, any claims about partial SCSs hold
for SCSs as well.

Definition 2 (Starvation) In an m-partial SCS, a
robot starves or it is in starvation if every time that
it arrives at a link position the corresponding neigh-
bor is not there causing a shifting to the neighboring
trajectory.

Definition 3 (k-Resilience) The k-resilience of a
SCS (k ≥ 1) is the minimum number of robots whose
removal may cause the starvation of at least k surviv-
ing robots. If it is not possible to obtain k starving
robots then the k-resilience is infinity.

The problem we focus on is: Given a SCS and a

natural number k, determine its k-resilience.

Definition 4 (Ring) Let T be a set of trajectories
with an assignment of movement directions such that
every pair of neighboring circles has opposite direc-
tions. A ring is the locus of points visited by a robot
following the assigned directions and always shifting
to the neighboring trajectory in the link positions.

Note that the movement described by a starving
robot is a ring. The trajectories of a SCS can be par-
titioned into disjoint rings and each ring has a direc-
tion of travel determined by the movement direction
in the participating trajectories, see Figure 2.
Regarding the length of a ring, it is convenient to

ignore the effect on distance arising from the shifts
between neighboring trajectories, i.e., to proceed as if
neighboring circles are tangent to each other. There-
fore, the length of a ring is defined as the sum of the
lengths of the arcs of trajectories forming it. A path

in a ring r from a point a ∈ r to a point b ∈ r is a
sequence of visited points from a to b following the
travel direction in r and it may contain tours on r. If
a path does not contain any tour in the ring then we
say that it is a single path.

Lemma 1 In an m-partial SCS the number of robots
in a given ring remains invariant.

(a)
(b)

Figure 2: SCS trajectories are partitioned into rings.
(a) an SCS with two rings; (b) three rings.

Ci Cj

(i) (ii)

c

u

(a)

Ci Cj
c

(b)

Figure 3: (a) Crossing directions. (b) The two ties
determined by a point c where a ring crosses itself.

Lemma 2 In anm-partial SCS, the length of a single
path between two robots of a ring is in 2πN.

Lemma 3 In a SCS, the length of every ring is in
2πN. A ring of length 2lπ has at most l robots in any
resultant partial SCS. Furthermore, if no robots have
left the system, the ring has exactly l robots, each at
distance 2π from the next.

Lemma 4 If the communication graph of a set of
trajectories is a tree then there is a single ring.

The following concept gives us a useful tool to study
the k-resilience of a SCS.

Definition 5 (Starvation number) The starva-
tion number of a SCS is the maximum possible
number of starving robots in a resultant partial SCS.

Lemma 5 If the starvation number of a SCS is s then
the s-resilience of the system is n − s. Furthermore,
for all k > s the k-resilience is infinity.

3 Hardness of Computing the k-Resilience

First, we introduce some notation. The middle point
of the edge between two neighboring circles Ci and
Cj is called a crossing point. A starving robot may
pass it in two possible directions, one following the
ring from Ci to Cj and other following the ring from
Cj to Ci (these two rings could be one and the same),
see Figure 3a. We call them crossing directions.

Lemma 6 In an m-partial SCS, let r and r′ be rings
(not necessarily distinct) that cross each other at a

67

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

point c. Let u and u′ be two robots in r and r′,
respectively. If there are two paths of equal lengths,
one from u to c in r (possibly longer than r) and
other from u′ to c in r′ (possibly longer than r′), then,
assuming no more failures, u and u′ are not starving.

In the situation of the above lemma we say that u′

and u prevent each other from starving. Notice that:

Observation 1 In an m-partial SCS, a robot is
starving if and only if all the robots that prevent it
from starving have failed.

In an m-partial SCS, if r is a ring that crosses itself
at a point c between circles Ci and Cj , then every
starving robot in r passes through c periodically and
alternating the crossing directions, see Figure 3b.

Definition 6 (Tie of a ring) A tie of a ring is a
closed path that starts and ends at a crossing point
of the ring with itself (without passing through this
crossing point).

Lemma 7 In a SCS of n trajectories whose commu-
nication graph is a tree, a crossing point determines
two ties of lengths 2lπ and 2(n − l)π respectively,
where l ∈ N (Figure 3b).

Theorem 8 In a m-partial SCS where the m surviv-
ing robots are in only one ring, a robot u starves if
and only if the length of every single path (in the ring)
between u and other live robot is different from the
lengths of all ties in the ring.

Consider an m-partial SCS where the m surviving
robots are in a ring r of length 2mπ. Let 0, 1, . . . ,m−1
be an enumeration of the robots in r, following the
travel direction of the ring. Lemma 3 implies that
robot i is 2π ahead of robot i− 1 (mod m, as usual).
Let 2l1π, . . . , 2ltπ be the lengths of all ties in r. By
Theorem 8, robot i starves if and only if the robots
with indices in {i + l1, . . . , i + lt} fail. The rela-
tion “prevent from starving” between the robots of a
ring can be modeled using an undirected graph whose
nodes correspond to the robots in the ring and, for
all i �= j, there is an edge between nodes i and j if
and only if robots i and j prevent each other from
starving. The resulting graph is a circulant graph1.
Figure 4 shows an example. A circulant graph of n
nodes can be shortly denoted as CnS where S is the
set of “jumps” between the adjacent vertices.

Lemma 9 In a SCS, the maximum possible number
of starving robots in a ring is equal to the cardinality

1Given n ∈ N (n > 1) and S ⊆ {1, 2, . . . , n − 1},
the circulant graph of n nodes and set of jumps S is the
graph whose sets of nodes and edges are {0, 1, . . . , n − 1} and
{(i, (i+ e) mod n) | ∀i ∈ [1, n], ∀e ∈ S}, respectively.

p1

p2

(a)

0

1

2

3

45

6

7

8

(b)

Figure 4: (a) Example of a SCS. With bold solid
stroke a ring that crosses itself twice at p1 and p2. (b)
The circulant graph that models the relation “prevent
from starving” corresponding to the ring in (a).

of the maximum independent set in the corresponding
circulant graph.

In the following we define an auxiliary operation
to transform a circulant graph into another circulant
graph with some interesting properties.

Definition 7 (Kn,n-augmentation) Let
G = (V,E) be a graph with n nodes. A graph
G′ = (V ′, E′) is a clone of G if G′ and G are isomor-
phic and V ∩ V ′ = ∅. The Kn,n-augmentation of G,
denoted by G = (V ,E), is the result of the graph
join operation between G and G′, i.e V = V ∪ V ′ and
E = E ∪ E′ ∪ {{v, w} | v ∈ V,w ∈ V ′}.

Lemma 10 Let G = (V,E) and G = (V ,E) be a
graph and its Kn,n-augmentation, respectively. G is
a circulant graph if and only if G is a circulant graph.
Moreover, the maximum independent set of G and
the maximum independent set of G have the same
cardinality.

Theorem 11 The problem of computing the starva-
tion number of a SCS (SN-SCS) is NP-hard, even, if
the communication graph is a caterpillar tree2.

Proof. (Sketch) We use a reduction from the prob-
lem of computing the Maximum Independent Set

in a Circulant Graph (MIS-CG) which is NP-hard
[2]. Let CnS be a circulant graph with n ≥ 2, as
input for the MIS-CG problem. Finding the max-
imum independent set in CnS is equivalent to ob-
taining the maximum independent set in its Kn,n-
augmentation. Then, for convenience we work with
C2nS (Lemma 10) which is the Kn,n-augmentation of
the given circulant graph CnS. By Lemma 9, it suf-
fices to transform C2nS into a SCS of 2n circles whose
communication graph is a caterpillar tree such that:

d ∈ S ⇔ there is a tie of length 2dπ in the SCS (1)

68

33rd European Workshop on Computational Geometry, 2017

0

-1

1

C0 Cn−1 CnCj C ′
0C ′

jC0 Cn−1 CnCj

(a)

0

-1

1

Cn−1 C ′
0C ′

j

Cn

Cn−1

Cn

Cn Cn

C0 Cj C0 Cj

(b)

0

-1

1

C0 Cn−2Cj C0 Cj C ′
0C ′

j

Cn−1

Cn−1

Cn Cn−2

Cn−1

Cn−1

Cn

C ′
n−1

C ′
n−1

(c)

Figure 5: (a) If Cn−1 and Cn are both on the 0-line,
then apply symmetry about the vertical line between
Cn−1 and Cn. (b) If Cn−1 is on the 0-line but Cn

is not, then apply symmetry about the vertical line
passing through the center of Cn−1. (c) Otherwise,
apply symmetry about the touching point of Cn−2

and Cn.

We place the circles on three horizontal lines with
coordinates in 1, 0 and −1. First, place the circle C0

on the 0-line. Then place Ci, i = 1, . . . , n as follows.
Let Cj be the last circle placed on the 0-line. If i ∈ S
then add the circle Ci on 0-line touching Cj . If i /∈ S
then add the circle Ci touching Cj and centered at
the 1-line or −1-line in alternate manner, i.e, if the
last added circle not centered at the 0-line is centered
at the 1-line then add Ci centered at the −1-line, and
vice-versa. Notice that i in the second case is even
since S contains all odd numbers in [1, n]. Thus, the
next circle Ci+1 will be placed on the 0-line. Since
the lines 1 and -1 are alternating, Ci touches only one
circle Cj . We have placed n+1 circles C0, . . . , Cn. In
order to add the n − 1 remaining circles we proceed
as follow:

• If n is even: if n ∈ S we proceed as shown in
Figure 5a; if n /∈ S then we proceed as shown in
Figure 5b.

• If n is odd: if (n − 1) ∈ S then we proceed as
shown in Figure 5a; if (n−1) /∈ S then we proceed
as shown in Figure 5c.

Now, statement (1) can be proven on the obtained
SCS and this completes the proof.

�

2A caterpillar tree is a tree in which all the vertices are
within distance 1 of a central path.

The main result of this section then follows from
Theorem 11 and Lemma 5:

Theorem 12 The problem of computing the k-
resilience of a SCS is NP-hard.

4 The k-resilience for cycles and grid-graphs

Lemma 13 Let G be the communication graph of an
m-partial SCS. If G is a cycle, then the system has two
rings, with different travel directions. Furthermore,
every edge of G corresponds to a crossing of the two
rings. (See Figure 2(a)).

Lemma 14 In an m-partial SCS, whose communica-
tion graph is a cycle with rings r and r′, a robot in r
is starving if and only if r′ is empty of robots.

Theorem 15 Consider a system whose communica-
tion graph is a cycle and let r and r′ be two rings
with lengths 2πl and 2πl′, respectively. The starva-
tion number of the system is max{l, l′} and the k-
resilience is min{l, l′} if k ≤ max{l, l′} and infinity,
otherwise.

Theorem 16 If the communication graphG of anm-
partial SCS is a grid then, two starving robots can not
occupy trajectories in the same row (resp. column).

Theorem 16 implies that in a grid-graph there is
at most one starving robot per column or row. Con-
sequently, using induction on k and the pigeonhole
principle, the following result can be deduced:

Theorem 17 The starvation number in an n×m grid
system is min(n,m) and its k-resilience is k(n+m−
2)−k(k− 1) if k ≤ min(n,m) and infinity, otherwise.

Acknowledgments

This work has been partially supported by the

projects MTM2016-76272-R (AEI/FEDER,UE) and

CONNECT2016-734922 (EU-H2020/MSCA).

References

[1] A. P. Brunner. Isolation in synchronized drone forma-
tions, 2015. Master Thesis, University of Denver.

[2] B. Codenotti, I. Gerace, and S. Vigna. Hardness re-
sults and spectral techniques for combinatorial prob-
lems on circulant graphs. Linear Algebra and its Ap-
plications, 285(1):123 – 142, 1998.

[3] J.M. Dı́az-Báñez, L.E. Caraballo, M.A. López,
S. Bereg, I. Maza, and A. Ollero. The synchro-
nization problem for information exchange between
aerial robots under communication constraints. In In-
ternational Conference on Robotics and Automation
(ICRA). IEEE, 2015.

69

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A superlinear lower bound on the number of 5-holes∗

Oswin Aichholzer† Martin Balko‡§ Thomas Hackl† Jan Kynčl‡ Irene Parada†

Manfred Scheucher†§ Pavel Valtr‡§ Birgit Vogtenhuber†

Abstract

Let P be a finite set of points in the plane in general

position, that is, no three points of P are on a common
line. We say that a set H of five points from P is a
5-hole in P if H is the vertex set of a convex 5-gon
containing no other points of P . For a positive integer
n, let h5(n) be the minimum number of 5-holes among
all sets of n points in the plane in general position.
Despite many efforts in the last 30 years, the best

known asymptotic lower and upper bounds for h5(n)
have been of order Ω(n) and O(n2), respectively. We

show that h5(n) = Ω(n log4/5 n), obtaining the first
superlinear lower bound on h5(n).
The following structural result, which might be of

independent interest, is a crucial step in the proof of
this lower bound. If a finite set P of points in the
plane in general position is partitioned by a line ℓ

into two subsets, each of size at least 5 and not in
convex position, then ℓ intersects the convex hull of
some 5-hole in P . The proof of this result is computer-
assisted.

1 Introduction

We say that a set of points in the plane is in general

position if it contains no three points on a common

∗The research for this article was partially carried out in the
course of the bilateral research project “Erdős–Szekeres type
questions for point sets” between Graz and Prague, supported by
the OEAD project CZ 18/2015 and project no. 7AMB15A T023
of the Ministry of Education of the Czech Republic. Aichholzer,
Scheucher, and Vogtenhuber were partially supported by the
ESF EUROCORES programme EuroGIGA – CRP ComPoSe,
Austrian Science Fund (FWF): I648-N18. Parada was supported
by the Austrian Science Fund (FWF): W1230. Balko and Valtr
were partially supported by the grant GAUK 690214. Balko,
Kynčl, and Valtr were partially supported by the project CE-ITI
no. P202/12/G061 of the Czech Science Foundation (GAČR).
Hackl and Scheucher were partially supported by the Austrian
Science Fund (FWF): P23629-N18. Balko, Scheucher, and Valtr
were partially supported by the ERC Advanced Research Grant
no 267165 (DISCONV).

†Institute for Software Technology, Graz University of
Technology, Austria, [oaich,iparada,mscheuch,bvogt]@ist.

tugraz.at
‡Department of Applied Mathematics and Institute for

Theoretical Computer Science, Faculty of Mathematics and
Physics, Charles University, Czech Republic, [balko,kyncl]@
kam.mff.cuni.cz

§Alfréd Rényi Institute of Mathematics, Hungarian Academy
of Sciences, Budapest, Hungary

line. A point set is in convex position if it is the vertex
set of a convex polygon. Let P be a finite set of points
in general position in the plane. We say that a set H
of k points from P is a k-hole in P if H is the vertex
set of a convex polygon containing no other points
of P .

In the 1970s, Erdős [6] asked whether, for every
positive integer k, there is a k-hole in every sufficiently
large finite point set in general position in the plane.
Harborth [8] proved that there is a 5-hole in every set
of 10 points in general position in the plane and gave
a construction of 9 points in general position with no
5-hole. After unsuccessful attempts of researchers to
answer Erdős’ question affirmatively for any fixed in-
teger k ≥ 6, Horton [9] constructed, for every positive
integer n, a set of n points in general position in the
plane with no 7-hole. The question whether there is
a 6-hole in every sufficiently large finite planar point
set remained open until 2007 when Gerken [7] and
Nicolás [10] independently gave an affirmative answer.

For positive integers n and k, let hk(n) be the mini-
mum number of k-holes in a set of n points in general
position in the plane. Due to Horton’s construction [9],
hk(n) = 0 for every n and every k ≥ 7. The functions
h3(n) and h4(n) are both known to be asymptotically
quadratic [2, 4]. For h5(n) and h6(n), the best known
asympotic bounds are Ω(n) and O(n2) [4, 7, 8, 10].
See, e.g., [2] for more details.

As our main result, we give the first superlinear
lower bound on h5(n). This solves an open problem,
which was explicitly stated, for example, in a book by
Brass, Moser, and Pach [5, Chapter 8.4, Problem 5]
and in the survey [1].

Theorem 1 There is a fixed constant c > 0 such that
for every integer n ≥ 10 we have h5(n) ≥ cn log4/5 n.

Let P be a finite set of points in the plane in general
position and let ℓ be a line that contains no point of
P and that partitions P into two non-empty subsets
A and B. We then say that P = A ∪B is ℓ-divided.

The following result, which might be of independent
interest, is a crucial step in the proof of Theorem 1.

Theorem 2 Let P = A ∪B be an ℓ-divided set with
|A|, |B| ≥ 5 and with neither A nor B in convex posi-
tion. Then there is an ℓ-divided 5-hole in P .

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

70

33rd European Workshop on Computational Geometry, 2017

The proof of Theorem 2 is computer-assisted. We
reduce the result to several statements about point
sets of size at most 11 and then verify each of these
statements by an exhaustive computer search. To
verify the computer-aided proofs we have implemented
two independent programs, which, in addition, are
based on different abstractions of point sets. Some of
the tools that we use originate from a bachelor’s thesis
of Scheucher [12].

In the rest of the paper, we assume that every point
set P is planar, finite, and in general position. We
also assume, without loss of generality, that all points
in P have distinct x-coordinates. We use conv(P) to
denote the convex hull of P and ∂ conv(P) to denote
the boundary of the convex hull of P .
A subset Q of P that satisfies P ∩ conv(Q) = Q is

called an island of P . Note that every k-hole in an
island of P is also a k-hole in P .

2 Proof of Theorem 1

We now show how to apply Theorem 2 to obtain a
superlinear lower bound on the number of 5-holes in a
given set of n points. Without loss of generality, we
assume that n = 2t for some integer t ≥ 55.
We prove by induction on t ≥ 55 that the number

of 5-holes in an arbitrary set P of n = 2t points is at

least f(t) := c · 2tt4/5 = c ·n log
4/5
2 n for some absolute

constant c > 0. For t = 55, we have n > 10 and,
by the result of Harborth [8], there is at least one
5-hole in P . If c is sufficiently small, then f(t) =

c · n log
4/5
2 n ≤ 1 and we have at least f(t) 5-holes

in P , which constitutes our base case.
For the inductive step we assume that t > 55. We

first partition P with a line ℓ into two sets A and B of
size n/2 each. Then we further partition A and B into
smaller sets using the following well-known lemma,
which is, for example, implied by a result of Steiger
and Zhao [13, Theorem 1].

Lemma 3 ([13]) Let P ′ = A′∪B′ be an ℓ-divided set
and let r be a positive integer such that r ≤ |A′|, |B′|.
Then there is a line disjoint from P ′ that determines
an open halfplane h with |A′ ∩ h| = r = |B′ ∩ h|.

We set r := ⌊log
1/5
2 n⌋, s := ⌊n/(2r)⌋, and apply

Lemma 3 iteratively in the following way to partition
P into islands P1, . . . , Ps+1 of P so that the sizes of
Pi∩A and Pi∩B are exactly r for every i ∈ {1, . . . , s}.
Let P ′

0 := P . For every i = 1, . . . , s, we consider a line
that is disjoint from P ′

i−1 and that determines an open
halfplane h with |P ′

i−1 ∩A ∩ h| = r = |P ′

i−1 ∩B ∩ h|.
Such a line exists by Lemma 3 applied to the ℓ-divided
set P ′

i−1. We then set Pi := P ′

i−1 ∩ h, P ′

i := P ′

i−1 \ Pi,
and continue with i+ 1. Finally, we set Ps+1 := P ′

s.
For every i ∈ {1, . . . , s}, if one of the sets Pi∩A and

Pi ∩ B is in convex position, then there are at least

(

r
5

)

5-holes in Pi and, since Pi is an island of P , we

have at least
(

r
5

)

5-holes in P . If this is the case for at
least s/2 islands Pi, then, given that s = ⌊n/(2r)⌋ and
thus s/2 ≥ ⌊n/(4r)⌋, we obtain at least ⌊n/(4r)⌋

(

r
5

)

≥

c · n log
4/5
2 n 5-holes in P for a sufficiently small c > 0.

We thus further assume that for more than s/2
islands Pi, neither of the sets Pi ∩A nor Pi ∩B is in

convex position. Since r = ⌊log
1/5
2 n⌋ ≥ 5, Theorem 2

implies that there is an ℓ-divided 5-hole in each such Pi.
Thus there is an ℓ-divided 5-hole in Pi for more than
s/2 islands Pi. Since each Pi is an island of P and
since s = ⌊n/(2r)⌋, we have more than s/2 ≥ ⌊n/(4r)⌋
ℓ-divided 5-holes in P . As |A| = |B| = n/2 = 2t−1,
there are at least f(t − 1) 5-holes in A and at least
f(t − 1) 5-holes in B by the inductive assumption.
Since A and B are separated by ℓ, we have at least

2f(t− 1) + n/(4r) = 2c(n/2) log
4/5
2 (n/2) + n/(4r)

≥ cn(t− 1)4/5 + n/(4t1/5)

5-holes in P . The right side of the above expres-
sion is at least f(t) = cnt4/5, because the inequality
cn(t− 1)4/5 + n/(4t1/5) ≥ cnt4/5 is equivalent to the
inequality (t− 1)4/5t1/5 + 1/(4c) ≥ t, which is true if
c is sufficiently small, as (t− 1)4/5t1/5 ≥ t− 1. This
completes the proof of Theorem 1.

3 Preliminaries

Before proceeding with the proof of Theorem 2, we
first introduce some notation and definitions, and state
some immediate observations.
Let a, b be two points in the plane. We denote the

ray starting at a and going through b as
−→
ab and the

line through a and b directed from a to b as ab.
Let P = A ∪ B be an ℓ-divided set. In the rest of

the paper, we assume without loss of generality that ℓ
is vertical and directed upwards, A is to the left of ℓ,
and B is to the right of ℓ.

ℓ-critical sets An ℓ-divided set C = A∪B is ℓ-critical
if it fulfills the following two conditions.

(i) Neither A nor B is in convex position.

(ii) For every extremal point x of C, either (C \{x})∩
A or (C \ {x}) ∩B is in convex position.

a-wedges and a
∗-wedges Let P = A ∪ B be an ℓ-

divided set. For a point a in A, the rays
−→
aa′ for all

a′ ∈ A \ {a} partition the plane into |A| − 1 regions.
We call the closures of those regions a-wedges and label

them as W
(a)
1 , . . . ,W

(a)
|A|−1 in clockwise order around a,

where W
(a)
1 is the topmost a-wedge that intersects ℓ.

Let t(a) be the number of a-wedges that intersect ℓ.

Note that W
(a)
1 , . . . ,W

(a)

t(a) are the a-wedges that inter-
sect ℓ sorted in top-to-bottom order on ℓ. Also note

71

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

that all a-wedges are convex if a is an inner point of A,
and that there exists exactly one non-convex a-wedge
otherwise.
If A is not in convex position, we denote the right-

most inner point of A as a∗ and write t := t(a
∗) and

Wk := W
(a∗)
k for k = 1, . . . , |A| − 1. Recall that a∗

is unique, since all points have distinct x-coordinates.
We set wk := |B ∩Wk| and label the points of A so

that Wk is bounded by the rays
−−−−→
a∗ak−1 and

−−→
a∗ak for

k = 1, . . . , |A|− 1. Figure 1 gives an illustration.

a
∗

a5

ℓ

a1

a4

W1

W4

W2

W3

a2

W5

a3

(a)

a
∗

a6

ℓ

a1

a4

W1

W4

W2

W3

a2

W5

a3a5

W6

(b)

Figure 1: (a) An example of a∗-wedges with t = |A|− 1.
(b) An example of a∗-wedges with t < |A|− 1.

4 Proof of Theorem 2

In the rest of the paper, we state results that we use
to prove Theorem 2 and we then present the proof of
this theorem. Due to lack of space, we omit the proofs
of almost all auxiliary results.

4.1 a
∗-wedges with at most two points of B

We first consider an ℓ-divided set P = A ∪B with A
not in convex position. We show that, if there is a
sequence of consecutive a∗-wedges where the first and
the last a∗-wedge both contain two points of B and
every a∗-wedge in between them contains exactly one
point of B, then there is an ℓ-divided 5-hole in P .

Lemma 4 Let P = A∪B be an ℓ-divided set with A
not in convex position and with |A| ≥ 5 and |B| ≥ 6.
Let Wi, . . . ,Wj be consecutive a∗-wedges with 1 ≤ i <
j ≤ t, wi = 2 = wj , and wk = 1 for every k with
i < k < j. Then there is an ℓ-divided 5-hole in P .

The proof of this lemma is carried out by a rather
elaborate case distinction, which we omit here.

4.2 Computer-assisted results

We now provide lemmas that are key ingredients in the
proof of Theorem 2. All these lemmas have computer-
aided proofs. Each result was verified by two inde-
pendent implementations, which are also based on
different abstractions of point sets. In particular, to
prove these lemmas, we employ an exhaustive com-
puter search through all combinatorially different sets
of |P | ≤ 11 points in the plane. Both programs and
detailed information are available online [3, 11].

Lemma 5 Let P = A ∪ B be an ℓ-divided set with
|A| = 5, |B| = 6, and with A not in convex position.
Then there is an ℓ-divided 5-hole in P .

Lemma 6 Let P = A∪B be an ℓ-divided set with no
ℓ-divided 5-hole in P , |A| = 5, 4 ≤ |B| ≤ 6, and with
A in convex position. Then for every point a of A,
every convex a-wedge contains at most two points of B.

Lemma 7 Let P = A ∪ B be an ℓ-divided set with
no ℓ-divided 5-hole in P , |A| = 6, and |B| = 5. Then
for each point a of A, every convex a-wedge contains
at most two points of B.

Lemma 8 Let P = A∪B be an ℓ-divided set with no
ℓ-divided 5-hole in P , 5 ≤ |A| ≤ 6, |B| = 4, and with
A in convex position. Then for every point a of A, if
the non-convex a-wedge contains no point of B, every
a-wedge contains at most two points of B.

4.3 Applications of the computer-assisted results

As a first application of the computer-assisted results
we prove the following statement, which restricts the
number of points of B in a∗-wedges. Its proof uses
Lemmas 6, 7, and 8 and also Lemma 4.

Lemma 9 Let P = A ∪ B be an ℓ-divided set with
no ℓ-divided 5-hole in P , with |A| ≥ 6, and with A not
in convex position. Then the following two conditions
are satisfied.

(i) Let Wi,Wi+1,Wi+2 be three consecutive a∗-
wedges whose union is convex and contains at
least four points of B. Then wi, wi+1, wi+2 ≤ 2.

(ii) Let Wi,Wi+1,Wi+2,Wi+3 be four consecutive a∗-
wedges whose union is convex and contains at least
four points of B. Then wi, wi+1, wi+2, wi+3 ≤ 2.

4.4 Extremal points of ℓ-critical sets

The following statement, whose relatively easy proof
is omitted in this abstract, says that every ℓ-critical
set has at most two extremal points on each side of ℓ.

Lemma 10 Let C = A ∪B be an ℓ-critical set with
|A∩C| ≥ 5. Then |A∩ ∂ conv(C)| ≤ 2. By symmetry,
an analogous statement holds for B.

Now we use Lemma 9 to restrict the parameters wi.
Then we state the last auxiliary result used in the
proof of Theorem 2.

Lemma 11 Let C = A∪B be an ℓ-critical set with no
ℓ-divided 5-hole in C and with |A| ≥ 6. Then wi ≤ 3
for every 1 < i < t. Moreover, if |A ∩ ∂ conv(C)| = 2,
then also w1, wt ≤ 3.

72

33rd European Workshop on Computational Geometry, 2017

Proof. Recall that, since C is ℓ-critical, we have
|B| ≥ 4. Let i be an integer with 1 ≤ i ≤ t. We
assume that there is a point a in A∩∂ conv(C), which
lies outside of Wi, as otherwise there is nothing to
prove for Wi (either |A∩∂ conv(C)| = 1 and i ∈ {1, t}
or |A ∩ ∂ conv(C)| = 2 and Wi ∩B = ∅). We consider
C ′ := C \{a}. Since C is an ℓ-critical set, A′ := C ′∩A
is in convex position. Thus, there is a non-convex
a∗-wedge W ′ of C ′. Since W ′ is non-convex, all other
a∗-wedges of C ′ are convex. Moreover, since W ′ is the
union of the two a∗-wedges of C that contain a, all
other a∗-wedges of C ′ are also a∗-wedges of C. Let
W be the union of all a∗-wedges of C that are not
contained in W ′. Note that W is convex and contains
at least |A|− 3 ≥ 3 a∗-wedges of C. Since |A| ≥ 6, the
lemma follows from Lemma 9(i). �

Proposition 12 Let C = A ∪ B be an ℓ-critical set
with no ℓ-divided 5-hole in C and with |A|, |B| ≥ 6.
Then the following two conditions are satisfied.

(i) If |A ∩ ∂ conv(C)| = 2 then |B| ≤ |A|− 1.

(ii) If |B ∩ ∂ conv(C)| = 2 then |B| ≤ |A|.

In the proof of this statement, we use the restrictions
from Lemmas 4 and 9 that bound the number of
points of B in a∗-wedges to derive the desired bound
|B| ≤ |A|. In the proof of part (i) we also apply
Lemma 11 to show strict inequality. The proof of
Proposition 12 is quite involved and we omit it here.

4.5 Finalizing the proof of Theorem 2

We are now ready to prove Theorem 2. Namely, we
show that for every ℓ-divided set P = A ∪ B with
|A|, |B| ≥ 5 and with neither A nor B in convex posi-
tion there is an ℓ-divided 5-hole in P .
Suppose for the sake of contradiction that there is

no ℓ-divided 5-hole in P . We know by the result of
Harborth [8] that every set P of ten points contains
a 5-hole in P . In the case |A|, |B| = 5, the statement
then follows from the assumption that neither of A
and B is in convex position.

So assume that at least one of the sets A and B has
at least six points. We obtain an island Q of P by
iteratively removing extremal points so that neither
part is in convex position after the removal and until
one of the following conditions holds.

(i) One of the parts Q∩A and Q∩B has five points.

(ii) Q is an ℓ-critical island of P with |Q∩A| ≥ 6 and
|Q ∩B| ≥ 6.

In case (i), we have |Q ∩ A| = 5 or |Q ∩ B| = 5.
If |Q ∩ A| = 5 and |Q ∩ B| ≥ 6, then we let Q′ be
the union of Q ∩ A with the six leftmost points of
Q∩B. Since Q∩A is not in convex position, Lemma 5
implies that there is an ℓ-divided 5-hole in Q′, which

is also an ℓ-divided 5-hole in Q, since Q′ is an island
of Q. However, this is impossible as then there is an
ℓ-divided 5-hole in P because Q is an island of P . We
proceed analogously if |Q ∩A| ≥ 6 and |Q ∩B| = 5.
In case (ii), we have |Q ∩ A|, |Q ∩ B| ≥ 6. There

is no ℓ-divided 5-hole in Q, since Q is an island of P .
By Lemma 10, we can assume without loss of gener-
ality that |A ∩ ∂ conv(Q)| = 2. Then it follows from
Proposition 12(i) that |Q∩B| < |Q∩A|. By exchang-
ing the roles of Q ∩ A and Q ∩ B and by applying
Proposition 12(ii), we obtain that |Q ∩A| ≤ |Q ∩B|,
a contradiction. This finishes the proof of Theorem 2.

References

[1] O. Aichholzer. [Empty] [colored] k-gons. Recent
results on some Erdős–Szekeres type problems.
In Proceedings of XIII Encuentros de Geometŕıa

Computacional, pages 43–52, 2009.

[2] O. Aichholzer, R. Fabila-Monroy, T. Hackl,
C. Huemer, A. Pilz, and B. Vogtenhuber. Lower
bounds for the number of small convex k-holes.
Comput. Geom., 47(5):605–613, 2014.

[3] M. Balko. http://kam.mff.cuni.cz/˜balko/superli-
near5Holes.

[4] I. Bárány and P. Valtr. Planar point sets with a
small number of empty convex polygons. Studia
Sci. Math. Hungar., 41(2):243–266, 2004.

[5] P. Brass, W. Moser, and J. Pach. Research Prob-

lems in Discrete Geometry. Springer, 2005.

[6] P. Erdős. Some more problems on elementary
geometry. Austral. Math. Soc. Gaz., 5(2):52–54,
1978.

[7] T. Gerken. Empty convex hexagons in planar
point sets. Discrete Comput. Geom., 39(1–3):239–
272, 2008.

[8] H. Harborth. Konvexe Fünfecke in ebenen Punk-
tmengen. Elem. Math., 33:116–118, 1978.

[9] J.D. Horton. Sets with no empty convex 7-gons.
Canad. Math. Bull., 26(4):482–484, 1983.

[10] C.M. Nicolás. The empty hexagon theorem. Dis-

crete Comput. Geom., 38(2):389–397, 2007.

[11] M. Scheucher. http://www.ist.tugraz.at/scheu-
cher/5holes.

[12] M. Scheucher. Counting convex 5-holes, Bache-
lor’s thesis, 2013.

[13] W. Steiger and J. Zhao. Generalized ham-sand-
wich cuts. Discrete Comput. Geom., 44(3):535–
545, 2010.

73

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Classification of empty lattice 4-simplices

Óscar Iglesias-Valiño and Francisco Santos∗

(oscar.iglesias@unican.es, francisco.santos@unican.es)
Department of Mathematics, Statistics and Computer Science,

University of Cantabria, SPAIN

Abstract

Combining an upper bound on the volume of empty
lattice 4-simplices of large width with a computer enu-
meration we prove the following conjecture of Haase
and Ziegler (2000): Except for 179 classes, of deter-
minant at most 179, all empty 4-simplices have width
one or two with respect to some integer functional.

1 Motivation and statement of result

A lattice polytope is the convex hull of a finite set of
integer points (a. k. a. lattice points) in R

d. Its dimen-
sion is the dimension of its affine span. If its vertices
are affinely independent it is a lattice simplex. A lat-
tice polytope P is called hollow if all lattice points
of P lie in the boundary of it, and empty if all lat-
tice points of P are vertices of it. Equivalently, an
empty d-simplex is a lattice polytope whose only lat-
tice points are d+ 1 affinely independent points.

Empty simplices are the fundamental building
blocks in the theory of lattice polytopes, in the sense
that every lattice polytope P can be triangulated into
empty simplices. (Consider, for example, a Delau-
nay triangulation of the set of lattice points in P).
In particular, it is very useful to have classifications
or, at least, structural results, concerning the list of
all empty simplices in a given dimension. The nat-
ural classification of lattice polytopes is modulo uni-
modular equivalence: two lattice polytopes P and Q
are Z-equivalent or unimodularly equivalent (in sym-
bols, P ∼=Z Q) if there is an affine transformation
f : Rn → R

n with f(Zn) = Z
n and f(P) = Q. The

name “unimodular” comes from the fact that such a
transformation necessarily has determinant ±1.

Classification of empty 2-simplices is trivial as a
consequence of Pick’s Theorem [8]: Every empty
triangle is unimodularly equivalent to the standard
unimodular triangle conv{(0, 0), (1, 0), (0, 1)}. Here,
an empty simplex is called unimodular if its de-
terminant equals ±1, where the determinant of

∗Supported by grants MTM2014-54207-P (both authors)
and BES-2015-073128 (O. Iglesias) of the Spanish Ministry of
Economy and Competitiveness. F. Santos is also supported by
the Einstein Foundation Berlin. This work has been presented
as a poster in the Einstein Worksohp on Lattice Polytopes and
the Jornada de Topología y Combinatoria .

conv(v0, . . . , vd) ⊂ R
d is defined as

∣

∣

∣

∣

v0 . . . vd
1 . . . 1

∣

∣

∣

∣

.

In higher dimensions all unimodular simplices are
equivalent, and in particular empty, but they are no
longer the only empty simplices. Still, a quite simple
classification due to White exists in dimension 3:

Theorem 1 ([11], see also, e.g., [10]) Every
empty tetrahedron of determinant q is equivalent to

T (p, q) := conv{(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)}

for some p ∈ Z with gcd(p, q) = 1. Moreover,
T (p, q) ∼=Z T (p′, q) if and only if p′ = ±p±1 (mod q).

A key step in the proof of this theorem is the fact
that all empty 3-simplices have lattice width equal to
one. Here we call width of a body K ⊂ R

d with
respect to a linear functional f : Rd → R the differ-
ence maxx∈K f(x) − minx∈K f(x). We call (lattice)
width of a lattice polytope P the minimum width of
P with respect to integer functionals. For example,
the empty 3-simplices used in Theorem 1 have width
one with respect to the functional f(x, y, z) = z.

As an illustration of how useful classifying empty
simplices is, let us mention the following result of
Kantor and Sarkaria [6] improved by Santos and
Ziegler [9]. For a lattice polytope P and a c ∈ N

we denote by cP the dilation of P by a factor c. We
say that a polytope P has a unimodular triangulation
if it admits a triangulation into unimodular lattice
simplices. We say it has a unimodular cover if it can
be covered by unimodular simplices contained in P .

Theorem 2 ([6, 9]) Let P be a lattice 3-polytope:

1. 2P has a unimodular cover, but not necessarily
a unimodular triangulation.

2. cP has a unimodular triangulation for all c ∈
{4} ∪ {6, 7, 8, 9, . . . }, .

Proof. (Sketch). Since P can by triangulated into
empty 3-simplices, in part (1) there is no loss of gen-
erality in assuming that P is an empty simplex. The

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

74

33rd European Workshop on Computational Geometry, 2017

classification of empty 3-simplices easily gives the re-
sult. Part (2) is a bit more complicated because one
needs to make sure that the dilated empty 3-simplices
that triangulate cP admit unimodular triangulations
that are compatible in common boundaries. Still,
thanks to the classification, this is doable. �

In dimension 4 a full classification of empty 4-
simplices is not known, but the following facts are:

1. There are infinitely many emtpy 4-simplices of
width one (e.g., cones over empty tetrahedra).

2. There are infinitely many emtpy 4-simplices of
width two (Haase and Ziegler [5]).

3. There are finitely many empty 4-simplices of
width greater than two (Blanco et al. [3]).

4. Every empty 4-simplex P is cyclic, meaning that
Z
4/Λ(P) is a cyclic group [2]. Here, Λ(P) ⊂ Z

4

denotes the sublattice generated by the edge-
vectors of P . (Observe that for every lattice
simplex of determinant D, Z

d/Λ(P) is a finite
abelian group of order D).

Via an exhaustive computer enumeration, Haase
and Ziegler [5] also proved:

Theorem 3 ([5]) Among the empty 4-simplices of
determinant D ≤ 1000,

1. There are no simplices of width ≥ 5.

2. There is a unique equivalence class of simplices
of width 4. This class has determinant D = 101.

3. There are exactly 178 classes of width 3, with
determinants between 41 and 179.

Based on this, they conjectured that all empty 4-
simplices of determinant beyond 179 have width one
or two. The main result in this work is a proof of this:

Theorem 4 All empty 4-simplices of width greater
than two have determinant at most 179. Hence, there
are exactly 179 classes of them, as computed by Haase
and Ziegler [5]).

We prove Theorem 4 combining a theoretical up-
per bound for the determinant of lattice simplices of
large width and a computer enumeration of empty 4-
simplices up to that bound. More precisely:

1. We prove that all hollow 4-simplices (in partic-
ular, empty ones) of width larger than two have
determinant at most 7588. See details in Sec-
tion 2.

2. We enumerate all empty 4-simplices of determi-
nant ≤ 7600. See details en Section 3.

2 Bounding the volume of wide hollow 4-simplices

Throughout this section, P is a hollow 4-simplex
of width three or more. In order to prove that
det(P) ≤ 7588 (Theorem 7) we separate the cases
when P projects to a hollow 3-polytope or not.

2.1 P admits a hollow projection

Suppose that there is an affine integer projection π :
P → Q ⊂ R

3 with Q hollow. Then the width of Q is
at least that of P (because any affine integer funcional
on Q can be lifted to P , with the same width; still, P
could have smaller width with respect to a functional
that is not compatible with the projection).

Thus, Q is a hollow lattice 3-polytope of width at
least three. Such polytopes have been classified and
there are actually only five, all of width three [1, 3].
Thanks to the classification we can prove:

Theorem 5 If an empty 4-simplex P of width at
least three has a hollow lattice projection to dimen-
sion three then the determinant of P is at most 27.

In this proof and in the rest of the paper, we call
normalized volume of a full-dimensional lattice poly-
tope P ∈ R

d its Euclidean volume multiplied by d!.
For example, the normalized volume of a simplex
equals (the absolute value of) its determinant. Since
every lattice polytope can be triangulated and since
the determinant of a lattice simplex is an integer, the
normalized volume of every lattice polytope is an in-
teger too. We also use the lattice length of a segment
s with rational direction, defined as its length normal-
ized to the distance between two consecutive lattice
points in that direction.

Proof. (Sketch) We look one by one at the five pos-
sibilities for the hollow 3-polytope Q. They are:

• A triangular prism, which cannot be the projec-
tion of a 4-simplex since it has more than five
vertices.

• Three tetrahedra, of normalized volumes 27, 25,
and 27. If one of these equals Q, then a facet F
of P already projects to Q and it projects bijec-
tively. Let v be the vertex of P opposite to F
and let s be the vertical line through v (we call
vertical the projection direction). Then, the nor-
malized volume of P equals the normalized vol-
ume of Q times the lattice length of the segment
P ∩s. Since the line s is a lattice line (it contains
v), the length of the lattice-free segment P ∩ s
must be at most one. That is, the normalized
volume of P is at most that of Q.

• One (combinatorially equivalent to a) square
pyramid. Suppose Q is this one. Let o be the

75

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

intersection point of the two diagonals of the
quadrilateral facet of Q (which happens to be
a lattice point) and let s be the vertical line
projecting to o. We skip details, but it is easy
to show that the normalized volume of P again
equals that of Q times the length of P ∩ s. As
before, since s is a lattice line this length is at
most one, so the normalized volume of P is at
most that of Q, which equals 27 again.

�

2.2 P does not admit a hollow projection

Here we need some tools from convex geometry.
We start with Minkowski’s Second Theorem about
successive minima. The i-th successive minimum
(i = 1, . . . , d) of a centrally symmetric convex body
C ∈ R

d is the smallest dilation factor λi such that
λiC contains i linearly independent lattice points.
Minkowski’s Second Theorem [4] says that for such
a C one has:

vol(C) ≤
2d

λ1λ2 · · ·λd

.

(Here the volume is meant Euclidean, not normalized.
Remember that the latter equals d! times the former).

An example of a centrally symmetric body is the
difference body K − K := {a − b : a, b ∈ K} of a
convex body K ⊂ R

d. It is easy to notice that the
first successive minimum λ1

−1(K−K) equals the lat-
tice diameter of K: the maximum lattice length of a
rational segment contained in K. On the other hand
we have that

vol(K) ≤
vol(K −K)

2d
≤

1

λ1λ2 · · ·λd

≤
1

λ1
d
, (1)

where the λi’s are the successive minima of K − K.
The first inequality is (a particular case of) the
Brunn-Minkowski inequality [4], the second one is
Minkowski’s Second Theorem, and the third inequal-
ity comes from λ1 ≤ · · · ≤ λd (which is obvious from
the definition).

To proceed further, we need a bound on the maxi-
mum volume of hollow 3-polytopes of a certain width.
The following generalizes a result from Averkov et
al. [1, Proposition 11] (the original statement is only
for w = 3).

Proposition 6 Let w > 1 + 2/
√
3 = 2.155 and let

µ = w−1. Then, the following statements hold for
any convex body K ⊂ R

3 with no interior integer
points and of lattice width at least w:

(a) λ1(K −K) ≥ 1− (1 + 2/
√
3)µ.

(b) vol(K) is bounded above by
{

3/(4µ2(1− µ(1 + 2/
√
3))) if w ≤ 2.427,

8/(1− µ)3 if w ≥ 2.427.

Let now P be an empty 4-simplex of width at least
three and assume it does not have a hollow lattice
projection into dimension three. Let Q = π(P) be the
projection along the direction where λ1 is achieved.
By our hypotheses, Q is non-hollow and has width at
least three.

Let x ∈ Q be the projection point of the segment
where λ1 is achieved (so that if sx denotes the vertical
line through x, then 1/λ1 equals the length of the
segment P ∩ sx). Let y ∈ Q be an interior lattice
point, which exists since Q is non-hollow, and consider
the vertical line sy through it. As in the proof of
Theorem 5, we have that:

• The normalized volume of P equals that of Q
times the length of sx ∩ P .

• The length of sy ∩ P cannot be larger than one,
since sy is a lattice line.

The difficulty now is, of course, that x and y are
(or may be) different points. But we can relate the
lengths of sx ∩ P and sy ∩ P as follows: consider the
ray from x through y and let z be the point where it
hits the boundary of P . Then, we have:

λ1(P − P)−1 = |sx ∩ P | ≤
|sx ∩ P |

|sy ∩ P |
≤

|xz|

|yz|
.

So, any bound for |xz|/|yz| is also a bound for λ1
−1

and, in turn, a bound for vol(P) via Equation (1).
In order to find one such bound, assume that y is

the interior lattice point where the quotient |xz|/|yz|
is as small as possible. Observe that r := 1− |xz|/|yz|
equals the greatest dilation factor of an homothety of
Q with center at x such that rQ is hollow. By what
we said above,

λ1 ≥
|yx|

|xz|
≥ 1− r.

We skip details of the rest of the proof, but the
general idea is that now:

• If λ1
−1 is smaller than, say, 4, then Equation (1)

already implies a bound of at most 256 for the
Euclidean volume of P (which translates to 256×
24 ≃ 10, 000 for the normalized volume).

• If λ1
−1 is greater than 4, then 1−r is smaller than

1/4, so that r is greater than 3/4. The width of
rQ is r times the width of Q, so it is at least
9/4 = 2.25. The hollow polytope rQ is then in
the conditions of Proposition 6, which gives us
an upper bound for the volume of it, hence for
the volume of Q, and hence for the volume of P
(for the latter we use arguments similar to those
in the proof of Theorem 5).

76

33rd European Workshop on Computational Geometry, 2017

By putting together these two facts (and optimizing
the parameters a bit) we arrive to:

Theorem 7 There is no hollow 4-simplex of width 3
with volume greater than 7588.

3 Computations

For the computation of all empty 4-simplices of a
given determinant D we have two different algorithms,
depending on D. In both we obtain a list of perhaps-
non-empty simplices that contains all the empty ones,
and then prune via an emptyness test:

• (Algorithm 1) Every lattice 4-simplex that has a
unimodular facet is equivalent to

∆(v) := conv{e1, e2, e3, e4, v}

for some v = (v1, v2, v3, v4) ∈ Z
4 with

∑

vi =
D + 1. Moreover, v needs only to be considered
modulo D, which gives a priori D4 possibilities.

This algorithm can be used for all values of D
with less than five different prime factors, since
the fact that empty 4-simplices are cyclic [2]
easily implies that the determinants of different
facets are relatively prime.

• (Algorithm 2) When D = pq with p and q rela-
tively prime, every 4-simplex ∆D of determinant
D can be obtained by “merging” simplices ∆p and
∆q of determinants p and q. Here, merging ∆p

and ∆q means that ∆p and ∆q are realized as
the same standard simplex, but considered with
respect to superlattices Λp and Λq of Z4. Their
merging is the same simplex, considered with re-
spect to Λp+Λq. Since Λp and Λq refine Z

4 with
relatively prime indices p and q, Λp + Λq refines
Z
4 with index pq. This procedure exhausts all

empty 4-simplices of volume D because they are
all cyclic (of order D) and ZD

∼= Zp ⊕ Zq.

For many values of D both algorithms apply. When
this happens, experimentally we have found that Al-
gorithm 2 is faster. Also, when there are choices on
how to break D as a product pq with gcd(p, q) = 1,
the fastest results are obtained for p and q of about
the same size. This is illustrated in Table 1, where
the running time of the complete enumeration (and
emptyness test) for some (approximate) values of D
are shown. (The times shown are for a single D, and
in algorithm 2 the lists of all empty 4-simplices of
volumes p and q are considered precalculated).

The algortihms have been implemented in python
and runned in the Altamira node of Spanish Super-
computing Network. The total CPU time needed to
enumerate all empty 4-simplices up to determinant
7 600 was above 10 000 hours.

D Algor. 1
Algor. 2
p ≃ q

Algor. 2
p ≪ q

≃ 2000 0.53 0.29 1.06
≃ 3000 1.14 0.65 7.32
≃ 4000 5.31 1.17 17.76
≃ 5000 11.45 2.32 10.31
≃ 6000 21.88 4.42 21.38
≃ 7000 38.59 6.69 26.95

Table 1: Computation time (hrs.) for enumeration of
all empty 4-simplices of a given determinant D

References

[1] G. Averkov, J. Krumplemann and S. Weltge.
Notions of maximality for integral lattice-
free polyhedra: the case of dimension three,
arXiv:1509.05200

[2] M. Barile, D. Bernardi, A. Borisov and J.-M.
Kantor. On empty lattice simplices in dimension
4, Proc. Amer. Math. Soc. 139(12):4247–4253,
2011.

[3] M. Blanco, C. Haase, J. Hoffman and F. Santos.
The finiteness threshold width of lattice poly-
topes, arXiv:1607.00798v2

[4] P. M. Gruber. Geometry of numbers, Handbook
of Convex Geometry, Vol. A, B, North-Holland,
Amsterdam, 1993, pp. 739–763.

[5] C. Haase and G. M. Ziegler. On the maximal
width of empty lattice simplices. Europ. J. Com-
bin. 21 (2000), 111–119.

[6] J. M. Kantor and K. S. Sarkaria. On primitive
subdivisions of an elementary tetrahedron. Pa-
cific J. Math., 211(1):123–155, 2003.

[7] S. Mori, D. R. Morrison and I. Morrison. On
four-dimensional terminal quotient singularities.
Math. Comput. 51 (1988), no. 184, 769-786.

[8] G. Pick. Geometrisches zur Zahlenlehre, Sonder-
abdr. Naturw.-medizin. Verein f. Böhmen “Lo-
tos”, 19:311–319, 1899.

[9] F. Santos and G. M. Ziegler. Unimodular trian-
gulations of dilated 3-polytopes. Trans. Moscow
Math. Soc., 74 (2013), 293–311.

[10] A. Sebő. An introduction to empty lattice sim-
plices, in Integer Programming and Combinato-
rial Optimization (Graz 1999), Lecture Notes
in Comput. Sci. 1610, Springer-Verlag, Berlin,
1999, pp. 400–414.

[11] G. K. White. Lattice tetrahedra. Canadian
J. Math. 16 (1964), 389–396.

77

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Convex Quadrangulations of Bichromatic Point Sets

Alexander Pilz∗ Carlos Seara†

Abstract

We consider quadrangulations of red and blue points
in the plane where each face is convex and no edge
connects two points of the same color. In particular,
we show that the following problem is NP-hard: Given

a finite set S of points with each point either red or

blue, does there exist a convex quadrangulation of S

in such a way that the predefined colors give a valid

vertex 2-coloring of the quadrangulation? We con-
sider this as a step towards solving the corresponding
long-standing open problem on monochromatic point
sets.

1 Introduction

A quadrangulation of a set S of n points in the Eu-
clidean plane is a partition of the convex hull of S

(denoted by CH(S)) into quadrangles (i.e., 4-gons)
such that the union of the vertices of the quadran-
gles is exactly the point set S and two quadrangles
are disjoint or intersect either in a common vertex or
a common edge. Hence, the quadrangulation is also
a geometric (straight-line) planar graph with vertex
set S. A quadrangulation is a convex quadrangulation

if every quadrangle is convex. A point set admits a
quadrangulation if and only if the number of points
on the convex hull is even [3], but not every such set
admits a convex quadrangulation, and deciding this
in polynomial time is an open problem (posed by Joe
Mitchell already in 1993 [15]).

A graph is vertex k-colorable (in brief k-colorable)
if there exists a mapping of each vertex of the graph
to exactly one of k colors such that no two vertices of
the same color share an edge. A 2-colorable graph is
a bipartite graph. It is known that every quadrangu-
lation is bipartite. A bichromatic point set is a finite
set S of points together with a mapping of each point
to one of two colors. Throughout this paper, these
colors will be red and blue.

Our main question is whether for a given bichro-

∗Department of Computer Science, ETH Zürich,
alexander.pilz@inf.ethz.ch. Supported by a Schrödinger
fellowship, Austrian Science Fund (FWF): J-3847-N35.

†Departament de Matemàtiques, Universitat Politècnica de
Catalunya, carlos.seara@upc.edu. Supported by the projects
Gen. Cat. DGR 2014SGR46, MINECO MTM2015-63791-R,
and the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sk�lodowska-Curie grant
agreement No 734922.

matic point set there is a convex quadrangulation s.t.
the colors of the points define a valid 2-coloring of
the quadrangulation. We call such a quadrangulation
valid. Consider a 2-coloring of any quadrangulation.
There are at least two vertices of each color, and it is
easy to construct examples of quadrangulations with
any valid number of vertices that have only two ver-
tices of one color.

In Section 2, we prove that this bound differs for
convex quadrangulations. Using observations of this
section, we show that deciding whether a bichromatic
point set has a valid convex quadrangulation is NP-
complete. Mitchell’s motivating question is left open.

Quadrangulations. Quadrangulations of point sets
or polygons were discussed by many authors; see the
survey by Toussaint [15]. Since not all polygons or
point sets admit quadrangulations, even when the
quadrangles are not required to be convex, the au-
thor surveys results on the characterization of those
planar sets that always admit quadrangulations (con-
vex and non-convex): quadrangulations of orthogonal
polygons, simple polygons and point sets.

Lubiw [12] shows that determining whether a sim-
ple polygon with holes has a convex quadrangulation
is NP-complete, even when quadrangles of any form
are allowed; in contrast to that, there is a polynomial-
time algorithm for a generalized variant of rectilinear
polygons. Bose and Toussaint [3] show that a set S

of n points admits a quadrangulation if and only if S
has an even number of extreme points. They present
an algorithm that computes a quadrangulation of S
in O(n log n) time even in the presence of collinear
points, adding an extra extreme point if necessary.
Ramaswami, Ramos, and Toussaint [13] present effi-
cient algorithms for converting triangulated domains
to quadrangulations, while giving bounds on the num-
ber of Steiner points that might be required to ob-
tain the quadrangulations. They show that a trian-
gulated simple n-gon can be quadrangulated in linear
time with the least number of outer Steiner points
required for that triangulation, and that ⌊n

3 ⌋ outer
Steiner points are sufficient, and sometimes necessary,
to quadrangulate a triangulated simple n-gon. They
further show that ⌊n

4 ⌋ inner Steiner points (and at
most one outer Steiner point) are sufficient to quad-
rangulate a triangulated simple n-gon, and this can
be done in linear time. The method can be used to
quadrangulate arbitrary triangulated domains.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

78

33rd European Workshop on Computational Geometry, 2017

Convex quadrangulations. Most of the work on
convex quadrangulations is concerned with Steiner
points. For example, Bremner et al. [4] prove that
if the convex hull of S has an even number of points,
then by adding at most 3n

2 Steiner points in the inte-
rior of its convex hull, we can always obtain a point set
that admits a convex quadrangulation. The authors
also show that n

4 Steiner points are sometimes neces-
sary. Heredia and Urrutia [8] improve these upper and
lower bounds to 4n

5 +2 and n

3 , respectively. Deciding
in polynomial time whether a given (monochromatic)
point set admits a convex quadrangulation without
adding Steiner points seems to be a long-standing
open problem. Only fixed-parameter-tractable algo-
rithms and heuristics are known. Fevens, Meijer, and
Rappaport [7] present a polynomial-time algorithm
to determine whether a point set S admits a con-
vex quadrangulation if S is constrained to lie on a
constant number of nested convex polygons. Schif-
fer, Aurenhammer, and Demuth [14] propose a simple
heuristic for computing large subsets of convex quad-
rangulations on a given set of points in the plane.

Quadrangulations of colored point sets. Cortés et
al. [6] discuss aspects of quadrangulations of bichro-
matic point sets. They study bichromatic point sets
that admit a quadrangulation, and whether, given two
quadrangulations of the same bichromatic point set,
it is possible to transform one into the other using
certain local operations. They show that any bichro-
matic point set with convex layers having an even
number of points with alternate colors has a valid
quadrangulation, and any two such quadrangulations
can be transformed into each other.
Alvarez, Sakai, and Urrutia [2] prove that a bichro-

matic set of n points can be quadrangulated by adding
at most ⌊n−1

3 ⌋ + ⌊n

2 ⌋ + 1 Steiner points and that m

3
Steiner points are occasionally necessary, where m is
the number of quadrilaterals of the quadrangulation.
They also show that there are 3-colored point sets
with an even number of extreme points that do not
admit a quadrangulation, even after adding Steiner
points inside the set’s convex hull.
Kato, Mori, and Nakamoto [9] define the winding

number ω(S) for a 3-colored point set S, and prove
that a 3-colored set S of n points in general position
with a finite set P of Steiner points added is quad-
rangulatable if and only if ω(S) = 0. When S ∪ P is
quadrangulatable, then |P | ≤ 7n+34m−48

18 , where the
number of extreme points is 2m. This line of research
is continued by Alvarez and Nakamoto [1], who study
k-colored quadrangulation of k-colored sets of points,
where k ≥ 2. They show that if ω(S) = 0 or k ≥ 4,
then a k-colored quadrangulation of S can always

be constructed using less than (16k−2)n+7k−2
39k−6 Steiner

points. (We note that ω(S) = 0 for any bichromatic
S where red and blue points on CH(S) alternate.)

2 The red and the blue graph of a convex quad-

rangulation

Let Q be a convex quadrangulation with a valid red-
blue coloring of its n vertices. For every quadrangle,
one diagonal connects the two red vertices of the quad-
rangle, and the other connects the two blue ones. We
call them the red diagonal and the blue diagonal, re-
spectively. Let GR be the graph whose vertices are
the red vertices of Q and whose edges are the red di-
agonals of all quadrangles of Q. Let GB be defined
analogously; since the colors are interchangeable, all
the following statements hold equally for both graphs.
Since every red edge has its own quadrangle and the
faces (quadrangles) are convex, we obtain the follow-
ing results.

Observation 1 GR is a plane simple graph.

The following lemma is proven in the full version.

Lemma 2 GR is connected.

Lemma 3 Every minimal cycle of GR contains ex-

actly one blue point in its interior, and every inner

blue point is contained in a minimal cycle of GR. Blue

points on the convex hull boundary are separated from

the remaining set by a path in GR.

Proof. Consider the quadrangles that are adjacent to
an inner blue point. The red diagonals of the quad-
rangles form a cycle that contain the blue point. Fur-
ther, consider any minimal cycle of GR and any edge
therein. This edge corresponds to a quadrangle and
there is one blue point of the quadrangle on each side
of the edge. Observe that, in the same way, every blue
point on the convex hull boundary is separated by a
red path from the other blue vertices. �

Theorem 4 Let nR and nB be the number of red

and blue vertices, respectively, of a 2-colored convex

quadrangulation. Then nB ≤ 2nR − 2.

Proof. Observe that GR and GB have the same num-
ber e of edges. By Euler’s Polyhedral Formula we
have nB − e + fB = 2, where fB is the number of
faces in the blue graph (including the outer face).
Lemma 3 implies nR = fB − 1 + h

2 , where h is the
number of points in the convex hull. Hence, we get
nR + nR − h

2 − 1 = e. Since GR is a plane geometric

graph, we have e ≤ 3nR − 3 − h

2 . By plugging this
into the previous equation we get the claimed inequal-
ity. �

Note that the inequality e ≤ nR − 3− h

2 is tight if
and only if GR is a triangulation. Figure 1 shows an
example where the bound is tight.

The structure of the red and the blue graph re-
veals a necessary condition of a bichromatic point set

79

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 1: An example showing that the bound on the
relation between the red (round) and blue (squared)
points in a convex quadrangulation (indicated by
thick black segments) is tight.

that allows a convex quadrangulation: Every segment
between two red points must be intersected by a seg-
ment between two blue points. (Cortés et al. [5] give a
quadratic-time algorithm to check for this property.)

3 NP-completeness

In this section we prove that the problem of deciding
whether there exists a valid convex quadrangulation
of a given bichromatic set of points is NP-hard.
Our reduction is from planar 3-SAT (cf. [11]). The

construction is based in large parts on placing two red
points sufficiently close to a crossing between two seg-
ments between blue points, s.t. exactly one of these
blue segments is a diagonal of a quadrilateral in any
convex quadrangulation (recall Lemma 3), and that
the state of variables is propagated between the gad-
gets. Once there is a valid choice of these blue diag-
onals (corresponding to a satisfying variable assign-
ment), we need to show that they are part of a valid
convex quadrangulation. We later argue that the con-
struction is possible with coordinates of polynomial
size.
As common in this type of reductions, we transform

an embedding of a planar 3-SAT instance to a bichro-
matic point set by replacing elements of the graph
drawing by gadgets. For simplicity, we may consider
the drawing to consist of edges that are represented
by a sequence of orthogonal line segments (actually,
one bend suffices, see [10]). An edge in this graph car-
ries the truth value of a variable to the clause gadgets
(possibly via a negation).
The main part of an edge gadget consists of a chain

of link gadgets, each containing four blue points in
convex position and two red points close to the cross-
ing they define. Hence, one of the two blue edges must
be a diagonal in any valid convex quadrangulation Q

(if it exists). See Figure 2. If one of the segments
is a diagonal of Q (say, the one from bottom-left to
top-right), the edge gadget carries true (and the line
segment is called the T-diagonal of the link gadget);

Figure 2: A link gadget to model edges in the graph.
The middle red points are that close to the crossing of
the solid blue segments s.t. there is no other segment
passing between them (as indicated by the dashed
lines). (Note that to this end, the three-point “caps”
at the ends of the segments have to have slightly dif-
ferent width.) Exactly one of the blue segments has to
be a diagonal of the quadrangulation, and combining
these links propagates that decision. A possible quad-
rangulation is shown to the right. The link gadgets
can be concatenated to form edges, as shown below.

if the other segment (being called the F-diagonal) is
a diagonal of Q, the edge gadget carries false. Two of
these links are joined such that the T-diagonal of the
previous link crosses the F-diagonal of the next link,
and vice versa, and thus Q cannot have a T-diagonal
and an F-diagonal in the same edge gadget.

A variable gadget works by connecting three edge
gadgets in a way that they all have either the T-edge
or the F-edge as a diagonal; an arbitrary number of
edges from the same variable vertex can be connected
in that way. The variable gadget is shown in Figure 3.
Further, we need bends in the edge gadgets to connect
horizontal and vertical parts, as well as negation gad-
gets. All of these are mere appropriate combinations
of link gadgets, figures and exact descriptions of these
gadgets are provided in the full version.

For the clause gadgets, we have a pair of red points
that span a segment intersected by exactly three po-
tential blue diagonals. There is only one state of the
three incident edge gadgets that prevents all three
blue diagonals. By appropriately adding negation
gadgets, we make this configuration appear exactly
when all three edge gadgets carry false. See Figure 4.

It remains to argue that the parts of the convex
hull not covered by gadgets can be quadrangulated.
As these parts are enclosed by a polygonal chain in
which red and blue vertices alternate, we can add

80

33rd European Workshop on Computational Geometry, 2017

Figure 3: A variable gadget, showing the possible set
of blue diagonals. It “splits” an edge, propagating the
(negated) truth value it carries.

Figure 4: The clause gadget. The two red points in
the middle connected by a red segment are closer than
drawn. The only impossible combination of blue diag-
onals for the link gadgets is the one including all three
solid segments. Negating the top-left edge makes this
the configuration with all literals set to false.

Steiner points to find a quadrangulation (see the full
version for details). Thus, after adding these Steiner
points to our construction, there is a bichromatic con-
vex quadrangulation of our point set if and only if the
corresponding planar 3-SAT instance is satisfiable.

Finally, let us remark that the points can be placed
in general position using coordinates of polynomial
size. Before placing two close red points, we find out
which distance allows placing the points sufficiently
close to each other (possibly after a perturbation).

Theorem 5 Given a set of red and blue points in the

plane, it is NP-complete to decide whether there is a

valid convex quadrangulation of that point set.

Note that actually, the bichromatic setting is a way
to forbid certain edges in the quadrangulation. For
our reduction, it is sufficient to forbid those between
the close red points in the gadgets. However, we do

not know how to achieve this in an unconstrained set-
ting.

References

[1] V. Alvarez and A. Nakamoto. Colored quadrangula-
tions with Steiner points. In J. Akiyama, M. Kano,
and T. Sakai, editors, TJJCCGG 2012, volume 8296
of LNCS, pages 20–29. Springer, 2012.

[2] V. Alvarez, T. Sakai, and J. Urrutia. Bichromatic
quadrangulations with Steiner points. Graphs Com-

bin., 23:85–98, 2007.

[3] P. Bose and G. Toussaint. Characterizing and effi-
ciently computing quadrangulations of planar point
sets. Comput. Aided Geom. Des., 14(8):763 – 785,
1997.

[4] D. Bremner, F. Hurtado, S. Ramaswami, and V. Sac-
ristán. Small strictly convex quadrilateral meshes of
point sets. Algorithmica, 38(2):317–339, 2004.

[5] C. Cortés, D. Garijo, M. A. Garrido, C. I. Grima,
A. Márquez, A. Moreno-González, J. Valenzuela, and
M. T. Villar. Reporting bichromatic segment inter-
sections from point sets. Int. J. Comput. Geometry

Appl., 22(5):421–438, 2012.

[6] C. Cortés, A. Márquez, A. Nakamoto, and J. Valen-
zuela. Quadrangulations and 2-colorations. In Proc.

21st EuroCG, pages 65–68, 2005.

[7] T. Fevens, H. Meijer, and D. Rappaport. Minimum
convex partition of a constrained point set. Discrete

Appl. Math., 109(1–2):95 – 107, 2001.

[8] V. M. Heredia and J. Urrutia. On convex quadran-
gulations of point sets on the plane. In CJCDGCGT,
volume 4381 of LNCS, pages 38–46, 2005.

[9] S. Kato, R. Mori, and A. Nakamoto. Quadrangula-
tions on 3-colored point sets with Steiner points and
their winding numbers. Graphs Combin., 30(5):1193–
1205, 2014.

[10] D. E. Knuth and A. Raghunathan. The problem of
compatible representatives. SIAM J. Discret. Math.,
5(3):422–427, 1992.

[11] D. Lichtenstein. Planar formulae and their uses.
SIAM J. Comput., 11(2):329–343, 1982.

[12] A. Lubiw. Decomposing polygonal regions into con-
vex quadrilaterals. In Proc. 1st SoCG, pages 97–106,
1985.

[13] S. Ramaswami, P. Ramos, and G. Toussaint. Con-
verting triangulations to quadrangulations. Comput.

Geom., 9(4):257 – 276, 1998.

[14] T. Schiffer, F. Aurenhammer, and M. Demuth. Com-
puting convex quadrangulations. Discrete Appl.

Math., 160(4–5):648 – 656, 2012.

[15] G. T. Toussaint. Quadrangulations of planar sets. In
WADS, volume 955 of LNCS, pages 218–227, 1995.

81

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Perfect k-colored matchings and k+2-gonal tilings

Oswin Aichholzer∗ Lukas Andritsch† Karin Baur† Birgit Vogtenhuber∗

Abstract

We derive a simple bijection between geometric plane
perfect matchings on 2n points in convex position and
triangulations on n+2 points in convex position. We
then extend this bijection to monochromatic plane
perfect matchings on periodically k-colored vertices
and (k + 2)-gonal tilings of convex point sets. These
structures are related to Temperley-Lieb algebras and
our bijections provide explicit one-to-one relations be-
tween matchings and tilings. Moreover, for a given el-
ement of one class, the corresponding element of the
other class can be computed in linear time.

1 Introduction

The Fuss-Catalan numbers f(k,m) = 1

m

(

km+m

m−1

)

are
known to count the number of k+2-gonal tilings of a
convex polygon of size km+ 2, they go back to Fuss-
Euler (cf. [4]). Bisch and Jones introduced k-colored
Temperley-Lieb algebras in [1] as a natural generalisa-
tion of Temperley-Lieb algebras. These algebras have
representations by certain planar k-colored diagrams
withm(k+1) vertices on top and bottom. The dimen-
sion of such an algebra is f(k,m), with a basis indexed
by these diagrams. We call these diagrams plane per-
fect k-colored matchings or just k-colored matchings,
assuming from now on that they are plane and per-
fect. Since the number of k+2-gonal tilings coincides
with the number of k-colored matchings, these sets
are in bijection. Przytycki and Sikora [4] prove this
through an inductive implicit construction but do not
give an explicit bijection of the structures.

Furthermore, from work of Marsh and Martin [3],
one can derive an implicit correspondence between tri-
angulations and diagrams for k=1. However, to our
knowledge, no explicit bijection is known.

In this paper, we will give bijections between these
two sets of plane graphs on sets of points in convex
position. We will first address the case k = 1 (Sec-
tion 2) and then treat the general case. Our main
theorems are the explicit bijections between the set
of k-colored matchings and the (k + 2)-gonal tilings
(Theorems 1 and 8). A key ingredient is the charac-
terization of valid k-colored matchings in Theorem 3.

∗Institute for Software Technology, Graz University of Tech-

nology, Graz, Austria, [oaich|bvogt]@ist.tugraz.at
†Mathematics and Scientific Computing, University of Graz,

Graz, Austria, [baurk|lukas.andritsch]@uni-graz.at

Due to lack of space, most proofs are deferred to the
full version of this paper.

2 Matchings and triangulations

We will draw the matchings with two parallel rows
of n vertices each, labeled v1 to vn and vn+1 to v2n
in clockwise order, and with non-straight edges; see
Figure 1(left). We will draw the triangulations (and
tilings) on n+2 points in convex position, labeled p1 to
pn+2 in clockwise order; see Figure 1(right). For the
sake of distinguishability, throughout this paper we
will refer to p1, . . . , pn+2 as points and to v1, . . . , v2n
as vertices.

v1 v2 v3 v4 v5 v6

v7v8v9v10v11v12

p1

p2

p3

p4p5

p6

p7

p8

1,1,0,0,1,1,0,1,0,0,1,0
2,0,2,1,0,1

Figure 1: A perfect matching (left) and the corre-
sponding triangulation for n = 6 (right).

The above defined structures are undirected graphs.
We next give an implicit direction to the edges of these
graphs: an edge vivj (pipj) is directed from vi to vj
(pi to pj) for i < j, that is, each edge is directed from
the vertex / point with lower index to the vertex /
point with higher index. This also defines the outde-
gree of every vertex / point, which we denote as bi for
each vertex vi and as di for each point pi. For techni-
cal reasons, we do not count the edges of the convex
hull of a triangulation when computing the outdegree
of a point pi, with the exception of the edge p1pn+2.
We call the sequence (b1, . . . , b2n) of the outdegrees of
a matching (or the sequence (d1, . . . , dn) of the first n
outdegrees of a triangulation) its outdegree sequence;
see again Figure 1. We first show that for both struc-
tures, this sequence is sufficient to encode the graph.
For matchings, the outdegree sequence is a 0/1-

sequence with 2n digits, where n digits are 1 and n
digits are 0. Moreover, the directions of the edges
imply that an incoming edge at a vertex vj must be
outgoing for a vertex vi with i < j. Thus, we have
the condition

∑k

i=1
bi ≥ k/2 for any 1 ≤ k ≤ 2n,

that is, in any subsequence starting at v1, we have

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

82

33rd European Workshop on Computational Geometry, 2017

at least as many 1s as 0s. Such sequences are called
ballot sequences, see [2, p.69]. Obviously, the outde-
gree sequence of a matching can be computed from a
given matching in O(n) time. But also the reverse is
true: We consider the outdegrees from b1 to b2n. We
use a stack (with the usual push and pop operations)
to store the indices of considered vertices that still
need to be processed. Initially, the stack is empty. If
bi = 1, we push the index i on the stack. If bi = 0, we
pop the topmost index k from the stack and output
the edge vkvi. In this way, always the last vertex with
‘open’ outgoing edge is connected to the next vertex
with incoming edge, implying that the subgraph with
vertices vk to vi is a valid plane perfect matching. A
simple induction argument shows that the whole re-
sulting graph is plane and can be reconstructed from
the outdegree sequence in O(n) time.

For triangulations, first note that the outdegrees
of pn+1 and pn+2 are 0. Thus we do not lose infor-
mation when restricting the outdegree sequence of a
triangulation to (d1, . . . , dn). Similar as before, the
directions of edges imply that for any valid outdegree
sequence, it holds that

∑k

i=1
dn+1−i ≤

∑k

i=1
1 = k for

any 1 ≤ k ≤ n. This sum is precisely the maximum
number of edges which can be outgoing from the ‘last’
k points pn+1−k to pn. Recall that we do not con-
sider the edges of the convex hull, except for p1pn+2,
and thus the number of edges which contribute to the
outdegree sequence is exactly n − 2. As before, it
is straightforward to compute the outdegree sequence
from a given triangulation in O(n) time. For the re-
verse process, we again use a stack to store the in-
dices of considered points that still need to be pro-
cessed. We initialize the stack with push(n + 2) and
push(n + 1) and output all the (non-counted) edges
pipi+1 for 1 ≤ i ≤ n + 1. Then we consider the out-
degrees in reversed order, that is, from dn to d1. For
each degree di we perform two steps. (1) di times, we
pop the topmost index from the stack and after each
pop we output the edge pipk, where k is the (new)
topmost index on the stack. (2) We push i on the
stack. This process constructs the triangulation from
back to front. When processing pi, all points from
pi+1 to pn+2 that are still ‘visible’ from pi are in this
order on the stack. Thus, drawing the edges in the
described way generates a planar triangulation. At
the end of the process, the stack contains exactly the
two indices n+ 2 and 1, which can be ignored.

So far we have shown that there exist one-to-one
relations between outdegree sequences on the one
side and matchings respectively triangulations on the
other side. We now present a bijective transform be-
tween outdegree sequences of matchings and those of
triangulations.

For a given outdegree sequence B = (b1, . . . , b2n)
of a perfect matching, we compute the outdegree di
for the corresponding point of the triangulation as the

number of 1s between the (i − 1)-st 0 and the i-th 0
in B for i > 1, and set d1 to the number of 1s before
the first 0 in B.

For the reverse transformation, we process the out-
degree sequence (d1, . . . , dn) of a triangulation from
d1 to dn and set the entries of B in order from b1 to
bn in the following way: For each entry di we first set
the next di consecutive elements (possibly none) of B
to 1; then we set the next element of B to 0.

It is an easy excercise to see that the two trans-
formations are inverse to each other, and that they
form a bijection between valid outdegree sequences of
triangulations and outdegree sequences of matchings.
Moreover, each transformation can be performed in
O(n) time. Figure 2 shows all corresponding perfect
matchings, triangulations, and outdegree sequences
for n = 3.

1,1,0,0,1,0 2,0,1

1,1,0,1,0,0 2,1,01,1,1,0,0,0 3,0,0

1,0,1,1,0,0 1,2,0

1,0,1,0,1,0 1,1,1

Figure 2: All perfect matchings, triangulations, and
outdegree sequences for n = 3.

Theorem 1 There exists a bijection between geo-
metric plane perfect matchings on 2n points in con-
vex position and geometric triangulations on n + 2
points in convex position. Further, for an element of
one structure, the corresponding element of the other
structure can be computed in linear time.

3 k-colored matchings

In this section we add colors to the vertices of
the perfect matchings and require the matching
edges to be monochromatic. For k ≥ 2, let
c1, . . . , ck be the k colors. We color the ver-
tices in a bitonic way, that is, in the order
c1, c2, . . . , ck−1, ck, ck, ck−1, . . . , c2, c1, c1, c2, . . . and so
on. In a perfect k-colored matching, all matching
edges connect vertices of the same color, and hence
n is a multiple of k; see Figure 3 for an example of a
k-colored matching with k = 3 colors and n = 9.
Clearly, any k-colored matching fulfills all condi-

tions of the previous section. But not every match-

83

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

a b c c b a

abccba

a b c

cba

1, 1, 1|0, 1, 1|0, 0, 1|0, 0, 0|1, 1, 1|0, 0, 0

Figure 3: Perfect k-colored matching for k = 3 colors
and n = 9 and its outdegree sequence.

ing obtained in the previous section is a k-colored
matching and hence not every outdegree sequence of a
matching is an outdegree sequence of a valid k-colored
matching. Thus we now derive additional properties
to determine which outdegree sequences of matchings
correspond to k-colored matchings.

We denote k consecutive vertices vi, . . . , vi+k−1 that
are colored with either c1, . . . , ck or ck, . . . , c1 as a
block. In total we have 2n/k such blocks and they
form a partition of 2n vertices. Observe that within
a block, there cannot be a vertex with an incoming
edge after a vertex with an outgoing edge, as this
would cause a bichromatic edge. Hence, in a k-colored
matching, the outdegree sequence of any block has to
be of the form |0, . . . , 0, 1, . . . , 1| (where it can consist
entirely of 0 or 1 entries). For better readability, we
sometimes mark block boundaries in an outdegree se-
quence with vertical lines. We say that an outdegree
sequence (and the matching) fulfilling this property
has a valid block structure.

Lemma 2 Let M be a perfect matching with valid
block structure that is not a k-colored matching.
Then there exists an edge vsve in M with the fol-
lowing properties:

(i) The vertices vs and ve lie in different blocks, say
vs ∈ S and ve ∈ E.

(ii) The subsequence from vs+1 to ve−1 contains no
bichromatic matching edge.

(iii) The number of blocks between S and E is odd.

(iv) Let vs be the i-th vertex in S. Then ve is the
(i+ 1)-st vertex in E.

Together with the previous observations, Lemma 2
implies the following theorem.

Theorem 3 A matching is a k-colored matching if
and only if it has a valid block structure and does not
contain an edge as described in Lemma 2.

Remark: For a given outdegree sequence we can
check in linear time if it is an outdegree sequence of
a k-colored matching by using the reconstruction al-
gorithm described in Section 2.

4 t-gonal tilings

For any t ≥ 3, a t-gonal tiling T on n + 2 points
in convex position, labeled p1 to pn+2 in clockwise
order, is a plane graph where every bounded face is
a t-gon and the vertices along the unbounded face
are p1, p2, . . . , pn+2 in this order; see Figure 4 for an
example. For the special case of t = 3, T is a tri-
angulation. In the next section, we will show that
the k-colored matchings on 2n vertices of the previ-
ous section correspond to k+2-gonal tilings of n + 2
points in convex position, where n = km for some in-
teger m > 0. This is a generalization of the fact that
matchings (i.e., k = 1) correspond to triangulations.
To this end we first derive several properties of t-gonal
tilings of convex sets.

p1p11

p10 p2

p3

p4

p5

p6

p7

p8

p9

3,2,0,1,0,0,3,0,0

Figure 4: 5-gonal tiling corresponding to the 3-colored
matching of Figure 3 and the outdegree sequence of
its k-color valid triangulation.

The dual graph of a t-gonal tiling T has a vertex for
each bounded face T and two vertices are connected
by an edge if the corresponding faces share a common
edge in T (every pair of bounded faces shares at most
one edge). An ear of T is a t-gon which shares all but
one edge with the unbounded face and can thus be
cut off of T (along this edge) so that the remaining
part is a valid t-gonal tiling of n+2−(t−2) = n+4−t
points.
As the dual graph of any t-gonal tiling T is a tree, as

every tree has at least two leaves (where the minimal
case is obtained by a path), and as a leaf in the dual
graph of T corresponds to an ear in T , we have the
following observation.

Observation 1 Every t-gonal tiling with at least 2t−
2 points has at least two ears. At least one of these
ears is not incident to the edge p1pn+2.

Lemma 4 Any triangulation T on n + 2 points in
convex position contains at most one t-gonal tiling as
a subgraph.

A proof by induction, using Observation 1 can be
found in the full version of this paper.

84

33rd European Workshop on Computational Geometry, 2017

Obviously, if a triangulation T on n+2 points con-
tains a t-gonal tiling T as a subgraph, then n is divis-
ible by t − 2. Further, as T has at least two ears, T
contains at least two edges that cut off a triangulated
t-gon from T . We call such a t-gon that can be split
off from a triangulation T a t-ear of T , and the edge
along which the t-ear can be split off the ear-edge (of
the t-ear). Note that for t > 3, not every triangulation
contains t-ears.

Let T be a triangulation that contains a t-ear with
ear-edge prps for some r ≥ 1 and s = r+t−1 ≤ n+2.
Let B be the outdegree sequence of the corresponding
matching. If s < n + 2, then in B, the t-ear corre-
sponds to a subsequence W of B of length 2t− 3 that
starts with a 1 (for prps), ends with two 0s (as the last
point ps−1 of the ear cannot have outgoing edges), and
has t−1 0s and t−2 1s in total. If s = n+2, then in B,
the last 0 (the one ‘after’ pn+1) is not existing. Then
the according sequence is W = (b2n−2t+5, . . . , b2n),
which must be a ballot sequence.

5 k-colored matchings and k+2-gonal tilings

We say that a triangulation on n+2 points in convex
position is k-color valid if it corresponds to a k-colored
matching as defined in Section 3. The outdegree se-
quence of such a triangulation is then also called k-
color valid. A k+2-gonal tiling of n + 2 points is
called k-color valid if it can be completed to (i.e., is
a subgraph of) a k-color valid triangulation. In the
following, let t = k + 2.

Observation 2 Let T be a k-color valid triangula-
tion that contains a t-ear with ear-edge prps for some
r ≥ 1 and s = r+t−1 ≤ n+2. Let the first entry of the
subsequence W of B that corresponds to this t-ear be
the i-th entry within its block, for 1≤ i≤k. If s=n+2
then i = 1 and W = (|1, . . . , 1|0, . . . , 0|) = (|1k|0k|).
Otherwise, W = (1, . . . , 1|0, . . . , 0, 1, . . . , 1|0, . . . , 0) =
(1k−i+1|0k−i+1, 1i−1|0i).

The following three lemmas can be derived using
Observation 2. The proof of Lemma 5 also shows
that the extension is uniquely determined.

Lemma 5 Any k-color valid t-gonal tiling T on n+2
points can be extended by an ear at any edge e =
prpr+1, 1 ≤ r ≤ n + 1, so that the resulting t-gonal
tiling on n+ k points is k-color valid.

Lemma 6 Let T be a k-color valid triangulation that
contains a t-ear with ear-edge prps for some r ≥ 1 and
s = r+ t− 1 ≤ n+2. Then the triangulation T ′ that
results from removing the t-ear from T is again k-color
valid.

Lemma 7 Let T be a k-color valid triangulation.
Then T contains a t-ear with ear-edge prps for some
r ≥ 1 and s = r + t− 1 ≤ n+ 2.

Combining Lemmas 4 – 7 and Observations 1 – 2,
we obtain our main result.

Theorem 8 There exists a bijection between geo-
metric plane perfect k-colored matchings on 2n points
in convex position and t-gonal tilings on n+2 points in
convex position. Further, for an element of one struc-
ture, the corresponding element of the other structure
can be computed in linear time.

6 Future Work

The Temperley-Lieb algebras arising from matchings
on 2n vertices can be generated by n distinguished
elements: An element I (consisting of n propagating
lines vjv2n−j+1, 1 ≤ j ≤ n, from top to bottom) and
n − 1 elements Ui, 1 ≤ i < n, consisting of a pair of
lines vivi+1 and v2n−iv2n−i+1 plus the remaining n−2
propagating lines.

It is natural to search for a characterization of these
generators in terms of triangulations (and for the gen-
erators for the k-colored Temperley-Lieb algebras in
terms of k+2-gonal tilings). We plan to use our explicit
bijections to study the effect of edge flips in trian-
gulations respectively in tilings on the corresponding
matchings and to find out how the actions of gener-
ators of the (k-colored) Temperley-Lieb algebra can
be interpreted in terms of flips in triangulations re-
spectively in tilings. Preliminary results have already
been obtained.

Acknowledgements. Research for this work is sup-
ported by the Austrian Science Fund (FWF) grant
W1230. We thank Paul Martin for bringing this prob-
lem to our attention.

References

[1] D. Bisch and V. Jones. Algebras associated to
intermediate subfactors. Invent. Math., 128(1):89–
157, 1997.

[2] W. Feller. An Introduction to Probability Theory
and its Applications, Volume I (3rd ed.). Wiley,
1968.

[3] R. J. Marsh and P. Martin. Pascal arrays: count-
ing Catalan sets. ArXiv Mathematics e-prints,
Dec. 2006.

[4] J. H. Przytycki and A. S. Sikora. Polygon dis-
sections and Euler, Fuss, Kirkman, and Cayley
numbers. J. Combin. Theory Ser. A, 92(1):68–76,
2000.

85

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations∗

Anna Lubiw1, Zuzana Masárová2, and Uli Wagner2

1School of Computer Science, University of Waterloo , Waterloo, ON, Canada, N2L 3G1, alubiw@uwaterloo.ca
2IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria, zuzana.masarova@ist.ac.at, uli@ist.ac.at

1 Introduction

Given a triangulation of a point set in the plane, a
flip deletes an edge e whose removal leaves a convex
quadrilateral, and replaces e by the opposite diagonal
of the quadrilateral. It is well known that any triangu-
lation of a point set can be reconfigured to any other
triangulation by some sequence of flips. We explore
this question in the setting where each edge of a trian-
gulation has a label, and a flip transfers the label of
the removed edge to the new edge. We characterize
when one labelled triangulation of a point set can be
reconfigured to another one via a sequence of flips.
There is an obvious necessary condition: for each label
l, if edge e has label l in the first triangulation and edge
f has label l in the second triangulation, then there
must be some sequence of flips that moves label l from
e to f , ignoring all other labels. Bose, Lubiw, Pathak
and Verdonschot [4] formulated the “Orbit Conjec-

ture,” which states that this necessary condition is also
sufficient, i.e. that all labels can be simultaneously
mapped to their destination if and only if each label
individually can be mapped to its destination.

We prove this conjecture. Furthermore, we give a
polynomial-time algorithm to find a sequence of flips
to reconfigure one labelled triangulation to another, if
such a sequence exists, and we prove an upper bound
of O(n7) on the length of the flip sequence.

Our proof uses the topological result that straight-
edge plane graphs on a planar point set form a
simplicial complex that is homeomorphic to a high-
dimensional ball (this follows from a result of Orden
and Santos; we present here a different proof based on
a shelling argument). The dual cell complex of this
simplicial ball, which we call the flip complex, has the
usual flip graph as its 1-skeleton. We use properties
of the 2-skeleton of the flip complex.

We now fill in further details. Throughout, we fix a
set P of n points in general position, and we identify
triangulations with their edge sets (i.e., a triangulation
of P is a maximal set T of pairwise non-crossing edges
spanned by P). The result that any triangulation can
be flipped to any other (see [3]) is captured succinctly
by saying that the flip graph is connected, where the

∗to appear, Symposium on Computational Geometry, 2017

flip graph has a vertex for each triangulation of the
given point set, and an edge when two triangulations
differ by one flip. This connectivity result extends to
constrained triangulations where some edges between
points of P are fixed and not flippable (see [3]).

A labelled triangulation T of P is a pair (T, ℓ) where
T is a triangulation of P and ℓ is a labelling function

that maps the edges of T one-to-one onto the labels
1, 2, . . . , tP . Here tP is the number of edges in any
triangulation of P . When we perform a flip operation
on T , the label of the removed edge is transferred to
the new edge.

Edges e and f lie in the same orbit if we can attach
label l to e in some triangulation and apply some
sequence of flips to arrive at a triangulation in which
edge f has label l. The orbits are exactly the connected
components of a graph that Eppstein [5] called the
quadrilateral graph—this graph has a vertex for every
one of the possible

(

n

2

)

edges formed by point set P ,
with e and f being adjacent if they cross and their four
endpoints form a convex quadrilateral that is empty
of other points. In particular, this implies that there
is a polynomial-time algorithm to find the orbits.
The Orbit Conjecture of Bose et al. [4] can be ex-

pressed precisely using the terminology of “orbits”.
Our main result is to prove the Orbit Conjecture and
strengthen it by providing a polynomial-time algo-
rithm and a bound on the length of the flip sequence:

Theorem 1 (Orbit Theorem) Given two edge-
labelled triangulations T1 and T2 of a point set, there
is a flip sequence that transforms one into the other
if and only if for every label l, the edges of T1 and
T2 having label l belong to the same orbit. Further-
more, there is a polynomial-time algorithm that tests
whether the condition is satisfied, and if it is, computes
a flip sequence of length O(n7) to transform T1 to T2.

The crucial case is when the two triangulations
have the same edge set but different label functions,
i.e. we are given a permutation of the edge labels of a
triangulation, and we seek a flip sequence to realize the
permutation. Since every permutation is a composition
of transpositions, we concentrate first on finding a flip
sequence to transpose (or “swap”) two labels.

One insight to be gained from previous work is that

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

86

33rd European Workshop on Computational Geometry, 2017

a b
a

b
a

b

a

b

a
b ab

Figure 1: Five flips swap the edge labels (a and b) of
two diagonals of a convex pentagon. In the flip graph
these five flips form a 5-cycle.

empty convex pentagons in the point set seem to be
crucial for swapping edge labels. Figure 1 shows how
the edge labels of two diagonals of an empty convex
pentagon can be swapped by a sequence of five flips.
We make this insight rigorous by showing that the

only elementary operation that is needed for label
permutation is to transpose two labels by moving them
into an empty convex pentagon and swapping them
there. More formally, given a labelled triangulation
T = (T , ℓ), an elementary swap of edges e and f in
T is a transposition of the labels of e and f that is
accomplished as follows: perform a sequence, σ, of
flips on T to get to a triangulation T ′ in which the
labels ℓ(e) and ℓ(f) are attached to the two diagonals
of an empty convex pentagon; then perform the 5-flip
sequence, π, that transposes these two labels; then
perform the sequence σ

−1. We say that the sequence
σπσ

−1 realizes the elementary swap. Observe that the
effect of σπσ−1 on T is to transpose the labels of e and
f while leaving all other labels unchanged. We will
prove that an elementary swap can always be realized
by a flip sequence of length O(n6), and furthermore,
that such a sequence can be found in polynomial time.

One of our main results is the following, from which
the Orbit Theorem can readily be derived:

Theorem 2 In a labelled triangulation T , two edges
are in the same orbit if and only if there is an elemen-
tary swap between them.

To prove Theorem 2, we use the following key result:

Theorem 3 (Elementary Swap Theorem)
Given a labelled triangulation T , any permutation of
the labels that can be realized by a sequence of flips
can be realized by a sequence of elementary swaps.

This theorem is proved using topological proper-
ties of the flip complex, whose 1-skeleton is the flip
graph. A result of Orden and Santos [6] can be used to
show that the flip complex has the topology of a high-
dimensional ball1. We give an alternate proof of this.
We use the 2-skeleton of the flip complex, and show
that its 2-cells correspond to cycles in the flip graph
of two types: quadrilaterals, which do not permute
labels; and pentagons, which correspond precisely to
the 5-cycles of flips shown in Figure 1. Then we prove

1Technically speaking, the flip complex is homotopy equiva-

lent to a ball.

the Elementary Swap Theorem by translating it into
a result about decomposing closed walks in the flip
graph into simpler elementary walks.
Although there is a rich literature on associahe-

dra [8, 1] and on cell complexes associated with tri-
angulations of point sets, we are not aware of any
previous combinatorial results on triangulations that
require topological proofs, as our proof of the Orbit
Theorem seems to do.

2 Proof of the Orbit Theorem

In this section we prove the Orbit Theorem assuming
the Elementary Swap Theorem (Theorem 3, proved
in Section 3), and assuming the following two results
on elementary swaps. We give combinatorial proofs of
these lemmas in the longer version of the paper.

Lemma 4 If there is an elementary swap between
two edges in a triangulation T then there is a flip
sequence of length O(n6) to realize the elementary
swap. Furthermore, this sequence can be found in
polynomial time.

To prove Lemma 4 we look at paths in the double

quadrilateral graph which has O(n4) vertices that cor-
respond to pairs of non-crossing edges on point set P ,
and edges that correspond to flip sequences of length
O(n2).

Lemma 5 Let T be a labelled triangulation contain-
ing two edges e and f . If there is a sequence of ele-
mentary swaps on T that takes the label of edge e to
edge f , then there is an elementary swap of e and f

in T .

We prove the Orbit Theorem in stages, first Theo-
rem 2, then the more general case of permuting edge
labels in a triangulation, and finally the full result.

Proof. [Proof of Theorem 2] The “if” direction is
clear, so we address the “only if” direction. Suppose
that edges e and f are in the same orbit. Then there
is a sequence of flips that changes the given edge-
labelled triangulation T = (T, ℓ) to an edge-labelled
triangulation T ′ = (T ′, ℓ′) in which ℓ

′(f) = ℓ(e). We
now apply the result that any constrained triangulation
of a point set can be flipped to any other. Fix edge f

and flip T ′ to T . Applying the same flip sequence to
the labelled triangulation T ′ yields an edge-labelling
of triangulation T in which edge f has the label ℓ(e).
Thus we have a sequence of flips that permutes the
labels of T and moves the label of e to f .
By the Elementary Swap Theorem (Theorem 3)

there is a sequence of elementary swaps whose effect
is to move the label of edge e to edge f . By Lemma 5
there is an elementary swap of e and f in T . �

87

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Theorem 6 (Edge Label Permutation Theorem)
Let T be a triangulation of a point set with two
edge-labellings ℓ1 and ℓ2 such that for each label l,
the edge with label l in ℓ1 and the edge with label l in
ℓ2 are in the same orbit. Then there is a sequence of
O(n) elementary swaps to transform the first labelling
to the second. Such a sequence can be realized via
a sequence of O(n7) flips, which can be found in
polynomial time.

Proof. The idea is to effect the permutation as a
sequence of swaps. If every edge has the same label
in ℓ1 and ℓ2 we are done. So consider a label l that is
attached to a different edge in ℓ1 and in ℓ2. Suppose
ℓ1(e) = l and ℓ2(f) = l, with e �= f . By hypothesis, e
and f are in the same orbit. By Theorem 2 there is
an elementary swap of e and f in (T, ℓ1) which results
in a new labelling ℓ

′

1
that matches ℓ2 in one more edge

(namely the edge f) and still has the property that
for every label l, the edge with label l in ℓ

′

1
and the

edge with label l in ℓ2 are in the same orbit. Thus we
can continue this process until all edge labels match
those of ℓ2. In total we use O(n) elementary swaps.
These can be realized via a sequence of O(n7) flips by
Lemma 4. Furthermore, the sequence can be found in
polynomial time. �

We can now prove the Orbit Theorem.

Proof. [Proof of Theorem 1] The necessity of the
condition is clear, and we can test it in polynomial
time by finding all the orbits, so we address sufficiency.
The idea is to reconfigure T1 to have the same un-

derlying unlabelled triangulation as T2 and then apply
the previous theorem. The details are as follows. Let
T1 = (T1, ℓ1) and T2 = (T2, ℓ2). There is a sequence σ

of O(n2) flips to reconfigure the unlabelled triangula-
tion T1 to T2, and σ can be found in polynomial time.
Applying σ to the labelled triangulation T1 yields a la-
belled triangulation T3 = (T2, ℓ3). Note that for every
label l, the edges of T1 and T3 having label l belong to
the same orbit. This is because flips preserve orbits
(by definition of orbits). Thus by Theorem 6 there is
a flip sequence τ that reconfigures T3 to T2, and this
flip sequence can be found in polynomial time and
has length O(n7). The concatenation of the two flip
sequences, στ , reconfigures T1 to T2, has length O(n7),
and can be found in polynomial time. �

There is a gap between our bound of O(n7) and the
best known lower bound of Ω(n3) on the length of a
flip sequence to reconfigure one labelled triangulation
to another (when this is possible) [4].

3 Proof of the Elementary Swap Theorem

As mentioned in the introduction, we use topologi-
cal properties of the flip complex, whose 1-skeleton

fefe

(a) (b)

Figure 2: (a) Triangulations that differ in the diago-
nals of two internally disjoint quadrilaterals form an
elementary 4-cycle in the flip graph. A walk around
the cycle does not permute the labels (shown as red
and blue). (b) Triangulations that differ in the diago-
nals of a convex pentagon form an elementary 5-cycle

in the flip graph. This cycle permutes labels as shown
in Figure 1.

(i.e. vertices and edges) is the flip graph. In the full
version of the paper we show that each 2-cell of the
flip complex corresponds to a set of triangulations
that differ on two edges. Specifically, we define an
elementary 4-cycle and an elementary 5-cycle as in
Figure 2.

The key to proving the Elementary Swap Theorem
is the following topological result.

Theorem 7 Let P be a set of n points in general
position in the plane. There is a high-dimensional cell
complex � = �(P), which we call the flip complex,
with the following properties:

1. The 1-skeleton of � is the flip graph of P ;

2. The 2-cells of � correspond to the elementary
4-cycles and elementary 5-cycles of the flip graph;

3. � has the topology of (i.e., is homotopy equiv-
alent to) a high-dimensional ball; therefore its
fundamental group, π1(�), is trivial.

Theorem 7 can be derived from a result of Orden
and Santos [6]. In the long version of our paper we give
an alternative proof of Theorem 7 that starts out by
considering the simplicial complex � = �(T) whose
faces are the sets of pairwise non-crossing edges (line
segments) spanned by P . This complex � is shown to
be a shellable simplicial ball (by an argument based
on constrained Delaunay triangulations and a theorem
for shellable pseudomanifolds, see [2, Prop. 4.7.22]),
and � is then constructed as the dual complex of �.
To prove the Elementary Swap Theorem, we need

to look at walks in the flip graph. Fix a triangulation
T0. An elementary quadrilateral walk is a closed walk
of the form wzw−1, where z is an elementary 4-cycle
in the flip graph, and w is a walk from T0 to some
triangulation on z. An elementary pentagonal walk is

88

33rd European Workshop on Computational Geometry, 2017

defined analogously, with z an elementary 5-cycle. It is
straightforward to check the effect of these elementary
walks on labellings:

Lemma 8 Let (T0, ℓ) be a labelled triangulation. An
elementary quadrilateral walk does not permute the
labels. An elementary pentagonal walk swaps the
labels of two edges (e and f in Figure 2(b)) and leaves
all other labels fixed; this corresponds exactly to the
notion of an elementary swap introduced earlier.

Another operation that does not affect the permuta-
tion of labels induced by a closed walk is the following.
A spur ww−1 starting and ending at T is an arbitrary
walk w starting at T , immediately followed by the
inverse walk. If w1 and w2 are walks in the flip graph
such that w1 ends at a triangulation T and w2 starts
there, and if s is a spur at T , then we say that the walk
w1sw2 differs from w1w2 by a spur insertion (and the
inverse operation is called a spur deletion). In the long
version we prove:

Lemma 9 Two closed walks that differ only by a
finite number of spur insertions and deletions yield
the same permutation of edge labels.

By Lemmas 8 and 9, the Elementary Swap Theorem
directly reduces to the following, which we prove using
Theorem 7:

Proposition 10 Any closed walk in the flip graph is—
up to a finite number of spur insertions and deletions—
a composition of finitely many elementary walks.

Proof. We use the well-known fact that in a cell
complex with trivial fundamental group any two closed
walks starting at the same vertex are related by a finite
number of spur insertions, deletions and so-called 2-cell
relations. The fundamental group of such a complex
can be defined combinatorially in terms of closed walks
in the 1-skeleton and this definition is equivalent to
the usual topological definition in terms of continuous
loops, see [7, Chap. 7] or [9, Chap. 4].

Specifically, we fix a base triangulation T0, and, for
every triangulation T , we fix a walk pT from T0 to T .
Given two triangulations T1, T2 that differ by a flip,
we form the closed walk wT1,T2

in the flip graph, called
a generating walk, that goes from T0 to T1 along pT1

,
then flips to T2, and then returns to T0 along p−1

T2
. It is

easy to see that every closed walk starting and ending
at T0 can be written as a composition of generating
walks.

We say that walks w and w′ are 2-cell related if we
can express them as w = w1w2 and w′ = w1zw2, where
z is a closed walk traversing the boundary of a 2-cell
(an elementary cycle) exactly once in either orientation.
A priori, this is not a symmetric relation, but w1w2 and
w1zz

−1w2 differ only by the spur zz−1. Also, notice

the precomposition property : if w is precomposed with
the elementary closed walk (w1zw

−1

1
) then the result

w′′ = (w1zw
−1

1
)w = w1z(w

−1

1
w1)w2 differs from w′

only by the spur (w−1

1
w1).

Two walks in the flip graph are called equivalent if
they differ by a finite number of spur insertion and/or
deletions and by applying a finite number of 2-cell
relations. It is not hard to check that this defines an
equivalence relation, and the fundamental group π1(�)
is given as the set of equivalence classes of closed walks
starting and ending at T0.
Triviality of the fundamental group translates into

the fact that every closed walk starting and ending at
T0 is equivalent to the trivial walk. By the precompo-
sition property, this means that, up to a finite number
of spur insertions and deletions, every closed walk is a
composition of finitely many elementary walks. �

References

[1] Gabriela Araujo-Pardo, Isabel Hubard, Deborah
Oliveros, and Egon Schulte. Colorful associahedra
and cyclohedra. Journal of Combinatorial Theory,

Series A, 129:122–141, 2015.

[2] Anders Björner, Michel Las Vergnas, Bernd Sturm-
fels, Neil White, and Günter M. Ziegler. Oriented

matroids, volume 46 of Encyclopedia of Mathemat-

ics and its Applications. Cambridge University
Press, Cambridge, second edition, 1999.

[3] Prosenjit Bose and Ferran Hurtado. Flips in pla-
nar graphs. Computational Geometry Theory and

Applications, 42(1):60–80, 2009.

[4] Prosenjit Bose, Anna Lubiw, Vinayak Pathak, and
Sander Verdonschot. Flipping edge-labelled trian-
gulations. arXiv preprint arXiv:1310.1166, 2013.
To appear in Computational Geometry.

[5] David Eppstein. Happy endings for flip graphs.
Journal of Computational Geometry, 1(1):3–28,
2010.

[6] David Orden and Francisco Santos. The polytope
of non-crossing graphs on a planar point set. Dis-

crete Comput. Geom., 33(2):275–305, 2005.

[7] Herbert Seifert and William Threlfall. A Text-

book of Topology, volume 89 of Pure and Applied

Mathematics. Academic Press, 1980.

[8] Daniel D. Sleator, Robert E. Tarjan, and William P.
Thurston. Rotation distance, triangulations, and
hyperbolic geometry. Journal of the American

Mathematical Society, 1(3):647–681, 1988.

[9] John Stillwell. Classical topology and combinato-

rial group theory, volume 72 of Graduate Texts

in Mathematics. Springer-Verlag, second edition,
1993.

89

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Minimum Perimeter-Sum Partitions in the Plane∗

Mikkel Abrahamsen†, Mark de Berg‡, Kevin Buchin‡, Mehran Mehr‡, Ali D. Mehrabi‡

Abstract1

Let P be a set of n points in the plane. We consider2

the problem of partitioning P into two subsets P13

and P2 such that the sum of the perimeters of ch(P1)4

and ch(P2) is minimized, where ch(Pi) denotes the5

convex hull of Pi. The problem was first studied by6

Mitchell and Wynters in 1991 who gave an O(n2) time7

algorithm. Despite considerable progress on related8

problems, no subquadratic time algorithm for this9

problem was found so far. We present an algorithm10

solving the problem in O(n log4 n) time.11

1 Introduction12

A natural class of clustering problems is to divide a set13

P of points in the plane into two clusters P1 and P214

so as to minimize a cost function expressing the size15

of the convex hulls ch(P1) and ch(P2). For instance,16

ch(Pi) can be defined as the area of ch(Pi) or as the17

perimeter per(Pi) of ch(Pi). (The perimeter of ch(Pi)18

is the length of the boundary ∂ ch(Pi).) Such cluster-19

ing problems were already studied in 1991 by Mitchell20

and Wynters [3]. They studied four problem variants:21

minimize the sum of the perimeters, the maximum of22

the perimeters, the sum of the areas, or the maximum23

of the areas. In three of the four variants the con-24

vex hulls ch(P1) and ch(P2) in an optimal solution25

may intersect—only in the minimum perimeter-sum26

problem the optimal bipartition is guaranteed to be a27

so-called line partition, that is, a solution with disjoint28

convex hulls. For each of the four variants they gave an29

O(n3) algorithm that uses O(n) space and for all ex-30

cept the minimum-maximum area problem, they also31

gave an O(n2) algorithm that uses O(n2) space; their32

algorithms only consider line partitions (which in the33

case of the minimum perimeter-sum problem implies34

an optimal bipartition). Mitchell and Wynters men-35

tioned the improvement of the space requirement of36

the quadratic-time algorithm as an open problem, and37

they stated the existence of a subquadratic algorithm38

∗MA is partly supported by Mikkel Thorup’s Advanced
Grant from the Danish Council for Independent Research un-
der the Sapere Aude research career programme. MdB, KB,
MM, and AM are supported by the Netherlands’ Organisation
for Scientific Research (NWO) under project no. 024.002.003,
612.001.207, 022.005025, and 612.001.118 respectively.

†University of Copenhagen, mia@di.ku.dk.
‡TU Eindhoven, mdberg@win.tue.nl, k.a.buchin@tue.nl,

m.mehr@tue.nl, amehrabi@win.tue.nl.

for any of the four variants as the most prominent39

open problem.40

Rokne et al. [4] made progress on the first ques-41

tion, by presenting an O(n2 log n) algorithm that uses42

only O(n) space for the line-partition version of each of43

the four problems. The main question is still open: is44

it possible to obtain a subquadratic algorithm for any45

of the four bipartition problems based on convex-hull46

size?47

Our contribution. We answer the question above48

affirmatively by presenting a subquadratic algorithm49

for the minimum perimeter-sum bipartition problem50

in the plane.51

As mentioned, an optimal solution (P1, P2) to the52

minimum perimeter-sum bipartition problem must be53

a line partition. A straightforward algorithm would54

generate all Θ(n2) line partitions and compute the55

value per(P1) + per(P2) for each of them. If the latter56

is done from scratch for each partition, the resulting57

algorithm runs in O(n3 log n) time. The algorithms by58

Mitchell and Wynters [3] and Rokne et al. [4] improve59

on this by using that the different line bipartitions60

can be generated in an ordered way, such that sub-61

sequent line partitions differ in at most one point.62

Thus the convex hulls do not have to be recomputed63

from scratch, but they can be obtained by updating64

the convex hulls of the previous bipartition. To ob-65

tain a subquadratic algorithm a fundamentally new66

approach is necessary: we need a strategy that gener-67

ates a subquadratic number of candidate partitions,68

instead considering all line partitions. We achieve this69

as follows.70

We start by presenting a theorem stating that an71

optimal bipartition (P1, P2) has the following property:72

there is a set of O(1) canonical orientations such that73

P1 can be separated from P2 by a line with a canoni-74

cal orientation, or the distance between ch(P1) and75

ch(P2) is Ω(min(per(P1), per(P2)). There are only76

O(1) bipartitions of the former type, and finding the77

best among them is relatively easy. The bipartitions of78

the second type are much more challenging. We show79

how to employ a compressed quadtree to generate a80

collection of O(n) canonical 5-gons—intersections of81

axis-parallel rectangles and canonical halfplanes—such82

that the smaller of ch(P1) and ch(P2) (in a bipartition83

of the second type) is contained in one of the 5-gons.84

It then remains to find the best among the bipar-85

titions of the second type. Even though the number86

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

90

33rd European Workshop on Computational Geometry, 2017

of such bipartitions is linear, we cannot afford to com-87

pute their perimeters from scratch. We therefore de-88

sign a data structure to quickly compute per(P ∩Q),89

where Q is a query canonical 5-gon. Brass et al. [1]90

presented such a data structure for the case where91

Q is an axis-parallel rectangle. Their structure uses92

O(n log2 n) space and has O(log5 n) query time; it can93

be extended to handle canonical 5-gons as queries, at94

the cost of increasing the space usage to O(n log3 n)95

and the query time to O(log7 n). Our data structure96

improves upon this: it has O(log4 n) query time for97

canonical 5-gons (and O(log3 n) for rectangles) while98

using the same amount of space. Using this data struc-99

ture to find the best bipartition of the second type100

we obtain our main result: an exact algorithm for101

the minimum perimeter-sum bipartition problem that102

runs in O(n log4 n) time.103

2 The algorithm104

Let P be the set of n points in the plane for which we105

want to solve the minimum-perimeter-sum partition106

problem. An optimal partition (P1, P2) of P has the107

following two basic properties: P1 and P2 are non-108

empty, and the convex hulls ch(P1) and ch(P2) are109

disjoint. In the remainder, whenever we talk about a110

partition of P , we refer to a partition with these two111

properties.112

Consider a partition (P1, P2) of P . Define P1 :=113

ch(P1) and P2 := ch(P2) to be the convex hulls of114

P1 and P2, respectively, and let ℓ1 and ℓ2 be the two115

inner common tangents of P1 and P2, see Figure 1.116

The lines ℓ1 and ℓ2 define four wedges: one containing117

P1, one containing P2, and two empty wedges. We118

call the opening angle β of the empty wedges the119

separation angle of P1 and P2. Furthermore, we call120

the distance between P1 and P2 the separation distance121

of P1 and P2. Our algorithm relies on the following122

separation property of any optimal bipartition.123

Theorem 1 Let P be a set of n points in the plane,124

and let (P1, P2) be a partition of P that minimizes125

per(P1) + per(P2). Then the separation angle of P1126

and P2 is at least π/6 or the separation distance is at127

least csep ·min(per(P1), per(P2)), where csep := 1/250.128

The proof of this theorem is rather delicate and can129

be found in the full version. Below we sketch the main130

ideas. Let (P1, P2) be a partition of P that minimizes131

per(P1)+per(P2). Let ℓ3 and ℓ4 be the outer common132

tangents of P1 and P2. We define α to be the angle133

between ℓ3 and ℓ4. More precisely, if ℓ3 and ℓ4 are134

parallel we define α := 0, otherwise we define α as135

the opening angle of the wedge defined by ℓ3 and ℓ4136

containing P1 and P2.137

Suppose that the separation distance and the separa-138

tion angle β are both relatively small. Then the region139

ℓ2 ℓ1 ℓ4

ℓ3

α
β

P1 P2

Figure 1: The angles α and β.

A in between P1 and P2 and bounded from the bot-140

tom by ℓ3 and from the top by ℓ4 is relatively narrow.141

But then the left and right parts of ∂A (which are142

contained in ∂P1 and ∂P2) would be longer than the143

bottom and top parts of ∂A (which are contained in ℓ3144

and ℓ4), thus contradicting that (P1, P2) is an optimal145

partition. To make this idea precise, we first prove146

that if the separation angle β is small, then the angle α147

between ℓ3 and ℓ4 must be large. Second, we show that148

there is a value f(α) such that the distance between P1149

and P2 is at least f(α) ·min(per(P1), per(P2)). Finally150

we argue that this implies that if the separation angle151

is smaller than π/6, then (to avoid the contradiction152

mentioned above) the separation distance must be153

relatively large.154

Theorem 1 suggests to distinguish two cases when155

computing an optimal partition: the case where the156

separation angle is large (namely at least π/6) and the157

case where the separation distance is large (namely158

at least csep ·min(per(P1), per(P2))). As we will see,159

the first case can be handled in O(n log n) time and160

the second case in O(n log4 n) time, leading to the161

following theorem.162

Theorem 2 Let P be a set of n points in the plane.163

Then we can compute a partition (P1, P2) of P that164

minimizes per(P1) + per(P2) in O(n log4 n) time using165

O(n log3 n) space.166

The rest of this section is dedicated to the proof167

of Theorem 2. To find the best partition when the168

separation angle is at least π/6, we observe that in169

this case there is a separating line whose orientation170

is j · π/7 for some 0 � j < 7. For each of these171

orientations we can scan over the points with a line ℓ172

of the given orientation, and maintain the perimeters173

of the convex hulls on both sides. This takes O(n log n)174

time in total.175

Next we show how to compute the best partition176

with large separation distance. We assume without177

loss of generality that per(P2) � per(P1). It will be178

convenient to treat the case where P2 is a singleton179

separately.180

Lemma 3 The point p ∈ P minimizing per(P \ {p})181

can be computed in O(n log n) time.182

91

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

It remains to compute the best partition (P1, P2)183

with per(P2) � per(P1) whose separation distance is184

at least csep · per(P2) and where P2 is not a singleton.185

Let (P ∗

1 , P
∗

2) denote this partition. Define the size of186

a square (whenever we speak of squares, we always187

mean axis-parallel squares) σ to be its edge length.188

A square σ is a good square if (i) P ∗

2 ⊂ σ, and (ii)189

size(σ) � c∗ · per(P ∗

2), where c∗ := 18. Our algorithm190

globally works as follows.191

1. Compute a set S of O(n) squares such that S192

contains a good square.193

2. For each square σ ∈ S, construct a set Hσ of O(1)194

halfplanes such that the following holds: if σ ∈ S195

is a good square then there is a halfplane h ∈ Hσ196

such that P ∗

2 = P (σ ∩ h), where P (σ ∩ h) :=197

P ∩ (σ ∩ h).198

3. For each pair (σ, h) with σ ∈ S and h ∈ Hσ,199

compute per(P \ P (σ ∩ h)) + per(P (σ ∩ h)), and200

report the partition (P \P (σ ∩ h), P (σ ∩ h)) that201

gives the smallest sum.202

Step 1: Finding a good square. To find a set S203

that contains a good square, we first construct a set204

Sbase of so-called base squares. The set S will then be205

obtained by expanding the base squares appropriately.206

We define a base square σ to be good if (i) σ contains207

at least one point from P ∗

2 , and (ii) c1 · diam(P ∗

2) �208

size(σ) � c2 · diam(P ∗

2), where c1 := 1/4 and c2 := 4209

and diam(P ∗

2) denotes the diameter of P ∗

2 . Note that210

2 ·diam(P ∗

2) � per(P ∗

2) � 4 ·diam(P ∗

2). For a square σ,211

define σ to be the square with the same center as σ212

and whose size is (1 + 2/c1) · size(σ).213

Lemma 4 If σ is a good base square then σ is a good214

square.215

To obtain S it thus suffices to construct a set Sbase216

that contains a good base square. To this end we217

first build a compressed quadtree for P . For complete-218

ness we briefly review the definition of compressed219

quadtrees; see also Fig. 2 (left).220

Assume without loss of generality that P lies in221

the interior of the unit square U := [0, 1]2. Define222

a canonical square to be any square that can be223

obtained by subdividing U recursively into quadrants.224

A compressed quadtree [2] for P is a hierarchical225

subdivision of U , defined as follows. In a generic226

step of the recursive process we are given a canonical227

square σ and the set P (σ) := P ∩ σ of points inside σ.228

(Initially σ = U and P (σ) = P .)229

230

• If |P (σ)| � 1 then the recursive process stops and231

σ is a square in the final subdivision.232

• Otherwise there are two cases. Consider the233

four quadrants of σ. The first case is that at234

B1

B2

B3

B4.1

B4.2

B4.3

Figure 2: A compressed quadtree and some of the base
squares generated from it. In the right figure, only the
points are shown that are relevant for the shown base
squares.

least two of these quadrants contain points from235

P (σ). (We consider the quadrants to be closed236

on the left and bottom side, and open on the237

right and top side, so a point is contained in a238

unique quadrant.) In this case we partition σ239

into its four quadrants—we call this a quadtree240

split—and recurse on each quadrant. The second241

case is that all points from P (σ) lie inside the242

same quadrant. In this case we compute the243

smallest canonical square, σ′, that contains P (σ)244

and we partition σ into two regions: the square245

σ′ and the so-called donut region σ \ σ′. We call246

this a shrinking step. After a shrinking step we247

only recurse on the square σ′, not on the donut248

region.249

250

A compressed quadtree for a set of n points can be251

computed in O(n log n) time in the appropriate model252

of computation [2]. The idea is now as follows. Let253

p, p′ ∈ P ∗

2 be a pair of points defining diam(P ∗

2). The254

compressed quadtree hopefully allows us to zoom in255

until we have a square in the compressed quadtree256

that contains p or p′ and whose size is roughly equal257

to |pp′|. Such a square will be then a good base square.258

Unfortunately this does not always work since p and259

p′ can be separated too early. We therefore have to260

proceed more carefully: we need to add five types of261

base squares to Sbase, as explained next and illustrated262

in Fig. 2 (right).263

(B1) Any square σ that is generated during the recur-264

sive construction—note that this not only refers to265

squares in the final subdivision—is put into Sbase.266

(B2) For each point p ∈ P we add a square σp to267

Sbase, as follows. Let σ be the square of the final268

subdivision that contains p. Then σp is a smallest269

square that contains p and that shares a corner270

with σ.271

(B3) For each square σ that results from a shrinking272

step we add an extra square σ′ to Sbase, where σ′
273

92

33rd European Workshop on Computational Geometry, 2017

is the smallest square that contains σ and that274

shares a corner with the parent square of σ.275

(B4) For any two regions in the final subdivision that276

touch each other—we also consider two regions277

to touch if they only share a vertex—we add at278

most one square to Sbase, as follows. If one of279

the regions is an empty square, we do not add280

anything for this pair. Otherwise we have three281

cases.282

(B4.1) If both regions are non-empty squares283

containing points p and p′, respectively, then284

we add a smallest enclosing square for the285

pair of points p, p′ to Sbase.286

(B4.2) If both regions are donut regions, say287

σ1 \ σ
′

1 and σ2 \ σ
′

2, then we add a smallest288

enclosing square for the pair σ′

1,σ
′

2 to Sbase.289

(B4.3) If one region is a non-empty square con-290

taining a point p and the other is a donut291

region σ\σ′, then we add a smallest enclosing292

square for the pair p,σ′ to Sbase.293

Lemma 5 The set Sbase has size O(n) and contains a294

good base square. Furthermore, Sbase can be computed295

in O(n log n) time.296

Step 2: Generating halfplanes. Consider a good297

square σ ∈ S. Let Qσ be a set of 4 ·c∗/csep+1 = 18001298

points placed equidistantly around the boundary of299

σ. Note that the distance between two neighbouring300

points in Qσ is less than csep/c
∗ ·size(σ). For each pair301

q1, q2 of points in Qσ, add to Hσ the two halfplanes302

defined by the line through q1 and q2.303

Lemma 6 For any good square σ ∈ S, there is a304

halfplane h ∈ Hσ such that P ∗

2 = P (σ ∩ h).305

Step 3: Evaluating candidate solutions. In this306

step we need to compute for each pair (σ, h) with σ ∈ S307

and h ∈ Hσ, the value per(P \P (σ∩h))+per(P (σ∩h)).308

We do this by preprocessing P into a data structure309

that allows us to quickly compute per(P \P (σ∩h)) and310

per(P (σ ∩ h)) for a given pair (σ, h). Recall that the311

bounding lines of the halfplanes h we must process have312

O(1) different orientations. We construct a separate313

data structure for each orientation.314

Consider a fixed orientation φ. We build a data315

structure Dφ for range searching on P with ranges316

of the form σ ∩ h, where σ is a square and h is half-317

plane whose bounding line has orientation φ. Since318

the edges of σ are axis-parallel and the bounding line319

of the halfplanes h have a fixed orientation, we can320

use a standard three-level range tree for this. Con-321

structing this tree takes O(n log2 n) time and the tree322

has O(n log2 n) nodes.323

Each node ν of the third-level trees in Dφ is associ-324

ated with a canonical subset P (ν), which contains the325

points stored in the subtree rooted at ν. We prepro-326

cess each canonical subset P (ν) as follows. First we327

compute the convex hull ch(P (ν)). Let v1, . . . , vk de-328

note the convex-hull vertices in counterclockwise order.329

We store these vertices in order in an array, and we330

store for each vertex vi the value length(∂ P (v1, vi)),331

that is, the length of the part of ∂ ch(P (ν)) from v1332

to vi in counterclockwise order. Note that the convex333

hull ch(P (ν)) can be computed in O(|P (ν)|) from the334

convex hulls at the two children of ν. Hence, the convex335

hulls ch(P (ν)) (and the values length(∂ P (v1, vi))) can336

be computed in
∑

ν∈Dφ
O(|P (ν)|) = O(n log3 n) time337

in total, in a bottom-up manner.338

Now suppose we want to compute per(P (σ ∩ h)),339

where the orientation of the bounding line of h is φ.340

We perform a range query in Dφ to find a set N(σ∩h)341

of O(log3 n) nodes such that P (σ ∩ h) is equal to the342

union of the canonical subsets of the nodes in N(σ ∩343

h). Standard range-tree properties guarantee that the344

convex hulls ch(P (ν)) and ch(P (µ)) of any two nodes345

ν, µ ∈ N(σ ∩ h) are disjoint. Note that ch(P (σ ∩ h))346

is equal to the convex hull of the set of convex hulls347

ch(P (ν)) with ν ∈ N(σ ∩ h). A generalization of348

Andrew’s version of Graham’s scan for disjoint convex349

polygons instead of points now enables us to compute350

per(P (σ ∩ h)) in O(log4 n) time.351

Observe that P \ P (σ ∩ h) can also be expressed as352

the union of O(log3 n) canonical subsets with disjoint353

convex hulls, since R
2 \ (σ ∩ h) is the disjoint union of354

O(1) ranges of the right type. Hence, we can compute355

per(P \P (σ∩h)) in O(log4 n) time. We thus obtain the356

following result, which finishes the proof of Theorem 2.357

Lemma 7 Step 3 can be performed in O(n log4 n)358

time and using O(n log3 n) space.359

References360

[1] P. Brass, C. Knauer, C.-S. Shin, M. Smid, and361

I. Vigan. Range-aggregate queries for geometric362

extent problems. In Proc. 19th CATS, pages 3–10,363

2013.364

[2] S. Har-Peled. Geometric approximation algo-365

rithms. Mathematical surveys and monographs,366

Vol. 173. American Mathematical Society, 2011.367

[3] J.S.B. Mitchell and E.L. Wynters. Finding opti-368

mal bipartitions of points and polygons. In Proc.369

2nd WADS, LNCS 519, pages 202–213, 1991.370

[4] J. Rokne, S. Wang, and X. Wu. Optimal biparti-371

tions of point sets. In Proc. 4th CCCG, pages 11–372

16, 1992.373

93

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Searching edges in the overlap of two plane graphs

John Iacono∗ Elena Khramtcova† Stefan Langerman†

Abstract

Consider a pair R,B of plane straight-line graphs,
whose edges are colored red and blue, respectively;
let n be the total number of edges in R and B. We
present a O(n log n)-time O(n)-space technique to pre-
process R,B that enables efficient searches for red-blue
intersections along the red edges. Our technique has a
number of applications to diverse geometric problems.

1 Introduction

Many geometric algorithms have subroutines that in-
volve investigating intersections between two plane
graphs, often assumed being colored red and blue re-
spectively. Such subroutines differ in the questions
that are asked about the red-blue intersections. Often
these questions are to report all red-blue intersections
or to count them. Reporting and counting the intersec-
tions can be carried out in O(n) space and respectively
O(n log n+k) and O(n log n) time, where n is the total
complexity of both graphs, and k is the size of the
output [2, 12]. Note that k may be Ω(n2).

Here we consider the situation, where one wants
to search the red-blue intersections, still avoiding to
compute all of them. Problems of this type appear
as building blocks in diverse algorithms, including dis-
tance measurement between polyhedral terrains [2],
motion planning [9], construction of various general-
ized Voronoi diagrams [6, 4, 3]. Therefore solving such
problems efficiently is of high importance.

Often the situation is as follows: each red edge con-
tains at most one sought red-blue intersection, and
there is an oracle that, given a red-blue intersection p,
can quickly determine whether the sought intersection
lies to the right or to the left of p along the same
red edge. A particular case, when the red graph is a
unique edge, appeared as segment query in [3], or as
find-change query in [5]. If the blue graph is a tree,
it can in O(n log n) time be preprocessed using the

∗Dept. of Computer Science and Engineering, New York
University, USA. Research partially completed while J. I.
was on sabbatical at the Algorithms Research Group of
the Computer Science Dept. at ULB with support from
a Fulbright Research Fellowship, F.R.S.-FNRS., and NSF
grants CNS-1229185, CCF-1319648, and CCF-1533564.

†Computer Science Dept., Université Libre de Bruxelles,
Belgium. E. K. was supported by F.R.S.-FNRS, and by the
SNF grant P2TIP2-168563 of the Early PostDoc Mobility
program; S. L. is directeur de recherches du F.R.S.-FNRS.

centroid decomposition [3]. Centroid decomposition
supports segment (or find-change) queries for arbitrary
line segments, requiring only O(log n) queries to the
oracle [3]. If the blue graph is not a tree, then in
O(n log n) time it can be preprocessed for point loca-
tion, and a nested point location along the red edge
is performed, which requires O(log2 n) queries to the
oracle [4, 5]. For two general plane straight-line graphs
(where the red graph is not necessarily one edge) the
problem is called batched red-blue intersection problem.
It was formulated in Dehne et al. [6], and solved in
O(n log3 n) time and O(n log2 n) space [6] using hered-
itary segment trees [2]. However, this is optimal in
neither time nor space.
We present a data structure that provides a clear

interface for efficient searches for red-blue intersections
along a red edge. It can be used to improve the above
result [6], which includes an improvement on segment
(or find-change) queries in plane straight-line graphs.
Our data structure can also handle more general search
problems, e.g., a setting when one red edge may have
more than one sought red-blue intersection on it.

1.1 Our result

Let R, B be a pair of plane straight-line graphs, and
let n be the total complexity of both R and B. We
address the following problem.

Problem 1.1 (RB-Preprocessing problem)
Given graphs R,B, construct a data structure that
for each edge e of R stores implicitly the intersections
between e and the edges of B sorted according to
the order, in which these intersections appear along
e. The data structure should support navigation in a
perfectly balanced binary search tree Te built on the
sorted sequence of intersections along e:
(i) Return the root of Te;
(ii) Given a non-root node of Te, return the parent of
this node;
(iii) Given a non-leaf node of Te, return the left (or,
respectively, the right) child of this node.

We solve the RB-Preprocessing problem, such that
the preprocessing takesO(n log n) time andO(n) space
and the above queries are supported in O(1) time each.

The resulting data structure allows for fast searches
for interesting intersections between the edges of R and
the ones of B. We note that the notion of interesting is
external to the data structure: It is not known at the

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

94

33rd European Workshop on Computational Geometry, 2017

time of preprocessing, but rather guides the searches
on the data structure after it is built. In particular,
for the input graphs R and B, the data structure is
always the same, while interesting intersections can be
defined in several ways, which of course implies that
the searches may have different outputs.
Our preprocessing technique can be applied to a

number of geometric problems. We provide a list
of applications, which is not exhaustive. For each
application, we show how to reduce the initial problem
to searching for interesting red-blue intersections, and
how to navigate the searches, that is, how to decide,
which subtree(s) of the current node of the (implicit)
tree to search. As a result, by using our technique we
are able to make the following contributions:

1. The batched red-blue search problem [6] for a
pair of segment sets can be solved in O(n) space and
O(n log n) queries to the oracle, where n is the total
number of segments in both sets. The problem is as
follows. Given are: (1) two sets of line segments in the
plane (colored red and blue, respectively), where no
two segments in the same set intersect; (2) an oracle
that, given an intersection point p of a red segment r
with a blue segment b, determines to which side of r
with respect to p the interesting red-blue intersection
lies. Find all interesting red-blue intersections. (Each
r has at most one such intersection). Our solution
improves on the one by Dehne et al. [6] requiring
O(n log2 n) space and O(n log3 n) queries to the oracle.

2. The maximum vertical distance between a pair of
polyhedral terrains, one of which is convex, can be
computed in O(n log n) time and O(n) space. Previ-
ously, the minimum vertical distance between a pair
of non-intersecting polyhedral terrains was considered.
It was shown how to find it in O(n4/3+ǫ) time and
space for a pair of general polyhedral terrains [2], in
O(n log n) time for one convex and one general ter-
rain [14], and in O(n) time for two convex terrains [14].
Our technique yields a solution for the second case
within the same time bound as in [14]. The maximum
distance for non-intersecting polyhedra can be found
as in [2, 14], but for intersecting polyhedra, it is dif-
ferent from the minimum distance: finding the former
is still interesting, while the latter is trivially zero.

3. The Hausdorff Voronoi diagram of a family of
point clusters in the plane can be constructed in
O((n + m) log3 n) time, where m is the total num-
ber of crossings of the clusters. Parameter m can
be Θ(n2), but is small in practice [13]. There is a
deterministic algorithm to compute the diagram in
O(n2) time [8]. All other known deterministic algo-
rithms (see [13] and references therein) have a running
time that depends on parameters of the input that
cannot be bounded by a function of m. Each of them
may take Ω(n2) time even if clusters are non-crossing.
There is a recent randomized algorithm with expected

time complexity O((m+n log n) log n)) [11]. Thus the
algorithm we propose here is the best deterministic
algorithm for the cluster families with small number
of crossings. The time complexity of our algorithm is
subquadratic in n and m, and depends only on them,
as opposed to any previous deterministic algorithm.

4. The farthest-color Voronoi diagram of a family of
n point clusters, where each cluster is the four cor-
ners of am axis-aligned rectangle, and all rectangles
are pairwise disjoint, can be constructed in O(n log2 n)
time and O(n) space. Previous results on the topic
are as follows. For a set of arbitrary point clusters,
the diagram may have complexity Θ(n2) and can be
constructed in O(n2) time and space [1, 8], where n is
the total number of points in all clusters. When clus-
ters are pairs of endpoints of n parallel line segments,
the diagram has O(n) complexity and can be con-
structed in O(n log n) time and O(n) space [5]. Here
we broaden the class of inputs, for which the diagram
can be constructed in subquadratic time.

5. Stabbing circle problem for line segments in the
plane can be solved in time O(THVD(S) + TFCVD(S) +
(|HVD(S)| + |FCVD(S)| +m) log n), where |HVD(S)|
and |FCVD(S)| denote respectively the complexity of
the Hausdorff and the farthest-color Voronoi diagram
of the pairs of endpoints of segments in S, THVD(S) and
TFCVD(S) denote the time to compute these diagrams,
and m is a parameter reflecting the number of “bad”
pairs of segments in S. If all segments in S are parallel
to each other, the stabbing circle problem can be solved
in optimal O(n log n) time and O(n) space. This is an
improvement over the recent O(THVD(S) + TFCVD(S) +

(|HVD(S)|+ |FCVD(S)|+m) log2 n) time technique for
general segments, which yielded an O(n log2 n) time
algorithm for parallel segments [5].

In this short abstract we describe solely the tech-
nique, not the applications. For the full paper, see [10].

2 The technique to preprocess a pair of graphs

Below we treat R and B as two sets of line segments
in the plane, colored respectively red and blue. No
two segments of the same color intersect (although
they may share an endpoint). We assume that no two
distinct endpoints have the same x coordinate.
Our technique consists of three phases (see Sec-

tions 2.1, 2.2, and 2.3): First, we invoke an algorithm
that finds the intersections between the red and the
blue segments. Next, we build a linearized life table for
the red segments. Finally, we sweep the life table with
a line, which provides us the resulting data structure.

2.1 Finding red-blue intersections

The red-blue intersections in R,B can be counted or
reported in O(n) space and, respectively, O(n log n) or
O(k + n log n) time, where k is the size of the output,

95

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

b
r

p

Figure 1: Line segments r and b, the closed right wedge
formed by them, and the witness p of their intersection

as was shown by Mantler and Snoyeink [12]. Their al-
gorithm processes the red-blue intersections in batches
called bundle-bundle intersections. In O(n log n) time
and O(n) space it can (implicitly) discover all the
intersections, without reporting every one of them
individually. This is useful for our technique, which
invokes the Mantler-Snoyeink algorithm in its first
phase. Below we summarize the algorithm.

We first define (i) the witness of a (bichromatic)
segment intersection, (ii) a pseudoline at time i, and
(iii) a (monochromatic) bundle of segments at time i.

Given a red segment r that intersects a blue segment
b, the witness of their intersection is the leftmost of the
endpoints of segments in S that are contained in the
closed right wedge formed by r and b. This wedge is
the intersection of two closed right halfplanes: the one
bounded by the line through r, and the one bounded
by the line through b, see the shaded area in Figure 1.
For each red-blue intersection there exists a witness.

Let p1, p2, . . . , pn′ be the sequence of distinct end-
points of the segments in R and B, ordered by increas-
ing x coordinate, see gray numbers in Figure 2.

Lemma 1 For each i, 1 ≤ i ≤ n′ there is a y-
monotone curve ℓi that passes through point pi, and
subdivides the plane in two open regions (the left and
the right one), such that all the points pj , j < i, and
all the red-blue intersections witnessed by the points
pj , j ≤ i are contained in the left region, and all the
points pk, k > i together with the intersections wit-
nessed by them are contained in the right region, and
ℓi intersects each segment in R or in B at most once.

We call such curve ℓi a pseudoline at time i. Figure 2
shows a pseudoline at time 7, i.e., ℓ7, in dashed black
lines. Note that ℓ7 cannot be replaced by a vertical
line as it must pass through the point 7, and to the
left of the intersection point of segments r4 and b4,
and the latter point lies to the left of the former one.

A blue bundle at time i is a maximal contiguous
sequence of blue segments that intersect the pseudoline
ℓi. A red bundle is defined analogously. Figure 2 lists
all the blue bundles Bi, 1 ≤ i ≤ 10, each with its edge
sequence and the time at which it is first encountered.

The algorithm is a topological sweep by a pseudoline,
where the only events are the endpoints p1, . . . , pn′ of
the segments in R and B. The sweepline at each mo-
ment i is a pseudoline ℓi, see Lemma 1. The sweepline
status structure maintains all the red and blue bundles
that intersect the current sweepline. It consists of (1)

a balanced binary tree for each bundle, supporting in-
sertion, deletion of segments, a query for the topmost
and the bottommost segment in the bundle, and split
and merge operations. (2) a list for all the bundles
intersecting the sweepline, supporting insertion, dele-
tion of the bundles, and sequential search, and (3) two
balanced binary trees storing respectively all the red
and all the blue bundles, and supporting splitting and
merging of bundles.
At the event point pi the algorithm processes the

intersections witnessed by pi, updates the sweepline
from ℓi−1 to ℓi, and makes the necessary changes
(splits or merges) to bundles. The algorithm maintains
the invariant that all the red-blue intersections whose
witness is to the left of the current event point pi are
already encountered. This results in the following.

Theorem 2 ([12]) The Mantler-Snoyeink algorithm
runs in O(n log n) time, requires O(n) space, and en-
counters O(n) bundle-bundle intersections in total.

2.2 Building the life table

We run the Mantler-Snoyeink algorithm, making the
sweepline status structure partially persistent [7]. This
guarantees that each blue bundle, that has appeared
during the algorithm, can afterwards be retrieved from
the version of the sweepline status at the corresponding
moment in the past. We assign each blue bundle Bi a
timestamp ti – the first moment Bi was encountered.
To distinguish between two distinct bundle-bundle
intersections discovered at the same moment tk, we
assign the moment tk + ǫ to the intersection with a
smaller y coordinate. See Figure 2.
The plane sweep algorithm induces a partial order

among the red segments: At any moment, the red
segments crossed by the sweepline can be ordered from
bottom to top. Since the red segments do not intersect,
no two of them may swap their relative position. Let
r1, . . . , rn be a total order consistent with the partial
order along the sweepline at each moment.
We now build the life table of red segments and

blue bundles (see Figure 2, bottom). The life table
is a graph, that has integers from 0 to n on its y

axis; and its x axis is the same as the x axis of the
original setting. Each red segment ri is represented by
a horizontal line segment whose y coordinate equals
i and whose endpoints’ x coordinates coincide with
the x coordinates of the endpoints of ri. Each blue
bundle that intersected at least one red bundle, is
retrieved from the version of the sweepline status,
together with its timestamp. In the table, each blue
bundle Bj is represented by a vertical line segment
(that could possibly be a point), whose x coordinate is
the timestamp of Bj . This vertical segment intersects
exactly the segments representing all red segments
intersected by bundle Bj . We do not store the blue
bundles explicitly, but rather maintain a pointer to the

96

33rd European Workshop on Computational Geometry, 2017

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

r2

r1

r3

r4

r5

B1 = ({b1}, t4)

t4

B2 = ({b1}, t5)

t5

t6

b1

b2

b3
B3 = ({b3}, t6) b4 b5

b6

b7

b9

b8

B4 = ({b4, b5, b6}, t10)

t10
t10 + ǫ

B5 = ({b7}, t10 + ǫ)

t13

B6 = ({b4}, t13)

B7 = ({b5, b6}, t15)

t16

B8 = ({b5, b6}, t16)

t17

t17 + ǫ

B9 = ({b8}, t17)

B10 = ({b8, b9},
t17 + ǫ)

1

2

3
4

5

ℓ7

Figure 2: Execution of the algorithm for R =
{r1, . . . , r5} and B = {b1, . . . , b10}

bundle in (the corresponding version of) the sweepline
status structure.

2.3 The resulting data structure

After the life table is built, we sweep it with a hori-
zontal straight line from bottom to top, again making
the sweepline status partially persistent. The events
now correspond to red segments, and the version of
the sweepline status at some moment i contains all
blue bundles crossing the horizontal line y = i, sorted
by x coordinate and stored in a balanced binary tree.
Our ultimate data structure is the persistent

sweepline status of the above (second) plane sweep.
We are able to retrieve in O(1) time the version of
the sweepline status structure at any moment i. The
sweepline status at the moment i is a tree storing the
blue bundles whose beginning was witnessed before
the moment i and whose end was witnessed after that
moment (in other words, the blue bundles that inter-
sect the horizontal line y = i in the life table). See
Figure 2. Each single bundle is stored in a balanced
binary tree, thus the tree of bundles is also a balanced
binary tree of height O(log n), which can be navigated
in the same way as a standard binary tree.
Now suppose we wish to search for interesting red-

blue intersections on a red segment ri. Suppose we
have an oracle that can tell where the interesting
intersection(s) lie with respect to p, for any point p

of intersection between ri and a blue segment. The
search is as follows. We retrieve the version of the
sweepline status (of the second sweep) at the moment
i. This sweepline status is an implicit balanced binary
tree, as explained above. We locate the endpoints of ri
in that tree. Then we search in the portion of the tree
between ri’s endpoints. The decisions made during
the search are made based on our knowledge about
the interesting intersections. We conclude.

Theorem 3 Given a pair R,B of plane straight-line
graphs with n edges and vertices in total in both
graphs, the RB-Preprocessing problem for R and B

can be solved in O(n log n) time and O(n) space, such
that all navigation queries are supported in O(1) time.

References

[1] M. Abellanas, F. Hurtado, C. Icking, R. Klein,
E. Langetepe, L. Ma, B. Palop, and V. Sacristán. The
farthest color Voronoi diagram and related problems.
In 17th EWCG, pages 113–116, 2001.

[2] B. Chazelle, H. Edelsbrunner, L. Guibas, and
M. Sharir. Algorithms for bichromatic line-segment
problems and polyhedral terrains. Algorithmica,
11(2):116–132, 1994.

[3] P. Cheillaris, E. Khramtcova, S. Langerman, and
E. Papadopoulou. A randomized incremental al-
gorithm for the Hausdorff Voronoi diagram of non-
crossing clusters. Algorithmica, 2016.

[4] O. Cheong, H. Everett, M. Glisse, J. Gudmundsson,
S. Hornus, S. Lazard, M. Lee, and H. Na. Farthest-
polygon Voronoi diagrams. Comput. Geom., 44(4):234–
247, 2011.

[5] M. Claverol, E. Khramtcova, E. Papadopoulou,
M. Saumell, and C. Seara. Stabbing circles for sets of
segments in the plane. In LATIN 2016, pages 290–305,
2016.

[6] F. Dehne, A. Maheshwari, and R. Taylor. A coarse
grained parallel algorithm for Hausdorff Voronoi dia-
grams. In ICPP, pages 497–504. IEEE, 2006.

[7] J. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan.
Making data structures persistent. In Proc. 18th an-

nual ACM symposium on Theory of computing, pages
109–121. ACM, 1986.

[8] H. Edelsbrunner, L. Guibas, and M. Sharir. The upper
envelope of piecewise linear functions: algorithms and
applications. Discr. & Comput. Geom., 4(4):311–336,
1989.

[9] L. Guibas, M. Sharir, and S. Sifrony. On the general
motion-planning problem with two degrees of freedom.
Discr. & Comput. Geom., 4(5):491–521, 1989.

[10] J. Iacono, E. Khramtcova, and S. Langerman. Search-
ing edges in the overlap of two plane graphs. ArXiv

e-prints, 2017. arXiv:1701.02229.

[11] E. Khramtcova and E. Papadopoulou. Randomized
incremental construction for the Hausdorff Voronoi
diagram of point clusters. ArXiv e-prints, 2016.
arXiv:1612.01335.

[12] A. Mantler and J. Snoeyink. Intersecting red and
blue line segments in optimal time and precision. In
JCDCG’00, Revised Papers, pages 244–251. Springer,
2001.

[13] E. Papadopoulou. The Hausdorff Voronoi diagram of
point clusters in the plane. Algorithmica, 40(2):63–82,
2004.

[14] B. Zhu. Computing the shortest watchtower of a
polyhedral terrain in O(n log n) time. Comput. Geom.,
8(4):181–193, 1997.

97

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Straight Skeletons of Monotone Surfaces in Three-Space

Martin Held∗ Peter Palfrader∗

Abstract

We present a simple algorithm to compute the straight
skeleton and mitered offset surfaces of a polyhedral
terrain in 3D. Like its 2D pedant, the 3D straight
skeleton is the result of a wavefront propagation pro-
cess, which we simulate in order to construct the skele-
ton in time O(n4 log n), where n is the number of ver-
tices of the terrain. Any mitered offset surface can
then be obtained from the skeleton in time linear in
the combinatorial size of the skeleton.

1 Introduction

The straight skeleton was introduced to computa-
tional geometry over 20 years ago by Aichholzer et
al. [2]. Let P be a simple polygon in the plane and
consider the following process. At time t = 0, each
edge of P starts to move towards the interior of P

at unit speed in a self-parallel manner, maintaining
incidences. The set of moving edges forms a set of
polygons WP (t), called the wavefront of P at time t.
Note that each edge of WP (t) is at all times at or-
thogonal distance t to its corresponding edge of P .

The wavefront needs to be updated at times to re-
main a set of simple polygons: As edges shrink to zero
length (edge event), they are removed, and edges are
split and incidences updated when a previously non-
incident vertex moves into their interior (split event).
(If the polygon is not in general position then more
complex interactions are possible.) The straight skele-
ton S(P) of P is then defined as the geometric graph
whose edges consist of the traces of wavefront vertices
over the propagation process, see Figure 1.

Figure 1: The straight skeleton S(P) (blue) of an in-
put polygon P (bold) is the union of the traces of the
vertices of P as it shrinks. Several instances (wave-
fronts) of the shrinking polygon are shown in gray.

∗Universität Salzburg, FB Computerwissenschaften, 5020
Salzburg, Austria; supported by Austrian Science Fund (FWF)
Grant P25816-N15; {held,palfrader}@cosy.sbg.ac.at.

A mitered offset of P at offsetting distance t cor-
responds to the wavefront at time t. Mitered offsets
are inherently linked to the straight skeleton: Given
the straight skeleton S(P) of a polygon P with n ver-
tices, any mitered offset can be constructed in O(n)
time and space [11].

Variations of the straight skeleton problem in the
plane have also been investigated, by generalizing the
input to arbitrary planar straight line graphs or by
adding multiplicative or additive weights to input
edges [1, 7, 8, 10].

The algorithm with the currently best worst-case
complexity for computing the 2D straight skeleton of
an arbitrary simple polygon is due to Eppstein and
Erickson [8] and requires both O(n17/11+ε) time and
space, for an arbitrarily small but positive ε. Bet-
ter runtime bounds can be obtained when restricting
the input to monotone polygons. Indeed, Biedl et
al. [6] present a simple and easy-to-understand algo-
rithm which requires O(n log n) time and linear space
to compute the straight skeleton.

Moving to 3-space. Straight skeletons of polytopes
were studied by Barequet et al. [5], and recently by
Aurenhammer and Walzl [4]. However, while com-
binatorial complexities have been established for the
straight skeleton of polytopes, no runtime bounds
have been investigated.

In this work, we consider the straight skeleton and
mitered offsets of polyhedral terrains in 3-space. As
usual, a polyhedral terrain is a piecewise linear, con-
tinuous function of two variables. To simplify matters,
we assume that the terrain T is defined over all of R2

and that all facets are simply-connected. Further-
more, we assume T is in general position: No more
than four supporting planes of the facets of T shall
be tangent to a common sphere and the degree of any
vertex of T shall be at most a constant k.

2 Wavefront Propagation

We consider the wavefront propagation of a polyhe-
dral terrain T . Just as in the plane, where the 2D-
wavefront consists of edges at distance t to their cor-
responding input edge, here the wavefront consists of
wavefront facets which are at orthogonal distance t to
their corresponding input facets at all times.

Formally, let f be a facet of T , let H̄f be its sup-
porting plane, and let �nf be the unit normal of f with

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

98

33rd European Workshop on Computational Geometry, 2017

positive z-coordinate. Then we define the offset sup-
porting plane at distance t to be Hf (t) := H̄f + t ·�nf .
The wavefront, just like the input T , is a continuous,
piecewise linear surface, i.e., a polyhedral terrain. Its
facets at time t are embedded in the offset supporting
planes Hf (t) of all facets f of T .

Initially, at time t = 0, the wavefront WT (t) is iden-
tical to T . When the propagation process starts, all
facets of the wavefront move upwards, in positive z-
direction. During this propagation, incidences are re-
tained where possible.

For the initial offset at time t = δ, for a sufficiently
small δ > 0, retaining the combinatorial structure is
possible along edges. Furthermore, locally at vertices
of degree three, an offset of the same combinatorial
structure is possible. However, at vertices of degree
four or more, any offset, even at an infinitesimally
small δ, will generally have a combinatorial structure
different from the input: The offset surface consists
locally of several degree-three vertices that arise from
the offsets of the planes incident at the input vertex
of higher degree; see Aurenhammer and Walzl [4].

2.1 Events

As the wavefront propagation continues, the combi-
natorial structure of the surface has to be updated
and the set of wavefront vertices and their trajectories
change at discrete points in time at so-called events,
when four or more wavefront facets pass through a
common point.

Aurenhammer and Walzl [3] consider straight skele-
tons of polytopes, and they differentiate between
events that change the topology of the offset poly-
tope and events that merely change the surface of the
polytope. They call the first class solid events, which
includes splitting events, where the polytope discon-
nects and piercing events, where a vertex runs into
a facet. However, since our wavefront surface is z-
monotone and continuous, these events cannot occur
and we will only observe the second class of events,
surface events, in the wavefront propagation.

An edge event happens at time t when an edge of
the wavefront collapses to zero length without its in-
cident facets vanishing, too. The two vertices incident
at the edge are merged, giving rise to a high-degree
vertex. For the wavefront after the event, at time t+δ,
this high-degree vertex has to be resolved and gener-
ally split again similar to the process at the initial
wavefront construction. See Figure 2a.

A second type of event, the (facet) split event hap-
pens when a vertex v of the wavefront that is incident
at facet f moves into the interior of another edge e

of f without f collapsing. This case is similar to the
split event known from 2D straight skeletons. Com-
binatorially, the edge e is split at the locus of v and
made incident to v, creating a higher-degree vertex

which then needs to be resolved again for the post-
event wavefront. See Figure 2b.

In the third event type, the face event, a facet f may
collapse to an empty area. This coincides with one or
more edges of f collapsing or a vertex of f moving into
the interior of another edge of f . At the event time
t, the facet is replaced by a set of edges that cover
its boundary without overlapping, thereby merging
vertices which now occupy the same locus (if such
vertices exist). Again for the post-event wavefront,
higher-degree vertices may need to be resolved. See
Figure 2c.

(a) edge event

(b) split event

(c) face event

Figure 2: Edge event, split event, and face event dur-
ing the wavefront propagation.

If the input is not in general position, two vertices
that share a facet but not an edge can also meet. This
will result in a higher-degree vertex (usually of at least
degree six) that needs to be split again. We have ruled
out such cases by our general position assumption.

2.2 Computing the Straight Skeleton

Once no more events occur during the propagation
process, the process has finished. The three dimen-
sional straight skeleton S(T) of T is then the struc-
ture whose edges are the traces of wavefront ver-
tices and whose facets are the traces of wavefront
edges. To unambiguously refer to features of the
3D straight skeleton, Aurenhammer et al. [4] call the
edges of S(T) spokes and its facets sheets. The vol-
umes bounded by sheets are called cells.

Interior vertices correspond to events that have
been observed in the propagation process. Any wave-
front vertex or edge remaining in the wavefront at
the end of the process induces an unbounded straight
skeleton spoke or sheet which continues to infinity.

99

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

3 Simulating the Wavefront Propagation

We compute the straight skeleton S(T) of T by sim-
ulating its wavefront propagation. This requires de-
termining at every stage in the process what the next
event will be. To cope with this problem we maintain
a priority queue of potential events: As initialization,
we first create the initial wavefront for time t = δ,
where δ is infinitesimally small, splitting higher de-
gree vertices of T . Then we store for every edge of
the wavefront its collapse time, and we store for every
vertex of the wavefront the instances of when it will
move into any of the edges of its incident facets.

To advance time in our simulation of the wave-
front propagation, we fetch the event from the priority
queue with the earliest associated time. We process
this event by modifying the wavefront combinatorics
according to the event type, thereby merging and then
splitting vertices as required and as described in the
previous section. We add new events to the priority
queue for all edges and vertices that were affected or
created by the event.

Then, we proceed and fetch the next item from the
priority queue. We need to verify that it still is a valid
event, that is, we need to check that the edge that is
supposed to collapse or the vertex that is supposed
to move into an edge are still elements of the wave-
front — prior events may have already restructured
the wavefront and invalidated this event. If it is a
valid event then we process it as described. Other-
wise we simply drop it. In either case, this process is
repeated until the priority queue is empty.

Number of events. In general, an event happens at
point p and time t when four (or more) wavefront
facets become incident. (For simplicity reasons, our
general position assumption guarantees that no more
than four wavefront facets are involved in an event.)
This provides a natural upper bound of

(

n
4

)

on the size
of the priority queue, where n is the number of facets
of the input surface. Based on our experience with dif-
ferent algorithms for computing straight skeletons in
the plane, we conjecture that in practice only a small
subset of those

(

n
4

)

combinations will be relevant.

Splitting higher-degree vertices. Aurenhammer
and Walzl [3] note that an offset surface of a higher-
degree vertex v of a three dimensional polytope always
exists even though is not necessarily unique. One
offset that always exists corresponds to a wavefront
where v has been replaced by a tree. In [4], they
suggest as a simple approach to enumerate all combi-
natorially different trees and check whether they cor-
respond to valid offset surfaces of v. The geometry of
a tree’s element is dictated by its combinatoric prop-
erties. Such a valid tree will replace the vertex v in
the propagating wavefront.

By our general position assumption, all vertices
of the input surface have at most constant degree
k. Thus, finding this tree for a single vertex v is
a constant-time operation as well. Furthermore, at
most a constant number of elements need to be added
to the wavefront per input vertex.

Vertex degrees during events. After having con-
structed the initial wavefront, all moving vertices will
be of degree three in the generic case. We investigate
the types of vertices that can appear in events.

In an edge event, the edge that connects to degree-
three vertices collapses, giving rise to a degree-four
vertex v, as shown in Figure 2a. In the generic case,
v will have to be split (at constant cost) into two new
degree-three vertices connected by a new edge. In our
general position assumption we stated that no more
than four supporting planes of faces may be tangent
to a common sphere. Thus, for our input we will
always either split v into two, or v will never again
participate in an event.

In a split event, a degree-three vertex v comes to lie
on previously non-incident wavefront edge e, which is
split in two during the event, giving rise to a degree-
five vertex (Figure 2b). In the generic case this vertex
will be split into three new vertices, each of degree
three. Again, by our general position assumption, this
will be the case for our input sets.

For face events we can distinguish two sub-types
(Figure 3). In one, a triangle facet will collapse as all
its incident edges shrink to zero length. This will give
immediate rise to a new degree-three vertex which can
then propagate. The other type is where a more com-
plex polygon collapses as some of its edges collapse
and maybe some vertices become incident at other
edges of the polygon. The facet is replaced by one or
more edges, and all resulting vertices will be of de-
gree three and can propagate without any need to be
split. Note that multiple face collapses happening at
the same time may cause an edge that has the same
face on both sides. Such an edge is not removed; in-
stead it propagates like any other edge, similar to how
ghost vertices propagate in Biedl et al. [7]. This en-
sures that all faces remain simply connected during
the propagation.

Figure 3: Two types of face collapsing events.

100

33rd European Workshop on Computational Geometry, 2017

4 Obtaining Offset Surfaces

If only a single mitered offset surface at orthogonal
distance t is sought, then one approach to construct
this offset is to simply run the wavefront propagation
process until time t. Then, the wavefront at this time
is the offset surface required.

However, if multiple offset surfaces at different dis-
tances should be constructed or if the straight skeleton
is already available, then we apply the following pro-
cess to obtain an offset surface in time linear in the
size of the straight skeleton:

For a given spoke s, we denote by s(t) the three
dimensional point obtained by intersecting s with a
plane at distance t and parallel to the base of any one
of its incident cells. Equivalently, s(t) is the location
at time t of the wavefront vertex that traced out s.

For every spoke s of the skeleton which exists at
(orthogonal) offsetting distance t, i.e., for which s(t)
exists, and for every cell c incident at s where (s, c) has
not been processed before, we construct an offset facet
as follows: Let f1 be one of the sheets of s1 := s that is
on the boundary of c. We walk along the boundary of
f1, moving in the direction of positive z, until we reach
another spoke s2 of f1 that exists at distance t. Now
let f2 be the other sheet of c incident at s2 and repeat
the walk in f2 to find a spoke s3. Eventually, we will
return to our initial spoke s1. Let sℓ be the last one
before we returned. (Special handling will be required
to process the case of infinite elements.) The polygon
with vertices s1(t), s2(t), . . . , sℓ(t) is now a valid off-
set facet and we add it to the offset surface we are
constructing. We then mark (s1, c), (s2, c), . . . , (sℓ, c)
as processed and continue with our main loop. Once
all spokes have been processed, the set of offset facets
represents the complete offset surface. This algorithm
can be implemented such that all offset facets together
with their adjacency relations are obtained.

The correctness of this approach hinges on the
property that all offset facets are simple polygons and
contain no holes. This property stems from the fact
that the wavefront propagation does not experience
any piercing event since T is a terrain.

5 Discussion

We have presented a simple algorithm to compute the
straight skeleton of a z-monotone surface. The pro-
cessing cost of each event is constant for generic input,
and the number of events is bounded by

(

n
4

)

. We do
not expect this bound to be tight, though. Maintain-
ing the events in a priority queue results in a runtime
bound of O(n4 log n). Better upper bounds are cur-
rently under investigation. A construction by Held [9]
establishes an Ω(n2) lower bound on the combinato-
rial complexity of S(T) for a terrain T . His construc-
tion can be adapted to yield the same bound for the

combinatorial complexity of one mitered offset.
For descriptive simplicity, our general-position as-

sumption bounds the maximum degree of a vertex
that may appear in the propagating wavefront by a
small constant. However, using larger constants does
not change the process significantly and only results
in more complex event handling requirements.

Furthermore, we can relax the bound on the max-
imum degree of vertices of the input surface. Re-
solving higher-degree vertices where the degrees are
not bound by a constant for the initial wavefront will
require more than constant work, but at least for
pointed vertices, where all incident faces are confined
to one half space, offsetting can be reduced to com-
puting weighted 2D straight skeletons [5] which are
well studied [7] and for which implementations ex-
ist [10, 11]. Vertices that are saddle-points can still
be handled by one of the methods described by Au-
renhammer and Walzl [4].

References

[1] O. Aichholzer and F. Aurenhammer. Straight Skele-
tons for General Polygonal Figures in the Plane. In
Voronoi’s Impact on Modern Sciences II, volume 21,
pages 7–21. 1998.

[2] O. Aichholzer, F. Aurenhammer, D. Alberts, and
B. Gärtner. A Novel Type of Skeleton for Polygons.
J. Univ. Comp. Sci, 1(12):752–761, 1995.

[3] F. Aurenhammer and G. Walzl. Three-dimensional
straight skeletons from bisector graphs. In 5th Int.

Conf. Analytic Number Theory & Spatial Tessella-

tions, 2013.

[4] F. Aurenhammer and G. Walzl. Straight Skeletons
and Mitered Offsets of Nonconvex Polytopes. DCG,
56(3):743–801, 2016.

[5] G. Barequet, D. Eppstein, M. T. Goodrich, and
A. Vaxman. Straight Skeletons of Three-Dimensional
Polyhedra. In ESA 2008, pages 148–160.

[6] T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Pal-
frader. A Simple Algorithm for Computing Positively
Weighted Straight Skeletons of Monotone Polygons.
IPL, 115(2):243–247, 2015.

[7] T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Pal-
frader. Weighted Straight Skeletons in the Plane.
CGTA, 48(2):120–133, 2015.

[8] D. Eppstein and J. Erickson. Raising Roofs, Crashing
Cycles, and Playing Pool: Applications of a Data
Structure for Finding Pairwise Interactions. DCG,
22(4):569–592, 1999.

[9] M. Held. On Computing Voronoi Diagrams of Convex
Polyhedra by Means of Wavefront Propagation. In
CCCG 1994, pages 128–133.

[10] M. Held and P. Palfrader. Additive Weights for
Straight Skeletons. In EuroCG 2016.

[11] P. Palfrader and M. Held. Computing Mitered Offset
Curves Based on Straight Skeletons. Comp.-Aided

Design & Appl., 12(4):414–424, Feb. 2015.

101

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Polynomial Time Approximation Schemes for Circle Packing Problems

Helmut Alt∗ Nadja Scharf†

Abstract

We consider the algorithmic problems of packing a
maximum number of unit circles into a given circle
of radius r and, vice versa, finding a minimum radius
circle into which a given number n of unit circles can
be packed. Because of the small size of the input these
problems are computationally hard, where the best
known algorithms have doubly exponential runtime.
We give PTAS’s for both problems, which are based
on quite simple ideas. The difficulty lies in proving
their correctness.

1 Introduction

We will consider the algorithmic question of densely
packing unit circles into a given finite size container.
More precisely, our container will be a circle of a given
radius r, but the idea of our algorithm can be ex-
tended to other shapes of containers (squares, homo-
thets of a fixed convex figure, ...), as well. We will also
consider the reverse problem of finding a container of
minimum radius for a given number n of unit circles.
The problem of packing circles efficiently into a circu-
lar container for example arises when installing wires
through a tube.

Packing problems have been investigated exten-
sively in operations research (see e.g. [7] for an
overview) and mathematical optimization (see e.g.
the references in [1]). In particular, the minimum size
of a container for packing n unit circles into circles,
squares, or other containers is mostly unknown, even
for fixed numbers n (see e.g. [1, 2]).

Observe, that our input is just the rational num-
ber r, where numerator and denominator are given
in binary. For the reverse problem, it will be just
the binary representation of the number n of unit cir-
cles. Because of this concise input, the computational
complexities of the problems seem to be considerably
high. We do not know whether they are in NP nor
whether they are NP-hard. However, as we shall see,
the decision problem whether n unit circles can be
packed into a circle of radius r can be formulated as
a formula in the existential first order logic of the re-
als (∃R). However, the size of this formula is already

∗Institut für Informatik, Freie Universität Berlin,

alt@mi.fu-berlin.de
†Institut für Informatik, Freie Universität Berlin,

nadja.scharf@fu-berlin.de

(a) Densest packing of
the plane with circles.

(b) Colored circles of
the grid lie completely
in the container circle.

Figure 1

exponential in the size of the input, so we only know
that the problem is in EXPSPACE and, thus, it can be
solved in doubly exponential time. Doubly exponen-
tial time can also be achieved for the reverse problem,
since it can be described by a Tarski formula. But it is
not known how to formulate it as a merely existential
formula.

The problem of packing the 2- or 3-dimensional
space with unit circles or spheres as densely as pos-
sible has been considered for centuries. For three di-
mensions, the problem was first posed in 1611 by Ke-
pler and quite recently solved by Hales et al. [6]. For
the significantly easier two-dimensional problem, the
densest circle packing is the one where the centers of
the circles form a regular triangular lattice as shown
in Figure 1a. A first proof is due to Thue in 1890
and a complete and rigorous one was given by Fejes
Tóth in 1942 [8]. This packing yields a density of
ρ ≈ 0.90690, meaning that a fraction of ρ of the plane
is covered by circles.

In this paper, we consider the problem of ap-
proximating the optimal solution for both problems
mentioned before. In fact, we will give polynomial
time approximation schemes (PTAS) for the prob-
lems, based on the simple idea of just intersecting
the given container with the optimal packing of the
plane (see Figure 1b for an example). Thus, for a
given ε > 0 for large (depending on ε) r or n, this
gives a (1− ε)- or (1 + ε)-approximation respectively.
For small values (r < c1

ε
2 or n > c2

ε
2 for some constants

c1, c2), we solve the problems by the exact algorithms
and therefore in time exponential in 1

ε
. Observe, that

the simple idea of checking the circles in a suitable
neighborhood of the container C one by one whether
they lie inside C does not give a polynomial time al-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

102

33rd European Workshop on Computational Geometry, 2017

gorithm since their number is already exponential in
the size of the input.

2 Preliminaries

Let us first consider the problem of finding the max-
imum number nmax of unit circles to be packed into
a container of a given radius r. nmax can be com-
puted brute force. For the beginning, we will show
how the decision problem whether a given number k

of unit circles fit into the container circle with radius
r can be written as a ∃R-formula. We assume that r
is given as fraction of positive integers p

q . The vari-
ables of the formula are the coordinates of the circle
centers. The first part describes that no two circles
overlap, i.e. their centers have a distance of at least
2. The second part denotes that the circles lie inside
the container circle centered at the origin.

∃ (x1, . . . , xk, y1, . . . , yk)
∧

i,j∈{1,...k},i �=j

(xi − xj)
2
+ (yi − yj)

2 − 4 ≥ 0

∧
k
∧

i=1

(

x2
i + y2i − (r − 1)

2 ≤ 0
)

(1)

Basu, Pollack and Roy gave an algorithm to de-
cide the truth of such an ∃R-formula of runtime
sv+1dO(v)O (l)M

(

bdO(v)
)

, where s is the number of
polynomials in the formula, v is the number of vari-
ables, d is the maximal degree of the polynomials,
b is the bit-size of the coefficients, l is the length of
the formula and M(m) is the runtime for the mul-
tiplication of two m-bit integers. In our formula
s = k2, v = 2k, d = 2, b = O (L), where L is the
bit-size of the representation of r, and l = O

(

k2L
)

,
since there are k2 polynomials with constant number
of coefficients.
In order to solve the maximization problem, we can

do a linear (or binary) search for nmax ∈
{

1, . . . ,
⌊

r2
⌋}

solving the decision problem by Basu et al.’s algo-
rithm in each step. A detailed analysis shows that
an overall runtime of this brute-force algorithm of

2O(r
2 log r)L3 is possible.

3 Algorithm

Algorithm 1 is our approximation algorithm that uses
the brute-force algorithm stated above.
To be able to analyze it, we first of all prove an up-

per bound for nmax. Therefore, we need the following
lemma.

Lemma 1 Let S be the set of center points indicating

a packing of nmax unit circles inside a circle C with

radius r centered at the origin. LetD be the Delaunay

triangulation of S. Let t be any triangle of D with

Algorithm 1:

Input: Number r > 3 given as p
q , parameter

ε > 0 given as u
v , with p, q, u, v positive

integers
Output: Nonnegative integer napprox

1. if r < 40
3 ·

1
ε
then

2. Compute napprox with brute-force algorithm;
3. end

4. else

5. compute the number
k = 2 (⌊log p⌋+ 1− ⌊log q⌋) + 3 of bits needed
for sufficient precision;

6. compute some a with π ≥ a ≥ π − 2−k;

7. compute some b with
√
12 ≤ b ≤

√
12 + 2−k;

8. napprox =
⌈

a(r−3)2

b

⌉

9. end

10. return napprox

container circle C

with radius r

circle with radius

r−1 also centered

at the origin

O

O
′

Figure 2

at least one vertex of distance at most r− 3 from the

origin. Then all internal angles of t are at most 2π
3 .

Proof. Let △∈ D be a triangle, θ its largest inner
angle and O its circumcircle with center o and radius
u. Let O′ be the circle with radius u′ = max (u− 2, 0)
and center o (see Figure 2). Note that either u′ = 0
or O′ has a distance bigger than r − 1 to the origin
since otherwise we could place another unit circle with
its center inside O′ contradicting the optimality of S.
For an example see Figure 2.

Now, we are going to prove that all vertices of tri-
angles with θ > 2π

3 have distance bigger than r − 3
from the origin. Since θ > 2π

3 , the smallest internal
angle is less than π

6 . All edges of △ have length at
least 2, so we get by using the sine law

u >
2

sin π

6

= 2.

This implies that u′ > 0. Therefore, as mentioned
above, O′ must have distance bigger than r − 1 from
the origin. Hence, O has by construction a distance of
bigger than r− 3 from the origin. Since all vertices of

103

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

△ lie on O, they also have distance bigger than r − 3
from the origin. This concludes the proof. �

Now, we can prove the following upper bound for
nmax. Notice that for 0 ≤ r ≤ 3, nmax is known
[1].

Lemma 2 For r > 3 it holds that nmax ≤ π√
12
r2+6r.

Proof. Let S be the set of center points indicating
a packing of nmax unit circles inside a circle C with
radius r centered at the origin. LetD be the Delaunay
triangulation of S. In each triangle at most the area
of the size of half a unit circle is covered since the sum
of inner angles is π. The area of a triangle with largest
inner angle θ ≤ 2π

3 and all edge-lengths at least two
is at least

1

2
· 2 · 2 · sin θ ≥ 2 ·

√
3

2
=

√
3.

Hence, at least π

2
√
3
of the total area of these triangles

is covered by unit circles. The union of all t ∈ D is
the convex hull of S and therefore a circle with radius
r − 3 is covered by triangles, since otherwise there
could another circle be packed nonoverlapping inside
the container with its center outside of the convex
hull. Together with Lemma 1, this gives us that a
circle of radius r−3 is covered by triangles with largest
inner angle θ ≤ 2π

3 . Therefore, the total area of all
triangles with largest inner angle θ ≤ 2π

3 is at least

π (r − 3)
2
.

For the rest of the container circle we take 1 as an
upper bound for the density of the covered part. In
total we get

nmax ≤ π (r − 3)
2
ρ

π
+

π
(

r2 − (r − 3)
2
)

π

≤ π√
12

r2 + 6r

�

Some ideas for the last two proofs are taken from [5].
The following Lemma shows a lower bound of nmax.

We will use it later to show, that the number of circles
returned by our algorithm can be surely packed into
the container circle.

Lemma 3 nmax ≥
⌈

π(r−3)2√
12

⌉

.

Proof. Consider the dense triangular packing of the
plane with unit circles. The vertices of every triangle
of the grid at least partially contained in the circle
with radius r− 3 have distance at most two from the
border of the circle with radius r−3. Therefore, they

have distance at least 1 from the border of the con-
tainer circle, i.e. unit circles can be packed with their
centers on the vertices of the triangles.
Hence, if we divide the area of the circle with radius

r−3 by the area of a triangle, we get at a lower bound
for twice the number of circles that can be packed on
the grid. �

Using Lemma 2 and 3, we can show the following
theorem.

Theorem 4 Algorithm 1 is a PTAS for circle pack-

ing.

Proof. We first show, that Algorithm 1 computes a
(1− ε)-approximation for the number of circles that
can be packed. Afterwards, we analyze the bit-
complexity of the algorithm.
To compute the approximation factor of the algo-

rithm, we first determine the bounds for a and b.

Since k = 2 (⌊log p⌋+ 1− ⌊log q⌋) + 3, we get

a ≥ π − 2−k ≥ π − 1

8r2
,

b ≤
√
12 + 2−k ≤

√
12 +

1

8r2
.

Now we are going to use these bounds to calculate a
lower bound on napprox.

napprox ≥
⌈

a (r − 3)
2

b

⌉

,

since either napprox is the optimal number of circles
or this value is returned. Next, we use the bounds for
a and b:

napprox ≥ π − 1
8r2√

12 + 1
8r2

(r − 3)
2

which can be shown to satisfy

napprox >
π√
12

(r − 3)
2 − 1 for r > 1.

If napprox is not computed with the brute-force-
algorithm, we also now that

napprox ≤ π√
12

(r − 3)
2
,

since a ≤ π and b ≥
√
12. So following Lemma 3

napprox ≤ nmax and therefore napprox circles can be
surely packed into the container circle.

With the lower bound on napprox and using
Lemma 2, we can compute the approximation factor
of Algorithm 1:

napprox

nmax
≥

π√
12

(r − 3)
2 − 1

π√
12
r2 + 6r

≥ 1− ε , since r ≥ 40

3ε
.

104

33rd European Workshop on Computational Geometry, 2017

It remains to analyze the running time of Algo-
rithm 1. Let L be the bit-length of the input, i.e. the
total length of the encodings of p, q, u, v. The condi-
tion for the if in line 1 can be computed by calculating
3pv < 40qu which can be done in O

(

L2
)

time.
If the result is true, the brute force algorithm is

executed which needs O
(

2O(1/ε
2 log(1/ε))L3

)

time as

described in section 2. Observe, that this bound de-
pends only polynomially on the length L of the input.

If the result is false, first the algorithm computes
k. This can be done in O (L) time since ⌊log p⌋ + 1
is the bit length of p and therefore we can compute
⌊log p⌋+ 1 and ⌊log q⌋ by counting.
a in line 6 can be computed by calculating π with

precision k, i.e. calculating the binary representation
of π up to the bit representing 1

2k
. In the same way,

we can compute b by calculating
√
12 up to the bit

representing 1
2k

and then adding 1
2k
. These calcula-

tions can be done in O
(

k2
)

time (see e.g. [4]). Since
k = O (log r), the running time to compute a and b is
in O

(

L2
)

.
The computation of napprox in line 8 is then a con-

stant number of arithmetic operations on at most L-
bit integers, so it is possible in O

(

L2
)

time.
In total, the running time is determined by the

brute force algorithm. Since this running time is poly-
nomial in L, Algorithm 1 is a PTAS for circle packing.

�

4 The reverse problem

Now, we assume that we are given some natural num-
ber n and want to determine the minimum radius rmin

of a circle into which n unit circles can be packed.
Lemmas from the previous section can be used to de-
rive a PTAS for this problem. We only give the basic
idea without detailed constants. By Lemmas 2 and 3
we know that a container circle of radius r exists with

ρr2 − c1r ≤ n (2)

and if a circle of radius r contains n unit circles, then

n ≤ ρr2 + c2r (3)

for ρ = π√
12

and c1, c2 > 0 are constants. Inequal-

ity (2) yields that a circle of radius

rapprox = d1 +

√

n

ρ
+ d2 (4)

for suitable constants d1, d2 ≥ 0 can contain all n cir-
cles. Like in the previous section, we compute (an
approximation for) this value rapprox from n by an
algorithm polynomial in the binary size of n. Fur-
thermore, from inequality (3) it follows that for the
radius rmin of an optimal container it holds that

rmin ≥
√

n

ρ
+ e1 − e2 (5)

for constants e1, e2 ≥ 0. By (4) and (5) we have
rapprox − rmin ≤ g for some constant g ≥ 0 and there-
fore,

rapprox ≤ rmin

(

1 +
g

rmin

)

.

In order to make the relative error g
rmin

less than a

given ε, it suffices by (5) to have n ≥ h
ε
2 for some

constant h. For these large n our algorithm returns
the value rapprox, for smaller n, it solves the prob-
lem brute force exactly by solving the corresponding
Tarski formula, namely computing the solution of

∃r (φ1(r) ∧ ∀ (r′ < r)¬φ1(r
′)) , (6)

where φ1 is the formula from (1) (see [3]). Observe,
that the size of the latter formula depends only on ε,
since n < h

ε
2 and so the runtime for solving (6) does,

whereas for large n the algorithm to compute rapprox
has a runtime polynomial in the bit-size of n. Thus,
we have a PTAS for the reverse problem.

References

[1] www.packomania.com. Accessed: 2017-01-06.

[2] http://www2.stetson.edu/~efriedma/
packing.html. Accessed: 2017-01-06.

[3] Saugata Basu, Richard Pollack, and Marie-
Françoise Roy. On the combinatorial and algebraic
complexity of quantifier elimination. J. ACM,
43(6):1002–1045, 1996.

[4] Richard Brent and Paul Zimmermann. Mod-

ern Computer Arithmetic. Cambridge University
Press, 2010.

[5] Hai-Chau Chang and Lih-Chung Wang. A Simple
Proof of Thue’s Theorem on Circle Packing, 2010,
arXiv:1009.4322.

[6] Thomas Hales, Mark Adams, Gertrud Bauer,
Dat Tat Dang, John Harrison, Truong Le Hoang,
Cezary Kaliszyk, Victor Magron, Sean McLaugh-
lin, Thang Tat Nguyen, Truong Quang Nguyen,
Tobias Nipkow, Steven Obua, Joseph Pleso, Ja-
son Rute, Alexey Solovyev, An Hoai Thi Ta,
Trung Nam Tran, Diep Thi Trieu, Josef Ur-
ban, Ky Khac Vu, and Roland Zumkeller. A
formal proof of the Kepler conjecture, 2015,
arXiv:1501.02155.

[7] Mhand Hifi and Rym M’hallah. A literature re-
view on circle and sphere packing problems: mod-
els and methodologies. Advances in Operations

Research, 2009:Article ID 150624, 22 p.–Article ID
150624, 22 p., 2009.

[8] L. Fejes Tóth. Über die dichteste Kugellagerung.
Math. Zeit., 48:676–684, 1942.

105

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Subquadratic Algorithms for Algebraic Generalizations of 3SUM

Luis Barba1, Jean Cardinal∗2, John Iacono†3, Stefan Langerman‡2, Aurélien Ooms§2, and Noam Solomon¶4

1Department of Computer Science, ETH Zürich, Switzerland, luis.barba@inf.ethz.ch
2Département d’Informatique, ULB, Belgium, {jcardin,slanger,aureooms}@ulb.ac.be

3Department of Computer Science and Engineering, NYU, USA, eurocg2017@johniacono.com
4School of Computer Science, TAU, Israel, noam.solom@gmail.com

Abstract

The 3SUM problem asks if an input n-set of real num-
bers contains a triple whose sum is zero. We consider
the 3POL problem, a natural generalization of 3SUM
where we replace the sum function by a constant-
degree polynomial in three variables. The motivations
are threefold. Raz, Sharir, and de Zeeuw gave an
O(n11/6) upper bound on the number of solutions of
trivariate polynomial equations when the solutions are
taken from the cartesian product of three n-sets of real
numbers. We give algorithms for the corresponding
problem of counting such solutions. Grønlund and
Pettie recently designed subquadratic algorithms for
3SUM. We generalize their results to 3POL. Finally,
we shed light on the General Position Testing (GPT)
problem: “Given n points in the plane, do three of
them lie on a line?”, a key problem in computational
geometry.

We prove that there exist bounded-degree algebraic
decision trees of depth O(n

12

7
+ε) that solve 3POL, and

that 3POL can be solved in O(n2(log log n)
3

2 /(log n)
1

2)
time in the real-RAM model. Among the possible
applications of these results, we show how to solve
GPT in subquadratic time when the input points

lie on o((log n)
1

6 /(log log n)
1

2) constant-degree polyno-
mial curves. This constitutes the first step towards
closing the major open question of whether GPT can
be solved in subquadratic time. To obtain these results,
we generalize important tools — such as batch range
searching and dominance reporting — to a polynomial
setting. We expect these new tools to be useful in
other applications. Preprint available on arXiv [5].

∗Supported by the “Action de Recherche Concertée” (ARC)
COPHYMA, convention number 4.110.H.000023.

†Research partially completed while on sabbatical at the
Algorithms Research Group of the Département d’Informatique
at ULB with support from a Fulbright Research Fellowship, the
Fonds de la Recherche Scientifique — FNRS, and NSF grants
CNS-1229185, CCF-1319648, and CCF-1533564.

‡Directeur de recherches du F.R.S.-FNRS.
§Supported by the Fund for Research Training in Industry

and Agriculture (FRIA).
¶Supported by Grant 892/13 from the Israel Science Foun-

dation.

1 Introduction

The 3SUM problem is defined as follows: given n dis-
tinct real numbers, decide whether any three of them
sum to zero. A popular conjecture is that no O(n2−δ)-
time algorithm for 3SUM exists. This conjecture has
been used to show conditional lower bounds for prob-
lems in P, notably in computational geometry with
problems such as GeomBase, general position [14]
and Polygonal Containment [6], and more recently
for string problems such as Local Alignment [2] and
Jumbled Indexing [4], as well as dynamic versions of
graph problems [1, 20], triangle enumeration and Set
Disjointness [17]. For this reason, 3SUM is consid-
ered one of the key subjects of an emerging theory of
complexity-within-P, along with other problems such
as all-pairs shortest paths, orthogonal vectors, boolean
matrix multiplication, and conjectures such as the
Strong Exponential Time Hypothesis [3, 7, 16].

Because fixing two of the numbers a and b in a triple
only allows for one solution to the equation a+b+x = 0,
an instance of 3SUM has at most n2 solution triples.
An instance with a matching lower bound is for exam-
ple the set { 1−n

2
, . . . , n−1

2
} (for odd n) with 3

4
n2 + 1

4

solution triples. One might be tempted to think that
the number of solutions to the problem would lower
bound the complexity of algorithms for the decision
version of the problem, as it is the case for restricted
models of computation [12]. This is a common mis-
conception. Indeed, Grønlund and Pettie [15] recently
proved that there exist Õ(n3/2)-depth linear decision
trees and o(n2)-time real-RAM algorithms for 3SUM.

A natural generalization of the 3SUM problem is to
replace the sum function by a constant-degree poly-
nomial in three variables F ∈ R[x, y, z] and ask to
determine whether there exists any triple (a, b, c) of
input numbers such that F (a, b, c) = 0. We refer to
this problem as the 3POL problem.
For the particular case F (x, y, z) = f(x, y) − z

where f ∈ R[x, y] is a constant-degree bivariate poly-
nomial, Elekes and Rónyai [10] show that the number
of solutions to the 3POL problem is o(n2) unless f
is special. Special for f means that f has one of
the two special forms f(u, v) = h(ϕ(u) + ψ(v)) or

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

106

33rd European Workshop on Computational Geometry, 2017

f(u, v) = h(ϕ(u) · ψ(v)), where h,ϕ,ψ are univariate
polynomials of constant degree. Elekes and Szabó [11]
later generalized this result to a broader range of
functions F using a wider definition of specialness.
Raz, Sharir and Solymosi [22] and Raz, Sharir and
de Zeeuw [21] recently improved both bounds on the
number of solutions to O(n11/6). They translated the
problem into an incidence problem between points and
constant-degree algebraic curves. Then, they showed
that unless f (or F) is special, these curves have low
multiplicities. Finally, they applied a theorem due
to Pach and Sharir [19] bounding the number of inci-
dences between the points and the curves. Some of
these ideas appear in our approach.
In computational geometry, it is customary to as-

sume the real-RAM model can be extended to allow
the computation of roots of constant degree polyno-
mials. We distance ourselves from this practice and
take particular care of using the real-RAM model and
the bounded-degree algebraic decision tree model with
only the four arithmetic operators.

2 Our results

We focus on the computational complexity of 3POL.
Since 3POL contains 3SUM, an interesting question
is whether a generalization of Grønlund and Pettie’s
3SUM algorithm exists for 3POL. If this is true, then
we might wonder whether we can beat the O(n11/6) =
O(n1.833...) combinatorial bound of Raz, Sharir and
de Zeeuw [21] with nonuniform algorithms. We give a
positive answer to both questions: we show

Theorem 1 There is a bounded-degree algebraic de-
cision tree of depth O(n

12

7
+ε) = O(n1.7143) for 3POL.

In the real-RAM model, 3POL can be solved in time

O(n2(log log n)
3

2 /(log n)
1

2).

To prove our main result, we present a fast algorithm
for the Polynomial Dominance Reporting (PDR) prob-
lem, a far reaching generalization of the Dominance
Reporting problem. As the algorithm for Dominance
Reporting and its analysis by Chan [8] is used in
fast algorithms for all-pairs shortest paths, (min,+)-
convolutions, and 3SUM, we expect this new algorithm
will have more applications.

Our results can be applied to many degeneracy
testing problems, such as the General Position Test-
ing (GPT) problem: “Given n points in the plane, do
three of them lie on a line?” It is well known that
GPT is 3SUM-hard, and it is open whether GPT ad-
mits a subquadratic algorithm. Raz, Sharir and de
Zeeuw [21] give a combinatorial bound of O(n11/6) on
the number of collinear triples when the input points
are known to be lying on a constant number of poly-
nomial curves, provided these curves are neither lines
nor cubic curves. A corollary of our first result is

that GPT where the input points are constrained to
lie on o((log n)

1

6 /(log log n)
1

2) constant-degree polyno-
mial curves (including lines and cubic curves) admits
a subquadratic real-RAM algorithm and a strongly
subquadratic bounded-degree algebraic decision tree.
Interestingly, both reductions from 3SUM to GPT on
3 lines (map a to (a, 0), b to (b, 2), and c to (c

2
, 1)) and

from 3SUM to GPT on a cubic curve (map a to (a3, a),
b to (b3, b), and c to (c3, c)) construct such special in-
stances of GPT. This constitutes the first step towards
closing the major open question of whether GPT can
be solved in subquadratic time. Our results also yield
efficient algorithms for the problems of counting triples
of points spanning unit circles or triangles.

3 Models of Computation

Similarly to Grønlund and Pettie [15], we consider
both nonuniform and uniform models of computation.
For the nonuniform model, Grønlund and Pettie con-
sider linear decision trees, where one is only allowed to
manipulate the input numbers through linear queries
to an oracle. Each linear query has constant cost
and all other operations are free but cannot inspect
the input. In this paper, we consider bounded-degree
algebraic decision trees (ADT) [23], a natural gener-
alization of linear decision trees, as the nonuniform
model. In a bounded-degree algebraic decision tree,
one performs constant cost branching operations that
amount to test the sign of a constant-degree polyno-
mial for a constant number of input numbers. Again,
operations not involving the input are free. For the
uniform model we consider the real-RAM model with
only the four arithmetic operators.

The problems we consider require our algorithms to
manipulate polynomial expressions and, potentially,
their real roots. For that purpose, we will rely on
Collins cylindrical algebraic decomposition (CAD) [9].

Collins CAD solves any geometric decision problem
that does not involve quantification over the integers
in time doubly exponential in the problem size. This
does not harm our results as we exclusively use this
algorithm to solve constant size subproblems. Geomet-
ric is to be understood in the sense of Descartes and
Fermat, that is, the geometry of objects that can be
expressed with polynomial equations. In particular, it
allows us to make the following computations in the
real-RAM and bounded-degree ADT models:

1. Given a constant-degree univariate polynomial,
count its real roots in O(1) operations,

2. Given a constant number of univariate polyno-
mials of constant degree, sort their real roots in
O(1) operations,

3. Given a point in the plane and an arrangement of
a constant number of constant-degree polynomial
planar curves, locate the point in the arrangement
in O(1) operations.

107

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

4 Nonuniform algorithm for explicit 3POL

As a glimpse of our results, we detail here our nonuni-
form algorithm for explicit 3POL. The other results
can be found in the arXiv preprint [5].

Problem (explicit 3POL) Let f ∈ R[x, y] be a bi-
variate polynomial of constant degree, given three sets
A, B, and C, each containing n real numbers, decide
whether there exist a ∈ A, b ∈ B, and c ∈ C such that
c = f(a, b).

Theorem 2 There is a bounded-degree ADT of depth
O(n

12

7
+ε) for explicit 3POL.

Idea The idea is to partition the sets A and B into
small groups of consecutive elements. That way, we
can divide the A×B grid into cells with the guarantee
that each curve c = f(x, y) in this grid intersects a
small number of cells. For each such curve and each
cell it intersects, we search c among the values f(a, b)
for all (a, b) in a given intersected cell. We generalize
Fredman’s trick [13] — and how it is used in Grønlund
and Pettie’s paper [15] — to quickly obtain a sorted
order on those values, which provides us a logarithmic
search time for each cell. Note that it is easy to modify
the algorithm to count or report the solutions. In the
latter case, the algorithm becomes output sensitive.

A × B grid partitioning Let A = { a1 < a2 <
· · · < an } and B = { b1 < b2 < · · · < bn }. For some
positive integer g to be determined later, partition
the interval [a1, an] into n/g blocks A∗

1, A
∗

2, . . . , A
∗

n/g

such that each block contains g numbers in A. Do the
same for the interval [b1, bn] with the numbers in B and
name the blocks of this partitionB∗

1 , B
∗

2 , . . . , B
∗

n/g. For
the sake of simplicity, and without loss of generality,
we assume here that g divides n. To each of the (n/g)

2

pairs of blocks A∗

i and B∗

j corresponds a cell A∗

i ×B∗

j .

By definition, each cell contains g2 pairs in A×B. For
the sake of notation, we define Ai = A∩A∗

i = { ai,1 <
ai,2 < · · · < ai,g } and Bj = B ∩ B∗

j = { bj,1 < bj,2 <
· · · < bj,g }. Figure 1 depicts this construction.

Two useful lemmas follow from this construction:

Lemma 3 For a fixed value c ∈ C, the curve c =
f(x, y) intersects O(ng) cells. Moreover, those cells can

be found in O(ng) time.

Proof. The constant-degree polynomial curve c =
f(x, y) is composed of O(1) xy-monotone pieces. Walk
and sweep the A×B grid to locate those pieces. �

Lemma 4 If the sets A,B,C can be preprocessed
in Sg(n) time so that, for any given cell A∗

i × B∗

j

and any given c ∈ C, testing whether c ∈ f(Ai ×
Bj) = { f(a, b) : (a, b) ∈ Ai × Bj } can be done in

B

A

n
g

n
g

g

g

a1
b1

bn

an

A∗

i ×B∗

jB∗

j

A∗

i

Figure 1: Partitioning A and B.

O(log g) time, then explicit 3POL can be solved in

Sg(n) +O(n
2

g log g) time.

Remark We do not give a Sg(n)-time real-RAM
algorithm for preprocessing the input, but only a Sg(n)-
depth bounded-degree ADT. In fact, this preprocess-
ing step is the only nonuniform part of the algorithm.

Preprocessing All that is left to prove is that Sg(n)
is subquadratic for some choice of g. To achieve this
we sort the points inside each cell using Fredman’s
trick [13]. Grønlund and Pettie [15] use this trick to
sort the sets Ai+Bj = { a+ b : (a, b) ∈ Ai×Bj } with
few comparisons: sort the set D = (∪i[Ai − Ai]) ∪
(∪j [Bj −Bj]), where Ai−Ai = { a−a′ : (a, a′) ∈ Ai×
Ai } and Bj −Bj = { b− b′ : (b, b′) ∈ Bj ×Bj }, using
O(n log n + |D|) comparisons, then testing whether
a + b ≤ a′ + b′ can be done using the free (already
computed) comparison a − a′ ≤ b′ − b. We use a
generalization of this trick to sort the sets f(Ai ×
Bj). For each Bj , for each pair (b, b′) ∈ Bj × Bj ,
define the curve γb,b′ = { (x, y) : f(x, b) = f(y, b′) }.
Define the sets γ0

b,b′ = γb,b′ , γ
−

b,b′ = { (x, y) : f(x, b) <

f(y, b′) }, γ+
b,b′ = { (x, y) : f(x, b) > f(y, b′) }. The

following lemma follows by definition:

Lemma 5 Given a cell A∗

i × B∗

j and two pairs
(a, b), (a′, b′) ∈ Ai × Bj , deciding whether f(a, b) <
f(a′, b′) (respectively f(a, b) = f(a′, b′) and f(a, b) >
f(a′, b′)) amounts to deciding whether the point (a, a′)
is contained in γ−

b,b′ (respectively γ0
b,b′ and γ+

b,b′).

There are N := n
g ·g

2 = ng pairs (a, a′) ∈ ∪i[Ai×Ai]

and there are N pairs (b, b′) ∈ ∪j [Bj × Bj]. Sorting
the f(Ai × Bj) for all (Ai, Bj) amounts to locating
each point (a, a′) with respect to each curve γb,b′ . We

solve this subproblem in O(N
4

3
+ε) operations using a

108

33rd European Workshop on Computational Geometry, 2017

duality lemma and a modified version of the algorithm
of Matoušek [18] for Hopcroft’s problem.

Analysis Combining this new algorithm with

Lemma 4 yields a O((ng)
4/3+ε

+ n2g−1 log g)-depth
bounded-degree ADT for 3POL. By optimizing over
g, we get g = Θ(n2/7−ε), and the previous expression
simplifies to O(n12/7+ε), proving Theorem 2.

References

[1] Amir Abboud and Virginia Vassilevska Williams.
Popular conjectures imply strong lower bounds
for dynamic problems. In FOCS, pages 434–443.
IEEE Computer Society, 2014.

[2] Amir Abboud, Virginia Vassilevska Williams, and
Oren Weimann. Consequences of faster alignment
of sequences. In ICALP (1), volume 8572 of
LNCS, pages 39–51, 2014.

[3] Amir Abboud, Virginia Vassilevska Williams, and
Huacheng Yu. Matching triangles and basing
hardness on an extremely popular conjecture. In
STOC, pages 41–50. ACM, 2015.

[4] Amihood Amir, Timothy M. Chan, Moshe Lewen-
stein, and Noa Lewenstein. On hardness of jum-
bled indexing. In ICALP (1), volume 8572 of
LNCS, pages 114–125, 2014.

[5] Luis Barba, Jean Cardinal, John Iacono, Ste-
fan Langerman, Aurélien Ooms, and Noam
Solomon. Subquadratic algorithms for algebraic
generalizations of 3SUM. ArXiv e-prints, 2016.
arXiv:1612.02384 [cs.DS].

[6] Gill Barequet and Sariel Har-Peled. Polygon con-
tainment and translational min Hausdorff dis-
tance between segment sets are 3SUM-hard. Int.
J. Comput. Geometry Appl., 11(4):465–474, 2001.

[7] Marco L. Carmosino, Jiawei Gao, Russell Impagli-
azzo, Ivan Mihajlin, Ramamohan Paturi, and Ste-
fan Schneider. Nondeterministic extensions of
the strong exponential time hypothesis and con-
sequences for non-reducibility. In ITCS, pages
261–270. ACM, 2016.

[8] Timothy M. Chan. All-pairs shortest paths with
real weights in O(n3/ log n) time. Algorithmica,
50(2):236–243, 2008.

[9] George E. Collins. Hauptvortrag: Quantifier elim-
ination for real closed fields by cylindrical alge-
braic decomposition. In Automata Theory and
Formal Languages, volume 33 of LNCS, pages
134–183. Springer, 1975.

[10] György Elekes and Lajos Rónyai. A combinatorial
problem on polynomials and rational functions.
J. Comb. Theory, Ser. A, 89(1):1–20, 2000.

[11] György Elekes and Endre Szabó. How to find
groups? (and how to use them in Erdős geome-
try?). Combinatorica, 32(5):537–571, 2012.

[12] Jeff Erickson. Lower bounds for linear satisfia-
bility problems. Chicago J. Theor. Comput. Sci.,
1999.

[13] Michael L. Fredman. How good is the information
theory bound in sorting? Theor. Comput. Sci.,
1(4):355–361, 1976.

[14] Anka Gajentaan and Mark H. Overmars. On a
class of O(n2) problems in computational geome-
try. Comput. Geom., 5:165–185, 1995.

[15] Allan Grønlund and Seth Pettie. Threesomes,
degenerates, and love triangles. In Foundations
of Computer Science (FOCS 2014), pages 621–
630. IEEE, 2014.

[16] Monika Henzinger, Sebastian Krinninger,
Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for
dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30.
ACM, 2015.

[17] Tsvi Kopelowitz, Seth Pettie, and Ely Porat.
Higher lower bounds from the 3SUM conjecture.
In SODA, pages 1272–1287. SIAM, 2016.

[18] Jiŕı Matoušek. Range searching with efficient
hierarchical cutting. Discrete & Computational
Geometry, 10:157–182, 1993.

[19] János Pach and Micha Sharir. On the number
of incidences between points and curves. Combi-
natorics, Probability & Computing, 7(1):121–127,
1998.

[20] Mihai Pătras,cu. Towards polynomial lower
bounds for dynamic problems. In STOC, pages
603–610. ACM, 2010.

[21] Orit E. Raz, Micha Sharir, and Frank de Zeeuw.
Polynomials vanishing on cartesian products: The
Elekes-Szabó theorem revisited. In SoCG, vol-
ume 34 of LIPIcs, pages 522–536, 2015.

[22] Orit E. Raz, Micha Sharir, and József Solymosi.
Polynomials vanishing on grids: The Elekes-
Rónyai problem revisited. In SoCG, page 251.
ACM, 2014.

[23] Andrew Yao. A lower bound to finding convex
hulls. J. ACM, 28(4):780–787, 1981.

109

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computing Triangulations with Minimum Stabbing Number

Victor Alvarez ∗ Sándor P. Fekete ∗ Arne Schmidt ∗

Abstract

For a given point set P or a polygon P , we consider the
problem of finding a triangulation T with minimum
stabbing number, i.e., a triangulation such that the
maximal number of segments hit by any ray going
through T is minimized. We prove that this problem is
NP-hard; this differs from the problem of triangulating
a polygon with minimum edge weight, which is solvable
in polynomial time with a simple dynamic program [7].
In an experimental part we test various heuristics.

1 Introduction

Triangulations of point sets or polygons are natural
auxiliary structures for a wide range of applications.
Depending on the context, a variety of objective func-
tions have been considered to measure their quality.
Arising from the context of ray shooting, one such
measure that has received a growing amount of at-
tention is the stabbing number: This is the maximum
number of triangulation edges any line (called a stab)
can intersect; finding a triangulation of minimum stab-
bing number corresponds to finding a triangulation
that is as “transparent” or “shallow” as possible. This
type of question has been considered for a number
of structures on a given point set, such as matchings,
trees, or triangulations; see Fekete et al. [6].

In this paper we consider two variations of stabbing
problems: (1) triangulating a point set P or (2) a poly-
gon P such that the stabbing number is minimized.
More formally, the Minimum Stabbing Triangula-

tion Problem (MSTR) asks for a triangulation T
of a given point set P , such that the stabbing number
maxS∈S (|{e ∈ T : e ∩ S �= ∅}|) is minimal, where S is
the set of all stabs. The problem of triangulating a
polygon (MSPT) is defined analogously.

Related Work. Chazelle et al. [3] consider geodesic
triangles, i.e., triangles with concave sides. They show
that for every polygon P with n vertices, O(log n) tri-
angles can be hit. Fekete et al. [6] prove NP-hardness
of stabbing problems for matchings and trees, and
triangulations in [9]. Aichholzer et al. [2] prove NP-
hardness of the stabbing problem for polygons. De
Berg and van Kreveld [4] study decompositions of rec-
tilinear polygons into rectangles and show that there

∗Department of Computer Science, TU Braunschweig, Ger-
many. {s.fekete,arne.schmidt}@tu-bs.de, alvarez@ibr.cs.tu-bs.de

exists such a decomposition with stabbing number
O(log n), where the stabbing number counts the num-
ber of rectangles any line can intersect. More recently,
Piva and de Souza [8] provide a new IP formulation
and solve instances with 5000 points [8]. Welzl [11]
shows how to construct a spanning tree having a cross-
ing number of O(

√
n), which is closely related to the

stabbing number.

Our Contribution. We prove that the MSPT is NP-
hard for axis-parallel stabs; we also present a number
of heuristics and experimental results for the MSTR.

2 Triangulating Polygons

Theorem 1 The problem MSPT with axis-parallel
stabs is NP-hard.

A B

C
p

D E

Bus System

(a) Checker gad-
get.

A

B

CE F

Bus System

D

(b) Literal gad-
get.

A

B

C

Bus System

D

E F

B’

C’

A’

D’

E’ F’

(c) Variable gadget for variable x with
x left and x right

Figure 1: Components of the polygon with bus system
underneath. Circles represent grid points, filled circles
are vertices of the polygon.

Proof. We give a reduction of 3SAT to our prob-
lem. Consider a 3SAT instance I consisting of CI

clauses, LI literals and VI variables. We transform
this instance into a polygon that consists of four
components (see Figure 1 for an overview): a literal

gadget for representing a literal l; a variable gadget

for representing a variable v; a checker gadget for
guaranteeing a valid assignment of variables and
literals; a bus system for connecting all gadgets.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

110

33rd European Workshop on Computational Geometry, 2017

Variable
+

Variable
Checkers

Literals
+

Clauses

Literal Checker

Clause
Checker

O(VI)

O(CI)

O(CI)

O(LI)

O(LI)

Figure 2: Left: Block model of the 3SAT polygon.
Right: Part of a reduction polygon.

The Gadgets. The gadgets are shown in Figure 1.
By choosing the diagonals AC or BD we can choose
the corresponding literal to be false or true, respec-
tively. Considering a variable gadget the setting will
be the other way round: Choosing AC and B′D′ sets
the variable to true and choosing A′C ′ and BD sets
the variable to false. The checker gadgets force a
correct setting of all diagonals, e.g., a variable x can-
not be true and false at the same time. By scaling
the grid we are allowed to insert more points in the
checker gadget and thus, increase the maximum stab-
bing number.

The Construction. We omit full details due to space
constraints. Consider the block model in Figure 2.
We place the gadgets corresponding to the blocks;
the clauses are represented by literals in the middle,
variables are placed on top, literal checkers below and
clause checkers to the left. Figure 2 shows part of an
example.

Stabbing Number. For all stabs the stabbing num-
ber is at most 4CI (proof omitted due to space lim-
itations). Thus, if the 3SAT instance is satisfiable
then the stabbing number of the triangulation of the
polygon is at most 4CI .
We can also show the other direction: if there is

a triangulation with stabbing number ≤ 4CI , then
the 3SAT instance is satisfiable. Finally, it is straight-
forward to check that the overall construction has
polynomial size. �

3 Integer Programm Formulation

When trying to solve the problem with an IP, it is nat-
ural to focus on the maximal number of non-crossing
edges, but using triangles is the better choice [10].
This IP may have Ω(n3) variables, however, we only
need to consider empty triangles that do not enclose
any point. The basic idea of the IP is that each edge
e in a triangulation is part of two triangles if e is not
part of the convex hull. If e is a part of the convex
hull then there is exactly one triangle having e as an
edge.

Definition 1 We define the edges of the convex hull
EH := {e ∈ E|e is on the convex hull}. ∆(P) is
the set of all empty triangles induced by point set
P . δ−(ij) := {ijl ∈ ∆(P)|ijl is a right turn} and
δ+(ij) := {ijl ∈ ∆(P)|ijl is a left turn}. Moreover,
for a triangle ijl and a stab S, let cSijl := βS

ij+βS
jl+βS

il ,

where βS
ij :=

1, if ij ∈ EH and ij intersects S

0.5, if ij /∈ EH and ij intersects S

0, else

With this, we can formulate a triangle based IP for
MSTR (analogously for MSPT) as follows:

min K
s.t.:

∀ij ∈ E \ EH :
∑

ijl∈∆(P)

ijl∈δ
+(ij)

xijl =
∑

ijl∈∆(P)

ijl∈δ
−(ij)

xij

∀ij ∈ EH :
∑

ijl∈∆(P)

xijl = 1

∀S ∈ S:
∑

ijl∈∆(P):

ijl∩S �=∅

cSijlxijl ≤ K

∀t ∈ ∆(P): xt ∈ B

4 Heuristics

In addition to exact methods, we also tested a number
of heuristics: the new BER-algorithm (Section 4.1),
local optimization based on flipping (Section 4.2), and
an algorithm for obtaining a smaller edge set (Sec-
tion 4.3).

4.1 Bridge Error Rate (BER)

The idea of the Bridge Error Rate (BER) algorithm
is as follows. For each stab S there is a lower bound
on the number of edges crossing S (Theorem 3). If we
insert an edge e then we may raise this lower bound.
Because we do not want to increase the lower bound,
we greedily add edges that raise it as little as possible.

Definition 2 (Bridge) Consider a stab S, as shown
in Figure 3. S splits the point set P into subsets PM ,
PU and PL, i.e., points on S and in the upper and
lower half-space, respectively. For a connected subset
CH

∗(PU) ⊆ CH(PU), where CH(V) is the convex hull of
a set V , a point p is in CH

∗(PU) iff there is a point
q ∈ P \ PU such that {p, q} does not cross CH(PU).
Analogously, we define CH

∗(PL). The bridge B(S) is
the union of CH∗(PU), CH

∗(PL) and PM . Furthermore,
we define |B(S)| as the number of points in B(S).
Note that CH∗ may not be an upper or lower envelope
of the convex hull.

Theorem 3 Consider a stab S and its bridge B(S).
Let m be the number of points on S, and m∗ the

111

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 3: A stab (solid fat line). The solid thin line is
CH

∗(PL) and CH
∗(PR), respectively. The dashed lines

are the extensions to the convex hull on each side.

u

v

Figure 4: A constrained bridge. The end points of
{u, v} are connected to B(S) via geodesic paths.

number of points on S that are not part of CH(P).
Then there are at least |B(S)| + m + m∗ − 1 edges
intersecting S.

If an arbitrary edge e is added that intersects a stab
S and some edges in B(S), we remove these edges
from B(S) and add geodesic paths connecting the end
points of e and B(S) (see Figure 4). This results in a
new constrained bridge, yielding a new lower bound.
Note that Theorem 3 also holds for the constrained
bridge. Having constrained bridges, we can insert
one edge after another until we have a triangulation.
Further details are omitted due to limited space.

4.2 Flipping

Flipping an edge in a triangulation is a natural heuris-
tic approach to local optimization. We flip edges only
when the flip does not increase the stabbing number of
any stab, and there is a stab with maximum stabbing
number whose number decreases after the flip. If no
such edge exists, we flip edges as long as the stabbing
number of a stab is not increased and the total edge
length decreases. As described in Section 5, with these
criteria we achieve near-optimal solutions.

4.3 Smaller Edge Sets

When solving the IP for our problems, the runtime to
solve an instance depends on the number of variables,
i.e., the number of edges. An idea for using a reduced
edge set comes from the IP for triangulations. We
begin with the convex hull and add edges from the
smallest triangle in terms of edge length. From these
new edges we repeat the procedure in the left and
right half-space from each supporting line. A reduced
edge set can be seen in Figure 5.

5 Experiments

Our experiments were run on 64-bit Ubuntu 14.04.4
LTS with an Intel Core i7-4770 @3.4GHz with 32KB

Figure 5: Example for an edge set with 12 points.
From 66 possible edges we now only use 33.

Figure 6: Left: Satellite image of earth by night [1].
Right: Generated image with 10000 points.

solved # points
30 170
15 190
<15 >190 0

1

2

3

4

5

6

7

8

9

0

200

400

600

800

1000

1200

0 60 120 180 240 300 360 420 480 540

O
b
je

ct
iv

e
V
al

u
e

T
im

e
[s

]

Point Set Size

Figure 7: Left: Number of solved instances (out of
30) for different point sizes. Right: Average time
and objective value of solvable instances. The dashed
line represents the objective value, the solid line the
average time in seconds.

L1 cache, 256KB L2 cache, 8192KB L3 cache and
32GB RAM. We used the g++ compiler version 4.8.4
and optimization flag -O3.

Clustered Instances. Clustered instances were gen-
erated from a lightmap, similar to the description in
Fekete et al. [5]. For a given illumination map, the
brightness value induce a density function that can
be used for random sampling of points from the im-
age. For the image shown in Figure 6, we created
30 instances per point set size for obtaining clustered

instances. We omit other instance types.

Optimal Solutions. The left of Figure 7 shows how
many instances (out of 30) with n points are solvable
within the 30-minute time limit. The graph on the
right side shows average runtime and average objective
value for each number of points.

Triangulation Heuristics. Figure 8 shows a compar-
ison of the optimum and the BER-algorithm with
flipping. The solutions are quite close to the optimum;
the maximum difference is 3. We also tested other
methods (e.g., Delaunay triangulations) which resulted
in slightly worse solutions.

Reduced Edge Sets. Consider Figure 9. We observe
that the reduced edge set appears to grow (close to)

112

33rd European Workshop on Computational Geometry, 2017

0

1

2

3

10 20 30 40 50 6
0 70 8
0

9
0

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

O
b
je

ct
iv

e
va

lu
e

d
if
fe

re
n
ce

Number of points

Figure 8: Difference between the optimal objective
value and the result of the BER algorithm with flipping.
Shaded area shows the range. The solid line shows
average difference.

4

5

6

7

8

9

0 100 200 300 400 500 600 700

S
eg

m
en

ts
 p

er
 p

o
in

t

Number of points

Figure 9: Number of edges per point in the reduced
edge set on clustered instances.

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700

0

10

20

30

40

50

60

70

80

90

T
im

e
[s

]

Number of points

O
b
je

ct
iv

e
va

lu
e

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

6

20 70 120 170

T
im

e
fa

ct
o
r

A
ve

ra
g
e

o
b
je

ct
iv

e
d
if
fe

re
n
ce

Number of points

Figure 10: Top: Average time (solid line) and stab-
bing number (dashed line) using a reduced edge set.
Bottom: Difference of stabbing number of an optimal
solution and with reduced edge set (solid line) and the
time ratio reduced edge set / optimum.

linearly in the number of points. Figure 10 shows a
comparison between optimum and the solutions with
reduced edge set. The speedup is outstanding; for
example, the computing time is reduced by a factor
of 500 for 180 points. Note that this comes at the
expense getting a suboptimal solution.

6 Future Work

We have shown that the problem MSPT of finding
a triangulation of a polygon with minimum stabbing

number is NP-hard. Our experiments for the MSTR

show that flipping edges can yield excellent solutions.
This is also the case for our BER-algorithm; however,
its runtime is rather high. We can also use a reduced
edge set, resulting in a massive speedup with an only
slightly increased stabbing number.

An interesting challenge on the theoretical side lies
in developing approximation algorithms, if there are
any; this is already an open problem for the other
problems of stabbing type considered in [6]. On the
experimental side, it is also of interest to collect hard
instances, i.e., instances that are practically difficult
to solve to optimality.

References

[1] Blick.ch: Lichter der Erde. http://www.blick.ch/

life/wissen/nasa-bilder-aus-dem-all-lichter-

der-erde-id2131506.html. Accessed: 2016-06-21.

[2] O. Aichholzer, F. Aurenhammer, T. Hackl, F. Hur-
tado, A. Pilz, P. Ramos, J. Urrutia, P. Valtr, and
B. Vogtenhuber. On k-convex point sets. Computa-
tional Geometry, 47(8):809–832, 2014.

[3] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas,
J. Hershberger, M. Sharir, and J. Snoeyink. Ray
shooting in polygons using geodesic triangulations.
Algorithmica, 12(1):54–68, 1994.

[4] J. A. de Loera, S. Hosten, F. Santos, and B. Sturm-
fels. The polytope of all triangulations of a point
configuration. Documenta Mathematica, 1(4):103–119,
1996.

[5] S. P. Fekete, A. Haas, M. Hemmer, M. Hoffmann,
I. Kostitsyna, D. Krupke, F. Maurer, J. S. B. Mitchell,
A. Schmidt, C. Schmidt, and J. Troegel. Computing
nonsimple polygons of minimum perimeter. In 15th
International Symposium on Experimental Algorithms
(SEA 2016), pages 134–149, 2016.

[6] S. P. Fekete, M. E. Lübbecke, and H. Meijer. Mini-
mizing the stabbing number of matchings, trees, and
triangulations. Discrete & Computational Geometry,
40(4):595–621, 2008.

[7] G. Klincsek. Minimal triangulations of polygonal
domains. Ann. Discrete Math, 9:121–123, 1980.

[8] B. Piva and C. C. de Souza. Minimum stabbing rect-
angular partitions of rectilinear polygons. Computers
& Operations Research, 80:184–197, 2017.

[9] B. Piva, S. P. Fekete, and C. de Souza. On triangula-
tions with minimum stabbing or minimum crossing
number. Manuscript, 2016.

[10] A. Tajima. Optimality and integer programming for-
mulations of triangulations in general dimension. In
International Symposium on Algorithms and Compu-
tation, pages 378–387. Springer, 1998.

[11] E. Welzl. On spanning trees with low crossing numbers.
In Data structures and efficient algorithms, pages 233–
249. Springer, 1992.

113

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Bottleneck Bichromatic Full Steiner Trees

A. Karim Abu-Affash∗ Sujoy Bhore† Paz Carmi‡ Dibyayan Chakraborty§

Abstract

Given two sets of points in the plane, Q of n (termi-
nal) points and S of m (Steiner) points, where each
of Q and S contains bichromatic points (red and blue
points), a full bichromatic Steiner tree is a Steiner tree
in which all points of Q are leaves and each edge of
the tree is bichromatic (i.e., connects a red and a blue
point). In the bottleneck bichromatic full Steiner tree
(BBFST) problem, the goal is to compute a bichro-
matic full Steiner tree T , such that the length of the
longest edge in T is minimized. In k-BBFST prob-
lem, the goal is to find a bichromatic full Steiner tree
T with at most k ≤ m Steiner points from S, such
that the length of the longest edge in T is minimized.
In this paper, we present an O((n +m) log2 m) time
algorithm that solves the BBFST problem. Moreover,
we show that k-BBFST problem is NP-hard and we
give a polynomial-time 9-approximation algorithm for
the problem.

1 Introduction

Given a weighted graph G = (V,E) with V = Q ∪ S,
where Q and S are sets of terminal and Steiner points,
respectively, a Steiner tree is an acyclic connected sub-
graph of G spanning all vertices of Q. Informally,
Steiner points are new auxiliary nodes that can be
added to the network to improve its performance. In
the classical Steiner tree problem, the goal is to find
a Steiner tree T , such that the length of the edges
of T is minimized. This problem has been shown to
be NP-complete [6, 14], and for arbitrary weighted
graphs, many approximation algorithms have been
proposed [8, 16, 17].
In the geometric context, i.e., Q and S are sets

of points in the plane, G is the complete graph over
V = Q ∪ S, and the weight of each edge (p, q) in G
is the Euclidean distance between p and q. Arora [4]

∗Software Engineering Department, Shamoon College of En-

gineering, Beer-Sheva 84100, Israel, abuaa1@sce.ac.il.
†Department of Computer Science, Ben-Gurion University,

Beer-Sheva 84105, Israel, sujoy.bhore@gmail.com. The re-

search is partially supported by the Lynn and William Frankel

Center for Computer Science.
‡Department of Computer Science, Ben-Gurion University,

Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. The research

is partially supported by the Lynn and William Frankel Center

for Computer Science.
§Advanced Computing and Microelectronics Unit, Indian

Statistical Institute, Kolkata, India, dibyayancg@gmail.com.

showed that the geometric Steiner tree problem can
be efficiently approximated close to optimal.
A Steiner tree is full if all terminals are leaves of

the tree. In the bottleneck full Steiner tree prob-
lem (BFST), the goal is to compute a full Steiner
tree with minimum bottleneck (i.e., the length of the
longest edge). The k-BFST problem is a restricted
version of the BFST problem, for which, in addition
to the sets Q and S, we are given a positive inte-
ger k, and the goal is to compute a full Steiner tree
T with at most k Steiner points such that the bot-
tleneck of T is minimized. Abu-Affash [1] gave a
O((n + m) log2 m) algorithm for the BFST problem
and showed that the k-BFST problem is NP-hard but
admits a polynomial-time 4-approximation algorithm.
Later, Biniaz et al [10] gave an O((n +m) logm) al-
gorithm for the BFST problem.
We consider the BFST and the k-BFST problems

in bichromatic point sets. Given two sets of points in
the plane; a set Q of n red and blue terminals and
a set S of m red and blue Steiner points, the goal in
the bottleneck bichromatic full Steiner tree (BBFST)
problem is to find a full Steiner tree T such that each
edge in T connects a red and a blue point and the
bottleneck of T is minimized. We refer to this tree as
a bichromatic full Steiner tree. In the k-BBFST prob-
lem, the goal is to compute a bichromatic full Steiner
tree T with at most k Steiner points, such that its
bottleneck is minimized, where k ≤ m is a given posi-
tive integer. The bichromatic input appeared in many
geometric problems; for example, red-blue intersec-
tion [3], red-blue separation [5, 11, 13], and red-blue
connection problems [2, 7].
In this paper, we show how to generalize the al-

gorithms in [1] to solve the BBFST problem and to
approximate the k-BBFST problem.

2 Exact Algorithm for BBFST

Given a set Q of n red and blue terminals and a
set S of m red and blue Steiner points in the plane,
we present an O((n+m) log2 m) time algorithm that
computes a bichromatic full Steiner tree of minimum
bottleneck. We refer to such a tree as an optimal
bichromatic full Steiner tree of Q.

Let QR and QB be the sets of red and blue terminal
points of Q, respectively. Similarly, let SR and SB be
the sets of red and blue Steiner points of S, respec-
tively. Let MST (S) be a minimum-weight bichro-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

114

33rd European Workshop on Computational Geometry, 2017

matic spanning tree of S (i.e., of the complete bipar-
tite graph of SR and SB). Let S(T) be the set of
Steiner points in a bichromatic full Steiner tree T .

Lemma 1 There exists an optimal bichromatic full

Steiner tree T ∗ of Q, such that MST (S(T ∗)) is a sub-

tree of MST (S).

Proof. Let T be an optimal bichromatic full Steiner
tree of Q. Let e = (pr, pb) be an edge in MST (S(T))
but not in MST (S). Let P be the path between pr
and pb in MST (S). Since each edge in P is of length
at most |prpb|, (T \{e})∪P is also an optimal bichro-
matic full Steiner tree. By repeating this process for
each edge e ∈ MST (S(T)) \ MST (S), we obtain an
optimal bichromatic full Steiner tree T ∗ satisfying the
lemma. �

Let e1, e2, . . . , em−1 be the edges of MST (S) sorted
in non-decreasing order by their length. For an edge
ei ∈ MST (S), let Ti be the forest obtained from
MST (S) by deleting all edges of length greater than
|ei| from MST (S). By Lemma 1, there exists an
optimal bichromatic full Steiner tree T ∗ of Q such
that MST (S(T ∗)) is a tree of Ti, for some edge
ei ∈ MST (S). Thus, by performing binary search
on the lengths of edges of MST (S), we can find a for-
est Ti that contains a tree T , such that, by connecting
each point in Q to its closest point of opposite color
in T , we obtain an optimal bichromatic full Steiner
tree of Q.

For a point p ∈ Q and a tree T , let d(p, T) denote
the distance between p and its closest point of oppo-
site color in T . For an edge ei ∈ MST (S), to decide
whether Ti contains a tree T , such that d(q, T) ≤ |ei|
for all q ∈ Q, can be implemented in O((n+m) logm)
time [1, 9]. (In order to handle the case that the
bottleneck of an optimal bichromatic full Steiner tree
might be either less than |e1| or greater than |em−1|,
we add the values |e0| = 0 and |em| = ∞ to the search
space.)

Let λ be the bottleneck of the optimal bichro-
matic full Steiner tree. Therefore, we can find an
0 ≤ i ≤ m − 1, such that |ei| < λ < |ei+1| in
O((n + m) log2 m) time. If |ei| < λ < |ei+1|, then
the optimal bichromatic full Steiner tree of Q is ob-
tained by a tree T from the forest Ti; see Figure 1(a).
If λ = |ei+1|, then the optimal bichromatic full Steiner
tree of Q is obtained by a tree T from the forest Ti+1;
see Figure 1(b). Thus, in both cases, we can find the
tree T in the set Ti ∪ Ti+1, such that, by connecting
each terminal inQ to its closest point of opposite color
in T , we obtain an optimal bichromatic full Steiner
tree of Q. We conclude by the following theorem.

Theorem 2 The BBFST problem can be solved in

O((n+m) log2 m) time.

(a)

ei

ei+1

λ

(b)

ei

Steiners terminals

ei+1

Figure 1: The optimal full bichromatic Steiner tree is
obtained (a) from Ti, when |ei| < λ < |ei+1| and (b)
from Ti+1, when λ = |ei+1|.

3 Approximation Algorithm for k-BBFST

Given two sets of points in the plane; a set Q of n red
and blue terminal points, a set S of m red and blue
Steiner points, and a positive integer k ≤ m, the goal
in the k-BBFST problem is to compute a bichromatic
full Steiner tree with at most k Steiner points from
S and its bottleneck is minimized. In this section,
we first prove that the k-BBFST problem is NP-hard.
Then, we present a polynomial-time approximation
algorithm with performance ratio 9.

3.1 Hardness proof

Due to space limitation the proof of the following the-
orem has moved to the appendix.

Theorem 3 The k-BBFST problem is NP-hard.

3.2 Approximation algorithm

We devise a polynomial-time approximation algo-
rithm for computing a bichromatic full Steiner tree
with at most k Steiner points (k-BFST for short),
such that its bottleneck is at most 9 times the bottle-
neck of an optimal k-BFST.

Let QR and QB be the sets of red and blue terminal
points of Q, respectively. Similarly, let SR and SB be
the sets of red and blue Steiner points of S, respec-
tively. Let G = (V,E) be the graph with V = Q ∪ S
and E = (QR × SB) ∪ (QB × SR) ∪ (SR × SB). We
assume, w.l.o.g., that E = {e1, e2, · · · , el}, such that
|e1| ≤ |e2| ≤ · · · ≤ |el|. Notice that the bottleneck
of an optimal k-BFST is a length of an edge from E.
For an edge ei, Let Gi = (V,Ei) be the graph, such
that Ei = {ej ∈ E : |ej | ≤ |ei|}. We devise a pro-
cedure which either constructs a k-BFST of Q in G
with bottleneck at most 9 times |ei| or it says that Gi

does not contain a k-BFST of Q.
Let G2

i be the 2nd power graph of Gi, i.e., G
2
i has

the same set of vertices as Gi and an edge between two
vertices if and only if there is a path that contains at
most 2 edges between them in Gi. Let G2

i (Q) be the
sub-graph ofG2

i induced byQ and letQ′ be a maximal

115

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

independent set in G2
i (Q). Notice that, since all the

edges in E are bichromatic, a red terminal and a blue
terminal cannot be connected to a same Steiner point
in Gi. Hence, a red terminal and a blue terminal
cannot be connected to each other in G2

i . Thus, if
|Q′| = 1, then Q contains points of one color and we
can construct a k-BFST of bottleneck at most 3|ei|
as follows. Let p be the only point in Q′ and assume,
w.l.o.g., that p is a red point. We select a blue Steiner
point s that is connected to p in Gi and we connect it
to all points ofQ. Since there is an edge inG2

i between
p and each other point q ∈ Q, we have |pq| ≤ 2|ei|,
and therefore, |sq| ≤ 3|ei|.
Thus, we assume that |Q′| > 1. For any two points

p, q ∈ Q, let δi(p, q) be the path between p and q in Gi

that contains minimum number of Steiner points. Let
G′ = (Q′, E′) be the complete graph over Q′. For each
edge (p, q) in E′, we assign a weight w(p, q) which is
equal to the number of Steiner points in δi(p, q). Let
MST (G′) be the minimum spanning tree of G′ under
w. We define the normalized weight of MST (G′) as
W (MST (G′)) =

∑
e∈MST (G′) ⌊w(e)/2⌋.

Lemma 4 If Gi contains a k-BFST of Q′, then

W (MST (G′)) ≤ k

Proof. Let T be a k-BFST of Q′ in Gi. We construct
a spanning tree T ′ of G′ such that W (T ′) ≤ k. We
start by T and we transform it into T ′ by an iterative
process. We start by selecting an arbitrary Steiner
point as the root of T ; see Figure 2. In each iteration,
we select the deepest leaf p in the rooted tree, which is
a terminal, and we connect it to its nearest terminal
q by an edge (p, q) of weight equal to the number
of Steiner points between them. Let s be the first
common ancestor of p and q. We then remove the
Steiner points between p and s. In the last iteration,
we remove all of the remaining points.
Since, in each iteration, we select the deepest termi-

nal, we add to T ′ an edge (p, q) of weight w(p, q), and
we remove at least ⌊w(p, q)/2⌋ Steiner points from T .
Thus, we have W (T ′) =

∑
e∈T ′ ⌊w(e)/2⌋ ≤ k. Fi-

nally, since T ′ is also a spanning tree of G′, we have
W (MST (G′)) ≤ W (T ′) ≤ k. �

We now describe the algorithm. For each edge
ei ∈ E in the sorted order, we construct the graphs
Gi, G

2
i , and G2

i (Q). Then, we compute a maximal in-
dependent set Q′ in G2

i (Q). If |Q′| = 1, then we con-
struct a k-BFST of Q with bottleneck at most 3 times
|ei|. Otherwise, we construct the complete graph G′

over Q′, and we compute a minimum spanning tree
MST (G′) of G′ with respect to the weight function
w. If W (MST (G′)) > k, then we proceed to the next
edge ei+1. Otherwise, we construct a k-BFST of Q
with bottleneck at most 9 times |ei| as follows.
For each edge (p, q) ∈ T , there is a bichromatic path

δi(p, q) between p and q in Gi that contains w(p, q)

Steiners terminals

p1

p2

p3

p4

p5 p6

s1 s2

s3

s4

Figure 2: Constructing T ′ from T . In iteration 1, we
select p1, connect it to p2 by an edge of weight 4 and
remove the points between p1 and s1. In iteration 2,
we select p3, connect it to p4 by an edge of weight
4, and remove the points between p3 and s2. In it-
eration 3, we select p6, connect it to p5 by an edge
of weight 3, and remove the points between p6 and
s3. In iteration 4, we select p5, connect it to p4 by an
edge of weight 6, and remove the points between p5
and s4. In the last iteration, we select p2, connect it
to p4 by an edge of weight 5, and remove the all the
remaining points between p2 and p4.

Steiner points. We select ⌊w(p, q)/2⌋ Steiner points
on any shortest Steiner path between p and q in Gi

by the following procedure.
We select an arbitrary leaf p in MST (G′) and

we traverse MST (G′) starting from p. Let q be
the point that is connected to p in MST (G′).
Set S′ = ∅. We call the recursive procedure
SelectSteiners(p, q, color(p), S′) (Procedure 1) that
selects at most k Steiner points and adds them to
S′; see also Figure 5 (in the appendix).

Procedure 1 SelectSteiners(p, q, color, S′)

1: j ← w(p, q)
2: let s1, s2, . . . , sj be the Steiner points in δi(p, q)
3: x ← 0
4: if color(s1)
= color then

5: i ← 1
6: else

7: i ← 2
8: while i+ 3x ≤ j do

S′ ← S′ ∪ {si+3x}
x ← x+ 1

9: for each (q, t) ∈ MST (G′), such that t
= p do

SelectSteiners(q, t, color(si+3(x−1)), S
′)

It is not hard to see that for each edge (p, q) in
MST (G′), we add to S′ at most ⌊w(p, q)/2⌋ Steiner
points. Therefore, |S′| ≤ k. Next, we construct a
minimum spanning tree MST (S′) of S′ (i.e., of the
complete Euclidean graph over S′). Notice that, each
edge in MST (S′) is of length at most 5|ei|; see Fig-
ure 5 (in the appendix). Finally, we connect each ter-
minal in Q to its nearest opposite color Steiner point

116

33rd European Workshop on Computational Geometry, 2017

in S′ to obtain a bichromatic full Steiner tree. This
guarantees that each terminal in Q′ is connected to
a Steiner point with an edge of length at most 7|ei|;
see Figure 5 (in the appendix), and each terminal in
Q \Q′ is connected to a Steiner point with an edge of
length at most 9|ei|.

Remark. If Q′ contains only one red and one blue
points p and q, respectively, k = 2, and MST (G′) is a
path between p and q that contains exactly 2 Steiner
points, a blue Steiner point s1 and a red Steiner point
s2, then we construct a k-BFST by connecting all the
points in QR to s1 and all the points in QB to s2.
This k-BFST contains exactly 2 Steiner points and
its bottleneck is at most 3|ei|.

Lemma 5 Our algorithm constructs a k-BFST of Q
with bottleneck at most 9 times the bottleneck of an

optimal k-BFST.

Proof. Let ei ∈ E be the first edge satisfying
W (T) ≤ k. Thus, by Lemma 4, the bottleneck of
any k-BFST in G is at least |ei|. Therefore, the con-
structed k-BFST has a bottleneck at most 9 times the
bottleneck of an optimal k-BFST. �

Lemma 6 Our algorithm can be implemented in

polynomial time.

Due to space limitation the proof of this lemma is
moved to the appendix.

Theorem 7 The above algorithm computes a k-
BFST with bottleneck at most 9 times the bottleneck

of an optimal k-BFST in polynomial time.

References

[1] A. K. Abu-Affash. The Euclidean bottleneck full
steiner tree problem. Algorithmica, 71(1):139–
151, 2015.

[2] P. K. Agarwal, H. Edelsbrunner, and
O. Schwarzkopf. Euclidean minimum span-
ning trees and bichromatic closest pairs. Disc.

& Comput. Geom., 6:407–422, 1991.

[3] P. K. Agarwal and M. Sharir. Red-blue intersec-
tion detection algorithms, with applications to
motion planning and collision detection. SIAM

J. Comput., 19(2):297–321, 1990.

[4] S. Arora. Polynomial time approximation
schemes for Euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–
782, 1998.

[5] S. Arora and K. L. Chang. Approximation
schemes for degree-restricted MST and red-blue
separation problem. In Proceedings of ICALP,
pages 176–188, 2003.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness
of approximation problems. J. ACM, 45(3):501–
555, 1998.

[7] M. J. Atallah and D. Z. Chen. On connecting
red and blue rectilinear polygonal obstacles with
nonintersecting monotone rectilinear paths. Int.

J. Comput. Geom. Appl., 11(4):373–400, 2001.

[8] P. Berman and V. Ramaiyer. Improved approxi-
mations for the steiner tree problem. In Proceed-

ings of SODA, pages 325–334, 1992.

[9] A. Biniaz, P. Bose, D. Eppstein, A. Maheshwari,
P. Morin, and M. Smid. Spanning Trees in Mul-
tipartite Geometric Graphs. ArXiv e-prints, nov
2016.

[10] A. Biniaz, A. Maheshwari, and M. Smid. An op-
timal algorithm for the Euclidean bottleneck full
steiner tree problem. Comput. Geom., 47(3):377–
380, 2014.

[11] J.-D. Boissonnat, J. Czyzowicz, O. Devillers,
J. Urrutia, and M. Yvinec. Computing largest
circles separating two sets of segments. Int. J.

Comput. Geom. Appl., 10(1):41–53, 2000.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein. Introduction to Algorithms, 3rd edition.
The MIT Press, 2009.

[13] E. D. Demaine, J. Erickson, F. Hurtado, J. Ia-
cono, S. Langerman, H. Meijer, M. H. Over-
mars, and S. Whitesides. Separating point sets in
polygonal environments. Int. J. Comput. Geom.

Appl., 15(4):403–420, 2005.

[14] M. R. Garey, R. L. Graham, and D. S. John-
son. The complexity of computing steiner mini-
mal trees. SIAM J. Appl. Math., 32(4):835–859,
1977.

[15] M. R. Garey and D. S. Johnson. The rectilinear
Steiner tree problem is NP-complete. SIAM J.

Appl. Math., 32(4):826–834, 1977.

[16] M. Karpinski and A. Zelikovsky. New approxi-
mation algorithms for the steiner tree problems.
J. Comb. Opt., 1(1):47–65, 1997.

[17] H. J. Prömel and A. Steger. A new approxima-
tion algorithm for the steiner tree problem with
performance ratio 5/3. Journal of Algorithms,
36(1):89–101, 2000.

[18] W. Schnyder. Embedding planar graphs on the
grid. In Proceedings of SODA, pages 138–148,
1990.

117

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computing the Geometric Intersection Number of Curves∗

Vincent Despré, Francis Lazarus

Abstract

The geometric intersection number of a curve on a
surface is the minimal number of self-intersections of
any homotopic curve, i.e. of any curve obtained by
continuous deformation. Given a curve c represented
by a closed walk of length at most ℓ on a combinatorial
surface of complexity n we describe simple algorithms
to (1) compute the geometric intersection number of c
in O(n+ ℓ2) time, (2) construct a curve homotopic to
c that realizes this geometric intersection number in
O(n+ ℓ4) time, (3) decide if the geometric intersection
number of c is zero, i.e. if c is homotopic to a simple
curve, in O(n+ ℓ log2 ℓ) time.
To our knowledge, no exact complexity analysis

had yet appeared on those problems. An optimistic
analysis of the complexity of the published algorithms
for problems (1) and (3) gives at best a O(n+gℓ2) time
complexity on a genus g surface without boundary. No
polynomial time algorithm was known for problem (2).
Our solution to problem (3) is the first quasi-linear
algorithm since the problem was raised by Poincaré
more than a century ago. Finally, we note that our
algorithm for problem (1) extends to compute the
geometric intersection number of two curves of length
at most ℓ in O(n+ ℓ2) time.

1 Introduction

Let S be a surface. Two closed curves α,β : R/Z → S
are freely homotopic, written α ∼ β, if there exists a
continuous map h : [0, 1]×R/Z such that h(0, t) = α(t)
and h(1, t) = β(t) for all t ∈ R/Z. Assuming the curves
are in general position, their number of intersections
is

|α ∩ β| = |{(t, t′) | t, t′ ∈ R/Z and α(t) = β(t′)}|.

Their geometric intersection number only de-
pends on their free homotopy classes and is defined
as

i(α,β) = min
α′

∼α,β′
∼β

|α′ ∩ β′|.

Likewise, the number of self-intersections of α is given
by

1

2
|{(t, t′) | t �= t′ ∈ R/Z and α(t) = α(t′)}|,

∗This work was partially supported by the LabEx

PERSYVAL-Lab ANR-11-LABX-0025-01.

and its minimum over all the curves freely homotopic
to α is its geometric self-intersection number
i(α). Note the one half factor that comes from the
identification of (t, t′) with (t′, t).

The geometric intersection number is an important
parameter that allows to stratify the set of homotopy
classes of curves on a surface. The surface is usually
endowed with a hyperbolic metric, implying that each
homotopy class is identified by its unique geodesic
representative. Extending a former result by Mirza-
khani [9], Sapir [12, 10] has recently provided bounds
for the number of closed geodesics with bounded length
and bounded geometric intersection number. Other
more experimental results were obtained with the help
of a computer to show the existence of (word-)length-
equivalent homotopy classes with distinct geometric
intersection numbers [3]. Hence, for both theoretical
and practical reasons various aspects of the compu-
tation of geometric intersection numbers have been
studied in the past including the algorithmic ones.
Nonetheless, all the previous approaches rely on rather
complex mathematical arguments and to our knowl-
edge no exact complexity analysis has yet appeared.
In this paper, we make our own the words of Dehn who
noted that the metric on words (on some basis of the
fundamental group of the surface) can advantageously
replace the hyperbolic metric. We propose a combi-
natorial framework that leads to simple algorithms of
low complexity to compute the geometric intersection
number of curves or to test if this number is zero. Our
approach is based on the computation of canonical
forms as recently introduced in the purpose of testing
whether two curves are homotopic [7, 5]. Canonical
forms are instances of combinatorial geodesics who
share nice properties with the geodesics of a hyper-
bolic surface. On such surfaces each homotopy class
contains a unique geodesic that moreover minimizes
the number of self-intersections. Although a combina-
torial geodesic is generally not unique in its homotopy
class, it must stay at distance one from its canonical
representative and a careful analysis of its structure
leads to the first result of the paper.

Theorem 1 Given two curves represented by closed
walks of length at most ℓ on a combinatorial surface
of complexity n we can compute the geometric inter-
section number of each curve or of the two curves in
O(n+ ℓ2) time.

As usual the complexity of a combinatorial surface

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

118

33rd European Workshop on Computational Geometry, 2017

stands for its total number of vertices, edges and faces.
A key point in our algorithm is the ability to compute
the primitive root of a canonical curve c in linear time.
This is a curve r that is not homotopic to a proper
power of any other curve and such that c ∼ rk for some
integer k. We next provide an algorithm to compute
an actual curve immersion that minimizes the number
of self-intersections in its homotopy class.

Theorem 2 Let c be a closed walk of length ℓ in
canonical form. We can compute a combinatorial
immersion with i(c) crossings in O(ℓ4) time.

We also propose a nearly optimal algorithm that an-
swers an old problem studied by Poincaré [11, §4]:
decide if the geometric intersection number of a curve
is null, that is if the curve is homotopic to a simple
curve.

Theorem 3 Given a curve represented by a closed
walk of length ℓ on a combinatorial surface of com-
plexity n we can decide if the curve is homotopic to a
simple curve in O(n+ ℓ log2 ℓ) time.

We emphasize that our results represent significant
progress with respect to the state of the art. Even
though no precise analysis appeared in the previously
proposed algorithms [2, 8, 4] concerning Theorems 1
or 3, an optimistic analysis of what seems the most
efficient approach [8] gives at best a quadratic time
complexity for computing the geometric number on a
genus g surface without boundary, assuming that the
curves are primitive. Apart from a recent algorithm
by Aretinnes [1], which is restricted to surfaces with
nonempty boundary, we know of no polynomial time
algorithm for Theorem 2. Finally, Theorem 3 states
the first quasi-linear algorithm for detecting homotopy
classes of simple curves since the problem was raised
by Poincaré more than a century ago [11, §4].

Due to page limitation we will focus on Theorem 1.
In Section 2 we review the relevant definitions and
background. In Section 3, we study geodesics in sys-
tems of quads, a particular kind of combinatorial sur-
faces that we use to compute the geometric intersection
number. Section 4 presents our strategy for counting
intersections. The end of the proof of Theorem 1 in-
volves some technical details, we decide to only show
how we handle the non-primitive case in Section 5.
The missing details and the proofs of the two other
theorems can be found in the full version of the paper
https://arxiv.org/pdf/1511.09327.pdf.

2 Background and framework

Combinatorial surfaces. As usual in computa-
tional topology, we model a surface by a cellular em-
bedding of a graph G in a compact topological surface
S. Such a cellular embedding can be encoded by a

combinatorial surface composed of the graph G it-
self together with a rotation system that records for
every vertex of the graph the clockwise cyclic order of
the incident arcs. The facial walks are obtained from
the rotation system by the face traversal procedure.
All the considered graphs may have loop and multiple
edges. A directed edge will be called an arc and each
edge corresponds to two opposite arcs. We denote by
a−1 the arc opposite to an arc a. For simplicity, we
shall only consider orientable surfaces in this
paper. Every combinatorial surface Σ can be reduced
by first contracting the edges of a spanning tree and
then deleting edges incident to distinct faces. The
resulting reduced surface has a single vertex and
a single face. The combinatorial surface Σ and its
reduced version encode different cellular embeddings
on a same topological surface.

Combinatorial curves. Consider a combinatorial
surface with its graph G. A combinatorial curve (or
path) c is a walk in G, i.e. an alternating sequence of
vertices and arcs, starting and ending with a vertex,
such that each vertex in the sequence is the target
vertex of the previous arc and the source vertex of
the next arc. We generally omit the vertices in the
sequence. A combinatorial curve is closed when ad-
ditionally the first and last vertex are equal. When
no confusion is possible we shall drop the adjective
combinatorial. A spur of c is a subsequence of arcs of
the form (a, a−1). A closed curve is contractible if
it is homotopic to a trivial curve (i.e., a curve reduced
to a single vertex). We will implicitly assume that a
homotopy has fixed endpoints when applied to paths
and is free when applied to closed curves.

Diagrams. A disk diagram over the combinato-
rial surface Σ is a combinatorial disk ∆ together with
a labelling of the arcs of ∆ by the arcs of Σ such that
opposite arcs receive opposite labels, and the facial
walk of each non-perforated face of ∆ is labelled by
the facial walk of some non-perforated face of Σ. An
annular diagram is defined the same way with a
combinatorial annulus instead of a combinatorial disk.

Reduction to a system of quads. For the rest of
the paper we shall assume that all surfaces have
negative Euler characteristic. Let Σ be a com-
binatorial surface with negative Euler characteristic.
Following Lazarus and Rivaud [7] we start putting Σ

into a standard form called a system of quads by
Erickson and Whittlesey [5]. After reducing Σ to a
surface Σ

′ with a single vertex v and a single face f
this system of quads is obtained by adding a vertex
w at the center of f , adding edges between w and all
occurrences of v in the facial walk of f , and finally
deleting the edges of Σ′. The graph of the resulting

119

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

system of quads, called the radial graph [7], is bi-
partite. It contains two vertices, namely v and w,
and 4g edges, where g is the genus of Σ. All its faces
are quadrilaterals. Our initial problem can be carried
into a system of quads using those techniques. Thus,
wee may assume that our combinatorial surface Σ is a
system of quads.

Spurs, brackets and canonical curves. Following
the terminology of Erickson and Whittlesey [5], we
define the turn of a pair of arcs (a1, a2) sharing their
origin vertex v as the number of face corners between
a1 and a2 in clockwise order around v. Hence, if v
is a vertex of degree d in Σ, the turn of (a1, a2) is
an integer modulo d that is zero when a1 = a2. The
turn sequence of a subpath (ai, ai+1, . . . , ai+j−1) of
a closed curve of length ℓ is the sequence of j+1 turns
of (a−1

i+k, ai+k+1) for −1 ≤ k < j, where indices are
taken modulo ℓ. The subpath may have length ℓ, thus
leading to a sequence of ℓ+1 turns. Note that the turn
of (a−1

i+k, ai+k+1) is zero precisely when (ai+k, ai+k+1)
is a spur. A bracket is any subpath whose turn se-
quence has the form 12∗1 or 1̄2̄∗1̄, where t∗ stands for
a possibly empty sequence of turns t and x̄ stands for
−x. Lazarus and Rivaud [7] have introduced a canoni-
cal form for every free homotopy class of closed curves
in a system of quads. In particular, two curves are
freely homotopic if and only if their canonical forms
are equal. It was further characterized by Erickson
and Whittlesey [5] in terms of turns and brackets. It
is the unique homotopic curve that contains no spurs
or brackets and whose turning sequence contains no
−1’s and contains at least one turn that is not −2.

Theorem 4 ([7, 5]) The canonical form of a closed
curve of length ℓ on a system of quads can be computed
in O(ℓ) time.

3 Geodesics

The canonical form is an instance of a combinato-
rial geodesic, i.e. a curve that contains no spurs or
brackets. The canonical form is the rightmost homo-
topic geodesic. The definitions of a geodesic and of a
canonical form extend trivially to paths. Although we
cannot claim in general the uniqueness of geodesics
in a homotopy class, homotopic geodesics are almost
equal and have the same length. Specifically, define
a (quad) staircase as a planar sequence of quads
obtained by stitching an alternating sequence of rows
and columns of quads to form a staircase. Assuming
that the staircase goes up from left to right, we define
the initial tip of a quad staircase as the lower left
vertex of the first quad in the sequence. The final
tip is defined as the upper right vertex of the last
quad. See Fig. 1. A closed staircase is obtained by

identifying the two vertical arcs incident to the initial
and final tips of a staircase.

c

d

initial tip

final tip

Figure 1: A disk diagram for two homotopic paths c
and d composed of paths and staircases.

Theorem 5 Let c, d be two non-trivial homotopic
combinatorial geodesics. If c, d are closed curves, then
they label the two boundary cycles of an annular dia-
gram composed of a unique closed staircase or of an
alternating sequence of paths (possibly reduced to a
vertex) and quad staircases connected through their
tips. Likewise, if c, d are paths, then the closed curve
c ·d−1 labels the boundary of a disk diagram composed
of an alternating sequence of paths (possibly reduced
to a vertex) and quad staircases connected through
their tips.

Corollary 6 With the hypothesis of Theorem 5, c
and d have equal length which is minimal among ho-
motopic curves. Moreover, c and d have no contractible
subpath.

The next remark follows directly from the charac-
terization of geodesics and canonical forms in terms
of spurs, brackets and turns.

Remark 1 Likewise, any power ck of a combinato-
rial closed geodesic c is also a combinatorial geodesic.
Moreover, if c is in canonical form, so is ck.

4 Our strategy for counting intersections

Following Poincaré’s original approach we represent
the surface S as the hyperbolic quotient surface D/Γ
where Γ is a discrete group of hyperbolic motions of the
Poincaré disk D. We denote by p : D → D/Γ = S its
universal covering map. Any closed curve α : R/Z → S
gives rise to its infinite power α∞ : R → R/Z → S
that wraps around α infinitely many times. A lift of α
is any curve α̃ : R → D such that p◦α̃ = α∞ where the
parameter of α̃ is defined up to an integer translation
(we thus identify the curves t
→ α̃(t+k), k ∈ Z). Note
that p−1(α) is the union of all the images Γ · α̃ of α̃ by
the motions in Γ. The curve α̃ has two limit points on
the boundary of D which can be joined by a unique
hyperbolic line L. The projection p(L) covers infinitely
many times around the unique geodesic homotopic to
α. In particular, the limit points of α̃ are independent
of the chosen representative in the homotopy class of
α.

120

33rd European Workshop on Computational Geometry, 2017

Figure 2: Left, two intersecting hyperbolic lines. Mid-
dle, two lifts of non-geodesic curves may intersect
several times. Right, lifts of combinatorial geodesics.

No two motions of Γ have a limit point in common
unless they are powers of the same motion. This can
be used to show that when α is primitive its lifts are
uniquely identified by their limit points. Let α and
β be two primitive curves. We fix a lift α̃ of α and
denote by τ ∈ Γ the hyperbolic motion sending α̃(0)
to α̃(1). Let Γ · β̃ be the set of lifts of β. We consider
the subset of lifts

B = {β̃′ ∈ Γ · β̃ | the limit points of β̃′ and α̃

alternate along ∂D},

and we denote by B/τ the set of equivalence classes
of lifts generated by the relations β̃′ ∼ τ(β̃′).

Lemma 7 i(α,β) = |B/τ |.

In the ideal situation of hyperbolic geodesics, each
intersection point of α and β corresponds precisely to
a class in B/τ . When α and β are not geodesic the
situation is more ambiguous and their lifts may have
multiple intersection points. When dealing with com-
binatorial geodesics, the situation is more constrained
and somehow intermediate between the hyperbolic
case and the most general situation. See Figure 2.
Our strategy to compute the geometric intersection
number consists of identifying B/τ with certain pairs
of homotopic subpaths of α and β in our combinatorial
framework.

5 Non-primitive curves 1

Thanks to canonical forms, computing the primitive
root of a curve becomes extremely simple.

Lemma 8 Let c be a combinatorial curve of length
ℓ > 0 in canonical form. A primitive curve d such
that c is homotopic to dk for some integer k can be
computed in O(ℓ) time.

Proof. By Theorem 4, we may assume that c and d
are in canonical form. By Remark 1, the curve dk is
also in canonical form. The uniqueness of the canonical
form implies that c = dk, possibly after some circular
shift of d. It follows that d is the smallest prefix of c
such that c is a power of this prefix. It can be found in
O(ℓ) time using a variation of the Knuth-Morris-Pratt
algorithm to find the smallest period of a word [6]. �

The geometric intersection number of non-primitive
curves is related to the geometric intersection number
of their primitive roots. The next result is part of the
folklore.

Proposition 9 ([4]) Let c and d be primitive curves
and let p, q be positive integers. Then,

i(cp) = p2 × i(c) + p− 1 and

i(cp, dq) =

{

2pq × i(c) if c ∼ d or c ∼ d−1,
pq × i(c, d) otherwise.

Those two results justify the restriction to primitive
curves in the previous sections.

References

[1] C. Arettines. A combinatorial algorithm for
visualizing representatives with minimal self-
intersection. J. Knot Theor. Ramif., 2015.

[2] J. S. Birman and C. Series. An algorithm for
simple curves on surfaces. J. London Math. Soc.,
29(2):331–342, 1984.

[3] M. Chas. Self-intersection numbers of length-
equivalent curves on surfaces. Exp. Math.,
23(3):271–276, 2014.

[4] M. de Graaf and A. Schrijver. Making curves
minimally crossing by Reidemeister moves. J.
Com. Theory B, 70(1):134–156, 1997.

[5] J. Erickson and K. Whittelsey. Transforming
curves on surfaces redux. In Proc. 24th ACM-
SIAM Symp. Discrete Alg. (SODA), 2013.

[6] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt.
Fast pattern matching in strings. SIAM J. Com-
put., 6(2):323–350, 1977.

[7] F. Lazarus and J. Rivaud. On the homotopy test
on surfaces. In Proc. 53rd IEEE Symp. Found.
Comput. Sci. (FOCS), pages 440–449, 2012.

[8] M. Lustig. Paths of geodesics and geometric in-
tersection numbers: II. In Combinatorial group
theory and topology, volume 111 of Ann. of Math.
Stud., pages 501–543. Princeton Univ. Press, 1987.

[9] M. Mirzakhani. Growth of the number of simple
closed geodesies on hyperbolic surfaces. Ann.
Math., pages 97–125, 2008.

[10] M. Mirzakhani. Counting mapping class group
orbits on hyperbolic surfaces. Preprint, 2016.

[11] Henri Poincaré. Cinquième complément à
l’analysis situs. Rendiconti del Circolo Matem-
atico di Palermo, 18(1):45 –110, 1904.

[12] J. Sapir. Bounds on the number of non-simple
closed geodesics on a surface. Preprint, 2015.

121

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

K-Dominance in Multidimensional Data

Thomas Schibler∗ Subhash Suri†

Abstract

We derive bounds on the number of k-dominant
maxima points in d dimensions, and propose an
efficient algorithm for computing them.

1 Introduction

Given a finite set of points V in Rd, a point u is
said to k-dominate another point v if ui ≥ vi holds
for k of the dimensions, i = 1, 2, . . . , d, with strict
inequality in at least one dimension. We use the
notation u ≻k v to indicate k-domination of v by
u, and write u �≻k v when u does not k-dominate v.
The k-dominant skyline of V , denoted KDS(V, k),
is the set of points that are not k-dominated:

KDS(V , k) = {v ∈ V | u �≻k v, ∀ u ∈ V \ {v}},

The k-dominant skyline (KDS) is a generaliza-
tion of the skyline, also called the maxima points,
which is the subset of points not dominated on
all d coordinates by any other point in the in-
put [1, 2, 3]. The KDS was introduced recently
as a way to deal with the problem that far too
many points can appear on the skyline in high
dimensions [5]. For instance, a database query for
a car or a smart phone can easily produce an over-
whelming number of incomparable choices (skyline
points), with no obvious way to rank them. (Al-
though in theory all input points can appear on
the skyline even in two dimensions, this pathologi-
cal behavior is rarely observed in low-dimensional
real-world data.) By relaxing d-dominance to k-
dominance, for k < d, many more points can be
eliminated from the skyline, resulting in a smaller,
more manageable, set of maxima points in higher
dimensions.

1.1 Results

In this paper, we analyze the cardinality of the
k-dominant skyline under both the average case,

∗Department of Computer Science, University of Califor-

nia, Santa Barbara, CA 93106, USA. tschibler@gmail.com
†Department of Computer Science, University of Cali-

fornia, Santa Barbara, CA 93106, USA. suri@cs.ucsb.edu

where the point coordinates are chosen indepen-
dently from a distribution, and the worst-case,
where the points are chosen adversarily. We also
develop a sub-quadratic algorithm for computing
KDS.

1. Let V be a set of n points in d dimensions
where the components of each point are dis-
tributed independently of each other, and for
each component the magnitudes form a ran-
dom permutation of {1, 2, . . . , n}. Then, the
expected number of points appearing on the
k-dominant skyline is

{

O
(

(log n)2k−d−1
)

for k > d+1
2

O(1) otherwise

Our result smoothly interpolates the cardinal-
ity of KDS for all values of k, and subsumes
the classical result of Bentley et al. [2] as a
special case for k = d.

2. The worst-case cardinality of KDS, when in-
put points are chosen adversarily, is n for all
k > (d+ 1)/2, and 1 for all k ≤ (d+ 1)/2.

3. We show that the KDS can be found by com-
puting multiple (traditional) skylines of points
projected onto k-dimensional spaces. Our

algorithm runs in time O
(

dd−kn logk−1 n
)

,

which is subquadratic for dimensions d ≤

c log n/ log log n, for some constant c.

1.2 Related Work

The problem of computing or estimating the size
of the skyline of multi-dimensional data has a long
history in mathematics, computational geometry,
and databases [1, 2, 3, 10, 12, 13, 14, 16, 9, 15],
although the quest for efficient algorithms that
scale to high dimensions and large input contin-
ues to this day. It has also been observed that
as the dimension grows, the skylines can quickly
lose their utility because most of the input points
may appear on the skyline [5, 7], prompting the
introduction of k-dominant skylines.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

122

33rd European Workshop on Computational Geometry, 2017

The focus of our paper is to derive upper bounds
(ceiling) on the size of the KDS. There exists a sub-
stantial and rich literature on estimating the cardi-
nality of (conventional) skylines [2, 9, 10, 14, 16],
under a variety of data models, including in-
memory, distributed, and data streams. The most
relevant to our work is the classical result of Bent-
ley et al [2], which proves that the expected size
of the skyline of n vectors, whose components are
chosen independently at random, is O((log n)d−1)
in d-dimensions; the bound was later improved
slightly to O((log n)d−1/(d − 1)!) by Buchta [4].
However, very little is known about the cardinality
of the KDS, which was introduced in [5] but the
primary focus of that paper is heuristic methods
for computing the skyline efficiently and their em-
pirical evaluation. In a related work, Chan et al. [6]
compute points that appear in many k-dominant
skylines, but again the paper is concerned with
the design and evaluation of an efficient heuristic.
In [11], Hwang et al. consider certain threshold
phenomena in k-dominant skylines under a contin-
uous probability model, and derive limit bounds
as n, d → ∞. By contrast, our goal is to estab-
lish parametric upper bounds on the cardinality
of KDS under a random model of input, similar
to those for the conventional skylines obtained by
Bentley et al. [2].

2 Cardinality of KDS

The worst-case bounds for KDS are easy to prove.
In particular, we have the following result, whose
proof is omitted due to lack of space.

Theorem 1 The worst-case cardinality of KDS
obeys the following bounds:

1. Given any set of n points in d-space and any
k with k ≤ (d+ 1)/2, |KDS(V , k)| ≤ 1.

2. For any n ≥ 1, and k, d such that k > (d +
1)/2, there exists a set V of n points in d-space
for which |KDS(V , k)| = n.

The more interesting, and non-trivial, result
concerns the average case behavior. Our analy-
sis uses the standard “attribute distinctness and
statistical independence” model [2, 9], which only
assumes that the point components are distributed
independently of each other, and for each compo-
nent the magnitudes form a random permutation
of {1, 2, . . . , n}, namely, a total rank ordering. We
interpret the input set of n points as an n× d ar-
ray, whose rows are the points and whose columns
are permutations of {1, 2, . . . , n}. The set of all

possible permutations produces exactly (n!)d dis-
tinct points. We analyze the complexity of the
k-dominant skyline for an input array V chosen
uniformly at random from this set. What is the
expected size of the k-dominant skyline for such
an input V?
We analyze the average size of KDS by set-

ting up a recurrence. In order to aid that deriva-
tion, let A(n, d, k) denote the average size of the
k-dominant skyline for a set of n points in d di-
mensions, where the points are chosen under the
random model described above. We assume, with-
out loss of generality, that the first column of the
input n× d array is sorted in the ascending order
(1, 2, . . . , n)—that is, the first coordinate of the
ith point is i, which if necessary can be realized
by simply relabeling the points. See Figure 1 for
illustration.
Let us focus on a single but arbitrary point

v, and derive the probability that it belongs to
the k-dominant skyline. Suppose the point v is
represented as the ith row, which means its first
coordinate is v1 = i. We partition the remaining
set of input points into two groups:

Va = {u ∈ V | u1 < v1}

Vb = {u ∈ V | u1 > v1}

That is, Va is the set of points that v dominates
on the first coordinate, and Vb is the set of points
that dominate v on the first coordinate. The key
observation is that for v to be a KDS point both
of the following two events must occur:

1. None of the points in Va k-dominates v among
dimensions {2, 3, . . . , d}, and

2. None of the points in Vb (k − 1)-dominates v
among dimensions {2, 3, . . . , d}.

This follows because v can fail to be on the KDS
only if either some point in Va or some point in
Vb k-dominates it. If some point in Va were to k-
dominate v, it has to do so using all k dimensions
from the set {2, 3, . . . , d} since v already domi-
nates each point of Va on dimension 1. Condition
(1) computes the probability that no u ∈ Va k-
dominates v. On the other hand, since each point
u ∈ Vb already dominates v on the first coordi-
nate, it needs to only find k − 1 other dimensions
among {2, 3, . . . , d} to achieve k-domination of v.
Condition (2) computes the probability that no
u ∈ Vb k-dominates v. The two events are indepen-
dent, and so the probability that v belongs to the
KDS is the product of these two probabilities. The
following two lemmas derive these probabilities.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

123

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Lemma 2 The probability of event (1) is

A(i, d− 1, k)

i
.

Proof. Consider the i× (d− 1) array consisting
of the first i rows and the last (d − 1) columns
of V. This is a random set of i points in (d− 1)-
dimensional space, which for convenience we call
the reduced space. By induction, the expected
KDS size for this set is A(i, d− 1, k). The prob-
ability that v is one of these skyline points is
A(i, d − 1, k)/i, by symmetry. Since v already
dominates all the points of Va in the first coordi-
nate, it is on the KDS of Va ∪ {v} with the same
probability. �

1
2
... Va

i− 1
i

i+ 1
... Vb

n

Figure 1: Average case analysis of KDS.

Lemma 3 The probability of event (2) is

A(n− i+ 1, d− 1, k − 1)

n− i+ 1
.

Proof. The proof is similar to Lemma 1. �

Therefore, the probability that v ∈ KDS is

A(i, d− 1, k)

i
×

A(n− i+ 1, d− 1, k − 1)

n− i+ 1
.

By summing over all n points, we get

A(n, d, k) =

n
∑

i=1

(

A(i, d− 1, k)

i
×

A(n− i+ 1, d− 1, k − 1)

n− i+ 1

)

Since A(i,d−1,k)
i

is a probability in this recur-
rence, we can replace it with 1 and derive the
following upper bound:

A(n, d, k) ≤

n
∑

i=1

(

A(n− i+ 1, d− 1, k − 1)

n− i+ 1

)

,

which by a change of index can be rewritten as:

A(n, d, k) ≤

n
∑

i=1

A(i, d− 1, k − 1)

i

The function A(n, d, k) is monotone non-
decreasing with n because

A(n, d, k) = A(n− 1, d, k) +

A(n, d− 1, k)

n
×

A(1, d− 1, k − 1)

1

where the second term is non-negative. Therefore,
we have the following upper bound:

A(n, d, k) ≤

n
∑

i=1

A(i, d− 1, k − 1)

i

≤ A(n, d− 1, k − 1)×

n
∑

i=1

1

i

≤ A(n, d− 1, k − 1)×Hn,

where Hn ≈ lnn is the harmonic number [8]. After
j iterations, we get:

A(n, d, k) ≤ A(n, d− j, k − j)× (Hn)
j

The stopping condition for the recurrence is
reached when 2(k − j) becomes less than or equal
to (d− j) + 1, at which point one can show that
the skyline size drops to at most 1. We can show
that the maximum number of iterations j is j =
2k− (d+1), which leads to the following theorem.

Theorem 4 Let V be a set of n random points in
d-dimensional space under the attribute distinct-
ness and statistical independence model. Then,
the expected cardinality of their k-dominant sky-
line is

{

O
(

(log n)2k−d−1
)

for k > d+1
2

O(1) otherwise

3 Computing the K-Dominant Skyline

Unlike full-dimensional dominance, the k-
dominance relation is not transitive: that is,
a ≻k b and b ≻k c does not guarantee a ≻k c.
The failure of transitivity means that the algo-
rithms for traditional skylines [1, 10] cannot be
used for computing KDS. In fact, to the best of
our knowledge, no subquadratic time algorithm is
known for k-dominant skylines even for a constant
dimension.
Let Ik ⊂ {1, 2, . . . , d} be an index set of size k,

namely, |Ik| = k. There are
(

d
k

)

size k distinct

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

124

33rd European Workshop on Computational Geometry, 2017

index sets, and each such set defines a subset of
k dimensions. The projection of the input set of
points V along any particular set Ik is called a
k-projection of V. A k-projection is a set of k-
dimensional points, and we refer to its skyline as
the skyline of the k-projection. Then, the following
simple observation is the key to our algorithm.

Lemma 5 A point v ∈ V belongs to KDS(V, k) if
and only if v belongs to the skylines of all distinct
k-projections of V.

We can, therefore, compute KDS(V, k) by com-
puting the skylines of all distinct k-projections
of V and taking their common intersection. In
particular, we have the following theorem.

Theorem 6 Let V be a set of n points in d di-
mensions, where d = O(log n/ log log n). The k-
dominant skyline KDS(V, k) is precisely the com-
mon intersection of the skylines of all possible
k-projections of V, and it can be computed in
worst-case time O(n logd−1 n).

Proof. The number of distinct k-projections
of V is

(

d
k

)

=
(

d
d−k

)

. We can compute the
skyline of each of these projections in time
O(n logk−1 n) using the divide-and-conquer algo-
rithm of [1]. The size of each of these skylines is
at most n, and therefore we can compute their
common intersection in O(nd) time. The to-
tal running time of the algorithm is therefore

O
(

(

d
d−k

)

n logk−1 n
)

. Since
(

d
d−k

)

≤ (ed
d−k

)d−k =

O(dd−k), we can upper bound the running time

as O
(

dd−kn logk−1 n
)

, which is sub-quadratic as

long as d ≤ c log n/ log log n, for an appropriate
constant c. �

References

[1] J. L. Bentley. Multidimensional Divide and
Conquer. CACM, 23(4):214–229, 1980.

[2] J. L. Bentley, H. T. Kung, M. Schkolnick, and
C. D. Thompson. On the Average Number of
Maxima in a Set of Vectors and Applications.
Journal of the ACM, 25(4):536–543, 1978.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker.
The skyline operator. In Proc. ICDE, pages
421–430, 2001.

[4] C. Buchta. On the average number of maxima
in a set of vectors. Information Processing
Letters, 33(2):63 – 65, 1989.

[5] C. Y. Chan, H. V. Jagadish, K. L. Tan,
A. K. H. Tung, and Z. Zhang. Finding
K-dominant Skylines in High Dimensional
Space. In Proc. ACM SIGMOD, pages 503–
514, 2006.

[6] C. Y. Chan, H. V. Jagadish, K. L. Tan,
A. K. H. Tung, and Z. Zhang. On High Di-
mensional Skylines. In Proc. EDBT, pages
478–495, 2006.

[7] S. Chester, A. Thomo, S. Venkatesh, and
S. Whitesides. Computing k-regret Minimiz-
ing Sets. PVLDB, 7(5):389–400, 2014.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein. Introduction to Algorithms,
2nd edition. MIT Press, McGraw-Hill Book
Company, 2000.

[9] P. Godfrey. Skyline cardinality for relational
processing. In Proc. Foundations of Informa-
tion and Knowledge Systems (FoIKS), pages
78–97, 2004.

[10] P. Godfrey, R. Shipley, and J. Gryz. Algo-
rithms and analyses for maximal vector com-
putation. VLDB J., 16(1):5–28, 2007.

[11] H. K. Hwang, T. H. Tsai, and W. M. Chen.
Threshold phenomena in k-dominant skylines
of random samples. SIAM Journal on Com-
puting, 42(2):405–441, 2013.

[12] D. Kossmann, F. Ramsak, and S. Rost. Shoot-
ing stars in the sky: An online algorithm for
skyline queries. In Proc. VLDB, pages 275–
286, 2002.

[13] H. T. Kung, F. Luccio, and F. P. Preparata.
On Finding the Maxima of a Set of Vectors.
Journal of the ACM, 22(4):469–476, 1975.

[14] Y. Lu, J. Zhao, L. Chen, B. Cui, and D. Yang.
Effective skyline cardinality estimation on
data streams. In 19th International Confer-
ence on Database and Expert Systems Appli-
cations, pages 241–254, 2008.

[15] J. Matousek. Computing dominances in En.
Information Processing Letters, 38(5):277–
278, 1991.

[16] E. Tiakas, A. N. Papadopoulos, and
Y. Manolopoulos. On estimating the max-
imum domination value and the skyline cardi-
nality of multi-dimensional data sets. Int. J.
Knowledge-Based Organ., 3(4):61–83, 2013.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

125

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Largest and Smallest Area Triangles on a Given Set of Imprecise Points

Vahideh Keikha∗ Maarten Löffler† Ali Mohades ∗

Abstract

In this paper we study the following problem: we are
given a set of imprecise points modeled as parallel
line segments, and we wish to place three points in
different regions such that the resulting triangle has
the largest or smallest possible area. We first present
some facts about this problem, then we show that for
a given set of line segments of equal length the largest
possible area triangle can be found in O(n logn) time,
and for line segments of arbitrary length the problem
can be solved in O(n2) time. We also show that the
smallest possible area triangle for a set of arbitrary
length line segments can be found in O(n2) time.

1 Introduction

In this paper we study a traditional problem in com-
putational geometry in an imprecise context. Let P

be a set of points. We wish to find a sequence of
k points in P such that if we connect them into a
polygon Q, Q has specific attributes, e.g., Q has the
largest or smallest possible area or perimeter, or Q is
an empty k-gon, etc. Of course for a given set P such
a k-gon does not necessarily exist, for k > 3.

1.1 Related Work

Numerous papers studied such problems previously.
Dobkin and Snyder [5] presented a linear time algo-
rithm for finding the largest area triangle inscribed in
a convex polygon.
Boyce et al. [3] presented a dynamic programming

algorithm for finding the largest possible area and
perimeter convex k-gon on a given set of n points
in O(kn log n + n log2 n) time. Aggarwal et al. [2]
improved their result to O(kn+ n log n).
Due to more applicability, there are more stud-

ies concerned with the problem of finding the mini-
mum possible area and perimeter k-gon. Dobkin et

al. [4] presented an O(k2n log n + k5n) time algo-
rithm for finding minimum perimeter k-gons. Their
algorithm was improved upon by Aggarwal et al. to

∗Laboratory of Algorithms and Computational Geometry,

Department of Mathematics and Computer Science, Amirkabir

University of Technology, Tehran, Iran, va.keikha@aut.ac.ir,

mohades@aut.ac.ir
†Department of Information and Computing Sci-

ences, Utrecht University, Utrecht, The Netherlands,

m.loffler@uu.nl

Figure 1: The largest possible area triangle for a set
of line segments.

O(n log n + k4n) time [1]. Eppstein et al. [7] stud-
ied three problems: finding the smallest possible k-
gon, finding the smallest empty k-gon, and finding the
smallest possible convex polygon on exactly k points,
where the smallest means the smallest possible area or
perimeter. They presented a dynamic programming
approach with O(kn3) time and O(kn2) space, that
can also solve the maximization version of the prob-
lem as well as some other related problems. After-
wards, Eppstein [8] presented an algorithm for mini-
mum area k-gon problem that runs inO(n2 log n) time
and O(n log n) space for constant values of k.

1.2 Problem Definition

We are given a set L = {L1, L2, . . . , Ln} of imprecise
points modeled as parallel line segments, that is, every
segment Li contains exactly one point Pi ∈ Li. This
gives a point set P = {P1, P2, . . . , Pn}, and we want
to find the largest area or smallest area triangle in P ,
Tmax and Tmin. But because L is a set of imprecise
points, we do not know where P is and what could
be the possible values of the area. But there should
be a lower bound and an upper bound and we are in-
terested in computing these values. So, in this paper
we compute the largest possible area of Tmax and the
smallest possible area of Tmin. We named these prob-
lemsMaxMaxArea andMinMinArea, respectively. An
illustration of these problems can be seen in Figure 1.
In this example, the solution of MinMinArea is zero,
as we can find three collinear points.

1.3 Results

We show that

• MaxMaxArea can be solved in O(n log n) time
and O(n2) time, respectively, for a given set of
equal length and arbitrary length parallel line
segments, and

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

126

33rd European Workshop on Computational Geometry, 2017

Figure 2: (a) The maximum area true triangle selects
its vertices from the endpoints of regions, but not nec-
essarily on the convex hull. (b) Maximum area convex
hull does not contain maximum area triangle.

• MinMinArea can be solved in O(n2) time.

2 Preliminaries

In this section we first present related previous results
that may be applicable to our problem, and then dis-
cuss some difficulties that occur when dealing with
imprecise points.
Boyce et al. [3] defined a rooted polygon as a poly-

gon with one of its vertices fixed at a given point.
In the context of imprecise points, we define the root

as a given point in a specific region. In this case we
throw out the remainder of the root’s region and try
to find the other vertices of the k-gon in the other
n − 1 remaining regions, and a rooted polygon will
be a polygon with one of its vertices fixed at a given
point in a specific region. Boyce et al. [5] showed that
the rooted largest area triangle can be found in linear
time. They showed that the largest area k-gon only
uses points on the convex hull (if there exist at least k
points on the convex hull); also Löffler and van Krev-
eld [9] proved that the maximum area convex polygon
always selects its vertices from the endpoints of the
line segments, so one may think that the maximum
area triangle selects its vertices from the endpoints of
regions on the convex hull. But that it is not the case,
as can be seen in Figure 2(a).
Also unlike in the precise context, the largest area

triangle is not inscribed in the largest possible convex
hull of the given set of imprecise points, as illustrated
in Figure 2(b).
This problem is more complicated for larger values

of k, as illustrated in Figure 3(a); even for k=4, we
cannot find the area of the largest strictly convex k-
gon, as the angle at a approaches π and we can enlarge
the area of the convex 4-gon arbitrarily.

3 Maximum Area Triangle

In the following we first define some notation
that we will use in subsequent sections. Let
Z be the set of all endpoints of L, Z =

Figure 3: (a)The maximum area convex 4-gon con-
structed on a set consists of one imprecise and three
fixed points, where the inner angle at a approaches π.
(b)The largest area true triangle selects at least two
vertices from the vertices of C0.

{L1
−, L1

+, L2
−, L2

+, . . . , Ln
−, Ln

+}, where Li
+ de-

notes the upper endpoint of Li, and Li
− denotes the

lower endpoint of Li. We define C0 = CH(Z) as the
convex hull of Z, and C1 = CH(Z \ C0). By true

triangle we mean a triangle constructed on three dif-
ferent regions. We assume the segments to be oriented
vertically.

Observation 1 If at most two separate regions ap-
pear on C0, there is an optimal solution to the Max-
MaxArea problem, such that all the vertices are cho-
sen at endpoints of the line segments, and the two
regions which appear on C0, always appear on the
largest possible area true triangle.

In this case, the largest possible area true triangle can
be found in O(n) time. From now on assume more
than two different regions appear on C0.

3.1 Stable Triangle

Dobkin and Snyder [5] defined a stable triangle ABC

as a triangle with the root A fixed, such that forward
advancement of either B or C along the convex hull
results in a smaller area, and proved the Pentagon

lemma (see full version), that is needed for the correct-
ness proof of their algorithm. The area maximizing
triangle will be chosen from one of these stable trian-
gles. The idea of their algorithm is to start searching
from three consecutive vertices A,B and C on the
convex hull. They move C forward until the move-
ment reduces the area, and then move B forward, and
again move C, etc. If moving either of them would
reduce the area, the triangle is stable and, they move
A forward. When A returns to its starting position,
they stop the algorithm and report the largest area
stable triangle they found. This algorithm has linear
running time (see full version for details).

127

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

In our imprecise context we define a stable triangle
in the same way, as a triangle such that forward ad-
vancement of either B or C results in a smaller area
triangle, but it can be a non-true triangle. So we
should be careful that not all the stable triangles are
non-true triangles, because then we do not find the
largest true triangle among them.
In the following we first show that if we have a

convex polygon with vertices from repeated regions
(each region appears on the convex hull at most two
times), we still can find the solution of MaxMaxArea
problem in linear time, then we use this result for
designing our algorithms.

4 Largest Area True Triangle

Let ABC be the initial triangle during the execution
of the algorithm. Without loss of generality we may
assume ABC is a true triangle (as we assume more
than two different regions appear on C0). So, the area
of ABC is the initial value of Tmax. We continue the
algorithm naturally, but our movements may result
in repeated regions. In full version we show what we
do when we encounter repeated regions, and analyse
all possible cases that cause a stable non-true trian-
gle. Also, we disscuss the stable true triangle that we
accept in each case.
Assume we are given a convex polygon S =

{s1, s2, . . . , sn}. Similar to the notation of [5], we
denote by α(sasbsc) the stable true triangle which
we found during a step of the algorithm, where we
started searching from sasbsc. For an arbitrary point
A = sa, define the A-rooted maximum true trian-
gle to be α(sasa+1sa+2). The following lemma states
that for the A + 1-rooted maximum true triangle, it
is unnecessary to begin with the collapsed triangle
sa+1sa+2sa+3. of the A-rooted maximum.

Lemma 1 If α(sasa+1sa+2) = (sasbsc), then
α(sa+1sa+2sa+3) = α(sa+1sbsc).

Lemma 2 Let S = {s1, s2, . . . , sn} be a convex poly-
gon, with vertices from repeated regions. There exist
an i (1 ≤ i ≤ n) such that an area maximizing true
triangle on si is the area maximizing true triangle in-
scribed in S.

Corollary 3 Let L be a set of imprecise points mod-
eled as a set of parallel line segments with arbitrary
length. The largest possible area true triangle which
selects its vertices from the vertices of C0 can be found
in O(n log n) time.

4.1 Equal Length Parallel Line Segments

From the previous section we understand that if we
prove that all the candidates points of the vertices

of the largest possible area true triangle appear on
C0, and we know that all the possible stable triangles
are true triangles, we can directly apply the existing
algorithm [5].

Lemma 4 Let L be a set of equal length parallel line
segments. The largest possible area true triangle se-
lects its vertices from the vertices on C0.

In case of equal length parallel line segments, when
all the upper (and lower) endpoints of the line seg-
ments are collinear together, the maximum possible
area triangle can be a non-true triangle. In this situ-
ation the largest possible area triangle would be con-
structed on the leftmost and rightmost line segments,
and the largest possible area true triangle can be
found in linear time. We can determine this situa-
tion in O(n) time.

Lemma 5 Let L be a set of equal length parallel line
segments, that is, all the lower (or upper) endpoints
are not collinear. The largest pssible area triangle is
always a true triangle.

Theorem 6 Let L be a set of imprecise points mod-
eled as a set of parallel line segments with equal
length. The solution of the problem MaxMaxArea
can be found in O(n log n) time.

4.2 Arbitrary Length Parallel Line Segments

For simplicity we assume general position, that is,
no two vertical line segments have the same x-
coordinates. As we saw above, the largest possible
area true triangle computed on a set of imprecise
points modeled as arbitrary length parallel line seg-
ments does not necessarily select its vertices on the
convex hull of the regions.

Lemma 7 Let L be a set of imprecise points modeled
as a set of parallel line segments with arbitrary length.
At least two vertices of the largest area true triangle
are located on C0 and at most one of its vertices is
located on C1.

4.2.1 Algorithm

Now we know the combinatorial structure of the
largest possible area true triangle: it can select all
of its vertices on C0, or it selects two neighbor ver-
tices on C0 and one vertex on C1, or it selects two
non-neighbor vertices on C0 and one vertex on C1.
The largest possible area true triangle is the largest
area true triangle among them. In the first case, the
largest area true triangle can be found in O(n log n)
time using Corollary 3. In the second case, we try all
the edges of C0 as the base of the triangle. The third
vertex can be found by doing a binary search on the

128

33rd European Workshop on Computational Geometry, 2017

Figure 4: (a) Selection of a point on C1 as the root
R. (b) For the case of diagonal quadrants, for a given
R ∈ C1 and a fixed point Vi in quadrant three, we
only need to look for the candidates of the largest area
true triangle in one direction, and from M1(Vi−1) and
M2(Vi−2) on C0.

boundary of C1. So in this case again we can find the
maximum area true triangle in O(n log n) time. In the
third case, assume each of the points of C1 to be the
origin point, R. For every point R ∈ C1 as the ori-
gin, we partition C0 into four quadrant convex chains,
so that the largest area true triangle should be con-
structed on R and two points on the other quadrants
(or only one quadrant), as illustrated in Figure 4(a).
If one or two consecutive quadrants include the other
vertices of the largest area true triangle, we can find
the largest area true triangle in O(n log n) time by
using Corollary 3. Suppose two other vertices are lo-
cated on diagonal quadrants. Let the cyclic ordering
of C0 be counterclockwise, and let V1 be the first ver-
tex of quadrant three in the cyclic ordering of C0. We
first find the two candidates points in quadrant one
for constructing the largest possible area true trian-
gle on R and V1, M1(V1) and M2(V1). For finding
M1(V2) and M2(V2), we just need to start looking
from M1(V1) and M2(V1), etc (see Figure 4(b)). In
this case, we can find the largest possible area true
triangle in O(n2) time (see full version for more de-
tails).

Theorem 8 Let L be a set of imprecise points mod-
eled as a set of parallel line segments with arbitrary
length. The solution of the problem MaxMaxArea
can be found in O(n2) time.

5 Smallest Area True Triangle

In this problem, if we find three collinear points on
three different input regions, the smallest area trian-
gle would have zero area. We can understand this
situation in O(n2) time. And we cannot hope to do it
faster as the problem is 3SUM-hard. In the following
we assume that MinMinArea has a non-zero solution.

Lemma 9 Let L be a set of imprecise points modeled
as a set of parallel line segments. Suppose there is
no zero-area triangle in L. The smallest area true
triangle selects its vertices on the endpoints of the
line segments.

We use the idea of the algorithm presented in [6] that
solves the problem in dual space and on an arrange-
ment of lines. As their duality preserves the vertical
distances and is order preserving, the minimum area
triangle on each vertex in dual space, can be con-
structed on a line that is located exactly above or be-
low the vertex. In our problem, we need to continue
looking in at most two neighbouring faces, when we
encounter to repeated regions (see full version for de-
tails).

Theorem 10 Let L be a set of imprecise points mod-
eled as parallel line segments. The solution of the
problem MinMinArea can be found in O(n2) time.

Acknowledgements

This work was partially supported by the Nether-
lands Organisation for Scientific Research (NWO) un-
der project no. 614.001.504.

References

[1] A. Aggarwal, H. Imai, N. Katoh and S. Suri. Finding
k points with minimum diameter and related prob-
lems. Journal of Algorithms, 12: 38–56, 1991.

[2] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor and R.
Wilber. Geometric applications of a matrix-searching
algorithm. Algorithmica, 2: 195–208, 1987.

[3] J. E. Boyce, D. P. Dobkin, R. L. Drysdale and L J.
Guibas. Finding extremal polygons. SIAM Journal
on Computing,14 (1), 134–147, 1985.

[4] D.P. Dobkin, R.L. Drysdale, and L.J. Guibas. Find-
ing smallest polygons. Computational Geometry, Ad-
vances in Computing Research, 1: 181–214, 1983.

[5] D.P. Dobkin and L. Snyder. On a general method for
maximizing and minimizing among certain geometric
problems. 20th IEEE Symposium on Foundations of
Computer Science (FOCS 1979), 9–17, 1979.

[6] H. Edelsbrunner, J. O’Rourke and R. Seidel. Con-
structing Arrangements of Lines and Hyperplanes
with Applications. SIAM Journal on Computing, 15:
341–363, 1986.

[7] D. Eppstein, M. Overmars, G. Rote and G.J. Woeg-
inger. Finding minimum area k-gons. Discrete &
Computational Geometry, 7: 45–58, 1992.

[8] D. Eppstein. New algorithms for minimum area k-
gons. 3th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 1992), 83–88, 1992.

[9] M. Löffler and M. van Kreveld. Largest and Smallest
Convex Hulls for Imprecise Points. Algorithmica, 56:
235–269, 2010.

129

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Compact 1-Bend RAC Drawings of 1-Planar Graphs ∗

Franz J. Brandenburg
University of Passau, 94032 Passau, Germany

brandenb@informatik.uni-passau.de

Abstract

A graph is 1-planar if it can be drawn in the plane so
that each edge is crossed at most once. We establish
a linear time algorithm that constructs a 1-bend right
angle crossing (RAC) drawing on O(n2) area from
a given 1-planar embedding. This improves upon a
recent result by Didimo et al. [9] whose drawing algo-
rithm most likely needs high precision arithmetic and
exponential area.

1 Introduction

There has been recent interest in beyond-planar
graphs, which are classes of graphs that extend the
planar graphs and are defined by restrictions on cross-
ings. It is motivated by a correlation between the
number and the type of edge crossings and the read-
ability of a graph drawing. Multiple edge crossings
and edges that cross at a small angle are bad for a
visual analysis of a drawn graph. 1-planar graphs
and right angle crossing (RAC) graphs avoid such bad
cases. A graph is 1-planar if it admits a drawing in
the plane with at most one crossing per edge. It has
been proved multiple times that 1-planar graphs have
at most 4n−8 edges and that the recognition problem
is NP-hard, see, e.g., [3] and [10].
Thomassen [14] showed that a 1-planar embedding

of a graph cannot be drawn straight line if it includes a
B- or a W-configuration, which are displayed in Fig. 1.
Then edges cross in an X-configuration. There is a lin-
ear time algorithm by Alam et al. [1] that constructs
a straight-line drawing of an embedded 3-connected
1-planar graph on a grid of quadratic size with the
exception of a single edge in the outer face which may
need one bend.
A right angle crossing drawing (RAC) is a straight-

line drawing so that two edges may cross at a right
angle. RAC graphs were introduced by Didimo et
al. [8] who showed that such graphs have at most 4n−
10 edges and are incomparable with 1-planar graphs.
However, every 1-planar graph admits a 1-bend RAC

drawing [9] so that each edge is represented by at
most two segments and segments may cross at a right
angle. Graphs with 1-bend RAC drawings have at

∗Supported by the Deutsche Forschungsgemeinschaft
(DFG), grant Br835/18-1

s t

(a)

s t

(b) (c)

Figure 1: B-, W- and X-configuration

most 6.5n− 13 edges [2] whereas every graph admits
a 3-bend RAC drawing [8]. For their result, Didimo
et al. [9] use the convex drawing algorithm of Chiba et
al. [4] as a subroutine for drawing planar graphs. That
algorithm shows the existence of a convex drawing in
a prescribed convex polygon and is supposed to need
high precision arithmetic. In addition, Didimo et al.
squeeze the drawing of components at a separation
pair into a trapezoid whose height is that of a thick
line.

In this work we improve upon the result by Didimo
et al. [9] and show that 1-planar graphs admit a 1-
bend RAC drawing on O(n2) area. Our algorithm
operates on embeddings of graphs, uses the canonical
ordering [6] with an extension to 2-connected graphs
[11] and applies the algorithm of Harel and Sardas
[11] and Kant [13] for straight-line grid drawings of
planar graphs. Pairs of crossing edges are inserted
into a planar drawing such that some crossing points
are placed on a Thales circle.

2 1-bend RAC Drawings of 1-planar Graphs

In their seminal paper on straight-line drawings of
planar graphs, de Fraysseix et al. [6] introduced the
canonical ordering of a triangulated planar graph and
the shift technique for a straight-line grid drawing.
Kant [13] extended the algorithm from triangulated
to 3-connected planar graphs both for the computa-
tion of the canonical ordering and the placement step
so that faces are convex polygons. Harel and Sar-
das [11] considered 2-connected graphs and implicitly
add planar edges towards 3-connectivity. A canoni-

cal ordering of a planar graph is a numbering of the
vertices (v1, . . . , vn) such that Cn = (v1, vn, v2) is the

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

130

33rd European Workshop on Computational Geometry, 2017

outer face in clockwise order. For k = 2, . . . , n − 1,
subgraph Gk induced by v1, . . . , vk is 2-connected and
the boundary of its exterior face is a cycle Ck includ-
ing {v2, v1}, called the contour of Gk. Vertex vk+1

has at least two neighbors in Gk and all neighbors of
vk+1 in Gk are consecutive in Ck.
A drawing of a simple undirected graph G by the

shift technique is constructed incrementally by adding
the vertices one at a time in the order of the canon-
ical ordering. There is a contour from v1 to v2 with
vertices ordered left to right and above a horizontal
line for the edge {v1, v2}. The edges on the contour
have slope ±1. In the k-th step with k = 3, . . . , n,
the rightmost neighbor wl(vk) of vk on the contour
Ck−1 is shifted two to the right and vk is placed at
the intersection of the +1 diagonal through the left-
most neighbor wl(vk) of vk in Ck−1 and the −1 diago-
nal through wr(vk). The vertices between wl(vk) and
wr(vk) are shifted one to the right. The shifts can be
manipulated efficiently [5, 13].
The main problems are W-configurations and non

3-connected graphs. We address them by a transfor-
mation of a given 1-planar embedding into an embed-
ding in normal form.
A separation pair [s, t] decomposes a 2-connected

graph G into connected components such that G −
{s, t} = G0, . . . , Gr for some r ≥ 1 and Gi and Gj

are not connected for i �= j. We distinguish G0 as
root component by choosing some vertex in G0. The
other components are called inner components. By
decomposing components recursively, we obtain a de-
composition tree T [12] that is a simplification of an
SPQR-tree [7].
A 1-planar embedding E(G) of a graph G is given

by the embedding of the planarization E(G×), which
is obtained by taking each crossing point as a special
vertex of degree four. A B-configuration is the em-
bedding of a component H at a separation pair [s, t]
so that the single pair of crossing edges incident to
s and t crosses in the outer face, see Fig. 1(a). Ver-
tices s and t can also be in the outer face of G. In
a W-configuration, as depicted in Fig. 1(b), there are
two pairs of crossing edges incident to s and t one of
which crosses in the outer face of H.
A 1-planar embedding E(G) is in B-free normal

form if there are no B-configurations, there is a paral-
lel edge in the outer face of each W-configuration that
is a copy of the edge between the vertices of the sepa-
ration pair, and all faces are triangles. The boundary
of a face consists of edges including parallel edges and
edge segments up to a crossing point. In addition, if
there is a quadrangle Q = (a, b, c, d) in counter clock-
wise order, an ordering of the vertices a < b < c < d

and separation pairs [s, t] with s, t ∈ {a, b, c, d}, then
the inner components are in the lower triangle (a, b, d)
of Q.

a b

cd

Ø

Ø

Figure 2: Components inside a quadrangle with cross-
ing edges.

Lemma 1 There is a linear time algorithm that

transforms a 1-planar embedding E(G) of G into a 1-

planar embedding E(H) of a supergraph H in B-free

normal form.

Proof. The transformation has been established by
Alam et al. [1] for 3-connected graphs. First, aug-
ment the embedding by as many planar edges as pos-
sible. Then remove B-configurations by a flip of the
component at the vertices of the separation pair, and
again add as many planar edges as possible. The com-
putations are performed on the planarization E(G×),
which in the end is triangulated.

For non 3-connected graphs (after the previous
steps) consider the decomposition tree induced by
separation pairs [s, t]. If G − {s, t} decomposes into
G0, . . . , Gr for some r ≥ 1, then permute the inner
components so that two B-configurations Ḡi and Ḡj

are placed next to each other and merge them into
a W-configuration. Here, Ḡi = Gi + {s, t} is the
subgraph of G induced by the vertices of Gi and
s, t. The remaining W-configurations are separated
by parallel edges, which are copies of {s, t}. A sin-
gle B-configuration is finally converted into an X-
configuration by rerouting {s, t}. Thereafter, all faces
are triangles. Finally, if there is an ordering of the ver-
tices, then inner components are flipped to the right
side of the edges of a quadrangle such that they are
either in the lower triangle or outside the quadrangle.
All steps are performed on the planarization E(G×)
and take linear time. �

The planar skeleton E(G�) of a 1-planar em-
bedding E(G) is obtained by removing all pairs of
crossing edges. The remaining planar edges keep their
embedding. It is something special if the embedding
is in B-free normal form. Then E(G�) has triangles
and inner and outer quadrangles. There is an inner
quadrangle if it results from an X-configuration of
E(G) and an outer quadrangle if there is a pair of
crossing edges between a separation pair and vertices
from a component in E(G). Note that there are
vertices in the boundary of an inner quadrangle which
result from inner components of separation pairs on
the boundary. An outer triangle contains a parallel
edge in its boundary. If [s, t] is a separation pair
and there is a quadrangle Q = (s, t, x, y) such that

131

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

edges {s, y} and {t, x} cross in E(G) and the inner
components are in Q, then Q is an outer quadrangle
and contains the r-th copy of {s, t}.

Canonical orderings need 3-connected planar
graphs [6, 13]. The generalization by Harel and
Sardas [11] substitutes missing edges and computes
them from the given embedding. In other words,
it adds virtual edges. We adopt this technique at
separation pairs and the ordering of vertices from
inner components. In addition, for every inner
quadrangle (a, b, c, d) in counter clockwise order with
a < b < c < d in canonical ordering, we keep the
edge {b, d} as a virtual edge for the placement of
d. Canonical orderings can be computed in linear
time [11,13].

We can now state our main result:

Theorem 2 There is a linear time algorithm that,

given 1-planar embedding E(G), computes a 1-bend

RAC drawing of a 1-planar graph G with all vertices

on a grid of quadratic size.

The outline of the algorithm:
Input: A 1-planar embedding E(G) as a witness of
the 1-planarity of a graph G.
Output: A 1-bend RAC drawing of G with vertices
on a grid of quadratic size.
1) Compute a 1-planar embedding E(H) of a super-
graph H in B-free normal form from E(G).
2) Compute a canonical ordering of the planar skele-
ton H� using the algorithm by Harel and Sardas [11].
Adjust the embedding so that inner components at
separation pairs are flipped into lower triangles.
3) Process the vertices of H� according to the canon-
ical ordering and draw H� by the algorithm by Harel
and Sardas [11].
4) Insert the crossing edges. If {b, d} and {a, c} are
crossing edges in an inner quadrangle Q in E(H), then
insert them in the quadrangle Q = (a, b, c, d) with a
bend and a right angle crossing.
For every separation pair [s, t] with inner compo-

nents Hi and outer face (ai, bi, ci, di) of Hi in the pla-
nar skeleton and base 〈ai, bi〉, for i = 1, . . . , r do steps
(a) and (b):
(a) Pick a crossing point q on the Thales circle

above (ci, di) in an ǫ-ball around di with ǫ < 0.5.
Extend the segments (ci, q) and (di, q) beyond q to
bend points c′i and d′i in the ǫ-ball and connect c′i and
s and d′i and t by straight segments.
(b) Pick a crossing point p on the Thales circle be-

low (ai, bi) in an ǫ-ball around ai with ǫ < 0.5. Ex-
tend the segments (ai, p) and (bi, p) beyond p to bend
points a′i and b′i in the ǫ-ball. Connect b′i with s and
a′i with t by straight segments.
If there is a quadrangle Q = (s, t, x, y) containing

the inner components, then proceed as in (a) at y if

s
t

y

a1

c1

b1

d1

a2
b2

b3

x

c2

c3a3

d2

d3

Figure 3: A 1-bend RAC drawing of three inner com-
ponents with crossing points on a Thales circle

〈x〉 and 〈y〉 with x < y in the canonical ordering and
proceed as in (b) at x if there is a chain 〈x, y〉

Lemma 3 The correctness of the algorithm is due to

the following facts:

1. The planar skeleton is drawn planar and straight-

line on a grid of size (2n− 4)× (n− 2).

2. Every inner component H is a quadrangle

(a, b, c, d) and is drawn as a right triangle with

three collinear vertices on a short side and slopes

+1 and −1 for the short sides.

3. Every crossing edge is drawn by at most two seg-

ments. A segment is crossed at most once and at

a right angle.

Proof. (Sketch).
The first item is proved in [11]; see also [6, 13].
For the second item, observe that the algorithm pre-

serves the invariant with slopes −1,+1 on the contour
and an even Manhatten distance between vertices on
the contour. For every component H at a separation
pair [s, t] the outer boundary of H is a quadrangle
(a, b, c, d) and the canonical ordering of H numbers d
last. Then vertex d is placed at the intersection of the
diagonals through c and a, and c has been placed on
the −1 diagonal through b.

Third, if edges {a, c} and {b, d} cross then there
is a quadrangle Q = (a, b, c, d) with a, b < c < d in
canonical ordering, then Q may contain drawings of
components H with [a, b] and [a, d] as a separation
pair. By the canonical ordering, a and b are drawn
first, the components H at the separation pair [a, b]
are drawn next and subsequently, components H ′ at
[a, d] are added to the drawing. Then the lower right
corner w of the drawing of H ′ is at (−1, 1) from the
top corner z of the drawing of H, and both are con-
nected by a straight line with a. Now the first segment
of {a, c} is routed between w and z. The drawings of
H and H ′ are below the line between d and b, since
edge {b, d} is used as a virtual edge for the placement

132

33rd European Workshop on Computational Geometry, 2017

of d. So there is space for a right angle crossing be-
tween the second segment of {a, c} and a segment of
{b, d} above the line between b and d.

For every component H = (a, b, c, d) at a separa-
tion pair [s, t], the crossing edges {s, d} and {a, t} are
drawn each with a bend in an ǫ-ball at a and with
a crossing point on a Thales circle. Similarly, {s, c}
and {b, t} are drawn each with a bend in an ǫ-ball at
b. These edges do not cross other edges, since they
are routed close to the edges {s, a} and {s, b} and the
lines (a, t) and (b, t). �

The algorithm runs in linear time. Using the data
structure from the underlying planarization E(G×),
the normal form embedding of a supergraph H can be
computed in linear time. Graph H has parallel edge,
but in total H has at most 4n − 8 edges, since the
parallel edge and a pair of edges crossing in the outer
face of a component can be substituted by four edges
in another 1-planar embedding. The computation of
a canonical ordering takes linear time, as does the
drawing of the planar skeleton H� [11,13]. There are
at most n− 2 pairs of crossing edges, which can each
be drawn in O(1) time.

3 Conclusion and Perspectives

Using an extension of the canonical ordering and well-
known algorithms for straight-line grid drawings of
planar graphs, we have shown that every 1-planar
graph admits a 1-bend RAC drawing on a grid of
quadratic size. However, the bends and the cross-
ing points are not on grid points. Is this doable on a
polynomial size grid?

4 Acknowledgements

I wish to thank the anonymous reviewers for their
valuable suggestions and comments.

References

[1] M. J. Alam, F. J. Brandenburg, and S. G.
Kobourov. Straight-line drawings of 3-connected
1-planar graphs. In S. Wismath and A. Wolff,
editors, GD 2013, volume 8242 of LNCS, pages
83–94. Springer, 2013.

[2] K. Arikushi, R. Fulek, B. Keszegh, F. Morić, and
C. D. Tóth. Graphs that admit right angle cross-
ing drawings. Comput. Geom., 45(4):169–177,
2012.

[3] R. Bodendiek, H. Schumacher, and K. Wag-
ner. Über 1-optimale Graphen. Mathematische

Nachrichten, 117:323–339, 1984.

[4] N. Chiba, T. Yamanouchi, and T. Nishizeki. Lin-
ear time algorithms for convex drawings of pla-
nar graphs. In D. Z. Chen and D. T. Lee, edi-
tors, Progress in Graph Theory, Academic Press,
pages 153–173, 1984.

[5] M. Chrobak and T. Payne. A linear-time algo-
rithm for drawing a planar graph on a grid. In-

form. Process. Lett., 54:241–246, 1995.

[6] H. de Fraysseix, J. Pach, and R. Pollack. How to
draw a planar graph on a grid. Combinatorica,
10:41–51, 1990.

[7] G. Di Battista and R. Tamassia. On-line pla-
narity testing. SIAM J. Comput., 25(5):956–997,
1996.

[8] W. Didimo, P. Eades, and G. Liotta. Drawing
graphs with right angle crossings. Theor. Com-

put. Sci., 412(39):5156–5166, 2011.

[9] W. Didimo, G. Liotta, S. Mehrabi, and F. Mon-
tecchiani. 1-bend RAC drawings of 1-planar
graphs. In Y. Hu and M. Nöllenburg, editors,
GD 2016, volume 9801 of Lecture Notes in Com-

puter Science, pages 335–343. Springer, 2016.

[10] A. Grigoriev and H. L. Bodlaender. Algorithms
for graphs embeddable with few crossings per
edge. Algorithmica, 49(1):1–11, 2007.

[11] D. Harel and M. Sardas. An algorithm for
straight-line drawing of planar graphs. 20:119–
135, 1998.

[12] J. E. Hopcroft and R. E. Tarjan. Dividing a
graph into triconnected components. SIAM J.

Comput., 2(3):135–158, 1973.

[13] G. Kant. Drawing planar graphs using the canon-
ical ordering. Algorithmica, 16:4–32, 1996.

[14] C. Thomassen. Rectilinear drawings of graphs.
J. Graph Theor., 12(3):335–341, 1988.

133

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Non-crossing drawings of multiple geometric Steiner arborescences∗

Irina Kostitsyna† Bettina Speckmann‡ Kevin Verbeek†

1 Introduction

An important problem in the area of computational
geometry is the Euclidean Steiner Tree problem: given
a set of n points in the plane, find a set of line segments
that connect all points in a single connected compo-
nent, such that the total length of the line segments is
minimized. The Euclidean Steiner Tree problem and
variants thereof have many applications in practice.
For example, rectilinear Steiner trees, where line seg-
ments must be horizontal or vertical, are commonly
used for wire routing in VLSI design. Also of interest
are Steiner arborescences [5]: Steiner trees rooted at a
node r, such that the path in the Steiner tree between
r and any other input point must be a shortest path
with respect to some metric (see Fig. 1). A variant of
Steiner arborescences, namely angle-restricted Steiner
arborescences, or flux trees, have recently been used
to design flow maps [4]. In a flux tree, the path from
an input point to the root r must always go roughly
in the direction of r, that is, it can only deviate by at
most a fixed angle.

p1

p2p3

p4

p5
p7

p8

p1

p2p3

p4

p5
p7

p8

Figure 1: A rectilinear Steiner arborescence and a flux
tree with eight terminals.

The Euclidean Steiner tree problem and its variants
have been studied extensively. Although most of these
problems are NP-hard, many efficient approximation
algorithms are known [2, 8]. However, if we want to
compute multiple Steiner trees for multiple point sets,
such that the Steiner trees have no or few crossings,
then there are very few results. Aichholzer et al. [1]

∗I.K. and B.S. are partially supported by the Netherlands
Organisation for Scientific Research (NWO) under grant number
639.023.208. K.V. is supported by the Netherlands Organisation
for Scientific Research (NWO) under grant number 639.021.541.
I.K. is also supported by F.R.S.-FNRS.

†Computer Science Department, Université libre de Bruxelles,
Belgium, irina.kostitsyna@ulb.ac.be

‡Dep. of Mathematics and Computer Science, TU Eindhoven,
The Netherlands, [b.speckmann|k.a.b.verbeek]@tue.nl

give an algorithm that, given two sets of n points in
the plane, computes in O(n log n) time two spanning
trees (not Steiner trees) such that the diameters of
the trees and the number of intersections between
the trees are small. Similar (weaker) results have
also been obtained for drawing more than two plane
spanning trees with few crossings [6, 7]. Recently,
Bereg et al. [3] presented approximation algorithms
for computing k disjoint Steiner trees for k point sets,
with approximation ratios O(

√
n log k) and k + ε for

general k, (5/3 + ε) for k = 3, and a PTAS for k = 2.
In this paper we consider multiple Steiner arbores-

cences. Two or more non-crossing Steiner arbores-
cences need not even exist. Nonetheless, they are very
relevant in practice, for example for constructing flow
maps. A flux tree can only show information about one
source, but ideally multiple sources should be shown
simultaneously, in such a way that the corresponding
flux trees have few or no crossings. To the best of our
knowledge, these problems have not been studied.

Problem statement. We study the following prob-
lem: given a set of k roots r1, . . . , rk ∈ R

2, and k sets
of terminals T1, . . . , Tk ⊂ R

2, do there exist k non-
crossing Steiner arborescences which connect each set
of terminals Ti to its root ri? We focus mostly on the
case k = 2. When considering only two trees, we refer
to the first tree as the red tree, with root r1 and ter-
minals T1 = {p1, . . . , pn}, and the second tree as the
blue tree with root r2 and terminals T2 = {q1, . . . , qm}.
We consider both rectilinear Steiner arborescences and
flux trees.

Preliminaries. It follows from the definition of geo-
metric Steiner arborescences that the path between the
root and a terminal must completely lie in a particular
region. For rectilinear Steiner arborescences this is the
rectangle spanned by the root and the terminal. For
flux trees this region is bounded by two logarithmic
spirals and is hence called the spiral region [4]. Here
we refer to these regions as R-regions and denote the
R-region between a root r and a terminal t by R(r, t).
When considering multiple rectilinear Steiner arbores-
cences, we allow the sets of axes of the two Steiner
arboresences to be different.

We say that two R-regions R(r1, pi) and R(r2, qj)
fully intersect if r1, pi /∈ R(r2, qj), r2, qj /∈ R(r1, pi),
and segments r1pi and r2qj intersect. It is easy to ver-
ify that two non-crossing Steiner arborescences do not
exist if there are two R-regions R(r1, pi) and R(r2, qj)
that fully intersect (see Fig. 2): any two paths routed

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

134

33rd European Workshop on Computational Geometry, 2017

r1

pi

r2

qj

r1

pi

qj

r2

Figure 2: Two R-regions fully intersect.

within the respective R-regions must intersect.
When drawing (the paths of) Steiner arborescences

we consider two models:
(a) Free turns: Paths can turn anywhere.
(b) Limited turns: Paths can only turn at a Steiner

point or at a corner of an R-region (as in Fig. 1).
The limited turns model can be quite restrictive. Fig. 3
shows an example where a non-crossing drawing of
two rectilinear Steiner arborescences exists only in the
free turns model.

Figure 3: Non-crossing drawing exists only in free
turns model.

Results. In the free turns model, we show in Sec-
tion 2.1 that two rectilinear Steiner arborescences have
a non-crossing drawing if (a) no two R-regions fully
intersect, and (b) the roots are not contained inside
any R-region. In Section 2.2 we lift the constraint on
the roots and show how to reduce the decision prob-
lem to 2SAT. In Section 3 we show that in the limited
turns model it is NP-hard to decide whether multiple
rectilinear Steiner arborescences have a non-crossing
drawing. The setting of flux trees is more subtle. Our
NP-hardness result extends, but testing whether there
exists a non-crossing drawing requires additional con-
ditions to be fulfilled (see Section 4). Due to space
limitations, some figures and proofs are omitted from
this short abstract and can be found in the full version
of the paper.

2 Two rectilinear Steiner arborescences

In this section we show how to decide if a non-crossing
drawing of two rectilinear Steiner arborescences in the
free turns model exists, and how to construct such a
drawing. We consider the general case, when the axes
of the two arborescences are not aligned. The free

x

x

I

y
y

Figure 4: Non-crossing drawing of two rectilinear
Steiner arborescences.

turn model implies that, in principle, the paths of the
trees can approximate any xy-monotone curve. We
show that we can in fact restrict the directions of the
paths to the 8 directions implied by the axes of the
two rectilinear Steiner arborescences (see Fig. 4).

2.1 Roots not contained in R-regions

Consider the four quadrants of the coordinate system
of the red arborescence ordered counter-clockwise, and
the four quadrants of the blue arborescence ordered
clockwise. Let the first quadrants face each other (see
Fig. 4). There are eleven faces in the arrangement of
the four coordinate axes, to which we refer by the two
corresponding quadrants. For simplicity of presenta-
tion, we assume that no terminal lies on an axis of the
other color. Let Cb be a cone in the red coordinate
system with the apex in the blue root and with angle
range [0, π

2
], and let Cr be a cone in the blue coordi-

nate system with the apex in the red root and with
angle range [0, π

2
]. If the roots are not contained in

the R-regions of the other tree then there are no red
terminals in Cb, and there are no blue terminals in Cr.

Given a red terminal p, and some xy-monotone path
πp connecting p to r1, define a dead region D2(πp),
with respect to the blue root r2, to be the union of all
points q such that path πp intersects region R(r2, q)
and disconnects q from r2. Analogously, define a dead
region D1(πq) for a blue terminal q.

Observe that πp is on the boundary of D2(πp), and
that the rest of its boundary consists of lines parallel to
blue axes. For example, in Fig. 5, D2(πp) is bounded
by two lines parallel to the blue y-axis that go through
r1 and p (as p lies in the blue quadrant II). If p were,
for example, in quadrant I, than the bounding line
passing through p would be parallel to the blue x-axis.

Given a red terminal p such that R(r1, p) does not
contain r2, define the dead region D2(p) to be the inter-
section of dead regions D2(πp) for all possible paths πp

connecting p to r1, i.e., D2(p) =
⋂

πp

D2(πp). Define

135

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

r1

r2

p

πp

D2(πp)

r1

r2

p

D2(p)

Figure 5: Dead regions of a path πp and a terminal p.

red terminals in blue terminals in

(a) I ∩ II vs. (b) II ∩ I,
(c) I ∩ III vs. (d) III ∩ I,
(e) I ∩ IV vs. (f) IV ∩ I,
(g) III ∩ IV vs. (h) IV ∩ III,
(i) I ∩ III vs. (j) IV ∩ IV,
(k) IV ∩ IV vs. (l) III ∩ I.

Table 1: Mutually exclusive cases of locations of red
and blue terminals.

dead region D1(q) analogously. From this definition it
follows that:

Proposition 1 Let a red terminal p �∈ R(r2, q) and
a blue terminal q �∈ R(r1, p). Then q ∈ D2(p) if and
only if R(r1, p) fully intersects R(r2, q), and therefore
q ∈ D2(p) if and only if p ∈ D1(q).

There can be terminals whose dead regions are empty.
For example, if p ∈ I∩I, then there is a path connecting
p to r1 that does not obstruct routing of any possible
blue terminal. Consider the eight faces of the axes
arrangement except for faces I ∩ I, I ∩ IV, and IV ∩ I.
For terminals p and q in them, D2(p) and D1(q) are
not empty. Moreover, in these faces p ∈ D2(p) and
q ∈ D1(q). Denote π

∗

p to be the path that connects
p to r1 along the boundary of D2(p), and π

∗

q to be
the path that connects q to r2 along the boundary of
D1(q) (see Fig. 5 (right)). We can show that:

Proposition 2 Paths π
∗

p and π
∗

q are xy-monotone in
the red and blue coordinate systems, respectively.

Therefore π
∗

p and π
∗

q are valid paths connecting p to
r1 and q to r2. From Proposition 1 it follows that if
a blue terminal q �∈ D2(p) then π

∗

p does not itersect
π

∗

q . In the full version of the paper we carefully go
through all cases for terminals p and q such that the
corresponding dead regions D2(p) and D1(q) are not
empty and their boundaries contain paths connecting
the terminals to their roots.

Routing rules. Notice that two cases, when there is
a red terminal p in I ∩ II, and when there is a blue
terminal q in II∩I, are mutually exclusive, for otherwise
R(r1, p) would fully intersect R(r2, q). Table 1 gives a

full list of all mutually exclusive cases. Given two roots
and two sets of terminals such that no two R-regions
of opposite colors fully intersect, we can construct two
non-intersecting Steiner arborescences using simple
routing rules (see Fig. 4). First, red terminals p in
(II ∪ III)\Cr, I ∩ II, I ∩ III, IV ∩ III, or IV ∩ IV are
routed along π

∗

p. Blue terminals q in (II ∪ III)\Cb,
II ∩ I, III ∩ I, III ∩ IV, or IV ∩ IV are routed along
π

∗

q . Next, terminals in Cr and Cb are routed as shown
in Fig. 6. Lastly, the rest of the terminals are routed
so as to avoid already constructed paths. Detailed
routing rules can be found in the full version.

Theorem 3 Two rectilinear Steiner arborescences
can be drawn with no crossings in the free turn model
if no two R-regions fully intersect and if no roots are
contained in R-regions.

2.2 Roots contained in R-regions

Next, we relax the restriction that the roots cannot
be contained in R-regions. Now, for any R-region
that contains the root of the other color, we need to
make a choice of how to route the terminal-to-root
path around the other root. This choice clearly can
affect later decisions. Before we proceed, we need some
additional definitions.

Points r and t split the boundary of R(r, t) into two
components that we call the right side σ

+(r, t) (that
leaves the R-region to the left if moving from r to t),
and the left side σ

−(r, t).
We say that R(r1, pi) cuts the right (left) side of

R(r2, qj), if r1 ∈ R(r2, qj), and both sides of R(r1, pi)
intersect the right (left) side of R(r2, qj) (see Fig. 7).
We can now define a dead region for a terminal p for
a fixed direction a p-to-r1 path must take around r2.

Given a red terminal p, define the left (right) dead
region Dl

2(p) (Dr
2(p)) to be the intersection of dead

regions D2(πp) for all possible paths πp connecting
p to r1 that go around r2 from the left (right), i.e.,
Dl

2(p) =
⋂

left πp

D2(πp) and Dr
2(p) =

⋂
right πp

D2(πp).

Analogously, define Dl
1(q) and Dr

1(q). Note that in this
definition we do not require R-regions to be root free.
We can make an observation similar to the one in the

x

x

y
y

Figure 6: Routing rule for
terminals in Cr and Cb.

pi

r2

qj

pℓ

r1

Figure 7: Red R-regions
cut the left and right side
of the blue R-region.

136

33rd European Workshop on Computational Geometry, 2017

previous section. Let the blue root r2 ∈ R(r1, p) and
the red root r1 �∈ R(r2, q). A blue terminal q ∈ Dl

2(p)
(q ∈ Dr

2(p)) if and only if R(r2, q) fully intersects the
left side σ

+(r1, p) (right side σ
−(r1, p)) of R(r1, p).

Therefore, if r2 ∈ R(r1, p) and r1 �∈ R(r2, q), the blue
terminal q �∈ Dl

2(p) (q �∈ Dr
2(p)) if and only if D1(q)

does not intersect Dl
2(p) (Dr

2(p)). We can extend
this observation to the case where the blue root r2 ∈
R(r1, p) and the red root r1 ∈ R(r2, q):

Observation 1 If r2 ∈ R(r1, p) and r1 ∈ R(r2, q),
the blue terminal q �∈ Dl

2(p) (q �∈ Dr
2(p)) if and only if

Dl
1(q) (Dr

1(q)) does not intersect Dl
2(p) (Dr

2(p)).

We reduce the problem of choosing the direction of the
path with respect to the other root to 2SAT. Given
a solution to the 2SAT formula that fixes directions
of the paths with terminals in cones Cr and Cb, we
can again route the paths along the boundaries of the
dead regions. More details can be found in the full
version of the paper.

Theorem 4 We can decide in polynomial time
whether two rectilinear Steiner arborescences can be
drawn with no crossings in the free turn model.

3 Drawing many Steiner arborescences is NP-hard

If the number of arborescences in the problem is not
bounded, the problem becomes NP-hard for the limited
turns model.

Theorem 5 It is NP-hard to decide whether k rec-
tilinear Steiner arborescences, where k is part of the
input, can be drawn without crossings in the limited
turns model, even if all trees are axis-aligned.

Theorem 6 It is NP-hard to decide whether k flux
trees, where k is part of the input, can be drawn
without crossings in the limited turns model.

4 Two flux trees

In this section we sketch how to draw two flux trees
in the free turns model with no root containment in
R-regions. Similarly to the rectilinear case, free turns
imply that the terminal-to-root paths can approximate
any spiral monotone1 curve. Here we restrict the
paths to only follow four logarithmic spirals, positive
and negative spirals with the origin in the red root,
and positive and negative logarithmic spirals with the
origin in the blue root. We prove the following theorem
in the full version of the paper.

1A spiral monotone curve [4] requires that for any point the
angle between the tangent and the direction to the destination
is not greater than a given parameter α.

Figure 8: Two non-crossing drawings of flux trees for
α = 60◦ (left) and α = 30◦ (right).

Theorem 7 We can decide in polynomial time if two
flux trees with no root containment in R-regions can
be drawn without crossings in the free turns model.

Figure 8 shows the final result of the procedure.

References

[1] O. Aichholzer et al. Connecting colored point sets.
Discrete Applied Mathematics, 155(3), 2007.

[2] S. Arora. Polynomial time approximation schemes
for Euclidean traveling salesman and other geometric
problems. Journal of the ACM, 45(5), 1998.

[3] S. Bereg et al. Colored non-crossing Euclidean Steiner
forest. In ISAAC, 2015.

[4] K. Buchin, B. Speckmann, and K. Verbeek. Angle-
restricted Steiner arborescences for flow map layout.
Algorithmica, 72(2), 2015.

[5] J. Cong, A. Kahng, and Kwok-Shing Leung. Efficient
algorithms for the minimum shortest path Steiner ar-
borescence problem with applications to VLSI physical
design. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 17(1), 1998.

[6] M. Kano, C. Merino, and J. Urrutia. On plane spanning
trees and cycles of multicolored point sets with few
intersections. Information Processing Letters, 93(6),
2005.

[7] J. Leaños et al. Spanning trees of multicoloured point
sets with few intersections. In IJCCGGT, 2005.

[8] B. Lu and L. Ruan. Polynomial time approximation
scheme for the rectilinear Steiner arborescence problem.
Journal of Combinatorial Optimization, 4(3), 2000.

137

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

Lukas Barth∗ Benjamin Niedermann∗ Ignaz Rutter† Matthias Wolf∗

Abstract

Ortho-Radial drawings are a generalization of orthog-
onal drawings to grids that are formed by concentric
circles and straight-line spokes from the center.

We show that bend-free planar ortho-radial draw-
ings can be combinatorially described in terms of the
distribution of the angles around the vertices. Pre-
viously, such a characterization was only known for
paths, cycles, and theta graphs [5], and in the spe-
cial case of rectangular drawings for cubic graphs [4],
where the contour of each face is required to be a rect-
angle. This is an important ingredient in establish-
ing an ortho-radial analogue of Tamassia’s Topology-
Shape-Metrics Framework for bend minimization in
planar orthogonal drawings.

1 Introduction

Grid drawings of graphs map vertices to grid points,
and edges to internally disjoint curves on the grid lines
connecting their endpoints. Orthogonal grids, where
the grid lines are horizontal and vertical lines, are pop-
ular and widely used in graph drawing. Their strength
lies in their simple structure, their high angular reso-
lution, and the limited number of directions. Graphs
admitting orthogonal grid drawings must be 4-planar,
i.e., they must be planar and have maximum degree 4.

It is well known that, a bend-free planar orthogonal
drawing Γ of a 4-plane graph G, i.e., a 4-planar graph
with a fixed combinatorial embedding, can be combi-
natorially described by the distribution of the angles
around the vertices. For any incidence between a ver-
tex v and a face f that lies to the right of the edges
uv, vw, we measure the counterclockwise angle a ∈

{90◦, 180◦, 270◦, 360◦} between vu and vw. In this
way, we assign an angle to each vertex–face incidence.
Consider two edges uv, vw not necessarily bounding
a common face and let α be the sum of all the angles
that lie locally to the right of uvw. We define the ro-
tation of the path uvw as rot(uvw) = 2− α/90◦, i.e.,
intuitively left and right turns correspond to rotations
of −1 and 1, respectively, whereas going straight cor-
responds to a rotation of 0. We further generalize
this to arbitrary paths P = v1, . . . , vk as rot(P) =

∗Karlsruhe Institute of Technology, Germany,
firstname.lastname@kit.edu, Lukas Barth was partially
supported by DFG Research Training Group 2153

†TU Eindhoven, The Netherlands, i.rutter@tue.nl

c
1

-1

11

-1

0

0

-1

s
(a)

C

(b) (c)

Figure 1: (a) An ortho-radial drawing on an ortho-
radial grid, the small numbers give the rotations at
the vertices in the central face. (b,c) Ortho-radial
representations with locally correct angle sums that
cannot be realized; the dotted curve is a single edge.

∑k−1

i=2
rot(vi−1vivi+1) and to cycles C = v1, . . . , vk, v1

as rot(C) =
∑k

i=1
rot(vi−1vivi+1), where v0 = vk and

vk+1 = v1. For a face f , we define rot(f) = rot(Cf),
where Cf is the boundary of f directed such that f
lies to its right. It is not hard to see that an an-
gle assignment stemming from an orthogonal drawing
satisfies the following conditions.
1. The sum of the angles around each vertex is 360◦.
2. For each internal face f it is rot(f) = 4 and

rot(f) = −4 for the outer face.
An angle assignment satisfying these conditions is
called orthogonal representation. Tamassia [6] showed
that, conversely, for any orthogonal representation
there exists a corresponding planar orthogonal draw-
ing with the given angles. It is this characterization,
which decouples the shape of an orthogonal draw-
ing (described in the form of an orthogonal represen-
tation) from its geometric realization, that has en-
abled a three-step framework for computing orthog-
onal planar drawings, the Topology-Shape-Metrics
(TSM) framework, that is at the heart of various
bend minimization algorithms for orthogonal draw-
ings [6, 1, 2, 3]. Note that bends can be seen as sub-
division vertices with a 90◦ and a 270◦ angle.
The goal of this work is to provide a similar re-

sult and thus to establish the existence of an analo-
gous framework for ortho-radial drawings, which are
based on ortho-radial grids formed by concentric cir-
cles and spokes emanating from the circles’ center c;
see Fig. 1a. In this case, our 4-plane input graph G
comes with two designated faces, an outer face, which
shall form the outer face of the drawing and a central

face whose interior shall contain c. All other faces are
regular. A simple cycle in G is essential if it contains c
in its interior, otherwise it is non-essential. Through-
out this paper we assume that G contains at least one

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

138

33rd European Workshop on Computational Geometry, 2017

essential cycle. If it does not, then the central and the
outer face are identical, and the ortho-radial drawing
is equivalent to an orthogonal drawing [5].
It is not hard to see that also ortho-radial draw-

ings induce angle assignments as above, which we call
ortho-radial representations. It is clear that again the
angle sums around each vertex must be 360◦, and fur-
ther similar to the orthogonal case, it is rot(f) = 4 for
regular faces and rot(f) = 0 for the central and the
outer face (recall that we assume them to be distinct).
However, there are examples of such assignments that
have no geometric realization; see Fig. 1b. Up to this
point a characterization of the ortho-radial represen-
tations that have a corresponding drawing has been
achieved only for paths, cycles, and theta-graphs [5]
and for 3-regular rectangular graphs [4], whose ortho-
radial representation is such that internal faces have
exactly four 90◦ angles, while all other incident angles
are 180◦, and the central and outer face have only
180◦ angles. Our main result is a characterization of
the ortho-radial representations of arbitrary 4-plane
graphs that correspond to an ortho-radial drawing.
We introduce some notation and our definition of a

valid ortho-radial representation in Section 2. After-
wards, we first show in Section 3 that valid ortho-
radial representations characterize the ortho-radial
drawings of rectangular graphs. Based on that special
case of 4-planar graphs, we then present the charac-
terization for general 4-planar graphs in Section 4.

2 Preliminaries and Ortho-Radial Representations

In this paper, all paths and cycles are directed. We
implicitly direct cycles that do not cross themselves,
e.g., facial cycles, such that their interior lies to the
right, and we consider a cycle to be part of both its
interior and its exterior, i.e., the interior and the exte-
rior are closed. We further assume that paths are sim-

ple but cycles may be non-simple, though they may
contain each edge at most once in each direction.
Making use of the view of ortho-radial drawings

as orthogonal drawings of a cylinder, we classify the
edges of a drawing as pointing left, right, down or up,
respectively. Edges pointing left or right are horizon-

tal edges and edges pointing up or down are vertical

edges. Note further, that an ortho-radial representa-
tion determines the directions of all edges. Consid-
ering again the example from Fig. 1b it can be seen
that the essential cycle C contains an up edge but no
down edge, and thus there is no corresponding draw-
ing. However, the existence of a down edge on each
essential cycle containing an up edge is not sufficient
for the existence of a drawing even in the case of cy-
cles; see Fig. 1c. The reason is that, in some sense,
the down edge in this case is too wound up to be of
any help. Instead we need a somewhat more global
measure than up and down, which we introduce next.

Ortho-Radial Representations For a 4-plane graph
G with a given ortho-radial representation Γ, we fix
an arbitrary reference edge e⋆ = rs on the outer face
that points to the right, i.e., the outer face lies on
its left. Let C be a simple essential cycle and let
P be a path from s to a vertex v of C. We now
define a labeling of the edges of C with respect to P
and e⋆ as ℓPC(e) = rot(e⋆ + P +C[v, e]), where C[v, e]
denotes the part of C from v to e. In the following we
are mostly interested in labelings with respect to so-
called elementary paths P , where v is the first vertex
of C that lies on P . It can be shown that in this
case the labeling does not depend on the choice of the
elementary path. Thus, the labeling of C depends
only on Γ, and we omit the superscript P . We are
now ready to present our characterization.

Definition 1 An ortho-radial representation is valid
if the following conditions hold.
1. The sum of angles around each vertex is 360◦.
2. For each face f , it is

rot(f) =

{

4, if f is a regular face

0, if f is the central/outer face.

3. For each simple essential cycle C in G, it is
ℓC(e) = 0 for all edges e of C, or there are edges
e+ and e− on C with ℓC(e+) > 0 and ℓC(e−) < 0.

We have already seen that the first two conditions
are necessary. The last condition is new and guaran-
tees that all cycles in the graph can be drawn consis-
tently. For an essential cycle C that violates condi-
tion 3 either all labels of edges on C are non-negative
or all are non-positive. Then C is called decreasing

and increasing, respectively. Both increasing and de-
creasing cycles are called monotone. Note that an
increasing (decreasing) cycle contains an edge with a
negative (positive) label. Cycles with only the label 0
are not monotone. Our main result is as follows.

Theorem 1 Let G be a 4-plane graph with an ortho-
radial representation Γ. Then G has an ortho-radial
drawing that corresponds to Γ if and only if Γ is valid.

3 Rectangular Graphs

Let G be a 4-planar graph and let Γ be an ortho-radial
representation of G where every face is rectangular.
We use a flow method similar to Tamassia [6]. For
each edge e, we find an arbitrary path P from e⋆ to
e, and we determine e as pointing right, down, left or
up, if rot(P) mod 4 is 0, 1, 2, or 3, respectively. We
note that conditions 1 and 2 of valid ortho-radial rep-
resentations guarantee that this is well-defined. We
then reverse the downward and left edges so that all
edges point either up or right. The rectangular prop-
erty of the faces guarantees that each internal face is
bounded by two vertical and by two horizontal paths.

139

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

We create a radial flow network Nrad with a vertex
for each face, and an edge from a face f to a face g
if and only if there is a horizontal edge with f to
its right and g to its left; see Fig. 2. Similarly, we
define a vertical flow network Nver that has a vertex
for each internal face and an edge from f to g if and
only if there is a vertical edge with f to its left and g
to its right. We set the capacities of all edges to ∞

and require a minimum flow of 1 on each edge. It
is then readily seen that drawings of Γ correspond
bijectively to pairs (Frad, Fver) where Frad is a flow
from the central face to the outer face in Nrad and
Fver is a circulation in Nver. The fact that such a flow
exists in Nrad is analogous to the orthogonal case [6].
The key is to show that a circulation in Nver ex-

ists if Γ is valid. The main idea is to determine for
each arc a of Nver a cycle Ca in Nver that contains a.
If Fa denotes the circulation that pushes one unit of
flow along the arcs of Ca and is 0 elsewhere, then
Fver =

∑

a∈A Fa, where A denotes the arc set of Nver,
is the desired flow. The only reason why such a cycle
might not exist is if there is a set S of vertices in Nver

such that there exists an arc entering S but no arc ex-
iting S. Without loss of generality, we assume Nver[S]
is weakly connected, which implies that S corresponds
to a connected set S of faces in G. Note that S con-
tains a directed cycle of Nver, which is an essential
cycle. Let C and C ′ denote the smallest and largest
essential cycle of G, respectively, such that all faces
in S lie in the interior of C and in the exterior of C ′.
We show that C is increasing or C ′ is decreasing.
Assume there is an incoming arc a that crosses C

(an incoming arc crossing C ′ is analogous). Since all
faces are rectangles, there is an elementary path P
from e⋆ to a vertex v on G only using right and down
edges of G. Thus, if w is the first vertex of C after
v, it is ℓC(vw) = 0 if vw is horizontal and ℓC(vw) =
−1 if vw points up. Since no edge on C is pointing
downward, i.e., its label is congruent to 1 mod 4, and
the labels between adjacent edges differ by −1, 0, or 1,
it follows that ℓC(e

′) ∈ {−2,−1, 0} for all edges e′ of
C, i.e., ℓC(e

′) ≤ 0. However, the edge e corresponding
to the incoming arc a of S is pointing upwards, and
therefore ℓC(e) = −1. Hence C is increasing.

Theorem 2 Let (G,Γ) be a rectangular graph and
its ortho-radial representation. There exists a bend-
free ortho-radial drawing of G respecting Γ if and only
if Γ is valid.

4 General 4-planar Graphs

In this section we present the proof of Theorem 1.
Following Tamassia’s approach for orthogonal draw-
ings [6], our approach is based on augmenting a graph
G and its valid ortho-radial representation with addi-
tional edges so that it remains valid and becomes rect-

(a) (b)

Figure 2: NetworksNrad (a) andNver (b) for assigning
the lengths of radial and vertical edges, respectively.

angular. Then the claim follows from Theorem 2. For
the sake of simplicity, we assume that the outer face
and the central face are already bounded by a hori-
zontal cycle, if not, we can simply add these cycles
and suitably attach them to our graph.
A regular face f that is not a rectangle contains a

left bend at a vertex on its boundary, and since it con-
tains four more right bends than left bends by cond. 2,
the boundary of f actually contains a vertex u that
is followed by two right bends; see Fig. 3a. We call
this a U-shape. Let z be a subdivision vertex on the
edge e immediately after the second right bend of the
U-shape and consider the graph G′ and its represen-
tation Γ

′ obtained by adding the edge uz and setting
the angles at u and z in the face left of uz to 90◦; see
Fig. 3a. Tamassia shows that Γ′ is a valid orthogonal
representation of G′. Since G′ has fewer left bends
at internal faces than G, this procedure eventually
terminates with a rectangular graph.
In the case of ortho-radial drawings the situation

is not so simple, since we additionally have to ensure
that the insertion does not create any monotone cy-
cles. However, this case cannot occur if the edge uz
is vertical. Namely, if inserting the vertical edge uz
created a monotone cycle C ′ in G′, then, instead of
the edge uz, one can use the cycle C ′−uz and (a part
of) the U-shape to find a monotone cycle C in G.

Lemma 3 Vertical augmentation does not create
monotone cycles.

There are, however, faces that do not have a U-
shape whose last segment is horizontal; see Fig. 3b.
Fix again a vertex u with a U-shape in face f . Indeed,
it can be the case that subdividing the last edge of
the U-shape by a vertex z and inserting uz as above
creates a monotone cycle. In this case, instead of
just considering subdividing the last edge of the U-
shape as above, we consider all the candidate edges

ei incident to f that are opposite of u in the sense
that rot(Cf [u, e]) = 2, where Cf denotes the facial
cycle of f . Let e1, . . . , ek denote the candidate edges
as they occur clockwise starting from u. We call the

140

33rd European Workshop on Computational Geometry, 2017

f

e

u

z

(a)

f
u

e1

e2e3

(b)

z

z
′

x

y

u

v

w

w
′

v
′

(c)

Figure 3: (a) U-shape (thick black) leading to a ver-
tical augmentation (dashed edge). (b) Face f whose
U-shapes all require horizontal augmentations and the
candidates ei for u. (c) Structure for simulating the
simultaneous augmentation with edges vw and v′w′.

process of subdividing ei with a new vertex z and
adding the edge uz augmenting with ei. Intuitively,
augmenting with ei makes a jump further downwards
as i increases. Indeed, using similar arguments as the
ones for the vertical case, one can show that the first
candidate never creates an increasing cycle, and the
last candidate never creates a decreasing cycle.

Lemma 4 Augmenting with e1 (resp. with ek) never
creates an increasing (resp. decreasing) cycle.

Moreover, it can be shown that an increasing and a
decreasing cycle cannot intersect strictly, and there-
fore, it is not possible that augmenting with a candi-
date creates both an increasing and a decreasing cycle.
Thus, if each augmentation with respect to the edges
ei yields an increasing or a decreasing cycle, then by
Lemma 4, there exists a pair of candidates such that ei
creates a decreasing cycle and ei+1 creates an increas-
ing cycle. Let ei = vw and ei+1 = v′w′ be directed
so that f lies to their right and note that possibly
v′ = w. Let z and z′ denote subdivision vertices of
ei and ei+1, respectively. We simulate augmentation
with both candidates simultaneously by inserting two
vertices x and y as shown in Fig. 3c. By construction,
we then find both a decreasing cycle C using the edges
ux, xz and a cycle C ′ using the edges ux, xy, yz′ that
is increasing except for possibly the edge xy. Since
these cycles both contain u but one is decreasing and
the other one is increasing, and such cycles cannot
strictly intersect, we can infer that, outside of the
face f both cycles actually coincide, i.e., their edges
all have label 0 outside of f . We thus find a path P
in G consisting of only horizontal edges that starts at
v′ or at w, ends at u and contains all these vertices.
Thus, augmenting the graph G by adding the edge
from u to the starting point of P creates a cycle con-
sisting of only horizontal edges. It can be argued that
such an augmentation is always safe. In fact one can
show that no monotone cycle can share a vertex with
a horizontal cycle. The following lemma summarizes
this discussion.

Lemma 5 Let f be a face and let u be a vertex on the
boundary of f that forms a left bend in f . Let further
e = vw and e′ = v′w′ be two consecutive candidates.
If augmentation with e creates an increasing cycle and
augmenation with e′ creates a decreasing cycle, then
augmenting with one of uw or uv′ does not create a
monotone cycle.

Altogether, this proves that for each left bend in
a regular face f there exists an augmentation such
that the resulting graph and ortho-radial representa-
tion are still valid. Eventually, we thus arrive at a
rectangular graph, and Theorem 2 applies.

5 Conclusion

In this work we considered orthogonal drawings of
graphs on cylinders. Our main result is a charac-
terization of the 4-plane graphs that can be drawn
bend-free on a cylinder in terms of a ortho-radial rep-
resentation of such drawings.

While our proof for both the rectangular case and
the general case are algorithmic, only the former cur-
rently has an efficient implementation, e.g., in terms
of a flow algorithm. In contrast, the rectangulation
procedure from Section 4 requires checking whether
augmentations create monotone cycles. Our most im-
portant open problem is whether such a check can be
performed in polynomial time.

References

[1] T. Bläsius, M. Krug, I. Rutter, and D. Wagner.
Orthogonal graph drawing with flexibility con-
straints. Algorithmica, 68(4):859–885, 2014.

[2] T. Bläsius, S. Lehmann, and I. Rutter. Orthogo-
nal graph drawing with inflexible edges. Computa-

tional Geometry: Theory and Applications, 55:26–
40, 2016.

[3] T. Bläsius, I. Rutter, and D. Wagner. Optimal
orthogonal graph drawing with convex bend costs.
Transactions on Algorithms, 12(3):33, 2016.

[4] M. Hasheminezhad, S.M. Hashemi, B.D. McKay,
and M. Tahmasbi. Rectangular-radial drawings
of cubic plane graphs. Computational Geometry:

Theory and Applications, 43:767–780, 2010.

[5] M. Hasheminezhad, S.M. Hashemi, and
M. Tahmabasi. Ortho-radial drawings of
graphs. Australasian Journal of Combinatorics,
44:171–182, 2009.

[6] R. Tamassia. On embedding a graph in the grid
with the minimum number of bends. SIAM Jour-

nal on Computing, 16(3):421–444, 1987.

141

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Aligned Drawings of Planar Graphs

Tamara Mchedlidze∗ Marcel Radermacher∗ Ignaz Rutter†

Abstract

Let G be a planar embedded graph and A be a set of pseu-

dolines passing through G. An aligned drawing of G and

A is a planar polyline drawing Γ of G with an arrange-

ment A of lines so that Γ and A have the same topological

properties as G and A. We study this problem restricted

to two pseudolines. We show that if every edge of a graph

is intersected by at most one pseudoline, then the instance

has a straight-line aligned drawing. This implies that ev-

ery configuration of a planar graph with two pseudolines

has an aligned drawing with at most one bend. In order to

prove this result, we strengthen the result of Da Lozzo et

al. [3], and prove that a planar graph G and a pseudoline C

have an aligned drawing with a prescribed convex drawing

of the outer face.

1 Introduction

Two fundamental primitives for highlighting structural

properties of a graph in a drawing are alignment of ver-

tices such that they are collinear and geometrically sepa-

rating unrelated graph parts, e.g., making them separable

by a straight line. Not surprisingly, both these techniques

have been previously considered from a theoretical point

of view in the case of planar straight-line drawings.

Da Lozzo et al. [3] study the problem of producing a

planar straight-line drawing of a given embedded graph

G = (V,E), i.e., G has a fixed combinatorial embedding

and outer face, such that a given set S ⊆ V of vertices is

collinear. It is clear that if such a drawing exists, then the

line containing the vertices in S is a curve starting and end-

ing at infinity that for each edge e of G either fully contains

e or intersects e in at most one point, which may be an end-

point. We call such a curve a pseudoline with respect to G.

Further, the pseudoline contains all the vertices in S. Da

Lozzo et al. [3] show that this is a full characterization of

the alignment problem, i.e., a straight-line drawing where

the vertices in S are collinear exists if and only if there

exists a pseudoline L with respect to G that contains the

vertices in S.

Likewise, for the problem of separation, Biedl et al. [1]

considered so-called HH-drawings, where given an em-

bedded graph G = (V,E) and a partition V = A∪̇B, one

seeks a planar straight-line drawing of G in which A and

∗Department of Computer Science, Karlsruhe Institute of Technol-

ogy, Germany, radermacher@kit.edu, mched@iti.uka.de
†Department of Mathematics and Computer Science, TU Eindhoven,

The Netherlands, i.rutter@tue.nl

(a) (b)

Figure 1: Aligned Drawing (b) of a 2-aligned planar

graph (a). The pseudolines R and B and the corresponding

lines in the drawing are drawn red and blue, respectively.

B can be separated by a line. Again, it turns out that such

a drawing exists if and only if there exists a pseudoline L

with respect to G such that the vertices in A and B are sepa-

rated by L in the sense that they are in different halfplanes

defined by L.

In particular, the results of Da Lozzo et al. [3] show that

given a pseudoline L with respect to G one can always find

a planar straight-line drawing of G such that the vertices

on S are collinear and the vertices contained in the half-

planes defined by L can be separated by a line L. In other

words, a topological configuration consisting of a planar

graph G and a pseudoline with respect to G can always be

stretched. In this paper we initiate the study of this stretch-

ability problem with more than one given pseudoline.

More formally, a tuple (G,C1, . . . ,Ck) is a k-aligned

graph if G = (V,E) is a planar embedded graph and

C1, . . . ,Ck are pseudolines with respect to G. We further

require that each pair Ci and C j with i �= j intersects pre-

cisely once. If the number k of curves is clear from the

context, we drop it from the notation and simply speak of

aligned graphs. A tuple (Γ,L1, . . . ,Lk), where each Li is a

line and Γ is a planar drawing of G, is an aligned drawing

of (G,C1, . . . ,Ck) if and only if the following properties

hold; refer to Fig. 1.

1. the arrangement of L1, . . . ,Lk is isomorphic to the ar-

rangement of C1, . . . ,Ck,

2. Γ is homeomorphic to the planar embedding of G,

3. each line Li intersects in Γ the same vertices and

edges as Ci in G, and it does so in the same order.

We focus on straight-line aligned drawings. For brevity,

unless stated otherwise, the term aligned drawing refers to

a straight-line drawing throughout this paper.

This convention generalizes the problems studied by Da

Lozzo et al. and Biedl et al. who concentrated on the case

of a single line. We study a natural extension of their set-

ting and ask for an alignment on two lines. We note that Da

Lozzo et al. and Biedl and et al. focus on alignment and

separation of given vertices, respectively. Their characteri-

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

142

33rd European Workshop on Computational Geometry, 2017

zations in terms of existence of pseudolines allows them to

abstract from geometry and to construct the pseudolines in

a purely combinatorial setting. In contrast to that, we are

given multiple pseudolines as part of the input.

In Section 3, we strengthen the result of Da Lozzo et al.

and Biedl et al. and show that there exists an aligned draw-

ing of G with a fixed convex drawing of the outer face.

In Section 4, we show that every aligned graph (G,R,B)
with each edge intersected by at most one pseudoline has

an aligned drawing. This immediately implies that every

aligned graph (G,R,B) has an aligned drawing with at

most one bend.

In addition to the strongly related work mentioned

above, there are several other works that are related to the

alignment of vertices in drawings. Dujmović [4] shows

that every n-vertex planar graph G = (V,E) has a planar

straight-line drawing such that Ω(
√

n) vertices are aligned,

and Da Lozzo et al. [3] show that in planar treewidth-3

graphs, one can align Θ(n) vertices and that in treewidth-

k graphs one can align Ω(k2) vertices. Chaplik et al. [2]

study the problem of covering all edges of a planar graph

with a small set of lines. They show that it is NP-hard to

decide whether a graph has such a cover of size at most k.

The complexity of covering all vertices by at most k lines

is open. Dujmović et al. [5] show that there is no set of

n lines intersecting in one point that supports all n-vertex

planar graphs.

2 Preliminaries and Proof Strategy

Let G = (V,E) be a planar embedded graph with a vertex

set V and an edge set E. We call v ∈ V interior, if v does

not lie on the boundary of the outer face of G. An edge

e ∈ E is interior, if e does not lie entirely on the boundary

of the outer face of G. An interior edge is a chord if it

connects two vertices on the outer face. A point p of an

edge e is an interior point of e, if p is not an endpoint of

e. A pseudosegment is a connected bounded subset of a

pseudoline. A triangulation is a planar graph whose inner

faces are all triangles. A triangulation of a graph G is a

triangulation that contains G as a subgraph. For a graph G

and an edge e of G, the graph G/e is obtained from G by

contracting e and merging the resulting multiple edges. A

k-wheel is a wheel graph Wk with k vertices on the outer

face and one interior vertex.

Our general strategy for proving the existence of aligned

drawings is as follows. First, we show that we can trian-

gulate our instance by adding vertices and edges without

invalidating its properties. We can thus assume that our

graph G is a triangulation. Second we show that, unless

G is very small, e.g., a k-wheel or a triangle, it contains a

specific type of edge, namely an edge that is contained in

a pseudoline, or an edge that is not intersected by any of

the pseudolines. Third, we exploit the existence of such an

edge to inductively prove the existence of an aligned draw-

ing of G. Depending on whether the edge is contained in a

separating triangle or not, we either decompose along that

triangle or contract the edge. In both cases the problem

reduces to smaller instances that are almost independent.

In order to combine solutions it is, however, crucially im-

portant to use the same line R for both of them.

3 Aligned Drawings with One Pseudoline

We show that every aligned graph (G,R) has an aligned

drawing (Γ,R). For this extended abstract, we assume that

G is 2-connected.

Depending on their relationship to R the edges of

(G,R) are characterized as follows. An edge e of G is

gray if it does not intersect the curve R. The edge e of

G is red if it lies entirely on the red curve. Otherwise

an edge intersects with R once and we refer to this edge

as monochromatic. A vertex on R is red and otherwise

gray. An aligned triangulation of (G,R) is an aligned

graph (GT ,R) with GT a triangulation of G and the same

outer face as G.

The following Lemma 1, Lemma 2 and Theorem 3 , in

this order, implement the three steps of our proof strategy

as outlined above. The proofs are omitted since proofs

with similar arguments are given in Section 4.

Lemma 1 Every aligned graph (G,R) admits an aligned

triangulation whose size is linear in G.

Lemma 2 Let (G,R) be an aligned triangulation with k

vertices on the outer face without a chord. If G is neither

a triangle nor a k-wheel, then (G,R) contains a red or a

gray edge.

Proof sketch. Observe the following two properties of

aligned triangulation without chords: (i) two red vertices

that are consecutive on R are connected by a red edge,

(ii) if G has no red edge, every interior gray vertex is in-

cident to an interior gray edge. With these observations

we can show that, if (G,R) does not contain a red or gray

edge, there is at most one interior vertex which is red. �

Theorem 3 Let (G,R) be an aligned triangulation and let

(ΓO,R) be an aligned convex drawing of the aligned outer

face (O,R) of G. There exists an aligned drawing (Γ,R)
of (G,R) with the same line R and the outer face drawn as

ΓO.

Given an arbitrary aligned graph (G,R), we can first

triangulate it using Lemma 1 and then draw it with Theo-

rem 3. Then the drawing of (G,R) is obtained from this

drawing by removing additional vertices and edges.

Corollary 4 Every aligned graph (G,R) admits an

aligned drawing (Γ,R) with a fixed aligned convex draw-

ing (ΓO,R) of the aligned outer face (O,R).

143

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

mono-

chromatic

almost

bichromatic

bichromatic

Figure 2: Examples of a monochromatic and a (almost-)

bichromatic graph.

v

u
w

(a) (b)
qi

v

u

x y

u

w

v

(c)

v

w

x

y
qi

(d)

Figure 3: Steps for triangulating almost-bichromatic

graphs (black) with monochromatic edges (green).

4 Aligned Drawings with Two Pseudolines

In this section, we show that every aligned graph

(G,R,B), where each edge is intersected by at most one

of two pseudolines, has an aligned drawing.

The intersection of the four halfplanes defined by R and

B define four quadrants. A vertex or an edge is red or

blue if it lies entirely on R or B, respectively. A gray

vertex or edge lies entirely in the interior of a quadrant.

An edge is monochromatic if it either lies on a pseudo-

line or shares exactly one point with only one pseudoline,

or one of its endpoints lies on the intersection of R and

B. Thus, a monochromatic edge is not necessarily red or

blue. Almost-bichromatic edges have both endpoints on

different pseudolines. Accordingly, a bichromatic edge

e is always intersected by both pseudolines with at least

one intersection point in the interior of e. Every 2-aligned

graph is a bichromatic graph. An almost-bichromatic

graph is a bichromatic graph without bichromatic edges.

A monochromatic graph is an almost-bichromatic graph

without almost-bichromatic edges; see Fig. 2.

A 2-aligned triangulation of (G,R,B) is a 2-aligned

graph (GT ,R,B) with GT a triangulation of G whose outer

face is a 4-cycle with each vertex in a different quadrant.

We start with the triangulation step of our proof strategy.

Lemma 5 Let (G,R,B) be a monochromatic aligned

graph. There exists a monochromatic aligned triangula-

tion GT = (VT ,ET) of G whose size is linear in the size G.

Proof sketch. Insert a 4-cycle in the unbounded region of

G with each vertex in a different quadrant. Since (G,R,B)
is monochromatic we can connect each new vertex with a

monochromatic or gray edge to the outer face of G.

If f is a non-triangular face whose interior contains the

intersection of R and B, we insert edges uv, vw as shown

in Fig. 3(a).

If f is a non-triangular face with a red (blue) edge e =
uv we can split f into two faces f ′ and f ′′ as shown in

Fig. 3(b) such that f ′ contains e on its boundary. Then we

can triangulate f ′ with monochromatic edges. A similar

approach works for red (blue) vertices; see Fig. 3(c).

If f is a non-triangular face whose interior contains a

pseudosegment s, then we find two edges vw,xy as shown

in Fig. 3(d) and we can triangulate by inserting a vertex on

s and monochromatic edges.

If none of the cases above apply, then no non-triangular

face contains a part of R or B. Thus all remaining non-

triangular faces can be triangulated with gray edges. �

Next we deal with step two of our proof strategy and

show the existence of a specific type of edge unless the

instance is very small.

Lemma 6 Let (G,R,B) be a monochromatic aligned tri-

angulation that does not contain an interior red, blue, or

gray edge. Then G is isomorphic to the 4-wheel.

Proof. Our first goal is to argue that both R and B alter-

nately intersect vertices and the interiors of edges of G.

Since (G,R,B) is a monochromatic triangulation, a ver-

tex lies on the intersection of R and B. As in the proof of

Lemma 2 one can argue that if two vertices occur consec-

utively along R or B, then we find a red or blue edge, re-

spectively. Now assume that R intersects two edges e1,e2

consecutively. Since G is a triangulation, it follows that

e1 and e2 share an endpoint x. Moreover, all endpoints of

e1 and e2 must be gray. Further e1 and e2 are consecutive

in the circular order of edges around x as otherwise we

would either find an intersection with R between e1 and

e2 or a gray edge. Thus, e1 and e2 bound a face, and hence

their endpoints distinct from x are in the same quadrant

and connected by an edge e, which is thus gray. Moreover,

e cannot be an outer edge as the outer face is a monochro-

matic 4-cycle and thus does not contain gray edges. It thus

follows, that both R and B alternate between vertices and

edges of G. Moreover, if v is a vertex that is followed by

an edge e = uw, then u,v,w form a triangle.

Let v be the vertex on the intersection of R and B. Then

there are four triangles T1, . . . ,T4 around v whose edges

opposite of v alternately intersect R and B in clockwise

order. Let u,w be two vertices of these triangles that lie in

the same quadrant, without loss of generality, u ∈ T1 and

w ∈ T2. We show that u = w. If not, then let N denote the

set of neighbors of v that lie clockwise between u and w

together with u and w. Since G is monochromatic, all ver-

tices in N are gray and lie in the same quadrant. Moreover,

since G is a triangulation, they form a fan of triangles, and

we hence find a gray edge. Since this argument applies

to any two consecutive triangles, it follows that the four

edges of T1, . . . ,T4 opposite of v form a 4-cycle.

Consider a red (blue) vertex v not lying on the intersec-

tion of R and B. The vertex is incident to two triangles

T1 = (v,x,u),T2 = (v,w,y) intersecting the pseudoline R

(B) with x and y in the same quadrant and u and w in the

144

33rd European Workshop on Computational Geometry, 2017

Nu

Nv

(a)

c

Nu

Nv

(b)

u v

v

u

w

(c)

Figure 4: Unpacking an edge in a drawing Γ
′ of G/e (a)

to obtain a drawing Γ of G (b). (c) Fan around vertex v on

the intersection of R and B.

same quadrant. The arguments from above immediately

apply to T1 and T2, showing that the endpoints u,w and x,y
of the triangles T1,T2 within the same quadrant are con-

nected by a gray edge, if u �= w or x �= y respectively. Since

G is a simple graph either x �= y or u �= w. This concludes

the proof. �

The next two lemmas implement step three of our proof

strategy and show that the edges that exists by Lemma 6

can be used to reduce the size of the instance. The correct-

ness of Lemma 7 follows from Corollary 4.

Lemma 7 Let (G,R,B) be a monochromatic aligned tri-

angulation and let T be a separating triangle splitting G

into subgraphs Gin,Gout such that Gin ∩ Gout = T and

Gout contains the outer face of G. Then (Gout,R,B) is a

monochromatic aligned triangulation and G has an aligned

drawing if and only if Gout has an aligned drawing.

Lemma 8 Let (G,R,B) be a monochromatic triangula-

tion and let e be a red, blue or gray edge of G that is

not contained in a separating triangle. Then the graph

(G/e,R,B) is a monochromatic triangulation. Further,

(G,R,B) has an aligned drawing if (G/e,R,B) has an

aligned drawing.

Proof. Observe that G/e is simple and triangulated since

G does not have separating triangles. Further, if no end-

point of e lies on the intersection of R and B, G/e remains

aligned since e is red, blue or gray, in particular the vertex

c resulting from contracting e has the same color as e. If

an endpoint v of e = uv lies on the intersection of R and

B we place the vertex c obtained by contracting e on the

intersection as well. Since every neighbor of u keeps its

color, G/e remains a monochromatic triangulation.

Let (Γ′,R,B) be an aligned drawing of (G/e,R,B). Let

Γ
′′ denote the drawing obtained from Γ

′ by removing c to-

gether with its incident edges and let f denote the face of

Γ
′′ where c used to lie. Since, G/e is triangulated, f is

star-shaped and c lies inside the kernel of f ; see Fig. 4.

We construct a drawing Γ of G as follows. First, we place

u at the position of c and insert all edges incident to u; if

one of the two vertices u,v lies on the outer face or on the

intersection of R and B, we assume, without loss of gen-

erality, that vertex to be u. Note that since G is an aligned

triangulation, there is no red or blue edge incident to the

intersection of R and B or to the outer face. This leaves a

uniquely defined inner face f ′ in which we have to place

v. Since G is triangulated, the interior of f ′ is intersected

by at most one pseudoline. Since, we only removed a fan

of triangles from f to obtain f ′, the face f ′ remains star-

shaped and furthermore, all points inside f ′ sufficiently

close to c lie in the kernel of f ′. Here it is important that,

if the edge is red or blue, the line R or B intersects the

kernel of f ′, respectively. �

Altogether the above lemmas and the observation that

an aligned 4-wheel always has an aligned drawing prove

our main result.

Theorem 9 Every monochromatic 2-aligned graph has an

aligned drawing.

By splitting every bichromatic edge with a vertex in

the interior of the intermediate quadrant, thus making the

graph monochromatic, we get the following corollary.

Corollary 10 Every bichromatic 2-aligned graph has a

polyline aligned drawing with at most one bend per edge.

5 Conclusion

In this paper we showed that every monochromatic 2-

aligned graph (G,R,B) has a straight-line aligned draw-

ing. This immediately implies one-bend aligned drawings

of bichromatic aligned graphs. As a tool we showed that

an aligned graph (G,R) has an aligned drawing with a

fixed convex drawing of the outer face. We conjecture that

every almost-bichromatic and possibly also every bichro-

matic graph (G,R,B) has a straight-line aligned drawing.

References

[1] Biedl, T.C., Kaufmann, M., Mutzel, P.: Drawing

planar partitions II: HH-drawings. In: Hromkovič,

J., Sýkora, O. (eds.) WG’98. pp. 124–136. Springer

(1998)

[2] Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbit-

sky, O., Wolff, A.: Drawing graphs on few lines and

few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD’16.

pp. 166–180. Springer (2016)

[3] Da Lozzo, G., Dujmović, V., Frati, F., Mchedlidze,

T., Roselli, V.: Drawing planar graphs with many

collinear vertices. In: Hu, Y., Nöllenburg, M. (eds.)

GD’16. pp. 152–165. Springer (2016)

[4] Dujmović, V.: The utility of untangling. In: Di Gi-

acomo, E., Lubiw, A. (eds.) GD’15. pp. 321–332.

Springer (2015)

[5] Dujmović, V., Evans, W., Kobourov, S., Liotta, G.,

Weibel, C., Wismath, S.: On graphs supported by line

sets. In: Brandes, U., Cornelsen, S. (eds.) GD’10. pp.

177–182. Springer (2011)

145

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

On the Relationship between k-Planar and k-Quasi Planar Graphs∗

Patrizio Angelini† Michael A. Bekos† Franz J. Brandenburg‡ Giordano Da Lozzo§

Giuseppe Di Battista¶ Walter Didimo‖ Giuseppe Liotta‖ Fabrizio Montecchiani‖

Ignaz Rutter∗∗

Abstract

A graph is k-planar (k ≥ 1) if it can be drawn (in the
plane) such that no edge has more than k crossings.
A graph is k-quasi planar (k ≥ 2) if it can be drawn
without k pairwise crossing edges. We prove that, for
k ≥ 3, every k-planar graph is (k + 1)-quasi planar.

1 Introduction

An emerging research area, informally recognized as
beyond planarity (see e.g. [6, 8]), concentrates on dif-
ferent models of graph planarity relaxation, which
allow edge crossings but forbid specific configurations.
Forbidden crossing configurations can be, for example,
a single edge that is crossed too many times [9], a
group of mutually crossing edges [5, 10], a group of
adjacent edges crossed by another edge [4], or an edge
that crosses two independent edges [2, 3, 7].

Different models give rise to different families of
“beyond planar” graphs. Two of the most popular fam-
ilies introduced in this context are the k-planar graphs
and the k-quasi planar graphs, which are usually de-
fined in terms of topological graphs, i.e., graphs with
a geometric representation in the plane with vertices
as points and edges as Jordan arcs connecting their
endpoints. A topological graph is k-planar (k ≥ 1)
if no edge is crossed more than k times, while it is
k-quasi planar (k ≥ 2) if it can be drawn in the plane
without k pairwise crossing edges.

A graph is k-planar (k-quasi planar) if it is iso-
morphic to some k-planar (k-quasi planar) topological
graph. Clearly, k-planar graphs are (k+1)-planar and
k-quasi planar graphs are (k + 1)-quasi planar. This
naturally defines corresponding hierarchies.

∗The research described in this paper started at the Dagstuhl

Seminar 16452 “Beyond-Planar Graphs: Algorithmics and Com-

binatorics”.
†Universität Tübingen, Germany,

{angelini,bekos}@informatik.uni-tuebingen.de
‡University of Passau, Germany,

brandenb@fim.uni-passau.de
§University of California, Irvine, CA USA,

gdalozzo@uci.edu
¶Roma Tre University, Italy, gdb@dia.uniroma3.it
‖Universitá degli Studi di Perugia, Italy, {walter.didimo,

giuseppe.liotta, fabrizio.montecchiani}@unipg.it
∗∗TU Eindhoven, The Netherlands, i.rutter@tue.nl

a) b)

Figure 1: Rerouting the thick edge in the 3-planar
graph (a) yields a 4-quasi planar graph (b).

The k-planarity and k-quasi planarity hierarchies
have been widely explored in graph theory, graph
drawing, and computational geometry, mostly in terms
of edge density. While k-planar graphs are known to
have at most a linear number of edges [9], the same is
not known to be true for k-quasi planar graphs. While
linear density upper bounds have been achieved for
k ≤ 4 [1], the best known upper bounds for k ≥ 5 are
super-linear [10]. Despite the fact that both graph
hierarchies are well-researched little is known about
their relationships.

Contribution. We focus on simple topological graphs
and prove the first non-trivial inclusion relationship
between the k-planarity and the k-quasi planarity hi-
erarchies. Namely, we show that every k-planar graph
is (k + 1)-quasi planar, for every k ≥ 3; see Fig. 1.

After some basic terminology in Section 2, Section 3
describes our proof strategy and introduces an edge
rerouting technique for removing so-called untangled
(k + 1)-crossings (a (k + 1)-crossing is a set of (k + 1)
pairwise crossing edges). Section 4 shows that all
(k+1)-crossings in a k-planar topological graph can be
untangled and Section 5 then shows a global rerouting
technique to remove all untangled (k + 1)-crossings.

2 Preliminaries

We only consider graphs with neither parallel edges
nor self-loops and without loss of generality we assume
all graphs to be connected. We identify the vertices
and edges of a topological graph with the points and
arcs representing them, respectively. Two edges cross
if they share one interior point and alternate around
this point. Two edges intersect if they either cross or
share a common endpoint. Graph G is almost simple

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

146

33rd European Workshop on Computational Geometry, 2017

if any two edges cross at most once, and it is simple if
any two edges intersect at most once. Graph G divides
the plane into topologically connected regions, called
faces. The unbounded region is the outer face. Note
that the boundary of a face can contain both vertices
of the graph and crossing points between edges.

For a subgraphX of a graphG, the arrangement AX

of X, is the arrangement of the curves corresponding
to the edges of X. We denote the vertices and edges
of X by V (X) and E(X). A node of AX is either a
vertex or a crossing point of X. A segment of AX is a
part of an edge of X that connects two nodes.
A k-crossing X is untangled if in AX all nodes

corresponding to vertices in V (X) are incident to a
common face, otherwise it is tangled ; see Sec. 4. A fan

is a set of edges that share a common endpoint.

Observation 1 Let G = (V,E) be a k-planar simple
topological graph and let X be a (k + 1)-crossing in
G. An edge in E(X) cannot be crossed by any edge in
E \E(X). In particular, for any two distinct (k + 1)-
crossings X and Y in G, E(X) ∩ E(Y) = ∅ holds.

3 Edge Rerouting Operations and Proof Strategy

We introduce an edge rerouting operation that will
serve as a basic tool for our proof strategy. Let G be
a k-planar simple topological graph and consider an
untangled (k + 1)-crossing X in G; see Fig. 2a.
Let e = {u, v} ∈ E(X) and let w ∈ V (X) \ {u, v}.

Denote by A′
X the arrangement obtained from AX by

removing all nodes corresponding to vertices in V (X)\
{u, v, w}, together with their incident segments, and
by removing edge (u, v). The operation of rerouting
e around w consists of redrawing e sufficiently close
to the boundary of the outer face of A′

X , choosing
the routing that passes close to w, in such a way that
e does not cross any edge in E \ E(X) except for a
fan incident to w; see Fig. 2b. More precisely, let D
be a topological disk that encloses all crossing points
of X and such that each edge in E(X) crosses the
boundary of D exactly twice. Then, the rerouted edge
keeps unchanged the parts of e that go from u to the
boundary of D and from v to the boundary of D. We
call the unchanged parts of a rerouted edge its tips

and the part that routes around w its hook.

Lemma 2 Let G′ ≃ G be the topological graph ob-
tained from G by rerouting an edge e = {u, v} ∈ E(X)
around a vertex w ∈ V (X) \ {u, v}. Let d be the edge
of E(X) incident to w. Graph G′ has the following
properties. (i) Edges e and d do not cross; (ii) The
edges that are crossed by e in G′ but not in G form a
fan at w; (iii) G′ is almost simple.

Note that G′ may be non-simple as e may possibly
cross its adjacent edges (u,w) and (v, w). We fix this
in Section 5 by redrawing (u,w) and (v, w) along e.

u

v
a)

u

v
w

D

b)

Figure 2: The rerouting operation for dissolving un-
tangled k-crossings. (a) An untangled k-crossing X.
(b) The rerouting of the dashed edge (u, v) around the
marked vertex w. The arrangement A′

X is thin red,
the removed nodes and segments are gray.

We now describe our strategy for transforming a
k-planar simple topological graph G into a simple
topological graph G′ ≃ G that is (k + 1)-quasi planar.
Note that G is trivially (k + 2)-quasiplanar, but it
may contains (k + 1)-crossings. The idea is to pick
from each (k + 1)-crossing X in G an edge eX and
a vertex wX and then to apply the above rerouting
operation simultaneously for all pairs (eX , wX). We
call this operation global rerouting. Note that this is
well-defined due to Observation 1.

There are several constraints that have to be sat-
isfied for such a global rerouting to have the desired
effect. First, the rerouting operation works only for
untangled (k+1)-crossings; we deal with this problem
in Section 4. Second, even if all (k+1)-crossings are un-
tangled, the graph G′ resulting from the global rerout-
ing may be non-simple and/or contain new (k + 1)-
crossings. We overcome these issues in Section 5.

4 Untangling (k + 1)-Crossings

We show how to untangle (k+1)-crossings in k-planar
topological graphs. The main idea is as follows. Con-
sider a (k + 1)-crossing X in a k-planar topological
graph G. Since the edges in E(X) already have k

crossings, the faces of the arrangement AX partition
G − E(X) into disjoint subgraphs Gf , one for each
face f of AX ; see Fig. 3a. Further, Gf is drawn inside
a topological disk Df whose boundary contains only
the vertices in V (Gf)∩X. By suitably deforming and
rearranging these subgraphs, e.g., on the outside of a
circle, the edges in E(X) can be reinserted so that X
either has fewer crossings or is untangled; see Fig. 3b.
Note that this does not tangle other (k + 1)-crossings.

Lemma 3 Let G be a k-planar simple topological
graph. There exists a k-planar simple topological
graph G′ ≃ G without tangled (k + 1)-crossings.

5 Removing Untangled (k + 1)-Crossings

Let G be a k-planar simple topological graph without
tangled (k+1)-crossings. First, we show how to remove
all (k + 1)-crossings in G when k ≥ 3 to obtain a

147

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

1 2
3

4

5
6

7

8

Gh

Gf
Gg

f

g

h

1
2

4

5

6

7

8

Gf

Gg

Gh

3

a) b)

Figure 3: (a) A tangled 4-crossing X in a 3-planar
graph G partitions G− E(X) into disjoint subgraphs.
(b) Transformation that untangles X.

a)
w

e

d

b)

e d

w
c)

e

u

v
w

e
′

e
′

d)

Figure 4: (a–b) Topological graphs that are not almost
simple, arising from a global rerouting. (c) Avoiding
the non-simplicity in (b) by redrawing one of the two
rerouted edges. The vertices used for rerouting are
filled green. (d) Illustration for the proof of Lemma 8.

(k + 1)-quasi planar almost-simple topological graph
G′ ≃ G. Then, we describe how to make this graph
simple, without introducing (k + 1)-crossings.

Let G′ be the topological graph obtained from G by
performing a global rerouting that picks an edge vertex
pair (eX , wX) from each (k + 1)-crossing X in G.

Conditions on the Global Rerouting. We establish
conditions on the global rerouting that guarantee that
G′ is almost simple and (k + 1)-quasi planar. We start
by describing which edge pairs cross newly in G′.

Lemma 4 If e and d are two edges that cross in G′

but not in G, then either both are rerouted around
the same vertex, or one of them is rerouted around an
endpoint of the other.

Lemma 4 gives rise to the following criterion for
determining whether a global rerouting results in an
almost-simple topological graph G′; see Fig. 4a,b.

Lemma 5 Graph G′ is an almost-simple topological
graph if and only if the following conditions hold.
C1. No two edges are rerouted around the same vertex.
C2. There is no pair of edges e, d such that e is

rerouted around an endpoint of d and d is rerouted
around an endpoint of e.

Moreover, G′ is (k + 1)-quasi planar (though not
necessarily almost-simple) if no two edges are rerouted
around the same vertex.

Lemma 6 Let G be a k-planar simple topological
graph without tangled (k + 1)-crossings, and let G′ be

the graph obtained by a global rerouting operation on
G. If G′ does not contain two edges rerouted around
the same vertex and k ≥ 3, then G′ does not contain
any (k + 1)-crossing.

Note that Lemma 6 does not hold for k = 2.

Obtaining simplicity. Lemmas 3 and 6 imply that,
for k ≥ 3, a given k-planar simple topological graph
G can be redrawn such that the resulting topological
graph G′ ≃ G contains no (k + 1)-crossings, assuming
that no two edges are rerouted around the same vertex.
The graph G′ may however be not simple, and even
not almost simple. We first show how to remove from
G′ pairs of edges crossing more than once, without
introducing any (k+1)-crossings. Afterwards we show
how to remove crossings between adjacent edges still
without introducing any (k + 1)-crossings.

Lemma 7 There exists a (k + 1)-quasi planar almost-
simple topological graph G∗ such that G∗ ≃ G′.

Proof. If G′ is not almost simple, then by Lemma 5
there exist pairs of edges such that each of them is
rerouted around an endpoint of the other one. We now
show how to resolve all such pairs. Let e, d be any of
these pairs; see also Fig. 4b. We redraw one of the two
edges, say e, sufficiently close along d between the two
crossings. More precisely, the tip of e crossed by the
hook of d is redrawn following the tip of d crossed by
the hook of e, without crossing it (see Fig. 4c). Hence
e and d do not cross. We apply this transformation
to all such pairs of tips. We claim that the resulting
graph G∗ does not contain new (k + 1)-crossings.

Observe first that all such pairs of tips are pairwise
disjoint, since no two edges are rerouted around the
same vertex. This implies that no tip of an edge is
transformed twice in G∗, and that no two transformed
edges cross each other. Hence, if a (k + 1)-crossing
exists in G∗ then it contains exactly one transformed
edge. We prove that this is not the case.

Consider again a pair of edges e, d that cross twice in
G′ and such that e is transformed in G∗. For an edge
l, let Xl denote the (k + 1)-crossing of G containing
l. The edges that cross e are: (i) a set X ′

d of edges
that cross the tip of d crossed by the hook of e and
thus that are part of Xd, (ii) a set X ′

e of edges in Xe

that cross the tip of e not crossed by d, (iii) a set Ew

of edges incident to the vertex w around which e is
rerouted (and thus cross the hook of e).

Note that X ′
d contains the edges that cross e in G∗

and not in G′. These are at most k − 1 edges. The
edges in X ′

e do not cross the edges in X ′
d, because

they are non-rerouted edges that belong to distinct
(k + 1)-crossings of G, and any edge in Ew crosses at
most one edge in X ′

e. Thus G
∗ is (k + 1)-quasi planar.

Finally, we claim that the edges in X ′
d are crossed

only once by e. Recall that none of these edges crosses

148

33rd European Workshop on Computational Geometry, 2017

e in G′. Since the tip of e crossed by the hook of d is
transformed by following the tip of d crossed by the
hook of e, an edge h of X ′

d can cross e only once on
this tip. On the other hand, it could be that also the
other tip of e has been transformed along the tip of an
edge l such that it crosses h. But then h crosses tips
of two rerouted edges d, l in G′, and by Lemma 4 also
in G, contradicting the disjointness of Xd and Xl. �

Lemma 8 There exists a (k + 1)-quasi planar simple
topological graph G such that G ≃ G∗.

Proof. Since G is simple, if a pair of crossing edges e
and e′ share an endpoint u, then at least one of them,
say e, has been redrawn. Suppose first that only one
of them has been redrawn. Under this assumption, we
distinguish between two subcases: either e has also
been transformed when going from G′ to G∗ or not.
We first argue about the subcase in which e has

not been transformed. Note that, e crosses e′ with its
hook. Then we redraw e′ by following e until reaching
u. Now e′ crosses only edges that cross the tip of e
incident to u. This guarantees that no (k+1)-crossing
is introduced and that no edge is crossed twice (because
G∗ is almost simple). See also Fig. 4d.
Consider now the subcase where e has been trans-

formed. Then, there exists an edge e′′ that crosses e
twice in G′, and that has not been transformed. Note
that the endpoint around which e′′ has been rerouted
is not u, as otherwise e′ would cross twice e′′, which is
not possible because G∗ is almost simple. Then edge
e′ is part of the (k + 1)-crossing of e′′ in G. Then we
redraw the first part of e from u to the crossing with
e′ by following e′ and leave the rest of e′ unchanged.
Notice that all the new crossings are due to edges that
cross e′, and it can be argued that these cannot pro-
duce a (k+1)-crossing. However, we also need to show
that none of these edges is crossed twice. Such an edge
would have an endpoint in-between e and e′′, which
is impossible by the definition of the edge rerouting
operation (given that such edge belongs to the same
(k + 1)-crossing of e′′ in G).

If both e and e′ have been redrawn, then they cannot
be redrawn around the same vertex, and the case in
which one is redrawn around the non-shared endvertex
of the other can be handled similarly as above. �

Existence of global rerouting. It remains to show
the existence of a global rerouting where no two edges
are rerouted around the same vertex. Consider the
bipartite graph H whose nodes correspond to the
(k + 1)-crossings of G and the vertices of G such that
(X, v) ∈ E(H) if and only if v ∈ V (X). It can be
shown that H is bipartite, planar, and each node
corresponding to a (k + 1)-crossing has degree 2k. It
is then not hard to see that Hall’s criterion is satisfied
and there exists a matching that assigns a vertex to
each (k + 1)-crossing.

Lemma 9 Let G be a k-planar simple topological
graph. There exists a global rerouting on G such that
no two edges are rerouted around the same vertex.

The lemmas from this section imply our main result.

Theorem 10 Let G be a k-planar simple topological
graph for k ≥ 3, then there exists a (k + 1)-quasi
planar simple topological graph G such that G ≃ G.

6 Conclusion

We proved that, for any k ≥ 3, k-planar graphs are
(k+1)-quasiplanar. Our main open question is whether
the same inclusion relation also holds for k = 2.

References

[1] E. Ackerman. On the maximum number of edges
in topological graphs with no four pairwise cross-
ing edges. Discrete Comput. Geom., 41(3):365–
375, 2009.

[2] M.A. Bekos, S. Cornelsen, L. Grilli, S.-H. Hong,
and M. Kaufmann. On the recognition of fan-
planar and maximal outer-fan-planar graphs. In
GD 2014, volume 8871 of LNCS, pages 198–209.
Springer, 2014.

[3] C. Binucci, E. Di Giacomo, W. Didimo, F. Mon-
tecchiani, M. Patrignani, A. Symvonis, and I.G.
Tollis. Fan-planarity: Properties and complexity.
Theor. Comput. Sci., 589:76–86, 2015.

[4] O. Cheong, S. Har-Peled, H. Kim, and H.-S. Kim.
On the number of edges of fan-crossing free graphs.
Algorithmica, 73(4):673–695, 2015.

[5] J. Fox, J. Pach, and A. Suk. The number of
edges in k-quasi-planar graphs. SIAM J. Discrete

Math., 27(1):550–561, 2013.

[6] M. Kaufmann, S. Kobourov, J. Pach, and S.-H.
Hong. Beyond planar graphs: Algorithmics and
combinatorics. Dagstuhl Seminar 16452, 2016.

[7] M. Kaufmann and T. Ueckerdt. The density of
fan-planar graphs. CoRR, abs/1403.6184, 2014.

[8] G. Liotta. Graph drawing beyond planarity: some
results and open problems. In Proc. 15th Italian

Conf. Theor. Comput. Sci., volume 1231 of CEUR
Workshop Proceedings, pages 3–8, 2014.

[9] J. Pach and G. Tóth. Graphs drawn with few
crossings per edge. Combinatorica, 17(3):427–439,
1997.

[10] A. Suk and B. Walczak. New bounds on the max-
imum number of edges in k-quasi-planar graphs.
Comput. Geom., 50:24–33, 2015.

149

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Radial Contour Labeling with Straight Leaders

Benjamin Niedermann∗ Martin Nöllenburg† Ignaz Rutter‡

Abstract

In this paper we introduce a flexible and general ap-
proach for external label placement assuming a given
contour of the figure prescribing the possible posi-
tions of the labels. While much research on exter-
nal label placement aims for fast labeling procedures
for interactive systems, we focus on highest-quality
illustrations. We design a new efficient geometric la-
bel placement algorithm that is based only on few
fundamental design criteria. Yet, other criteria can
flexibly be included in the algorithm as hard or soft
constraints.

1 Introduction

Atlases of human anatomy play a major role in the ed-
ucation of medical students and the teaching of med-
ical terminology. Such books contain a broad spec-
trum of filigree and detailed drawings of the human
anatomy from different cutaway views. For example,
the third volume of the popular human anatomy atlas
Sobotta [8] contains about 1200 figures on 384 pages.
Figure 1 (labels added by our algorithm) is one of
them showing a cross section of the human skull. The
usefulness of the figures essentially relies on the nam-
ing of the illustrated components. In order not to
spoil the readability of the figure by occluding it with
text, the names are placed around the figure with-
out overlapping it. Thin black lines, called leaders,
connecting the features with their names accordingly
guarantee that the reader can match names and fea-
tures correctly. Following preceding research, we call
this labeling technique external label placement. In
this paper we present a flexible and versatile approach
for external label placement in figures. We use med-
ical drawings as running example, but occlusion-free
label placements are also indispensable for the read-
ability of other highly detailed figures as they occur,
for example, in scientific publications, mechanical en-
gineering and maintenance manuals.
Our approach bridges the gap between practical

and theoretical results. While previous practical re-
sults (e.g., [1,5]) aim for fast approaches using heuris-
tic multi-criteria optimization, previous theoretical
results (e.g., [2, 3]) mostly consider simple models,

∗University of Bonn, Germany
†TU Wien, Austria
‡TU Eindhoven, The Netherlands

l

Figure 1: Medical drawing labeled by our approach.
Source: Paulsen, Waschke, Sobotta Atlas Anatomie
des Menschen, 23.Auflage 2010 c©Elsevier GmbH, Ur-
ban & Fischer, München.

typically with one optimization criterion, e.g., min-
imizing the total leader length.

Like many of the theoretical results, our approach
uses a clear mathematical model to guarantee com-
pliance with pre-defined design rules. However, in
contrast to preceding research our approach is signif-
icantly more flexible and stands out by its ability to
support an easy integration of specific design rules.
It particularly relies on only a few key assumptions
that most figures with external label placement have
in common. Other rules can easily be patched in both
as hard and soft constraints, where hard constraints
may not be violated and the compliance of soft con-
straints is rated by a cost function.

Moreover, in contrast to previous work, our ap-
proach also takes costs of consecutively placed labels
into account. At first glance this seems to be a small
improvement, but in fact it is important to obtain
an appealing labeling where, for example, labels have
regular distances or the angles of consecutive labels
should be similar. Further, our approach supports la-
bels of different sizes. Indeed, for each point feature,
the user can pre-define a set of different label sizes
modeling formatting rules. The approach also allows
to pre-define groups of labels that are placed consec-
utively, which is required when naming semantically
related features.

We first introduce a flexible formal model for con-

tour labeling, which is a generalization of boundary

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

150

33rd European Workshop on Computational Geometry, 2017

labeling (Sect. 2). This model is based on interviews
with one layout artist and two editors of the human
anatomy atlas Sobotta [8]. We further empirically
verified the model by a semi-automatic quantitative
analysis of 202 figures printed in the Sobotta [8] atlas.
A detailed discussion of the interviews and the semi-
automatic analysis is found in [7]; in this preprint we
focus on the algorithmic core of our approach, which
yields the mathematically optimal solution (Sect. 3).
The strength of our approach comes at the cost of

a high asymptotic running time of O(n8), where n de-
scribes the complexity of the input instance. Recently,
Keil et al. [6] presented a similar general dynamic pro-
gramming approach for computing an independent set
in outerstring graphs, which can be utilized to solve
contour labeling in O(n6) time for a general cost func-
tion rating individual labels; however, it cannot take
joint costs of two consecutive labels into account. In
contrast to Fink and Suri [4] our approach is signif-
icantly faster (O(n8) instead of O(n15)) and it sup-
ports non-uniform labels and more general shapes.
In the full paper [7], we show in a detailed ex-

perimental evaluation on a large set of real-world in-
stances that with some engineering we can solve re-
alistically sized instances in adequate time and high
layout quality. Considering different speed-up tech-
niques, the variants of our approaches need between 7
seconds and 346 seconds on average. While the slow
variants are optimal, the fast variants achieve near-
optimal solutions. The domain experts assessed our
algorithm to be a tool of great use that could reduce
the working load of a designer significantly.

2 Formal Model

We now describe a model for contour labeling. Let F
be a simple polygon that describes the contour of the
figure and contains n points to be labeled, which we
call sites. We denote the set of the sites by S and
assume that the sites are in general position, i.e., no
three sites are collinear. For each site s ∈ S we de-
scribe its label1 ℓ by a rectangle r and an oriented line
segment λ that starts at s and ends on the boundary
of r. We call λ the leader of ℓ, r the text box of ℓ,
and the endpoint of λ on r the port of ℓ. The other
endpoint is the site of ℓ.
A set L of labels over S is called an external labeling

of (F, S), if (1) |L| = |S|, (2) for each site s ∈ S there is
exactly one label in L that belongs to s, and (3) every
text box of a label in L lies outside of F. If no two la-
bels in L intersect each other, L is planar. Traversing
the figure’s boundary in clockwise order starting from
the boundary’s topmost point defines an ordering on
the labels; we call this the radial ordering of L (in case

1To ease presentation we define that the leader is a compo-

nent of the label. In preceding research only the rectangle r is

called label.

that a leader intersects the figure’s boundary multiple
times, we regard the intersection point closest to the
port). Two labels are consecutive in L if one directly
follows the other in the radial ordering.

Let L be a planar labeling. Let ℓ1, . . . , ℓn be the
labels of L in the radial ordering. For simplicity we
define ℓn+1 := ℓ1. The cost c of a labeling L is de-
fined as c(L) =

∑
n

i=1
c1(ℓi) + c2(ℓi, ℓi+1), where c1 is

a function assigning a cost to a single label ℓi and c2
is a function assigning a cost to two consecutive la-
bels ℓi and ℓi+1. We note that in contrast to previous
research the cost function also supports rating two
consecutive labels, which is crucial to assess labels in
relation to each other. Given the cost function c, the
problem ExternalLabeling then asks for a planar
labeling L of (F, S) that has minimum cost with re-
spect to c, i.e., for any other planar labeling L′ of
(F, S) it holds that c(L) ≤ c(L′).

We consider the special case that the ports of the
labels lie on a common contour enclosing F. The con-
tour schematizes the shape of the figure with a certain
offset and describes the common silhouette formed by
the labels. It thus generalizes the typically rectan-
gular figures studied in boundary labeling [2, 3]. We
assume that the contour is given as a simple poly-
gon C enclosing F. An external labeling L is called a
contour labeling if for every label of L its leader lies
inside C and its port lies on the boundary ∂C of C.
Since not every part of C’s boundary may be suitable
for the placement of labels, we require that the ports
of the labels are contained in a given subset P ⊆ ∂C

of candidate ports. If P is finite, the input instance
has fixed ports and otherwise sliding ports.
A tuple I = (C, S,P) is called an instance of contour

labeling. The region of I is the region enclosed by C.
We restrict ourselves to convex contours and clearly
separated sites and text boxes, i.e., we assume that
the contour C is convex and no text box of any label
intersects the convex hull of S. Further, we are only
interested in staircase labelings, i.e., for each label ℓ
there is a horizontal half-line l that emanates from the
port of ℓ through the text box of ℓ such that no other
label intersects l; see Fig. 1. In the full version [7]
of this paper, we give empirical evidence that these
assumptions are reasonable.

Given a cost function c, the problem ContourLa-

beling then asks for a (cost) optimal, planar staircase
contour labeling L of (C, S,P) with respect to c, i.e.,
for any other planar staircase contour labeling L′ of
(C, S,P) it holds that c(L) ≤ c(L′).

3 Algorithm

In this section we describe how to construct the op-
timal labeling L of a given instance (C, S,P) with
respect to a given cost function c. To that end we
apply a dynamic programming approach. The ba-

151

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

ℓ1

ℓk

s1
s2

sk

C
′

C
′′
=A1 ∪ A2 ∪ A3

A1

A3

A2

s3
. .
.

(a)

ℓ1

sk s

I
′′h

s2
s1

(b)

ℓk s3

I
′

Type A

ℓk

s

I
′′ h

s2

s1

(c)

ℓ1s3

I
′

Type B

sk

ℓ2

s

I
′′

s1

(d)

ℓ1

I
′

Capstone

s2

l l

l

Figure 2: Decomposition in convex instance I
′ (blue)

and concave instance I
′′ (orange). (a) Basic defini-

tions. (b) Type A instance with k > 2. (c) Type B

instance with k > 2. (d) Capstone instance.

sic idea is that any optimal contour labeling can be
recursively decomposed into a set of sub-labelings in-
ducing disjoint sub-instances. As we show later, these
sub-instances are of a special form; we call them con-

vex sub-instances. We further show that any such
sub-instance can be described by a constant number
of parameters over S and P. Hence, enumerating all
choices of these parameters, we enumerate in poly-
nomial time all possible convex sub-instances that
an optimal labeling may consist of. For each such
sub-instance we compute the cost of an optimal la-
beling reusing the results of already computed values
of smaller sub-instances. In this way we obtain the
value of the optimal labeling for (C, S,P).

We now sketch the decomposition of a planar label-
ing L into a finite set of sub-instances of three types.
We describe a sub-instance by a simple polygon that
consists of two polylines. One polyline is part of the
original contour C and the other polyline consists of
a convex chain of sites and two leaders; see Fig. 2(a).
More precisely, assume that we are given a convex
chain K = (s1, . . . , sk) of sites with k ≥ 2 and the two
non-intersecting labels ℓ1 and ℓk of s1 and sk, respec-
tively. The directed polyline K ′ = (p1, s1, . . . , sk, pk)
splits the polygon C into two polygons C

′ and C
′′,

where p1 and pk are the ports of ℓ1 and ℓk, respec-
tively. We consider the order of the sites such that
we meet p1 before pk when going along the contour
of C in clockwise-order starting at the top of C. Fur-
ther, going along K ′ we denote the sub-polygon to the
left of K ′ by C

′ and to the right of K ′ by C
′′. With

respect to the direction of K ′, the sub-polygon C
′ is

counter-clockwise oriented, while C
′′ is clockwise ori-

ented. Further, C′′ contains the top point of C. We

define that C
′ contains the sites s2, . . . , sk−1, while

C
′′ does not.
Thus, the polyline K ′ partitions the instance

(C, S,P) into two sub-instances I
′ = (C′, S′,P′) and

I
′′ = (C′′, S′′,P′′) such that
(1) S

′ ∪ S
′′ = S \ {s1, sk} and P

′ ∪ P
′′ = P \ {p1, pk},

(2) the sites of S′ lie in C
′ or on K and the sites of

S
′′ lie in the interior of C′′,

(3) the ports of P′ lie on the boundary of C′ and the
ports of P′′ lie on the boundary of C′′.

Note that the sites s1, sk and the ports p1, pk neither
belong to I

′ nor to I
′′, because they are already used

by the fixed labels ℓ1 and ℓk. We call (ℓ1, ℓk,K), which
defines the polyline K ′, the separator of C′ and C

′′.
In the following, we only consider sub-instances, in

which the convex chain K lies to the right of the line l
through s1 and sk pointing towards sk from s1; we
will show that these are sufficient for decomposing
any instance. Put differently, the chain K is a convex
part of the boundary of C′ and a concave part of the
boundary of C′′. We call I′ a convex sub-instance and
I
′′ a concave sub-instance.
The line l splits C

′′ into three regions A1, A2 and
A3; see Fig. 2(a). Let A2 be the region to the right
of l and let A1 and A3 be the regions to the left of l
such that A1 is adjacent to the leader of ℓ1 and A3 is
adjacent to the leader of ℓk. Depending on the choice
of ℓ1 and ℓk, the regions A1 and A3 may or may not
exist. We distinguish the following convex instances.
A convex instance has type A (type B) if there is a
site s ∈ A1 (s ∈ A3) such that ℓ1 (ℓk) and the half-
line h emanating from s through s1 (sk) separates K
from the sites in C

′′; see Fig. 2(b) and Fig. 2(c).
For both types the chain K is uniquely defined by

the choice of ℓ1, ℓk and s, because h separates the sites
of I′ from the sites of I′′. Thus, type A and type B in-
stances are uniquely defined by ℓ1, ℓk and s; we denote
these instances by IA[ℓ1, ℓk, s] and IB[ℓ1, ℓk, s], respec-
tively. We call s the support point of the instance. In
case that C′′ is empty, the chain K is already uniquely
defined by ℓ1 and ℓk and we write IA[ℓ1, ℓk,⊥] and
IB[ℓ1, ℓk,⊥]. Hence, we can enumerate all such in-
stances by enumerating all possible triples consisting
of two labels and one site. Since each label is de-
fined by one port and one site, we obtain O(|S|3 |̇P|2)
instances in total.

For k = 2 the chain consists of the sites s1 and
s2 and the support point is superfluous; such an in-
stance is solely defined by the labels ℓ1 and ℓ2 of s1
and s2, respectively. We call these instances capstone
instances and denote them by IC[ℓ1, ℓ2]; see Fig. 2(d).
The next lemma implies that any labeling of any

instance I is a type A instance; see [7] for the proof.

Lemma 1 Let I be an instance of ContourLabel-

ing and let L be a planar labeling of I. The first

leader ℓ and the last leader ℓ′ in the radial ordering of

152

33rd European Workshop on Computational Geometry, 2017

L define a type A instance I
′ = IA[ℓ, ℓ

′,⊥] such that

the exterior of I′ is empty.

Hence, optimizing over all choices of first and last
labels we find a type A instance that corresponds to an
optimal labeling. It remains to show how to solve such
an instance. To that end we show that any labeling
of that instance can be decomposed into type A, type
B and capstone instances recursively.

Let I = IA[ℓ1, ℓk, s] be a type A instance with sup-
port point s, and let L be a planar labeling of I. By
the reasoning above this instance implies a unique
convex chain K = (s1, . . . , sk) such that s1 is the site
of ℓ1 and sk is the site of ℓk; see Fig. 3.

First assume that I is not a capstone instance, i.e.,
k > 2. We show that L can be partitioned into a type
A instance and a capstone instance as shown in Fig. 3.

To see that, let ℓ2 ∈ L be the label of s2. Since
ℓ2 connects two points of C’s boundary, it partitions I
into two sub-instances I′ and I

′′ with labelings L|
I′
and

L|
I′′

such that any label of L\{ℓ2} either is contained
in L|

I′
or L|

I′′
. Let I

′ be the instance containing s1
and I

′′ the other one. Obviously, I′ forms the capstone
instance IC[ℓ1, ℓ2]. We now show that I

′′ forms the
instance I

′′ = IA[ℓ2, ℓk, s1] of type A.

By definition of I the label ℓ1 and the half-line h em-
anating from s through s1 separate the convex chain
K of I from the sites in the exterior of I. Because of
the convexity of K, the half-line h′ emanating from s1
through s2 and the label ℓ2 separate the convex chain
K ′ = (s2, . . . , sk) from the sites in the exterior of I′′.
Hence, I′′ = IA[ℓ2, ℓk, s1] has type A.

If I is a capstone instance, i.e., k = 2, the labeling
can be decomposed into smaller type A, type B and
capstone instances using more intricate arguments.
For type B instances we can argue symmetrically to
type A instances. Further, the costs of L can be com-
posed by the costs of the constructed sub-labelings.
The details are given in [7].

Based on these results the dynamic programming
approach works as follows, where an instance is called
valid if the two labels ℓ1 and ℓk defining the separator
do not intersect and comply with the criterion of a
staircase labeling.

Step 1. We compute all valid instances of type A
and type B, and all valid capstone instances.

Step 2. We compute the optimal costs for all con-
vex sub-instances. Let I be the currently considered
instance of size i ≥ 0 with separator (ℓ1, ℓk,K =
(s1, · · · , sk)), where the size of I is the number of sites
contained in I; recall that s1 and sk do not belong to I.
Considering the instances in non-decreasing order of
their sizes, we can assume that we have already com-
puted the optimal costs for all convex instances with
size less than i. Hence, we compute the optimal costs
of I by systematically exploring all decompositions of I
into smaller convex instances.

ℓ1ℓ2

sk s

I
′

I
′′

hh
′

s1

lℓk

s2

Figure 3: Decomposition of a convex type A instance I
(dashed polygon) into a capstone instance I′ and type
A instance I′′. The site s is the support point of I and
s1 is the support point of I ′′.

Step 3. We explore all choices of first and last
labels in the radial ordering. By Lemma 1 one of the
choices defines a type A instance that corresponds to
an optimal labeling. In the previous steps we have
computed the optimal costs for that instance.

In [7] we formally prove that this approach yields a
planar staircase labeling in O(S4 · P4) time.

Theorem 2 ContourLabeling with fixed ports

can be solved in O(S4 · P4) time.

References

[1] K. Ali, K. Hartmann, and T. Strothotte. Label layout
for interactive 3D illustrations. Journal of the WSCG,
13(1):1–8, 2005.

[2] M. A. Bekos, M. Kaufmann, A. Symvonis, and
A. Wolff. Boundary labeling: Models and efficient al-
gorithms for rectangular maps. Computational Geom-
etry: Theory and Applications, 36(3):215–236, 2007.

[3] M. Benkert, H. J. Haverkort, M. Kroll, and M. Nöllen-
burg. Algorithms for multi-criteria boundary label-
ing. Journal of Graph Algorithms and Applications,
13(3):289–317, 2009.

[4] M. Fink and S. Suri. Boundary labeling with ob-
stacles. In Canadian Conf. Computational Geometry
(CCCG’16), pages 86–92, 2016.

[5] K. Hartmann, K. Ali, and T. Strothotte. Floating
labels: Applying dynamic potential fields for label
layout. In Smart Graphics (SG’04), volume 3031 of
LNCS, pages 101–113. Springer, 2004.

[6] J. M. Keil, J. S. B. Mitchell, D. Pradhan, and M. Vat-
shelle. An algorithm for the maximum weight inde-
pendent set problem on outerstring graphs. Computa-
tional Geometry: Theory and Applications, 60:19–25,
2017.

[7] B. Niedermann, M. Nöllenburg, and I. Rutter. Ra-
dial contour labeling with straight leaders. CoRR,
arXiv:1702.01799, 2017.

[8] F. Paulsen and J. Waschke. Sobotta Atlas of Human
Anatomy, Vol. 3, 15th ed., English/Latin: Head, Neck
and Neuroanatomy. Elsevier Health Sciences Germany,
2013.

153

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Formulae Enumerating Polyominoes by both Area and Perimeter∗

Gill Barequet† Yufei Zheng†

Abstract

A polyomino is an edge-connected set of cells on Z
2.

To-date, no formulae enumerating polyominoes by
area (number of cells) or perimeter (number of empty
cells neighboring the polyomino) are known. In this
paper we present a few formulae enumerating poly-
ominoes according to both parameters.

1 Introduction

A polyomino of area n is an edge-connected set of n
cells on Z

2. Two (so-called fixed) polyominoes are
considered equivalent if one can be translated into the
other; We consider here only fixed polyominoes. The
study of polyominoes began in the 1950s in statistical
physics [3], where they are usually called lattice an-

imals. In parallel, counting polyominoes has been a
long-standing problem in enumerative combinatorics.
Let A(n) denote the number of polyominoes of

area n (sequence A001168 in The OEIS [1]). Elements
of A(n) are currently known up to n = 56 [6]. The
asymptotic growth constant of polyominoes has also
attracted much attention. Klarner [7] showed that
the limit λ := limn→∞

n
√

A(n) exists. The conver-
gence of A(n + 1)/A(n) to λ (as n→∞) was proven
only three decades later [9]. The best-known lower
and upper bounds on λ are 4.0025 [2] and 4.6496 [8],
respectively. It is widely believed [5] that λ ≈ 4.06.
In statistical physics, the “perime-

Figure 1:
A sample
polyomino

ter” of a polyomino P is defined to be
the number of empty cells neighboring
cells of P . For example, the perime-
ter of the polyomino shown in Figure 1
is 12. We denote by A(n, p) the num-
ber of polyominoes having area n and
perimeter p. Figure 2 shows a plot
of the full tabulation of A(n, p) for all
1 ≤ n ≤ 26, in which the curve associated with each
value of n is “normalized” by shifting it to the left
by 1.195n, the empirically-claimed mean perimeter of
all polyominoes of area n [4]. Our goal was to inves-
tigate some of the patterns seen in the figure and use
them for proving formulae enumerating polyominoes
by both area and perimeter.

∗Work on this paper by both authors has been supported in
part by ISF Grant 575/15.

†Dept. of Computer Science, The Technion—Israel In-
stitute of Technology, Haifa 32000, Israel. E-mail:
{barequet,yufei}@cs.technion.ac.il

Figure 2: Perimeter distributions

2 Formulae

As shown below, the maximum perimeter of polyomi-
noes of area n is 2n+2. Hence, we introduce a new
parameter, k ≥ 0, and use the value of k to distinguish
between the different cases of perimeter 2n+2−k.

2.1 Perimeter 2n + 2 (k = 0)

Observation 1

1. The maximum possible perimeter of a polyomino

of area n is 2n+2.

2.
A(n, 2n+ 2) =

{

1 n = 1
2 n ≥ 2

Proof.

1. Consider a polyomino of area n. Each polyomino
cell has 4 neighbors, which are either occupied
or free. Hence, the total number of cells neigh-
boring polyomino cells is 4n. However, since
the polyomino is edge-connected, there are at

least n−1 neighborhood relations between cells.
(The cell-adjacency graphs of polyominoes, that
have exactly that number of nodes, are trees;
Nontree polyominoes have more than n−1 cell-
neighborhoods.) Each neighborhood reduces the
perimeter by 2. Therefore, the maximum possi-
ble perimeter is 4n− 2(n− 1) = 2n+ 2.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

154

33rd European Workshop on Computational Geometry, 2017

(a) (b) (c) (d) (e)

Figure 3: Cases for k = 2 (Theorem 1)

2. As above, only tree polyominoes can have the
maximum possible perimeter of 2n+2. However,
each “bend” of the form also reduces the
perimeter by 1. Therefore, polyominoes with the
maximum-possible perimeter cannot have bends.
Polyominoes which are trees and have no bends
are sticks. For area at least 2, there are two sticks
(horizontal and vertical). The two “sticks” of
area 1 identify into a single cell.

�

The sequence A(n, 2n+2)|n≥2 = 2, 2, 2, . . . also has
the recursive form a(n) = a(n− 1), whose character-
istic equation is x− 1 = 0.

2.2 Perimeter 2n + 1 (k = 1)

For n = 1, 2, the count A(n, 2n+1) = 0 holds trivially.

Observation 2 A(n, 2n+ 1) = 4(n− 2) for n ≥ 3.

Proof. For a polyomino of area n, the perime-
ter 2n+1 is short by only 1 from the maximum possi-
ble. This may happen only when the polyomino is a
string with a single bend. The bend can be located at
any cell in the string except the two extreme cells, and
each such shape has four different orientations. �

The sequence A(n, 2n + 1)|n≥3 = 4, 8, 12, . . . also
has the recursive form a(n) = 2a(n − 1) − a(n − 2),
whose characteristic equation is x2 = 2x− 1, that is,
(x− 1)2 = 0.

2.3 Perimeter 2n (k = 2)

In the sequel, we use the following convention in illus-
trations of polyominoes: Empty circles, filled circles,
and “target” circles mark empty cells neighboring one,
two, and three cells, respectively, of a polyomino. Re-
served cells are marked with crosses.

Theorem 1

A(n, 2n) =

0 1 ≤ n ≤ 3
9 n = 4
28 n = 5

6n2 − 38n+ 72 n ≥ 6

Proof. For a polyomino of area n, the perimeter 2n is
short by 2 from the maximum possible value. Refer to
Figure 3. Let us analyze systematically all situations
in which this “loss” of two neighbors can happen.

1. Nontrees. Such polyominoes have at least four
bends, hence, the loss of at least four neighbors
(no matter if the cells inside the corners are occu-
pied or empty). This is true except for the 2× 2
polyomino (Figure 3(a)), which has area 4 and
perimeter 8. The other cases involve trees.

2. Strings with two bends in opposite directions
(Fig. 3(b)). The bends can be located anywhere
but the string endpoints, and for each choice of
bend locations there are 4 orientations. In total,
there are 4

(

n−2
2

)

= 2n2 − 10n+ 12 possibilities.

3. T-like polyominoes (see Figure 3(c)). Except the
junction, there are three non-empty legs whose
lengths sum up to n−1, hence we need to repre-
sent n−4 as an ordered sum of three non-negative
integers. For each choice of the lengths of the
legs, there are four possible orientations. In total,
there are 4

(

n−2
2

)

= 2n2 − 10n+ 12 possibilities.

4. Strings with two bends in the same direction,
where the length of the middle leg is 3 and the
length of the shorter of the two other legs is 2,
see Figure 3(d). (These conditions ensure the
loss of two neighbors due to the cell marked with
the “target” sign.) For area 5, we have the four
orientations of the pentomino . For area at
least 6, there are two options for the shorter leg,
hence there are 8 possibilities.

5. Strings with two bends in the same direction,
and having a middle leg of length at least 4 (see
Figure 3(e)). Since the two bends cannot be lo-
cated at the endpoints of the string, and two cells
are reserved in the middle leg, the two bends are
chosen out of n−4 locations. Finally, each such
string has four possible orientations. In total,
there are 4

(

n−4
2

)

= 2n2 − 18n+ 40 possibilities.

To conclude, the formulae enumerating the 5 cases are

Case Area Count
1 4 1
2 ≥ 4 2n2 − 10n+ 12
3 ≥ 4 2n2 − 10n+ 12
4 5 4

≥ 6 8
5 ≥ 6 2n2 − 18n+ 40

Summing up all cases completes the proof. �

The sequence A(n, 2n)|n≥6 = 60, 100, 152, . . . also
has the recursive form a(n) = 3a(n − 1) − 3a(n −

2) + a(n − 3), whose characteristic equation is x3 =
3x2 − 3x+ 1, that is, (x− 1)3 = 0.

155

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

2.4 Perimeter 2n − 1 (k = 3)

Theorem 2

A(n, 2n−1) =

0 1 ≤ n ≤ 4
20 n = 5
80 n = 6
228 n = 7
480 n = 8

−1053.5− 10.5(−1)n
}

+486.75n+ 1.25n(−1)n n ≥ 9
−89n2 + 6.5n3

Proof. Similarly to the proof of Theorem 1, we have
that for a polyomino of area n, the perimeter 2n−1 is
short by 3 from the maximum possible value. Refer
to polyomino types as in Figure 4. Let us explore the
situations in which this “loss” of 3 neighbors can hap-
pen. In some of the cases, the value of a function f(n)
depends on the parity of n: If n is even, then f(n) =
f1(n); otherwise, if n is odd, then f(n) = f2(n). A
simplified form, avoiding a conditional expression, is
f(n) = (f1(n) + f2(n))/2 + (−1)n(f1(n)− f2(n))/2.

1. Type (a.1). In this case a ≥ c+ 1.

• n is even. In this subcase, the count is

f1(n) = 8

(n−8)/2
∑

c=2

n−c−7
∑

a=c+1

n−a−c−11/2−(−1)a+c/2
2

∑

d=1

1

= (−10 + n)(144− 34n+ 2n2)/6.

The factor 8 is because this shape does not have
symmetries. The first summation is over c, the
length of the right “leg.” Its minimum value is 2
since the two right corners (marked with black
circles) are distinct, while its maximum value is
(n− 8)/2: Eight cells are reserved for bends and
horizontal legs, and the division by 2 is since the
left leg is at least as long as the right leg (plus one
cell). The second summation is over a, the length
of the left leg. Its minimum value is c+1 by con-
struction, while its maximum value is n−c−7:
Seven cells are reserved for bends and vertical
legs. The third summation is over d, the length
of the top leg. Its minimum value is 1, while its
maximum value is (n−a−c−11/2−(−1)a+c/2)/2.
First, a+c cells are reserved for vertical legs.
Then, 5 or 6 more cells are reserved, depending
on the parity of a+c. The final division by 2 is
since the bottom leg is longer than the top leg.

• n is odd. In this subcase, the count is

f2(n) = 8

(n−9)/2
∑

c=2

n−c−7
∑

a=c+1

n−a−c−11/2+(−1)a+c/2
2

∑

d=1

1

= (−11 + n)(126− 32n+ 2n2)/6,

with a similar reasoning.

a

d

b

c

d

b

a a

b

a

d

c

(a.1) (a.2) (a.3)

≥ 3 ≥ 1

(a.4) (a.5) (b)

≥ 1

(c) (d) (e)

≥ 2
≥ 1

(f.1) (f.2) (f.3)

≥ 2

≥ 2
≥ 2

(g.1) (g.2) (g.3)

≥ 1

≥ 2

≥ 1 ≥ 1

≥ 2

(g.4) (h.1) (h.2)

≥ 2

(h.3) (h.4)

Figure 4: Cases for k = 3 (Theorem 2)

156

33rd European Workshop on Computational Geometry, 2017

The total count in this case is
f1(n) + f2(n)

2
+ (−1)n

f1(n)− f2(n)

2

= −
471

2
−
9(−1)n

2
+

(

481

6
+

(−1)n

2

)

n−9n2+
n3

3
.

2. Type (a.2). This case is similar to Case 1 except
that a = c, hence we have a double instead of a
triple summation. We combine the two formulae,
for the parities of n, directly into one formula:

8

n−

1
2
+ 1

2
(−1)n−6

2
∑

a=2

n−2a−4
∑

b=
n−2a−

3
2
−

1
2
(−1)n

2

1

=
111

2
−

15(−1)n

2
+ (−15 + (−1)n)n+ n2.

3. Type (a.3). Here a < c and d < b, to distinguish
this case from Type (a.1). The analysis is similar.

4. Type (a.4). Since we need to represent n−9 as
the sum of two non-negative integers, and there
are no symmetries, we have 8(n−8) possibilities.

5. Type (a.5). This is a special case which exists
only for n = 8. This shape has no symmetries,
therefore there are eight possibilities for this case.

6. Type (b). Since this shape does not have any
symmetries, there are exactly 8 possibilities.

7. Type (c). This case is similar to other cases (ex-
planations given in the full version of the paper).

8. Type (d). This special case exists only for n =
8. Polyominoes of this shape have no symmetry,
therefore there are eight possibilities for this case.

9. Type (e): strings with 3 bends in alternating di-
rections. Bends can be located anywhere on the
string except its endpoints; for each choice of the
bends there are 4 orientations. In total, we have
4
(

n−2
3

)

= 2n3/3− 6n2 + 52n/3− 16 possibilities.

10–16. Types (f.1–f.3, g.1–g.4). These cases are similar
to other cases. Explanations are thus omitted
here and provided in the full version of the paper.

17. Type (h.1). We need to represent n−7 as the or-
dered sum of four non-negative integers. Since
there are no symmetries, there are 8

(

n−4
3

)

=
−20 + 37n/3− 5n2/2 + n3/6 possibilities.

18. Type (h.2). Aside from reserved cells, we need
to represent the number n−7 as the ordered sum
of two non-negative integers. Since there are no
symmetries, this can be done in 8(n− 6) ways.

19. Type (h.3). This case is identical to Case 18 ex-
cept that the roles of the two horizontal legs are
exchanged. Thus, the number of polyominoes of
this type is also 8(n− 6).

20. Type (h.4). Since there are no degrees of free-
dom in the lengths of the legs and no symmetries
in this type of polyominoes, there are exactly 8
possibilities for this case.

In conclusion, the formulae enumerating all cases are

Case Area Count

1 ≥ 12 − 471
2 −

9(−1)n

2 +
(

481
6 +

(−1)n

2

)

n − 9n2 + n3

3

2 ≥ 10 111
2 −

15(−1)n

2 + (−15 + (−1)n)n + n2

3 ≥ 9 − 67
2 +

3(−1)n

2 +
(

211
12 −

(−1)n

4

)

n − 3n2 + n3

6

4 ≥ 9 −64 + 8n
5 8 8
6 ≥ 5 8

7 ≥ 5 −32 + 104n
3 − 12n2 + 4n3

3
8 7 4

≥ 8 8

9 ≥ 5 −16 + 52n
3 − 6n2 + 2n3

3

10 ≥ 7 −160 + 296n
3 − 20n2 + 4n3

3
11 ≥ 6 −40 + 8n
12 ≥ 7 −48 + 8n

13 ≥ 7 −160 + 296n
3 − 20n2 + 4n3

3
14 ≥ 7 −48 + 8n
15 ≥ 7 −48 + 8n
16 ≥ 6 8

17 ≥ 7 −160 + 296n
3 − 20n2 + 4n3

3
18 ≥ 7 −48 + 8n
19 ≥ 7 −48 + 8n
20 ≥ 6 8

Summing up all cases completes the proof. The gen-
eral formula holds already for n ≥ 9. �

The sequence A(n, 2n−1)|n≥9 obeys the recurrence
a(n) = 2a(n− 1) + a(n− 2)− 4a(n− 3) + a(n− 4) +
2a(n−5)−a(n−6), with characteristic equation x6 =
2x5+x4− 4x3+x2+2x− 1, i.e, (x− 1)4(x+1)2 = 0.

2.5 k = 4 and Beyond

For k = 4, manual analysis of all cases is not fea-
sible. However, using the known values of A(5, 12)–
A(26, 50), we reconstructed the recursive formula for
A(n, 2n− 2) (for n ≥ 13): a(n) = 2a(n− 1) + 2a(n−

2)−6a(n−3)+6a(n−5)−2a(n−6)−2a(n−7)+a(n−8).
Its characteristic equation is x8 = 2x7 + 2x6 − 6x5 +
6x3 − 2x2 − 2x+ 1, i.e., (x− 1)5(x+ 1)3 = 0.

Future work includes explaining why A(n, p) (n
fixed) seems to have a binomial distribution, automat-
ing the computation of formulae for A(n, 2n+ 2− k)
(k fixed), and understanding their general form.

References

[1] The On-Line Enc. of Int. Sequences, http://oeis.org .
[2] G. Barequet, G. Rote, and M. Shalah, λ > 4: An

improved lower bound on the growth constant of poly-
ominoes, Comm. of the ACM, 59, 88–95, 2016.

[3] S.R. Broadbent and J.M. Hammersley, Percolation
processes: I. Crystals and mazes, Proc. Cambridge Phil.

Soc., 53, 629–641, 1957.
[4] A.R. Conway and A.J. Guttmann, On two-dimensional

percolation, J. Phys. A: Math. Gen., 28, 891–904, 1995.
[5] D.S. Gaunt, The critical dimension for lattice animals, J.

of Physics, A: Math. and General, 13, L97–L101, 1980.
[6] I. Jensen, Counting polyominoes: A parallel implemen-

tation for cluster computing, Proc. Int. Conf. on Com-

putational Science, III (Melbourne, Australia and St. Pe-
tersburg, Russia, 2003), LNCS, 2659, Springer, 203–212.

[7] D.A. Klarner, Cell growth problems, Canadian J. of

Mathematics, 19, 851–863, 1967.
[8] D.A. Klarner and R.L. Rivest, A procedure for im-

proving the upper bound for the number of n-ominoes,
Canadian J. of Mathematics, 25, 585–602, 1973.

[9] N. Madras, A pattern theorem for lattice clusters, An-

nals of Combinatorics, 3, 357–384, 1999.

157

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

High Dimensional Consistent Digital Segments

Man-Kwun Chiu∗,† Matias Korman‡

Abstract

We consider —the problem of digitalizing Euclidean
line segments from R

d to Z
d. Christ et al. (DCG,

2012) showed how to construct a set of consistent
digital segments (CDS) for d = 2: a collection of
segments connecting any two points in Z

2 that satisfies
the natural extension of the Euclidean axioms to Z

d.
In this paper we extend this construction to higher
dimensions.

We show that any total order can be used to create
a set of consistent digital rays CDR in Z

d (a set of rays
emanating from a fixed point p that satisfies the exten-
sion of the Euclidean axioms), and fully characterize
for which total orders we can construct a CDS.

1 Introduction

Computers and digital data have nowadays replaced
the ruler and compass methods of computation. In
order to have a rigorous system of geometric computa-
tion in the digital world, it is desirable to establish a
set of axioms similar to those of the Euclidean geome-
try, where we need to replace a line by a Manhattan
path in the micro scale that in a macro scale can be
seen as a straight line.

There have been several attempts to define digital
segments in a two dimensional n × n grid. The two
dimensional bounded space is the most popular case
to consider given its many applications in computer
vision and computer graphics. Among the many pro-
posed solutions, we focus on the axiomatic approach
introduced by Michael Luby in 1987 [4]. He showed
that lines should curve by Θ(log n) to satisfy a set of
axioms analogous to Euclid’s axioms. The theory was
recently re-discovered by Chun et al. [3] and Christ
et al. [2], who proposed a d-dimensional version of
the set of axioms. Unfortunately, they left open how
to generate such a complete set of digital segments
that resembles the Euclidean ones. In this paper we
provide the first significant step towards answering the
question for high dimensions.

∗National Institute of Informatics (NII), Tokyo, Japan.
chiumk@nii.ac.jp

†JST, ERATO, Kawarabayashi Large Graph Project.
‡Tohoku University, Sendai, Japan.

mati@dais.is.tohoku.ac.jp. Partially supported by the
ELC project (MEXT KAKENHI No. 12H00855 and 15H02665).

2 Preliminaries

Let x1, x2, . . . , xd denote the coordinate axes in Z
d,

and pi denote the i-th coordinate of a point p ∈ Z
d.

Our aim is to construct a digital path for any two
points p, q ∈ Z

d (we denote such a path by R(p, q)).
Ideally, we want R to be constructive and defined in
the whole domain, but sometimes we will consider
subsets of Zd × Z

d instead.

Definition 1 For any S ⊆ Z
d×Z

d, let DS be a set of
digital segments such that R(p, q) ∈ DS for all (p, q) ∈
S. We say that DS forms a partial set of consistent
digital segments on S (partial CDS for short) if for
every pair (p, q) ∈ S it satisfies the following five
axioms:

(S1) Grid path property: R(p, q) is a path between p

and q under the 2d-neighbor topology1.

(S2) Symmetry property: R(p, q) = R(q, p).

(S3) Subsegment property: For any r ∈ R(p, q), we
have R(p, r) ∈ DS and R(p, r) ⊆ R(p, q).

(S4) Prolongation property: There exists r ∈ Z
d such

that R(p, r) ∈ DS and R(p, q) ⊂ R(p, r).

(S5) Monotonicity property: For all i ≤ d such that
pi = qi, it holds that every point r ∈ R(p, q)
satisfies ri = pi = qi.

A partial CDS is called a set of consistent digital
segments (CDS for short) when S = Z

d×Z
d. A partial

CDS is called a consistent digital ray system (CDR
for short) when S = {p} × Z

d (for some p ∈ Z
d). Our

aim is to create a CDS in Z
d.

The straightness or resemblance between the digital
line segment R(p, q) and the Euclidean segment pq

is often measured using the Hausdorff distance. The
Hausdorff distance H(A,B) of two objects A and B is
defined by H(A,B) = max{h(A,B), h(B,A)}, where
h(A,B) = maxa∈A minb∈B ||(a, b)||2, where ||(a, b)||2
is the Euclidean distance between two points.

Definition 2 Let DS(S) be a partial CDS. We say
that DS(S) has Hausdorff distance f(n) if for all p, q ∈

S such that ||pq||2 ≤ n, H(pq,R(p, q)) = O(f(n)).

1The 2d-neighbor topology is the natural one that connects
to your predecessor and successor in each dimension. Formally
speaking, two points are connected if and only if their L1 dis-
tance is exactly one.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

158

33rd European Workshop on Computational Geometry, 2017

2.1 Previous work

Although the concept of consistent digital segments
was first studied by Luby [4], it received renewed
interest by the community when it was rediscovered by
Chun et al. [3]. The latter showed how to construct a
set of consistent digital rays (CDR) in any dimension.
The construction satisfies all axioms, including the
Hausdorff distance bound:

Theorem 1 (Theorem 4.4 of [3], rephrased)
For any d ≥ 2 and p ∈ Z

d we can construct a CDR
with O(log n) Hausdorff distance.

H̊astad [4] and Chun et al. [3] showed that any
CDR in two dimensions must have Ω(log n) Hausdorff
distance. Thus log n is the smallest possible distance
one can hope to achieve. This result was generalized by
Christ et al. [2], who shows a correspondence between
CDRs in Z

2 and total orders on the integers. In
particular, this correspondence can be used to create a
CDS in Z

2 that has O(log n) Hausdorff distance. Note
that the Ω(log n) lower bound also holds for CDS, so
this result is asymptotically tight.

This answers the question of how well can CDSs ap-
proximate Euclidean segments in the two dimensional
case. However, the question for higher dimensions
remains largely open. Although the method of Christ
et al. [2] cannot be used to construct CDSs or CDRs in
higher dimensions, they show that it can create partial
CDSs as follows.

Theorem 2 (Theorem 16 of [2], rephrased)
Let S = {(x, y) : xi ≥ yi} ⊂ Z

d × Z
d. We can

construct arbitrarily many partial CDSs on S.

Other than Theorems 1 and 2, little or nothing is
known for three or higher dimensions. Up to date, the
only CDS known in three or higher dimensions is the
naive bounding box approach (described in Section 3)
that has Ω(n) Hausdorff distance. In particular, it
still remains open whether one can create a CDS in
Z
d with o(n) Hausdorff distance (for d > 2).

Further definitions Given two points p, q ∈ Z
d such

that p �= q, the slope of R(p, q) is the sign vector
t = (t1, t2, . . . , td) ∈ {+1,−1}d, where ti = +1 if
pi ≤ qi and is −1 if pi ≥ qi. For simplicity, throughout
the paper we refer to the slope of R(p, q) (whenever p
and q have more than one slope we pick one arbitrarily).
Let T be the set containing all 2d slopes of Zd.

A total order θ of Z is a binary relation on all pairs
of integers. We denote that a is smaller than b with
respect to θ by a ≺θ b. We define three operations on
total orders: shift, flip and reverse. The shift operation
is denoted by θ+c and is the result of adding a constant
value c to each integer without changing their binary
relations (that is, a ≺θ b if and only if a+c ≺θ+c b+c).

Similarly, flipping is denoted by −θ and is the result of
changing the sign of all binary relations (that is, a ≺θ b

if and only if −a ≺−θ −b). The reverse operation
of θ (denoted by θ

−1) is the total order resulting in
inverting all relationships (that is, a ≺θ b if and only
if b ≺θ−1 a). Sometimes we will restrict a total order
θ to an interval [a, b]. We denote this by θ[a, b].

Throughout the paper we will associate a total order
to a point p and a slope t. This will be denoted by θ

p
t .

We will omit the subscript or superscript if it is clear
from the context or we use the same total order for all
slopes or points, accordingly.

2.2 Overview and paper organization

We study properties that CDRs and CDSs must sat-
isfy in high dimensions (i.e., d ≥ 3), and show that
they behave very differently from the two-dimensional
counterparts. In Section 3 we introduce the concept
of axis-order. Although not needed in two dimensions,
it allows us to extend the total order construction of
Christ et al. to higher dimensions. Given a point
p ∈ Z

d, a total order θ on the integers, and a slope
t, we construct a partial CDS which we denote by
TOC(θ, p, t). Specifically, it contains segments having
an endpoint p and slope t (that is, an orthant whose
apex is p). In order to create a CDR, we combine 2d

such constructions (one for each slope), and charac-
terize when such an approach works. Recall that T is
the set containing all possible slopes of Zd.

Theorem 3 For any d > 2, point p ∈ Z
d and set

{θt : t ∈ T} of 2d total orders,
⋃

t∈T TOC(θt, p, t)
forms a CDR at p if and only if for any t, t′ ∈ T

it holds that θt[t · p,∞) = θt′ [t
′ · p,∞)− t′ · p+ t · p.

This result highly contrasts with the two dimen-
sional counterpart of Christ et al. [2]: in two dimen-
sions we have four different slopes (and thus, four
associated quadrants). We can use four different total
orders (one for each of the quadrants) and the union
will always be a CDR. In higher dimensions this is
not true: fixing the total order for a single orthant
uniquely determines the behaviour of other orthants.
In particular, there is a unique way of completing the
partial CDS TOC(θ, p, t) to a CDR which we denote
by TOC(θ, p).
The next step is to consider the union of several

CDRs to obtain a CDS. In Section 4 we characterize
for which total orders this is possible.

Theorem 4 θ is a total order such that⋃
p∈Zd TOC(θ, p) forms a CDS if and only if

θ = θ + 2 and θ = −(θ + 1)−1.

This result also contrasts with the two dimensional
case: if we replicate the same construction for all
points of Z2, the result will always be a CDS for any

159

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

total order. However, in higher dimensions this does
only hold for some total orders.
The main difference between two dimensional and

higher dimensional spaces is that the construction for
two different slopes has a larger portion in common.
In two dimensions, two quadrants share at most a
line (whose behaviour is unique because of the mono-
tonicity axiom), but in general orthants may share a
subspace of dimension d− 1. The total orders associ-
ated to each orthant must behave similarly within the
subspace, which creates some dependency between the
total orders. More importantly, each orthant shares
subspaces with other orthants, and so on. This cas-
cades creating common dependencies that cycle back
to the original orthant and highly constrain the total
orders. We refer the reader to [1] for more details.

3 Total order construction in high dimensions

The construction of Christ et al.[2] explains how to
construct segments of slope (+1,+1) in Z

2 (or equiva-
lently, for points in the first quadrant). The segments
of different slopes are obtained via symmetry. In higher
dimensions it will be useful to have an explicit way
to construct segments of any slope. Thus, we first
generalize the method of Christ et al. for any orthant.

In order to get an idea of our approach, we first look
at the folklore bounding box approach to construct a
CDS. When defining the path between p and q, we
consider the minimum bounding box formed by the
two points. The point with smaller x1 coordinate
will move in the x1 coordinate until reaching the x1

coordinate of another point. Afterwards, the one with
smaller x2 coordinate will move in the x2 coordinate,
and so on until the two points meet.
So, if d = 3, for any segment whose slope is

(+1,+1,+1) we first do all the movements in the
x1 coordinate, then x2 coordinate, and finally in the
x3 coordinate. However, if the segment has slope
(+1,−1,−1), then the bounding box CDS will travel
first in the x1 coordinate, then x3 and finally x2. In-
tuitively speaking, even though in both cases we are
performing the same steps, the order in which we
execute each dimension is slightly different (or equiva-
lently, the total order is being interpreted differently).
We model this difference in interpretation through a
new concept which we call axis-order.
Given a slope (t1, t2, . . . , td), let a1, . . . ak be the

indices of the coordinates with positive value in in-
creasing order (that is, ti = +1 if and only if i = aj
for some j ≤ k). Similarly, let b1, . . . bd−k be the
indices of the coordinates with negative value in de-
creasing order. Then, the axis-order of (t1, t2, . . . , td)
is xa1

, xa2
, . . . , xak

, xb1 , . . . , xbd−k
.

Given a point p ∈ Z
d, a total order θ and a slope

t, we construct the set of rays emanating from p with
slope t and axis order xa1

, xa2
, . . . , xad

. Define the

orthant Ot(p) = {q ∈ Z
d : ti ·qi ≥ ti ·pi}: by definition,

the segment from p to any point in Ot(p) has slope t.
For any point q ∈ Ot(p) we construct the segment

R(p, q). The path from p to q must do t · q− t · p steps,
out of which |p1 − q1| will be in the first coordinate,
|p2−q2| in the second, and so on. We traverse through
intermediate points, each time increasing the inner
product with t by one. At each intermediate point r,
we check the position of t · r in θ[t · p, t · q − 1]; if it is
among the |pa1

−qa1
| smallest elements in θ[t·p, t·q−1]

then we move in the xa1
coordinate. Otherwise, if it

is among the smallest |pa1
− qa1

|+ |pa2
− qa2

| elements
we move in xa2

, and so on.
For any point p ∈ Z

d, slope t, and total order θ,
we call the collection of segments {R(p, q) : q ∈ Ot(p)}
the total order construction of θ (centered at p) for
the slope t, and denote it by TOC(θ, p, t).

Lemma 5 For any p ∈ Z
d, slope t and total order

θ, the set of segments in TOC(θ, p, t) forms a partial
CDS on {p} × Ot(p).

Theorem 3 stated in Section 2.2 shows the relation-
ship that total orders in different slopes must satisfy
in order to create a CDR. Intuitively speaking, this
correlation is so strong that choosing one total order
effectively fixes the rest. We sketch the proof of one
implication of the equivalence.

Lemma 6 (Necessary condition for CDRs)
Let p ∈ Z

d and {θt : t ∈ T} be a set of 2d to-
tal orders such that

⋃
t∈T TOC(θt, p, t) forms

a CDR. Then, for any t, t′ ∈ T , it holds that
θt[t · p,∞) = θt′ [t

′ · p,∞)− t′ · p+ t · p.

Proof. [sketch] We prove the statement by contradic-
tion. That is, assume that there exist two slopes t, t′

such that v ≺θt
v′ but v′− t ·p+ t′ ·p ≺θt′

v− t ·p+ t′ ·p.
Without loss of generality, we can choose t and t′ so
that the corresponding orthants share a plane (pick
a sequence of intermediate orthants so that pairwise
they do, and look at the first time in which the equality
is not satisfied). We pick a point q such that R(p, q)
has both slope t and t′, and look at R(p, q) from both
the viewpoints of TOC(θt, p, t) and TOC(θt′ , p, t

′).
Along the path R(p, q) we look at two intermediate

points r and r′. The main feature of these points is
that the behaviour of R(p, q) at those points depends
on the positions of v and v′ in θt (if we look at it
from the viewpoint of TOC(θt, p, t)). Since v ≺θt v

′,
we can choose q in a way that the path will move
in different directions at the two points. Then, we
study the same segment from the viewpoint of the
other orthant. In this case, the behaviour of the same
intermediate points will depend on the positions of
v′ − t · p+ t′ · p and v− t · p+ t′ · p in the shifted total
order instead. Thus, if the relationships are reversed,

160

33rd European Workshop on Computational Geometry, 2017

the two paths behave differently and in particular we
cannot have a CDR. �

For any point p, slope t and total order θ, there is
a unique CDR that can be created in this way and
contains TOC(θ, p, t). Since the choice of slope is not
important, let TOC(θ, p) be the unique CDR that
contains TOC(θ, p, (+1, . . . ,+1)).

Corollary 7 For any p ∈ Z
d there exist arbitrarily

many CDRs with O(log n) Hausdorff distance.

4 Necessary and sufficient conditions for CDSs

Next we focus our attention to constructing CDSs.
Christ et al. [2] showed that if we apply the same total
order construction to all points of Z2 we get a collec-
tion of CDRs whose union is always a CDS. For any
total order θ, let TOC(θ) =

⋃
p∈Zd TOC(θ, p). Unlike

the two dimensional case, the construction TOC(θ)
does not always yield a CDS in higher dimensions.
Theorem 4 stated in Section 2.2 gives necessary and
sufficient conditions that the total order must satisfy.

For any point p ∈ Z
d and slope t, let θpt be the total

order associated to point p and slope t in TOC(θ).

Theorem 8 If θ is a total order such that TOC(θ)
forms a CDS, then for any p ∈ Z

d and slope t it holds
that TOC(θpt , p, t) = TOC(θ, p, t).

Thus, even if we in principle would allow different
total orders, when creating a CDS in this way we must
use the same total order θ for all points and all slopes.
Again, this contrasts with the d = 2 case where we
can combine any two total orders for slopes (+1,+1)
and (+1,−1). We now sketch the proof of the first
necessary condition of Theorem 4.

Lemma 9 Let θ be a total order such that TOC(θ)
forms a CDS. Then, θ = θ + 2.

Proof. [sketch] Choose an arbitrary λ ∈ Z and con-
sider the affine plane H = {x3 = λ, x4 = 0, . . . , xd =
0}. In this plane we look at the origin p = (0, 0), and
points q = (0,−1) and r = (−1, 0) (see Figure 1, left).
In particular, we look at the third quadrant (the one
with slope (−1,−1)): first, from Theorem 3 we know
that θ

p

(−1,−1) must coincide with θ (on the interval

[λ,∞)).
The key property is that both θ

q

(−1,−1) and

θ
r
(−1,−1) coincide with θ + 2 on the interval [λ +

1,∞). Another property is that the subtree at
q in TOC(θp(−1,−1), p, (−1,−1)) must be part of

TOC(θq(−1,−1), q, (−1,−1)). Thus, some inequalities

from θ
p

(−1,−1) must be preserved in θ
q

(−1,−1). This

also holds for r. Moreover, all paths to p must pass
through either q or r, which in particular implies that

p

Q1

Q3

q

p
θ[λ,∞)

θ[λ,∞)

r
θ[λ− 1,∞)

(θ + 2)[λ+ 1,∞)

q
θ[λ− 1,∞)

(θ + 2)[λ+ 1,∞)

x1

x2

r

Figure 1: An example of the CDR at p is shown on the left
hand side and the relationships between the total orders
for the different quadrants at p, q and r. In the example
θ[0, 8] = {2 ≺ 8 ≺ 4 ≺ 0 ≺ 6 ≺ 9 ≺ 1 ≺ 5 ≺ 3 ≺ 7}.

all inequalities from θ
p

(−1,−1) must also be preserved in

either θq(−1,−1) or θ
r
(−1,−1). By combining all of these

properties, we show that θ coincides with θ+ 2 on the
interval [λ+ 1,∞). The result works for any value of
λ, so when λ → −∞ we get θ = θ + 2 as claimed. �

Proof. [of Theorem 8] Let t′ = (+1, . . . ,+1) and
note that, by definition, we have θ

p
t′ = θ. We apply

Theorem 3 and obtain θ
p
t [t · p,∞) = θ

p
t′ [t

′ · p,∞)− t′ ·
p+ t ·p = θ[t′ ·p,∞)− t′ ·p+ t ·p. The term −t′ ·p+ t ·p
must be an even number (it is the inner product of p
with vector t− t′ which satisfies that each coordinate
is either a zero or a two). Thus, we can apply θ = θ+2
repeatedly until we get θ[t′·p,∞)−t′·p+t·p = θ[t·p,∞)
as claimed. �

Let F be the collection of total orders of Z that
satisfy the conditions of Theorem 4. We bound the
Hausdorff distance of the CDSs associated to such
total orders.

Theorem 10 For any p = (p1, . . . , pd) ∈ Z
d, total

order θ ∈ F and n > 0, there exists a point q ∈ Z
d

such that ||p− q||2 = Θ(n) and H(pq,R(p, q)) = Θ(n).

References

[1] M.-K. Chiu and M. Korman. High dimensional
consistent digital segments. abs/1612.02483, 2016.

[2] T. Christ, D. Pálvölgyi, and M. Stojaković. Con-
sistent digital line segments. DCG, 47(4):691–710,
2012.

[3] J. Chun, M. Korman, M. Nöllenburg, and
T. Tokuyama. Consistent digital rays. DCG,
42(3):359–378, 2009.

[4] M. G. Luby. Grid geometries which preserve prop-
erties of Euclidean geometry: A study of graphics
line drawing algorithms. In NATO Conference on
Graphics/CAD, pages 397–432, 1987.

161

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Practical linear-space Approximate Near Neighbors in high dimension

Georgia Avarikioti1,2, Ioannis Z. Emiris1, Ioannis Psarros1, and Georgios Samaras1

1School of Electrical and Computer Engineering, National Technical U. Athens, Greece, zetavar@hotmail.com
2Department of Informatics & Telecommunications, National Kapodistrian University of Athens, Greece,

{gsamaras,ipsarros,emiris}@di.uoa.gr

Abstract

The c-approximate Near Neighbor decision problem
in high-dimensional spaces has been mainly addressed
by Locality Sensitive Hashing (LSH). In practice,
however, it is important to ensure linear space us-
age. Most previous work in this regime focuses on the
case that c exceeds 1 by a constant term. We present
a simple data structure using linear space and sublin-
ear query time for any c > 1: Given an LSH function
family for some metric space, we randomly assign a
bit to every bucket, eventually projecting points to
the Hamming cube of dimension ≤ lg n, where n is
the number of input points. The search algorithm
projects the query, then examines points assigned to
nearby vertices on the Hamming cube. We offer an
open-source C++ implementation, and report on sev-
eral experiments in dimension ≤ 1000 and n ≤ 106.
We compared against the state-of-the-art LSH-based
library FALCONN: our methods are significantly sim-
pler, with comparable performance in terms of query
time and storage for one of the LSH families used
by FALCONN, whereas our code is orders of magnitude
faster than brute force.

1 Introduction

We are interested in Approximate Near Neighbor
(ANN) search in Euclidean spaces, when the dimen-
sion d is high; typically one assumes d ≫ log n, where
n denotes the number of input datapoints. The (c, r)-
ANN problem, where c > 1, is defined as follows.

Definition 1 ((c, r)-ANN problem) Let (M, dM)
be a metric space. Given P ⊆ M, and reals r > 0
and c > 1, build a data structure s.t. for any query

q ∈ M, there is an algorithm performing as follows:

• if ∃p∗ ∈ P s.t. dM(p∗, q) ≤ r, then return any

point p′ ∈ P s.t. dM(p′, q) ≤ c · r,

• if ∀p ∈ P , dM(p, q) > c · r, then report “no”.

An important approach for the problem when
the dimension is high, is Locality Sensitive Hashing
(LSH). The method is based on the idea of using hash

functions with the property that it is more probable
to map nearby points to the same buckets.

Definition 2 Let reals r1 < r2 and p1 > p2 > 0.
We call a family F of hash functions (p1, p2, r1, r2)-
sensitive for a metric space M if, for any x, y ∈ M,

and h distributed randomly in F , it holds:

• dM(x, y) ≤ r1 =⇒ Pr[h(x) = h(y)] ≥ p1,

• dM(x, y) ≥ r2 =⇒ Pr[h(x) = h(y)] ≤ p2.

Let us survey previous work. LSH was introduced
by Indyk and Motwani [9] and yields data structures
with query time O(dnρ) and space O(n1+ρ + dn).
The optimal value of ρ has been extensively stud-
ied for several popular metrics, such as ℓ1 and ℓ2.
In contrast with Definition 2, which concerns data-
independent LSH, quite recently the focus has shifted
to data-dependent LSH where the algorithms exploit
the fact that every dataset has some structure; con-
sequently it improves ρ. Specifically, Andoni and
Razenshteyn [5] showed that ρ = 1/(2c− 1) for the
ℓ1 and ρ = 1/(2c2 − 1) for the ℓ2 metric. The data-
dependent algorithms, though better in theory, are
quite challenging in practice. In [3], they present an
efficient implementation of one part of [5].

Most of the previous work in the (near) linear space
regime focuses on the case that c is greater than 1
by a constant term (e.g. [10]). When c → 1+, these
methods become trivial in the sense that query time
becomes linear in n. Two remarkable, recent excep-
tions are [4] and [7], where they achieve near-linear
space and sublinear query time, even for c → 1+.
Their data-dependent data structure is optimal for a
reasonable model of hashing-based data structures.
Another line of work yielding linear space and sub-

linear query is based on random projections to dras-
tically lower-dimensional spaces [1]. The projection
ensures that an approximate nearest neighbor in the
original space can be found among the preimages of
k approximate nearest neighbors in the projection.
In this paper, we specify a random projection from

any space endowed with an LSH-able metric. Each
LSH function projects points to buckets, each as-
signed a random bit. This specifies a vertex of the

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

162

33rd European Workshop on Computational Geometry, 2017

Hamming hypercube in {0, 1}lgn, where n is the num-
ber of input points. The query algorithm simply
projects the query point, then examines points which
are assigned to the same or nearby vertices on the
Hamming cube. We study standard LSH families for
ℓ2 and ℓ1, and achieve query time O(dn1−δ), where
δ = Θ(ǫ2), ǫ ∈ (0, 1]. The constants in δ vary with
the LSH family, but it holds that δ > 0 for any ǫ > 0.
The space and preprocessing time are both linear for
constant probability of success, which is important in
practical applications.

We illustrate our approach with an open-source im-
plementation, Dolphinn 1 and report on a series of
experiments on synthetic and image datasets with
n ≤ 106 and d ≤ 1000. Our algorithm is significantly
faster than brute force. Moreover, we handle a real
dataset of 106 images represented in 960 dimensions
with a query time of < 128 msec on average. We
compare against LSH-based library FALCONN [3], and
achieve comparable memory consumption construc-
tion time and query time for one of the FALCONN’s
LSH families, while our algorithm is far simpler (720
lines of code versus 5k).

The rest of the paper is structured as follows. Sec-
tion 2 states our complexity results and Section 3
presents our experimental results.

2 Data structures

This section introduces our main data structure, and
the corresponding algorithmic tools. Given an LSH
family of functions for some metric space, we ran-
domly project points to the Hamming cube of dimen-
sion ≤ lg n by computing binary strings serving as
keys. The query algorithm projects a given point,
and tests points assigned to the same or nearby ver-
tices on the hypercube. We start with an ANN data
structure whose complexity and performance depends
on the LSH family that we assume is available.

Lemma 3 Given a (p1, p2, r, cr)-sensitive hash fam-

ily F for some metric (M, dM) and input P ⊆ M,

there exists a data structure for the (c, r)-ANN prob-

lem with space O(dn), time preprocessing O(dn), and
query time O(dn1−δ + nH((1−p1)/2)), where

δ = δ(p1, p2) =
(p1 − p2)

2

(1− p2)
·
log e

4
,

where e denotes the basis of the natural logarithm,

and H(·) is the binary entropy function. The bounds

hold assuming that computing dM(.) and the hash

function cost O(d). For a given query q ∈ M, the

building process succeeds with constant probability.

1https://github.com/gsamaras/Dolphinn

Proof. We first sample h1 ∈ F . We denote by
h1(P) the image of P under h1. Now for each ele-
ment x ∈ h1(P), with probability 1/2, set f1(x) = 0,
otherwise set f1(x) = 1. This is repeated d′ times,
and eventually for p ∈ M we compute f(p) =
(f1(h1(p)), . . . , fd′(hd′(p))). Now, observe that

dM(p, q) ≤ r =⇒ E[‖f(p)− f(q)‖1] ≤ 0.5d′(1− p1),

dM(p, q) ≥ cr =⇒ E[‖f(p)− f(q)‖1] ≥ 0.5d′(1−p2).

We distinguish two cases.
First, consider the case dM(p, q) ≤ r. Let µ =

E[‖f(p) − f(q)‖1]. Then, Pr[‖f(p) − f(q)‖1 ≥ µ] ≤
1/2, since ‖f(p) − f(q)‖1 follows the binomial dis-
tribution with parameters d′ and success probability
(1 − p1)/2. Second, consider the case dM(p, q) ≥ cr.
By typical Chernoff bounds,
Pr[‖f(p)− f(q)‖1 ≤ exp(−d′ · (p1 − p2)

2/4(1− p2)).
After mapping the query q ∈ M to f(q) in the d′-

dimensional hamming space we search for all “near”
hamming vectors f(p) s.t. ‖f(p)− f(q)‖1 ≤ 0.5d′(1−
p1). This search costs

(

d′

1

)

+ · · · +
(

d′

⌊d′(1−p1)/2⌋

)

≤
O(2d

′
·H((1−p1)/2)). The inequality is obtained from

standard bounds on binomial coefficients. Now,
the expected number of points p ∈ P for which
dM(p, q) ≥ cr but are mapped ”near” q is ≤ n ·
exp(−d′ · (p1 − p2)

2/4(1 − p2))). If we set d′ = lg n,
we obtain expected query time

O(nH((1−p1)/2)) + dn1−δ),

where δ = (p1−p2)
2

(1−p2)
· log e

4 . If we stop searching after

having seen, say 10n1−δ points for which dM(p, q) ≥
cr , then we obtain the same time with constant prob-
ability of success. Notice that “success” translates to
successful preprocessing for a fixed query q ∈ M. The
space required is O(dn). �

We set d′ = lg n to minimize the expected number
of candidates under the linear space restriction. It is
possible to have d′ < log n and sublinear query time.

2.1 The ℓ2 case

We consider the (c, r)-ANN problem when the dataset
is P ⊂ R

d, and the query is q ∈ R
d, under the Eu-

clidean metric. We assume, without loss of generality,
that r = 1, since we can uniformly scale (Rd, ‖ · ‖2).
We consider a standard LSH family, based on pro-
jecting points to random lines, also used in our im-
plementation. Analogous results are obtained [6] if
we use the Hyperplane LSH for cosine similarity, by
reducing the Euclidean to the spherical problem.

Let p, q be points in R
d and η their distance. Let

w > 0 be real, and let t be distributed uniformly
in [0, w]. In [8], they present the following LSH
family. For p ∈ R

d, consider the random function

163

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

h(p) = ⌊(〈p, v〉+ t)/w⌋ , where v is a vector randomly
distributed with the d-dimensional normal distribu-
tion. For this LSH family, the probability of collIsion
is

α(η, w) =

∫ w

t=0

2√
2πη

exp
(

− t2

2η2

)(

1− t

w

)

dt.

The implied algorithm suggests the following lemma,
whose proof is in [6].

Lemma 4 Given a set of n points P ⊆ R
d, there ex-

ists a data structure for the (c, r)-ANN problem un-

der the Euclidean metric, requiring space O(dn), time

preprocessing O(dn), and query time O(dn1−δ+n0.9),

where δ ≥ 0.03 (c− 1)
2
. Given some query q ∈ R

d, the

building process succeeds with constant probability.

2.2 The ℓ1 case

We now study the ℓ1 metric. The dataset is P ⊂ R
d

and the query q ∈ R
d. Let us consider the following

LSH family [2]:

h(p) =
(

⌊

p1 + t1
w

⌋

,

⌊

p2 + t2
w

⌋

, . . . ,

⌊

pd + td
w

⌋

)

,

where p = (p1, p2, . . . , pd) is a point in P , w = αr, and
the ti are drawn uniformly at random from [0, . . . , w).
Buckets correspond to cells of a randomly shifted grid.
In order to obtain a better lower bound, we employ
an amplified hash function, defined by concatenation
of k = α functions h(·) chosen uniformly at random
from the above family. This algorithm implies:

Lemma 5 [6] Given n points P ⊆ R
d, there exists a

data structure for the (c, r)-ANN problem under the

ℓ1 metric, requiring space O(dn), time preprocessing

O(dn), and query time O(dn1−δ + n0.91), where

δ ≥ 0.05 ·
(c− 1

c

)2

.

Given some query q ∈ R
d, the building process suc-

ceeds with constant probability.

3 Experimental results

This section presents experiments on our implementa-
tion Dolphinn, and comparisons on a number of syn-
thetic and real datasets, on a processor at 3 GHz×4
with 8 GB. We compare with the state-of-the-art
LSH-based FALCONN2 and its two LSH families, and
to the brute force approach.
We use 5 datasets: For special topologies, synthetic

Klein bottle and Sphere sets (n = 102−106, d = 128−
1024). The real image datasets are MNIST (n = 60k,
d = 784)3, SIFT (n = 1m, d = 128), Small SIFT (n
= 10k, d = 128) and GIST (n = 1m, d = 960)4.

2https://falconn-lib.org/
3http://yann.lecun.com/exdb/mnist/
4http://corpus-texmex.irisa.fr/

n d build (sec) search
(µsec)

brute
f. (sec)

105

128 0.053 62.37 0.006
256 0.092 152.3 0.012
512 0.168 257.1 0.025
800 0.255 374.1 0.039
1024 0.321 499.6 0.050

100

512

0.0002 1.001 7.5e-05
1000 0.0016 4.924 0.0004
10000 0.0169 47.72 0.0049
100000 0.1683 477.0 0.0499
1000000 1.6800 2529 0.2492

Table 1: Sphere dataset: build, search and brute
force, when varying one of n, d.

For the synthetic datasets, we solve the one near
neighbor problem with a fixed radius of 1 and we com-
pare to brute force, since FALCONN does not provide
such a method. For the image datasets, we find all
near neighbors within a fixed radius of 1. For fair
comparison, both implementations are configured in
a way that yields the same accuracy.

The preprocessing time of Dolphinn has a linear de-
pendence in n and d, as expected, which is shown in
Tables 1 and 2. Moreover, Dolphinn is observed to be
competitive with FALCONN when employing the Cross-
Polytope family, but slower than FALCONN for the Hy-
perplane LSH family, as shown in Table 4. Note that
any normalization and/or centering of the point set-
a requirement for FALCONN, is not taken into account.

The main issue behind the larger building times is
the use of two hash tables which simulates the two
random functions, one which maps points to keys in
Z
d′

and one which maps keys in Z
d′

to keys in {0, 1}d
′

.
Using an LSH family which directly maps points to
{0, 1}d

′

would require only one hashtable, but such an
LSH family does not always exist.

We conduct experiments on our synthetic datasets,
with n or d fixed. The Sphere dataset is easier than
Klein bottle, which explains the reduced accuracy and
the decrease of speedup, since more points lie within
the fixed radius. Our algorithm scales sublinearly in
n and linearly in d, as shown in Tables 1 and 2.

For ANNS, we introduce a threshold on the number
of points that the algorithm checks. The search time
grows linearly, as expected, while accuracy increases
as the threshold increases, as shown in Table 3.

Moreover, we report query times between FALCONN

and Dolphinn on the image datasets; small SIFT,
SIFT, MNIST and GIST, for equal memory consump-
tion. Dolphinn outperforms the cross-polytope LSH
implementation of FALCONN and it has comparable
performance with the Hyperplane LSH implementa-
tion, see Figure 1.

164

33rd European Workshop on Computational Geometry, 2017

n d build (sec) search
(sec)

brute
f. (sec)

105

128 0.053 0.0009 0.0061
256 0.091 0.0029 0.0147
512 0.168 0.0031 0.0254
800 0.259 0.0056 0.0425
1024 0.321 0.0061 0.0513

100

512

0.0003 1e-05 7e-05
1000 0.0016 4e-05 0.0004
10000 0.0169 0.0004 0.0049
100000 0.1679 0.0051 0.0501
1000000 1.6816 0.0252 0.2497

Table 2: Klein bottle dataset: build, search and brute
force when varying one of n, d.

Thresh. 100 101 102 103 104 105 106

search 0.0002 0.0013 0.0139 0.188 2.71 16.7 17.8
accur. 0 0 0 0.26 7.19 80.5 100

Table 3: SIFT dataset: number of points actually
checked affects search time (msec) and accuracy (%),
i.e. hit if Dolphinn answers correctly whether a point
lies within the radius or not.

small SIFT SIFT GIST
d′ 4 8 16 4 8 16 4 8 16

F(c) 0.01 0.01 0.02 1.07 1.33 2.62 8.21 8.44 18.3
F(h) 0.00 0.00 0.00 0.38 0.44 0.72 1.96 2.47 3.66
D 0.02 0.02 0.05 0.52 1.49 3.33 4.01 7.98 15.9

Table 4: Build time (sec) for Dolphinn, FALCONN for
Hyperplane/Cross-polytope LSH family. d′ is the Hy-
percube dim. in Dolphinn, or #hashbits in FALCONN.

Acknowledgments. All authors partially supported
by H2020 MSCA RISE project ”Learning and
Analysing Massive / Big complex DAta”, 2017-2021.

References

[1] E. Anagnostopoulos, I.Z. Emiris, and I. Psar-
ros. Low-quality dimension reduction and high-
dimensional approximate nearest neighbor. In
Proc. SoCG, pages 436–450, 2015. Also: CoRR,
abs/1412.1683, 2014–2016. Final version under
revision for ACM Transactions on Algorithms.

[2] A. Andoni and P. Indyk. Efficient algorithms for
substring near neighbor problem. In Proc. ACM-

SIAM SODA, pages 1203–1212, 2006.

0 0.1 0.2 0.3

Small SIFT

SIFT

MNIST

GIST

9 · 10−5

9 · 10−3

5 · 10−4

0.13

8.6 · 10−5

9 · 10−3

6.19 · 10−4

0.13

2.49 · 10−4

1.47 · 10−2

2.95 · 10−3

0.34

Query Time (sec)

Im
ag
e
D
at
as
et
s
(I
n
p
u
t)

Dolphinn

FALCONN (H)

FALCONN (C)

Figure 1: Query time (sec) for Dolphinn, FALCONN for
Hyperplane/Cross-polytope LSH family.

[3] A. Andoni, P. Indyk, T. Laarhoven, I. P. Razen-
shteyn, and L. Schmidt. Practical and optimal
LSH for angular distance. In Proc. NIPS, pages
1225–1233, 2015.

[4] A. Andoni, T. Laarhoven, I. Razenshteyn, and
E. Waingarten. Optimal hashing-based time-
space trade-offs for approximate near neighbors.
In Proc. ACM-SIAM SODA, 2017.

[5] A. Andoni and I. Razenshteyn. Optimal data-
dependent hashing for approximate near neigh-
bors. In Proc. ACM STOC, 2015.

[6] G. Avarikioti, I.Z. Emiris, I. Psarros, and
G. Samaras. Practical linear-space approxi-
mate near neighbors in high dimension. CoRR,
abs/1612.07405, 2016.

[7] T. Christiani. A framework for similarity search
with space-time tradeoffs using locality-sensitive
filtering. In Proc. ACM-SIAM SODA 2017,
pages 31–46, 2017.

[8] M. Datar, N. Immorlica, P. Indyk, and V.S. Mir-
rokni. Locality-sensitive hashing scheme based
on p-stable distributions. In Proc. ACM SoCG,
pages 253–262, 2004.

[9] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of dimen-
sionality. In Proc. STOC, pages 604–613, 1998.

[10] R. Panigrahy. Entropy based nearest neighbor
search in high dimensions. In Proc. ACM-SIAM

SODA, pages 1186–1195, 2006.

165

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

An Experimental Study of Algorithms for Geodesic Shortest Paths in the

Constant Workspace Model∗

Jonas Cleve† Wolfgang Mulzer†

Abstract

We evaluate experimentally algorithms for finding
shortest paths in polygons in the constant workspace
model. In this model, the input resides in a read-only
array that can be accessed at random. In addition,
the algorithm may use a constant number of words for
reading and writing. The constant workspace model
has been studied extensively in recent years, and al-
gorithms for geodesic shortest paths have received
particular attention.
We have implemented three such algorithms and

compare them to the classic algorithm by Lee and
Preparata that uses linear time and space. We also
clarify implementation details that were missing in the
original descriptions. Our experiments show that all
algorithms perform as advertised and according to the
theoretical guarantees. However, the constant factors
in the running times turn out to be rather large for
the algorithms to be practical.

1 Introduction

In recent years, the constant workspace model has
enjoyed increasing popularity in computational geom-
etry. Motivated by the increasing deployment of small
devices with limited memory capacities, the goal is to
develop simple and efficient algorithms for the situa-
tion where little workspace is available. The model
posits that the input resides in a read-only array that
can be accessed at random. In addition, the algo-
rithm may use a constant number of memory words
for reading and writing. The output must be written
to a write-only memory that cannot be accessed again.
Following the initial work from 2011 [2], numerous re-
sults have been published for this model, leading to a
solid theoretical foundation for dealing with geometric
problems when memory is scarce.
But how do these theoretical results measure up

in practice? To investigate this question, we have
implemented three different algorithms for computing
geodesic shortest paths in simple polygons. This is
one of the first problems to be studied in the constant
workspace model. Given that the general shortest
path problem is unlikely to be amenable to constant
workspace algorithms, it may be a surprise that a

∗Supported by DFG projects MU/3501-1 and RO/2338-6.
†Institut für Informatik, Freie Universität Berlin, Germany.

{jonascleve,mulzer}@inf.fu-berlin.de

solution for the geodesic case exists at all. By now,
several algorithms are known, for constant workspace
as well as in the time-space-trade-off regime [1, 8].

Due to the wide variety of approaches and the funda-
mental nature of the problem, geodesic shortest paths
are a natural candidate for an experimental study. Our
experiments show that all three algorithms work well
in practice and live up to their theoretical guarantees.
However, the large running times make them ill-suited
for large input sizes.
During our implementation, we also noticed some

missing details in the original publications, and we
explain below how we have dealt with them.

2 The algorithms

We provide a brief overview over all implemented
algorithms; further details can be found in the refer-
ences. Let P be the input polygon and let s, t ∈ P be
the endpoints of the desired shortest path.

The algorithm by Lee and Preparata. In the classic
algorithm, we triangulate P and find the triangles
containing s and t. Next, we find the unique path in
the dual graph of the triangulation between these two
triangles. This gives a sequence e1, . . . , em of diagonals
crossed by the geodesic shortest path. The algorithm
walks along these diagonals while maintaining a funnel.
The funnel has a cusp p, initialized to s, and two
concave chains from p to the two endpoints of the
current diagonal ei. In each step i, there are two
cases: (i) if ei+1 remains visible from p, we update
the appropriate concave chain, using Graham’s scan;
(ii) if ei+1 is not visible from p, we proceed along the
appropriate chain until we find the cusp for the next
funnel, and we output the vertices encountered along
the way as part of the shortest path. Implemented
properly, this takes linear time and space [10].

Delaunay. The first constant-workspace-algorithm,
called Delaunay , directly adapts the method of Lee
and Preparata to the constant-workspace model. It
was proposed by Asano, Mulzer, and Wang [3] in 2011.

Since we cannot explicitly compute and store a trian-
gulation of P , we use instead a unique implicit triangu-
lation, the constrained Delaunay triangulation of P [6].
This triangulation can be navigated efficiently using
constant workspace: given a diagonal or a polygon

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

166

33rd European Workshop on Computational Geometry, 2017

edge, we can find the incident triangles in O
(

n2
)

time.
Using an O(n) time constant-workspace-algorithm for
shortest paths in trees, we then enumerate all triangles
in the dual graph between the two triangles for s and
t in O

(

n3
)

time.
As in Lee and Preparata [10], we need to maintain

the visibility funnel while walking along the triangles.
Instead of the whole chains, we store only the two line
segments that define the current visibility cone, and
we recompute the two chains when necessary. The
total running time of the algorithm is O

(

n3
)

.

Trapezoid. This algorithm was also published by
Asano, Mulzer, and Wang [3]. It is based on the same
principle as Delaunay , but it uses the trapezoidal
decomposition of P [5]. Instead of walking along trian-
gles, in O

(

n2
)

time per step, we walk along trapezoids,
which takes O(n) time per step. Since there are O(n)
steps, the running time improves to O

(

n2
)

.

Makestep. This algorithm was presented by Asano
et al. [2], and it uses a different approach. We maintain
a current vertex p of the shortest path together with
a visibility cone, defined by two points a and b on
the boundary of P . The segments pa and pb cut off
a subpolygon P ′ ⊆ P . The invariant is that t lies
in P ′. We gradually shrink P ′ by advancing a and
b, sometimes also relocating p. A charging argument
shows that there are O(n) shrinking steps. Each step
takes O(n) time, for a total running time of O

(

n2
)

.

3 Implementation

We have implemented the algorithms in Python [11].
Graphical output and plots use the matplotlib li-
brary [9]. Even though there are some geometry pack-
ages available for Python, none of them seemed suit-
able for our needs. Thus, we decided to implement all
geometric primitives on our own. The source code of
the implementation is available online1.
For Lee–Preparata, we need a triangulation of P .

Since polygon triangulation is not the main objective
of our study, we relied for this on the Python Triangle

library by Rufat [12], a wrapper for Shewchuk’s Trian-
gle [13]. Triangle does not provide a linear-time algo-
rithm, but it implements Fortune’s sweep, randomized
incremental construction, and a divide-and-conquer
algorithm, all with a running time of O(n log n). We
used the divide-and conquer algorithm, the default
choice. The triangulation phase is not included in the
time and memory measurement.

General implementation details. All three constant-
workspace algorithms have a general position assump-
tion: Delaunay and Makestep assume that no three

1https://github.com/jonasc/constant-workspace-algos

cusp

b

t

Figure 1: During the Jarvis march from the cusp to
the diagonal b, the vertices need to be restricted to
the shaded area. Otherwise, u would be considered
part of the geodesic shortest path, as it is left of vw.

vertices lie on a line. Our implementations also as-
sume general position but throw exceptions if a non-
recoverable general position violation is encountered.
Most violations, however, can be recovered; e.g. when
trying to find the delaunay triangle(s) for a diagonal
we can simply ignore points collinear to this diago-
nal. Trapezoid on the other hand assumes that no
two vertices have the same x-coordinate. As described
by Asano, Mulzer, and Wang [3], this can be fixed by
changing the x-coordinate of every vertex to x + εy
for some small ε such that the x-order of all vertices
is maintained. We apply this fix to every polygon in
which two vertices share the same x-coordinate.

The coordinates are stored as 64 bit IEEE 754 floats,
and the coordinates of randomly generated polygons
are rounded to four decimal places. To prevent preci-
sion or rounding problems we take the following steps:
We never explicitly calculate angles but rely on the
three-point-orientation test, i.e. the position of a point
c relative to the line through points a and b. Addi-
tionally, if points need to be placed somewhere on a
polygon edge, an edge reference is stored to account for
inaccuracies when calculating the point’s coordinates.

Delaunay and Trapezoid. In both algorithms, we
need to find a piece of the shortest path as soon as
the next diagonal is no longer visible from the current
cusp. Asano, Mulzer, and Wang [3] only say that
this should be done with a Jarvis march. During the
implementation, we noticed that a naive Jarvis march
with all vertices on P between the cusp and the next
diagonal might include vertices that are not visible.
Figure 1 shows an example: the vertex u would be
included in the shortest path because it lies to the
right of the cone and to the left of vw.
The solution for Trapezoid is to consider only ver-

tices whose x-coordinate is between the cusp and the
point where the visibility cone leaves P for the first
time. For ease of implementation, one can also limit
it to the x-coordinate of the last trapezoid boundary
visible from the cusp. Figure 1 shows this region in

167

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

q1

q2

succ(q1)

p

q′

t

Figure 2: Asano et al. [2] state that one should check
whether “t lies in the subpolygon from q′ to q1.” Here,
we should use q1pq

′ to shrink the cutoff region.

green. For Delaunay , a similar approach can be used.
The only difference is that the triangle boundaries are
not all vertical lines.

Makestep. In our implementation of Makestep, we
would like to point out an interesting detail; see Fig-
ure 2. The description by Asano et al. [2] says that to
advance the visibiliy cone, we should check if “t lies
in the subpolygon from q′ to q1.” If so, the visibility
cone should be shrunk to q′pq1, otherwise to q2pq

′.
However, the “subpolygon from q′ to q1” is not

clearly defined if the line segment q′q1 is not contained
in P . To avoid this difficulty, we consider pq′ instead.
This line segment is always in P , and it divides the
cutoff region P ′ into two parts, a “subpolygon” be-
tween q′ and q1 and a “subpolygon” between q2 and
q′. Now we can easily choose the one containing t.

4 Experiments

Test set generation. Our experiments were con-
ducted as follows: given a number of vertices n, we
generate 4–10 random polygons, depending on n. For
this, we use a tool developed in a software project
at our department [7] which (among others) uses the
Space Partitioning algorithm by Auer and Held [4].

For each edge e of each generated polygon, we find
the incident triangle te of the constrained Delaunay
triangulation. We add the barycenter of te to a point
set S. Then, S has between ⌊n/2⌋ and n− 2 points.

Test execution. For each pair of points from S, we
find the shortest path using all of the implemented
algorithms. Since the number of pairs grows quadrat-
ically, we restrict the tests to 1500 random pairs for
all n ≥ 200. We first run each algorithm once in order
to determine the memory consumption. To obtain
reproducible numbers, we disable the garbage collec-
tion functionality. After that, we run the algorithm
between 5 and 20 times, depending on how long it
takes. We measure the time for each run. We then
take the median of the times as a representative for
this point pair.

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

vertices vs. memory in kB

Lee–Preparata O(n) Makestep O(1)

Trapezoid O(1) Delaunay O(1)

Figure 3: Memory consumption for random instances.
The solid shapes are the median values; the transparent
crosses are maximum values.

Test setup. Since we have a quadratic number of test
cases, a lot of time is needed to run the tests. Thus
the tests were distributed on multiple machines and on
multiple cores. We had six computing machines, each
with two quad-core CPUs. Three machines had Intel
Xeon E5430 CPUs with 2.67GHz; the other three had
AMD Opteron 2376 CPUs with 2.3GHz.

5 Results

The results of the experiments can be seen in the
following plots. The plot in Figure 3 shows the median
and maximum memory consumption as solid shapes
and transparent crosses, respectively, for each algo-
rithm and each input size. More precisely, the plot
shows the median and the maximum over all polygons
with a given size and over all pairs of points in each
such polygon.

We observe that the memory consumption for Trape-
zoid and Makestep is always smaller than a certain
constant. The shape of the median values might sug-
gest logarithmic growth. However, a smaller number
of vertices leads to a higher probability that s and t
lie in the same triangle or can see each other. In this
case, many geometric functions and subroutines, each
of which requires an additional constant amount of
memory, are not called. A large number of point pairs
with only small memory consumption naturally entails
a smaller median value.
The second plot in Figure 4 shows the median and

the maximum running time in the same way as Fig-
ure 3. Not only does Delaunay have a cubic running
time, but it also seems to have a quite large constant,
as it grows much faster than the other algorithms.
In the lower part of Figure 4, we see the same x-

domain, but with a much smaller y-domain. Here,
we observe that Trapezoid and Makestep both have a
quadratic running time; Trapezoid needs about two

168

33rd European Workshop on Computational Geometry, 2017

0 500 1000 1500 2000 2500 3000

0

5

10

15

vertices vs. time in s

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

vertices vs. time in s

Figure 4: Runtime for random instances. Solid shapes
are median values; transparent crosses are maximum
values. The bottom plot is a scaled version of the top.

thirds of the time needed by Makestep. Finally, the
linear-time behavior of Lee–Preparata is clearly visible.

We observed that the tests ran approximately 85%
slower on the AMD machines compared to the Intel
servers. This reflects the difference between 2.3GHz
and 2.67GHz. Since the tests were distributed equally
on the machines it does not change the overall results.

6 Conclusion

We have implemented and experimented on three
different constant-workspace algorithms for geodesic
shortest paths in simple polygons. Not only did we
observe the cubic worst-case running time of Delau-

nay , but we also noticed that the constant factor is
rather large. This renders the algorithm useless al-
ready for polygons with a few hundred vertices, where
the computation might, in the worst case, take several
minutes.

As predicted by the theory, Makestep and Trapezoid

exhibit the same asymptotic time and space consump-
tion. Trapezoid has an advantage in the constant factor
of the running time, while Makestep needs only about
half as much memory. Since in both cases the mem-
ory requirement is bounded by a constant, Trapezoid
would be our preferred algorithm.

We chose Python for the implementation mostly
due to our experience, good debugging facilities, fast
prototyping possibilities and the availability of numer-
ous libraries. In hindsight, it might have been better
to choose another programming language. Python’s
memory profiling and tracking abilities are limited, so
that we cannot easily get a detailed view of the used
memory with all the variables. Furthermore, a more
detailed control of the memory management could be
useful for performing more detailed experiments.

References

[1] T. Asano, K. Buchin, M. Buchin, M. Korman,
W. Mulzer, G. Rote, and A. Schulz. “Memory-
Constrained Algorithms for Simple Polygons”. In:
CGTA 46.8 (2013), pp. 959–969.

[2] T. Asano, W. Mulzer, G. Rote, and Y. Wang.
“Constant-Work-Space Algorithms for Geometric
Problems”. In: JoCG 2.1 (2011), pp. 46–68.

[3] T. Asano, W. Mulzer, and Y. Wang. “Constant-
Work-Space Algorithms for Shortest Paths in Trees
and Simple Polygons”. In: JGAA 15.5 (2011),
pp. 569–586.

[4] T. Auer and M. Held. “Heuristics for the Generation
of Random Polygons”. In: Proc. 8th Canada Conf.

Comput. Geom. Ottawa, 1996, pp. 38–43.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M.
Overmars. Computational Geometry. Springer, 2008.

[6] L. P. Chew. “Constrained Delaunay Triangulations”.
In: Algorithmica 4 (1-4 1989), pp. 97–108.

[7] S. Dierker, M. Ehrhardt, J. Ihrig, M. Rohde, S.
Thobe, and K. Tugan. Abschlussbericht zum Soft-

wareprojekt: Zufällige Polygone und kürzeste Wege.
Institut für Informatik, Freie Universität Berlin,
Aug. 20, 2012. url: https://github.com/marehr/
simple-polygon-generator.

[8] S. Har-Peled. “Shortest Path in a Polygon Using
Sublinear Space”. In: JoCG 7.2 (2016), pp. 19–45.

[9] J. D. Hunter. “Matplotlib: A 2D Graphics Environ-
ment”. In: Computing In Science & Engineering 9.3
(2007), pp. 90–95.

[10] D. T. Lee and F. P. Preparata. “Euclidean Shortest
Paths in the Presence of Rectilinear Barriers”. In:
Networks 14.3 (Aut. 1984), pp. 393–410.

[11] Python Software Foundation. Python. Version 3.5.
url: https://www.python.org/.

[12] D. Rufat. Python Triangle. Version 20160203. 2016.
url: http://dzhelil.info/triangle/ (visited on
12/05/2016).

[13] J. R. Shewchuk. “Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator”. In:
Applied Computational Geometry towards Geometric

Engineering. Springer, 1996, pp. 203–222.

169

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computing Wave Impact in Self-Organised Mussel Beds

Johan van de Koppel∗ Maarten Löffler† Tim Ophelders‡

Figure 1: Mussels organised in strips.

Abstract

We model the effects of byssal connections made by
mussels within patterned mussel beds on bed stability
as a disk graph, and propose a formula for assessing
which mussels, if any, would get dislodged from the
bed under the impact of a wave. We formulate the
computation as a flow problem, giving access to ef-
ficient algorithms to evaluate the formula. We then
analyse the geometry of the graph, and show that we
only need to compute a maximum flow in a restricted
part of the graph, giving rise to a near-linear solution
in practise.

1 Introduction

Mussel beds in the Waddenzee have attracted the
interest of ecologists because they form typical self-
organised patterns, consisting of strings of mussels
that form reticulate networks, see Figure 1. Experi-
mental studies have revealed that mussels form spatial
patterns to provide stability against incoming waves,
while still allowing enough access to food for individual
mussels [3, 9]. To provide in-detail understanding of
how the spatial structure of the mussel bed affects the

∗Royal Netherlands Institute for Sea Research (NIOZ) and
Utrecht University, Johan.van.de.Koppel@nioz.nl

†Dept. of Information and Computing Science, Utrecht
University, m.loffler@uu.nl

‡Dept. of Mathematics and Computer Science, TU Eind-
hoven, t.a.e.ophelders@tue.nl

Figure 2: Mussels are modelled as a set of influence radius
disks, and their relations define a disk graph.

persistence of individual mussels, the process of pat-
tern formation has been modelled in individual-based
models. However, these models simplify the impact of
wave action on mussels, ignoring the protective effects
of mussel clumps and strings on individual survival.

In order to run simulations on a large enough scale
for macrobiological effects to become visible, efficient
algorithms to compute the stability of given mussel
configuration are needed [5]. For this, a suitable model
for mussel beds is needed, as well as efficient algo-
rithms to compute the effect of waves. Models that
include a large-scale group/structure effect on mussel
survival may provide a better understanding of self-
organisation in mussels, and stability of mussel beds
as a key habitat to many species.

Based on their size, mussels connect themselves to
anything solid within a given radius around them using
byssal threads. On sand, the only solid objects are
other mussels. As such, the graph of connected mussels
is naturally modelled as a disk graph [8, 9]. Disk
graphs have been studied extensively in computational
geometry and discrete mathematics [1, 2, 4, 6].

We set out to leverage this mathematical and compu-
tational knowledge to understand how the topological
network formed by mussel byssal threads influences
mussels’ survival/persistence. An important focus is
to understand whether and how net-shaped structures
provide a more stable landscape than loose clumps,
where wave vulnerability is lower. When waves exert
force on a limited section of the bed (say 25× 25 cm),
small clumps can easily get dislodged, while larger
clumps that are connected to the larger bed, may per-
sist in the bed. For this we need a binary test, that
checks whether the mussels within the wave impact
zone are sufficiently connected not to break free.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

170

33rd European Workshop on Computational Geometry, 2017

W

G

Figure 3: The wave impact zone W . In this case, the shaded
set of mussels at the bottom might get dislodged: some
mussels inside W stay because they are strongly connected
to other mussels outside W , while some mussels outside W

get pulled away along with mussels in W . In this case, two
connections break.

Contribution. We propose a model for approximat-
ing the impact of waves on mussel beds, and give a
precise formulation of this model, including a formula
for testing whether a given clump of mussels gets dis-
lodged under influence of a given wave. We then show
how to formulate the evaluation of this formula as a
flow problem. Finally, we analyse the geometry of the
underlying disk graph to speed up the computation of
the maximum flow.

2 Modelling

We first present a mathematically precise formulation
of the problem at hand.

2.1 Disk Graphs

Mussels grow connecting byssus threads to all other
mussels within a given distance, depending on their
age and size. Thus, we represent individual mussels
by weighted points in R

2. A set P of mussels then
induces a graph G as follows. Each mussel (pi, wi)
corresponds to a vertex at point pi, and has edges
to all mussels (pj , wj) for which |pipj | ≤ wi. Note
that the graph is undirected: once a byssus connection
is established, it is no longer relevant which mussel
created the connection.

Additionally, we know that mussels have a minimum
and maximum size. The minimum size gives us a
bound on the minimum distance δ− between any two
mussels, since mussels do not overlap; mussels vary
in size from just under 1 cm in width up to 10 cm in
length. The maximum size gives us a bound on the
maximum distance δ+ between two connected mussels,
because threads do not grow longer than this distance;
this length is not fully understood but it is not much

longer than 10 cm. We define φ = δ+

δ−
to be the ratio

between this largest and smallest distance.

2.2 Wave Impact Zone

We are interested in what happens when a wave hits a
part of the mussel bed. We model this by a disk W of

W

M

W I(M) = 4

O(M) = 5

C(M) = 9

Figure 4: The potential of a given set M depends on I(M),
O(M), and C(M). In this particular case, the potential is
most likely negative (depending on the weights), meaning
this set of mussels would not get dislodged by W .

radius r, which we call the wave impact zone (WIZ).
Figure 3 illustrates this.

We assume that when a wave hits a zone, all mussels
in that zone are affected by the wave and start pulling
on their neighbours to get washed away. Several things
may happen:

• the mussels are washed away and pull their neigh-
bours with them; or

• the neighbours keep the mussels anchored, and
nobody is washed away; or

• some connections break, and some mussels are
washed away while others stay behind.

2.3 Potential Function

Given G, W , and a set of mussels M ⊆ P , we define a
function F (M) that decides how much force is exerted
on M by the wave. If F (M) is positive, then there is
enough force to dislodge M from G, breaking all con-
nections between mussels in M and their neighbours
outside M ; if F (M) is negative (or zero), then there is
not enough force for this to happen. In order to define
this F (M), we are going to count three things:

The number of connections between M and the rest
of the mussels:

C(M) = |{(a, b) ∈ E : a ∈ M ∧ b �∈ M}|

The number of mussels of M that are inside the
wave impact zone:

I(M) = |M ∩W |

The number of mussels of M that are outside the
wave impact zone:

O(M) = |M \W |

Figure 4 shows an example. The idea is that mussels
in M that are in W are pulling on their neighbours, so
they provide force. Mussels in M that are not in W

need to be pulled, requiring force. Finally, connections
that are broken require (significantly higher) force.
This leads to a weighted formula, where wC , wI , and
wO are positive weights:

F (M) = wII(M)− wOO(M)− wCC(M)

171

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

2.4 Objective

To find out whether any mussels get dislodged, we
take the maximum of F (M) over all sets M , and see if
this is a positive number. We also want to know which
mussels get dislodged. If multiple sets of mussels have
a positive potential, then it is not clear a priori which
of the sets gets dislodged by the wave.

Lemma 1 If we remove the set M that maximises F

from G, then all remaining sets have negative or zero

potential in the resulting graph.

To prove the lemma, we first show some intermediate
properties of the potential function.

Observation 1 For sets of mussels A and B, we have

F (A∩B) +F (A∪B) = F (A) +F (B) + 2wCE(A,B),
where E(A,B) counts the number of edges that have

exactly one endpoint in A and exactly one endpoint

in B.

Proof. We verify the three components of F sepa-
rately. The I term counts mussels inside W inside
the sets. By definition, W ∩ A and W ∩ B overlap
in W ∩A ∩B, so the sum of their cardinalities is the
cardinality of the union plus the cardinality of the
intersection. The same argument holds for the O term.
Finally, for the C term, we observe that on both sides
of the equation we count exactly those edges that cross
the boundary of A or the boundary of B. �

This observation implies that whenever we have two
candidate sets, either their intersection or their union
has a higher potential than the lowest potential of the
two. This allows us to prove Lemma 1.

Corollary 1 F (A ∩B) ↑ F (A ∪B) ≥ F (A) ↓ F (B).

Proof. [of Lemma 1] Assume for contradiction that
M is the set of maximum potential, and that after
removing M from G, another set N now has positive
potential as well. Now consider the set M ∪N . By as-
sumption, F (M∪N) ≤ F (M). However, M and N are
disjoint, so F (M∪N) = F (M)+F (N)+2wCE(M,N).
This means F (N)+2wCE(M,N) must be negative or
zero. However, after removing M from G, the poten-
tial of N increases by only wCE(M,N), after which
it should, by assumption, become positive. This is
clearly a contradiction. �

Lemma 1 implies that the model is well-formed: if
there are multiple sets of mussels with positive po-
tential, we simply select the one with the maximum
potential. Further note that if there are multiple mus-
sel sets with maximum potential, then one of them
contains all others; this is the one we wish to report.

W

s

t

G

(a)

W

s

t

M

(b)

Figure 5: (a) The augmented graph G
′. A new node s

is connected to all nodes inside W , and a new node t is
connected to all nodes outside W . Black edges have weight
wC , blue edges have weight wI , and red edges have weight
wO. (b) The cut (dotted) associated with a given set M .

3 Algorithms

3.1 Constructing G

We first investigate how to construct the graph G from
a given set of weighted points. We can easily construct
the graph in O(n2) time, by testing, for each pair
(pi, wi) and (pj , wj), whether |pipj | ≤ max(wi, wj).

However, we note that in realistic cases (such as
cases where φ is bounded), the number of edges will
be significantly smaller than n2, and we can compute
the graph more efficiently by first storing the points
in a suitable data structure, and only testing pairs of
points that are sufficiently close to each other.

We first compute a range tree with fractional cascad-
ing on P in O(n log n) time. We then search locally,
for each point pi, for all other points at distance at
most wi from pi. Since wi ≤ δ+ and the minimum
distance between points is δ−, there are at most φ2

such points. For each of these points, we add an edge.

Theorem 2 Given a set P of n mussels in the plane,

we can construct G in O(n(log n+ φ2)) time.

Given additionally the wave impact zone W , we can
easily augment G in linear time (see next section).

3.2 Min Cut Formulation

We can compute minimum value of F using a max
flow algorithm, as follows.
We weight the original edges of G by wC . We aug-

ment the graph G with two artificial nodes s and t.
We add an edge from s to every node in W , weighted
by wI , and an edge from every node outside W to
t, weighted by wO. We call the resulting augmented
weighted graph G′. Figure 5(a) shows an example.

Define L = wI |W ∩ P | to be the maximum amount
of force a given wave can exert on the mussels. The
following lemma relates the value of a min cut in G′

to F (M) and L; see also Figure 5(b).

Lemma 3 Aminimum cut inG′ that separates s from

t corresponds with a setM that maximises F (M). The
value of F (M) is L minus the weight of the minimum

cut.

172

33rd European Workshop on Computational Geometry, 2017

Proof. Let M be any set of vertices of G. The cut in
G′ that separates M ∪{s} from P \M ∪{t} has a total
weight of wCC(M) + wI |W ∩ P \ M | + wO|M \ W |,
which is equal to L− F (M). Clearly, the set M that
minimises the weight of the cut, maximises F . �

Max flow can be solved in O(|V |·|E|) time or slightly
faster (for instance, see [7]); we compute a minimum
cut in G′ in O(|P | · |E|) time, which gives us a O(n3)
algorithm to solve the problem on arbitrary graphs.
Assuming a bound on the mussel density φ, we can
immediately improve this by observing that the maxi-
mum number of edges is only O(φ2n) instead of O(n2).

Theorem 4 Given a set P of n mussels in R
2, and

a wave impact zone W , we can compute the set of

mussels M that maximises F (M) in O(φ2n2) time.

3.3 Geometric Analysis

By exploiting the geometry of unit disk graphs, and
making reasonable assumptions about the wave impact
zone and the weights wI , wO, and wC , we can improve
further on the running time of the above algorithm.
The basic observation is that, in order to compute a
maximum flow in G′, we need never use any mussels
that are too far from the boundary of W .
We assume that wC , wI , and wO are within a con-

stant factor of each other. We also assume that the
wave impact zone W is a circle of radius r, where r

is constant and r > δ+. For ease of presentation we
assume W.L.O.G. that δ− = 1.
We claim that, to compute the min cut in G′, we

can restrict our attention to the graph G′′ composed
of those mussels that are at distance at most wC

wO
rφ3

from W . There are at most wC

wO
r2φ4 nodes in G′′.

Lemma 5 The min cut in G′ is the same as the min

cut in G′′.

Proof. Let F be the set of edges of G that cross the
boundary of W . First, we observe that any flow from
s to t must use at least one edge of F . All mussels
that contribute to edges in F must lie in an annulus
centered at the boundary of W of width 2φ. Since the
radius of W is r, there can be at most rφ mussels in
this annulus, and each can have an edge to at most φ2

other mussels. So, we have |F | ≤ rφ3. Each edge has
capacity wC , so the maximum value the flow problem
can have is bounded by Q = rφ3wC .
Now, we argue that it never makes sense to use

any mussels farther than Q φ
wO

from W outside W , or

farther than Q φ
wI

from W inside W . Indeed, any
path that long encounters enough edges to s or t to
accommodate all the flow. �

The number of mussels in this area is Q φ
wO

r =
wC

wO
r2φ4.

We can find those mussels easily once G is known.
Therefore, we can substitute n in the result of the
previous section, and arrive at the following result.

Theorem 6 Given a set P of n mussels in R
2, and

a wave impact zone W , we can compute the set of

mussels M that maximises F (M) in O(n log n+nφ2 +
(wC

wO
)2r4φ10) time.

4 Future Work

We modelled and analysed the effect of a single wave on
a mussel bed, and gave efficient algorithms to compute
it. The next step is to investigate whether we can
calculate the value of F for multiple wave impact
zones more efficiently, since a large number of waves
need to be evaluated in a single simulation.

Acknowledgments M.L. and T.O. are supported by the

Netherlands Organisation for Scientific Research (NWO)

under project no. 639.021.123 and 614.001.504 (M.L.) and

639.023.208. (T.O.).

References

[1] J. L. Bentley, D. F. Stanat, and J. E. Hollins Williams.
The complexity of finding fixed-radius near neighbors.
Information Processing Letters, 6(6):209–212, 1977.

[2] H. Breu. Algorithmic Aspects of Constrained Unit Disk

Graphs. PhD thesis, 1996.

[3] M. de Jager, F. J. Weissing, P. M. J. Herman, B. A.
Nolet, and J. van de Koppel. Levy walks evolve through
interaction between movement and environmental com-
plexity. Science, 332(6037):1551–1553, 2011.

[4] W. K. Hale. Frequency assignment: Theory and ap-
plications. Proceedings of the IEEE, 68(12):1497–1514,
1980.

[5] Q.-X. Liu, P. M. J. Herman, W. M. Mooij, J. Huisman,
M. Scheffer, H. Olff, and J. van de Koppel. Pattern
formation at multiple spatial scales drives the resilience
of mussel bed ecosystems. Nature Communications,
5(5234), 2014.

[6] M. Marathe, H. Breu, H. H. II, S. Ravi, and
D. Rosenkrantz. Simple heuristics for unit disk graphs.
Networks, 25(59):68, 1995.

[7] J. B. Orlin. Max flows in o(nm) time, or better. In
STOC ’13 Proceedings of the forty-fifth annual ACM

symposium on Theory of computing, pages 765–774,
2013.

[8] J. Sherratt and J. Mackenzie. How does tidal flow
affect pattern formation in mussel beds? J. Theor.

Biol, 406:83–92, 2016.

[9] J. van de Koppel, J. C. Gascoigne, G. Theraulaz, M. Ri-
etkerk, W. M. Mooij, and P. M. J. Herman. Exper-
imental evidence for spatial self-organization and its
emergent effects in mussel bed ecosystems. Science,
322(5902):739–742, 2008.

173

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A Novel MIP-based Airspace Sectorization for TMAs∗

Tobias Andersson Granberg, Tatiana Polishchuk, Christiane Schmidt†

Abstract

We present a MIP-based airspace sectorization frame-
work for Terminal Maneuvring Areas incorporating
an airspace complexity representation; it easily deals
with convex sectors. It is also the first step towards
an integrated design of routes and sectorization.

1 Introduction

Over the last decades air traffic volumes have in-
creased, and projections indicate that the growth will
continue. The resulting congestion is particularly con-
centrated on Terminal Maneuvring Areas (TMAs),
i.e., the area surrounding one or more neighboring
aerodromes, as traffic converges towards a point near
the runway. An optimized design of the TMA control
sectors can increase capacity (the sectors partition the
airspace above the TMA territory). The human fac-
tor is a major challenge for this design: each sector
is monitored by an air traffic controller (ATCO). The
mental workload associated with working in such a
complex system leads to the major constraints for
sectorization: the workload should be balanced and
below thresholds for every single ATCO.

Today, the airspace layout at most airports is done
manually. Many authors suggested automatic design
methods for sectorization, for an extensive survey see
Flener and Pearson [3], but the vast majority of ap-
proaches concentrate on en-route airspace.

Taskload/Workload. ATCOs must first of all en-
sure safe separation of aircraft (i.e., ensure a minimum
safety distance between aircraft). In addition, they
enable aircraft to reach their destinations in a timely
manner. To do so, they permanently anticipate and
detect (potential) conflicts and perform various other
tasks that contribute to the airspace’s complexity and
drive an ATCO’s mental workload. Both taskload and
workload reflect the demand of the air traffic con-
troller’s monitoring task (they measure objective de-
mand and subjective demand experienced during a
task, resp.); we will refer to both as taskload. Loft
et al. [4] survey methods for the elaborate problem of
determining the taskload of a sector.

∗This research is funded by grant 2014-03476 (ODESTA:
Optimal Design of Terminal Airspace) from Sweden’s innova-
tion agency VINNOVA and in-kind participation of LFV. We
thank Billy Josefsson (project co-PI, LFV) and the project ref-
erence group for discussions of sectorization design.

†ITN, Linköping University, Sweden, {tobias.andersson.
granberg, tatiana.polishchuk, christiane.schmidt}@liu.se

Recently, Zohrevandi et al. [5] presented a model for
relating ATCO’s taskload to the airspace complexity.
They quantify the taskload as a weighted combination
of ATCOs’ clicks on the radar screen (weight≈time
for the task). Using linear regression the authors were
able to explain terminal airspace complexity, given by
eight complexity factors, about 70% better than the
model by Djokic et al. [1] (who used controller pilot
(C-P) data link communication and C-P voice com-
munications). Thus, the weighted radar screen clicks
is a very good model for terminal airspace complex-
ity. We use the heat maps for weighted clicks([5]) as
input. Our model does not depend on these specific
maps, it is a general model that integrates complexity.

Notation and Preliminaries. A sectorization of
a simple polygon P is a partition of P into k disjoint
subpolygons S1 . . . Sk (Si ∩ Sj = ∅ ∀i �= j), such that
∪k
i=1Si = P . The subpolygons Si are called sectors.

Sectorization Problem:
Given: The coordinates of the TMA, defining a poly-
gon P , the number of sectors |S|, and a set C of con-
straints on the resulting sectors.
Find: A sectorization of P with k = |S|, fulfilling C.

2 Grid-based MIP formulation

We discretize the search space by laying out a square
grid in the TMA. Every grid node has directed edges
to its 8 neighbors (N(i) = set of neighbors of i (in-
cluding i)), resulting in a bidirected graph G = (V,E).
The length of an edge (i, j) ∈ E is denoted by ℓi,j .

The main idea for the sectors is to use an artificial
sector, S0, that encompasses the complete boundary
of P , using all counterclockwise (ccw) edges. That is,
we use sectors in S∗ = S ∪ S0 with S = {S1 . . . Sk}.
For all edges (i, j) used for boundary of any sector,
we enforce that also the opposite edge, (j, i), is used
for another sector, see Fig. 1(a). We use decision vari-
ables yi,j,s, where yi,j,s = 1 indicates that edge (i, j)
is a boundary edge for sector s. We add:

yi,j,0 =1 ∀(i, j) ∈ S0 (1)
∑

s∈S∗

yi,j,s −
∑

s∈S∗

yj,i,s =0 ∀(i, j) ∈ E (2)

yi,j,s + yj,i,s ≤1 ∀(i, j) ∈ E,∀s ∈ S∗ (3)
∑

s∈S∗

yi,j,s ≤1 ∀(i, j) ∈ E (4)

∑

(i,j)∈E

yi,j,s ≥3 ∀s ∈ S∗ (5)

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

174

33rd European Workshop on Computational Geometry, 2017

(a)
(b) (c) (d) (e) (f)

Figure 1: (a) Artificial sector S0 (black) and a sectorization with |S| = 5. Edges are slightly offset to enhance visibility.
(b)/(c) Area of polygon P (bold): each edge of P forms an oriented triangle with a reference point r. Cw triangles
contribute positive (b), ccw triangles negative (c). (d)-(f) Heat value extraction for a triangle.

yi,j,s ∈{0, 1} ∀(i, j) ∈ E,∀s ∈ S∗ (6)

Eq. (1) ensures that all ccw boundary edges belong
to S0. Consistency between edges is given by Eq. (2):
if (i, j) is used for some sector, edge (j, i) has to be
used as well. Eq. (3) ensures that a sector cannot
contain both edges (i, j) and (j, i). With Eq. (2) it
ensures that if an edge (i, j) is used for sector Sℓ, the
edge (j, i) has to be used by some sector Sk �= Sℓ.
Eq. (4) enforces that one edge cannot participate in
two sectors. Eq. (5) enforces a minimum size for all
sectors. We add constraints on the degree of vertices:

∑

l∈V :(l,i)∈E

yl,i,s −
∑

j∈V :(i,j)∈E

yi,j,s=0 ∀i ∈ V,∀s ∈ S∗ (7)

∑

l∈V :(l,i)∈E

yl,i,s ≤1 ∀i ∈ V,∀s ∈ S∗ (8)

Eq. (7) yields indegree=outdegree for all vertices. By
Eq. (8) a node has at most one ingoing edge per sector.

Constraints (1)-(8) guarantee that the union of the
|S| pairwise disjoint sectors completely covers the
TMA. Of course, there are various other constraints
for a sectorization, see [3]. The constraints we con-
sider can roughly be split in two categories: geometric
and balancing. Balancing Constraints are related
to two factors: size/area and taskload. We consider:

a) Balanced size: The area of each sector must be
balanced out with the area of other sectors.

b) Bounded taskload: There is an upper bound of
movements that an ATCO can handle per hour.

c) Balanced taskload: The taskload of each sector,
and, thus, of each ATCO, must be balanced out
with the taskload of other sectors.

For a, balanced size, we need to assign an area to
the sector selected by the boundary edges. The area
of a polygon P with rational vertices is rational, and
can be computed efficiently (see Fekete et al. [2]): we
introduce a reference point r, and compute the area
of the triangle of each directed edge e of P and r, see
Fig. 1(b)/(c). We then sum up the triangle area for all
edges of P : cw and ccw triangles contribute positive
and negative, respectively. Let fi,j denote the signed
area of the triangle formed by (i, j) and r.

∑

(i,j)∈E

fi,j yi,j,s − as = 0 ∀s ∈ S∗ (9)
∑

s∈S

as =a0 (10)

Eq. (9) assigns the area of sector s to the variable as,
Eq. (10) ensures that the sum of the as’s equals the
area of the complete TMA. If we want to balance the
sector size, we add as ≥ aLB ∀s ∈ S (11) to the IP.
It gives a lower bound on the size of each sector, we
use aLB = c1 · a0/|S|, with , e.g., c1 = 0.9.

For constraints b and c we need to be able to as-
sociate a taskload with a sector. Here, we assume
that a heatmap representing the controller’s taskload
is given, see Section 1. Given this heatmap we over-
lay it with a grid, extract the value at the grid points,
see Fig. 1(d), and use this discretized heatmap, see
Fig. 1(e), for further computations. We associate each
discrete heatmap point, q, with a “heat value”, hq.
Again, we consider triangles for each directed edge
(i, j) of P and the reference point r, see, e.g, Fig. 1(f):
we sum up the heat values for all grid points within
the triangle. The sign of the heat value for a trian-
gle is determined by the sign of fi,j , denoted by pi,j .
Let hi,j denote the signed heat value of the triangle
formed by edge (i, j) and r: hi,j = pi,j

∑
q∈∆(i,j,r) hq.

If the taskload is of interest, we add Eq. (12), which
assigns each sector s a taskload ts. In analogy to the
balanced size, we add Eq. (13) to achieve a balanced
taskload. Here, tLB = c2 · t0/|S| with, e.g., c2 = 0.9.
For a bounded taskload we add Eq. (14), with some
fixed upper bound tUB on the taskload in any sector.

∑

(i,j)∈E

hi,j yi,j,s − ts = 0 ∀s ∈ S (12)

ts ≥tLB ∀s ∈ S (13)

ts ≤tUB ∀s ∈ S (14)

Geometric Constraints:

d) Connected sectors: A sector must be a connected
portion of airspace, see Flener and Pearson [3].

e) Nice shape: A sector should have a smooth bound-
ary and an easily memorable shape, see [3].

f) Convex sectors: The sectors should be convex:
convexity can be defined either geometrically or
trajectory-based, i.e., no route enters the same
sector more than once, see Flener and Pearson [3].

175

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

g) Interior conflict points: Points that require in-
creased attention from ATCOs should lie in the
sector’s interior.

For d we chose to use the length of the sector bound-
ary as an objective function. For constraint g we can-
not use an absolute threshold heat value for points on
the sector boundary: we like to enforce points of rel-
atively high airspace complexity, represented by heat
values, to be in the interior. Again, we use the ob-
jective function. We take care of e in postprocessing:
Given constraint set C, e ∈ C, we solve the IP with
C \{e} and then use shortcuts by removing vertices as
long as the constraints in C \ {e} are not violated.

We can easily integrate convexity in our approach—
a feature many other optimization approaches lack.
For a convex sector there exist only one connected
chain of edges with cw triangles, and one connected
chain of edges with ccw triangles, see Fig. 2(a).
Unfortunately, the only-if-part of that statement is
not true, see Fig. 2(b). We can make use of the
fact that we have only eight edge directions. For
every direction of an incoming edge, there are three
directions of outgoing edges that are forbidden in a
convex polygon, see Fig. 2(c): there exist two open
cones (indicated in gray) in which a reference point
must be located to detect the switch. Thus, any
reference point located in the dark gray cones yields
a switch in the triangle orientation. We place one
reference point in each of the eight cones in Fig. 2(d),
and denote them by r1, . . . , r8 (r = rm, for some
m ∈ M = {1, . . . , 8}). At least one of the rm will
result in a cw/ccw switch for non-convex polygons.
Let pi,j,m denote the sign of the triangle of the edge
(i, j) and reference point rm, m ∈ M. We add:

qsj,m =
1

2

∑

i:(i,j)∈E

pi,j,m yi,j,s −
∑

l:(j,l)∈E

pj,l,m yj,l,s

 (15)

∀s ∈ S, ∀j ∈ V, ∀m ∈ M

This constraint assigns, for each sector, a value of
-1,0,1 to each vertex. An interior vertex of either a
chain of cw or ccw triangles has qsj,m = 0; if at j a
chain with ccw (cw) triangles switches to a chain of
cw (ccw) triangles qsj,m = −1 (qsj,m = 1). For a convex
sector s, the sum over the |qsj,m| for all sector vertices j
is 2 for all reference points rm; for non-convex sectors
this value is larger than 2 for at least one reference
point rm. Eq.s (16),(17) define the absolute values.
To enforce convexity (18) must hold. To this end we
use Eq.s (19)-(22)to define variables zsi,j,m = yi,j,s ·
qabssj,m∀i, j ∈ V ∀s ∈ S, ∀m ∈ M, and add Eq. (23).

qabssj,m ≥ qsj,m ∀s ∈ S,∀j ∈ V, ∀m ∈ M (16)

qabssj,m ≥−qsj,m ∀s ∈ S,∀j ∈ V, ∀m ∈ M (17)

∑

i∈V

∑

j∈V

yi,j,s · qabssj,m =2 ∀s ∈ S, ∀m ∈ M (18)

0 ≤ zsi,j,m∀i, j ∈ V ∀s ∈ S, ∀m ∈ M (19)

zsi,j,m ≤qabssj,m∀i, j ∈ V ∀s ∈ S, ∀m ∈ M (20)

zsi,j,m ≤ yi,j,s∀i, j ∈ V ∀s ∈ S, ∀m ∈ M (21)

zsi,j,m ≥ yi,j,s − 1 + qabssj,m∀i, j ∈ V ∀s ∈ S, ∀m ∈ M (22)

∑

i∈V

∑

j∈V

zsi,j,m =2 ∀s ∈ S, ∀m ∈ M (23)

If we allow usage of a few reflex vertices, we might
penalize reflex vertices in the objective function.
Objective Function. As opposed to most LP ap-
proaches, in our case, it is not obvious what kind
of objective function should be used. Cost functions
used in literature, cp. [3], are, e.g., taskload imbal-
ance (constraint c), and number of sectors (which we
consider as input). Our basic objective function is:

min
∑

s∈S

∑

(i,j)∈E

ℓi,jyi,j,s (24)

If for the balancing constraints we have a ∈ C, b, c /∈
C, that is, we want to balance the area of the sectors,
but are not interested in the sector taskload, objective
function (24) ensures that sectors are connected, that
is, we take care of constraint d, see Fig. 2 (e).

If we consider taskload, objective function (24) only
yields connected sectors if c2 in tLB = c2 · t0/|S \ S0|
of constraint (13) allows it: for example c2 = 0.9
may not allow a “c2-balanced” sectorization with con-
nected sectors, but if we allow for larger disparities
between sectors, making a connected solution feasible
by lowering the parameter, e.g., c2 = 0.7, we again
obtain connected sectors. Essentially, this translates
to: given the current complexity map a user must al-
low larger imbalances between controller’s taskload, if
having connected sectors is a necessary condition.
Integration of Constraint g. If g ∈ C we use:

min
∑

s∈S

∑

(i,j)∈E

(γℓi,j + (1− γ)wi,j) yi,j,s, 0 ≤ γ < 1 (25)

Where wi,j represents an edge weight that depends
on the heat-values of its endpoints. We choose (I)
wi,j = hi+hj . or (II) wi,j =

∑
k∈N(i) hk+

∑
l∈N(j) hl.

(I) ensures that relatively large heat-values are not lo-
cated on the sector boundary, (II) pushes larger val-
ues further into the interior. An alternative is to use a
constraint with an upper bound W . This shows that
we obtain an optimal connected solution, if, given c2
and W , there exists a feasible connected solution.

3 Experimental Study: Arlanda Airport

The model was solved using AMPL and CPLEX 12.6
on a single server with 24GB RAM and four kernels
running on Linux. Each instance was run until a so-
lution with less than 1% gap had not been found, or

176

33rd European Workshop on Computational Geometry, 2017

(a) (b)

(c)

(d) (e)

Figure 2: A convex (a) and a non-convex (b) polygon. (c) Three outgoing edge directions yield a non-convex polygon
(interior of P below ingoing edge). (d) Eight cones for detecting non-convexity. (e) Disconnected sectors are not optimal
for (24). The sectors must completely cover the TMA. Assume there is a disconnected sector, like the green sector in the
left, we can merge and decrease the total perimeter, we have: (y+z+2x)+(2x)≤ (y+z) +(2y+2z) by triangle inequality.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 3: (a), (b), (f) C1 = {c, d, e}. (a) |S| = 4, and (b) |S| = 5. (c), (d), (g), (h) C2 = {c, d, e, g}. (e) C3 = {c, d, e, f, g} ,
|S| = 3. (c), (d) |S| = 4, and (f)-(h) |S| = 2. (c),(d),(e),(g) with wi,j = hi + hj ; (c): γ = 0.9, (d), (e), (g): γ = 0.5. (h)
with wi,j =

∑
k∈N(i) hk +

∑
l∈N(j) hl, γ = 0.5. (i) Color scale for heat values.

for a maximum of one CPU-hour. No instance fin-
ished with an optimality gap of more than 6%. If not
mentioned otherwise we use c2 = 0.9. For Stockholm
TMA we do not think that convex sectors are a ma-
jor concern: integrating the constraints in the IP is
costly, while in the easy structure of the TMA a few
reflex vertices will not result in a problem.

Fig. 3 (a)/(b) depicts solutions for C1 = {c, d, e}.
Fig. 3(c)/(d) shows sectorizations for |S| = 4, and
C2 = {c, d, e, g} for different values of γ. Compar-
ing Fig. 3(c) with Fig. 3(a) we can observe that the
objective to have interior conflict points avoids the
heat value of 10 (dark red) in the center; for γ = 0.5,
Fig. 3(d), both hotspots, i.e., areas of high heat val-
ues, are avoided by sector boundaries. Fig. 3(e) shows
a convex sectorization for |S| = 3, C3 = {c, d, e, f, g}
and weight function (I) with γ = 0.5.

Influence of choosing wi,j. We present an in-
stance (not connected to Stockholm TMA) to high-
light the influence of the weight wi,j . To ease percep-
tion we use |S| = 2: we pick one cut through the rect-
angle. We consider C2 = {c, d, e, f}. In Fig. 3 (f) we
use γ = 1, i.e., hotspots are neglected. Consequently,
the cut runs along the shortest connection that bal-
ances workload. In Fig. 3 (g) and (h) we use γ = 0.5
and weight function (I) and (II), respectively. That is,

in (g) we want to avoid that the sector boundary runs
through hotspots; in the solution, we see that the low
value heat points (yellow) are chosen. In (h), we also
account for the weight of the neighbors of vertices on
the cut. Thus, the cut that was optimal for (I) has a
high weight. The optimal solution now runs through
the areas of low complexity and avoids the hotspots.

References

[1] J. Djokic, B. Lorenz, and H. Fricke. Air traffic control
complexity as workload driver. Transp. Res. Part C:

Emerging Technologies, 18(6):930 – 936, 2010.

[2] S. P. Fekete, S. Friedrichs, M. Hemmer, M. Papen-
berg, A. Schmidt, and J. Troegel. Area- and boundary-
optimal polygonalization of planar point sets. In Eu-

roCG 2015, pages 133–136, 2015.

[3] P. Flener and J. Pearson. Automatic airspace sectori-
sation: A survey. CoRR, abs/1311.0653, 2013.

[4] S. Loft, P. Sanderson, A. Neal, and M. Mooij. Mod-
eling and predicting mental workload in en route air
traffic control: Critical review and broader implica-
tions. Human Factors, 49(3):376–399, 2007.

[5] E. Zohrevandi, V. Polishchuk, J. Lundberg, Å. Svens-
son, J. Johansson, and B. Josefsson. Modeling and
analysis of controller’s taskload in different predictabil-
ity conditions. In 6th SESAR Innovation Days, 2016.

177

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A Combinatorial Upper Bound on the Length of Twang Cascades ∗

Leon Sering

Abstract

Damian et al. [2] introduced an intuitive type of trans-
formations between simple polygons on a finite set of
points in the plane. Each transformation consists of a
sequence of atomic modifications of two types, called
stretches and twangs. They proved that, for a given
set of n points, the space of these simple polygons is
connected by O(n2) such transformations.
We solve an open question of Damian et al. con-

cerning a combinatorial upper bound on the length of
these sequences. To this end, we show that the length
of a twang cascade is bounded by n3/2.

1 Introduction

This paper studies simple polygons on a fixed set S
of n points in the plane. A simple polygon on S is
a crossing-free cycle of straight line segments, each
connecting two points of S such that every point of S
is visited exactly once. In the following we abbreviate
“simple polygon” by “polygon”.

Sampling Polygons We consider the following chal-
lenging open problem:
Given a point set S as input, the task is to gener-

ate a random polygon on S with uniform distribution,
that is, if r is the number of polygons on S, we want
to choose one with a probability of 1

r
. So far no algo-

rithm is known to do this efficiently.
However, there are various partial solutions for this

problem. On the one hand, there are efficient gener-
ators for specific subsets of simple polygons such as
x-monotone polygons [5] or star-shaped polygons [1].
On the other hand, there are algorithms that pro-
duce all possible polygons with positive probability
but they are not generated uniformly at random. For
example, the 2-Opt-Moves algorithm [1] produces a
random permutation of S and then removes all self-
intersections step by step.

Random Walk Approach A different approach is to
repeatedly apply random modifications to a polygon,
a so-called Markov chain Monte Carlo sampling. We

∗This is a short version of a master thesis with the
same title submitted to the Institute of Computer Science
at the University of Würzburg in 2016. The full version
is available at http://www1.pub.informatik.uni-wuerzburg.de
/pub/theses/2016-sering-master.pdf

define a class of transformations, each turning one
polygon into another, such that for every polygon
the number of applicable transformations is bounded
polynomially. Then the algorithm does a random walk
on the transformation graph, which is the directed
graph whose vertices are the polygons on S and where
two vertices are connected by a directed edge when-
ever there is a transformation that turns one polygon
into the other. If the transformation graph is con-
nected, one can choose transition probabilites such
that the distribution of the random walk converges to
the uniform distribution.

The simplest transformation is the 2-flip. It re-
moves two edges of the polygon and adds two other
edges in order to get a new polygon. Unfortunately,
there are point sets where the flip graph is not con-
nected [4], which is shown by the existence of an iso-
lated vertex.

For the k-flip, k ≥ 3, it is unknown whether the cor-
responding flip graph is always connected. Hernando
et al. [3] give a good overview of different types of
flips and of subclasses of polygons whose flip graphs
are connected.

2 Stretches and Twangs

Damian et al. [2] imagine the polygon as an elastic
band that is attached to the points in S at its vertices.
They introduce a new transformation, called forward
move, based on the idea of deforming this elastic band.
It consists of two different types of atomic operations,
namely stretches and twangs.

Polygonal Wrap Neither stretches nor twangs are
simplicity preserving. They produce an object called
polygonal wrap, which does not have any proper cross-
ings but can be self-touching.

Definition 1 ([2]) A polygonal wrap W on S of
length m ≥ n is a cyclic polygonal chain such that

(W1) The wrap only bends at points of S.

(W2) Every point in S is visited at least once.

(W3) The wrap does not contain any proper cross-
ings, i.e., there exists an arbitrarily small per-
turbation of the vertices of W that makes the
cyclic polygonal chain non-self-intersecting.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

178

33rd European Workshop on Computational Geometry, 2017

If a point is visited more than once, we call it a point
in multiple contact, and a subsequence (a, b, a) is a
needle-pin at b. Furthermore, we say that a line seg-
ment ab does not properly cross W if there is an arbi-
trarily small perturbation of W and ab such that W
and ab do not intersect. For a subsequence (a, b, c),
we call the cone in the minor arc the convex side and
its complement the reflex side.

Twang A twang is an operation that transforms one
polygonal wrap into another. Informally, we choose
a point in multiple contact that is not a needle-pin,
detach one contact from the point and let the band
snap back. The snapping band does not cross other
vertices but attaches to them instead; see Figure 1a.

Definition 2 ([2]) The operation Tw(abc) is de-
fined for a subsequence (a, b, c) of a polygonal wrap
W whenever the following three conditions hold:

(T1) b is in multiple contact.

(T2) b is not a hairpin.

(T3) (a, b, c) does not surround any other visits of b.

Then Tw(abc) replaces the subsequence (a, b, c) in W
by sp(abc), where sp(abc) is the shortest path from a
to c inside of the triangle △abc that does not properly
cross W .

As long as there is at least one point in multiple
contact, we can apply a twang to the wrap. Further-
more, a polygonal wrap without any points in multiple
contact is a polygon. Although a twang might pro-
duce more multiple contacts in the process, we will
show that repeated twanging will in fact terminate
and restore a polygon.

Stretch Informally, a stretch is the operation of tak-
ing an edge e of the elastic band and attaching it to a
point p. Similar to a twang, the band does not cross
other points but instead wraps around them; see Fig-
ure 1b.

Definition 3 ([2]) Given a polygonal wrap W , we
say an edge e of W is visible to a point p if there is a
point x in the interior of e such that the line segment
px does not properly cross W . The point x is called
the spotted point. The operation St(e, p) is defined
for any edge e = (a, b) of W and any vertex p ∈ S if
e is visible to p. To execute St(e, p), we replace (a, b)
by (sp(axp), sp(pxb)), where x is the spotted point.

In other words, we first add the spotted point x as a
pseudo-vertex to the polygonal wrap and replace (a, b)
by (a, x, p, x, b). Afterwards, we twang at x twice such
that x can be removed again.

a

b

c

a

b

c

(a) Twanging at b: (a, b, c)
is replaced by sp(abc).

a b

p

a b

x

p

(b) Stretching (a, b) to p.
Add (x, p, x) temporarily
and twang at x twice.

Figure 1: Twang and Stretch.

A stretch is the main tool to modify a polygon and
turn it into another polygon. But since it always cre-
ates at least one multiple contact, we need to apply a
sequence of twangs in order to obtain a polygon.

Twang Cascade and Forward Move Next we define
the transformation for the random walk.

Definition 4 ([2]) Given a polygon P with an edge
e and a point p such that p can see e and the spotted
point x lies on the reflex side of the visit (u, p, v), a
forward move consists of a stretch St(e, p) followed by
a so-called twang cascade, which starts with the twang
Tw(upv) and repeatedly twangs as long as there are
vertices in multiple contact.

In order to guarantee reversibility of the transfor-
mation, we also consider the time-reversal of a forward
move and call it reverse move.

Pocket Reduction The main result of Damian et al.
states the following:

Theorem 1 The transformation graph combining
forward and reverse moves is connected and has a di-
ameter of O(n2). Each node has degree ω(n).

The key idea is to transform every polygon to a
canonical polygon (see Figure 2a) by reducing one
pocket after the other until there is only one non-
reduced pocket left. This can be done by O(n2) for-
ward moves.

3 Upper Bound on the Length of Twang Cascades

Damian et al. did not give a combinatorial upper
bound on the length of a twang cascade and, there-
fore, no polynomial bound on the running time of a
forward move is known.

They showed, however, that there are forward
moves that have twang cascades of length Θ(n2) as
shown in Figure 2b. In the following we will solve this

179

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

a

b

v1

v2

v9

(a) Canonical polygon Pa

with non-reduced pocket
ab and vertices occurring
clockwise around a.

v

e

(b) St(e, v) initiates a for-
ward move twanging mul-
tiple times around the cen-
ter.

Figure 2: Canonical polygon and quadratic twang cas-
cade.

open question and show that the length of a twang
cascade is bounded by O(n3).

Given a set S of n > 2 points in the plane in general
position and a polygonal wrap W that is created by
a stretch on a polygon, we fix a point p ∈ S and give
an upper bound on the number of twangs that can
occur at p in a twang cascade. We will show that this
number is bounded by O(n2).

Markers, Elementary Arcs and Radial Loop For
simplicity, consider p to be at the origin, that is,
p = (0, 0). First, we radially project every point in
S\{p} to the unit circle.

Definition 5 Consider the radial projection:

Π : R2\{(0, 0)} → S, q �→
q

‖q‖

Here S is the unit circle. We define

S+ := Π(S\{p}), S− := −S+, S± := S+ ∪ S−.

We call the elements of S± markers. For each point
q ∈ S\{p}, we write q+ for Π(q) and q− for −Π(q).
The bijective map ι : S → S with x �→ −x is called
central inversion.

The arcs between two neighbouring markers play
an important role throughout this section.

Definition 6 Let x, y ∈ S± be two markers. If the
minor arc between x and y does not contain any other
marker of S±, we call it an elementary arc and write
[xy]. Let Λ be the set of all elementary arcs.

Since we assume that S is in general position, S+

and S− are disjoint, and therefore |S±| = 2n−2. This
is also the number of elementary arcs. The central
inversion induces a bijection on the markers q+ �→ q−

S

p

W

LW

(a) The radial loop LW is
created by projecting the
polygonal wrap W to the
unit circle.

p

LW

5

30
x

y

(b) [xy] appears five times
in LW .
Hence cW ([xy]) = 5.

Figure 3: Radial loop and coins.

and q− �→ q+ for all q ∈ S\{p} and, therefore, a
bijection on the set of elementary arcs Λ as well:

[xy] �→ [ι(x)ι(y)]

Next, we want to count how often the polygonal
wrap goes around p in specific directions. This is
well defined except for the spots where the wrap goes
through p. For our purpose it is important to handle
these cases as if the wrap went around the reflex side
of p. We radially project the polygonal wrap to the
unit circle in the following way.

Definition 7 The radial projection of an edge (q, r)
of W with q
= p and r
= p is the sequence of all ele-
mentary arcs between q+ and r+ on the convex side.
For a subsequence (q, p, r) in W , the radial projection
is the sequence of the elementary arcs between q+ and
r+ on the major arc. If we incrementally replace every
edge of W by its radial projection, we get the radial
loop LW . This is visualized in Figure 3a.

Coin System Next, we introduce an integral poten-
tial, called coins. We assign as many coins to an ele-
mentary arc as often as the radial loop winds around p
in the direction of this elementary arc; see Figure 3b.
Whenever we twang at p, we remove at least two
coins. Since the current number of coins is always
non-negative, the number of twangs at p is bounded
by the initial number of coins divided by two.

Definition 8 For an elementary arc [xy] let cW ([xy])
be the number of times [xy] appears in the radial loop
LW . We assign cW ([xy]) many coins to [xy]. Further-
more, let cW (p) be the total number of coins on the
unit circle, that is,

cW (p) :=
∑

[xy]∈Λ

cW ([xy])

180

33rd European Workshop on Computational Geometry, 2017

a c

q

T

T ′

l1

l2

l3

(a) l1 crosses T but not T ′.
l2 crosses both twice.
l3 crosses both once.

p

a cW ′

W LW ′

LW

(b) The coin movement if
we twang at p.

Figure 4: A twang only decreases the number of coins.

The Combinatorial Upper Bound In this section we
want to prove the combinatorial upper bound on the
length of twang cascades by bounding the number of
twangs at each point p.
The following theorem states that the number of

coins does not increase when we execute a twang.

Theorem 2 A twang W → W ′ at q ∈ S\{p} never
increases the number of coins at p. In other words,
cW ′(p) ≤ cW (p).

The proof uses the fact that the twanged subse-
quence T ′ is in convex position and lies inside the orig-
inal subsequence T ; see Figure 4a. If T ′ goes around
p in the direction of an elementary arc then so did T .
Therefore, the number of coins on each elementary
arc can only decrease. Note that a special case occurs
when p is a neighbour of q. We omit the details.

The next theorem considers the case of twanging
at p. In order to bound the number of twangs by
the number of coins, we need to make sure that the
number of coins decreases each time we twang.

Theorem 3 Every twang W → W ′ at p decreases
the number of coins at p by at least two. In other
words, cW ′(p) ≤ cW (p)− 2.

The radial projection of the original subsequence
lies on the major arc, whereas the radial projection
of the twanged subsequence is on the minor arc. One
can imagine that every elementary arcs [xy] on the
major arc gives one of their coins to ι([xy]) on the
opposite side, but only if ι([xy]) is on the minor arc.
At least two elementary arcs cannot give one of their
coins to their opposite elementary arc and therefore
these coins are removed from the system. How the
coins move is illustrated in Figure 4b.
In the next step we give an upper bound on the

number of coins on each point p at the beginning of a
twang cascade.

Lemma 4 Let P be a polygon on S, and p ∈ S. Then
cP (p) ≤ n2.

This is true due to the fact that each of the n edges
can at most contribute one coin to at most n elemen-
tary arcs.

Lemma 5 A stretch does not add more than O(n)
coins to p.

This holds because a stretch means basically to add
two edges followed by some twangs.

In summary, there are no more than O(n2) coins
on p at the beginning of a twang cascade. Therefore,
only O(n2) twangs can occur at p. Summing over all
n points we receive our final result:

Theorem 6 In every forward move, the length of a
twang cascade is bounded by O(n3).

If we count more carefully and consider a lower
bound of coins for polygons, we can show that the
length of a twang cascade is in fact bounded by n3/2.

4 Open Problems

We still need to solve several problems to obtain an
efficient random generator for polygons.

1. Can reverse moves be computed efficiently?

2. Is the transformation graph still connected if we
allow only forward moves?

3. Is the random walk rapidly mixing?

We assume the first question to be answered with
no and the last with yes.

References

[1] T. Auer and M. Held. RPG – heuristics for the
generation of random polygons. Proc. 8th Canad.
Conf. Comput. Geom (CCCG’98), pages 38–44,
1998.

[2] M. Damian, R. Flatland, J. O’Rourke, and
S. Ramaswami. Connecting polygonizations via
stretches and twangs. Theory of Computing Sys-
tems, 47(3):674–695, 2010.

[3] C. Hernando, M. E. Houle, and F. Hurtado.
On local transformation of polygons with visi-
bility properties. Theoretical Computer Science,
289(2):919–937, 2002.

[4] M. E. Houle. On local transformation of poly-
gons. In Proc. Computing: 2nd Australasian The-
ory Symp. (CATS’96), volume 18 of Australian
Comput. Sci. Commun., pages 64–71, 1996.

[5] C. Zhu, G. Sundaram, J. Snoeyink, and J. S.
Mitchell. Generating random polygons with given
vertices. Computational Geometry, 6(5):277–290,
1996.

181

������ ���	
 ����
 ������
 ���� ��	
 ���	

�� ���� ���	����
��� ∀∃R����
����

����� �����	 ∗
������� ���	�� † ����� �������� †‡

Abstract

�� ��� � ����� ����� G′ �� � ��������� �� ���	���
����� ����� G �� 	��� ���� 	�� ���� ���� �	���	���
!���� � ��	� ���� �

������� �� ��� ����� ����� �� G"
�� ��� ������� ��� � �	�����	#���� ��������� �� G ��#
������ 	�� �������$�� ���� ����� %� �	 ����� 	��	 ���
����� ���� ���� ���������	 	���� �&��	� �� ���������	�
��������� �� G" 	��� G �� ����������
�� '� ����

��������	�
� �� ����	� 	�� ������	���� ���$��� ��
�������� �� G �� ����#��������� �� ��	������ ��� ��#
	���	� 	�� ��	���� ������&�	� ����� ∀∃R ��� ���(��#
	��� 	��	 ���� ��������	�
� �� ∀∃R#������	� ��
���� ���� 	��	 ���� ������	� �� ���� ��������	�
�
��� ∃R#������	�

1 Introduction

)��	��� �����	��� ���$���� ��� ������� ������ 	� ����
����$�� *�� ������ �&����� �� ������+� ,�&����

������ -��� .����� /0

������� � ��	

��� ���	��� ��������
��� A,B,C �� ����� ���	�
 �	 �
������� �	� �	�

�� X,Y, Z �� ����� ���	�
 �	 �	����� �	�� �� ���

�	�
 AY ,BZ,CX �	���
��� ��� �	�
 BX,CY ,AZ�

��
��������� ���	 ��� ����� ���	�
 �� �	���
�����	 ���

���	����

1�	����� 	�� �	�	����	 �� ��	���������� �����	���" �	
�� ���#	������ 	� ����� ��� ���	 ����� ������ ����
���� ����$���� 2����" ��� 34")���	�� /5

�� ������&�	� ����� ∃R ������	� �� ��� ���$���� 	��	
������ �� ���������� 	��� 	� 	�� ���$��� ����	�� ��
���
��
��	 ������ ��
�� ���	� -6
�0" 	��	
��� �� ����	 � 7��	 ����� ������� ���� 	�� ����� ��
�����& ���� 	��	 ���	���� ���� �&��	��	��� 8���	�7���"

∗�������� ��� 	
���
���� ���������� ����������� ������
����� ������� ���
�� ����������	
��������
��

†��������� ��� ������� �������
�� �������� ��!
�"
�
� #�
��� �� �������� �	�# �$�#%��� ���
����� ��"
!
�� �
�������������
��� �
��������������
��
���
��

��������� &� ��� '(� !�
��)#(#	��� �* +)
�
�����,��
�����-���
�� ��� ��
��� ��� ��!�� �����-��� �������+� ��.
/0123/.

‡4
����� �� 	
���
����
�� �����
���� ��������� 5
��
6
���������� �� ��������!�� 5
��
6�)��
��

A

B
C

X Y

Z

.����� /9 %����	��	��� �� ������+� ,�&����
������

��� ���� ���	��� 	�� ������� �� 	��� �� ��	 1� �&#
����� �� ���� � ������� ��9

∃x ∃y : x2 + y2 > 1 ∧ 3x+ 2y = 10.

�� �����	���� �� ∃R �	��� ���� 	�� ���	 	��	 ����
��	���� �����	��� ���$���� ��� ∃R#������	�

1 ����� �� ������ �
������ ����� �� �	 ��� $� ���#
�����	�� �� 	�� ��	�����	��� ����� �� ������	� �� 	��
�����
�� �������	��� ���$��� �� ������	 ������ ��
� ��������	 �����	��� ���$��� 	��	 �� ∃R#������	�"
��� 3:5 ∃R#������	����� ��2��	� 	�� ���� ����$����
������	���� $�	���� ������	 ������ ��� ���� ����#
$��
��� ������	��� ��� 	�� �����	��	 �����8������
	��	 �� ���	 $� ����� ��
�� 7��	 �����8����� ��
	��	 	���� �� ��		�� ���� 	� 7�� � ������ ���$���	�����
������	�� ���������� ������	 ������" �� ������ ���#
$���	����� ������	��� 	� ������ 6
� ��� ��	 �����
%� ���	" ��	���	 ���	��� ����$���� 	����" ����� $����
	�� ����	� �� ��	���� ��������	� ��������	�	����" ��
����� ��	 ���� ���� �� 	�� �������	��� ���$��� �� ��

	������ 1� � ������ �����8�����" 	��� ����� �����
�� ���� ��;���	 	� �	��� ���� � ���$���	����� ����	
�� ����
��� ���	 �	�	����	 ������ $� ������	���
���� �� �� ������� 	��� � �����$�� ���	 ,������" �	
�� ��	 (��	 ��;���	 	� ������ ���	��� � ����� �����
�� � ������	 ����� %	 ��8����� ����$���� �������	�
����	�����

��	 �� ��7�� ���� ��������	�
� ��������" $�����
�� ������� ��	� 	�� ����������

���� ��������	�
�

��
��� ����� ����� G = (V,E)
��������� <��� 	���� �&��	 �� ����#��������
�	�����	#���� ��������� �� G" ��� ����� �����$��
���� ���� ���������	=

���� �� �� �����	�	 �
������ � � ����������� ����� �� ����� ����� �� ���
��� ��	� ��
��� �� ���
����� � ��� �������� ��	 ����	
�
����	���	 � �������� ������ ���� � ������� ����� �	 ������ ����! ���� �" �� �������	 � ������ �� � ��������� ��� ����� �����	���� ��	#� �� �
$������

182

���� �������	
������ �	 ����������	�� ��������� ����

��������� ���	
��� ��� �� ∃R�����
��� ���

� ��
��� ��������� �� ������ �	����� ��������� ���� �����
����������� �������� ��� ����� �� ���� �������

	�
��� ����� �� 	� ��������� �� ��������� ����� ���
��� ����
����� �
�� ∀∃R � ��� ��� ��

 ���	
���
��� ������ �� ��
�����
 ���� �� ������	�
 ��	�
������
 ������ �� ��� ���
	 !"#$%� #�� ���
��� �� !"#$ �� ���� ����� �����
 ���� ��� ��
�
�� ������ ����� ����� ����� ���� 	
��� �� �������

&�������� ��

���� 	� 	
��� �� ���������
 &�����
���� �� �� ��������� &������������� �� �� �� ��� ����
��
 �� ����� '� ����
� �� ���� �����
 ��(

∀x ∀y ∃z : x2 + z2 ≥ 1 ∧ 3x+ 2y = 10z.

)� �� ��� �� �	����� �� ��

������ ��� *+ �� ����
����� �� ∃R �� �� �� ���� ����
�� �� ��� ��� ∃R ��
�������� �� ∀∃R�)� ��� ��� �� ��� *+⊆ ∃R�
�� �� �	����� ��� Π

p

2� ��� ����
����� �
�� �� ���
������
���
 �� ��� ��
�����
 ���� �������� ��� ,-�
.����� /0%� �� �������� �� ∀∃R� ����
� ���������

�� ��� ���������� �� ∀∃R �� +1+'."� ��� ,20� 3��

�� �����

 ����� ����
����� �
���� ���
� ��

����
� �� �� ��� ���� ������� *+ �� +1+'." ����
������� ��� �������� �� ��� ��� ����
����� �
��� ���
3����� -� '�
�����
� �� ∃R 	���� ��������� ��������
�� � ��� ��
 ���������� �� *+� ∀∃R �� 	� �������
� ��� ��
 ���������� �� Π

p

2� #��� ∃R �= ∀∃R ��
	� 	�
����� ���� ����
� ��������� � *+ �= Π

p

2�)�
�������� ��� ��������	�
��� �� ∀∃R ��
���� ��� ∃R

�� �
��	��� ������ ��� ,/0�

NP

∃R

∀∃R

Π
p

2

PSPACE

3����� -(.��������� ��
����� �� ����
����� �
�����

#�� ���	������ �� ���� ������	�
��� �� ∀∃R ��
	� ���� 	� �������� ��� ���	
�� �� !"#$� �� ��� ���
	
��� �� �������
 &�������� �� ������	� ��� ��� ��
��������� �� ��� 	
��� �� ���������
 &�������� ��
������	� ��� �
������ �� ��� �������� �� ��� ��������
�� G4 ��� &������������ �����
 ������ �� ��� �
���
���� ������ ��
�5�� ��������
��� �������� �� G

���� ��� �������� ����

���������� ���� ������	�
��� �� ∀∃R�������	�

���
� ���� ����������� �� ����� ���
� ���� ��� ����
������	�
��� �� ��

� ��6��
� ���	
�� �� �
���
	��� �� ���	������
 ������ �� ���
�
�� ���� ���
���� ����� ����
 ��������� ���	
�� ��� �� ����
�
��� ��� ∀∃R�

#� �����
�� ��� ������� �� ��� ����������� �� ���
�� ����� ��� ��� �� �� ��� ��	
� �� ��������� ��

3����� 2()� ���� ���� ����������
7

��� ��

 ���� G �� 3����� 2 �� ����������
� ��
���� ������
�5�� ����� ���
 ��� �� ��� ���� ������
��� ������ �� ��������� ����������
��� �� G�

8���
� �� ����� 	��� ����������
 ������)� ��
���� ������������� �� �	����� ��� ������ �����
��
����� �� ����������
� .
��
�� �� ���� ��
����������
� ����� ��	���� �� �� ��
�� ���
�������
� #��� ���
��� ��� ������� ��� ������
��
����� �� ����������
� #�� ��
� ���������
 �
��
�� ����� ��� �� ����� �� 	� ����������
 �� ���
	�� �
�� ����� ,9:0 ��

 ��	��������� �� �
��
����� ,;0�

<� ��� ������� ����� �� �� ����� 	� $����
 ,=0 ���
��� ��������� ���� �� ��� ����������
� >
���� ,;0
������ ������
� ���

 "�
���� ������
����� ��
��� ���������� ���� �� ��� ����������
�

	��
������ '� ���� ���� ������ ������� ���
����������� �� �������� ��� ������ �� ���� ����

���	�
����

������ �������	�
 �����

������ +
�� ���� G = (V,E)� ��� �� ��
�������� �� ��� ��� F �� ����� ���� A : F → R

+�
���� ��������� ��� ��	��� �� �������� V ′ ⊂ V �
��������� ?��� ����� ����� � �����
�5���
��������
��� �������� �� G ���������� ��� �����
��������� ���

 v ∈ V ′7

#�� ���� ����
� �������� ��� ������� �� �
����

���	������ ������

������� � �
���� ���	������ ����� �� ∃R�

������	�

#������ - �� ����������� 	� @���
 ��
� ,A0�
��� ������ ����
�� �� �
�� �����
��� ���� ���
����� ��� �� ����������� ���� ��� ����� ���
��
�5��� �������� ��&����� �������
 ���������� ��
���������

#�� ������ ����
� �������� ��
��� ���	
��� ��
����� �� ���� ��� �
����� ������������

183

������ ���	
 ����
 ������
 ���� ��	
 ���	

���������� ���	 �
 �����

��	��

������ � 3�������� 	
������	 G = (V,E) ���
�� ���� ��������� A ��� ���	 ��� e ∈ E�

�����	
�� ���� �	��� ����� � ��������� �� �	�
�������� V ���	 �	�� �	� ���� �� ���	 ������� e ∈

E �� ������
 A(e)�

���� �	�� �� 	��� �� ����������� ���������� �� ����
������� 	��
 �� ������
����

���
�� � ���������� 	��
 �� ������
���

�� ∃R�������	�

��� �� ����� ������������ �� ���� �	� ����� �� �	��
���� �� �	� ���� ���� �� �� ��� ����� ���������
��� ������ ������������� !"� #� �� ���
 �� $���� �	���
������ $������ �� ��� ����� ������ �� ��� �� ��������
������

2 ��	
	� ���������� ���	�

%������
 �$��	����� �� ��� �	���� �	�� �	� ��������
������� �� &�% �� ∃R��������� '"�

�����
�

������ Φ = ∃x1 . . . xn : ϕ(x1, . . . , xn)� �	��� ϕ ��
� ���(������� �� ����������� �� �	� �������� ����)
x = 1� x+ y = z� x · y = 1�

�����	
�� #� Φ �����

�	�
 �	���� �	�� �� �� ��*����� �� �������� ����������
�	��	 ��� ���	�� �������� �� 	��� � �������� ���	��
���� �� (0, 105)�

����� �� ������� � 	
������ +� ������ ���� ����

���� ,���� Φ = ∃x1 . . . xn : ϕ(x1, . . . , xn)� �� ����
������ � ����� ���	 GΦ� ��� � ���� ���� ���������
A ��� � ��$��� �� ������ ���������� ���	 �	�� GΦ 	��
� �����-�� ������ �� ��� ���
 �� ϕ �� �����.�$�� $

���� ������ ���� �	� �������� (0, 105)�

�� �� ��� �� �������� �	� $�������� ��������� ���	 ��
�����$��� ��� ����������� ��� .� �� ���	����� �����
�� �� �� ������ ���� /�� �� ������� ��� /���� 0�
+� ���� ��� �
��� �� �����) �������� ��� �����$����
��������� ��������� ��� �������� ������������ �� ����
�� ����� ��� �������� �� ������ 1������� � �������
���� ��� $� ��������� $
 ������ �	��� �������� ���
��� ������������
� ���� �� �	� �������� ���� �� ���
����� ���� 	��� �������$�� ���������� +� ���� ���	
�������� ���� ��� ��� ��	�� �������� ��������

addition

inversion

wirevariable

x1 x2 x3 x4 x5

crossing

splitter

/���� 0) �	� ��������� ���	 �� ϕ = (x1 · x3 = 1) ∧
(x2 · x3 = 1) ∧ (x1 + x3 = x5) ∧ (x2 + x3 = x4)�

1 fixed

flexible

a

b

v

/���� 2) �	� �����$�� �����

�	� �������� ������ �������� �� � ������� ���	 ����
����$�� ���� 1� �	��� ��� �������� ��� ������
 .���
3��� /�� 24� #� ��
 �����-�� ������ �	� �	��� ����
��� v �� �	� �������� �	��	 �� 5���$��� ���� �� � �����
6�������� �� ��� ����� �� �� ��� �� � �����.� �������
$������ $
 ��� .��� �������� a, b� �	� �������� �� v
�� a ���������� �	�
���� ����� �� �	� �����$�� x� �	�
���� ����� �� �$������ $
 �������
�� ���	 105� /��
�	�� ��������� �� ����� �� �� ��������� �	�� �� ���
$���� �	� ���� �� ���	 �����$��� #� �	� �������� ��
��������� ������ �	�� � 5���$�� ������ �� ������ ��
��� �� � �����.�� ����� �	�� �� �����-�� $
 � ������ ���
�� � �����$�� �����

1

2

1

2

/���� 7) �	� ���� �����

�	� ���� ������ �������� �� ������� $������� ��������)
/��� .��� �������� ���������� �� �	� ������� �� �
�8���� �� ���� ' ��� ��� �������� .��� ���� 3���
/�� 74� &��	 �� �	� ��	�� ��� ����� �� �	� �8���� ��
��$����� $
 � 5���$�� ������ �	��	 ��� (����� $
 ��
���� &��	 �� �	� ��� ����� 	�� � �������$�� ���� �� 1

2
�

���� �	�� �� ��� �� �	� 5���$�� �������� �� ��������� ���	
��� .��� ���	$���� �� �� �	� ��	�� ���� 6�������� �	�
������ ����������� �	� ����� �� �	� �����$�� �	����

184

���� �������	
������ �	 ����������	�� ��������� ����

���� ��� �� ������ �� ��	
 �
��� �
�	
� �� �
	
������
�
 ��� ��
 �� ��� ����
� �� �����
��� �� ���
� ��
���
�� ��
 ���
 ��
�
 ��
 ����
 �� �
��
�
��
�

1

2·1010

y

x

�����
 �� ��
 ���
����� ����
�

��
 ��������� ��	��
 	������� �� ���

 ��
� �
���	
��
��� �
����
 �
���	
� ��� � ���������� ��	
 ��

 ��� �
!��
� ����� x, y� ��
����	
� x · y = 1 "
 	�� �����

���� ���� �
����
 �
���	
� ��

����	
� �� ��
 �� ��

���
� �����
� �� ��� ��
� �
������� �
�	
� ��
 ����#
���
 �
��
�
��� ��
 �
���� �� ��
 ���
 ��� ��
 ���
�
��
 �
���� �� ��
 �
���� �� ��
 ���������� ��	
 $� ��

��
�	���
� ��
� �� 1

2·1010
�� �
���%
�� ��
 ��� ����
� ��

���
��
� ��
�	� ���
�

1

2

1

2

1

2

1

2
1

1

1

1

x

x

1

x

x

�����
 &� ��
 ������
� ����
�

��
 ����

�� ��	��
 	������� � 	
����� ��
� �'���
 ��
��
� (� ����

�	� ���
 �� ��)�	
�� �� � �������
 �� ��
�
1

2
��

 ��� & *�	� �������
 ��
� � �
����
 �
��
�

�� � ���
 ��
 ��
� �� ���� ��
 ����
 �� ��
 �������

��
� ��
 ����
 �� ��� �������
� �� ������� ��
 ��
�
	��	������ +��
 ����
�	� ��	
 �� ��
� 1 ���
��	���
��� �
����
 �
���	
� $� ��
 �� ��
�� 	�
���� ��
 ���
�
���� �	��
�
 ��
 	���
	� ��
� ,��	
 �� ���� ��
 �� �
���
� ��� �������� �� ���'�
�� �
�
����
� "
 ���� ��

������
� ����
�� �� �
���%
 �����

��
 �		�
��� ��	��
 �� ��
 ���� 	����
� ��

 ��� -
$� 	������� �� ���� ���
��� ��
� �
���	
� ��� ��� �
��#
��
 ��
�� ��
 ���
�	� �� ��
 ����
� x� y� ��� x+y� ���
���

 �� ��
 ���
���� .�
 �� ��
 ���
� �
����
 �
���	
�
�� ��)�	
�� �� 4 �
������ ��� ��� �������� �� �
�
����
�
�� ��
 2 ����
� −(x+y) ��� y ��
 ��
� �� ���� �� 	��
��������� y ���� ����� �� �
�� ��� −(x + y) ���� ���
�� ������ ����/� �� ����� �
 	�� ��
 ��
 ��	� ����
x+y ��� −(x+y) 	�� 	��	
� ��� ������ ��
 ����
� �

y

x+ y

x

1 1

1

−x1 −y 1

1

21

2

1

1

1

2

�����
 -� ��
 �������� ����
�

References

0(1 2�//
� 3�������
�� 3��� 3�����%
/� ��� ����#
���� 2���%�� ��
 ��� ����
�� �����
� �� ∃R#
	����
�
 �� �������
���� 45(�

041 ,��)

� 3���� ��� 6��% 6���/ ����
�
�����
��������
�� � ��	��� �������� 7�������
 8��#
�
����� 9�
��� 455-

0:1 ,������ 6���� ;�	���� 9����	/� ��� 2���
#
����<���
 ;�� ������
��� �� ���� ��������� ���
���
�� ,�����
�#=
����� 455>

0?1 ��
�
�
 7 6�
�� ��� @
���� *�
�� ;��%
=
�A%'�
% B������ ������ :#��

� ���� ���
�
��	
 ��
�� ����
� ������ ?>�: �4�>C4&D� 45(:

0D1 E��
� � B��
����� ��� E��� �
���% ;
�� '���#
���
�
���������� �� ������
����
����� �������
�� �������� ����
�
���� D�(�4-C:D� (-&&

0>1 @���� F�
��� B������ ������ ������ ���� ��
#
�	���
� ��	
 ��
�� $� �� �� ! "����# $%�
&&' � ���
� (D&C(�5 ,�����
�� 45(>

0�1 E�GH 2����I
/ $��
��
	���� ������ �� �
��
���
��� ∃R �((# ���) '�!��!*!� 45(?

0&1 EJ��
� ;�	��
�#!
�
�� "������
���� �� ���+���

��� �����
��� � ���	�	
���
������ ���� ��	
������� �����
�� ,�����
� ,	�
�	
 K 6����
��
2
���� 45((

0-1 !
����� ;���
� *'����
�� ������ ��
�����
���� ,�
��	� �� ����� -������ ���
� D5:CD5D�
(--5

0(51 7����
� �������
� 9���
 	���	 ������ ����
��
�	���
� ��	
 ��
�� ������
�����# "��������
�
. ����
���� (�:�(#:&(�4C(5� (--4

185

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A Lower Bound for the Dynamic Conflict-Free Coloring of Intervals with

Respect to Points

Mark de Berg∗ Tim Leijsen∗ Aleksandar Markovic∗ André van Renssen†‡

Marcel Roeloffzen† ‡ Gerhard Woeginger∗

Abstract

We introduce the dynamic conflict-free coloring prob-
lem for a set S of intervals in R

1 with respect to
points, where the goal is to maintain a conflict-free
coloring for S under insertions and deletions. We
investigate trade-offs between the number of colors
used and the number of intervals that are recolored
upon insertion or deletion of an interval. We provide
a lower bound on the number of recolorings as a func-
tion of the number of colors, which implies that with
O(1) recolorings per update the worst-case number
of colors is Ω(log n/ log log n), and that any strategy
using O(1/ε) colors needs Ω(εnε) recolorings. We also
provide a stronger lower bound against so-called local
algorithms.

1 Introduction

Consider a set S of fixed base stations that can be
used for communication by mobile clients. Each base
station has a transmission range, and a client can po-
tentially communicate via that base station when it
lies within the transmission range. However, when a
client is within reach of several base stations that use
the same frequency, the signals will interfere. Hence,
the frequencies of the base stations should be assigned
in such a way that this problem does not arise. More-
over, the number of used frequencies should not be
too large. Even et al. [6] and Smorodinsky [10] intro-
duced conflict-free colorings to model this problem, as
follows. Let S be a set of disks in the plane, and for
a point q ∈ R

2 let S(q) ⊆ S denote the set of disks
containing the point q. A coloring of the disks in S is
conflict-free if, for any point q ∈ R

2, the set S(q) has
at least one disk with a color that is unique among
the disks in S(q). Even et al. [6] proved that any set
of n disks in the plane admits a conflict-free coloring
with O(log n) colors, and this bound is tight in the
worst case.

The concept of conflict-free colorings can be gen-
eralized and extended in several ways, giving rise to

∗TU Eindhoven. MdB, AM and GW are supported by the
Netherlands’ Organisation for Scientific Research (NWO) under
project no. 024.002.003.

†National Institute of Informatics, Tokyo, Japan
‡JST, ERATO, Kawarabayashi Large Graph Project

a host of challenging problems. Below we mention
some of them; a more extensive overview is given by
Smorodinsky [11]. One obvious generalization is to
work with types of regions other than disks [6, 8]. One
can also consider the inverse setting, where one wants
to color a given set P of n points in the plane, such that
any disk—or rectangle, or other range from a given
family—contains at least one point with a unique color
(if it contains any point at all). This too was studied
by Even et al. [6] and they show that this can be
done with O(log n) colors when the ranges are disks
or scaled translations of a single centrally symmetric
convex polygon.

These results deal with the static setting, in which
the set of objects to be colored is known in advance.
This may not always be the case, leading Fiat et al. [7]
to introduce the online version of the conflict-free col-
oring problem. Here the objects to be colored arrive
one at a time, and each object must be colored upon
arrival. Fiat et al. show that when coloring points in
the plane with respect to disks, n colors may be needed
in the online version. Hence, they turn their attention
to the 1-dimensional problem of online coloring points
with respect to intervals. They prove that this can
be done deterministically with O(log2 n) colors and
randomized with O(log n log log n) colors with high
probability. Later Chen [4] gave a randomized algo-
rithm that uses O(log n) colors with high probability.
Similar results were also obtained for conflict-free col-
orings of points with respect to halfplanes, unit disks
and axis-aligned rectangles of almost the same size,
using O(polylog n) colors with high probability. Bar-
Noy et al. [1] considered the case where recolorings
are allowed for each insertion. They prove that for
coloring points in the plane with respect to halfplanes,
one can obtain a coloring with O(log n) colors in an
online setting at the cost of O(n) recolorings in total.
More recent variants include strong conflict-free color-
ings [3, 9], where we require several unique colors, and
conflict-free multicolorings [2], which allow assigning
multiple colors to a point.

Our contributions. We introduce a variant of the
conflict-free coloring problem where the objects to
be colored arrive and disappear over time. This dy-

namic conflict-free coloring problem models a scenario

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

186

33rd European Workshop on Computational Geometry, 2017

where new base stations may be deployed (to deal
with increased capacity demands, for example) and
existing base stations may break down or be taken out
of service (either permanently or temporarily). This
natural variant has, to the best of our knowledge, not
been considered so far. It is easy to see that, unless
one maintains a regular coloring in which any two
intersecting objects have distinct colors, there is al-
ways a sequence of deletions that invalidates a given
conflict-free coloring. Hence, recolorings are needed to
ensure that the new coloring is conflict-free. This leads
to the question: how many recolorings are needed to
maintain a coloring with a certain number of colors?
We initiate the study of dynamic conflict-free color-
ings by considering the problem of coloring intervals
with respect to points. In this variant, we are given
a (dynamic) set S of intervals in R

1, which we want
to color such that for any point q ∈ R

1 the set S(q)
of intervals containing q contains an interval with a
unique color. In the static setting, coloring intervals is
rather easy: a simple procedure yields a conflict-free
coloring with three colors. The dynamic version turns
out to be much more challenging.

We prove lower bounds on the possible tradeoffs
between the number of colors used and the worst-case
number of recolorings per update: for any algorithm
that maintains a conflict-free coloring on a sequence
of n insertions of intervals with at most c(n) colors
and at most r(n) recolorings per insertion, we must
have r(n) > n1/(c(n)+1)/(8c(n)). This implies that for
O(1/ε) colors we need Ω(εnε) recolorings, and with
only O(1) recolorings we must use Ω(log n/ log log n)
colors. In the extended version of this paper [5] we
present several algorithms that achieve bounds close
to our lower bound.

2 Lower bounds for semi-dynamic conflict-free col-

orings

In this section we present lower bounds on the semi-
dynamic (insertion only) conflict-free coloring problem
for intervals. More precisely, we present lower bounds
on the number of recolorings necessary to guarantee
a given upper bound on the number of colors. We
prove a general lower bound and a stronger bound for
so-called local algorithms. The general lower bound
uses a construction where the choice of segments to be
added depends on the colors of the segments already
inserted. This adaptive construction is also valid for
randomized algorithms, but it does not give a lower
bound on the expected behavior.

Theorem 1 Let alg be an insertion-only determin-

istic algorithm for the dynamic conflict-free color-

ing of intervals. Suppose that on any sequence of

n > 0 insertions, alg uses at most c(n) colors and

r(n) recolorings per insertion, where r(n) > 0. Then
r(n) > n1/(c(n)+1)/(8c(n)).

Proof. We first fix a value for n and define c := c(n)
and r := r(n). Our construction will proceed in rounds.
In the i-th round we insert a set Ri of ni disjoint
intervals—which intervals we insert depends on the
current coloring provided by alg. After Ri has been
inserted (and colored by alg), we choose one of the
colors used by alg for Ri to be the designated color

for the i-th round. We denote this designated color
by ci. We will argue that in each round we can pick
a different designated color, so that the number of
rounds, ρ, is a lower bound on the number of colors
used by alg. We then prove a lower bound on ρ in
terms of n, c, and r, and derive the theorem from the
inequality ρ � c.

To describe our construction more precisely, we
need to introduce some notation and terminology.
Let Ri := {I1, . . . , Ini

}, where the intervals are num-
bered from left to right. (Recall that the intervals in Ri

are disjoint.) To each interval I = Ij we associate the
set Ie := (a, b), where a is the right endpoint of I,
and b is the left endpoint of Ij+1 if j < ni and +∞
if j = ni, that is, I

e represents the empty space to the
right of I. We call (I, Ie) an i-brick. We define the
color of a brick (I, Ie) to be the color of I, and we say
a point or an interval is contained in this brick if it is
contained in I ∪ Ie. Recall that each round Ri has a
designated color ci. We say that an i-brick B := (I, Ie)
is living if the following two conditions are met:

• I has the designated color ci;
• if i > 1 then both I and Ie contain living (i− 1)-
bricks.

A brick that is not alive is called dead and an event
such as a recoloring that causes a brick to become dead
is said to kill the brick. By recoloring an interval I,
alg can kill the brick B = (I, Ie) and the death of B
may cause some bricks containing B to be killed as
well.

We can now describe how we generate the set Ri of
intervals we insert in the i-th round and how we pick
the designated colors. (Note that the designated color
of a round is fixed once it is picked; it is not updated
when recolorings occur.) We denote by R∗

i the subset
of intervals I ∈ Ri such that (I, Ie) is a living i-brick.
Note that R∗

i can be defined only after the i-th round,
when we have picked the designated color ci.

1. The set R1 contains the n
2 inter-

vals [0, 1], [2, 3], . . . , [n − 2, n − 1], and the
designated color c1 of the first round is the color
used most often in the coloring produced by alg

after insertion of the last interval in R1.
2. To generate Ri for i > 1, we proceed as follows.

Partition R∗

i−1 into groups of 4r consecutive in-
tervals. (If |R∗

i−1| is not a multiple of 4r, the final

187

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

group G of 4r intervals from living bricks

first interval in next group G′

IG IG′

Figure 1: Example of how the intervals are created
when r = 2. The designated color ci−1 is blue, and
the grey rectangles indicate living (i− 1)-bricks. The
grey rectangle around IG indicates the brick (IG, I

e
G).

Note that IG′ extends further to the right.

group will be smaller than 4r. This group will be
ignored.) For each group G := I1, . . . , I4r we put
an interval IG into Ri, which starts at the left
endpoint of I1 and ends slightly before the left
endpoint of I2r+1; see Fig. 1 for an illustration.

The designated color ci is picked as follows. Con-
sider the coloring after the last interval of Ri has
been inserted, and let C(i) be the set of colors
assigned by alg to intervals in Ri and that are
not a designated color from a previous round—we
argue below that C(i) �= ∅. Then we pick ci as
the color from C(i) that maximizes the number
of living i-bricks.

We continue generating sets Ri in this manner un-
til |R∗

i | < 4r, at which point the construction finishes.
Below we prove that in each round alg must introduce
a new designated color, and we prove a lower bound
on the number of rounds in the construction.

Claim. Let B = (I, Ie) be a living i-brick. Then

for any j ∈ {1, . . . , i} there is a point q ∈ I ∪ Ie

that is contained in a single interval of color cj and

in no other interval from
⋃i−1

ℓ=1 Rℓ. Moreover, there

is a point q ∈ I ∪ Ie not contained in any interval

from
⋃i−1

ℓ=1 Rℓ.

Proof. We prove this by induction on i. For i = 1
the statement is trivially true, so suppose i > 1. By
definition, both I and Ie contain living (i− 1)-bricks,
B and B

e
. Using the induction hypothesis we can now

select a point q with the desired properties: for j = i
we use that B contains a point that is not contained
in any interval from

⋃i−1
ℓ=1 Rℓ, for j < i we use that B

e

contains a point in an interval of color cj and in no

other interval from
⋃i−1

ℓ=1 Rℓ, and to find a point not

contained in any interval from
⋃i−1

ℓ=1 Rℓ we can also

use B
e
. �

Now consider the situation after the i-th round,
but before we have chosen the designated color ci.
We say that a color c is eligible (to become ci) if
c �= c1, . . . , ci−1, and we say that an i-brick (I, Ie) is
eligible if its color is eligible and (I, Ie) would be living
if we were to choose its color as the designated color ci.

Note that due to some recolorings, some of the newly
inserted intervals might not contain any living brick
and hence can never be living no matter the designated
color; the next claim shows that at most half intervals
inserted this round share this property.

Claim. Immediately after the i-th round, at least half

of the i-bricks are eligible.

Proof. Consider an i-brick (I, Ie). At the beginning
of the i-th round, before we have actually inserted
the intervals from Ri, both the interval I and its
empty space Ie contain 2r living (i− 1)-bricks. As the
intervals from Ri are inserted, alg may recolor certain
intervals from R1 ∪ . . . ∪Ri−1, thereby killing some of
these (i− 1)-bricks. Now suppose that alg recolored
at most 2r − 1 of the intervals from R1 ∪ . . . ∩ Ri−1

that are contained in I ∪ Ie. Then both I and Ie still
contain a living (i− 1)-brick. By the previous claim,
this implies alg cannot use any of the colors cj with
j < i for I. Hence, the color of I is eligible and the
i-brick (I, Ie) is eligible as well.
It remains to observe that alg can do at most rni

recolorings during the i-th round. We just argued that
to prevent an i-brick from becoming eligible, alg must
do at least 2r recolorings inside that brick. Hence, alg
can prevent at most half of the i-bricks from becoming
eligible. �

Recall that after the i-th round we pick the desig-
nated color ci that maximizes the number of living
i-bricks. In other words, ci is chosen to maximize |R∗

i |.
Next we prove a lower bound on this number. Recall
that ρ denotes the number of rounds.

Claim. For 1 � i � ρ we have |R∗

i | � n1/(8rc)
i − 1.

Proof. Since alg can use at most c colors, we have
|R∗

1| � n1/c. Moreover, for i > 1 the number of inter-
vals we insert is

⌊

|R∗

i−1|/4r
⌋

. By the previous claim
at least half of these are eligible. The eligible intervals
have at most c different colors, so if we choose ci to
be the most common color among them we see that
|R∗

i | �
⌊

|R∗

i−1|/4r
⌋

/2c. We thus obtain the following
recurrence:

|R∗

i | �

⌊

|R∗

i−1|/4r
⌋

2c
if i > 1,

n1

c
if i = 1.

(1)

We can now prove |R∗

i | >
n1

(8rc)i − 1 using induction.
�

Finally we can derive the desired relation be-
tween n, c, and r. Since n1 = n/2 and ni+1 < ni/2
for all i = 1, . . . , ρ − 1, the total number of inser-
tions is less than n. The construction finishes when
|R∗

i | < 4r. Hence, ρ, the total number of rounds, must
be such that |R∗

ρ| = n/(2(8rc)ρ) − 1 < 4r, which im-
plies ρ > log8rc(n/(8r+2)) > log8rc n−1. The number

188

33rd European Workshop on Computational Geometry, 2017

I

1 2 4 5
3

Figure 2: Example of a signature. The set S(I) con-
tains the segments labeled 1,2,4,5. The signature of I
is 〈2, 1, 3, 4, 5, red, blue,nil, blue, green〉.

of colors used by alg is at least ρ, since every round
has a different designated color. Thus c > log8rc n− 1
and so n � (8rc)c+1. �

Two interesting special cases of the theorem are
the following: with r = O(1) we will have c =
Ω (log n/ log log n), and for c = O(1/ε) (for some small
fixed ε > 0) we need r = Ω (εnε). Note that the theo-
rem requires r > 0. Obviously the Ω (log n/ log log n)
lower bound on c that we get for r = 1 also holds
for r = 0. For the special case of r = 0—this is
the standard online version of the problem—we can
prove a stronger result, however: here we need at least
⌊log n⌋+ 1 colors. This bound even holds for a nested
set of intervals, that is, a set S such that I ⊂ I ′ or
I ′ ⊂ I for any two intervals I, I ′ ∈ S. We also show
in the extended paper [5] that a greedy algorithm
achieves this bound for nested intervals.

Local algorithms. We now prove a stronger lower
bound for so-called local algorithms. Intuitively, these
are deterministic algorithms where the color assigned
to a newly inserted interval I only depends on the
structure and the coloring of the connected compo-
nent where I is inserted—hence the name local. More
precisely, local algorithms are defined as follows.

Suppose we insert an interval I into a set S of inter-
vals that have already been colored. The union of the
set S ∪ {I} consists of one or more connected compo-
nents. We define S(I) ⊆ S to be the set of intervals
from S that are in the same connected component
as I. (In other words, if we consider the interval graph
induced by S ∪ {I} then the intervals in S(I) form
a connected component with I.) Order the intervals
in S(I) ∪ {I} from left to right according to their
left endpoint, and then assign to every interval its
rank in this ordering as its label. (Here we assume
that all endpoints of the intervals in S(I) ⊆ S are
distinct. It suffices to prove our lower bound for this
restricted case.) Based on this labeling we define a sig-
nature for S(I)∪ {I} as follows. Let λ1, . . . ,λk, where
k := |S(I)| + 1, be the sequence of labels obtained
by ordering the intervals from left to right according
to their right endpoint. Furthermore, let ci be the
color of the interval labeled i, where ci = nil if the
interval labeled i has not yet been colored. Then we
define the signature of S(I) ∪ I to be the sequence
sig(I) := 〈λ1, . . . ,λk, c1, . . . , ck〉; see Fig. 2.

We now define a dynamic algorithm alg to be local

if upon insertion of an interval I the following holds:
(i) alg only performs recoloring in S(I), and (ii) the
color assigned to I and the recolorings in S(I) are
uniquely determined by sig(I), that is, the algorithm
is deterministic with respect to sig(I). Note that
randomized algorithms are not local.

To strengthen Theorem 1 for the case of local algo-
rithms, it suffices to observe that the intervals inserted
in the same round must all receive the same color.
Hence, the factors c in the denominators of Inequal-
ity (1) disappear, leading to the theorem below. Note
that for r(n) = O(1), we now get the lower bound
c(n) = Ω(log n).

Theorem 2 Let alg be a local insertion-only algo-

rithm for the dynamic conflict-free coloring of intervals.

Suppose that on any sequence of n > 0 insertions, alg

uses at most c(n) colors and r(n) recolorings per in-
sertion, where r(n) > 0. Then r(n) � n1/(c(n)+2) − 2.

References

[1] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and
S. Smorodinsky. Online conflict-free colouring for
hypergraphs. Combinatorics, Probability & Comput-

ing, 19(4):493–516, 2010.

[2] A. Bärtschi and F. Grandoni. On conflict-free multi-
coloring. In WADS, pages 103–114. 2015.

[3] P. Cheilaris, L. Gargano, A. A. Rescigno, and
S. Smorodinsky. Strong conflict-free coloring for in-
tervals. Algorithmica, 70(4):732–749, 2014.

[4] K. Chen. How to play a coloring game against a
color-blind adversary. In SoCG, pages 44–51, 2006.

[5] M. de Berg, T. Leijsen, A. Markovic, A. van Renssen,
M. Roeloffzen, and G. Woeginger. Dynamic and ki-
netic conflict-free coloring of intervals with respect to
points. CoRR, abs/1701.03388, 2017.

[6] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky.
Conflict-free colorings of simple geometric regions
with applications to frequency assignment in cellular
networks. SIAM J. Comput., 33(1):94–136, 2003.

[7] A. Fiat, M. Levy, J. Matousek, E. Mossel, J. Pach,
M. Sharir, S. Smorodinsky, U. Wagner, and E. Welzl.
Online conflict-free coloring for intervals. In SODA,
pages 545–554, 2005.

[8] S. Har-Peled and S. Smorodinsky. Conflict-free color-
ing of points and simple regions in the plane. Discr.

Comput. Geom., 34(1):47–70, 2005.

[9] E. Horev, R. Krakovski, and S. Smorodinsky. Conflict-
free coloring made stronger. In SWAT, pages 105–117,
2010.

[10] S. Smorodinsky. Combinatorial Problems in Compu-

tational Geometry. PhD thesis, Tel-Aviv University,
2003.

[11] S. Smorodinsky. Conflict-free coloring and its applica-
tions. In Geometry Intuitive, Discrete, and Convex: A

Tribute to László Fejes Tóth, pages 331–389. Springer
Berlin Heidelberg, 2013.

189

������ ���	
 ����
 ������
 ���� ��	
 ���	

������������ 	
�������
� 	

���� ���� ����� ��� ���

����� ����∗� 	
����
 ����†� ����� ����†� ������ �������†� ����� ���������†‡

Abstract

�� � ����!��� �"� #������� $��#�����% �& � ��!�'
���"�
�$�
�! �"� ℓ'$����������% �& � ������$���
!��#" �& ���
����(�� ��"���� � �����" �$�����
�& $��#�����% �� �"� ����� ℓ �& $����� �$������) *&
�� ������$� �"� ����� �& $����� �� ℓ = Θ(nα) &��
���� 0 ≤ α ≤ 1� �"� �"� #������ �& $�����! �"�
������$��� !��#" �& n ���
���� ���" ℓ $�����

• $� �� ��� �
 � ���� exp
(

O(
√
nℓ log n)

)

� �

• $��� �� ��� �
 � ���� exp
(

o(
√
nℓ)

)

� �����

�"� +�, &����(

���� !������%� �� $���
�� �"� #������ �& $����'
�! d'
�������� ��� ����� � �"� +�$��
�� �#�$�
�
 ����� ����!��� ������� �"���! �"�� �"� #���'
���

• $� �� ��� �
 � ���� exp
(

O(n1−1/dℓ1/d log n)
)

�
�

• $��� �� ��� �
 � ���� exp
(

O(n1−1/d−ǫℓ1/d)
)

&�� �% ǫ > 0� ����� �"� +�, &����(

1 Introduction

- #���� !��#"�� ��% $�����$ ��!����"��$ #�������
�.�% � $����� /�0���� ���� #"�����1 �
 $�
�� ��� �
 ��!�2$���% &����� �"� �"�� �� ��� ��
�� #������� � !����� !��#"�) &�� ����#��� �����
������� ���� ��	
�
���� �����
��� 	�����
�
������ ��� $� �� ��� �
 � ���� 2O(

√
n) � �

n' ����� #���� !��#"� �"��� � 2o(n) ��!����"�� ��'
��� &�� !����� !��#"�� ������! �"� +�#������ ����
,%#��"���� 3+�,4 �& *�#�!������� ������� �
 5��
678(�"� �0���� ���� � �"� ��#��� ����� �� �� ����
#������� &�� #���� !��#"�) ������! �"� +�,� �"�
���! ���� &�� �"��� #������� $��� �� ��#�� �

�� 2o(

√
n)(

* ���� $����� � ������� �#��
�# $� �� ������

&�� 7'
�������� !�������$ #�������� &�� ����#���

∗���������� �	
���������� ���������� �	 ����������
†��������� 	�� �������� ����� ��� �������� ���������

������ �	 ������ �
�� ���� �!" ��������� #� ��� $%�
����� &�%�
��'��()&���������*�� �����+��� ��� ���
����� 	�� ����� �����+��� �������,� ��" -./01-"

‡2����� �	
��������� ��� ��	�������� ������ 3����4
���������� �	 ���������

�"��� ��� 2O(
√
n log n) ���� ��!����"�� &�� ��������

���� ��� � ���
��� !��#"� �� &�� ��� � 7'

�������� #��� ���� 69� :8(���� !������%� &�� d'

�������� !�������$ #�������� ���! ����� �& �"�
&��� 2O(n1−1/d) �� nO(k1−1/d) �##��� �������%� �

���� �
 ;�
���#����� 6<8 �"���
 �"��� ������! �"�
+�,� �"�� &��� �& ���! ���� �� ���������% ���� #��'
����� &�� ���� #�������(

* �"�� #�#��� �� ��#���� �"��"�� ��$" � �#��
�#
�� #������� &�� !�������$ $�����! #�������(=�� ��
$���
�� �� �"� #������ �& $�����! �"� ������$���
!��#" �& � ��� �& ���
���� � �"� 7'
�������� #����
�"�� ��� ����!�! � $���� �� ��$"
��� ��$" �"�� �& ���

���� ������$�� �"� �"�% ��$�� �
�>���� $�����(?��
� $����� ����� �& $������ !�������$ ��.�$�� $�
��"� � ��������% �� #���� !��#"�) ��	
�
��� $�
�� ��� �
 � ���� 2O(

√
n) � �"� ������$��� !��#"

�& n ���
���� � �"� #��� �
� ������! �"� +�,�
�"��� �� � ��$" ��!����"� ���" ���! ���� 2o(

√
n)(

,��� ��� �"��� � ��% #���� !��#" �� <'$��������� ���

���� !��#"� $� $���� ��������% ���!� $��0���� �

"�$� �"� ℓ'$����������% �� � ����!&�� 0������ &��
���!��� �'$������ ����� �& ℓ �� ����(�� �"��
�"�� �& �"� ����� ℓ �& $����� �� #��� �& �"� �#�� �

$� �� �# �� Θ(n)� �"�� ���#����!�%� � �#��
�# ��
#�������) ������! �"� ������$��� !��#" �& n ���

���� ���" ℓ $����� $��� �� ��� �
 � ���� 2o(n)� ��'
����! �"� +�,(�"�� "�##�� ������ �"��� ���
�������� �& $����� ����� �& $����� �
 Θ(n) $��'
���@ -�� ��� 7'
�������� ������ ��"����� � �����"
�$����� �& $��#�����% �� �"� ����� ℓ �& $����� �'
$������(

������� � ��� ��� ���	 0 ≤ α ≤ 1
 ��� ������

�� �������� ��� ������������ ���� �� n ���� 	���� ����

ℓ = Θ(nα) ������

• ��� �� �����	 �� ���� 2O(n
1+α

2 log n) =
2O(

√
nℓ logn)
 ��	

• ������ �� �����	 �� ���� 2o(n
1+α

2) = 2o(
√
nℓ)
 ���

���� ��� ��� ������

�"� #���& �� �� ��% �#�$�2$ ��
���� �
 $� �� �����%
�
�#��
 ��� ��%� ����'#������� ��� �0����� �� ��"�� &��
��.�$��(,��� ��� �� ����� �"�� �"� ��0������� �&
&����� �� �������� &�� �"�� �%#� �& $��#�����% ��"� ���
��� &�� ����#��� �"� $�����! �& �"� ������$��� !��#"�
�& ��� ��!���� 3�& ��������% ��!�"�4
��� �� �
���

���� �� �� �����	�	 �
������ � � ����������� ����� �� ����� ����� �� ���
��� ��	� ��
��� �� ���
����� � ��� �������� ��	 ����	
�
����	���	 � �������� ������ ���� � ������� ����� �	 ������ ����! ���� �" �� �������	 � ������ �� � ��������� ��� ����� �����	���� ��	#� �� �
$������

190

���� �������	
������ �	 ����������	�� ��������� ����

��� ������� �	
����� �	 �� 2O(n) ���	���
� ����
�	� � �	������ ��
��� 	� �	�	���

������� � ����� �� �� 2o(n) ��	�
�������	 �� ��
�������� ��� ������������ ��
�� � ���� ���	���� ��
��� ��
��� ������ ��� ���
����

�	� �	�� �� �	
������� ����� �� �� �		� �� ��
������������	� 	� �� �	�	���� ��	���
 ���	 ���� ���

����	��� �� �� ��	�� �	� �	
� ��	���
� ��� �� ��
���������� �� ��	���
 ��	
 ��	 ��
����	�� �	 d ���

����	��� ��� �� ������ �		� �� �� ���	���� 	�
�� ������� ��
� ������ �	 � 1 − 1/d �	���� ���

���� �� ������� ��
� ��	��� ��� ��	��� �	 �� ����
���� ��
� 	� �� ����� �	��� �� d ���������� �	� ��
ℓ��	�	���� ��	���
� �� �	����� ���	���� ���
� �	 ��
n1−1/d ��
�� ℓ1/d� �� ��� �� d ���������� �� �������
��
� ���	
�� ���� ��� ���� ��������� �	 �� ��
��� 	�
�	�	�� ��� ����	���� 2O(n)� ���� �	� �	������ ��
�
��� 	� �	�	���

������� � ���
�� ���� 0 ≤ α ≤ 1
�� ��	������
d ≥ 2� ��� ������	 � �������� ��� ������������ ��
��
� n ���� �
��� �� ��� d���	������
� �������
� ��
��
���� ℓ = Θ(nα) ������

• �
� �� ������ �� ��	� 2
O

(

n
d−1+α

d log n

)

=
2O(n

1−1/d
ℓ
1/d log n)�
��

• �
���� �� ������ �� ��	� 2n
d−1+α

d
−ǫ

��
�� ǫ > 0�
������ ��� ���
����

 � ����� �	���� 	� �	��
� ! ��� " �	��	� ������
������ ����� �������� ���������� #������� �� ��	��
��
 	� �	�	���� ���� d������ ��� ℓ �	�	��
���� �����
	��� �� ����� �	��� 	� �� ����� �� �	������� �� ��

	�� ℓ �����$ 	������� �� �	��� �

�������� ��	�
��� ���� �� �	 ℓ��	�	����� %� �� 	��� ���� ��
����� �	��� �� �	������� �� ��
	�� ℓ 	� �� n ������
��� �� �� ��	�� ��� ���� �� � �������� �������	�
	� ���� O(n1−1/dℓ1/d) &'(�)� *����� ��� � �������	�
��� ������ ����� �	������ �	�	���� 	� �� ����� 	� ��

�������	�� �� ��� ����� ���	 ℓO(n1−1/d
ℓ
1/d) �
�����

���������� �� ��������� ��	������ �� �� �������
��
� �� ����
���

2 Auxiliary problems

+� ����� ��� ����	������ ��	 ��������� ��	���
��
��� ���� ����� ��
����� ����� �� �� ������� ������
��	�� �	� � *��� ��
����	� d ��� i ∈ [d]� �� ���	�� ��
ei �� d���
����	��� ����	�� �	�� i�� �		������� ��
����� �	 1 ��� ��� ��
������ �		�������� ��� ����� �	
0� �	� ��	 �	������ �������� g, d� �� ���	�� �� R[g, d]
�� d�����������	
���� ����� � ���� �	�� �������� ���
��� ����	�� ��	
 [g]d� ��� ��	 �������� ��� ��,����� ��

��� ��-�� 	� ������� 	�� �		�������� ��� ������� ��
	�� .	� ��� �		�������/� �� 	��� �	���� a ��� a′ ���
��,����� �� a = a′ ± ei �	� �	
� i ∈ [d]� +� ���� 	����
����� �	 �������� 	� � ���� �� ��		��

���	
��� d����	 3�
��
����� 0 d���
����	��� ���� G = R[g, d]� k ∈
N+� � ������	� ζ : v ∈ V (G) �→ {v1, v2, . . . , vk}

������ ��� ���� v �	 k ���� �		���� ����������
��� � ��� C 	� �	��������� 	� ��	 �����$

�
���� ���������� �	� � ���� v� � ��� C(v) 	�
�������� ������������,	��� ���,�����	�� 	� ��

	�� 3 �������� 	� ζ(v)1

����
��� ���������� �	� ��,����� ����� v ���
w� � ��� C(v, w) 	� �������� ������������,	���
�	��������� 	� �� �	�
 vi = wj .��� i, j ∈
[k]/�

�������� �� ���� �� ������
��� 	� ��
��������� ��� ��� ��� �	��������� ��� ������
*���

 � ���� 	� �� �������� I = (G, k, ζ, C) 	� d����	 3�

�� �� �� �	��� ��
��� 	� ���������� ����� gdk�

���	
��� ������ d����	 ��������

����� 0� ������� ������� G 	� R[g, d]�
ℓ ∈ N+� ��� � ������	� ρ : v ∈ V (G) �→
{pv1, p

v
2, . . . , p

v
ℓ
} ∈ ([ℓ]d)ℓ
������ ��� ���� v �	 �

��� 	� ℓ �	���� �� [ℓ]d�
�������� �� ���� �� ℓ��	�	���� 	� ��� �� �	����
��� ���$

• ��	 �	���� �� �� ��
� ���� ��� ��-����� �	��
	��1

• �� v ��� w ��� ��,����� �� G� ���� w = v+ ei
.�	� �	
� i ∈ [d]/� ��� p ∈ ρ(v) ��� q ∈ ρ(w)
������� �� ��
� �	�	�� ��� p[i] � q[i] ����
a[i] := a · ei �� �� i�� �		������� 	� a�

���� �� ���� 	� �� �������� �� �� �	��� ��
��� 	�
�	����� ����� |V (F)|ℓ ≤ gdℓ�

3 Hardness of coloring unit disks

������ �� � �������	� ��	
 ��
��� �� �	� ��� 2�
���	 3�
�� ��� �	��� ���� n ��� k ��������� ��� ����

����	� �� �	���� �� ��
� 2o(
√
nk)� ������ �� 2 � ������

 �
��� ������ 	� ��� �����	� �� �� �	��	���� ��	�
��
�

������� � ���
�� 0 � α � 1� ����� �� �� 2o(
√
nℓ)

�������	 ������� ������ 2����	 �������� ��

���
� � n ������
�� ℓ = Θ(nα) ������ �� �
�� ����
���
� �� n/ℓ ������� ������ ��� ���
����

191

������ ���	
 ����
 ������
 ���� ��	
 ���	

����� �����	
�� �� ������� � ���	
���� ��� 2�
���� 3���� �� ������	 2�����
�	������ ���
I = (G, k, ζ, C) �� �� ������
� � 2����� 3����� �����
G = R[g, 2] ��� ��
�
���
������� k ���������� ��

�����	
� �� ��	������� ������
� J = (F, ℓ, ρ) � ����
���	 2�����
�	����� ���� |V (F)| = Θ(|V (G)|) =
Θ(g2) ��� ℓ := 4k ������ ���
���� ����� F �� �� ���
�	
�� �	������ � R[g′, 2] ���� g′ = Θ(g)� ��� 	�
������� ��� ��� ����� � ���
�����	
�����

�������� ����	
 � ������ 	��� �� �
��� ����� ���
������ p1, . . . , pℓ ��� �� ��� ���� ��������� ���� �� pi =
(i, i) �� ����� i ∈ [ℓ] ����
���� �� ���� � �

��������� ������
 !� ���
�����	
���� �� ����

����� ��� ��������
��� R̄� �����
������� ���� �� ���
����� �� �� ��� �������	� 	�������� "��� �� ���
����
i ∈ [ℓ]� �� ���� ���
���� � ��� ����� pi �� R̄�

����������		������� ����	
 ��� ��
�
��� v =
(i, j) ∈ V (G)� �� ������	
� �� F � ��������
��� A(v))�

����� ��� ���������������� 	���� #��
��� A(v) ��
����������� �� ��
����� ��� ��	�� ���������� � �����
����� �� ζ(v)� ! i+j �� ����� ���� ���
��� A(v) �� ����

����� ����� $�������� A(v) �� ����

A1
2

4
3

5

6
7

8

x1

x2

bottom of

reference

coloring

B

y1

y2

top of

reference

coloring

1
2

3
4

6
5

7
8

���	�� �% &��� ���� ��� ��� ������ ���������
����������
�����

!� �	�
�����	
����� �� ���� �	�� ���� ��
� ���������
����������
��� ��
����� ��� � ��� ������ 	���������
! A(v) �� ����� ���
������� ϕ � A(v) �� ��������
� {ϕ(p2i−1),ϕ(p2i)} = {2i − 1, 2i} �� i ∈ [k] ���
ϕ(pi) = i �� i ∈ [4k] \ [2k]� ! ���
��� A(v) �� ����
��� ��������
�������� ϕ ��� ��� ���� ���� ϕ(pi) = i
�� i ∈ [2k] ��� {ϕ(p2i−1),ϕ(p2i)} = {2i − 1, 2i} ��
i ∈ [2k] \ [k]� #��
���
� � ��� �����
	��� ��������

������� �� ��� ������ �� A(v) ��'��� ��� �
�	�� ���
�������� � ��������� �� ζ(v)� ! A(v) �� ����� ���� ��
��
� i ∈ [k]� �� ��������� ���
������� �� ��� ��������
���%
p2i−1 �→ 2i− 1 , p2i �→ 2i �� ������� vi �� ��	�(
p2i−1 �→ 2i , p2i �→ 2i− 1 �� ������� vi �� �����

! A(v) �� ���� �� ��
� i ∈ [k]� �� ��������� �� �� ����
���%
p2k+2i−1 �→ 2i− 1, p2k+2i �→ 2i �� ������� vi �� ��	�(
p2k+2i−1 �→ 2i, p2k+2i �→ 2i − 1 �� ������� vi ��
�����

���� ��������� ����	
 ��� ��
� ����� �
� � G ����
����) � �� ������	
� � ��� ��������
����
����� �
��	� �������	� 	���� *�������� �� ��� ��� ������
� R̄
�� �� 	���������������� ��
�� ������
�
���� !� ���

�����	
����� �� ���� ���	�� ���� ���
������� � ��
�
��
�� ������
�
��� �� �+�
��� ��� ����� ����� �� �+�
���
��� ������
�
��������

clause checking gadget

local reference cell

consistency checking

gadget

even variable assignment cell

odd variable assignment cell

���	��)% ,��������� ���	�������� � J �

�������� � ��� ��	�������
 ���	��) ��������
��� ����������� � ���
���� �� F � ��� ��
� ���������
����������
��� A(v)� �� ������	
� � 	�����	
�	����
������ ���
� �� ����������� �� ���	���� ���� ���

��	��� �� C(v) ��� �����'��� #��� ������ ���	���� ��
�

��� �� ��� ������
�
�������� ���
� ��
�� ������
��� ��� ��
�� ������
�
���� ���
��
����� ��� � ���
��
�� ������
�
����
���� �� A(v) � ��� ��
� ���� vw
� G� �� ������	
� � 	��������	� ������ !� �
�� ��
����� ����� � G ������ ��� ���� ��� ��
����� ���� ���
�	��� �
� �� ������	
� ���
��������
� �������� ���
�� ��
� �
� ��
����� ���� vw� #��� ������ �� �������
����� �� ���	���� ���
��������
� �� ����� ��-�����
������%

• �� ��
� ��������� ��� ��	�����
���������� C(v, w)�
• �� ���	�� ���� ��
� � A(v) ��� A(w) ��
�����

��� � ��� ��������
���������
• �� ���	�� ���� ��� ��
�� ������
�
���
�������

�+�
��� ��� ������
�
��������

#��� ������ ���� ���	���� �

��� �� ��� ������
�
�����
���� �� �� .��� �� ���� ��� ����������� ��
�� ������
�

��� ���� ����) �

192

���� �������	
������ �	 ����������	�� ��������� ����

���� �� ������� 	
�	 	
� 	�	�� ����� �� ���	� �
F �� n = O(g2ℓ) = O(n′)� �
��� n′ = g2k �� 	
� 	�	��
���� �� I� �
��� 	
� ����	��� �� � ������	
� ������

J � 	��� 2o(
√
nℓ) ����� �� ���� 	� ����� I � 	���

2o(
√
n′k)� �
��
� � 	��� ��	�����	� 	
� ���� �

���� 	� ����� 	
� ����� ���� � �
����� �� �� ���
	� �
�� � �����	�� ���� ������� 2����� 	
�
����

	� 	
� ������� �� ������� ��	 ���� ����
�� �
��
�����	�� ���� � �������� �������
 � � �
������
� �� !� �����	�� � "��� �

"����� # $����	�� ���� ������� 2����� 	
�
��

��� 	� ������� ��	 ������

4 Hardness of coloring unit d-balls for d ≥ 3

�
� d���������� ����� ���� �� �
����� ����
���� 	
� ���� ����� ��	 �� %��	 ����� � ����� ����
��� d����� 3����� &���� � ������� �����	� �' (���
��)����������� �*!� �� ����� � �����	 	��
	 �����
���� ��� 	
�� d���������� ���� �' ��������
� ���� ��	��� ��	
 ����
�' gd−1k ��������� ��
������� �	� 	
� d���������� g× · · ·× g����� R[g, d]�
�
� 	
� �����	�� ���� 	
�� ������� 	� ������� ��	
����� � d���������� ����� �� ���' ������� 	� 	
� +�
��������� �����

5 Hardness of coloring segments

"����'� �� �
�� 	
�	 ��	��� �� �������' 	� ��	��
��������	����	��� ������	
� ��� ��������

����� �� ������� � 	
������ ,� ������ ����
 �������� �� ����
� ��	
 ������� ������ �	 ���	
*� �
��
 ���	 �� ������ � 	��� 2o(n)� ������� 	
�
���� -�	 G �� � ����
 ��	
 n ���	���� v1, v2, . . . , vn�

"�� ���
 ���	�� vi �� �	������ 	�� �����	�# �

�����	�� ��� ������ xi� �� � ���	���� ��� ������ yi�
�� 	
�	 	
�' ���� �
��� �� � n × n ���� .��� "�����
*/� 0��� ���������	� �����	� �� ����� 	
�	 ���

xi �� ��' ������� ������ {1, 2, 3}� �
��� ���
 yi ��
��' ������� ������ {4, 5, 6}� ���
 ����� c ∈ {1, 2, 3}

v1 v2

v3 v4

v5 v6

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

"����� *# ���
������ ���� �� 	
� ���	���	���

���� �� ���	�%�� ��	
 	
� ����� c + 3� ,� ��	 	�
����� 	
�	 � �' �������� 1�������� f �� G′ ��
���
f(xi)+3 = f(yi) ��� ��� i ∈ [n]� �� f(xi)+3 �= f(yi)
��� ��� i > j ���
 	
�	 vivj �� � ���� �� G� �
��
�� ��
����� �' ���� ���	�	����� �������� ������

�� ���������� ������
� 2	 	
� ������� ���	 �� xi

�� yi� �� ��	 � �3����	' �����	 .�������	�� �' �
������ � "��� */� (�������� ��� ���
 ���� vivj �� G�
�� ��	 � ��3����	' �����	 �	 	
� ������� ���	 ��
xi �� yj � i > j .�������	�� �' � �3���� � "��� */� �

References

��! 4� 2���� �� 4� "����� 5����	��� ������	�� ��
����	 ����	��� ��� 	
� ������	������ ������
��	 ��	 ������� � ���� ����
�� �� ���������
�
6+.+/#� *7�6�� +88*�

�+! $� 9����������� $� :�	���� �� "� ;��� ,
��

��������
��� �	����' �����	��� ��������	'<
�� ������� ��
�� ���� 1 .*/#6�+76 8� +88��

� ! =� (���� �>���	 ���������	�� ��
���� ��� ����
��	��� ��������< 9 ��� ��� ����� ����� **?7
*6@� +886�

�*! =� (��� �� 2�)������������ �
� ����	�� �������
�� ��� ����������	'# ,
� ���A� �� 	
� ���	 ����
����� �����	 ��� ����������� �����	��� �����
�����)BC5 +8�* :����� ����� 1D#1D71D#D1� ���
E���� �E� 0)2� +8�*� 2C(�

�6! ,� =�)��	
 �� �� C� ,������� 5����	��� ����
���	�� 	
������ �� �������	���� "BC) �@@?
:����� ����� + +7+* � ,��
��	�� =C� 0)2�
�@@?� 9��� C����	��)����	'�

193

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Coloring curves that cross a fixed curve∗

Alexandre Rok† Bartosz Walczak‡

Abstract

We prove that for every integer t � 1, the class of in-
tersection graphs of curves in the plane each of which
crosses a fixed curve in at least one and at most t

points is χ-bounded. This is essentially the strongest
χ-boundedness result one can get for this kind of graph
classes. As a corollary, we prove that for any fixed in-
tegers k � 2 and t � 1, every k-quasi-planar topologi-
cal graph on n vertices with any two edges crossing at
most t times has O(n log n) edges.

1 Introduction

Overview A class of graphs is χ-bounded if every
graph G in the class satisfies χ(G) � f(ω(G)) for some
function f : N → N, where χ(G) and ω(G) denote
the chromatic number and the clique number (the
maximum size of a clique) of G, respectively. A curve

is a homeomorphic image of the real interval [0, 1] in
the plane. The intersection graph of a family F of
curves has F as the set of vertices and the intersecting
pairs of curves in F as the set of edges. Intersection
graphs of curves are known as string graphs. Although
the class of all string graphs is not χ-bounded [16, 17],
all known constructions of string graphs with small
clique number and large chromatic number require a
lot of freedom in placing curves around in the plane.

What restrictions on placement of curves lead to χ-
bounded classes of intersection graphs? McGuinness
[13, 14] proposed studying families of curves that cross
a fixed curve exactly once. This initiated a series of re-
sults culminating in the proof that the class of intersec-
tion graphs of such families is indeed χ-bounded [18].
We prove an essentially farthest possible generalization
of this result, allowing curves to cross the fixed curve
at least once and at most t times, for any bound t.

Theorem 1 For any t � 1 and any fixed curve c0,

the class of intersection graphs of curves each crossing

c0 in at least one and at most t points is χ-bounded.

By contrast, the class of intersection graphs of curves
each crossing a fixed curve at least once is equal to

∗Full version is available at arXiv:1512.06112.
†Department of Mathematics, Ben-Gurion University of the

Negev, Be’er Sheva, Israel, rok@math.bgu.ac.il; partially sup-
ported by Israel Science Foundation grant 1136/12.

‡Department of Theoretical Computer Science, Faculty of
Mathematics and Computer Science, Jagiellonian University,
Kraków, Poland, walczak@tcs.uj.edu.pl; partially supported by
National Science Center of Poland grant 2015/17/D/ST1/00585.

the class of all string graphs and therefore is not χ-
bounded. Additional motivation for Theorem 1 comes
from its application to bounding the number of edges
in k-quasi-planar graphs (see the next page).

Context Chromatic number of intersection graphs
of geometric objects has been investigated since the
1960s. Asplund and Grünbaum [3] proved that inter-
section graphs of axis-parallel rectangles in the plane
satisfy χ = O(ω2) and conjectured that the class of
intersection graphs of axis-parallel boxes in R

d is χ-
bounded also for all d � 3. However, a surprising
construction due to Burling [5] showed that there are
triangle-free intersection graphs of axis-parallel boxes
in R

3 with arbitrarily large chromatic number. An-
other classical example of a χ-bounded class of geo-
metric intersection graphs is provided by circle graphs
(intersection graphs of chords of a fixed circle) [9].

McGuinness [13, 14] proposed investigating the prob-
lem when much more general geometric shapes are al-
lowed but the way how they are arranged in the plane
is restricted. In [13], he proved that the class of inter-
section graphs of L-shapes crossing a fixed horizontal
line is χ-bounded. Families of L-shapes in the plane
are simple, which means that any two members of the
family intersect in at most one point. McGuinness
[14] also showed that triangle-free intersection graphs
of simple families of curves each crossing a fixed line
in exactly one point have bounded chromatic number.
Further progress in this direction was made by Suk
[19], who proved that simple families of x-monotone
curves crossing a fixed vertical line give rise to a χ-
bounded class of intersection graphs, and by Lasoń

et al. [12], who reached the same conclusion without
assuming that the curves are x-monotone. Finally, in
[18], we proved that the class of intersection graphs of
curves each crossing a fixed line in exactly one point
is χ-bounded. These results remain valid if the fixed
straight line is replaced by a fixed curve [20].

The class of string graphs is not χ-bounded. Pawlik
et al. [16, 17] presented a construction of triangle-free
intersection graphs of segments (or geometric shapes of
various other kinds) with chromatic number growing
as fast as Θ(log log n) with the number of vertices n.
It was further generalized to a construction of string
graphs with clique number ω and chromatic number
Θω((log log n)ω−1) [11]. The best known upper bound
on the chromatic number of string graphs in terms
of the number of vertices is (log n)O(log ω), due to Fox

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

194

33rd European Workshop on Computational Geometry, 2017

and Pach [8]. For intersection graphs of segments
(x-monotone curves), an upper bound of the form
χ = Oω(log n) follows from the above-mentioned result
in [19] ([18]) via recursive halving. Upper bounds of
the form χ = Oω((log log n)f(ω)) (for some f : N → N)
are known for very special classes of string graphs:
rectangle overlap graphs [10, 11] and subtree overlap
graphs [11]. The former still allow the triangle-free
construction with χ = Θ(log log n) and the latter the
construction with χ = Θω((log log n)ω−1).

Quasi-planarity A topological graph is a graph with
a fixed curvilinear drawing in the plane. For k � 2,
a k-quasi-planar graph is a topological graph with no
k pairwise crossing edges. It is conjectured that k-
quasi-planar graphs with n vertices have Ok(n) edges
[4, Problem 1 in Section 9.6]. For k = 2, this asserts a
well-known property of planar graphs. The conjecture
is also verified for k = 3 [2, 15] and k = 4 [1], but it
remains open for k � 5. Best known upper bounds
on the number of edges in a k-quasi-planar graph are
n(log n)O(log k) in general [7, 8], Ok(n log n) for the
case of x-monotone edges [21], Ok(n log n) for the case
that any two edges intersect at most once [20], and
2α(n)ν

n log n for the case that any two edges intersect
in at most t points, where α is the inverse Ackermann
function and ν depends on k and t [20]. We apply
Theorem 1 to improve the last bound to Ok,t(n log n),
following verbatim the proof in [20] for the case t = 1.

Theorem 2 Every k-quasi-planar topological graph

G on n vertices such that any two edges of G intersect

in at most t points has at most Ok,t(n log n) edges.

2 Proof sketch of Theorem 1

Setup Graph-theoretic terms (like chromatic num-
ber, clique, etc.) applied to a family of curves F have
the same meaning as applied to the intersection graph
of F . From now on, without significant loss of gener-
ality, we make the following implicit assumption: any
two curves that we consider intersect in finitely many
points, and each of their intersection points is a proper
crossing (however, a curve c may have an endpoint on
another curve if this is required by the definition of c).

Theorem 1 (rephrased) For every t ∈ N, there is a

non-decreasing function ft : N → N with the following

property: for any fixed curve c0, every family F of

curves each intersecting c0 in at least one and at most

t points satisfies χ(F) � ft(ω(F)).

Initial reduction We fix a horizontal line in the plane
and call it the baseline. The upper halfplane bounded
by the baseline is denoted by H+. A 1-curve is a curve
in H+ that has one endpoint on the baseline and does
not intersect the baseline in any other point. Inter-
section graphs of 1-curves are known as outerstring

graphs. The starting point of the proof of Theorem 1
is the following result, due to the authors.

Theorem 3 [18] There is a non-decreasing function

f0 : N → N such that every family F of 1-curves

satisfies χ(F) � f0(ω(F)).

An even-curve is a curve that has both endpoints
above the baseline and intersects the baseline in at
least two points (this is an even number, by the proper
crossing assumption). For t ∈ N, a 2t-curve is an even-
curve that intersects the baseline in exactly 2t points.
The basepoint of a 1-curve s is the endpoint of s on
the baseline. A basepoint of an even-curve c is an
intersection point of c with the baseline. Every even-
curve c determines two 1-curves—the two parts of c

from an endpoint to the closest basepoint. They are
called the 1-curves of c and denoted by L(c) and R(c)
so that the basepoint of L(c) lies to the left of the
basepoint of R(c) on the baseline. A family F of even-
curves is an LR-family if every intersection between
two curves c1, c2 ∈ F is an intersection between L(c1)
and R(c2) or between L(c2) and R(c1). The main effort
in this work goes to proving the following statement.

Theorem 4 There is a non-decreasing function

f : N → N such that every LR-family F of even-curves

satisfies χ(F) � f(ω(F)).

Lemma 5 For every t ∈ N, there is a non-decreasing

function ft : N → N such that every family F of 2t-

curves no two of which intersect on or below the base-

line satisfies χ(F) � ft(ω(F)).

Theorem 1 is reduced to Lemma 5 as follows. First,
we surround c0 very closely by a closed curve γ inter-
secting every curve in the family in exactly 2t points
(winding if necessary). Then, we invert the plane “in-
side out” with respect to γ and unfold γ to a horizon-
tal line. Lemma 5 is proved by induction on t with
Theorem 3 used for the base case and Theorem 4 used
for the induction step. It remains to prove Theorem 4.

In an LR-family of even-curves F , only the 1-curves
L(c) and R(c) of any curve c ∈ F participate in inter-
sections with other curves in F , and the part of c con-
necting L(c) and R(c) remains disjoint from all other
curves in F . It turns out that these “middle” parts con-
necting the two 1-curves of even-curves in F are essen-
tial for Theorem 4 to hold. To state this formally, we
define a double-curve as a set X ⊆ H+ that is a union
of two disjoint 1-curves, denoted by L(X) and R(X)
so that the basepoint of L(X) lies to the left of the
basepoint of R(X), and we call a family X of double-
curves an LR-family if every intersection between two
double-curves X1, X2 ∈ X is an intersection between
L(X1) and R(X2) or between L(X2) and R(X1).

Theorem 6 For every ζ ∈ N, there is a triangle-free

LR-family of double-curves X such that χ(X) � ζ.

The proof of Theorem 6 is an easy adaptation of the
construction from [16, 17].

195

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

More notation and terminology Let ≺ denote the
left-to-right order of points on the baseline (p1 ≺ p2

means that p1 is to the left of p2). We also use the
notation ≺ for curves intersecting the baseline (c1 ≺ c2

means that every basepoint of c1 is to the left of
every basepoint of c2) and for families of such curves
(C1 ≺ C2 means that c1 ≺ c2 for any c1 ∈ C1 and
c2 ∈ C2). For a family C of curves intersecting the
baseline (even-curves or 1-curves) and two 1-curves x

and y, let C(x, y) = {c ∈ C : x ≺ c ≺ y or y ≺ c ≺ x}.
For a family C of curves intersecting the baseline and
a segment I on the baseline, let C(I) denote the family
of curves in C with all basepoints on I.

For an even-curve c, let M(c) denote the subcurve of
c connecting the basepoints of L(c) and R(c), and let
I(c) denote the segment on the baseline connecting the
basepoints of L(c) and R(c). For a family F of even-
curves, let L(F) = {L(c) : c ∈ F}, R(F) = {R(c) : c ∈
F}, and I(F) denote the minimal segment on the
baseline that contains I(c) for every c ∈ F .

A cap-curve is a curve in H+ that has both end-
points on the baseline and does not intersect the base-
line in any other point. For a cap-curve γ, the set H+

�

γ has two connected components: one bounded, de-
noted by int γ, and one unbounded, denoted by ext γ.

Proof sketch of Theorem 4 First, we reduce Theo-
rem 4 to the following special case of it.

Lemma 7 There is a non-decreasing function f : N →
N such that every LR-family F of 2-curves satisfies

χ(F) � f(ω(F)).

Lemma 8 For every LR-family of even-curves F , if

F⋆ is the family of curves c ∈ F such that L(c) and

R(c) lie in two distinct connected components of the

union of all 1-curves in L(F) ∪ R(F), then χ(F⋆) � 4.

We prove Lemma 8 by showing that the intersection
graph of F⋆ is planar. Then, to prove Theorem 4 from
Lemma 7, we show that I(c1) and I(c2) are nested or
disjoint for any c1, c2 ∈ F � F⋆, which easily implies
that F �F⋆ is equivalent to an LR-family of 2-curves.

For ξ ∈ N, a ξ-family is an LR-family of 2-curves F
with the following property: for every 2-curve c ∈ F ,
the family of 2-curves in F � {c} that intersect c has
chromatic number at most ξ. We use induction on
ω(F) to reduce Lemma 7 to the following statement.

Lemma 9 For any ξ, k ∈ N, there is ζ ∈ N such that

every ξ-family F with ω(F) � k satisfies χ(F) � ζ.

Lemma 10 For every ξ ∈ N, every ξ-family F with⋂
c∈F I(c) �= ∅ satisfies χ(F) � 4ξ + 4.

Lemma 10 is proved as in [20, Lemma 19], using the
following elementary lemma due to McGuinness.

Lemma 11 [13, Lemma 2.1] Let G be a graph, ≺
be a total order on the vertices of G, and α, β ∈ N. If

χ(G) > (2β +2)α, then G has an induced subgraph H

such that χ(H) > α and χ(G(u, v)) > β for every edge

uv of H, where G(u, v) denotes the subgraph of G

induced on the vertices strictly between u and v in ≺.

Lemma 11 easily implies that every family of 2-
curves F with χ(F) > (2β +2)2α contains a subfamily
H with χ(H) > α such that χ(F(L(c1), L(c2))) > β

and χ(F(R(c1), R(c2))) > β for any two intersecting
2-curves c1, c2 ∈ H. This is considerably strengthened
by the following lemma. Its proof extends the idea
used in [13] for the proof of Lemma 11.

Lemma 12 For every ξ ∈ N, there is a function

f : N × N → N with the following property: for any

α, β ∈ N and every ξ-family F , if χ(F) > f(α, β),
then there is a subfamily H ⊆ F such that χ(H) > α

and χ(F(x, y)) > β for any two intersecting 1-curves

x ∈ R(H) and y ∈ L(H).

It is proved in [18] that for every family of 1-curves
S, there are a cap-curve γ and a subfamily U ⊆ S with
χ(U) �

1
2 χ(S) such that every 1-curve in U lies in

int γ and intersects some 1-curve in S that intersects
ext γ. The proof follows an idea from [9], defining U as
one of the sets of 1-curves at a fixed distance from an
appropriately chosen 1-curve in the intersection graph
of S. However, this method fails to imply an analogous
statement for 2-curves. We need a more powerful tool
(very recent) due to Chudnovsky, Scott, and Seymour.

Theorem 13 [6, Theorem 1.8] There is a function

f : N → N with the following property: for every α ∈
N, every string graph G with χ(G) > f(α) contains a

vertex v such that χ(G2
v) > α, where G2

v denotes the

subgraph of G induced on the vertices within distance

at most 2 from v.

This and Lemma 10 easily yield the following.

Lemma 14 For every ξ ∈ N, there is a function

f : N → N with the following property: for every α ∈ N

and every ξ-family F with χ(F) > f(α), there are a

cap-curve γ and a subfamily G ⊆ F with χ(G) > α

such that every 2-curve c ∈ G has L(c), R(c) ⊆ int γ

and intersects some 2-curve in F that intersects ext γ.

For ξ ∈ N and a function h : N → N, a (ξ, h)-family

is a ξ-family F with the following additional property:
for every α ∈ N and every subfamily G ⊆ F with
χ(G) > h(α), there is a subfamily H ⊆ G with χ(H) >

α such that every 2-curve in F with a basepoint on
I(H) has both basepoints on I(G).

Lemma 15 For any ξ, k ∈ N and any function

h : N → N, there is a constant ζ ∈ N such that every

(ξ, h)-family F with ω(F) � k satisfies χ(F) � ζ.

Lemma 15 easily implies the next lemma. Then, the
next lemma together with Lemma 15 easily imply
Lemma 9, completing the proof of Theorem 4.

196

33rd European Workshop on Computational Geometry, 2017

Lemma 16 For any ξ, k ∈ N, there is a function

f : N → N such that for every α ∈ N, every ξ-family

F with ω(F) � k and χ(F) > f(α) contains a 2-curve

c with χ(F(I(c))) > α.

The proof of Lemma 15 has similar structure to and
borrows several ideas from the proof in [18].

For a family of 1-curves S, an S-skeleton is a pair
(γ, U) such that γ is a cap-curve, U is a family of
pairwise disjoint 1-curves—subcurves of 1-curves in S,
and each 1-curve in U has one endpoint (other than the
basepoint) on γ and all the remaining part in int γ. A
family of 2-curves F is supported by S if every 2-curve
in F intersects some 1-curve in S, and F is supported
by an S-skeleton (γ, U) if every 2-curve c ∈ F satisfies
L(c), R(c) ⊆ int γ and intersects some 1-curve in U .

Lemma 17 For every function h : N → N, there is a

function f : N × N → N with the following property:

for any α, β ∈ N, every (ξ, h)-family F with χ(F) >

f(α, β) contains one of the following structures:

• a subfamily G ⊆ F with χ(G) > α supported by

an L(F)-skeleton or an R(F)-skeleton,

• a subfamily H ⊆ F with χ(H) > β supported by

a family of 1-curves S such that S ⊆ L(F) or

S ⊆ R(F), and s ≺ H or H ≺ s for every s ∈ S.

Lemma 18 For every function h : N → N, there is a

function f : N → N with the following property: for

every α ∈ N, every (ξ, h)-family F with χ(F) > f(α)
contains a subfamily G ⊆ F with χ(G) > α supported

by an L(F)-skeleton or an R(F)-skeleton.

Lemma 19 For every ξ ∈ N and every function

h : N → N, there is a function f : N → N with

the following property: for every n ∈ N and every

(ξ, h)-family F with χ(F) > f(n), there are 2-curves

a1, b1, . . . , an, bn ∈ F such that

• for 1 � i � n, R(ai) and L(bi) intersect,

• for 2 � i � n, the basepoints of R(ai) and L(bi)
lie between the basepoints of R(ai−1) and L(bi−1),

• for 2 � i � n, L(ai) intersects R(a1), . . . , R(ai−1)
or R(bi) intersects L(b1), . . . , L(bi−1).

Lemma 17 follows from Lemma 14. Lemma 18 follows
from three iterations of Lemma 17. Lemma 19 is
proved by induction on n, where the induction step
follows from three iterations of Lemma 18 and from
Lemma 12. The assertion of Lemma 19 with n = 2k+1
implies that ω(F) � k + 1, which yields Lemma 15.
This completes the proof of Theorem 4.

References

[1] E. Ackerman, On the maximum number of edges
in topological graphs with no four pairwise crossing
edges, Discrete Comput. Geom. 41, 365–375, 2009.

[2] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, M.
Sharir, Quasi-planar graphs have a linear number of
edges, Combinatorica 17, 1–9, 1997.

[3] E. Asplund, B. Grünbaum, On a colouring problem,
Math. Scand. 8, 181–188, 1960.

[4] P. Brass, W. Moser, J. Pach, Research Problems in
Discrete Geometry, Springer, 2005.

[5] J. P. Burling, On coloring problems of families of pro-
totypes, PhD thesis, University of Colorado, Boulder,
1965.

[6] M. Chudnovsky, A. Scott, P. Seymour, Induced sub-
graphs of graphs with large chromatic number. V.
Chandeliers and strings, arXiv:1609.00314.

[7] J. Fox, J. Pach, Coloring Kk-free intersection graphs
of geometric objects in the plane, European J. Combin.
33, 853–866, 2012.

[8] J. Fox, J. Pach, Applications of a new separator the-
orem for string graphs, Combin. Prob. Comput. 23,
66–74, 2014.

[9] A. Gyárfás, On the chromatic number of multiple
interval graphs and overlap graphs, Discrete Math. 55,
161–166, 1985. Corrigendum: Discrete Math. 62, 333,
1986.

[10] T. Krawczyk, A. Pawlik, B. Walczak, Coloring
triangle-free rectangle overlap graphs with O(log log n)
colors, Discrete Comput. Geom. 53, 199–220, 2015.

[11] T. Krawczyk, B. Walczak, On-line approach to off-
line coloring problems on graphs with geometric rep-
resentations, Combinatorica, in press.

[12] M. Lasoń, P. Micek, A. Pawlik, B. Walczak, Coloring
intersection graphs of arc-connected sets in the plane,
Discrete Comput. Geom. 52, 399–415, 2014.

[13] S. McGuinness, On bounding the chromatic number
of L-graphs, Discrete Math. 154, 179–187, 1996.

[14] S. McGuinness, Colouring arcwise connected sets in
the plane I, Graphs Combin. 16, 429–439, 2000.

[15] J. Pach, R. Radoičić, G. Tóth, Relaxing planarity for
topological graphs, in More Graphs, Sets and Numbers,
vol. 15 of Bolyai Soc. Math. Stud., 285–300, Springer,
2006.

[16] A. Pawlik, J. Kozik, T. Krawczyk, M. Lasoń, P. Micek,
W. T. Trotter, B. Walczak, Triangle-free geometric
intersection graphs with large chromatic number, Dis-
crete Comput. Geom. 50, 714–726, 2013.

[17] A. Pawlik, J. Kozik, T. Krawczyk, M. Lasoń, P. Micek,
W. T. Trotter, B. Walczak, Triangle-free intersection
graphs of line segments with large chromatic number,
J. Combin. Theory Ser. B 105, 6–10, 2014.

[18] A. Rok, B. Walczak, Outerstring graphs are χ-
bounded, in 30th Annual Symposium on Computa-
tional Geometry (SoCG 2014), 136–143, ACM, 2014.

[19] A. Suk, Coloring intersection graphs of x-monotone
curves in the plane, Combinatorica 34, 487–505, 2014.

[20] A. Suk, B. Walczak, New bounds on the maximum
number of edges in k-quasi-planar graphs, Comput.
Geom. 50, 24–33, 2015.

[21] P. Valtr, Graph drawing with no k pairwise cross-
ing edges, in 5th International Symposium on Graph
Drawing (GD 1997), vol. 1353 of Lecture Notes Com-
put. Sci., 205–218, Springer, 1997.

197

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Conflict-Free Coloring of Intersection Graphs

Sándor P. Fekete∗ Phillip Keldenich∗

Abstract

A conflict-free k-coloring of a graph G = (V,E) as-
signs one of k different colors to some of the vertices
such that, for every vertex v, there is a color that is as-
signed to exactly one vertex among v and v’s neighbors.
Such colorings have applications in wireless network-
ing, robotics, and geometry, and are well studied in
graph theory. Here we study the conflict-free coloring
of geometric intersection graphs. We demonstrate that
geometric objects without fatness properties and size
restrictions have intersection graphs with unbounded
conflict-free chromatic number. For unit-disk intersec-
tion graphs, we prove that it is NP-complete to decide
the existence of a conflict-free coloring with one color;
we also show that six colors always suffice, using an
algorithm that colors unit disk graphs of restricted
height with two colors. We conjecture that four colors
are sufficient, which we prove for unit squares instead
of unit disks.

1 Introduction

Coloring the vertices of a graph is one of the fundamen-
tal problems in graph theory, both scientifically and
historically. The notion of proper graph coloring can
be generalized to hypergraphs in several ways. One
natural generalization is conflict-free coloring, which
asks to color the vertices of a hypergraph such that
every hyperedge has at least one uniquely colored ver-
tex. This has applications in wireless communication,
where “colors” correspond to different frequencies. The
notion can be transported back to simple graphs by
considering hypergraphs induced by the neighborhoods
of vertices.

In current work with Abel et al. [2], we prove a
conflict-free variant of Hadwiger’s conjecture, which
implies planar graphs have conflict-free chromatic num-
ber at most 3; see that paper for a more detailed
overview of related work. In the geometric context, mo-
tivated by frequency assignment problems, the study
of conflict-free coloring of hypergraphs was initiated by
Even et al. [5] and Smorodinsky [11]. For disk intersec-
tion hypergraphs, Even et al. [5] prove that O(log n)
colors suffice. For disk intersection hypergraphs with
degree at most k, Alon and Smorodinsky [3] show that
O(log3 k) colors are sufficient. If every edge of a disk

∗Department of Computer Science, TU Braunschweig, Ger-

many, {s.fekete,p.keldenich}@tu-bs.de

intersection hypergraph must have k distinct unique
colors, Horev et al. [8] prove that O(k log n) suffice.
Moreover, for unit disks, Lev-Tov and Peleg [9] present
an O(1)-approximation algorithm for the conflict-free
chromatic number. Abam et al. [1] consider the prob-
lem of making a conflict-free coloring robust against
removal of a certain number of vertices, and prove
worst-case bounds for the number of colors required.

Conflict-free coloring also arises in the context of
the conflict-free variant of the chromatic art gallery
problem, where a simple polygon P has to be guarded
by colored guards such that each point in P sees at
least one uniquely colored guard. Regarding complex-
ity, Fekete et al. [6] prove that computing the chro-
matic number is NP-hard in this context. On the pos-
itive side, Hoffman et al. [7] give tight bounds for the
conflict-free chromatic art gallery problem under rect-
angular visibility in orthogonal polygons: Θ(log log n)
colors are sometimes necessary and always sufficient.
For the more common straight-line visibility, Bärtschi
et al. [4] prove that O(log n) colors always suffice.

2 Preliminaries

In the following, G = (V,E) will denote a graph on
n := |V | vertices. For a vertex v, N(v) denotes its
open neighborhood and N [v] = N(v) ∪ {v} denotes its
closed neighborhood. A conflict-free k-coloring of a
graph G = (V,E) is a coloring χC : V ′ → {1, . . . , k}
of a subset V ′ ⊆ V of the vertices of G, such that
each vertex v has at least one conflict-free neighbor

u ∈ N [v], i.e., a neighbor u whose color χC(u) occurs
only once in N [v]. The conflict-free chromatic number

χC(G) is the minimum number of colors required for
a conflict-free coloring of G.

A graph G is called disk graph iff G is the intersection
graph of disks in the plane. A disk graph G is a unit

disk graph iff G is the intersection graph of disks with
fixed radius r = 1 in the plane. A graph G is a unit

square graph iff G is the intersection graph of axis-
aligned squares with side length 2 in the plane. A unit
disk (square) graph is of height h iff G can be modeled
by the intersection of unit disks (squares) with center
points in (−∞,∞) × [0, h]. In the following, when
dealing with intersection graphs, we assume that we
are given a geometric model. In the case of unit disk
and unit square graphs, we identify the vertices of
the graph with the center points of the corresponding
geometric objects in this model.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

198

33rd European Workshop on Computational Geometry, 2017

G4

G4

G4

G4

G4

G4

G4

G4

G4

G4

G3

G3G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

Figure 1: The graph G5, shown as an intersection
graph of ellipses, requires 5 colors.

3 General Objects

For general objects like freely scalable ellipses or rect-
angles, it is possible to model a complete graph Kn of
arbitrary size n such that the following conditions hold:
(1) For every object v, there is some non-empty area of
v not intersecting any other objects. (2) For every pair
of objects v, w, there is a non-empty area common to
these objects disjoint from all other objects.

In this case, the conflict-free chromatic number is
unbounded, because we can inductively build a family
Gn of intersection graphs with χC(Gn) = n as follows.
Starting with G1 = ({v}, ∅) and G2 = C4, we con-
struct Gn by starting with a Kn modeled according
to conditions (1) and (2). For every object v, we place
two scaled-down non-intersecting copies of Gn−1 into
an area covered only by v. For every pair of objects
v, w, we place two scaled-down non-intersecting copies
of Gn−2 into an area covered only by v and w. The
resulting graph requires n colors, as every vertex of the
underlying Kn has to receive a unique color. Figure 1
depicts the construction of G5 for ellipses.

4 Unit-Disk Graphs

4.1 Complexity: One Color

While it is trivial to decide whether a graph has a
regular chromatic number of 1 and straightforward
to check a chromatic number of 2, it is already NP-
complete to decide whether a conflict-free coloring with
a single color exists, even for unit-disk intersection
graphs with maximum degree 3. This is a refinement
of Theorem 4.1 in Abel et al. [2], which shows the
same results for general planar graphs.

Theorem 1 It is NP-complete to decide whether a

unit-disk intersection graph G = (V,E) has a conflict-

free coloring with one color.

true

x
i

false

false

false

true

true

1
x

2 x
3

x
4

c
1

c
2

x

Figure 2: (Left) A variable gadget; note that the
central disk must be part of any solution, leaving
only the choices labeled true and false for the other
disks. (Right) The overall construction for the instance
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4).

Proof. We sketch a reduction from Planar 1-in-3-

SAT, see Mulzer and Rote [10]. For a given instance
I, we build a unit disk intersection graph GI , in which
variables xi are represented by the gadget shown in
Figure 2 (Left), consisting of an exterior cycle of 3ni

vertices, for some number ni ∈ N, and an auxiliary
internal tree. A clause cj is represented by a single
unit disk; we connect it to each of the three involved
variable gadget with 3nℓ unit disks, as shown in Fig-
ure 2 (Right).

Now a satisfying truth assignment for I induces a
conflict-free coloring of GI with a single color in a
straightforward manner. Conversely, in a conflict-free
coloring of G with one color, the set S ⊆ V of colored
disks is both an independent and a dominating set in
G, so any two disks in S must have distance at least 3.
This implies that for each exterior cycle in a variable,
every third vertex must belong to S, inducing a truth
assignment. Similarly, along each connecting path,
every third disk must belong to S. As it turns out, no
clause disk can be picked, implying that precisely one
of its neighbors must be in S; this requires a solution
for I. Full details are omitted for lack of space. �

4.2 A Worst-Case Upper Bound: Six Colors

On the positive side, we show that the conflict-free
chromatic number of unit disk graphs is bounded by 6.
We do not believe this result to be tight. In particular,
we conjecture that the number is bounded by 4; in fact,
we do not even know an example where two colors are
insufficient. One of the major obstacles towards ob-
taining tighter bounds is the fact that a simple graph-
theoretic characterization of unit disk graphs is not
available, as recognizing unit disk graphs is complete
for the existential theory of the reals. This makes
it hard to find unit disk graphs with high conflict-
free chromatic number, especially considering the size
such a graph would require: The smallest graph with
conflict-free chromatic number 3 we know has 30 ver-
tices, and by enumerating all graphs on 12 vertices
one can show that at least 13 vertices are necessary,
even without the restriction to unit disk graphs.

199

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

0

√

3

c

v

Figure 3: Every colored point c induces a vertical strip
of width 2 (dashed lines); all points v within this strip
are adjacent to c.

One approach to conflict-free coloring of unit disk
graphs is by subdividing the plane into strips, coloring
each strip independently. We conjecture the following.

Conjecture 2 Unit disk graphs of height 2 are

conflict-free 2-colorable.

If this conjecture holds, every unit disk graph is
conflict-free 4-colorable. In this case, one can sub-
divide the plane into strips of height 2, and then color
the subgraphs in all even strips using colors {1, 2} and
the subgraphs in odd strips using colors {3, 4}. Instead
of Conjecture 2, we prove the following weaker result.

Theorem 3 Unit disk graphs G of height
√
3 are

conflict-free 2-colorable.

Proof. Given a realization of G consisting of unit
disks with center points with y-coordinate in [0,

√
3],

we compute a conflict-free 2-coloring of G using the
following greedy approach. We iterate through the
disk centers in lexicographical order, choosing a set
C of points to be colored. At every iteration, let c
be the current and n be the next point. Let C be
the set of selected colored points and let S = N [C]
be the points that already have a colored neighbor.
We select c to be colored iff coloring n instead of c
would leave a previous point uncovered, i.e., iff there
is a point c′ /∈ S, c′ ≤ c adjacent to c but not to n.
Thus, starting from the leftmost point, we always color
the rightmost point that does not leave any previous
points without a colored neighbor. We alternatingly
assign colors 1 and 2 to the selected points.

In this procedure, any point v is assigned a colored
neighbor w ∈ N [v]. This leaves the following three
cases. (1) a colored point v is adjacent to another
point w of the same color, (2) an uncolored point is
adjacent to two or more points of one color and none
of the other color, (3) an uncolored point is adjacent
to two or more points of both colors.

To this end, we use the following. Each colored point
c induces a closed vertical strip of width 2 centered
around c. As shown in Figure 3, every point v in this
strip is adjacent to c. Thus, the horizontal distance
between two colored points must be greater than 1.
For case (1), assume there was a point v of color 1

0

√
3

w
′

x

w

v

Figure 4: The configuration in case (2); there must be
a point x of color 2 adjacent to v.

0

√
3

w
′

xx
′

w

v

Figure 5: The configuration in case (3); the algorithm
would have chosen v or a larger point instead of x′.

adjacent to a point w > v of color 1. This cannot occur,
because between v and w, there must be a point x of
color 2; therefore, the horizontal distance between v
and w must be greater than 2, a contradiction.

Regarding case (2), assume there was an uncolored
point v adjacent to two points w′ < v < w of color
1. Between points w′ and w, there must be a point
x of color 2, and v must not be adjacent to x. There
are two possible orderings: w′ < v < x < w and
w′ < x < v < w. W.l.o.g., let v < x; the other case is
symmetric. In this situation, the x-coordinates of the
points have to satisfy x(v) < x(x)−1, x(x) < x(w)−1,
and thus x(v) < x(w) − 2 in contradiction to the
assumption that v and w are adjacent.

Regarding case (3), assume there was an uncolored
point v adjacent to two points w′ < v < w of color
1 and two points x′ < v < x of color 2. W.l.o.g.,
assume w′ < x′ < v < w < x as depicted in Figure 5;
the case x′ < w′ is symmetric. Because w′ and v are
adjacent, the vertical strip induced by v intersects the
strip induced by w′. Thus, there cannot be a point
y with w′ < y < v not adjacent to w′ or v. This is a
contradiction to the choice of x′: The algorithm would
have chosen v or a larger point instead of x′. �

The next Corollary 4 follows by subdividing the plane
into strips of height

√
3; Moreover, applying the proof

of Theorem 3 to unit square graphs of height 2 instead
of

√
3 yields Corollary 5.

Corollary 4 Unit disk graphs are conflict-free 6-
colorable.

Corollary 5 Unit square graphs of height 2 are

conflict-free 2-colorable. Unit square graphs are

conflict-free 4-colorable.

Unfortunately, the proof of Theorem 3 does not ap-
pear to have a straightforward generalization to strips
of larger height. Further reducing the height to find
strips that are colorable with one color is also impossi-
ble, because unit interval graphs, which correspond to

200

33rd European Workshop on Computational Geometry, 2017

Figure 6: Left: A vertex-minimal graph satisfying (1)
and (2). Right: In any unit disk graph G embeddable
in a 2× 2-square with γ(G) = 3, no points lie in the
depicted area.

unit disk graphs with all centers lying on a line, already
may require two colors in a conflict-free coloring; the
Bull Graph is such an example. In this case, the bound
of 2 is tight: By Theorem 3, unit interval graphs are
conflict-free 2-colorable. By adapting the algorithm
used in the proof to always choose the interval extend-
ing as far as possible to the right without leaving a
previous interval uncovered, this can be extended to
interval graphs with non-unit intervals.

4.3 Unit-Disk Graphs of Bounded Area

Proving Conjecture 2 is non-trivial, even when all
center points lie in a 2× 2-square. In this setting, a
circle packing argument can be used to establish the
sufficiency of three colors. If a unit disk graph with
conflict-free chromatic number 3 can be embedded
into a 2 × 2-square, the following are necessary. (1)
Every minimum dominating set D has size 3, and
every pair of dominating vertices must have a common
neighbor not shared with the third dominating vertex.
Thus, every minimum dominating set lies on a 6-cycle
without chords connecting a vertex with the opposite
vertex. (2) G has diameter 2; otherwise, one could
assign the same color to two vertices at distance 3.

Using the domination number, one can further re-
strict the position of the points in the 2 × 2-square:
There is an area in the center of the square, depicted
in Figure 6, that cannot contain the center of any disk
because this would yield a dominating set of size 2.

The smallest graph satisfying constraints (1) and
(2) has 11 vertices and is depicted in Figure 6. It
is not a unit disk graph and it is still conflict-free
2-colorable, but every coloring requires at least four
colored vertices, proving that coloring a minimum
dominating set can be insufficient. This implies that
a simple algorithm like the one used in the proof of
Theorem 3 will most likely be insufficient for strips
of greater height. We are not aware of any unit disk
graph satisfying these constraints.

5 Conclusion

There are various directions for future work. In addi-
tion to closing the worst-case gap for unit disks (and

proving Conjecture 2), it is interesting to study the
conflict-free chromatic number of non-unit disk graphs.
Other questions include a tight bound for unit square
graphs, square intersection graphs of general squares,
and a necessary criterion for a family of geometric
objects to have intersection graphs with unbounded
conflict-free chromatic number.

References

[1] M. A. Abam, M. de Berg, and S.-H. Poon. Fault-
tolerant conflict-free colorings. In Proc. CCCG’08,
pages 13–16, 2008.

[2] Z. Abel, V. Alvarez, E. D. Demaine, S. P.
Fekete, A. Gour, A. Hesterberg, P. Keldenich,
and C. Scheffer. Three colors suffice: Conflict-
free coloring of planar graphs. In Proc. SODA17,
2017. To appear.

[3] N. Alon and S. Smorodinsky. Conflict-free col-
orings of shallow discs. In Proc. SoCG06, pages
41–43, 2006.

[4] A. Bärtschi, S. K. Ghosh, M. Mihalák,
T. Tschager, and P. Widmayer. Improved bounds
for the conflict-free chromatic art gallery problem.
In Proc. SoCG14, page 144, 2014.

[5] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky.
Conflict-free colorings of simple geometric regions
with applications to frequency assignment in cel-
lular networks. SIAM J. Comp., 33(1):94–136,
2003.

[6] S. P. Fekete, S. Friedrichs, M. Hemmer, J. B. M.
Mitchell, and C. Schmidt. On the chromatic art
gallery problem. In Proc. CCCG14, pages 1–6,
paper 11, 2014.

[7] F. Hoffmann, K. Kriegel, S. Suri, K. Verbeek,
and M. Willert. Tight bounds for conflict-free
chromatic guarding of orthogonal art galleries. In
Proc. SoCG15, pages 421–435, 2015.

[8] E. Horev, R. Krakovski, and S. Smorodinsky.
Conflict-free coloring made stronger. In Proc.

SWAT10, volume 6139, pages 105–117, 2010.

[9] N. Lev-Tov and D. Peleg. Conflict-free color-
ing of unit disks. Discrete Applied Mathematics,
157(7):1521–1532, 2009.

[10] W. Mulzer and G. Rote. Minimum-weight trian-
gulation is NP-hard. J. ACM, 55(2):11, 2008.

[11] S. Smorodinsky. Combinatorial Problems in Com-

putational Geometry. PhD thesis, School of Com-
puter Science, Tel-Aviv University, 2003.

201

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

On the Dominating Set Problem in Intersection Graphs∗

Mark de Berg† Sándor Kisfaludi-Bak† Gerhard Woeginger‡

Abstract1

We give a complete characterization of the parameter-2

ized complexity of Dominating Set on intersection3

graphs of 1-dimensonal interval pattern translates, for4

the case when the pattern is not part of the input. We5

also describe results about 2-dimensional shapes.6

1 Introduction7

The Dominating Set problem is a model problem8

in parameterized complexity. This is partially be-9

cause it has many applications and partially because10

it has close connections to other basic problems, such11

as Set Cover and Hitting Set. Moreover, it is12

one of the few natural problems that are known to be13

W[2]-complete. The usual definition is the following14

(we already state the parameterized version). Given a15

graph G and a parameter k, is there a vertex set S of16

size k (called dominating set) such that every vertex17

is either in S or adjacent to a vertex in S?18

The natural parameterization by the size of the19

dominating set can typically yield one of four results20

in a given class of graphs; Dominating Set on the21

given graph class can be either contained in p (have a22

polynomial algorithm), or np-complete; in the latter23

case it can be expected to be either in fpt, W[1]-24

complete or W[2]-complete. The problem cannot be25

on higher levels of the W hierarchy since the Domi-26

nating Set problem (in short, ds) is W[2]-complete27

on general graphs [3].28

The ds problem has been studied extensively in var-29

ious intersection graphs. In case of interval graphs,30

the problem is solvable in polynomial time [2]. How-31

ever, in case of unit 2-interval graphs—here each ver-32

tex corresponds to a pair of disjoint unit intervals on33

the real line—, the problem is W[1]-complete [4]. In34

the plane, ds on unit disk graphs has been shown35

to be W[1]-hard, and in case of unit squares, ds is36

W[1]-complete [6].37

Our contribution. We classify finite 1-dimensional38

patterns, based on the hardness of the ds problem on39

intersection graphs of their translates.40

∗This work was supported by NWO grant no. 024.002.003.
†Department of Computer Science, TU Eindhoven.

mdberg@win.tue.nl, s.kisfaludi.bak@tue.nl
‡Department of Computer Science, RWTH Aachen Univer-

sity. woeginger@cs.rwth-aachen.de

We define the problem the following way. Let Q be41

a fixed subset of R that consists of a finite number of42

points and closed intervals, given by their endpoints.43

We call Q a pattern. For a real number x, we define44

Q(x) := x + Q to be the pattern Q translated by x.45

We call Q(x) a Q-translate. The Q-intersection46

dominating set problem is the following: given a fi-47

nite set of numbers x1, . . . xn and a parameter k, let G48

be the intersection graph induced by the Q-translates49

Q(x1), . . . , Q(xn). The input is accepted if and only50

if G has a dominating set of size k. We work in the51

real RAM model, where we can compute exactly with52

arbitrary real numbers, and each arithmetic operation53

is executed in constant time. We define the distance54

ratio of two point pairs (x1, x2), (x3, x4) ∈ R × R as55

|x1−x2|
|x3−x4|

. Our main theorem is the following.56

Theorem 1 Q-intersection dominating set has57

the following complexity:58

1. It is in p if there is an interval in Q.59

2. It is in p if Q is a point pattern and the point60

distance ratios in Q are rational.61

3. It is np-complete and fpt if Q is a point pattern62

which has at least one irrational distance ratio.63

We also present results on Dominating Set on in-64

tersection graphs of 2-dimensional shapes. The aim is65

to get a handle on the boundary between the classes66

W[1] and W[2]. We show that ds is W[1]-complete67

for most planar problems where the shapes have a68

bounded description complexity; otherwise the prob-69

lem may be W[2]-complete.70

2 1-dimensional patterns71

In this section, we study the Q-intersection dom-72

inating set problem in one dimension. If Q con-73

tains an unbounded interval, then all translates are74

intersecting; the intersection graph is a clique and75

the minimum dominating set is a single vertex. In76

what follows, we suppose that all intervals in Q are77

bounded. The span between Q is the distance of its78

leftmost and rightmost point. We prove Theorem 179

by studying each claim separately.80

Theorem 2 Q-intersection dominating set can81

be solved in O(n6w+4) time if Q contains an interval,82

where w is the ratio of the span of Q and the length83

of the longest interval in Q.84

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

202

33rd European Workshop on Computational Geometry, 2017

Note that since Q is a fixed pattern, the value of w85

does not depend on the input size and so Theorem 286

implies Theorem 1.1.87

Next we will prove Theorem 2. We translate Q so88

that its leftmost endpoint (minQ) is 0. Rescale Q89

so that its longest interval has length 1 (note that90

w = maxQ after the rescaling). Consider an intersec-91

tion graph of the translates of Q. The vertices of G92

are Q(xi) for the given values xi. We call xi the left93

endpoint of Qi. Let + also denote the Minkowski sum94

of sets: A + B = {a + b | a ∈ A, b ∈ B}. If A or B95

is a singleton, then we omit the braces, i.e., let a+B96

denote {a}+B.97

Lemma 3 Let D ⊆ V (G) be a minimum dominating98

set and let D∗ be the set of left endpoints correspond-99

ing to the patterns in D. Then for all y ∈ R it holds100

that |D∗ ∩ [y, y + w]| � 3w.101

Proof. We prove this lemma first for unit interval102

graphs (where Q consists of a single interval).103

⊲ Claim. In any unit interval graph there is a mini-104

mum dominating set whose intervals do not overlap.105

Proof. Take a minimum dominating set D, and sup-106

pose it has two overlapping intervals I1 and I2, such107

that the left endpoint of I1 lies to the left of the left108

endpoint of I2. The set D \ {I2} does not dominate109

every interval. Let H be the set of undominated in-110

tervals (the set of intervals that have no neighbor in111

D \ {I2}). The intervals in H lie to the right of I1112

(since they were previously intersected by I2, but they113

are disjoint from I1). The rightmost interval IH ∈ H114

intersects all intervals of H, since all intervals of H115

have their left endpoints in I2\I1, an interval of length116

less than 1. Thus, (D \ {I2}) ∪ {IH} is a minimum117

dominating set. Repeating this operation on overlap-118

ping intervals terminates because the sum of the left119

endpoints of the dominating set strictly increases af-120

ter each step. Therefore, this results in an overlap-free121

minimum dominating set. ⊳122

Notice that the lemma immediately follows from123

this claim in case of unit interval graphs since then124

|D∗ ∩ [y, y + 1]| � 1 < 3 = 3w. Let Q be any other125

pattern, and suppose that |D∗ ∩ [y, y +w]| � 3w + 1.126

The patterns starting in [y, y+w] can only dominate127

patterns with a left endpoint in [y − w, y + 2w], a128

window of width 3w. Let H be the set of patterns129

starting in [y−w, y+2w]. Let U be a unit interval of130

Q, and consider the intervals corresponding to U in131

the patterns of H. Notice that U∗ is a point set that132

is also in a window of length 3w. By the claim above,133

we know that the interval graph G(U) defined by U134

has a dominating set that contains non-overlapping135

intervals, in particular, a dominating set DU of size136

at most 3w. Since G(U) corresponds to a spanning137

subgraph of G(H), the patterns DH
U corresponding to138

DU in H form a dominating set of G(H). Thus, (D \139

H)∪DH
U is a dominating set of our original graph that140

is smaller than D, which contradicts the minimality141

of D. �142

We can now move on to the proof of Theorem 2.143

Proof. We give a dynamic programming algorithm.144

We translate our input so that the left endpoint of145

the leftmost pattern is 0. Moreover, we can assume146

that the graph induced by our pattern is connected,147

since we can apply the algorithm for each connected148

component separately. The connectivity implies that149

the left endpoint of the rightmost pattern is at most150

(n−1)w. Let 0 < k � n be an integer and let G(k) be151

the intersection graph induced by the patterns with152

left endpoints in [0, kw]. Let I(k) be the set of input153

patterns with left endpoints in [(k − 1)w, kw) and let154

S ⊆ I(k). Let A(k, S) be the size of a minimum155

dominating set D of G(k) for which D ∩ I(k) = S.156

By Lemma 3 it follows that |S| � 3w.157

The following recursion holds for A(k, S) if we de-158

fine A(0, S) := 0:159

A(k, S) = min
{

A(k − 1, S′) + |S|
∣

∣

∣

S′ ⊂ I(k − 1),

|S′| � 3w,

S ∪ S′ dominates I(k)
}

.

160 The total number of subproblems for a fixed value161

of k is
∑3w

j=0

(

n

j

)

= O(n3w); thus the number of sub-162

problems is O(n3w+1). Computing the value of a sub-163

problem requires looking at O(n3w+1) potential sub-164

sets S′, and O(n2) time is sufficient to check whether165

S ∪ S′ dominates I(k). Overall, the running time of166

our algorithm is O(n6w+4). �167

Theorem 4 If Q is a point pattern where the dis-168

tance ratios of any two point pairs of Q are ratio-169

nal, then Q-intersection dominating set can be170

solved in polynomial time.171

Proof. We rescale the pattern so that the smallest172

distance between any pair of points in Q is 1; after this173

operation all points have rational coordinates. Next,174

we magnify again by the least common multiple of the175

divisors in the coordinates, this operation results in a176

pattern Q′ with only integer coordinates.177

Let x be the left endpoint of a translate of our178

pattern given in the input. Consider the connected179

component C of Q′(x) in the intersection graph. The180

union of the patterns in C are a subset of x+Z. Let P ′
181

be the pattern we get from Q′ if we replace the point182

in 0 by the interval [0, 1

2
]. If we replace each pattern183

in C by P ′, the intersection graph remains unchanged,184

so by Theorem 2, we can compute the minimum ds185

of this component in polynomial time. By repeating186

this procedure in each component, we get the desired187

polynomial algorithm. �188

203

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Theorem 5 If Q is a point pattern where there are189

two point pairs with an irrational distance ratio, then190

Q-intersection dominating set is np-complete.191

Proof. The containment in np is trivial; we show the192

hardness by reducing from ds on induced triangular193

grid graphs. (These are finite induced subgraphs of194

the triangular grid, which is the graph with vertex set195

V = Z
2 and edge set E =

{(

(a, b), (a + α, b + β)
)

:196

|α| � 1, |β| � 1,α �= β
}

.) The ds problem is known197

to be np-hard on induced grid graphs; triangular grid198

graphs are not a superclass of grid graphs, so a proof199

of the np-hardness of ds in induced triangular grid200

graphs will be given in the full version.201

We show that the infinite triangular grid can be202

realized as a Q-intersection graph, where the Q-203

translates are in a bijection with the vertices of the tri-204

angular grid. Therefore, any induced triangular grid205

graph is realized as the intersection graph of the Q-206

translates corresponding to its vertices.207

Rescale Q so that it has span 1. It cannot happen208

that all the points are rational, because it would make209

all distance ratios rational as well. Let x ∈ Q be the210

smallest irrational point. Consider the intersection of211

ax + Q, a ∈ Z, with the set Z + Q. We claim that212

this intersection is non-empty only for a finite number213

of values a ∈ Z. Suppose the opposite. Since Q is a214

finite pattern, there must be a pair z, z′ ∈ Q such that215

ax + z = b + z′ has infinitely many solutions (a, b) ∈216

Z
2. In particular, there are two solutions (a1, b1) and217

(a2, b2) such that a1 �= a2 and b1 �= b2. Subtracting218

the two equations we get (a1 − a2)x = b1 − b2, which219

implies x = b1−b2
a1−a2

. This is a contradiction since x is220

irrational.221

Let y = a′x, where a′ is the largest value for which222

ax+Q intersects Z+Q. It follows that223

{

a ∈ Z
∣

∣ (ay +Q) ∩ (Z+Q) �= ∅
}

=
{

−1, 0, 1
}

.

Consider the intersection graph induced by the sets224
{

ay + b + Q
∣

∣ (a, b) ∈ Z
2
}

. The above shows that225

a fixed translate ay + b + Q is not intersected by226

the translates (a + α)y + (b + β) + Q if |α| � 2.227

It is easy to see that |β| � 2 does not lead to an228

intersection either. Also note that α = β = ±1229

does not give an intersection; however all the230

remaining cases are intersecting, i.e., if (α,β) ∈231
{

(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)
}

232

then (a + α)y + (b + β) + Q intersects ay + b + Q.233

Thus, the intersection graph induced by234
{

ay + b+Q
∣

∣ (a, b) ∈ Z
2
}

is a triangular grid. �235

Theorem 6 If Q is a point pattern that has point236

pairs with an irrational distance ratio, then Q-237

intersection dominating set has an fpt algo-238

rithm (parameterized by solution size).239

Proof. The intersection graph of a point pattern con-240

taining t points has maximum degree
(

t

2

)

, thus we are241

looking for a dominating set in a graph of bounded242

degree. Hence, a straightforward branching approach243

gives an FPT algorithm. Choose any undominated244

vertex v; either v or one of its at most
(

t

2

)

neighbors245

is in the dominating set, so we can branch 1 +
(

t

2

)

246

ways. If there are no undominated vertices after247

choosing k vertices, then we have found a solution.248

This branching algorithm has depth k, with linear249

time required at each branching, so the total running250

time is O
(

t2k(|V |+ |E|)
)

. �251

Remark. In our handling of the problem, the pattern252

was part of the problem definition. Making the pat-253

tern part of the input leads to an np-complete prob-254

lem: Theorem 5 can be adapted to this scenario, even255

when changing to rational inputs and patterns and256

word RAM. This would therefore hide the tractabil-257

ity claims of Theorems 2 and 4; this is our justification258

for using the real RAM model.259

If the pattern is part of the input, then there are260

open questions left to answer.261

Open question. Let Q be the pattern defined by two262

unit intervals on a line at distance ℓ. Is there an263

FPT algorithm (with parameter k+ℓ) on intersection264

graphs defined by translates of Q, that can decide if265

such a graph has a Dominating Set of size k? (It266

can be shown that this problem is np-complete, and267

Theorem 8 below shows that it is in W[1].)268

3 Two dimensional shapes: W[1] vs. W[2]269

In this section we show that Dominating Set on 2-270

dimensional intersection graphs is contained in W[1]271

if the shapes have a constant size description. Such272

a containment can be proven by providing a non-273

deterministic algorithm that contains two phases in274

this order:275

1. an FPT time deterministic preprocessing276

2. a nondeterministic phase where the number of277

steps is dependent only on the parameter.278

The exact formulation can be found in [5]. Note that279

with the exception of the following theorem, all other280

proofs are omitted in this section, but will be provided281

in the full version of the paper.282

Theorem 7 The ds problem on unit disk graphs is283

contained in W[1].284

Proof. For a subset D ⊆ P , let C2(D) and D2(D) be285

the set of circles and disks of radius 2 centered at the286

points ofD respectively. (Note thatD is a dominating287

set if and only if
⋃

D2(D), the union of the the disks288

in D2(D) covers all points in P .) Shoot a vertical289

ray up and down from each of the O(k2) intersection290

points between the circles of C2(D), and also from the291

204

33rd European Workshop on Computational Geometry, 2017

Figure 1: Two faces of a vertical decomposition.

leftmost and rightmost point of each circle. Each ray292

is continued until it hits a circle (or to infinity). The293

arrangement we get is a vertical decomposition [1] (see294

Fig. 1). Each face of this decomposition is defined by295

at most four circles (including degenerate and lower296

dimensional faces).297

In our preprocessing phase, we compute all poten-298

tial faces of a vertical decomposition of any subset299

D ⊆ P by looking at all 4-tuples of circles from C2(P).300

We create a lookup table that contains the number of301

input points covered by each potential face in O(n4)302

time.303

Next, using nondeterminism we guess k integers,304

representing the points of our solution; let D be this305

point set. The rest of the algorithm deterministically306

checks if D is dominating. We need to compute the307

vertical decomposition of C2(D); this can be done in308

O(k2) time [1]. Finally, for each of the O(k2) resulting309

faces of
⋃

D2(D), we can get the number of input310

points covered from the lookup table in constant time.311

We accept if these numbers sum to n. �312

In order to state the general version of this theorem,313

we introduce semialgebraic sets. A semialgebraic set314

is a subset of Rd obtained from a finite number of sets315

of the form {x ∈ R
d | g(x) � 0}, where g is a d-variate316

polynomial with integer coefficients, by Boolean oper-317

ations (unions, intersections, and complementations).318

Let Γd,∆,s denote the family of all semialgebraic sets319

in R
d defined by at most s polynomial inequalities of320

degree at most ∆ each. If d,∆, s are all constants,321

we refer to the sets in Γd,∆,s as constant-complexity322

semialgebraic sets.323

A family F of shapes in Euclidean space is called324

nice if there are a constant d and mappings α and A325

defined on F with the following properties:326

• α(s) is a point in R
d and A(s) is a constant-327

complexity semialgebraic set in R
d, for any s ∈ F328

• s intersects s′ if and only if α(s) ∈ A(s′) for any329

two s, s′ ∈ F .330

Example Balls in R
3. Let α : F → R

4 be the331

function which assigns the point (x1, x2, x3, r) to the332

ball s with center (x1, x2, x3) and radius r. The ball333

(x1, x2, x3, r) is intersected by the ball s′ with param-334

eters (x′

1, x
′

2, x
′

3, r
′) if and only if (x1 − x′

1)
2 + (x2 −335

x′

2)
2 + (x3 − x′

3)
2 − (r + r′)2 � 0. Let A(s′) be the336

set of points (x1, x2, x3, r) ∈ R
4 that satisfy the above337

polynomial inequality.338

A class S of finite graphs is called a nice intersection339

graph class if there is a nice shape family F such that340

all G ∈ S is an intersection graph of some of the shapes341

in the family, i.e., for all G ∈ S there is a function342

ϕ : V (G) → F such that (uv) ∈ E(G) ⇐⇒ ϕ(u) ∩343

ϕ(v) �= ∅.344

Theorem 8 The ds problem is in W[1] for the inter-345

section graph defined by a given collection of n shapes346

from a nice shape family F .347

We have the following hardness result, stated in348

a slightly specialized form to avoid long definitions.349

The last theorem shows that if we allow each shape to350

have a longer description (polynomial in the number351

of shapes), then the problem seems to become harder.352

Theorem 9 The ds problem is W[1]-hard for inter-353

section graphs of translates of a simple polygon.354

Theorem 10 The ds problem is W[2]-complete for355

intersection graphs of convex polygons (where each356

polygon is defined separately in the input).357

References358

[1] M. d. Berg, O. Cheong, M. v. Kreveld, and359

M. Overmars. Computational Geometry: Algo-360

rithms and Applications. Springer-Verlag, 3rd edi-361

tion, 2008.362

[2] M.-S. Chang. Efficient algorithms for the domina-363

tion problems on interval and circular-arc graphs.364

SIAM J. Comput., 27(6):1671–1694, 1998.365

[3] R. G. Downey and M. R. Fellows. Fixed-366

parameter tractability and completeness I: Basic367

results. SIAM J. Comput., 24(4):873–921, 1995.368

[4] M. R. Fellows, D. Hermelin, F. A. Rosamond, and369

S. Vialette. On the parameterized complexity of370

multiple-interval graph problems. Theor. Comput.371

Sci., 410(1):53–61, 2009.372

[5] J. Flum and M. Grohe. Parameterized Complexity373

Theory. Texts in Theoretical Computer Science.374

An EATCS Series. Springer, 2006.375

[6] D. Marx. Parameterized complexity of indepen-376

dence and domination on geometric graphs. In377

Proceedings of IWPEC 2006, Zürich.378

205

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Finding Triangles and Computing the Girth in Disk Graphs∗

Haim Kaplan† Wolfgang Mulzer‡ Liam Roditty§ Paul Seiferth‡

Abstract

Let S ⊂ R
2 be a set of n point sites, where each

s ∈ S has an associated radius rs > 0. The disk graph
D(S) of S is the graph with vertex set S and an edge
between two sites s and t if and only if |st| ≤ rs + rt,
i.e., if the disks with centers s and t and radii rs and
rt, respectively, intersect. Disk graphs are useful to
model sensor networks.
We study the problems of finding triangles and of

computing the girth in disk graphs. These problems
are notoriously hard for general graphs, but better
solutions exist for special graph graph classes, such
as planar graphs. We obtain similar results for disk
graphs. In particular, we observe that the unweighted
girth of a disk graph can be computed in O(n log n)
worst-case time and that a shortest (Euclidean) trian-
gle in a disk graph can be found in O(n log n) expected
time.

1 Introduction

Disk graphs are geometrically defined graphs that
show up in many applications and are defined as fol-
lows. We are given a set S ⊂ R

2 of n point sites in the
plane, such that each s ∈ S has an associated radius
rs > 0. Let the disk corresponding to s, denoted by
Ds, be the closed disk with center s and radius rs.
The disk graph for S, D(S), is the graph with vertex
set S in which two sites s and t are connected by an
(undirected) edge if any only if Ds∩Dt �= ∅ (or equiv-
alently if any only if |st| ≤ rs+ rt). In a weighted disk
graph, the weight of an edge (s, t) is equal to |st|: the
Euclidean distance between s and t.
Even though disk graphs may be dense, it turns out

that many algorithmic problems can be solved faster
in disk graphs than in general graphs. For example,
we can compute the BFS-tree from any given site in
an unweighted disk graph in O(n polylog(n)) expected
time [2,9], and we can approximate the shortest paths
distances in a weighted disk graph by a sparse spanner
that can be constructed in O(n polylog(n)) expected
time [6, 9].
We give fast and simple algorithms for two classic

problems when restricting the input to disk graphs.

∗Supported by GIF project 1161&DFG project MU/3501-1.
†Tel Aviv University, Israel. haimk@post.tau.ac.il
‡Institut für Informatik, Freie Universität Berlin, Germany

{mulzer,pseiferth}@inf.fu-berlin.de
§Bar Ilan University, Israel. liamr@macs.biu.ac.il

These problems are known to be challenging in gen-
eral graphs. Our first problem is to determine whether
a given graph contains a triangle (i.e., a complete sub-
graph on three vertices), and, if so, to find a triangle
that minimizes the sum of its edge lengths (in the
weighted case). For general unweighted graphs, the
problem can be solved in O(nω) time using fast ma-
trix multiplication [7, 8] (where ω < 2.37287 is the
matrix multiplication exponent). However, if we in-
sist on combinatorial algorithms that do not use al-
gebraic techniques, the fastest known algorithm runs
in O(n3 polyloglog(n)/ log4 n) time [11]. In planar
graphs, the problem can be solved in O(n) time [4].
In the weighted case for general graphs, progress has
been made only very recently [10].
The second problem is computing the girth, which

is the length of a shortest cycle in G. Again, the
best result for general unweighted graphs relies on fast
matrix multiplication [8], while for planar graphs, the
unweighted girth can be computed in linear time [4].
As we will see, these problems are easier for disk

graphs. Indeed, finding triangles in disk graphs is
almost a trivial problem. By using the intimate con-
nection between disk graphs and planar graphs and
some known results for planar graphs, we can extend
our observations regarding triangles in disk graphs to
an algorithm that computes the unweighted girth of
disk graphs. Computing the length of a shortest tri-
angle is a bit more difficult, but we can exploit the
geometric structure of disk graphs to solve the deci-
sion version of this problem in O(n log n) time. Then
we use Chan’s framework for randomized geometric
optimization algorithms [3] to solve the optimization
problem in the same expected time.

2 Computing the Unweighted Girth

First, we consider the unweighted girth in disk graphs.
Given a disk graph D(S), we would like to find a cycle
in D(S) with the smallest number of edges. It turns
out that this problem is closely related to the problem
of computing the girth in planar graphs. The follow-
ing simple property of disk graphs is the key to our
algorithm. It has been observed before by Evens et
al. [5]. For completeness, we include a proof.

Lemma 1 LetD(S) be a disk graph that is not plane.
(By this we mean that the embedding obtained by
connecting each pair of adjacent sites s and t by a

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

206

33rd European Workshop on Computational Geometry, 2017

ts

u

x

v

Du

Dv

Ds

Dt

α

Figure 1: If D(S) is not plane, then three disks inter-
sect in a common point.

straight segment between s and t, has at least one
pair of segments that cross in their relative interior.)
Then, there are three sites whose disks intersect in a
common point.

Proof. Suppose that the two edges st and uv inter-
sect at a point x. The sites s, t, u, and v are pairwise
distinct, and without loss of generality, we may as-
sume that: (i) x ∈ Ds ∩ Du; (ii) rs ≥ ru; (iii) the
edge st lies on the x-axis, with s to the left of t; and
(iv) the site u lies above the x-axis, and the site v lies
below the x-axis; see Figure 1.
Now consider the arc α = Du ∩ ∂Ds. If α = ∅, we

are done, since then Du ⊂ Ds, and Ds∩Du∩Dv �= ∅.
Furthermore, α must contain a point below the x-
axis, because v lies below the x-axis and otherwise we
would hence have Ds ∩Du ∩Dv �= ∅. Since u is above
the x-axis and since rs ≥ ru, α must intersect the x-
axis. This intersection must be to the left of s, since
otherwise we would have Ds ∩ Dt ∩ Du �= ∅. Again
since rs ≥ ru, it follows that u lies to the left of s.
Now we see that α contains no point that lies below
the x-axis and to the right of s. From this and the
fact that x lies to the right of s, we can conclude that
uv ∩ ∂Du ∈ Ds, and hence Ds ∩Du ∩Dv �= ∅. �

By Lemma 1, we know that if D(S) is not plane,
then the girth is 3. On the other hand, if D(S) is
plane, and if the embedding is available, the girth can
be found in O(n) time. More precisely, we can use the
following result by Chang and Lu [4].

Theorem 2 (Theorem 1.1 in [4]) LetG be an un-
weighted planar graph with n vertices. The girth of
G can be computed in O(n) time.

Combining Lemma 1 and Theorem 2, we immedi-
ately obtain a fast algorithm for computing the girth
in disk graphs.

Theorem 3 Let D(S) be a disk graph with n ver-
tices. We can compute the unweighted girth of D(S)
in O(n log n) worst-case time.

Proof. We use a standard sweep-line algorithm to
compute the arrangement of the disks corresponding
to S [1]. The intersections of the disk boundaries are
reported one by one, and the total time to report the
first m intersections is O(n log n+m log n) [1]. Since
every edge in D(S) corresponds to two unique inter-
section points, it follows that as soon as 6n − 13 in-
tersection points have been reported, it must be the
case that D(S) is not plane, and hence, by Lemma 1,
the girth is 3. Otherwise, we obtain an explicit rep-
resentation of D(S), and we can test in O(n) time
whether is it plane. If this is not the case, we again
output that the girth is 3. Finally, if D(S) is plane,
we determine the unweighted girth in O(n) time using
Theorem 2. �

3 Finding a Shortest Triangle

Now we consider the situation where each edge in
D(S) is weighted according to its Euclidean length.
We would like to find a shortest triangle in D(S), i.e.,
a triangle that minimizes the sum of its edge lengths.
First, we focus on the decision problem: given a pa-
rameter W > 0, does D(S) contain a triangle with
weight at mostW? Once an algorithm for the decision
problem is available, a solution for the optimization
problem will follow through a straightforward appli-
cation of Chan’s randomized framework for geometric
optimization problems [3]. In the end, we will prove
the following theorem.

Theorem 4 Let D(S) be a disk graph with n ver-
tices, where the edges are weighted according to their
Euclidean lengths. We can compute a shortest trian-
gle in D(S) in O(n log n) expected time, if it exists.

3.1 The Decision Problem

Let S ⊂ R
2 and a weight W > 0 be given. To decide

if D(S) contains a triangle with weight at most W ,
we proceed as follows. We classify the sites as small
and large, depending on their associated radius. This
yields four possibilities for our desired triangle. To
investigate each such possibility, we use a grid whose
cells have a diameter proportional to W . First, we
consider only triangles where all three vertices are
small and lie in the same grid cell. This can be done
using the tools from the previous section. If no cell
contains such a triangle, we can show that the graph
must be sparse and that we need to check only few
further triangles. Details follow.

The Four Cases. Set ℓ = W/(12
√
2). We say that

a site s ∈ S is small, if rs < ℓ, and large, otherwise.
Depending on the number of small and large vertices,
we classify the triangles in D(S) into four types:

(SSS) 3 small vertices, 0 large vertices

207

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

2ℓ

(0, 0)

(0, 2ℓ)

(2ℓ, 0)

(2ℓ, 2ℓ)

Figure 2: The four shifted grids, with a cell from each
grid shown in red, orange, green, and blue, respec-
tively. Every square with side length at most 2ℓ is
wholly contained in a single grid cell.

(SSL) 2 small vertices, 1 large vertex

(SLL) 1 small vertex, 2 large vertices,

(LLL) 0 small vertices, 3 large vertices.

Next, we define an appropriate grid that helps us to
detect triangles of type (SSS).

The Grid. Let G1 be the grid whose cells are
pairwise disjoint, axis-parallel squares with diameter
W/3. The cells of G1 partition the plane, and G1

is aligned such that the origin (0, 0) is a vertex of
G1. Observe that the cells of G1 have side length
4ℓ = W/(3

√

2). We want to ensure that any triangle
of type (SSS) in D(S) is completely contained in a sin-
gle grid cell. For this, we make three copies G2, G3,
and G4 of G1 and we shift them by 2ℓ (half the side
length of a cell) in x-direction, in y-direction, and in
both x- and y-direction, respectively. In other words,
G2 has (2ℓ, 0) as a vertex, G3 has (0, 2ℓ) as a vertex,
and G4 has (2ℓ, 2ℓ) as a vertex, see Figure 2.

Lemma 5 Let ∆ be a triangle formed by three ver-
tices a, b, c ∈ R

2 such that each edge of ∆ has length
at most 2ℓ. Then, there is a cell σ ∈ G1∪G2∪G3∪G4

with a, b, c ∈ σ.

Proof. By assumption, we can enclose ∆ with a
square of side length 2ℓ. By construction, this square
must be completely contained in cell of one of the four
grids, see Figure 2. �

It follows immediately that any triangle of
type (SSS) lies in a single grid cell, as desired.

Finding Triangles Inside Grid Cells. Next, we search
for triangles that are completely contained in one
grid cell. (These are not necessarily triangles of
type (SSS).) For this, we go through all nonempty

grid cells σ ∈ ⋃

4

i=1
Gi, and we search for a triangle

in the disk graph D(S ∩ σ) induced by the sites lying
in σ. This can be done using Theorem 3. Since the
grid cells have diameter W/3, any such triangle has
weight at most W . Thus, we can return YES if a tri-
angle is found. If we do not find any triangles, we can
conclude by Lemma 5 that D(S) has no triangle of
type (SSS). Since each site lies in a constant number
of grid cells, and since we can compute the grid cells
for a given site in O(1) time, the total running time
for this step is O(n log n). A simple volume argument
yields the following lemma.

Lemma 6 Let σ ∈ ⋃

4

i=1
Gi be a nonempty grid cell,

and suppose that σ does not contain a triangle. Then,
σ contains O(1) large sites.

Proof. Suppose that σ contains at least 19 large
sites. We partition σ into 3 × 3 congruent squares
with side length (4/3)ℓ. Each square has diameter
(4
√
2/3)ℓ < 2ℓ, and by the pigeonhole principle, there

is at least one square τ with at least ⌈19/9⌉ = 3 large
sites. Since the associated radius of a large site is
at least ℓ, the large sites in τ form a triangle in σ,
contrary to our assumption. �

Triangles of Type (LLL). Now suppose that no tri-
angle from D(S) is contained in a single grid cell. To
find triangles of type (LLL), we iterate through all
large sites s ∈ S. Let σ ∈ G1 be the grid cell contain-
ing s. We define the neighborhood N(σ) of σ as the
5× 5 block of cells in G1 that is centered at σ. Since
the diameter of a grid cell is W/3, any pair u, v ∈ S of
sites that form a triangle with s of weight at most W
must be contained in N(σ). Let Sℓ ⊆ S denote the
large sites. By Lemma 6, we have |N(σ)∩Sℓ| = O(1).
Thus, we can check in constant time whether s par-
ticipates in a triangle of type (LLL). Hence, the total
time to detect triangles of type (LLL) is O(n).

Triangles of Type (SLL). This case is similar to the
algorithm for triangles of type (LLL). This time, we
iterate over all small sites s ∈ S. For each small
s ∈ S, we check all pairs of large vertices contained
in N(σ) ∩ Sℓ, where σ ∈ G1 is the cell containing s.
This requires O(n) time.

Triangles of Type (SSL). Now, consider an edge e =
ab ∈ D(S) between two small sites a and b. The
edge e has length at most 2ℓ, and by construction
it is completely contained in a single grid cell σ ∈
⋃

4

i=1
Gi. To check if e participates in a triangle of

208

33rd European Workshop on Computational Geometry, 2017

type (SSL) with weight at most W , we check all O(1)
large vertices in Sℓ ∩N(σ).

We repeat this process for all edges of D(S) that
lie in a single grid cell, and we claim that this re-
quires O(n log n) time. Indeed, we know that no

grid cell σ ∈ ⋃

4

i=1
Gi contains a triangle (other-

wise, we would have detected it previously). Then,
by Lemma 1, it follows that D(S ∩ σ) is plane, for

all grid cells σ ∈ ⋃

4

i=1
Gi. In particular, D(S ∩ σ)

has O(|S ∩ σ|) edges and can be computed in time
O(|S ∩ σ| log |S ∩ σ|). Since each vertex is contained
in O(1) grid cells, the total time to detect triangles of
type (SSL) is O(n log n), as claimed.

Wrapping up. We summarize the previous discus-
sion with the next lemma.

Lemma 7 Let D(S) be a disk graph with n vertices,
and let W > 0. We can decide in O(n log n) worst-
case time whether D(S) contains a triangle of weight
at most W .

Finally, to solve the optimization problem, we em-
ploy the following general lemma due to Chan [3]. Let
Π be a problem space, and for a problem P ∈ Π, let
w(P) ∈ R be its optimum and |P | ∈ N be its size.

Lemma 8 (Lemma 2.1 in [3]) Let α < 1, ε > 0,
and r ∈ N be constants, and let δ(·) be a function
such that δ(n)/nε is monotone increasing in n. Given
any optimization problem P ∈ Π with optimum w(P),
suppose that within time δ(|P |), (i) we can decide
whether w(P) < t, for any given t ∈ R, and (ii) we
can construct r subproblems P1, . . . , Pr, each of size
at most ⌈α|P |⌉, so that

w(P) = min{w(P1), . . . , w(Pr)}.

Then, we can compute w(P) in total expected time
O(δ(|P |)).

For the first condition of Lemma 8, we use Lemma 7.
For the second condition we construct four subsets
S0, . . . , S3 of S as follows: we enumerate the sites in
S as S = {s1, . . . , sn}, and we put each site si into all
sets Sj with j �≡ i (mod 4). Then, for any three sites
a, b, c ∈ S, there is at least one subset Sj with a, b, c ∈
Sj . Hence, applying Lemma 8 with α = 3/4, ε = 1,
r = 4, and δ = O(n log n) establishes Theorem 4.

4 Conclusion

Once again, disk graphs prove to be a simple and
useful graph model where difficult algorithmic prob-
lems admit faster solutions. It would be interesting
to find a deterministic O(n log n) time algorithm for
finding a shortest triangle in a disk graph. Also, we
are currently working on extending our results to the

girth problem in weighted disk graphs and in directed
transmission graphs.

Acknowledgments. We like to thank Günther Rote
for helpful comments.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and
M. H. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag,
third edition, 2008.

[2] S. Cabello and M. Jejĉiĉ. Shortest paths in in-
tersection graphs of unit disks. Comput. Geom.
Theory Appl., 48(4):360–367, 2015.

[3] T. M. Chan. Geometric applications of a ran-
domized optimization technique. Discrete Com-
put. Geom., 22(4):547–567, 1999.

[4] H.-C. Chang and H.-I. Lu. Computing the girth
of a planar graph in linear time. SIAM J. Com-
put., 42(3):1077–1094, 2013.

[5] W. S. Evans, M. van Garderen, M. Löffler, and
V. Polishchuk. Recognizing a DOG is hard, but
not when it is thin and unit. In Proc. 8th FUN,
pages 16:1–16:12, 2016.

[6] M. Fürer and S. P. Kasiviswanathan. Spanners
for geometric intersection graphs with applica-
tions. J. of Computational Geometry, 3(1):31–64,
2012.

[7] F. Le Gall. Powers of tensors and fast matrix
multiplication. In Proc. 39th Internat. Symp.
Symbolic and Algebraic Comput. (ISSAC), pages
296–303, 2014.

[8] A. Itai and M. Rodeh. Finding a minimum cir-
cuit in a graph. SIAM J. Comput., 7(4):413–423,
1978.

[9] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth,
and M. Sharir. Dynamic planar Voronoi dia-
grams for general distance functions and their
algorithmic applications. In Proc. 28th SODA,
pages 2495–2504, 2017.

[10] L. Roditty and V. Vassilevska Williams. Min-
imum weight cycles and triangles: Equivalences
and algorithms. In Proc. 52nd Annu. IEEE Sym-
pos. Found. Comput. Sci. (FOCS), pages 180–
189, 2011.

[11] H. Yu. An improved combinatorial algorithm
for Boolean matrix multiplication. In Proc.
42nd Internat. Colloq. Automata Lang. Program.
(ICALP), pages 1094–1105, 2015.

209

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Geomasking through Perturbation, or Counting Points in Circles

Maarten Löffler∗ Jun Luo† Rodrigo I. Silveira‡

Abstract

Motivated by a technique in privacy protection, in
which n points are randomly perturbed by at most a
distance r, we study the following problem: Given n
points andm circles in the plane, what is the maximum
r such that the number of points included in each circle
does not change? We also consider a more general
question, where we allow the number of points included
in each circle to change by a certain factor. We discuss
several algorithms for the problems, analyze what
parameters of the input influence their running times,
and consider a special case where the circles are aligned
on a grid, which has important applications.

1 Introduction

The increasing use of mobile communication devices
embedded with positioning capabilities (e.g., GPS) is
generating vast amounts of geographical data. How
to explore such data to find useful information is a
central question in spatial data mining. Through spa-
tial data mining, we can discover interesting spatial
patterns such as spatial outliers, spatial co-location
rules and spatial clusters [10]. However, this also raises
the issue of confidentiality, since the results of spatial
data mining could reveal personal information such as
home or work addresses. Geomasking, or geographic
masking, is a set of techniques aimed at modifying
location data to make it difficult to recover the original
coordinates. For example, the area in which geomask-
ing is most widespread is health, since public health
researchers that use data from individuals must em-
ploy some kind of geomasking to comply with ethical
and legal requirements [14].

The goals of data mining and privacy protection
are often conflicting with each other and cannot be
satisfied simultaneously. On the one hand, we want
to mine meaningful results from the dataset which
requires the dataset to be accurate. On the other
hand, in order to protect privacy, we usually need
to modify the original data. There are two widely
adopted forms of geomasking:

∗Dept. of Information and Computing Science, Universiteit

Utrecht, m.loffler@uu.nl
†Lenovo Big Data Lab, Hong Kong, jluo1@lenovo.com
‡Dept. de Matemàtiques, Universitat Politècnica de

Catalunya, rodrigo.silveira@upc.edu

• aggregation (also known as cloaking), which hides
a user’s location in a larger region.

• random perturbation (also known as dithering or
jittering), accomplished by changing the original
location to a new nearby random location.

In this paper we are interested in random pertur-
bation methods [9, 13], which have a long history in
statistical disclosure control due to their simplicity, ef-
ficiency and ability to preserve statistical information.
Random perturbation consists in displacing each point
by a randomly determined distance in a randomly
determined direction, with respect to its original loca-
tion. The maximum displacement is called perturba-

tion threshold. Most previous work on perturbation
uses the same transformation function for all points,
although sometimes it can vary according to local pa-
rameters, such as population density [14]. There have
been several studies that confirm that the accuracy of
spatial analysis results depends heavily on the thresh-
old value [6]: the larger the threshold, the more that
spatial patterns get disrupted. Despite widespread
agreement on the need to understand better the ef-
fects of geomasking on the spatial properties of a set of
locations, few studies have addressed this (see [14] for
a recent survey). All studies to date deal with one or
more concrete data sets, and compare how the spatial
patterns of a set of locations change after geomask-
ing. Typical ways to measure spatial patterns include
techniques such as the cross-K function, SatScan, and
very often, kernel density estimation (KDE).

The geometric problems studied in this paper are
motivated from the use of KDE [12], a standard tool
used in many point-based clustering methods. In its
simplest formulation, KDE works as follows. First
the plane is divided by a grid consisting of equal-size
squares (called cells). Then equal-size circles (whose
radius is known as bandwidth) around each cell center
are drawn. Finally, the number of points inside each
circle is counted and assigned to the corresponding
cell as its density (see Figure 1). Interestingly, pre-
vious studies trying to understand the effect of the
perturbation threshold on spatial patterns obtained
from KDE (e.g., [6, 11]), treat KDE as a black box,
and essentially try to find empirically a combination
of values for the threshold and bandwidth that give
good results.
In this work, we approach the problem in the op-

posite direction. Knowing that the main criterion

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

210

33rd European Workshop on Computational Geometry, 2017

4 545 5

78334

3 3 1 6 8

Figure 1: A set of points in the plane covered by a set
of unit-circles arranged on a grid. This is the typical
setting in which KDE works, producing a density table
like the one shown on the right.

in KDE is point-in-circle containment, we want to
find the maximum threshold that preserves the circle-
memberships of the points, or one that guarantees
only a few changes. We study random permutations
where each original point p is replaced by a randomly
computed point p′ that lies inside a disk of radius
r (i.e., the perturbation threshold) and centered at
p. Our goal is to find the largest r that preserves
all point-circle incidences, or changes them only by a
small amount. More precisely, we study the following
two geometric problems:

Problem 1 Given n points and m circles in the plane,

compute the maximum perturbation threshold such

that the number of points in each circle does not

change.

Problem 2 Given n points and m circles in the plane,

and a parameter δ, compute the maximum perturba-

tion threshold such that the number of points included

in each circle changes by at most a factor δ.

Contributions We study these two problems with the
application of geomasking in mind. Our first contri-
bution is to draw attention to two natural and simple
geometric problems that, as far as we know, have not
been studied in computational geometry before. We
identify several input parameters, properties of the
given points and circles, that can have an influence in
practice in the running time of the algorithms. Then
we discuss different algorithms for the problems that
use several well-known geometric techniques. We finish
by stating an intriguing open problem that can have
important practical implications, related to counting
points inside unit-disk circles centered on a grid.

Previous work To the best of our knowledge, the
only previous work that follows our approach is [7],
where the points are allowed to move randomly such
that the Delaunay triangulation (DT) of the perturbed
points is the same as that of the original points. The
motivation to preserve the DT is to maintain topolog-
ical relationships between the points.

2 Problem description and parameter analysis

Several algorithms for the problems will be discussed
in the next section. However, it is easy to observe that
the inherent complexity of the problem comes from the
possible distances between points and circles, which
are Θ(nm) in total. Given the practical importance
of the problems, we are interested in understanding
what parameters of the input influence these running
times, and in showing that in specific cases we can do
better.
We start with some notation. We use P =

{p1, p2, . . . , pn} and C = {C1, C2, . . . , Cm} to denote
the given points and circles, respectively. We denote
with c1, c2, . . . , cm and r1, r2, . . . , rm the center points
and radii of the m given circles, respectively.

In addition to n and m, which represent the number
of points and circles, respectively, we consider the
following parameters.

1. k: size of point-circle incidence graph G: consider
the bipartite graph G in which there is one vertex
for each point in P and circle in C, and an edge
(i, j) if and only if pi is contained in circle Cj .

2. ρ: complexity of the arrangement A formed by
the circles in C.

3. ∆: ply (i.e., depth) of A.
4. UNIT : whether all circles are unit-size.
5. GRID: whether all centers lie on a square grid.
6. λ: ratio between circle radius and grid resolution

(for case UNIT and GRID).

2.1 Relations between parameters

It is interesting to observe how the different parameters
identified relate to each other, and how they affect the
problem’s complexity. Due to space constraints, here
we only state several relations between the parameters,
and defer a detailed analysis to the full version.

• Bounded ply implies bounded arrangement com-
plexity: ρ ∈ O(m∆).

• For unit circles, bounded arrangement complexity
implies bounded ply: UNIT =⇒ ∆ ∈ O(

√
ρ).

• Bounded ply implies bounded complexity of the
point-circle incidence graph: k ∈ O(n∆).

• For grid circles, a unit radius implies bounded
ply: UNIT ∧GRID =⇒ ∆ ∈ O(λ2).

3 Algorithms

For a point pi and circle Cj with center cj and radius
rj , let the distance between pi and cj be dij = ||pi−cj ||.
Observe that if point pi is inside Cj , then the maximum
perturbation threshold for pi and Cj in Problem 1 is
rj − dij : if the threshold is lower than this value, pi is

211

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 2: An example showing the Voronoi diagram
of three circles (in blue). Note that every intersection
between two circles is a vertex in this diagram.

guaranteed to remain inside Cj , if not, then pi could
be moved out of Cj . Similarly, if pi is outside Cj , the
critical threshold is dij−rj . Note that |dij−rj | equals
the distance from pi to the closest point on Cj .

3.1 Brute-force approach

For Problem 1, the maximum perturbation threshold
r is the minimum value of |dij − rj | (1 ≤ i ≤ n, 1 ≤
j ≤ m). A brute-force solution to the problem implies
computing all distances between points and circles,
and requires Θ(nm) time.

For Problem 2, we look for the maximum threshold
so that the number of points in each circle changes
by at most a factor δ. This is easy to find by first
computing how many points lie inside each circle, giv-
ing a threshold tj for how many points may be moved
into or out of Cj . Then we are looking for the tjth
closest points to Cj on the inside and outside. Both
can be found in O(n) time with a standard selection
algorithm; doing this for all circles takes O(nm) time.

Theorem 1 Problems 1 and 2 can both be solved in

O(nm) time.

3.2 Voronoi-based approach

The solution of Problem 1 is equivalent to finding
the minimum point-circle distance. Therefore it is
natural to use Voronoi diagrams to find this value. The
Voronoi diagram of the circles C, which subdivides the
plane into regions in which the closest circle boundary
point is the same (see Fig. 2), can be used to easily find
the minimum point-circle distance. The complexity of
the Voronoi diagram of m circles is O(ρ+m), and it
can be computed in O((ρ+m) logm) time. Note that
this Voronoi diagram is not the additively weighted
Voronoi diagram—that has O(m) size—since in that
one the distance between a circle and a point inside is
negative, but in our setting it is always positive.

Once the Voronoi diagram of C is computed, we can
find the closest circle to each point by using standard
point location data structures. For instance, a layered

dag [5] can be built using O(ρ+m) time and space, and
allows point location queries in O(log(ρ +m)) time.

This leads to a total running time of O((ρ+ n) logm).
Note that, in the worst case, this is Θ((m2 +n) logm).

Theorem 2 Problem 1 can be solved in O((ρ +
n) logm) time.

3.3 Counting-based approach

The Voronoi-based approach does not directly work
for Problem 2, because it requires first to know how
many points lie in each circle. In fact, the bottle-
neck in the general case is counting the number of
points inside each circle. However, we can leverage
well-known linearization techniques to speed this up.

3.3.1 Counting problem

We first consider the following basic question: given n
points and m circles, determine the number of points
inside each circle.
We can answer this question by transforming the

points and circles in R
2 to points and halfspaces

in R
3, using a standard lifting map (i.e. (x, y) �→

(x, y, x2+y2)). Then we can use a range searching data
structure to improve the running time. In particular,
Agarwal et al. [2] show that a set of n points can be pre-
processed into a data structure of size s such that a cir-

cle counting query can be resolved in O(n
4/3

s2/3
log(s/n))

time. If we want to do m such queries, then it is best
to choose s = m3/5n4/5. Therefore the total running

time form queries becomes O(n4/5m3/5 log m3

n), which
is a clear improvement over the quadratic brute-force
algorithm.
We can then approximate the computation to any

desired precision using a standard binary search, or
solve it exactly with parametric search, as shown next.

3.3.2 Parametric Search

It is possible to solve Problems 1 and 2 using the re-
sult in the previous section combined with parametric
search [8]. Clearly, if we had O(m) processors and a
parallel algorithm that runs a single query on each
processor, we could count the numbers of points in m

circles in O(n4/5

m2/5 logm) time. Plugging this into the
parametric search framework we obtain the following
result (details omitted for brevity).

Theorem 3 Problems 1 and 2 can be solved in

O(m logm+ n8/5m1/5 log3 m) time.

3.3.3 Approach for unit circles

For unit circles one can do better. To begin with,
note that in this case, the role of circles and points
can be exchanged (obtaining a symmetric problem),
thus we can assume that n < m. Firstly, we can
avoid parametric search, by searching implicitly in a

212

33rd European Workshop on Computational Geometry, 2017

polynomial set of candidate distances. We observe
that all point-circle distances, in this case, are of the
form |pc| − 1 or 1 − |pc|, for some point p and some
circle center c. We treat both forms separately, and
for each form perform a binary search in the set of
all point-to-point distances in P ∪ C. Chan [4] shows
how to select the kth largest point-to-point distance
in a set of n points in O(m4/3 log5/3 m) expected time.
Combining this with the algorithm in Section 3.3.1, we
obtain an expected running time of O(m4/3 log8/3 m+
n4/5m3/5 log2 m) for both problems.
We can further improve this by using the fact that

intersections between circles can be counted faster
than point-halfspace incidences. Agarwal et al. show
how to count the number of red-blue intersections
in a set of unit circles in O∗(n4/3) time [3]. Again,
we consider the minimum amount we can shrink and
grow the circles separately. We transform each circle
of radius 1− ε (resp. 1+ ε) into a blue circle of radius
1

2
− 1

2
ε (resp. 1

2
+ 1

2
ε), and each point into a red circle

of radius 1

2
− 1

2
ε (resp. 1

2
+ 1

2
ε). Then counting point-

circle incidences becomes equivalent to counting the
number of red-blue circle intersections.

Theorem 4 For unit circles, Problems 1 and 2 can

be solved in O∗((m+ n)4/3) expected time.

We note that the previous approach is similar to
the one used by Agarwal et al. [1], although their goal
is slightly different (the running time is the same, up
to logarithmic factors).

4 Discussion

We have presented several algorithms, ranging from
brute-force to some that use advanced data structures,
to solve Problems 1 and 2. Although it is unlikely
that the general problem can be solved faster than
O((n+m)4/3) time, we have shown that in certain cases
this can be achieved. The choice of which algorithm to
use, in practice, depends on multiple factors, including
the values of the parameters identified in Section 2.
For instance, if the arrangement of circles has small
complexity, the Voronoi-based approach should be a
fast and practical way to solve Problem 1. On the
other hand, if the size of the point-circle incidence
graph is small, directly counting the points in each
circle gives a fast way to solve both problems.

The most relevant particular case is probably that of
UNIT and GRID, since this is exactly the setting from
KDE. For this case, the fact that circles are unit-size
allows us to use the faster algorithm in Theorem 4.
Interestingly, we were not able to exploit the fact that
the circles lie on a grid, which leads us to the following
open problem.

Open Problem 1 Given n points in R
2, and a set

of m unit-size circles, centered on a
√
m by

√
m grid,

is it possible to count the number of points inside each

circle in nearly-linear time?

Acknowledgments M.L. was supported by the Nether-

lands Organisation for Scientific Research (NWO) under

project no. 614.001.504. R.S. was partially supported by

projects MINECO MTM2015-63791-R, Gen. Cat. DGR

2014SGR46, and by MINECO’s Ramón y Cajal program.

References

[1] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Se-
lecting distances in the plane. Algorithmica, 9(5):495–
514, 1993.

[2] P. K. Agarwal and J. Matousek. On range search-
ing with semialgebraic sets. Discrete Comput. Geom,
11:393–418, 1994.

[3] P. K. Agarwal, M. Pellegrini, and M. Sharir. Counting
circular arc intersections. SIAM J. Comput., 22(4):778–
793, 1993.

[4] T. M. Chan. On enumerating and selecting distances.
Int. J. Comput. Geom. Appl., 291(11), 2001.

[5] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM J.

Comput., 15(2):317–340, 1986.

[6] M. Kwan, I. Casas, and B. C. Schmitz. Protection
of geoprivacy and accuracy of spatial information:
How effective are geographical masks? Cartographica,
39(2):15–28, 2004.

[7] J. Luo, J. Liu, and L. Xiong. Privacy preserving pub-
lication of locations based on delaunay triangulation.
In Proc. PAKDD 2014, pages 594–605, 2014.

[8] N. Megiddo. Applying parallel computation algo-
rithms in the design of serial algorithms. Journal of
the ACM, 30(4):852–865, 1983.

[9] V. Rastogi, D. Suciu, and S. Hong. The boundary
between privacy and utility in data publishing. In
Proceedings of the 33rd International Conference on

Very Large Data Bases, VLDB ’07, pages 531–542.
VLDB Endowment, 2007.

[10] S. Shekhar, P. Zhang, Y. Huang, and R. R. Vatsavai.
Data Mining: Next Generation Challenges and Future

Directions, chapter Trends in Spatial Data Mining.
AAAI/MIT Press, 2004.

[11] X. Shi, J. Alford-Teaster, and T. Onega. Kernel
density estimation with geographically masked points.
In Proc. Geoinformatics 2009, pages 1–4, 2009.

[12] B. W. Silverman. Density Estimation for Statistics

and Data Analysis. Chapman & Hall/CRC, April
1986.

[13] X. Xiao, Y. Tao, and M. Chen. Optimal random
perturbation at multiple privacy levels. Proc. VLDB

Endow., 2(1):814–825, Aug. 2009.

[14] P. Zandbergen. Ensuring confidentiality of geocoded
health data: Assessing geographic masking strate-
gies for individual-level data. Advances in Medicine,
2014(567049), 2014.

213

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Bounding a global red-blue proportion using local conditions

Márton Naszódi ∗1, Leonardo Mart́ınez-Sandoval †2, and Shakhar Smorodinsky‡3

1Department of Geometry, Lorand Eötvös University, Budapest, Hungary
1EPFL, Lausanne, Switzerland

2Department of Computer Science, Ben-Gurion University of the Negev, Be’er-Sheva Israel.
3Department of Mathematics, Ben-Gurion University of the Negev, Be’er-Sheva Israel.

Abstract

We study the following local-to-global phenomenon:
Let B and R be two finite sets of (blue and red)
points in the Euclidean plane R

2. Suppose that in
each “neighborhood” of a red point, the number of
blue points is at least as large as the number of red
points. We show that in this case the total number of
blue points is at least one fifth of the total number of
red points. We also show that this bound is optimal
and we generalize the result to arbitrary dimension
and arbitrary norm using results from Minkowski ar-
rangements.

1 Introduction

Consider the following scenario in wireless networks.
Suppose we have n clients andm antennas where both
are represented as points in the plane (see Figure 1).
Each client has a wireless device that can communi-
cate with the antennas. Assume also that each client
is associated with some disk centered at the client’s
location and having radius representing how far in the
plane his device can communicate. Suppose also, that
some communication protocol requires that in each of
the clients disks, the number of antennas is at least
some fixed proportion λ > 0 of the number of clients
in the disk. Our question is: does such a local re-
quirement imply a global lower bound on the number
of antennas in terms of the number of clients? In
this paper we answer this question and provide exact
bounds. Let us formulate the problem more precisely.

Let B and R = {p1, . . . , pn} be two finite sets in
R

2. Let D = {D1, . . . , Dn} be a set of Euclidean
disks centered at the red points, i.e., the center of Di

is pi. Let {ρ1, . . . , ρn} be the radii of the disks in D.

Theorem 1 Assume that for each i we have

|Di ∩B| ≥ |Di ∩R|. Then |B| ≥ n
5
. Furthermore,

the multiplicative constant 1

5
cannot be improved.

∗Email address: marton.naszodi@math.elte.hu.
†Email address: leomtz@im.unam.mx.
‡Email address: shakhar@math.bgu.ac.il.

Figure 1: In each device range (each disk) there are at
least as many antennas (black dots) as devices (white
dots), so the hypothesis holds for λ = 1.

Such a local-to-global ratio phenomenon was shown
to be useful in a more combinatorial setting. Pach
et. al. [PRT15], solved a conjecture by Richter and
Thomassen [RT95] on the number of total “crossings”
that a family of pairwise intersecting curves in the
plane in general position can have. Lemma 1 from
their paper is a first step in the proof and it consists
of a local-to-global phenomenon as described above.

We will obtain Theorem 1 from a more general re-
sult. In order to state it, we introduce some terminol-
ogy.

Let K be an origin-symmetric convex body in R
d,

that is, the unit ball of a norm.

A strict Minkowski arrangement is a family D =
{K1 = p1 + ρ1K, . . . ,Kn = pn + ρnK} of homothets
of K, where pi ∈ R

d and ρi > 0, such that no member
of the family contains the center of another member.
An intersecting family is a family of sets that all share
at least one element.

We denote themaximum cardinality of an intersect-

ing strict Minkowski arrangement of homothets of K

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

214

33rd European Workshop on Computational Geometry, 2017

by M(K). It is known that M(K) exists for every K

and M(K) ≤ 3d (see, e.g., Lemma 21 of [NPS16]).
On the other hand (somewhat surprisingly), there
is an origin-symmetric convex body K in R

d such

that M(K) = Ω

(√
7
d
)

, [Tal98, NPS16]. For more

on Minkowski arrangements see, e.g., [FL94].
We need the following auxiliary Lemma.

Lemma 2 Let K be an origin-symmetric convex

body in R
d. Let R = {p1, . . . , pn} be a set of points in

R
d and let D = {K1 = p1+ρ1K, . . . ,Kn = pn+ρnK}

be a family of homothets of K. Then there exists a

subfamily D′ ⊂ D that covers R and forms a strict

Minkowski arrangement. Moreover, D′ can be found

using a greedy algorithm.

As a corollary, we will obtain the following theorem.

Theorem 3 Let K be an origin-symmetric convex

body in R
d. Let R = {p1, . . . , pn} be a set of points in

R
d and let D = {K1 = p1+ρ1K, . . . ,Kn = pn+ρnK}

be a family of homothets of K where ρ1, . . . , ρn > 0.
Let B be another set of points in R

d, and assume that,

for some λ > 0, we have

|B ∩Ki|

|R ∩Ki|
≥ λ, (1)

for all i ∈ [n]. Then |B|
|R| ≥ λ

3d
.

In Theorem 1 the convex body K is a Euclidean
unit disk in the plane. Another case of special interest
is when the convex body K is a unit cube and thus
it induces the ℓ∞ norm. In this situation we get a
sharper and optimal inequality.

Theorem 4 IfK is the unit cube in R
d, then the con-

clusion in Theorem 3 can be strengthened to
|B|
|R| ≥ λ

2d
.

Furthermore, the multiplicative constant 1

2d
cannot

be improved.

In the results above, the points pi play the role of
the centers of the sets of the Minkowski arrangement.
One might ask if this restriction is essential. As a final
result, we give a general construction to show that it
is.

Theorem 5 Let K be any convex body in the plane

and ε,λ any positive real numbers. There exist sets of

points R = {p1, . . . , pn} and B in the plane such that

|B| < εn and that for each i there is a translate Ki of

K that contains pi for which |B ∩Ki| ≥ λ|R ∩Ki|.

In particular, even if each red point is contained in
a unit disk with many blue points, the global blue to
red ratio can be as small as desired. This is a possibly
counter-intuitive fact in view of Theorem 1.

Figure 2: The centers of the disks are labeled in de-
creasing order of corresponding radii. The shaded
disks cover the white points and no shaded disk con-
tains the center of another.

2 Proofs

Proof. [Proof of Lemma 2] We construct a subfam-
ily D′ of D with the property that no member of D′

contains the center of any member of D′, and
⋃

D′

covers the red points, R. Assume without loss of gen-
erality that the labels of the points in R are sorted in
non-increasing order of the homothety ratio, that is,
ρ1 ≥ · · · ≥ ρn. See Figure 2 for an example.

We constructD′ in a greedy manner as follows: Add
K1 to D′. Among all red points that are not already
covered by D′ pick a point pj whose corresponding
homothet Kj has maximum homothety ratio ρj . Add
Kj to D′ and repeat until all red points are covered by
D′. Note that the homothets in D′ are not necessarily
disjoint.

Clearly, R ⊂ ⋃

D′. Now we show that no member
of D′ contains the center of another. Suppose to the
contrary that Ki contains the center of Kj . If i < j,
then ρi ≥ ρj so Ki was chosen first, a contradiction
to the fact that pj was chosen among the points not
covered by previous homothets. If i > j, then Kj

also contains the center of Ki, and we get a similar
contradiction.

This finishes the proof of Lemma 2.
�

Proof. [Proof of Theorem 3] By Lemma 2, there ex-
ists a subfamily D′ ⊂ D that covers R and form a
strict Minkowski arrangement. Namely,

⋃

D′ covers
R, and no point of B is contained in more than M(K)
members of D′. In particular, it follows that

|R| ≤
∑

K∈D′

|R ∩K| ≤
∑

K∈D′

|B ∩K|

λ
≤ M(k)

λ
|B|

215

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 3: Optimal Minkowski arrangements in the
plane for a) Euclidean disks, b) axis-parallel squares.

so
|B|

|R|
≥ λ

M(K)
≥ λ

3d
.

This completes the proof. �

Lemma 6 Let K be the Euclidean unit disk centered

at the origin. Then M(K) = 5.

Proof. [Proof of Lemma 6] Five unit disks centered
in the vertices of a unit-radius regular pentagon show
that M(K) ≥ 5. See Figure 3a.
To prove the other direction, suppose that there is

a point b in the plane that is contained in 6 Euclidean
disks in a strict Minkowski arrangement. Then, by
the pigeonhole principle, there are two centers of those
disks, say p and q such that the angle ∢(pbq) is at most
60◦. Assume without loss of generality that pb ≥ qb.
It is easily verified e.g., by the law of cosines, that the
distance pq is less than pb. Hence, the disk centered
at p contains q, a contradiction. This completes the
proof. �

Lemma 7 Let K be the unit cube of Rd centered at

the origin. Then M(K) = 2d.

Proof. [Proof of Lemma 7] Let d be a positive integer
and e1, e2, . . . , en the canonical base of Rd. Consider
all the cubes of radius 1 centered at each point of
the form ±e1 ± e2 ± . . .± ed. This family shows that
M(K) ≥ 2d. See Figure 3b for an example on the
plane.

Figure 4: Construction of example without local-to-
global phenomenon.

Now we show the other direction. Consider the
2d closed regions of Rd bounded by the hyperplanes
xi = 0 i = 1, 2, . . . , d and suppose on the contrary
that we have an example with 2d + 1 cubes or more
that contain the origin. By the pidgeon-hole principle
there is a region with at least two cube centers u and
v. By applying a rotation we may assume that it is
the region of vectors with non-negative entries. We
may also assume δ := ‖u‖∞ ≥ ‖v‖∞.
Since the d-cube centered at u contains the origin,

its radius must be at least δ. We claim that this cube
contains v. Indeed, each of the entries of u and v are
in the interval [0, δ]. So each of the entries of u − v

are in [−δ, δ]. Then ‖u − v‖∞ ≤ δ as claimed. This
contradiction finishes the proof. �

Theorem 1 clearly follows from combining the proof
of Theorem 3 (with λ = 1) and Lemma 6. The result
is sharp because we have equality when R is the set
of vertices of a regular pentagon with center p and
B = {p}. Similarly, Theorem 4 and its optimality
follow from Lemma 7.

Remark 1 Lemma 6 can be generalized to arbitrary

dimension. This implies that Theorem 1 can be gen-

eralized to arbitrary dimension almost verbatim.

Proof. [Proof of Theorem 5] Let K be any convex
body in the plane. We construct sets R and B as
follows. Let ℓ be a tangent line of K which intersects
K at exactly one point t. Let I be a non-degenerate
closed line segment contained in K and parallel to
ℓ. Let J be the (closed) segment that is the locus of
the point t as K varies through all its translations in
direction d that contain I. See Figure 4.

We construct R by taking any n points from J and
we construct B by taking any m points from I. For

216

33rd European Workshop on Computational Geometry, 2017

any point inR there is a translation ofK that contains
exactly one point ofR andm points ofB, which makes
the local B to R ratio equal to m. But globally we
can make the ratio m

n
arbitrarily small. �

Acknowledgements

M. Naszódi acknowledges the support of the János
Bolyai Research Scholarship of the Hungarian
Academy of Sciences, and the National Research,
Development, and Innovation Office, NKFIH Grant
PD-104744, as well as the support of the Swiss Na-
tional Science Foundation grants 200020-144531 and
200020-162884.
L. Martinez-Sandoval’s research was partially car-

ried out during the author’s visit at EPFL. The
project leading to this application has received fund-
ing from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and in-
novation programme grant No. 678765 and from the
Israel Science Foundation grant No. 1452/15.
S. Smorodinsky’s research was partially supported

by Grant 635/16 from the Israel Science Foundation.
A part of this research was carried out during the au-
thor’s visit at EPFL, supported by Swiss National Sci-
ence Foundation grants 200020-162884 and 200021-
165977.

References

[FL94] Z. Füredi and P. A. Loeb, On the best constant

for the Besicovitch covering theorem, Proc. Amer.
Math. Soc. 121 (1994), no. 4, 1063–1073. MR1249875
(95b:28003)

[NPS16] M. Naszódi, J. Pach, and K. Swanepoel, Ar-

rangements of homothets of a convex body,
arXiv:1608.04639 [math] (2016). arXiv: 1608.04639.

[PRT15] J. Pach, N. Rubin, and G. Tardos, Beyond

the Richter-Thomassen conjecture, arXiv:1504.08250
[math] (2015). arXiv: 1504.08250.

[RT95] R. B. Richter and C. Thomassen, Intersections of

curve systems and the crossing number of C5 × C5,
Discrete & Computational Geometry 13 (1995), no. 2,
149–159.

[Tal98] I. Talata, Exponential lower bound for the transla-

tive kissing numbers of d-dimensional convex bodies,
Discrete Comput. Geom. 19 (1998), no. 3, Special Is-
sue, 447–455. Dedicated to the memory of Paul Erdős.
MR98k:52046

217

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Convex allowable sequences∗

Jean Cardinal Udo Hoffmann

Abstract

Allowable sequences are a well known abstraction
of combinatorial properties of a planar point set.
We consider the allowable sequences that describe a
weakly convex point set and show that the realizabil-

ity problem for weakly convex allowable sequences of
a point set on three lines is complete in the existen-

tial theory of the reals (∃R), while the realizability of
weakly convex allowable sequences on two lines can be
decided in polynomial time. Furthermore, we count
the simple convex allowable sequences.

1 Introduction

Combinatorial abstractions of properties of point sets
are a useful tool in computational geometry. For
example, many algorithms on point sets only re-
quire the order type instead of the exact coordi-
nates of the points, that is, the orientation (clock-
wise/counterclockwise) of every triple of points in the
set, which makes the algorithms purely combinatorial.
So it is a natural question to ask how the point sets
that agree on their combinatorial description – the re-
alization space – looks like. For order types this ques-
tion was answered by Mnëv [11] with his famous uni-
versality theorem: For each primary semi-algebraic

set S (a set described by strict polynomial inequali-
ties and polynomial equalities) there is an order type
whose realization space is stably equivalent to S. So
the realization space can be as complex as possible.
From the computational point of view Mnëv’s univer-
sality theorem implies that deciding if an order type
is realizable (i.e., the realization space is non-empty)
is complete in the existential theory of the reals (∃R).
A sequence π1,π2, . . . ,πm+1 of permutations of an

n-element set is an allowable sequence if: (i) π1 and
πm+1 are reverse of each other, (ii) every pair of ele-
ments is reversed exactly once, (iii) each consecutive
pair of permutations differ only by reversals of dis-
joint substrings. We call an allowable sequence sim-

ple if each consecutive pair of permutations only dif-
fers by the reversal of a single adjacent transposition.
(Note that in what follows, we think of permutations
as strings in the alphabet [n].)

A simple allowable sequence can be obtained from
a point set in general position in the following way.

∗Université libre de Bruxelles (ULB),
[udo.hoffmann,jcardin]@ulb.ac.be

1
2

3

4

3 421

3

2
1
4

3124

1324

1243

1423

4123

Figure 1: An example of an allowable sequence of a
point set.

The orthogonal projection of the point set onto an ori-
ented line leads to a permutation. Rotating this line
by a continuous motion by 180◦ leads to a sequence
of permutations which is an allowable sequence. The
allowable sequence corresponding to a point set en-
codes in particular the information of the order type
of the point set [6]. The concept of simple allow-
able sequence has first been described by Perrin [12]
in 1882 who conjectured that every such sequence is
realizable by a set of points. This was disproved by
Goodman and Pollack [6] with the so-called “bad pen-
tagon” construction. The authors generalized the def-
inition in [7] to what we call allowable sequence in this
paper.

Each of the reversals between two successive permu-
tations will be referred to as a switch. The elements of
one substring s that is reversed correspond to points
that lie on one line ℓs. This substring is reversed when
the rotating line, which we project on to obtain the
permutations, is orthogonal to ℓs. We can identify a
switch with the intersection point of the line spanned
by its points and the line at infinity ℓ∞ and a single
permutation with the interval between two intersec-
tion points on the line at infinity.

The order of switches corresponds exactly to the
order of the slopes of the spanned lines. In an al-
lowable sequence we can have parallel switches, that
is, more than one reversal occuring between two suc-
cessive permutations. If this appears in an allowable
sequence corresponding to a point set, then the par-
allel switches correspond to parallel lines containing
at least two points each.

We consider the realizability problem for allowable
sequences: given such a sequence, can it be obtained
from a set of points in the plane? We further re-
strict our investigations to allowable sequences that

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

218

33rd European Workshop on Computational Geometry, 2017

can only be obtained by sets of points in convex posi-
tion. (Note that n-point sets in convex position all
have the same order type, but may have different
allowable sequences.) The realizability problem for
(non-convex) allowable sequences has been shown to
be ∃R-complete [8]. We say that a simple allowable
sequence is convex whenever every element in [n] ap-
pears either as the first or the last in one permutation
of the sequence. The same definition holds for gen-
eral allowable sequences. Furthermore, an allowable
sequence is said to be weakly convex whenever every
element in [n] is involved in a switch of a prefix or
a suffix of one of the permutations in the sequence.
Such sequences can be produced by point sets such
that all the points lie on the boundary of their convex
hull, but are not vertices of the convex hull.

We also consider allowable sequences that are pro-
duced by points lying on a few lines. An allowable se-
quence is said to be on k lines if it involves k switches,
such that every element is involved in at least one of
them. Such a sequence can only be obtained by point
sets that can be covered by k lines.

The existential theory of the reals (∃R) is a com-
plexity class defined by the following complete prob-
lem: given a Boolean combination of polynomial
equalities and inequalities, decide if there is an as-
signment of real values to the variables such that the
system is satisfied. The only known relations to other
complexity classes are NP ⊆ ∃R ⊆ PSPACE. The
second relation is a result by Canny [3]. Whether one
of the relations is strict or an equality is not known.
An argument suggesting that ∃R may not be con-
tained in NP is the fact that the normal certificate
for ∃R hard problems, the coordinates of a solution,
cannot always be stored in polynomial space using
the standard bit representation for integers since iter-
ative squaring produces doubly exponential numbers
in the input size, which requires exponential size bit
representations of numbers. Many geometric prob-
lems can be shown to be ∃R-hard by a reduction
from order type realizability or the dual problem, the
stretchability of pseudoline arrangements. Some ∃R-
complete geometric problems include recognition of
segment [10] and convex set intersection graphs [14]
and point visibility graphs [5], realizability of face lat-
tice of a 4-polytope [13] and d-dimensional Delaunay
triangulations [1], computing the rectilinear crossing
number [2] and planar slope number [9]. We refer
to [4] for an overview.

Results and outline

In Section 2 we first show that the realizability prob-
lem for weakly convex allowable sequences is ∃R-
complete. The points in the reduction are placed on
three lines. We show that three lines are necessary
in the reduction by showing that the realizability of

a b

c d

0 x y x+ y
ℓ

ℓ∞
∞

Figure 2: The addition of distances on a line.

weakly convex allowable sequences on two lines can
be decided in polynomial time, even though the coor-
dinates of a realization sometimes require exponential
space bit representations. In Section 3 we count the
number of simple convex allowable sequences.

2 Realizability

2.1 Weakly convex position

Theorem 1 The realizability problem for weakly

convex allowable sequences on three lines is ∃R-

complete.

We leave the ∃R-membership of the problem for the
reader. The idea to prove the ∃R-hardness is to cal-
culate with points on a line as in the proof of Mnëv’s
universality theorem. Therefore, we use the standard
gadgets of von Staudt [16] to add and multiply dis-
tances on a line.

Figure 2 shows the addition of distances on a line.
The distance between 0 and y is the same as the dis-
tance between c and d, because of the parallel lines
that intersect on the line at infinity in b. This distance
is again the same distance as between x and x + y
and thus this point configuration adds the distances
of points on ℓ if ℓ∞ is indeed the line at infinity. Since
distances are not invariant under projective transfor-
mations we use a projective invariant, the cross-ratio.

The cross-ratio (a, b; c, d) of four points a, b, c, d ∈

R
2 is defined as (a, b; c, d) := |a,c|·|b,d|

|a,d|·|b,c| , where |x, y|

is the determinant of the matrix obtained by writing
the coordinates of the two points as columns. The two
properties that are useful for our purpose are that the
cross-ratio is invariant under projective transforma-
tions, and that for four points on one line, the cross-

ratio is given by
−→ac·

−→

bd
−→

ad·
−→

bc
, where −→xy denotes the oriented

distance between x and y on the line.
To encode a complete semi-algebraic set with the

gadgets we have to solve two problems. We have to
break down the description of the semi-algebraic set
to basic additions and multiplications and we need
the order of the variables on the line ℓ. A solution to
this problem is the following theorem.

219

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Theorem 2 (Shor normal form [15]) The fol-

lowing decision problem is ∃R-complete: given

variables 1 = x1 < x2 < · · · < xn and equations of

the form xi + xj = xk and xi + xj = xk, is there a

satisfying assignment of real values to the variables?

To implement those calculations in an allowable se-
quence we note that we can encode points on one line
in the allowable sequence. Thus we move the line ℓ to
the line at infinity as shown in Figure 3, which allows
us to calculate with slopes of the spanned line.

10
x

y
x · y

0 x
y

x+ y

∞

ℓ

ℓ∞
∞ai

ci

di

ci

di

bi

ℓ

biaiℓ∞

Figure 3: The gadgets calculating with distances on
the line at infinity.

To prove the ∃R-hardness of the realizability of con-
vex allowable sequences we construct an convex al-
lowable sequence AS from a description of a semi-
algebraic set S given in Shor normal form. We give a
construction of AS iteratively by placing the points of
the gadgets. Therefore, let m1, . . . ,mk be the multi-
plication gadgets and a1, . . . , al be the addition gad-
gets. We add first multiplication gadgets and then the
addition gadgets and construct the allowable sequence
of the gadget points already placed. The points ai and
bi are placed on the line ℓ∞ given by y = 0, the points
ci and di of a multiplication gadget are placed on a
line B and the points ci and di of an addition gadget
are placed on a line parallel to the line containing ci
and di.

∞

0 x1 x2x3

B

Figure 4: The placement of the gadget points in the
reduction.

So, when we add the multiplication gadget mi, we
have to determine how the slopes of the lines spanned
by pairs of points including a point of mi fit in the
already constructed sequence. We do this in the fol-

lowing way: The slopes spanned by the points ai and
bi and the points on B of the gadgets mj for j < i
are the smallest positive slopes already placed so far.
Furthermore, for each point p the slopes of the lines
ℓ(ai, p) and ℓ(bi, p) appear consecutively in the al-
lowable sequence. These properties can be achieved
when realizing the allowable sequence by moving ai
and bi very close together and very far to the left
on the line ℓ∞. The slopes of lines through the
points ci and di are the largest positive slopes con-
structed so far. Let (ai, bi,)ai−1, bi−1, . . . , a1, b1 be
the order of the gadget points on ℓ∞. Then the or-
der of slopes of lines through ci and di in increas-
ing order is (ai−1, di), (bi−1, di), (ai−1, ci), (bi−1, ci),
(ai−2, di), (bi−2, di), (ai−2, ci), (bi−2, ci),

The new order of the slopes after we add an addition
gadget gi is the following. The slopes of lines through
the points ai and bi are again the smallest positive
slopes and the slopes through ci and di are the largest
negative slopes (smallest absolute value).

Lemma 3 The allowable sequence AS as described

above is realizable if and only if S is non-empty.

Proof. [Sketch.] If AV is realizable, then the gadgets
implement relations given by V of the points on the
line at infinity. Thus the cross-ratios of points on the
line at infinity encodes a point in V .
On the other hand, if V is non-empty, let x be a

point in V . We place the points on the line at infin-
ity according to the cross-ratio. Then we place the
gadget points in the order we constructed the allow-
able sequence on ℓ∞. Here we place ai and bi close
together and far to the left, which leads to the desired
allowable sequence. �

To finish the proof of the theorem, note that the
sequence Av describes a point set on three lines.

2.2 Points on few lines

Note that the allowable sequence we described in the
reduction describes a point set that lies on three sides
of a trapezoid, i.e., on three lines. We show that the
realizability of an allowable sequence by a point set
on two lines can be decided in polynomial time.

Theorem 4 The realizability of weakly convex al-

lowable sequences on two lines can be decided in poly-

nomial time.

Proof. We distinguish two cases. In the first case
we assume the points lie on two parallel lines. Here
we can assume that the two lines are given by x = 0
and x = 1 by applying an affine transformation. The
allowable sequence describes the order of slopes be-
tween pairs of points on the two lines. The slope
through two points a = (0, ya) and b = (1, yb) is given

220

33rd European Workshop on Computational Geometry, 2017

1 2 3

4 6

5

7

8 9

10

1

2

10

9

1

10

Figure 5: An order of intersections in the wiring di-
agram is in bijection with a linear extension of the
partial ordered set and a skewed Young tableau of
triangle shape.

by yb − ya. Consequently, the order of the slopes can
be encoded by a linear inequality system. Since the
solvability of a system of linear inequalities can be
decided in polynomial time we can decide the realiz-
ability of allowable sequences on two parallel lines in
polynomial time.
In the second case, when the two lines are not par-

allel, we can assume again using an affine transfor-
mation that the two lines supporting the points are
given by x = 0 and y = 0 and all slopes are pos-
itive, e.g., all x-coordinates are non-positive and all
y-coordinates are non-negative. The slope through a
point a = (0, ya) and a point b = (xb, 0) is given by
−ya/xb. Comparing slopes of pairs of lines leads to
inequalities of the form −ya/xb < −yc/xd. Taking
logarithms of each side of an (in)equality leads a lin-
ear inequality system where the variables correspond
to logarithms of the realizing coordinates. This sys-
tem can be solved in polynomial time. �

In the second case we do not compute the coordi-
nates of the realizing points explicitly in polynomial
time. This is not possible due to the following fact.

Observation 1 There are realizable weakly convex

allowable sequences on two lines, all realizations of

which with points lying on the integer grid require at

least one point with at least one coordinate of absolute

value Θ(22
n

).

Proof. [Sketch.] The multiplication gadgets used in
the ∃R-reduction can be realized only on two lines.
Thus we can implement the reduction of Theorem 1
on the Shor normal form 0 < x1 = 1 < x2 · · · < xn

with the equations xi+1 = xi · xi for i > 2. For x2 =

p/q (p, q coprime) we obtain xn = p2
n−2

/q2
n−2

which
requires doubly exponential resolution. �

3 Counting

Theorem 5 The number of simple convex allowable

sequences on n elements is
(n+1

2)!(1!2!...(n−1)!)

(1!3!...(2n−1)!) .

Proof. Figure 5 left shows the dual wiring diagram
of a convex point set. An allowable sequence cor-
responds to the order of x-coordinates of intersection

points in the wiring diagram. An order of the intersec-
tion points can be realized by a wiring diagram if the
intersection points of each line appear in the correct
order. This corresponds to a linear extension of the
partial ordered set shown in the middle of Figure 5.
Writing the position of an element in a linear exten-
sion in the grid indicated in grey leads to a skewed

Young tableau, a filling of the shape in the right of
the figure with numbers {1, . . . ,

(

n
2

)

} that is strictly
increasing in row and column. Which results in the
given formula by [17]. �

References

[1] K. A. Adiprasito, A. Padrol, and L. Theran. Univer-
sality theorems for inscribed polytopes and Delaunay
triangulations. DCG, 54:412–431, 2015.

[2] D. Bienstock. Some provably hard crossing number
problems. DCG, 6:443–459, 1991.

[3] J. Canny. Some algebraic and geometric computa-
tions in PSPACE. In STOC, pages 460–467. ACM,
1988.

[4] J. Cardinal. Computational geometry column 62.
ACM SIGACT News, 46:69–78, 2015.

[5] J. Cardinal and U. Hoffmann. Recognition and com-
plexity of point visibility graphs. DCG, 57:164–178,
2017.

[6] J. E. Goodman and R. Pollack. On the combinatorial
classification of nondegenerate configurations in the
plane. J. of Comb. Th., A, 29:220–235, 1980.

[7] J. E. Goodman and R. Pollack. A theorem of ordered
duality. Geometriae Dedicata, 12:63–74, 1982.

[8] U. Hoffmann. Intersection Graphs and Geometric Ob-

jects in the Plane. PhD thesis, TU Berlin, 2016.

[9] U. Hoffmann. On the complexity of the planar slope
number problem. JGAA, 21:183–193, 2017.

[10] J. Kratochv́ıl and J. Matoušek. Intersection graphs
of segments. J. of Comb. Th., B, 62:289–315, 1994.

[11] N. E. Mnëv. The universality theorems on the classi-
fication problem of configuration varieties and convex
polytopes varieties. In Top. a. Geom. – Rohlin Sem-

inar, LNM, pages 527–543. Springer, 1988.

[12] R. Perrin. Sur le problème des aspects. Bulletin de la

Société Mathématique de France, 10:103–127, 1882.

[13] J. Richter-Gebert and G. M. Ziegler. Realization
spaces of 4-polytopes are universal. Bulletin of the

American Mathematical Society, 32:403–412, 1995.

[14] M. Schaefer. Complexity of some geometric and topo-
logical problems. In GD, volume 5849 of LNCS, pages
334–344. Springer, 2009.

[15] P. W. Shor. Stretchability of pseudolines is NP-
hard. Appl. Geo. Disc. Math: Victor Klee Festschrift,
4:531–554, 1991.

[16] K. G. C. Staudt. Geometrie der Lage. F. Korn, 1847.

[17] R. M. Thrall et al. A combinatorial problem. The

Michigan Mathematical Journal, 1(1):81–88, 1952.

221

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Parametrized Runtimes for Ball Tournaments

Stefan Funke i Sabine Storandt ii

Abstract

The ball tournament problem asks for the elimina-
tion sequence of a given set of prioritized balls in R

d,
specified by their centers and their radii. The radii
grow linearly over time, and whenever two balls touch,
the one with the lower priority gets eliminated (and
added to the elimination sequence), until only the ball
with the highest priority remains. A simple algorithm
for this problem has a running time of O(n2 log n).
We present two parametrization variants for the ball
tournament problem: An O(n log∆(log n + ∆

d−1))
algorithm, where ∆ is the ratio of the largest to the
smallest radius, and an O(Cn logO(1) n) algorithm for
d = 2 (assuming radii and priorities are positively
correlated) where C denotes the number of different

radii. Hence for ∆, C ∈ O(logO(1) n), we get a signif-

icantly improved running time of O(n logO(1) n).

1 Introduction

Given a set of n balls B, where each ball B = (c, r, p)
has a center c ∈ R

d, a radius r ∈ R
+, and a priority

value p ∈ R
+, a ball tournament is modeled as follows:

Time t, starting with t = 0, progresses continuously
and the balls’ radii grow linearly over time. For any
time t, center ci induces a ball with radius rit. If two
balls touch/collide, the one with lower priority gets
eliminated. The tournament ends when only one ball
remains. The resulting sequence of the balls, sorted
by their elimination time, is the elimination sequence.

A simple algorithm consists of computing all pair-
wise collision times of balls in B. These O(n2) col-
lision events are considered one-by-one in increasing
time order. If the two balls involved in the collision
are ’alive’ at that time, the one with lower priority
’dies’, otherwise the event is ignored. The running
time of this algorithm is dominated by sorting the
collision times and hence equals O(n2 log n).

A lower bound of Ω(n log n) for the running time
can be obtained by reduction from the closest pair
problem. The scope of this paper is to show that
we can get close to this lower bound in case certain
parameters are small.

iDepartment of Computer Science, Universität Stuttgart,

Germany, funke@fmi.uni-stuttgart.de
iiDepartment of Computer Science, JMU Würzburg, Ger-

many, storandt@informatik.uni-wuerzburg.de

1.1 Related work

Another problem where the elimination sequence
plays a role is the construction of motorcycle graphs
(related to computing straight skeletons of polygons).
Here, a set of n motorcycles, each with a start posi-
tion, a direction and a given speed, continuously move
in the plane until they ’crash’ in the track left by
any other motorcycle. The best running time known
for motorcycle graph construction is O(n4/3+ǫ) [4],
O(Cn log2(n)min(C, log n)) in case only C directions
are allowed [4].

The ball tournament problem was considered for
d = 2 in [2], proving a time bound of O(n(log6 n +
∆

2 log2 n + ∆
4 log n)). The result was recently gen-

eralized and improved in [1] to O(∆dn(log n + ∆
d))

for arbitrary d. In this paper we improve the depen-
dency on ∆ in all dimensions (e.g., for d = 2 from
O(∆2n log n + ∆

4n) to O(n log∆ log n + ∆n log∆))
and also introduce a new meaningful parametrization.

1.2 Nearest neighbor and range reporting queries

Our algorithms require efficient nearest neighbor
(NN) and range reporting (RR) queries. In higher
dimension, d ≥ 3, one has to rely on approximate
queries, as no exact data structure supporting poly-
logarithmic query times is known so far. So an ǫ-
approximate NN (ANN) of q is a point c ∈ P with
|qc| ≤ (1 + ǫ)|qc′|, for all c′ ∈ P . An ǫ-approximate
RR (ARR) query with range parameter r returns a
set S with S ⊇ {c ∈ P : |qc| ≤ r} and S ⊆ {c ∈ P :
|qc| ≤ (1+ ǫ)r}. For arbitrary d, a so-called quadtreap

[3] has an expected size of O(n log n) with high proba-
bility. It supports ANN and ARR queries in expected

O(h +
(

1
ǫ

)d−1
+ k) time where k is the output size

(k = 1 for ANN), and point deletion and insertion in
expected O(log n) time.

1.3 Collision and update events

Two different kinds of events are considered in our
algorithm: collision events (b, b′, tcol(b, b

′)) (as in the
naive algorithm) and update events (b, t) which trigger
reexamination for collisions of b at time t. We call
both events anchored at b.
In our algorithm, a collision event (b, b′, tcol(b, b

′))
will predict the potential collision of b with a smaller

ball b′ at time tcol(b, b
′). An update event (b, t) is

created if b certainly does not collide with a smaller

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

222

33rd European Workshop on Computational Geometry, 2017

ball b′ before time t. This can be ensured if b – as the
larger of the two balls – contains at least half of the
segment cc′, i.e. rt > |cc′|/2. So if we know the NN
distance l for c, setting t = l/(2r) is a valid update
time. As we only get the ANN distance l∗ ≤ l(1 + ǫ),
we use t = l∗/(2(1 + ǫ)r) instead.

2 An algorithm with improved ∆-Dependency

We maintain a priority queue PQ of update and col-
lision events, sorted by their respective event times
increasingly. We now sketch the basic algorithm.

1. For all b ∈ B create an ANN-based update event
and insert it into the PQ.

2. As long as the PQ is not empty, extract the next
event. Let b be the anchor of the event and t the
event time. If b is dead, there is nothing to do.
For b still alive, if it is

• an update event, compute the current ANN and
the respective new update time tnew for b. If
for tnew we have tnew ≤ (1 + ǫ)t, predict the
next collision event for b with a ball b′ of smaller
or equal radius and insert this event in the PQ.
Otherwise, insert the update event (b, tnew).

• a collision event and both b and b′ are alive, elim-
inate the one with lower priority and append it to
the elimination sequence. If b survives, compute
an update event for b. If the computed update
time is before t, predict a collision event for b
instead.

• a collision event and b′ is dead, compute an up-
date event for b. Again, if the update time is
before t, predict a collision event instead.

In the following, we will analyze the running time.

2.1 Computing updates and predicting collisions

To have access to balls with smaller or equal ra-
dius, we first partition the n balls into log2 ∆ classes
according to their radii. So class number i con-
tains balls with radii r ∈ [2irmin, 2

i+1rmin[for i =
0, · · · , log∆. Then for each class, we construct a sep-
arate quadtreap. In total this takes time O(n log n).

Lemma 1 An update event can be computed in time

O(log∆(log n+ 1/ǫd−1)).

Proof. For a ball b we issue an ANN query to the DS
of every class with smaller or equal radius, so at most
log∆ many. We then compute among those candi-
dates the closest to the center of b. Each query takes
O(log n+ 1/ǫd−1) time. �

Next, we investigate how to predict a collision event
induced by processing an update event. We observe

c

r

NN ANN

l∗≥ l∗/(1 + ǫ)2 ≤ l∗(1 + x)(1 + ǫ)

l∗/(2(1 + ǫ)2)

rx

Figure 1: Illustration for the proof of Lemma 2. The
annulus for given x is indicated by the two thick arcs.

that with l∗ being the current ANN distance for a ball
b, the current time is at least l∗/(2(1 + ǫ)2r), as l∗ is
within a factor of (1 + ǫ) of the former ANN l∗0 and
this ANN led to the update event (b, l∗0/(2(1 + ǫ)r)).

Lemma 2 For a ball b = (c, r) at time t ≥ l∗/(2(1 +
ǫ)2r), with l∗ being the ANN distance, the next colli-

sion with a ball b′ = (c′, r′), r′ ≤ r, can be predicted

in time O(log∆(logn + 1/ǫd−1 + max(ǫ∆d,∆d−1)))
for ǫ ∈]0, 1].

Proof. In case the ANN ball bANN is not the next
collision partner for b, there either is a ball even closer
to b than the ANN or there is a ball further away than
the ANN but with a radius proportionally larger.

The NN distance l is ≥ l∗/(1 + ǫ) ≥ l∗/(1 + ǫ)2.
So in the annulus centered at c with r1 = l∗/(1 + ǫ)2

and r2 = l∗, there can be alternative collision part-
ners. For a ball b′ = (c′, r′) with l′ = |cc′| > l∗ to be
a possible collision partner, the collision time has to
be ≤ l∗/r, as this is an upper bound on tcol(b, bANN).
So we get l′/(r + r′) ≤ l∗/r ⇒ l′ ≤ l∗(1 + r′/r).
Note that we always have r′/r ≥ 1/∆. For each
x = 1/2i, i = 0, · · · , log r, we issue an ARR query
Bl∗(1+x)(c) to the DS of the class containing radii
rx. The result returns centers up to a distance of
l∗(1+x)(1+ ǫ). The main question now is how many
balls with a radius of Ω(rx) can fit inside the an-
nulus r1 = l∗/(1 + ǫ)2, r2 = l∗(1 + x)(1 + ǫ) at
time t = l∗/(2(1 + ǫ)2r) (see Figure 1 for an illus-
tration). The annulus volume is Va = O(l∗d((1 +
x)d(1 + ǫ)d − 1/(1 + ǫ)2d)). The volume of a ball of
radius rx at time t is Vb′ = Ω(l∗dxd/(1 + ǫ)2d) (and
at least a constant fraction has to be inside the annu-
lus). Hence, Va/Vb′ = O(((1 + x)d(1 + ǫ)3d − 1)/xd).
Because of the −1 in the numerator, after expansion
of the product (1 + x)d(1 + ǫ)3d all remaining terms
are either divisible by ǫ or x. All coefficients are in
O(24d) = O(1) for fixed d and can therefore be ne-
glected. As ǫ, x ∈]0, 1] , the largest of the summands
after cancellation with the denominator is O(ǫ/xd)
in case ǫ ≥ 1/∆, and O(1/xd−1) otherwise, and we

223

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

have O(d2) = O(1) summands. As x ≥ 1/∆, we
get O(max(ǫ∆d,∆d−1)) as an upper bound on the
result size of one approximate RR query. As we is-
sue at most log∆ such queries and each of them costs
O(log n+1/ǫd−1+max(ǫ∆d,∆d−1)), the running time
bound follows. �

We observe that the time to predict the next col-
lision is minimized in case 1/ǫd−1 = ǫ∆

d = ∆
d−1

which is realized by ǫ = 1/∆. Therefore, the time
to compute an update as well as a collision is in
O(log∆(log n+∆

d−1)).

2.2 Bounding the number of events

Let nu be the number of update events, and nc the
number of collision events inserted in the PQ in the
course of the algorithm. We know that there are ex-
actly n − 1 ’real’ collision events, that is, collision
events with both balls being still alive at the time of
extraction from the PQ. And we know that we ini-
tially insert n update events in the PQ.
So the question is how many update events lead to

new update events and how many collision events in
the PQ are affected by a real collision, i.e. one of the
collision partners dies before the event time.

Lemma 3 The number of times an update event

(b, t) leads to the direct insertion of a new update

event (b, t′) is in O(n).

Proof. Creation of a new update event (b, t′) is only
triggered if t′ > (1 + ǫ)t. We observe that this can
only happen if the real NN of b was eliminated. Oth-
erwise, if the NN is alive and we get two ANN can-
didates, their distance difference towards c can never
vary more than a factor of (1 + ǫ). As proven in [1],
only a constant number of balls can share the same
NN. Hence every elimination of a ball can trigger at
most a constant number of new updates. �

Lemma 4 For any ball b ∈ B and at any time of the

algorithm, the number of collision events in the PQ

involving b is bounded by a constant.

Proof. The number of collision events with b as an-
chor is ≤ 1. So the interesting case is b = (c, r) being
the smaller of the two collision partners. We define
b+ = (c+, r+) with r+ ≥ r to be the collision partner
with the largest center-to-center-distance k. In the
ball Bk(c

+), there cannot be centers of other balls
with a radius ∈ [r, r+], as they would be the collision
partner for b+ instead of b. But there might be balls
with a radius > r+ centered in Bk(c

+), as we only
looked for the next collision of b+ with a smaller or
equal sized ball. The question is how many balls with
a radius > r+ can be centered in Bk(c

+)∩Bk(c) – as
they might be other possible collision partners for b.

Let t be the time at which the collision event
(b+, b, tcol(b

+, b)) was inserted in the PQ. We know
that t ≥ l∗/(2(1 + ǫ)r+) with l∗ being the ANN dis-
tance for b+. Furthermore, we know that the distance
to a smaller collision partner cannot exceed 2l ≤ 2l∗.
So we have k ≤ 2l∗, and we know that every ball
with a radius ≥ r+ has to have an induced radius of
≥ l∗/(2(1+ ǫ)) ≥ k/(4(1+ ǫ)) ≥ k/8. Every ball with
a center in Bk(c

+) ∩ Bk(c) has at least a constant
fraction of its volume inside as well, and the volume
of Bk(c

+)∩Bk(c) is proportional to k as is the volume
of the inscribed balls. Hence only a constant number
of such balls can be centered there.
So Bk(c

+) cuts away a constant fraction of Br(c)
and we can show that only a constant number of other
collision partners can be associated with that volume.
We then repeat the argument for the collision part-
ner with next smaller distance to c which was not
accounted for, and so on. After constantly many rep-
etitions, the whole volume of Br(c) has been covered.
So in total, only a constant number of larger balls can
have b as their current collision partner. �

It follows that in total only a linear number of col-
lision events can lead to additional update event in-
sertions. Hence the overall number of update and
collision events is O(n).

Theorem 5 The total running time of the algorithm

is O(n log∆(log n+∆
d−1)).

Proof. We need O(n log n) to build suitable NN+RR
DS for the log∆ classes. We then insert a linear
number of update and collision events into the PQ
(Lemma 3 and 4) and extract and process them, tak-
ing time O(n log n) in total. Each of the events can
be computed in time O(log∆(log n+∆

d−1)) (Lemma
1 and 2). And we spend time O(n log n) on deleting
(and reinserting) points in data structures. So the
total running time is O(n log∆(log n+∆

d−1)). �

3 Considering the number of radii classes C

We now assume that there are C ≤ n different radii
in the input. For C = 1, it automatically follows
∆ = 1. Hence our ∆-dependent algorithm described
above has an asymptotically optimal running time of
O(n log n) for arbitrary fixed d.

3.1 Larger balls, higher priority

We now consider a special case, where the priorities
are positively correlated with the radii, that is, for
two balls with pa > pb we have ra ≥ rb which excludes
smaller balls having larger priorities.
We will now present an algorithm for d = 2 which

runs in time O(Cn logO(1) n). Note that if there were
exact NN and RR data structures for d ≥ 3 with a

224

33rd European Workshop on Computational Geometry, 2017

q2

(R+r)t

Figure 2: Illustration of the proof of Lemma 6.

running time of O(logO(1) n + k), the same overall
running time would apply.
The algorithm starts by partitioning the balls into

their respective radii classes R1, R2, · · · , RC with
Ri < Ri+1. With ni we refer to the number of balls
in class Ri. Then, for the class RC , we compute the
elimination order within. As seen above, this takes
time O(nC log nC). Thereafter, the suffix of the elim-
ination sequence is already known, as the elimination
times for balls in class RC cannot be influenced by
balls with smaller radii. For all other classes Ri, there
might be collisions with balls in some class Rj , j ≥ i.
We will detect these collision events efficiently in a
top-down fashion.

Lemma 6 For a class Rj with known elimination

times, all possible collision events with balls in classes

Ri for i = 1, · · · , j − 1 can be computed in time

O((njC + n) logO(1) n).

Proof. We consider the balls in Rj in increasing or-
der of their elimination sequence. Let b be the current
ball with center c and elimination time t. For each
class Ri, i ≤ j we assume that a RR-data structure is
available.
Observe that all balls in Ri with their center be-

ing further than (Rj + Ri)t away from c can never
collide with b before its elimination. So we issue the
RR B(Rj+Ri)t(c) to the data structure for class Ri to
get all potential collision partners. This takes time
O(logO(1) n+ k log n) with k = |B(Rj+Ri)t(c)|.
Now note that all balls in Ri with their center

within (Rj − Ri)t of c can only collide with b among
all balls in Rj still to be considered, as no such ball
can reach them before b does, see Figure 2 for an il-
lustration (with Rj = R and Ri = r). Therefore, we
can simply compare the collision time with b with the
current collision time assigned to those balls in Ri and
update it if necessary.
For balls q ∈ Ri with their center between (Rj−Ri)t

and (Rj +Ri)t, b or some other still alive ball b′ ∈ Rj

is the collision partner in Rj . If b
′ collides earlier with

q than b, the distance of the centers of b′ and q has
to be smaller than (Rj + Ri)t. But every such b′ is
alive at t and hence has a radius of Rjt at the elim-
ination time of b. Accordingly, a RR B(Rj+Ri)t(c(q))
in the DS for Rj (containing only alive balls at time
t), will return only a constant number of candidates
to check for the real next collision (see again Figure
2). The DS for Rj is then maintained by deleting b,
all elements in B(Rj+Ri)t(c(q)) are removed from the
datastructure for Ri. The overall running time for
collision checks with balls in Rj is then composed of
(1) nj range queries per class Ri, i < j, taking time

O(logO(1) n+ k log n) each, with all k summing up to

at most n, hence in total O(njC logO(1) n + n log n).
(2) At most n range queries into the DS for Rj to
identify possible collision partners for balls not in
the safe zone, demanding time O(logO(1) n) each as

k ∈ O(1) here, and so in total taking O(n logO(1) n)
time. (3) Updating the RR-DS for Rj , consisting of

nj deletions, hence taking time O(nj log
O(1) n) in to-

tal, similarly updating the RR-DS for all the Rj , con-

sisting of O(n) deletions, hence O(n logO(1) n) in to-
tal. Summing up over all three components results in
O((njC + n) logO(1) n). �

By invoking Lemma 6 for class Rc−1, Rc−2, · · · one
after the other, we achieve the following runtime:

Theorem 7 Computing the elimination sequence for

a ball tournament with C radii classes and priorities

being proportional to the radii costs O(nC logO(1) n).

4 Conclusions and Future Work

Our results should be seen as a further step towards a
subquadratic or ideally near-linear time algorithm for
the ball tournament problem. Future work will focus
on reducing or even getting rid of the dependency on
C and ∆. But similar to the motorcycle graph prob-
lem, where no near-linear algorithm is known without
further restrictions, this might be difficult to achieve.

References

[1] D. Bahrdt, M. Becher, S. Funke, F. Krumpe,
A. Nusser, M. Seybold, and S. Storandt. Growing
balls in R

d. In Algorithm Engineering and Experiments
(ALENEX) (to appear), 2017.

[2] S. Funke, F. Krumpe, and S. Storandt. Crushing disks
efficiently. In Proc. 27th Int. Workshop on Combina-
torial Algorithms (IWOCA), pages 43–54, 2016.

[3] D. Mount and E. Park. A Dynamic Data Structure
for Approximate Range Searching. In Proc. 26th Ann.
Symp. on Computational Geometry (SoCG), 2010.

[4] A. Vigneron and L. Yan. A faster algorithm for com-
puting motorcycle graphs. Discrete & Computational
Geometry, 52(3):492–514, 2014.

225

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Triangles in Arrangements of Pseudocircles∗

Stefan Felsner† Manfred Scheucher‡§

Abstract

Grünbaum conjectured that the number of triangular
cells p3 in digon-free arrangements of n pairwise inter-
secting pseudocircles is at least 2n − 4. We present
examples to disprove this conjecture. With a re-
cursive construction based on an example with 12
pseudocircles and 16 triangles we obtain a family with
p3(A)/n → 16/11 = 1.45. We conjecture that the
lower bound p3 ≥ 4n/3 of Hershberger and Snoeyink
is tight for infinitely many arrangements. For inter-
secting arrangements with digons we have p3 ≥ 2n/3,
and conjecture that p3 ≥ n− 1.
First counterexamples to Grünbaum’s conjecture

were found on the basis of an exhaustive enumeration
of all arrangements of n intersecting pseudocircles for
n ≤ 7. It turned out that there is a unique digon-free
intersecting arrangement N6 with n = 6 and only 8
triangles. This arrangement is a subarrangement of
all minimizing examples for n = 7, 8, 9. We show
that N6 is not circularizable, i.e., there is no equivalent
arrangement of circles. These results suggest that
Grünbaum’s conjecture might be true for digon-free
intersecting arrangements of circles.

1 Introduction

We study simple, intersecting arrangements of pseudo-
circles on the sphere. Here intersecting means that any
two pseudocircles cross twice, while simple means that
no three pseudocircles intersect in a common point.

An arrangement of pseudocircles is called completely
intersecting if there are two cells, which are separated
by each of the pseudocircles. Note that for every
completely intersecting arrangement of pseudocircles
there is a stereographic projection from the sphere
to the plane such that those two cells are mapped
to the outer cell and a cell, which lies “inside” every
pseudocircle, respectively.
In an arrangement A of pseudocircles, we denote

a cell with k crossings on its boundary as k-cell and
let pk(A) be the number of k-cells of A. As usual we

∗Partially supported by DFG Grant FE 340/11-1 and ERC
Advanced Research Grant no 267165 (DISCONV).

†Institut für Mathematik, Technische Universität Berlin,
Germany, felsner@math.tu-berlin.de

‡Institute of Software Technology, Graz University of Tech-
nology, mscheuch@ist.tugraz.at

§Alfréd Rényi Institute of Mathematics, Hungarian Academy
of Sciences, Budapest, Hungary

call 2-cells digons, 3-cells triangles, 4-cells quadrangles,
and 5-cells pentagons.
In his monograph [3] from 1972, Grünbaum states

Conjecture 3.7: Every (not necessarily simple) digon-
free arrangement of n pairwise intersecting pseudocir-
cles has at least 2n− 4 triangles. Grünbaum also pro-
vides examples of arrangements with n ≥ 6 pseudocir-
cles and 2n−4 triangles. Snoeyink and Hershberger [7]
showed that every connected digon-free arrangement
of n pseudocircles has at least 4n/3 triangles. Felsner
and Kriegel [2] observed that the bound from [7] also
applies to non-simple intersecting digon-free arrange-
ments and gave examples of arrangements showing
that the bound is tight on this class.
In Section 2, we give counterexamples to Grün-

baum’s conjecture. A specific arrangement N6 of 6
pseudocircles appears as subarrangement in most of
the known counterexamples. In Section 3, we show
that N6 is not circularizable, i.e., representable by
circles. This motivates the question, whether indeed
Grünbaum’s conjecture is true when restricted to in-
tersecting arrangements of circles. In the course of
the presentation, we offer some additional conjectures,
e.g., in Subsection 2.1 where we discuss arrangements
with digons.

In this paper (unless explicitly stated otherwise)
the term arrangement is used as equivalent to simple
arrangement of pairwise intersecting pseudocircles.

2 Arrangements with few Triangles

In this section, we discuss arrangements with few trian-
gles. The main result is the following theorem, which
disproves Grünbaum’s conjecture.

Theorem 1 The minimum number of triangles in
digon-free arrangements of n pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.

(ii) ⌈ 4

3
n⌉ for 6 ≤ n ≤ 14.

(iii) < 16

11
n for all n = 11k + 1 with k ∈ N.

The basis for this theorem was laid by exhaustive
computations, which generated all simple arrange-
ments of up to n = 7 pseudocircles. We generated
all possible dual graphs of such arrangements, that
is, the graph on the faces, where two vertices share
an edge if the correspond faces share a common seg-
ment of a pseudocircle. Since counting arrangements

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

226

33rd European Workshop on Computational Geometry, 2017

is also interesting, we digress to present the enumer-
ative results in Table 1. The four rows of the table
show the number of simple pseudocircle arrangements
without fixed outer cell (sphere) and with fixed outer
cell (plane). In both cases, we first state the num-
bers when digons are allowed and then the numbers of
digon-free arrangements. The arrangements and more
information can be found on our website [6].

n 2 3 4 5 6 7

sphere 1 2 8 278 145 058 447 905 202

+digon-free 0 1 2 14 2 131 3 012 972

plane 1 4 45 5 108 4 598 809 ?

+digon-free 0 1 5 157 63 808 132 355 602

Table 1: Number of combinatorially different arrange-
ments of n pseudocircles.

Starting with n = 7, we iteratively used arrange-
ments with n pseudocircles and a small number of
triangles and digons to generate arrangements with
n+ 1 pseudocircles and the same property. Using this
strategy, we found the arrangements from (i) and (ii)
of Theorem 1. Details can be found at [6]. From [7] we
know the lower bound: Every digon-free arrangement
has at least 4n/3 triangles.

A result of the computations was that the triangle-
minimizing example for n = 6 is unique, i.e., there
is a unique simple arrangement N6 with 6 pseudo-
circles and only 8 triangles. This arrangement is a
subarrangement of each of the minimizing examples for
7 ≤ n ≤ 9. The claim, that indeed we found all mini-
mizing examples in this range, is justified by Lemma 2,
which allows to quantify the range of pairs (p2, p3) of
arrangements of n pseudocircles whose extension may
yield a minimizing example for n + 1. In particular,
to get all arrangements with n = 9 and 12 triangles
we only had to extend arrangements with n = 7 and
n = 8, where p3 + 2p2 ≤ 12.

Lemma 2 For any arrangement A and C ∈ A, we
have p3(A) + 2p2(A) ≥ p3(A − C) + 2p2(A − C).

Proof. Consider a triangle of A − C. After adding C,
either the triangle remains untouched, or the triangle
is split into a triangle and a quadrangle, or a digon
is created in the region covered by the triangle. Now
consider a digon of A − C. After adding C, either
there is a digon in this region or the digon has been
split into two triangles. �

It turns out that N6 is a subarrangement of many
arrangements, that violate Grünbaum’s conjecture. In
Section 3, we show that N6 is not circularizable, i.e.,
there is no equivalent arrangement of circles. This
property is inherited by all arrangements, that have
N6 as a subarrangement. For the examples with less
than 2n − 4 triangles, that do not contain a subar-
rangement equivalent to N6, we could not find realiza-

tions by circles. Therefore, the following weakening of
Grünbaum’s conjecture may be true.

Conjecture 1 (Weak Grünbaum Conjecture)
Every digon-free arrangement of n circles has at least
2n− 4 triangles.

We now come to the proof of (iii) of Theorem 1.
The basis of the construction is an arrangement A12

with 12 pseudocircles and 16 triangles shown in Fig-
ure 1. This arrangement will be used iteratively in a
‘merge’ operation as described by the following lemma.

Figure 1: A digon-free, completely intersecting arrange-
ment A12 of n = 12 pseudocircles with exactly 16 triangles.
The dotted curve intersects every pseudocircle exactly once.

Lemma 3 Let A and B be arrangements of nA

and nB pseudocircles, respectively, and let PA be
a path in A, that intersects every pseudocircle exactly
once. If PA traverses τ triangles of A and forms δ tri-
angles with pairs of pseudocircles from A, then there
is an arrangement C of nA + nB − 1 pseudocircles
with p3(C) = p3(A) + p3(B) + δ − τ − 1.

Proof. Take a drawing of A and make a hole in the
two cells, where the path PA ends. This yields a
drawing of A on a cylinder such that none of the
pseudocircles is contractible. The path PA connects
the two boundaries of the cylinder. Now we stretch
the drawing such that it becomes a narrow belt, where
all intersections of pseudocircles take place in a small
disk, which we call belt-buckle. This drawing of A is
called a belt drawing. The construction is illustrated
with the blue subarrangement in Figure 2.

Let B be a pseudocircle in B and let △ be a triangle
incident to B. Let b be the edge of B, which bounds △.
Specify a disk D, which is traversed by b and disjoint
from all other edges of B. Now replace B by a belt
drawing of A in a small neighborhood of B such that
the belt-buckle is drawn within D; see Figure 2.

227

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

△

D

(2)

(1)

(3)

(4)

Figure 2: An illustration of the construction in Lemma 3.
Pseudocircles of A (B) are drawn red (blue).

The arrangement C obtained from the merge of B

and A along B consists of nA + nB − 1 pseudocircles.
Most of the cells of C are of one of the following four
types: (1) All boundary edges belong to pseudocircles
of A. (2) All boundary edges belong to pseudocircles
of B. (3) All boundary edges but one belong to pseu-
docircles of B and the remaining edge belongs to the
first or the last pseudocircle of A intersected by PA.
These cells correspond to cells of B with a boundary
edge on B. (4) Quadrangular cells, whose boundary
edges alternatingly belong to A and B.

From the cells of B, only △ and the other cell con-
taining b (which is not a triangle since B is simple)
have not been taken into account. In C, the corre-
sponding two cells have at least two boundary edges
from B and at least two from A. Consequently, nei-
ther of the two cells are triangles. The remaining
cells of C have been created by inserting PA into A.
To be precise, the role of PA in these cells is taken
by one of the two boundary pseudocircles of △ other
than B. There are δ triangles among these cells, but τ
of these are obtained because PA traverses a triangle
of A. All other triangles of C have a corresponding
triangle in A or B, except for △, which does not
occur in this correspondence. Altogether, there are
p3(A) + p3(B) + δ − τ − 1 triangles in C. �

Proof of Theorem 1(iii). We use A12, the arrangement
shown in Figure 1, in the role of A for our recursive
construction. The dotted path in the figure is used
as PA with δ = 2 and τ = 1. Starting with C1 = A12

and defining Ck+1 as the merge of Ck and A12, we
construct a sequence {Ck}k∈N of arrangements with
n(Ck) = 11k + 1 pseudocircles and p3(Ck) = 16k
triangles. The fraction 16k/(11k+1) is increasing as k
increases with limit 16/11 = 1.45. �

We remark that using other arrangements from The-
orem 1(ii) (which also admit a path with δ = 2 and
τ = 1) in the recursion, we obtain arrangements with
p3 ≤ ⌈ 16

11
n⌉ triangles for all n ≥ 6.

Since the lower bound ⌈ 4

3
n⌉ is tight for 6 ≤ n ≤ 14,

we believe that the following is true:

Conjecture 2 There are infinitely digon-free arrange-
ments A with p3(A) = ⌈4n/3⌉.

2.1 Arrangements with Digons

Concerning arrangements with digons, we know of two
constructions for families of arrangements with only
n− 1 triangles. An example is shown in Figure 3.

Figure 3: An illustration of an arrangement of n = 5
pseudocircles with n digons and n− 1 triangles.

Using ideas based on sweeps (cf. [7]), we can show
that every pseudocircle is incident to at least two
triangles. This implies the following theorem:

Theorem 4 Every arrangement of n ≥ 3 pseudocir-
cles has at least 2n/3 triangles.

Since for 3 ≤ n ≤ 7 every arrangement has at least
n− 1 triangles, we believe that the following is true:

Conjecture 3 Every arrangement of n ≥ 3 pseudo-
circles has at least n− 1 triangles.

3 Non-circularizable Arrangements

Little is known about circularizability, i.e., deciding
whether a given arrangement of pseudocircles is iso-
morphic to an arrangement of circles. Edelsbrunner
and Ramos [1] proved non-circularizability of an ar-
rangement of 6 pseudocircles with digons. Linhart and
Ortner [5] found a non-intersecting arrangement of 5
pseudocircles with digons, that is non-circularizable.
Kang and Müller [4] proved that all arrangements
with at most 4 pseudocircles are circularizable and
that deciding circularizability is NP-hard in general.

Having generated all intersecting arrangements with
n ≤ 7, we used a randomized procedure to see, which
of them are realizable as circle arrangement. After
realizing some remaining hard instances with n = 5
by hand, we now have:

Proposition 5 The arrangement N5 shown in Fig-
ure 4(a) is the unique non-circularizable arrangement
among the 278 equivalence classes of intersecting ar-
rangements of n = 5 pseudocircles.

Proof (Sketch). Since we have realizations of all
278 intersecting arrangements of n = 5 pseudocircles
except N5, it remains to show that N5 is not circu-
larizable. Suppose for a contradiction that there is

228

33rd European Workshop on Computational Geometry, 2017

d

b

a

c p

(a) (b)

Figure 4: (a) The unique intersecting non-circularizable
arrangement N5 of 5 pseudocircles. (b) An illustration of
the proof of Proposition 5.

an equivalent arrangement A of circles. Shrink the
red, green, and blue circle into their interior so that
they touch each other and they all touch the pink
circle; see Figure 4(b). Four of the touching points
have been labeled. The bisectors of the chords ab and
cd intersect in a point p, which is equidistant to a,
b, c, and d. Hence, there is a circle C with center p,
which is incident to each of the four points. Since the
four labeled points are in four of the digons of A, we
know that the yellow circle of A has a and c in its
interior but b and d in its exterior. Since on C, the
counter-clockwise order of the four points is a, b, c, d,
there is no circle with the properties needed for the
yellow circle of A. A contradiction. �

The proposition together with the work of Kang and
Müller implies that all digon-free intersecting arrange-
ments of at most 5 pseudocircles are circularizable.
For n = 6 there are digon-free intersecting arrange-
ments, which are non-circularizable. Figure 5 shows
such an arrangement, which we denote as N6. The
arrangement N6 is the unique arrangement for n = 6
minimizing the number of triangles, and, since N6 oc-
curs as a subarrangement of every triangle-minimizing
arrangement for n = 7, 8, 9, also neither of those ar-
rangements is circularizable. From the 2131 digon-free
intersecting arrangements of 6 pseudocircles 2128 are
circularizable and 3 are not. In the following we sketch
the proof of the non-circularizability of the arrange-
ment N6. All realizations and the two additional
non-circularizable arrangements can be found at [6].

Proposition 6 The arrangement N6, as depicted in
Figure 5, is non-circularizable.

Proof (Sketch). Suppose for a contradiction that
there is an equivalent arrangement of circles on the
unit sphere. Choose a point in each of the eight tri-
angles on the sphere and label them with letters as in
Figure 5. Now embed R

3 as an affine subspace into R
4

such that a, b, c, d are mapped onto the standard basis
vectors e1, e2, e3, e4 in this order. On the sphere, the
circle through a, b, c separates d and z. This implies
that the first three components z1, z2, z3 of z are pos-
itive and that z4 is negative. Similarly, the unique
negative components of w, x, y are w1, x2, and y3, re-

c

xa

z

y d

wb

Figure 5: The unique digon-free intersecting arrangement
N6 of 6 pseudocircles with 8 triangles. This arrangement
is non-circularizable.

spectively. Next, for each circle of the arrangement,
we consider the determinant of the four points in the
incident triangles. E.g., for the green circle, we look at
det(abwx). Geometric considerations allow us to argue
that det(abwx) is positive. Therefore, w3x4 > w4x3.
In an analogous manner, we obtain:

green : det(abwx)> 0 ; w3x4 > w4x3

red : det(cayw)> 0 ; w4y2 > w2y4

light blue : det(adwz)> 0 ; w2z3 > w3z2

pink : det(cbyx) > 0 ; x1y4 > x4y1

blue : det(bdxz) > 0 ; x3z1 > x1z3

yellow : det(dczy) > 0 ; y1z2 > y2z1

The negative values do not show up in the inequalities.
Moreover, if we take the product of the left-hand-sides
and right-hand-sides, resp., we obtain the same value
on both sides of the inequality – a contradiction. �

References

[1] H. Edelsbrunner and E. A. Ramos. Inclusion-exclusion
complexes for pseudodisk collections. Discrete & Com-

putational Geometry, 17:287–306, 1997.

[2] S. Felsner and K. Kriegel. Triangles in Euclidean ar-
rangements. In Proc. WG, volume 1517 of LNCS, pages
137–148. Springer, 1998.

[3] B. Grünbaum. Arrangements and Spreads, volume 10
of RCSM. AMS, 1972 (reprinted 1980).

[4] R. J. Kang and T. Müller. Arrangements of pseudocir-
cles and circles. Discrete & Computational Geometry,
51:896–925, 2014.

[5] J. Linhart and R. Ortner. An arrangement of pseudo-
circles not realizable with circles. Beiträge zur Algebra

und Geometrie, 46:351–356, 2005.

[6] M. Scheucher. http://www.ist.tugraz.at/scheucher/
arrangements of pseudocircles.

[7] J. Snoeynik and J. Hershberger. Sweeping arrange-
ments of curves. In Goodman, Pollack, and Steiger, ed-
itors, Discrete and computational geometry, DIMACS
Ser. DMTCS vol 6, pages 309–349. AMS, 1991.

229

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Arrangements of Approaching Pseudo-Lines

Stefan Felsner∗ Alexander Pilz†

Abstract

We consider arrangements of n pseudo-lines in the
Euclidean plane where each pseudo-line ℓi is repre-
sented by a bi-infinite connected x-monotone curve
fi(x), x ∈ R, s.t. for any two pseudo-lines ℓi and ℓj

with i < j, the function x �→ fj(x) − fi(x) is mono-
tonically decreasing (i.e., the pseudo-lines approach
each other until they cross, and then move away from
each other). We show that such arrangements of ap-

proaching pseudo-lines, under some aspects, behave
similar to arrangements of lines, while for other as-
pects, they share the freedom of general pseudo-line
arrangements. For the former, we prove that there
are arrangements of pseudo-lines that are not realiz-
able with approaching pseudo-lines. For the latter,
we show: (i) There are 2Θ(n2) isomorphism classes
of arrangements of approaching pseudo-lines (while
there are only 2Θ(n log n) isomorphism classes of line
arrangements). (ii) It can be decided in polynomial
time whether an allowable sequence is realizable by
an arrangement of approaching pseudo-lines.
Furthermore, arrangements of approaching pseudo-
lines can be transformed into each other by flipping
triangular cells, i.e., they have a connected flip graph,
and any bichromatic such arrangement contains a
bichromatic triangular cell.

1 Introduction

Arrangements of lines and, in general, arrangements
of hyperplanes are paramount data structures in com-
putational geometry, whose combinatorial properties
have been extensively studied, partially motivated by
the point-hyperplane duality. Many combinatorial
properties of line arrangements are shared with (and
actually were developed through) their generalization
to pseudo-line arrangements. While pseudo-lines can
be considered either as combinatorial or geometric ob-
jects, they lack certain geometric properties that may
come in handy for proofs, as in the following example,
which motivated the research presented here.

Consider a finite set of lines that are either red or
blue, no two of them parallel and no three of them

∗Institut für Mathematik, Technische Universität Berlin,
felsner@math.tu-berlin.de. Partially supported by DFG
grant FE 340/11–1.

†Department of Computer Science, ETH Zürich,
alexander.pilz@inf.ethz.ch. Supported by a Schrödinger
fellowship, Austrian Science Fund (FWF): J-3847-N35.

passing through the same point. Every such arrange-
ment has a bichromatic triangular cell, i.e., an empty
triangle defined both by red and blue lines. This can
be shown using a distance argument similar to Kelly’s
proof of the Sylvester-Gallai theorem (see, e.g., [2,
p. 73]). We sketch another nice proof. Suppose w.l.o.g.
that no two crossings in the arrangement have the same
x-coordinate (otherwise, slightly rotate the plane), and
that there is a blue crossing above a red line. Continu-
ously translate the arrangement of red lines in positive
y-direction while keeping the arrangement of blue lines
in place until a crossing lies on a line. Note that the
crossing is monochromatic and the line has a different
color. Hence, just before that event, the crossing is in
the vicinity of the line and thus the three lines involved
form a bichromatic triangle. However, until then, the
combinatorial structure of the arrangement has not
changed and thus the arrangement initially contained
such a triangle.
This and all the known proofs for existence of a

bichromatic triangle do not generalize to pseudo-line
arrangements. Actually the question for pseudo-line
arrangements is by now open for several years. The
crucial property of lines used in the above argument
is that shifting a subset of the lines vertically again
yields an arrangement, i.e., the the shift does not intro-
duce multiple crossings. We were wondering whether
any pseudo-line arrangement can be drawn s.t. this
property holds. In this abstract, we show that this is
not true and that arrangements where this is possible
constitute an interesting class of pseudo-line arrange-
ments.
We define an arrangement of pseudo-lines as a fi-

nite family of x-monotone bi-infinite connected curves
(called pseudo-lines) in the Euclidean plane s.t. each
pair of pseudo-lines intersects in exactly one point, at
which they cross. For simplicity, we consider the n

pseudo-lines {ℓ1, . . . , ℓn} to be indexed from 1 to n

in top-bottom order at left infinity.1 A pseudo-line
arrangement is simple if no three pseudo-lines meet in
one point; if in addition no two pairs of pseudo-lines
cross at the same x-coordinate we call it x-simple.

An arrangement of approaching pseudo-lines is an
arrangement of pseudo-lines where each pseudo-line ℓi

1Pseudo-line arrangements are often studied in the real pro-
jective plane, with pseudo-lines being simple closed curves that
do not separate the projective plane. All arrangements are iso-
morphic to x-monotone arrangements [10]. As x-monotonicity
is crucial for our setting and the line at infinity plays a special
role, we use the above definition.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

230

33rd European Workshop on Computational Geometry, 2017

is represented by function-graph fi(x), defined for all
x ∈ R, s.t. for any two pseudo-lines ℓi and ℓj with
i < j, the function x �→ fj(x)− fi(x) is monotonically
decreasing (i.e., the pseudo-lines approach each other
until they cross, and then they move away from each
other). For most of our results, we may, as shown in
the full version, consider the pseudo-lines to be strictly
approaching, i.e., the function is strictly decreasing.
For simplicity, we may sloppily call arrangements of
approaching pseudo-lines approaching arrangements.

For two pseudo-lines, having a decreasing signed
distance by increasing x-value is a property that is
not maintained by a projective transformation, even
if it maintains the vertical direction. We thus empha-
size that approaching arrangements are defined in the
Euclidean plane. This contrasts with related work
that often considers pseudo-line arrangements in the
projective plane. The special features of approaching
arrangements are taken into account with the following
notions of equivalence. Two pseudo-line arrangements
are sweep-equivalent iff a sweep with a vertical line
meets the crossings in the same order. Two pseudo-line
arrangements are vertically isomorphic if there is an
isomorphism of their face lattices (i.e., they dissect the
Euclidean plane in a combinatorially equivalent way)
that also respects the indexing of the pseudo-lines, i.e.,
their vertical order at left infinity. The reader may
already have noticed that sweep-equivalence captures
the allowable sequence of pseudo-line arrangements.
For these also, the vertical direction plays a special
role. An allowable sequence is a sequence of permu-
tations in which (i) a permutation is obtained from
the previous one by the reversal of one or more non-
overlapping substrings, and (ii) each pair is reversed
exactly once.2 An allowable sequence is simple if two
adjacent permutations differ by the reversal of exactly
two adjacent elements. Hence, the permutations in
which a vertical sweep line intersects the pseudo-lines
of an arrangement gives an allowable sequence, start-
ing with the identity permutation I = {1, . . . , n} of
the pseudo-line’s indices. The arrangement is said to
realize that allowable sequence.

In this abstract, we identify various notable prop-
erties of approaching arrangements. In Section 2,
we show how to modify approaching arrangements
and how to decide whether an arrangement is sweep-
equivalent to an approaching arrangement in poly-
nomial time. In the following section, we provide

2In the seminal work by Goodman and Pollack [9], “allowable
sequences” have been defined as periodic sequences of permu-
tations, where (i) a permutation is obtained from the previous
one by the reversal of one or more non-overlapping substrings,
and (ii) after the reversal of a pair ij, all other pairs are re-
versed before reversing i and j again [9]. This sequence is fully
defined by a half-period, and we follow the frequent approach
of calling that half-period an allowable sequence, as, e.g., in [4,
p. 264]. Goodman and Pollack call arrangements with the same
allowable sequence combinatorially equivalent [10].

arrangements without sweep-equivalent and vertically
isomorphic approaching arrangements in the next sec-
tion. Further, we show that there are asymptotically
as many different approaching arrangements as pseudo-
line arrangements.

Related work. Restricted representations of pseudo-
line arrangements have been considered already at the
early beginning of this concept. Goodman [8] considers
their representation as wiring diagrams, and there are
results on drawing arrangements as convex polygonal
chains with few bends [6] and on small grids [5]. Any
pseudo-line arrangement can be represented in these
ways. Goodman and Pollack [11] consider the arrange-
ments whose pseudo-lines are the function-graphs of
polynomial functions with bounded degree. In par-
ticular, they give bounds on the degree necessary to
represent all isomorphism classes of pseudo-line ar-
rangements. Generalizing our setting to higher di-
mensions (by requiring that any pseudo-hyperplane
can be translated vertically while maintaining that
the family of hyperplanes is an arrangement) tells us
that such approaching arrangements are representa-
tions of Euclidean oriented matroids, which occur in
pivot rules for oriented matroid programming (see [4,
Chapter 10]).

2 Manipulating approaching arrangements

One essential tool we use is the transformation of
arrangements of general approaching pseudo-lines to
pseudo-lines that are piecewise linear, similar to the
transformation of pseudo-line arrangements to sweep-
equivalent wiring diagrams.

Lemma 1 For any arrangement of approaching
pseudo-lines, there is a sweep-equivalent arrangement
of approaching polygonal curves (starting and ending
with a ray). If the allowable sequence of the arrange-
ment is simple, then there exists such an arrangement
without crossings at the bends of the polygonal curves.

Proof. (Sketch.) We can place a vertical ‘helper-
line’ at every crossing of the arrangement. Connect
the intersection points of each pseudo-line with adja-
cent helper-lines by segments. (If the initial curves
were approaching, these segments are as well.) This
results in a sweep-equivalent arrangement of approach-
ing polygonal curves. To complete the construction,
we appropriately add rays in negative and positive
x-direction. �

Actually we could have extended the segments from
the first and the last vertical slab, respectively, as
these segments are approaching and thus the crossings
of the supporting lines of the segments in the, say, first
vertical interval are not to the left of the first vertical

231

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

helper-line. For the segments in the slabs, only the
relative order of their slopes is relevant to maintain
the “approaching” property.
Consider again the construction in the previous

proof. After fixing the intersection points with the
helper-lines, we may change the x-coordinate of these;
as long as we maintain their relative order, the ar-
rangement remains sweep-equivalent. Further, we may
shift all the points on a helper-line up or down with-
out alternating the combinatorial structure. We use
this freedom for our next result, where we show that
the intersection points with the helper lines can be
obtained by a linear program. Asinowski [3] defines
a suballowable sequence as a sequence obtained from
an allowable sequence by removing an arbitrary num-
ber of permutations from it. An arrangement thus
realizes a suballowable sequence if we can obtain this
suballowable sequence from its allowable sequence.

Theorem 2 Given a suballowable sequence, we can
decide in polynomial time whether there is an arrange-
ment of approaching pseudo-lines with such a sequence.

Let us emphasize that deciding whether an allowable
sequence is realizable by a line arrangement is an ∃R-
hard problem [13], and thus not even known to be in
NP. While we do not have a polynomial-time algorithm
for deciding whether there is a vertically isomorphic
approaching arrangement for a given pseudo-line ar-
rangement, Theorem 2 tells us that the problem is in
NP, as we can give the order of the crossings encoun-
tered by a sweep as a certificate for a realization. The
corresponding problem for lines is also ∃R-hard [14].

The following observation is the main property that
makes approaching pseudo-lines interesting.

Observation 1 Given an arrangement of strictly ap-
proaching pseudo-lines, any vertical translation of any
pseudo-line results again in an arrangement of strictly
approaching pseudo-lines.

Lemma 3 For any simple approaching arrangement
that is not x-simple, there exists an approaching ar-
rangement that is sweep-equivalent apart from the
crossings sharing the x-coordinate.

For pseudo-line arrangements, Ringel’s homotopy
theorem [15] tells us that one can be transformed to
any other by homeomorphisms of the plane and so-
called triangle flips, where a pseudo-line is moved over
the crossing between two other ones. For the subset of
arrangements of approaching pseudo-lines, the result
can be specialized in a way that the intermediate
arrangements are also approaching. We first show the
following specialization of Ringel’s isotopy result [15].

Lemma 4 Two sweep-equivalent arrangements of ap-
proaching pseudo-lines can be transformed into each

other by a homeomorphism of the plane s.t. all interme-
diate arrangements are sweep-equivalent and consist
of approaching pseudo-lines.

Theorem 5 Given two simple arrangements of ap-
proaching pseudo-lines, one can be transformed to the
other by homeomorphisms of the plane and triangle
swaps s.t. all intermediate arrangement are approach-
ing.

We note that the relative position of the crossings may
change during this process. Also, our proof requires
the arrangement to be simple.

Vertically translating pseudo-lines now allows us to
prove a restriction of our motivating question.

Theorem 6 Any simple arrangement of approaching
red and blue pseudo-lines contains a triangular cell
that is bounded by both a red and a blue pseudo-line.

3 Properties

Considering the freedom one has in constructing ap-
proaching arrangements, one may wonder whether
actually all pseudo-line arrangements are sweep-
equivalent to approaching arrangements. However,
this is not true, as we will see in this section. We use
the following lemma, that can easily be shown using
the construction for Lemma 1.

Lemma 7 Given a simple suballowable sequence of
permutations (I,π1,π2), where I is the identity per-
mutation, the suballowable sequence is realizable with
an arrangement of approaching pseudo-lines if and
only if it is realizable as a line arrangement.

Asinowski [3] provided such a suballowable sequence
on six lines that is not realizable as a line arrangement.

Corollary 8 There exist simple suballowable se-
quences that are not realizable as arrangements of
approaching pseudo-lines.

In Figure 1, we modify the construction to an ar-
rangement not having an isomorphic approaching ar-
rangement. The resulting object is a simple pseudo-
line arrangement, and each vertically isomorphic ar-
rangement contains Asinowski’s sequence.

Corollary 9 There are pseudo-line arrangements for
which there exists no vertically isomorphic arrange-
ment of approaching pseudo-lines.

Aichholzer et al. [1] construct a suballowable se-
quence (I,π1,π2) on n lines s.t. all line arrangements
realizing them require slope values that are exponential
in the number of lines. Thus, also vertex coordinates
in a polygonal representation as an approaching ar-
rangement are exponential in n (but their size is not).

232

33rd European Workshop on Computational Geometry, 2017

1

2

3

4

5

6

v

Figure 1: A part of a six-element pseudo-line arrange-
ment (bold) whose suballowable sequence (indicated
by the vertical lines) is non-realizable (adapted from [3,
Fig. 4]). Adding the four thin pseudo-lines crossing in
the vicinity of vertical v enforces that the allowable
sequence of any vertically isomorphic arrangement
contains the six-element permutation indicated by v.

Even though we have non-realizability results for ap-
proaching arrangements, their number is much larger
than the number of arrangements of lines.

Theorem 10 There exist 2Θ(n2) isomorphism classes
of simple arrangements of n approaching pseudo-lines.

As there are only 2Θ(n log n) isomorphism classes of
simple line arrangements [12], we see that we have way
more arrangements of approaching pseudo-lines. While
the number of allowable sequences is 2Θ(n2 log n) [16],
there are only at most n8n combinatorially different
line arrangements [12]. So arrangements of approach-
ing pseudo-lines also differ in this setting, as the pre-
vious proof shows. However, we do not know whether
our bound obtained via isomorphism classes is already
asymptotically tight for allowable sequences.
Concerning further aspects where approaching ar-

rangements are similar to line arrangements, we make
the following conjecture, whose analogues hold for lines
but not for pseudo-lines [7]. But so far we were unable
to give a full proof.

Conjecture 1 Every arrangement of n approaching
pseudo-lines has at least n− 2 triangular cells.

4 Conclusion

In this paper, we introduced a type of pseudo-line ar-
rangements that generalize line arrangements, but still
retain certain geometric properties. One of the main
algorithmic open problems is deciding the realizability
of a pseudo-line arrangement as a vertically isomor-
phic approaching arrangement. Further, we do not
know how projective transformations influence this
realizability. The concept can be generalized to higher
dimensions. Apart from the properties we already men-
tioned in the introduction, we are not aware of further

non-trivial observations. Eventually, we hope for this
concept to shed more light on the differences between
pseudo-line arrangements and line arrangements.

References

[1] O. Aichholzer, T. Hackl, S. Lutteropp, T. Mchedlidze,
A. Pilz, and B. Vogtenhuber. Monotone simultaneous
embeddings of upward planar digraphs. J. Graph

Algorithms Appl., 19(1):87–110, 2015.

[2] M. Aigner and G. M. Ziegler. Proofs from THE BOOK.
Springer, 5th edition, 2014.

[3] A. Asinowski. Suballowable sequences and geometric
permutations. Discrete Math., 308(20):4745–4762,
2008.

[4] A. Björner, M. Las Vergnas, B. Sturmfels, N. White,
and G. Ziegler. Oriented matroids, volume 46 of En-
cyclopedia of Mathematics and its Applications. Cam-
bridge University Press, 1993.

[5] D. Eppstein. Drawing arrangement graphs in small
grids, or how to play planarity. J. Graph Algorithms

Appl., 18(2):211–231, 2014.

[6] D. Eppstein, M. van Garderen, B. Speckmann, and
T. Ueckerdt. Convex-arc drawings of pseudolines.
CoRR, abs/1601.06865, 2016.

[7] S. Felsner and K. Kriegel. Triangles in Euclidean
arrangements. Discrete Comput. Geom., 22(3):429–
438, 1999.

[8] J. E. Goodman. Proof of a conjecture of Burr,
Grünbaum, and Sloane. Discrete Math., 32(1):27–35,
1980.

[9] J. E. Goodman and R. Pollack. A theorem of ordered
duality. Geom. Dedicata, 12:63–74, 1982.

[10] J. E. Goodman and R. Pollack. Semispaces of config-
urations, cell complexes of arrangements. J. Combin.

Theory Ser. A, 37(3):257–293, 1984.

[11] J. E. Goodman and R. Pollack. Polynomial realization
of pseudoline arrangements. Commun. Pure Appl.

Math., 38(6):725–732, 1985.

[12] J. E. Goodman and R. Pollack. Upper bounds for
configurations and polytopes in R

d. Discrete Comput.

Geom., 1:219–227, 1986.

[13] U. Hoffmann. Intersection graphs and geometric ob-

jects in the plane. PhD thesis, Technische Universität
Berlin, 2016.

[14] N. E. Mnëv. The universality theorems on the classi-
fication problem of configuration varieties and convex
polytope varieties. In O. Y. Viro, editor, Topology and

Geometry—Rohlin Seminar, volume 1346 of Lecture
Notes Math., pages 527–544. Springer, 1988.

[15] G. Ringel. Teilungen der Ebene durch Geraden oder
topologische Geraden. Math. Z., 64:79–102, 1956.

[16] R. P. Stanley. On the number of reduced decompo-
sitions of elements of Coxeter groups. European J.

Combin., 5:359–372, 1984.

233

������ ���	
 ����
 ������
 ���� ��	
 ���	

����������		
� ��
����� �� ����
	����� ���	
�
�∗

������ ������	�
� ��� ���
 �
�������

������� ���� � 	
������� � ��
������� ��� �� ���� ����� ��
������ �� �� !��
"�

Abstract

���������� �����
� ����� ��
����
 ��� ���������
��
������ ���� ��������� �� ���� ��� ���
���� �� !
���
� �����
 ��� �������� ���� � 	�������� �� ���
����� ������������ ���
�
���� �� ��������� ������
 ��
���������� ��������
! �� �" ��� �����
 ������� ����
�	��� ������������ �
 ��� ���������� ����� �� �

�� �� �����
 �� R

2� ��� ���	��
���! ��
���
 ������
��
��� ��� ��������#����� �� ���
 �������� �� ������
�����
���
! $�� � ��������#����� �
 �������� �� ���
������� �%�������� ��������
 �� ������
�����&�
 ��
�����
��� d! ��� ��
�����
��������� ������&�
 ���
������ ���� � ���������� ������& �� �����
��� d

��� �� �
���'�(����� �����
��� �� ��
� d! ��� ����
	��
� ����
 ��� d = 2 ��� 3 ��� �� ��
 ���)������ ��
���� ��� ������ d �* +$�� ��
� �, -! .��� �� ��
���	�
��� ���)����� ������� ��� d = 4!

1 Dushnik-Miller dimension of simplicial com-

plexes

/� ��
�����
��������� ������& ∆ ���� 	����&
�� V

�
 �
�� ��
�
��
 �� V ����� �
 ���
�� �� ����
���
+���� ∀Y ∈ ∆� X ⊆ Y ⇒ X ∈ ∆-! / ���� �� ∆ �
 ��
������� �� ∆! / ����� �� ∆ �
 � ��&���� ������� ��
∆ ��������� �� ��� ����
��� �����!

��������� � � d������������	
� R
� � ��� V 	� �	��

�� d �	����
����� <1, . . . , <d
� V � ��� R �� � d�

�����������	
�� �� ����� Σ(R) �� ��� ���
� �������

X
� V ���� ����

∀v ∈ V, ∃i ∈ {1, . . . , d} : ∀x ∈ X,x ≤i v

�� �
 ��
� ��
��� ���� Σ(R) �
 �� ��
�����
���
������� ������&! /� �&����� �
 ��� ��������� 3�
�����
�������� �� {1, 2, 3, 4, 5}0

<1 1 2 5 4 3
<2 3 2 1 4 5
<3 5 4 3 2 1

��� �����
������� ������& Σ(R) �
 ��	�� �� ���
�����
 {1, 2}, {2, 3, 4} ��� {2, 4, 5}! 1�� �&�����

∗���� �������� �� ���	��

� �����	�� �� 	�� ��� �����

����� ��	���	 �����������������

{1, 2, 3} �
 ��� �� Σ(R) �
 2 ���
 ��� �������� {1, 2, 3}
�� ��� �����!

��� �
���'�(����� �����
��� �� �� ��
�����
���
������� ������& ∆ �
 ��� ������ ����� d
�� ����
∆ �
 ������� �� Σ(R) ��� � d������
�������� R �� V �2 !

2 TD-Delaunay complexes

1�� ��� ������� d� ��� Hd �� ��� (d − 1)������
�����
���������� �� Rd ��3��� �� {x = (x1, . . . , xd) ∈ R

d :
x1+ · · ·+xd = 1}! ��� � ������� ��	
��� �� Hd �� ���

�� {u ∈ Hd : u1 ≤ c1, . . . , ud ≤ cd} ��� � c ∈ R

d
��

����
∑d

i=1 c
i ≥ 1! �� ���
 �����&�� � �����
�� P ⊂ Hd

�
 �� �������
����� �� ��� ��� ��� 	������
 x, y ∈ P�
xi �= yi ��� �	��� 1 ≤ i ≤ d!

��������� � 	
�� �	�� � ��� P
� �
	���
� Hd 	�

������� �
�	�	
�� ��� ��� ����������� �
�����
� P�
���
��� τ(P)� �� ��� �	���	�	�� �
����� �	�� �����

��� P ������ �� �
��
��� � ������ F ⊆ P 	� � ����

� τ(P) 	� ���
��� 	� ����� ��	��� � ������� �	����� S

���� ���� S ∩ P = F ��� ���� ���� �
 �
	��
� P 	�

	� ��� 	����	
�
� S�

1 2 3

45

1���� 20 /� �&����� �� � ���������� ������&
��	�� �� ��� �����
 {1, 4, 5}, {1, 2, 4} ��� {2, 3, 4}

��������� � 	����������� ������ �	�� � d�

�����������	
� R
� � ��� V � ��� ��� ����������
�
�
���
� R �� ��� �
��
�	�� �	���� ������
� 	�� ���	�	���

���� �� �� �����	�	 �
������ � � ����������� ����� �� ����� ����� �� ���
��� ��	� ��
��� �� ���
����� � ��� �������� ��	 ����	
�
����	���	 � �������� ������ ���� � ������� ����� �	 ������ ����! ���� �" �� �������	 � ������ �� � ��������� ��� ����� �����	���� ��	#� �� �
$������

234

���� �������	
������ �	 ����������	�� ��������� ����

��� ����� ������ u �� 	�
�� �������� u1, . . . , ud� ���

����� �	�� uv �� Σ(R) �� ���� ��� ���������

{

ui − vi < 0 � u <i v

vi − ui < 0 ��������

���� �� ������� ���� ���������� �� ud �� 1− u1 −

· · · − ud−1 ��� ����� u ∈ V � �� ���� AR ��� �����

���������	�� �� ��� ������� ���� � ��� ����� ����

���� ARx < 0 ��� ���� ������ x � ��	 ���� � ���

����������� ������ ��� � ��������

������� � �� ����	�� ��� �������� 3�
������������� �� {a, b, c}�

<1 b c a

<2 a c b

<3 a b c

��� ������� Σ(R) � ���� �� ��� ������ {a, b, c}�
��� ����������� ������ ��R � ��� �������� �������

b1 − a1 < 0

a2 − b2 < 0

(1− a1 − a2)− (1− b1 − b2) < 0

b1 − c1 < 0

c2 − b2 < 0

(1− b1 − b2)− (1− c1 − c2) < 0

c1 − a1 < 0

a2 − c2 < 0

(1− a1 − a2)− (1− c1 − c2) < 0

��� ���������	�� ����� AR ��

−1 1
1 −1

−1 −1 1 1
1 −1

−1 1
−1 −1 1 1

−1 1
1 −1

−1 −1 1 1

a1

a2

b1

b2

c1

c2

< 0

�	
�
���
� � ��� ∆ �� �� �������� ������� ����

���� ��� ������ ��� V � ���� ∆ � � �����������

������� �� Hd � ��	 ���� � ����� ����� � d�

������������� R �� V ���� ���� ∆ = Σ(R) ��	 ����

���� ��� ���������	�� ����������� ������ ��� � ���

������

�	

�� �⇒� �������	
 ��� �� ����� P �� Hd �� ����
�	
� �������
�� ���� ��
� ∆ = τ(P)� �� �
� ���
��� ��
� V = P� ��� <1, . . . , <d �� ��� d ����
	
�	��	� �� P ���� ��
� u <i v �� ui < vi� ���� ��
�
�
��� �����
	� �� ����	
� ������� ����� �	��	�
	� ����

������� ��� R �� ��� ��		�������� 	�	�����
�����

�� ��� �� ��� ����� ��
� ∆ = Σ(R)�
��	
�� �
�� F ∈ ∆� ���	� ������ c ∈ R

d ���� ��
�
∑d

i=1 c
i ≥ 1
�� ���� ��
� S = {u ∈ Hd : u1 ≤

c1, . . . , ud ≤ cd} ����
��� ��
���� ��� ����� F �
��
���� ��� �� ��� ��	��	� ��	 � �	� i� �� ���� fi ���
!
��!�! �� F �� ��� �	��	 <i� "���� ��
� F �∈

Σ(R)� #��� ���	� ������
 �	��� z �� P ��� �� F

���� ��
� z ���� ��� ��!��
�� F ��
�� �	��	 �� R�
#��� z <i fi ��	 � �	� i� #��	���	� zi < (fi)

i ≤ ci ��	
� �	� i� $���� z ∈ S ����	
������� ��� ��������� ��
S� #��	���	� F ∈ Σ(R)
�� ∆ ⊆ Σ(R)�
�������	
�� �����!�� �
�� F ∈ Σ(R)� ��	 � �	�

i� �� ���� fi ��� !
��!�! �� F �� ��� �	��	 <i
��
�� ����� ci = (fi)

i� #��� ������ S = {u ∈ Hd : u1 ≤

c1, . . . , ud ≤ cd}� ��	�� ���� ��
�
� ci ≥ xi ��	
��

���� x ∈ F �� �
 � ��
�
∑d

i=1 c
i ≥ 1� ��	 � �	�

x ∈ F ���	� ������
� i ���� ��
� x = fi� #��	���	�
xi = ci
�� xj ≤ cj ��	 � �	� j �= i ����
��� x ≤j fj

�� ���� xj ≤ (fj)

j�� #��� x ���� �� ��� ��	��	 ��
S� ��	 � �	� x �∈ F ���	� ������ i ���� ��
� y <i x

��	 � �	� y ∈ F � #��	���	� ci < xi
�� x �∈ S� #���
�� ���� �� P �� �� ��� ����	��	 �� S
�� S ∩ P = F �
#��	���	� F ∈ τ(P)
�� Σ(R) ⊆ ∆�
���
���∆ = τ(P) = Σ(R)
�� ���� ��
� ��� ���	���

�
��� ui �� ��
 �������� �� ��� #%�%��
��
� �����!
�� R� &������ ��	
�� uv ∈ Σ(R)� ui < vi ⇔ u ≤i v�
�⇐� �������	 ���
 d�	�	�����
���� R �� V ����

��
� ��� #%�%��
��
� �����! �� R �
�
 ���������
��
�
	�
���� v1, . . . , vd−1 ��	 �
�� v ∈ V � �� ���
����� ��� ���� ��� P = V �� �������� ��	 � �	� v ∈ V �
�� ����� ��� ���� (v1, . . . , vd−1, 1−v1−· · ·−vd−1) ��
Hd� &� ������
	�� ��� �
� �������� �	��	� ��� �������
�� ��� �	����� �� �	��	 �� ���
�� ����� �� ����	
�
������� ��
� ����� ������ ��� �����! �����	
�����
��	
�� �
�� F ∈ τ(P) ���	� ������ c ∈ R

d ����

��
�
∑d

i=1 c
i ≥ 1
�� ���� ��
� S = {u ∈ Hd : u1 ≤

c1, . . . , ud ≤ cd} ����
��� ��
���� ��� ����� F �
��
���� ��� �� ��� ��	��	� "���� ��
� F �∈ Σ(R)� #���
���	� ������ z ∈ V ���� ��
� z ���� ��� ��!��
�� F

��
�� �	��	� �� ����� fi
� ��� !
��!�! �� F ��
��� �	��	 <i ��	 � �	� i� #��� z <i fi ��	 � �	� i�
#��	���	� zi < (fi)

i ≤ ci ��	 � �	� i� #��� z ���� ��
��� ����	��	 �� S�
 ����	
�������� $���� F ∈ Σ(R)

�� τ(P) ⊆ Σ(R)�
�������	
�� �����!�� �
�� F ∈ Σ(R)� ��	 � �	�

i� �� ���� fi ��� !
��!�! �� F �� ��� �	��	 <i
��
�� ����� ci = (fi)

i� #��� ������ S = {u ∈ Hd :
u1 ≤ c1, . . . , ud ≤ cd}� ��	�� ���� ��
� ��	
�� �	���
x ∈ F
��
�� i� �� �
 � ��
� ci = (fi)

i ≥ xi

�
� ��� ���� {x, fi} ∈ Σ(R)�� �� ����� �
 � ��
�
∑d

i=1 c
i ≥

∑d

i=1 x
i ≥ 1� ��	 � �	� x ∈ F ���	� ������

� i ���� ��
� x = fi� #��	���	� xi = (fi)
i = ci

��
� xj ≤ cj ��	 � �	� j� �� �
 � ��
� x �� �� ���
��	��	 �� S� ��	 � �	� x �∈ F ��� �
� 	� � ��
� ���	�
������ i
��

�� (fi = a1, a2, . . . , aℓ = x) ���� ��
�
aj <i aj+1 ��	 � �	� j < ℓ� #��	���	� ci = (a1)

i <

235

������ ���	
 ����
 ������
 ���� ��	
 ���	

(a2)
i < . . . < (aℓ)

i = xi ��� x �∈ S� ���� F ∈ τ(P)
��� Σ(R) ⊆ τ(P)�
���� 	
�	����� �� ��

�
� �� ��
�
���
�� �

������ � ��� �������	 �����	�
��� 	���	
�

��������� ������� �� Hd �	 ��	����������� ���
���	��� d�

��� ��	���
	�� ������ �� � ������ �����
�� ��
� �
��� �
� d = 2 ��� �� � ��� ���� ���� �� ��� ���
�� ��� ��� ��
��� ��
������

��	
����� � ����� ��� ����� d������	��

��� R�

�� �	
��
 	�������� ������� Σ(R) �	 ���
������ ������� �� Hd�
�
 �	 ��������� ����
���� ��
�� (d− 1)������	���� �������� 	����

�� ��� �� ���
� ��
��� �� 	
���	��� ���� Σ(R)
������ ����� �
�� ����	���� ��������!� �� ��
�
��
���! �� ��
� �� �	���� ��� 	
���	��� �
��
�
 �
��� ������ �
� d = 4�

3 Multi flows

"� G �� ��
������ !����
� ��!� �� E� # $
�

� G �� � ���	�
�
� f : E → R

+� "� �� ��%
���!��	� div(x)
� � ����& x �� !���� � div(x) =
∑

y∈V :(y,x)∈E f(y, x)−
∑

y∈V :(x,y)∈E f(x, y)�

���	����	 � ����� ���� ��
 R �� d�
�����	��

��� �� V � ��
 G ��
�� ��	����
�� ��
Σ(R)� ��� ����� i ∈ {1, . . . , d} �� ����� Gi 	
��
�����
�� ��� ��
���� ���� G �� �����
�� ���
�� � xy �� G ���� x
� y �� �� ���� �� x <i y�

��
 ϕ1, . . . ,ϕd �� d !��	 ��	���
����� �� ��� ���
G1, . . . , Gd� ��
 x ∈ V � �� ����� divi(x) 	
�� ������
 ���� �� x �������
�
�� !�� ϕi� " ���
� !��
�	 	�
 �� 	��� !��	 	
�	����
�� �����
���
�

∀i ∈ {1, . . . , d}, ∀x ∈ V, divi(x) = divd(x)�

'� ��!������ �
�
�� ���� ��
��� �� �� 	���%
����� (��'�� "�����

����� � ������� ������ ��� �� m × n ���
�
��� A� ��
���

• Ax < 0 ���
	 	���
��� x ∈ R
m� ��

• tAy = 0 ���
	 ���#��� 	���
��� y ∈ (R+)n�

���
������� ��
� �	�	 �� �����	����

� �����
 �� �
��
���! ��
�
���
�� ��
�� ��

� ��

�� �'�	��� ���
 ��	'
� ���	��

!��"������	 #$ ��
 R �� d������	��

��� �� 	�

V � ���� ��
���

•
�� �����	������ ��������� 	�	
�� ���
	
	���
���� ��

• R ���
	 ���#��� ���
� !�� $���� ���
� !��
��
� 	��� ϕi(uv) > 0%�

���
������� ��
� �	�	 �� �����	����

!���%&)�
�� ��
�
�� ���� � �'�	�
� ��

��
#		
����!
 (��'��* "����� ��
�� ����
 ��
�

�� tARy = 0 ����� � �
�+��
 �
���
� �� (R+)md

������m �� �� ������
� ��!��� �� ���������
 ����
� �
�+��
 ����$
�
� R�
,���
�� �� ���� �&��� � �
���
�
 tARy = 0�

���� y �� ����&��
� �� ��!��
� Σ(R) ���
� �� d

����&��� (
� �� ��!� e ��� �� ����	� i� �� ��-�� ye,i
�� �� 	
�����
����! 	

�������
(
� ���� i ∈ {1, . . . , d}� �� ��-�� �� $
� ϕi
� Gi

� ϕi(e) = ye,i �
� ���� ��!� e
� Σ(R)� #� ye,i ≥ 0
�
� ���� ��!� e ��� �
� ���� i� ��� ϕi ��� $
���
(������
�� �
� ���� ����& x� �
� ���� ����&��

i < d�

∑

y:x→y∈Gi

y(x,y),i −
∑

y:y→x∈Gi

y(x,y),i+

∑

y:y→x∈Gd

y(x,y),d −
∑

y:x→y∈Gd

y(x,y),d = 0

������
���

−divi(x) + divd(x) = 0

)� 	
��	��� �� ϕ1, . . . ,ϕd �� � ����$
�
� R�
.�	���
	��� � �� ���� �� � ����$
� ϕ1, . . . ,ϕd
� R�

��� �� ��-�� ye,i = ϕi(e) �
� ���� i ��� ���� ��!�
e
� Σ(R)� / 	��	'��! �� tARy = 0 �� 	
�	����
�� ��

��

�

4 A counter-example to Conjecture 7

'(����� ## ��
 R ��
�� �������� &�
�����	��

��� �� {1, 2, 3, 4, 5, 6, 7, 8}'

<1 2 3 4 5 7 6 8 1
<2 1 3 4 5 8 6 7 2
<3 1 2 4 6 7 5 8 3
<4 1 2 3 6 8 5 7 4

���� Σ(R) �	 � �	
��
 	�������� ������� ��
��	����������� �����	��� 4 ��
 �
 �	 ��
 ���
������ ������� �� H4�

!���%& 0�� 	�� ��
� �� �� 4%����������
� R′
�
{1, 2, 3, 4, 5, 6, 7, 8} ��	� �� Σ(R′) = Σ(R) �� ������%
���
 R ��
 �������
��
� ��
����� ��� ��
 �
�������
�
� �� ������� 3 ������� �� ��	�
�����
���� ������� �� �
� �� ��	� R′ ��
������ !�����
Gi[{5, 6, 7, 8}] ����� �� ���!����
� Gi ����	�� � ��
����	�� �� �� 1 ��� 2� ������ �� �����
�� ∆ = Σ(R) �� � �3%3������ 	
����&
� �����%

��
� 4� ��� �		
����!
 4�
�
���
� � ���� �&���

236

���� �������	
������ �	 ����������	�� ��������� ����

� 4�������������	� R′ 	
 V ��� ��� Σ(R′) = ∆ ���
��� ��� �� �	�����	����� ����������� ������ ���
���� � �	����	�� ���	����� �	 ��	�	����	� �� ���� ��
�	 ����� �	�
	� ��� R′�
�	������ ���� �� � ����� �	� 	� R′ ��� �� ��������

	� ������ � !������� 1, 2, 3, 4 ��� �	� ����� �� ��
�	�� 	� ���� �������� ����� ��� ��"��� �� ����� ��
���������� 	
 5 ��� 6 �� −1 ��� �� �� +1
	� 7 ��� 8�

G1 G2

G3 G4

#

$

% &

#

$

% &

�

�

�

�

�

�

�

�

�

�

#

$

% &

#

$

% &

�

�

�

�

� �

�

�

�

�

������ '(��"����	� 	
 �� ����� �	� 	� R′�

�

5 Conclusion

����������� �	����)�� ��� �	�� ���� �������� ��
�	�������	��� ��	����� ����� *+, �� � ���� �-�����
�		� �	 �	������� �������� �� R

2��� ����� ������ * ,�
.� �� ��/��� ��� ��� �)����� �	 ���� �������	���
������� � 0�����	� ��
	� �)����� ����� ����� 	

�����/�1����� �������	� ���� 2����� �������� ���
����������� �	����)�� �� R

3�
�������	��� �� �� ����� 	
 ����������� �	��

���)�� 	
 Hd �� �������� �������� �� �� ����� 	
 �	��
���)�� 	
 �����/�1����� �������	� d� �� ��� 2� ������
������ �	 ����� �� ��	2��� 	
 �� ���� ��2������
	�
��� ���������� ������ .����� 3������ �	��� *', ���
� ������ ���� ��� n �������� ��� 2� ��2����� ��
�� n×n ���� 4���	�� ��	������5� 6��	�� �� 1����7
�	��� *�, ��� � �	����) 	
 �����/�1����� ������
��	� d + 1 �	��� 2� ����� �� R

d ���	�� ��	�������
8���������� �� ���� ��2������ ���� �)�	���������
����� ����� ��� �� �� ����� �� 	��� ��	2��� �	 ������
�� ��7�� 	
 ���� ������ .� �� �	���2�� �	 ������ ��
��7� 	
 ���� ����� ��� ������� ��� �����������
�	����)�� 9

6 Acknowledgments

�� "��� ���	� �� ���/
�� �	 ������ 1��� ��� !���
���� ������
	� ���� ��������	�� 	� ��� �	����

References

*�, �� 6��	�� �� 1����7� :�	������ ;����7���	� 	

3��������� <	����)��� ����� �� ���� 	
��� ��

���� ������� ���� =8<3 �%+�� +'+�++'�

*', >� 3������� ������ ����� ��� �	��� ������
��	�� ����� # 4 5(+'+�+ +� �?&?�

*+, �� <�� ��� ;�=� ��������� !	�	�	� ��������
2���� 	� �	���) ��������
�����	��� ����� ���

���� 	
��� �� ������������� ������
� ��
'+#�' � �?&#�

* , 8� @	���	�� <� :��	����� 8� �������� ��� ��
.����/��� <	������	�� 2������ ����������� ���
������ �����������	��� ��� 	��	�	��� ���
�����
����� �� � �� � =8<3 $ ��� '$$�'%&� '����

*#, �� 1���� �������	� �� �	��� �� ��2������	�� ����
���������� 1����� ������ A���� 	
 1	����������
'����

*$, >� B����� 3� �������� :� C	2	��	�� ��� �� A��/�
����� :���� ��������� �������7���(���������
��������	��	����	�� ��� 2)�������������	��
����� �� !���� �"�

237

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Star covering of red and blue points in the plane

Bernardo M. Ábrego∗ Silvia Fernández-Merchant† Mikio Kano‡ David Orden §

Pablo Pérez-Lantero¶ Carlos Seara ‖ Javier Tejel∗∗

Abstract

A finite set of red and blue points in the plane in
general position can be K1,3-covered if the set can be
partitioned into subsets of size 4 with 3 points of one
color and 1 point of the other color in such a way
that, if at each subset of four points we connect the
uniquely-colored point to the other three points, then
the resulting set of all segments has no crossings.
We consider the following problem: Given a set R

of r red points and a set B of b blue points in the plane

in general position, how many points of R ∪B can be

K1,3-covered? and we prove the following results:
(1) If r = 3g+h and b = 3h+ g, for some nonnega-

tive integers g and h, then there are point sets R∪B,
like {1, 3}-equitable sets (i.e., r = 3b or b = 3r) and
linearly separable sets, that can be K1,3-covered.
(2) If r = 3g+h, b = 3h+g and the points in R∪B

are in convex position, then at least r + b − 4 points
can be K1,3-covered, and this bound is tight.
(3) There are arbitrarily large point sets R ∪ B in

general position, with |R| = |B|+1, such that at most
r + b− 5 points can be K1,3-covered.

(4) If b ≤ r ≤ 3b, then at least 8

9
(r + b − 8) points

of R ∪ B can be K1,3-covered. For r > 3b, at least
r − 3b red points will remain K1,3-uncovered.

∗bernardo.abrego@csun.edu. California State University,
Northridge, USA.

†silvia.fernandez@csun.edu. California State University,
Northridge, USA. Research supported by the NSF grant DMS-
1400653.

‡mikio.kano.math@vc.ibaraki.ac.jp. Ibaraki University,
Japan. Research supported by JSPS KAKENHI Grant Number
16K05248.

§david.orden@uah.es. Universidad de Alcalá, Spain. Re-
search supported by MINECO Projects MTM2014-54207 and
TIN2014-61627-EXP, TIGRE5-CM Comunidad de Madrid
Project S2013/ICE-2919, and H2020-MSCA-RISE project
73499 - CONNECT.

¶pablo.perez.l@usach.cl. Universidad de Santiago, Chile.
Research supported by CONICYT FONDECYT/Regular
1160543 (Chile), Millennium Nucleus Information and Coor-
dination in Networks ICM/FIC RC130003 (Chile), and H2020-
MSCA-RISE project 73499 - CONNECT.

‖carlos.seara@upc.edu. Universitat Politècnica de
Catalunya, Spain. Research supported by projects Gen. Cat.
DGR 2014SGR46, MINECO MTM2015-63791-R, and H2020-
MSCA-RISE project 73499 - CONNECT.

∗∗jtejel@unizar.es. Universidad de Zaragoza, Spain. Re-
search supported by MINECO project MTM2015-63791-R, Go-
bierno de Aragón Grant E58 (ESF), and H2020-MSCA-RISE
project 73499 - CONNECT.

1 Introduction

A large amount of research about discrete geometry
on red and blue points in the plane has been done.
More details can be found in the survey [3]. For given
sets R of red points and B of blue points in the plane,
so that R∪B is in general position (no three collinear
points), we say that a graph G covers R ∪ B if the
vertex set of G is R∪B, every edge of G is a straight
line segment connecting a red point and a blue point,
and no two edges intersect except in their endpoints.
Analogously, for a fixed graph G of k vertices, we say
that R ∪ B has a G-covering, or can be G-covered, if
|R ∪ B| = t · k for some integer t, and the graph Gt

resulting from the union of t copies of G covers R∪B.

Some results on G-coverings are known. For exam-
ple, it is well-known that, for a set S = R ∪ B of red
and blue points in general position in the plane such
that |R| = |B|, a non-crossing geometric alternating

perfect matching always exists [3]. In other words, if
the complete graph of order n is denoted by Kn, then
S has a K2-covering. The following theorem gives
a sufficient condition for a given set of red and blue
points to have a Pn-covering, where Pn denotes the
(non-crossing alternating) path of length 2 ≤ n ≤ 12.

Theorem 1 (Kaneko, Kano, and Suzuki [4])
Let g and h be nonnegative integers. If n is an
even integer such that 2 ≤ n ≤ 12, then any set
of (n/2)g red points and (n/2)g blue points in the
plane in general position can be Pn-covered. If n is
an odd integer such that 3 ≤ n ≤ 11, then any set
of ⌈n/2⌉g + ⌊n/2⌋h red points and ⌊n/2⌋g + ⌈n/2⌉h
blue points in the plane in general position can be
Pn-covered.

Theorem 1 with n = 3 says that if 2g+h red points
and g+2h blue points are given in the plane in general
position, then the points can be K1,2-covered, where
Km,n denotes the complete bipartite graph with sta-
ble parts of order m and n, respectively. K1,n is often
called the star of order n+1, centered at the point in
the stable part of order 1.

In this paper, we consider the following problem:
Given a set R of red points and a set B of blue points

in the plane in general position, how many points of

R ∪B can be K1,3-covered? See Figure 1.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

238

33rd European Workshop on Computational Geometry, 2017

(1)

(2)Red points Blue points (3)

Figure 1: K1,3-coverings in convex (1) and general
(2)-(3) position.

For a set S = R ∪B of red and blue points in gen-
eral position, if R consists of exactly r red points and
B consists of exactly b blue points, we say that S is an
(r, b)-set. We define C(S) as the maximum number of
points in S that can be K1,3-covered. For nonnegative
integers r and b, we define C(r, b) as the minimum of
C(S) over all (r, b)-sets S in general position. Some-
times it is better to look at the number of points that
are left uncovered. So we define U(S) = |S|−C(S) and
U(r, b) = r+b−C(r, b). Then, U(r, b) is the maximum
of U(S) over all (r, b)-sets S in general position.
Observe that, if an (r, b)-set S admits a K1,3-

covering consisting of h ≥ 0 stars centered in red
points and g ≥ 0 stars centered in blue points, then
r = 3g + h, b = 3h+ g and then |S| = 4(g + h). But
this condition on the number of red and blue points
is not sufficient to assure that a K1,3-covering exists.

2 Particular configurations

2.1 Equitable sets

Let S be an (r, b)-set such that either r = 3b or b = 3r.
In any of both cases we say that S is a {1, 3}-equitable
set. The following theorem, which is a generalization
of the Ham-sandwich Theorem, allows us to show that
any {1, 3}-equitable set can be K1,3-covered.

Theorem 2 (Equitable Subdivision [1, 2, 5])
Let c, d and g be positive integers. If cg red points
and dg blue points are given in the plane in general
position, then there exists a subdivision of the plane
into g convex regions such that each region contains
precisely c red points and d blue points.

Theorem 3 If an (r, b)-set S is {1, 3}-equitable, then
all the points of S can be K1,3-covered.

Proof. W.l.o.g., assume r = 3b. Apply directly The-
orem 2 with c = 3, d = 1, and g = b. The points
in each region can be trivially K1,3-covered and the
union of these coverings is a K1,3-covering of S. �

2.2 Linearly separable sets

An (r, b)-set S = R ∪ B is linearly separable if there
exists a line ℓ that separates R and B. For r = 3g+h
and b = 3h+ g, we have the following result.

Theorem 4 If S = R∪B is a linearly separable (3g+
h, 3h + g)-set, then all the points of S can be K1,3-
covered.

Proof. W.l.o.g., assume h > 0. The proof is by in-
duction on g. If g = 0, then S is a {1, 3}-equitable
set, which can be K1,3-covered by Theorem 3. As-
sume g > 0, and suppose R and B are separable by
the line ℓ. Then, there are lines ℓb and ℓr parallel to
ℓ such that ℓb separates 4 blue points from the rest
of S and ℓr separates 4 red points from the rest of S.
See Figure 2. For these ℓb and ℓr it can be proved, by
continuous rotation, that there is a line ℓ′ separating 4
points of S, exactly 3 of them red, from the rest of S.
This set of 4 points can clearly be K1,3-covered. The
rest of S is a (3(g−1)+h, 3h+(g−1))-set, still linearly
separable, and thus – since ℓ′ separates the relevant
four points from S – it can also be K1,3-covered by
induction. The two covers are separated by ℓ′ and
thus they together form a K1,3-cover of S. �

�

�

�

Figure 2: Illustration for the proof of Theorem 4.

Remark 1 Theorems 3 and 4 can be extended to,
given k ≥ 4, obtain K1,k-coverings of (kg+h, kh+g)-
sets, where g and h are nonnegative integers.

2.3 Convex position

We have shown some (3g+h, 3h+g)-sets which always
admit a K1,3-covering. Now we show that this is not
the case for some other (3g + h, 3h+ g)-sets.

Theorem 5 If S = R ∪B is a (3g + h, 3h+ g)-set in
convex position, then at least 4(g+h)− 4 points of S
can be K1,3-covered and this bound is tight.

Proof. The proof is by induction on |R∪B|. If g = 0
or h = 0, which includes the base case |R ∪ B| = 4,
then S is a {1, 3}-equitable set, which can be K1,3-
covered by Theorem 3. Thus, we assume g, h > 0,
|R ∪ B| ≥ 8 and the elements of R ∪ B are ordered
clockwise along the boundary ∂ conv(R ∪B).
1. Suppose that there exists a set X ⊂ S of four

consecutive points cyclically on ∂ conv(S) such that 3
of them have the same color and the remaining one
has a distinct color. Then, the four points of X can be

239

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

K1,3-covered, and 4(g+h−1)−4 points of (R∪B)\X
(which is either a (3g + (h− 1), 3(h− 1) + g)-set or a
(3(g − 1) + h, 3h + (g − 1))-set) can be K1,3-covered
because of the induction hypothesis. Note that, by
convexity, these two K1,3-coverings do not cross, so
the desired covering is obtained.

(1) (2)

Red points

Blue points

Figure 3: Illustration for the proof of Theorem 5.

2. Suppose that such a set X does not exist.
By a simple counting argument, this implies one of
these two cases: One red point and one blue point
alternately lie on ∂ conv(S), or two red points and
two blue points alternately lie on ∂ conv(S) (see Fig-
ure 3). Therefore, in both cases, |R| = |B|, g = h,
|R| = 4g = |B|, and |S| = |R| + |B| = 8g. Assume
that the n = 8g points of S are numbered from 1 to
n clockwise around ∂ conv(S).
(i) If one red point and one blue point alternate on

∂ conv(R∪B), we obtain the desired K1,3-covering as
follows: For k = 1, . . . , 2g−1, we take the points with
numbers 3k− 2, 3k− 1, 3k, and n−k and cover them
with a K1,3 (see Figure 3.(1)). Doing this, we leave
uncovered precisely the four points numbered 6g − 2,
6g − 1, 6g, and n, respectively.
(ii) If two red points and two blue points alternate

on ∂ conv(R ∪ B), we can obtain the desired K1,3-
covering as follows: For k = 1, . . . , 2g−1, we take the
points with numbers 3k−2, 3k−1, 3k, and n−k−1 and
cover them with a K1,3 (see Figure 3.(2)). Doing this,
we leave uncovered precisely the four points numbered
6g − 2, 6g − 1, n− 1, and n, respectively.
Finally, the fact that the bound 4(g + h)− 4 is the

best possible can be proved later as a consequence of
part (b) of Theorem 6 (presented below), because we
are covering with K1,3 stars. �

2.4 Some (r, b)-sets with U(r, b) > 0

We give some particular configurations of (r, b)-sets
for which U(r, b) ≥ 5 and prove that, except for {1, 3}-
equitable sets, U(r, b) > 0 for any values of r and b.

Theorem 6 Let r and b be nonnegative integers. (a)
U(r, b) = 0 if and only if r = 3b or b = 3r. (b) If
r = b, the (r, b)-set in convex position where the blue
and red points alternate along the convex hull cannot
be completely K1,3-covered. (c) U(2k+1, 2k) ≥ 5 for
any k ≥ 4.

Figure 4: Cases b even and b odd in Theorem 6(a).

Proof. (a) Assume that r ≥ b and r
= 3b. If r > 3b,
a perfect covering of any (r, b)-set is numerically im-
possible as there are too many red points. If r < 3b,
the following (r, b)-set S cannot completely be K1,3-
covered: Draw a color-alternating convex 2b-gon to-
gether with a set Q of r−b almost collinear red points
as illustrated in Figure 4. The set Q is not split by
any bichromatic diagonal and its points are almost
along a line ℓ through the midpoints of two antipo-
dal sides. Note that in a perfect K1,3-covering there
must be at least one star T with red center, since
r < 3b. If this center of T is in Q, then T must have
at least two consecutive edges on the same side of ℓ
(see Figure 5, left). But these two edges isolate an
odd number of points in S, and therefore these points
cannot be K1,3-covered. If the red center of T is not
in Q, then the set Q must be either to the left or
to the right of at least two edges of T (see Figure 5,
right). As before, two consecutive such edges isolate
an odd number of points in S from the rest and so
they cannot be completely K1,3-covered. If r = 3b,
then Theorem 3 guarantees U(r, b) = 0.

Figure 5: Red center in Q or on the convex hull.

(b) See Figure 3, left. A perfect covering would
need a star with red center. But the region delimited
by two consecutive edges of such a star would iso-
late an odd number of points, which cannot be K1,3-
covered.

(c) Consider the (2k + 1, 2k)-set S formed by the
color alternating vertices of a regular 4k-gon and one
red point x near the center of the polygon. Since
U(2k + 1, 2k) ≡ 1 (mod 4), it is enough to show that
U(S) > 1. Note that in a K1,3-covering of S leav-
ing only one point uncovered, there must be exactly
⌊k/2⌋ ≥ 2 stars with red center. If there is a star
T whose center is x, each of the sectors determined
by the edges of T contains an odd number of points

240

33rd European Workshop on Computational Geometry, 2017

(see Figure 6, left). Thus, each of these subsets of S
cannot be completely K1,3-covered.

Figure 6: Red center in Q or on the convex hull.

If there are two stars with red centers that are not x,
then each star has two consecutive edges (diagonals)
delimiting a region that does not contain x and thus
isolating an odd number of points that cannot com-
pletely be K1,3-covered (see Figure 6, right). In either
case there are at least two points not covered. �

3 General configurations of points

Given an (r, b)-set S in general position, the main
goal is to give a lower bound on the number of points
of S that can always be K1,3-covered. Let r and b be
positive integers and α = b

r
. Assume that b ≤ r.

Notice that, if α < 1/3, then r > 3b and there
are too many red points to be covered by stars cen-
tered in blue points. In this case, at least r − 3b
red points will necessarily remain uncovered in any
K1,3-covering. Moreover, the bound is tight because,
by removing r − 3b red points, we obtain an {1, 3}-
equitable set that can be K1,3-covered by Theorem 3.
When 1/3 ≤ α ≤ 1, we prove that at least 8

9
(r+b−8)

points can be always K1,3-covered.

3.1 Lower bound when 1/3 ≤ α ≤ 4/5

Theorem 7 Let t be a nonnegative integer. Then,
U(3k − t, k + 2t) ≤ t for any integer k ≥ 5

8
t.

This result (proof omitted due to lack of space) im-
plies the following lower bound on C(r, b).

Theorem 8 If 1

3
≤ α ≤ 1, then

C(r, b) ≥
4

7

(

α+ 2

α+ 1

)

(r + b)− 4.

Corollary 1 If 1

3
≤ α ≤ 4

5
, then at least 8

9
(r+ b)− 4

points can be K1,3-covered.

3.2 Lower bound when 4/5 ≤ α ≤ 1

Theorem 9 (Kaneko, Kano and Suzuki [4])
Let s ≥ 1, g ≥ 0 and h ≥ 0 be integers such that
g + h ≥ 1. Assume that |R| = (s + 1)g + sh and
|B| = sg + (s+ 1)h. Then, there exists a subdivision
X1 ∪ · · · ∪Xg ∪ Y1 ∪ · · · ∪ Yh of the plane into g + h

disjoint convex regions such that every Xi contains
exactly s + 1 red points and s blue points and every
Yj contains exactly s red points and s+1 blue points.

Theorem 10 If 4

5
≤ α ≤ 1, C(r, b) ≥ 8

9
(r + b− 8).

Proof. Assume r + b ≥ 9, otherwise there is nothing
to prove. If 4

5
≤ α ≤ 1, then 4r ≤ 5b ≤ 5r. Write the

nonnegative integer 5b− 4r = 9n+m for nonnegative
integers n and m, 0 ≤ m ≤ 8. Define

(h, g) =

{

(n, r − b+ n) if 0 ≤ m ≤ 4

(n+ 1, r − b+ n) if 5 ≤ m ≤ 8
.

Observe that if 0 ≤ m ≤ 4, then 5h+4g = b−m and
4h + 5g = r −m; and if 5 ≤ m ≤ 8, then 5h + 4g =
b− (m− 5) and 4h+5g = r− (m− 4). In either case,
after removing m blue points and m red points (in the
first case) or m− 5 blue points and m− 4 red points
(in the second case), we end up with a set having
5h+4g blue points and 4h+5g red points. According
to Theorem 9 with s = 4 (note that h + g ≥ 1 since
r + b ≥ 9), the plane can be partitioned into g + h
disjoint convex regions X1 ∪ · · · ∪ Xg ∪ Y1 ∪ · · · ∪ Yh

such that every Xi contains exactly 5 red points and 4
blue points, and every Yj contains exactly 4 red points
and 5 blue points. Finally, by Theorem 7 (with k = 2
and t = 1), eight points in every Xi and Yj can be
K1,3-covered. Thus C(r, b) ≥ C(4h + 5g, 5h + 4g) ≥
8(h+ g) ≥ 8

9
(r + b− 8). �

Open problem: Is there a red-blue point config-
uration with b ≤ r ≤ 3b such that ω(1) points are
necessarily left K1,3-uncovered?

References

[1] S. Bespamyatnikh, D. Kirkpatrick, and J.
Snoeyink. Generalizing ham sandwich cuts to eq-
uitable subdivisions. Discrete & Computational

Geometry, Vol. 24(4), (2000), 605–622.

[2] H. Ito, H. Uehara, and M. Yokoyama. 2-
Dimension ham sandwich theorem for partition-
ing into three convex pieces. Lecture Notes in

Computer Science, Vol. 1763, (2000), 129–157.

[3] A. Kaneko and M. Kano. Discrete geometry on
red and blue points in the plane: A survey. Dis-

crete & Computational Geometry, Vol. 25 of Al-
gorithms and Combinatorics, (2003), 551–570.

[4] A. Kaneko, M. Kano, and K. Suzuki. Path cover-
ings of two sets of points in the plane. Contem-

porary Mathematics of AMS, Vol. 342, (2004),
99–112.

[5] T. Sakai. Balanced Convex Partitions of Mea-
sures in R

2. Graphs and Combinatorics, Vol.
18(1), (2002), 169–192.

241

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Bounds on the angle between tangent spaces and the metric distortion

for C2 manifolds with given positive reach.

Mathijs Wintraecken∗

1 Introduction

In this paper we discuss two results: Firstly, we pro-
vide a tight bound on difference between the Eu-
clidean distance and geodesic distance between two
points p and q on a C2 manifold M embedded in R

d.
Secondly, we give tight bounds on the angles between
the tangent spaces of two points on M. In both cases
we assume that p and q are not too far from each
other, where far can be quantified in terms of the
reach of the manifold.

Our exposition is the result of combining the work
of Niyogi, Smale, and Weinberger [NSW08], and the
two dimensional analysis of Attali, Edelsbrunner, and
Mileyko [AEM07] with some observations concerning
the reach. The reach was introduced in the semi-
nal work of Federer [Fed59], of which the authors of
[NSW08] seem to have been unaware. Versions of all
results that we present here, but often in a weaker
form, can be found in [NSW08]. We would like to
stress that some effort went into simplifying the expla-
nation, in particular of the second fundamental form
found in that article.

A significant amount of attention has gone to
bounds like the ones we described above, see [CDR05,
DGRS08, BG10, BDG13] to name but a few, which
hopefully justifies the writing of this exposition.

1.1 Definitions and notation

We assume that M is an n-dimensional smooth (by
which we mean C2) manifold without boundary, em-
bedded in R

d. The tangent bundle is denoted by TM
and the tangent plane at the point p ∈ M by TpM,
which we shall often regard as embedded in R

d with-
out explicitly refering to the embedding. The normal
bundle will be denoted by NM and the normal space
at a point p ∈ M by NpM.

Geodesic distances on manifolds between p, q ∈ M
are denoted by dM(p, q). The distance between the
points x and y in Euclidean space is denoted by |x−y|.

For an embedded manifold, the medial axis
(ax(M)) is the set of points in the ambient space for
which there are at least two points on the manifold
that attain the minimal distance to the point in am-
bient space. The reach of M is the minimal distance

∗INRIA Sophia-Antipolis

from the medial axis to the manifold and is denoted
by rch(M).
Let N(M, r) = {x ∈ R

d | dE(x,M) < r} be a
neighbourhood of radius r < rch(M). The projection
of a point x ∈ N(M, r) onto the closest point on M
will be denoted by πM.

1.2 Federer’s results

We shall be using a corollary of the following result
due to Federer, [Fed59, Theorem 4.8 (12)]:

Lemma 1 (Federer’s tubular neighbourhoods)
Let BNpM(r), be the d−n dimensional ball of radius
r centred at p in the normal space NpM, where
r < rchM. We emphasize that we see NpM as
a subspace of R

d. For every point x ∈ BNpM(r),
πM(x) = p.

From this we immediately see that:

Corollary 2 Let M be a submanifold of Rd and p ∈
M. Any open ball B(c, r) that is tangent to M at
p and whose radius r satisfies r ≤ rch(M) does not
intersect M.

Proof. Let r < rch(M). Suppose that the intersec-
tion of M and the open ball is not empty, then the
πM(c) �= p contradicting Federer’s result. The result
for r = rch(M) now follows by taking the limit. �

2 Angle and distance distortion bounds

We first consider the metric distortion between the
Euclidean and geodesic distance between two points
on a manifold. For this we need the following lemma:

Lemma 3 Let γ(t) be a geodesic parametrized ac-
cording to arc length on M ⊂ R

d, then |γ̈| ≤
1/rch(M), where we use Newton’s notation.

Proof. Because γ(t) is a geodesic, γ̈(t) is normal to
M at γ(t). Now consider the sphere of radius rch(M)
tangent to M at γ(t), whose centre lies on the line
{γ(t) + λγ̈(t) | λ ∈ R}. If now |γ̈| were larger than
1/rch(M), the geodesic γ would enter the sphere tan-
gent to M at γ(t), which would contradict Corol-
lary 2. �

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

242

33rd European Workshop on Computational Geometry, 2017

We now have the following, which is the straight-
forward generalization of Property I of [AEM07] to
arbitrary dimension and using the reach:

Lemma 4 Let p, q ∈ M be such that dM(p, q) ≤
πrch(M), then

2 rch(M) sin

(

dM(p, q)

2rch(M)

)

≤ |p− q|.

Proof. Let γ be a geodesic parametrized according to
arc length whose length ℓ therefore equals dM(p, q),
such that γ(0) = p and γ(ℓ) = q. Because γ is
parametrized according to arc length |γ̇| = 1 and γ̇(t)
can be seen as a curve on the sphere S

d−1. Moreover
γ̈ can be seen as tangent to this sphere. The angle
between two tangent vectors γ̇(a) and γ̇(b) equals the
geodesic distance on the sphere. The geodesic dis-
tance between any two points is smaller or equal to
the length of any curve connecting these points, and
{γ̇(t) | t ∈ [a, b]} is such a curve. We therefore have

∠γ̇(a)γ̇(b) ≤

∫ b

a

∣

∣

∣

∣

d

dt
γ̇

∣

∣

∣

∣

dt =

∫ b

a

|γ̈|dt ≤
|a− b|

rch(M)
,

where we used Lemma 3.
We now write T = γ̇(ℓ2). The length of γ in the

direction of T is

〈q − p, T 〉 =

∫ ℓ

0

〈γ̇(s), T 〉ds

=

∫ ℓ/2

0

〈γ̇(s), T 〉ds+

∫ ℓ

ℓ/2

〈γ̇(s), T 〉ds

≥

∫ ℓ/2

0

cos
|s− ℓ/2|

rch(M)
ds+

∫ ℓ

ℓ/2

cos
|s− ℓ/2|

rch(M)
ds

= 2 rch(M) sin

(

ℓ

2rch(M)

)

.

Because |q − p| ≥ 〈q − p, T 〉, the result follows. �

This bound is tight as it is attained on the sphere of
the appropriate dimension.

2.1 Angles between tangent spaces

We can now turn our attention to the angles between
tangent spaces at different points of the manifold.
Here we mainly follow Niyogi, Smale, and Weinberger
[NSW08], but use one useful observation of [AEM07].
We shall be using the second fundamental form, which
we assume the reader to be familiar with. We refer to
[dC92] as a standard reference.
The second fundamental form IIp(u, v) has the ge-

ometric interpretation of the normal part of the co-
variant derivative, where we assume now that u, v are
vector fields. In particular II(u, v) = ∇̄uv − ∇uv,
where ∇̄ is the connection in the ambient space, in

this case Euclidean space, and ∇ the connection with
respect to the induced metric on the manifold M.
IIp : TpM × TpM → NpM is a symmetric bi-linear
form, see for example Section 6.2 of [dC92] for a proof.
This means that we only need to consider vectors in
the tangent space and not vector fields, when we con-
sider IIp(u, v).
We can now restrict our attention to u, v lying on

the unit sphere Sn−1
TpM

in the tangent space and ask for

which of these vectors |IIp(u, v)| is maximized. Let us
assume that the IIp(u, v) for which the maximum1 is
attained lies in the direction of η ∈ NpM where η is
assumed to have unit length.

We can now identify 〈IIp(·, ·), η〉, with a symmetric
matrix.2 Because of this 〈IIp(u, v), η〉, with u, v ∈
S
n−1
TpM

, attains its maximum for u, v both lying in the

direction of the unit eigenvector w of 〈IIp(·, ·), η〉 with
the largest3 eigenvalue. In other words the maximum
is assumed for u = v = w. Let us now consider a
geodesic γw on M parametrized by arclength such
that γw(0) = p and γ̇w(0) = w. Now, because γw is a
geodesic and the ambient space is Euclidean,

IIp(w,w) = IIp(γ̇w, γ̇w)

= ∇̄γ̇w
γ̇w −∇γ̇w

γ̇w

= ∇̄γ̇w
γ̇w − 0

= γ̈w.

Due to Lemma 3 and by definition of the maximum,
we now see that |IIp(u, v)| ≤ |IIp(w,w)| ≤ 1/rchM,
for all u, v of length one.

Having discussed the second fundamental form, we
can give the following lemma:

Lemma 5 Let p, q ∈ M, then

∠TpMTqM ≤
dM(p, q)

rch(M)
.

Proof. As in the previous lemma γ is a geodesic con-
necting p and q, parametrized in the same manner.
We consider an arbitrary unit vector u and parallel
transport this unit vector along γ, getting the unit
vectors u(t) in the tangent spaces Tγ(t)M. The maxi-
mal angle between u(0) and u(ℓ), for all u bounds the
angle between TpM and TqM. Now

du

dt
= ∇̄γ̇u(t)

= IIp(γ̇, u(t)) +∇γ̇u(t)

= IIp(γ̇, u(t)) + 0,

where we used that u(t) is parallel and thus by def-
inition ∇γ̇u(t) = 0. So using our discussion above

1If there is more than one direction we simply pick one.
2We assume we transpose the first vector.
3We can assume positivity without loss of generality, and,

again, if there is more than one direction, we pick one.

243

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

|dudt | ≤ 1/rch(M). Now we note that, similarly to
what we have seen in the proof of Lemma 4, u(t) can
be seen as a curve on the sphere and thus ∠u(0)u(ℓ) ≤
∫ ℓ

0
|dudt |dt ≤ ℓ/rch(M). �

This bound is tight as it is again attained for a sphere.
Combining Lemmas 4 and 5 we find that

Corollary 6 Under the same conditions as Lemma 4:

sin

(

∠TpMTqM

2

)

≤
|p− q|

2rch(M)
.

Proof. Lemma 5 gives

sin

(

∠TpMTqM

2

)

≤ sin

(

dM(p, q)

2rch(M)

)

and Lemma 4 yields

sin

(

dM(p, q)

2rch(M)

)

≤
|p− q|

2rch(M)
.

The result now follows. �

Remark 7 Although the results were given in terms
of the (global) reach to simplify the exposition, the
results can be easily generalized to accommodate the
local geometry.

Acknowledgements

The work presented here is part of a larger ongo-
ing project involving Jean-Daniel Boissonnat, André
Lieutier, and Mael Rouxel-Labbé, and their collabo-
ration is gratefully acknowledged. I would also like to
thank all other members of the Datashape team (pre-
viously known as Geometrica). The research leading
to these results has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant Agreement No. 339025 GUDHI
(Algorithmic Foundations of Geometry Understand-
ing in Higher Dimensions).

References

[AEM07] Dominique Attali, Herbert Edelsbrunner,
and Yuriy Mileyko. Weak Witnesses for
Delaunay triangulations of Submanifold.
In ACM Symposium on Solid and Physical

Modeling, pages 143–150, Beijing, China,
June 2007.

[BDG13] J.-D. Boissonnat, R. Dyer, and A. Ghosh.
Constructing intrinsic Delaunay triangu-
lations of submanifolds. Research Report
RR-8273, INRIA, 2013. arXiv:1303.6493.

[BG10] J.-D. Boissonnat and A. Ghosh. Trian-
gulating smooth submanifolds with light
scaffolding. Mathematics in Computer

Science, 4(4):431–461, 2010.

[CDR05] S.-W. Cheng, T. K. Dey, and E. A. Ramos.
Manifold reconstruction from point sam-
ples. In SODA, pages 1018–1027, 2005.

[dC92] M. P. do Carmo. Riemannian Geometry.
Birkhäuser, 1992.

[DGRS08] T.K. Dey, J. Giesen, E.A. Ramos, and
B. Sadri. Critical points of distance to an
ǫ-sampling of a surface and flow-complex-
based surface reconstruction. Interna-

tional Journal of Computational Geometry

& Applications, 18(01n02):29–61, 2008.

[Fed59] H. Federer. Curvature measures. Trans.

Amer. Math. Soc., 93(3):418–491, 1959.

[NSW08] P. Niyogi, S. Smale, and S. Weinberger.
Finding the homology of submanifolds
with high confidence from random sam-
ples. Discrete & Comp. Geom., 39(1-
3):419–441, 2008.

244

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

|dudt | ≤ 1/rch(M). Now we note that, similarly to
what we have seen in the proof of Lemma 4, u(t) can
be seen as a curve on the sphere and thus ∠u(0)u(ℓ) ≤
∫ ℓ

0
|dudt |dt ≤ ℓ/rch(M). �

This bound is tight as it is again attained for a sphere.
Combining Lemmas 4 and 5 we find that

Corollary 6 Under the same conditions as Lemma 4:

sin

(

∠TpMTqM

2

)

≤
|p− q|

2rch(M)
.

Proof. Lemma 5 gives

sin

(

∠TpMTqM

2

)

≤ sin

(

dM(p, q)

2rch(M)

)

and Lemma 4 yields

sin

(

dM(p, q)

2rch(M)

)

≤
|p− q|

2rch(M)
.

The result now follows. �

Remark 7 Although the results were given in terms
of the (global) reach to simplify the exposition, the
results can be easily generalized to accommodate the
local geometry.

Acknowledgements

The work presented here is part of a larger ongo-
ing project involving Jean-Daniel Boissonnat, André
Lieutier, and Mael Rouxel-Labbé, and their collabo-
ration is gratefully acknowledged. I would also like to
thank all other members of the Datashape team (pre-
viously known as Geometrica). The research leading
to these results has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant Agreement No. 339025 GUDHI
(Algorithmic Foundations of Geometry Understand-
ing in Higher Dimensions).

References

[AEM07] Dominique Attali, Herbert Edelsbrunner,
and Yuriy Mileyko. Weak Witnesses for
Delaunay triangulations of Submanifold.
In ACM Symposium on Solid and Physical

Modeling, pages 143–150, Beijing, China,
June 2007.

[BDG13] J.-D. Boissonnat, R. Dyer, and A. Ghosh.
Constructing intrinsic Delaunay triangu-
lations of submanifolds. Research Report
RR-8273, INRIA, 2013. arXiv:1303.6493.

[BG10] J.-D. Boissonnat and A. Ghosh. Trian-
gulating smooth submanifolds with light
scaffolding. Mathematics in Computer

Science, 4(4):431–461, 2010.

[CDR05] S.-W. Cheng, T. K. Dey, and E. A. Ramos.
Manifold reconstruction from point sam-
ples. In SODA, pages 1018–1027, 2005.

[dC92] M. P. do Carmo. Riemannian Geometry.
Birkhäuser, 1992.

[DGRS08] T.K. Dey, J. Giesen, E.A. Ramos, and
B. Sadri. Critical points of distance to an
ǫ-sampling of a surface and flow-complex-
based surface reconstruction. Interna-

tional Journal of Computational Geometry

& Applications, 18(01n02):29–61, 2008.

[Fed59] H. Federer. Curvature measures. Trans.

Amer. Math. Soc., 93(3):418–491, 1959.

[NSW08] P. Niyogi, S. Smale, and S. Weinberger.
Finding the homology of submanifolds
with high confidence from random sam-
ples. Discrete & Comp. Geom., 39(1-
3):419–441, 2008.

245

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Near-Optimal ε-Kernel Construction and Related Problems

Sunil Arya∗ Guilherme D. da Fonseca† David M. Mount‡

Abstract

The computation of (i) ε-kernels, (ii) approximate di-
ameter, and (iii) approximate bichromatic closest pair
are fundamental problems in geometric approxima-
tion. In each case the input is a set of points in R

d

for a constant dimension d and an approximation pa-
rameter ε > 0. In this paper, we describe new al-
gorithms for these problems, achieving significant im-
provements to the exponent of the ε-dependency in
their running times, from roughly d to d/2 for the
first two problems and from roughly d/3 to d/4 for
problem (iii).
These results are all based on an efficient decompo-

sition of a convex body using a hierarchy of Macbeath
regions, and contrast to previous solutions that de-
compose space using quadtrees and grids. By further
application of these techniques, we also show that it
is possible to obtain near-optimal preprocessing time
for the most efficient data structures to approximately
answer queries for (iv) nearest-neighbor searching, (v)
directional width, and (vi) polytope membership.

1 Introduction

In this paper we present new faster algorithms to sev-
eral fundamental geometric approximation problems
involving point sets in d-dimensional space. In par-
ticular, we present approximation algorithms for ε-
kernels, diameter, and bichromatic closest pair. Our
results arise from a recently developed shape-sensitive
approach to approximating convex bodies, which is
based on the classical concept of Macbeath regions.
This approach has been applied to computing area-
sensitive bounds for polytope approximation [6], poly-
tope approximations with low combinatorial complex-
ity [7], answering approximate polytope-membership
queries [8], and approximate nearest-neighbor search-
ing [8]. The results of [8] demonstrated the existence
of data structures for these query problems but did
not discuss preprocessing in detail. We complete the

∗Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Hong Kong,
arya@cse.ust.hk. Research supported by the Research Grants
Council of Hong Kong, China under project number 610012.

†Université d’Auvergne and LIMOS, Clermont-Ferrand,
France, fonseca@isima.fr.

‡Department of Computer Science and Institute for Ad-
vanced Computer Studies, University of Maryland, College
Park, mount@cs.umd.edu. Research supported by NSF grant
CCF–1618866.

story by presenting efficient algorithms for building
data structures for three related queries: approximate
polytope membership, approximate directional width,
and approximate nearest-neighbors.
Throughout, we assume that the dimension d is a

constant. Our running times will often involve ex-
pressions of the form 1/εα. In such cases, α > 0 is
constant that can be made arbitrarily small. The ap-
proximation parameter ε is treated as an asymptotic
variable that approaches 0.

We have learned recently of independent results
by Timothy Chan for many of the above problems
in which the complexity bounds are very similar to
ours [17]. Remarkably, the computational techniques
seem to be very different, based on Chebyshev poly-
nomials.

The results presented here are based on the up-
coming paper on the 33rd International Symposium
on Computational Geometry (SoCG 2017).

2 Static Results

Kernel. Given a set S of n points in R
d and an ap-

proximation parameter ε > 0, an ε-coreset is an (ide-
ally small) subset of S that approximates some mea-
sure over S (see [2] for a survey). Given a nonzero
vector v ∈ R

d, the directional width of S in direc-
tion v, widthv(S) is the minimum distance between
two hyperplanes that enclose S and are orthogonal
to v. A coreset for the directional width (also known
as an ε-kernel and as a coreset for the extent mea-

sure) is a subset Q ⊆ S such that widthv(Q) ≥
(1 − ε) widthv(S), for all v ∈ R

d. Kernels are among
the most fundamental constructions in geometric ap-
proximation, playing a role similar to that of con-
vex hulls in exact computations. Kernels have been
used to obtain approximation algorithms to several
problems such as diameter, minimum width, con-
vex hull volume, minimum enclosing cylinder, min-
imum enclosing annulus, and minimum-width cylin-
drical shell [1, 2].
The concept of ε-kernels was introduced by Agar-

wal et al. [1]. The existence of ε-kernels with
O(1/ε(d−1)/2) points is implied in the works of Dud-
ley [18] and Bronshteyn and Ivanov [15], and this is
known to be optimal in the worst case. Agarwal et
al. [1] demonstrated how to compute such a kernel in
O(n+1/ε3(d−1)/2) time, which reduces to O(n) when
n = Ω(1/ε3(d−1)/2). While less succinct ε-kernels with

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

246

33rd European Workshop on Computational Geometry, 2017

O(1/εd−1) points can be constructed in time O(n)
time for all n [1, 13], no linear-time algorithm is known
to build an ε-kernel of optimal size. Hereafter, we use
the term ε-kernel to refer exclusively to an ε-kernel of
size O(1/ε(d−1)/2).
Chan [16] showed that an ε-kernel can be con-

structed in O((n+1/εd−2) log 1
ε
) time, which is nearly

linear when n = Ω(1/εd−2). He posed the open prob-
lem of obtaining a faster algorithm. A decade later,
Arya and Chan [4] showed how to build an ε-kernel in
roughly O(n +

√
n/εd/2) time using discrete Voronoi

diagrams. In this paper, we attain the following near-
optimal construction time.

Theorem 1 Give n points in R
d and an approx-

imation parameter ε > 0, it is possible to con-

struct an ε-kernel of S with O(1/ε(d−1)/2) points in

O(n log 1
ε
+ 1/ε(d−1)/2+α) time.

We note that when n = o(1/ε(d−1)/2), the input
S is already an ε-kernel and therefore an O(n) time
algorithm is trivial. Because the worst-case output
size is O(1/ε(d−1)/2), we may assume that n is at least
this large, for otherwise we can simply take S itself to
be the kernel. Since 1/εα dominates log 1

ε
, the above

running time can be expressed as O(n/εα), which is
nearly linear given that α is arbitrarily small.

Diameter. An important application of ε-kernels is
to approximate the diameter of a point set. Given n
data points, the diameter is defined to be the max-
imum distance between any two data points. An
ε-approximation of the diameter is a pair of points
whose distance is at least (1 − ε) times the exact di-
ameter. There are multiple algorithms to approxi-
mate the diameter [1, 3, 4, 12, 16]. The fastest run-
ning times are O((n+1/εd−2) log 1

ε
) [16] and roughly

O(n +
√
n/εd/2) [4]. The algorithm from [16] essen-

tially computes an ε-kernel Q and then determines
the maximum value of widthv(Q) among a set of
k = O(1/ε(d−1)/2) directions v by brute force [1]. Dis-
crete Voronoi diagrams [4] permit this computation in
roughly O(n +

√
n/εd/2) time. Therefore, combining

the kernel construction of Theorem 1 with discrete
Voronoi diagrams [4], we reduce n to O(1/ε(d−1)/2)
and obtain an algorithm to ε-approximate the diame-
ter in roughly O(n+1/ε3d/4) time. However, we show
that it is possible to obtain a much faster algorithm,
as presented in the following theorem.

Theorem 2 Given n points in R
d and an approx-

imation parameter ε > 0, it is possible to com-

pute an ε-approximation to the diameter of S in

O(n log 1
ε
+ 1/ε(d−1)/2+α) time.

Bichromatic Closest Pair. In the bichromatic clos-

est pair (BCP) problem, we are given n points from

two sets, designated red and blue, and we want to
find the closest red-blue pair. In the ε-approximate

version, the goal is to find a red-blue pair of points
whose distance is at most (1+ε) times the exact BCP
distance. Approximations to the BCP problem were
introduced in [19], and the most efficient randomized
approximation algorithm runs in roughly O(n/εd/3)
expected time [4]. We present the following result.

Theorem 3 Given n red and blue points in R
d and

an approximation parameter ε > 0, there is a random-

ized algorithm that computes an ε-approximation to

the BCP in O(n/εd/4+α) expected time.

3 Data Structure Results

Polytope membership. Let P denote a convex poly-
tope in R

d, represented as the bounded intersection of
n halfspaces. The polytope membership problem con-
sists of preprocessing P so that it is possible to deter-
mine efficiently whether a given query point q ∈ R

d

lies within P . In the ε-approximate version, we con-
sider an expanded convex body K ⊃ P . A natural
way to define this expansion would be to consider the
set of points that lie within distance ε ·diam(P) of P ,
thus defining a body whose Hausdorff distance from
P is ε · diam(P). However, this definition has the
shortcoming that it is not sensitive to the directional
width of P . Instead, we define K as follows. For any
nonzero vector v ∈ R

d, consider the two supporting
hyperplanes for P that are normal to v. Translate
each of these hyperplanes outward by a distance of
ε ·widthv(P), and consider the closed slab-like region
lying between them. Define K to be the intersec-
tion of this (infinite) set of slabs. This is clearly a
stronger approximation than the Hausdorff-based def-
inition. An ε-approximate polytope membership query

(ε-APM query) returns a positive result if the query
point q is inside P , a negative result if q is outside K,
and may return either result otherwise.1

We recently proposed an optimal data structure
to answer approximate polytope membership queries,
but efficient preprocessing remained an open prob-
lem [8]. In this paper, we present a similar data struc-
ture that not only attains optimal storage and query
time, but can also be preprocessed in near-optimal
time.

Theorem 4 Given a convex polytope P in R
d rep-

resented as the intersection of n halfspaces and an

approximation parameter ε > 0, there is a data struc-

ture that can answer ε-APM queries with query time

O(log 1
ε
), space O(1/ε(d−1)/2), and preprocessing time

O(n log 1
ε
+ 1/ε(d−1)/2+α).

1Our earlier works on ε-APM queries [5, 8] use the weaker
Hausdorff form to define the problem, but the solutions pre-
sented there actually achieve the stronger direction-sensitive
form.

247

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Directional width. Applying the previous data
structure in the dual space, we obtain a data struc-
ture for the following ε-approximate directional width

problem, which is closely related to ε-kernels. Given a
set S of n points in R

d and an approximation param-
eter ε > 0, the goal is to preprocess S to efficiently
ε-approximate widthv(S), for a nonzero query vector
v. We present the following result.

Theorem 5 Given n points in R
d and an approxima-

tion parameter ε > 0, there is a data structure that

can answer ε-approximate directional width queries

with query time O(log2 1
ε
), space O(1/ε(d−1)/2), and

preprocessing time O(n log 1
ε
+ 1/ε(d−1)/2+α).

Nearest Neighbor. Let S be a set of n points in R
d.

Given any q ∈ R
d, an ε-approximate nearest neighbor

(ANN) of q is any point of S whose distance from q is
at most (1 + ε) times the distance to q’s closest point
in S. The objective is to preprocess S in order to an-
swer such queries efficiently. Data structures for ap-
proximate nearest neighbor searching (in fixed dimen-
sions) have been proposed by several authors, offer-
ing space-time tradeoffs (see [8] for an overview of the
tradeoffs). Applying the reduction from approximate
nearest neighbor to approximate polytope member-
ship established in [5] together with Theorem 4, we
obtain the following result, which matches the best
bound [8] up to an O(log 1

ε
) factor in the query time,

but offers faster preprocessing time.

Theorem 6 Given n points in R
d, an approxima-

tion parameter ε > 0, and m such that log 1
ε

≤
m ≤ 1/(εd/2 log 1

ε
), there is a data structure that

can answer ε-ANN queries with query time O(log n+
(log 1

ε
)/(m · εd/2)) space O(nm), and preprocessing

time O(n log n log 1
ε
+ nm/εα).

4 Techniques

In contrast to previous kernel constructions, which are
based on grids and the execution of Bronshteyn and
Ivanov’s algorithm, our construction employs a clas-
sical structure from the theory of convexity, called
Macbeath regions [20]. Macbeath regions have found
numerous uses in the theory of convex sets and the
geometry of numbers (see Bárány [11] for an excellent
survey). They have also been applied to several prob-
lems in the field of computational geometry. How-
ever, most previous results were either in the form
of lower bounds [9, 10, 14] or focused on existential
results [6, 7, 21].
In [8] the authors introduced a data structure based

on a hierarchy of ellipsoids based on Macbeath regions
to answer approximate polytope membership queries,
but the efficient computation of the hierarchy was not
considered. In this paper, we show how to efficiently

Figure 1: Two levels of the hierarchy of ellipsoids
based on Macbeath regions.

construct the Macbeath regions that form the basis
of this hierarchy.
Let P denote a convex polytope in R

d. Each level
i in the hierarchy corresponds to a δi-approximation

of the boundary of P by a set of O(1/δ
(d−1)/2
i) el-

lipsoids, where δi = Θ(1/2i). Each ellipsoid has
O(1) children, which correspond to the ellipsoids of
the following level that approximate the same por-
tion of the boundary (see Figure 1). The hierarchy
starts with δ0 = Θ(1) and stops after O(log 1

δ
) lev-

els when δi = δ, for a desired approximation δ. We
present a simple algorithm to construct the hierarchy
in O(n + 1/δ3(d−1)/2) time. The polytope P can be
presented as either the intersection of n halfspaces or
the convex hull of n points.

Our algorithm to compute an ε-kernel in time
O(n log 1

ε
+ 1/ε(d−1)/2+α) (Theorem 1) is conceptu-

ally quite simple. Since the time to build the ε-
approximation hierarchy for the convex hull is pro-
hibitively high, we use an approximation parame-
ter δ = ε1/3 to build a δ-approximation hierarchy
in O(n + 1/ε(d−1)/2) time. By navigating through
this hierarchy, we partition the n points among the
leaf Macbeath ellipsoids in O(n log 1

ε
) time, discard-

ing points that are too far from the boundary. We
then compute an (ε/δ)-kernel for the set of points in
each leaf ellipsoid and return the union of the kernels
computed.
Given an algorithm to compute an ε-kernel in

O(n log 1
ε
+ 1/εt(d−1)) time, the previous procedure

produces an ε-kernel in O(n log 1
ε
+ 1/εt

′(d−1)) time
where t′ = (4t + 1)/6. Bootstrapping the construc-
tion a constant number of times, the value of t goes
down from 1 to a value that is arbitrarily close to 1/2.
This discrepancy accounts for the O(1/εα) factors in
our running times.

To prove Theorem 4, we use our kernel construc-
tion in the dual space to efficiently build a polytope
membership data structure. The key idea is to com-
pute multiple kernels in order to avoid examining the
whole polytope. We build a δ-approximate hierarchy
(for a proper value of δ) in O(n + 1/δ3(d−1)/2) time.
Each leaf node of the data structure is associated with
a certain portion of the polytope, called a shadow.

248

33rd European Workshop on Computational Geometry, 2017

We then build an (ε/δ)-kernel (in the dual space) for
the shadow of each leaf node, followed by an (ε/δ)-
approximate polytope membership data structure for
each kernel. Given a query point q, the δ-approximate
hierarchy is able to either correctly answer the query
(to the desired approximation ε ≤ δ) or to locate a
leaf shadow that contains the query point. In the
latter case, we transfer the query to the data struc-
ture associated with that leaf node. The aforemen-
tioned construction reduces the preprocessing time for
an approximate polytope membership data structure.
Again, we use bootstrapping to obtain a near-optimal
preprocessing time.
The remaining theorems follow from Theorems 1

and 4, together with several known reductions.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadara-
jan. Approximating extent measures of points. J.
Assoc. Comput. Mach., 51:606–635, 2004.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadara-
jan. Geometric approximation via coresets. In
J. E. Goodman, J. Pach, and E. Welzl, edi-
tors, Combinatorial and Computational Geome-

try. MSRI Publications, 2005.

[3] P. K. Agarwal, J. Matoušek, and S. Suri. Farthest
neighbors, maximum spanning trees and related
problems in higher dimensions. Computational

Geometry, 1(4):189–201, 1992.

[4] S. Arya and T. M. Chan. Better ε-dependencies
for offline approximate nearest neighbor search,
Euclidean minimum spanning trees, and ε-
kernels. In Proc. 30th Annu. Sympos. Comput.

Geom., pages 416–425, 2014.

[5] S. Arya, G. D. da Fonseca, and D. M. Mount.
Approximate polytope membership queries. In
Proc. 43rd Annu. ACM Sympos. Theory Com-

put., pages 579–586, 2011. (Full version avail-
able from http://arxiv.org/abs/1604.01183,
to appear on SIAM J. Computing).

[6] S. Arya, G. D. da Fonseca, and D. M. Mount.
Optimal area-sensitive bounds for polytope ap-
proximation. In Proc. 28th Annu. Sympos. Com-

put. Geom., pages 363–372, 2012.

[7] S. Arya, G. D. da Fonseca, and D. M. Mount.
On the combinatorial complexity of approximat-
ing polytopes. In Proc. 32nd Internat. Sympos.

Comput. Geom., pages 11:1–11:15, 2016. (Full
version http://arxiv.org/abs/1604.01175, to
appear on Discrete Comput. Geom.).

[8] S. Arya, G. D. da Fonseca, and D. M. Mount.
Optimal approximate polytope membership. In

Proc. 28th Annu. ACM-SIAM Sympos. Discrete

Algorithms, pages 270–288, 2017.

[9] S. Arya, T. Malamatos, and D. M. Mount. The
effect of corners on the complexity of approxi-
mate range searching. Discrete Comput. Geom.,
41:398–443, 2009.

[10] S. Arya, D. M. Mount, and J. Xia. Tight lower
bounds for halfspace range searching. Discrete

Comput. Geom., 47:711–730, 2012.

[11] I. Bárány. The technique of M-regions and cap-
coverings: A survey. Rend. Circ. Mat. Palermo,
65:21–38, 2000.

[12] G. Barequet and S. Har-Peled. Efficiently ap-
proximating the minimum-volume bounding box
of a point set in three dimensions. Journal of

Algorithms, 38(1):91–109, 2001.

[13] J. L. Bentley, M. G. Faust, and F. P. Preparata.
Approximation algorithms for convex hulls.
Commun. ACM, 25(1):64–68, 1982.

[14] H. Brönnimann, B. Chazelle, and J. Pach. How
hard is halfspace range searching. Discrete Com-

put. Geom., 10:143–155, 1993.

[15] E. M. Bronshteyn and L. D. Ivanov. The approx-
imation of convex sets by polyhedra. Siberian

Math. J., 16:852–853, 1976.

[16] T. M. Chan. Faster core-set constructions
and data-stream algorithms in fixed dimensions.
Comput. Geom. Theory Appl., 35(1):20–35, 2006.

[17] T. M. Chan. Applications of Chebyshev polyno-
mials to low-dimensional computational geome-
try. In Proc. 33rd Internat. Sympos. Comput.

Geom., 2017.

[18] R. M. Dudley. Metric entropy of some classes of
sets with differentiable boundaries. J. Approx.

Theory, 10(3):227–236, 1974.

[19] S. Khuller and Y. Matias. A simple randomized
sieve algorithm for the closest-pair problem. In-

formation and Computation, 118(1):34–37, 1995.

[20] A. M. Macbeath. A theorem on non-
homogeneous lattices. Ann. of Math., 56:269–
293, 1952.

[21] N. H. Mustafa and S. Ray. Near-optimal general-
isations of a theorem of Macbeath. In Proc. 31st

Internat. Sympos. on Theoret. Aspects of Comp.

Sci., pages 578–589, 2014.

249

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A Generic Method for Finding Coresets for Clustering Problems∗

Mikkel Abrahamsen†, Mark de Berg‡, Kevin Buchin‡, Mehran Mehr‡, Ali D. Mehrabi‡

Abstract

In a geometric k-clustering problem the goal is to
partition a set of n points S in R

d into k subsets
such that a certain cost function of the clustering is
minimized. We present a general method to compute a
small coreset R of size independent of n such that the
cost of a k-clustering of R is a (1 + ε)-approximation
to the cost of k-clustering of S. Our method applies
to a large class of clustering problems, including k-
center clustering in any Lp-metric. Our algorithm has
a linear running time for a fixed k.

1 Introduction

Clustering is a fundamental task in data analysis. It
involves partitioning a given data set into subsets
called clusters, such that similar elements end up in the
same cluster. Often the data elements can be viewed as
points in a geometric space, and similarity is measured
by considering the distance between the points. We
focus on clustering problems of the following type.
Let S be a set of n points in R

d, and let k � 2 be a
natural number. A k-clustering of S is a partitioning
C of S into at most k clusters. Let Φ(C) denote the
cost of C. The goal is now to find a clustering C
that minimizes Φ(C). Many well-known geometric
clustering problems are of this type. Among them
is the k-center problem. In the Euclidean k-center
problem, Φ(C) is the maximum cost of any of the
clusters C ∈ C, where the cost of C is the radius of
its smallest enclosing ball. Hence, in the Euclidean
k-center problem we want to cover the point set S by
k congruent balls of minimum radius. The rectilinear
k-center problem is defined similarly except that one
considers the L∞-metric; thus we want to cover S by
k congruent axis-aligned cubes1 of minimum size.

∗MA is partly supported by Mikkel Thorup’s Advanced
Grant from the Danish Council for Independent Research un-
der the Sapere Aude research career programme. MdB, KB,
MM, and AM are supported by the Netherlands’ Organisation
for Scientific Research (NWO) under project no. 024.002.003,
612.001.207, 022.005025, and 612.001.118 respectively.

†University of Copenhagen, mia@di.ku.dk.
‡TU Eindhoven, mdberg@win.tue.nl, k.a.buchin@tue.nl,

m.mehr@tue.nl, amehrabi@win.tue.nl.
1Throughout the paper, when we speak of cubes (or squares,

or rectangles, or boxes) we always mean axis-aligned cubes (or
squares, or rectangles, or boxes).

Our contribution. Our main result is a general
method to find an ε-coreset for a given clustering
problem. Given a set of points S, a cost function Φ,
the number of clusters k, a value ε > 0, an ε-coreset
is a set R ⊆ S such that Φ(C′

opt) � (1 + ε) · Φ(Copt),
where C′

opt is an optimal clustering for R and Copt is
an optimal clustering for S.
In [1], we present a data structure for storing a

set S of n points in R
d that can answer approximate

range-clustering queries: given a rectangular query
range Q, the data structure can report a (1 + ε)-
approximate solution to the k-clustering problem of
the point set S∩Q. That algorithm is based on finding
an ε-coreset for k-clustering on S ∩Q; assuming fixed
k and ε, the query time for finding an ε-coreset of
size O(k (f(k)/ε)

d
) for S ∩Q is O(logd−1 n) and the

preprocessing time is O(n logd−1 n), where f(k) is a
function that only depends on the number of clusters.

Here we consider the off-line version of the problem
instead of the data-structuring version. We find a
coreset of the same size for a set of points S. The
algorithm runs in linear time for constant k, assuming
a certain model of computing. Our algorithm borrows
some of the ideas from [1]. In particular, Lemmas 2
and 3 are from [1]. This is similar to the approach
taken by Har-Peled and Mazumdar [3], who solve the
approximate k-means and k-median problem efficiently
by generating a coreset of size O((k/εd) · log n).

Similar to [1], our method applies to a large class of
clustering problems including the k-center problem in
any Lp-metric, variants of the k-center problem where
we want to minimize the sum (rather than maximum)
of the cluster radii, and the 2-dimensional problem
where we want to minimize the maximum or sum of
the perimeters of the clusters.

2 The algorithm

We start by defining the class of clustering problems
to which our algorithm applies.
Let S be a set of n points in R

d and let Part(S)
be the set of all partitions of S. Let Partk(S) be the
set of all partitions into at most k subsets, that is, all
k-clusterings of S. Let Φ : Part(S) �→ R�0 be the cost
function defining our clustering problem, and define

Optk(S) := min
C∈Partk(S)

Φ(C)

to be the minimum cost of any k-clustering. An ε-
coreset for this clustering problem defined by Φ is

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

250

33rd European Workshop on Computational Geometry, 2017

a set R ⊆ S such that |R| is independent of n and
Optk(R) � (1 + ε) ·Optk(S).
To define the class of clusterings to which our

method applies, we need the concept of r-packing [2].
Actually, we use a slightly weaker variant, which we
define as follows. Let |pq| denote the Euclidean dis-
tance between two points p and q. A subset R ⊆ P of
a point set P is called a weak r-packing for P , for some
r > 0, if for any point p ∈ P there exists a packing
point q ∈ R such that |pq| � r. (The difference with
standard r-packings is that we do not require that
|qq′| > r for any two points q, q′ ∈ R.) The clustering
problems to which our method applies are the ones
whose cost function is regular, as defined next.

Definition 1 A cost function Φ : Part(S) �→ R�0

is called (c, f(k))-regular, if there is constant c and
function f : N�2 �→ R�0 such that the following holds.

• For any clustering C ∈ Part(S), we have

Φ(C) � c ·max
C∈C

diam(C),

where diam(C) = maxp,q∈C |pq| denotes the Eu-
clidean diameter of the cluster C. We call this
the diameter-sensitivity property.

• For any weak r-packing R of S, and any k � 2,
we have that

Optk(R) � Optk(S) � Optk(R) + r · f(k).

Example. We show k-center problems have regular
cost functions. For a cluster C, let radiusp(C) de-
note the radius of the minimum enclosing ball of C
in the Lp-metric. In the L∞ metric, for instance,
radiusp(C) is half the edge length of a minimum en-
closing axis-aligned cube of C. Then the cost of a
clustering C for the k-center problem in the Lp-metric
is Φ

max
p (C) = maxC∈C radiusp(C). One easily veri-

fies that the cost function for the rectilinear k-center
problem is (1/(2

√
d), 1)-regular, and for the Euclidean

k-center problem it is (1/2, 1)-regular. (In fact Φmax
p (C)

is regular for any p.)

Overview of the algorithm and the main lem-
mas. We start with a high-level overview of our ap-
proach. Let S be the given point set for which we want
to find a coreset. Our algorithm is as follows. Note

Algorithm 1 FindCoreset(S, k, ε)

1: Compute a lower bound lb on Optk(S).
2: Set r := ε · lb/f(k)
3: Compute a weak r-packing R on S.
4: return R

that R is the desired ε-coreset because Φ is (c, f(k))-
regular. The following lemma is immediate.

Lemma 1 Optk(R) � (1 + ε) ·Optk(S).

Next, we will show how to perform Steps 1 and 3: we
will describe an algorithm that allows us to compute
a suitable lower bound lb and a corresponding weak
r-packing, such that the size of the r-packing depends
only on ε and k but not on |S|.

Our lower bound and weak packing computation are
based on so-called cube covers. A cube cover of S is
a collection B of interior-disjoint cubes that together
cover all the points in S and such that each B ∈ B
contains at least one point from S (in its interior or
on its boundary). Define the size of a cube B, denoted
by size(B), to be its edge length. The following lemma
follows immediately from the fact that the diameter
of a cube B in R

d is
√
d · size(B).

Lemma 2 (Abrahamsen et al. [1]) Let B be a
cube cover of S such that size(B) � r/

√
d for all

B ∈ B. Then any subset R ⊆ S containing a point
from each cube B ∈ B is a weak r-packing for S.

Our next lemma shows we can find a lower bound on
Optk(S) from a suitable cube cover.

Lemma 3 (Abrahamsen et al. [1]) Suppose the
cost function Φ is (c, f(k))-regular. Let B be a cube
cover of S such that |B| > k2d. Then Optk(S) �

c ·minB∈B size(B).

Proof. For two cubes B,B′ such that the maxi-
mum xi-coordinate of B is at most the minimum
xi-coordinate of B′, we say that B is i-below B′ and
B′ is i-above B. We denote this relation by B ≺i B

′.
Now consider an optimal k-clustering Copt of S. By
the pigeonhole principle, there is a cluster C ∈ Copt
containing points from at least 2d + 1 cubes. Let BC

be the set of cubes that contain at least one point
in C.

Clearly, if there are cubes B,B′, B′′ ∈ BC such that
B′ ≺i B ≺i B

′′ for some 1 � i � d, then the cluster C
contains two points at distance at least size(B) from
each other. Since Φ is (c, f(k))-regular this implies
that Φ(Copt) � c · size(B), which proves the lemma.
Now suppose for a contradiction that such a triple

B′, B,B′′ does not exist. Then we can define a charac-
teristic vector Γ(B) = (Γ1, . . . ,Γd(B)) for each cube
B ∈ BC , as follows:

Γi(B) =

{

1 if no cube B′ ∈ BC is i-below B
0 if no cube B′′ ∈ BC is i-above B

Since the number of distinct characteristic vectors is
2d < |BC |, there must be two cubes B1, B2 ∈ BC

with identical characteristic vectors. However, any
two interior-disjoint cubes can be separated by an
axis-parallel hyperplane, so there is at least one i ∈
{1, . . . , d} such that B1 is i-below or i-above B2. But
this contradicts that Γ(B1) = Γ(B2). �

251

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Details of Steps 1 and 3. For simplicity, we con-
tinue the discussion for 2-dimensional case. Generaliz-
ing the results to higher dimension is not hard.

Let G(α) denote the grid in R
2 whose cells have size

α and for which the origin O is a grid point. We call α,
the width of grid G(α). We define cells to be open on
the right and top, and closed on the left and bottom,
so a cell is of the form [αi,α(i + 1)) × [αj,α(j + 1))
for integers i, j. Notice that Lemmas 2 and 3 are still
valid for such partially open cells instead of closed
cells.
For any value α, id of a point p = (x, y) is defined

as id(p,α) = (⌊x/α⌋, ⌊y/α⌋). Clearly, only points in
the same cell of G(α), have similar id values. Using
their id, we can store and fetch a set of points inside
a grid efficiently, by using hashing.
For an integer s, we define a canonical grid with

parameter s to be G(2s) and denote it by Gs. Similarly,
for a point p ∈ R

2 we define ids(p) := id(p, 2s). A
canonical square is any cell of one of the grids Gs.
W.l.o.g, we assume all the points in a given set of
points S reside in a single canonical square of some
canonical grid.

We define the separation level of two points p1, p2 ∈
R

2 to be the smallest integer s, such that p1 and p2
reside in a single canonical square in Gs and denote it
by sdist(p1, p2). We can compute this number in con-
stant time in a computational model where computing
lg x,2x and ⌊x⌋ takes constant time (lg x = log2 x).
See Section 2.2.2 of [2] for more details.

We define the canonical closest pair of a set of points
S to be the pair of points p1, p2 ∈ S with minimum
separation level. We define the canonical closest pair
distance of S to be sdist(p1, p2) or equivalently the
minimum integer s such that at least two points in S
are in the same cell of Gs.
Throughout this paper, we use a data-structure

H that stores a set of points indexed on their id in
an arbitrary grid G by using hashing. H can store
just one point for each cell of G. We denote the
number of points inH by |H|. These are the operations
supported by H (all times are expected):

1. Get the size, |H|, in O(1) time.

2. Test if a cell of G is empty in O(1) time.

3. Add a point to an empty cell of G in O(1) time.

4. Retrieve all the points in H in O(|H |) time.

We can also ‘Rebuild H for a new grid G’ by retrieving
all points from the current data structure H, and
inserting them one by one into a new structure H
based on the grid G. If we wish to insert a point p
but we already inserted another point with the same
id, then p is discarded.

Computing canonical closest pair distance. Our al-
gorithm is similar to the algorithm for computing

Euclidean closest pair distance described in Section
1.2 of [2].

Algorithm 2 CClosestPair(S)

1: Compute a random permutation p1, . . . , pn of S.
2: Set d0 := ∞, s := ∞, and H to empty
3: for i := 1 to n do
4: if H[ids(pi)] is empty then
5: Set di := di−1

6: Set H[ids(pi)] := pi
7: else
8: Set di := sdist(pi, H[ids(pi)])
9: Set s := di − 1, and rebuild H for Gs

10: end if
11: end for
12: return dn

Let di be the canonical closest pair distance of
p1, . . . , pi. To compute di from di−1, consider the
points p1, . . . , pi−1 in the grid Gs where s = di−1 − 1.
Obviously, no two points are in the same cell by defi-
nition of closest canonical pair distance. Now, if the
point pi is the only point in its cell (ofGs), it means the
separation level of pi to any other point in p1, . . . , pi−1

is at least di−1 and therefore di = di−1. Otherwise, if
pi and pj , where 1 � j < i, are in the same cell of Gs,
then di = sdist(pi, pj).

Lemma 4 Algorithm CClosestPair computes the
canonical closest pair distance of a set of n points S
in expected O(n) time.

Proof. As discussed above, after execution of the
i-th iteration, the canonical closest pair distance of
p1, . . . , pi is stored in the variable di. This proves the
correctness of the algorithm.

For each point pi, we only need to rebuild H in
time O(i) if di < di−1; otherwise we spend O(1) time
for handling it. As the points are in random order,
we have Pr[di < di−1] � 2/i for i � 3; therefore, the
expected running time is

O(n) +
n
∑

i=3

Pr[di < di−1] ·O(i) = O(n)

�

Step 1 of FindCoreset. We start with the grid Gs

where s = −∞ and add points in S one by one to
this grid. Whenever the number of non-empty cells
exceeds 16k, we increase the parameter s of the grid
Gs so that the number of non-empty cells of the new
grid Gs is still greater that 4k but not greater than
16k. After adding all the points S to grid Gs we can
use Lemma 3 to lower bound Optk(S).

252

33rd European Workshop on Computational Geometry, 2017

Algorithm 3 LowerBound(S, k)

1: Compute a random permutation p1, . . . , pn of S.
2: Set s := −∞, and H to empty
3: for i := 1 to n do
4: if H[ids(pi)] is empty then
5: Set H[ids(pi)] := pi
6: if |H| > 16k then
7: Set s := CClosestPair(H)
8: Rebuild H for the new grid Gs

9: end if
10: end if
11: end for
12: return c · 2s

Lemma 5 Given a set of points S and a value k � 2,
the algorithm LowerBound computes a lower bound
for Optk(S) in expected O(n + k2 log(n/k)) time.
Moreover, after execution of this algorithm Gs contains
at most 16k nonempty cells.

Proof. After execution of the algorithm, if s = −∞
the algorithm returns 0 which is an obvious lower
bound. Otherwise we show that |H| > 4k.
If s = −∞, it means the value of s has changed

in line 7. Whenever the value of s changes in line
7, each cell of Gs contains at most 4 points of H,
because the new value of s is canonical closest pair
distance of p1, . . . , pi. Therefore, after rebuilding H
in line 8 the number of points in H decreases by a
factor of at most 4. Since before a rebuild operation,
we have |H| > 16k, after rebuild we have |H| > 4k
and Lemma 3 and Definition 1 proves the correctness
of the lower bound returned by the algorithm.
Notice that |H| > 16k only after adding a point to

an empty cell of Gs and even at that time |H| = 16k+1
and after execution of lines 7 and 8, we have |H| � 16k,
because in the new grid Gs at least one of the canonical
closest pair will be in the same cell and thus will be
ignored by H. Therefore, the claim that Gs contains
at most 16k nonempty cells is correct.
To compute the running time of the algorithm, no-

tice that the most time consuming operations of the
algorithm are lines 7 and 8, both of them run in O(k)
time. For each point pi the lines 7 and 8 can get exe-
cuted only if pi is alone in Gs, i.e. pi is the only point
in its cell (of Gs) among the points p1, . . . , pi; other-
wise we handle pi in constant time. We know that
after adding pi to H , we have |H| � 16k+1; therefore
among p1, . . . , pi there can be at most 16k + 1 points
that are alone in their cell in Gs. As the points are
in random order, Pr[pi is alone] � (16k + 1)/i, for
i > 16k. Hence, the expected running time is

O(n) +

n
∑

i=16k

Pr[pi is alone] ·O(k) = O
(

n+ k2 log
n

k

)

�

Step 3 of FindCoreset. The following algorithm
computes a weak r-packing in linear time by selecting
one point from each nonempty cell of the grid G(r/

√
2).

The correctness of the algorithm follows from Lemma 2.

Algorithm 4 WeakPacking(S, r)

1: Set α := r/
√
2, and H to empty

2: for i := 1 to n do
3: if H[id(pi,α)] is empty then
4: Set H[id(pi,α)] := pi
5: end if
6: end for
7: return H

Putting everything together. The running time of
Algorithm FindCoreset is dominated by the running
time of Algorithm LowerBound, which is O(n +
k2 log(n/k)). Assuming k is constant, FindCoreset

runs in linear time.
By Lemma 5 there exists a cube cover of S us-

ing at most 16k cells of the grid G(lb/c). There-
fore, the grid G(r/

√
2) where r := ε · lb/f(k) has at

most 16k ·
((√

2f(k)/ (c ε)
)

+ 1
)2

nonempty cells and
Algorithm WeakPacking cannot return more than
O(k (f(k)/ε)

2
) points in Step 3 of FindCoreset.

As stated earlier, it is easy to generalize the algo-
rithms and lemmas described above to higher dimen-
sion. Therefore, we can state the following theorem,

Theorem 6 Let S be a set of n points in R
d and let Φ

be a (c, f(k))-regular cost function. Then, it is possible
to find an ε-coreset R for k-clustering according to Φ,
of size O(k (f(k)/ε)

d
) in expected O(n+ k2 log(n/k))

time, for values k � 2 and ε > 0.

Corollary 1 Let S be a set of n points in R
d.

It is possible to find an ε-coreset R for Euclidean
(rectilinear) k-center, of size O(k/εd) in expected
O(n+ k2 log(n/k)) time, for values k � 2 and ε > 0.

References

[1] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr,
and A. D. Mehrabi. Range-Clustering Queries.
33rd Symp. on Comput. Geom. (SoCG), 2017.

[2] S. Har-Peled. Geometric approximation algo-
rithms, volume 173 of Mathematical surveys and
monographs. American Mathematical Society,
2011.

[3] S. Har-Peled and S. Mazumdar. On coresets for
k-means and k-median clustering. In 36th Annu.
ACM Sympos. Theory Comput. (STOC), pages
291–300, 2004.

253

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Range-Clustering Queries∗

Mikkel Abrahamsen†, Mark de Berg‡, Kevin Buchin‡, Mehran Mehr‡, Ali D. Mehrabi‡

Abstract

Given a planar point set P and an integer k � 2,
the rectilinear k-center problem asks for at most k
congruent axis-aligned squares of minimal size whose
union covers P . In this short note, we study the data-
structuring version of the problem in which one is
allowed to preprocess P into a data structure that can
answer the following type of queries quickly. Given an
axis-aligned query rectangle Q and an integer k � 2,
solve the rectilinear k-center for P ∩ Q. We present
two linear-size data structures for queries in R

1; one
has O(k2 log2 n) query time, the other has O(3k log n)
query time. For queries in R

2, we present a data struc-
ture that answers 2-center queries in O(log n) time,
and one that answers 3-center queries in O(log2 n)
time. Both data structures use O(n logε n) storage.

1 Introduction

The range-searching problem is one of the most impor-
tant and widely studied problems in computational
geometry. In the standard setting one is given a set
P of points, and a query asks to report or count all
points inside a geometric query range Q. In many ap-
plications, however, one would like to perform further
analysis on the set P ∩Q, to obtain more information
about its structure. Currently one then has to proceed
as follows: first perform a range-reporting query to
explicitly report P ∩Q, then apply a suitable analysis
algorithm to P ∩ Q. This two-stage process can be
quite costly, because algorithms for analyzing geomet-
ric data sets can be slow and P ∩ Q can be large. To
avoid this we would need data structures for what we
call range-analysis queries, which directly compute the
desired structural information about P ∩ Q. In this
paper we develop such data structures for the case
where one is interested in a cluster-analysis of P ∩ Q.

Clustering is a fundamental task in data analysis.
It involves partitioning a given data set into subsets
called clusters, such that similar elements end up in

∗MA is partly supported by Mikkel Thorup’s Advanced Grant
from the Danish Council for Independent Research under the
Sapere Aude research career programme. MdB, KB, MM, and
AM are supported by the Netherlands Organization for Scientific
Research (NWO) under project no. 024.002.003, 612.001.207,
022.005025, and 612.001.118 respectively.

†University of Copenhagen, mia@di.ku.dk.
‡TU Eindhoven, mdberg@win.tue.nl, k.a.buchin@tue.nl,

m.mehr@tue.nl, amehrabi@win.tue.nl.

the same cluster. Often the data elements can be
viewed as points in a geometric space, and similarity
is measured by considering the distance between the
points. We focus on clustering problems of the fol-
lowing type. Let P be a set of n points in R

d, and
let k � 2 be a natural number. A k-clustering of P
is a partitioning C of P into at most k clusters. Let
Φ(C) denote the cost of C. The goal is now to find a
clustering C that minimizes Φ(C). Many well-known
geometric clustering problems are of this type. Among
them is the k-center problem. In the Euclidean k-
center problem Φ(C) is the maximum cost of any of
the clusters C ∈ C, where the cost of C is the radius
of its smallest enclosing ball. Hence, in the Euclidean
k-center problem we want to cover the point set P by
k congruent balls of minimum radius. The rectilin-
ear k-center problem is defined similarly except that
one considers the ℓ∞-metric; thus we want to cover P
by k congruent axis-aligned cubes1 of minimum size.
The k-center problem, including the important special
case of the 2-center problem, has been studied exten-
sively, both for the Euclidean case (e.g. [3]) and for
the rectilinear case (e.g. [4, 5]).

Our contribution. Due to space limitation, in this
short note we are unable to present most of our re-
sults. We instead highlight a global picture of our main
technique in obtaining most of our results, and dis-
cuss our results for a special case—namely the results
mentioned in the abstract—in details.
Our main result is a general method to answer ap-

proximate orthogonal range-clustering queries in R
d.

Here the query specifies (besides the query box Q and
the number of clusters k) a value ε > 0; the goal
then is to compute a k-clustering C of P ∩ Q with
Φ(C) � (1 + ε) · Φ(Copt), where Copt is an optimal
clustering for P ∩Q. Our method works by computing
a sample R ⊆ P ∩ Q such that solving the problem
on R gives us the desired approximate solution. We
show that for a large class of cost functions Φ we
can find such a sample of size only O(k(f(k)/ε)d),
where f(k) is a function that only depends on the
number of clusters. A key step in our method is a
procedure to efficiently compute a lower bound on
the value of an optimal solution within the query
range. The class of clustering problems to which our

1Throughout the paper, when we speak of cubes (or squares,
or rectangles, or boxes) we always mean axis-aligned cubes (or
squares, or rectangles, or boxes).

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

254

33rd European Workshop on Computational Geometry, 2017

method applies includes the k-center problem in any
Lp-metric, variants of the k-center problem where we
want to minimize the sum (rather than maximum)
of the cluster radii, and the 2-dimensional problem
where we want to minimize the maximum or sum of
the perimeters of the clusters. Our technique allows
us, for instance, to answer rectilinear k-center queries
in the plane in O((1/ε) log n + 1/ε2) for k = 2, 3, in
O((1/ε) log n+ (1/ε2) polylog(1/ε)) for k = 4, 5, and

in O((k/ε) log n+(k/ε)O(
√
k)) time for k > 3. We also

show that for the rectilinear (or Euclidean) k-center
problem, our method can be extended to deal with
the capacitated version of the problem. In the capac-
itated version each cluster should not contain more
than α · (|P ∩ Q|/k) points, for a given α > 1.

Some of the ideas underlying our approximate clus-
tering queries can be used to efficiently compute a
coreset for clustering in an offline setting [1]. As men-
tioned above, our method and all of its consequences
will be deferred to the full version. Instead, in this note
we present two exact linear-size data structures for
rectilinear k-center queries in R

1, and R
2 when k = 2

or 3. Our results for this special case are mentioned
in the abstract.

2 Exact k-Center Queries in R
1

Given a set P of n points in R
1 that we wish to

preprocess into a data structure such that, given a
query interval Q and a natural number k � 2, we can
compute a set C of at most k intervals of the same
length that together cover all points in PQ := P ∩Q
and whose length is minimum. The main result of this
section is as follows.

Theorem 1 Let a point set P of size n in R
1 be

given. There is a data structure that uses O(n) storage
such that, for a query range Q and a query value

k � 2, we can answer a rectilinear k-center query in

O(min{k2 log2 n, 3k log n}) time.

The rest of the section is dedicated to the proof of
the theorem. To present a proof, we present two
data structures, which we call the data structure for
large k and the data structure for small k. Both data
structures are sorted arrays on the points p1, . . . , pn
in P . Both query algorithms start by shrinking the
query interval Q such that its left and right endpoint
coincide with a point in PQ.

A query algorithm for large k. This query al-
gorithm uses a subroutine decider which, given an
interval Q′, a length L and an integer ℓ � k, can decide
in O(ℓ log n) time if all points in P ∩Q′ can be covered
by ℓ intervals of length L. The global query algorithm
then performs a binary search, using decider as sub-
routine, to find a pair of points pi, pi+1 ∈ PQ such
that the first interval in an optimal solution covers

pi but not pi+1. Then an optimal solution is found
recursively for k − 1 clusters within the query inter-
val Q ∩ [pi+1,∞). Next we describe the procedure
decider.

The procedure decider takes as input an integer ℓ,
a number L, and an interval Q′ = [a, a′]. It returns
yes if Q′ can be covered by at most ℓ subintervals
of length L, and no otherwise. The decider works
as follows. Use binary search to find the first point
pi ∈ P ∩Q′ not covered by the interval [a : a+ L], set
a := pi and recurse. This continues until either all
points in P ∩ Q′ are covered, or more than ℓ intervals
are used. The decider runs in O(ℓ · log n) time and
outputs yes in the first case and outputs no in the
latter case.
Now a given query interval Q := [x, x′] and an in-

teger k is handled as follows. Let PQ := {pi, . . . , pj},
where the points are numbered from left to right.
Thus x = pi and x′ = pj . We do a binary search
on {pi, . . . , pj} to find the smallest index i∗ with
i � i∗ � j such that PQ can be covered by k intervals
of length L := pi∗ − x. Each decision in the binary
search takes O(k log n) time by a call to decider, so
the whole binary search takes O(k log2 n) time.
Let Optk(P) denote the minimum interval length

needed to cover the points in a set P by k intervals.
After finding i∗ we know that

pi∗−1 − x < Optk(PQ) � pi∗ − x.

If Optk(PQ) < pi∗ − x, then the first interval in
an optimal solution covers {pi, . . . , pi∗−1} and the re-
maining intervals cover {pi∗ , . . . , pj}. We now com-
pute Optk−1({pi∗ , . . . , pj}) recursively, if k − 1 > 1
(if k − 1 = 1 then Optk−1({pi∗ , . . . , pj}) is clearly
{pi∗ , . . . , pj}). IfOptk−1({pi∗ , . . . , pj}) < pi∗−x then
Optk(PQ) = max{pi∗−1 − x,Optk−1({pi∗ , . . . , pj})},
otherwise Optk(PQ) = pi∗ − x.
It remains to analyze the running time of a query.

The binary search takes O(k log2 n) times, after which
we do a recursive call in which the value of k has de-
creased by 1. (The problem is easily solved in O(log n)
time when k = 1.) Hence the number of recursive call
is k, leading to an O(k2 log2 n) query time, as claimed.
Finding an optimal solution—and not just the value
of an optimal solution—can be done within the same
time bound. We get the following lemma.

Lemma 2 Let P be a set of n points in R
1. There is a

data structure that uses O(n) storage such that, for a

query range Q and a query value k � 2, we can answer

a rectilinear k-center query in O(k2 log2 n) time.

A query algorithm for small k. Here we present an
alternative solution, which is more efficient for small
values of k. We begin with the following definition.

255

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Definition 1 Let PQ be a set of points inside a query

interval Q = [x, x′], such that x, x′ ∈ PQ. We call a

point r ∈ Q a fair split point if there is an optimal

solution Copt(Q) := {I1, I2, . . . , Ik} for the k-center
problem on PQ such that (i) r does not lie in the

interior of any subinterval Ij ∈ Copt(Q), and (ii) the
number of subintervals in Copt(Q) lying to the left of

r is k(r − x)/(x′ − x).

Note that the split point r is not necessarily a point
in PQ, that is, it is not one of the given points. The
following lemma is crucial in our analysis. We omit
the proof of the lemma from this short version.

Lemma 3 Let Split(Q) := {s1, s2, . . . , sk−1} denote

the set of points that partition Q into k equal-

length subintervals. Then at least one of the points

of Split(Q) is a fair split point.

Lemma 3 suggests the following approach. A query
with range Q = [x, x′] and parameter k is answered as
follows. Search the array for the successor s(x) of x
and the predecessor p(x′) of x′ in P . Replace Q with
[s(x), p(x′)], so that the left and right endpoints of
the modified range Q are points from P . Partition Q

into k equal-length subintervals. At each split point si
of Q, recursively solve the problem on Qleft := [x, si]
with parameter kleft := i and on Qright := [si, x

′] with
parameter kright := k − i. By Lemma 3, at (at least)
one of the split points of Q the union of the returned
intervals is an optimal solution. Moreover, we can
easily maintain the best solution as we try all split
points, so that after trying all split points we can
return an optimal solution.
The recursion ends when k = 1. In this case we

report [s(x), p(x′)] as the optimal solution. We obtain
the following result.

Lemma 4 Let P be a set of n points in R
1. There

is a data structure that uses O(n) storage such that,

for a query range Q and a query value k � 2, it can
answer a rectilinear k-center query in O(3k log n) time.

Proof. It takes O(log n) time to find the successor
and the predecessor of x and x′ in P . Hence, we obtain
the following recurrence for the time T (k, n) needed
to answer a k-center query on a point set of size n:

T (k, n) �

{

O(log n)

O(log n) +
∑k−1

i=1 T (i, n) + T (k − i, n)

where the first bound is for the case of k = 1 and the
second bound is for k > 1. The recurrence solves to
T (n, k) = O(3k log n), and to see this, note that for
the recurrence

T ∗(k) =

k−1
∑

i=1

T ∗(i) + T ∗(k − i)

c

c
′

rQ(1)

r
′

Q
(1)

rQ(2)

r
′

Q
(2)

Figure 1: A query range Q and its regions. The bound-
ary of Q and its ℓ∞-bisector are in black. The regions
rQ(3) and r′Q(3) are in light-blue and the regions rQ(4)
and r′Q(4) are in pink.

we have

T ∗(k) = 2
k−1
∑

i=1

T ∗(i) = 3T ∗(k − 1),

so with T ∗(1) = 1 we obtain T ∗(k) = 3k−1, which
implies T (n, k) = O(3k log n). �

Proof of Theorem 1. Follows from Lemma 2 and
Lemma 4.

3 Exact Rectilinear 2- and 3-Center Queries in R
2

Given a set P = {p1, p2, . . . , pn} of n points in R
2 and

an integer k. In this section we build a data structure
D that stores the set P and, given an orthogonal query
rectangle Q, can be used to quickly find an optimal
solution for the k-center problem on PQ for k = 2 or 3,
where PQ := P ∩ Q.

2-center queries. We start by shrinking the query
range Q such that each edge of Q touches at least one
point of P . (The time for this step is subsumed by the
time for the rest of the procedure.) It is well known
that if we want to cover PQ by two squares σ,σ′ of
minimum size, then σ and σ′ both share a corner with
Q and these corners are opposite corners of Q. We say
that σ and σ′ are anchored at the corner they share
with Q. Thus we need to find optimal solutions for
the two cases—σ and σ′ are anchored at the topleft
and bottomright corner of Q, or at the topright and
bottomleft corner—and return the better one. Let
c and c′ be the topleft and the bottomright corners
of Q, respectively. In the following we describe how
to compute two squares σ and σ′ of minimum size
that are anchored at c and c′, respectively, and whose
union covers PQ. The topright/bottomleft case can
then be handled in the same way.

First we determine the ℓ∞-bisector of c and c′ inside
Q; see Figure 1. The bisector partitions Q into two
regions A and A′, that respectively have c and c′ on
their boundary. Obviously in an optimal solution (of
the type we are focusing on), the square σ must cover

256

33rd European Workshop on Computational Geometry, 2017

PQ ∩ A and the square σ′ must cover PQ ∩ A′. To
compute σ and σ′, we thus need to find the points
q ∈ A and q′ ∈ A′ with maximum ℓ∞-distance to the
corners c and c′, respectively. To this end, we parti-
tion A and A′ into subregions such that in each of the
subregions the point with maximum ℓ∞-distance to
its corresponding corner can be found quickly via ap-
propriate data structures discussed below. We assume
w.l.o.g. that the x-span of Q is at least its y-span.

As Figure 1 suggests, we partition A and A′ into
subregions. We denote these subregions by rQ(j) and
r′Q(j), for 1 � j � 4. From now on we focus on
reporting the point q ∈ P in A with maximum ℓ∞-
distance to c; finding the farthest point to c′ inside A′

can be done similarly. Define four points p(rQ(j)) ∈ P
for 1 � j � 4 as follows.

• The point p(rQ(1)) is the point of PQ with maxi-
mum ℓ∞-distance to c in rQ(1). Note that this is
either the point with maximum x-coordinate in
rQ(1) or the point with minimum y-coordinate.

• The point p(rQ(2)) is one of the bottommost
points in rQ(2).

• The point p(rQ(3)) is one of the bottommost
points in rQ(3).

• The point p(rQ(4)) is one of the rightmost point
in rQ(4).

Clearly q = argmax1�j�4 {d∞(p(rQ(j)), c)}, where
d∞ denotes the ℓ∞-distance function.

Data structure. Our data structure now consists of
the following components.

• We store P in a data structure D1 that allows us
to report the extreme points in the x-direction and
in the y-direction inside a rectangular query range.
For this we use the structure by Chazelle [2], which
uses O(n logε n) storage and has O(log n) query
time.

• We store P in a data structure D2 with two com-
ponents. The first component should answer the
following queries: given a 45◦ query cone whose
top bounding line is horizontal and that is di-
rected to the left—we obtain such a cone when
we extend the region rQ(4) into an infinite cone—,
report the rightmost point inside the cone. The
second component should answer similar queries
for cones that are the extension of rQ(3).

In the full version we describe a linear-size data
structure that implements such a component and
that has O(log n) query time.

Query procedure. Given Q, as we mentioned we
shrink the query range and proceed as follows. Com-
pute the ℓ∞-bisector of Q. Query D1 with rQ(1) and

rQ(2), respectively, to get the points p(rQ(1)) and
p(rQ(2)). Then query D2 with u and u′ to get the
points p(rQ(3)) and p(rQ(4)), where u and u′ are re-
spectively the bottom and the top intersection points
of ℓ∞-bisector of Q and the boundary of Q. Among
the at most four reported points, take the one with
maximum ℓ∞-distance to the corner c. This is the
point q ∈ PQ ∩A farthest from c.
Compute the point q′ ∈ PQ ∩ A′ farthest from c′

in a similar fashion. Finally, report two minimum-
size congruent squares σ,σ′ anchored at c and c′ and
containing q and q′, respectively.

Theorem 5 Let P be a set of n points in R
2. For any

fixed ε > 0, there is a data structure using O(n logε n)
storage that can answer rectilinear 2-center queries in
O(log n) time.

3-center queries. Given Q, it is easy to verify that
at least one (out of the at most three) of the squares
in the optimal solution must be anchored at one of
the corners of Q. Following this observation, we try
placing a square at a corner of Q and covering the
remaining points in Q with at most two squares using
the algorithm for 2-center queries. We do the same
for the other corners of Q, and at the end we report
the placement resulting in the best overall solution.
We defer the details of the procedure to full version of
the paper, and conclude the section with the following
result.

Theorem 6 Let P be a set of n points in R
2. For any

fixed ε > 0, there is a data structure using O(n logε n)
storage that can answer rectilinear 3-center queries in
O(log2 n) time.

References

[1] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr,
and A. D. Mehrabi. A generic method for finding
coresets for clustering problems. To appear in
EuroCG 2017.

[2] B. Chazelle. A functional approach to data struc-
tures and its use in multidimensional searching.
SIAM J. Comput. 17, pages 427–462, 1988.

[3] T. M. Chan. More planar two-center algorithms.
Comput. Geom. Theory Appl. 13, pages 189–198,
1999.

[4] M. Hoffmann. A simple linear algorithm for com-
puting rectilinear 3-centers. Comput. Geom. The-
ory Appl. 31, pages 150–165, 2005.

[5] M. Sharir and E. Welzl. Rectilinear and polygonal
p-piercing and p-center problems. In Proc. 12th
ACM Symp. Comput. Geom. (SoCG), pages 122–
132, 1996.

257

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Delta-Fast Tries: Local Searches in Bounded Universes with Linear Space∗

Marcel Ehrhardt† Wolfgang Mulzer†

Abstract

Let U = {0, 1, . . . , 2w − 1} be a bounded universe.
We present a dynamic data structure for predecessor
searching in U that needsO(log log∆) time for queries
and O(log log∆) expected time for updates, where ∆

is the difference between the query element and its
nearest neighbor in the structure. Our data structure
requires linear space, improving a result by Bose et al..
It can be applied for answering approximate nearest
neighbor queries in low dimensions.

1 Introduction

Predecessor searching is one of the oldest problems
in theoretical computer science [3]. Let U be a to-
tally ordered universe. The goal is to maintain a set
S ⊆ U , |S| = n, while supporting predecessor and
successor queries: given q ∈ U , find the largest el-
ement in S smaller than q (q’s predecessor), or the
smallest element in S larger than q (q’s successor).
In the dynamic version of the problem, we also want
to be able to modify S by inserting and/or deleting
elements.
In the word-RAM model of computation, all input

elements are w-bit words, where w ≥ log n is a pa-
rameter, and we are allowed to manipulate the input
elements at the bit level. In this case, we may assume
that the universe is U = {0, . . . , 2w − 1}. A classic
solution for predecessor searching on the word-RAM
is due to van Emde Boas, who described a dynamic
data structure that requires space O(n) and supports
insertions and deletions in O(log logU) time [6, 7].

In 2013, Bose et al. [2] described a word-RAM data
structure for the predecessor problem that is local in
the following sense. Let q+ := min{s ∈ S | s ≥ q} and
q− := max{s ∈ S | s ≤ q} be the successor and prede-
cessor of q. The structure by Bose et al. can answer
predecessor and successor queries in O(log log∆) time
with ∆ = min{|q − q−|, |q − q+|}. Their solution re-
quires O(n log log log |U |) words of space. Bose et al.
apply their structure to obtain a fast data structure
for approximate nearest neighbor queries in low di-
mensions.
We show how to reduce the space requirement to

O(n), while keeping the guarantees for the query

∗Supported by DFG project MU/3501-1.
†Institut für Informatik, Freie Universität Berlin, Germany

{marehr,mulzer}@inf.fu-berlin.de

times. This solves an open problem from [2], and
also improves the space requirement for their nearest
neighbor data structure. The full details can be found
in the Master’s thesis of the first author [5].

2 Preliminaries

Compressed Tries. Our data structure is based on
compressed tries [3]. We interpret the elements from
S as bitstrings of length w. The trie T ′ for S is a
binary tree of height w. Each node v ∈ T ′ corresponds
to a bitstring pv ∈ {0, 1}∗. The root r has pr = ε. For
each inner node v, the left child u of v has pu = pv0,
and the right child w of v has pw = pv1 (one of the two
children may not exist). The bitstrings of the leaves
correspond to the elements of S, and the bitstrings of
the inner nodes are prefixes for the elements in S.

The compressed trie T for S is obtained from T ′

by contracting each maximal path of nodes with only
one child into a single edge. Each inner node in T has
exactly two children, and T has O(n) nodes.

Let q be a bitstring of length at most w. The longest
common prefix of q with S, lcpS(q), is the longest
prefix that q shares with an element in S. We say
that q lies on an edge e = (u, v) of T if pu is a prefix
of q and q is a proper prefix of pv. If q lies on the
edge (u, v), we call u the least common ancestor of q
in T , denoted by lcaT (q). One can show that lcaT (q)
is uniquely defined.

Associated Keys. Our algorithm uses the notion of
associated keys. This notion was introduced for z-fast
tries [1,10], and it is also useful in our data structure.

Associated keys provide a quick way to compute
lcaT (q), for any element q ∈ U . A natural way to
find lcaT (q) is to do binary search on the depth of
lcaT (q): we initialize (l, r) = [0, w] and let m = (l +
r)/2. We denote by qm the first m bits of q, and we
check whether T has an edge e = (u, v) such that qm
lies on e. If not, we set r = m − 1 and continue.
Otherwise, we check if u is lcaT (q), by inspecting the
other endpoint of e. If u is not lcaT (q), we set l =
m + 1 and continue. In order to perform this search
quickly, we need to find the edge e that contains a
given prefix qm. For this, we precompute for each edge
e of T the first time that the binary search encounters
a prefix that lies on e, and we let αe be this prefix.
We call αe the associated key for e = (u, v).

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

258

33rd European Workshop on Computational Geometry, 2017

The associated key can be computed in O(1) as
follows: consider the logw-bit binary expansions ℓu =
|pu|2 and ℓv = |pv|2 of the lengths of the prefixes pu
and pv, and let ℓ′ be the longest common prefix of ℓu
and ℓv. Let ℓ be obtained by taking ℓ′, followed by 1
and enough 0’s to make a logw-bit word. Let l be the
number encoded by ℓ, and set αe to the first l bits of
pv, see [5] for a detailed explanation.

Hash Maps. Our data structure also makes exten-
sive use of hashing. In particular, we will maintain
several succinct hashtables that store additional in-
formation for supporting fast queries. We will need
the following theorem due to Demaine et al. [4].

Theorem 1 For any r ≥ 1, there exists a dynamic

dictionary that stores entries with keys from U and

with associated values of r bits each. The dictio-

nary supports updates and queries in O(1) time, using

O(n log log(|U |/n)+nr) bits of space. The bounds for
the space and the queries are worst-case, the bounds

for the updates hold with high probability.

3 Static ∆-fast Tries

We begin by describing our data structure for the
static case. The dynamic version will be discussed
in the next section.

3.1 The Data Structure

Our data structure is organized as follows: We store
S in a compressed trie T . The leaves of T are linked
in sorted order. Furthermore, each node v of T stores
pointers to the minimum and the maximum element
in the subtree Tv of v. In addition to T , we maintain
three hash maps H∆, Hz, and Hb.
We first describe the hash map H∆. Set m =

log logw. For i = 0, . . . ,m, we let hi = 22
i

and
di = w − hi. The hash map H∆ stores the following
information: for each s ∈ S and each di, i = 1, . . . ,m,
let si = s0 . . . sdi−1 be the first di-bits of s and let
e = (u, v) be the edge of T such that si lies on e.
Then, H∆ stores the entry H∆[si] = u.
Next, we describe the hash map Hz. It is defined

similarly as the hash map used for z-fast tries [1, 10].
For each edge e of T , let αe be the associated key of e
(see Section 2). Then, Hz stores the entry Hz[αe] = e.

Finally, the hash map Hb is used to obtain linear
space. It will be described below.

3.2 The Predecessor Query

Let q ∈ U be the query, and let q− and q+ be the
predecessor and the successor of q. We first show how
to get a running time of O(log log∆) for the queries,
with ∆ = |q − q+|. In Theorem 3, we will improve
this to ∆ = min{|q − q−|, |q − q+|}.

The predecessor search works in several iterations.
In iteration i, we let qi be the first di bits of q.

First, we check whetherH∆ contains an entry for qi.
If so, we know that T contains an edge e such that qi
lies on e, and that qi is a prefix of lcpS(q). We consider
the two edges emanating from the lower endpoint of
e, finding the e′ that lies on the path to q (if the lower
endpoint of e is lcaT (q), we are done). We take the
associated key αe′ of e

′, and we use it to continue the
binary search for lcaT (q), as described in Section 2.
Since |qi| = di, this binary search takes O(log(w −
di)) = O(log hi) steps to complete. Once the lowest
common ancestor v = lcaT (q) is available, we can
find the predecessor of q in O(1) additional time by
inspecting the minimum and maximum elements in
the subtrees for the two children of v and by using
the pointers between the leaves in T . Details can be
found in [5].
If H∆ contains no entry for qi and if qi does not

consist of all 1’s, we check if H∆ contains an entry
for qi + 1. Notice that qi + 1 is the successor of qi,
e.g., if qi = 0000, then qi +1 = 0001. If such an entry
exists, first obtain u = H∆[qi+1], and the child v of u
such that qi lies on the edge e = (u, v). Then, we find
the minimum element in the subtree Tv. This is the
successor q+ of q. The predecessor q− can be found
by following the leaf pointers. This takes O(1) time
overall.

Finally, if both entries do not exist, we continue
with iteration i+ 1.

The total time for the predecessor query is O(k +
log hk), where k is the number of iterations and log hk

is the worst-case time for the predecessor search once
one of the lookups in an iteration succeeds. By our
predecessor algorithm, we know that S contains no
element with prefix qk−1 or qk−1 + 1, but an element
with prefix qk or qk + 1. Thus, we have ∆ ≥ 2hk−1 =

22
2
k−1

, so k ≤ O(log log log∆). Furthermore, since
hk = (hk−1)

2, it follows that hk = O(log2 ∆).

3.3 Obtaining Linear Space

We now analyze the space requirement for our data
structure. Clearly, the trie T and the hash mapHz re-
quire O(n) words of space. Furthermore, as described
so far, the space needed for H∆ is O(n log logw)
words, since we store at most n entries for each height
hi, i = 0, . . . ,m.

Using a trick due to Pǎtraşcu [9], we can reduce
the space requirement to linear. The idea is to store
in H∆ the depth du of each branch node u in T∆,
instead of storing u itself. We then use an additional
hash map Hb to obtain u.

This is done as follows: when trying to find the
branch node u for a given prefix qi, we first get the
depth du = |u| of u from H∆. After that, we look up
the branch node u = Hb[q0 . . . qdu−1] from the hash

259

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

map Hb. Finally, we check whether u is actually the
lowest branch node of qi. If any of those steps fails,
we return ⊥.
Let us analyze the needed space: clearly, Hb needs

O(n) space, since it stores O(n) entries. Furthermore,
we have to store O(n log logw) entries in H∆, each
mapping a prefix qi to the depth of its lowest branch
node. This depth requires ⌈logw⌉ bits.

By Theorem 1, a retrieval only hash map for n′

items and r bits of data is O(n′ log log |U |
n′

+ n′r) bits
Therefore, the space for H∆ is proportional to

n log logw · log log
|U |

n log logw
+ n log logw · ⌈logw⌉

= O(n log logw · logw) = o(n · w) bits,

where n′ = n log logw, r = ⌈logw⌉ and w = log |U |.
Thus, we can store H∆ in O(n) words of w bits each.
The following lemma summarizes the discussion

Lemma 2 The ∆-fast trie needs O(n) words space.

3.4 Putting it Together

We can now obtain our result for the static predeces-
sor problem.

Theorem 3 The static ∆-fast trie solves the static

predecessor problem with each operation in time

O(log logmin{|q−q−|, |q−q+|}) and linear space. The

preprocessing time is O(n log log log |U |) on sorted in-

put.

Proof. The normal search for q ∈ S can be done in
O(1) time by a lookup in Hz. We have seen that the
predecessor of q can be found in O(log log |q − q+|)
time, and a symmetric result also holds for successor
queries.
Similarly, we can achieve query time O(log log |q −

q−|) by exchanging H∆[qi − 1] with H∆[qi + 1] in the
query algorithm.
Therefore, by interleaving both searches, we obtain

the desired running time of O(log logmin{|q−q−|, |q−
q+|}). Of course, the pragmatic solution would be to
add the case H∆[qi − 1]
= ⊥ to the query algorithm.
The preprocessing time is dominated by the time

to fill the hash map H∆, since T and the hash maps
Hz and Hb can be computed in linear time. Thus,
the preprocessing time is O(n log log log |U |), because
O(n log logw) nodes have to be inserted intoH∆. The
space requirement is linear (Lemma 2). �

4 Dynamic ∆-fast tries

We will now consider the dynamic case. For this, we
need to explain how the update operations are im-
plemented. Furthermore, we need a way to find and

maintain the minimum and maximum element in each
subtree of T . In the static case, this could be done by
simply maintaining explicit pointers from each node
v ∈ T to the minimum and maximum element in
Tv. In the dynamic case, we need a data structure
which allows finding and updating these elements in
in O(log log∆) time.

4.1 Computing Lowest Common Ancestor

To perform the update operation, we need to be able
to compute lcaT (q) for any given element q ∈ U . For
this, we will proceed as in the query algorithm from
Section 3.2, but without the lookups for H∆[qi − 1]
and H∆[qi + 1]. By the analysis in Section 3.2, this
will find lcaT (q) in time O(log log l), where l is height
of lcaT (q) in T .
Unfortunately, this height l might be as large as w.

To get around this, we use a trick of Bose et al. [2].
Their idea is to perform a random shift of the uni-
verse. More precisely, we pick a random number
r ∈ U , and we add r to all queries and update in
the data structure (modulo |U |).

Lemma 4 (Lemma 4 in [2]) After a random shift

by r of U , the expected height of the lowest common

ancestor of two fixed elements x and y is O(log |x−y|).

Corollary 5 Let q ∈ U , and let T be a randomly

shifted ∆-fast trie. We can find lcaT (q) in expected

time O(log log∆), where the expectation is over the

random choice of the shift r.

Proof. Set x = q, y = q+ and let ∆ = |q − q+|. We
perform the doubly exponential search on the prefixes
of q, as in Section 3.2 (without checking qi+1) to find
the height hk. After that, we resume the lowest com-
mon ancestor search on the remaining hk bits. Since
the number of remaining bits hk is O(log∆) in expec-
tation and by Jensen’s inequality, the number of loop
iterations k is O(log log log∆) in expectation. The ex-
pected running time is k + log hk = O(log log∆). �

4.2 Managing the Minimum and Maximum Ele-

ments of the Subtrees

We also need to maintain the minimum and maximum
elements in each subtree of T . In the static case, it
suffices to have a pointer from a node to its minimal
and maximal leaf, but in the dynamic case, we need
an additional data structure.
For this, we use the fact that a given minimum (or

maximum) leaf is common to at most w nodes of T .
All these nodes form a subpath of a leaf-to-root path
in T . Hence, if we maintain the nodes of this subpath
in a concatenable queue data structure [8], we can
obtain O(logw) update and query time to find the
minimum (or maximum) element. However, we need

260

33rd European Workshop on Computational Geometry, 2017

that the update and query time depend on the height
hi (i.e, the remaining bits) of the query. Thus, we par-
tition the heights {0, 1, . . . , w} of a subpath into the
sets T−1 = {0}, Ti = [2i, 2i+1), for i = 0, . . . , logw−1,
and Tlogw = {w}. Each of the sets is managed by a
balanced binary tree, and all roots of those trees are
linked together. The height of the i-th binary search
tree is log |Ti| = O(i). Conversely, if a height h is
given, the set T⌊log h⌋ is responsible for it.
Furthermore, T−1 is a leaf (the depth of that node

is w) in the trie and therefore the minimum of the
whole subpath. Thus, the minimum of a subpath can
be found from a given node v ∈ Ti in O(i) time by fol-
lowing the pointers to the root of Ti and the pointers
down to T−1.
If a node v has hk = O(log∆) remaining bits,

the node is within the tree T⌊log hk⌋. Thus, it takes
O(log hk) = O(log log∆) time to find the minimum.
Furthermore, we can split and join the subpaths rep-
resented in this way in O(log hk) time, where hk is
the height of the node where the operation occurs.
Details can be found in [5].

4.2.1 Performing an Update

We know from the Lemma 4, that the lowest common
ancestor has expected height hk = O(log∆).

Lemma 6 Inserting or deleting an element q into a

∆-fast trie takes O(log log∆) expected time, where

the expectation is over the random choice of r.

Proof. Inserting q into T splits an edge (u, v) of T
into two edges (u, b) and (b, v). This creates two
new nodes in T , a branch node and a leaf. The
branch node is lcaT (q), and it has expected height
hk = O(log∆). So, finding it will take O(log log∆)
expected time, by Corollary 5.
The hash maps Hz and Hu can be updated in con-

stant time. Now let us consider the update time of
the hash map H∆. Remember that H∆ stores the
lowest branch nodes for all prefixes of the elements in
S that have certain lengths. That means that all pre-
fixes on the edge (b, v) which are stored in the hash
map T∆ need to be updated. Furthermore, prefixes
at certain depths which are on the edge (b, q) need to
be added. Note that for the edge (b, v), we will enu-
merate all prefixes at certain depths, but only select
those that are on the edge. We will argue that a leaf-
to-b path needs O(log log log∆) insertions or updates:
We have to insert Qi := q0 . . . qdi

for all i = 1, . . . un-
til di < |b|. Since di = w − hi, |b| = w − O(log∆)

and hi = 22
i

, c log∆ < 22
i

when i > log log(c log∆).
Thus, i = Θ(log log log∆).
After that, the minimum and maximum elements

for the subtrees of T have to be updated. This may
update a subpath at a node of height hk = O(log∆).

As we have seen, this takes O(log hk) = O(log log∆)
time. Deletions are performed similarly. �

The following theorem summarizes our result.

Theorem 7 Suppose we perform a random shift of

U by r. Then, the ∆-fast trie solves the dynamic

predecessor problem such that query operations take

O(log log∆) worst-case time and update operations

take O(log log∆) expected time. Here, ∆ = min{|q−
q+|, |q − q−|}, where q ∈ U is the argument for the

current operation and q+ and q− are the predecessor

and successor of q in the current set. At any time, the

data structure needs O(n) words of space, where n is

the size of the current set.

References

[1] D. Belazzougui, P. Boldi, and S. Vigna. Dy-
namic z-fast tries. In Proc. 17th Int. Symp. String
Processing and Information Retrieval (SPIRE),
pages 159–172, 2010.

[2] P. Bose, K. Doüıeb, V. Dujmovic, J. Howat,
and P. Morin. Fast local searches and updates
in bounded universes. Comput. Geom. Theory
Appl., 46(2):181–189, 2013.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
third edition, 2009.

[4] E. D. Demaine, F. Meyer auf der Heide, R. Pagh,
and M. Pǎtraşcu. De dictionariis dynamicis
pauco spatio utentibus. In Proc. 7th LATIN,
pages 349–361, 2006.

[5] M. Ehrhardt. An in-depth analysis of data
structures derived from van-Emde-Boas-trees.
Master’s thesis, Freie Universität Berlin, 2015.
http://www.mi.fu-berlin.de/inf/groups/

ag-ti/theses/download/Ehrhardt15.pdf.

[6] P. van Emde Boas. Preserving order in a forest
in less than logarithmic time and linear space.
Inform. Process. Lett., 6(3):80–82, 1977.

[7] P. van Emde Boas, R. Kaas, and E. Zijlstra.
Design and implementation of an efficient prior-
ity queue. Math. Systems Theory, 10(2):99–127,
1976.

[8] F. P. Preparata and M. I. Shamos. Compu-
tational geometry. An introduction. Springer-
Verlag, 1985.

[9] M. Pǎtraşcu. vEB space: Method 4.
http://infoweekly.blogspot.de/2010/09/

veb-space-method-4.html, 2010.

[10] M. Ružić. Making deterministic signatures
quickly. TALG, 5(3):26:1–26:26, 2009.

261

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A Simple Analysis of Rabin’s Algorithm for Finding Closest Pairs∗

Bahareh Banyassady† Wolfgang Mulzer†

Abstract

The closest-pair problem is one of the most basic top-
ics in computational geometry: given a set P ⊂ R

2 of
n points in the plane, find two distinct points p, q ∈ P
that minimize the Euclidean distance d(p, q), among
all pairs of points in P . In the algebraic decision
tree model, this problem can be solved optimally in
Θ(n log n) time.
However, already in 1976, Rabin observed in a sem-

inal work that, using the floor function and random-
ization, this can be improved to O(n) expected time.
We provide a new and simplified analysis of Rabin’s
algorithm that is intended to make this result more
accessible to the modern reader.

1 Introduction

The closest-pair problem in computational geometry
is defined as follows: given a set P ⊂ R

d of n points
in d dimensions, find two distinct points p, q ∈ P
that minimize the Euclidean distance d(p, q), among
all pairs of points in P . As was already observed in
the 1970s, this problem can be solved in the plane
in O(n log n) time by computing the Delaunay trian-
gulation of P [11, 13, 14]. For any fixed d ≥ 2, the
classic divide-and-conquer algorithm by Bentley and
Shamos also achieves O(n log n) time [2,5]. This run-
ning time is asymptotically optimal in the algebraic
decision tree model of computation [1, 11].
However, this is far from the whole story. Once

we leave the confines of the algebraic decision tree
model, faster algorithms are possible. For example, in
the transdichotomous model, where the input may be
manipulated at the bit-level, we can compute planar
Delaunay triangulations, and hence also the planar
closest pair, in O(n log log n) expected time [3].
More famously, if we admit the floor-function x �→

⌊x⌋ into our model, there are randomized algorithms
that can compute the closest pair in linear expected
time. This was shown first by Rabin, in a famous
paper that is often considered the starting point for
the study of randomized algorithms [12]. Indeed, it
has been claimed that Rabin’s algorithm is one of the
first randomized algorithms in theoretical computer
science [15].

∗Supported by DFG project MU/3501-2.
†Institut für Informatik, Freie Universität Berlin, Germany

{bahareh, mulzer}@inf.fu-berlin.de

Since then, a lot more work has been done on the
closest pair problem: Dietzfelbinger et al. [6] describe
how to implement rigorously the hashing-based data
structure that was left open in Rabin’s original al-
gorithm. They also provide a detailed analysis of
Rabin’s algorithm that shows that bounded indepen-
dence suffices to obtain the desired expected run-
ning time. Khuller and Matias [9] describe an al-
ternative, sieve based approach to closest pairs, and
Golin et al. [7] give a very simple randomized algo-
rithm that uses the randomized incremental construc-
tion paradigm and that can be found in several text-
books [8, 10]. Finally, Chan [4] presents a random-
ized framework for geometric optimization problems
that also leads to a new randomized linear-time al-
gorithm for the closest pair problem. The survey by
Smid [15] contains a much more comprehensive treat-
ment of these results.

Despite the amount of activity on the closest pair
problem, the presentation of Rabin’s original algo-
rithm has remained untouched for more than 40
years [12]. We give a new description and analysis
of this algorithm in today’s terms. We hope that
this simplified presentation will make Rabin’s algo-
rithm more accessible for modern students of compu-
tational geometry, and it may lead to new insights
on the closest pair problem. Here, we focus on the
planar case, although all the arguments hold for d
dimensions, when d ∈ N is a constant.

2 Preliminaries

Let P ⊂ R
2 be a set of n points in the plane such that

all
(

n
2

)

interpoint distances in P are pairwise distinct.
Furthermore, we assume that P lies completely in the
upper right quadrant, i.e., that all points in P have
positive coordinates.

For i ∈ Z, we define the ith grid Gi as the subdivi-
sion of the plane into square grid cells of diameter 2i.
The cells have pairwise disjoint interiors, side length
2i/

√
2, and they cover the whole plane. The grid Gi

is aligned such that the origin appears as a corner of
four adjacent grid cells. The neighborhood of a grid
cell σ ∈ Gi consists of the 7 × 7 square of grid cells
centered at σ. Two cells σ, τ ∈ Gi are neighboring if τ
lies in the neighborhood of σ (and hence σ lies in the
neighborhood of τ). We define the identifier of a cell
σ ∈ Gi as a pair from Z × Z, indicating the column
and row for σ. The cell whose lower left corner is the

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

262

33rd European Workshop on Computational Geometry, 2017

origin is identified as (0, 0). As it is standard in ran-
domized algorithms for the closest pair problem, we
assume that there is an operation findGridCell(i, p),
for i ∈ Z and p ∈ R

2, that returns the identifier of the
cell σ in Gi, that contains the point p [7, 9, 12, 15].
Using the floor function, findGridCell can be imple-
mented in O(1) time.
A cell dictionary is a data structure for storing cells

that are in a grid [7]. It supports the following oper-
ations:

• create(i): create an empty cell dictionary D for
Gi.

• insert(D, p): insert the point p into D.

• lookup(D,σ): Suppose that D is a cell dictio-
nary for Gi and σ is a cell in Gi. Then, the lookup
operation reports the set of all points stored in D
that lie in σ. It returns ∅, if σ contains no points.

As explained by Golin et al. [7], the cell dictionary
can be implemented using the hashing-based tech-
niques of Dietzfelbinger et al. [6], so that the expected
time for create and insert is O(1) and the expected
time for lookup is O(1 + k), where k is the output
size. Alternatively, an implementation based on bi-
nary search trees achieves a worst-case running time of
O(1) for create, O(log n) for insert, and O(log n+k)
for lookup, where again k denotes the output size. In
our analysis, we will separately count the operations
on the cell dictionary and the remaining computa-
tional steps.

3 The Algorithm

We now describe our version of Rabin’s algorithm.
Let P ⊂ R

2 be the n input points in the plane, and
set k = ⌊log n⌋ − 1. We compute a random gradation
P = P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pk of P , where for
i = 1, . . . , k, the set Pi is a random subset of Pi−1

with exactly |Pi| = ⌊n/2i⌋ elements. In particular,
we have |Pk| = O(1).
The algorithm proceeds in rounds. The rounds are

numbered from k+1 to 1, beginning with round k+1.
For i = k+1, . . . , 1, the goal of round i is to compute
a cell dictionary Di−1 that stores all points from Pi−1

such that:

(A) each cell in Di−1 contains at most one point from
Pi−1; and

(B) let p, q ∈ Pi−1 be the two points that constitute
the closest pair in Pi−1. Then, the cells in Di−1

that contain p and q are neighboring.

Since |Pk| = O(1), this can be easily achieved in
round k + 1: by checking all pairs in Pk, we compute
the closest pair distance δk for Pk. Then, we set j =
⌈log δk⌉−1, and we create a cell dictionary Dk for the

grid Gj . We insert all points of Pk into Dk. Since the
diameter of the cells of Gj is 2j ∈ [δk/2, δk), each cell
in Dk contains at most one point of Pk. Furthermore,
since the cells in Gj have side length at least δk/2

√
2,

the cells for the closest pair in Pk are neighboring.
In round i, i = k, . . . , 1, the algorithm has the cell

dictionary Di from the previous round available, and
it constructs the dictionary Di−1 for round i as fol-
lows: first, we insert all points from Pi−1 into Di.
Then, for each non-empty cell σ in Di, we find the
set Qσ of points inside σ. We use a brute-force al-
gorithm to compute the closest pair distance δσ for
Qσ, and we set δi−1 = minσ∈Di

δσ. Next, we set
j = ⌈log δi−1⌉−1, and we create a cell dictionaryDi−1

for Gj . Then, we insert all points from Pi−1 intoDi−1.
By construction, the diameter of the cells of Di−1 is
2j ∈ [δi−1/2, δi−1), and so, each cell of Di−1 contains
at most one point of Pi−1. Furthermore, since the
cells in Di−1 have side length at least δi−1/2

√
2, the

cells for the closest pair in Pi−1 must be neighboring
(we note that the closest pair distance could be much
less than δi−1, since we only check the distances in-
side each cell of Di to compute δi−1). The following
lemma summarizes the running time of round i.

Lemma 1 Let i ∈ {1, . . . , k}. In round i, the algo-
rithm performs O(|Pi−1|) cell dictionary operations,
and the additional work is proportional to

∑

σ∈Di

|Qσ|
2,

where the sum is over all non-empty cells σ stored in
Di, and Qσ is defined as Pi−1 ∩ σ.

Once we have the cell dictionary D0 for P at hand,
we can compute the closest pair of P with O(n) cell
dictionary operations and O(n) additional work: we
simply check the neighborhood of each non-empty cell
in D0, and we find the closest pair among all points
that reside in these cells. Since each cell of D0 con-
tains at most one point, and since the closest pair
must be in neighboring cells, this gives the closest
pair of P in the desired time.

4 Analysis

We now analyse our version of Rabin’s algorithm. For
i ∈ {1, . . . , k}, let

Zi =
∑

σ∈Di

|Qσ|
2

be the random variable that represents the amount
of work in round i, excluding the time for the cell
dictionary operations. We will show that E[Zi] =
O(|Pi−1|), for i = 1, . . . , k.
For this, we fix an i ∈ {1, . . . , k} and a subset Q ⊆

P with |Q| = ⌊n/2i−1⌋. First, we rewrite Zi in a
slightly different way.

263

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Lemma 2 Let i ∈ {1, . . . , k} and Q ⊆ P with |Q| =
⌊n/2i−1⌋ be given. For p ∈ Q, let Xp denote the
number of points from Q that are in the same cell of
Di as p (including p). Then,

E[Zi | Pi−1 = Q] =
∑

p∈Q

E[Xp | Pi−1 = Q].

Proof. This can be seen through a simple application
of the double-counting principle. We have

E[Zi | Pi−1 = Q]

= E

[

∑

σ∈Di

|Qσ|
2

∣

∣

∣
Pi−1 = Q

]

= E

[

∑

σ∈Di

∑

p∈σ∩Q

|Qσ|
∣

∣

∣
Pi−1 = Q

]

= E

[

∑

p∈Q

∑

σ∈Di

p∈σ

|Qσ|
∣

∣

∣
Pi−1 = Q

]

= E

[

∑

p∈Q

Xp

∣

∣

∣
Pi−1 = Q

]

,

as claimed. �

Next, we bound the expectation of Xp.

Lemma 3 Let i ∈ {1, . . . , k} and Q ⊆ P with |Q| =
⌊n/2i−1⌋ be given. Let p ∈ Q, and let Xp denote the
number of points from Q that are in the same cell of
Di as p (including p). Then,

E[Xp | Pi−1 = Q] = O(1).

Proof. Set q = |Q|, and let r ∈ {1, . . . , q}. We know
that q ≥ 2 (since |Pi−1| ≥ 2). First, we show that

Pr[Xp ≥ r | Pi−1 = Q] ≤ 2r
(2

3

)r−1

. (1)

For this, consider the event that Xp ≥ r. This means
that, the cell σ ∈ Di that contains p must contain
at least r points from Q. How can this happen? For
j ∈ Z, let τj be the cell of Gj that contains p, and let
Qj = Q ∩ τj . Obviously, for j small enough, we have
Qj = {p}, for j large enough, we have Qj = Q (since
we assumed that all coordinates in P are positive),
and as j increases, Qj grows monotonically. Let j∗ be
the smallest index such that τj∗ has at least r point
of Q , |Qj∗ | ≥ r. And let R ⊆ Qj∗ be an arbitrary
subset with |R| = r. Now, if the cell σ ∈ Di with
p ∈ σ contains at least r points from Q, due to the
definition of j∗, the grid cell τj∗ is a subcell of the
grid cell σ, and so, σ contains all of R. Furthermore,
since σ appears in Di, by the invariant it must be the
case that σ contains at most one point from Pi; see
Figure 1. Thus, |Pi ∩R| ≤ 1, which implies:

Pr[Xp ≥ r | Pi−1 = Q] ≤ Pr[|Pi ∩R| ≤ 1 | Pi−1 = Q].

p

σ

p
τj∗

Figure 1: Left: The grid Gj∗ and the set Q of points
are shown. For q = 2 and the point p, the cell τj∗ is
specified. The points of the set R ⊆ Qj∗ , are filled
with black color. Right: The cell σ of Di is specified.
The red crosses show the points of Pi. The cell σ
contains all the points of R, thus |Pi ∩R| = 1.

Given Pi−1 = Q, we have that Pi is a random subset
of ⌊q/2⌋ points from Q. Since R is also a subset of
Q, the desired probability is easily bounded. If r >
⌈q/2⌉, then the intersection of Pi and R is not empty,
in another words Pr[|Pi ∩ R| = 0 | Pi−1 = Q] = 0.
Otherwise, if r ≤ ⌈q/2⌉, we have

Pr[|Pi ∩R| = 0 | Pi−1 = Q]

=

(

q − r

⌊q/2⌋

)/(

q

⌊q/2⌋

)

=
(q − r)!

⌊q/2⌋! (⌈q/2⌉ − r)!

⌊q/2⌋! ⌈q/2⌉!
q!

=

r−1
∏

k=0

⌈q/2⌉ − k

q − k
≤

(⌈q/2⌉
q

)r

≤
(2

3

)r

,

since q ≥ 2. Moreover, if we have r > ⌈q/2⌉ + 1,
then Pr[|Pi ∩ R| = 1 | Pi−1 = Q] = 0. Otherwise, if
r ≤ ⌈q/2⌉+ 1, we have

Pr[|Pi ∩R| = 1 | Pi−1 = Q]

= r

(

q − r

⌊q/2⌋ − 1

)/(

q

⌊q/2⌋

)

= r
(q − r)!

(⌊q/2⌋ − 1)! (⌈q/2⌉ − r + 1)!

⌊q/2⌋! ⌈q/2⌉!
q!

= r
⌊q/2⌋

q − r + 1

r−2
∏

k=0

⌈q/2⌉ − k

q − k

≤ r

(⌈q/2⌉
q

)r−1

≤ r
(2

3

)r−1

,

since q ≥ 2 and ⌊q/2⌋/(q − r + 1) ≤ 1. Now, (1)
follows, since

Pr[Xp ≥ r | Pi−1 = Q] ≤ Pr[|Pi ∩R| ≤ 1 | Pi−1 = Q]

= Pr[|Pi ∩R| = 0 | Pi−1 = Q]

+ Pr[|Pi ∩R| = 1 | Pi−1 = Q]

≤
(2

3

)r

+ r
(2

3

)r−1

≤ 2r
(2

3

)r−1

.

264

33rd European Workshop on Computational Geometry, 2017

Now, we have

E[Xp | Pi−1 = Q] ≤
q

∑

r=1

Pr[Xp ≥ r | Pi−1 = Q]

≤
∞
∑

r=1

2r
(2

3

)r−1

= O(1),

as claimed. �

Lemma 4 For i ∈ {1, . . . , k}, E[Zi] = O(|Pi−1|).

Proof. Fix Q ⊆ P with |Q| = ⌊n/2i−1⌋. By
Lemma 2 and Lemma 3, we have

E[Zi | Pi−1 = Q] =
∑

p∈Q

E[Xp | Pi−1 = Q]

=
∑

p∈Q

O(1) = O(|Q|) = O(|Pi−1|).

Thus, using the law of total probability

E[Zi] =
∑

Q⊆P
|Q|=⌊n/2i−1⌋

Pr[Pi−1 = Q]E[Zi | Pi−1 = Q]

= O(|Pi−1|)
∑

Q⊆P
|Q|=⌊n/2i−1⌋

Pr[Pi−1 = Q]

= O(|Pi−1|),

as claimed. �

The following theorem summarizes the analysis:

Theorem 5 The algorithm from Section 3 computes
the closest pair for P in expected time O(n).

Proof. We already argued correctness in Section 3.
As mentioned above, using randomization and the
floor function, we can implement all operations of the
cell dictionary in O(1) expected time [6, 7]. Thus, by
Lemma 1, the total expected time for the cell dictio-
nary operations is:

k
∑

i=1

O (|Pi−1|) = O

(

k−1
∑

i=0

n

2i

)

= O(n).

Similarly, by Lemma 1 and Lemma 4, the total ex-
pected time for the remaining steps is:

k
∑

i=1

E[Zi] = O

(

k
∑

i=1

|Pi−1|

)

= O(n).

We also argued that, having the cell dictionary D0 for
P , we can compute the closest pair of P in O(n) time.
This concludes the analysis. �

References

[1] M. Ben-Or. Lower bounds for algebraic compu-
tation trees (preliminary report). In Proc. 15th
Annu. ACM Sympos. Theory Comput. (STOC),
pages 80–86, 1983.

[2] J. L. Bentley and M. I. Shamos. Divide-and-
conquer in multidimensional space. In Proc. 8th
Annu. ACM Sympos. Theory Comput. (STOC),
pages 220–230, 1976.

[3] K. Buchin and W. Mulzer. Delaunay triangu-
lations in o(sort(n)) time and more. J. ACM,
58(2):6, 2011.

[4] T. M. Chan. Geometric applications of a ran-
domized optimization technique. Discrete Com-
put. Geom., 22(4):547–567, 1999.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
third edition, 2009.

[6] M. Dietzfelbinger, T. Hagerup, J. Katajainen,
and M. Penttonen. A reliable randomized algo-
rithm for the closest-pair problem. J. Algorithms,
25(1):19–51, 1997.

[7] M. Golin, R. Raman, C. Schwarz, and M. Smid.
Simple randomized algorithms for closest pair
problems. Nordic J. Comput., 2(1):3–27, 1995.

[8] S. Har-Peled. Geometric approximation algo-
rithms. Mathematical Surveys and Monographs.
American Mathematical Society, vol 173, 2011.

[9] S. Khuller and Y. Matias. A simple randomized
sieve algorithm for the closest-pair problem. In-
form. and Comput., 118(1):34–37, 1995.

[10] J. M. Kleinberg and É. Tardos. Algorithm design.
Addison-Wesley, 2006.

[11] F. P. Preparata and M. I. Shamos. Computa-
tional geometry. Springer-Verlag, 1985.

[12] M. O. Rabin. Probabilistic algorithms. In Algo-
rithms and Complexity: New Directions and Re-
cent Results, pages 21–40. Academic Press, 1976.

[13] M. I. Shamos. Geometric complexity. In Proc. 7th
Annu. ACM Sympos. Theory Comput. (STOC),
pages 224–233, 1975.

[14] M. I. Shamos and D. Hoey. Closest-point prob-
lems. In Proc. 16th Annu. IEEE Sympos. Found.
Comput. Sci. (FOCS), pages 151–162, 1975.

[15] M. Smid. Closest-point problems in computa-
tional geometry. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry,
pages 877–935. Elsevier, 2000.

265

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A generalization of crossing families

Patrick Schnider∗

Abstract

For a set P of points in the plane, a crossing family for
P is a set C of line segments, each joining two of the
points from P, such that any two line segments from
C cross. We investigate the following generalization
of crossing families: a spoke set for P is a set of lines
such that each unbounded region of the induced line
arrangement contains at least one point of P.

We show that every point set of size n has a spoke
set of size

√

n
8
. We also characterize the matchings

obtained by selecting exactly one point in each un-
bounded region and connecting every such point to
the point in the antipodal unbounded region.

1 Introduction

Let P be a finite point set in general position (i.e.,
no three points on a line). Throughout this paper,
we assume all point sets to be in general position. A
crossing family for P is a set C of line segments, each
joining two of the points from P, such that any two
line segments from C cross (i.e., intersect in their inte-
rior). Crossing families were introduced by Aronov et
al. [1], who have shown that any set of n points in gen-
eral position has a crossing family of size

√

n
12
. Since

then, there have been several results about crossing
families [3, 4], but even though it is conjectured that
any point set in general position has a crossing family
of linear size [1], the bound of Aronov et al. is still the
best known result.
A point set A avoids a point set B if no line through

two points in A intersects the convex hull of B. Note
that this means that every point in B sees the points
in A in the same rotational order. If B also avoids
A, the two sets are called mutually avoiding. The
bound in [1] on the size of the largest crossing family
is proven in two steps: first it is shown that two mu-
tually avoiding sets A and B, each of size k, induce a
crossing family of size k. Then it is shown that every
set of n points in general position contains two mu-
tually avoiding subsets of size

√

n
12
. In this paper we

will follow the same approach, but for a generalization
of crossing families.
Bose et al. [2] have introduced the following gen-

eralization of crossing families: A spoke set of size k

for P is a set S of k pairwise non-parallel lines such

∗Department of Computer Science, ETH Zürich,

patrick.schnider@inf.ethz.ch

that in each unbounded region of the arrangement de-
fined by the lines in S there lies at least one point of
P. Note that it is easy to obtain a spoke set from
a crossing family by slightly rotating the supporting
lines of the line segments in the crossing family. Then
each endpoint of a line segment in the crossing family
lies in a different unbounded region. We will show
that every set of n points in general position contains
a spoke set of size

√

n
8
. To this end, we first translate

the notion of spoke sets to the dual setting in Sec-
tion 2. In Section 3 we then use the dual version to
construct large spoke sets for the union of two point
sets A and B, where A avoids B and A and B can be
separated by a line. Finally, we show that every point
set contains such point sets A and B and give bounds
on their sizes.

The motivation for the introduction of spoke sets
in [2] is the fact that with a spoke set of size k for
P, one can construct a covering of the edge set of
the complete geometric graph drawn on P with n− k

crossing-free spanning trees. The result in this paper
thus also improves the previous upper bound of n −
√

n
12

for this problem. However, the original question
from [2], whether there is always a spoke set of linear
size, remains open.

Another interesting question is whether it is always
possible to find a crossing family of size linear in the
size of the largest spoke set. Theorem 6 is a first step
in this direction as it characterizes the matchings ob-
tained from spoke sets and shows that even though
they might not all be crossing families, they still sat-
isfy a number of conditions.

For space reasons, we will not be able to give all
proofs. Instead, we refer the interested reader to full
version [6].

Preliminaries

Let S be a spoke set of size k for P. Consider the
ordering of S = {ℓ1, . . . , ℓk} by increasing slope. Let
U+

i be the unbounded region that lies below ℓ1, . . . , ℓi
and above ℓi+1, . . . ℓk. Similarly let U−

i be the un-
bounded region that lies above ℓ1, . . . , ℓi and below
ℓi+1, . . . ℓk. We call the regions U+

i and U−

i antipodal.

Let Q be a subset of P that has exactly one point
in each unbounded region. Note that then each line
of S is a halving line for Q. The spoke matching of
Q is the matching obtained by drawing a straight line
segment from each point p in Q to the unique point

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

266

33rd European Workshop on Computational Geometry, 2017

ℓ1

ℓ2

ℓ3

ℓ4
ℓ5

U+
3

U−
3

Figure 1: A spoke set and a spoke matching (dashed).

q in Q that lies in the antipodal unbounded region
of the spoke set. See Figure 1 for an example. Note
that in a spoke matching, each edge intersects every
line of the spoke set. In Section 4 we characterize the
geometric matchings that are spoke matchings.

2 Spoke sets under duality

In this section we will translate the properties of spoke
sets into the dual setting, that is under the point-line
duality. For this we start with some definitions.
Given an arrangement A of lines, without loss of

generality none of them horizontal or vertical, a cell-
path R is a sequence of cells such that consecutive cells
share an edge. If the edge shared by two consecutive
cells is a subset of some line ai of A, we say that R

crosses ai. The length of a cell-path is one less than
the number of cells involved. We call a cell-path line-
monotone if it crosses each line of A at most once.
If A′ is an arrangement induced by a subset of the

lines of A, then R restricted to A′ is the cell path
obtained by replacing each cell C of A in R by the
cell C ′ in A′ with C ⊆ C ′ and deleting consecutive
multiples.
Finally, for a cell-path R = (C0, C1, . . . , Ck), let

ai be the line in A that contains the edge shared
by Ci and Ci+1. We call the pair (a2j , a2j+1) AB-
alternating, if C2j+1 either lies above both a2j and
a2j+1 or below both. We call a cell path P =
(C0, C1, . . . , C2k) AB-semialternating if for every j <

k the pair (a2j , a2j+1) is AB-alternating. See Figure
2 for an example.
We now have all the vocabulary that is necessary

to describe the dual of spoke sets: given an arrange-
ment A of lines, a spoke path (R,A′) is a cell-path R

together with an arrangement A′ induced by a subset
of the lines of A, such that R restricted to A′ is line-
monotone and AB-semialternating. The length of a
spoke path (R,A′) is the length of R restricted to A′.
Note that all the definitions generalize to x-monotone
pseudoline arrangements.

Lemma 1 Let P be a point set and P∗ its dual line

arrangement. Then P contains a spoke set of size k if

C0

C1

C2

C3
C4 C5

C6

Figure 2: A line-monotone AB-semialternating cell-
path of length 6.

and only if P∗ contains a spoke path of length 2k.

For a proof we refer to the full version. It is worth
mentioning that for a spoke path (R,A′), the primal
ofA′ corresponds to a subset of P that has exactly one
point in each unbounded region. The fact that all the
points in the primal of A′ are in unbounded regions
follows from the line-monotonicity of R restricted to
A′. The AB-semialternation implies that two lines
a2j and a2j+1 correspond to endpoints of the spoke
matching in the primal.

3 Finding large spoke sets

In this section, we will construct large spoke sets by
constructing long spoke paths in the dual arrange-
ment.

Lemma 2 Let A and B be two disjoint point sets

of size k such that A avoids B and A and B can be

separated by a line. Let P = A ∪ B. Then the dual

arrangement P∗ contains a spoke path of length k+2,
if k is even, or k + 3, if k is odd.

For a full proof we again refer to the full version.
But we will briefly sketch the main steps of the con-
struction.

Step 1: Let A∗ and B∗ denote the duals of A and
B, respectively. Draw B∗ as a wiring diagram in color
red. As A avoids B and A and B can be separated
by a line, all lines of A∗ cross the lines of B∗ in the
same order, so we can draw A∗ as pseudolines that are
straight and vertical in the region where they cross
the red pseudolines and get a pseudoline arrangement
that is isomorphic to P∗. We call such a drawing
an extended diagram. See Figure 3 for an example
of an extended diagram. Let r1 be the bottommost
pseudoline at left infinity of the wiring diagram of B∗.
For some directed pseudoline g, we define the color
sequence c(g) of g by moving along g and writing for
each crossing with another pseudoline an r or a b if
the crossed pseudoline is red or blue, respectively. In
particular, c(r1) denotes the color sequence defined by
moving along r1 from left infinity to right infinity.

267

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

r3

r2

r1

r3

r2

r1
b1

b2 b3 b1 b2 b3

B∗

A∗

Figure 3: A line arrangement and its extended dia-
gram.

r1 r1

Figure 4: A right single crossing move.

r1

r1

Figure 5: A right split crossing move.

Step 2: We modify the extended diagram using
a sequence of moves. We use two different types of
moves. For an illustration of the moves, see Figures
4 and 5. The right (left) single crossing move can
be used if c(r1) = . . . brbb . . . (c(r1) = . . . bbrb . . .).
We move the crossing with the red pseudoline to
the right (left), changing the color sequence of r1
to c(r1) = . . . bbrb . . . (c(r1) = . . . brbb . . .). The
right (left) split crossing move can be used if there is
more than one crossing with red pseudolines between
two blue pseudolines, i.e., if c(r1) = . . . brr . . . rrbb . . .

(c(r1) = . . . bbrr . . . rrb . . .). We split the last of these
crossings off and move it to the right (left), changing
the color sequence of r1 to c(r1) = . . . brr . . . rbrb . . .

(c(r1) = . . . brbr . . . rrb . . .). The same moves can
also be defined if c(r1) starts with rbb or r . . . rbb

(ends with bbr or bbr . . . r). We do these moves un-
til we reach a goal diagram in which r1 has the color
sequence c(r1) = brbrbr . . . brb (note that c(r1) has
length 2k − 1). As in a split crossing move we split
two consecutive r’s and no move joins two r’s, we can
conclude that among the moves we need to reach the
goal diagram, at most k − 2 are split crossing moves.
The goal diagram is of course not isomorphic to P∗

anymore.

Step 3: We draw two new directed pseudolines g1
and g2 in the goal drawing, representing cell paths
given by the cells they intersect. Let C0 be the un-
bounded cell that is under all red pseudolines and left
of all blue pseudolines. Both g1 and g2 start in C0

r1

g1

g2
C0

Figure 6: The goal diagram with the pseudolines g1
and g2.

r1

r1

g1 g2 g1

g2

Figure 7: Reversing a single crossing move.

r1

r1
g1

g2
g2

g1

Figure 8: Reversing a split crossing move.

and end in the antipodal cell of C0, but g1 crosses r1
first and then always stays at a small distance to it,
whereas g2 always stays at small distance to r1 and
crosses it at the very end. Then g1 and g2 have the
color sequences c(g1) = rbrbrbr . . . brb and c(g2) =
brbrbr . . . brbr, see Figure 6 for an illustration. For
any color sequence we call a subsequence x1, . . . , xj

semialternating if j is even, i.e., j = 2m, and for ev-
ery i ≤ m we have that x2i−1 = r ⇔ x2i = b. By
φ(g1) and φ(g2) we denote the length of the longest
semialternating subsequences of c(g1) and c(g2), re-
spectively. Note that by our construction of g1 and
g2 we have that φ(g1) = φ(g2) = 2k.

Step 4: We reverse the moves to get back to our
initial extended diagram. While doing so, we change
g1 and g2 only if one of them crosses r1 more than
once. In that case we just delete the part between
the newly introduced crossings and replace it with
a pseudoline segment that stays at a small distance
to r1. For an illustration see Figures 7 and 8. In
each step we only need to change either g1 or g2, but
never both. Also, φ(g1) or φ(g2) only changes when
we reverse a split crossing move, where it decreases
by 2 only for the pseudoline that was modified.

Step 5: We reach the initial extended diagram,
but with two additional directed pseudolines g1 and
g2, representing cell paths. For both of these directed
pseudolines, the longest semialternating subsequence
of the color sequence represents a line-monotone AB-
semialternating cell-path, i.e., a spoke path of length
φ(g1) or φ(g2), respectively. In the goal diagram we

268

33rd European Workshop on Computational Geometry, 2017

had φ(g1) + φ(g2) = 4k. While reversing the moves,
this sum has only changed by the term −2 when we
reversed a split crossing move. As we used at most
k − 2 split crossing moves, for the initial diagram we
have φ(g1) + φ(g2) ≥ 4k − (k − 2) · 2 = 2k + 4. The
result now follows from the pigeonhole principle and
the fact that by definition φ(g) is always even.

Corollary 3 If a point set P contains two subsets A
and B of size k, such that A avoids B and A and B
can be separated by a line, then P contains a spoke

set of size ⌈k
2
⌉+ 1.

Proof. Combine Lemma 1 and Lemma 2. �

Modifying the proof of Aronov et al. [1] for finding
mutually avoiding sets in a point set, we can prove
the following theorem:

Theorem 4 Every point set of size n contains two

point sets A and B of size ⌊
√

n
2
+ 1− 1⌋ such that A

avoids B and A and B can be separated by a line.

A proof of this can be found in the full version.

Corollary 5 Every point set P of size n allows a

spoke set of size at least
√

n
8
.

Proof. By Theorem 4, P contains two subsets A and
B of size ⌊

√

n
2
+ 1 − 1⌋ such that A avoids B and A

and B can be separated by a line. Thus, by Corollary
3, the point set contains a spoke set of size
⌈

⌊
√

n
2
+ 1− 1⌋
2

⌉

+ 1 ≥
⌈

√

n

8
+

1

4
− 1

⌉

+ 1 ≥
√

n

8
.

�

It is worth mentioning that there are point sets
that have no mutually avoiding subsets of size larger
than O(

√
n) [7]. However, it is not clear whether this

still holds if we only insist that one of the subsets
avoids the other one. So while there is no hope of
finding larger crossing families by finding larger mu-
tually avoiding subsets, it might still be possible to
find larger spoke sets with this approach.

4 Spoke matchings

In this section we characterize a family of geometric
matchings that arise from spoke sets. For this we need
a few definitions:
Let e and f be two line segments and let s be the

intersection of their supporting lines. If s lies in both
e and f , we say that e and f cross. If s lies in f but
not in e, we say that e stabs f and we call the vertex
of e that is closer to s the stabbing vertex of e. If s
lies neither in e nor in f , or if the supporting lines of
e and f do not meet, we say that e and f are parallel.

A stabbing chain in a geometric matching are three
edges, e, f and g, where e stabs f and f stabs g. We
call f the middle edge of the stabbing chain.

Theorem 6 A geometric matching M is a spoke

matching if and only if it satisfies the following three

conditions:

(a) no two edges are parallel,

(b) if an edge e stabs two other edges f and g, then

the respective stabbing vertices of e lie inside the

convex hull of f and g, and

(c) if there is a stabbing chain, then the stabbing

vertex of the middle edge lies inside the convex

hull of the other two edges.

For a proof we refer to the full version. Note that
the fact that every crossing family of size k induces
a spoke set of size k can also be derived from this
result, as it shows that every crossing family is a spoke
matching. However, the family of spoke matchings
also contains matchings that are not crossing families.
In fact, it is even possible to construct a crossing-free
spoke matching. In [5], it has been shown that there
are sets of n points in general position that do not
allow any matching satisfying conditions (a), (b) and
(c) of size larger than 9

20
n. Hence we get the following

corollary:

Corollary 7 There are point sets of n points in gen-

eral position that do not admit a spoke set of size

larger than 9

20
n.

References

[1] B. Aronov, P. Erdős, W. Goddard, D. J. Kleitman,
M. Klugerman, J. Pach, and L. J. Schulman. Crossing
families. In Proceedings of the Seventh Annual Sym-
posium on Computational Geometry, North Conway,
NH, USA, June 10-12, 1991, pages 351–356, 1991.

[2] P. Bose, F. Hurtado, E. Rivera-Campo, and D. R.
Wood. Partitions of complete geometric graphs into
plane trees. Computational Geometry, 34(2):116–125,
2006.

[3] R. Fulek and A. Suk. On disjoint crossing families in
geometric graphs. Electronic Notes in Discrete Math-
ematics, 38:367–375, 2011.

[4] J. Pach and J. Solymosi. Halving lines and perfect
cross-matchings. Advances in Discrete and Computa-
tional Geometry, 223:245–249, 1999.

[5] P. Schnider. Partitions and packings of complete ge-
ometric graphs with plane spanning double stars and
paths. Master’s thesis, ETH Zürich, 2015.

[6] P. Schnider. A generalization of crossing families.
CoRR, abs/1702.07555, 2017.

[7] P. Valtr. On mutually avoiding sets. In The math-
ematics of Paul Paul Erdős, II (R. L. Graham and
J. Nešetřil, eds.) Algorithms and Combin. 14, pages
324–332, 1997.

269

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Ordered Level Planarity and Geodesic Planarity

Boris Klemz∗ Günter Rote∗

Abstract

We introduce and study the problem Ordered

Level Planarity which asks for a planar drawing
of a graph such that vertices are placed at prescribed
positions in the plane and such that every edge is re-
alized as a y-monotone curve. This can be interpreted
as a variant of Level Planarity in which the ver-
tices on each level appear in a prescribed total order.
We show NP-completeness even for the special case
that the number of vertices on each level is bounded
by λ = 2 and that the maximum degree is ∆ = 2.
This establishes a tight border of tractability since
for λ = 1 the problem is in P. Our result is moti-
vated by the following applications.
We establish a connection to geodesic drawings.

Geodesic Planarity asks for a planar drawing of
a graph such that vertices are placed at prescribed
positions in the plane and such that every edge e is
realized as a polygonal path p composed of line seg-
ments with two adjacent directions from a given set
S of directions symmetric with respect to the origin.
Our results on Ordered Level Planarity imply
NP-hardness for any S with |S| ≥ 4 even if the given
graph is a matching. Katz, Krug, Rutter and Wolff
claimed that for matchings Manhattan Geodesic

Planarity is in P [GD’09]. Our results imply that
this is incorrect unless P = NP. Further, our results
imply the NP-hardness of the Bi-Monotonicity

problem.
We narrow the gap between tractability and NP-

hardness in the established hierarchy of Level Pla-

narity variants. To this end, we provide reduc-
tions to T-Level Planarity, Clustered Level

Planarity and Constrained Planarity. As a
by-product, we strengthen previous NP-hardness re-
sults. In particular, our reduction to Clustered

Level Planarity generates instances with ∆ = 2,
λ = 2 and only two non-trivial clusters.

1 Introduction

An upward planar drawing of a directed graph is a
plane drawing where every edge e = (u, v) is realized
as a y-monotone curve that goes upward from u to v.
Upward planar drawings provide a very natural way
of visualizing a partial order on a set of items. The

∗Institute of Computer Science, Freie Universität Berlin,

Germany

problem Upward Planarity of testing whether a
directed graph has an upward planar drawing is NP-
complete [5]. However, if the y-coordinate of each ver-
tex is prescribed, the problem can be solved in polyno-
mial time [6]. Formally, this is captured by the notion
of level graphs. A level graph G = (G, γ) is a directed
graph G = (V,E) together with a level assignment

γ : V → {0, . . . , h} for G where γ is a surjective map
with γ(u) < γ(v) for every edge (u, v) ∈ E. Value h
is the height of G. The vertex set Vi = {v | γ(v) = i}
is called the i-th level of G. Value λi = |Vi| is the
width of level i and the level-width λ of G is the max-
imum width of any level in G. A level planar drawing
of G is an upward planar drawing of G where the
y-coordinate of each vertex v is γ(v). The problem
Level Planarity of testing whether a given level
graph has a level planar drawing is solvable in linear
time [6].

We introduce a natural variant of Level Pla-

narity that takes into account a total order for the
vertices on each level. An ordered level graph G is a
triple (G = (V,E), γ,χ) where (G, γ) is a level graph
and χ : V → {0, . . . ,λ − 1} is a level ordering for G.
We require that χ restricted to domain Vi bijectively
maps to {0, . . . ,λi−1}. An ordered level planar draw-
ing of an ordered level graph G is a level planar draw-
ing of (G, γ) where for every v ∈ V the x-coordinate
of v is χ(v). Thus, the position of every vertex is
fixed. The problem Ordered Level Planarity

asks whether a given ordered level graph has an or-
dered level planar drawing. We remark that in the
above definitions, the x- and y-coordinates assigned
via χ and γ merely act as a convenient way to en-
code total and partial orders respectively. In terms of
realizability, the problems are equivalent to general-
ized versions were χ and γ map to the reals. In other
words, the fixed vertex positions can be any points in
the plane. All reductions and algorithms in this pa-
per carry over to these generalized versions, if we pay
the cost for presorting the vertices according to their
coordinates.

We establish a connection between ordered level
planar drawings and geodesic drawings. Let S ⊂ R

2

be a finite set of directions symmetric with respect to
the origin, i.e. for each direction s ∈ S, the reverse
direction −s is also contained in S. A plane draw-
ing of a graph is geodesic with respect to S if every
edge is realized as a polygonal path p composed of
line segments with two adjacent directions from S.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

270

33rd European Workshop on Computational Geometry, 2017

Such path p is a geodesic with respect to the polyg-
onal norm that corresponds to S. An instance of the
decision problem Geodesic Planarity is a 4-tuple
G = (G = (V,E), x, y, S) where G is a graph, x and y
map from V to the reals and S is a set of directions
as stated above. The task is to decide whether G has
a geodesic drawing, that is, G has a geodesic draw-
ing with respect to S in which every vertex v ∈ V is
placed at (x(v), y(v)).
Katz, Krug, Rutter and Wolff [7] study Manhat-

tan Geodesic Planarity, which is the special case
of Geodesic Planarity where set S consists of
the two horizontal and the two vertical directions.
Geodesic drawings with respect to this set of direc-
tions are also referred to as orthogeodesic drawings.
Katz et al. [7] show that a variant of Manhattan

Geodesic Planarity in which the drawings are re-
stricted to the integer grid is NP-hard even if G is
a perfect matching. The proof is by reduction from
3-Partition and makes use of the fact the number
of edges that can pass between two vertices on a grid
line is bounded. In contrast, they claim that the stan-
dard version of Manhattan Geodesic Planarity

is polynomial-time solvable for perfect matchings. To
this end, they sketch a plane sweep algorithm that
maintains a linear order among the edges that cross
the sweep line. When a new edge is encountered it is
inserted as low as possible subject to the constraints
implied by the prescribed vertex positions. When
asked for more details, the authors informed us that
they are no longer convinced of the correctness of their
approach. Unless P = NP, one of the results of our
paper implies that their approach is indeed incorrect.
The results and layout of this abstract are as

follows. In Section 3 we study the complexity
of Ordered Level Planarity. While Upward

Planarity is NP-complete [5] in general but be-
comes polynomial-time solvable [6] for prescribed y-
coordinates, we show that prescribing both x and y-
coordinates renders the problem NP-complete. Pre-
cisely, our results are summarized in the following the-
orem.

Theorem 1 Ordered Level Planarity is NP-

complete, even for maximum degree ∆ = 2 and level-

width λ = 2. For level-width λ = 1, Ordered Level

Planarity can be solved in linear time.

Theorem 1 states an explicit gap between tractabil-
ity and NP-hardness. We motivate this result with
the multiple applications. In Section 2 we study the
complexity of Geodesic Planarity. We utilize
Theorem 1 to obtain the following:

Theorem 2 Geodesic Planarity is NP-hard for

any set of directions S with |S| ≥ 4 even for perfect

matchings in general position.

(a) (b) (c)

(d)

Figure 1: Reduction to Geodesic Planarity.

In the full version we provide reductions which
establish Ordered Level Planarity as a spe-
cial case of T-Level Planarity [1], Clustered

Level Planarity [1] and Constrained Pla-

narity [3]. As a by-product, we strengthen previ-
ous NP-hardness results. In particular, we show that
Clustered Level Planarity is NP-hard even for
instances with λ = 2, ∆ = 2 and only two non-trivial
clusters. We observe that Geodesic Planarity re-
stricted to instances as stated in Theorem 2 reduces
immediately to Bi-Monotonicty [4] if S contains
precisely the horizontal and vertical directions. Thus,
we settle the latter problem’s complexity.

2 Geodesic Planarity

In this section we sketch the proof of Theorem 2. To
this end, we transform an Ordered Level Pla-

narity instance Go = (Go = (V,E), γ,χ) with max-
imum degree ∆ = 2 and level-width λ = 2 into a
Geodesic Planarity instance Gg = (Gg, x, y, S)
where Gg is a perfect matching. In this abstract we
describe the reduction specifically for the case that the
set S consists of precisely the horizontal and vertical
directions. However, the construction is invariant un-
der shearing and, thus, works for any prescribed set S
of directions with |S| ≥ 4. The reduction is carried
out in two steps.
First, we transform Go into a Geodesic Pla-

narity instance G′

g = (Go, x
′, γ, S) by translating the

vertices of level Vi by 3i units to the right, see Fig.1a
and Fig.1b. Clearly, every geodesic drawing of G′

g

can be turned into an ordered level planar drawing
of Go. On the other hand, consider an ordered level
planar drawing of Go. W.l.o.g. all edges are realized
as polygonal paths in which bend points occur only
on the horizontal lines Li through the levels Vi of Go,
see Fig.1a. Further, assume that all bend points have
an x-coordinate in the interval [−1, 2]. We translate
all bend points on Li by 3i units to the right, see
Fig.1b. In the resulting drawing all edge-segments
have a slope from interval (0,∞). Thus, since the

271

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

u1u2u3u4u5

(a)

u1u2u3u4u5u1 u2 u3 u4 u5

(b)

T
n

1
T

n

3
T

n

4
T

p

1 T
n

2
T

n

5
T

p

2 T
p

3 T
p

4 T
p

5

(c)

Figure 2: Representation of a planar monotone 3SAT
formula and its usage in the reduction to Ordered

Level Planarity.

maximum degree is ∆ = 2 we can be replace all edge-
segments by geodesic staircases that closely trace the
segments, see Fig.1c.
In the second step we turn Go into a perfect match-

ing in order to obtain Gg. To this end, we essentially
split each vertex v by replacing it with a small gad-
get that fits inside a 1/4× 1/4 square centered on v,
see Fig.1d. The gadget contains a degree-1 vertex for
every edge incident to v. In order to maintain equiv-
alence we have to prevent non-incident edges from
being drawn through the gadget square. To this end,
we create a blocking edge between vertices in the top
left and bottom right corners of the gadget square.
Note that all x-coordinates are distinct. Only the

up to 8 vertices of the gadgets on each level may
have duplicate y-coordinates. Thus, by placing these
vertices more carefully we can guarantee that the as-
signed vertex positions are in general position, that is,
no two vertices lie on a line with a direction from S.

3 Ordered Level Planarity

To obtain NP-hardness of Ordered Level Pla-

narity we perform a reduction from Planar Mono-

tone 3-Satisfiability. In this NP-hard [2] special
case of 3SAT the input is a 3SAT formula ϕ together
with a contact representation R of ϕ, see Fig. 2a. All
variables are represented as line segments arranged
on a line. Each clause c is represented as an E-shape
that touches precisely the variables contained in c.
Furthermore, all clauses are either positive or nega-

tive, i.e. they contain exclusively positive or negative
literals, respectively. In R all negative clauses are be-
low the line of variables and all positive clauses are
above the line.
Recall that in terms of realizability Ordered

Level Planarity is equivalent to the generalized
version where γ and χ map to the reals. For the sake
of convenience we will describe our construction in
this generalized setting. We create an ordered level
graph whose level assignment is partitioned into four
tiers T1, T2, T3, T4. Each clause ci is associated with a

(a)

T3

T4

T2

u
s
j

u
a
j u

b
j

u
c
j

u
t
j

u
q
j

u
p
j

(b)

Figure 3: (a) The subgraph (black/red) created for
every E-shape (blue) and the three respective gates
(grey). (b) The variable gadget for uj .

clause edge starting in T1 and ending in T3. In tier T1
we do the following. We take the top part of R, rotate
it by 180◦ and place it to the left of the bottom part,
see Fig. 2b. For each E-shape we create a 11-vertex
subgraph as illustrated in Fig. 3a. The red vertex is
the bottom vertex of the clause edge belonging to the
clause that corresponds to the E-shape. Observe that
drawings of this subgraph are unique in the sense that
the left-to-right order of vertices and edges intersected
by a horizontal line through any of the vertices is the
identical in every ordered level planar drawing of the
subgraph. This is due to the fact that the order of
the top 6 vertices is fixed since they are placed on the
same level. As a consequence, the clause edge start-
ing at the red vertex has to intersect one of the thick
gray regions, which we call gates. Fig. 2c illustrates
the entirety of T1. The subgraph induced by T1 has
a unique drawing. Further, note that each gate is lo-
cated in the line segment of one of the variables of R.
We bundle all gates that are located in the line seg-
ment of the same literal together by creating tunnels

as depicted in the top of Fig. 2c. Observe that the
clause edge of clause ci has to be drawn inside the
tunnel of one of the literals of ci. This corresponds
to the fact that in a satisfying truth assignment every
clause has at least one satisfied literal.

We need to ensure that for each variable uj either
its positive tunnel T p

j or negative tunnel Tn
j can be

used, but not both. To this end, we create a vari-

able gadget for each variable uj , see Figure 3b. These
gadgets start in T2 and end in T4. In T2 the gadget
for uj starts above all the gadgets of variables with
smaller index. In T4 the gadget for uj ends below all
the gadgets of variables with smaller index. The tun-
nels T p

j and Tn
j end inside the gadget of variable uj

on level γ(uq
j). We force all tunnels with index at

least n to be drawn between ua
j and ub

j by subdivid-
ing the tunnel edges appropriately, see Fig. 4a. The
long edge (us

j , u
t
j) has to be drawn left or right of uc

j

in T4. Accordingly it has to be drawn left of ua
j or

right of ub
j in T2 and, thus, left or right of all the

272

33rd European Workshop on Computational Geometry, 2017

u
s
j

u
a
j u

b
j

u
q
j

u
p
j

T
p
j T

n
j

(a)

u
s
j

u
a
j u

b
j

u
q
j

u
p
j

T
p
j T

n
j

(b)

Figure 4: The two states of a variable gadet.

tunnels that are drawn between ua
j and ub

j . As a con-
sequence, the blocking edge (us

j , u
p
j) is also drawn left

(Fig. 4b) or right (Fig. 4a) of all tunnels. Together
with the edge (uq

j , u
p
j) it prevents clause edges from

being drawn in T p
j or Tn

j depending on whether the
long edge and the blocking edge are drawn left or
right.
We summarize the reduction. If there exists an or-

dered level planar drawing, then the clause edge of
each clause is drawn inside of a tunnel that corre-
sponds to one of its literals. Due to the variable gad-
gets, edges can only be drawn either inside the posi-
tive tunnel or inside the negative tunnel of a variable.
Thus, we obtain a satisfying truth assignment. On
the other hand, given a satisfying truth assignment
we can create a drawing by placing the long edges
of the variable gadgets according to the assignment.
Fig. 5 illustrates how variable gadgets can be nested
and clause edges can be drawn.
The resulting Ordered Level Planarity in-

stance has maximum degree∆ = 2. The level-width λ

is linear in the input size, however, it can be decreased
to λ = 2 by replacing a level with width λi > 2 with
λi− 1 levels containing exactly two vertices each. For
more details, we refer to the full version. For λ = 1
Ordered Level Planarity is solvable in linear
time since Level Planarity can be solved in lin-
ear time [6].
Acknowledgements: We thank the authors of [7]

for providing us with unpublished information re-
garding their plane sweep approach for Manhattan

Geodesic Planarity.

References

[1] Angelini, P., Da Lozzo, G., Di Battista, G., Frati,
F., Roselli, V.: The importance of being proper: (in
clustered-level planarity and t-level planarity). Theor.
Comput. Sci. 571, 1–9 (2015)

T3

T2

T4

Figure 5: Nesting structure of the variable gadgets.

[2] de Berg, M., Khosravi, A.: Optimal binary space par-
titions for segments in the plane. Int. J. Comput. Ge-
ometry Appl. 22(3), 187–206 (2012)

[3] Brückner, G., Rutter, I.: Partial and constrained level
planarity. In: Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, Jan-
uary 16-19. pp. 2000–2011 (2017)

[4] Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič,
D.: Hanani–tutte, monotone drawings, and level-
planarity. In: Thirty Essays on Geometric Graph The-
ory, pp. 263–287. Springer (2013)

[5] Garg, A., Tamassia, R.: On the computational com-
plexity of upward and rectilinear planarity testing.
SIAM J. Comput. 31(2), 601–625 (2001)

[6] Jünger, M., Leipert, S., Mutzel, P.: Level planarity
testing in linear time. In: Graph Drawing, 6th Interna-
tional Symposium, GD’98, Montréal, Canada, August
1998, Proceedings. pp. 224–237 (1998)

[7] Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-
geodesic embedding of planar graphs. In: Graph
Drawing, 17th International Symposium, GD 2009,
Chicago, IL, USA, September 22-25, 2009. Revised Pa-
pers. pp. 207–218 (2009)

273

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Minimizing crossings in constrained two-sided circular graph layouts

Fabian Klute∗ Martin Nöllenburg∗

Abstract

Circular layouts are a popular graph drawing style,
where vertices are placed on a circle and edges are
drawn as straight chords. One way to reduce clutter
caused by edge crossings is to use two-sided circular
layouts, in which some edges are drawn as curves in
the exterior of the circle. We study the problem of
minimizing the crossings for a fixed cyclic vertex or-
der by computing an optimal 1-plane set of exteriorly
drawn edges. This relates to finding maximum-weight
degree-constrained induced subgraphs in circle or over-
lap graphs.

1 Introduction

Circular graph layouts are a popular drawing style to
visualize graphs, which focuses on a clear positioning
of the vertices on a circle, while the edges are drawn
as straight-line chords of said circle. As it is often
the case in graph drawing the crossings between the
edges play a big role in optimizing the readability of
the visualization. If the edges are drawn as chords all
crossings are determined by the order of the vertices.
Finding a vertex order that minimizes the crossings is
NP-hard [4]. Heuristics and approximation algorithms
have been studied in numerous papers, see e.g. [1].
Gansner and Koren [2] presented an approach to

compute improved circular layouts for a given input
graph G = (V, E) in a three-step process. The first
step computes a vertex order that aims to minimize
the overall edge length of the drawing, the second
step determines a crossing-free subset of edges that
are drawn outside the circle to reduce edge crossings
in the interior, and the third step introduces edge
bundling to save ink and reduce clutter in the interior.

Inspired by their approach we take a closer look at
the second step of the above process, which, in other
words, determines an outerplane subgraph to be drawn
outside the circle such that the remaining crossings of
the chords are minimized. Gansner and Koren [2] solve
this problem in O(|V|3) time1. In fact, the problem
is equivalent to finding a maximum independent set
in the corresponding circle graph G = (V,E) (see
Section 2). This graph has a vertex for each edge of G
and an edge between each pair of crossing chords in

∗Algorithms and Complexity Group, TU Wien, Austria
1The paper actually claims O(|V|2) time without a proof;

the immediate running time of their algorithm is O(|V|3).

(a) One-sided layout (b) Two-sided layout

Figure 1: Circular graph layouts

the circular layout of G. The maximum independent
set problem in a circle graph can be solved in O(ℓ)
time [6], where ℓ ∈ Ω(|E|) ∩O(|E|2) is the total chord
length in an interval representation of G.
We generalize the problem from outerplane graphs

to outer k-plane graphs, i.e., we ask for an edge set
to be drawn outside the circle such that none of these
edges has more than k crossings. For k = 0 this is the
same problem considered by Gansner and Koren [2].
In this paper we present an efficient algorithm based
on dynamic programming for the case k = 1, where
at most one crossing per exterior edge is permitted.
Of course, this is only a first step towards solving the
general case. Yet, due to non-local dependencies that
occur for k ≥ 2, we do not see an obvious way of
extending our algorithm.

2 Optimizing interior crossings

Let G = (V, E) be a graph and π a cyclic order of V.
We arrange the vertices in this order on a circle C

and draw edges as straight chords to obtain a (one-
sided) circular drawing Γ, see Fig. 1a. Note that the
number of crossings of Γ is fully determined by π. Our
goal in this paper is to draw a subset of edges on the
exterior side of C in order to reduce the number of
edge crossings.
In a two-sided circular drawing ∆ of G and π we

still draw all vertices on a circle C according to π, but
we split the edges into two disjoint sets E1 and E2 with
E1 ∪ E2 = E . The edges in E1 are drawn as straight
chords, while the edges in E2 are drawn as curves in
the exterior of C, see Fig. 1b. Rather than asking for
a set E2 that globally minimizes the crossings in ∆,
which is equivalent to the NP-hard fixed linear crossing

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

274

33rd European Workshop on Computational Geometry, 2017

minimization problem in 2-page book embeddings [5],
we add the additional constraint that the exterior
drawing induced by E2 is outer k-plane, i.e., each edge
in E2 is crossed by at most k other edges in E2. This is
motivated by the fact that exterior edges are harder to
read and should not be further impaired by too many
crossings.

Instead of working with G and π directly we consider
the corresponding circle graph G = GG,π = (V,E) of
G and π, where V has one vertex for each edge in E
and two vertices u, v ∈ V are connected by an edge
(u, v) in E if and only if the edges corresponding to u

and v cross in the circular layout Γ. So the number of
vertices |V | = |E| equals the number of edges of G and
the number of edges |E| is the number of crossings of
Γ. We further assign to every vertex v ∈ V a weight
w(v) ∈ R

+ and to every edge (u, v) ∈ E a weight
w(u, v) ∈ R

+.
Finding the set E2 can now be modeled as a con-

strained maximum induced subgraph problem on the
circle graph G. The general problem can be stated as
follows.

Definition 1 (Max-Weight Deg-k Induced Sub-

graph) Given a weighted graph G = (V,E) and k ∈ N

find a set V ′ ⊂ V such that the induced subgraph
G[V ′] = (V ′, E′) has maximum degree k and maxi-
mizes the sum

W =
∑

v∈V ′

w(v)−
∑

(u,v)∈E′

w(u, v).

For general graphs it is NP-hard [7] to find such a
subgraph, but restricting the graph class of G to circle
graphs makes the problem significantly easier as we
will show in Section 3.

It remains to model our constrained crossing min-
imization problem for two-sided circular layouts as
an instance of Max-Weight Deg-k Induced Sub-

graph. We define the weights of G as w(v) = deg(v)
for all v ∈ V and as w(u, v) = 1 or, alternatively, as
w(u, v) = 2 for all (u, v) ∈ E, depending on the type
of crossings to minimize.

Lemma 1 Let G = (V, E) be a graph with cyclic ver-
tex order π and k ∈ N. Then a maximum-weight
degree-k induced subgraph in G induces an outer k-
plane graph in Γ that minimizes the number of cross-
ings in the corresponding two-sided layout ∆.

Proof. Let V ∗ ⊂ V be a vertex set that induces
a maximum-weight degree-k subgraph in G = GG,π.
Since vertices in G correspond to edges in G, we can
choose E∗ = V ∗ as the set of exterior edges in ∆. Each
edge in G corresponds to a crossing in the circular
layout Γ. Hence each edge in G[V ∗] corresponds to
an exterior crossing in ∆. Since the maximum degree
of G[V ∗] is k, no exterior edge in ∆ has more than k

crossings.

The degree of a vertex v ∈ V ∗ (and thus its weight
w(v)) equals the number of crossings that are removed
from Γ by drawing the corresponding edge in E′ in
the exterior part of ∆. However, if two vertices in V ∗

are connected by an edge, their corresponding edges
in ∆ cross in the exterior part of ∆ and we need to
add a correction term. For edge weights w(u, v) = 1
the weight W maximized by V ∗ equals the number of
crossings that are removed from the interior part of ∆.
For w(u, v) = 2, the weight W equals the number
of crossings that are removed from the interior, but
excluding those that are simply shifted to the exterior
of ∆. �

3 Efficient Algorithm based on Overlap Graphs

In this section we use the known connection between
circle graphs and overlap graphs, which are subgraphs
of interval graphs, to design an efficient algorithm for
our crossing minimization problem.
The key concept is to distinguish proper and non-

proper overlaps of intervals. Let I be a set of in-
tervals with distinct endpoints. For two intervals
I = [a, b], J = [c, d] ∈ I we say that they overlap
properly if either a < c < b < d or c < a < d < b. We
say that I nests J if a < c < d < b. Obviously, if two
intervals intersect, they either overlap properly or one
nests the other. For an interval I ∈ I we define the set
P(I, I) = {J | J ∈ I and I properly overlaps J}. By
P = ∪I∈I{(I, J) | J ∈ P(I, I)} we denote the set of
all properly overlapping interval pairs of I. Likewise
we define N (I, I) = {J | J ∈ I and I nests J}.

Given a set of intervals I we define the overlap
graph of I as the graph GI = (V,E) that has a vertex
for each interval in I and an edge for each pair of
properly overlapping intervals. In contrast to interval
graphs, two nested intervals do not define an edge in
the overlap graph.

Let ρ be the maximum degree of the overlap graph of
I and let δ = max{|N (I, I)| | I ∈ I} be the maximum
number of intervals nested by any interval in I. We
define the parameter γ = max{ρ, δ} as an upper bound
on the number of intersections per interval.
As shown by Gavril [3] circle graphs and overlap

graphs are isomorphic. The idea is to cut the circle C

between two arbitrary vertices and project the chords
onto the real line below C. Each chord is then repre-
sented by an interval and two chords intersect if and
only if their projected intervals overlap properly, see
Figure 2.

We rephrase Definition 1 in terms of interval repre-
sentations of circle graphs. The weights can be taken
directly from the circle graph GG,π = (V,E). For
each interval I ∈ I corresponding to v ∈ V we set
w(I) = w(v) and for each pair of properly overlapping
intervals (I, J) ∈ P(I) corresponding to edge e ∈ E

we set w(I, J) = w(e).

275

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 2: An example projection of a circle graph to
a set of intervals with an isomorphic overlap graph.

Figure 3: Split along the two red intervals. The dotted
intervals are discarded and we recurse on the five sets
with black intervals.

Definition 2 (Max-Weight k-Intersection Set)
Given an interval set I find a subset I ′ ⊆ I such that
no interval I ∈ I ′ has more than k proper intersections
with other intervals in I ′ and the sum

W =
∑

I∈I′

w(I)−
∑

(I,J)∈P (I′)

w(I, J)

is maximized.

Since circle graphs and overlap graphs are iso-
morphic, we can also solve Max-Weight k-

Intersection Set in order to solve our crossing
minimization problem for two-sided circular layouts.
In this paper, we restrict our attention to the case
k = 1, i.e., finding an outer 1-plane edge set E′ or,
equivalently, finding an interval set with at most one
proper intersection per interval.

3.1 Properties of max-weight 1-intersection sets

Before we describe our algorithm in Section 3.2 we
introduce some notation and properties for splitting
an interval set into subsets. Let I be a set of intervals.
We say I has common point x ∈ R if x ∈ I for all
intervals I ∈ I. For a general set of intervals I we
define I|x = {I ∈ I | x ∈ I} as the set of all intervals
in I with common point x.

Further, for x, y ∈ R ∪ {±∞} with x ≤ y we define
the set I[x, y] = {I ∈ I | I ⊆ [x, y]}. For any x ≤ y an
interval set I[x, y] can be split along an interval I =
[a, b] ∈ I into the three sets I[x, a] , I[a, b] , I[b, y].
All intervals which are not contained in one of the
three sets are discarded.

Finally we can split any I[x, y] along a pair of proper
intersecting intervals I = [a, b], J = [c, d] ∈ I. With-
out loss of generality let a < c < b < d. Then the

split creates the five sets I[x, a] , I[a, c], I[c, b], I[b, d],
I[d, y]. Again, all intervals which are not contained
in one of the five sets are discarded. An example is
shown in Figure 3.

Lemma 2 Let I be a set of intervals. For any x ∈ R

at most two properly intersecting intervals I, J ∈ I|x
can be part of a max-weight 1-intersection set on I.

Proof. Assume there is a third interval K ∈ I|x in a
max-weight 1-intersection set, which properly overlaps
I or J or both. This K cannot be added to the
solution set without creating at least one interval with
more than one intersection, which is not allowed by
definition. �

For an interval set I we call I = [a, b] ∈ I the left-
most interval, if a < a′ for all [a′, b′] ∈ I \I. We define
the left interval set as L (I) = P (I, I) ∪N(I, I), the
set of intervals intersecting the left-most interval I.

Lemma 3 Let I be an interval set, Io a max-weight
1-intersection set of I and I ∈ I the left-most interval.
Then either I ∈ Io or there exists at least one interval
J ∈ Io such that J ∈ L (I).

Proof. Let I ′

o be a max-weight 1-intersection set of
I such that neither I nor an interval J ∈ L (I) is
part of I ′

o. That is, there is no interval K ∈ I ′

o

that properly intersects I or is nested by I, but then
I ′

o ∪ {I} is a solution to the max-weight 1-intersection
set problem on I with larger weight which contradicts
the optimality of I ′

o. �

3.2 Algorithm for the max-weight 1-intersection
set problem

We use a dynamic programming algorithm to solve the
max-weight 1-intersection set problem. The principal
idea is to split a set of intervals I in each step along
one interval or two properly intersecting intervals into
smaller independent subsets. By Lemma 3 we do not
have to consider splits along arbitrary intervals, but
can choose either single intervals from L (I) or pairs
of properly intersecting intervals, where at least one
of them is in L (I).
We define a two-dimensional table T , in which we

store the weight of an optimal local solution for each
subinstance I[x, y] as the entry T [x, y]. Since for all
relevant splits x and y are start- or end-points of inter-
vals in I this table has size quadratic in the number
of intervals. The best global solution corresponds
to entry T [−∞,∞], where ±∞ are symbolic dummy
coordinates.

Picking one Interval A single interval I = [a, b] ∈
L (I[x, y]) is chosen as a candidate for the optimal
solution. This gives us a split along one interval and
three subinstances to consider. The optimal solution

276

33rd European Workshop on Computational Geometry, 2017

T1[x, y] between x and y, when splitting along one
interval I, is the maximum across these splits plus the
weight of the interval I.

T1[x, y] = max
I∈L (I[x,y])

{

T [x, a]+T [a, b]+T [b, y]+w(I)
}

.

Since we consider every interval in L (I[x, y]) this step
maximizes over O(γ) sub-cases, one for each interval
in L (I[x, y]) which has size at most γ = max{δ, ρ}.

Picking two Intervals Two properly intersecting in-
tervals I = [a, b] ∈ L (I[x, y]) and J = [c, d] ∈

P(I, I[x, y]) are chosen as candidates for the optimal
solution. This gives us a split along two intervals and
five subinstances to consider. The optimal solution
T2[x, y] for the set I[x, y] is the maximum across the
possible splits generated by pairs of properly intersect-
ing intervals. The weight of an individual split is the
weight of the optimal solutions of the generated subin-
stances plus the weight of the two chosen intervals I, J
minus the weight attributed to the pair (I, J).

T2[x, y] = max
I∈L (I[x,y])
J∈P(I,I[x,y])

{

T [x, a] + T [a, c] + T [c, b]

+ T [b, d] + T [d, y] + w(I) + w(J)− w(I, J)
}

.

Since we consider every pair of properly intersecting
intervals, one of which in L (I[x, y]), this case maxi-
mizes over O(γ2) sub-cases.
Maximizing over both possibilities for the split we

obtain the optimal local solution T [x, y] as

T [x, y] = max {T1[x, y], T2[x, y]} . (1)

The set of intervals forming an optimal solution of the
max-weight 1-intersection set problem can be recov-
ered using the standard process of backtracking the
decisions made by the maximization steps.

Theorem 4 The Max-Weight 1-Intersection
Set problem for a set of intervals I can be solved
in O(γ2n2) time, where n = |I| and γ is an upper
bound on the number of intersections per interval.

Proof. The time to compute an entry T [x, y] is domi-
nated by the case of splitting along a pair of intervals,
which requires O(γ2) time as argued above. Since T

has size O(n2), the total computation time is O(γ2n2).
It remains to show the correctness. Let Io be an

optimal solution to the max-weight 1-intersection set
problem on I. By definition Io can be decomposed into
pairs I, J ∈ Io such that I and J intersect properly,
and single intervals K ∈ Io such that no other interval
in Io overlaps K properly.
The proof is by induction over the number of in-

tervals in Io. In case Io consists of a single interval
or two properly intersecting intervals these have to
be in L (I) by Lemma 3. Our algorithm considers

exactly all single intervals and pairs of properly inter-
secting intervals of L (I) in its first step, in particular
it consider the intervals in Io.

So let Io be an optimal solution with more than two
intervals or two single intervals. By Lemma 3, Io must
contain a single interval from L (I) or a pair with
one interval from L (I) along which we can split Io.
With this split we create either three or five smaller
and independent subinstances. For each subinstance
we can compute an optimal solution by induction
hypothesis. Since our algorithm also considers that
particular split, our solution is at least as good as Io.
In the end we return exactly Io or a solution with
equal weight. �

Combining the results from above we can conclude
with the following result on two-sided layouts.

Corollary 1 Given a graph G = (V, E) and a cyclic
vertex order π a crossing-minimal two-sided drawing ∆

with outer 1-plane exterior edge set can be computed
in O(γ2|E|2) time, where γ is the thickness of the
overlap graph derived from the circle graph GG,π.

References

[1] M. Baur and U. Brandes. Crossing reduction in
circular layouts. In Graph-Theoretic Concepts in
Computer Science (WG’04), volume 3353 of LNCS,
pages 332–343. Springer Berlin Heidelberg, 2004.

[2] E. R. Gansner and Y. Koren. Improved circular
layouts. In Graph Drawing (GD’06), volume 4372
of LNCS, pages 386–398. Springer, 2007.

[3] F. Gavril. Algorithms for a maximum clique and a
maximum independent set of a circle graph. Net-
works, 3(3):261–273, 1973.

[4] S. Masuda, T. Kashiwabara, K. Nakajima, and
T. Fujisawa. On the NP-completeness of a com-
puter network layout problem. In Circuits and
Systems (ISCAS’87), pages 292–295. IEEE, 1987.

[5] S. Masuda, K. Nakajima, T. Kashiwabara, and
T. Fujisawa. Crossing minimization in linear em-
beddings of graphs. IEEE Trans. Computers,
39(1):124–127, 1990.

[6] G. Valiente. A new simple algorithm for the
maximum-weight independent set problem on
circle graphs. In Algorithms and Computation
(ISAAC’03), volume 2906 of LNCS, pages 129–137.
Springer, 2003.

[7] M. Yannakakis. Node-and edge-deletion NP-
complete problems. In Theory of Computing
(STOC’78), pages 253–264. ACM, 1978.

277

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Irrational Guards are Sometimes Needed∗

Mikkel Abrahamsen Anna Adamaszek† Tillmann Miltzow‡

Abstract

In this paper we study the art gallery problem, which
is one of the fundamental problems in computational
geometry. The objective is to place a minimum num-
ber of guards inside a simple polygon such that the
guards together can see the whole polygon. We say
that a guard at position x sees a point y if the line
segment xy is fully contained in the polygon.

Despite an extensive study of the art gallery prob-
lem, it remained an open question whether there are
polygons given by integer coordinates that require
guard positions with irrational coordinates in any op-
timal solution. We give a positive answer to this ques-
tion by constructing a monotone polygon with inte-
ger coordinates that can be guarded by three guards
only when we allow to place the guards at points
with irrational coordinates. Otherwise, four guards
are needed.

1 Introduction

For a polygon P and points x, y ∈ P, we say that x
sees y if the interval xy is contained in P. A guard
set S is a set of points in P such that every point in
P is seen by some point in S. The points in S are
called guards. The art gallery problem is to find a
minimum cardinality guard set for a simple polygon
P on n vertices. The polygon P is considered to be
filled, i.e., it consists of a closed polygonal curve in the
plane and the bounded region enclosed by this curve.

This classical version of the art gallery problem has
been originally formulated in 1973 by Victor Klee (see
the book of O’Rourke [15, page 2]). It is often re-
ferred to as the interior-guard art gallery problem or
the point-guard art gallery problem, to distinguish it
from other versions that have been introduced over
the years.

∗Mikkel Abrahamsen is partially supported by Mikkel Tho-
rup’s Advanced Grant from the Danish Council for Independent
Research under the Sapere Aude research career programme.
Anna Adamszek is supported by the Danish Council for Inde-
pendent Research DFF-MOBILEX mobility grant. Tillmann
Miltzow is supported by the ERC grant “PARAMTIGHT: Pa-
rameterized complexity and the search for tight complexity re-
sults", no. 280152.

†University of Copenhagen, Denmark.
{miab,anad}@di.ku.dk

‡Institute for Computer Science and Control, Hungarian
Academy of Sciences (MTA SZTAKI), t.miltzow@gmail.com

In 1978, Steve Fisk provided an elegant proof that
⌊n/3⌋ guards are always sufficient and sometimes nec-
essary to guard a polygon with n vertices [11]. Five
years earlier, Victor Klee had posed this question to
Václav Chvátal, who soon gave a more complicated
solution [6]. Since then, the art gallery problem has
been extensively studied, both from the combinato-
rial and the algorithmic perspective. Most of this re-
search, however, is not focused directly on the classi-
cal art gallery problem, but on its numerous versions,
including different definitions of visibility, restricted
classes of polygons, different shapes of the guards
(point/line segment), restrictions on the positions of
the guards, etc. For more detailed information we
refer the reader to the following surveys [15, 19, 21].

Despite extensive research on the art gallery prob-
lem, no combinatorial algorithm for finding an opti-
mal solution is known. The only exact algorithm is
attributed to Micha Sharir (see [8]), who has shown
that in nO(k) time one can find a guard set consisting
of k guards, if such a guard set exists. This result is
obtained by using standard tools from real algebraic
geometry [2], and it is not known how to find an op-
timal solution without using this powerful machinery
(see [3] for an analysis of the very restricted case of
k = 2). To stress this even more: Without the tools
from algebraic geometry, we would not know if it is
decidable whether a guard set of size k exists or not!
Some recent lower bounds [4] based on the exponen-
tial time hypothesis suggest that there might be no
better exact algorithms than the one by Sharir.

To explain the difficulty in constructing exact al-
gorithms, we want to emphasize that it is not known
whether the decision version of the art gallery prob-
lem (i.e., the problem of deciding whether there is
a guard set consisting of k guards, where k is a pa-
rameter) lies in the complexity class NP. While NP-
hardness and APX-hardness of the art gallery prob-
lem have been shown for different classes of poly-
gons [5, 9, 13, 14, 16, 18, 20], the question of whether
the point-guard art gallery problem is in NP remains
open. A simple way to show NP-membership would
be to prove that there always exists an optimal set
of guards with rational coordinates of polynomially
bounded description.

Indeed, Sándor Fekete posed at MIT in 2010 and
at Dagstuhl in 2011 an open problem, asking whether
there are polygons requiring irrational coordinates in
an optimal guard set [10]. The question has been

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

278

33rd European Workshop on Computational Geometry, 2017

raised again by Günter Rote at EuroCG 2011 [17]. It
has also been mentioned by Rezende et al. [7]: “it re-
mains an open question whether there are polygons
given by rational coordinates that require optimal
guard positions with irrational coordinates”. A simi-
lar question has been raised by Friedrichs et al. [12]:
“[. . .] it is a long-standing open problem for the more
general Art Gallery Problem (AGP): For the AGP
it is not known whether the coordinates of an opti-
mal guard cover can be represented with a polynomial
number of bits”.

Our results. We answer the open question of Sándor
Fekete. Recall that a polygon P is called monotone if
there exists a line l such that for every line l′ orthog-
onal to l it holds that P ∩ l′ is an interval.

Theorem 1 There is a simple monotone polygon P

with integer coordinates of the vertices such that

(i) P can be guarded by 3 guards placed at points
with irrational coordinates, and

(ii) an optimal guard set of P with guards at points
with rational coordinates has size 4.

Other related work. A new line of research fo-
cuses on implementing algorithms that are capable of
solving instances of the art gallery problem with thou-
sands of vertices, giving a solution which is close to
the optimal one, see the recent survey by Rezende et
al. [7]. They explain that many practical algorithms
rely on “routines to find candidates for discrete guard
and witness locations.” We show that this technique
inevitably leads to sub-optimal solutions unless irra-
tional candidate locations are also considered. We
believe that our example and techniques are a good
starting point to construct benchmark instances for
implementations of art gallery algorithms. Bench-
mark instances serve to validate the quality of algo-
rithms. Using the same instances when comparing
different algorithms makes the results comparable.

A problem related to the art-gallery problem is
the terrain guarding problem. In this problem, an x-
monotone polygonal curve c (i.e., the terrain) is given.
The region R above the curve c has to be guarded,
and the guards are restricted to lie on c. Similarly
as in our problem, a guard x sees a point y if xy
is contained in the region R. Although the solution
space of the terrain guarding instance is the contin-
uous polygonal curve c, a discretization of the solu-
tion space has been recently described by Friedrichs
et al. [12]. Given a terrain with n vertices at integer
position, they describe a set S ⊂ Q of size O(n3),
computable in polynomial time, such that there is
an optimal guard placement restricted to S. It fol-
lows that for the terrain guarding problem the phe-
nomenon with irrational numbers does not appear,
and also the decision version of the terrain guarding
problem is in NP.

2 Intuition

In this section, we explain the key ideas behind the
construction of the polygon P. Our presentation is
informal, see the full-version for a formal proof and
complete description of the polygon. Here we omit all
“scary” computations and focus on conveying the big
picture.

Define a rational point to be a point with two ratio-
nal coordinates. An irrational point is a point which
is not rational. A rational line is a line that contains
two rational points. An irrational line is a line that
is not rational.

Forcing a Guard on a Line Segment. Consider
the drawing of the polygon P in Figure 2. We will now
explain an idea of how three pairs of triangular pock-
ets can enforce three guards on three line segments
within P.

Consider the two triangular pockets in Figure 1.
The blue line segment contains one edge of each of
these pockets, and the interiors of the pockets are at
different sides of the line segment. A guard which
sees the point t must be placed within the orange
triangular region, and guard which sees b must be
placed within the yellow triangular region. Thus, a
single guard can see both t and b only if it is on the
blue line segment tb, which is the intersection of the
two regions.

t

b

Figure 1: The only way that one guard can see both
t and b is when the guard is on the blue line.

Consider now the case that we have k pairs of tri-
angular pockets, and no two regions corresponding to
different pairs of pockets intersect. In order to guard
the polygon with k guards, there must be one guard
on the line segment corresponding to each pair. Our
polygon P has three such pairs of pockets (see Fig-
ure 2), and it can be checked that the corresponding

l lr

Figure 2: The only way to guard the polygon with
three guards requires one guard on each of the green
lines lℓ, lm, lr.

279

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

regions do not intersect.

Restricting a Guard to a Region Bounded by a
Curve. For the following discussion, see the Figure 3
and notation therein. We want to guard the polygon
from Figure 3 using two guards, g1 and g2. We assume
that g1 is forced to be on the blue vertical line l.

Consider some position of g1 on l, such that g1 can
see at least one point of the top edge et of the top
quadrilateral pocket, and at least one point of the
bottom edge eb of the bottom quadrilateral pocket.
Let pt and pb denote the leftmost points seen by g1
on et and eb, respectively. Observe that pt moves to
the right if g1 moves up, and to the left if g1 moves
down. The point pb behaves in the opposite way when
g1 is moved. Consider some fixed position of g1 on the
blue line, and the corresponding positions of pt and
pb. Let b be the bottom right corner of the top pocket,
and d the top right corner of the bottom pocket. Let
i be the intersection point of the line containing pt
and b, with the line containing pb and d. The points
b, d, i define a triangular region ∆. It is clear that if
we place the guard g2 anywhere inside ∆, then g1 and
g2 will together see the entire polygon. On the other
hand, if we place g2 to the right of ∆, then g1 and g2
will not see the entire polygon, as some part of the
top or the bottom pocket will not be seen.

b

g1
g2

d

b

d

et

eb

pt

pb

i

g2
l

l

Figure 3: Top: The guard g2 must be inside the
shaded triangular region (or to the left of it) in or-
der to guard the entire part of the polygon that is
not seen by g1. Bottom: All possible positions of the
point i define a simple curve C.

Now, let us move the guard g1 along the blue line.
Each position of g1 yields some intersection point i.
We denote the union of all these intersection points
by C (see the bottom picture in Figure 3). It is easy
to see that C is a simple curve. We can compute a

parameterization of C since we have described how
to construct the point i as a function of the position
of g1.

Note that g2 sees a larger part of both pockets if it
is moved horizontally to the left and a smaller part of
both pockets if it is moved horizontally to the right.
Consider a fixed position of g2 on or to the right of
the segment bd. Let g′2 be the horizontal projection
of g2 on C. Let g1 be the unique position on the blue
line such that g1 and g′2 see all of the polygon. If g2
is to the left of C, g′2 sees less of the pockets than g2,
so g1 and g2 can together see everything. If g2 is to
the right of C, g2 sees less of the pockets than g′2 and
neither the top nor the bottom pocket are completely
guarded by g1 and g2. For any higher placement of
g1 even less of the top pocket is guarded and for any
lower placement of g1 even less of the bottom pocket
is guarded. Thus, there exists no placement of g1
such that both pockets are completely guarded by g1
and g2. We summarize our reasoning in the following
observation.

Observation 1 Consider a fixed position of g2 on or
to the right of the segment bd. There exists a position
of g1 on l such that the entire polygon is seen by g1
and g2 if and only if g2 lies on or to the left of the
curve C.

gℓ

gm
gr

lℓ
lm

lr

pℓ
t pr

t

pℓ
b

pr
b

Rr

Rℓ

Rm

P ℓ
t

P ℓ

b

P r
t

P r

b

eℓ
t

er
t

eℓ
b

er
b

cℓ
cr

Figure 4: The polygon P.

Restricting a Guard to a Single (Irrational)
Point. For this paragraph, let us consider the poly-
gon sketched in Figure 4, together with additional la-
bels and information. The three guards gℓ, gm, gr are
forced by the triangular pockets to lie on the three
green line segments lℓ, lm, lr, respectively. Addition-
ally, the three rectangular pockets Rℓ, Rm, Rr force
the guards to lie within short intervals within each
line segment. With these restrictions, we can show
that for the three guards to see the whole polygon,
it must hold that the guards gℓ and gm can together
see the left quadrilateral pockets P ℓ

t and P ℓ

b
, and the

guards gm and gr can together see the right quadri-
lateral pockets P r

t and P r

b
.

Then, the curve cℓ bounds from the right the fea-
sible region for the guard gm, such that gℓ and gm
can together see the left pockets P ℓ

t and P ℓ

b
. Simi-

larly, the curve cr bounds from the left the feasible

280

33rd European Workshop on Computational Geometry, 2017

region for the guard gm, such that gr and gm can to-
gether see the right pockets P r

t and P r

b
. Thus, the

only way that gℓ, gm, and gr can see the whole poly-
gon is when gm is within the grey region, between
cℓ and cr. Our idea is to define the line lm so that
it contains an intersection point of cℓ and cr, and it
does not enter the interior of the grey region. A sim-
ple computation with some computer algebra system
outputs equations defining the two curves cℓ, cr. It
can be checked, even by hand, that the point p lies
on both curves, and also on the line lm. Further p
turns out to be irrational, see the longer versions for
the exact values and computations [1]. Therefore, p
is a feasible (and at the same time irrational) posi-
tion for the guard gm. Moreover, by plotting cℓ, cr,
and lm in P as in Figure 4, we get an indication that
as we traverse lm from left to right, at the point p
we exit the area where gm and gl can guard together
the two left pockets, and at the same time we enter
the area where gm and gr can guard together the two
right pockets. Thus, the only feasible position for the
guard gm is the irrational point p.

References

[1] Mikkel Abrahamsen, Anna Adamaszek, and Till-
mann Miltzow. Irrational Guards are Sometimes
Needed. In SoCG to appear, 2017. available at
http://arxiv.org/abs/1701.05475.

[2] Saugata Basu, Richard Pollack, and Marie-
Françoise Roy. Algorithms in real algebraic ge-
ometry. Springer-Verlag Berlin Heidelberg.

[3] Patrice Belleville. Computing two-covers of sim-
ple polygons. Master’s thesis, McGill University,
1991.

[4] Édouard Bonnet and Tillmann Miltzow. Param-
eterized hardness of art gallery problems. In
24th Annual European Symposium on Algorithms
(ESA), pages 19:1–19:17, 2016. Full version avail-
able at https://arxiv.org/abs/1603.08116.

[5] Björn Brodén, Mikael Hammar, and Bengt J.
Nilsson. Guarding lines and 2-link polygons is
APX-hard. In Proceedings of the 13th Cana-
dian Conference on Computational Geometry
(CCCG), pages 45–48, 2001.

[6] Vasek Chvatal. A combinatorial theorem in plane
geometry. Journal of Combinatorial Theory, Se-
ries B, 18(1):39–41, 1975.

[7] Pedro Jussieu de Rezende, Cid C. de Souza,
Stephan Friedrichs, Michael Hemmer, Alexander
Kröller, and Davi C. Tozoni. Engineering art gal-
leries. In Algorithm Engineering: Selected Results
and Surveys, LNCS, pages 379–417. Springer,
2016.

[8] Alon Efrat and Sariel Har-Peled. Guard-
ing galleries and terrains. Inf. Process. Lett.,
100(6):238–245, 2006.

[9] Stephan Eidenbenz, Christoph Stamm, and Pe-
ter Widmayer. Inapproximability results for
guarding polygons and terrains. Algorithmica,
31(1):79–113, 2001.

[10] Sándor Fekete. Dagstuhl Seminar 11111, Com-
putational Geometry, March 13 – 18 , 2011. Or-
ganized by Pankaj Kumar Agarwal and Kurt
Mehlhorn and Monique Teillaud.

[11] Steve Fisk. A short proof of Chvátal’s watchman
theorem. J. Comb. Theory, Ser. B, 24(3):374,
1978.

[12] Stephan Friedrichs, Michael Hemmer, James
King, and Christiane Schmidt. The continuous
1.5D terrain guarding problem: Discretization,
optimal solutions, and PTAS. Journal of Com-
putational Geometry, 7(1):256–284, 2016.

[13] Erik Krohn and Bengt J. Nilsson. Approximate
guarding of monotone and rectilinear polygons.
Algorithmica, 66(3):564–594, 2013.

[14] D. T. Lee and Arthur K. Lin. Computational
complexity of art gallery problems. IEEE Trans-
actions on Information Theory, 32(2):276–282,
1986.

[15] Joseph O’Rourke. Art Gallery Theorems and Al-
gorithms. Oxford University Press, 1987.

[16] Joseph O’Rourke and Kenneth Supowit. Some
NP-hard polygon decomposition problems. IEEE
Transactions on Information Theory, 29(2):181–
190, 1983.

[17] Günter Rote. EuroCG open problem ses-
sion, 2011. See the personal webpage of
Günter Rote: http://page.mi.fu-berlin.

de/rote/Papers/slides/Open-Problem_

artgallery-Morschach-EuroCG-2011.pdf.

[18] Dietmar Schuchardt and Hans-Dietrich Hecker.
Two NP-hard art-gallery problems for ortho-
polygons. Math. Log. Q., 41:261–267, 1995.

[19] Thomas C. Shermer. Recent results in art gal-
leries. Proceedings of the IEEE, 80(9):1384–1399,
1992.

[20] Ana Paula Tomás. Guarding thin orthogonal
polygons is hard. In Fundamentals of Compu-
tation Theory, pages 305–316. Springer, 2013.

[21] Jorge Urrutia. Art gallery and illumination prob-
lems. In J.-R. Sack and J. Urrutia, editors, Hand-
book of Computational Geometry, chapter 22,
pages 973–1027. Elsevier, 2000.

281

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Illuminating polygons by edge-aligned floodlights of uniform angle

(Brocard illumination)∗

Carlos Alegŕıa-Galicia † David Orden ‡ Carlos Seara § Jorge Urrutia ¶

Abstract

An α-floodlight is a light source that illuminates a
wedge of the plane bounded by two rays ℓ, r emanat-
ing from a point x, in such way that r is obtained by
rotating ℓ around x in the clockwise direction by an
angle of α. The rays ℓ, r and the point x are known
respectively, as the left ray, the right ray, and the apex
of the α-floodlight. Given a simple polygon P with
vertices v0, . . . , vn−1 labelled in the clockwise order
around the boundary of P , we say that an α-floodlight
fi is an edge-aligned α-floodlight on P , if its apex lies
on vi and its left ray contains the edge vivi+1. See Fig-
ure 1. Let F(α) be the set {f0, . . . , fn−1} of edge-
aligned α-floodlights on P . The Brocard Illumination

problem for P consists on finding the smallest an-
gle α such that F(α) illuminates the interior of P . We
present algorithms to solve the Brocard Illumination
problem when P is convex or an arbitrary simple
polygon using respectively, Θ(n) time and space, and
O(n3 log2 n) time and O(n3) space. If P is a triangle,
finding α is equivalent to finding the Brocard point
of P .

1 Introduction

Let P be a simple polygon and F(α) be the set of
edge-aligned α-floodlights on P as defined above. We
denote by ℓi and ri respectively, the left ray and the
right ray of fi. Note that as α is increased, ℓi remains
fixed (as it contains vivi+1) while ri rotates in the
clockwise direction anchored at vi. Therefore, all the

∗Research of all the authors is partially supported by project
H2020-MSCA-RISE project 73499 - CONNECT.

†Posgrado en Ciencia e Ingenieŕıa de la Com-
putación, Universidad Nacional Autónoma de México,
calegria@uxmcc2.iimas.unam.mx.

‡Departamento de F́ısica y Matemáticas, Universidad
de Alcalá, Spain, david.orden@uah.es. Research supported
by MINECO Projects MTM2014-54207 and TIN2014-61627-
EXP and by TIGRE5-CM Comunidad de Madrid Project
S2013/ICE-2919.

§Departament de Matemàtiques, Universitat Politècnica de
Catalunya, Spain, carlos.seara@upc.edu. Research supported
by the projects Gen. Cat. DGR 2014SGR46 and MINECO
MTM2015-63791-R.

¶Instituto de Matemáticas, Universidad Nacional Autónoma
de México, urrutia@matem.unam.mx. Research supported by
SEP-CONACYT 80268 and PAPPIIT IN102117 Programa de
Apoyo a la Investigación e Innovación Tecnológica UNAM.

rays r0, . . . , rn−1 rotate at the same speed, and the
intersection point of any two rays ri and rj describes a
circular arc contained on a circle c(i,j) passing through
vi and vj that we call the adjoint circle of vi and
vj . It is not hard to see that c(i,i+1) is tangent to
vivi+1 at vi+1 and, for |i−j| �= 1, c(i,j) passes through
the intersection point of the lines containing vivi+1

and vjvj+1. For simplicity, we denote ci = c(i,i+1).
See Figure 1 (left).

ω

Q

ω
ω

ω

ω
ω

v0
v1

c(1,6)

c7

ℓ1
v5

Figure 1: The Brocard Illumination of a simple polygon
(left) and a Brocard hexagon (right). Adjoint circles are
highlighted with blue.

A Brocard polygon [2] is a convex polygon having a
unique point Q in its interior such that ∠Qvivi+1 =
∠Qvi+1vi+2 = αb for all 0 ≤ i < n, where subindices
are taken modulo n. The point Q and the angle αb

are known respectively, as the Brocard point and the
Brocard angle of the polygon. For P being a Brocard
polygon, all the adjoint circles c0, . . . , cn−1 intersect
in Q. That is, Q is the common intersection point
of all the rotating rays of the floodlights in F(αb)
and, thus, it is the last point in the interior of P

being illuminated, so that it gives the solution of the
Brocard Illumination problem. See Figure 1 (right).
It is known that all harmonic polygons are Brocard

polygons [4], as well as all regular polygons and all tri-
angles. It requires O(n) time and space to verify if P
belongs to one of these classes of polygons and, in such
case, we can clearly solve the Brocard Illumination
problem in constant time. In this paper we present
algorithms to solve the Brocard Illumination prob-
lem for two more general classes of polygons: When
P is convex or an arbitrary simple polygon. For each
class our algorithms require respectively, Θ(n) time
and space, and O(n3 log2 n) time and O(n3) space. As

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

282

33rd European Workshop on Computational Geometry, 2017

far as we know, there are no previous studies about
the Brocard Illumination of a polygon, the most re-
lated ones being [5–9]. These consider sets of vertex
floodlights of uniform angle, but they do not require
the floodlights to be edge-aligned. See also [2, 10].

2 Convex polygons

In this section we assume that P is a convex poly-
gon. Let P (α) = P \ (f0 ∪ · · · ∪ fn−1) be the convex
polygon in the interior of P that is not yet illumi-
nated by the floodlights in F(α) for a given α, and
x(i,j) denote the intersection point of ri and rj . The
circles c(i,j) and c(j,k) intersect at two points, one of
which is vj . We denote with a(i,j,k) the second in-
tersection point of c(i,j) and c(j,k), and with α(i,j,k)

the angle ∠a(i,j,k)vivi+1 = ∠a(i,j,k)vjvj+1. For sim-
plicity, we denote xi = x(i,i+1), ai = a(i,i+1,i+2), and
αi = α(i,i+1,i+2).

Note that P (0) = P and P (α) shrinks as α grows
up to the angle αb of Brocard Illumination of P . It is
known that P (αb) is a degenerate polygon formed by
a single point or a line segment [1]. In the former case,
the point is the common intersection of the rotating
rays of at least three floodlights in F(αb) with non-
parallel left rays. In the latter case, the line segment
connects two vertices vi and vj , since at αb the right
rays of fi and fj meet at the line segment vivj .

Consider the set F(α) and the polygon P (α) as
we increment α starting at α = 0. Assume for sim-
plicity that no pair of edges of P are parallel to
each other, and that α0 is the smallest angle in
α0, . . . ,αn−1. When 0 ≤ α < α0, the vertices of P (α)
are the points x0, . . . , xn−1 and, for 0 ≤ i < n, the
points xi and xi+1 move towards ai along ci and ci+1,
respectively. See Figure 2.

α

v0 v1

v2

a0

x0

x1
P (α)

Figure 2: As α grows, x0 and x1 converge to a0.

At α = α0 we have that x0 = x1 = a0, that is, the
edge x0x1 degenerates into a point. Note that r1 does
not participate on the boundary of P (α0) and, from
here on, f1 can be “turned off” without affecting the
area of P illuminated by the remaining floodlights. In
these conditions we say that α0 is a blackout event

and f1 is discarded. See Figure 3.

v1

v2

α0

a0

v0

Figure 3: A blackout event at α0.

Let ε be an angle such that the blackout event after
α0 arises at an angle greater than α0 + ε. The ver-
tices of P (α0 + ε) are x(0,2), x2, . . . , xn−1, the point
x(0,2) moves towards a(0,2,3) along c(0,2), and the
next blackout event is the smallest angle in the set
α(0,2,3),α2, . . . ,αn−2,α(n−1,0,2). See Figure 4.

v2

v0 v1

x(0,2)

vn−1
α+ ε

Figure 4: The floodlights in F(α+ ε).

Thus, for every blackout event two elements are re-
moved and one new element is added to the set of
adjoint circles. Therefore, at each event the number
of candidate blackout events, as well as the vertices
of P (α), are reduced by one. If we keep on repeating
this process, we will eventually have a set of candi-
date blackout events all equal to the angle of Brocard
Illumination αb, where P (αb) is a single point given
by the common intersection of the remaining adjoint
circles.

Lemma 1 Let nα be the number of vertices of
P (α). We can find out whether the floodlights in F(α)
illuminate the interior of P in O(nα) time and space.

We now describe the algorithm to solve the Brocard
Illumination problem for a convex polygon.

1. Initialization. Initialize a circular linked list L
to contain pairs of the form (x, θ), where x is a point
in R

2 and θ is an angle in the unit circle. Traverse the
vertices of P in clockwise circular order and, for each
vertex vi, add the entry (vi,αi) to L. At the end of
this process L will contain the pairs

(v0,α0) → · · · → (vn−1,αn−1) → (v0,α0).

283

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Note that the set of angles of the elements in L form
the unsorted set of candidate blackout events induced
by the set of vertices of P .

2. Recursive binary search. Repeat the following
steps until the angles of all the elements in L have the
same value, or L contains at most three elements:

(a) Compute the median αm of the set of angles of
the elements in L. If there are repeated angles, choose
αm so that all of them lie in the same part of the
bipartition induced by αm.

(b) For a given α, let

F−(α) = {fi ∈ F(α) | (vi, θ) ∈ L and θ ≤ α},

F+(α) = {fi ∈ F(α) | (vi, θ) ∈ L and θ > α}.

Note that the region of P illuminated by the flood-
lights in F−(α) is contained in the region illuminated
by the floodlights in F+(α). We can therefore discard
one of the partitions of L induced by αm (as it does
not participate in the solution) as follows.

i. If the floodlights in F−(αm) illuminate the inte-
rior of P , then αm is greater than the angle of
Brocard illumination. We therefore remove from
L the elements whose points are apexes of flood-
lights in F+(αm).

ii. If the floodlights in F−(αm) do not illuminate
the interior of P , then αm is smaller than the an-
gle of Brocard illumination. We therefore remove
from L the elements whose points are apexes of
floodlights in F−(αm).

As L is a linked list, while traversing L each ele-
ment can be removed in constant time. Moreover,
by Lemma 1 we require linear time to check if the
floodlights in any subset of F(α) illuminate P for a
given α. Therefore, a linear run suffices to remove
from L the elements required at either condition i or ii.

(c) Traverse the remaining elements of L and, for
each triplet ((vi,α), (vj ,β), (vk, γ)) of consecutive el-
ements, set α = α(i,j,k).

3. Process parallel edges. Compute the angle
∠vjvivi+1 = ∠vivjvj+1 for every pair (fi, fj) of flood-
lights whose left rays are parallel to each other. Keep
the smallest of such angles in a variable αp. This
can be done in O(n) time and space using rotating
calipers.

4. Report solution. Report as the Brocard Illumi-
nation angle of P the smallest of αp and the angle of
the remaining elements in L.

Steps 1, 3 and 4 spend linear time and space. Step 2
also requires O(n) time and space, as it is a binary
search over an unsorted set and its stop condition,
as well as Steps 2a to 2c, spend O(n) time each. We
therefore obtain the following result.

Theorem 2 The Brocard illumination problem for a
convex polygon can be solved in Θ(n) time and O(n)
space.

3 Simple polygons

In this section P is a simple (not necessarily convex)
polygon. We start by generalizing the observations
made in Section 2 in the following Lemma.

Lemma 3 The Brocard illumination angle for P is
determined by three rays ri, rj , rk meeting at a point
(see Figure 1, left), or by two rays ri and rj meeting
at the line segment vivj (see Figure 5).

vi

vj

Figure 5: A Brocard illumination angle given by two
edge-aligned floodlights with parallel left rays.

Based on Lemma 3 we also generalize the binary-
search approach used in Section 2. We sketch next the
resulting algorithm.

1. Candidate Angles. Based on the conditions
from Lemma 3, compute the set A of O(n3) candi-
date angles of Brocard illumination.

(a) For every pair (vi, vj) such that vj is visible from
vi, add to A the angle ∠vjvivi+1 if vivi+1 is parallel
to vjvj+1 or vj is reflex. These candidate angles cover
the cases where two rays ri, rj meet at vivj , or three
rays ri, rj , rk meet at a point and at least one of them
passes through a second vertex of P (see Figure 1,
left, where the last illuminated point in the interior of
P is found by intersecting r3 and c(1,6)).

(b) Add to A the angles given by the intersection
point Q(i,j,k) of all triplets of circles c(i,j), c(j,k), and
c(j,k) such that Q(i,j,k) lies in the interior of P . These
candidate angles cover the case where three right rays
meet at a point and none of them passes through a
second vertex of P .

2. Process visibility polygons. Compute the visi-
bility polygon Pi of every vertex vi, and the set S of
intersection points of all the line segments inside P

induced by the polygons P0, . . . , Pn−1. It is not hard
to see that the number of such intersection points for

284

33rd European Workshop on Computational Geometry, 2017

every pair (Pi, Pj) is in O(n) and therefore, there are
O(n3) elements in S. To finalize this step, add the
vertices of P to S and then sort the elements of S in
increasing order along the x-axis.

3. Binary search. Sort the elements of A in in-
creasing order and perform a binary search on the
elements of A. At each iteration, find out whether the
floodlights in F(α) illuminate the interior of P for the
current value of α, to decide in which of the two parts
of A to perform the recursive search.

We define the α-visibility polygon of vi as the simple
polygon Pi(α) formed by the points inside P that are
visible from vi through fi. To find out whether F(α)
illuminates the interior of P , compute the union of
the polygons P0(α), . . . , Pn−1(α) for the given value
of α by performing a plane-sweep.

(a) Use the elements of the (sorted) set S as stop
events.

(b) Maintain the intersections of the sweeping line,
P , and the set P0(α), . . . , Pn−1(α). These inter-
sections form a set of intervals on the sweeping
line, representing the interior of P and the illu-
minated area of the floodlights in F(α) for the
current value of α. Note that the intervals are
not disjoint to each other and, in fact, several
intervals share an endpoint.

(c) Discard the events that correspond to points not
belonging to an α-visibility polygon for the cur-
rent value of α, as they do not belong to the
union of the polygons P0(α), . . . , Pn−1(α).

(d) Based on the intervals over the sweep line, de-
cide whether the current value of α suffices to
illuminate the interior of P .

Computing A requires O(n3 log n) time and O(n3)
space, as Step 1a can be computed using the vertex
visibility graph of P , and in Step 1b we can use ray
shooting to find out if the segments Q(i,j,k)vx, x ∈

{i, j, k}, lie in the interior of P , spending O(log n)
time per triplet. Step 2 clearly requires O(n3 log n)
time and O(n3) space. The binary search of Step 3 is
the most expensive part of the algorithm: At each of
the O(log n) iterations, we perform a plane-sweep on a
sorted set of O(n3) stop events, and we take O(log n)
time processing each event. That is, we require O(n3 ·
log n · log n) = O(n3 log2 n) time and O(n3) space.

Theorem 4 The Brocard Illumination angle of a
simple polygon can be computed in O(n3 log2 n) time
and O(n3) space.

4 Final remarks

For a convex polygon, a bound of π

2 on the angle of
Brocard illumination is easy to obtain. Three flood-
lights are always sufficient and sometimes necessary

to illuminate the polygon using at most 3
2π of to-

tal power. In a Brocard polygon, it is known that
αb ≤

π

2 −
π

n
[3] (the equality is reached when the poly-

gon is regular), for a total power of at most π(32 −
3
n
).

It is known that a simple polygon can always be il-
luminated using vertex π-floodlights. However, if the
floodlights are edge-aligned it is not hard to prove
that an aperture angle of π does not always suffice
to illuminate the interior of the polygon. As a sim-
ple polygon requiring a linear number of edge-aligned
floodlights is not hard to obtain, in this case we re-
quire a total power greater than πn.

Our approach to compute the Brocard Illumination
problem for simple polygons is based on the efficient
computation of the union of the set of α-visibility
polygons for a given value of α. As we do not require
to compute the union of those polygons (as opposed
to decide if such union illuminates the interior of P),
we believe that our O(n3 log2 n) time bound can be
improved, although it does not seem to be an easy
problem to solve.

References

[1] A. Ben-Israel and S. Foldes. Complementary half-
spaces and trigonometric Ceva-Brocard inequalities
for polygons. Mathematical Inequalities & Applica-

tions. Vol. 2(2), (1999), 307–316.

[2] A. Bernhart. Polygons of pursuit. Scripta Mathemat-

ica. Vol. 24(1), (1959), 23–50.

[3] Á. Besenyei. The Brocard Angle and a geometri-
cal gem from Dmitriev and Dynkin. The American

Mathematical Monthly. Vol. 122(5), (2015), 495–499.

[4] J. Casey. A sequel to the first six books of the ele-
ments of Euclid. Dublin University Press. (1888).

[5] F. Contreras, J. Czyzowicz, N. Fraiji, and J. Urrutia.
Illuminating triangles and quadrilaterals with vertex
floodlights. 10th Canadian Conference on Computa-

tional Geometry. (1998).

[6] V. Estivill-Castro, J. O’Rourke, J. Urrutia, and D.
Xu. Illumination of polygons with vertex lights. In-

formation Processing Letters. Vol. 56, (1995), 9–13.

[7] D. Ismailescu. Illuminating a convex polygon with
vertex lights. Periodica Mathematica Hungarica. Vol.
57(2), (2008), 177–184.

[8] J. O’Rourke, T. Shermer, and I. Streinu. Illumi-
nating convex polygons with vertex floodlights. 7th

Canadian Conference on Computational Geometry.

(1995).

[9] C. Tóth. Art galleries with guards of uniform range
of vision. Computational Geometry: Theory and Ap-

plications. Vol. 21, (2002), 185–192.

[10] J. Urrutia. Art gallery and illumination problems.
Handbook of Computational Geometry. (2000), 973–
1027.

