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Preface

The 34th European Workshop on Computational Geometry (EuroCG ’18), was held at Freie
Universität Berlin, Berlin, Germany, on March 21—23, 2018. EuroCG is an annual workshop
that combines a strong scientific tradition with a friendly and informal atmosphere. The
workshop is a forum where researchers can meet, discuss their work, present their results, and
establish scientific collaborations, in order to promote research in the field of Computational
Geometry, within Europe and beyond.

We received 78 submissions, which underwent a limited refereeing process by the program
committee in order to ensure some minimal standards and to check for plausibility. We
selected 75 submissions for presentation at the workshop. One submission was later withdrawn.
EuroCG does not have formally published proceedings; therefore, we expect most of the
results presented here to be also submitted to peer-reviewed conferences and/or journals.
This book of abstracts, available through the EuroCG ’18 web site, should be regarded as
a collection of preprints. In addition to the 74 contributed talks, this book also contains
abstracts of the three invited lectures, given by Nina Amenta, Prosenjit Bose, and Raúl
Rojas.

Many thanks to all authors, speakers, and invited speakers for their participation, and
to the members of the program committee and all external reviewers for their insightful
comments. We gratefully thank the supporters of EuroCG ’18 for making this event possible
and helping to keep the registration fees low: Freie Universität Berlin, keylight GmbH, and
the German Research Foundation (DFG grant MU 3501/4-1). Special thanks to all members
of the organizing committee and members of the administration at Freie Universität Berlin,
for their work that made EuroCG ’18 possible.
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Rigidity and Deformation
Nina Amenta1

1 UC Davis

Abstract

Download a triangle-mesh model of a 3D bunny, cut a stick for every edge, and attach them
together with a flexible joint at each vertex to re-create the model’s one-skeleton. Would it
stand up or collapse? Bet on “stand up” — Herman Gluck proved in 1975 that almost all
such triangulated one-skeletons are rigid. There are a few examples of non-rigid polyhedra;
that is, there is a motion under which the edge lengths remain fixed but the dihedral angles
change.

What if, instead of fixing the edge lengths, we fixed the dihedrals? Are there motions
which fix the dihedrals but allow the lengths to change? We show an analog of Gluck’s
theorem, that almost all polyhedra are “dihedral-rigid”.

Who cares? Well, deformation is the opposite of rigidity. What can rigidity—and the
examples of non-rigidity—tell us about how we can parameterize, measure and control the
deformations of a mesh? Parameterizing deformations by edge length turns out to be a bad
idea, but we demonstrate that there is reason to be much more hopeful about parameterizing
meshes by their dihedrals.

This is work with Carlos Rojas.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.





Online Competitive Routing on Delaunay
Triangulations and their Variants
Prosenjit Bose1

1 Carleton University

Abstract

A fundamental problem in computer science is that of finding a path in a graph. When the
whole graph is available, standard path-finding algorithms can be applied such as Depth-First
Search or Dijkstra’s Algorithm. However, the problem of finding a path is more challenging
in an online setting when at every step of the computation, only local information is available
to the routing algorithm (such as the neighbourhood of the current vertex in the path). The
difficulty is in deciding which edge to follow next in a path with only this local information.
It is even more challenging to find a path with constant spanning ratio.

We will highlight different techniques for finding a short path in various types of Delaunay
graphs in the online setting. We will highlight some of the difficulties involved with routing,
review some of the currently best-known routing algorithms and mention a few open problems.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.





Geometric Issues for Self-Driving Cars
Raúl Rojas1

1 Freie Universität Berlin

Abstract

In my talk, I will give an overview of a new iteration of the architecture of the autonomous
cars which have been developed at the Dahlem Center for Machine Learning and Robotics,
Freie Universität Berlin. I will explain how we mix reactive with deliberative control. I
will explain how we have experimented with geometry-based localization and the ideas we
have for localization and driving under tough weather conditions. In one project we are
investigating swarm behavior in traffic. At the end, I will present some ideas about the
evolution of the commercial introduction of autonomous vehicles in the near future.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.





Maximal Two-Guard Walks in a Polygon

Franz Aurenhammer1, Michael Steinkogler2, and Rolf Klein3

1 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, auren@igi.tugraz.at

2 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, steinkogler@igi.tugraz.at

3 Universität Bonn, Institut für Informatik, Bonn, Germany,
rolf.klein@uni-bonn.de

Abstract
Deciding two-guard walkability of an n-sided polygon is a well-solved problem. We study the related
question of how far two guards can reach from a given source vertex, in the (more realistic) case
that the polygon is not entirely walkable. There can be Θ(n) such maximal walks, and we show
how to find all of them in O(n logn) time.

1 Introduction

We address a structural question on polygons, which is motivated by optimizing so-called
triangulation axes [1], but is also interesting in its own right: How many adjacent ‘ear
triangles’ can be cut off from a polygonW , starting from a given vertex s? Equivalent is the
following question: How far can two guards reach when they are to walk on W ’s boundary,
starting from s in different directions and keeping mutually visible?

Visibility problems of this kind have been studied already in the 1990s, where Icking
and Klein [5] gave an O(n log n) time algorithm for deciding two-guard walkability of an
n-sided polygon W , from a source vertex s to a target vertex t. A few years later, Tseng
et al. [7] showed that one can find, within the same runtime, all vertex pairs (s, t) such
that W is two-guard walkable from s to t. Their result was improved to optimal O(n) time
by Bhattacharya et al. [2]. The algorithm in [5] actually provides a walk for W in case of its
existence but, on the other hand, only a negative message is returned in the (quite likely)
case that the polygon is not entirely walkable.

The present note elaborates on ‘how far’ in the latter case a polygon W is two-guard
walkable – a natural question that has not been considered in the literature to the best of
our knowledge. Such maximal walks are not unique, in general, which complicates matters.
We present a strategy that finds, in O(n log n) time, all possible maximal walks that initiate
at a given source vertex s of W . A more detailed description of the results is given in [6].

2 Preliminaries

Throughout, we let W denote a simple polygon in the plane with n vertices, one of them
being tagged as a source vertex, s. For two points x and y on the boundary, ∂W , of W ,
we write x < y if x is reached before y when walking on ∂W from s in clockwise (CW)
direction. For a vertex p of W , p+ (repectively, p−) is the CW successor (predecessor)
vertex of p on ∂W . When p is a reflex vertex (that is, a vertex where the interior angle inW
is greater than π), then the two ‘ray shooting points’ for p in W can be defined, namely,
For(p) as the first intersection point with ∂W in the direction from p− to p, and Back(p) as
the first intersection point with ∂W in the direction from p+ to p.

According to the aforementioned relation between walks and triangulations, we are only
interested in discrete and straight walks. That is, the guards when moving on ∂W directly

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



01:2 Maximal Two-Guard Walks in a Polygon

‘jump’ from a vertex to the respective neighboring vertex (only one guard is allowed to
move at a time), and they never backtrack. A walk in W is now defined as a diagonal (l, r)

of W , l < r, such that the first guard can move CW from s to l, and the second guard
can move CCW from s to r, while keeping visible to each other at each step. An obvious
condition for W to be walkable till (l, r) is that the two boundary chains from s to l and
to r, respectively (call them L and R), are co-visible in W . That is, each vertex on L is
visible from some vertex on R, and vice versa.

To characterize walkability, we will need a few more concepts, first introduced in [5]. We
say that at a pair (p, q) of its vertices, W forms a:

Forward deadlock if

Back(q) < p < q < For(p).

Backward deadlock if

p < (For(q),Back(p)) < q.

CW wegde if p < q and there exists no vertex x of W with

q < For(q) < x < Back(p).

(A CCW wegde is defined in a symmetric way.)

s

p q

For(p)
Back(q)

s

p q

Back(p)For(q)

sp

q

Back(p)
For(q)

It is not hard to see that the two guards cannot pass beyond deadlocks and wedges
without losing visibility. This will be made specific in Section 4. Moreover, in [5] it has been
shown that these obstacles to walkability are indeed the only ones. By adapting their result
to our setting we get:

I Theorem 2.1. Let (l, r), l < r, be a diagonal ofW , and denote with Q the polygon bounded
by (l, r) and the chains L and R. Then (l, r) is a walk in W iff (1) L and R are co-visible
in Q, (2) Q forms no forward and no backward deadlock, (3) Q forms no CW wedge on L,
and no CCW wedge on R.

3 Extremal walks and obstacles

A walk (l, r) in W is termed maximal if it cannot be extended by a single guard move.
More precisely, neither (l+, r) nor (l, r−) is a walk in W . For finding maximal walks, we
will apply Theorem 2.1, but we have to do so with care since conditions (1) to (3) refer to
a (yet unknown) polygon Q, rather than to the input polygon W as in [5].

To this end, for (1) we observe that the chains L and R are co-visible in Q iff they are
co-visible in W : The line segment lr lies entirely within W , so the part of ∂W different
from ∂Q does not obstruct the view within Q.

Concerning (2), we notice that forward deadlocks formed by Q do not depend on the
shape of ∂W \ ∂Q, and thus trivially are also forward deadlocks formed by W . By contrast,
for a backward deadlock (p, q) formed by Q, the points For(q) and Back(p) in Q may not
be the same as in W . (Namely, if at least one of them lies on lr). But since these points are
larger than p and smaller than q, (p, q) is also a backward deadlock in W .

No such property holds for the wedges in (3), however. A wedge (p, q) formed by Q is
not neccessarily also formed by W : The segment lr can obstruct the view to vertices x on
∂W \ ∂Q that prevent (p, q) from being a wedge in W . Fortunately though, such ‘induced’
wedges cannot occur once the co-visibility condition is satisfied; see [6].

In conclusion, it suffices to consider obstacles formed by W rather than by Q.
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For maximal walks, obstacles with extremal positions are relevant (in case of the presence
of obstacles at all, which we will assume in the sequel). A minimal CW wedge on the chain L
is a wedge (p, q) on L where the vertex q is smallest possible. For a minimal CCW wedge
(p, q) on R, in turn, the vertex p has to be largest possible. Such extremal wedges need not
be unique. A representative can be found in O(n log n) time by adapting an algorithm in [7].

A deadlock (p, q) (either forward or backward) is called minimal if there is no other such
deadlock (p′, q′) with p′ ≤ p and q′ ≥ q. The minimal backward deadlock is unique, by the
following property: If (p, q) and (p′, q′) are two backward deadlocks with p < p′ and q < q′,
then (p, q′) is a backward deadlock as well.

To find this minimal deadlock, we simply let p and q run through the reflex vertices ofW ,
starting from s in CW and CCW direction, respecticely, until the deadlock inequalities for
p as well as for q are fulfilled at the same time. This can be done in O(n) time, if W has
been preprocessed accordingly in O(n log n) time using ray shooting; see Chazelle et al. [3].

Minimal forward deadlocks, on the other hand, are not unique in general. This is one of
the reasons why maximal walks need not be unique. In fact, W can contain Θ(n) minimal
forward deadlocks (pi, qi); see the figure below for i = 1, 2, 3. The following algorithm reports
all of them. The points on ∂W relevant for this task are the reflex vertices p of W plus their
ray shooting points For(p). We assume their availability in cyclic order around W .

Algorithm MFD
Trace relevant points x in CCW order from s:
if x = For(p) and p < x then

Put p to a CW sorted list F
else if x is a reflex vertex q then

Search F for the smallest p with Back(q) < p

if p exists and is unmarked then
Mark p
Report the forward deadlock (p, q)

end if
end if
x = next relevant point
Delete from F all vertices p with p ≥ x

q

q

q

1

1

3

2

3

2

s

p

p

p

The proof of correctness of AlgorithmMFD is omitted due to lack of space. The algorithm
can be implemented in O(n log n) time. It scans O(n) relevant points, each being processed
in constant time apart from the actions on F , which take O(n log n) time in total when a
balanced search tree for F is used.

4 Constraints from obstacles

Minimal wedges and deadlocks, and also the required co-visibility, give rise to constraints
on l and r for a maximal walk (l, r) in the polygon W . We will discuss the constraints on l
in some detail. The situation for r is symmetric.

We have to distinguish between absolute and conditional constraints. Among the former
is the list below. The first two constraints stem from the co-visibility of L and R; see [5].

(1) For each reflex p with p > For(p): l ≤ p.
(2) For each reflex p with p < Back(p): l ≤ Back(p).

EuroCG’18



01:4 Maximal Two-Guard Walks in a Polygon

(3) For the minimal CW wedge (p, q) on L: l ≤ q.
(4) For the minimal backward deadlock (p, q): l ≤ p.

The conditional constraints read as follows:
(I) For each p in (1): If r > p then l < p−.
(II) For each p in (2): If r > Back(p) then l ≤ p.
(III) For (p, q) in (3): If r > q then l < q.
For convenience, we subsume the absolute constraints (1) - (4) into a single one, l ≤ x

(where x is the smallest right-hand side value), and turn it into a conditional constraint:
(IV) If r ≥ s then l ≤ x.
Finally, the minimal forward deadlocks lead to absolute constraints which deserve special

attention. Whereas in the case of a backward deadlock (p, q), neither guard can walk beyond
these vertices, we have the following observation for the avoidance of a forward deadlock
(p, q): Only one of the bounds l ≤ p and r ≥ q needs to hold. Assume now that k minimal
forward deadlocks (p1, q1), . . . , (pk, qk) exist, and let the pi’s be sorted in CW order.

I Lemma 4.1. Each of the following k + 1 pairs of bounds for (l, r) avoids all minimal
forward deadlocks: (p1, s), (p2, q1), . . . , (pk, qk−1), (s−, qk).

Proof. By minimality of the considered deadlocks, we know that the qi’s have to be sorted
in CW order. So, for each index i ≥ 2, the observation above tells us that the constraint
l ≤ pi avoids the deadlocks (pi, qi), . . . , (pk, qk), and the constraint r ≥ qi−1 avoids the
remaining deadlocks (p1, q1), . . . , (pi−1, qi−1). Moreover, the constraint l ≤ p1 suffices to
avoid all k deadlocks, and r ≥ s is trivially fulfilled. The same is true for r ≥ qk and l ≤ s−,
respectively. J

In summary, there are O(n) constraints in total, which can be found in O(n log n) time
by the results in Section 3.

5 Computing all maximal walks

Section 4 tells us that the goal is to fulfill the constraints in (I) - (IV) simultaneously, though
for each of the bounding pairs in Lemma 4.1 separately. This gives all possible maximal
walks—granted the visibility of the reported vertex pairs. But let us come back to the issue
of visibility later in this section.

For a fixed bounding pair (a, b), the constraint satisfaction problem can be transformed
into the following standard form: For two variables l and r, with bounds a and b, respectively,
there are two sets CL and CR of conditional constraints, of the form

r ≥ yi =⇒ l ≤ xi and l ≤ xj =⇒ r ≥ yj
respectively, with all values in {0, 1, . . . , n}. (That is, the vertices w0, w1, . . . , wn of W ,
w0 = wn = s, are identified with their indices.) We want to compute the maximal pair (l, r)

such that
l ≤ a, r ≥ b, and all c ∈ CL ∪ CR are fulfilled.

We say that ci ∈ CL is active at a value r if r ≥ yi holds. Similarly, cj ∈ CR is active
at l if we have l ≤ xj . The constraint fulfilling algorithm now simply alternates in scanning
through the sorted sets CL and CR (in ascending order of yi-values, and in descending order
of xj-values, respectively), and adjusts the values of l and r according to the constraints
that get active. (Active/inactive constraints are indicated with full/dashed arrows below.)
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Algorithm CFF(a, b, CL, CR)

l = a, r = b

repeat
x = min{xi | ci ∈ CL is active at r}
l = min{l, x}
y = max{yj | cj ∈ CR is active at l}
r = max{r, y}

until r = y or r = b

Return the pair (l, r)

a

l

n

n

r

b

0

1

0

Suppose that a function VIS(l, r) is available which returns the first vertex r′ ≥ r such
that (l, r′) is visible in the polygon W . (If r′ does not exist then n+ 1 is returned.) We now
present an algorithm that uses CFF and VIS as subroutines, and is capable of computing,
in O(n log n) time, all maximal walks that exist in W . Let P = {(a1, b1), . . . , (am, bm)} be
the given set of bounding pairs. We assume a1, . . . , am (and thus b1, . . . , bm) in increasing
order. In the polygon below, (l, r) and (l′, r′) are the two possible maximal walks.

Algorithm MAXWALKS(P,CL, CR)

l = am, r = b1
rrep = n+ 1

while l ≥ 0 and r < rrep do
(l, r) = CFF(l, r, CL, CR)

i = min{λ | aλ ≥ l}
rcand = max{bi, r}
rvis = VIS(l, rcand)

y = max{% | all c ∈ CL active at % admit l}
if rvis ≤ min{n, y} and rvis < rrep then

Report (l, rvis)

rrep = rvis
end if
l = l − 1

end while s

l

l’

r
r’

I Lemma 5.1. Algorithm MAXWALKS is correct.

Proof. The value of r changes only when Algorithm CFF is called, and thus r cannot
decrease. The first call of CFF is with the bounding pair (am, b1), and the subsequent calls
are with (l, r) for l < am. As soon as we have r > b1, some constraint in CR is responsible
for this. So putting the bound r for the next call means no additional restriction. This
implies that, for all l, we have the equality CFF(l, r, CL, CR) = CFF(l, b1, CL, CR).

We now look at one iteration of the while loop, under the assumption that Algorithm
MAXWALKS worked correctly so far. That is, all maximal walks (l′, r′) with l′ ≥ l have been
reported, and no other walks. Let lold be the value of l before the iteration. Then (l, r) =

CFF(lold−1, b1, CL, CR) holds by the former equality. So we have (l, r) = CFF(l′, b1, CL, CR)

for lold > l′ > l, implying that there is no walk (l′, r′) for these l′-values.
There also is no walk (l, r′) with r′ < rcand, because the bounding pair (ai, bi) as well as

the constraints in CR need to be respected. Concerning rvis, if rvis > n then no pair (l, r′)
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with r′ ≥ rcand is visible, and thus no such pair can be a walk. Further, if rvis > y then
some constraint in CL is active at rvis but does not admit l, so (l, rvis) is not a walk either.
On the other hand, if rvis ≤ min{n, y} then (l, rvis) is a walk, because the pair is visible and
fulfills all the constraints. The pair gets reported unless rvis ≥ rrep, in which case (l, rvis) is
not maximal because a larger pair has been reported already. J

CFF can be implemented such that the bounding pair of the last call is remembered.
This way each constraint in CL ∪CR is handled only once: If a call has been with (l, r), the
next call will be with (l′, r′) where l′ < l (and thus r′ ≥ r). Thus only O(n) time is spent in
total for all calls to CFF from Algorithm MAXWALKS.

Computing the thresholds y can also be done in total O(n) time. We remember the
previous value of y, and scan down from this value as long as all active constraints of CL
are fulfilled by l. The first violating constraint then gives the new value for y.

The function VIS can be performed in logarithmic time, using the techniques in Guibas
and Hershberger [4]. Clearly, the while loop is executed only O(n) times, which gives a
runtime of O(n log n) for this part, and thus for Algorithm MAXWALKS overall.

6 Concluding remarks

We conclude the paper with a few brief comments.
The polygon example above shows that maximal walks differ in (combinatorial) length,

in general. It is also revealed that minimum forward deadlocks are not the only reason why
maximal walks are not unique.

The number of maximal walks is trivially bounded by n, because no two of them can
have the same l-vertex (or the same r-vertex).

Algorithm MAXWALKS provides each maximal walk in the form of a target pair (l, r),
but not the way how the guards actually move on ∂W . Such a movement can be computed
in O(n) time, by applying the algorithm in [5] to the (already preprocessed) subpolygon
of W defined by s and (l, r). Notice, however, that a fixed target pair (l, r) may leave to the
guards different ways to perform the walk. Different ways to triangulate W from s to (l, r)

then result, though the dual of any such triangulation has to be a path.
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Abstract
We study the computation of the diameter and radius under the rectilinear link distance within a
rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances
to encode the distance between pairs of points of the domain. This helps us transform the problem
so that we can search through the candidates more efficiently. Our algorithm computes both the
diameter and the radius in O(min(nω, n2 + nh log h + χ2)) time, where ω < 2.373 denotes the
matrix multiplication exponent and χ ∈ Ω(n) ∩ O(n2) is the number of edges of the graph of
oriented distances. We also provide a faster algorithm for computing the diameter that runs in
O(n2 logn) time.

1 Introduction

Diameters and radii are popular characteristics of metric spaces. For a compact set S with
a metric d : S × S → R+, its diameter is defined as diam(S) := maxp∈S maxq∈S d(p, q),
and its radius is defined as rad(S) := minp∈S maxq∈S d(p, q). The points that realize these
distances are called the diametral pair and center, respectively. All of these terms are the
natural extensions of the same concepts in a disk and give some interesting properties of the
environment, such as the worst-case response time or ideal location of a serving facility.

Much research has been devoted towards finding efficient algorithms to compute the
diameter and radius for various types of sets and metrics. In computational geometry, one
of the most well-studied and natural metric spaces is a polygon in the plane. This paper
focuses on the computation of the diameter and the radius of a rectilinear polygon, possibly
with holes (i.e., a rectilinear polygonal domain) under the rectilinear link distance. Intuitively,
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this metric measures the minimum number of links (segments) required in any rectilinear
path connecting two points in the domain, where rectilinear indicates that we are restricted
to horizontal and vertical segments only.

Many problems that are easy under the L1 or Euclidean metric turn out to be more
challenging under the link distance. For example, computing the shortest path between two
points in a polygonal domain can be done in O(n logn) time for both Euclidean [8] and L1
metrics [10, 11]. However, even approximating the same within a factor of (2− ε) under the
link distance is 3-SUM hard [12], and thus it is unlikely that a significantly subquadratic-time
algorithm is possible.

Computing the diameter and radius is no exception: when considering simple polygons
(i.e., polygons without holes) of n vertices, the diameter and center can be found in linear
time for both Euclidean [1,7] and L1 metrics [2]. However, the best known algorithms for
the link distance run in O(n logn) time [5,16]. Lowering the running times or proving the
impossibility of this is a longstanding open problem in the field. The only partial answer to
this question was given by Nilsson and Schuierer [14, 15]; they showed that the diameter and
center can be found in linear time when we are only allowed to use rectilinear paths.

If we consider polygons with holes, the difference becomes even bigger: no algorithm
for computing the diameter and radius under the link distance is known, not even one that
runs in exponential time. In comparison, polynomial-time algorithms are known both for
diameter and radius under L1 and Euclidean metrics.

1.1 Results
We introduce the graph of oriented distances, a graph that implicitly encodes the distance
between regions of the domain. In Section 3 we use this graph to transform the problem:
rather than searching pairwise distances in a list of potential candidates for diameter or
center, we transform the problem into a rectangle intersection problem. Intuitively speaking,
we cover the domain with several rectangles, and we find two pairs of rectangles that pairwise
intersect (and satisfy other properties). In particular, once we have found the diametral pair,
the four rectangles that satisfy the property can be used as a witness.

This transformation leads to an algorithm for computing both the rectilinear link diameter
and radius of a rectilinear polygonal domain with n vertices and h holes. The algorithm is
described in Section 4 and runs in O(nω) time, where ω < 2.373 is the matrix multiplication
exponent [9]. Alternatively, we can also bound the running time in terms of the number χ of
edges of the graph of oriented distances (χ will range from Ω(n) to O(n2) depending on P ).
With this parameter the running time becomes O(n2 + nh log h+ χ2). In Section 5 we use a
different approach to obtain an O(n2 logn) time algorithm to compute the diameter. All of
the algorithms presented in the paper can be modified to return not only diameter or radius,
but also the points that realize it (i.e., diametral pair and center).

1.2 Preliminaries
A rectilinear simple polygon (also called an orthogonal polygon) is a simple polygon that has
horizontal and vertical edges only. A rectilinear polygonal domain P with h pairwise disjoint
holes and n vertices is a connected and compact subset of R2 with h pairwise disjoint holes,
in which the boundary of each hole is a simple closed rectilinear curve.

A rectilinear path π from p ∈ P to q ∈ P is a path from p to q that consists of vertical
and horizontal segments, each contained in P , and such that along π each vertical segment is
followed by a horizontal one and vice versa. Recall that P is a closed set, so π can traverse
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the boundary of P (along the outer face and any of the h obstacles). We define the link length
of such a path to be the number of segments composing it. The rectilinear link distance
between points p, q ∈ P is defined as the minimum link length of a rectilinear path from
p to q, and denoted by `P (p, q). It is well known that in rectilinear polygonal domains
there always exists a rectilinear polygonal path between any two points p, q ∈ P , and thus
the distance is well defined. Once the distance is defined, the definitions of rectilinear link
diameter diam(P ) and rectilinear link radius rad(P ) directly follow. For simplicity in the
description, we assume that a pair of vertices do not share the same x- or y-coordinate unless
they are connected by an edge.

2 Graph of Oriented Distances

For any domain P , we virtually shoot a ray left and right from any horizontal segment of
the domain until it hits another segment of P , partitioning it into rectangles. We call this
partition the horizontal decomposition, H(P ). Similarly, if we shoot rays up and down from
vertical segments, we get the vertical decomposition, V(P ). Observe that both decompositions
have linear size and can be computed in O(n logn) time with a plane sweep.

Given two rectangles i, j ∈ H(P ) ∪ V(P ), we use i u j to denote the boolean operation
which returns true if and only if (1) the rectangles i and j properly intersect (i.e. their
intersection has non-zero area), and (2) one of i, j belongs to H(P ), and the other to V(P ).

I Definition 2.1 (Graph of Oriented Distances). Given a rectilinear polygonal domain P we
define the undirected graph G(P ) = (H(P ) ∪ V(P ), { (h, v) ∈ H(P )× V(P ) : h u v }).

In other words, vertices of G(P ) correspond to rectangles of the horizontal and the vertical
decompositions of P . We add an edge between two vertices if and only if the corresponding
rectangles properly intersect. Note that this graph is bipartite, and has O(n) vertices. From
now on, we make a slight abuse of notation and identify a rectangle with its corresponding
vertex (thus, we talk about the neighbors of a rectangle i ∈ H(P ) in G(P ), for example).

The name Graph of Oriented Distances is easily explained: consider a rectilinear path
π between two points in P . Each horizontal edge of π is contained in a rectangle of H(P )
and each vertical edge is contained in a rectangle of V(P ). A bend in the path takes place
in the intersection of the rectangles containing the two adjacent edges and corresponds to
an edge of G(P ). So every rectilinear path π has a corresponding path π′ in G(P ) and vice
versa. Moreover, each bend of π is associated with an edge of π′.

I Definition 2.2 (Oriented distance). Given a rectilinear polygonal domain P , let i and j
be two vertices of G(P ), let ∆(i, j) to be the length of the shortest path between i and j in
graph G(P ) plus one. We also define ∆(i, i) = 1.

We first list some useful properties of the oriented distance and then show the relationship
between the oriented distance ∆(·, ·) in G(P ) and the link distance `P (·, ·) in P .

I Lemma 2.3. Let i, j, i′, j′ be any (not necessarily distinct) rectangles in H(P ) ∪ V(P )
such that i u i′, and j u j′. Then, the following hold: (a) ∆(i, j) = ∆(j, i), (b) ∆(i′, j) ∈
{∆(i, j)− 1,∆(i, j) + 1 }, and (c) ∆(i′, j′) ∈ {∆(i, j)− 2,∆(i, j),∆(i, j) + 2 }.
I Lemma 2.4. Let p and q be two points of the rectilinear polygonal domain P . If p and q lie
in the same vertical or horizontal rectangle of V(P ) or H(P ) then `P (p, q) = 1 (if p and q share
a coordinate) or `P (p, q) = 2 (if both x- and y-coordinates of p and q are distinct). Otherwise,
let i ∈ H(P ), i′ ∈ V(P ), j ∈ H(P ) and j′ ∈ V(P ) be vertices of the graph of oriented distances
such that p ∈ i ∩ i′ and q ∈ j ∩ j′. Then `P (p, q) = min{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }.
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Intuitively speaking, if we are given two disjoint rectangles i, j ∈ H(P ), then ∆(i, j)
denotes the minimum number of links needed to connect any two points p ∈ i and q ∈ j
under the constraint that the first and the last segments of the path are horizontal. It follows
that the link distance is the minimum of the four possible options. These O(n2) distances
can be precomputed using algorithms by Mitchell et al. [13] in O(n2 + nh log h) time or by
Chan and Skrepetos [3] in O(n2 log logn).

3 Characterization via Boolean Formulas

Let d̂ = maxi,j∈H(P )∪V(P ) ∆(i, j) be the largest distance between vertices of G(P ). Similarly,
we define r̂ = mini∈H(P )∪V(P ) maxj∈H(P )∪V(P ) ∆(i, j). Note that these two values are the
diameter and the radius of G(P ) plus one. We use d̂ and r̂ to approximate the diameter
diam(P ) and radius rad(P ) of a domain P under the rectilinear link distance. First, we
relate the distance between two points p, q ∈ P to the oriented distances between the
rectangles that contain p and q. Specifically, from Lemma 2.4, we know that `P (p, q) =
min{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }, where i, j ∈ H(P ) are the horizontal rectangles
containing p and q, respectively, and i′, j′ ∈ V(P ) are the vertical rectangles containing p
and q. Similarly, we define ˆ̀(p, q) = max{∆(i, j),∆(i, j′),∆(i′, j),∆(i′, j′) }.
I Lemma 3.1. For any two points p, q ∈ P , let i, j ∈ H(P ) and i′, j′ ∈ V(P ) be the rectangles
containing p and q, i.e., p ∈ i ∩ i′ and q ∈ j ∩ j′. Then, it holds that ˆ̀(p, q)− 2 ≤ `P (p, q) ≤
ˆ̀(p, q)− 1.

This relation allows us to express the rectilinear link diameter of a domain in terms of d̂
and the radius in terms of r̂.

I Theorem 3.2. The rectilinear link diameter diam(P ) of a rectilinear polygonal domain P
satisfies diam(P ) = d̂− 1 if and only if there exist i, i′, j, j′ ∈ H(P ) ∪ V(P ) with i u i′ and
j u j′, such that ∆(i, j) = d̂ and ∆(i′, j′) = d̂. Otherwise, diam(P ) = d̂− 2.

Proof. First observe that for any pair of points p, q ∈ P we have `P (p, q) ≤ ˆ̀(p, q)−1 ≤ d̂−1
by Lemma 3.1. Hence, the diameter of P is at most d̂− 1. Similarly, by the definitions of d̂
and ˆ̀(·, ·), there must be a pair of points p, q ∈ P so that ˆ̀(p, q) = d̂. Again by Lemma 3.1 it
follows that diam(P ) ≥ `P (p, q) ≥ ˆ̀(p, q)− 2 = d̂− 2.

Next we show that the diameter is d̂ − 1 if and only if the above condition holds. If
∆(i, j) = d̂ and ∆(i′, j′) = d̂, then by Lemma 2.3 and the fact that neither ∆(i, j′) nor
∆(i′, j) can be larger than d̂, we know that ∆(i, j′) = ∆(i′, j) = d̂− 1. This implies that a
pair of points p ∈ i ∩ i′ and q ∈ j ∩ j′ have `P (p, q) = d̂− 1. Thus, the diameter is d̂− 1.

Now consider any pair p, q and the set of rectangles i, j ∈ H(P ) and i′, j′ ∈ V(P ) with
p ∈ i ∩ i′ and q ∈ j ∩ j′. Recall that `P (p, q) = min{∆(i, j),∆(i, j′),∆(j′, i),∆(i′, j′)}. By
Lemma 2.3, ∆(i, j) and ∆(i′, j′) must differ by exactly one from ∆(i′, j) and ∆(i, j′). That
implies that two distances may be d̂− 1, but if the condition in the lemma is not satisfied, at
most one can be d̂ and the fourth must be d̂− 2 or less. Therefore, if the condition is not
satisfied for i, i′, j, j′, then the diameter is indeed d̂− 2. J

I Theorem 3.3. The rectilinear link radius rad(P ) of a rectilinear polygonal domain P

satisfies rad(P ) = r̂− 1 if and only if for all i, i′ ∈ H(P ) ∪ V(P ) with i u i′ there exist j, j′ ∈
H(P ) ∪ V(P ) with j u j′ such that ∆(i, j) ≥ r̂ and ∆(i′, j′) ≥ r̂. Otherwise, rad(P ) = r̂ − 2.

With the above characterization, we can naively compute the diameter and the radius
by checking all O(n4) quadruples (i, i′, j, j′) ∈ H(P )× V(P )×H(P )× V(P ). However, the
approach can be improved by using G(P ).
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I Theorem 3.4. The rectilinear link diameter diam(P ) and radius rad(P ) of a rectilinear
polygonal domain P consisting of n vertices and h holes can be computed in O(n2 +nh log h+
χ2) time, where χ is the number of edges of G(P ) (i.e., the number of pairs of intersecting
rectangles of H(P ) and V(P )).

4 Computation via Matrix Multiplication

In this section we provide an alternative method to compute the diameter. Although
not described here, a similar approach can also be used to compute the radius. This
method also uses the condition in Theorem 3.2, but instead exploits the behavior of matrix
multiplication on (0,1)-matrices. Recall that, given two (0,1)-matrices A and B, their product
is (AB)i,j =

∑
k(Ai,k ·Bk,j) = |{ k : Ai,k = 1 ∧Bk,j = 1 }|.

We define the (0,1)-matrices I,D and M . Note that we slightly abuse our notation and
use i, j to indicate both matrix indices and their corresponding rectangles.

Ii,j =
{

1 if i u j,
0 otherwise.

Di,j =
{

1 if ∆(i, j) = d̂,

0 otherwise.
Mi,j =

{
1 if (ID)i,j > 0,
0 otherwise.

Intuitively, matrix I indicates for each pair of rectangles if they properly intersect and
have different orientations, whereas D indicates which rectangles are at oriented distance d̂
from each other. For any entry in their product we then have

(ID)j,i′ = |{ j′ : (j u j′) ∧ (∆(i′, j′) = d̂) }|.

The matrix M then records which entries in (ID) are non-zero and we get

(DM)i,i′ = |{ j : Di,j = 1 ∧Mj,i′ = 1 }| = |{ j : ∆(i, j) = d̂ ∧ (∃j′ : j u j′ ∧∆(i′, j′) = d̂ )}|.

So (DM)i,i′ > 0 if and only if there exists a pair j, j′ for which ∆(i, j) = d̂, j u j′ and
∆(i′, j′) = d̂. By Theorem 3.2 if (DM)i,i′ > 0 and Ii,i′ = 1 for any pair i, i′, then the
diameter is d̂− 1 and otherwise it is d̂− 2.

I Theorem 4.1. The rectilinear link diameter diam(P ) and radius rad(P ) of a rectilinear
polygonal domain P consisting of n vertices can be computed in O(nω) time.

5 Computing the Diameter Faster

To test the condition of Theorem 3.2 we could simply iterate over each pair of rectangles
i, j such that ∆(i, j) = d̂. For each such pair we could compute all pairs (i′, j′) such that
i u i′ and j u j′ and test if ∆(i′, j′) = d̂. However, doing this naively may take Θ(n4) time.
Note however there are only O(n2) unique pairs (i′, j′) to test and regardless of which pair
(i, j) was used to generate it, the diameter of P is d̂− 1 if and only if at least one pair (i′, j′)
has ∆(i′, j′) = d̂. We show how to more efficiently generate these pairs for the diameter.
Unfortunately for the radius we must remember which pair (i, j) generates each pair (i′, j′)
so this optimization doesn’t work for the radius.

I Theorem 5.1. The rectilinear link diameter diam(P ) of a rectilinear polygonal domain P
of n vertices can be computed in O(n2 logn) time.

Proof. Sketch. First, for each rectangle i, we find in O(n logn) time the set Qi of rectangles
at distance d̂ from i. Then, using a ray-shooting data-structure by Giyora and Kaplan [6],
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we compute the set Ri which contains all rectangles j′ that are orthogonal and intersect a
rectangle j ∈ Qi. We then store in a list for each rectangle in j′ ∈ Qi the segment i. After
doing this for each rectangle again iterate over all rectangles and use j′ to denote the current
rectangle. For each j′, let Lj′ denote the set of rectangles i with j′ ∈ Ri, which we stored
in a list. Then using the same ray-shooting data structure we can compute in O(n logn)
time the set Mj′ of all rectangles that are orthogonal to and intersect a rectangle i ∈ Lj′ .
Then we simply check every pair (i′, j′) with i′ ∈ Lj′ and if any such pair is at distance d̂ we
report that the diameter is d̂− 1. Since we iterate over all O(n) rectangles twice and spend
O(n logn) time on each of them the total running time is O(n2 logn). J
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Abstract
Given two sets of points A and B in a normed plane, we prove that there are two linearly separable
sets A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤ diam(B), and A′ ∪B′ = A∪B. As a
consequence, some Euclidean clustering algorithms are adapted to normed planes.

1 Introduction and notation

We denote by E2 the Euclidean plane, and by M2 a normed plane, namely, R2 endowed with
a norm ‖ · ‖. We call B(x, r) the ball with center x ∈ M2 and radius r > 0, and S(x, r) the
sphere of B(x, r). We use the usual abbreviations diam(A) and conv(A) for the diameter
and the convex hull of a set A, ab for the line segment connecting two points a, b ∈ M2, and
〈a, b〉 for its affine hull.

We say that two sets of points in M2 are linearly separable (for short, separable) if there
exists a line L such that each set is situated in a different closed half-plane defined by L. In
Section 2, our Theorem 2.3 extends the following result ([4]) to any normed plane.

◮ Theorem 1.1. Let A and B be two finite sets in E2. Then, there are two separable sets
A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤ diam(B), and A′ ∪B′ = A ∪B.

Given a set S of n points in the plane, a cluster is any non-empty subset of S, and a k-
clustering is a set of k clusters such that each point of S belongs to some cluster. In Section
3, we apply Theorem 2.3 in order to solve some k-clustering problems in any normed plane.

2 Linear separability of clusters

In the rest of this section we work in M2 and our objective is to prove the statement of
Theorem 1.1 in this context. Without loss of generality, we assume that diam(A) ≥ diam(B).
Let us denote {u1, u2, . . . , u2t} the clockwise sequence of points where the boundaries of
conv(A) and conv(B) cross (Figure 1). conv(A) \ conv(B) and conv(B) \ conv(A) consist of
two interlacing sequences of polygons {A1, A2, . . . , At} and {B1, B2, . . . , Bt} such that (for
convenience, u2t+1 := u1 and At+1 := A1): Ai touches Bi at u2i; Bi touches Ai+1 at u2i+1;
the vertices of any Ai belong either to A \ B or to conv(A) ∩ conv(B); the vertices of any
Bj belong either to B \ A or to conv(A) ∩ conv(B). We say that (Ai, Bj) is a bad pair if
diam(Ai ∪Bj) > diam(A). In such a case, Ai is a bad set and Bj is its bad partner, and vice
versa. If ‖ai − bj‖ > diam(A) for some ai ∈ Ai and bj ∈ Bj , then both ai and bj are bad
points, ai is a bad partner of bj (and vice versa), and the segment aibj is a bad segment.

◮ Lemma 2.1. Let (Ai, Bj) and (Ai′ , Bj′) be two bad pairs such that Ai 6= Ai′ and Bj 6= Bj′ .
Let us choose ai ∈ Ai, bj ∈ Bj , ai′ ∈ Ai′ , bj′ ∈ Bj′ such that aibj and ai′bj′ are bad segments.
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Figure 1 A (blue points) and B (red points) are not separable (left). A ∪ B can be split by L

into new subsets A′ and B′ without increase of the Euclidean diameters (right).

If these bad segments do not cross, then Ai, Ai′ , Bj′ , Bj (disregarding symmetric variations)
is the sequence clockwise of these polygons and there is not any bad set from A between Bj′

and Bj.

Proof. Let us assume that Ai, Ai′ , Bj , Bj′ , ai, ai′ , bj, and bj′ satisfy the conditions of the
Lemma. All of them must be situated around conv(A ∩ B). If aibj ∩ ai′bj′ = ∅, there are
two cases (disregarding symmetric variations) for the relative positions of the polygons (and
points):

Case 1: Ai, Bj′ , Ai′ , Bj is the clockwise sequence of the polygons. Since the sum of the
diagonals of the quadrangle ai, bj′ , ai′ , bj is larger than the sum of two opposite sides, we get
a contradiction:

diam(A) + diam(B) ≥ ‖ai − ai′‖+ ‖bj − bj′‖ ≥ ‖ai − bj‖+ ‖ai′ − bj′‖ > 2 diam(A).

Case 2: Ai, Ai′ , Bj′ , Bj is the clockwise sequence of the polygons. Let us assume that there
exists a bad point am ∈ Am for some m, such that Bj′ , Am, Bj is the clockwise sequence.
Let bk be a bad partner of am for some k. The half-lines starting in am and connecting am
with ai and with ai′ , and the lines 〈am, bj〉 and 〈am, bj′〉, divide the plane into six zones
(see Figure 2). If bk is situated in the shaded zone in Figure 2, then ‖am − bk‖ ≤ diam(B)
and ambk is not a bad segment. If bk belongs to any other zone, it is possible to consider
a quadrangle whose vertices are situated in clockwise order like in Case 1, and we get a
contradiction. ◭

◮ Remark 1. In the Euclidean subcase, every two bad segments from disjoint bad pairs
(Ai, Bj) and (Ai′ , Bj′) cross ([4]). The property that the longest side of every obtuse triangle
is opposite to the obtuse angle is used in the proof. Nevertheless, this property is not true
for any normed plane, and there exist bad segments that do not cross.

Before splitting the sets A and B, we group all the adjacent bad subsets Ai from the
cluster A. Thus, we define a group of bad subsets from A to be a maximal cyclic subsequence
of bad subsets Ai. (Intervening subsets Bj of the other cluster must not be bad). The same
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am
bj′bj

ai

ai′

Figure 2 If (ai, bj) and (ai′ , bj′) are bad partners, then the shaded zone cannot contain a bad
partner of am ∈ Am

is made with cluster B. These maximal cyclic groups are noted by Ā1, Ā2, . . . , Āp and
B̄1, B̄2, . . . , B̄q.

We say that (Āi, B̄j) is a bad pair of groups if there exists a bad segment from Āi to
B̄j . Two pairs of sets (Ai, Bj) and (Ai′ , Bj′) cross if there exist two (one from every pair)
bad segments that cross. Similarly, (Āi, B̄j) and (Āi′ , B̄j′ ) cross if there exist two (one from
every pair) bad segments that cross.

The structure of the rest of the section is similar to that presented by [4], but the proofs
are different due to Remark 1. Some of the these proofs are omitted in this extended
abstract.

◮ Lemma 2.2. The following holds:

1. Let (Ai, Bj) and (Ai′ , Bj′ ) be two bad pairs such that Ai 6= Ai′ and Bj 6= Bj′ . If Ai and
Ai′ belong to a group Ān for some n, then Bj and Bj′ belong to a group B̄t for some t.

2. The number of maximal cyclic groups for A and for B is the same.
3. Let (Āi, B̄j) and (Āi′ , B̄j′) be two bad pairs of groups such that Āi 6= Āi′ and B̄j 6= B̄j′ .

Then (Āi, B̄j) and (Āi′ , B̄j′) cross.

Proof. Statement 2 is a consequence of 1. In order to prove 1, let us assume that (Ai, Bj) and
(Ai′ , Bj′) are two disjoint bad pairs such that Ai, Ai′ ∈ Ān for some n. If Bj and Bj′ belong
to different groups, there is a bad pair (Am, Bk) for some m and k such that Am separates
Bj from Bj′ . (Ai, Bj) and (Ai′ , Bj′) must cross (Lemma 2.1), and since Ai and Ai′ belong
to the same group, only one of the pairs (not both) and (Am, Bk) cross. For simplicity, let us
assume that (Ai, Bj) and (Am, Bk) cross. There exist am ∈ Am, bk ∈ Bk, ai′ ∈ Ai′ , bj′ ∈ Bj′

that would be situated in an impossible clockwise sequence am, bk, ai′ , bj′ (similar to Case 1
in Lemma 2.1), and we get a contradiction.

Let us see Statement 3. Let (Āi, B̄j) and (Āi′ , B̄j′ ) be two bad pairs of groups such
that Āi 6= Āi′ and B̄j 6= B̄j′ . The clockwise order cannot be Āi, B̄j′ , Āi′ , B̄j (due to the
arguments used in Case 1 of Lemma 2.1); and neither Āi, Āi′ , B̄j′ , B̄j , because then B̄j′ and
B̄j cannot be separated by a bad polygon Am (Lemma 2.1, Case 2). Therefore, the clockwise
order must be Āi, Āi′ , B̄j , B̄j′ , and 3 holds.

◭

The groups from A and B are interlacing, and Statement 3 of Lemma 2.2 implies that
there exist a complete matching among the groups, and the number of groups from each
cluster has to be odd.
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Let Ai be the last bad set of a group (in clockwise order), and let Bj′ be the last bad
partner of Ai. Let Bj be the first bad set after Ai, and let Ai′ be the first bad partner of
Bj . We choose the separating line L to go through the point u2j before Bj and the point
u2j′+1 after Bj′ (see Figure 1). We define B′ to be the points in A ∪ B lying on the same
side of L as Bj and Bj′ , and A′ as the remaining points.

◮ Theorem 2.3. Let A and B be two finite sets in M2. Then, there are two linearly separable
sets A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤ diam(B), A′ ∪B′ = A ∪B, and

perimeter(conv(A)) + perimeter(conv(B)) ≥ perimeter(conv(A′)) + perimeter(conv(B′)).

Proof. We consider Ai, Bj , Ai′ , Bj′ , L,A′ and B′ defined above. Since L cuts all bad pairs,
diam(A′) ≤ diam(A). In order to prove diam(B′) ≤ diam(B), let us consider a, b ∈ B′. If
a, b ∈ B there is nothing to prove. In any other case, let us assume that ‖a− b‖ > diam(B).
Let us choose ai ∈ Ai, bj ∈ Bj , ai′ ∈ Ai′ , bj′ ∈ Bj′ such that (ai, bj′) and (ai′ , bj) are bad
pairs. There are three possible cases.

Case 1: a ∈ conv(A)\conv(B) and b ∈ conv(B)\conv(A). The points {bj, a, b, bj′ , ai′ , ai}
are situated around conv(A) ∩ conv(B) and it is possible to consider a clockwise order. If
{a, b} is the clockwise order of these two points, we observe the quadrangle with vertices
(clockwise) {bj, a, b, ai′} and the following contradiction holds:

diam(A) + diam(B) ≥ ‖a− ai′‖+ ‖b− bj‖ ≥ ‖bj − ai′‖+ ‖a− b‖ > diam(A) + diam(B).

If the clockwise order is {b, a}, we obtain a similar contradiction on the quadrangle with
vertices (clockwise order) {ai, b, a, bj′}.

Case 2: a, b ∈ conv(A) \ conv(B). Case 1 implies that ‖b − b′‖ ≤ diam(B) for every
b′ ∈ (conv(B) \ conv(A))∩B′. If {a, b} is the clockwise order of these two vertices, applying
the above arguments to the quadrangle {bj , a, b, ai′}:

diam(A) + diam(B) ≥ ‖a− ai′‖+ ‖b− bj‖ ≥ ‖bj − ai′‖+ ‖a− b‖ > diam(A) + diam(B),

which is again a contradiction. If the order is {b, a}, we use the quadrangle {bj, b, a, ai′}.
Case 3: a ∈ conv(A) \ conv(B) and b ∈ conv(A) ∩ conv(B). Since the distance from a is

maximized at some vertex of conv(A) ∩ conv(B) ∩ conv(B′), we may assume that b is one
of these vertices and apply an analysis similar to Case 1 or to Case 2.

The proof in [4] for the perimeter inequality is valid for M2. ◭

3 Some applications to clustering problems

From now on, S is a set of n points in M2. We assume that in our computation model an
oracle answers the required questions about the unit ball of M2 (see Section 3.3 of [6]).

3.1 2-clustering problem: minimize the maximum diameter.
Given a metric, the 2-clustering problem of minimizing the maximum diameter asks about
how to split S into two sets minimizing the maximum diameter. Avis [1] solves the problem
in E2 looking for two separable sets with the following algorithm (O(n2 log2 n) time): sort
the distances di between the points of S into increasing order (O(n2 logn) time); locate the
minimum di that admits a stabbing line1 (using [5] for the stabbing line) by a binary search.
We obtain the following as a consequence of Theorem 2.3.

1 A stabbing line for a set of segments is a line that intersects every segment of the set.



P. Martín and D. Yáñez 3:5

◮ Corollary 3.1. Given a set of n points in M2, the 2-clustering problem of minimizing the
maximum diameter can be solved in O(n2 log2 n) time using the algorithm presented by Avis.

The similar approach of Asano et al. ([2], that reduces the cost of Avis’ approach to O(n log n)
time using a maximum spanning tree) could be used as well, but as far as we know, an
efficient method to build a maximum spanning tree for any normed plane is not known.

3.2 2-clustering problem: constraints over the diameters

Given two fixed numbers d1 ≥ d2 > 0, Hershberger and Suri ([8]) solve in O(n log n) time the
problem of dividing S into two sets S1 and S2, such that diam(S1) ≤ d1 and diam(S2) ≤ d2
in E2. They use the fact that if ‖a − b‖ ≥ d1, then B(a, d2) ∩ B(b, d1) can always be split
into two subsets whose diameters are at most d1 and d2, respectively. Nevertheless, the
following example shows that this cannot be extended to M2. Let us consider a = (0, 0),
b = (−9.81, 6.24), and the strictly convex norm whose unit sphere is bounded by the two arcs
of circles with center at (0, 10) and in (0,−10), respectively, and radius 5

√
13 (see Figure

3). Let {r = (−9.39, r2), s = (−8.24, s2)} ∈ S(a, 1) and {p, q} = S(a, 1) ∩ S(b, 1.1), such
that r2 > 0, s2 > 0, and {p, r, s, q} is the clockwise order on S(a, 1). Then, ‖a − b‖ ≥ 1.1,
min{‖s− p‖, ‖r − q‖, ‖p− q‖} > 1.1 and min{‖r − p‖, ‖s− q‖} > 1, and S = {p, q, r, s} ∈
B(a, 1) ∩B(b, 1.1) cannot be divided into two subsets whose diameters are at most 1.1 and
1, respectively.

s

r

a

b

b+ ~rq

q

a+ ~sq

a+ ~rp

b+ ~sp p

B(b, 1.1)

B(a, 1)

Figure 3 S = {p, q, r, s} cannot be divided into two subsets with diameters less than or equal to
1.1 and 1, respectively.

Theorem 2.3 can help to solve this problem in any normed plane as follows. Build the
graph (S,Ed1) with the points of S and the set of edges Ed1 connecting two points of S at
distance more than d1 (in O(n2 logn) time). Check if Ed1 has a stabbing line (in O(n log n)
time with the algorithm presented in [5]). If the stabbing line does not exist, there is no
solution (Theorem 2.3). If some stabbing lines exist, check if one of them split S into two
subsets with the required diameters.

EuroCG’18



3:6 Geometric clustering in normed planes

3.3 k-clustering problems
Let us consider the k-clustering problem of minimizing F to the diameters (equivalently,
to the radii), where F is a monotone increasing function F : Rk → R that is applied
to the diameters (equivalently, to the radii) of the clusters. For instance, F can be the
maximum, the sum, or the sum of squares of the diameters (or the radii). Capoyleas, Rote
and Woeginger (see Lemma 8 and Theorem 9 in [4] for details) design an algorithm that
solves these geometric k-clustering problems in polynomial time. Using Theorem 2.3 and a
result of Banasiak [3] describing precisely the intersection of two balls, we prove the following
statements. The proofs are omitted in this extended abstract.

◮ Theorem 3.2. Let S be a set of n points in M2. Consider the k-clustering problem of
minimizing a monotone increasing function F : Rk → R that is applied to the diameters
or to the radii of k subsets of S. Then there is an optimal k-clustering such that each pair
of clusters is linearly separable. A solution can be obtained by the algorithm presented by
Capoyleas-Rote-Woeginger, and it takes polynomial time for the case of the diameters.

3.4 3-clustering problems: minimize the maximum diameter
◮ Theorem 3.3. Given a set of n points in M2 and d > 0, we can determine in O(n3 log2 n)
time whether there is a partition of S into sets A,B,C with diameters at most d, and
construct in O(n3 log3 n) time a 3-partition of S such that the largest of the three diameters
is as small as possible.

Proof. (Scheme) A specific approach by Hagauer and Rote proves this result in E2. For
the first statement, the authors use some lemmas (from Lemma 3 to Lemma 6 in [7]) and
Theorem 1.1. Theorem 2.3 extends Theorem 1.1, and we prove results similar to the rest
of lemmas in [7] for any normed plane using the notion of Birkhoff orthogonality instead
of the Euclidean one. Regarding the complexity of the algorithm, we can justify that the
data structure introduced by Hershberger and Suri ([8]) is usable in the same way that in
E2. Finally, a binary search on the

(
n
2
)

distances occurring in S solves the optimization
problem. ◭
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Abstract
Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we
mean that given an individual simplex we can recover the entire triangulation of Euclidean space
by inductively reflecting in the faces of the simplex. In this paper we establish that the quality
of the simplices in all Coxeter triangulations is O(1/

√
d) of the quality of regular simplex. We

further investigate the Delaunay property (and an extension thereof) for these triangulations. In
particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture
that both bounds are optimal for triangulations in Euclidean space.

1 Introduction

1.1 Motivation and related work
Well shaped simplices are of importance for various fields of application such as finite element
methods and manifold meshing. Poorly-shaped simplices may induce various problems in
finite element method, such as large discretization errors or ill-conditioned stiffness matrices.
A simplex is well shaped if its quality is good, which can be expressed in terms of various
quality measures. Some examples of quality measures are: the ratio between minimal height
and maximal edge length ratio called thickness, the ratio between volume and a power of the
maximal edge length called fatness, and the inradius-circumradius ratio. Bounds on dihedral
angles can also be included in the list of quality measures. We stress that there are many
other quality measures in use and authors often find useful to introduce measures that are
specific to whatever problem they study. Finding triangulations, even in Euclidean space, of
which all simplices have good quality is a non-trivial exercise in arbitrary dimension.

In this paper we shall discuss Coxeter triangulations.

I Definition 1.1. A monohedral1 triangulation is called Coxeter triangulation if all its
d-simplices can be obtained by consecutive reflections through facets of the d-simplices in
the triangulation.

There are four families of Coxeter triangulations and five exceptional ones. All three
two-dimensional Coxeter triangulations and the simplices of the three three-dimensional
Coxeter triangulations are illustrated in Figure 1. For an extended introduction we refer
to the pioneering paper on reflection groups by Coxeter [10] and the classical book on Lie
groups and algebras by Bourbaki [5]. Another classical reference book is “Sphere packings,
Lattices, and Groups” by Conway and Sloane [9].

To our knowledge, these are the triangulations with the best quality in arbitrary dimension.
In particular, all dihedral angles of simplices in Coxeter triangulations are 45◦, 60◦ or 90◦,
with the exception of the so-called G̃2 triangulation of the plane where we also can find an

1 A triangulation of Rd is called monohedral if all its d-simplices are congruent.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



4:2 Coxeter triangulations have good quality

Ã2 C̃2 G̃2

Ã3 B̃3 C̃3

Figure 1 Above: Coxeter triangulations in R2. Below: simplices of Coxeter triangulations in R3

represented as a portion of a cube.

angle of 30◦. This is a clear sign of the exceptional quality of the simplices involved. Our
goal is to exhibit the extraordinary properties of Coxeter triangulations and promote their
use in the Computational Geometry community.

The notion of Coxeter triangulations was introduced to the computational geometry
community by Dobkin, Wilks, Levy and Thurston in [11], where they tackled the problem of
contour-tracing in Rd. The choice of Coxeter triangulations was motivated by the following
requirements:

It should be easy to find the simplex that shares a facet with a given simplex.
It should be possible to label the vertices of all the simplices at the same time with indices
0, . . . , d, in such a way that each of the d+ 1 vertices of a d-simplex has a different label.
The triangulations should be monohedral, meaning that all simplices are congruent.
All simplices should be isotropic, meaning that they should be roughly the same in all
directions.

Coxeter triangulations exactly fit these requirements. After comparing the inradius-circumradius
ratio of the simplices in the triangulations Dobkin et al. chose the Ãd Coxeter triangulation
as the underlying triangulation for their contour-tracing algorithm.

The same Ãd Coxeter triangulation appeared in the works by Adams, Baek and Davis [1]
and Choudhary, Kerber and Raghvendra [7], among others.

The three-dimensional Coxeter triangulation Ã3 has attracted attention in the 3D mesh
generation community for the high-quality of its simplices. The vertex set of this triangulation
is also known as the body-centred cubic lattice, or bcc lattice, and its tetrahedron is sometimes
referred as Sommerville’s type II tetrahedron or simply bcc-tetrahedron. This tetrahedron
has been shown to be the best-conditioned space-filling tetrahedron out of all space-filling
tetrahedra used in the 3D mesh community by a number of conditioning measures.

Apart from quality, we are also interested in the stronger requirement of protection [2],
which is specific to Delaunay triangulations. It has been proven that protection guarantees
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good quality [2]. Some algorithms were introduced for the construction of a protected set,
such as the perturbation-based algorithms in [3] and [4]. Both of these algorithms take a
general ε-net in Rd as input and output a δ-protected net with δ of the order just Ω(2−d2

ε).
The d-dimensional Coxeter triangulation Ãd provides us another extremity. As we will see in
the following, this highly-structured triangulation is Delaunay with protection O( 1

d2 ε). This
protection value is the greatest in a general d-dimensional Delaunay triangulation we know.

The Coxeter triangulations we study are intricately linked with root systems and root
lattices. Delaunay triangulations of the root lattices have been studied by Conway and
Sloane [9] and Moody and Patera [12]. These triangulations are different from the ones we
study: the vertex sets we use are not necessarily lattices (see Theorem 4.1).

1.2 Contribution
In this paper we give explicit expressions of a number of quality measures of Coxeter
triangulations for all dimensions, presented in Section 4. This is an extension of the work
by Dobkin et al. [11] who presented a table of the values of the inradius-circumradius ratio
for the Coxeter triangulations up to dimension 8. We also provide explicit measures of the
corresponding simplices in the full version of the current paper [8, Appendix B], allowing the
reader to compute quality measures other than the ones listed.

In Section 2, we state the theorem of optimality of the regular d-simplex for each of the
chosen quality measures. This theorem justifies the definition of the normalized versions of
these quality measures.

In Section 3, we established a criterion to identify if any given monohedral triangulation
is Delaunay.

The proofs of the statements can be found in the full version [8], as well as extra
introductory material.

1.3 Future work
The simplex qualities, defined in Definition 2.1, of the four families of Coxeter triangulations
behave as O(1/

√
d) in terms of dimension. We conjecture that this quality is optimal for a

general space-filling triangulation in Rd. In addition, the d-dimensional Coxeter triangulation
Ãd has the relative Delaunay protection O(1/d2). We further conjecture that it is optimal for a
general space-filling triangulation in Rd. These conjectures are motivated by the extraordinary
lower and upper bounds on the dihedral angles of simplices in Coxeter triangulations; they
are precisely 45◦, 60◦ or 90◦ for the four families. Moreover the circumcentres of the simplices
of Ãd lie very far inside the simplices.

2 Quality definitions

The quality measures we are interested in, we call aspect ratio, fatness, thickness and radius
ratio. Their formal definitions are as follows:

I Definition 2.1. Let h(σ) denote the minimal height, r(σ) the inradius, R(σ) the cir-
cumradius, vol(σ) the volume and L(σ) the maximal edge length of a given d-simplex
σ.

The aspect ratio of σ is the ratio of its minimal height to the diameter of its circumscribed
ball: α(σ) = h(σ)

2R(σ) .
The fatness of σ is the ratio of its volume to its maximal edge length taken to the power
d: Θ(σ) = vol(σ)

L(σ)d .
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The thickness of σ is the ratio of its minimal height to its maximal edge length: θ(σ) =
h(σ)
L(σ) .
The radius ratio of σ is the ratio of its inradius to its circumradius: ρ(σ) = r(σ)

R(σ) .

To be able to compare the presented quality measures between themselves, we will
normalize them by their respective maximum value. As we show, all of these quality measures
are maximized by regular simplices.

I Theorem 2.2. Out of all d-dimensional simplices, the regular d-simplex has the highest
aspect ratio, fatness, thickness and radius ratio.

For a quality measure κ we will define the normalized quality measure κ̂, such that for
each d-simplex σ, κ̂(σ) = κ(σ)

κ(∆) , where ∆ is the regular d-simplex. Theorem 2.2 ensure that
the quality measures ρ̂, α̂, θ̂ and Θ̂ take their values in [0, 1] surjectively.

3 Delaunay criterion for Coxeter triangulations

Many of the provably good mesh generation algorithms are based on Delaunay triangulations
[6]. This motivated us to investigate if Coxeter triangulations have the Delaunay property.
We established the following criterion, extending the work by Rajan [13] on triangulations
consisting of self-centered simplices.

I Definition 3.1. A simplex is called self-centred if it contains its circumcentre inside or on
the boundary.

I Theorem 3.2. A Coxeter triangulation is Delaunay if and only if its simplices are self-
centred.

Because some of the triangulations that interest us here are Delaunay, we will also look
at their protection value.

I Definition 3.3. The protection of a d-simplex σ in a Delaunay triangulation on a point
set P is the minimal distance of points in P \ σ to the circumscribed ball of σ:

δ(σ) = inf
p∈P\σ

d(p,B(σ)), where B(σ) is the circumscribed ball of σ.

The protection δ of a Delaunay triangulation T is the infimum over the d-simplices of the
triangulation: δ = infσ∈T δ(σ). A triangulation with a positive protection is called protected.

We define the relative protection δ̂(σ) of a given d-simplex σ to be the ratio of the
protection to its circumscribed radius: δ̂(σ) = δ(σ)

R(σ) .
The relative protection δ̂ of a Delaunay triangulation T is the infimum over the d-simplices

of the triangulation: δ̂ = infσ∈T δ̂(σ). We can determine if a Coxeter triangulation is not
protected with the help of the following theorem.

I Theorem 3.4. 1. A Delaunay triangulation of Rd where a simplex with maximal circum-
radius contains the circumcentre on its boundary is not protected.

2. If a simplex of a Coxeter triangulation contains the circumcentre on its boundary, then
the triangulation is non-protected Delaunay.

3. If a simplex of a Coxeter triangulation contains the circumcentre strictly inside, then the
triangulation is Delaunay with a non-zero protection.
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4 Main result

In this section we present a table with explicit expressions of quality measures of Coxeter
triangulations. In addition to that we also identify which Coxeter triangulations are Delaunay
and give their protection values. Finally, we identify which Coxeter triangulations have
vertex sets with lattice structure.

I Theorem 4.1. The normalized fatness, aspect ratio, thickness and radius ratio of simplices
in Coxeter triangulations, as well as Delaunay property are:

Fatness Θ̂1/d Aspect Ratio α̂ Thickness θ̂ Radius Ratio ρ̂ Delaunay?
Ãd,

d odd
23/2

(√d+1)1+2/d

√
6d

(d+1)(d+2)

2
√

d
d+1

√
6d

(d+1)(d+2) 3

Ãd,

d even
23/2(

√
d+1)1−2/d√
d(d+2)

2√
d+2

B̃d
21/2+1/d

√
d(√d+1)1/d

d
√

2
(d+1)

√
d+2

1√
d+1

2d√
d+2(1+(d−1)

√
2) 7

C̃d

√
2√

d(√d+1)1/d

√
2d

d+1
1√

d+1
2
√

d

2+(d−1)
√

2 3

D̃d
21/2+2/d

√
d(√d+1)1/d

d
√

2
(d+1)

√
d+4

1√
d+1

d
√

2
(d−1)

√
d+4 7

Ẽ6
12
√

64
137781

2
7

1√
14

1
2 7

Ẽ7
14
√

1
177147

7
√

13
104

√
21

24
14
√

13
117 7

Ẽ8
8
√

1
3240

8
√

19
171

2
√

19
57

8
√

19
95 7

F̃4
8
√

1
405

4
√

2
15

2
√

5
15

4
√

2
3(2+

√
2) 3

G̃2
√

2
2

1√
3

1
2

2
1+
√

3 3

Out of them, only Ã family triangulations have a non-zero relative protection value equal
to:

δ̂ =
√
d2 + 2d+ 24−

√
d2 + 2d√

d2 + 2d
∼ 12
d2

Only Ã family, C̃ family and D̃4 triangulations have vertex sets with lattice structure.

For the proof, refer to the full version [8]. The corresponding quality measures for the
regular d-simplex ∆ (which does not correspond to a triangulation in general) are:

Fatness Θ Aspect Ratio α Thickness θ Radius Ratio ρ

∆ 1
d!

√
d+1
2d

d+1
2d

√
d+1
2d

1
d

All simplex quality measures in the table above are normalized with respect to the regular
simplex. Note that the fatness values in the table are given with power 1/d. It is due to the
fact that fatness is a volume-based simplex quality, and taking the (1/d)-th power allows a
better comparison. Also note that all normalized simplex qualities for the families Ãd, B̃d,
C̃d and D̃d behave as O(1/

√
d). As illustrated for fatness and radius ratio in Figure 2, Ãd

achieves the greatest simplex quality among the four families of Coxeter triangulations in
each dimension d.
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Figure 2 The visual representation of the normalized fatness and the radius ratio for simplices of
Ãd, B̃d, C̃d and D̃d triangulations.
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Abstract
We introduce stripe closeness and stripe remoteness, two combinatorial measures that capture
how close together or far apart a set of query points lies within another set of points. The idea
behind these concepts is that we look at all possible projections of the point set to a line and
count the number of points that lie between the query points. For two points in a point set, the
notion of stripe closeness can be seen as a combinatorial distance measure. We give bounds on
the stripe closeness of two closest points. Further, we analyze stripe remoteness for triples in
point sets and show that there are always three points that have high stripe remoteness.

1 Introduction

Let P be a set of points in general position (i.e., no three points on a line) and let a and b
two points of P . How far is a from b? The common answer to this question is of course the
Euclidean distance of a and b. However, this distance depends on the embedding of P and is
not invariant under affine transformations. In many settings where point sets occur, we are
not interested in actual coordinates of the points, but only their combinatorial structure (e.g.,
their allowable sequence or their order type). In these settings it seems natural to define a
distance measure that only depends on the combinatorial structure of the point set.

For points on a line, there is a natural combinatorial distance measure: For any two
points a and b in P we define the distance of a and b as the number of points of P that lie
between a and b. Alternatively, we can also count the points that are not between a and b and
define the distance between the total number of points and the number of these points. We
can extend this idea for more query points. We define the remoteness of a one-dimensional
point set Q with respect to a one-dimensional point set P as follows: Let a and b be the
two extreme points of Q. Then the remoteness of Q with respect to P is the number of
points of P that are between a and b. In particular, if Q consists of two points, then a small
remoteness can be considered to have a small combinatorial distance. We generalize this
concept to R2 by considering all projections of the two-dimensional point set to a line.

A stripe s = (`1, `2) is a pair of two parallel lines `1, `2 in the plane. We say that the
area of the plane that lies between the two lines is inside the stripe and denote it by int(s),
while the rest of the plane is outside of the stripe, denoted by out(s). We consider `1 and
`2 to be both inside and outside of s, that is, int(s) ∩ out(s) = `1 ∪ `2. Let P be a planar
point set in general position. For any stripe s we define iP (s) := |{p ∈ P | p ∈ int(s)}|
and oP (s) := |{p ∈ P | p ∈ out(s)}| as the number of points of P inside and outside of
s, respectively. Let Q be another set of points in general position. We define the stripe
remoteness of Q with respect to P as follows: consider all the stripes for which all of Q lies
inside. Among those, pick one that has the smallest number of points of P inside. The stripe
remoteness of Q with respect to P , denoted by instripeP (Q), is the number of points of P
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inside this stripe. Using the notation above, we can write this as

instripeP (Q) := min
s:Q⊂int(s)

iP (s) .

Note that if |Q| = 2 and Q ⊂ P , then instripe(Q) = 2 as we can always choose both `1 and
`2 to be the line through the two points. Hence, stripe remoteness is not a good candidate
for a combinatorial distance measure. But for |Q| > 2 the situation is non-trivial. A point
set Q having high stripe remoteness in P can be interpreted in the following way: In every
projection to a line, there are two points of Q that have high distance w.r.t. P (i.e., the
number of projected points of P between them is large). We show that for every point set P
in general position, there are 3 points in P whose stripe remoteness is in Ω(|P |).

Note that in the one-dimensional case we might as well count the number of points that
are not between a and b. The fewer such points there are, the further a is from b. We can
also extend this idea to more points and two dimensions: We say that a stripe s is between
Q if all points of Q are in out(s) and each connected component of out(s) contains at least
one point of Q; this is denoted by Q ≺ s. We define the stripe closeness of Q with respect to
P as the minimal number of points of P outside a stripe that is between Q, i.e.,

outstripeP (Q) := min
s:Q≺s

oP (s) .

This measure is non-trivial already for |Q| = 2. We may define

dP (a, b) := |P | − outstripeP ({a, b}) + 1 .

This corresponds to the maximum number of points strictly inside a stripe s.t. one of a and
b is on each of the two lines defining the stripe. It is not too hard to check that dP is a
metric when defining dP (a, a) := 0; note that (somewhat counterintuitive) the additive 1 is
needed for the triangle inequality. Also note that any point set P contains two points a and
b such that dP (a, b) = |P | − 1. A point set Q having high stripe closeness can be interpreted
in the following way: In every projection to a line, there are two points of Q with no other
point of Q and only few points of P between them. We show that for every point set P in
general position, we can find a subset of 2 points that have linear stripe remoteness. For
the combinatorial distance measure dP (a, b), this implies that there are always two points of
distance at most (1− c)|P |, for some constant c. We will see that this is asymptotically tight.

Projections of multivariate data to one and two dimensions is common in data analysis
(see, e.g., [5]). However, distances usually do not only depend on the combinatorial properties
of the point set. Combinatorial distance measures for two points a and b in a finite set P
may be defined via the size of the intersection P ∩R of P and a region R that contains a
and b. More specifically, so-called region-counting distance functions have been used [3,6]:
we are given two points p and q as well as a region R; translate, rotate, and scale both the
points and R such that p and q coincide with a and b, and measure the distance as the size
of the intersection with P and the transform of R. These measures have been used for point
searching and nearest-neighbor problems [3,4,6]. However, they are not invariant under affine
transformations. This is a property fulfilled by our approach; the distances are equivalent for
all point sets with the same allowable sequence (i.e., there is a bijection between the point
sets such that the order of the slopes defined by all point pairs is preserved). Our approach
of taking the minimum or maximum is inspired by combinatorial properties of single points
w.r.t. the point set, e.g., the Tukey depth [7] of a point p (which is the minimal number of
points contained in a half-plane that also contains p). See [2] for a survey on depth measures.
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2 Stripe Remoteness

In this section we prove the following result:

I Theorem 2.1. Let α be the unique zero of f(x) = 2x3−3x2−6x+1 in [0, 1] (α ≈ 0.155792).
Then for every ε > 0 there is an n0 ∈ N such that for every n > n0 any set P of n points in
general position contains three points p1, p2, p3 for which instripeP ({p1, p2, p3}) ≥ (α− ε)n.

This result can also be phrased in a slightly less technical manner:

I Corollary 2.2. Let P be a set of n points in general position. Then P contains three points
p1, p2, p3 such that any stripe with p1, p2, p3 inside has Ω(n) points of P inside.

Proof of Theorem 2.1. Let P be a point set of n points in general position. We want to
show that there are 3 points such that every stripe with them inside has at least c points
inside, where c = (α− ε)n for any ε > 0. Let A be the dual line arrangement of P under the
point-line-duality, in which we map a point p = (xp, yp) to a line p∗ : y = xpx+ yp (we may
assume w.l.o.g. that no two points have the same x-coordinate). In the dual setting, a stripe
translates into a vertical line segment, and the points that lie inside the stripe correspond to
the lines intersected by the segment. Hence, in the dual setting, we want to find three lines
such that any vertical line segment intersecting these three lines intersects at least c lines.
We will show that there are three such lines in the following way: for every triple T of lines,
we look at the shortest vertical line segment sT (−∞) that intersects the three lines and lies
on an (arbitrary) vertical line to the left of the leftmost crossing of the arrangement. We list
all the lines crossed by sT (−∞) in a list LT (−∞). We then sweep the arrangement from left
to right, always looking at the shortest vertical line segment sT (x) intersecting the triple
and update the list LT (x) of lines crossed by it, whenever necessary. Clearly, an update is
only necessary after the sweeping line passes over a crossing, so we only need to consider
one x-coordinate between any two consecutive crossings ci and ci+1, which we denote by xi.
Additionally, let x0 be an x-coordinate to the left of the first crossing c1. We say that the
triple T of lines is valid after crossing ci if during the whole movement from left infinity to
xi (or, equivalently, shortly after the ith crossing), the list of crossed lines LT contains at
least c lines, that is, |LT (xj)| ≥ c for all j ∈ {0, . . . , i}. In particular, any triple that is valid
after the last crossing satisfies the desired properties.

The triples T that are valid before the first crossing are the ones for which sT (x0) intersects
at least k lines, for k ≥ c. As sT (x0) is the shortest line segment intersecting T , the topmost
and bottommost intersected lines have to be lines of T , the third line of T being one of the
remaining k − 2. There are n+ 1− k pairs of lines with exactly k − 2 lines between them,
thus the total number of triples that are valid before the first crossing is

n∑

k=c
(k − 2)(n+ 1− k) = 1

6(c− n− 1)(2c2 − cn− 10c− n2 + 4n+ 12) .

Moving over a crossing ci, a triple T becomes invalid only if sT (xi−1) intersects exactly c
lines, the topmost or the bottommost line is one of the lines of crossing i and the second
line in the crossing is not in T . More precisely, let ci be the crossing of two lines a and b
where a is above b before the crossing. Let T be a triple that is valid after crossing ci−1 and
that contains a where a is the topmost line intersected by sT (xi−1). If b is also in T , then
sT (xi) intersects the same lines as sT (xi−1), only that a and b have switched places, so T is
still valid after crossing ci. If sT (xi−1) intersects more than c lines, T is still valid after the
crossing ci. As the bottommost intersected line has to be in T , and a triple with b does not
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become invalid, at most (c− 3) triples can become invalid at crossing ci, as right before it
there are c − 2 lines between a and the bottommost line, one of them being b. The same
arguments hold if b is the bottommost line intersected by sT (xi−1), so the number of triples
that become invalid at crossing ci is at most 2(c− 3). Thus the total number of triples that
are still valid after sweeping over all

(
n
2
)
crossings of A is at least

β(n) :=
n∑

k=c
(k − 2)(n+ 1− k)− 2(c− 3)

(
n

2

)

= c3

3 −
c2n

2 − 2c2 − cn2 + 7cn
2 + 11c

3 + n3

6 + 5n2

2 − 17n
3 − 2 .

In particular, if c is linear in n, that is, c = γn, this is a polynomial of degree 3 with
leading coefficient γ3

3 −
γ2

2 − γ + 1
6 . This leading coefficient is larger than 0 in the interval

(0, 1) if and only if γ < α. Hence, for γ = α− ε, we have that limn→∞(β(n)) =∞, so for n
large enough, there is at least one triple that is still valid after the last crossing. J

On the other hand, there are point sets where instripe({p1, p2, p3}) ≤ (1 − ε)n for any
three points p1, p2, p3: Let P be a set of points in convex position and let Q = {p1, p2, p3}
be any three points of P . Let h1, h2 and h3 be the number of points along the boundary of
the convex hull between p1 and p2, p2 and p3 and p3 and p1, respectively. By the pigeonhole
principle, one of these number, without loss of generality h1, is at least n−1

3 . Consider the
stripe defined by the line through p1 and p2 and the parallel line through p3. This stripe has
Q inside, but all the points between p1 and p2, of which there are at least n−1

3 many outside.

3 Stripe Closeness

We proceed with showing our bounds on the stripe closeness of two points.

I Theorem 3.1. Let α =
√

5− 2 ≈ 0.23607. Then for every ε > 0 there is an n0 ∈ N such
that for every n > n0 any set P of n points in general position contains two points p1, p2 for
which outstripeP ({p1, p2}) ≥ (α− ε)n+ 2.

Again, the result can be phrased in a less technical manner:

I Corollary 3.2. Let P be a set of n points in general position. Then P contains two points
p1, p2 such that any stripe with p1, p2 outside has Ω(n) points of P outside.

Proof of Theorem 3.1. Let P be a set of n points in general position. As in the proof of
Theorem 2.1, we will work in the dual setting, only that now we want to find a pair of lines `1
and `2 such that every shortest vertical line segment intersecting the pair only intersects few
lines, namely at most c := (1− α+ ε)n many. As the points outside of a stripe correspond
to the lines not intersected by the dual vertical line segment, the existence of such a pair of
lines shows the claimed result, as for a shortest vertical line segment intersecting `1 and `2,
these two lines must be the topmost and bottommost intersection, and we can thus shorten
every segment slightly, such that at least n− c+ 2 = n− (1− α+ ε)n+ 2 = (α− ε)n+ 2
many lines are not intersected.

We will again show the existence of such a pair of lines using a sweeping argument. For
any pair R of lines, let sR(x) be the shortest vertical line segment intersecting R at that
x-coordinate and let LR(x) be the respective list of intersected lines. Again, let xi be an
x-coordinate after the crossing ci and before the crossing ci+1. Analogously to triples in
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the previous section, we call a pair of lines R valid after crossing ci if during the whole
movement from left infinity to xi, the list of crossed lines LT contains at most c lines, that
is, |LT (xk)| ≤ c for all k ∈ {0, . . . , i}.

The number of pairs that are valid before the first crossing can be computed as
c∑

k=2
(n+ 1− k) = 1

2(c− 1)(2n− c) .

Let now ci be the crossing of two lines a and b where a is above b before the crossing. Let
`1, `2 be a pair of lines and let `1 be above `2 at the x-coordinate of the crossing ci. Assume
that the pair `1, `2 becomes invalid at the crossing ci. Then s{`1,`2}(xi−1) crosses exactly c
lines and either `1 = b or `2 = a, as in all other cases the segment s{`1,`2}(xi) crosses c or
more lines. In particular, at each crossing at most two pairs become invalid. However, the
number of initially valid pairs is strictly smaller than two times the number of crossings,
and we therefore need to be more thorough. Note that if `1 = b, the pair can only become
invalid if there are at least c − 1 lines under the crossing, that is, if the crossing is above
the c-level of the arrangement. Similarly, if `2 = a, the pair only becomes invalid if the
crossing is below the (n− c− 1)-level. Alon and Györi [1] have shown that the number of
crossings below the (n − c − 1)-level is at most (n − c − 1)n, if (n − c − 1) < n

2 . Indeed
n− c− 1 = n− (1−α+ ε)n− 1 = αn− εn− 1 < n

2 as α < 1
2 , thus by symmetry we get that

in total at most 2(n − c − 1)n pairs become invalid. So the number of pairs that are still
valid after the last crossing is at least

β(n) :=
c∑

k=2
(n+ 1− k)− 2(n− c− 1)n = −c

2

2 + 3cn+ c

2 − 2n2 + n .

If c is linear in n, that is, c = γn, this is a quadratic polynomial with leading term −γ2

2 +3γ−2.
This leading term is larger than 0 in the interval (0, 1) if and only if γ > 3 −

√
5 = 1 − α.

Hence for γ = 1− α+ ε, we have that limn→∞(β(n)) =∞, so for n large enough, there is at
least one pair that is still valid after the last crossing. J

On the other hand, we may have outstripe({p1, p2}) ≤ (1− ε)n for any two points p1, p2.

I Theorem 3.3. For any n ≥ 12 there exist point sets P of n points in general position such
that for every pair of points p1, p2 in P there is a stripe with p1, p2 outside but at least bn3 c
points of P inside.

Proof Sketch. See Figure 1 for an accompanying illustration. Let m be the smallest integer
that is divisible by 3 such that m ≥ n ≥ 12. Let a, b and c be three points that span an
equilateral triangle with side length 1

18m
2. Let a1 and a2 be the two points on the line

through a and b that have distance 1
6m from a, with a1 being closer to b. Similarly, let b1

and b2 be the two points on the line through b and c that have distance 1
6m from b, with b1

being closer to c and let c1 and c2 be the two points on the line through c and a that have
distance 1

6m from c, with c1 being closer to a. Place n points as follows: Place m
3 points on

the line segment between a1 and a2 such that the first point has distance 1
2 to a1 and any

two consecutive points have distance 1 and call this point set A. Do the same for the line
segments between b1 and b2 and between c1 and c2 to get point sets B and C, respectively.
If necessary, take away 1 point from B and possibly another one from C. Finally, wiggle the
point set slightly so that it is in general position.

It can be shown that if we project the segment c1c2 onto the line through a and b such
that the image lies entirely in the segment a1a2, then the length of this image is smaller
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Figure 1 Construction for Theorem 3.3.

than 1. By symmetry, the lengths of the projections of a1a2 onto b1b2 and of b1b2 onto c1c2
are also smaller than 1. If p1 and p2 are in the same set, w.l.o.g. A, it thus follows that there
is a stripe with p1, p2 outside and C inside. On the other hand, if p1 and p2 are in different
sets, w.l.o.g. A and B, it can be easily argued that there is also such a stripe. J

4 Conclusion

We defined a combinatorial distance measure on point sets and showed that there are always
points which are sufficiently close. The approach gives rise to several open problems.

The distances are equivalent for all point sets with the same allowable sequence. However,
there can be two point sets with the same order type (i.e., there is a bijection between them
such that the corresponding triples are oriented in the same way) for which the distance is
different for two corresponding pairs. Reasonable generalizations of stripes for this setting
could be double wedges. Can we get analogous bounds there?

Our result gives an upper bound on the distance between closest points when the stripe
is required to be orthogonal to the line defined by the points. (This corresponds to a
region-counting distance function with a stripe orthogonal and between its two reference
points.) Is there a linear lower bound in that setting?

While our bounds are asymptotically tight, the gap between the constant factors are
large. A natural open problem is to close these gaps.

References
1 Noga Alon and E Györi. The number of small semispaces of a finite set of points in the

plane. Journal of Combinatorial Theory, Series A, 41(1):154 – 157, 1986.
2 Greg Aloupis. Geometric measures of data depth. In Data Depth: Robust Multivariate Anal-

ysis, Computational Geometry and Applications, volume 72 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 147–158, 2003.

3 Erik D. Demaine, John Iacono, and Stefan Langerman. Proximate point searching. Comput.
Geom., 28(1):29–40, 2004.

4 Jonathan Derryberry, Don Sheehy, Maverick Woo, and Danny Dominic Sleator. Achieving
spatial adaptivity while finding approximate nearest neighbors. In Proc. 20th Canadian
Conference on Computational Geometry (CCCG 2008), 2008.

5 Jerome H. Friedman and John W. Tukey. A projection pursuit algorithm for exploratory
data analysis. IEEE Trans. Computers, 23(9):881–890, 1974.

6 John Iacono and Stefan Langerman. Proximate planar point location. In Proc. 19th Sym-
posium on Computational Geometry (SoCG 2003), pages 220–226. ACM, 2003.

7 J. W. Tukey. Mathematics and the picturing of data. In Proc. International Congress of
Mathematicians, pages 523–531, 1975.



An FPTAS for an Elastic Shape Matching
Problem with Cyclic Neighborhoods
Christian Knauer, Luise Sommer, and Fabian Stehn

Institut für Informatik, Universität Bayreuth, Bayreuth, Germany

Abstract
The elastic geometric shape matching (EGSM) problem class is a generalisation of the well-
known geometric shape matching problem class: Given two geometric shapes, the ‘pattern’ and
the ‘model’, find a single transformation from a given transformation class that, if applied to the
pattern, minimizes the distance between the transformed pattern and the model with respect to
a suitable distance measure.
In EGSM, the pattern is divided into subshapes that are transformed by a ‘transformation
ensemble’, i.e., a set of transformations. The goal is to minimize the distance between the union
of the transformed subpatterns and the model in object space as well as the distance between
specific transformations of the ensemble. The ‘neighborhood graph’ encodes which translations
should be similar.
We present an FPTAS for EGSM instances for point sequences under translations with fixed
correspondence where the neighborhood graph is a simple cycle.

1 Introduction

In classical geometric shape matching (GSM) problems, one is given a pattern P and a model
Q, both from a class S of geometric shapes, along with a distance measure d : S × S 7→ R+

0 .
The task is to find a single transformation t from a given transformation class T acting on
S, so that d(t(P ), Q) is minimized.
Matching geometric shapes is a problem that occurs in many applications such as character
recognition, logo detection, human-computer-interaction, etc., and in a variety of different
scientific fields, e.g., robotics, computer aided medicine, drug design, etc., and thus has
already received a considerable amount of attention. We refer to the survey papers by Alt et
al. [1] and Veltkamp et al. [4] for an extensive overview.
Many geometric registration problems (where the task is to align two shapes in different
coordinate systems), e.g., between the coordinate system of an operation theatre and the
coordinate system of a 3D-model of a patient acquired during a pre-operative MRI scan, can
be modelled as a GSM instance by appropriately choosing S and d. There, the transformation
that minimizes the distance between both geometric shapes is then used as the mapping
from the pattern space into the model space.
In many applications, where local distortions and complex deformations may occur, such as
soft tissue registrations, GSM problems are too restrictive because a single transformation
is chosen to match the entire pattern to the model. This issue is addressed by the elastic
geometric shape matching (EGSM) framework, a generalisation of GSM. Here, the pattern is
partitioned into subshapes and instead of one single transformation, a so-called transformation
ensemble is computed. Each subshape of the pattern is transformed by an individual
transformation of the ensemble in order to minimize the distance between the transformed
pattern and the model. Also, the ‘consistency’ of the ensemble is guaranteed by forcing the
transformations acting on some neighboring subshapes of the pattern to be similar with respect
to a suitable similarity measure for the class of transformations at hand. The dependencies
between the transformations of an ensemble are encoded in a so-called neighborhood graph.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
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In [3], the authors considered several variants of this problem for different distance measures
and graph families, including an algorithm that solves a variant of the problem for trees
where only translations in a fixed direction are allowed in O(n2 logn) time. In this paper,
we focus on EGSM for point sequences under translations with fixed correspondence where
the neighborhood graph is a simple cycle.

Problem Statement. In the following, everything is stated in R2, ‖·‖ denotes the Euclidean
norm and translations are represented by translation vectors. All index arithmetic is modulo
n.

I Problem 1.1. Given two sequences of points P = (p0, . . . , pn−1) (the pattern) and Q =
(q0, . . . , qn−1) (the model), find a sequence of translations T = (t0, . . . , tn−1), so that the
function γ(T, P,Q) := max{max0≤i<n ‖qi − (pi + ti)‖,max0≤i<n ‖ti − ti+1‖} is minimized.

Measuring the distance of the points (ti+pi) and qi in model space is the same as measuring the
distance of the points ti and qi−pi in translation space. This is why Problem 1.1 can be studied
in translation space entirely: Let ci := qi − pi for 0 ≤ i < n and C := (c0, . . . , cn−1). The
function γ(T, P,Q) can be rewritten as γ(T,C) := max{max0≤i<n ‖ci − ti‖,max0≤i<n ‖ti −
ti+1‖}. We refer to points in translation space (i.e. translations) simply as points.

Basic Definitions. Let c, u, v ∈ R2 and r > 0. Dr(c) denotes the disk with radius r centered
in c and ∂Dr(c) denotes its boundary. We define Ir(c, u, v) := Dr(c) ∩Dr(u) ∩Dr(v).
For a given sequence C = (c0, . . . , cn−1), we define δ∗ := minT γ(T,C). We call a sequence
of points T = (t0, . . . , tn−1) δ-admissible (for C), iff γ(T,C) ≤ δ. A sequence, that is
δ∗-admissible is called an optimal sequence. We will use the symbol T ∗ to denote an optimal
sequence. A point t is called (δ, i)-admissible (for C), iff there is a δ-admissible sequence T
so that T = (t0, . . . , ti = t, . . . , tn−1). Strictly speaking, δ∗ and the concepts of admissibility
depend on C, but since C is part of the input, we refrain from including C in the notation.

Previous Work and our Contribution. In [3] and in [2], the authors discussed several
variants of EGSM problems. However, there are no results regarding problem instances,
where the neighborhood graph is a simple cycle. In particular, there is no literature, that
deals with efficient exact or approximation algorithms for Problem 1.1 and we do not know,
if the problem is NP-hard.
In this paper, we provide an FPTAS for Problem 1.1 and prove that it computes a (1 + ε)-
approximation to δ∗ in O

(
ε−1/2 (

log ε−1)2
n3 logn

)
time or in O

((
log ε−1)

ε−2n2 logn
)
time

for some ε > 0.

2 Our Results

Due to space limitations, the proofs of all lemmata and all figures have been omitted.
We define δ(3) := γ(C,C).

I Lemma 2.1. C gives a 3-approximation to δ∗, i.e., δ(3) ≤ 3δ∗.

Lemma 2.1 is the basis for the construction of our FPTAS, since it implies, that every (δ∗, 0)-
admissible point lies within the disk Dδ(3)(c0). A simple way to get a (1 + ε)-approximation
to δ∗ for some ε > 0 is to sample t0 from a dense enough εgrid-grid (a grid where the distance
between samples is at most εgrid) that covers Dδ(3)(c0). We call the points of this grid
translation-samples. Here, εgrid = Θ

(
εδ(3)). We also sample the value δ of the objective
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function on the interval [ 1
3δ

(3), δ(3)] with sample-distance εobj = Θ
(
εδ(3)). We call the

samples on [ 1
3δ

(3), δ(3)] radius-samples. We then test for every radius-sample δ, whether
there exists a solution T ′ so that γ(T ′, C) ≤ δ and a translation-sample is the ith component
of T ′. This test is a variant of a problem that has already been studied in [3], where the
authors give an algorithm that solves this problem for paths in O(n2 logn). Consequently,
this simple FPTAS runs in O

(
ε−3n2 logn

)
time.

This result can be improved in several ways. The first obvious improvement is to perform a
binary search on [ 1

3δ
(3), δ(3)], which improves the run-time to O

((
log ε−1)

ε−2n2 logn
)
.

The second idea is based on Lemma 3.1 below, which says, that for every δ ≥ δ∗, there is a
δ-admissible sequence T containing a point ti that lies on ∂Dδ(ci) for some i. Consequently,
we do not have to sample the whole disk Dδ(3)(ci) for the current radius-sample δ, but to
only sample ∂Dδ(ci). Unfortunately, there is no way to identify the disks (the ci) with this
property, hence it is no longer possible to pick an arbitrary disk and sample it, but we have to
sample the boundary of all disks. This changes the run-time to O

((
log ε−1)

ε−1n3 logn
)
. Of

course, this is only an improvement if ε−1 � n. On the other hand, this strategy enables us
to apply another modification: We can approximate each ∂Dδ(ci) by a regular polygon with
O

(
ε−1/2)

vertices. Due to the convexity of the problem, we can then perform a binary search
on the edges of this polygon and get an FPTAS that runs in O

(
ε−1/2 (

log ε−1)2
n3 logn

)

time. This gives us the following tradeoff between precision and input size:

I Theorem 2.2. We can compute a (1 + ε)-approximation to δ∗ in O
((

log ε−1)
ε−2n2 logn

)

time or in O
(
ε−1/2 (

log ε−1)2
n3 logn

)
time.

Since it is very clear how to implement the approximation when sampling the interior of
Dδ(3)(c0), we elaborate on the improvements of the second strategy.

3 A Detailed Description

On (δ, i)-Admissible Points. The reason why it suffices to sample the boundaries of all
disks rather than sampling the interior of one disk with a grid is, that any optimal solution T ∗
contains a key-point: A (δ∗, i)-admissible point t∗i of T ∗ = (t∗0, . . . , t∗n−1) is called a key-point,
iff Iδ∗(ci, t∗i−1, t

∗
i+1) = {t∗i } and t∗i ∈ ∂Dδ∗(ci).

I Lemma 3.1. For every optimal sequence T ∗ = (t∗0, . . . , t∗n−1), there is an index 0 ≤ i < n

so that t∗i is a key-point.

On Computing δ∗. There is at least one index 0 ≤ i < n for every T ∗ = (t∗0, . . . , t∗n−1), so
that t∗i is a key-point, which implies, that t∗i ∈ ∂Dδ∗(ci). Since we have no way of determining
the index i, so that t∗i is a key-point, the boundaries of all disks have to be sampled in order
to find a suitable approximation to t∗i . Since we do not know the optimal radius δ∗ either,
we have to sample the boundary of all disks for dense enough radius-samples in [ 1

3δ
(3), δ(3)].

For every index i, let δ∗i be the smallest (not necessarily a sample-radius) value, so that
there is a (δ∗i , i)-admissible point ti ∈ ∂Dδ∗

i
(ci). In order to compute δ∗ from the values

δ∗0 , . . . , δ
∗
n−1, we need the following observation:

I Lemma 3.2. δ∗ = min0≤i<n δ∗i .

Consequently, in order to find δ∗, it suffices to compute δ∗i for all 0 ≤ i < n.

EuroCG’18
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Let T (ε) be a solution so that δ(ε) := γ(T (ε), C) ≤ (1 + ε)δ∗. Let t(ε)i denote a (1 + ε)-
approximation to a (δ∗i , i)-admissible point ti with ti ∈ ∂Dδ∗

i
(ci). Let δ(ε)

i be the radius-
sample of t(ε)i . In order to prove that a binary search for δ∗i on [ 1

3δ
(3), δ(3)] works for every

index i, we need one more characteristic of (δ, i)-admissible points.

I Lemma 3.3. Let δ̄ ≥ 0 be so that there is a (δ̄, i)-admissible point ti ∈ ∂Dδ̄(ci). Then
there is at least one (δ, i)-admissible point on ∂Dδ(ci) for all δ ≥ δ̄.
Consequently, a binary search for δ∗i on [ 1

3δ
(3), δ(3)] can be carried out for every index

0 ≤ i < n and it remains to determine a suitable sample-distance εobj: Since we aim for a
(1 + ε)-approximation, we have to guarantee, that δ(ε) ≤ (1 + ε)δ∗. Hence, it suffices to find
some δ(ε)

i ∈ [δ∗i , δ∗i + εδ∗i ] for each 0 ≤ i < n and we have to choose εobj (the density of the
radius-samples) subject to ε and δ(3). The analysis on how εobj has to be chosen exactly will
be carried out in Lemma 3.6, since it also depends on our final improvement, in particular
on the polygons that will be used to approximate the boundaries of all disks.
In order to describe the final improvement in more detail, we need to briefly explain the
‘propagation along the path’ decision algorithm A1 of [3], that, given a radius-sample δ, a
translation-sample ti and an index i, decides, whether ti is (δ, i)-admissible.

An Algorithm for Paths. A point ti ∈ Dδ(ci) is (δ, i)-admissible iff there are points
ti+1, . . . , tn−1, t0, . . . , ti−1 so that all constraints encoded in γ(T,C) are met. This chain
of constraints can be interpreted as a path that starts and ends at ti. In [3], the authors
introduced an algorithm, that solves this problem for the case that only translations in a
fixed direction are allowed. This algorithm can also be applied in our setting and then runs
in O(n2 logn) time and space. Starting at one end of the path, the basic idea is to propagate
‘admissible regions’, i.e., sets of translations that satisfy the current prefix of constraints,
along the path. This is done by inflating them (i.e., computing the Minkowski sum of the
region at hand and Dδ) and intersecting the result with the admissible region encoded in the
subsequent node of the path. This strategy can be applied iteratively until either ti is met
again (in which case the algorithm returns yes) or the intersection of two regions is empty at
some point. In this case the algorithm returns no along with the tuple (k(ti), µ(ti)), where
k(ti) is the index of the first node that was not reached, and µ(ti) is the Euclidean distance
between the inflated version of the last non-empty admissible region and its succeeding
admissible region.

Approximating the Boundary of a Disk with a Polygon. The simplest approach that tests,
if there is a (1 + ε)-approximation to a key-point on ∂Dδ(ci) is to pick k = Θ

(
ε−1δ(3))

suitably distributed translation-samples on ∂Dδ(ci) and propagate all of them according
to algorithm A1. In that way, O(k) propagations (i.e., calls to algorithm A1) have to be
carried out. This number can be reduced to O(k1/2 log k) by exploiting the convex structure
of the admissible regions that occur during the propagation process: The main idea is to
approximate ∂Dδ(ci) by a regular polygon with O(k1/2) vertices and to perform a binary
search on each of its edges with a sample-distance that depends on ε and δ(3).
Let Pδ,p(ci) (or Pδ(ci) in short) denote the inscribing regular polygon of ∂Dδ(ci) with p

vertices. By a slight abuse of notation, we identify Pδ(ci) with its boundary, since we solely
operate on the boundary of the polygons at hand. Also, let all such polygons be concentric.

I Lemma 3.4. Let p :=
⌈
31/4πε−1/2⌉

and let the edges of Pδ(ci) be sampled with sample-
distance εedge so that εedge ≤ 1

3δ
(3)ε. Then, there is a translation-sample t ∈ Pδ(ci) for every

point u ∈ ∂Dδ(ci) so that ‖t− u‖ ≤ 1
3δ

(3)ε.
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Strictly speaking, p depends on ε, but we refrain from including ε in the notation.
In the remainder, we will show, that the binary search among the samples on one edge of
Pδ(ci) can be carried out in O

(
log ε−1n2 logn

)
time. Here O

(
n2 logn

)
is the time that is

needed to carry out the propagation process for a single translation-sample t by algorithm
A1. Since this approach builds on several properties of the tuple (k(t), µ(t)) returned by
algorithm A1, we have to introduce some of them first: The following lemma describes the
dependency of the tuple on the translation-samples of one edge of Pδ(ci).

I Lemma 3.5. Let s and s′ be two no-instances of algorithm A1 for a given radius-sample
δ, i.e., A1(s, δ, i) = (no, (k(s), µ(s))) and A1(s′, δ, i) = (no, (k(s′), µ(s′))), and let t ∈ ss′.
Then, either A1(t, δ, i) = yes, or A1(t, δ, i) = (no, (k(t), µ(t))). In the latter case the tuple
(k(t), µ(t)) has the following properties:

1. k(t) ≥ min{k(s), k(s′)},
2. if k(t) = k(s) = k(s′), then µ(t) ≤ max{µ(s), µ(s′)}.
Moreover, if k(t) = k(s) = k(s′) for all points t ∈ ss′, the function f → [0, 1], x 7→
µ((1− x)s+ xs′) is strictly convex.

As a consequence of the convexity of function f , in order to test if there is a (δ, i)-admissible
point on the line segment ss′ (which means, that there is a point on t ∈ ss′ so that the
propagation of t with radius-sample δ is successful) a binary search can be carried out among
the samples along the line segment ss′.
The runtime depends on the number of translation-samples that have to be evaluated, which
is O

(
log εedge−1)

for sample-distance εedge. Since every propagation takes O(n2 logn) time,
the procedure runs in O

(
log εedge−1n2 logn

)
time.

Since all edges of Pδ(ci) have to be considered, evaluating the edges of one polygon takes
O

(
p log εedge−1n2 logn

)
time.

We already know from Lemma 3.4, that the length of an edge of Pδ(ci) is at most 2δπp−1.
With εedge ≤ 1

3δ
(3)ε and p =

⌈
31/4πε−1/2⌉

, the number of translation-samples, that have to
be propagated, is

log
(

2δπ
εedgep

)
≤ log

(
6δπ
√
ε

εδ(3)π 4
√

3

)
≤ log

(
1√
ε

(
6

4
√

3

))
∈ O

(
log 1√

ε

)
, (1)

which leads to a runtime of O
(
ε−1/2 log ε−1n2 logn

)
in total for the evaluation of one polygon

and a fixed radius-sample.
For technical reasons, we also need to state the following insight:

I Lemma 3.6. Let δ̄ := δ∗ + εobj and let s and s′ be the endpoints of the circular arc of
(δ̄, i)-admissible points on ∂Dδ̄(ci), then ‖s− s′‖ ≥ εobj.
Let the sample-distance of the points on the edges of Pδ̄(ci) be εedge :=

√
3

12 εδ
(3) and let

εobj :=
√

3
12 εδ

(3). Then there is a translation-sample on Pδ̄(ci) that is a (1 + ε)-approximation
to t∗i .

Description and Analysis of the Algorithm. We first describe the algorithm: At the start,
the value of a 3-approximation to δ∗ is computed in O(n) time. Except for basic arithmetic
operations, the algorithm consists of four nested loops: The first loop iterates over all of the
n input points of the sequence C. For every such point a binary search for δ ∈ [ 1

3δ
(3), δ(3)]

up to accuracy εobj =
√

3
12 δ

(3)ε is carried out; this takes O(log ε−1) steps. In each step of
this binary search all p =

⌈
31/4πε−1/2⌉

∈ O
(
ε−1/2)

edges of Pδ(ci) are inspected, and on
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each of them a binary search among 2δπ
εedge

∈ O
( 1
ε

)
translation-samples is performed. Each

translation-sample is propagated with algorithm A1 for paths, which takes O(n2 logn) time
per call. This gives a total runtime of O

(
ε−1/2 (

log ε−1)2
n3 logn

)
.

If δ(ε) < δ(3) is returned, it is valid since there was a translation-sample that has been
propagated successfully and therefore is part of a δ(ε)-admissible sequence T . This also means
that the very translation-sample that establishes δ(ε) is propagated and together with the
intermediate steps of the propagation gives a T , which then serves as a witness. If there was
no successful propagation, δ(ε) = δ(3) is returned and we know from Lemma 2.1 that there is
always a δ(3)-admissible sequence.
Now we analyse the precision of the algorithm: The precision of the binary search on δ is
εobj <

1
3δ

(3)ε; also, all polygons are concentric by construction. If Pδ(ci) and Pδ+εobj(ci)
are two polygons with circumradii that differ by εobj, the distance between any point on
Pδ(ci) and the polygon Pδ+εobj(ci) is at most εobj and vice versa. Every edge of these two
polygons is sampled with points of distance εedge, and with Thales’ theorem it follows that for
every translation-sample on Pδ(ci) there is a translation-sample on Pδ+εobj(ci) with distance
1
3δ

(3)ε or less and vice versa. Combined with Lemma 3.4, we have that for every δ there is
a translation-sample in Dε(ti) for every (δ, i)-admissible point ti ∈ ∂Dδ(ci). According to
Lemma 3.6, one of the following two cases holds: Either there is at least one (δ, i)-admissible
translation-sample on Pδ(ci) for every δ ≥ δ∗ + 1

3δ
(3)ε so that the line segment of all (δ, i)-

admissible points on one of the edges of this polygon is at least 1
3δ

(3)ε long, or one vertex of
the polygon is a (δ, i)-admissible point and since all polygons are concentric, this vertex is
(δ, i)-admissible for every ∂Dδ(ci) with δ ≥ δ∗. We consider the radius-samples δ̄, δ̄+ εobj and
δ̄+2εobj, where δ̄ := δ∗+ζ−εobj for some 0 < ζ < εobj. Since δ̄ < δ∗, none of the propagations
for this δ are successful. A short analysis leads to δ̄+εobj < δ∗+εobj < δ̄+2εobj < δ∗+ 1

3δ
(3)ε.

Due to Lemma 3.6, this means, that for radius-sample δ̄ + 2εobj the two endpoints of the
circular arc of (δ̄ + 2εobj, i)-admissible points in Dδ̄+2εobj

(ci) have a distance of at least εobj,
which is why there is at least one translation-sample on the inscribing polygon of this disk, that
is propagated successfully and the algorithm returns δ(ε) = δ̄+ 2εobj < δ∗+ 1

3δ
(3)ε < (1 + ε)δ∗

as the approximation to δ∗. Hence the algorithm computes a (1 + ε)-approximation to δ∗ for
Problem 1.1.
It also returns a (δ(ε), i)-admissible point t(ε) from which an δ(ε)-admissible sequence T (ε)

can be computed in O(n2 logn) time.
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Abstract
We propose the group diagram as a representation for multiple trajectories representing one
or several moving groups. Given a distance threshold, a similarity measure and a minimality
criterion a minimal group diagram is a minimal representation of the groups maintaining the
spatio-temporal structure of the groups’ movement. We give hardness results and approximation
algorithms for computing several variants of the group diagram.

1 Introduction

A moving object, called entity, is described by its location at n time stamps and a linear
interpolation inbetween each two consecutive time stamps. The corresponding trajectory
therefore is a polygonal line. Given k trajectories, each of complexity n forming one or
several (overlapping, i.e., splitting and merging) groups we introduce the group diagram as a
means of compactly representing these groups. We propose the following general definition:

I Definition 1.1. A group diagram (GD) is a geometric graph with vertices augmented by
a temporal component, that represents all input trajectories T . We say the graph represents
a trajectory T ∈ T if there is a similar path P in the graph, that is T and (the geometric
representation of) P are similar under a given similarity measure. We say a group diagram is
minimal if it is minimal in size, either with respect to its number of edges or the total length
of edges.

We consider GD which are built from the input trajectories, i.e., edges of the GD are
represented by subtrajectories of the input and two edges share a vertex if the endpoints of
the corresponding subtrajectories are within distance d from each other. Endpoints of edges
with no d-distance neighbor have degree one. Vertices in the graph are hence embedded
as the set of end points of incident edges. We will use such graphs in the following. Note
that we could transform these into planar embedded graphs, for instance by choosing and
connecting to the midpoint of the point set of a vertex.

As similarity measure we consider three popular measures on trajectories: the Fréchet
distance, equal-, and similar-time distance. Figure 1 illustrates several trajectories. The
subtrajectories forming a minimal GD for the given trajectories are highlighted in red.

Minimizing the number of edges or their total length seems intuitively reasonable. However
both can lead to strange effects illustrated in Figure 2 which shows two simple examples (one
or two trajectories of complexity 1). In the left figure the input consists of a single trajectory
of length 6d and the GD with minimal length consists only of the red points, which is a bad
representation of the movement. In the right picture, the GD minimizing the number of
edges consists of the two input trajectories, although we would like the common movement
between A and B to be represented by only one representative. To prevent these effects we
make the following further requirements.

When minimizing number of edges, we require that as much as possible is jointly repre-
sented. Given a subtrajectory τ of an edge of a GD G, let c(τ) denote all subtrajectories

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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split

merge

Figure 1 Illustration of GD.

d

dA B

Figure 2 unintuitive GD with minimal edge length (left)
and minimal number of edges (right).

of the input trajectories within distance at most d to τ and let G∗τ := c(c(τ)) denote the
union of all subtrajectories within distance at most d to a curve in c(τ). Furthermore, we
define Aτ := G ∩G∗τ . We now demand that for each subtrajectory τ the resulting set Aτ
is a minimal representation for c(Aτ ).
When minimizing the total length, we require that no clusters are artificially split up to
reduce the length. Formally, we require that no subgraph of the GD can be contracted,
i.e., substituted by a subgraph of smaller size (but possibly larger length).

Related Work Two related notions to the GD are the grouping structure and flow diagrams.
The grouping structure is the unique graph representing all density-connected groups traveling
at equal-time [6]. A flow diagram is a minimal (in the number of vertices) diagram representing
segmentations of all input trajectories. In a flow diagram nodes represent criteria and edges
transitions between criteria [3]. The grouping structure is a specialization of the GD, which
uses the equal-time distance, and density connectedness as inner group distance. The flow
diagram can be seen as generalization of the GD (after switching between vertices and edges)
where criteria are more general than small distance of the trajectories. Computing a GD with
Fréchet distance as distance measure is also highly related to map construction algorithms,
where the goal is to determine the underlying network of a set of trajectories [1]. Similar
modeling choices (edges, similarity measure, and minimality condition) occur in the problem
of finding a representative (median, middle, ...) trajectory of a set of similar trajectories.

Complexity Analysis By a reduction from the known NP-complete Dominating-Set
problem for a grid graph [7] we can show that the decision problem for GD is NP-complete
for all variants we consider.

I Theorem 1.2. Given an integer l, deciding whether there exists a GD of size l is NP-
complete for both l denoting the edge length and l denoting the edge number, and for both
Fréchet distance and equal-time distance as similarity criteria.

In the following two sections we give approximation algorithms and their experimental
evaluation on a real data set. Due to space limitations many details, in particular proofs, are
omitted in this extended abstract, and will be given in the full version.

2 Approximation Algorithms

Our approach is based on a natural formulation of the problem as a Set-Cover instance,
which we first build and then solve approximately. To do so, we use the following concepts. A
cluster is a set of trajectories called cluster curves that are all similar (under some similarity
measure) to one representative of the cluster. Each edge in a GD can be identified with a
representative of a cluster of subtrajectories from the input. We first detect all relevant cluster
representatives and then we select a minimal set of these clusters where the union covers
the complete input. Thus our approach is to construct and solve a Set-Cover instance
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with universe U consisting of all segments of the input trajectories. To make this approach
computationally feasible we segment the trajectories such that we only need to consider
subtrajectories starting and ending at vertices of the segmentation as cluster representatives.

As we construct and approximately solve a Set-Cover instance we obtain approximation
algorithms in both cases, minimizing the total size of the GD and minimizing the length.
When minimizing length for the Fréchet distance we additionally make a small additive error
for each edge of the GD, see Lemma 2.2.

To take the two different minimality criteria into account we can formulate a weighted
Set-Cover problem where we assign a weight to each representative (subset) depending
on which minimality condition we choose: unit weight for number of edges and length of
representative for edge length. Next we show how to implement this approach for the different
distance measures.

2.1 Fréchet Distance
Recall that the Fréchet distance between two curves τ and σ is defined as the infimum over all
reparameterizations α and β of [0, 1] of the maximum over all t ∈ [0, 1] of ‖τ(α(t))−σ(β(t))‖ [2].
To compute a minimal GD with Fréchet distance as similarity measure we use a sweep
algorithm with two moving points a and b along every trajectory and report all relevant
clusters represented by the subtrajectory between the current positions of a and b as described
in [4].

I Definition 2.1. A cluster representative τ which represents the cluster c(τ) is irrelevant if it
can be extended to τ ′ such that c(τ ′) contains only extended curves of c(τ) and |c(τ)| = |c(τ ′)|
and no other trajectory not in the cluster enters a d-tube around one of the cluster curves.
If a cluster representative cannot be extended in such a way the representative and the
corresponding cluster are relevant.

I Lemma 2.2. When minimizing size, there always exists a minimal GD solution where
edges correspond to relevant cluster representatives. When minimizing length, this solution
adds at most an additive error of 2de, where d is the distance threshold and e is the number
of edges of an optimal solution.

Note that this additive error is tight: Consider an input setting of trajectories of complexity
one and length greater than 2d, where always two trajectories are congruent and the pairs are
within distance greater than d. Here, only the whole trajectories are relevant and therefore
each representative (whole trajectory) is 2d longer than a minimal representative (middle
part with distance d to endpoints).

When each segment has length greater than 4d, which is the case in our experiments, we
have a multiplicative error of at most 2 when using only relevant representatives.

d d

Figure 3 Inserting new vertices. The
vertices from the input are shown as
disks whereas the newly added ones are
marked as squares.

Segmentation First we observe that using the seg-
mentation given by the input vertices does not suffice
for a minimal representation, e.g., in the case of par-
allel lines with different starting points. To obtain a
sufficiently fine partition of the trajectories we con-
sider two different triggers for inserting a new vertex.
Firstly, for every vertex v of the input data we add a
vertex to every segment which has distance to v less

than or equal to d (see Figure 3a) at the point along the segment where the distance to v is

EuroCG’18



7:4 Group Diagrams for Representing Trajectories

minimal (type 1). Secondly, we add a new vertex if the distance between two segments is
less than d for the first time and if the distance exceeds d again (type 2) (see Figure 3b).

I Lemma 2.3. After two steps of inserting new vertices all relevant clusters start and end
at vertices.

From Lemma 2.3 it follows that we can use the vertices of the trajectories after two steps
of vertex insertion as the event points of the sweep algorithm. For each trajectory τ we move
b to the right until the representative is relevant and all cluster curves of the corresponding
cluster start and end at vertices. Then we report this cluster as one subset of the Set-Cover
instance, set a to the position of b and proceed like this until we reach the end of τ .

I Theorem 2.4. Let N be the complexity of a trajectory after two steps of vertex insertion.
Given a GD instance using Fréchet distance we can compute in O(k2N3) time a Set-Cover
instance of size |U| = O(kN) and |S| = O(kN), the solution of which solves the GD instance.

I Remark. The value N is in O(k2C2n), where C is a constant bounding the number of
intersections of one segment with all segments of the input (see the full version for details).
Note that this is linear in the dominating parameter n, since k � n.

2.2 Equal- and Similar-Time Distance
Next we want to compute a GD based on equal-time distance as similarity measure [5]. A
path P within a group diagram is similar to an input trajectory τ if for any t in the domain
of τ the Euclidean distance dist(P (t), τ(t)) is at most d. The following observation follows
directly from the linear interpolation between two vertices of a trajectory.
I Remark. Given two piecewise-linear trajectories τ1, τ2 with vertices at the locations
corresponding to the time stamps t1, ..., tm. Then if dist(τ1(ti), τ2(ti)) ≤ d and
dist(τ1(ti+1), τ2(ti+1)) ≤ d we have dist(τ1(t), τ2(t)) ≤ d for all t ∈ (ti, ti+1).

Segmentation Using this observation we insert a sufficient number of time stamps and
corresponding vertices additional to the input vertices to ensure that between consecutive
time stamps the pairwise equal-time distance of the trajectories does not change with
respect to threshold d. We do this by simulating equal-time distance first, i.e., inserting
(by interpolation) a vertex to each trajectory for the at most kn different time stamps.
Subsequently, we consider only the common time interval of all trajectories. Then we
compare all segments between two consecutive time stamps in a second step.

Let AB and CD be two segments of different trajectories between two consecutive time
stamps i and i + 1. If dist(ABt, CDt) ≤ d holds for t = ti and t = ti+1 the segments are
at equal-time distance at most d for all t ∈ (ti, ti+1) and we do not need to insert any new
vertices. If dist(ABt, CDt) ≤ d holds for i but not for i+ 1 the equation dist(ABt, CDt) = d

has exactly one solution ts in (ti, ti+1) and we insert a new vertex to all trajectories (if
possible) at the corresponding locations at ts (split event). Analogously we calculate ts and
insert new vertices if the inequality holds for t = i+ 1 but not for t = i (merge event). Lastly,
if the inequality does not hold for t = i nor for t = i+ 1 the equation dist(ABt, CDt) = d

has either no solution or exactly two solutions tmin and tmax in I. In the first case we can
conclude that the segments do not share a part where the equal-time distance is less than or
equal to d. In the latter case we obtain one merge and one split event between t = i and
t = i+ 1. Again, we insert vertices to every trajectory at time tmin and tmax.

I Lemma 2.5. The segmentation takes O(k4n logn) time. After this process each of the k
trajectories has at most k3n vertices.
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Computing the GD For computing the GD we proceed in the following way. Between each
two consecutive time stamps in V we compute one subset for each segment, which contains
the indices of all other segments within equal-time distance at most d. The distance between
two segments is the maximum of the Euclidean distance between the two starting points of
the segments and their two ending points.

Then we solve the Set-Cover instance and report the segments which correspond to the
selected subsets. When minimizing the total edge number of the GD we have to ensure that
the representation does not change when not necessary in terms of minimality. Otherwise the
GD consists of edges that could be concatenated. This can happen because the solution of
the Set-Cover in general is not unique. To maintain one representation as long as possible
we check if the representation Rold between the previous two time stamps still represents all
segments between the current two timestamps and if the size of Rold equals the size of the
current solution. In this case we maintain Rold and proceed with the next time stamp. This
additional step is not necessary when minimizing the total edge length as the sum of the
length of a minimal length representation between a series of consecutive time stamps within
a time frame from start ts to end time te is at most the minimal length of a representation
looking at the whole interval [ts, te] at once.

I Lemma 2.6. For each time stamp we can compute the k sets of the Set-Cover instance
in O(k2) time.

I Theorem 2.7. Given a GD instance using equal time distance, we can compute in O((k5 +
k4 logn)n) time O(k3n) Set-Cover instances each of size |U| = k and |S| = k the solution
of which solves the GD instance.

Similar-time Distance Equal-time distance may be too restrictive for some applications,
for example for entities which travel the exact same route, but such that each entity reaches
each position with a small delay. We use the term similar-time distance when we allow a
bounded time shift when comparing two positions.

3 Experiments

In order to investigate the usability of our definition of a group diagram and the described
algorithms for real world data we performed experiments on data of migrating greater white-
fronted geese (Anser a. albifrons) with parents and two juveniles. For each animal we had
approximately 2000 positions which were collected in half-hourly bursts of 20 GPS positions
in 1 Hz resolution. The distance between two entities is computed based on their positions
on the earth’s surface only. A group diagram shows when a subgroup (or one single entity)
separates from the rest of the group (or from a subgroup) and when a subgroup joins another
subgroup. Detecting and visualizing split and merge events is an interesting application
of the group diagram to help answering questions like: When is the family flying close
together, so that it can be represented by only one member and when do we need more
representatives? For which distance does the family stay "together" the whole time or a
given percentages of the whole observation period? We computed group diagrams based on
bounded equal-time and α-similar-time distance as similarity measure for one family (two
adults and two juveniles) for distances d = 3, 5, 10, 20, 40, 80, 160, 320, 640, 1280 meters and,
for each distance, we set the allowed time shift to α = 0, 10 seconds. We give a summary of
the experiments here, for more details and an evaluation of the experimental computation
time see the full version of the paper.
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Figure 4 Representability of
the family for increasing distance
values.

Figure 5 Family members
split when flying over a lake and
merge after passing the lake.

Figure 6 Difference of repre-
sentability of the family while fly-
ing over land and over water.

Number of Representatives for equal- and similar-time distance In Figure 4 the average
number of representatives needed to represent the whole family is plotted against the distance
thresholds for bounded equal-time distance and similar-time distance as similarity criteria.
For small distances (10 m and 20 m) the impact of allowing a time shift of 10 seconds is
greater than the impact of doubling the distance. As distance increases it becomes the
dominating parameter for the size of the group diagram. The reason for this observation
most likely is the formation of the flock while flying. If the entities of the flock are flying
within a V-formation or in a line two entities are represented with only one representative
even if their distance is greater than the given threshold when we allow a small time shift.
The impact of a time shift would be less if the birds were flying next to each other rather
than behind each other like in a line or a V-formation.

Migration Over Water and Over Land During the migration one can observe that when
the family is flying over surfaces of water they tend to separate more from each other than
while flying over solid ground. One example of this phenomenon is shown in Figure 5 for a
bounded equal-time distance of 160 meters. Figure 6 shows the difference in the number of
representatives needed for flying over solid ground and flying over water. One interesting
observation is that the values differ the most between 10 and 100 m.
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1 Introduction

We study an agglomerative clustering problem motivated by interactive glyphs in geo-
visualization. GlamMap [5] is a visual analytics tool for the eHumanities which allows the
user to interactively explore metadata of a book collection. Each book is depicted by a
square, color-coded by publication year, and placed on a map according to the location of its
publisher. Overlapping squares are recursively aggregated into a larger glyph until all glyphs
are disjoint. As the user zooms out, the glyphs “grow” relative to the map to remain legible.
As glyphs start to overlap, they are merged into larger glyphs to keep the map clear and
uncluttered. To allow the user to filter and browse real world data sets at interactive speed
we hence need an efficient agglomerative clustering algorithm for growing squares (glyphs).
Formal problem statement. Let P be a set of points in R2. Each point p ∈ P has a
positive weight pw. Given a “time” parameter t, we interpret the points in P as squares.
More specifically, let �p(t) be the square centered at p with width tpw. For ease of exposition
we assume all point locations to be unique. Furthermore, we refer to P as a set of squares
rather than a set of center points of squares. Observe that initially, i.e. at t = 0, all squares
in P are disjoint. As t increases, the squares in P grow, and hence they may start to intersect.
When two squares �p(t) and �q(t) intersect at time t, we remove both p and q and replace
them by a new point z = κp + (1 − κ)q, with κ = pw/(pw + qw), of weight zw = pw + qw.
Our goal is to compute the complete sequence of events where squares intersect and merge.
Results. We present a fully dynamic data structure that can maintain a set P of n disjoint
growing squares. Our data structure can report the first time two squares in P intersect,
and supports updates (inserting or deleting a square) in O(log7 n) amortized time. Queries
asking whether a query square �q currently intersects a square �p in P take O(log3 n) time,
and the space usage is O(n(logn log logn)2). Using this data structure we can compute the
agglomerative clustering for n squares in O(nα(n) log7 n) time. Here, α is the extremely
slowly growing inverse Ackermann function. To the best of our knowledge, this is the first
fully dynamic clustering algorithm which beats the straightforward O(n2 logn) time bound.
This abstract focuses on the update and query times for our data structure. Omitted proofs
and detailed bounds on space usage, as well as related discussions on the relation between
canonical subsets in dominance queries, can be found in the full version [4].
Related Work. Funke, Krumpe, and Storandt [6] introduced so-called “ball tournaments”.
Their input is a set of balls in Rd with an associated set of priorities. The balls grow
linearly and whenever two balls touch, the lower priority ball is eliminated. The goal is to
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number 314.99.117), B. Speckmann (project number 639.023.208), F. Staals (project number 612.001.651),
and K. Verbeek (project number 639.021.541).

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



8:2 Agglomerative Clustering of Growing Squares

compute the elimination sequence efficiently. Funke and Storandt [7] show how to compute
an elimination sequence for n balls in O(n log ∆(logn+ ∆d−1)) time in arbitrary dimensions
and in O(Cnpolylogn) time for d = 2, where C denotes the number of different radii and
∆ the ratio of the largest to the smallest radius. Ahn et al. [2] recently developed the first
sub-quadratic algorithms to compute elimination orders for ball tournaments. Their results
apply to balls and boxes in two dimensions or higher. Specifically, for squares in 2D they
can compute an elimination order in O(n log4 n) time. Their results critically depend on the
fact that the elimination priorities are given and that they have to handle only deletions.

Alexandron et al. [3] present a dynamic and kinetic data structure for maintaining
the convex hull of points moving in R2. Their data structure processes (in expectation)
O(n2βs+2(n) logn) events in O(log2 n) time each. Here, βs(n) = λs(n)/n, and λs(n) is the
maximum length of a Davenport-Schinzel sequence on n symbols of order s. Agarwal et al. [1]
present dynamic and kinetic data structures for maintaining the closest pair and all nearest
neighbors. The expected number of events processed is roughly O(n2βs+2(n) polylogn), each
of which can be handled in O(polylogn) expected time.

2 Geometric Properties

Let `q denote the bottom left vertex of a square �q, and let rq denote the top right vertex
of �q. Furthermore, let D(q) denote the subset of points of P dominating q, and let
L(q) = {`p | p ∈ D(q)} denote the set of bottom left vertices of the squares of those points.

I Observation 2.1. Let p ∈ D(q) be a point dominating q. The squares �q(t) and �p(t)
intersect at time t if and only if rq(t) dominates `p(t) at time t.

q

q

rq

`q

L−(q)  

γ

L(q)

L+(q)

D(q)

Figure 1 The projection of the square
centers and relevant corners onto line γ.

Consider a line γ with slope minus one, project all
points in Z(t) = {rq(t)} ∪ L(q)(t), for some time t,
onto γ, and order them from left to right. Observe
that, since all points in Z move along lines with
slope one, this order does not depend on the time t.
Moreover, for any point p, we have rp(0) = `p(0) = p,
so we can easily compute this order by projecting
the centers of the squares onto γ and sorting them.
Let D−(q) denote the (ordered) subset of points in
D(q) that occur before q in the order along γ, and
let D+(q) denote the ordered subset of D(q) that
occur at or after q in the order along γ. We define
L−(q) and L+(q) analogously (see Fig. 1).

I Observation 2.2. Let p ∈ D(q) be a point dom-
inating point q, and let t∗ be the first time at which
r = rq(t∗) dominates ` = `p(t∗). We then have that

`x < rx and `y = ry if and only if p ∈ D−(q);
`x = rx and `y ≤ ry if and only if p ∈ D+(q).

Observation 2.2 implies that the points p in D−(q) will start to intersect �q at some time
t∗ because the bottom left vertex `p of �p will enter �q through the top edge, whereas the
bottom left vertex of the (squares of the) points in D+(q) will enter �q through the right
edge. We thus obtain the following result.
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I Lemma 2.3. Let t∗ be the time that a square �p of a point p ∈ D(q) touches �q. We have
(i) rq(t∗)y = `p(t∗)y, and `p(t∗) is the point with minimum

y-coordinate among the points in L−(q)(t∗) at time t∗ if p ∈ D−(q), and
(ii) rq(t∗)x = `p(t∗)x, and `p(t∗) is the point with minimum

x-coordinate among the points in L+(q)(t∗) at time t∗ if p ∈ D+(q).

3 A Kinetic Data Structure for Growing Squares

We describe a data structure that can detect intersections between all pairs of squares �p,�q
in P such that p ∈ D+(q). We build an analogous data structure for p ∈ D−(q), and then
use four copies of these data structures, one for each quadrant, to detect the first intersection
among all pairs of squares.

3.1 The Data Structure
Our data structure consists of two three-layered trees TL and TR, and a set of certificates
linking nodes from TL and TR. These trees essentially form two 3D range trees on the
centers of the squares in P , taking the third coordinate pγ of each point to be their rank in
the order (from left to right) along the line γ. The third layer of TL doubles as a kinetic
tournament tracking the bottom left vertices of squares. Similarly, TR tracks the top right
vertices of the squares.
The Layered Trees. The tree TL is a 3D-range tree storing the center points in P . Each
layer is implemented by a bb[α] tree [8], and each node µ corresponds to a canonical subset
Pµ of points stored in the leaves of the subtree rooted at µ. The points are ordered on
x-coordinate first, then on y-coordinate, and finally on γ-coordinate. Let Lµ denote the set
of bottom left vertices of squares corresponding to the set Pµ, for some node µ.

Consider the associated structure XL
v of some secondary node v. We consider XL

v as
a kinetic tournament on the x-coordinates of the points Lv [1]. More specifically, every
internal node w ∈ XL

v corresponds to a set of points Pw consecutive along the line γ. Since
the γ-coordinates of a point p and its bottom left vertex `p are equal, this means w also
corresponds to a set of consecutive bottom left vertices Lw. Node w stores the vertex `p in
Lw with minimum x-coordinate, and will maintain certificates that guarantee this [1].

The tree TR has the same structure as TL: it is a three-layered range tree on the center
points in P . The difference is that a ternary structure XR

v , for some secondary node v, forms
a kinetic tournament maintaining the maximum x-coordinate of the points in Rv, where Rv
are the top right vertices of the squares (with center points) in Pv. Hence, every ternary
node z ∈ XR

v stores the vertex rq with maximum x-coordinate among Rv. Let XL and XR
denote the set of all kinetic tournament nodes in TL and TR, respectively.
Linking the Trees. Next, we describe how to add linking certificates between the kinetic
tournament nodes in the trees TL and TR that guarantee the squares are disjoint. More
specifically, we describe the certificates, between nodes w ∈ XL and z ∈ XR, that guarantee
that the squares �p and �q are disjoint, for all pairs q ∈ P and p ∈ D+(q).

Consider a point q. There are O(log2 n) nodes in the secondary trees of TL, whose
canonical subsets together represent exactly D(q). For each of these nodes v we can then
find O(logn) nodes in XL

v representing the points in L+(q). So, in total q is interested in a
set QL(q) of O(log3 n) kinetic tournament nodes. It now follows from Lemma 2.3 that if we
were to add certificates certifying that rq is left of the point stored at the nodes in QL(q) we
can detect when �q intersects with a square of a point in D+(q). However, as there may
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mz
x

mz
y

mz
γ

γ

mw
x

mw
y

mw
γ

w

rq

rq,x < `p,x

u′

v′ `p
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Figure 2 The points mz and mw are defined by a pair of nodes z ∈ X R
v′ , with v′ ∈ Tu′ , and

w ∈ XL
v , with v ∈ Tu. If w ∈ QL(mz) and z ∈ Q(mw) then we add a linking certificate between the

rightmost upper right-vertex rq, q ∈ Pz, and the leftmost bottom left vertex `p, p ∈ Pw.

be many points q interested in a particular kinetic tournament node w, we cannot afford to
maintain all of these certificates. The main idea is to represent all of these points q by a
number of canonical subsets of nodes in TR, and add certificates to only these nodes.

Consider a point p. Symmetric to the above construction, there are O(log3 n) nodes
in kinetic tournaments associated with TR that together exactly represent the (top right
corners of) the points q dominated by p and for which p ∈ D+(q). Let QR(p) denote this set
of kinetic tournament nodes.

Next, we extend the definitions of QL and QR to kinetic tournament nodes. To this
end, we first associate each kinetic tournament node with a (query) point in R3. Consider a
kinetic tournament node w in a tournament XL

v , and let u be the node in the primary TL
for which v ∈ Tu. Let mw = (mina∈Pu

ax,minb∈Pv
by,minc∈Pw

cγ) be the point associated
with w (note that we take the minimum over different sets Pu, Pv, and Pw for the different
coordinates), and define QR(w) = QR(mw). Symmetrically, for a node z in a tournament
XR
v , with v ∈ Tu and u ∈ TR, we define mz = (maxa∈Pu

ax,maxb∈Pv
by,maxc∈Pz

cγ) and
QL(z) = QL(mz). See Fig. 2.

We now add a linking certificate between every pair of nodes w ∈ XL and z ∈ XR for
which (i) w is a node in the canonical subset of z, that is w ∈ QL(z), and (ii) vice versa,
z ∈ QR(w). Such a certificate will guarantee that the point rq currently stored at z lies left
of the point `p stored at w.

I Lemma 3.1. Every kinetic tournament node is involved in O(log3 n) linking certificates,
and thus every point p is associated with at most O(log6 n) certificates.

We now argue that we can still detect the first upcoming intersection.

I Lemma 3.2. Consider two sets of elements, say blue elements B and red elements R, stored
in the leaves of two binary search trees TB and TR, respectively, and let p ∈ B and q ∈ R,
with q < p, be leaves in trees TB and TR. There is a pair of nodes b ∈ TB and r ∈ TR, such
that (i) p ∈ Pb and b ∈ C(TB , [maxPr,∞)), and (ii) q ∈ Pr and r ∈ C(TR, (−∞,minPb]),
where C(TS , I) denotes the minimal set of nodes in TS whose canonical subsets together
represent exactly the elements of S ∩ I.
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I Lemma 3.3. Let �p and �q, with p ∈ D+(q), be the first pair of squares to intersect, at
some time t∗. There is a pair of nodes w, z that have a linking certificate that fails at time t∗.
From Lemma 3.3 it follows that we can now detect the first intersection between a pair of
squares �p,�q, with p ∈ D+(q). We define an analogous data structure for when p ∈ D−(q).
Following Lemma 2.3, the kinetic tournaments will maintain the vertices with minimum and
maximum y-coordinate for this case. We then again link up the kinetic tournament nodes in
the two trees appropriately.
Space Usage. Our trees TL and TR are range trees in R3, and thus use O(n log2 n)
space. However, it is easy to see that this is dominated by the space required to store
the certificates. For all O(n log2 n) kinetic tournament nodes we store at most O(log3 n)
certificates (Lemma 3.1), and thus the total space used by our data structure is O(n log5 n).
In the full version [4], we show that the number of certificates that we maintain (and thus
the space used by our data structure) is actually only O(n(logn log logn)2).

3.2 Inserting or Deleting a Square
At an insertion or deletion of a square �p we proceed in three steps. (1) We update TL and
TR, restoring range tree properties, and ensure that the ternary data structures are correct
kinetic tournaments. (2) For each kinetic tournament node in XL affected by the update,
we query TR to find a new set of linking certificates. We update XR analogously. (3) We
update the global event queue.
I Lemma 3.4. Inserting or deleting a square in TL takes O(log3 n) amortized time.
Clearly we can update TR in O(log3 n) amortized time as well. Next, we update the linking
certificates. We say that a kinetic tournament node w in TL is affected by an update if (i)
the update added or removed a leaf node in the subtree rooted at w, (ii) node w was involved
in a tree rotation, or (iii) w occurs in a newly built associated tree XL

v (for some node v).
Let XLi denote the set of nodes affected by update i (XRi of TR is defined analogously). For
each node w ∈ XLi , we query TR to find the set of O(log3 n) nodes whose canonical subsets
represent QR(w). For each node z in this set, we test if we have to add a linking certificate
between w and z. As we show next, this takes constant time for each node z, and thus
O(

∑
i |XLi | log3 n) time in total, for all nodes w (analogously for XRi ).

We have to add a link between a node z ∈ QR(w) and w if and only if we also have
w ∈ QL(z). We test this as follows. Let v be the node whose associated tree XL

v contains w,
and let u be the node in TL whose associated tree contains v. We have that w ∈ QL(z) if
and only if u ∈ C(TL, [mz

x,∞)), v ∈ C(Tu, [mz
y,∞)), and w ∈ C(XL

v , [mz
γ ,∞)). We can test

each of these conditions in constant time:
I Observation 3.5. Let q be a query point in R1, let w be a node in a binary search tree T ,
and let xp = minPp of the parent p of w in T , or xp = −∞ if no such node exists. We have
that w ∈ C(T, [q,∞)) if and only if q ≤ minPw and q > xp.
Finally, we delete all certificates involving no longer existing nodes from our global event
queue, and replace them by all newly created certificates. This takes O(logn) time per
certificate. We charge the cost of deleting a certificate to when it gets created. Since every
node w affected creates at most O(log3 n) new certificates, all that remains is to bound
the total number of affected nodes. Here we can use basically the same argument as when
bounding the update time.
I Lemma 3.6. Inserting a disjoint square into P , or deleting a square from P takes O(log7 n)
amortized time.
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3.3 Running the Simulation
All that remains is to analyze the number of events processed, and the time to do so. Since
each failure of a linking certificate produces an intersection, and thus an update, the number
of such events is at most the number of updates. To bound the number of events created by
the tournament trees we use an argument similar to that of Agarwal et al. [1].

I Theorem 3.7. We can maintain a set P of n disjoint growing squares in a fully dynamic
data structure such that we can detect the first time that a square �q intersects with a square
�p, with p ∈ D+(q). Our data structure uses O(n(logn log logn)2) space, supports updates
in O(log7 n) amortized time, and queries in O(log3 n) time. For a sequence of m operations,
the structure processes a total of O(mα(n) log3 n) events in a total of O(mα(n) log7 n) time.

To simulate the process of growing the squares in P , we now maintain eight copies of the
data structure from Theorem 3.7: two data structures for each quadrant (one for D+, the
other for D−). Using these data structures we obtain the following agglomerative glyph
clustering solution.

I Theorem 3.8. Given a set of n initial square glyphs P , we can compute an agglomerative
clustering of the squares in P in O(nα(n) log7 n) time using O(n(logn log logn)2) space.
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Abstract
We use the concept of production matrices to show that there exist sets of n points in the plane
that admit Ω(41.77n) crossing-free geometric graphs. This improves the previously best known
bound of Ω(41.18n) by Aichholzer et al. (2007).

1 Introduction

A geometric graph on a set S of n labeled points in the Euclidean plane is a graph with vertex
set S in which an edge is represented by a straight line segment between the corresponding
vertices. In this work, we are interested in the number of crossing-free geometric graphs
on a set of n points, i.e., geometric graphs in which all segments are interior-disjoint. It is
easy to see that, for any n points, this number is at least exponential in n. In 1982, Ajtai
et al. [2] showed that the upper bound on this number is also exponential. Currently, it is
known that any set of n points admits not more than O(187.53n) crossing-free graphs [13].
While it is known that the number of crossing-free graphs is minimized if the point set is
in convex position [1], not much is known about sets maximizing this number. The best
known example by now is the so-called double-zig-zag chain [1], with Ω(41.18n) crossing-free
graphs. As usual, such lower-bound constructions rely on describing a family of point sets
with convenient structural properties. In this paper, we improve this bound by showing that
another well-known family of point sets, a generalization of the double-zig-zag chain, admits
Ω(41.77n) crossing-free graphs. This generalization has also been used for similar bounds on
triangulations [5], but the number of general crossing-free graphs on this configuration was
not known. The method that allows us to analyze these point sets is the use of production
matrices, which we consider interesting on its own.

This method works by implicitly arranging the graphs in a generating tree, describing a
rule to produce a graph from one on fewer points. Consider a partition of the set of graphs
on i ≤ n points into n parts according to their degree at a special root vertex, and represent
the cardinality of each part in a vector ~vi. The first element of ~vi is the number of graphs
with the root vertex having degree 0, the second one that of graphs with root vertex with
degree 1, and so on. We then devise how to generate graphs on i + c points with a new root
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vertex from the graphs counted in ~vi, and again give the cardinalities of their parts in a
vector ~vi+c (for some small positive number c). Our point sets will allow us to devise an n×n

production matrix A such that ~vi+c = A~vi. We obtain the number of graphs on n vertices in
~vn = Aj~vn0 from the graphs on a constant number n0 of vertices, with j = (n− n0)/c. We
can then use the Perron–Frobenius theorem to obtain a lower bound on the elements of Aj

when j tends to infinity by approximating the largest eigenvalue of the matrix. This gives us
a lower bound on the number of crossing-free graphs on such a point set.

For points in convex position, generating trees have been described for triangulations [10],
spanning trees [6], and other crossing-free graphs [7]. They are the basis of the ECO
method [3]. The term production matrix was introduced in [4], a similar concept is known
as AGT matrix [11]. Together with Seara, the authors already addressed characteristic
polynomials of production matrices for geometric graphs [8].

In the next section, we define the family of point sets used, and provide production
matrices to count subgraphs in its different parts. In Section 3, we argue that bounds on the
Perron roots of the matrices give us a lower bound on the number of crossing-free graphs.

2 Generalized double zig-zag chains and the new lower bound

Basically, our point sets will be described as sequences (s1, . . . , sn). Consider any graph G

drawn on the first i + 1 vertices. If we replace every edge sjsi+1 by the edge sjsi for all
j ≤ i + 1 (and disregard duplicates and loops), we obtain a graph G′ that we call the parent
of G. Our sets will be such that G′ is crossing-free. In the other direction, we can select
some edges incident to si in G′ and replace them by edges incident to si+1 in a way that G′

is the parent of the new graph G̃, and such that G̃ is crossing-free. We say that G′ produces
G̃, and the edges incident to si+1 are inherited. The degree of si in G determines how many
graphs can be produced from it. For our construction, si is thus the root vertex, and the
vector ~vi contains the number of graphs with root vertex si of degree j, for 0 ≤ j ≤ n.
While this captures the basic idea of our proofs, we will actually have to use more involved
constructions, in which we add a constant number of points at once and add edges, some
inherited, and some not, in a well-defined, local way.

2.1 The generalized double-zig-zag chain
Let Zk be a set of n = 2z points with z ≡ 1 (mod (k + 1)) that is arranged in the following
way. Consider two x-monotone circular arcs facing each other as in Fig. 1, such that each
point on one arc can see each point on the other arc (where two points can see each other if
the interior of the line segment connecting them does not intersect one of the arcs). On each
arc, we place dn/(k + 1)e points. Consider the segment between two consecutive such points
s and t on the lower arc. We now place a “flat” circular arc between s and t with circle
center above the arc, and place k points on it; here, flat means that moving the center of the
arc up (and thus the k points on it) does not change the set of crossing-free graphs drawable
on Zk. We call the group formed by s, t, and the k points in between them a pocket. We
place k such points between each pair of consecutive points of the lower arc (obtaining the
lower chain), and also in an analogous way on the upper arc (resulting in the upper chain).
See Figure 1 for an example of Z2, where each pocket consists of four points.

The points along the lower arc, including pockets, are labeled, from left to right, p1, . . . , pz,
and those on the upper arc q1, . . . , qz. Observe that the segment between any two consecutive
points pipi+1 is not crossed by any other segment between two points of the set, and thus
can co-exist with any other edge in a crossing-free graph. For this reason, these edges will be
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Figure 1 A generalized double-zig-zag chain Z2. The arcs for the construction are dotted, the
solid edges are not crossed by any segment between two points.

pi−1
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pi+1

pi−2

pi+3

new vertices

pi+2

pi−1

pi

pi+1

pi−2

pi+3

new vertices

pi+2

Figure 2 Part of an almost convex chain with two interior vertices (i.e., k = 2). Vertices pi−2
and pi+1 are leading vertices. The other vertices are regular. Since pi+2 is a regular vertex, any
edge incident to pi+2 present in a plane graph can be obtained by inheriting an edge from the
previous vertex pi+1. The example shows pi+2 inheriting two edges from pi+2. The last inherited
edge (dashed) may also be kept at pi+1 without influencing the degree of pi+2.

disregarded first in our counting, and will be considered in the end by multiplying by a factor
of 2n. Also note that the construction consists of two almost convex polygons [9]. Therefore
we focus on counting the graphs with edges below the path (p1, . . . , pz) (and, symmetrically,
above the path (q1, . . . , qz)) called the outer part, and edges which connect vertices of the
two paths, which are in the inner part. Our bound is obtained on Z2.

2.2 Production matrices for the outer part
In this section we deduce matrices to count the number of plane graphs with edges below
the path (p1, . . . , pz), as in Figure 2. Recall that a chain is composed of a series of pockets;
each pocket forms a reflex chain of four vertices. The first and last vertices are convex, while
the two middle ones are reflex. The first (say, with smallest index) reflex vertex is called the
leading vertex of the chain. All other vertices we call regular.

We will present a matrix to count the number of plane graphs after adding one whole
pocket. This matrix will be the product of three matrices, one related to each new vertex
of the pocket pi+1, pi+2, pi+3 (recall that pi coincides with the last vertex of the previous
pocket).

2.2.1 Matrix for regular vertices
Consider a regular vertex like pi+2 (refer to Figure 2). Assume that the vector ~vi+1, containing
the number of plane graphs for each possible degree of pi+1, is known. The plane graphs
where pi+2 has degree 0 are equal to all the graphs counted in ~vi+1. This gives a first row of
1s in the matrix. If pi+2 has degree 1, it needs to inherit one edge from pi+1. If the degree of
pi+1 is 0, this is not possible, thus we get a zero in the first column of the second row. As
soon as pi+1 has degree at least 1, pi+2 can inherit one edge from pi+1. Moreover, there is
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R =




1 1 1 1 1 1
0 2 2 2 2 2
0 0 2 2 2 2
0 0 0 2 2 2
0 0 0 0 2 2
0 0 0 0 0 2




C =




1 1 1 1 1 1
1 2 2 2 2 2
0 1 2 2 2 2
0 0 1 2 2 2
0 0 0 1 2 2
0 0 0 0 1 2




X =




0 0 0 0 0 0
2 1 1 1 1 1
3 4 3 3 3 3
1 4 5 4 4 4
0 1 4 5 4 4
0 0 1 4 5 4




Table 1 Matrices for computing the outer part, for n = 6.

pi−1

pi

pi+1

pi−2

pi+3

new vertices

pi+2

pi−1

pi

pi+1

pi−2

pi+3

new vertices

pi+2

Figure 3 When edges pi+1pi−2 and pi+1pi−3 are not included, pi+1 can inherit edges from pi

(left). The example shows pi+1 inheriting two edges from pi. The last inherited edge (dashed)
may be kept without influencing the degree of pi+1. The case when edges pi+1pi−2 or pi+1pi−3 are
included is shown to the right. In the example pi+1pi−2 is included, and pi+1 inherits two edges
from pi−2. The dashed edge can be optionally kept.

the option of keeping (a copy of) the inherited edge incident to pi+1 without creating any
crossing. In total, for each graph in which pi+1 has degree at least one, that gives two ways
for making pi+2 have degree 1. Thus the rest of the row is made of 2s.

The following rows are analogous, shifted by one column every time: in order for pi+2 to
have degree k, k edges need to be inherited from pi+1, thus the minimum degree for pi+1 is k.
Since we can always choose to keep the last inherited edge incident to pi+1, we get 2 options
every time. This results in matrix R in Table 1. Exactly the same matrix applies to pi+3.

2.2.2 Matrix for leading vertices
Leading vertices like pi+1 in Figure 2 require a different approach, as there are edges incident
to pi+1 that cannot be obtained by inheriting from pi (i.e., edges pi+1pi−1, pi+1pi−2, pi+1pi−3,
as pipi−1, pipi−2, pipi−3 are not in the outer part). To take this into account, we consider
two cases, depending on whether edges pi+1pi−2 or pi+1pi−3 are included or not.
Case 1: Edges pi+1pi−2 and pi+1pi−3 are not included. When pi+1pi−2 and pi+1pi−3
are not included, pi+1 can inherit edges from pi (notice that all edges from pi cross pi+1pi−2
and pi+1pi−3). See Figure 3 (left).

The plane graphs where pi+1 has degree zero are, as before, all the ones counted in ~vi,
thus this gives a first row of 1s in the matrix. If pi+1 has degree one, it either inherited one
edge from pi or is connected to pi−1. Thus if pi has degree zero, there is only one possibility:
using edge pi+1pi−1. That gives a 1 in the first column of the second row. As soon as pi has
degree at least one, pi+1 can inherit one edge from pi, with the additional option of keeping
the inherited edge incident to pi; note that in this case using also pi+1pi−1 is not considered
because that would increase the degree of pi+1 by one. In total, for each possible degree of pi,
that gives two ways for making pi+1 have degree one. Thus the rest of the row is made of 2s.

The following rows are analogous. Consider the kth row (k ≥ 3). If pi has degree k − 2
or less, it is impossible for pi+1 to obtain degree k. When pi has degree k − 1, there is one
possibility: to inherit all edges incident to pi and add edge pi+1pi−1. If pi has degree at
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Q =




6 0 0 0 0 0
10 6 0 0 0 0
5 10 6 0 0 0
1 5 10 6 0 0
0 1 5 10 6 0
0 0 1 5 10 6




F =




2 1 1 1 1 1
0 3 2 2 2 2
0 0 3 2 2 2
0 0 0 3 2 2
0 0 0 0 3 2
0 0 0 0 0 3




Table 2 Matrices for computing the inner part, for n = 6.

least k, then pi+1 can inherit k edges from pi, with the additional option of keeping the last
inherited edge incident to pi, giving two options for every possible degree of pi. This leads to
the matrix C in Table 1.
Case 2: At least one of pi+1pi−2 and pi+1pi−3 is included. In this case we proceed
essentially by using pi−2 as “previous” vertex, but considering also the three special edges
{pi+1pi−1, pi+1pi−2, pi+1pi−3}, which cannot be inherited from pi−2. Refer to Figure 3 (right).
We defer the details to the full version. The result for this case is matrix X, shown in Table 1.

2.3 Production matrices for the inner part
The number of graphs on the inner part can be bounded similar to [1]. However, in the
full version, we show how to obtain a lower bound using production matrices, based on two
additional matrices, Q and F shown in Table 2.

2.4 Putting things together
The final production matrix for the outer part is obtained by combining matrices R, C, and
X. For each of the two regular vertices it is enough to multiply the previous vector by R.
For the leading vertex we need to combine the two cases, thus we need to add up C and
X. However, the reasoning in X uses pi−2 instead of the previous vertex pi. Thus prior
to multiplying by X, we need to recover the vector corresponding to pi−2: for this we first
multiply twice by R−1. Thus the final combined matrix for the outer part is R2(C +X ·R−2).
In the full version we show that a lower bound on the number of plane graphs in the inner
part is given by the combined matrix (FFR + 2R)Q.

3 A lower bound using the eigenvalue

All our production matrices are non-negative. The zero entries are exactly those below a
sub-diagonal. Thus, they are irreducible and primitive (Frobenius’ test for primitivity holds,
cf. [12, p. 678]). Let A be a production matrix of fixed size m×m. We know therefore that

lim
n→∞

(
A

r

)n

= ~p~qT

~qT ~p
> 0 ,

where ~p and ~q are the Perron vectors of A and AT , respectively, and r is the Perron root (i.e.,
largest eigenvalue) of A [12, p. 674]. As these values are constant and each entry of An is in
Θ(rn), this provides a means of obtaining the asymptotic number of elements constructed
by the production matrix: multiplying the initial degree vector with Ai gives the degree
vector for ci < m points. However, there is one caveat. The exponent n tends to infinity, and
we thus cannot use this to argue about matrices of size n. The matrix size must be fixed.
However, for obtaining lower bounds, we can take the nth power of a (m×m) production
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matrix for some constant m to obtain a lower bound on the number of graphs on n vertices.
In the first iteration where we add a point larger than the size of the matrix, we do not count
some graphs with high degree at the last point. These are also not taken into account in the
next iteration etc., where we also produce graphs of smaller degree at the last point. Still, the
degree vector gives a lower bound on the number of graphs. We may thus obtain the Perron
root r of a constant-size production matrix and know that the number of graphs on n vertices
in that class is in Ω(rn) for all our considered instances. For the matrix R2(C + X ·R−2), the
largest eigenvalue is at least 124.22239555, when taking the constant-size production matrix
large enough. For the inner part, the largest eigenvalue of the matrix (FFR + 2R)Q is at
least 5380.90657056 (see the full version). Accounting for the 2n ways to add edges along the
chains, we get Ω(( 3

√
124.22239555 · 6

√
5380.90657056 · 2)n) = Ω(41.773981586n) crossing-free

graphs (eigenvalues computed using Mathematica 11.2 with m = 1024).

4 Conclusion

We slightly improved the current lower bound on the maximum number of crossing-free
geometric graphs on n points using production matrices. Applying production matrices to
families of well-structured point sets appears to be an easy way of obtaining bounds for
certain types of graphs (e.g., triangulations). It is also easy to mix the pocket sizes. However,
our current approach results in an increasing number of cases when considering generalized
double-zig-zag chains with larger pockets.
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Figure 1 Optimal foldings of a linear layout with three different aspect ratios, as computed by
our algorithm: process tree [8] computed from the 2012 Business Process Intelligence Challenge [1].

1 Introduction

Linear layouts are a simple and natural way to draw a graph: all vertices are placed on
a single line and edges are drawn as arcs between the vertices. Despite its simplicity, a
linear layout can be a very meaningful visualization if there is a particular order defined
on the vertices. Common examples of such ordered—and often also directed—graphs are
event sequences and processes: public transport systems tracking passenger check-in and
check-out, banks checking online transactions (see Fig. 1 for an abstracted view of such a log),
or hospitals recording the paths of patients through their system, to name a few. A main
drawback of linear layouts are the usually (very) large aspect ratios of the resulting drawings,
which prevent users from obtaining a good overview of the whole graph. In this paper we
present a novel and versatile algorithm to optimally fold a linear layout of a graph such that
it can be drawn effectively in a specified aspect ratio, while still clearly communicating the
linearity of the layout (see Fig. 1).
Exact problem statement. We focus on the linear layout of graphs which have an order
defined on their vertices. Specifically, our input consists of a graph G = (V,E) with a total
order on the vertices V . We are also given the desired aspect ratio ρ, or equivalently the
width Wd and height Hd, of the drawing. Our goal is now to draw G as clearly as possible,
in a way that communicates the total order of the vertices effectively, while minimizing
the unused (empty) space in the drawing. In a classic graph drawing setting vertices are
points in the plane and edges are drawn arbitrarily close to each other as (thin) lines. In any
practical scenario, however, vertices carry associated data, often visualized as labels, and
lines need to be spaced well for readability. We capture both constraints by associating a
block Bi of a specified width and height with each vertex vi. This block represents the area
needed to draw the vertex vi, which may represent the size of the corresponding label, or
even a (recursive) drawing of a subgraph represented by vi. Bi also reserves the necessary
space to draw the edges surrounding vi clearly.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
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Results. We describe an algorithm which optimally “folds” a given input graph (with a
specified order and vertex blocks) for a desired target aspect ratio. The main ingredient of
our approach is an algorithm which computes an optimal partition of the input graph and its
associated blocks over the various folds, without changing the order. That is, we are solving
a packing problem (packing blocks onto rows) while respecting a given order of the blocks.
Our algorithm works at interactive speed for reasonably sized layouts.
Related work. A linear layout of a graph G is an ordering on its vertices. A linear layout
can be visualized by drawing all vertices on a line, in the given order, and drawing the edges
as arcs on one side of the line. A book embedding is a linear layout of which the edges are
partitioned into a number of sets (called pages) of non-crossing edges. For any graph the
minimum number of pages needed for a book embedding (over all possible linear layouts) is
called the book thickness. Determining the book thickness of a graph is NP-hard, and the
problem stays NP-hard even if we are given a fixed linear layout [4]. For a more complete
overview of linear layouts, we refer to the survey by Dujmović and Wood [3].

Packing rectangles has been an active area of research in both algorithms and operations
research. For our purposes two types of packing problems are particularly relevant: (two-
dimensional) bin packing and strip packing. Bin packing is already NP-hard in one dimension
(see for example [6]), which implies that both two-dimensional bin packing and strip packing
are NP-hard as well [7].

Generally packing problems allow reordering of the blocks, while we have to display
the blocks in order, which significantly reduces the complexity of the problem. There are
some algorithms for on-line strip packing which preserve the order of the blocks. A natural
approach here is next-fit, which greedily places as many blocks as possible onto a row, before
moving to the next row. While there are no bounds on the quality of the solution obtained [2],
it performs reasonably well in the average case [5]. To the best of our knowledge the exact
variant which we are studying in this paper has not been treated in the literature yet.

2 Folding algorithm

Our strategy is to fold the linear layout into multiple rows, where the vertices are ordered
alternatingly from left to right and from right to left. In other words, we assign the vertices
to rows, such that all vertices in the same row are consecutive in the given order. We call
this assignment a folding of G. We can distinguish between two types of edges: spine edges
(those between two consecutive vertices in the order) and connectors (the other edges). Spine
edges can be drawn along the folded path (spine) itself; connectors must be placed next to it.

wi

hT
i

hB
i

Figure 2 Width (wi), top-
height (hT

i ) and bottom-height
(hB

i ) of a block, spine dotted.

We first consider the following problem: given a maximum
width W , minimize the height H of the resulting drawing. For
each vertex vi ∈ V we specify a block Bi, that represents the
area needed to draw the vertex, including possibly its label.
We specify a block Bi by its width wi, its top-height hT

i , and
its bottom-height hB

i (see Fig. 2). We separate top-height
and bottom-height so that blocks do not need to be centered
vertically on the spine. Our goal is now to compute a folding
for the blocks Bi such that all blocks are disjoint and the
total height is minimized. This packing problem is the core of
our algorithm and is described in Section 2.1. Then, in Section 2.2 we show how to draw
connectors and how to adapt the block sizes to create space for the connectors.
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2.1 Packing blocks
We first consider the problem in its full generality. That is, we can place the blocks anywhere
we want along the spine, as long as the width of the drawing is at most W (see Fig. 3
(left)). In this version of the problem it can be beneficial to leave extra space between two
consecutive blocks along the spine to avoid two high blocks sharing the same x-coordinate.
Unfortunately we can show that minimizing the height is then NP-hard.

row 1

row 2
row 2

row 1

Figure 3 Packing blocks: rows can overlap vertically as long as the blocks do not overlap (left),
rows cannot overlap vertically (right).

I Theorem 2.1. If rows are allowed to overlap vertically, the problem of minimizing the
drawing height is NP-hard, even if we assume that all blocks are vertically centered on the
spine (their top and bottom heights are equal) and the assignment of blocks to rows is given.

Proof sketch. By reduction from 3-Sat (see Fig. 4). We create a grid of blocks in which a
column represents a variable and a pair of rows represents a clause. Between the variable
columns, we put columns containing “spacer blocks” that are slightly less tall than the blocks
in the variable columns. We set H and W such that spacer blocks need to be stacked on top
of each other and that variable blocks on consecutive rows need to be next to each other.
Necessarily, the variable blocks on even rows are on top of each other and the variable blocks
on odd rows as well, forming “zigzag” configurations. A zigzag that begins on the left (on the
top row of each clause) is interpreted as true, and one that begins on the right is interpreted
as false. We represent each literal in a clause by a tiny block in the corresponding variable
column. We place this tiny block (top row for positive and bottom row for negative literals)
such that it requires additional horizontal space on a row if and only if the literal is false.
Hence, to ensure that in every clause at least one literal is satisfied, we set the width W such
that the rows just fit with two extra tiny blocks, but not with three. J

x1 x2 x3 x4

}
C1

}
C2

}
C3

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷

W

H

Figure 4 Instance corresponding to (x1 ∨ x2 ∨ ¬x4)︸ ︷︷ ︸
C1

∧ (¬x2 ∨ ¬x3 ∨ x4)︸ ︷︷ ︸
C2

∧ (¬x1 ∨ ¬x3 ∨ x4)︸ ︷︷ ︸
C3

.
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We restrict the problem so that different rows cannot overlap vertically (see Fig. 3 (right)). In
that setting there is no need to put extra space between two consecutive blocks on the same
row, as the height of a row is simply determined by the maximum (top or bottom) height of
the blocks in a single row. We use dynamic programming to compute the optimal folding of
the blocks. To that end, we first precompute the height H[i, j] (1 ≤ i ≤ j ≤ n) of a row that
contains the blocks Bi, . . . , Bj . Since we separate the top-height and the bottom-height of a
block, we define H[i, j] = HT [i, j] +HB [i, j], where HT [i, j] and HB [i, j] are the top-height
and bottom-height of a row consisting of blocks Bi, . . . , Bj , respectively. If the total width
of the blocks Bi, . . . , Bj is larger than W , then we set HT [i, j] and HB [i, j] to ∞. We thus
get the following for HT [i, j] (and similar for HB [i, j]).

HT [i, j] =
{

max i≤k≤j h
T
k if

∑j
k=i wk ≤W ;

∞ otherwise.

All entries of H[i, j] can be computed in O(n2) time. Next, let T [i] (0 ≤ i ≤ n) describe the
minimum height of a folding involving the blocks B1, . . . , Bi. We then need to choose how
many blocks we will place on the last row. This results in the following recurrence for T [i].

T [i] =
{

0 if i = 0;
min 0≤k<i{T [k] +H[k + 1, i]} otherwise.

The minimum height is then given by T [n]. As a result, the minimum height and the
corresponding folding can be computed in O(n2) time.

2.2 Connectors
Spine edges can be drawn by adding a sufficient margin to the width of blocks and using
the resulting space between blocks to draw the edges. However, connectors need to be
drawn between rows, and we need to ensure that there is enough space to draw them. We
can reserve this space by changing the height of the blocks in the dynamic programming
formulation, to include the width of adjacent connectors.

We first assume that the connectors are properly nested. That is, if eij (i < j) is a
connector between Bi and Bj , and ekl (k < l) is another connector between Bk and Bl where
i ≤ k, then j ≤ k or l ≤ j. This implies that the connectors can be drawn without crossings
on one side of the spine. If the connectors are not properly nested, crossings may be needed;
we discuss how to handle such crossings in Section 2.3.

Figure 5 Connectors are
routed along the right side of
the drawing. (Blocks without
incident connectors omitted.)

We assume that all connectors are routed along the right
side of the drawing. Hence on left-to-right rows, incoming and
outgoing connectors go along the top of the row, while on right-
to-left rows, they go along the bottom (see Fig. 5). Therefore,
the height of a row can differ depending on whether it is drawn
left-to-right or right-to-left. To accommodate for this we split
H[i, j] into two different tables: H→[i, j] and H←[i, j].

We show how to compute H→[i, j] in the presence of con-
nectors (H←[i, j] can be computed similarly). We consider all
connectors that start or end at a block Bk with i ≤ k ≤ j. For
each such connector ekl we determine the interval of blocks
above which ekl must be drawn. Now, for every block Bk, we add rk wconn to hT

k to represent
the space needed by connectors above Bk, where rk is the number of connectors that need
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to be drawn above Bk and wconn is the space needed per connector. We can then compute
H→[i, j] by taking the maximum of hT

k over all i ≤ k ≤ j. To compute rk efficiently for
every block, note that rk is simply the number of connector intervals that contain k. Since
the intervals are nested, we can build a tree (or forest in general) on the intervals where an
interval I1 is a descendant of an interval I2 if and only if I1 is contained in I2. The leaves of
this tree are formed by the individual blocks. The value rk is then simply the depth of Bk in
this tree, which can easily be computed for all blocks in O(m) time, where m is the number
of connectors. Thus, we can compute a single entry of H→[i, j] in O(m+ |j − i+ 1|) time.

Finally, to draw the connectors that span multiple rows, we need to reserve space on
the right side of the drawing. Unfortunately we cannot incorporate this into the dynamic
programming algorithm. Instead we compute the nesting depth of the connectors, that is, the
size of the largest set of connectors where, for every two connectors, one is always properly
contained in the other. This is the largest number of connectors that we may need to draw
next to each other on the right side of the drawing in the worst case. The nesting depth is
independent from the folding and can hence be precomputed. We then subtract wconn times
the nesting depth from W before we compute the optimal folding. Note that, based on the
folding, we may not need all of this additional space on the right side of the drawing. In that
case we push the connectors as far to the right as possible to create some visual separation.

We note that, due to our versatile setup, we can also show additional information on
connectors. In fact, we can add an additional block or even sequences of blocks on a single
connector by using our algorithm recursively. We can incorporate blocks on connectors by
changing the width wconn of a connector. As a result, connectors can have different widths;
our algorithm can easily be adapted to this scenario.

2.3 Crossing connectors
We now consider the case where the connectors are not properly nested. Here we may have
connectors that cross each other, which we want to avoid as much as possible. Even if we
already know the order of the vertices along the spine, minimizing the number of crossings
in this situation is still known to be NP-hard (see Section 1). We therefore use a heuristic to
obtain a low number of crossings: we compute a maximum set of properly-nested connectors,
remove them and iterate until no connectors are left. This results in a collection of sets
E1, . . . Ek. We then draw each set of connectors separately as described in Section 2.2,
ignoring any crossings among the different sets.

To find the largest subset of properly-nested connectors, we use the following dynamic
programming formulation. We first order the connectors such that eij < ekl if i < k, or if
i = k and j > l. Let c1, . . . , cm be the resulting ordered set of connectors, and let f(i) be
the index of the first connector in the order that has Bi as a starting block. Now we define
T [i, j] (1 ≤ i ≤ m + 1, 0 ≤ j ≤ n) as the size of the largest subset of connectors among
ci, . . . , cm that are properly-nested and all end at a block before or at Bj . Now, for every
connector in order, we simply need to choose whether we want to include the connector in
our set or not. We obtain the following recurrence (here we assume that ci = ekl).

T [i, j] =





0 if i = m+ 1;
T [i+ 1, j] if l > j;
max{T [i+ 1, l] + T [f(l), j] + 1, T [i+ 1, j]} otherwise.

The size of the largest subset of properly-nested connectors is given by T [1, n]. It can be
computed in O(mn) time, where n is the number of blocks and m is the number of connectors.
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2.4 Aspect ratio

W

H W = ρH

0 Wopt

Figure 6 The height of
a drawing is a descending
function of its width.

So far we have presented an algorithm that, given a maximum
widthW , computes the minimum height H(W ) of a folding of the
graph. Our goal is to find a folding that has a particular aspect
ratio ρ: we need to find a width W such that W/H(W ) = ρ. As
H(W ) is non-increasing as W increases (see Fig. 6), we can use
a binary search to find the width W for which W/H(W ) = ρ.
As the initial lower bound for W we take the maximum width of
all blocks, because the drawing can never be narrower than that;
as the upper bound we use the sum of the widths of all blocks.
Since H(W ) is not continuous, we may not be able to obtain
the exact correct aspect ratio, but the binary search will at least
find the width W at which our folding algorithm jumps over the
aspect ratio ρ. The resulting drawing then may have some unused height, but the drawing is
as close to the correct aspect ratio as possible. More precisely, the binary search maximizes
the size of the vertices (labels) in the resulting drawing. That is, if we are given a drawing
area of size Wd ×Hd (with aspect ratio ρ, so Wd/Hd = ρ), and we scale our drawing by a
factor α to fit the drawing area (that is, α ·W ≤ Wd and α ·H ≤ Hd), the binary search
results in a drawing that maximizes α.
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1 Introduction

The performance of a particular algorithm is usually judged with respect to a variety of
criteria, with the two most common being solution quality and running time. In the context
of algorithms for time-varying data, a third important criterion is stability. We say that
an algorithm is stable if small changes in the input result in small changes in the output.
The stability of algorithms or methods has been well-studied in a variety of research areas,
such as numerical analysis, machine learning, control systems, and topology. In contrast, the
stability of combinatorial algorithms for time-varying data has received little attention in the
theoretical computer science community so far. Here it is of particular interest to understand
the tradeoffs between solution quality, running time, and stability. As an example, consider
maintaining a minimum spanning tree of a set of moving points. If the points move, it might
have to frequently change significantly. On the other hand, if we start with an MST for the
input point set and then never change it combinatorially as the points move, the spanning
tree we maintain is very stable – but over time it can devolve to a low quality and very long
spanning tree.

Our goal, and the focus of this paper, is to understand the possible tradeoffs between
solution quality and stability. This is in contrast to earlier work on stability in other research
areas, such as the ones mentioned above, where stability is usually considered in isolation.
Since there are currently no suitable tools available to formally analyze tradeoffs involving
stability, we introduce a new analysis framework. Our framework allows for three types of
stability analysis with increasing degrees of complexity: event stability, topological stability,
and Lipschitz stability. We demonstrate the use of our stability framework by applying it to
kinetic Euclidean minimum spanning trees. We believe that there are many interesting and
relevant questions to be solved in the general area of algorithmic stability analysis and we
hope that our framework is a first meaningful step towards tackling them.

Related work. Stability is a natural point of concern in more visual and applied research
areas such as graph drawing, (geo-)visualization, and automated cartography. For example,
in dynamic map labelling [2], the consistent dynamic labelling model allows a label to appear
and disappear only once, making it very stable. There are very few theoretical results, with
the noteworthy exception of so-called simultaneous embeddings [3] in graph drawing, which
can be seen as a very restricted model of stability. However, none of these results offer any
real structural insight into the tradeoff between solution quality and stability.

In computational geometry there are a few results on the tradeoff between solution quality
and stability. Specifically, Durocher and Kirkpatrick [5] study the stability of centers of
kinetic point sets, and define the notion of κ-stable center functions, which is closely related
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to our concept of Lipschitz stability. In later work [6] they consider the tradeoff between
the solution quality of Euclidean 2-centers and a bound on the velocity with which they can
move. De Berg et al. [4] show similar results in the black-box KDS model. One can argue
that the KDS framework [8] already indirectly considers stability in a limited form, namely
as the number of external events. However, the goal of a KDS is typically to reduce the
running time of the algorithm, and rarely to sacrifice the running time or solution quality to
reduce the number of external events.

2 Stability framework

Intuitively, we can say that an algorithm is stable if small changes in the input lead to small
changes in the output. More formally, let Π be an optimization problem that, given an
input instance I from a set I, asks for a feasible solution S from a set S that minimizes (or
maximizes) some optimization function f : I × S → R. An algorithm A for Π can be seen as
a function A : I → S. Similarly, the optimal solutions for Π can be described by a function
OPT: I → S. To define the stability of an algorithm, we need to quantify changes in the
input instances and in the solutions. We can do so by imposing a metric on I and S. Let
dI : I × I → R≥0 be a metric for I and let dS : S × S → R≥0 be a metric for S. We can
then define the stability of an algorithm A : I → S as follows.

St(A) = max
I,I′∈I

dS(A(I),A(I ′))
dI(I, I ′) (1)

This definition for stability is closely related to that of the multiplicative distortion of metric
embeddings, where A induces a metric embedding from the metric space (I, dI) into (S, dS).
The lower the value for St(A), the more stable we consider the algorithm A to be. There are
many other ways to define the stability of an algorithm given the metrics, but the above
definition suffices for our purpose.

For many optimization problems, the function OPT may be very unstable. This suggests
an interesting tradeoff between the stability of an algorithm and the solution quality. Un-
fortunately, the generic formulation of stability provided above is very unwieldy. It is not
always clear how to define metrics dI and dS such that meaningful results can be derived.
Additionally, it is not obvious how to deal with optimization problems with continuous input
and discrete solutions, where the algorithm is inherently discontinuous, and thus the stability
is unbounded by definition. Finally, analyses of this form are often very complex, and it is
not straightforward to formulate a simplified version of the problem. In our framework we
hence distinguish three types of stability analysis: event stability, topological stability, and
Lipschitz stability.

Event stability follows the setting of kinetic data structures (KDS). That is, the input (a
set of moving objects) changes continuously as a function over time. However, contrary to
typical KDSs where a constraint is imposed on the solution quality, we aim to enforce the
stability of the algorithm. For event stability we simply disallow the algorithm to change the
solution too rapidly. Doing so directly is problematic, but we formalize this approach using
the concept of k-optimal solutions. As a result, we can obtain a tradeoff between stability
and quality that can be tuned by the parameter k. Note that event stability captures only
how often the solution changes, but not how much the solution changes at each event.

Topological stability takes a first step towards the generic setup described above. However,
instead of measuring the amount of change in the solution using a metric, we merely require
the solution to behave continuously. To do so we only need to define a topology on the solution
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space S that captures stable behavior. Surprisingly, even though we ignore the amount of
change in a single time step, this type of analysis still provides meaningful information on
the tradeoff between solution quality and stability. In fact, the resulting tradeoff can be seen
as a lower bound for any analysis involving metrics that follow the used topology.

Lipschitz stability finally captures the generic setup described above. As the name suggests,
we require the algorithm to be Lipschitz continuous and we provide an upper bound on the
Lipschitz constant, which is equivalent to St(A). We are again interested in the quality of the
solutions that can be obtained with any Lipschitz stable algorithm. Given the complexity of
this type of analysis, a complete tradeoff for any value of the Lipschitz constant is typically
out of reach, but results for sufficiently small or large values can be of interest.

Remark. Our framework makes the assumption that an algorithm is a function A : I → S.
However, in a kinetic setting this is not necessarily true, since the algorithm has history.
More precisely, for some input instance I, a kinetic algorithm may produce different solutions
for I based on the instances processed earlier. We generally allow this behavior, and for
event stability this behavior is even crucial. However, for the sake of simplicity, we will
treat an algorithm as a function. We also generally assume in our analysis that the input is
time-varying, that is, the input is a function over time, or follows a trajectory through the
input space I. Again, for the sake of simplicity, this is not always directly reflected in our
definitions. Beyond that, we operate in the black-box model, in the sense that the algorithm
does not know anything about future instances.

In the remainder we focus on topological stability, all omitted material (the description of
event and Lipschitz stability, as well as proofs) can be found in the full version [9].

3 Topological stability

Topological stability analysis is applicable to a wide variety of problems and enforces
continuous changes to the solution. Even though it does not capture stability in its entirety,
as changes can happen in infinitesimally short time, topological stability still illustrates
clearly how solutions and their quality have to change as the input changes.

3.1 Topological stability analysis
Let Π be an optimization problem with input instances I, solutions S, and optimization
function f . An algorithm A : I → S is topologically stable if, for any (continuous) path
π : [0, 1]→ I in I, Aπ is a (continuous) path in S. To properly define a (continuous) path
in I and S we need to specify a topology TI on I and a topology TS on S. Alternatively
we could specify metrics dI and dS , but this is typically more involved. We then want to
analyze the approximation ratio of any topologically stable algorithm with respect to OPT.
That is, we are interested in the ratio

ρTS(Π, TI , TS) = inf
A

sup
I∈I

f(I,A(I))
f(I,OPT(I)) (2)

where the infimum is taken over all topologically stable algorithms. Naturally, if OPT is
already topologically stable, then this type of analysis does not provide any insight and
the ratio is simply 1. However, in many cases, OPT is not topologically stable. The above
analysis can also be applied if the solution space (or the input space) is discrete. In such cases,
continuity can often be defined using the graph topology of so-called flip graphs, for example,
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based on edge flips for triangulations or rotations in rooted binary trees. We can represent a
graph as a topological space by representing vertices by points, and representing every edge
of the graph by a copy of the unit interval [0, 1]. These intervals are glued together at the
vertices. In other words, we consider the corresponding simplicial 1-complex. Although the
points in the interior of the edges of this topological space do not necessarily represent proper
solutions, we can still use this topological space in Equation 2 by extending f over the edges
via linear interpolation. It is not hard to see that we need to consider only the vertices of the
flip graph (which do represent proper solutions) to compute the topological stability ratio.

Lower bounds. When proving lower bounds on the topological stability of a problem we
want to force any algorithm that continuously updates the solution to produce a particularly
bad intermediate result. We first show that updating a certain configuration continuously
will always result in an intermediate solution of low quality, no matter which algorithm is
used. We then also provide a particular motion that forces an update to the solution in that
configuration. Updating the solution at any other point during the motion should lead to an
even worse result. The motion and the described configuration together allow us to prove
a lower bound on the topological stability ratio. In this abstract we do not describe the
motions for the lower bound proofs; the complete proofs can be found in the full version [9].

3.2 Topological stability of EMSTs
Our input consists of a set of n points where each point has a trajectory. We require that the
trajectories are continuous. The goal is to maintain a combinatorial description of a short
spanning tree on these points, whose length stays close to optimal. To define this properly,
we need to define a topology on the input space, but for a kinetic point set with n points in
d dimensions we can simply use the standard topology on Rdn as TI . To apply topological
stability analysis, we also need to specify a topology on the (discrete) solution space. As
the points move, the minimum spanning tree may have to change at some point in time by
removing one edge and inserting another edge. Since these two edges may be very far apart,
we do not consider this operation to be stable or continuous. Instead we specify the topology
of S using a flip graph, where the operations are either edge slides or edge rotations [1, 7].
The optimization function f , measuring the quality of the EMST, is naturally defined for the
vertices of the flip graph as the length of the spanning tree, and we use linear interpolation
to define f on the edges of the flip graph. For edge slides and rotations we provide upper
and lower bounds on ρTS(EMST, TI , TS).

Edge slides. An edge slide is defined as the operation of moving one endpoint of an edge to
one of its neighboring vertices along the edge to that neighbor. More formally, an edge (u, v)
can be replaced by (u,w) if w is a neighbor of v and w 6= u. Since this operation is very local,
we consider it to be stable. Note that after every edge slide the tree must still be connected.

I Lemma 1. If TS is defined by edge slides, then ρTS(EMST, TI , TS) ≤ 3
2 .

Proof. Consider a time where the EMST has to be updated by removing an edge e and
inserting an edge e′, where |e| = |e′|. Note that e and e′ form a cycle C with other edges of
the EMST. We now slide edge e to edge e′ by sliding it along the vertices of C. Let x be the
longest intermediate edge when sliding from e to e′ (see Fig. 1(a)). To allow x to be as long
as possible with respect to the length of the EMST and as such achieving an upper bound
on ρTS, the EMST should be fully contained in C. By the triangle inequality we get that
2|x| ≤ |C|. Since the length of the EMST is OPT = |C|−|e|, we get that |x| ≤ OPT /2+|e|/2.
Thus, the length of the intermediate tree is |C| − 2|e|+ |x| = OPT−|e|+ |x| ≤ 3

2 OPT. J
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I Lemma 2. If TS is defined by edge slides, then ρTS(EMST, TI , TS) ≥ π+1
π .

e′

e

f

> π

e

D

Proof. Consider a point in time where the EMST has to be
updated by removing an edge e and inserting an edge e′, where
|e| is very small. Let the remaining points be arranged in a circle
with diameter D, as shown in the figure on the right. We get
that OPT < πD, where OPT is the length of the EMST. Simply
sliding e to e′ will always grow e to be nearly the diameter
of the circle at some point, as shown by the red dashed line.
More precisely, e will grow to length at least D − ε, and we can
make ε arbitrarily small by using a sufficient number of points.
Alternatively, e (in the red configuration) can take a shortcut by
sliding over another edge f . This is only beneficial if |e|+ |f | < D − ε. However, if f helps
e to avoid becoming a diameter of the circle, then e and f , as chords, must span an angle
larger than π together. Hence, by triangle inequality, |e| + |f | ≥ D. Thus, for any ε > 0,
ρTS(EMST, TI , TS) ≥ OPT+D

OPT − ε > OPT+OPT/π
OPT − ε = π+1

π − ε ≈ 1.318− ε. J

Edge rotations. Edge rotations are a generalization of edge slides, that allow one endpoint
of an edge to move to any other vertex. These operations are clearly not as stable as edge
slides, but they are still more stable than the deletion and insertion of arbitrary edges.

I Lemma 3. If TS is defined by edge rotations, then ρTS(EMST, TI , TS) ≤ 4
3 .

Proof. Consider a time where the EMST has to be updated by removing an edge e = (u, v)
and inserting an edge e′ = (u′, v′), where |e| = |e′|. Note that e and e′ form a cycle C with
other edges of the EMST. We now rotate edge e to edge e′ along some of the vertices of C.
Let x be the longest intermediate edge when rotating from e to e′. To allow x to be as long
as possible with respect to the length of the EMST, the EMST should be fully contained in
C. We argue that |x| ≤ OPT /3 + |e|, where OPT is the length of the EMST. Removing e
and e′ from C splits C into two parts, where we assume that u and u′ (v and v′) are in the
left (right) part. First assume that one of the two parts has length at most OPT /3. Then we
can rotate e to (u, v′), and then to e′, which implies that |x| = |(u, v′)| ≤ OPT /3 + |e| by the
triangle inequality (see Fig. 1(b)). Now assume that both parts have length at least OPT /3.
Let eL = (a, b) be the edge in the left part that contains the midpoint of that part, and let
eR = (c, d) be the edge in the right part that contains the midpoint of that part, where uL
and uR are closest to e (see Fig. 1(c)). Furthermore, let Z be the length of C \ {e, e′, eL, eR}.

e

e′

x

u v

u′ v′

C

e

e′

u v

u′ v′

eReL

c

db

a

C

x

e

e′

C

(a) (b) (c)

Figure 1 (a): Illustration for Lemma 1. (b) and (c): Illustrating the two cases for Lemma 3.
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Now consider the potential edges (u, d), (v, b), (u′, c), and (v′, a). By the triangle inequality,
the sum of the lengths of these edges is at most 4|e|+ 2|eL|+ 2|eR|+ Z. Thus, one of these
potential edges has length at most |e|+ |eL|/2 + |eR|/2 + Z/4. Without loss of generality
let (u, d) be that edge (the construction is fully symmetric). We can now rotate e to (u, d),
then to (u′, d), and finally to e′. As each part of C has length at most 2 OPT /3, we get that
|(u′, d)| ≤ OPT /3+|e| by construction. Furthermore we have that OPT = |e|+|eL|+|eR|+Z.
Thus, |(u, d)| ≤ |e|+ |eL|/2 + |eR|/2 +Z/4 = OPT /3 + 2|e|/3 + |eL|/6 + |eR|/6−Z/12. Since
e needs to be removed to update the EMST, it must be the longest edge in C. Therefore
|(u, d)| ≤ OPT /3 + |e|, which shows that |x| ≤ OPT /3 + |e|. Since the length of the
intermediate tree is OPT−|e|+ |x| ≤ 4

3 OPT, we obtain that ρTS(EMST, TI , TS) ≤ 4
3 . J

I Lemma 4. If TS is defined by edge rotations, then, ρTS(EMST, TI , TS) ≥ 10−2
√

2
9−2
√

2 .

e′

e

Proof. Consider a point in time where the EMST has to be updated
by removing an edge e and inserting an edge e′. Let the remaining
points be arranged in a diamond shape as shown in the figure on the
right, where the side length of the diamond is 2, and |e| = |e′| = 1.
Now we define a top-connector as an edge that intersects the vertical
diagonal of the diamond, but is completely above the horizontal
diagonal of the diamond. A bottom-connector is defined analogously,
but must be completely below the horizontal diagonal. Finally, a
cross-connector is an edge that hits both diagonals of the diamond.
Note that a cross-connector has length at least 2, and a top- or bottom-connector has length
at least |e| = 1. In the considered update, we start with a top-connector and end with a
bottom-connector. Since we cannot rotate from a top-connector to a bottom-connector in one
step, we must reach a state that either has both a top-connector and a bottom-connector, or a
single cross-connector. In both options the length of the spanning tree is 10− 2

√
2, while the

minimum spanning tree has length 9−2
√

2. Thus ρTS(EMST, TI , TS) ≥ 10−2
√

2
9−2
√

2 ≈ 1.162. J
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Abstract
We consider a variant of the art gallery problem where all guards are limited to seeing to the
right inside a monotone polygon. We show that the problem is NP-hard if guards are restricted
to be at the vertices of the polygon.

1 Introduction

An instance of the art gallery problem takes as input a simple polygon P . If these edges do
not intersect other than at the vertices in V , then P is called a simple polygon. The edges
of a simple polygon give us two disjoint regions: the interior and exterior of the polygon.
For any two points p, q ∈ P , we say that p sees q if the line segment pq does intersect the
exterior of P . The art gallery problem seeks to find a set of points G ⊆ P such that every
point p ∈ P is seen by a point in G. We call this set G a guarding set. In the point guarding
problem, guards can be placed anywhere in the interior of P . In the vertex guarding problem,
guards are only allowed to be placed at V . The optimization problem is thus defined as
finding the smallest such G.

Art gallery problems are motivated by applications such as line of-sight transmission
networks in terrains, signal communications and cellular telephony systems and other
telecommunication technologies as well as placement of motion detectors and security cameras.

1.1 Previous Work
The question of whether guarding simple polygons is NP-hard was independently confirmed by
Aggarwal [2] and Lee and Lin [15]. They showed that the problem is NP-hard for both vertex
guarding and point guarding. Along with being NP-complete, Brodén et al. [6] and Eidenbenz
[8] independently proved that point guarding simple polygons is APX-hard. This means
that there exists a constant ε > 0 such that no polynomial-time algorithm can guarantee an
approximation ratio of (1+ ε) unless P=NP. Ghosh provides a O(logn)-approximation for the
problem of vertex guarding an n-vertex simple polygon in [10]. This result can be improved
for simple polygons using randomization, giving an algorithm with expected running time
O(nOPT 2 log4 n) that produces a vertex guard cover with approximation factor O(logOPT )
with high probability, where OPT is the smallest vertex guard cover for the polygon [7].
Bhattacharya et. al claim a constant factor approximation for guarding simple polygons
using vertex guards in [4]. Assuming integer coordinates and a specific general position,
Bonnet and Miltzow present an algorithm for finding a point guard cover with approximation
factor O(logOPT ) in [5]. King and Kirkpatrick provide a O(log logOPT )-approximation
algorithm for the problem of guarding a simple polygon with guards on the perimeter in [12].
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Additional Polygon Structure. Due to the inherent difficulty in fully understanding the
art gallery problem for simple polygons, there has been some work done guarding polygons
with some additional structure. A simple polygon P is x-monotone (or simply monotone)
if any vertical line intersects the boundary of P in at most two points. Let l and r denote
the leftmost and rightmost point of P respectively. Consider the “top half” of the boundary
of P by walking along the boundary clockwise from l to r. We call this the ceiling of P .
Similarly we obtain the floor of P by walking clockwise along the boundary from r to l.
Notice that both the ceiling and the floor are x-monotone polygonal chains, that is a vertical
line intersects it in at most one point. Krohn and Nilsson [14] give a polynomial-time constant
factor approximation algorithm for point guarding monotone polygons. They also proved
point guarding and vertex guarding a monotone polygon is NP-hard [13, 14].
α-Floodlights. Motivated by the fact that many cameras and other sensors generally are
not able to sense in 360 degrees, previous works have considered the problem when guards
have a fixed sensing angle α for some 0 < α ≤ 360. This problem is often referred to as
the α-floodlight problem. 180°-floodlights are sometimes referred to as half-guards. Some
of the work on this problem has involved proving necessary and sufficient bounds on the
number of α-floodlights required to guard (or illuminate) an n vertex simple polygon P ,
where floodlights are anchored at vertices in P and no vertex is assigned more than one
floodlight, see for example [17, 9, 16]. From an approximation complexity standpoint, it is
known that computing a minimum cardinality set of α-floodlights to illuminate a simple
polygon P is APX-hard for both the point guard and vertex guard variants [1, 3]. Other
works in this area include considering the problem where α < 180°.

1.2 Our Contribution
In this paper, we consider guarding monotone polygons with half-guards that can see in one
direction, namely to the right. Let p.x denote the x-coordinate of a point p. We modify the
definition of sees to be the following: a point p sees a point q if the line segment pq does not
intersect the exterior of P and p.x ≤ q.x. A constant factor approximation for this problem
was given in [11].

Our main result is to show that vertex guarding a monotone polygon with half-guards is
NP-hard. Krohn and Nilsson [14] obtained a similar NP-hardness result using full guards,
but guards were required to see in all directions. The reduction could not be trivially tweaked
to show the half-guard problem is NP-hard.

In Section 2, we provide a high level overview that vertex guarding a monotone polygon
with half-guards is NP-hard. Section 3 provides the details of the proof.

2 NP-Hardness for Vertex Guards

The reduction is from 3SAT. A 3SAT instance (X,C) contains a set of Boolean variables,
X = {x1, x2, . . . , xn} and a set of clauses, C = {c1, c2, . . . , cm}. Each clause contains three
literals, ci = (xj ∨ xk ∨ xl). A 3SAT instance is satisfiable if a satisfying truth assignment for
X exists such that all clauses ci are true. We show that any 3SAT instance is polynomially
transformable to an instance of vertex guarding a monotone polygon using half-guards.
We construct a monotone polygon P from the 3SAT instance such that P is guardable by
K = (2 +m)n+ 1 or fewer guards if and only if the 3SAT instance is satisfiable.

The high level overview of the reduction is that certain vertices represent the truth values
of the variables in the 3SAT instance. All starting patterns are placed on the ceiling on
the left side of the polygon, see Figure 1. We assume that all guards can see only to the
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right. In these starting patterns, one must choose one of two guardset locations in order to
guard distinguished vertices for that particular pattern. A distinguished vertex is a vertex
that is seen only by a small number of specific vertices. In each variable pattern, similar
to a starting pattern, certain vertices will represent a truth assignment of true and certain
vertices will represent a truth assignment of false for some variable. This information is
then “mirrored rightward” going from the ceiling, to the floor and then back to the ceiling
such that there is a consistent choice of the xj vertices or the xj vertices for each variable.
This differs from previous results where variable information was mirrored from the “left
side” of the polygon to the “right side” of the polygon and then back to the left side. A
distinguished clause vertex is placed to the right of the variable patterns such that only the
vertices representing the literals in the specific clause can see the clause distinguished vertex.
A high level example of the entire reduction is shown in Figure 1.

I Theorem 1. Finding the smallest vertex guard cover for a monotone polygon using half
guards is NP-hard.

3 Hardness Details

Figure 1 A high level overview of the reduction.

Starting Pattern: This pattern appears along the left side of the monotone polygon a total
of n times, one corresponding to each variable, see Figure 2. In each pattern, there are 3
distinguished vertices: {h4, h10, h13}. These vertices are seen by a specific subset of vertices
in each starting pattern. It is important to note that no other vertex outside of this starting
pattern sees these distinguished points. Let vl(p) be the set of vertices that see p. Note that
all vertices in vl(p) lie to the left of p or on the vertical line that contains p.

xj

xj
h3

h4

h5
h6

h7
h8

h9

h10

h11h12

h13

h14

h15

h16

h17

Figure 2 A starting pattern.

Let’s assume we are considering the starting pat-
tern for variable xj . vl(h10) = {h10, h9, xj}, vl(h13) =
{h12, h13, xj}, vl(h4) = {h3, h4, h9, h11, h12, h14}. One
should note that one guard does not see all of the distin-
guished points. Two guards are necessary and sufficient.
The only possible combinations of vertex guards that see
each distinguished vertex are: {xj , h12}, {xj , h9}. If the
second option is chosen, then it appears that the xj vertex
is unseen. However, the polygon is drawn in such a way
such that the leftmost point in the polygon sees xj for all
j, see Figure 1.
Variable Pattern: On the floor of the polygon to the
right of the n starting patterns are the first n variable
patterns, one for each variable, that verify and propagate

the assigned truth value of each variable. The variables are in reverse order from the initial
starting pattern. The variables are ordered from x1, x2, . . . , xn in the starting patterns from
left to right. However, the variables are ordered from xn, xn−1, . . . , x1 in the first grouping
of variable patterns from left to right. When the variables are “mirrored” rightward again to
the ceiling, the ordering will again reverse. See Figure 1 for a high level overview.
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A single variable pattern is shown in Figure 4. Similar to the starting pattern, there are 3
distinguished vertices located at {v2, v5, v7}. The visibility for these points within this pattern
are as follows: vl(v2) = {v1, v2, xj , v6, xj , v8}, vl(v5) = {v5, xj}, vl(v7) = {v7, xj}. It should
be noted that v2 is not seen by another vertex outside of this pattern. One guard within this
pattern is necessary to guard this distinguished vertex. Along with these visibilities, v5 is
seen by the xj vertex in the starting pattern representing xj . v5 does not see the xj vertex
from the starting pattern because it is angled in such a way that its line of sight is “above”
the xj vertex in the starting pattern. v7 is seen by the xj vertex in the starting pattern
representing xj . The reason it is not seen by xj is because the xj vertex in the starting
pattern is being blocked by h7 in the starting pattern. Figure 3 shows how the starting
patterns are connected to variable patterns.

xj

xj

h7

Figure 3 Starting pattern
interacting with first variable
gadget.

Variable patterns are connected to other variable patterns
in a similar fashion. Consider a set of n variable patterns on
the floor representing one mirroring of the variables. At the far
right of these patterns is a vertex called c2. This vertex will
block our xj and xj vertices from seeing too far to the right.
Consider a single variable xj being mirrored from the floor to
the ceiling. In Figure 5, the ceiling variable pattern is simply
an inverted floor variable pattern. The v5 vertex in the ceiling
variable pattern sees the xj vertex in the floor variable pattern
and not the xj vertex in the floor variable pattern because the
angle of the polygon blocks it. v7 in the ceiling variable pattern
sees the xj vertex in the floor variable pattern but not the xj vertex in the floor variable
pattern because it is being blocked by c2.

v1

v2

v3

xj

v5

v6
xj

v7

v8

Figure 4 Variable pattern xj .

Different variable patterns that represent different
variables will not affect each other. For example, take the
starting pattern for an arbitrary xi and call the vertices
that see the distinguished vertices in that starting pattern
the Xi set. Now consider the variable pattern for xi

and look at the variable patterns to the left of xi on the
floor. None of Xi can see the distinguished vertices of
variable patterns to the left of the variable pattern for
xi because the distinguished vertices in those variable
patterns are angled too far to the “right.” None of Xi

can see distinguished vertices of variable patterns to the
right of the variable pattern for xi because h7 or h16 is
blocking them from seeing too far right, see Figure 2.

In a similar fashion, variable patterns will not affect other variable patterns when mirroring,
see Figure 6. The variable pattern on the ceiling for xi will not be seen by the previous
variable pattern on the floor for xi+1 because the angle of the polygon in the variable pattern
for xi on the ceiling is too steep. In other words, the distinguished vertices for xi on the
ceiling will not be able to be seen from that far left. The vertices in the variable pattern on
the ceiling for xi will not be seen by the previous variable pattern on the ceiling for xi−1
because the c2 vertex will block them.
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xj xj c2

xj xj

Figure 5 An example of
a variable being mirrored.

We allow one guard to be placed in a single variable pattern.
No single guard is able to see all of the distinguished points.
Therefore, one must rely on previously placed guards to help see
at least 1 of the distinguished points in the variable pattern. If
we choose xj in the starting pattern or in some previous variable
pattern, we see the v7 vertex in the subsequent variable pattern.
The only guard in the variable pattern that sees v2 and v5 is
xj . If we choose xj in the starting pattern or in some previous
variable pattern, the distinguished points that are unseen are v2 and v7 in the subsequent
variable patterns and the only guard in the variable pattern that sees them is xj . In this
second case, xj is seen by that previously placed guard that also sees v5.

c2
xi

Figure 6 An example of
multiple variables being

mirrored.

Clauses: For each clause c in the boolean formula, there is a
sequence of variable patterns x1, . . . , xn along either the ceiling
or the floor of the polygon. Immediately to the right of the
variable patterns exists a clause pattern. A clause pattern
consists of one vertex such that the vertex is only seen by the
variable patterns corresponding to the literals in the clause; see
Figure 7. The distinguished vertex of the clause pattern is the
c3 vertex. This vertex is seen only by specific vertices in its
respective sequence of variable patterns.

c3

c2

x1 x1

Figure 7 A clause gadget
to the right of x1.

To see how a clause is placed in the polygon, consider Figure
8 that represents the clause x1 ∨ x3 ∨ x5. Initially, all xi and xi

vertices in their respective variable patterns are blocked from
seeing the c3 clause point by their respective v8 vertex. Consider
the example clause of x1 ∨ x3 ∨ x5. In the case of x1 and x5,
their respective v8 vertices have been lowered just enough such
that the v8 vertex is no longer blocking them from seeing c3.
However, v8 is still blocking xj from seeing c3. In the case of x3,
the v8 guard is lowered enough such that x3 sees c3. To keep x3 from seeing c3, we raise the
v6 vertex just enough so it blocks x3 from c3. It should be noted that these small tweaks do
not affect the mirroring of variable truth values. None of the xj or xj vertices were moved.
Their position with respect to the key blocker of c2 is the same. Therefore, c2 still blocks
each respective vertex from seeing too far to the right.

v5 v4 v3 v2 v1
c3

Figure 8 The clause
(v1 ∨ v3 ∨ v5).

Putting it all together: We choose our truth value for
each variable in the starting variable patterns. The truth
values are then mirrored in turn between variable patterns
on the ceiling and the floor. In the example of Figure 8
the 3SAT clause corresponds to c = x1 ∨ x3 ∨ x5. Hence,
a vertex guard placement that corresponds to a truth
assignment that makes c3 true, will have at least one
guard on x1, x3 or x5 and can therefore see vertex c3

without additional guards. We still have variables x2 and x4 on the polygon, however, none
of them or their negations see the vertex c3. They are simply there to transfer their truth
values in case these variables are needed in later clauses.

The monotone polygon we construct consists of 17n + (9n + 3)m + 2 vertices. Each
starting variable pattern has 17 vertices, each variable pattern 9 vertices, the clause pattern
has 3 vertices, plus 2 vertices for the leftmost and rightmost points of the polygon. Exactly
K = (2 +m)n+ 1 guards are required to guard the polygon. 2 guards are required to see the
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distinguished points of the starting patterns (2n) and 1 guard is required at every variable
pattern, of which there are (mn) of them. Lastly, since a starting pattern cannot begin at the
leftmost point, a guard is required at the leftmost vertex of the polygon. If the 3SAT instance
is satisfiable, then guards are placed at vertices in accordance to whether the variable is true
or false in each of the sequences of variable patterns. Each clause vertex is seen since one of
the literals in the associated clause is true and the corresponding vertex has a guard.
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Abstract
Simplifying polygonal curves at different levels of detail is an important problem with many
applications. Existing geometric optimization algorithms are only capable of minimizing the
complexity of a simplified curve for a single level of detail. We present an O(n3m)-time algo-
rithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications
for m scales while minimizing the cumulative simplification complexity. This algorithm is com-
patible with distance measures such as Hausdorff, Fréchet and area-based distances, and enables
simplification for continuous scaling in O(n5) time.

1 Introduction

Given a polygonal curve as input, the curve simplification problem asks for a polygonal curve
that approximates the input well using as few vertices as possible. Because of the importance
of data reduction, curve simplification has a wide range of applications. One such application
is cartography, where the visual representation of line features like rivers, roads, and region
boundaries needs to be reduced. Most maps nowadays are interactive and incorporate
zooming, which requires curve simplification that facilitates different levels of detail. A
naive approach would be to simplify for each zoom level independently. This however has
the drawback that the resulting simplifications are not consistent between different scales.
Therefore, we require progressive simplification, that is, a series of simplifications for which
the level of detail is progressively increased for higher zoom-levels. This is shown in Figure 1a.

Progressive simplifications are used in cartography [7]. Existing algorithms for progressive
simplification (e.g. Cao et al. [2]) work by simplifying the input curve, then simplifying this
simplification, and so on. Cao et al. [2] referred to progressive curve simplification as “aging”.
More concretely, a common approach is to iteratively discard vertices, such that we always
discard the vertex whose removal introduces the smallest error (according to some criterion).
For example, the algorithm by Visvalingam and Whyatt [9] always removes the vertex which
together with its neighboring vertices forms a triangle with the smallest area.

Such approaches stand in stark contrast to (non-progressive) curve simplification algo-
rithms that aim to minimize the complexity of the simplification while guaranteeing a (global)
bound on the error introduced by the simplification. The most prominent algorithm with a
preset error bound was proposed by Douglas and Peucker [5]. However, while heuristically
aiming at a simplification with few vertices, this algorithm does not actually minimize the
number of vertices. A general algorithm for the problem of minimizing the number of vertices
was introduced by Imai and Iri [6]. Their approach uses shortcut graphs, which we describe
in more detail below. An efficient algorithm to compute shortcut graphs for the Hausdorff
distance was presented by Chan and Chin [3]. Inspired by the work of Visvalingam and Why-
att, Daneshpajouh et al. [4] defined an error measure for non-progressive simplification by
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
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measuring the sum or the difference in area between a simplification and the input curve.
In the line of these algorithms, the goal of our work is to develop algorithms that solve
progressive simplification as an optimization problem.

A (vertex-restricted) simplification S of a polygonal curve C is an ordered subsequence
of C (denoted by S v C) that includes the first and the last point of C. An ε-simplification
S is a simplification that ensures that each edge of S has a distance of at most ε to its
corresponding subcurve, where the distance measure can for instance be the Hausdorff or
the Fréchet distance [1]. For an ordered pair of vertices (pi, pj) of C we denote the distance
between the segment (pi, pj) and the corresponding subchain by ε(pi, pj). We denote by
(pi, pj) ∈ S that (pi, pj) is an edge of S.

We next define the progressive simplification problem in the plane. Given a polygonal
curve C = 〈p1, . . . , pn〉 in R2 and a sequence E = 〈ε1, . . . , εm〉 with εi ∈ R>0 where 0 < ε1 <

. . . < εm, we want to compute a sequence of (vertex-restricted) simplifications S1,S2, . . . ,Sm
of C such that

1. Sm v Sm−1 v . . . v S1 v C (monotonicity),
2. Sk is an εk-simplification of C,
3.
∑m
k=1 |Sk| is minimal.

We refer to a sequence of simplifications fulfilling the first two conditions as progressive
simplification. A sequence fulfilling all three conditions is called a minimal progressive simpli-
fication, and the problem of computing such a sequence is called the progressive simplification
problem. We present an O(n3m)-time algorithm for the progressive simplification problem in
the plane.

The cornerstone of progressive simplification is that we require monotonicity. This
guarantees that, when “zooming out”, vertices are only removed and cannot (re)appear.
As error measure, we will mostly use the Hausdorff distance. This is not essential to
the core algorithm, and we will discuss how to use the Fréchet distance [1] or area-based
measures [4] without affecting the worst-case running time. Furthermore, our algorithm
generalizes to the weighted version of the problem in which

∑m
i=1 wi|Si| with positive

weights wi is minimized, and to the continuous version, where Sε needs to be computed
for all 0 ≤ ε < εM . As in the discrete setting, we require Sε′ v Sε for ε′ > ε; the resulting
algorithm minimizes

∫ εM

0 |Sε| dε in O(n5) time. Note that εM is the error at which we can
simplify the curve by the single line segment (p1, pn); thus, we have εM = ε(p1, pn).

In our algorithms we will make use of the shortcut graph as introduced by Imai and Iri [6].
For a given curve C, a shortcut (pi, pj) is an ordered pair (i < j) of vertices. Given an error
ε > 0, a shortcut (pi, pj) is valid if ε(pi, pj) ≤ ε. The shortcut graph G(C, ε) [6] as shown
in Figure 1b represents all valid shortcuts (pi, pj) with 1 ≤ i < j ≤ n. A bottleneck in
computing (progressive) simplifications is the construction and space usage of these graphs.

S2 v S1

S1 v C

C

(a)

S

G(C, ε)

C

(b)

Figure 1 (a) a progressive simplification and (b) curve simplification using the shortcut graph.
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2 Optimal Progressive Simplification

We show how to solve the progressive simplification problem in O(n3m) time in this section.
The same running time holds for the weighted version, and based on this we show that the
continuous progressive simplification problem can be solved in O(n5) time, see Section 3.

By the monotonicity property of the progressive simplification problem (see condition
1 in the definition in Section 1), we require that all vertices within a simplification Sk of
the sequence must also occur within all subsequent simplifications Sl with k < l. Adding
shortcuts to a specific simplification thus influences the structure of the other simplifications.
We therefore associate a cost value cki,j ∈ N for each shortcut (pi, pj) in the shortcut graph
G(C, εk) that relates to the cost of including (pi, pj) in Sk. We use the Hausdorff distance
as an error measure to determine whether a shortcut is valid, but since the shortcut graph
is flexible to use any error measures, we can employ any other distance measure for our
algorithms. In particular for the Fréchet distance [1] and area-based distances [4], we can
use brute-force to compute whether a shortcut is valid in O(n) time, and therefore use these
measures without changing the worst-case running time. We obtain a cost value cki,j for a
shortcut (pi, pj) ∈ G(C, εk) by minimizing the costs of all possible shortcuts in 〈pi, . . . , pj〉 at
lower scales recursively. The dynamic program is defined as follows:

cki,j =





1 if k = 1
1 + min

π∈
∏k−1

i,j

∑

(px,py)∈π
ck−1
x,y if 1 < k ≤ m

We use
∏k
i,j to denote the set of all paths in G(C, εk) from pi to pj .

The algorithm starts with constructing the shortcut graphs G(C, ε1), . . . , G(C, εm). For
most distance measures, the distance of shortcut (pi, pj) to the subcurve 〈pi, . . . , pj〉 can be
determined in O(j − i) time. For such measures, constructing these graphs naively takes
O(n3m) time. By employing the algorithm by Chan and Chin [3] we can compute it in
O(n2m) time for the Hausdorff distance.

We compute all cost values from scale k = 1 up to m by assigning a weight cki,j to each
shortcut (pi, pj) ∈ G(C, εk). For each shortcut (pi, pj) ∈ G(C, εk), we compute cki,j by finding
a shortest path π in G(C, εk−1) from pi to pj , minimizing

∑
(px,py)∈π c

k−1
x,y thereby.

We can use any shortest path algorithm, such as Dijkstra’s algorithm. On each scale k,
we need to run Dijkstra’s algorithm on O(n) source nodes of G(C, εk). This yields a worst
case running time of O(n3m), because Dijkstra’s algorithm runs in O(n2) time on weighted
shortcut graphs with integer weights.

We increment cki,j = ck−1
i,j + 1 for any shortcut (pi, pj) ∈ G(C, εk−1). By doing so, we

avoid recomputations of shortest paths and reuse cost values whenever necessary.
We construct the sequence of simplifications from Sm down to S1. First, we compute Sm

by returning the shortest path from p1 to pn in G(C, εm) using the computed cost values at
scale m. Next, we compute a shortest path P from pi to pj in G(C, εm−1) for all shortcuts
(pi, pj) ∈ Sm. Simplification Sm−1 is then constructed by linking these paths P with each
other. We build all other simplifications in this manner until S1 is constructed.

If (pi, pj) is a valid shortcut in G(C, εk−1) for any 1 < k ≤ m, then it follows that
cki,j = ck−1

i,j + 1. We prove this in [8].

Correctness

We prove that our simplification algorithm returns a valid and minimal solution for the
progressive simplification problem. Let 〈S1, . . . ,Sm〉 be a sequence of simplifications computed
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by our algorithm. By constructing the simplifications from scale m down to 1, it follows that
for any shortcut (pi, pj) ∈ Sk with 1 < k ≤ m, there exists a subsequence 〈pi, . . . , pj〉 v Sk−1,
and thus Sk v Sk−1. Furthermore, each simplification Sk has a maximum Hausdorff distance
εk to C since it contains only edges from G(C, εk).

It remains to show that we minimize
∑m
i=1 |Si|. We therefore define a set of shortcuts

Si,jk for any 1 ≤ i < j ≤ n and 1 ≤ k ≤ m as Si,jk = { (px, py) ∈ Sk | x ≤ i < j ≤ y }.
Thus, Si,jk includes all line segments of Sk that span the subcurve 〈pi, . . . , pj〉 with an

error of at most εk to C. |Si,jk | then is the number of shortcuts in simplification Sk covering
(pi, pj).

I Lemma 2.1. If the line segment (pi, pj) is part of simplification Sk, then the associated
cost value cki,j =

∑k
`=1 |S

i,j
` | for any 1 ≤ k ≤ m and 1 ≤ i < j ≤ n.

Proof. We show cki,j =
∑k
`=1 |S

i,j
` | by induction on k using the following induction hypothesis:

For any (px, py) ∈ Sk, it holds that ckx,y =
∑k
`=1 |S

x,y
` | (IH).

Base k = 1: Take any shortcut (pi, pj) ∈ S1. It follows that Si,j1 = {(pi, pj)}, and therefore
|Si,j1 | = 1. We deduce that c1

i,j = 1 =
∑k
`=1 1 =

∑k
`=1 |S

i,j
1 |.

Step k > 1: Take any line segment (pi, pj) ∈ Sk+1. Thus, we observe (pi, pj) ∈ G(C, εk+1),
Si,jk+1 = {(pi, pj)}, and |Si,jk+1| = 1.

Consider any 1 ≤ ` ≤ k and a path π ∈∏k(pi, pj) such that
∑

(px,py)∈π |S
x,y
` | is minimal.

We now derive that π = Si,j` such that Sx,y` is minimal for all (px, py) ∈ π. Note that
π = Si,j` ⊆ G(C, ε`) ⊆ G(C, εk) since εk ≥ ε`. We observe that π is both in

∏`(pi, pj) and∏k(pi, pj). It thus follows that:

min
π∈
∏k

i,j

∑

(px,py)∈π
|Sx,y` | = min

π∈
∏`

i,j

∑

(px,py)∈π
|Sx,y` | (1)

From π = Si,j` it follows that Sx,y` ∩S
y,z
` = ∅ for any (px, py) and (py, pz) in π. Combining

Sx,y` for all (px, py) ∈ π yields a non-overlapping sequence of shortcuts from pi to pj . This
gives us:

|Si,j` | = min
π∈
∏`

i,j

∑

(px,py)∈π
|Sx,y` | (2)

We now derive the following:

ck+1
i,j

(IH)= 1 + min
π∈
∏k

i,j

∑

(px,py)∈π

k∑

`=1
|Sx,y` |

(1)= 1 +
k∑

`=1
min

π∈
∏`

i,j

∑

(px,py)∈π
|Sx,y` |

(2)= 1 +
k∑

`=1
|Si,j` |

|Si,j
k+1|={(pi,pj)}

=
k+1∑

`=1
|Si,j` |

J

I Theorem 2.2. Given a polygonal curve with n points in the plane, and 0 ≤ ε1 < . . . < εm,
a minimal progressive simplification can be computed in O(n3m) time under distance measures
for which the validity of a shortcut can be computed in O(n) time. This includes the Fréchet,
Hausdorff and area-based measures.

Proof. It remains to be proven that the combined size of the simplifications computed by
our algorithm is minimal. Let 〈S ′1, . . . ,S ′m〉 be a sequence of simplifications of a minimal
progressive simplification, and let 〈S1, . . . ,Sm〉 be the sequence computed by our algorithm.
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Let us derive the following:

min
π∈
∏m

1,n

∑

(px,py)∈π
cmx,y

(2.1)= min
π∈
∏m

1,n

∑

(px,py)∈π

m∑

k=1
|Sx,yk |

(1)=
m∑

k=1
min

π∈
∏`

1,n

∑

(px,py)∈π
|Sx,yk |

(2)=
m∑

k=1
|Sk|

Hence, the algorithm produces a simplification that minimizes the cumulative cost of
shortcuts in Sm. Because Si+1 v Si; the algorithm produces a set of simplifications in which
each simplification consists of edges from the corresponding shortcut graph such that the
cumulative number of vertices is minimized.

We further know that any minimal simplification S ′k is a path in G(C, εk) since it strictly
connects shortcuts with an error of at most εk.

We conclude that
∑m
k=1 |Sk| ≤

∑m
k=1 |S ′k| holds. J

3 Continuous and Weighted Progressive Simplification

We now consider two versions of the progressive simplification problem: the weighted progres-
sive simplification, where the objective is to minimize

∑m
k=1 wk|Sk| (with wk ≥ 0), thus the

weighted cumulative size of the simplifications; and the continuous progressive simplification,
which is an instance of the weighted progressive simplification where

∫m
0 |Si| dε is minimal.

For both problems, we can employ our preceding algorithm to compute simplifications progres-
sively. We first show how to adapt our algorithm for the weighted progressive simplification
problem; then we prove how to solve the continuous simplification problem.

For the weighted progressive simplification, we use the following cost function for each
shortcut (pi, pj) ∈ G(C, εk): if k = 1, cki,j = w1 else cki,j = wk + min

π∈
∏k−1

i,j

∑
(px,py)∈π c

k−1
x,y .

Note that the proofs above are trivially extended to apply to this updated cost function.
The main reason to consider the weighted case is that it helps us solving the continuous
progressive simplification problem.

I Theorem 3.1. Given a polygonal curve with n points in the plane, a minimal continuous
progressive simplification can be computed in O(n5) time under distance measures for which
the validity of a shortcut can be computed in O(n) time. This includes the Fréchet, Hausdorff
and area-based measures.

Proof. Consider the maximal errors ε(pi, pj) of all possible line segments (pi, pj) with
i < j with respect to the Hausdorff distance (or another distance measure). Then let
E := 〈ε1, . . . , ε(n

2)〉 be the sorted sequence of these errors based on their value. Let M be
the index of the corresponding εM in this sorted sequence E for the line segment (p1, pn);
thus εM = ε(p1, pn). Note that it is possible that M <

(
n
2
)
, but there is no reason to use

any ε > εM , since at this point we already have simplified the curve to a single line segment,
(p1, pn).

In a minimal-size progressive simplification it holds that Sε = Sεi
for all ε ∈ [εi, εi+1).

This can be shown by contradiction: if Sε would be smaller, we could decrease the overall
size by setting all Sε′ with ε′ ∈ [εi, ε] to Sε. Therefore, in a minimal continuous progressive
simplification we have

∫ εM

0 |Sε| dε =
∑M−1
k=1 (εk+1−εk)|Sεk

|. Thus, we can solve the continuous
progressive simplification problem by reducing it to the weighted progressive simplification
problem with O(n2) values εk. J
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4 Discussion

We present the first algorithm to compute minimum-complexity progressive simplifications
given a polygonal curve with n points in the plane. Our algorithm runs in O(n3m) time for
m discrete scales and O(n5) time for continuous scaling.

In the following, we survey further results from [8]. To facilitate progressive simplifications
on many scales, in [8] we present a technique for computing all ε(pi, pj) efficiently in
O(n2 logn) time instead of O(n3) time [3]. This is in particular useful for continuous
progressive simplification, where we would otherwise need to compute a quadratic number of
shortcut graphs, thus spending O(n4) time on computing shortcut graphs.

Furthermore, we developed a storage-efficient representation of the shortcut graph that
is capable of finding shortest paths in O(n logn) time, which is also applicable to any
simplification algorithm that uses a shortcut graph.

The experimental evaluation on a trajectory of a migrating griffon vulture shows that
our progressive algorithm is effective, yet too slow for larger trajectory data, and provides
similar cumulative simplification sizes as an optimal non-progressive simplification algorithm.
We discuss all experiments, algorithms, and results in [8].

As future work, it would be of interest to improve the running time of the minimal
progressive simplification algorithm to facilitate real-world application.
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Abstract
Let G = (V,E) be a planar graph and let V be a partition of V whose clusters, i.e., the graphs
induced by the vertex sets in V, are connected. Let DC be an arrangement of disks with a
bijection between the disks and the clusters. Akitaya et al. [1] give an algorithm to test whether
(G,V) can be embedded onto DC with the additional constraint that edges are routed through
an additional set of pipes between the disks. Based on such an embedding, we prove that every
clustered graph with connected clusters and every disk-arrangement with non-overlapping disks
has a planar straight-line drawing where every vertex is embedded in the disk corresponding to
its cluster. This result can be seen as an extension of the result by Alam et al. [2] who solely
consider biconnected clusters.

1 Introduction

In this paper, we study the problem of drawing a large plane clustered graph G on a pre-
scribed disk arrangement DC . More formally, a (flat) clustering of a graph G = (V,E) is a
partition V = {V1, . . . , Vk} of the vertex set V . We refer to the pair C = (G,V) as a clustered
graph and the graphs Gi induced by Vi as clusters. A disk arrangement D = {d1, . . . , dk}
is a set of pairwise disjoint disks in the plane together with a bijective mapping µ(Vi) = di
between the clusters C and the disks D. We refer to a disk arrangement D with a bijective
mapping µ as a disk arrangement of C, denoted by DC . A DC-framed drawing of C is a pla-
nar drawing of a clustered graph C where each cluster Gi is drawn within its corresponding
disk di. We study the following problem: given a clustered planar graph G with an embed-
ding ψ and a disk arrangement DC of C, does G admit a DC-framed straight-line drawing
homeomorphic to ψ?

A pipe pij of two clusters Vi, Vj is the convex hull of the disks di and dj , i.e., the smallest
convex set of points containing di and dj ; see Fig. 1. A disk arrangement DC of C is planar
if (i) the pairwise intersections of all disks are empty, and (ii) if (Vi × Vj)∩E 6= ∅, then the
intersection of pij with all disks dk (corresponding to Vk) is empty (i, j, k pairwise distinct)
and, (iii) if (Vi × Vj) ∩ E 6= ∅ and (Vk × Vl) ∩ E 6= ∅ (i, j, k, l pairwise distinct), then the
intersection of the pipes pij and pkl is empty. A planar disk arrangement can be seen as
a thickening of the graph obtained by contracting all clusters in C. An embedding ψ of G,
i.e., a topological planar drawing of G, is compatible with a planar disk arrangement DC if
ψ is homeomorphic to a DC-framed embedding of C such that edges of a cluster are routed
within the corresponding disks, and edges between distinct clusters are routed through the
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Figure 1 The blue disk arrangement is planar. The red disk arrangement disrupts the planarity
of the entire arrangement. The dash dotted edge is not embedded in a pipe, hence the embedding
is not compatible with the disk arrangement.

corresponding pipes. Throughout the paper we assume the disk arrangement, provided as
part of the input, is planar.

Related Work

Feng et al. [7] introduced the notion of clustered graphs and c-planarity. A graph G together
with a recursive partitioning of the vertex set is considered to be a clustered graph. An
embedding of G is a c-planar embedding if (i) each cluster c is drawn within a connected
region Rc, (ii) two regions Rc, Rd intersect if and only if the cluster c contains the cluster d
or vice versa, and (iii) every edge intersects the boundary of a region at most once. They
prove that a c-planar embedding of a connected clustered graph can be computed in O(n2)
time. It is an open question whether it is possible to extend this result to disconnected
clustered graphs. Many special cases of this problem have been considered [4].

Concerning drawings of c-planar clustered graphs, Eades et al. [6] prove that every c-
planar graph has a c-planar straight-line drawing where each cluster is drawn in a convex
region. Angelini et al. [3] strengthen the result of Eades et al. by showing that every c-planar
graph has a c-planar straight-line drawing in which every cluster is drawn in an axis-parallel
rectangle. The result of Akitaya et al. [1] implies that in O(n logn) time one can decide
whether an abstract graph with a flat clustering has an embedding where each vertex lies
in a prescribed topological disk and every edge is routed through a prescribed topological
pipe. In general their algorithm decides whether a simplicial map ϕ of G onto a 2-manifold
M is a weak embedding, i.e., for every ε > 0, ϕ can be perturbed into an embedding ψε with
||ϕ− ψε|| < ε.

Alam et al. [2] prove that it is NP-hard to decide whether a clustered graph has a c-
planar straight-line drawing where every cluster is contained in a prescribed rectangle and
edges have to pass through a defined part of the boundary of the rectangle. Further, they
prove that all instances with biconnected clusters always admit a solution. Their result
implies that graphs of this class have DC-framed straight-line drawings.

Contribution

In this paper, we prove that every connected clustered graph (G,V), i.e., each cluster Gi
is connected, with an embedding ψ compatible with a prescribed planar disk arrangement
DC , has a DC-framed planar straight-line drawing homeomorphic to ψ. Taking the result of
Akitaya et al. [1] into account, our result can be used to test whether an abstract clustered
graph with connected clusters has a DC-framed straight-line drawing. Our result is an
extension of the result of Alam et al. [2] from biconnected to connected clusters.
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Figure 2 (a) A planar clustered graph C that is not simple. (b) The block B is leaf block of
Gi. The block B′ of Gj obstructs B, B′ itself is free. The cycles mentioned in the definitions are
highlighted in red.

2 Preliminaries

A clustered graph C = (G,V) is simple if for every i, j, there is no cluster Gh(i, j 6= h)
embedded in the interior of the subgraph induced by Vi ∪ Vj ; see Fig. 2a. Note that this is
a necessary condition in our model, as otherwise the corresponding disk arrangement would
not be planar. The set of edges Ei of a cluster Gi are intra-cluster edges and the set of edges
with endpoints in different clusters inter-cluster edges. The vertex u of an inter-cluster edge
uv is the inter-cluster neighbor of v.

We refer to a maximal biconnected component B of Gi as a block of Gi. Removing a
cut vertex from Gi, splits Gi into two connected components. A block is a leaf block if it is
incident to at most one cut vertex of Gi; see Fig. 2b. A block B′ of a cluster Gj obstructs a
leaf block of Gi in ψ if there is a cycle C using only vertices of B and at most a single vertex
of B′ such that B′ is in the interior of the graph induced by C ∪ B ∪ B′. A block B that
is not obstructed by another block is free. We denote the graph after the contraction of a
block B by G/B and refer to the resulting vertex b as the contraction vertex of G/B. The
contraction of a block in a graph with an embedding ψ induces an embedding ψG/B of G/B.

I Lemma 2.1. Let C = (G,V) be a connected simple clustered graph with an embedding ψ
that is compatible with a disk arrangement DC. Then the embedding induced by the contrac-
tion of a free leaf block is compatible with DC.

3 Drawing Planar Clustered Graphs on Disk Arrangements

In this section, we prove that every connected simple clustered graph C has a DC-framed
straight-line drawing, see Theorem 3.6. Our proof strategy is as follows. We iteratively
contract free leaf blocks B of C until every cluster contains exactly one vertex, see Lemma 3.1.
In this case, the center points of the disks in the disk arrangement DC induce a DC-framed
straight-line drawing of C. In order to undo a contraction of a free leaf block B, we consider
a DC-framed straight-line drawing ΓC/B of the contracted graph C/B, see Fig 3b. We start
by defining a safe convex polygon σ, that allows us to extend the drawing ΓC/B to a drawing
Γ of C, by placing vertices on the boundary of B on the boundary of σ, and the interior
vertices of B in the interior of σ. The result of Chambers et al. [5] ensures that the drawing
of B, where the vertices on the boundary of B have prescribed placements on the boundary
of a convex polygon, is a planar straight-line drawing homeomorphic to the embedding of
B. The challenging part is to guarantee that the inter-cluster edges do not intersect with
edges of B; see Lemma 3.2 to Lemma 3.5. We first prove that unless the clustered graph is
not sufficiently small, there is a free leaf block B.
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Figure 3 (a) A block B (black) with inter-cluster neighbors outside of the blue disk. (b) A
straight-line drawing of the B-contracted graph. (c) A Ub-similar segment bw with its supporting
line (red). (d) DC-framed straight-line drawing with B drawn in the dark blue convex polygon σ.

I Lemma 3.1. Every connected simple clustered graph C = (G,V) has a cluster Gi with a
free leaf block or every cluster has exactly one vertex.

Let B be a free leaf block of a cluster Gi and consider a DC-framed straight-line drawing
ΓC/B of a B-contracted clustered graph C/B. Observe that we cannot take an arbitrary
convex polygon σ to extend the drawing ΓC/B to a drawing Γ, since for this polygon it
might not be possible to avoid intersections between inter-cluster edges and edges of B. To
avoid these intersections, we construct the polygon σ in two phases. First, we will prove the
existence of a special segment s (see Fig 3c), that we will later use to construct two polygons
σL and σR. Then the union of σL and σR will be the desired polygon σ.

We formalize the concept of a safe point set as follows. Denote by Ub the inter-cluster
neighbors of the contraction vertex b and let L ⊆ Ub be a set of vertices that is consecutive
in the clockwise order around b. We construct an L-split drawing Γp from ΓC/B by removing
the inter-cluster edges {bu | u ∈ L} from ΓC/B and adding a split vertex w at position
p ∈ R2 and connecting w to all vertices in L ∪ {b} with straight-line edges. We say a set
P ⊆ R2 is L-similar if for every point p ∈ P the L-split drawing Γp of ΓC/B is planar, and
the contraction of the edge bw induces an embedding homeomorphic to ΓC/B .

I Lemma 3.2. Let B be a free leaf block of a cluster Gi and let di ∈ DC be the corresponding
disk. Let ΓC/B be a DC-framed straight-line drawing of C/B. Let b be the contraction vertex of
C/B with inter-cluster neighbors Ub. Then there is a Ub-similar straight-line segment s ⊂ di.
Proof sketch. There is a small disk δ ⊂ di around b such that moving b within δ preserves
the topological properties of b. Let el be and er be the edges that precede and succeed B,
respectively. Then, the two lines containing el and er divide δ into four regions of which one
region R is Ub-similar. Thus, every segment ba, with a ∈ R, is Ub-similar. �

A supporting line of a Ub-similar segment s = ba is the line that contains s and is directed
from b towards a. This line l separates the set Ub into sets L and R, such that the vertices
in L are to left of l in the drawing ΓC/B , and the vertices in R to the right of l. Depending
on the set, we show that there are convex polygons σL and σR that are monotone with
respect to s. For a segment s = ba, a convex polygon 〈p0, p1, . . . , pk, pk+1〉, with p0 = a and
pk+1 = b, is s-monotone if the projections of all pi onto the supporting line of s, lie on s.

I Lemma 3.3. Let ΓC/B be a DC-framed straight-line drawing of C/B and let Ub be the
inter-cluster neighbors of the contraction vertex b and let s = ba be a Ub-similar segment.
Let L ⊆ Ub be the set of vertices that are to the left of the supporting-line of s. Then there
is a convex s-monotone polygon σL contained in di ∈ DC such that the boundary BD(σL)
of σL is L-similar, and for every point p on BD(σL) \ s and every vertex u ∈ L, the open
segment pu and σL do not intersect.



T. Mchedlidze, M. Radermacher, I. Rutter and N. Zimbel 14:5

b a

u1
u2

ui
uk

∆u

∆
x

(a)
b a

ui

uj

w
∆

(b)

x
∆

∆̂
Hax

Hbx

B
b a

u1

u2
ui

uk

p

(c)

Figure 4 (a) Triangle ∆ is the intersection of all triangles ∆u. (b) ∆ is not L-similar. (c) B is
a Bézier-curve within ∆.

Proof sketch. Consider the non-empty set L and the triangle ∆u with vertices b, u, a for a
vertex u ∈ L; see Fig. 4a. Let ∆ be the intersection of all triangles ∆u. Since the segment
s = ba is Ub-similar and the set L contains all vertices to the left of l, ∆ is L-similar.
Unfortunately, the triangle ∆ = (b, x, a) is not the desired polygon σL, yet. To ensure that
the polygon σL is s-monotone and entirely contained in di, we place the vertex x in the
intersection of ∆ and di, such that the projection of x lies on s. Such a point exists, since
s is contained in di. Finally, we have to guarantee that for every point p in BD(σL) \ s and
every vertex u in L, the open segment pu and σL do not intersect. Indeed the Bézier-curve
B with b, x, a as its control points satisfies this property. Hence, the desired polygon σL can
be constructed by discretizing the curve B. �

Observe that this lemma can be restated in terms of the set R right of the supporting
line l of s. We then obtain an s-monotone polygon σR. Merging the two polygons σL and
σR results in the final polygon σ. Before we are able to actually draw the block B on σ, it is
crucial that the notion of vertices to the left and right of a supporting line l transfers to the
vertices on the boundary of B. We formalize this with the concept of an apex vertex of B.
Let v0, v1, . . . , vk, vk+1 be the vertices on the boundary of B, with v0 = vk+1 the cut vertex
of B. A vertex vi is called an apex vertex of B with respect to ΓC/B and l if all inter-cluster
neighbors of the vertices in v1, . . . vi−1 are to left of l in ΓC/B and the inter-cluster neighbors
of the vertices vi+1, . . . , vk are to the right of l in ΓC/B .

I Lemma 3.4. Let B be a free leaf block of a clustered graph C with an embedding ψ. Let
ΓC/B be a planar straight-line drawing homeomorphic to the induced embedding of C/B and
let l be the supporting line of a Ub-similar segment. Then there is an apex vertex of B with
respect to ΓC/B and l.

Proof sketch. Since ΓC/B is a straight-line drawing homeomorphic to the embedding induced
by the contraction of B, the neighbors of b in C/B appear in the same clockwise order as
in a clockwise traversal of all neighbors of vertices on the boundary of B in C. Thus, the
partitioning of the neighborhood of b into the left and right of l transfers to the vertices on
the boundary of B. �

With this framework at hand, we are now able to prove that C has DC-framed straight-
line drawing, if the B-contracted clustered graph C/B has a DC-framed straight-line drawing
ΓC/B . Thus, let L be the set of inter-cluster neighbors to the left of the supporting-line l
of a Ub-similar segment s, and let R be the corresponding set to the right of l. We obtain
two polygons σL and σR by the application of Lemma 3.3. We obtain a convex polygon σ
by merging σL and σR at the common side s. An apex vertex vi splits the vertices on the
boundary of B. We place the vertices v0, . . . , vi−1 on the boundary of the polygon σL and
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vi+1, . . . , vk on the boundary of σR. The apex vi is placed at the end a of the Ub-similar
segment s = ba where it can be connected to vertices in L and in R. Since σ is a convex
polygon, we can extend this drawing to a drawing Γ of C by drawing the remaining vertices
of B in the interior of σ with the result of Chambers et al. [5]. We get the following result.

I Lemma 3.5. Let C = (G,V) be a connected simple clustered graph with an embedding ψ
that is compatible with a disk arrangement DC. If B is a free leaf block of C and C/B has
DC-framed straight-line drawing homeomorphic to the embedding induced by the contraction
of B, then C has a DC-framed straight-line drawing.

Note that, if every cluster contains exactly one vertex, then the center points of the disks
in the planar disk arrangement DC induce a planar straight-line drawing of C. Thus, we can
inductively apply the previous lemma to prove our main theorem.

I Theorem 3.6. Every connected simple clustered graph C = (G,V) with a planar embedding
ψ that is compatible with a disk arrangement DC has a DC-framed straight-line drawing that
is homeomorphic to ψ.

4 Conclusion

We proved that every clustered planar graph with an embedding compatible with a pla-
nar disk arrangement has a DC-framed straight-line drawing. If the requirement of the
disk arrangement to be planar is dropped, not every clustered-planar graph has DC-framed
straight-line drawing. Thus, we ask what is the complexity of deciding whether a clustered
planar embedded graph has DC-framed straight-line drawing for a given non-planar disk
arrangement DC?
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Abstract
An arrangement of pseudocircles is a collection of simple closed curves on the sphere or in the
plane such that every pair is either disjoint or intersects in exactly two crossing points. We call
an arrangement intersecting if every pair of pseudocircles intersects twice. An arrangement is
circularizable if there is a combinatorially equivalent arrangement of circles.

Kang and Müller showed that every arrangement of at most 4 pseudocircles is circularizable.
Linhart and Ortner found an arrangement of 5 pseudocircles which is not circularizable.

We show that there are exactly four non-circularizable arrangements of 5 pseudocircles,
exactly one of them is intersecting. For n = 6, we show that there are exactly three non-
circularizable digon-free intersecting arrangements. We also have some additional examples of
non-circularizable arrangements of 6 pseudocircles.

The claims that we have all non-circularizable arrangements with the given properties are
based on a program that generated all connected arrangements of n ≤ 6 pseudocircles and all
intersecting arrangements of n ≤ 7 pseudocircles. Given the complete lists of arrangements, we
used heuristics to find circle representations. Examples where the heuristics failed had to be
examined by hand.

1 Introduction

Arrangements of pseudocircles generalize arrangements of circles in the same vein as ar-
rangements of pseudolines generalize arrangements of lines. The study of arrangements
of pseudolines was initiated 1918 with an article of Levi [10]. Since then arrangements of
pseudolines were intensively studied and the handbook article on the topic [2] lists more than
100 references. The study of arrangements of pseudocircles was initiated by Grünbaum [8].

A pseudocircle is a simple closed curve in the plane or on the sphere. An arrangement
of pseudocircles is a collection of pseudocircles with the property that the intersection of
any two of the pseudocircles is either empty or consists of two points where the curves cross.
The graph of an arrangement A of pseudocircles has the intersection points of pseudocircles
as vertices, the vertices split each of the pseudocircles into arcs, these are the edges of the
graph. Note that this graph may have multiple edges and loop edges without vertices. The
graph of an arrangement of pseudocircles comes with a plane embedding, the faces of this
embedding are the cells of the arrangement. A cell with k crossings on its boundary is a
k-cell. A 2-cell is also called a digon (some authors call it a lense), and a 3-cell is also called
a triangle. An arrangement A of pseudocircles is
simple, if no three pseudocircles of A intersect in a common point.
connected, if the graph of the arrangement is connected.
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(b) (c)(a)

Figure 1 The 3 arrangements of n = 3 pseudocircles: (a) Krupp, (b) NonKrupp, (c) 3-Chain.

intersecting, if any two pseudocircles of A intersect.
cylindrical, if there are two cells in A which are separated by each of the pseudocircles.
Note that every intersecting arrangement is connected. In this paper we assume that
arrangements are simple and connected.

Two arrangements A and B are isomorphic if they induce homeomorphic cell decomposi-
tions of the plane respectively the sphere. Figure 1 shows the three connected arrangements
of three pseudocircles. We call the unique digon-free intersecting arrangement of three
(pseudo)circles the Krupp1. The second intersecting arrangement of three pseudocircles is the
NonKrupp, this arrangement has digons. The non-intersecting arrangement is the 3-Chain.

Every triple of great-circles on the sphere induces a Krupp arrangement, hence, we call
an intersecting arrangement of pseudocircles an arrangement of great-pseudocircles if every
subarrangement induced by three pseudocircles is a Krupp.

Some authors think of arrangements of great-pseudocircles when they speak about
arrangements of pseudocircles, this is e.g. common practice in the theory of oriented matroids.
In fact, arrangements of great-pseudocircles serve to represent rank 3 oriented matroids.
I Definition. An arrangement of pseudocircles is circularizable if there is an isomorphic
arrangement of circles.

Circularizability of arrangements of pseudocircles has not been studied extensively.
This paragraph describes the state of the art. Edelsbrunner and Ramos [1] proved non-
circularizability of an arrangement of 6 pseudocircles with digons. Linhart and Ortner [11]
found a non-intersecting arrangement of 5 pseudocircles with digons which is non-circularizable
(Figure 2b). They also proved that every intersecting arrangement of at most 4 pseudocircles
is circularizable. Kang and Müller [9] extended the result by showing that all arrangements
with at most 4 pseudocircles are circularizable. They also proved that deciding circularizabil-
ity of connected arrangements is NP-hard. Since stretchability is ∃R-complete, their proof
actually implies ∃R-completeness of circularizability.

In our last year’s EuroCG contribution [6] we have sketched non-circularizability of two
further intersecting arrangements on 5 and 6 pseudocircles, respectively, namely N 1

5 and N∆
6

(see Figures 2a and 3a). Since then, we have extended our results and got the following.

I Theorem 1.1. The four equivalence classes of arrangements N 1
5 , N 2

5 , N 3
5 , and N 4

5 (shown
in Figure 2) are the only non-circularizable ones among the 984 equivalence classes of
connected arrangements of n = 5 pseudocircles.

I Theorem 1.2. The three equivalence classes of arrangements N∆
6 , N 2

6 , and N 3
6 (shown

in Figure 3) are the only non-circularizable ones among the 2131 equivalence classes of
digon-free intersecting arrangements of n = 6 pseudocircles.

1 This name refers to the logo of the Krupp AG, a German steel company. Krupp was the largest
company in Europe at the beginning of the 20th century. There is also a disease with the German name
Pseudo-Krupp, we have no corresponding arrangement.



S. Felsner and M. Scheucher 15:3

(a) (b) (c) (d)

Figure 2 The four non-circularizable arrangements on n = 5 pseudocircles. (a) N 1
5 . (b) N 2

5 .
(c) N 3

5 . (d) N 4
5 .

(a) (b) (c)

Figure 3 The three non-circularizable digon-free intersecting arrangements for n = 6. (a) N ∆
6 .

(b) N 2
6 . (c) N 3

6 .

Full proofs of Theorems 1.1 and 1.2 can be found in the full version [4], where we also
prove non-circularizability of some further interesting arrangements on n = 6 pseudocircles
and provide some further results for certain classes of arrangements. The non-circularizability
proofs use various techniques, most depend on incidence theorems, others use arguments
involving metric properties of arrangements of planes, or angles in planar figures.

Our results strongly depend on the generation of the complete lists of connected arrange-
ments of n ≤ 6 pseudocircles and of intersecting arrangements of n ≤ 7 pseudocircles. The
respective numbers are shown in Table 1. The encoded lists of arrangements up to n = 6
are available on our webpage [3]. We remark that the list of intersecting arrangements was
already mentioned in our at last year’s EuroCG contribution [6]. Computational issues are
deferred until Section 5. There we describe the algorithmic ideas behind the computation of
the lists.

Particularly interesting is the arrangement N∆
6 (Figure 3a). This is the unique intersecting

digon-free arrangement of 6 pseudocircles which attains the minimum 8 for the number of
triangles. From our computer search we know that N∆

6 occurs as a subarrangement of every

n 4 5 6 n 4 5 6 7
connected 21 984 609 423 intersecting 8 278 145 058 447 905 202
+digon-free 3 30 4 509 +digon-free 2 14 2 131 3 012 972
con.+cylindrical 20 900 530 530 int.+cylindrical 278 144 395 435 367 033
+digon-free 30 4 477 +digon-free 2 131 3 012 906

great-p.c.s 1 4 11

Table 1 Number of combinatorially different arrangements of n pseudocircles.

EuroCG’18
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digon-free arrangement for n = 7, 8, 9 with p3 < 2n− 4 triangles, hence, also neither of those
arrangements is circularizable. Therefore, it seems plausible that for every arrangement of n

circles p3 ≥ 2n− 4. This is the Weak Grünbaum Conjecture. [5, 6]
For the non-circularizability of N∆

6 we have two proofs. Due to didactical reasons, we
exchanged “first” and “second” in the full version against the actual chronological order.

Our first proof is based on an incidence theorem in 3-space and was already sketched in
our last year’s EuroCG contribution [6].

Here we sketch our new second proof, which is based on a sweeping argument in 3-D
(see Subsection 4). With a similar idea we also show the following theorem, which has some
nice corollaries, e.g., it yields a very direct and easy proof that deciding circularizability is
∃R-complete (see Section 3).

I Theorem 1.3 (The Great-Circle Theorem). An arrangement of great-pseudocircles is circu-
larizable (i.e., has a circle representation) if and only if it has a great-circle representation.

2 Preliminaries

Stereographic projections map circles to circles (if we consider a line to be a circle containing
the point at infinity), therefore, circularizability on the sphere and in the plane is the same
concept. Arrangements of circles can be mapped to isomorphic arrangements of circles via
Möbius transformations.

Let C be an arrangement of circles represented on the sphere. Each circle of C spans a
plane in 3-space, hence, we obtain an arrangement E(C) of planes in R3. In fact, a fixed sphere
S conveys a bijection between (not necessarily connected) circle arrangements on S and
arrangements of planes with the property that each plane of the arrangement intersects S.

Consider two circles C1, C2 of a circle arrangement C on S and the corresponding planes
E1, E2 of E(C). The intersection of E1 and E2 is either empty (i.e., E1 and E2 are parallel)
or a line `. The line ` intersects S if and only if C1 and C2 intersect, in fact, `∩S = C1 ∩C2.

With three pairwise intersecting circles C1, C2, C3 we obtain three planes E1, E2, E3
intersecting in a vertex v of E(C). It is notable that v is in the interior of the ball bounded
by S if and only if the three circles form a Krupp in C.

3 Arrangements of (pseudo) great-circles

Central projections map between arrangements of great-circles on a sphere S and arrangements
of lines on a plane. Changes of the plane preserve the isomorphism class of the projective
arrangement of lines.

An Euclidean arrangement of n pseudolines can be represented by x-monotone pseudolines,
a special representation of this kind is the wiring diagram, see e.g [2]. An x-monotone
representation can be glued with a horizontally mirrored copy of itself to form an arrangement
of n pseudocircles, see Figure 4. The resulting arrangement is intersecting and has no
NonKrupp subarrangement, i.e., it is a great-pseudocircle arrangement.

Indeed the above construction yields a bijection between projective arrangements of n

pseudolines in the plane and arrangements of n great-pseudocircles.
Projective arrangements of pseudolines are also known as projective abstract order

types or oriented matroids. Their number is known for n ≤ 11, hence the numbers of
great-pseudocircle arrangements given in Table 1 are not new. For more information see [4].
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Figure 4 Obtaining an arrangement of pseudocircles from an Euclidean arrangement A of
pseudolines. Arrangement A and its mirrored copy are shown in red and blue, respectively.

Let C be an arrangement of great-pseudocircles and let A be the corresponding projective
arrangement of pseudolines. Central projections show that, if A is realizable with straight
lines, then C is realizable with great-circles, and conversely.

In fact, it is enough that C is circularizable to conclude that C is realizable with great-circles
and A is realizable with straight lines.

Proof of Theorem 1.3. Consider an arrangement of circles C on the unit sphere S that
realizes an arrangement of great-pseudocircles. Let E(C) be the arrangement of planes
spanned by the circles of C. Since C realizes an arrangement of great-pseudocircles, every
triple of circles forms a Krupp, hence, the point of intersection of any three planes of E(C) is
in the interior of S.

Imagine the radius of the sphere growing with the time t, to be precise, let S1 = S and
St = t · S. Since all the intersection points of the arrangement E(C) are in the interior of S1,
the circle arrangement obtained by intersecting E(C) with the growing sphere remains the
same (isomorphic). Also every circle of the arrangement is moving towards a great-circle
while the sphere is growing. When t is large enough it is possible to push all circles a small
amount to make them great-circles without changing the arrangement. J

I Corollary 3.1. Every non-stretchable arrangement of pseudolines has a corresponding
non-circularizable arrangement of pseudocircles.

In particular, the hardness of stretchability directly carries over to hardness of circulariz-
ability. Moreover, since there are infinite families of minimal non-stretchable arrangements
of pseudolines [7], the same is true for pseudocircles.

It is known that Mnëv’s Universality Theorem [12] has strong implications for pseudoline
arrangements and stretchability. This together with results from Suvorov [13] directly
translates to:

I Corollary 3.2. The problem of deciding circularizability is ∃R-complete. Moreover, there
exist circularizable arrangements of pseudocircles with a disconnected realization space.

4 Non-circularizability of N∆
6

Our second proof of non-circularizability of N∆
6 is an immediate consequence of the following

theorem, which resembles the proof of the Great-Circle Theorem (Theorem 1.3).

I Theorem 4.1. Let A be a connected digon-free arrangement of pseudocircles with the
property that every triple of pseudocircles, which forms a triangles in A, is NonKrupp. Then
A is not circularizable.

Proof (second proof of non-circularizability of N∆
6 ). The arrangement N∆

6 is intersecting,
digon-free, and each of the eight triangles of N∆

6 is a NonKrupp, hence, Theorem 4.1 implies
that N∆

6 is not circularizable. J

EuroCG’18
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5 Computational Part

To produce the database of all intersecting arrangements of up to n = 7 pseudocircles, we
used the dual graphs and a procedure, which generates the duals of all possible extensions
by one additional pseudocircle of a given arrangement, starting with the unique arrangement
of two intersecting pseudocircles [4, 5]. Another way to obtain the database for a fixed value
of n, is to perform a recursive search in the flip graph using the triangle flip operation.

For connected arrangement the dual graph might contain multiple edges. To avoid
problems with non-unique embeddings, we modeled connected arrangements with their
primal-dual-graphs where vertices, segments, and faces of the arrangement are represented
by a vertex in the graph and two vertices share an edge if the corresponding entities are
incident and one of them corresponds to an edge. To generate the database of all connected
arrangements for n ≤ 6, we used the fact that the flip graph is connected when triangle flips
and digon flips are used. The enumeration was done by a recursive search on the flip graph.

Having generated the database of arrangements of pseudocircles, we were then interested
in identifying the circularizable and the non-circularizable ones. To find circle representations
we used computer assistance. Examples where our programs failed to find realizations had
to be examined by hand. For more information, we refer to the full version [4].

References
1 H. Edelsbrunner and E. A. Ramos. Inclusion-exclusion complexes for pseudodisk collections.

Discrete & Computational Geometry, 17:287–306, 1997.
2 S. Felsner and J. E. Goodman. Pseudoline Arrangements. In Toth, O’Rourke, and Good-

man, editors, Handbook of Discrete and Computational Geometry. CRC Press, 3 edition,
2018.

3 S. Felsner and M. Scheucher. Homepage of Pseudocircles. http://www3.math.tu-berlin.
de/pseudocircles.

4 S. Felsner and M. Scheucher. Arrangements of Pseudocircles: On Circularizability. arX-
iv/1712.02149, 2017.

5 S. Felsner and M. Scheucher. Arrangements of Pseudocircles: Triangles and Drawings.
arXiv/1708.06449, 2017.

6 S. Felsner and M. Scheucher. Triangles in Arrangements of Pseudocircles. In Proc. EuroCG
2017, pages 225–228, 2017.

7 J. E. Goodman and R. Pollack. Allowable sequences and order types in discrete and
computational geometry. In Pach, editor, New Trends in Discrete and Computational
Geometry, pages 103–134. Springer, 1993.

8 B. Grünbaum. Arrangements and Spreads, volume 10 of Regional Conf. Ser. Math. AMS,
1972 (reprinted 1980).

9 R. J. Kang and T. Müller. Arrangements of pseudocircles and circles. Discrete & Compu-
tational Geometry, 51:896–925, 2014.

10 F. Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber. Math.-
Phys. Kl. sächs. Akad. Wiss. Leipzig, 78:256–267, 1926.

11 J. Linhart and R. Ortner. An arrangement of pseudocircles not realizable with circles.
Beiträge zur Algebra und Geometrie, 46:351–356, 2005.

12 N. E. Mnëv. The universality theorems on the classification problem of configuration
varieties and convex polytopes varieties. In Topology and Geometry — Rohlin Seminar,
volume 1346 of Lect. Notes in Math., pages 527–543. Springer, 1988.

13 P. Suvorov. Isotopic but not rigidly isotopic plane systems of straight lines, volume 1346 of
Lect. Notes in Math., pages 545–556. Springer, 1988.



On Romeo and Juliet Problems: Minimizing
Distance-to-Sight∗

Hee-Kap Ahn1, Eunjin Oh2, Lena Schlipf3, Fabian Stehn4, and
Darren Strash5

1 Department of Computer Science and Engineering, POSTECH, South Korea
heekap@postech.ac.kr

2 Department of Computer Science and Engineering, POSTECH, South Korea
jin9082@postech.ac.kr

3 Theoretische Informatik, FernUniversität in Hagen, Germany
lena.schlipf@fernuni-hagen.de

4 Institut für Informatik, Universität Bayreuth
fabian.stehn@uni-bayreuth.de

5 Department of Computer Science, Colgate University, US.
dstrash@cs.colgate.edu

Abstract
We introduce a variant of the watchman route problem, which we call the quickest pair-visibility
problem. Given two persons standing at points s and t in a simple polygon P with no holes, we
want to minimize the distance these persons travel in order to see each other in P . We solve two
variants of this problem, one minimizing the longer distance the two persons travel (min-max)
and one minimizing the total travel distance (min-sum), optimally in linear time.

1 Introduction

In the watchman route problem, a watchman takes a route to guard a given region—that is,
any point in the region is visible from at least one point on the route. It is desirable to make
the route as short as possible so that the entire area can be guarded as quickly as possible.
The problem was first introduced in 1986 by Chin and Ntafos [4] and has been extensively
studied in computational geometry [3, 10]. Though the problem is NP-hard for polygons
with holes [4, 5, 7], an optimal route can be computed in time O(n3 logn) for simple n-gons
[6] when the tour must pass through a specified point, and O(n4 logn) time otherwise.

In this paper, we study a variant we call the quickest pair-visibility problem, which can
be stated as follows.

I Problem (quickest pair-visibility problem). Given two points s and t in a simple polygon P ,
compute the minimum distance that s and t must travel in order to see each other in P .

This problem may sound similar to the shortest path problem between s and t, in which
the objective is to compute the shortest path for s to reach t. However, they differ even for
a simple case: for any two points lying in a convex polygon, the distance in the quickest
pair-visibility problem is zero while in the shortest path problem it is their Euclidean distance.

The quickest pair-visibility problem occurs in optimization tasks. For example, mobile
robots that use a line-of-sight communication model are required to move to mutually-visible

∗ This work by Ahn and Oh was supported by the MSIT(Ministry of Science and ICT), Korea, under the
SW Starlab support program(IITP-2017-0-00905) supervised by the IITP (Institute for Information &
communications Technology Promotion.).
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Figure 1 (a) The quickest pair-visibility problem finds two paths π(s, s1) and π(t, t1) such that
s1t1 ⊂ P and max{|π(s, s1)|, |π(t, t1)|} or |π(s, s1)|+ |π(t, t1)| is minimized. The quickest visibility
problem for query point t finds a shortest π(s, t2) with tt2 ⊂ P . (b) min-max: Every pair (s′, t∗),
where t∗ is some point within the geodesic disk centered in t with radius π(s, s′), is an optimal
solution to the min-max problem. (c) min-sum: Every pair (vi, vi+1) for 1 ≤ i < 6 is an optimal
solution to this instance.

positions to establish communication [8]. An optimization task here is to find shortest paths
for the robots to meet the visibility requirement for establishing communication among them.

Wynters et al. [12] studied this problem for two agents acting in a polygonal domain in the
presence of polygonal obstacles and gave an O(nm)-time algorithm for the min-sum variant
(where m is the number of edges of the visibility graph of all corners) and an O(n3 logn)-time
algorithm for the min-max variant. A query version of the quickest visibility problem has
also been studied [1, 9, 11]. In the query problem, a polygon and a source point lying in the
polygon are given, and the goal is to preprocess them and construct a data structure that
allows, for a given query point, to find the shortest path taken from the source point to see
the query point efficiently. Khosravi and Ghodsi [9] considered the case for a simple n-gon
and presented an algorithm to construct a data structure of O(n2) space so that given a
query, it finds the shortest visibility path in O(logn) time. Later, Arkin et al. [1] improved
the result and presented an algorithm for the problem in a polygonal domain. Very recently,
Wang [11] presented an improved algorithm for this problem for the case that the number
of the holes in the polygon is relatively small. Figure 1(a) illustrates differences in these
problems for a simple polygon and two points, s and t, in the polygon.

1.1 Our results
In this paper, we consider two variants of the quickest pair-visibility problem for a simple
polygon: either we want to minimize the maximum length of a traveled path (min-max
variant) or we want to minimize the sum of the lengths of both traveled paths (min-sum
variant). We give a sweep-line-like approach that “rotates” the lines-of-sight along vertices
on the shortest path between the start positions, allowing us to evaluate a linear number of
candidate solutions on these lines. Throughout the sweep, we encounter solutions to both
variants of the problem. We further show that our technique can be implemented in linear
time.

2 Preliminaries

Let P be a simple polygon and ∂P be its boundary. The vertices of P are given in counter-
clockwise order along ∂P . We denote the shortest path within P between two points p, q ∈ P
by π(p, q) and its length by |π(p, q)|. We say a point p ∈ P is visible from another point
q ∈ P (and q is visible from p) if and only if line segment pq is completely contained in P .

For two starting points s and t, our task is to compute a pair (s′, t′) of points such that s′
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and t′ are visible to each other, where we wish to minimize the lengths of π(s, s′), and π(t, t′).
In the min-max setting, we wish to minimize max{|π(s, s′)|, |π(t, t′)|}. For the min-sum
setting, we wish to minimize |π(s, s′)|+ |π(t, t′)|. Note that, for both variants, the optimum
is not necessarily unique; see Figure 1(b) and (c).

For our discussion, let (s∗, t∗) be an optimal solution for the instance at hand. Let V (p)
denote the visible region for a point p in P , that is, the portion of P that is visible from
p. Clearly, V (p) is a star-shaped polygon. Moreover, every boundary edge of V (p) is either
(part of) an edge of P or a segment vq that is contained in P and parallel to pv, where v
is a vertex of P visible from p and q is a point on the boundary of P . We call an edge of
the latter type a window edge of the visibility region. The structure of V (p) may change as
p moves along a path contained in P . It is known that a change to the structure of V (p)
occurs if and only if two vertices of P become collinear with p [2].

I Lemma 2.1. Unless s and t are visible to each other, the segment s∗t∗ contains a vertex
v of the shortest path π(s, t) from s to t.

It is easy to see by contradiction that s∗t∗ must contain a vertex v of the boundary of P ;
using shortest path properties, one can show that v is a vertex of π(s, t). The full proof is
omitted due to space constraints.

3 Computing All Events for a Sweep-Line-Like Approach

For each vertex v on π(s, t) we compute a finite collection of lines through v, each being
a configuration at which the combinatorial structure of the shortest paths π(s, s∗) and/or
π(t, t∗) changes. To be more precise, at these lines either the vertices of π(s, s∗) or π(t, t∗)
(except for s∗ and t∗) change or the edge of ∂P changes that is intersected by the extension
of s∗t∗. To explain how to compute these lines, we introduce the concept of a line-of-sight.

I Definition 3.1 (line-of-sight). We call a segment ` a line-of-sight if (i) ` ⊂ P , (ii) both
endpoints of ` lie on ∂P , and (iii) ` is tangent to π(s, t) at a vertex v ∈ π(s, t).

We say a segment g is tangent to a path π at a vertex v if v ∈ g∩π and the local neighborhood
of π at all intersections g ∩ π is on the same side of g. The algorithm we present is in many
aspects similar to a sweep-line strategy, except that we do not sweep over the scene in a
standard fashion but rotate a line-of-sight ` in P around the vertices of the shortest path
π(s, t) := (s = v0), v1, . . . , vk−1, (t = vk). The process will be initialized with a line-of-sight
that contains s and v1 and is then rotated around v1 (while remaining tangent to v1) until it
hits v2, see Figure 2(a). In general, the current line-of-sight is rotated around vi in a way so
that it remains tangent to vi (it is rotated in the interior of P ) until the line-of-sight contains
vi and vi+1, then the process is iterated with vi+1 as the new rotation center. The process
terminates as soon as the line-of-sight contains vk−1 and t.

While performing these rotations around the shortest path vertices, we encounter all
combinatorially different lines-of-sight. As for a standard sweep-line approach, we will
compute and consider events at which the structure of a solution changes: this is either
because the interior vertices of π(s, s∗) or π(t, t∗) change or because the line-of-sight starts
or ends at a different edge of ∂P . These events will be represented by points on ∂P (actually,
we introduce the events as vertices on ∂P unless they are already vertices). Between two
consecutive lines-of-sight, we compute the local minima of the relevant distances for the
variant at hand in constant time and hence encounter all global minima eventually.

There are three event-types to distinguish:
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Figure 2 Path- and boundary-events. (a) The first path-event is the line-of-sight through sv1.
The line-of-sight rotates until it hits the next path-event: the segment through v1v2. (b) All path-
and boundary-events: the event-queue is initialized with these events. (c) A bend-event (marked
with a cross) occurs between the two boundary-events. The shortest path from s to these segments
changes at the bend-event.

1. Path-Events are endpoints of lines-of-sight that contain two consecutive vertices of the
shortest path π(s, t). See Figure 2(a).

2. Boundary-Events are endpoints of lines-of-sight that are tangent at a vertex of π(s, t)
and contain at least one vertex of P \π(s, t) (potentially as an endpoint). See Figure 2(b).

3. Bend-Events are encountered when, the shortest path of s (or t) to the line-of-sight
gains or loses a vertex while rotating the line-of-sight around a vertex v. See Figure 2(c).
Note that bend-events can coincide with path- or boundary-events.

We will need to explicitly know both endpoints of the line-of-sight on ∂P at each event
and the corresponding vertex of π(s, t) on which we rotate.

I Lemma 3.2 (Computing path- and boundary-events). For a simple polygon P with n vertices
and points s, t ∈ P , the queue Q of all path- and boundary-events of the rotational sweep
process, ordered according to the sequence in which the sweeping line-of-sight encounters
them, can be initialized in O(n) time.

Path events coincide with specific vertices of the shortest path map of s (or of t) in P ,
whereas boundary events are endpoints of specific edges of the shortest path tree of s (or
of t) in P . These structures can be constructed and classified in linear time, a full proof is
omitted due to space constraints.

Once we initialized the event queue Q, we can now compute and process bend-events as
we proceed in our line-of-sight rotations.

I Lemma 3.3. All bend-events can be computed in O(n) time, sorted in the order as they
appear on the boundary of P .

Due to space limitations, the proof of Lemma 3.3 is omitted.

4 Algorithm Based on a Sweep-Line-Like Approach

In this section, we present a linear-time algorithm for computing the minimum distance that
two points s and t in a simple polygon P travel in order to see each order. We compute all
events defined in Section 3 in linear time. The remaining task is to handle the lines-of-sight
lying between two consecutive events.

I Lemma 4.1. For any two consecutive events, the line-of-sight ` lying between them that
minimizes the sum of the distances from s and t to ` can be found in constant time.
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Proof. Let L be the set of all lines-of-sights lying between the two consecutive events. Every
line-of-sight in L contains a common vertex v of π(s, t). We assume that L contains no
vertical line-of-sight. Otherwise, we consider the set containing all lines-of-sight of L with
positive slopes, and then the set containing all lines-of-sight of L with negative slopes.

By construction, the second to the last vertex u of π(s, `) (and π(t, `)) for any ` ∈ L
remains the same. We already obtained v and u while computing the events. We will give
an algebraic function for the length of π(s, `) for ` ∈ L. An algebraic function for the length
of π(t, `) can be obtained by changing the roles of s and t.

Since the topology of π(s, `) for every ` ∈ L remains the same, we consider only the
length of π(u, `). Observe that π(u, `) is a line segment for any ` ∈ L, and thus its length
is the same as the Euclidean distance between u and `. The length is either the Euclidean
distance between u and the line containing `, or the Euclidean distance between u and the
endpoint of ` closest to u. We show how to handle the first case only because the second
case can be handled analogously.

To use this observation, we use `(α) to denote the line of slope α passing through v for
any α > 0. There is an interval I such that `(α) contains a line-of-sight in L if and only
if α ∈ I. The Euclidean distance between u and `(α) is the same as the distance between
u and the line-of-sight contained in `(α). Thus, in the following, we consider the distance
between u and `(α) for every α ∈ I.

Since `(α) passes through a common vertex, the line `(α) can be represented as the form
of y = αx+ f(α), where f(α) is a function linear in α. Then, the distance between u and
`(α) can be represented as the form of |c1α+ c2|/

√
α2 + 1, where c1 and c2 are constants

depending only on v and u.
Then our problem reduces to the problem of finding a minimum of the function of the form

of (|c1α+ c2|+ |c′1α+ c′2|)/
√
α2 + 1 for four constants c1, c2, c

′
1 and c′2, and for all α ∈ I.

We can find a minimum in constant time using an elementary analysis. J

I Lemma 4.2. For any two consecutive events, the line-of-sight ` lying between the them
that minimizes the maximum of the distances from s and t to ` can be found in constant
time.

I Theorem 4.3. Given a simple n-gon P with no holes and two points s, t ∈ P , a point-pair
(s∗, t∗) such that i) s∗t∗ ⊂ P and ii) either |π(s, s∗)|+ π(t, t∗)| or max{|π(s, s∗)|, |π(t, t∗)|}
is minimized can be computed in O(n) time.

Proof. Our algorithm first computes all path- and boundary-events as described in Lemma 3.2.
The number of events introduced during this phase is bounded by the number of vertices
of the shortest path maps, Ms and Mt, respectively, which are O(n). In the next step, it
computes the bend-events on ∂P as described in Lemma 3.3, which can be done in O(n) time.
Finally, our algorithm traverses the sequence of events. Between any two consecutive events,
it computes the respective local optimum in constant time by Lemma 4.1. It maintains
the smallest one among the local optima computed so far, and return it once all events are
processed. Therefore the running time of the algorithm is O(n).

For the correctness, consider the combinatorial structure of a solution and how it changes.
The path-events ensure that all vertices of π(s, t) are considered as being the vertex lying on
the segment connecting the solution (s∗, t∗). While the line-of-sight rotates around one fixed
vertex of π(s, t), either the endpoints of line-of-sight sweep over or become tangent to a vertex
of ∂P . These are exactly the boundary-events. Or the combinatorial structure of π(s, s∗) or
π(t, t∗) changes as interior vertices of π(s, s∗) or π(t, t∗) appear or disappear. These happen
exactly at bend events. Therefore, our algorithm returns an optimal point-pair. J
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Abstract
Given a polygonal shape with holes, we investigate the topology of two types of skeletons (straight
skeleton, Voronoi diagram) and the evolution of the inward offsets they induce. It is shown that
both skeletons are homotopy equivalent to the shape and an O(n logn) algorithm to compute
the persistent homology of the filtration of the inset polygons w.r.t. to their reversed offsetting
process is given. We conclude with a brief discussion on possible applications.

1 Introduction

The straight skeleton and the Voronoi diagram of a polygonal shape capture certain topological
and geometrical information. For instance, the maximum inscribed circle of the shape has
its center at a vertex of of Voronoi diagram. In terms of homotopy both skeletons encode
the topology of the shape, but their geometry is different. The different geometry manifests
in different offset curves: Mitered offsets for straight skeletons and Minkowski offsets for
Voronoi diagrams. The evolution of offset curves again tells something about the topology of
the shape. The mathematical tool to investigate this observation is persistent homology.

Lieutier [8] showed that the medial axis of an open bounded set in Rd is homotopy
equivalent to its medial axis by an involved proof not based on constructing a deformation
retraction. Further related work concerns the homotopy of the medial axis, its stability,
and its relation to the Voronoi diagram of a point set. Halperin et al. [4] investigated the
outer (Minkowski) offset filtration of convex polyhedra in two and three dimensions, i.e.,
they generalize from (alpha filtrations of) point sets to sets of disjoint convex polyhedra and
presented an O(n logn) algorithm for the persistent homology.

Figure 1 The straight skeleton S(P ) in blue of a polygon with holes, P , in black. The wavefront
(a mitered offset curve) is shown as dotted lines.
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2 Topology of skeletons

Let P denote a polygon with holes in the plane, i.e., bdP forms a set of disjoint closed
polygonal curves. The straight skeleton S(P ) of P is defined by a wavefront propagation
process where the edges of P move inwards at unit speed. Two kind of structural changes
occur to the wavefront: (i) edges may collapse and vanish and (ii) reflex vertices may hit
another part of the wavefront and split it into parts.1 The line structure that is traced out
by the wavefront vertices was introduced in [1] as the straight skeleton S(P ) of P , see Fig. 1.
We call the area swept out by one edge f of P the straight-skeleton cell CS(f) of f .

The Voronoi diagram V (P ) of P is defined by a nearest-neighbor cell decomposition of P
by the faces of P , i.e., its vertices and edges. We follow [5] by defining the cone of influence
I(f) of a vertex f to be R2 and of an edge f to be the orthogonal strip spanned by f . Then
the Voronoi cell CV (f) is defined as the set of points in I(f) at least as close to f than to
any other face of P . We define the Voronoi diagram V (P ) of P as the line structure formed
by the boundaries of the Voronoi cells, restricted to P , see Fig. 2.

Figure 2 The Voronoi diagram V (P ) in blue of a polygon with holes, P , in black. Two cells
CV (f) and CV (f ′) of the faces f and f ′ shaded in gray.

Two remarks on the above definition: First, for our purpose we would like to emphasize
the notion of a Voronoi diagram of a polygon in analogy to S(P ) and in contrast to the typical
notion of the Voronoi diagram of a collection of sites (which could form a polygon). Secondly,
the two edges of V (P ) emanating at each reflex vertex are considered to be topologically
disjoint, i.e., the two distinct endpoints only geometrically overlap. Furthermore, we split
conic Voronoi edges at the apex, including those between two vertices of P , see [7]. This is
(i) algorithmically handy, e.g., when computing offset curves, and (ii) turns out to be natural
from a topological perspective.

Both, S(P ) and V (P ), capture geometrical and topological features of the underlying
shape P . For instance, they form a tree for simple polygons. Moreover, for each hole that
we punch into P both get a new (generator) cycle (in a group of cycles). That is, in terms of
homotopy theory, they both capture the topology of the shape:

I Theorem 2.1. Let P denote a polygon with holes in the plane. The following homotopy
equivalences hold:

P ' S(P ) ' V (P ).

1 See [7] for a survey on straight skeletons including a taxonomy on the different wavefront events.
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It suffices to show that S(P ) and V (P ) are each deformation retracts of P .

I Lemma 2.2. S(P ) is a deformation retract of P .

Proof. Consider the cell decomposition of P induced by S(P ). The cell CS(f) of an edge f
is a topological disk [7]. Let us denote by S(P, f) = S(P ) ∩ CS(f) the boundary of CS(f)
without f , which is a connected part of bdCS(f). The topological disk CS(f) can be trivially
deformation retracted to S(P, f). We can even require that the deformation retraction stays
constant on S(P, f). This allows us to plug together the per-cell deformation retractions to
a deformation retraction of P =

⋃
f C(f) to

⋃
f S(P, f) = S(P ). J

Note that the above proof also applies to straight-skeletons of positively weighted straight
skeletons. However, in the presence of negative weights Thm. 2.1 fails as S(P ) of a simple
polygon P may have cycles as shown in [2].

I Lemma 2.3. V (P ) is a deformation retract of P .

We could use the more general result of Lieutier [8] for the medial axis, augment it with
certain line segments to obtain V (P ) and argue that the homotopy type did not change.
However, the simple proof scheme of Lem. 2.2 basically applies here, too. Moreover, Voronoi
cells of circular arcs meet the above topological requirements as well [6], and hence Lem. 2.3
also applies to shapes P bounded by straight-line segments and circular arcs.

There is only a technicality at reflex vertices (for both approaches), where we remind
the reader that the two emanating Voronoi edges are considered topologically disjoint. The
topological space V (P ) could be obtained by glueing together Voronoi edges, but we do not
glue at reflex vertices of P . Put in different words, let us consider P ′ as the Minkowski-
difference2 P 	Bε of P by an ε > 0, where Bε denotes the o-centered ball of radius ε. Then
V (P ′) = V (P )∩P ′, i.e., V (P ) is V (P ′) with little line segments attached at the tips of V (P ′).
The shape P ′ is structurally the same as P , only the reflex vertices of P are replaced by tiny
circular arcs of radius ε. We consider V (P ) and V (P ′) to be topologically identical, only the
tips of V (P ′) are geometrically perturbed. In particular, we consider V (P, f) = V (P )∩CV (f)
being a topological line instead of a circle at reflex vertices.

I Corollary 2.4. P , S(P ), and V (P ) are homologous and, by the theorem of Euler-Poincaré,
have the same Euler characteristics.

3 Persistence of offset curves

3.1 Mitered and Minkowski offsets
A skeleton and its offset curves are dual in the following sense: We can easily compute offset
curves from the skeleton and, vice versa, the skeleton can be obtained from the evolution of
offset curves. For the latter direction this is the original definition of straight skeletons, where
the wavefront propagation is the evolution of the offset curves. The definition of Voronoi
diagrams based the evolution of the offset curves is related to the so-called grassfire model.

For the former direction, the computation of mitered offset curves by means of straight
skeletons resp. Minkowski offset curves by means of Voronoi diagrams are one of many

2 For sets A, B in a vector space let A⊕B = {x + y : x ∈ A, y ∈ B} denote the Minkowski-sum and let
A	B = {x : {x} ⊕B ⊆ A} = (Ac ⊕ (−B))c denote the Minkowski-difference.
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applications of skeletons, e.g. in GIS (buffer zone computation) or CAD/CAM (tool-path
planing in NC-machining), cf. [5, 7].

Let us denote by QV (r) the polygon P inset by radius r according Minkowski offset-
ting, i.e., QV (r) = P 	 Br. Similarly, denote by QS(r) the polygon P inset by radius
r according to mitered offsetting. The so-called roof model projects the evolution of off-
set curves in three-space with the third dimension being time, see Fig. 3. We denote by
RV (P ) =

⋃
r≥0 bdQV (r)×{r} and likewise for RS(P ). In the following we write Q∗(r) resp.

R∗(P ) when we refer to both QV (r) and QS(r) resp. RV (P ) and RS(P ). Aichholzer and
Aurenhammer [1] showed the following property for RS(P ), which is also true for RV (P ):

I Lemma 3.1. R∗(P ) does not possess local minima, except all points of bdP × {0}.

Proof. Assume R∗(P ) would possess a local minimum at q ∈ intP at level t > 0. Then
P \Q∗(t+ ε) possesses an arbitrarily small component around q for small enough ε > 0. This
basically means that offset curves pop up without being emanated from bdP . J

Figure 3 The straight-skeleton roof model RS(P ) of P . The vertices, crests and ridges of RS(P )
projected onto R2 × {0} give S(P ) again. Offset curves are lifted to isolines on RS(P ).

3.2 Computing persistent homology of offset curve filtrations
Persistent homology is a mathematical framework that investigates the evolution of homology
groups in a so-called filtration of topological spaces. In the following we apply this framework
to a growing sequence of nested sets, where the growth is given by the offset curves with a
decreasing offset radius. This gives insight into the topology of the underlying shape that
goes beyond the homotopy type of P because the topological changes in the offset curves
pull in geometric information from the offsetting process itself.

Let us consider r to decrease from a large enough r0 to 0, while Q∗(r) grows from the
empty set to P . We ask for the persistent homology groups (over Z2) of this offset filtration
of P . Using the roof model R∗(P ) we can apply the water shed picture [3] here: Assume the
sea has level r0 and then continuously lowers to level 0. At local maxima of R∗(P ) islands
pop up (0-dimensional homology classes are born), at certain other levels islands merge with
others (0-dimensional homology classes die) or atolls are formed (1-dimensional homology
classes are born). However, from Lem. 3.1 follows this:

I Lemma 3.2. In an offset filtration 1-dimensional homology classes never die.
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3.2.1 Direct approach on a simplicial complex
A straightforward approach to compute persistent homology could be to apply the boundary
matrix algorithm [3]. To do so, we switch to the setting of a filtration on a simplicial
complex. First, we consider a finite filtration: Note that the topological changes of Q∗(r)
only occur at levels of R∗(P ) where the isoline touches a roof vertex. Let us denote by
r1 > r2 > · · · > rk = 0 the sequence of levels at which the vertices of R∗(P ) sit, which gives
us the nested sets Q∗(r1) ⊂ · · · ⊂ Q∗(rk). (We may add a level r0 > r1 in order to start with
the empty set Q∗(r0).) Next we construct a simplicial complex C that covers P by (i) adding
the offset curves bdQ∗(r1), . . . ,bdQ∗(rk) to the skeleton and (ii) triangulating the onion
layers Q∗(ri+1) \ intQ∗(ri) for 1 ≤ i ≤ k − 1. Note that in step (i), we split skeleton edges
at the intersection points with the offset curves and in step (ii), we only need a topological
triangulation, i.e., edges do not need to be straight. Then we define a simplicial function
C → [0,∞) by assigning each simplex of C the level of its lowest point in R∗(P ). We take the
super-level set filtration according to this simplicial function, which corresponds to the offset
filtration initially presented, i.e., it contains triangulations of all Q∗(ri) as subcomplexes.

The boundary matrix reduction runs in O(m3) time where m ∈ O(kn) ⊆ O(n2) is the
size of C. The construction of C involves the computation of k offset curves, each taking O(n)
time after the skeleton has been computed, and the triangulation in O(m logm) time.

3.2.2 A skeleton-based algorithm
Note that the Voronoi diagram of QV (r) is V (P ) ∩QV (r) and similarly S(QS(r)) = S(P ) ∩
QS(r) for straight skeletons. So QV (r) is homotopy equivalent to V (P )∩QV (r) and therefore
homologous. That is, instead of considering the growing sets QV (r1) ⊂ · · · ⊂ QV (rk) we
can consider the growing subsets QV (r1) ∩ V (P ) ⊂ · · · ⊂ QV (rk) ∩ V (P ) of the Voronoi
diagram and likewise for the straight skeleton. So it suffices to track the birth and death of
components and cycles in the growing graph structure of the skeleton.

By Lem. 3.2 we can exclude the death of cycles from our considerations. So we sort the
vertices of the skeleton by decreasing level in the roof model and keep adding vertex by
vertex in the growing graph structure. For each new vertex v we have the following cases:

1. No neighbor of v was inserted already. Then v is a peak and a new component is born.
2. The neighbors u1, . . . , ud were already inserted. For every connected component that is

involved with c vertices in {u1, . . . , ud} we get c− 1 new cycles closed at v. All involved
components are merged with the oldest component and then v joins this component, too.
After the skeleton of P has been computed and the vertices were sorted in O(n logn)

time, where n is the number of vertices of P , one can compute the birth and death of the
homology classes in O(nα(n)) time by means of a union-find data structure [3]. (There
are O(n) find resp. union operations in case 2.) If one is interested in the homology classes
itself each can be dumped in O(n logn) time by a simple graph traversal. For instance the
cycle that is born at level 0.109 in Fig. 4 can be obtained by a depth-first search along one
emanating edge of the vertex v at level 0.109, restricted to vertices inserted so far, until v is
reached again. (The traversal stays within the component in which the cycle is closed.)

4 Conclusion

Computational topology has prominent applications in topological data analysis. We believe
that also classical problems in computational geometry profit from methods of computational
topology.

EuroCG’18
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Figure 4 Birth and death of homology classes in the mitered-offset filtration by inserting vertices
at given levels. Red circles are of case 1. (Peak 1 is on level 1.632.) Orange (birth of cycle) and
violet (death of component) vertices are of case 2. Unlabeled vertices are trivial instances of case 2.
The grey arrows tell the merge direction. Peaks in decreasing persistence: 1, 2, 6, 3, 7, 4.

Take for instance the maximum inscribed circle of P whose center is known to be a
vertex of V (P ) with highest distance to its defining faces, i.e., the highest peak in RV (P ).
In other words, the maximum inscribed circle corresponds to the 0-dimensional homology
class of highest persistence, where the persistence of a homology class is defined by the level
difference of birth and death. We can quantify all peaks by its persistence and obtain a
notion of “significance” of a locally maximum inscribed circle. This could again be useful
for shape decomposition algorithms, e.g. for motion planing in NC machining. In Fig. 4
the peaks 1 and 2 have a significant persistence above 1.1, while the other peaks possess a
comparable small persistence below 0.1. Those two peaks represent the “main parts” of P in
this sense.
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Abstract
We consider dynamic loading and unloading problems for heavy geometric objects. The challenge
is to maintain balanced configurations at all times: minimize the maximal motion of the overall
center of gravity. While this problem has been studied from an algorithmic point of view, previous
work only focuses on balancing the final center of gravity; we give a variety of results for computing
schemes that minimize the maximal motion of the center of gravity during the entire process.

In particular, we consider the one-dimensional case and distinguish between loading and
unloading. In the unloading variant, the positions of the intervals are given, and we search for an
optimal unloading order of the intervals. We prove that the unloading variant is NP-complete
and give a 2.7-approximation algorithm. In the loading variant, we have to compute both the
positions of the intervals and their loading order. We give optimal approaches for several variants
that model different loading scenarios that may arise, e.g., in the loading of a container ship.

1 Introduction

Packing a set of objects is a classic challenge that has been studied extensively, from a variety
of perspectives. The basic question is: how can the objects be arranged to fit into a container?
Packing problems are important for many practical applications, such as loading items into
a storage space, or containers onto a ship. They are also closely related to scheduling and
sequencing, which may include additional temporal considerations. Packing and scheduling
are closely intertwined in loading and unloading problems, where the challenge is not just to
compute a good final configuration, but also to dynamically build this configuration, such
that intermediate states are both achievable and stable, e.g., when loading and unloading
container ships, for which maintaining balance throughout the process is crucial.

In this paper, we consider algorithmic problems of balanced loading and unloading. For
unloading, this means planning an optimal sequence for removing a given set of objects, one
at a time; for loading, this requires planning both the position and order of the objects.

The practical constraints of loading and unloading motivate a spectrum of relevant
scenarios. As ships are symmetric around their main axis, we focus on one-dimensional
settings, in which the objects correspond to intervals. Containers may be of uniform size,
but stackable up to a certain limited height; because sliding objects on a moving ship are
major safety hazards, stability considerations may prohibit gaps between containers.

∗ A full version of the paper is available at [2]. An extended abstract will appear in the 13th Latin
American Theoretical INformatics Symposium (LATIN 2018), April 16–19, 2018.

† Work of this author is partially supported by the National Science Foundation (CCF-1526406).

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



18:2 Balanced Dynamic Loading and Unloading

1.1 Related Work
Previous work on cargo loading covers a wide range of specific aspects, constraints and
objectives. The general Cargo Loading Problem (CLP) asks for an optimal packing
of (possibly heterogeneous) rectangular boxes into a given bin, equivalent to the Cutting
Stock Problem [4]. Most of the proposed methods are heuristics based on (mixed) integer
programming and have been studied both for heterogeneous and homogeneous items.

Amiouny et al. [1] consider the problem of packing a set of one-dimensional boxes of
different weights and different lengths into a flat bin (so they are not allowed to stack these
boxes), in such a way that after placing the last box, the center of gravity is as close as
possible to a fixed target point. They prove strong NP-completeness by a reduction from
3-Partition and give a heuristic with a guaranteed accuracy within `max/2 of a given target
point, where `max is the largest box length.

Gehring et al. [3] consider the general CLP, in which (rectangular) items may be stacked
and placed in any possible position. Mongeau and Bes [5] consider a similar variant in which
the objective is to maximize the loaded weight. In addition, there may be other paramaters,
e.g., each item may have a different priority [8].

While all of this work is related to our problem, it differs in not requiring the center of
gravity to be under control for each step of the loading or unloading process. A problem in
which a constraint is imposed at each step of a process is Compact Vector Summation
(CVS), which asks for a permutation of a set of k-dimensional vectors in order to control their
sum, keeping each partial sum within a bounded k-dimensional ball. See Sevastianov [6, 7]
for a summary of results in CVS and its application in job scheduling.

2 Preliminaries

An item is a unit interval I := [m− 1
2 ,m+ 1

2 ] with midpoint m. A set {I1, . . . , In} of n items
with midpoints m1, . . . ,mn is valid if mi = mj or |mi −mj | ≥ 1 holds for all i, j = 1, . . . , n.
The center of gravity C (I1, . . . , In) of a valid set {I1, . . . , In} of items is defined as 1

n

∑n
i=1 mi.

Given a valid set {I1, . . . , In} of items, we seek orderings in which each item Ij is removed
or placed such that the maximal deviation for all points in time j = 1, . . . , n is minimized.
Formally, for j = 1, . . . , n and a permutation π : j 7→ πj , let Cj := C

(
Iπj , . . . , Iπn

)
.

The Unloading Problem (Unload) seeks to minimize the maximal deviation during
an unloading process of I1, . . . , In. In particular, given an input set {I1, . . . , In} of items, we
seek a permutation π such that maxi,j=1,...,n |Ci − Cj | is minimized.

In the Loading Problem (Load) we relax the constraint that the positions of the
considered items are part of the input. In particular, we seek an ordering and a set of
midpoints for the containers such that the containers are disjoint and the maximal deviation
for all points in time of the loading process is minimized; see Section 4 for a formal definition.

3 Unloading

We show that the problem Unload is NP-complete and give a polynomial-time 2.7-
approximation algorithm for Unload. We first show that there is a polynomial-time
reduction from the discrete version of Unload, the Discrete Unloading Problem
(dUnload), to Unload; this leads to a proof that Unload is NP-complete, followed by a
2.7-approximation algorithm for Unload.

In the Discrete Unloading Problem (dUnload), we consider a discrete set X :=
{x1, . . . , xn} of points. The center of gravity C (X) of X is defined as 1

n

∑n
i=1 xi. For
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j = 1, . . . , n and a permutation π : j 7→ πj , let Cj = C
(
xπ1,...,xπj

)
. Again, we seek a

permutation such that maxi,j=1,...,n |Ci − Cj | is minimized.

I Lemma 3.1. Unload and dUnload are polynomial-time equivalent.

3.1 NP-Completeness of the Discrete Case
We can establish NP-completeness of the discrete problem dUnload.

I Theorem 3.2. dUnload is NP-complete.

The proof of Theorem 3.3 is based on a reduction of 3-Partition and omitted for lack
of space, just like any other formal proof; see the full version of this paper [2]. Because of
the polynomial-time equivalence of dUnload and Unload, we conclude the following.

I Corollary 3.3. Unload is NP-complete.

3.2 Lower Bounds and an Approximation Algorithm
When unloading a set of items, their positions are fixed, so (after reversing time) unloading
is equivalent to a loading problem with predetermined positions. For easier and uniform
notation throughout the paper, we use this latter description.

In order to develop and prove an approximation algorithm for dUnload, we begin by
examining lower bounds on the span, R − L, of a minimal interval, [L,R], containing the
centers of gravity at all stages in an optimal solution.

Without loss of generality, we assume that the input points xi sum to 0 (i.e.,
∑
i xi = 0),

so that the center of gravity, Cn, of all n input points is at the origin. We let R = maxi Ci
and L = mini Ci. Our first simple lemma leads to a first (fairly weak) bound on the span.

I Lemma 3.4. Let (x1, x2, x3, . . .) be any sequence of real numbers, with
∑
i xi = 0. Let

Cj = (
∑j
i=1 xi)/j be the center of gravity of the first j numbers, and let R = maxi Ci and

L = mini Ci. Then, |R− L| ≥ |xi|i , for all i = 1, 2, . . ..

I Corollary 3.5. For any valid solution to dUnload, the minimal interval [L,R] containing
the center of gravity at every stage must have length |R − L| ≥ |ui|i where ui is the input
point with the i-th smallest magnitude.

We note that the naive lower bound given by Corollary 3.5 can be far from tight: Consider
the sequence 1, 2, 3, 4, 5, 6, 7,−7,−7,−7,−7. In the optimal order, the first −7 is placed
fourth, after 2, 1, 3. The optimal third and fourth centers, {2,− 1

4} are the largest magnitude
positive and negative centers seen, and show a span 2.25 times greater than the naive bound
of 1. By placing the first −7 in the third position, R ≥ 3

2 , and L ≤ − 4
3 . By placing it fifth,

R ≥ 5
2 . Our observation is that failing to place our first −7 if the cumulative sum is > 7

would needlessly increase the span.
This generalizes to the sequence (x1 = 1, x2 = 2, . . . , xk = k, xk+1 = −k, xk+2 =

−k, . . . , xN ), with an appropriate xN to make
∑
xi = 0. If we place positive weights in

increasing order until, the current center of mass Cj ≥ k
j , placing −k instead of a positive

point at position j would decrease the center of gravity well below k
j . The first negative point

should be placed when minj j
2−j
2 ≥ k, which is when j ≈

√
2k. In this example, our optimal

center of gravity span is at least k
j ≈

√
k
2 , not the 1 from the naive bound of Corollary 3.5.

We now describe our heuristic, H, which leads to a provable approximation algorithm. It
is convenient to relabel and reindex the input points as follows. Let (P1, P2, . . .) denote the
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positive input points, ordered (and indexed) by increasing value. Similarly, let (N1, N2, . . .)
denote the negative input points, orders (and indexed) by increasing magnitude |Ni| (i.e.,
ordered by decreasing value).

The heuristic H orders the input points as follows. The first point is simply the one
closest to the origin (i.e., of smallest absolute value). Then, at each step of the algorithm,
we select the next point in the order by examining three numbers: the partial sum, S, of all
points placed in the sequence so far, the smallest magnitude point, α, not yet placed that
has the same sign as S, and the smallest magnitude point, β, not yet placed that has the
opposite sign of S. If S+α+β is of the same sign as S, then we place β next in the sequence;
otherwise, if S+α+β has the opposite sign as S, then we place α next in the sequence. The
intuition is that we seek to avoid the partial sum from drifting in one direction; we switch
to the opposite sign sequence of input points in order to control the drift, when it becomes
expedient to do so, measured by comparing the sign of S with the sign of S + α+ β, where
α and β are the smallest magnitude points available in each of the two directions. We call
the resulting ordering the H-permutation. The H-permutation puts the j-th largest positive
point, Pj , in position π+

j in the order, and puts the j-th largest in magnitude negative point,
Nj , in position π−j in the order, where

π+
j = j + max

k
{k :

k∑

i=1
|Ni| ≤

j∑

l=1
Pl} and π−j = j + max

k
{k :

k∑

i=1
Pi <

j∑

l=1
|Nl|}.

We obtain an improved lower bound based on our heuristic, H, which orders the input
points according to the H-permutation.

I Lemma 3.6. A lower bound on the optimal span of dUnload is given by |R− L| ≥ Pi
π+
i

and |R− L| ≥ |Ni|
π−
i

.

I Claim 1. For any input set to the discrete unloading problem, where si is a member of S,
the set of all terms with the same sign sorted by magnitude, a permutation π that minimizes
the maximum value of the ratio |si|πi must satisfy πk < πi, for all k < i.

I Theorem 3.7. The H-permutation minimizes the maximum (over i) value of the ratio
|xi|
πi

, and thus yields a lower bound on |R− L|.

For the worst-case ratio, we get the following.

I Theorem 3.8. The H heuristic yields an ordering having span R− L at most 2.7 times
larger than the H-lower bound.

I Corollary 3.9. There is a polynomial-time 2.7-approximation algorithm for Unload.

4 Loading

We consider loading problems, where the positions of the objects are part of the optimization.
Therefor some additional definitions are necessary:

An item is given by a real number `. By assigning a position m ∈ R to an item, we obtain
an interval I with length ` and midpoint m. For n ≥ 1, we consider a set {`1, . . . , `n} of n
items and assume `1 ≥ · · · ≥ `n. Furthermore, {`1, . . . , `n} is uniform if ` := `1 = ... = `n.

A state is a set {(I1, h1), . . . , (In, hn)} of pairs, each one consisting of an interval Ij and
an integer hj ≥ 1, the layer in which Ij lies. A state satisfies the following: (1) Two different
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intervals that lie in the same layer do not overlap and (2) for j = 2, . . . , n, an interval in
layer j is a subset of the union of the intervals in layer j − 1.

A state {(I1, h1), . . . , (In, hn)} is plane if all intervals lie in the first layer.
To simplify the following notations, we let mj denote the midpoint of the interval Ij , for

j = {1, . . . , n}. The center of gravity C (s) of a state s = {(I1, h1), . . . , (In, hn)} is defined
as 1

M

∑n
j=1 `jmj , where M is defined as

∑n
j=1 `j .

A placement p of n items `1, . . . , `n is a sequence 〈Iπ1 , . . . , Iπn〉 such that (1) there is a
permutation π with `i = |Iπi | for all i ∈ {1, . . . , n} and (2) {(Iπ1 , hπ1), . . . , (Iπj , hπj )} is a
state, the j-th state sj , for each j = 1, . . . , n. The 0-th state s0 is defined as ∅ and its center
of gravity C (s0) is defined as 0.

I Definition 4.1. The loading problem (Load) is defined as follows: Given a set of n
items, determine a placement p such that the n+1 centers of gravity of the n+1 states of p lie
close to 0. In particular, the deviation ∆(p) of a placement p is defined as maxj=0,...,n |C (sj) |.
We seek a placement of S with minimal deviation among all possible placements for S.

We say that stacking is not allowed if we require that all intervals are placed in layer 1.
Otherwise, we say that stacking is allowed. For a given integer µ ≥ 1 we say that µ is the
maximum stackable height if we require that all used layers are no larger than µ.

Note that in the loading case, minimizing the deviation is equivalent to minimizing the
diameter, i.e., minimizing the maximal distance between the smallest and largest extent of
the centers.

4.1 Optimally Loading Unit Items With Stacking
Now we consider the case where you have given a set of unit items which has to be loaded and
you are allowed to stack these items up the a certain height. A simple and straightforward
strategy for this scenario is to build a stack of maximum height first (call this stack S0)
and place items as close as possible to S0 on alternating sides afterwards. By selecting the
position of S0 carefully, this strategy guarantees the following:

I Theorem 4.2. There is a polynomial-time algorithm for loading a set of unit items so that
the deviation of the center of gravity is in [0, 1

1+µ ], where µ is the maximum stackable height.

Furthermore it can be shown by a contradiction argument that there is no strategy that
can guarantee a smaller deviation of the center of gravity than the strategy described above.

I Theorem 4.3. The strategy given in Theorem 4.2 is optimal for n > µ, i.e., there is no
strategy such that the center of gravity deviates in [0, 1

1+µ ).

Combining Theorem 4.2 and Theorem 4.3 shows that our approach is optimal.

I Corollary 4.4. With the given strategy for a uniform system where each item has length `,
the center of gravity deviates in [0, `

1+µ ], which is optimal.

4.2 Optimally Loading Without Stacking but With Minimal Space
Assume that the height of the ship to be loaded does not allow stacking items. This makes
it necessary to ensure that the space consumption of the packing is minimal. We restrict
ourselves to plane placements such that each state is connected. For simplicity, we assume
w.l.o.g. that `1 ≥ · · · ≥ `n holds. First one can simply argue that ∆(p) ≥ `2

4 holds for an
arbitrary connected plane placement p of S. Subsequently we give an algorithm that realizes
this lower bound.
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A fundamental key for this subcase is that the center of gravity of a connected plane
state is the midpoint of the induced overall interval.

I Observation 1. Let s be a plane state such that the union of the corresponding intervals
is an interval [a, b] ⊂ R. Then C (s) = a+b

2 .

The algorithm works as follows. First, sort the items by decreasing value and place the
item `1 at position `2

4 . After that, place all other items successively on alternating sides such
that there are no gaps in the each intermediate placement. This approach yields a deviation
of the center of gravity in [− `2

4 ,
`2
4 ].

I Lemma 4.5. For each plane placement p of S, we have ∆(p) ≥ `2
4 .

I Lemma 4.6. We can compute a placement p of S such that ∆(p) ≤ `2
4 .

The combination of Lemma 4.5 and Lemma 4.6 implies that our approach for connected
placements is optimal.

I Corollary 4.7. Given an arbitrary system, there is a polynomial-time algorithm for optimally
loading a general set of items without stacking and under the constraint of minimal space
consumption for all intermediate stages.

5 Conclusion

We have introduced a new family of problems that seek to balance objects, controlling the
variation of their center of gravity during the loading and unloading of the objects. We have
provided hardness results and optimal or constant-factor approximation algorithms.

There are various related challenges. These include sequencing problems with multiple
loading and unloading stops (which arise in vehicle routing or tour planning for container
ships); variants in which items can be shifted in a continuous fashion; batch scenarios in
which multiple items are loaded or unloaded at once (making it possible to maintain better
balance, but also increasing the space of possible choices); and higher-dimensional variants,
possibly with inhomogeneous space constraints. All these are left for future work.
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Abstract
For a positive integer d, a set of points in d-dimensional Euclidean space is called almost-
equidistant if for any three points from the set, some two are at unit distance. Let f(d) denote
the largest size of an almost-equidistant set in d-space.

It is known that f(2) = 7, f(3) = 10, and that the extremal almost-equidistant sets are
unique. We have independent, computer-assisted proofs of these statements. It is also known
that f(5) ≥ 16. We further show that 12 ≤ f(4) ≤ 13, f(5) ≤ 20, 18 ≤ f(6) ≤ 26, 20 ≤ f(7) ≤ 34,
and f(9) ≥ f(8) ≥ 24. Up to dimension 7, our work is based on various computer searches, and
in dimensions 6 to 9, we have constructions based on the known construction for d = 5.

For every dimension d ≥ 3, we have an example of an almost-equidistant set of 2d+ 4 points
in the d-space and we prove the asymptotic upper bound f(d) ≤ O(d3/2).

1 Introduction and our results

For a positive integer d, we denote the d-dimensional Euclidean space by Rd. A set V of
(distinct) points in Rd is called almost-equidistant if among any three of them, some pair is at
distance 1. Let f(d) be the maximum size of an almost-equidistant set in Rd. For example,
the vertex set of the well-known Moser spindle (Figure 1(a)) is an almost-equidistant set of 7
points in the plane and thus f(2) ≥ 7.

In this paper we study the growth rate of the function f . We first consider the case when
the dimension d is small and give some almost tight estimates on f(d) for d ≤ 9. Then we
turn to higher dimensions and show 2d+ 4 ≤ f(d) ≤ O(d3/2).

It is trivial that f(1) = 4 and that, up to congruence, there is a unique almost-equidistant
set on 4 points in R. Bezdek, Naszódi, and Visy [5] showed that an almost-equidistant set in
the plane has at most 7 points. Talata (personal communication) showed in 2007 that there
is a unique extremal set. We have a simple, computer-assisted proof of this result [3].
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(a) (b)

Figure 1 (a) The Moser spindle. (b) An almost-equidistant set in R3 on 10 points.

I Theorem 1.1 (Talata, 2007). The largest number of points in an almost-equidistant
set in R2 is 7, that is, f(2) = 7. Moreover, up to congruence, there is only one planar
almost-equidistant set with 7 points, namely the Moser spindle.

Figure 1(b) shows an example of an almost-equidistant set of 10 points in R3. It is
made by taking a so-called biaugmented tetrahedron, which is a non-convex polytope formed
by gluing three unit tetrahedra together at faces, and rotating a copy of it along the axis
through the two simple vertices so that two additional unit-distance edges are created. This
unit-distance graph is used in a paper of Nechushtan [12] to show that the chromatic number
of R3 is at least 6. Györey [8] showed, by an elaborate case analysis, that this is the unique
largest almost-equidistant set in R3. We have an independent, computer-assisted proof [3].

I Theorem 1.2 (Györey [8]). The largest number of points in an almost-equidistant set in R3

is 10, that is, f(3) = 10. Moreover, up to congruence, there is only one almost-equidistant
set in R3 with 10 points.

In dimension 4, we have only been able to obtain the following bounds.

I Theorem 1.3. The largest number of points in an almost-equidistant set in R4 is either
12 or 13, that is, f(4) ∈ {12, 13}.

The lower bound comes from a generalization of the example in Figure 1(b); see also
Theorem 1.6. The proofs of the upper bounds in the above theorems are computer assisted.
Based on some numerical work to find approximate realisations of graphs, we believe, but
cannot prove rigorously, that an almost-equidistant set of 13 points in R4 does not exist.

I Conjecture 1.4. The largest number of points in an almost-equidistant set in R4 is 12.

In dimension 5, Larman and Rogers [11] showed that f(5) ≥ 16 by a construction based
on the so-called Clebsch graph. In dimensions 6 to 9, we use their construction to obtain
lower bounds that are stronger than the lower bound 2d+ 4 stated below in Theorem 1.6.
We again complement this with some computer-assisted upper bounds.

I Theorem 1.5. The largest number of points in an almost-equidistant set in R5, R6, R7,
R8 and R9 satisfy the following: 16 ≤ f(5) ≤ 20, 18 ≤ f(6) ≤ 26, 20 ≤ f(7) ≤ 34,
24 ≤ f(8) ≤ 41, and 24 ≤ f(9) ≤ 49.

The unit-distance graph of an almost-equidistant point set P in Rd is obtained from P by
letting P be its vertex set and by placing an edge between pairs of points at unit distance.

For every d ∈ N, a unit-distance graph in Rd does not contain Kd+2 (see Corollary 2.2)
and the complement of the unit-distance graph of an almost-equidistant set is triangle-free.
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Dimension d 1 2 3 4 5 6 7 8 9 d ≥ 9
Lower bounds on f(d) 4 7 10 12 16 18 20 24 24 2d + 4
Upper bounds on f(d) 4 7 10 13 20 26 34 41 49 4(d3/2 +

√
d)

Table 1 Lower and upper bounds on the largest size of an almost-equidistant set in Rd.

Thus we have f(d) ≤ R(d+ 2, 3)− 1, where R(d+ 2, 3) is the Ramsey number of Kd+2 and
K3, that is, the smallest positive integer N such that for every graph G on N vertices there
is a copy of Kd+2 in G or a copy of K3 in the complement of G.

Ajtai, Komlós, and Szemerédi [1] showed R(d + 2, 3) ≤ O(d2/ log d) and this bound is
known to be tight [9]. We thus have an upper bound f(d) ≤ O(d2/ log d), which, as we show
below, is not tight. For small values of d where the Ramsey number R(d+ 2, 3) is known
or has a reasonable upper bound, we obtain an upper bound for f(d). In particular, we
get f(5) ≤ 22, f(6) ≤ 27, f(7) ≤ 35, f(8) ≤ 41, and f(9) ≤ 49 [16]. For d ∈ {5, 6, 7}, we
slightly improve these estimates to the bounds from Theorem 1.5 using our computer-assisted
approach [3].

We now turn to higher dimensions. The obvious generalization of the Moser spindle
gives an example of an almost-equidistant set of 2d + 3 points in Rd. The next theorem
improves this by 1. It is a generalization of the almost-equidistant set on 10 points in R3

from Figure 1(b).

I Theorem 1.6. For every d ≥ 3, there is an almost-equidistant set in Rd with 2d+ 4 points.

Rosenfeld [17] showed that an almost-equidistant set on a sphere in Rd of radius 1/
√

2
has size at most 2d, which is best possible. Rosenfeld’s proof, which uses linear algebra,
was adapted by Bezdek and Langi [4] to spheres of other radii. They showed that an
almost-equidistant set on a sphere in Rd of radius ≤ 1/

√
2 has at most 2d + 2 elements,

which is attained by the union of two d-simplices inscribed in the same sphere.
Pudlák [15] and Deaett [6] gave simpler proofs of Rosenfeld’s result. Our final result is an

asymptotic upper bound for the size of an almost-equidistant set, based on Deaett’s proof [6].

I Theorem 1.7. An almost-equidistant set of points in Rd has cardinality O(d3/2).

We note that Polyanskii [13] recently found an upper bound of O(d13/9) for the size of an
almost-equidistant set in Rd and Kupavskii, Mustafa, and Swanepoel [10] and Polyanskii [14]
improved this to O(d4/3). Both papers use ideas from our proof of Theorem 1.7.

In this paper, we use ‖v‖ to denote the Euclidean norm of a vector v from Rd. For a
subset S of Rd, we use span(S) to denote the linear hull of S.

In the rest of the paper we sketch the proof of Theorem 1.7. The proofs of the remaining
statements, as well as some auxiliary claims, can be found in the full version of this paper [3].
The full version also contains a computer program that enumerates all graphs that are
unit-distance graphs of almost-equidistant sets up to a certain size and dimension. The
source code of our programs and the files are available on a separate website [18].

2 Proof of Theorem 1.7

In this section, we sketch the proof of Theorem 1.7 by showing the upper bound f(d) ≤
O(d3/2). As a first step towards this proof, we state the following lemma that characterizes
sets of points lying at the unit distance from vertices of a regular simplex with unit-length
edges. For the statement of the lemma, we recall that a sphere of dimension d is a surface of
a (d+ 1)-dimensional ball.

EuroCG’18



19:4 Almost-equidistant sets

I Lemma 2.1. For d, k ∈ N, let C be a set of k points in Rd such that the distance between
any two of them is 1. Let c := 1

k

∑
p∈C p be the centroid of C and let A := span(C− c). Then

the set of points equidistant from all points of C is the affine space c+A⊥ orthogonal to A
and passing through c. Furthermore, the intersection of all unit spheres centred at the points
in C is the (d− k)-dimensional sphere of radius

√
(k + 1)/(2k) centred at c and contained

in c+A⊥.

I Corollary 2.2. For d ∈ N, every subset of Rd contains at most d+1 points that are pairwise
at unit distance.

The following lemma is a well-known result that bounds the rank of a square matrix from
below in terms of the entries of the matrix [2, 6, 15].

I Lemma 2.3. Let A = [ai,j ] be a non-zero symmetric m×m matrix with real entries. Then

rankA ≥
( m∑

i=1
ai,i

)2
/

m∑

i=1

m∑

j=1
a2
i,j .

The last lemma before the proof of Theorem 1.7 can be proved by a calculation, using
its assumption that the vectors vi have pairwise inner products ε, so they differ from an
orthogonal set by some skewing.

I Lemma 2.4. For n, t ∈ N with t ≤ n, let w1, . . . , wt be unit vectors in Rn such that
〈wi, wj〉 = ε for all i, j with 1 ≤ i < j ≤ t, where ε ∈ [0, 1). Then the set {w1, . . . , wt} can
be extended to {w1, . . . , wn} such that 〈wi, wj〉 = ε for all i, j with 1 ≤ i < j ≤ n, and such
that for some orthonormal basis e1, . . . , en we have wi = ei+λe

‖ei+λe‖ (i = 1, . . . , n), where

λ := −1 +
√

1 + εn/(1− ε)
n

and e :=
n∑

j=1
ej = 1√

1 + (n− 1)ε

n∑

j=1
wj .

Moreover, ‖ei + λe‖2 = (1− ε)−1 for each i ∈ {1, . . . , n} and for every x ∈ Rn we have

n∑

j=1
(〈x,wj〉 − ε)2 = (1− ε)(‖x‖2 − ε) + ε

(
〈x, e〉 −

√
1 + (n− 1)ε

)2
.

We are now ready to prove Theorem 1.7. For d ≥ 2, let V ⊂ Rd be an almost-equidistant
set. Let G = (V,E) be the unit-distance graph of V and let k := b2

√
dc. Note that 2 ≤ k ≤ d.

Let S ⊆ V be a set of k points such that the distance between any two of them is 1. If
such a set does not exist, then, since the complement of G does not contain a triangle, we
have |V | < R(k, 3), where R(k, 3) is the Ramsey number of Kk and K3. Using the bound
R(k, 3) ≤

(
k+3−2

3−1
)
obtained by Erdős and Szekeres [7], we derive |V | <

(2
√
d+1
2
)

= 2d+
√
d.

Thus we assume in the rest of the proof that S exists.
Let B be the set of common neighbours of S, that is, B := {x ∈ V | ‖x− s‖ = 1 ∀s ∈ S}.

Since V is almost-equidistant, the set of non-neighbours of any vertex of G is a clique and so
it has size at most d+ 1 by Corollary 2.2. Every vertex from V \B is a non-neighbour of
some vertex from S and thus it follows that |V \B| ≤ k(d+ 1).

We now estimate the size of B. By Lemma 2.1 applied to S, the set B lies on a sphere
of radius

√
(k + 1)/2k in an affine subspace of dimension d − k + 1. We may take the

centre of this sphere as the origin, and rescale by
√

2k/(k + 1) to obtain a set B′ of m unit
vectors v1, . . . , vm ∈ Rd−k+1 where m := |B|. For any three of the vectors from B′, the
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distance between some two of them is
√

2k/(k + 1). For two such vectors vi and vj with
‖vi − vj‖2 = 2k/(k+1), the facts ‖vi − vj‖2 = ‖vi‖2+‖vj‖2−2 〈vi, vj〉 and ‖vi‖2 = ‖vj‖2 = 1
imply 〈vi, vj〉 = ε, where ε := 1/(k + 1). Note that the opposite implication also holds. That
is, if 〈vi, vj〉 = ε, then vi and vj are at distance

√
2k/(k + 1).

Let A = [ai,j ] be the m × m matrix defined by ai,j := 〈vi, vj〉 − ε. Clearly, A is a
symmetric matrix with real entries. If m ≥ d− k + 2, then A is also non-zero, as G contains
no Kd+2 and every vertex from B is adjacent to every vertex from S in G. We recall that
rankXY ≤ min{rankX, rank Y } and rank(X + Y ) ≤ rankX + rank Y for two matrices X
and Y . Since B′ = {v1, . . . , vm} ⊂ Rd−k+1 and

A =
[
v1 v2 · · · vm

]> [
v1 v2 · · · vm

]
− εJ,

where J is the m×m matrix with each entry equal to 1, we have

rankA ≤ d− k + 2. (1)

By Lemma 2.3,

rankA ≥

(
m∑
i=1

ai,i

)2

m∑
i=1

m∑
j=1

a2
i,j

= m2(1− ε)2

m∑
i=1

m∑
j=1

(〈vi, vj〉 − ε)2
. (2)

For i ∈ {1, . . . ,m}, let Ni be the set of vectors from B′ that are at distance
√

2k/(k + 1)
from vi. That is, Ni := {vj ∈ B′ | 〈vi, vj〉 = ε}. Then for each fixed vi we have

m∑

j=1
(〈vi, vj〉 − ε)2 = (1− ε)2 +

∑

vj∈Ni

0 +
∑

vj∈B′\(Ni∪{vi})
(〈vi, vj〉 − ε)2. (3)

Note that the vectors from B′ \ (Ni ∪ {vi}) have pairwise inner products ε, as neither
of them is at distance

√
2k/(k + 1) from vi, and thus |B′ \ (Ni ∪ {vi})| ≤ d − k + 2. In

fact, we even have |B′ \ (Ni ∪ {vi})| ≤ d − k + 1, since B′ contains only unit vectors and
any subset of d− k + 2 points from B′ with pairwise distances

√
2k/(k + 1) would form the

vertex set of a regular (d − k + 1)-simplex with edge lengths
√

2k/(k + 1) centred at the
origin. However, then the distance from the centroid of such a simplex to its vertices would
be equal to

√
k(d− k + 1)/((k + 1)(d− k + 2)) 6= 1, which is impossible.

Thus setting n := d−k+1 and t := |B′ \(Ni∪{vi})|, we have t ≤ n. Applying Lemma 2.4
to the t vectors from B′ \ (Ni ∪ {vi}) ⊆ Rn with ε = (k + 1)−1 and x = vi, we see that the
last sum in (3) is at most

(1− ε)2 + ε
(
〈vi, e〉 −

√
1 + (d− k)ε

)2
,

where e =
∑d−k+1
j=1 ej for some orthonormal basis e1, . . . , ed−k+1 of Rd−k+1.

By the Cauchy–Schwarz inequality,
(
〈vi, e〉 −

√
1 + (d− k)ε

)2
<
(√

d− k + 1 +
√

1 + (d− k)ε
)2

= d− k + 1 + 2
√
d− k + 1

√
1 + (d− k)ε+ 1 + (d− k)ε < 4(d− k + 1).

Recall that k ≥ 2. Using ε = (k + 1)−1, we obtain
m∑

j=1

(
〈vi, vj〉 − ε

)2
< 2(1− ε)2 + 4ε(d− k + 1) = 4εd+ 2(1 + ε)2 − 4 < 4εd.
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If we substitute this upper bound back into (2), then with (1) we obtain that d− k + 2 >
m2(1 − ε)2/(4mεd) and thus m < (4εd)(d − k + 2)/(1 − ε)2. Using the choice k = b2

√
dc

and the expression ε = (k + 1)−1, we obtain (d − k + 2)/(1 − ε)2 < d, if d ≥ 8, and thus
m < 4d2/(k + 1). Altogether, we have m ≤ max{d− k + 1, 4d2/(k + 1)} = 4d2/(k + 1). It
follows that |V | ≤ k(d+2)+4d2/(k+1). Again, using the choice k = b2

√
dc ∈ (2

√
d−1, 2

√
d],

we conclude that |V | < 2
√
d(d+ 2) + 4d2/(2

√
d) = 4d3/2 + 4

√
d. This finishes the proof of

Theorem 1.7.
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Abstract
We consider practical methods for the problem of finding a minimum-weight triangulation (MWT)
of a planar point set, a classic problem of computational geometry with many applications. While
Mulzer and Rote proved in 2006 that computing an MWT is NP-hard, Beirouti and Snoeyink
showed in 1998 that computing provably optimal solutions for MWT instances of up to 80,000
uniformly distributed points is possible, making use of clever heuristics that are based on geometric
insights. We show that these techniques can be refined and extended to instances of much bigger
size and different type, based on an array of modifications and parallelizations in combination with
more efficient geometric encodings and data structures. As a result, we are able to solve MWT
instances with up to 30,000,000 uniformly distributed points in less than 4 minutes to provable
optimality. Moreover, we can compute optimal solutions for a vast array of other benchmark
instances that are not uniformly distributed, including normally distributed instances (up to
30,000,000 points), all point sets in the TSPLIB (up to 85,900 points), and VLSI instances with
up to 744,710 points. This demonstrates that from a practical point of view, MWT instances
can be handled quite well, despite their theoretical difficulty.

1 Introduction

Triangulating a set of points in the plane is a classic problem in computational geometry: given
a planar point set S, find a maximal set of non-crossing line segments connecting the points
in S. Triangulations have many real-world applications, for example in terrain modeling,
finite element mesh generation and visualization. In general, a point set has exponentially
many possible triangulations and a natural question is to ask for a triangulation that is
optimal with respect to some optimality criterion. A natural criterion is to minimize the
total weight of the resulting triangulation. As Mulzer and Rote [11] showed, it is NP-hard to
compute a minimum-weight triangulation (MWT).

Practical approaches for computing an MWT are based on heuristics for including or
excluding edges with certain properties from any minimum-weight triangulation. Das and
Joseph [4] showed that every edge in an MWT has the diamond property. An edge e cannot
be in MWT(S) if both of the two isosceles triangles with base e and base angle π/8 contain
other points of S. Drysdale et al. [7] improved the angle to π/4.6. This can greatly reduce
the edge set and works exceedingly well on uniformly distributed point sets, for which only
O(n) edges remain in expectation. Dickerson et al. [5,6] proposed the LMT-skeleton heuristic,
based on a local criterion fulfilled by every edge in MWT(S). The LMT-skeleton algorithm
often yields a connected graph, and the remaining polygonal faces can be triangulated
with dynamic programming to obtain an MWT. Combining the diamond property and the
LMT-skeleton makes it possible to compute the MWT for large, well-behaved point sets.
Beirouti and Snoeyink [2] showed an efficient implementation of these two heuristics and
they reported that their implementation could compute the exact MWT of 40,000 uniformly

∗ A full version of the paper is available at [9].
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20:2 Solving Large-Scale MWT Instances

(a) Points l and r induce a region DS such that
all edges e = st with t ∈ DS fail the diamond
test. DS is called a dead sector (dotted area).

(b) Simplified dead sector DS is bounded by two
rays and circle C. C is induced by the longer of
the two edges sl resp. sr and angle α.

Figure 1 Dead sectors.
distributed points in less than 5 minutes and even up to 80,000 points with the improved
diamond property.

We revisit diamond test and LMT-skeleton based on Beirouti’s and Snoeyink’s [2] ideas
and describe several improvements. Our bucketing scheme for the diamond test does not rely
on a uniform point distribution and filters more edges. For the LMT-skeleton we provide a
number of algorithm engineering modifications. These contain a data partitioning scheme for
parallelized implementation and other changes for efficiency. We also use an improvement
suggested by Aichholzer et al. [1]. Furthermore, we implemented, streamlined and evaluated
our implementation on various point sets. For the uniform case, we computed the MWT of
30,000,000 points in less than 4 minutes on commodity hardware; the limiting factor arose
from the memory of a standard machine, not from the runtime. We achieved the same
performance for normally distributed point sets. The third class of point sets were benchmark
instances from the TSPLIB [12] (based on a wide range of real-world and clustered instances)
and the VLSI library. These reached a size up to 744,710 points. This shows that from
a practical point of view, a wide range of huge MWT instances can be solved to provable
optimality with the right combination of theoretical insight and algorithm engineering.

2 Our Improvements and Optimizations

2.1 Diamond Property
For a uniformly distributed point set S with n points, the expected number of edges to pass
the diamond test is only O(n). More precisely, Beirouti and Snoeyink [2] state that the
number is less than 3πn/ sin(α), where α is the base angle for the diamond property. We
were able to tighten this value.

I Theorem 2.1. For a uniformly distributed point set, the expected number of edges that
pass the diamond test is less than 3πn/ tan(α).

For α = π/4.6 less than 11.5847n edges are expected to pass the test, which is very close
to the values observed and achieved by our implementation; see Table 1 in Section 3. In
contrast, the value achieved by the implementation of Beirouti and Snoeyink is ≈ 14.3n [2].

2.2 Dead Sectors and Bucketing
Our bucketing scheme is based on the same idea of dead sectors (see Figure 1a) as described
by Beirouti and Snoeyink [2]. We simplify the shape of dead sectors: Instead of bounding
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a sector DS by two circles (as shown in Figure 1a), we only use a single big circle C with
center s at the expense of losing a small part of DS. This allows representing dead sectors
by just three numbers: an interval of two polar angles, and a squared radius δ; see Figure 1b.

The main ingredient for our bucketing scheme is a spatial search tree with support for
incremental nearest neighbor queries, such as a quadtree. Incremental nearest neighbor
search queries allow to traverse all nearest neighbors of a point in order of increasing distance.
Such queries can be implemented with a priority queue that stores all tree nodes encountered
during tree traversal together with the distances to their resp. bounding box (see Hjaltason
and Samet [10]). Pruning tree nodes whose bounding box lie in dead sectors is rather simple
as follows: consider a nearest neighbor query for point s: when we are about to push a new
node n into the priority queue, we compute the smallest polar angle interval I that encloses
the bounding box of n and discard n if I is contained in the dead sectors computed so far.

Because nearest neighbors and tree nodes are processed in order of increasing distance,
we can store sectors in two stages. On creation, they are inserted into a FIFO-queue; later
only the interval component is inserted in a search filter used by the tree. The queue can be
seen as a set of pending dead sectors with attached activation distance δ. As soon as we
process a point t with d(s, t) > δ we can insert the corresponding interval into our filter.

This leaves deciding which points are used to construct dead sectors. We store all points
encountered during an incremental search query in an ordered set N , sorted by their polar
angle with respect to s. Each time we find a new point t, we insert it into N ; dead sectors
are computed with the predecessor and the successor of t in N . Computing δ for new sectors
only requires multiplying the current squared distance to t with a precomputed constant.
The diamond property of edge st is tested against a subset of N .

If we apply the above procedure to every single point, we generate each edge twice,
once on each of the two endpoints. Therefore, we output only those edges e = st such
that s < t, i.e., s is lexicographically smaller than t. As a consequence, we can exclude
a part of the left half-space right from the beginning by inserting an initial dead sector
DS0 = (1/2π + α, 3/2π − α) at distance 0. Points in the two wedges (1/2π, 1/2π + α] and
[3/2π − α, 3/2π] are specially treated because they are still useful to generate dead sectors
for the right half-space.

2.3 LMT-Skeleton
For “nicely” distributed point sets, a limiting factor of the heuristic is the space required
to store the half-edge data structure in memory. We reduce storage overhead by storing
all edges in a single array sorted by source vertex (also known as a compressed sparse row
graph). All outgoing edges of a single vertex are still radially sorted. In addition to the
statuses possible, certain, impossible, we store whether an edge lies on the convex hull.

In essence our implementation is still the same as the one given by Beirouti and Snoeyink
[2], however, with some optimizations applied. We refer to the central while loop in their
implementation as the LMT-Loop. First, the convex hull edges are implicitly given during
initialization of their half-edge structure and can be marked as such without any additional
cost. Determining the convex hull edges beforehand allows to remove the case distinction
inside the LMT-Loop, i.e., it removes all intersection tests that are applied to impossible edges.
Secondly, sorting the stack by edge length destroys spatial ordering and the loss of locality
of reference outweighs all gains on modern hardware. Without sorting, it is actually not
necessary to push all edges onto the stack upfront. Lastly, with proper partitioning of the
edges, the LMT-Loop can be executed in parallel – described in more detail in Section 2.4.

Additionally, we incorporated an improvement to the LMT-skeleton suggested by Aich-
holzer et al. [1]. Because the improved LMT-skeleton is computationally much more expensive,
we apply it only to edges surviving an initial round of the normal LMT-heuristic.
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Number of visited neighbors per point
n Edges Mean SD Min Max DS = 2π

101 36.16 ±2.63 9 ±0 0 ±0 9 ±0 9 ±0 0 ±0
102 882.8 ±27.69 55.6 ±3.1 16.6 ±2.04 23.72 ±4.82 98.56 ±1.27 30.4 ±4.61
103 10,731.7 ±159.9 72.52 ±1.56 23.16 ±1.3 22.68 ±4.55 173 ±14.61 737.84 ±10.91
104 1.1316 · 105 ±471.24 77.64 ±0.69 26.64 ±0.73 19.08 ±2.3 363.72 ±20 9,126.08 ±18.74
105 1.15 · 106 ±1,538.64 72.84 ±0.29 23.76 ±0.47 15.96 ±1.61 846.24 ±24.4 97,200.9 ±40.29
106 1.1562 · 107 ±4,737.67 74 ±0.51 25.76 ±0.39 13.28 ±1.31 2,884.96 ±38.53 9.9117 · 105 ±61.86
107 1.1579 · 108 ±19,254 77 ±0.6 27.24 ±0.79 11.88 ±0.99 9,567.52 ±78.84 9.9721 · 106 ±100.61
108 1.1585 · 109 ±56,063.1 72 ±0.94 24.08 ±0.69 10.6 ±0.49 25,017.8 ±107.4 9.9911 · 107 ±239.64

Table 1 Diamond test on uniformly distributed points. The table shows statistics for 25 different
instances. The extreme values are assumed by points at the point set boundary.

2.4 Parallelization
Because the LMT-heuristic performs only local changes, most edges can be processed in
parallel without synchronization. Problems occur only if adjacent edges are processed
concurrently (for the improved LMT-skeleton this is unfortunately not true, because marking
an edge impossible affects a larger neighborhood of edges). To parallelize the normal LMT-
heuristic, we implemented a solution based on data partitioning without explicit locking.

We recursively cut the vertices V into two disjoint sets V = V1 ∪ V2 and process only
those edges with both endpoints in V1 (resp. V2) in parallel. Define X as the cut set
{{s, t} ∈ E | s ∈ V1, t ∈ V2}, i.e., all edges with one endpoint in V1 and the other in V2.
While edges in E(V1) resp. E(V2) are processed in parallel by two threads, edges in X are
accessed read-only by both threads and are handled after both threads join. This way we
never process two edges with a common endpoint in parallel. To avoid a serial scan at
the top, we push the actual work of computing X down to the leaves in the recursion tree.
Scanning of the half-edge array starts at the leave nodes: processing of half-edges that belong
to some cut set is postponed, instead they are passed back to the parent node. The parent
in turn scans the edges it got from its two children, processes all edges it can and passes
up the remaining ones. In other words, the final cut set X bubbles up in the tree, while all
intermediate cuts are never explicitly computed. This way, partitioning on each level of the
recursion tree only takes constant time, while the actual work is fully parallelized at the leaf
level. After the LMT-heuristic completes, we are left with many polygonal faces that still
need to be triangulated. Our implementation traverses the graph formed by the edges with
one producer thread in order to collect all faces and multiple consumer threads to triangulate
them with dynamic programming.

3 Computational Results

Computations were performed on a machine with an Intel i7-6700K quad-core and 64GB
memory. The code was written in C++ and compiled with gcc 5.4.0.

3.1 Uniformly and Normally Distributed Point Sets
Table 1 shows results of our diamond test implementation on uniformly distributed point
sets with sizes ranging from 10 to 108 points. The table shows the mean values and the
standard deviation of 25 different instances. Each instance was generated by choosing n
points uniformly from a square centered at the origin. The diamond test performs one
incremental nearest neighbor query for each point in order to generate the edges that pass
the test. The last column shows the number of queries where all nodes in the spatial tree
were discarded because dead sectors covered the whole search space. The numbers show that
this is the regular case; the exceptional cases occur at points near the point set “boundary”.
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Possible edges after Certain edges after
n Diamond LMT LMT+ LMT LMT+ Simple Polygons

1 · 101 36.76 ±2.78 3.8 ±3.84 3.72 ±3.62 19.32 ±2.22 19.32 ±2.22 0.68 ±0.61
1 · 102 871.92 ±46.37 84.04 ±20.14 74.56 ±18.1 251.48 ±7.12 252.28 ±7.12 10.52 ±2.55
1 · 103 10,687.4 ±146.68 1,150.32 ±98.05 1,031.96 ±86.46 2,540 ±32.33 2,548.04 ±31.41 128 ±9.2
1 · 104 1.1322 · 105 ±661.16 12,637 ±281.25 11,271.76 ±251.6 25,193.44 ±73.29 25,287.56 ±76.43 1,367.08 ±24.65
1 · 105 1.1503 · 106 ±1,696.31 1.2941 · 105 ±1,198.41 1.1523 · 105 ±973.14 2.5129 · 105 ±322.29 2.5227 · 105 ±306.72 13,819.44 ±67.93
1 · 106 1.1563 · 107 ±5,459.02 1.3044 · 106 ±2,708.78 1.1617 · 106 ±2,486.36 2.5098 · 106 ±847.61 2.5194 · 106 ±860.53 1.3904 · 105 ±232.43
1 · 107 1.1579 · 108 ±17,587.01 1.3074 · 107 ±11,021.75 1.1645 · 107 ±8,825.57 2.5088 · 107 ±2,774.11 2.5184 · 107 ±2,727.23 1.3931 · 106 ±607.95
3 · 107 3.4747 · 108 ±28,678.6 3.9239 · 107 ±18,919.14 3.4949 · 107 ±15,068.66 7.5258 · 107 ±4,637.8 7.5547 · 107 ±4,563.03 4.1797 · 106 ±969.6

Table 2 LMT-skeleton statistics on uniformly distributed point sets.
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Figure 2 LMT-skeleton runtime on uniformly distributed point sets.

Table 2 shows statistics for the LMT-heuristic on uniformly distributed point sets. The
instance sizes range from 10 points up to 30,000,000 points. For each size 25 different
instances were generated. For the largest instances, the array storing the half-edges consumes
nearly 39 GB of memory on its own. The serial initialization of the half-edge data structure,
which basically amounts to radially sorting edges, takes longer than the parallel LMT-Loop on
uniformly and normally distributed points. The improved LMT-skeleton by Aichholzer et al.
is denoted LMT+ in the tables. The resulting skeleton was almost always connected in the
computations and the number of remaining simple polygons that needed to be triangulated is
shown in the last column. Only one instance of size 3 · 107 contained one small disconnected
polygon. As we can see, the LMT-skeleton eliminates most of the possible edges with only
≈ 11% remaining. The certain edges amount to ≈ 83% of the complete triangulation. The
improved LMT-skeleton reduces the amount of possible edges by another 10%, but it provides
hardly any additional certain edges.

The results on normally distributed point sets are basically identical. Point coordinates
were generated by two normally distributed random variables X,Y ∼ N (µ, σ2), with mean
µ = 0 and standard deviation σ ∈ {1, 100, 100000}. The tables are given in the full version.

3.2 TSPLIB + VLSI
In addition to uniformly and normally distributed instances, we ran our implementation on
instances found in the well-known TSPLIB [12], which contains a wide variety of instances
with different distributions. The instances are drawn from industrial applications and from
geographic problems. All 94 instances have a connected LMT-skeleton and can be fully
triangulated with dynamic programming to obtain the minimum-weight triangulation. The
total time it took to solve all instances of the TSPLIB was approximately 8.5 seconds.

Additional point sets can be downloaded at http://www.math.uwaterloo.ca/tsp/vlsi/.
This collection of 102 TSP instances was provided by Andre Rohe, based on VLSI data sets
studied at the Universität Bonn. The LMT-heuristic is sufficient to solve all instances, except
lra498378, which contains two disconnected polygonal faces. Our implementation of the
improved LMT-skeleton performs exceedingly bad on some of these instances; see Table 3.
These instances contain empty regions with many points on the “boundary”. Such regions are
the worst-case for the heuristics because most edges inside them have the diamond property,
which in turn leads to vertices with very high degree.
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Table 3 VLSI instances with long runtime.

Time in ms
Instance Total DT LMT-Init LMT-Loop LMT+ Dyn. Prog.
ara238025 15,325 4,954 446 496 9,279 148
lra498378 382,932 44,267 1,238 7,532 329,292 599
lrb744710 484,430 7,952 1,377 2,661 471,564 872
sra104815 1,937 559 191 198 922 65

4 Conclusion

We have shown that despite of the theoretical hardness of the MWT problem, a wide range
of large-scale instances can be solved to optimality.

Difficulties for other instances arise from two sources. (1) Instances with almost regular
k-gons with one or more points near the center can lead to highly disconnected LMT-
skeletons (see Belleville et al. [3]) and require exponential time algorithms to complete the
MWT. Preliminary experiments suggest that such configurations are best solved with integer
programming. The instance by Belleville et al. can be solved with CPLEX in less than a
minute, while the dynamic programming implementation of Grantson et al. [8] cannot solve
it within several hours. (2) Instances containing empty regions with many points on their
“boundary”, such as empty k-gons and circles may be solvable in polynomial time, but trigger
the worst-case behavior of the heuristics. Dealing with both is left for future work.

Acknowledgments. I want to thank Sándor Fekete and Victor Alvarez for useful discussions
and suggestions that helped to improve the presentation of this paper.
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Abstract
We consider the problem of characterizing small geometric graphs whose structure uniquely de-
termines the order type of its vertex set. We describe a set of edges that prevent the order type
from changing by continuous movement and identify properties of the resulting graphs.

1 Introduction

Let S, T ⊂ R2 be two sets of n labeled points in the plane, not all on a common line. We
say that S and T have the same order type if there is a bijection ϕ : S → T such that any
triple (p, q, r) ∈ S3 has the same orientation (clockwise, counterclockwise, or collinear) as
the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3 [7]. This induces an equivalence relation on planar sets
of n points, with a finite number of equivalence classes, the order types. For example, the
order type of a point set S determines which geometric graphs can be drawn on S without
crossings. This makes order types relevant for extremal problems on geometric graphs.

Suppose we have discovered an interesting order type, and we want to illustrate it in
a publication. One solution might be to give explicit coordinates of a representative point
set S. This is unlikely to satisfy most readers. Thus, we would rather present S as a set of
dots in a figure. For some point sets (particularly those with extremal properties), the reader
may find it difficult to discern the orientation of an almost collinear point triple. To mend
this, we could draw all lines spanned by two points in S. In fact, it suffices to show only the
segments between the point pairs (the complete geometric graph on S). The orientation of
a triple can then be obtained by inspecting the corresponding triangle; see Figure 1(a). In

∗ A.P. is supported by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35. O.A.,
I.P., and B.V. are supported by the Austrian Science Fund (FWF) grant W1230. M.B., J.K., and P.V.
are supported by the grant no. 18-19158S of the Czech Science Foundation (GAČR). M.B. has received
funding from European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme under grant agreement no. 678765.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



21:2 Minimal Geometric Graph Representations of Order Types

general, our drawing will be rather dense, and we may have trouble following an edge from
one point to the next. Some edges, however, are redundant. Without them, we can still “see”
the order type of the underlying point set.

We would like to understand which edges are essential for order type representation.
To this end we provide a formal definition of this concept, identify a superset of these
non-redundant edges, and provide a classification and some properties. While these edges
prevent changing the order type by moving the points continuously (intuitively justified by
the motivation above), we fall short of proving that their structure fully determines the order
type.

Definitions. Let S be a set of n labeled points in the plane. A geometric graph on S is a
graph with vertex set S whose edges are represented as line segments between their endpoints.
A geometric graph is thus a drawing of an abstract graph. Two geometric graphs G and
H are topologically equivalent if there is a homeomorphism of the plane transforming G

into H. Each class of this equivalence relation may be described combinatorially by the cyclic
orders of the edge segments around vertices and crossings, and by the incidences of vertices,
crossings, edge segments, and faces. In the following we will consider topology-preserving
deformations. An ambient isotopy of the real plane is a continuous map f : R2 × [0, 1]→ R2

such that f(·, t) is a homeomorphism for every t ∈ [0, 1] and f(·, 0) = Id.

I Definition 1.1. Let G be a geometric graph on a point set S. We say that G supports S

(or that G is supporting) if every ambient isotopy of R2 that keeps the images of the edges of
G straight and preserves topological equivalence to the drawing G also preserves the order
type of the vertex set.

Every complete geometric graph is supporting. A supporting graph need not be connected,
and two distinct minimal supporting graphs can be drawings of the same abstract graph; see
Figure 2 (b,c), and Figure 4. Thus, the structure of the drawing is crucial.

I Definition 1.2. Let G be a geometric graph on a set S of n points. We say that G forces
S (or that G is forcing) if every n-point set S′ that is the vertex set of a geometric graph
topologically equivalent to G has the same order type as S.

Clearly, every forcing geometric graph is also supporting.

Related work and outline. The connection between order types and straight-line drawings
has been studied intensively, both for planar drawings and for drawings minimizing the
number of crossings. For example, it is NP-complete to decide whether a planar graph can be
embedded on a given point set [4]. Continuous movements of the vertices of plane geometric
graphs have also been considered [1]. The continuous movement of points maintaining the
order type was considered by Mnëv [12], who showed that there are point sets with the same
order type such that there is no ambient isotopy between them preserving the order type
(settling a conjecture by Ringel [13]). The orientations of triples that have to be fixed to
determine the order type are strongly related to the concept of minimal reduced systems [3].

We describe a notion of exit edges for a given point set. Although the resulting exit
graphs are always supporting, they are not necessarily minimal with this property. One
reason is that the topological structure of a geometric graph is not completely determined
by the order type of its vertex set, whereas the exit edges are derived solely from the
order type. Furthermore, some exit edges are rendered unnecessary by nonstretchability of
certain pseudoline arrangements. This concept and the subsequent difficulties are discussed in
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a b

c(a) (b) (c)

Figure 1 A set of six points with (a) all segments and (b) only exit edges drawn. (c) If the gray
region is empty of points, then the edge ab is an exit edge.

Section 2. Despite being non-minimal in general, we argue that exit edges are good candidates
for supporting graphs by discussing their dual representation in pseudoline arrangements
(Section 3). We provide some further properties in Section 4. We conjecture that graphs
based on exit edges are not only supporting but also forcing.

2 Exit edges

To obtain a supporting graph, we select edges so that no vertex of the resulting geometric
graph can be moved to change the order type while preserving topological equivalence. In
this section we will assume point sets to be in general position, that is, with no three collinear
points, unless stated otherwise.

I Definition 2.1. Let S be a finite point set in general position, and let a, b, c be three
distinct points from S. We say that ab is an exit edge with witness c if there is no point p ∈ S

such that the line ap separates b from c or the line bp separates a from c. The geometric
graph on S with edge set formed by the exit edges is called the exit graph of S.

Equivalently, ab is an exit edge with witness c if and only if the double-wedge through a

between b and c and the double-wedge through b between a and c contain no point of S in
their interior; see Figure 1(c). An exit edge has at most two witnesses. Also, if |S| ≥ 4 and
ab is an exit edge in S with witness c, neither ac nor bc can be an exit edge with witness b

or a, respectively. We illustrate the set of exit edges for a set of 6 points in Figure 1(b).
Exit edges can be characterized via 4-holes. For an integer k ≥ 3, a k-hole in a point set

S is a simple polygon spanned by k points of S whose interior contains no point of S. A pair
ab from S is extremal in S if it lies on the boundary of the convex hull of S. A pair of points
from S that is not extremal in S is internal in S.

I Theorem 2.2. The edge ab is not an exit edge of S if and only if the following holds.

1. If ab is extremal in S, then it is incident to at least one convex 4-hole in S.
2. If ab is internal in S, then it is incident to at least one general 4-hole on each side such

that the reflex angle (if any) is incident to ab.

We remark that an internal exit edge either has a witness on both sides or is incident to at
least one general 4-hole on one side. Due to space constraints, the proof of Theorem 2.2 is
deferred to the full version of the paper.

I Proposition 2.3. Let S ⊂ R2 be a finite point set in general position and for every t ∈ [0, 1],
let S(t) be a continuous deformation of S at time t; more formally, let S(t) be the point set
{f(s, t); s ∈ S} given by some ambient isotopy f : R2 × [0, 1]→ R2. Let (a, b, c) be the first
triple to become collinear, at time t0 > 0. If c lies on the segment ab in S(t0), then ab is an
exit edge of S(0) with witness c.

EuroCG’18
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(a)

c ca ab b

(b) (c)ab

c

Figure 2 (a) Moving c over ab to make (a, b, c) oriented clockwise, without changing the orientation
of other triples, would contradict Pappus’s theorem [13]. (The corresponding abstract order type
is not realizable.) (b, c) The segment ab is an exit edge with witness c. In (c), we cannot move c

continuously to ab without first changing the order type, unless we also move other points.

Proof. For t ∈ [0, t0), the triple orientations in S(t) remain unchanged. In S(t0), the point
c lies on ab. Thus, for t ∈ [0, t0), there is no line through two points of S(t) that strictly
separates the relative interior of ab from c. In particular, there is no such separating line
through a or b in S(0). Hence, ab is an exit edge with witness c. J

I Corollary 2.4. The exit graph of every point set is supporting.

The proof of Proposition 2.3 also shows that if a line separates c from the relative interior
of ab, then there is such a line through a or b. This may suggest that the exit edges are
necessary for a supporting graph. However, this is not true in general. For example, in
Figure 2(a), we see a construction by Ringel [13]: ab is an exit edge with witness c, but c

cannot move over ab without violating Pappus’ theorem. There are also point sets where two
or more other line segments prevent a witness c from crossing an exit edge ab, for example,
see Figure 2(c). In general, this cannot be inferred from the order type of the underlying
point set. While c cannot move to ab without changing the order type in Figure 2(c), we
could first change the point set to the one in Figure 2(b) and then move c over ab. So ab

indeed has to be part of a graph supporting the set. Note that by Definition 1.1, it also
prevents the point set to be transformed to the other one.

3 Exit edges and empty triangles

For a point set S in the Euclidean plane, add a line `∞ to obtain the real projective plane.
By taking the projective dual of S and `∞, we get a projective line arrangement S∗ where
one cell, the marked cell, contains the dual point `∗∞ at vertical infinity. The combinatorial
structure of S∗, together with the marked cell, determines the order type of S. Dual to
the proof of Proposition 2.3, we continuously move the lines without crossing `∗∞. The
combinatorial structure changes when a line crosses a vertex of S∗. Before that, there is
a triangular cell T bounded by three lines, dual to the endpoints of an exit edge and its
witness. In S, the witness is the point that is between the other two points when the set
becomes collinear. If we project S∗ to the Euclidean plane by choosing a line at infinity
through `∗∞ that does not intersect T , the witness corresponds to the bounding line of T

with median slope. Alternatively, the witness corresponds to the line containing the leftmost
and the rightmost vertex of T .

Hence, the number of triangles in a simple projective line arrangement gives an upper
bound on the number of exit edges of a point set. One triangle could contain `∗∞, and there
could be pairs of triangles that share a crossing in such a way that leads to only one exit edge
for the primal point set. Any projective arrangement of n ≥ 4 lines has at least n triangles,
as each line is incident to at least three triangles [10], which is tight. Therefore, any set of
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Figure 3 Constructions of point sets with n−3 exit edges, currently the smallest known number.

n ≥ 4 points has at least dn−1
2 e exit-edges. A more careful counting of exit edges with one

and two witnesses gives a lower bound of 3n
5 −O(1) for the number of exit edges. The proof

can be found in the full version of the paper. This bound is not proven tight, since so far we
only know of point sets with n− 3 exit edges for n ≥ 9; see Figure 3.

The number of triangles in a simple arrangement is at most n(n−1)
3 [8]. Roudneff [14] and

Harborth [9] showed that this is also tight. Thus, this is an upper bound on the number of
exit edges. Possibly, this upper bound can be improved, as constructions showing tightness
of the bound have many pairs of triangles sharing a vertex and corresponding to the same
exit edge. However, there are also line arrangements with no such pair of triangles [11]. In
the full version of the paper, we adapt a construction from [2] to show that the tight upper
bound on the number of supporting edges for n points is in Θ(n2).

4 (Counter-)Examples and properties

We present some results on general supporting graphs (and thus on exit graphs).

I Theorem 4.1. Any geometric graph supporting a point set S, |S| ≥ 9, contains a crossing.

Proof. Let G be a geometric graph with vertex set S without crossings. There is a point set
S′ with a different order type that also admits G: Dujmović showed that every plane graph
admits a plane straight-line embedding with at least

√
n/2 points on a line [5]; as we have a

point set with a collinear triple that admits G, there are at least two point sets in general
position with a different order type that admit G. Moreover, one can continuously morph S

to S′ while keeping the corresponding geometric graph planar and topologically equivalent
to G (see, for example, [1]). Therefore, G does not support S. J

I Proposition 4.2. Let S be a point set in general position in R2 and let G be its exit graph.
Every vertex in the unbounded face of G is extremal, that is, it lies on the boundary of the
convex hull of S.

Note that, as shown in Figure 2(a), an analogous statement does not hold for general
supporting graphs. The proof of Proposition 4.2 is deferred to the full version of the paper.

So far, we have few results for characterizing graphs that force a point set S, but we
conjecture that the graph of exit edges not only supports S, but also forces it. However,
even if we are given all the exit edges and their witnesses (in the dual, this means having
all triangles of a line arrangement and their orientations), we cannot always infer the order
type of S. A counterexample is sketched in Figure 4 as a dual (stretchable) pseudoline
arrangement of 14 lines in the projective plane, based on an example by Felsner and Weil [6].
It consists of two arrangements of six lines in the Euclidean plane that are combinatorially
different, but share the set of triangles and their orientations. While the exit edges are the
same for the two order types, the corresponding exit graphs are not topologically equivalent.
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Figure 4 Two arrangements of 14 pseudolines with the same set of triangles (extending [6,
Figure 3]). The green arrangements are the same. There is no triangle crossed by the line at infinity.
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Abstract
We consider distributing mission data among the members of a satellite swarm. In this process,
spacecraft cannot be reached all at once by a single broadcast, because transmission requires the
use of highly focused directional antennas. As a consequence, a spacecraft can transmit data to
another satellite only if its antenna is aiming right at the recipient; this may require adjusting
the orientation of the transmitter, incurring a time cost proportional to the required angle of
rotation. The task is to minimize the total distribution time. This makes the problem similar in
nature to the Freeze-Tag Problem of waking up a set of sleeping robots, but with angular cost
at vertices, instead of distance cost along the edges of a graph. We prove that approximating
the minimum length of a schedule for this Angular Free-Tag Problem within a factor of less than
5/3 is NP-complete, and provide a 9-approximation for the 2-dimensional case that works even
in online settings with incomplete information. Furthermore, we develop an exact method based
on Mixed Integer Programming that works in arbitrary dimensions and can compute provably
optimal solutions for benchmark instances with about a dozen satellites.

1 Introduction

Providing instructions to all members of a distributed group is a fundamental task for many
types of team missions. In terrestrial settings, this can usually be achieved by broadcasting
to all recipients in parallel, requiring only a single transmission. However, for long-distance
space missions, omnidirectional transmission can no longer be employed, due to significant
loss in signal strength. Instead, transferring data is accomplished with the help of directional
antennas, requiring a highly focused communication beam that is targeted right at the
intended recipient. (See Figure 1 for an illustration.) As a consequence, these transmissions
must be performed individually, involving maneuvers for achieving appropriate antenna
orientation; the time for such a maneuver is basically proportional to the required angle of
rotation, with negligible time for the actual transmission itself. The overall process does allow
one parallel component: a team member that has already been “activated” by having received
the data may relay this to other partners, motivating the use of intricate communication trees
for achieving rapid dissemination of information to all members of a swarm of spacecraft.

This can be utilized if we want to quickly distribute data, e.g., an important update. In
the following we consider a basic version of the problem in which the agents are static points
in the euclidean space, there are no delays for transmission, and the transmission cone is
modeled as a ray. (Also note that more advanced scenarios for space missions may require
both a transmitting and a receiving antenna that are directed at the communication partner;
see the Conclusions in Section 5.)

∗ Partially supported by the European Space Agency, project ASIMOV, contract number
4000122514/17/F/MOS.
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I Problem 1.1. Angular Freeze Tag (AFT). Given a set P = {p0, . . . , pn} of agent
positions in d-dimensional space. Each agent pi ∈ P has an initial heading αi. At time t = 0,
only p0 is active, while all other agents are inactive. An agent pi is activated by an active
agent pj whose heading αj aims right at pi; adjusting this heading incurs a cost equal to
the required angular change. The objective is to minimize the time T until all agents are
activated, i.e., minimize the makespan of the overall activation schedule.

Start
p0

p1

p2

p3

Figure 1 (Left) The space probe Voyager and its directional antenna for transmitting data.
(Image CC by NASA.) (Right) Activating all agents by rotations: p0 first activates p2 which then
activates p3 while p0 rotates back to activate p1.

Related Work. The original Freeze-Tag Problem (FTP) was introduced by Arkin et
al. [2], who studied the task of waking up a swarm of robots. In the FTP, activating an
inactive robot is performed by moving an active robot next to it. The objective (minimize
the makespan of the overall schedule) is the same as for our problem, but the cost for an
activation (the distance to the robot instead of the angle) is different. This problem is
NP-hard even for star graphs, but there are polynomial-time approximation schemes (PTAS)
for star graphs and geometrically embedded instances [3]. Unweighted graphs are considered
in [4]. A set of heuristics is evaluated in [11]. Results on the hardness in Euclidean space are
provided by [1] and [9].

Other geometric questions related to the use of directional antennas have also been
considered. Carmi et al. [8] studied the α-MST, which arose from finding orientations
of directional antennas with α-cones, such that the connectivity graph yields an MST of
minimum weight, based on bidirectional communication. They prove that for α < π/3, a
solution may not exist, while α ≥ π/3 always suffices. See Aschner and Katz [5] for more
recent hardness proofs and constant-factor approximations for some α.

2 Hardness of Approximation

We show that the AFT is computationally hard, even to approximate.

I Theorem 2.1. A c-approximation algorithm for the AFT with c < 5/3 implies P = NP .

Proof. We give a reduction from Satisfiability; see Figure 2 for a sketch. Our construction
has a solution with a makespan of 3ε if it is satisfiable and 5ε otherwise, where ε > 0 is a
sufficiently small angle. Our construction uses five different types of agents, as follows.

The start agent p0 directly activates the decision agents, but does not have any other
agents within 5ε of αi.
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x1 _ x2 _ x3 x1 _ x2 _ x3 x1 x1 _ x2

variable assignment agents

decision agents

literal agents
x1

x2

x3 x3

x2

x1

start agentStart

Figure 2 Sketch of the hardness construction. Red variable agents are 2ε from their designated
heading, which they can target upon activation. The decision agent for each variable is a rotation ε

from both of its corresponding variable assignment agents. A schedule of makespan 3ε exists if and
only if there is a satisfying truth assignment; otherwise, the makespan is at least 5ε.

For each variable we have a decision agent and two variable assignment agents (one each
for true and false) in opposing angles of ε, but no further agents within a 5ε rotational
range. It is directly activated from p0.
The variable assignment agent directly activates all corresponding literal agents, but has
no further agents in a 4ε rotation range. The earliest possible activation time is ε. Only
one of the two agents can be activated at time ε (by the decision agent), the other one
has to wait an additional 2ε.
For each literal there is a literal agent that has its clause agent a rotation of 2ε away, but
no further agents within 4ε. The earliest possible activation time is ε.
For each clause there is a clause agent that has no agent within its 2ε rotation range. Its
earliest possible activation time is 3ε.

A clause agent can only be activated by its literal agents in less than 5ε and a literal agent
is either activated at ε or 3ε, depending on which of the variable assignment agents got
activated first. Thus, a clause is activated at 3ε if and only if a corresponding variable agent
has been activated in time; otherwise, it takes 5ε. J

3 Approximation Algorithm

We can provide a simple constant factor approximation, based on a result by Beck [6] on
the linear search problem. In that scenario, an agent has to locate a hidden object in a
one-dimensional environment; from a given starting location, the best strategy for this online
problem is to alternate between going left and right, while doubling the search depth in each
iteration. This yields a total search distance that is within a factor of 9 of the optimum.

I Theorem 3.1. There is a 9-approximation algorithm for the AFT in 2-dimensional space,
even for unknown agent locations and headings, assuming a lower bound of ε > 0 for the
rotational angle of any activating agent.

Proof. As soon as an agent is activated, it follows the doubling strategy from linear search,
carried out for rotation. It follows straightforward by induction that any agent pi that gets
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v0

v0!1

v1

v2

v3

v0!2
v0!3

v3!2

v3!1

v1!3

v1!2

v2!3

v2!1

p3

p0

p1

p2

Start

p0

p0 with all contained edges

Figure 3 An example of the auxiliary graph. Every point (p0, p1, p2, p3) has a vertex for its initial
heading (vi) and a vertex for the heading to any other point different from p0. Between the vertices
of the same point, there are directed edges with the cost of the corresponding rotation; as shown in
the lower left, there are no incoming edges for the start vertex. If points are collinear, there can be
two vertices for the same heading. A possible solution would be for p0 to first head to p2 and then
to p1, while p2 heads to p3. The corresponding movements are visualized by red edges.

activated by Ti in an optimal schedule is activated within 9Ti. J

Note that we cannot apply the refined technique by Bose et al. [7] for linear search, as it
requires both an upper and a lower bound on the search distance.

4 Exact Solution

In the following, we describe the set of solutions by a Mixed Integer Program (MIP). This
allows us to use an advanced solver such as CPLEX to obtain provably optimal solutions.

Each agent has only a finite set of relevant headings; between such two configurations there
is an easily computable optimal rotation. The relevant configurations are the initial heading
of an agent and the headings that activate other agents, for a total of O(|P |) configurations
and O(|P |2) transitions per agent. We can encode this into an auxiliary directed graph
G = (V,E) in which the configurations are the vertices and the vertices of each agent form a
weakly connected component. For an agent pi ∈ P we denote the initial heading vertex by
vi, and the vertices that activate another agent pj ∈ P by vi→j . There is a directed edge
between all vertices vi→j , pj ∈ P \ {pi, p0} as well as from vi to all vi→j , pj ∈ P \ {pi, p0}.
There are no edges between the vertices of different agents. The movement (and agent
activations) of an agent pi can be represented by a directed path starting at vi. Figure 3
visualizes such a graph and how to encode a solution.

We use Boolean variables xe, e ∈ E that represent the transition of an agent between two
configurations, and continuous variables yv, v ∈ V that represent the time at which an agent
reaches a specific configuration. If the configuration is not used, it may be zero. The value
needs only to be tight for configurations that are critical for the makespan.

The general idea of the Mixed Integer Program is simple: the usage of an edge implies
that the target’s time has to be the source’s time plus the transition time; we want to
minimize the maximum value. It is also fairly simple to adapt this MIP to other problem
variants. Let us start with the objective function that minimizes the latest activation time

min max
pi∈P

yvi
. (1)
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Note that we need to implement the min-max via min t and t ≥ yvi∀pi ∈ P , resulting in
O(|P |) additional constraints. For every agent we need to visit a vertex that activates it, i.e.,
we need to use an edge that visits such a vertex (exactly one to be precise).

∑

e∈Ein(vj→i),pj∈P

xe = 1 ∀pi ∈ P \ {p0}. (2)

Next we enforce that there are only directed paths starting at initial heading vertices by
enforcing that there can only be at most one outgoing edge per vertex and only if there is
also an ingoing one (3) or it is a start vertex (4), and prohibiting subcycles (5).

∑

Eout(vi→j)

xe ≤
∑

Ein(vi→j)

xe ≤ 1 ∀vi→j ∈ V (3)

∑

Eout(vi)

xe ≤ 1 ∀pi ∈ P (4)

∑

v,w∈S

xvw ≤ |S| − 1 ∀S ⊂ V (5)

If agent pi is activated by agent pj , then yvi
= yvj→i

. Since yvk→i
= 0 for all other agents pk,

we can write
yvi

=
∑

pj∈P

yvj→i
∀pi ∈ P \ {p0}. (6)

If we use a directed edge, we know that the target has to have the time of the source plus the
minimal transition time, i.e., for an edge vw ∈ E : yw ≥ yv + cost(vw). We can neutralize
this constraint by adding a large negative value to the right side that lowers it below zero
if the edge is not selected. This value only needs to be 3π, because no optimal solution is
larger than 2π and an edge cost is at most π.

yw ≥ yv + cost(vw) + (3πxvw − 3π) ∀vw ∈ E (7)

This constraint also prevents cyclic activations or cycles as in constraint (5) as long as they
are not based on zero-cost transitions (this works analogous to the Miller-Tucker-Zemlin
subtour elimination constraints for TSP [10]). To also prevent zero-cost cyclic activations we
can use the following constraint:

∑

pi,pj∈S

∑

e∈Ein(vi→j)

xe ≤ |S| − 1 ∀S ⊂ P \ {p0}. (8)

Because this only happens for degenerated cases with zero-cost edges, we add the con-
straints (5) and (8) iteratively only if necessary.

In the end we have Θ(|P |2) continuous variables, Θ(|P |3) Boolean variables (of which only
|P |−1 variables will be true), and Θ(|P |3) constraints (excluding (5) and (8)), resulting in a
relatively large problem that also becomes very quickly hard to solve, as can be seen in Fig. 4.
Interestingly, this is not because CPLEX does not find a solution, but because it does not find
an effective lower bound. Code on https://github.com/d-krupke/eurocg18-angularft.

5 Conclusion

We provided first results for a basic version of Angular Freeze Tag. Even in 2D with static
transmitters, we need better lower bounds to improve approximation and the size of optimally
solvable instances. There is also a wide spectrum of practically important generalizations.
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Figure 4 Results for random instances with CPLEX and a 15 min time limit on a PC (i7, 64GB).
For 12 points only 50% can be solved to optimality. For unsolved instances, the lower bound is often
close to zero, so providing better lower bounds will drastically improve performance.

These include approximation for the three-dimensional version and scenarios with moving
satellites. Allowing inactive receivers to adjust their heading ahead of time may greatly speed
up schedules. On the other hand, advanced missions may require both partners in a data
exchange to have their directional antennas pointing at each other, making the scheduling
process considerably more involved. All these issues are left for future work.
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Abstract
We consider problems of finding non-crossing bottleneck structures for a given planar point set:
For a given a set of vertices V , the problem Minimum Bottleneck Polygon (MBP) is to find
a simple polygon P with vertex set V whose longest edge is as short as possible; the problem
Minimum Bottleneck Simple Matching (MBSM) is to find a crossing-free matching of V
whose longest edge is as short as possible. Both problems are known to be NP-complete and
neither admits a PTAS. We develop exact methods that can solve benchmark instances (newly
generated and from the classic TSPLIB library) with up to 1,500 points for MBP and up to
20,000 points for MBSM to provable optimality.

1 Introduction

Finding a simple polygon with a given set V of vertices in the plane is one of the basic
problems of computational geometry. If we want to minimize the overall length, this is is
equivalent to the classic Traveling Salesman Problem (TSP), as a shortest tour is always
non-crossing. However, if the objective is to minimize the length of the longest edge, this is
no longer the case, see Fig. 1. This problem Minimum Bottleneck Polygon (MBP) is
NP-complete and unless P=NP, it cannot be approximated within a factor better than

√
3,

as it is NP-complete to decide whether a hexagonal grid graph has a Hamiltonian cycle (HC)
of unit edges (see Arkin et al. [5]). We are not aware of any constant-factor approximation
algorithms for the MBP.

A similarly basic geometric optimization problem is to find a matching for a given
vertex set. When minimizing the total length of all edges, an optimal solution must also
be non-crossing; this allows it to use standard matching techniques, subject to the (purely
theoretical) issue of computing the sum of a set of square roots. Matching techniques can
also be used to compute a Minimum Bottleneck Matching (MBM) in polynomial time.
However, a solution to MBM does not have to be non-crossing, as shown in Fig. 1. In fact,
it was shown by Abu-Affash et al. [2] that this problem Minimum Bottleneck Simple
Matching (MBSM) is NP-complete and does not allow a PTAS. They also provide a
2
√

10 ≈ 6.325-approximation algorithm and state without proof that they can reduce this
factor to (1 +

√
2)
√

5 ≈ 5.398.
In this paper, we develop methods for computing provably optimal solutions for benchmark

instances up to 2,000 points. Beyond illustrating the practical solvability of both problems,
this will provide ground truth for testing potential (improved) approximation methods.
Related work. There is a huge body of related work; due to limited space, we only mention
a small subset.

∗ This work was partially supported by the DFG Research Unit "Controlling Concurrent Change", funding
number FOR 1800, project FE407/17-2, "Conflict Resolution and Optimization".
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Figure 1 Left: A minimum bottleneck matching and a crossing-free minimum bottleneck matching.
Right: A minimum bottleneck tour and a minimum bottleneck polygon.

The minimum bottleneck TSP was first introduced by Gilmore and Gomory [9]. For
metric instances, there is a 2-approximation algorithm implied by Fleischner’s theorem [8, 12]
which states that the square of every two-connected graph is Hamiltonian; for general metric
instances, this factor is best possible. Hochbaum and Shmoys [10] also prove a factor of 2
within a framework providing approximation algorithms for several bottleneck problems. The
problem of finding a longest simple polygon for a given vertex set was considered by Alon et
al. [3]; they conjecture this problem to be NP-hard, but this is still open. See Dumitrescu
and Tóth [6] for improved approximation factors.

2 Minimum Bottleneck Polygonalization

2.1 Modeling
We start with a basic formulation NMBP(V ) of Minimum Bottleneck Polygon as a
Mixed Integer Program, where xpq is a Boolean variable encoding whether pq is an edge of
the polygon and B encodes the bottleneck of the solution. For two points p, q ∈ V , let χ(pq)
be the set of line segments crossing pq.

minB s. t.

∀p ∈ V :
∑

q 6=p
xpq = 2 (1)

∀p, q ∈ V, rs ∈ χ(pq) : xpq + xrs ≤ 1 (2)

∀∅ ( S ( V :
∑

p∈S,q∈V \S
xpq ≥ 2 (3)

∀p, q ∈ V : ‖pq‖2 · xpq ≤ B (4)
xpq ∈ {0, 1}

Degree constraints (1) ensure two incident edges for each point, while crossing constraints (2)
exclude crossing edges. The subtour constraints (3) enforce a connected solution. Finally,
the bottleneck constraints (4) enforce the maximum edge length B.

This naïve formulation is only practical for small point sets. Firstly, it is well known that
using an auxiliary variable B to encode a min max-type objective often induces weak LP
relaxations and thus leads to a suboptimally large search tree. Moreover, the total number of
crossing constraints corresponds to the number of convex quadruples in V , which is known to
be Ω(n4) (see [11, 14]), so using all these constraints at once becomes prohibitively expensive.

In the following, we present a formulation of the MBP as a sequence BMBPτ (V ) of IPs
addressing these issues; this resembles the approach used in [7] for determining the threshold
value for a triangulation whose shortest edge is as long as possible. For a threshold value τ ,
BMBPτ (V ) is integer feasible iff V has a polygon with bottleneck at most τ ; we exclude all
edges longer than τ . As before, we use degree constraints (5), subtour constraints (7) and
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crossing constraints (6). Thus, a minimum bottleneck polygon can be found with binary
search over possible values of τ . The optimal bottleneck is the length of an edge; therefore,
this is a discrete set of possible values.

min
∑

p,q∈V,‖pq‖2≤τ
‖pq‖2 · xpq s. t.

∀p ∈ V :
∑

q∈V,‖pq‖2≤τ
xpq = 2 (5)

∀p, q ∈ V, ‖pq‖2 ≤ τ, rs ∈ χ(pq) : xpq + xrs ≤ 1 (6)

∀∅ ( S ( V :
∑

p∈S,q/∈S,‖pq‖2≤τ
xpq ≥ 2 (7)

xpq ∈ {0, 1}

In our implementation of this formulation, only violated crossing and subtour constraints are
added iteratively by generating appropriate cutting planes. This results in only small subsets
of these large families actually being used. This is aided by our use of the objective function.
Instead of directly minimizing the bottleneck, we minimize the sum of all edge lengths. Due to
the triangle inequality, most avoidable edge crossings never occur in intermediate (fractional
and integral) solutions. Moreover, we do not have to solve BMBPτ (V ) to optimality; we can
abort the search as soon as the first integer feasible solution is found.

2.2 Computational Results
We implemented NMBP(V ) and BMBPτ (V ) in C++, using IBM ILOG CPLEX 12.6.2 as
our IP solver. All our experiments ran on a workstation running Linux 4.4 on an Intel Core
i7-6700K CPU at 4 GHz clock frequency with 64 GiB of RAM. In order to efficiently construct
BMBPτ (V ), we used an implementation of kd-trees provided by CGAL [1] to enumerate
all points within distance τ of a query point. Moreover, violated crossing constraints are
detected using CGAL’s sweep line implementation. To compare the performance of NMBP
and BMBP, we ran both NMBP and BMBP on a set of small instances. Using NMBP, most
instances with more than 50 points cannot be solved within 500 seconds, while BMBP solves
these instances in less than half a second. Thus, we only evaluate BMBP in the remainder
of the section. Fig. 2 shows the results of running BMBP on randomly generated point sets
with a modest time limit of 10 minutes. We also ran BMBP on all geometric instances from
the classic TSPLIB [13] with fewer than 2,500 points. Within a time limit of one hour, we
were able to solve most of them to optimality; see Fig. 3.

3 Minimum Bottleneck Matching

3.1 Modeling
By modifying the right-hand side of the degree constraints (1) and (5) to 1 and removing
the subtour constraints (3) and (7), we obtain a formulation of the crossing-free minimum
bottleneck matching problem as naïve MILP NMBM(V ) and as sequence of IPs BMBMτ (V ).
In order to improve its performance, we generate blossom constraints

∀S ( V, |S| odd:
∑

p∈S,q/∈S,‖pq‖2≤τ
xpq ≥ 1, (8)
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Figure 2 Left: Average running time and peak memory usage for BMBP, run with a time limit
of 600 s on point sets generated uniformly at random. Right: Percentage of instances solved within
the time limit.
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Figure 3 Time required by BMBP to solve the TSPLIB instances; computation was aborted
after one hour.

as cutting planes. We identify violated blossom inequalities by searching for odd components
in the support graph of a fractional solution. In order to further restrict the search space for
the binary search, we implemented a minimum bottleneck matching algorithm to serve as a
lower bound and a crossing removal heuristic to produce an initial crossing-free solution as
an upper bound; see Section 3.2.

3.2 Crossing Repair Heuristic
A straightforward way to heuristically turn a crossing matching into a non-crossing one is to
use a sequence of local 2-OPT exchanges, replacing a crossing pair of edges pq, rs by pr, sq
or ps, qr. Any 2-OPT step decreases the sum of edge lengths, so this process must terminate
with a non-crossing matching. However, this heuristic does not seem to perform well with
respect to the bottleneck.

An alternative is a simple but effective heuristic for converting a crossing matching MC

with bottleneck B into a non-crossing matching MNC , while trying to keep the bottleneck
edge as short as possible. We use a standard sweep line algorithm to detect crossings. If
there is no more crossing, we are done. Otherwise, we pick an arbitrary crossing pq, rs. Using
a kd-tree, we perform a simultaneous incremental nearest-neighbor search, starting from
p, q, r and s, constructing a set of close points N that contains up to K points, for some
constant K; we use K = 50 in our experiments. Whenever a new point is discovered, it
is added to N , together with its matching partner in MC . Once N contains K points, we
compute the bounding box of N and extend it by B in every direction. We use a range query
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Figure 4 Left: Average running time and peak memory usage for BMBM, run with a time limit
of 600 s on point sets generated uniformly at random. Right: Percentage of instances solved within
the time limit, and percentage of instances solved to optimality using the crossing-removal heuristic.
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Figure 5 Time required by BMBM to solve the TSBLIB instances; the time limit was two hours.

to find all points inside the extended bounding box; this set of points consists of our internal
points N and external points T . For all external points, we find the corresponding matching
edge in MC ; this gives us a set of edges ET . We use BMBMτ (N) with binary search on
τ to find a minimum bottleneck crossing-free matching on N ; however, in order to avoid
introducing new crossings, we prohibit using any edge that crosses an edge of ET , unless this
edge is part of MC . In MC , we replace the matching edges corresponding to points in N
with the edges from the resulting matching. In this way, the crossing pq, rs disappears and
no new crossings can appear. We iterate this procedure until there are no more crossings; the
number of crossings is reduced by at least one in each iteration, thus the heuristic terminates
with a crossing-free matching MNC . In certain situations, this heuristic can fail, because a
crossing-free matching cannot be found due to the forbidden edges. In this case, we resort
to performing 2-OPT steps to remove some crossings before continuing to use the original
heuristic.

3.3 Computational Results
We implemented both NMBM and BMBM and evaluated them under the same circumstances
as outlined in Section 2.2. Similar to the situation for polygons, the naïve NMBM cannot
compete with BMBM, so we give only give computational results BMBM. We were able to
solve almost all TSPLIB instances with up to 20,000 points within a time limit of two hours
(see Fig. 5). For point sets chosen uniformly at random from the unit square, we were able to
solve all generated instances with up to 6,000 points and most instances with up to 10,000
points within ten minutes (see Fig. 4).

In many instances, applying our crossing removal heuristic to a minimum bottleneck
matching yields a crossing-free solution with the same bottleneck (see Fig. 4), thus resulting in
a provably optimal solution. For all randomly generated instances, the minimum bottleneck
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was achievable in a crossing-free manner; on these instances, our crossing repair heuristic
was off by a factor of at most 2.215 (this factor was 1.11 on average with median 1.024).

4 Future Work

We presented exact approaches for both the MBP and the MBSM. Many interesting theoretical
and practical problems remain that are left for future work.

The most interesting theoretical problem is to develop a constant-factor approximation
algorithm for MBP. In our experiments, we found that for large point sets generated uniformly
at random, a minimum bottleneck matching can always be achieved with a non-crossing
solution. Is there an analytic basis for this observation? For general point sets, it may be
interesting to explore the properties of the matching polytope with added crossing constraints.

On the practical side, the quadratic number of edge variables is the biggest impediment
for solving larger instances. For the classic TSP, this has been dealt with by using column gen-
eration and related methods [4]. For MBP, there are potentially many additional constraints
that could be used for cutting plane generation. Doing this in an efficient manner requires
rewriting large parts of the integer programming solver. For MBSM, more sophisticated
algorithms may be able to identify more (helpful) blossom constraints.
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Abstract
A polyomino is a set of connected squares on a grid. In this work we address the class of poly-
ominoes with minimal perimeter for their area, and show a bijection between minimal-perimeter
polyominoes of certain areas.

1 Introduction

A polyomino is an edge-connected set of cells on the square lattice. The area of a polyomino
is the number of cells it contains. The problem of counting polyominoes dates back to
the 1950s when it was studied in parallel in the fields of combinatorics [8] and statistical
physics [6]. Let A(n) denote the number of polyominoes of area n. A general formula for A(n)
is still unknown. Klarner [10] showed the existence of the growth rate of A(n), denoting it
by λ := limn→∞ n

√
A(n). The exact value of λ is also unknown yet, and its best estimate,

4.06, is by Jensen [9]. The current best lower and upper bounds on λ are 4.0025 [3] and
4.6496 [11], respectively. Several works provide enumeration by area of special classes of
polyominoes, such as column-convex [7], convex [5], and directed [4] polyominoes.

The perimeter of a polyomino P consists of the empty cells adjacent to P . Asinowski et
al. [2] showed that a polyomino of area n has a perimeter of size at most 2n+ 2, and provided
formulae for the numbers of polyominoes with area n and perimeter 2n+ 2− k, for some
small values of k. In this paper, we shed some light on polyominoes with the minimum-size
perimeter for their area. Related works are by Altshuler et al. [1] and by Sieben [12], providing
a formula for the maximum area of a polyomino with a certain perimeter size. Sieben [12]
also gave a formula for the minimum perimeter size of a polyomino of area n. Both works
also characterized all polyominoes that have the maximum area for a given perimeter size.
In this paper, we study the number of polyominoes which have the minimum perimeter size
for their area, and show a bijection between some sets of minimal-perimeter polyominoes.

2 The Problem

2.1 Definitions
Let Q be a polyomino, and let P(Q) be the perimeter of Q. Define B(Q), the border of Q, to
be the set of cells of Q which have at least one empty neighboring cell. Given a polyomino Q,
its inflated polyomino, I(Q), is defined as I(Q) = Q ∪ P(Q). Notice that the border of I(Q)
is a subset of the perimeter of Q. Analogously, the deflated polyomino, D(Q), is defined as
D(Q) = Q \ B(Q), which is obtained by “shaving” the outer layer, i.e., the border cells from
the polyomino. Notice that the perimeter of D(Q) is a subset of the border of Q. Also note
that D(Q) is not necessarily a valid polyomino since the removal of the border of Q may
break it into disconnected pieces. Figure 1 demonstrates all the above definitions.

Following the notation of Sieben [12], we denote by ε(n) the minimum size of the perimeter
of all polyominoes of area n. Sieben showed that ε(n) =

⌈
2 +
√

8n− 4
⌉
. A polyomino Q of

area n will be called a minimal-perimeter polyomino if |P(Q)| = ε(n).
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(a) Polyomino Q (b) I(Q) (c) D(Q)

Figure 1 A polyomino Q, its inflated polyomino, and its deflated polyomino. The gray cells are
the polyomino cells, while the white cells are the perimeter. Border cells are marked with crosses.

(a) (b) (c) (d) (w) (x) (y) (z)

Figure 2 All possible patterns of excess cells. The gray cells are polyomino cells, while the white
cells are perimeter cells. Patterns (a–d) exhibit excess border cells and their surrounding perimeter
cells, while Patterns (w–z) exhibit excess perimeter cells and their surrounding polyomino cells.

2.2 The Relation between Border, Perimeter, and Excess
In this section we express the size of the perimeter of a polyomino, |P(Q)|, as a function
of the border size, |B(Q)|, and the number of excess cells as defined below. The excess of a
perimeter cell [2] is defined as the number of polyomino cells that are adjacent to it minus
one, and the total excess of a polyomino Q, eP , is defined as the sum of excess over all the
cells of the perimeter of Q. Similarly, the excess of a border cell is defined as the number of
perimeter cells adjacent to it minus one, and the border excess, denoted by eB , is defined as
the sum of excess over all the border cells. Let π = |P(Q)| and β = |B(Q)|.
I Observation 2.1. The following holds for any polyomino: π + eP = β + eB . Equivalently,

π = β + eB − eP . (1)

Equation (1) holds since both π + eP and β + eB are equal to the

d

b

a

x w

y

z

Figure 3
A sample
polyomino
with marked
patterns.

total length of the polygons forming the boundary of the polyomino. This
quantity can be calculated either by summing up over the perimeter cells,
where each cell contributes 1 plus its excess for a total of π + eP , or by
summing up over the border cells for a total of β + eB . Figure 2 shows all
possible patterns of border and perimeter excess cells, while Figure 3 shows
a sample polyomino with some cells tagged with the corresponding patterns.

Let #� be the number of excess cells of a certain type in a polyomino
as classified in the figure, where ‘�’ is one of the symbols a–d or w–z, as in
Figure 2. Counting eP and eB as functions of the different patterns of excess
cells, we see that eB = #a+2#b+3#c+#d and eP = #w+2#x+3#y+#z.
Substituting eB and eP in Equation (1), we obtain

π = β + #a+ 2#b+ 3#c+ #d−#w − 2#x− 3#y −#z.

Since Pattern (c) is a singleton cell, we can ignore it in the general formula. Thus, we have

π = β + #a+ 2#b+ #d−#w − 2#x− 3#y −#z.

2.3 Properties of Minimal-Perimeter Polyominoes
I Lemma 2.2. Any minimal-perimeter polyomino is simply connected (that is, it does not
contain holes).
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f

(a) Q

f

(b) Q′

f

(c) Q (d) Q′

Figure 4 Examples for the first and second parts of the proof of Theorem 2.4.

Proof. The sequence ε(n) is monotone increasing in the wide sense1 [12]. Assume that there
exists a minimal-perimeter polyomino Q with a hole. Consider the polyomino Q′ that is
obtained by filling this hole. The area of Q′ is clearly larger than the area of Q, and its
perimeter size is smaller since we eliminated the perimeter cells inside the hole and did not
introduce new perimeter cells. This is a contradiction to ε(n) being monotone increasing. J

I Lemma 2.3. For a simply connected polyomino, we have #a+ 2#b−#w − 2#x = 4.

Proof. The boundary of a polyomino without holes is a simple polygon, thus, the sum of
its internal angles is (180(v − 2))°, where v is the complexity of the polygon. Notice that
Pattern (a) (resp., (b)) adds one (resp., two) 90°-vertex to the polygon. Similarly, Pattern (w)
(resp. (x)) adds one (resp., two) 270°-vertex. All other patterns do not involve vertices.
Let L = #a+ 2#b and R = #w + 2#x. Then, the sum of angles of the boundary polygon
implies that L · 90° +R · 270° = (L+R− 2) · 180°, that is, L−R = 4. The claim follows. J

I Theorem 2.4. (Stepping Theorem) For a minimal-perimeter polyomino (except the single-
ton cell), we have that π = β + 4.

Proof. Lemma 2.3 tells us that π = β+4+#d−#z. We will show that any minimal-perimeter
polyomino contains neither Pattern (d) nor Pattern (z).

Let Q be a minimal-perimeter polyomino. For the sake of contradiction, assume first
that there is a cell f ∈ P(Q) as part of Pattern (z). Assume w.l.o.g. that the two adjacent
polyomino cells are to the left and to the right of f . These two cells must be connected,
thus, the area below (or above) f must be bounded by polyomino cells. Let, then, Q′ be
the polyomino with the area below f , and the cell f itself, filled with polyomino cells. The
cell directly above f becomes a perimeter cell, the cell f ceases to be a perimeter cell, and
at least one perimeter cell in the area filled below f is eliminated, thus, |P(Q′)| < |P(Q)|
and |Q′| > |Q|, which is a contradiction to the sequence ε(n) being increasing. Thus, Q does
not contain perimeter cells that fit Pattern (z). Figures 4(a,b) demonstrate this argument.

Now assume for contradiction that Q contains a cell f , forming Pattern (d). Let Q′ be the
polyomino obtained from Q by removing f and then “pushing” together the two cells adjacent
to f . This is always possible since Q is of minimal perimeter, hence, by Lemma 2.2, it is
simply connected, and thus, removing f breaks Q into two separate polyominoes. Any two
separated polyominoes can be shifted by one cell without colliding, thus, the transformation
described above is valid. The area of Q′ is one less than the area of Q, and the perimeter of Q′
is smaller by at least two than the perimeter of Q, since the perimeter cells below and above f
cease to be part of the perimeter, and connecting the two parts does not create new perimeter
cells. From the formula of ε(n) we know that ε(n+ 1)− ε(n) ≤ 1 for n ≥ 2, but |Q|− |Q′| = 1
and |P(Q)| − |P(Q′)| = 2, hence, Q is not a minimal-perimeter polyomino, which contradicts
our assumption. Thus, there are no cells in Q that fit Pattern (d). Figures 4(c,d) demonstrate
this argument. This completes the proof. J

1 In the sequel we simple say “monotone increasing.”
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2.4 Inflating a Minimal-Perimeter Polyomino
In this section we reach our main results.

I Lemma 2.5. If Q is a minimal-perimeter polyomino, then |P(I(Q))| ≤ |P(Q)|+ 4.

Proof. Since Q is a minimal-perimeter polyomino, we know by Lemma 2.2 that I(Q) is
simply connected. For a hole to be formed in I(Q), the original polyomino Q must have
either Pattern (z) (two cells separated by a single perimeter cell), or two cells separated by
two perimeter cells, as in . The former case (Pattern (z)) is not possible, as is shown in
the proof of Theorem 2.4. We show, using the same technique, that the latter case is also
impossible.

Since I(Q) is simply connected, we have, by Lemma 2.3, that |P(I(Q))| = |B(I(Q))|+
4 + #d−#z. Since |B(I(Q))| ≤ |P(Q)|, all that remains to show is that Pattern (d) does
not occur in I(Q). Assume to the contrary that there is a cell f forming Pattern (d) in I(Q).
Since I(Q) is simply connected, removing f will break it into exactly two pieces, denoted
by Q1 and Q2. Both Q1 and Q2 must contain cells of the original Q since any cell in I(Q)
either belongs to Q or is adjacent to a cell of Q. However, this implies that Q is not connected,
which is a contradiction. Hence, Q cannot contain a pattern of type (d), as required. J

I Theorem 2.6. (Inheritance Theorem) If Q is a minimal-perimeter polyomino, then I(Q)
is a minimal-perimeter polyomino as well.

Proof. Let Q be a minimal-perimeter polyomino. Assume to the contrary that I(Q) is not a
minimal-perimeter polyomino, i.e., there exists a polyomino Q′ with the same area as I(Q),
such that |P(Q′)| < |P(I(Q))|. From Lemma 2.5 we know that |P(I(Q))| ≤ |P(Q)|+ 4, thus,
the perimeter of Q′ is at most |P(Q)|+3, and since Q′ is a minimal-perimeter polyomino, we
know by Theorem 2.4 that the size

(a) |Q| = 6 (b) |I(Q)| = 15 (c) |I(I(Q))| = 28

Figure 5 A demonstration of Theorem 2.6.

of its border is at most |P(Q)| − 1.
Consider now D(Q′). The area of Q′
is |Q|+ |P(Q)|, thus, the size of D(Q′)
is at least |Q|+1, and its perimeter size
is at most ε(n)− 1 (since the perime-
ter of D(Q′) is a subset of the border
of Q′). This is a contradiction to the sequence ε(n) being monotone increasing. Hence,
Q′ cannot exist, and I(Q) is a minimal-perimeter polyomino. Figure 5 demonstrates this
theorem. It shows a minimal-perimeter polyomino Q of area 6 and the two minimal-perimeter
polyominoes of areas 15 and 28 obtained by inflating Q twice. J

I Corollary 2.7. The minimum perimeter size of a polyomino of area n+ kε(n) + 2k(k − 1)
(for n 6= 1 and any k ∈ N) is ε(n) + 4k.

Proof. Inflating a minimal-perimeter polyomino of size n increases its area by ε(n). The
border size of the inflated polyomino is ε(n), thus, by Theorem 2.4, the new perimeter
size is ε(n) + 4. By induction, after the kth inflation, the perimeter size is ε(n) + 4k and
the increase in the area is ε(n) + 4(k − 1). Summing up the increase in area, we obtain∑k
i=1(ε(n) + 4(i− 1)) = kε(n) + 2k(k − 1), implying the claim. J

I Lemma 2.8. Let Q be a minimal-perimeter polyomino of area n+ ε(n) (for n ≥ 3). Then,
D(Q) is a valid (connected) polyomino.

Proof. Assume to the contrary that D(Q) is not connected and that it is composed of at
least two parts. Assume first that D(Q) is composed of exactly two parts, Q1 and Q2.
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Define the joint perimeter of the two parts, P(Q1, Q2), to be P(Q1) ∪ P(Q2). Since Q is a
minimal-perimeter polyomino of area n+ ε(n), we know that its perimeter size is ε(n) + 4
and its border size is ε(n), by Corollary 2.7 and Theorem 2.4, respectively. Thus, the size
of D(Q) is exactly n regardless of whether or not D(Q) is connected. Since Q1 and Q2
are the result of deflating Q, the polyomino Q must have an (either horizontal, vertical,
or diagonal) “bridge” of border cells which disappeared in the deflation. The width of the
bridge is at most 2, thus, |P(Q1) ∩ P(Q2)| ≤ 2. Hence, |P(Q1)|+ |P(Q2)| − 2 ≤ |P(Q1, Q2)|.
Since P(Q1, Q2) is a subset of B(Q), we have that |P(Q1, Q2)| ≤ ε(n). Therefore,

ε(|Q1|) + ε(|Q2|)− 2 ≤ ε(n). (2)

Recall that |Q1| + |Q2| = n. It is easy to observe

0 10 20 30
0

10

20

Figure 6 Values of ε(n).

that ε(|Q1|) + ε(|Q2|) is minimized when |Q1| = 1 and
|Q2| = n−1 (or vice versa). Had the function ε(n) (shown
in Figure 6) been 2 +

√
8n− 4 (without rounding up), this

would be obvious. But since ε(n) =
⌈
2 +
√

8n− 4
⌉
, it

is a step function (with an infinite number of intervals),
where the gap between all successive steps is exactly 1,
except the gap between the two leftmost steps which is 2.
This guarantees that despite the rounding, the minimum
of ε(|Q1|) + ε(|Q2|) occurs as claimed. Substituting this into Equation (2), and using the fact
that ε(1) = 4, we see that ε(n− 1) + 2 ≤ ε(n). However, we know [12] that ε(n)− ε(n− 1) ≤ 1
for n ≥ 3, which is a contradiction. Thus, D(Q) cannot split into two parts unless it splits
into two singleton cells, which is indeed the case for a minimal-perimeter polyomino of size 8.

The same method can be used to show that D(Q) cannot be composed of more then
two parts. Note that this proof does not hold for polyominoes of area which is not of the
form n+ ε(n), but it suffices for the proof of Theorem 2.10 below. J

I Lemma 2.9. Let Q1, Q2 be two different minimal-perimeter polyominoes. Then, regardless
of whether or not Q1, Q2 have the same area, I(Q1) and I(Q2) are different as well.

Proof. Assume to the contrary that Q = I(Q1) = I(Q2). By definition, this means that
Q = Q1 ∪ P(Q1) = Q2 ∪ P(Q2). Furthermore, since Q1 6= Q2, and since a cell can belong to
either a polyomino or to its perimeter, but not to both, it must be that P(Q1) 6= P(Q2). The
border of Q is a subset of both P(Q1) and P(Q2), that is, B(Q) ⊂ P(Q1) ∩ P(Q2). Since
P(Q1) 6= P(Q2), we have that either |B(Q)| < |P(Q1)| or |B(Q)| < |P(Q2)|; assume w.l.o.g.
the former case. Now consider the polyomino D(Q). Its area is |Q| − |B(Q)|. The area of Q
is |Q1|+ |P(Q1)|, thus, |D(Q)| > |Q1|, and since the perimeter of D(Q) is a subset of the
border of Q, we conclude that |P(D(Q))| < |P(Q1)|. However, Q1 is a minimal-perimeter
polyomino, which is a contradiction to ε(n) being monotone increasing. J

I Theorem 2.10. (Chain Theorem) Let Mn be the set of minimal-perimeter polyominoes of
area n. Then, for n ≥ 3, we have that |Mn| =

∣∣Mn+ε(n)
∣∣.

Proof. By Theorem 2.6, if Q ∈ Mn, then I(Q) ∈ Mn+ε(n), and hence, by Lemma 2.9, we
have that |Mn| ≤

∣∣Mn+ε(n)
∣∣. Let us now show the opposite relation, namely, that |Mn| ≥∣∣Mn+ε(n)

∣∣. The combination of the two relations will imply the claim.
Let I(Mn) = {I(Q) | Q ∈Mn}. For Q ∈ Mn+ε(n), our goal is to show that Q ∈ I(Mn).

Since Q ∈ Mn+ε(n), we have by Corollary 2.7 that |P(Q)| = ε(n) + 4. Moreover, by
Theorem 2.4, we have that |B(Q)| = ε(n), thus, |D(Q)| = n and |P(D(Q))| ≥ ε(n). Since the
perimeter of D(Q) is a subset of the border of Q, and |B(Q)| = ε(n), we conclude that the
perimeter of D(Q) and the border of Q are the same set of cells. Thus, I(D(Q)) = Q. Since
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7 A demonstration of Theorem 2.10.

|P(D(Q))| = ε(n), we have that D(Q) is a minimal-perimeter polyomino, thus, Q ∈ I(Mn)
as required. Hence, Mn+ε(n) ⊆ I(Mn), implying that

∣∣Mn+ε(n)
∣∣ ≤ |I(Mn)| = |Mn|.

Figure 7 shows, for example, all minimal-perimeter polyominoes of area 7. When they
are inflated, they become the entire set of minimal-perimeter polyominoes of area 17. J

I Corollary 2.11. For n ≥ 3 and any k ∈ N, we have that |Mn| =
∣∣Mn+kε(n)+2k(k−1)

∣∣.
Proof. The claim follows from applying Theorem 2.10 repeatedly on Mn. J

3 Future work

We have shown that inflating a set of minimal-perimeter polyominoes of a certain area
creates a new set, of the same cardinality, of minimal-perimeter polyominoes of some other
area. This creates chains of sets of minimal-perimeter polyominoes of the same area. In the
future we would like to characterize the roots of these chains and to determine how many
minimal-perimeter polyominoes the sets of each chain contains.

References
1 Y. Altshuler, V. Yanovsky, D. Vainsencher, I.A. Wagner, and A.M. Bruckstein. On minimal

perimeter polyminoes. In DGCI, pages 17–28. Springer, 2006.
2 A. Asinowski, G. Barequet, and Y. Zheng. Enumerating polyominoes with fixed perimeter

defect. In Proc. 9th European Conf. on Combinatorics, Graph Theory, and Applications,
volume 61, pages 61–67, Vienna, Austria, August 2017. Elsevier.

3 G. Barequet, G. Rote, and M. Shalah. λ > 4: An improved lower bound on the growth
constant of polyominoes. Comm. of the ACM, 59(7):88–95, 2016.

4 M. Bousquet-Mélou. New enumerative results on two-dimensional directed animals. Dis-
crete Mathematics, 180(1-3):73–106, 1998.

5 M. Bousquet-Mélou and J.-M. Fédou. The generating function of convex polyominoes: The
resolution of a q-differential system. Discrete Mathematics, 137(1-3):53–75, 1995.

6 S.R. Broadbent and J.M. Hammersley. Percolation processes: I. Crystals and Mazes. In
Mathematical Proceedings of the Cambridge Philosophical Society, volume 53, pages 629–
641. Cambridge University Press, 1957.

7 M.-P. Delest. Generating functions for column-convex polyominoes. J. of Combinatorial
Theory, Series A, 48(1):12–31, 1988.

8 S.W. Golomb. Checker boards and polyominoes. The American Mathematical Monthly,
61(10):675–682, 1954.

9 I. Jensen and A.J. Guttmann. Statistics of lattice animals (polyominoes) and polygons. J.
of Physics A: Mathematical and General, 33(29):L257, 2000.

10 D.A. Klarner. Cell growth problems. Canadian J. of Mathematics, 19:851–863, 1967.
11 D.A. Klarner and R.L. Rivest. A procedure for improving the upper bound for the number

of n-ominoes. Canadian J. of Mathematics, 25(3):585–602, 1973.
12 N. Sieben. Polyominoes with minimum site-perimeter and full set achievement games.

European J. of Combinatorics, 29(1):108–117, 2008.



On Optimal Polyline Simplification using the
Hausdorff and Fréchet Distance
Marc van Kreveld1, Maarten Löffler1, and Lionov Wiratma1,2

1 Dept. of Inform. and Computing Sciences, Utrecht University, the Netherlands
[m.j.vankreveld|m.loffler|l.wiratma]@uu.nl

2 Dept. of Informatics, Parahyangan Catholic University, Indonesia
lionov@unpar.ac.id

Abstract
We revisit the classical polygonal line simplification problem and study it using the Hausdorff

distance and Fréchet distance. We use these measures in its pure form, namely: for a given ε > 0,
choose a minimum size subsequence of the vertices of the input such that the Hausdorff or Fréchet
distance between the input and output polylines is at most ε.

We analyze how the Douglas-Peucker and Imai-Iri simplification algorithms perform compared
to the optimum possible. We prove that it is NP-hard to compute the optimal simplification
under (undirected) Hausdorff distance. Under the Fréchet distance, the optimal simplification
of a polygonal line consisting of n vertices can be computed in O(kn5) time and O(kn2) space,
where k is the output complexity of the simplification.

1 Introduction

Line simplification (a.k.a. polygonal approximation) is one of the oldest and best studied
applied topics in computational geometry. A simplification should have a similar shape as the
input, and hence we need a similarity or distance measure to specify when a simplification is
acceptable. The Hausdorff distance and the Fréchet distance are probably the best known
distance measures used for shape similarity in computational geometry.

Among the well-known simplification algorithms, the ones by Douglas and Peucker [4]
and by Imai and Iri [7] are frequently implemented and cited. For a given constant ε > 0,
both algorithms start with a polygonal line (henceforth polyline) as an input, specified by
a sequence of points 〈p1, . . . , pn〉, and compute a subsequence starting with p1 and ending
with pn, representing a simplified polyline which is within a distance of ε from the input.

The Douglas-Peucker algorithm [4] is a simple procedure that starts with a simplification
p1pn, determines the furthest vertex pk, and if it is further than ε, adds pk to the simplification.
This gives two subproblems with p1pk and pkpn that are solved recursively in the same way
and then merged. Hershberger and Snoeyink [6] provide an O(n logn) time implementation of
this algorithm. The Imai-Iri algorithm [7] takes a different approach. It determines for every
link pipj (i < j) if it lies within distance ε from the vertices pi+1, . . . , pj−1 and if so, deems it
valid. The graph G with all vertices p1, . . . , pn as nodes and all valid links as edges can then
be constructed, and a minimum link path from p1 to pn represents an optimal simplification.
By the implementation of Chan and Chin [3], this algorithm runs in O(n2) time.

The Imai-Iri algorithm is considered an optimal line simplification algorithm, because it
minimizes the number of vertices in the output. It also guarantees the Hausdorff distance
between the input and the simplification of at most ε. However, the simplification is not
optimal for the Hausdorff distance, because there are simple examples where a simplification
with fewer vertices have the Hausdorff distance at most ε to the input. This comes from the
fact that the algorithm uses the Hausdorff distance between a link pipj and the sub-polyline
〈pi, . . . , pj〉, and not an overall Hausdorff distance.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 The Douglas-Peucker and Imai-Iri algorithms do not simplify the inputs for the Hausdorff
distance (left) or the Fréchet distance (right). The optimal simplifications are shown dotted in blue.

Note that we can easily adapt the Imai-Iri algorithm to guarantee the Fréchet distance of
at most ε: we deem a link pipj valid if its Fréchet distance to the sub-polyline 〈pi, . . . , pj〉
is at most ε [1]. This simple variation of the Imai-Iri algorithm does not yield the optimal
simplification within the Fréchet distance of ε, because it requires us to match a vertex pi in
the input to the vertex pi in the output in the parametrizations, if pi is used in the output.
This restriction on the parametrizations limits the simplification in undesirable ways.

The examples in Figure 1 show that under the Hausdorff distance (left) and Fréchet
distance (right) the Douglas-Peucker and Imai-Iri simplifications are both equal to P itself
and may use more vertices than an optimal simplification using these measures.

The discussion begs the following questions: How much worse do the known algorithms
and their variations perform in theory, when compared to the optimal Hausdorff and Fréchet
simplifications? What if the optimal Hausdorff and Fréchet simplifications use a smaller value
than ε? How efficiently can the optimal Hausdorff simplification and the optimal Fréchet
simplification be computed (when using the input vertices)?

Organization and results. In Section 2 we show that the optimal simplification has fewer
vertices than the Imai-Iri output, both under the Hausdorff and the Fréchet distance (we
ignore the Douglas-Peucker method from now on because it never yields fewer vertices than
the Imai-Iri method). In particular, we analyze how much worse the output of the Imai-Iri
algorithm can be for the two measures. In Section 3 we show that the optimal simplification
under the undirected Hausdorff distance is NP-hard to compute. In Section 4 we show that
simplification can be done optimally in polynomial time for the Fréchet distance.

2 Approximation Quality of Imai-Iri Simplification

We denote the simplification by the Imai-Iri algorithm under the Hausdorff distance as
IIH(P, ε), and will leave out the arguments P and/or ε if they are understood. We refer to
the simplification from the adapted Imai-Iri algorithm using the Fréchet distance as IIF (P, ε).
We denote the optimal simplification using the Hausdorff distance by OPTH(P, ε), and using
the Fréchet distance by OPTF (P, ε). The example in Figure 1 shows that to let IIH use as
few vertices as OPTH , we must use 2ε instead of ε when the example is stretched horizontally.
For the Fréchet distance, the enlargement factor needed in the example approaches

√
2 if we

put p1 far to the left. In this section we analyze how the approximation enlargement factor
relates to the number of vertices in the Imai-Iri simplification and the optimal ones.

Hausdorff Distance To show that IIH may use many more vertices than OPTH , even if
we enlarge ε, we give a construction where this occurs in Figure 2 that applies for both the
directed and undirected Hausdorff distance.
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pn−2
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p11p1

p2
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Figure 2 The Imai-Iri algorithm may not be able to simplify 〈p1, . . . , pn〉 at all. The optimal
Hausdorff simplification (dotted, blue) has three vertices. Right, an example input with 11 vertices.
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p10
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p2
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p1

p4

p2 p3

p5
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Figure 3 The optimal simplification can skip p2 and p3; in the parametrizations witnessing the
Fréchet distance, OPTF “stays two vertices behind” on the input until the end. Right, the free
space diagram of P and OPTF .

An optimal simplification is 〈p1, pi, pn〉 where i is any even number between 1 and n.
Since the only valid links are the ones connecting two consecutive vertices of P , IIH is P
itself. If the triangle is large enough with respect to ε, this remains true even if we give the
Imai-Iri algorithm a much larger error threshold than ε.

I Theorem 2.1. For any c > 1, there exists a polyline P with n vertices and an ε > 0 such
that IIH(P, cε) has n vertices and OPTH(P, ε) has 3 vertices.

Fréchet Distance We give another input polyline P in Figure 3 to show that IIF does
not approximate OPTF even if IIF is allowed to use ε that is larger by a constant factor.
Our main construction has ten vertices placed in such a way that IIF has all ten vertices,
while OPTF has only eight of them, see Figures 3. We can append multiple copies of this
construction together with a suitable connection in between. We obtain:

I Theorem 2.2. There exist constants c1 > 1, c2 > 1, a polyline P with n vertices, and an
ε > 0 such that |IIF (P, c1ε)| > c2|OPTF (P, ε)|.

By a result of Agarwal et al. [1], we know that the theorem is not true for c1 ≥ 4.

3 Algorithmic Complexity of Optimal Simplification using the
Hausdorff Distance

The results in the previous section lead us to the following question: Is it possible to compute
the optimal Hausdorff or Fréchet simplification in polynomial time?

We first consider the undirected (or bidirectional) Hausdorff distance; that is, we require
both the maximum distance from the initial polyline P to the simplified polyline Q and the
maximum distance from Q to P to be at most ε.
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P
p

A
Q

Figure 4 The construction: A is the arrangement of a set of segments S. We build an input path
P that “paints” over S completely, and we are looking for an output path Q that corresponds to a
Hamiltonian cycle. In this case, there is no Hamiltonian cycle, and the path gets stuck.

I Theorem 3.1. Given a polyline P = 〈p1, p2, . . . , pn〉 and a value ε, the problem of computing
a minimum length polyline Q defined by a subsequence of the vertices of P such that the
undirected Hausdorff distance between P and Q is at most ε is NP-hard.

Our proof uses a reduction from Hamiltonian cycle in segment intersection graphs. Since
deciding if a Hamiltonian cycle exists is NP-complete in planar graphs [5], and planar graphs
are included in segment intersections graphs [2], it follows that Hamiltonian cycle in segment
intersections graphs is NP-complete. Let S be a set of n line segments in R2, and assume
all intersections are proper (if not, extend the segments slightly). Let G be its intersection
graph. Assume that G is connected; otherwise, there is no Hamiltonian cycle in G.

We first construct an initial polyline P as follows (see Figure 4). Let A be the arrangement
of S, let p be some endpoint of a segment in S, and let π be any path on A that starts
and finishes at p and visits all vertices and edges of A. Then P is simply 3n+ 1 copies of
π appended to each other. We now set ε to a sufficiently small value. Then, an output
polyline Q with Hausdorff distance at most ε to P must also visit all vertices and edges of A,
and stay close to A. If ε is sufficiently small, there will be no benefit for Q to ever leave A.

I Lemma 3.2. A solution Q of length 3n+ 1 exists iff G admits a Hamiltonian cycle.

Proof. Clearly, any simplification Q will need to visit the 2n endpoints of the segments in S,
and—since it starts and ends at the same point p—will need to have length at least 2n+ 1.
Furthermore, Q will need to have at least two internal vertices on every segment s ∈ S: once
to enter and once to leave the segment (we cannot enter or leave a segment at an endpoint
since all intersections are proper intersections). This means the theoretical minimum number
of vertices possible for Q is 3n+ 1.

Now, if G admits a Hamiltonian cycle, it is easy to construct a simplification with 3n+ 1
vertices. We start at p, an endpoint of the segment s1, and collect the other endpoint. Then
we follow the Hamiltonian cycle to segment s2; by definition s1s2 is an edge in G so their
corresponding segments intersect, and we use the intersection point to leave s1 and enter s2.
We proceed in this fashion until we reach sn, which intersects s1, and finally return to p.

On the other hand, any solution with 3n+ 1 vertices must necessarily be of this form and
therefore imply a Hamiltonian cycle: in order to have only 3 vertices per segment the vertex
at which we leave s1 must coincide with the vertex at which we enter some other segment,
which we call s2, and we must continue until we visited all segments and return to p. J

For completeness, we also state the results for simplification using the directed Hausdorff
distance, in both directions. If we require the distance from the input to the simplification
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to be at most ε, then an optimal simplification using the (directed) Hausdorff distance is
NP-hard to compute. However, if we require the distance from the simplification to the input
to be at most ε, an optimal simplification can be computed in polynomial time. We give the
proofs in the full paper.

4 Algorithmic Complexity of Optimal Simplification using the
Fréchet Distance

In this section, we show that for a given polyline P = 〈p1, p2, ..., pn〉 and an error ε, the
optimal simplification Q = OPTF (P, ε) can be computed in polynomial time using a dynamic
programming approach. First, we define π, a parameterization of P as a continuous mapping:
π : [0, 1]→ R2 where π(0) = p1 and π(1) = pn. We also write P [s, t] for 0 ≤ s ≤ t ≤ 1 to be
the subcurve of P starting at π(s) and ending at π(t), also writing P [t] = P [0, t] for short.

For the dynamic programming approach to work, we might imagine to store, for each
vertex pi and value k, the point π(α) which is the farthest along P such that a simplification of
〈p1, ..., pi〉 using k links has Fréchet distance at most ε to P [α]. However, this is not sufficient
to ensure that we find an optimal solution (see the full paper for details). Instead, we argue
that if we maintain the set of all points at P that can be “reached” by a simplification up to
each vertex, then we can make dynamic programming work. We now make this precise and
argue that the complexity of these sets of reachable points is never worse than linear.

We say that a point π(t) can be reached by a (k, i)-simplification for 0 ≤ k < i ≤ n if
there exists a simplification of 〈p1, . . . , pi〉 using k links which has Fréchet distance at most
ε to P [t]. We let ρ(k, i, t) = true in this case, and false otherwise. With slight abuse of
notation we also say that t itself is reachable, and that an interval I is reachable if all t ∈ I
are reachable (by a (k, i)-simplification).

I Observation 4.1. A point π(t) can be reached by a (k, i)-simplification if and only if there
exist a 0 < h < i and a 0 ≤ s ≤ t such that π(s) can be reached by a (k − 1, h)-simplification
and the segment phpi has Fréchet distance at most ε to P [s, t].

Proof. Follows directly from the definition of the Fréchet distance. J

Observation 4.1 immediately suggests a dynamic programming algorithm: for every k
and i we store a subdivision of [0, 1] into intervals where ρ is true and intervals where ρ is
false, and we calculate them for increasing values of k. We simply iterate over all possible
values of h, calculate which intervals can be reached using a simplification via h, and then
take the union over all those intervals. For this, the only unclear part is how to calculate
these intervals. We argue that, for any given k and i, there are at most n − 1 reachable
intervals on [0, 1], each contained in an edge of P . Indeed, every (k, i)-reachable point π(t)
must have distance at most ε to pi, and since the edge e of P that π(t) lies on intersects
the disk of radius ε centered at pi in a line segment, every point on this segment is also
(k, i)-reachable. We denote the farthest point on e which is (k, i)-reachable by t̂.

Furthermore, we argue that for each edge of P , we only need to take the farthest reachable
point into account during our dynamic programming algorithm.

I Lemma 4.2. If k, h, i, s, and t exist such that ρ(k − 1, h, s) = ρ(k, i, t) = true, and phpi

has Fréchet distance ≤ ε to P [s, t], then phpi also has Fréchet distance ≤ ε to P [ŝ, t̂].

Proof. By the above argument, P [s, ŝ] is a line segment that lies completely within distance
ε from ph, and P [t, t̂] is a line segment that lies completely within distance ε from pi.
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We are given that the Fréchet distance between phpi and P [s, t] is at most ε; this means
a mapping f : [s, t] → phpi exists such that |π(x) − f(x)| ≤ ε. Let q = f(s′). Then
|ph − π(ŝ)| ≤ ε and |q − π(ŝ)| ≤ ε, so the line segment phq lies fully within distance ε from ŝ.

Therefore, we can define a new ε-Fréchet mapping between P [ŝ, t̂] and phpi which maps
ŝ to the segment phq, the curve P [ŝ, t] to the segment qpi (following the mapping given by
f), and the segment π(t)π(t̂) to the point pi. J

Now, we can compute the optimal simplification by maintaining a k× n× n table storing
ρ(k, i, t̂), and calculate each value by looking up n2 values for the previous value of k, and
testing in linear time for each combination whether the Fréchet distance between the new
link and P [ŝ, t̂] is within ε or not.

I Theorem 4.3. Given a polyline P = 〈p1, ..., pn〉 and a value ε, we can compute the optimal
polyline simplification of P that has Fréchet distance at most ε to P in O(kn5) time and
O(kn2) space, where k is the output complexity of the optimal simplification.

5 Future Work

A number of challenging open problems remain. First, we would like to know whether
the problem of computing an optimal simplification using the Hausdorff distance remains
NP-hard when the simplification may not have self-intersections. Second, we are interested
in the computational status of the optimal simplification when the simplification need not
use the vertices of the input. Finally, we may consider optimal polyline simplifications using
the weak Fréchet distance.
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Abstract
The Fréchet distance is a popular distance measure for curves which naturally lends itself to
fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical
range searching in the corresponding metric space. However, its inherent complexity poses con-
siderable computational challenges in practice. To address this problem we study distortion of
the probabilistic embedding that results from projecting the curves to a randomly chosen line.
Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show
that in the worst case and under reasonable assumptions, the discrete Fréchet distance between
two polygonal curves in IR2 or IR3 of complexity t degrades by a factor linear in t with constant
probability. We show upper and lower bounds on the distortion.

1 Introduction

The Fréchet distance is a distance measure for curves which naturally lends itself to funda-
mental computational tasks, such as clustering, nearest-neighbor searching, and spherical
range searching in the corresponding metric space. However, their inherent complexity
poses considerable computational challenges in practice. Indeed, spherical range searching
under the Fréchet distance was recently the topic of the yearly ACM SIGSPATIAL GISCUP
competition1, highlighting the relevance and the difficulty of designing efficient data struc-
tures for this problem. At the same time, Afshani and Driemel show lower bounds on the
space-query-tradeoff in the pointer model [1] that demonstrate that this problem is even
harder than simplex-range searching.

The computational complexity of computing a single Fréchet distance between two given
curves is a well-studied topic [2,6–9,12,15]. It is believed that it takes time that is quadratic
in the length of the curves and this running time can be achieved by applying dynamic
programming. In this body of literature, the case of 1-dimensional curves under the continuous
Fréchet distance stands out. In particular, no lower bounds are known on computing the
continuous Fréchet distance between 1-dimensional curves. It has been observed that the
problem has a special structure in this case [10]. Clustering under the Fréchet distance can
be done efficiently for 1-dimensional curves [13], but seems to be harder for curves in the
plane or higher dimensions. Bringmann and Künnemann use projections to lines to speed
up their approximation algorithm for the Fréchet distance [8]. They show that the distance
computation can be done in linear time, if the convex hulls of the two curves are disjoint.
It is tempting to believe that the curves being restricted to 1-dimensional space makes the

∗ Driemel has been supported by NWO Veni project “Clustering time series and trajectories (10019853)”.
Krivošija has been partly supported by DFG within the Collaborative Research Center SFB 876
“Providing Information by Resource-Constrained Analysis”, project A2.

1 6th ACM SIGSPATIAL GISCUP 2017, see also http://sigspatial2017.sigspatial.org/
giscup2017/
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problem significantly easier. However, in the general case, there are no algorithms known
which are faster for 1-dimensional curves than for curves in higher dimensions. In practice, it
is very common to separate x and y components of trajectories to simplify computational
tasks. It seems that in practice the inherent character of a trajectory is often largely preserved
when restricted to one of the coordinates of the ambient space. Mathematically, this amounts
to projecting the trajectory to a line.

This motivates our study of probabilistic embeddings of the Fréchet distance into the space
of 1-dimensional curves. Concretely, we study distortion of the probabilistic embedding that
results from projecting the curves to a randomly chosen line. Such a random projection could
be used in combination with probabilistic data structures, e.g. locality-sensitive hashing [14],
but also with the multi-level data structures for Fréchet range searching given by Afshani
and Driemel [1]. See below for a more in-depth discussion of these data structures.

We show that in the worst case and under certain assumptions, the discrete Fréchet
distance between two polygonal curves in IR2 or IR3 of complexity t degrades by a factor
linear in t with constant probability. In particular, we show upper and lower bounds on
the change in distance for the class of c-packed curves. The notion of the c-packed curves
was introduced by Driemel, Har-Peled and Wenk in [12] and has proved useful as a realistic
input assumption [3,6, 11]. A curve is called c-packed for a value c > 0 if the length of the
intersection of the curve with any ball of any radius r is a most cr. While our study is mostly
restricted to the discrete Fréchet distance, we expect that our techniques can be extended to
the case of the continuous Fréchet distance.

A closely related distance measure, which is popular in the field of data-mining, is dynamic
time warping (DTW). The computational complexity of DTW has also been extensively
studied, both empirically and in theory [3, 16]. Some of our lower bounds extend to DTW.

1.1 Related work
The work that is perhaps closest to ours is a recent result by Backurs and Sidiropoulos [4].
They gave an embedding of the Hausdorff distance into constant-dimensional `∞ space
with constant distortion. More precisely, for any s, d ≥ 1, they obtain an embedding for
the Hausdorff distance over point sets of size s in d-dimensional space, into `sO(s+d)

∞ with
distortion sO(s+d). No such metric embeddings are known for the discrete or continuous
Fréchet distance. It has been shown that the doubling dimension of the Fréchet distance
is unbounded, even in the case when the metric spaces is restricted to curves of constant
complexity [13]. A result of Bartal et al. [5] for doubling spaces implies that a metric
embedding of the Fréchet distance into an `p space would have at least super-constant
distortion, but it is not known how to find such an embedding.

The complexity of classic data structuring problems for the Fréchet distance is still not very
well-understood, despite several papers on the topic. We review what is known for nearest-
neighbor searching and range searching. Indyk [17] gave a deterministic and approximate
near-neighbor data structure for the discrete Fréchet distance. Given n curves which have at
most t vertices, this data structure achieves approximation factor O(log t + log logn) and
has query time O(poly(t) logn). This data structure requires large space, as it precomputes
all queries with curves with

√
t vertices. For short curves (with t ∈ O(logn)) Driemel and

Silvestri [14] described an approximate near-neighbor structure based on locality-sensitive
hashing with approximation factor O(t), query time O(t logn), using space O(n logn+ tn).
LSH is a technique that uses families of hash functions with the property that near points are
more likely to be hashed to the same index than far points. Driemel and Silvestri were the
first to define locality-sensitive hash functions for the discrete Fréchet distance. No such hash
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functions are known for the continuous case. It is conceivable that the concept of signatures
which was introduced by Driemel, Krivosija and Sohler [13] in the context of clustering of
1-dimensional curves could be used to define an LSH for the continuous case and that this
technique could be used in combination with projections to random lines.

Afshani and Driemel recently showed how to leverage semi-algebraic range searching
for this problem [1]. Their data structure also supports polygonal curves of low com-
plexity and answers queries exactly. In particular, for the discrete Fréchet distance they
describe a data structure which uses space in O

(
n(log logn)ts−1) and achieves query time

in O
(
n1−1/d · logO(ts) n · tO(d)

q

)
, where ts denotes the complexity of an input curve and it is

assumed that the complexity of the query curves is upper-bounded by a polynomial of logn.
For the continuous Fréchet distance they describe a data structure for polygonal curves in the
plane which uses space in O

(
n(log logn)O(t2

s)
)
and achieves query time in O

(√
n logO(t2

s) n
)
.

For the case where the curves lie in dimension higher than 2 and the distance measure is the
continuous Fréchet distance, no data structures for range searching or range counting are
known.

1.2 Our results
Given two polygonal curves P and Q with t vertices each from R2 or R3. Consider sampling
a unit vector u in R2 (resp. R3 if the curves lie in R3) uniformly at random and let P ′ and
Q′ be the projections of the two curves to the line supporting u. We show that if the curves
P and Q are c-packed for constant c, then, with constant probability, the discrete Fréchet
distance between the curves P and Q degrades by at most a linear factor in t.

I Theorem 1.1. For any two polygonal curves P and Q and for any γ ∈ (0, 1)

Pr
[
dF (P,Q)
dF (P ′, Q′) ≤

12c+ 16
γ

· t
]
≥ 1− γ.

We also present a lower bound on the ratio of the two distances. The construction of the
lower bound uses c-packed curves with c < 3.

I Theorem 1.2. There exist polygonal curves P and Q, such that for any γ ∈ (0, 1/π)

Pr
[
dF (P,Q)
dF (P ′, Q′) ≥

5πγ
6 · t

]
≥ 1− γ.

Theorem 1.2 holds for the continuous Fréchet distance and for dynamic time warping
distance as well. We also show that there exist polygonal curves P and Q that are not
c-packed for sublinear c and their (continuous or discrete) Fréchet distance degrades by a
linear factor for any projection line (i.e. with probability 1).

2 Preliminaries

Throughout the paper we use the following notational conventions. Consider two polygonal
curves P = {p1, p2, . . . , pt} and Q = {q1, q2, . . . , qt} in Rd given by their sequences of vertices.
We choose a unit vector u in Rd by choosing a point on the (d − 1)-dimensional unit
hypersphere uniformly at random. We denote with L the line through the origin that
supports the vector u. Let P ′ = {p′1, p′2, . . . , p′t} and Q′ = {q′1, q′2, . . . , q′t} be the projections
of P and Q to L, defined by p′i = 〈pi,u〉 and q′j = 〈qj ,u〉, for all 1 ≤ i ≤ t and 1 ≤ j ≤ t.
We denote δi,j = ‖qj − pi‖ and δ′i,j = ‖q′j − p′i‖, for all 1 ≤ i ≤ t and 1 ≤ j ≤ t, i.e. δi,j and
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δ′i,j are the pairwise distances of the vertices for the input curves P and Q and for their
respective projections P ′ and Q′.

We define the discrete Fréchet distance of P and Q as follows: we call the traversal T of
P and Q the sequence of pairs of indices (i, j) of vertices (pi, qj) ∈ P ×Q such that
i) the traversal T starts with (1, 1) and ends with (t, t), and
ii) the pair (i, j) of T can be followed only by one of (i+ 1, j), (i, j + 1) or (i+ 1, j + 1).

We notice that every traversal is monotone. If T is the set of all traversals T of P and Q,
then the discrete Fréchet distance between P and Q is defined as

dF (P,Q) = min
T∈T

max
(i,j)∈T

‖pi − qj‖. (1)

Furthermore, we define a directed, vertex-weighted graph G = (V,E) on the node set
V = {(i, j) : 1 ≤ i, j ≤ t}. A node (i, j) corresponds to a pair of vertices pi of P and qj of
Q and we assign it the weight δi,j . The set of edges is defined as E = {((i, j), (i′, j′)) : i′ ∈
{i, i+ 1}, j′ = {j, j + 1}, 1 ≤ i, i′, j, j′ ≤ t}. The set of paths in the graph G between (1, 1)
and (n, n) corresponds to the set of traversals T . We call a path in G which does not start
in (1, 1) or end in (t, t) a partial traversal of P and Q.

It is useful to picture the nodes of the graph G as a matrix, where rows correspond to
the vertices of P and columns correspond to the vertices of Q. For any fixed value ∆ > 0,
we define the free-space matrix2 F∆ = (φi,j)1≤i,j≤t with

φi,j =
{

1 if ‖qj − pi‖ < ∆
0 if ‖qj − pi‖ ≥ ∆.

Overlaying the graph with the free-space matrix for ∆ > dF (P,Q), we can observe that
there exists a path in the graph from (1, 1) to (t, t) that visits only the matrix entries with
value 1. Moreover, the existence of such a path in the free-space matrix for some value of ∆
implies that ∆ > dF (P,Q).

We define c-packedness of curves as follows.

I Definition 2.1 (c-packed curve). Given c > 0, a curve P ∈ Rd is c-packed if for any point
p ∈ Rd and any radius r > 0, the total length of the curve P inside the hypersphere ball(p, r)
is at most c · r.

We prove the following basic fact about random projections to a line. For a general
problem in Rd the probability bound degrades due to the measure concentration around π/2.

I Lemma 2.2. If the line segment pq is projected to the straight line L, supported by the
unit vector chosen uniformly at random on the unit hypersphere in R2 or R3, the probability
that its length will be reduced by a factor greater than ϕ is at most ϕ.

3 Upper bound

The discrete Fréchet distance between curves P and Q is realized by some pair (pi, qj) of
vertices pi ∈ P and qj ∈ Q, being at the distance ‖pi − qj‖ = δ. We would like to apply
Lemma 2.2 to this pair of vertices to show that the distance is preserved up to some constant
factor. However, it is possible that the pairwise distances in the projection are such that a

2 Note that the conventional definition of the free-space matrix for parameter ∆ is slightly different, since
usually there is an 1-entry iff ‖qj − pi‖ ≤ ∆. We are using this definition since it better suits our needs.
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cheaper traversal is possible that avoids the pair (pi, qj) altogether. Therefore, we apply the
lemma to a subset of pairs of vertices of P and Q whose distance is large (e.g. larger than
∆ = δ/θ for some small value of θ ≥ 1) and such that the chosen set forms a hitting set for
the set of traversals T . To this end we introduce the notion of the guarding set:
I Definition 3.1 (Guarding set). For any two polygonal curves P = {p1, . . . , pt} and Q =
{q1, . . . , qt} and a given parameter θ ≥ 1, a θ-guarding set B ⊆ V for P and Q is a subset of
the set of vertices of G that satisfies the following conditions:
a) (distance property) for all (i, j) ∈ B, it holds that δi,j ≥ dF (P,Q) /θ, and
b) (guarding property) for any traversal T of P and Q, it is T ∩B 6= ∅.

Note that the set B “guards” every traversal of P and Q in the sense that any path in G
from (1, 1) to (t, t) has non-empty intersection with B. In other words, B is a hitting set for
the set of traversals T . We can prove the following lemma using Lemma 2.2 for all elements
of B in a union bound.
I Lemma 3.2. Given parameter θ ≥ 1, if B is a θ-guarding set for the given curves
P = {p1, . . . , pt} and Q = {q1, . . . , qt} from R2 or R3, and if P ′ and Q′ are their projections
to the straight line L, whose support unit vector u is chosen uniformly at random on the unit
hypersphere, then for any β > 1 it holds that

dF (P ′, Q′)
dF (P,Q) ≥

1
β · θ · |B|

with positive constant probability at least 1− 1/β.
To show existence of a θ-guarding set B for any θ ≥ 1 we can construct such a set using

breadth-first-search over graph G. Unfortunately, such built set B can have a quadratic
number of elements in terms of the input size in the general case.

If the input curves P and Q are c-packed for some constant c, c ≥ 2, then we construct
the 1-guarding set B and modify it using the trimming operation based on Lemma 3.3. The
idea is to trim the part of the graph G reachable by a partial traversal from (1, 1) that does
not pass through any of the vertices of B. See Figure 1 for an illustration.
I Lemma 3.3. Given point p and a c-packed curve Q = {q1, . . . , qt} from Rd. Then for any
value b > 0 there exists a value r ∈ [b/2, b], such that the hypersphere centered at p with
radius r intersects or is tangent to at most 2c edges of Q.

F before
b =




. . .

0 0 0 0 0 . . .

0 0 1 1 0 . . .

0 1 1 0 0 . . .

0 1 1 0 0 . . .

1 1 1 1 1 . . .




F after
b/2 =




. . .

0 0 0 0 0 . . .

0 0 1 1 0 . . .

0 1 1 0 0 . . .

0 0 0 0 0 . . .

1 1 1 1 1 . . .




Figure 1 The elements of a guarding set (marked with boxes) before (left) and after (right)
applying the trimming operation to the second row. The removed pairs are marked by circles

We call a pair (i, j) ∈ B avoidable if there are two traversals of P and Q which guarantee
that the pair (i, j) can be removed from the guarding set. Lemma 3.4 describes the algorithm
to obtain a 4-guarding set whose size will be at most (3c+ 4) · t.

We omit discussion of our lower bounds due to space constraints.

EuroCG’18



26:6 Probabilistic embeddings of the Fréchet distance

I Lemma 3.4. Let B be a 1-guarding set.
(i) After the first phase of the algorithm, which removes all avoidable pairs, the modified

set B is a 1-guarding set.
(ii) After the second phase of the algorithm, which applies the trimming operation to each

row with b = dF (P,Q), the modified set B is a 2-guarding set.
(iii) After the third phase of the algorithm, which applies the trimming operation to each

column with b = dF (P,Q) /2, the modified set B is a 4-guarding set.

Acknowledgements. We want to thank Kevin Buchin for useful discussions on the topic of
this paper.
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Abstract
A tree is one of the most fundamental structures of graphs and has good properties on layouts,
while it is weak from a fault-tolerant point of view. Motivated by these points of view, we consider
an augmentation problem for a tree to increase fault-tolerance while preserving its good property
on book-embeddings. A k-arbor-connected graph is a graph which has k spanning trees such that
for any two vertices, the k paths between them in the k spanning trees are pairwise edge-disjoint
and internally vertex-disjoint. We show that any tree with n vertices can be augmented in O(nk)
time to a minimum k-arbor-connected graph with pagenumber k for any k at most the radius of
the tree. Our result is optimal for both the number of added edges and the number of pages for
a book-embedding of a resultant graph. Besides, we extend our augmentation for trees to cacti.

1 Introduction

Throughout the paper, a graph means a simple undirected graph. Let G = (V,E) be a
graph. An augmentation problem for a graph is to find a set E′ of pairs of non-adjacent
vertices in G such that the augmented graph G′ = (V,E ∪ E′) satisfies a given condition.

A book is a structure consisting of a line called the spine and half planes called pages
sharing the spine as a common boundary. A k-page book-embedding of G is defined by an
assignment of the vertices of G to distinct points on the spine, i.e., a vertex-ordering σ of
V (G), and an assignment of the edges of G to pages such that no two edges assigned to the
same page cross, where two edges uv and xy cross under σ if σ(u) < σ(x) < σ(v) < σ(y).
The pagenumber pn(G) of G is the minimum number of pages for a book-embedding of
G. Book-embeddings have applications to VLSI layouts and there are many results on
the subject until now (e.g., see [1, 2, 4]). In particular, one of the most famous results on
book-embeddings is that every planar graph can be embedded in 4 pages [15].

Let T1, T2, . . . , Tk be spanning trees in G. If for any two vertices of G, the k paths
between them in T1, T2, . . . , Tk are pairwise edge-disjoint and internally vertex disjoint,
then T1, T2, . . . , Tk are completely independent spanning trees in G. Completely independent
spanning trees can be applied to fault-tolerant communication problems, e.g., fault-tolerant
broadcasting problems, since by deleting any k− 1 vertices, at least one of the k completely
independent spanning trees keeps its connectedness. We define the arbor-connectivity of G
as the maximum number τ(G) of completely independent spanning trees in G, and G is
k-arbor-connected if τ(G) ≥ k. So far, arbor-connectedness of graphs has been studied for
graph classes related to interconnection networks (e.g., see [3,5,12]). It has also been shown
that every maximal 4-connected planar graph is 2-arbor-connected [7], and G is ⌊nk ⌋-arbor-
connected if the minimum degree of G is at least n − k where 3 ≤ k ≤ n

2 [8]. Although
any k-arbor-connected graph is k-vertex-connected, it has been proved [13] that there is
no direct relationship between the vertex-connectivity and the arbor-connectivity; for any
k ≥ 2, there exists a k-vertex-connected graph G with τ(G) = 1. From an algorithmic
point of view, it has been shown that the problem of deciding whether a given graph is
2-arbor-connected is NP-complete [7].
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A tree is one of the most fundamental structures of graphs and has good properties
on layouts, e.g., the pagenumber of a tree is one. On the other hand, a tree is weak
from a fault-tolerant point of view since it can be disconnected by deleting only one vertex.
Motivated by these points of view, we consider an augmentation problem for a tree to increase
fault-tolerance while preserving its good property on book-embeddings. On connectivity
augmentation of graphs with geometric constraints, there are many results until now (see [9]).
In particular, Kant and Bodlaender [10] have shown that the planarity-preserving minimum
2-vertex-connectivity augmentation problem is NP-hard, and Rutter and Wolff [14] have
proved that the corresponding 2-edge-connectivity version is also NP-hard.

In this paper, we show that any tree T can be augmented in O(nk) time to a minimum
k-arbor-connected graph T ∗ which can be embedded in k pages for any k at most the radius
of T . Every graph with n vertices and m edges needs at least ⌈m−n

n−3 ⌉ pages for its book-
embedding, which follows from the fact that a graph with pagenumber one is outerplanar [2].
This means that any k-arbor-connected graph cannot be embedded in k − 1 pages, i.e., the
pagenumber of T ∗ is determined to be k. Thus, our augmentation result is optimal for both
the number of added edges and the number of pages for a book-embedding of a resultant
augmented graph. Our augmented graph T ∗ also has a property that T ∗ is decomposed into
completely independent spanning trees T1, T2, . . . , Tk such that each Ti can be embedded in
one page under the same vertex-ordering. Besides, we extend our augmentation for trees to
cacti and present an augmentation result for cycles.

2 Preliminaries

Given a set F of edges, the graph induced by F is denoted by ⟨F ⟩, i.e., V (⟨F ⟩) = {u | uv ∈ F}
and E(⟨F ⟩) = F . The distance dG(u, v) of vertices u and v in a connected graph G is the
length of a shortest path between u and v. The eccentricity eG(w) of a vertex w in G is
maxv∈V (G) dG(w, v). The diameter diam(G) of G is maxw∈V (G) eG(w) and the radius rad(G)
of G is minw∈V (G) eG(w). A central vertex of G is a vertex v with eG(v) = rad(G). The
center of G is the set of central vertices of G. Let T be a tree rooted at a vertex r. The
ℓ-ancestor pℓ(v) of a vertex v in T is a vertex w which is on the path from r to v such
that dT (v, w) = ℓ. If w is the ℓ-ancestor of v, then v is an ℓ-descendant of w. The set of
ℓ-descendants of w is denoted by Dℓ(w). The lowest common ancestor lcaT (u, v) of u and v

in T is a common ancestor w of u and v in T such that there is no descendant of w which
is a common ancestor of u and v. The height h(T ) of T is maxv∈V (T ) dT (r, v). A leaf of T
is a vertex with degree one, while an internal vertex of T is a vertex with degree greater
than one. The set of internal vertices in T is denoted by VI(T ). A star is a tree in which
there exists at most one internal vertex. A cut-vertex of G is a vertex v such that the graph
obtained from G by deleting v is disconnected. A block of G is a maximal subgraph of G
without a cut-vertex. A cactus is a graph whose every block is either a cycle or the complete
graph with two vertices. A cycle edge of a cactus is an edge on a cycle. A unicyclic graph G
is a graph with exactly one cycle and the cycle is denoted by C(G).

Let σ be a vertex-ordering of G, i.e., a bijection from V (G) to {1, 2, . . . , |V (G)|}. When
σ(u) < σ(v), we simply write u <σ v. For u, v ∈ S ⊆ V (G), if u <σ v such that there is no
vertex w ∈ S with u <σ w <σ v, then u and v are consecutive in S under σ and we write
u⋖σ,Sv. When S = V (G), we may write u⋖σv. In order to construct completely independent
spanning trees, we use a characterization shown in [6]; spanning trees T1, T2, . . . , Tk in G

are completely independent if and only if E(Ti)∩E(Tj) = ∅ and VI(Ti)∩VI(Tj) = ∅ for any
1 ≤ i < j ≤ k.
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3 Results

▶ Theorem 3.1. Any tree T with n vertices can be augmented to a minimum k-arbor-
connected graph with pagenumber k for any 2 ≤ k ≤ rad(T ) in O(nk) time.

Proof. If T has two central vertices, then let x and y be the central vertices of T . Note that
xy ∈ E(T ). Otherwise, let x be the central vertex of T and let y a vertex adjacent to x such
that y is on a path between x and a vertex v with dT (x, v) = rad(T ). Let T+ be the tree
obtained from T by adding a new vertex z, joining it to x and y, and deleting the edge xy.
In what follows, ancestors and descendants of a vertex are defined based on T+ rooted at z
unless otherwise stated. For any vertex u in T+, Tu denotes the subtree rooted at u in T+.
By the definitions of x and y, it holds that h(Tx) = rad(T ) ≥ h(Ty) ≥ rad(T )− 1.

Regarding the vertex z as the root of T+, compute a depth-first-search ordering σ+ :
V (T+) 7→ {1, 2, . . . , n + 1}, where σ+(z) = 1. Then, let σ : V (T ) 7→ {1, 2, . . . , n} be the
vertex-ordering of T defined to be σ(v) = σ+(v) − 1. Now let Vi = Di+1(z) for 0 ≤ i <

rad(T ). Also, let Wℓ =
∪
i mod k=ℓ Vi for each 0 ≤ ℓ < k. We first divide E(T ) − {xy} into

k subsets E1, E2, . . . , Ek defined as follows: for each 1 ≤ i ≤ k,
Ei = {vw | v ∈Wi−1, w ∈ D1(v)}.

The set of added edges in our augmentation is divided into three types defined as follows:
for each 1 ≤ i ≤ k,

Ai = {vw | v ∈Wi−1, w ∈ Dj(v), 2 ≤ j ≤ k},
Bi = {uw | u, v ∈ Vi−1, u ⋖σ,Vi−1 v, σ

−1(maxu′∈V (Tu) σ(u′)) <σ w ≤σ v},
B′
i = {wv | v = σ−1(maxu′∈Vi−1 σ(u′)),

w <σ σ
−1(minu′∈Vi−1 σ(u′)) or σ−1(maxu′∈V (Tv) σ(u′)) <σ w}.

Note that B1 = {xy}. Based on these sets, we define T1, T2, . . . , Tk as Ti = ⟨Ei∪Ai∪Bi∪B′
i⟩

for 1 ≤ i ≤ k. We then show that T1, T2, . . . , Tk are completely independent spanning trees
in T ∗ = T1 ∪ T2 ∪ · · · ∪ Tk such that each Ti can be embedded in one page under σ, which
implies that the augmented graph T ∗ ⊇ T is a minimum k-arbor-connected graph with
pagenumber k.

The graph ⟨Ei⟩ is a disjoint union of stars whose central vertices are in Wi−1. The
augmented graph ⟨Ei∪Ai⟩ is a disjoint union of |Vi−1| trees, each of which is obtained from
the stars in ⟨Ei⟩ by joining each vertex in Wi−1 and all its ℓ-descendants for 2 ≤ ℓ ≤ k.
Thus, V (⟨Ei ∪ Ai⟩) = V (T ) − ∪0≤j<i−1Vj . The |Vi−1| subtrees are connected by the edges
uv for u⋖σ,Vi−1 v in Bi, and moreover all the vertices in ∪0≤j<i−1Vj are joined to a vertex in
Vi−1 by other edges in Bi∪B′

i. Therefore, ⟨Ei∪Ai∪Bi∪B′
i⟩ is a tree with vertex set V (T ).

Note that any edge in Bi ∪B′
i joins a vertex w in ∪0≤j<i−1Vj and a vertex in Vi−1 which is

not a descendant of w. In each Ti, every vertex in V (T )−Wi−1 is directly joined to a vertex
in Wi−1 which means that every vertex in V (T ) −Wi−1 is a leaf of Ti and VI(Ti) ⊆ Wi−1.
Since Wi ∩Wj = ∅ for any 0 ≤ i < j < k, VI(Ti) ∩ VI(Tj) = ∅ for any 1 ≤ i < j ≤ k. Now
assume that e = uv ∈ E(Ti)∩E(Tj) for some i < j. Then, e is incident to a vertex in Wi−1
and a vertex in Wj−1. If uv ∈ Bi ∪B′

i, then u ∈ Vi−1 and v must be in Vℓ where 0 ≤ ℓ < i

which is a contradiction. Thus, uv ∈ Ai such that u ∈ Vkt+i−1, v ∈ Vkt+j−1 for some t ≥ 0.
This means that u is an ancestor of v. However, no ancestor of v is joined to v as a leaf of
Tj . Therefore, E(Ti) ∩ E(Tj) = ∅ for any 1 ≤ i < j ≤ k. Consequently, T1, T2, . . . , Tk are
completely independent spanning trees.

The graph ⟨Ei ∪ Ai⟩ is a disjoint union of |Vi−1| trees S1, S2, . . . , S|Vi−1| such that the
vertex set of each Si corresponds to the vertex set of a subtree rooted at a vertex in Vi−1.
From a property of a depth-first-search, for any subtree, the vertices in the subtree are
consecutive in V (T ) under σ. Thus, it can be inductively shown (on the height) that Si can
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be embedded in one page under σ. All the vertices in ∪0≤j<i−1Vj are isolated in ⟨Ei ∪ Ai⟩
such that no vertex in ∪0≤j<i−1Vj is placed between vertices of any subtree Si. Hence, no
crossing of edges is produced by adding the edges in Bi ∪ B′

i to ⟨Ei ∪ Ai⟩. Therefore, each
Ti can be embedded in one page under the same vertex-ordering σ.

The vertices x and y can be computed in linear time by applying a breadth-first-search
twice. The vertex ordering σ follows from σ+ which is obtained by applying a depth-first-
search to T+ from z. In the depth-first-search, p1(v) and σ−1(maxu′∈V (Tv) σ(u′)) can also be
found for each vertex v. By a depth-first-search, Vi−1,Wi−1, the ordering relation ⋖σ,Vi−1 ,
σ−1(minu′∈Vi−1 σ(u′)), and σ−1(maxu′∈Vi−1 σ(u′)) can be computed in O(n) time. Here, Ei

and Ai can be rewritten by
Ei = {p1(v)v | v ̸∈ {x, y}, v ∈Wi mod k},
Ai = {pj(v)v | v ∈ V (T ), pj(v) ∈Wi−1, 2 ≤ j ≤ k}.

For each vertex v and each 1 < j ≤ k, pj(v) can be computed in O(k) time. Therefore, the
sets Ei, Ai, Bi, and B′

i for 1 ≤ i ≤ k can be computed in O(nk) time. ◀

When k = 2, a star is the only tree to which Theorem 3.1 cannot be applied. However,
a star can be easily augmented to a minimum 2-arbor-connected graph with pagenumber
2 as follows. Let Sn be a star with vertex set {v1, v2, . . . , vn} such that v1 is the central
vertex of Sn. We augment Sn to a wheel graph Wn by adding the edges in {vivi+1 | 2 ≤ i <

n} ∪ {v2vn}. Let E1 = {v1vi | 2 ≤ i < n} ∪ {v2vn} and E2 = {vivi+1 | 2 ≤ i < n} ∪ {v1vn}.
Then, ⟨E1⟩ and ⟨E2⟩ are edge-disjoint spanning trees such that VI(⟨E1⟩) = {v1, v2} and
VI(⟨E2⟩) = {v3, . . . , vn}. Thus, ⟨E1⟩ and ⟨E2⟩ are completely independent spanning trees,
and therefore Wn is a minimum 2-arbor-connected graph. Employing the vertex-ordering σ

defined as v1 <σ vn <σ v2 <σ . . . <σ vn−1, each ⟨Ei⟩ can be embedded in one page under
σ. Thus, we have the following corollary.

▶ Corollary 3.2. Any tree can be augmented to a minimum 2-arbor-connected graph with
pagenumber 2 in linear time.

It follows from Corollary 3.2 that any tree can be augmented to a minimum planar
2-arbor-connected graph in linear time, since a graph with pagenumber 2 is planar.

We here remark that in the proof of Theorem 3.1 other constructions can be employed
if we do not insist on the upper bound on k. Select a path P with |V (P )| ≥ 3 and consider
the |V (P )| subtrees each of which is rooted at a vertex in P (instead of two subtrees Tx and
Ty). Then, we can construct a minimum k-arbor-connected graph where k is at most the
maximum j such that there exist two vertices in P both of which have a (j− 1)-descendant.
In fact, we employ such a construction to prove Theorem 3.5.

Given a graph G with a vertex-ordering σ of a t-page book-embedding of G, let P be
the path with V (P ) = V (G) and E(P ) = {σ−1(i)σ−1(i + 1) | 1 ≤ i < n, i ̸= ⌊n2 ⌋} ∪
{σ−1(1)σ−1(⌊n2 ⌋+1)}. According to the proof of Theorem 3.1, we augment P to P ∗. Then,
G∪P ∗ is a k-arbor-connected graph with pagenumber at most t+k. From this observation,
we have the following existential result.

▶ Corollary 3.3. For any graph G with n vertices and for any 2 ≤ k ≤ n
2 , there exists a

k-arbor-connected graph G∗ ⊇ G with pn(G∗) ≤ pn(G) + k.

Next, we extend Theorem 3.1 to the class of cacti.

▶ Theorem 3.4. Any cactus G can be augmented to a minimum k-arbor-connected graph
with pagenumber k for any ⌊ ℓG2 ⌋+1 ≤ k ≤ rad(G) in O(nk) time, where ℓG is the maximum
length of a cycle in G.
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Proof. Let x be a central vertex of G and y a vertex adjacent to x such that y is on a
path between x and a vertex v with dG(x, v) = rad(G). Let G+ be the graph obtained
from G − xy by adding a new vertex z with new edges xz and yz. Besides, let T+ be a
breadth-first-search tree of G+ from z. For each cycle C in G, there is exactly one cycle edge
in E(C) ∩ (E(G+)− E(T+)) and we denote by f(C) the cycle edge. Now let Vi = Di+1(z)
for 0 ≤ i < rad(G) and Wℓ =

∪
i mod k=ℓ Vi for each 0 ≤ ℓ < k. Consider a depth-first-search

ordering σ+ of the tree T+ from z such that for any f(C) = aCbC with aC <σ+ bC ,
if aC ∈ Vi, then bC ∈ Vi ∪ Vi−1,
if aC <σ+ v <σ+ bC , then v is either a descendant of aC or an ancestor of bC .

Define σ as σ(v) = σ+(v) − 1 for any v ∈ V (G). Similarly to the proof of Theorem 3.1, we
define Ei, Ai, Bi, B

′
i and then let Ti = ⟨Ei ∪ Ai ∪ Bi ∪ B′

i⟩ for 1 ≤ i ≤ k. Consider a cycle
edge f(C) = aCbC with aC <σ bC . If aC ∈ Vi where i < k, then the cycle edge is used in
Ti since f(C) ∈ ∪1≤i≤kBi from the properties of σ+. Note that if xy is on a cycle C ′, then
f(C ′) ∈ ∪1≤i≤kBi. Suppose that aC ∈ Vkt+i where t ≥ 1 and 0 ≤ i < k. Let rC be the k-
ancestor of aC . Since k ≥ ⌊ ℓG2 ⌋+1, the subtree rooted at rC contains the vertex lca(aC , bC).
LetM(C) = {w | σ−1(maxv∈V (TaC ) σ(v)) <σ w ≤σ bC}. Note that {rCw | w ∈M(C)} ⊆ Ai.
Replace E(Ti) with (E(Ti) − {rCw | w ∈ M(C)}) ∪ {aCw | w ∈ M(C)}. Let T ′

1, T
′
2, . . . , T

′
k

be the spanning trees obtained by doing the modification for each cycle edge f(C). Since
any edge in {aCw | w ∈M(C)} is not used in T1∪T2∪ · · ·∪Tk, the resultant spanning trees
are completely independent spanning trees such that their union contains G. Besides, from
the second property of σ+, each T ′

i can be embedded in one page under σ.
It has been shown in [11] that the center of a cactus can be found in linear time. Thus, x

(and also y) can be found in linear time. By applying a breadth-first-search to G+ from z, we
can find f(C) for each cycle C and label the end-vertices so that dG+(z, aC) ≥ dG+(z, bC).
Besides, we can find lca(aC , bC) and recognize all the edges of C in O(k) time. Let a′C (resp.,
b′C) be the vertex adjacent to lca(aC , bC) on the path from lca(aC , bC) to aC (resp., bC). We
then apply a depth-first-search in which for each cycle C, each edge p1(v)v on the path from
a′C to aC is traversed as the last edge in {p1(v)w | w ∈ D1(p1(v))} for the search of Ta′

C
and

just after the search of Ta′
C
, the traversal proceeds through the path from b′C to bC . This

depth-first-search generates σ+ satisfying the above two properties in O(n) time. For each
cycle edge f(C), the corresponding modification can be done in O(k) time and the number
of cycle edges is at most ⌊n−1

2 ⌋. Therefore, we can obtain a minimum k-arbor-connected
graph containing G with pagenumber k in O(nk) time. ◀

Although Theorem 3.4 cannot be applied to cycles, we can show the following result.

▶ Theorem 3.5. Any cycle C with n vertices can be augmented to a minimum k-arbor-
connected graph with pagenumber k for any 2 ≤ k ≤ n

2 .

Proof. Let T be the path obtained from C by deleting one edge ab of C. Suppose that n
is even. Let x and y be the central vertices of T . Construct a minimum k-arbor-connected
graph T ∗ according to the construction in the proof of Theorem 3.1. Let q = n−2

2 mod k.
Let Vq = {a′, b′} such that dT (a, a′) = dT (b, b′) < n

2 . If q ̸= 0, then by replacing the edges in
Bq+1 ∪B′

q+1 with the edges in {pj(b′)a | 1 ≤ j ≤ q} ∪ {pj(a′)b | 1 ≤ j ≤ q} ∪ {ab} in Tq+1,
we obtain a desired graph. Suppose that q = 0 and x′x, xy, yy′ ∈ E(T ). Define T+

4 as the
tree obtained from T by deleting the edges x′x, xy, yy′ and adding the new vertex z with the
edges zx′, zx, zy, zy′. Based on T+

4 instead of T+ in the proof of Theorem 3.1, we construct
T1, T2, . . . , Tk under the condition x′ <σ x <σ y <σ y

′. Note that in this construction, V0 =
{x′, x, y, y′}, B1 = {x′x, xy, yy′} and a, b ∈ Wk−1. By modifying Tk in a similar fashion for
Tq+1 in the case that q ̸= 0, we have a desired graph. Suppose that n is odd and x is the center
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of T such that x1x2, x2x, xx3, x3x4 ∈ E(T ). Let r = n−3
2 mod k. Define T+

3 (resp., T+
5 )

as the tree obtained from T by deleting the edges x2x, xx3 (resp., x1x2, x2x, xx3, x3x4) and
adding the new vertex z with the edges zx2, zx, zx3 (resp., zx1, zx2, zx, zx3, zx4). Similarly
to the case that n is even and q = 0, we have the desired result by considering T+

3 (resp.,
T+

5 ) and modifying Tr+1 (resp., Tk) if r ̸= 0 (resp., r = 0). ◀

We finally remark that the constructions shown in Theorem 3.5 can be generalized to a
unicyclic graph G for 2 ≤ k ≤ |V (C(G))|

2 by additional discussions.

4 Conclusion

We have shown that any tree with n vertices can be augmented in O(nk) time to a minimum
k-arbor-connected graph with pagenumber k for any k at most the radius of the tree. Besides,
we have extended the result to cacti and presented an augmentation result for cycles.

It would be interesting to consider augmentation problems for a tree to a minimum
k-arbor-connected graph while preserving other good geometric properties of a tree.
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Abstract
A drawing of a graph is called 1-planar if every edge is crossed at most once. A 1-planar drawing
is called independent-crossing planar (IC-planar) if no two pairs of crossing edges share a vertex.
A 1-planar drawing is called near-independent-crossing planar (NIC-planar) if any two pairs of
crossing edges share at most one vertex. The 1-planar, NIC-planar, and IC-planar graphs are the
graphs that admit a 1-planar, NIC-planar, and IC-planar drawing, respectively. The NIC-planar
graphs are a subset of the 1-planar graphs and a superset of the IC-planar graphs, which are
important beyond-planar graph classes. We constructively show that every n-vertex NIC-plane
graph admits a NIC-planar drawing with only right-angle crossings (RAC) and at most one bend
per edge on a grid of size O(n) × O(n). Our construction takes linear time. We also give an
overview of the relationships between several classes of 1-planar and RAC graphs.

1 Introduction

In graph theory and graph drawing, beyond-planar graph classes have experienced increasing
interest in recent years. A prominent example is the class of 1-planar graphs, that is,
graphs that admit a drawing where each edge is crossed at most once. 1-planar graphs were
introduced by Ringel [13] in 1965; Kobourov et al. [11] surveyed them recently. Another
example that has received considerable attention are RACk graphs, that is, graphs that
admit a poly-line drawing where all crossings are at right angles and each edge has at most k

bends. RACk graphs were introduced by Didimo et al. [7]. We investigate the relationships
between (certain subclasses of) 1-planar graphs and RACk graphs that admit drawings on a
polynomial-size grid. Known results and our contributions are summarized in Fig. 1.

Basic Terminology. A mapping Γ is called a drawing of the graph G = (V, E) if each
vertex v ∈ V is mapped to a point in R2 and each edge {u, v} is mapped to a simple open
Jordan curve in R2 such that the endpoints of this curve are Γ(u) and Γ(v). For convenience,
we will refer to the points and simple open Jordan curves of a drawing as vertices and edges.
The topologically connected regions of R2 \ Γ are called faces of Γ. The unbounded face of Γ
is called outer face; the other faces are inner faces. An equivalence class of drawings of a
graph G having the same set of faces and the same outer face is called an embedding of G.

A k-bend (poly-line) drawing is a drawing in which every edge is drawn as a connected
sequence of at most k + 1 line segments. The up to k inner vertices of an edge connecting
these line segments are called bend points or bends. A 0-bend drawing is called straight-line.
A drawing on the grid of size w×h is a drawing where every vertex, bend point, and crossing
point has integer coordinates in the range [0, w]× [0, h]. Recall that a drawing is 1-planar if
every edge is crossed at most once. A 1-planar drawing is called independent-crossing planar
(IC-planar) if no two pairs of crossing edges share a vertex. A 1-planar drawing is called
near-independent-crossing planar (NIC-planar) if any two pairs of crossing edges share at
most one vertex. A drawing is called right-angle-crossing (RAC ) if it is a poly-line drawing
and for each crossing point c, there are at most two edges that cross in c, there is no bend
point in c, and the line segments of the edges that cross in c intersect in a right angle. As
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 Relationships between (beyond-)planar graphs and RAC graphs. Our main results are
the containment relationships indicated by the thick red arrows.

mentioned above, a drawing is called RACk if it is RAC and k-bend. The planar, 1-planar,
NIC-planar, IC-planar, and RACk graphs are the graphs that admit a crossing-free, 1-planar,
NIC-planar, IC-planar, and RACk drawing, respectively. More specifically, RACpoly

k is the
set of graphs that admit a RACk drawing on a grid of size polynomial in the number of
vertices. A plane, 1-plane, NIC-plane, and IC-plane graph is a graph given with a specific
planar, 1-planar, NIC-planar, and IC-planar embedding, respectively.

Previous Work. In the diagram in Fig. 1, we give an overview of the relationships between
classes of 1-planar graphs and RACk graphs. Clearly, the planar graphs are a subset of the
IC-planar graphs, which are a subset of the NIC-planar graphs, which are a subset of the
1-planar graphs. It is well known that every plane graph can be drawn with straight-line
edges on a grid of quadratic size [6, 14]. Every IC-planar graph admits an IC-planar RAC0
drawing but not always in polynomial area [4]. Moreover, there are graphs in RACpoly

0
that are not 1-planar [8] and, therefore, also not IC-planar. The class of RAC0 graphs is
incomparable with the classes of NIC-planar graphs [1] and 1-planar graphs [8]. Bekos et
al. [2] showed that every 1-planar graph admits a 1-planar 1-bend RAC drawing, but their
recursive drawings may need exponential area. Brandenburg [3] claimed that every 1-planar
graph admits a 1-planar 1-bend RAC drawing where the vertices lie on a polynomial-size grid.
In a private communication, he later retracted his claim—therefore, this question remains
open. Every graph admits a RAC3 drawing in polynomial area [7]. This does not hold if a
given embedding of a planarization of the graph must be preserved [7].

Our Contributions. Our main result is as follows.

I Theorem 1. Every n-vertex NIC-planar graph G admits a NIC-planar 1-bend RAC drawing
on a grid of size (16n− 32)× (8n− 16). Given a NIC-planar embedding E of G, a drawing
that has these characteristics and respects E can be computed in O(n) time.

For IC-plane graphs, this reduces the number of bends compared to a recent result of
Liotta and Montecchiani [12] who showed that every IC-planar graph admits an IC-planar
RAC2 drawing on a grid of quadratic size. We have also shown (see Zink’s master’s thesis [15])
that every 1-plane graph admits a 1-planar RAC2 drawing in polynomial area and, by a small
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(a) crossing as it
initially appears

vdummy

(b) empty kite and sub-
divided original edge

(c) empty quadrangle (d) divided quadrangle

Figure 2 Modifications of crossings and computation of the biconnected canonical ordering.

modification of the algorithm by Bekos et al. [2], that not only every 1-planar, but even every
1-plane graph admits a 1-planar RAC1 drawing. We can also show, by a small modification
of the algorithm by Brandenburg et al. [4], that not only every IC-planar, but even every
IC-plane graph without so called B-configurations admits a IC-planar RAC0 drawing. Due
to space considerations, we omit these results here.

2 1-Bend RAC Drawings of NIC-Plane Graphs in Quadratic Area

Our algorithm takes an n-vertex NIC-plane graph (G, E) as input and returns a NIC-planar
RAC1 drawing of G on a grid of size O(n)× O(n) while maintaining E . We now describe
the algorithm. We omit a formal correctness proof due to lack of space.

Preprocessing. We first aim to make the NIC-plane input graph biconnected and planar so
that we can draw it using the algorithm by Harel and Sardas [9]. Around each crossing in E ,
we insert up to four dummy edges to obtain empty kites. A kite is a K4 that is embedded
such that (i) every vertex lies on the boundary of the outer face, (ii) there is exactly one
crossing, and (iii) this crossing doesn’t lie on the boundary of the outer face. A kite K as a
subgraph of a graph H is said to be empty if there is no edge of H\K that is on an inner
face of K or crosses edges of K. Whenever we insert a dummy edge, we may create a pair of
parallel edges. Then, we subdivide the original edge participating in this pair by a dummy
vertex (see the transition from Fig. 2a to 2b). Note that we never create parallel dummy
edges since G is NIC-planar. After this, we remove both crossing edges from each empty kite
and obtain empty quadrangles (see Fig. 2c). We store each such empty quadrangle in a list Q.
At the end of the preprocessing, we make the resulting plane graph biconnected via, e.g., the
algorithm of Hopcroft and Tarjan [10]. Let (G′, E ′) be the resulting plane biconnected graph.

Drawing Step. Now, we draw a graph that we obtain from (G′, E ′). We use the algorithm
by Harel and Sardas [9], which is a generalization of the algorithm of Chrobak and Payne [5],
which in turn is based on the shift algorithm of de Fraysseix et al. [6]. The algorithm of Harel
and Sardas consists of two phases. Given a plane biconnected graph H, in the first phase a
biconnected canonical ordering Π of the vertices in the plane input graph is computed. In
the second phase, H is drawn according to Π on a grid of size (2|V (H)| − 4)× (|V (H)| − 2).
Biconnected canonical orderings are a generalization of canonical orderings that assume only
biconnectivity (instead of triconnectivity). Unlike the classical shift algorithm, the algorithm
of Harel and Sardas computes the (biconnected) canonical ordering bottom-up, which we will
exploit here. Let Πk = (v1, . . . , vk) be a partial biconnected canonical ordering of H after
step k, and let Hk be the plane subgraph of H induced by Πk. We say that a vertex u is
covered by vk if u is on the boundary of the outer face of Hk−1, but not on that of Hk.

We perform the following additional operations when we compute the biconnected
canonical ordering. Whenever we reach an empty quadrangle q = (a, b, c, d) in the list Q for

EuroCG’18



28:4 1-Bend RAC Drawings of NIC-Planar Graphs in Quadratic Area

a

b

c

d

(a) divided quadrangle in
Case 1; vlast = c

a

b

c

d
vshift

(b) divided quadrangle in Case 2;
vlast = d and b is covered by c

a

b = vlower

c

d = vlast

vdummy

(c) divided quadrangle in Case 3;
vlast = d and b is not covered by c

a

b

c

d
e{a,c}

e{b,d}

(d) Case 1 after inserting
the crossing edges

a

b

c

d

e{b,d}

e{a,c} pcross

(e) Case 2 after inserting the
crossing edges

a

b = vlower

c

d = vlast

vdummy
e{b,d} e{a,c}

∆y

∆y

(f) Case 3 after inserting the cross-
ing edges

Figure 3 The three cases of the drawing step (a)–(c) and the reinsertion step (d)–(f) in our
algorithm. For orientation, lines with slope 1 or −1 are dashed violet.

the first time, i.e., when the first vertex of q—say a—is added to the biconnected canonical
ordering, we insert an edge inside q from a to the vertex opposite a in q, that is, to c. We call
the resulting structure a divided quadrangle (see Fig. 2d). In two special cases, we perform
further modifications of the graph. They will help us to guarantee a correct reinsertion of
the crossing edges in the next step of the algorithm. Namely, when we encounter the last
vertex vlast ∈ {b, c, d} of q, we distinguish three cases.
Case 1: vlast = c (see Fig. 3a).

In this case, we perform no extra operation.
Case 2: vlast ∈ {b, d}, and the other of these two vertices is covered by c (see Fig. 3b).

We insert a dummy vertex vshift, which we call shift vertex, into the current biconnected
canonical ordering directly before vlast and make it adjacent to a and c. Later, we will
remove vshift, but for now it forces the algorithm of Harel and Sardas to shift a and c away
from each other before vlast is added.
Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 3c).

Let {vlower} = {b, d}\vlast. We subdivide the edge {a, vlower} via a dummy vertex vdummy.
If {a, vlower} is an original edge of the input graph, this edge will be bent at vdummy in the
final drawing. We insert vdummy into the current biconnected canonical ordering directly
before vlower. To obtain a divided quadrangle again, we insert the dummy edge {a, vlower},
which we will remove before we reinsert the crossing edges. This will give us some extra
space inside the triangle (a, vdummy, vlower) for a bend point.

We draw the resulting plane biconnected n̂-vertex graph (Ĝ, Ê) according to its biconnected
canonical ordering Π̂ via the algorithm by Harel and Sardas and obtain a crossing-free
drawing Γ̂. We do not modify the actual drawing phase.

Postprocessing (Reinserting the Crossing Edges). We refine the underlying grid of Γ̂
by a factor of 2 in both dimensions. Let q = (a, b, c, d) be a quadrangle in Q, where a is the
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first and vlast the last vertex in Π̂ among the vertices in q. From q, we first remove the chord
edge {a, c} and obtain an empty quadrangle. Then, we distinguish three cases for reinserting
the crossing edges that we removed in the preprocessing. These are the same cases as in the
description of the modified computation of the biconnected canonical ordering above.
Case 1: vlast = c (see Fig. 3a).

Since c is adjacent to a, b, and d in Ĝ, it has the largest y-coordinate among the vertices
in q. Assume that y(d) is smaller or equal to y(b) since the other case is symmetric. An
example of a quadrangle in this case before and after the reinsertion of the crossing edges
is given in Figs. 3a and 3d, respectively. We will have a crossing point at (x(a), y(d)). To
this end, we insert the edge {a, c} with a bend at e{a,c} = (x(a), y(d) + 1) and we insert the
edge {b, d} with a bend at e{b,d} = (x(a) + 1, y(d)).
Case 2: vlast ∈ {b, d}, and the other of these two vertices is covered by c (see Fig. 3b).

Assume that y(d) > y(b); the other case is symmetric. An example of a quadrangle
in this case before and after the reinsertion of the crossing edges is given in Figs. 3b
and 3e, respectively. Here, we remove vshift in addition to removing the edge {a, c}. We
define the crossing point pcross = (xcross, ycross) as the intersection point of the lines with
slope 1 and −1 through c and b, respectively. The coordinates of this crossing point are
xcross = (x(c)− y(c) + x(b) + y(b))/2 and ycross = (−x(c) + y(c) + x(b) + y(b))/2. Despite
the fact that both coordinates are the result of a division by 2, both are integers—recall
that we refined the grid by a factor of 2 in each dimension. We place the two bend points
onto the same lines at the closest grid points that are next to pcross. In other words, we
draw the edge {a, c} with a bend point at e{a,c} = (xcross − 1, ycross − 1) and we insert the
edge {b, d} with a bend point at e{b,d} = (xcross − 1, ycross + 1). We do not intersect or touch
the edge {a, d} because we shifted a far enough away from c by the extra shift due to vshift.
Moreover, the points e{a,c} and pcross on the line with slope 1 through c are inside the empty
quadrangle q since b is covered by c (then b is below the line with slope 1 through c) and
y(b) is at most equal to y(e{a,c}).
Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 3c).

Assume that y(d) > y(b); again, the other case is symmetric. An example of a quadrangle
in this case before and after the reinsertion of the crossing edges is given in Figs. 3c and 3f,
respectively. Note that the edge {a, b} is the dummy edge which we inserted during the
computation of Π̂ and next to this edge, there is the path (a − vdummy − b). This path is
the former edge {a, b}. We will reinsert the edges {a, c} and {b, d} such that they cross in
(x(c), y(b)). We will bend the edge {b, d} on the line with slope 1 through c at y = y(b)
because from this point we always “see” d inside q. So, we define xbend := x(c)−∆y with
∆y := y(c)−y(b). First, we remove the dummy edge {a, b}. Second, we insert the edge {a, c}
with a bend point at e{a,c} = (x(c), y(b)− 1). Third, we insert the edge {b, d} with a bend
point at e{b,d} = (xbend, y(b)). Note that e{a,c} might be below the straight line segment ab

since a could have been shifted away from c several times. However, e{a,c} cannot be on
or below the path (a− vdummy − b) because y(vdummy) < y(e{a,c}) and the slope of the line
segment vdummyb is either greater than 1 or negative. Therefore, the crossing edges {a, c}
and {b, d} lie completely inside the pentagon (a, vdummy, b, c, d).

After we have reinserted the crossing edges into each quadrangle of Q, we remove all
dummy edges and transform the remaining dummy vertices to bend points. The result-
ing drawing Γ is a RAC1 drawing that preserves the embedding of the NIC-plane input
graph (G, E). Our algorithm runs in linear time. Since the shift algorithm draws Γ̂ on a grid
of size (2n̂− 4)× (n̂− 2), which we refined by a factor of 2, and n̂ ≤ 4n− 6, Γ lies on a grid
of size at most (16n− 32)× (8n− 16).
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3 Conclusion and Open Questions

We have presented an algorithm for drawing any NIC-plane graph on a small grid with
right-angle crossings and at most one bend per edge. Our algorithm is based on the shift
algorithm for 2-connected graphs by Harel and Sardas [9]. Before and while we execute their
algorithm, we modify the graph (incl. removing the crossing edges) to obtain faces with nice
properties into which we reinsert the crossing edges afterwards.

The diagram in Fig. 1 leaves some open questions. Does every 1-planar graph admit a
1-planar 1-bend RAC drawing in polynomial area? Can every graph in RAC0 be drawn in
polynomial area if we allow one or two bends per edge? What is the relationship between
RAC1 and RACpoly

2 ?
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Abstract
We present a deterministic linear time algorithm to find a set of five points that stab a set of
n pairwise intersecting disks in the plane. We also give a simple construction with 13 pairwise
intersecting disks that cannot be stabbed by three points.

1 Introduction

Let D be a set of n pairwise intersecting disks in the plane. If every three disks in D have a
nonempty intersection, then, by Helly’s theorem, the whole intersection ∩D is nonempty [6–8].
Thus, D can be stabbed by one point. More generally, when there are three disks with empty
intersection, D can still always be stabbed by four points. In July 1956, Danzer presented a
proof at Oberwolfach (see [3]). Since Danzer was not satisfied with his proof, he never published
it, but he gave a new proof in 1986 [3]. Previously, in 1981, Stachó published a proof for the
existence of four stabbing points [11], using similar arguments as in his previous construction
of five stabbing points [10]. Hadwiger and Debrunner showed that three points suffice for unit
disks [5]. Danzer’s upper bound proof is fairly involved, and there seems to be no obvious way to
turn it into an efficient algorithm. The two constructions of Stachó are simpler, but not enough
for an easy subquadratic algorithm. We present a new argument that yields five stabbing points.
Our proof is constructive and allows us to find the stabbing points deterministically in linear
time.

As for lower bounds, Grünbaum gave an example of 21 pairwise intersecting disks that cannot
be stabbed by three points [4]. Later, Danzer reduced the number of disks to ten [3]. This example
is close to optimal, because every set of eight disks can be stabbed by three points [10]. It is
hard to verify the lower bound by Danzer for ten disks—even with dynamic geometry software.
We present a simple construction that uses 13 disks.

2 The geometry of pairwise intersecting disks

Let D be a set of n pairwise intersecting disks. A disk Di ∈ D is given by its center ci and its
radius ri. We assume without loss of generality that no disk is contained in another. The lens of
two disks Di, Dj ∈ D is the set Li,j = Di∩Dj . Let u be any of the two intersection points of ∂Di

∗ Supported in part by grant 1367/2016 from the German-Israeli Science Foundation (GIF). W.M. sup-
ported in part by ERC StG 757609. P.S. and W.M. supported in part by DFG grant MU-3501/1.
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Figure 1 Left: At least one lens angle is large. Right: D1 and E have the same radii and lens
angle 2π/3. By Lemma 2.2, D2 is a subset of E. {c1, c, p, q} is the set P from Lemma 2.4.

and ∂Dj . The angle ∠ciucj is called the lens angle of Di and Dj . It is at most π. Three disks
Di, Dj , and Dk are non-Helly if Di ∩Dj ∩Dk = ∅. We present some useful geometric lemmas.

I Lemma 2.1. Among any three non-Helly pairwise intersecting disks D1, D2, and D3, there
are two disks with lens angle larger than 2π/3.

Proof. By assumption, the lenses L1,2, L1,3 and L2,3 are pairwise disjoint. Let u be the vertex
of L1,2 nearer to D3, and let v, w be the analogous vertices of L1,3 and L2,3 (see Figure 1, Left).
Consider the simple hexagon c1uc2wc3v, and write ∠u, ∠v, and ∠w for the interior angles at u,
v, and w. The sum of all interior angles is 4π. Thus, ∠u+ ∠v + ∠w < 4π, so at least one angle
is less than 4π/3. It follows that the exterior angle at u, v, or w must be larger than 2π/3. J

I Lemma 2.2. Let D1 and D2 be two intersecting disks with radii r1 ≥ r2 and lens angle
α ≥ 2π/3. Let E be the unique disk with radius r1 and center c, such that (i) the centers c1, c2,
and c are collinear and c lies on the same side of c1 as c2; and (ii) the lens angle of D1 and E
is exactly 2π/3 (see Figure 1, Right). Then, if c2 lies between c1 and c, we have D2 ⊆ E.

Proof. Let x ∈ D2. Then, since c2 lies between c1 and c, the triangle inequality gives

|xc| ≤ |xc2|+ |c2c| = |xc2|+ |c1c| − |c1c2|. (1)

Since x ∈ D2, we get |xc2| ≤ r2. Also, since D1 and E each have radius r1 and form the lens angle
2π/3, it follows that |c1c| =

√
3r1. Finally, by the law of cosines, |c1c2| =

√
r2

1 + r2
2 − 2r1r2 cosα.

As α ≥ 2π/3 and r1 ≥ r2, we get cosα ≤ −0.5 ≤ (
√

3− 1.5) r1
r2
−
√

3 + 1, so

|c1c2|2 = r2
1+r2

2−2r1r2 cosα ≥ r2
1+r2

2−2r1r2

((√
3− 1.5

) r1
r2
−
√

3 + 1
)

=
(
r1
(√

3− 1
)

+ r2
)2
.

Plugging this into Eq. (1), we obtain |xc| ≤ r2 +
√

3r1− (r1
(√

3− 1) + r2
)

= r1, i.e., x ∈ E. J

I Lemma 2.3. Let D1 and D2 be two intersecting disks of equal radius r with lens angle 2π/3.
There is a set P of four points so that any disk F of radius at least r that intersects both D1 and
D2 contains a point of P .

Proof. Consider the two tangent lines of D1 and D2, and let p and q be the midpoints on these
lines between the respective two tangency points. We set P = {c1, c2, p, q} (see Figure 2, Left).

Given F , we decrease its radius, keeping its center fixed, until either the radius becomes r
or until F is tangent to D1 or D2. Suppose the latter case holds and F is tangent to D1. We
move the center of F continuously along the line spanned by the center of F and c1 towards c1,
decreasing the radius of F to maintain the tangency. We stop when either the radius of F reaches
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D2
2

D2
1

p

c2

q

D2D1

c1

γ

Qr1

r2s1

s2

D2

q

p

`

k

k+ k−

c1

x

c c2
E

D1

Figure 2 Left: P = {c1, c2, p, q} is the stabbing set. The green arc γ = ∂(D2
1 ∩ D2

2) ∩ Q is
covered by D2

1 ∩Dq. Right: Situation (ii) in the proof of Lemma 2.4: D2 6⊆ E. x is an arbitrary
point in D2 ∩ F ∩ k+. The angle at c in the triangle ∆xcc2 is ≥ π/2.

r or F becomes tangent to D2. We obtain a disk G ⊆ F with center c = (cx, cy) so that either:
(i) radius(G) = r and G intersects both D1 and D2, or (ii) radius(G) ≥ r and G is tangent to
both D1 and D2. Since G ⊆ F , it suffices to show that G ∩ P 6= ∅. We introduce a coordinate
system, setting the origin o midway between c1 and c2, so that the y-axis passes through p and
q. Then, in the manner depicted in Figure 2 (left), we have c1 = (−

√
3r/2, 0), c2 = (

√
3r/2, 0),

q = (0, r), and p = (0,−r).
For case (i), letD2

1 be the disk of radius 2r centered at c1, andD2
2 the disk of radius 2r centered

at c2. Since G has radius r and intersects both D1 and D2, its center c has distance at most 2r
from both c1 and c2, i.e., c ∈ D2

1 ∩D2
2. Let Dp and Dq be the two disks of radius r centered at p

and q. We will show that D2
1∩D2

2 ⊆ D1∪D2∪Dp∪Dq. Then it is immediate that G∩P 6= ∅. By
symmetry, it is enough to focus on the upper-right quadrant Q = {(x, y) | x ≥ 0, y ≥ 0}. We show
that all points in D2

1∩Q are covered by D2∪Dq. Without loss of generality, we assume that r = 1.
Then, the two intersection points of D2

1 and Dq are r1 = ( 5
√

3−2
√

87
28 , 38+3

√
29

28 ) ≈ (−0.36, 1.93)
and r2 = ( 5

√
3+2
√

87
28 , 38−3

√
29

28 ) ≈ (0.98, 0.78), and the two intersection points of D2
1 and D2 are

s1 = (
√

3
2 , 1) ≈ (0.87, 1) and s2 = (

√
3

2 ,−1) ≈ (0.87,−1). Let γ be the boundary curve of D2
1

in Q. Since r1, s2 6∈ Q and since r2 ∈ D2 and s1 ∈ Dq, it follows that γ does not intersect the
boundary of D2 ∪Dq and hence γ ⊂ D2 ∪Dq. Furthermore, the subsegment of the y-axis from o

to the startpoint of γ is contained in Dq, and the subsegment of the x-axis from o to the endpoint
of γ is contained in D2. Hence, the boundary of D2

1 ∩ Q lies completely in D2 ∪Dq, and since
D2 ∪Dq is simply connected, it follows that D2

1 ∩Q ⊆ D2 ∪Dq, as desired.
For case (ii), sinceG is tangent toD1 andD2, the center c ofG is on the perpendicular bisector

of c1 and c2, so the points p, o, q and c are collinear. Suppose without loss of generality that
cy ≥ 0. Then, it is easily checked that c lies above q, and radius(G) + r = |c1c| ≥ |oc| = r + |qc|,
so q ∈ G. J

I Lemma 2.4. Consider two intersecting disks D1 and D2 with radii r1 ≥ r2, having lens angle
at least 2π/3. Then, there is a set P of four points such that any disk F of radius at least r1 that
intersects both D1 and D2 contains a point of P .

Proof. Let ` be the line through c1 and c2. Let E be the disk of radius r1 and center c ∈ ` that
satisfies the conditions (i) and (ii) of Lemma 2.2. Let P be the point set {c1, c, p, q} specified in
the proof of Lemma 2.3, with respect to D1 and E (see Figure 1, Right). We claim that

D1 ∩ F 6= ∅ ∧ D2 ∩ F 6= ∅ ⇒ E ∩ F 6= ∅. (*)

Once (*) is established, we are done by Lemma 2.3. If D2 ⊆ E, then (*) is immediate, so assume
that D2 6⊆ E. By Lemma 2.2, c lies between c1 and c2. Let k be the line through c perpendicular
to `, and let k+ be the open halfplane bounded by k with c1 ∈ k+ and k− the open halfplane

EuroCG’18
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bounded by k with c1 6∈ k−. Since |c1c| =
√

3r1 > r1, we have D1 ⊂ k+ (see Figure 2, Right).
Recall that F has radius at least r1 and intersects D1 and D2. We distinguish two cases: (i)
there is no intersection of F and D2 in k+, and (ii) there is an intersection of F and D2 in k+.

For case (i), let x be any point in D1 ∩ F . Since we know that D1 ⊂ k+, we have x ∈ k+.
Moreover, let y be any point in D2 ∩F . By assumption (i), y is not in k+, but it must be in the
infinite strip defined by the two tangents of D1 and E. Thus, the line segment xy intersects the
diameter segment k∩E. Since F is convex, the intersection of xy and k∩E is in F , so E∩F 6= ∅.

For case (ii), let x be any point in D2 ∩ F ∩ k+. Consider the triangle ∆xcc2. Since x ∈ k+,
the angle at c is at least π/2 (Figure 2, Right). Thus, |xc| ≤ |xc2|. Moreover, since x ∈ D2, we
know that |xc2| ≤ r2 ≤ r1. Hence, we have |xc| ≤ r1 so x ∈ E and (*) follows, as x ∈ E ∩F . J

3 Stabbing disks in linear time

Let D be a set of n pairwise intersecting disks. For r > 0, we define
⋂
≤r D to be the intersection

of all disks in D with radius at most r. The set
⋂

<r D is defined analogously. Moreover, let
X be a non-empty intersection of finitely many disks. Then, V(X) is the set of vertices on the
boundary of X.

I Lemma 3.1. For a set D of n pairwise intersecting disks, we can decide in linear time if the
intersection

⋂
D is empty. In the same time, we can compute a point in

⋂
D, if it exists, or a

non-Helly triple Di, Dj , Dk with ri, rj ≤ rk, such that
⋂

<rk
D 6= ∅, otherwise.

Proof. Consider a subset D′ of D and assume first that
⋂
D′ = ∅. In this case, there exists a

disk Dk ∈ D′ with radius rk such that
⋂

<rk
D′ 6= ∅ and

⋂
≤rk
D′ = ∅. We set ind(D′) = k and

rad(D′) = rk. Next, assume that
⋂
D′ 6= ∅. In this case, we set ind(D′) =∞ and rad(D′) =∞.

Now, for D′ ⊆ D, we define w(D′) =
(

rad(D′),−min
{
d(v,Dind(D′)) | v ∈ V(

⋂
<rad(D′)D′)

})
. If

ind(D′) =∞ we set d(v,D∞) = vy, the y-coordinate of v. Chan has observed that the problem
(D, w) is LP-type [1, 9]. The combinatorial dimension of (D, w) is 3, and therefore, the violation
test can be done in constant time. Furthermore, for a basis B of (D, w) , let vio(B) be the
set of disks in D that violate B, i.e., for all D ∈ vio(B), we have w(B ∪ {D}) < w(B). Then,
(D,R = {vio(B) | B is a basis in D}) is the underlying range space for the LP-type problem, and
one can check that it has constant VC-dimension. Thus, we can use the deterministic algorithm
by Chazelle and Matoušek [2] to compute w(D) and a corresponding basis B in O(n) time. One
can show that B is either a non-Helly triple for D with the desired properties, or that B yields a
stabbing point for D. J

I Theorem 3.2. Given a set D of n pairwise intersecting disks in the plane, we can find in linear
time a set S of five points such that every disk of D contains at least one point of S.

Proof. Using Lemma 3.1, we decide if ∩D is empty. If not, we return a point in the common
intersection. Otherwise, the lemma gives us a non-Helly tripe with smallest maximum radius rk.
For the disks D` ∈ D with r` < rk, we can obtain in linear time a stabbing point s by using
Helly’s theorem and Lemma 3.1. Next, by Lemma 2.1, there are two disks D′ and D′′ among
Di, Dj and Dk whose lens angle is at least 2π/3. Let P be the set of four points, as described
in the proof of Lemma 2.4, that stabs any disk of radius at least rk that intersects both D′ and
D′′. Then S = {s} ∪ P is a set of five points that stabs all disks of D. J

4 13 pairwise intersecting disks that cannot be stabbed by 3 points

The construction begins with an inner disk A, say of radius 1, and three larger disks D1, D2, D3
of equal size, so that A is tangent to all three disks, and each pair of the disks are tangent to
each other. Denote the contact point of A and Di by ξi, for i = 1, 2, 3.
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We add six very large disks as follows. For i = 1, 2, 3, we draw the two common outer tangents
to A and Di, and denote by T−i and T+

i the halfplanes that are bounded by these tangents and
are openly disjoint from A. For concreteness, the labels T−i and T+

i are such that the points of
tangency between A and T−i , Di, and T+

i , appear along ∂A in this counterclockwise order. One
can show that the nine points of tangency between A and the other disks and halfplanes are all
distinct (see Figure 3). We regard the six halfplanes T−i , T+

i , for i = 1, 2, 3, as disks; in the end,
we can apply a suitable inversion to turn the disks and halfplanes into actual disks, if so desired.

Figure 3 Each common tangent ` represents a very large disk tangent to the disks to which ` is
tangent. The nine points of tangency are all distinct.

Finally, we construct three additional disks A1, A2, A3. To construct Ai, we slightly expand
A into a disk A′i of radius 1 + ε1, while keeping it touching Di at ξi. We then roll A′i clockwise
along Di, by a tiny angle ε2 � ε1 to obtain Ai.

This completes the construction, giving 13 disks. For sufficiently small ε1 and ε2, we can
ensure the following properties for each Ai: (i) Ai intersects all other 12 disks, (ii) the nine
intersection regions Ai ∩Dj , Ai ∩ T−j , Ai ∩ T+

j , for j = 1, 2, 3, are pairwise disjoint. (iii) ξi /∈ Ai.

I Lemma 4.1. The 13 disks in the construction cannot be stabbed by three points.

Proof. Consider any set of three points and suppose they form a stabbing set. Let A∗ be the
union A ∪ A1 ∪ A2 ∪ A3. If p is a stabbing point in A∗, then typically p will stab all these four
disks (unless p lies at certain peculiar locations), but, by construction, it stabs at most one of
the nine remaining disks. It is thus impossible for all three stabbing points to lie in A∗, but at
least one of them must lie there.

Assume first that A∗ contains two stabbing points. As just argued, there are at most two of
the remaining disks that are stabbed by these points. The following cases can then arise.
(a) The stabbed disks are both halfplanes. Then D1, D2, D3 form a non-Helly triple, i.e. they

do not have a common intersection, and none of them is stabbed. Since a non-Helly triple
must be stabbed by at least two points, an unstabbed disk remains.

(b) The stabbed disks are both among D1, D2, D3. Then the six unstabbed halfplanes form many
non-Helly triples 1, e.g., T−1 , T−2 , and T−3 , and again a disk remains unstabbed.

(c) One stabbed disk is D1, D2, or D3, and the other is a halfplane. Then, there is (at least)
one disk Di such that it, and the two associated halfplanes T−i , T+

i are all unstabbed. (Di is

1 Note that it is easy to extend the definition of non-Helly triples to halfplanes.
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a disk that is not stabbed by either of the two initial points, and neither of its two tangent
halfplanes is stabbed.) Then Di, T−i , and T+

i form an unstabbed non-Helly triple.
Assume then that A∗ contains only one stabbing point p, so at most one of the nine remaining
disks is stabbed by p. Since p is the only point that stabs all three disks A1, A2, A3, it cannot
be any of ξ1, ξ2, ξ3, so the other disk that it stabs (if there is such a disk) must be a halfplane.
That is, p does not stab any of D1, D2, D3. Since D1, D2, D3 form a non-Helly triple, they
require two points to stab them all. Moreover, since we only have two points at our disposal, one
of them must be the point of tangency of two of these disks, say of D2 and D3. This point stabs
only two of the six halfplanes (concretely, they are T−1 and T+

1 ). But then D1, T+
2 , and T−3 form

an unstabbed non-Helly triple. J

5 Conclusion

We presented a simple algorithm for the computation of five stabbing points for a set of pair-
wise intersecting disks by solving a corresponding LP-type problem. Nevertheless, the question
remains open how to use the proofs of Danzer or Stachó (or any other technique) for an efficient
construction of four stabbing points. Since eight disks can always be stabbed by three points [10],
it remains open whether nine disks can be stabbed by three points or not. Furthermore, it would
be interesting to find a simpler construction of ten pairwise intersecting disks that cannot be
stabbed by three points.

Acknowledgments. We would like to thank Timothy Chan for pointing us to the direct LP-
type algorithm described in Lemma 3.1.

References
1 T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proceedings

of the fifteenth annual ACM-SIAM Symposium on Discrete Algorithms, pages 430–436,
2004.

2 B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. Journal of Algorithms, 21(3):579–597, 1996.

3 L. Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen
Ebene. Studia Sci. Math. Hungar., 21(1-2):111–134, 1986.

4 B. Grünbaum. On intersections of similar sets. Portugal. Math., 18:155–164, 1959.
5 H. Hadwiger and H. Debrunner. Ausgewählte Einzelprobleme der kombinatorischen Ge-

ometrie in der Ebene. Enseignement Math. (2), 1:56–89, 1955.
6 E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht

der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.
7 E. Helly. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten.

Monatshefte für Mathematik, 37(1):281–302, 1930.
8 J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Mathema-

tische Annalen, 83(1):113–115, 1921.
9 M. Sharir and E. Welzl. A combinatorial bound for linear programming and related prob-

lems. STACS 92, pages 567–579, 1992.
10 L. Stachó. Über ein Problem für Kreisscheibenfamilien. Acta Sci. Math. (Szeged), 26:273–

282, 1965.
11 L. Stachó. A solution of Gallai’s problem on pinning down circles. Mat. Lapok, 32(1-3):19–

47, 1981/84.



Combinatorial and Asymptotical Results on the
Neighborhood Grid Data Structure
Martin Skrodzki1, Ulrich Reitebuch1, Konrad Polthier1, and
Shagnik Das1

1 Freie Universität Berlin
martin.skrodzki@fu-berlin.de
ulrich.reitebuch@fu-berlin.de
konrad.polthier@fu-berlin.de
shagnik@mi.fu-berlin.de

Abstract
In 2009, Joselli et al. introduced the Neighborhood Grid data structure for fast computation of
neighborhood estimates in point sets. Even though the data structure has been used in several
applications and shown to be practically relevant, it is theoretically not yet well understood. The
purpose of this paper is to give results on the complexity of building algorithms – both single-
core and parallel – for the neighborhood grid. Furthermore, current investigations on related
combinatorial questions are presented.

1 Introduction

The neighborhood grid data structure can be used to compute estimates of neighborhoods in
point sets. That is, for a given point pi in a point set P , it provides a point pj that is close to
pi but not necessarily its nearest neighbor in P . It has been introduced by Joselli et al. [3,4].
In order to give a short introduction to the data structure, consider the example in Figure 1.
It shows how points from a point set (Figure 1a) are placed in a grid (Figure 1b). The order
in which the points are given is random, thus their initial placement in the grid is also. After
the placement, only the coordinates of the points are considered in the grid (Figure 1c).

(a) Point set with nine points
in R2.

(b) The points are initially
placed randomly.

4.07, 5.13

2.06, 7.76

8.23, 4.79

3.73, 6.84

1.77, 5.46

8.41, 1.96

4.27, 1.45

9.18, 9.05

1.53, 1.30

(c) The point coordinates are
considered.

Figure 1 First part of the neighborhood grid pipeline.

The grid as obtained in Figure 1c will now be sorted. Each row should grow in the first
coordinates from left to right, each column should grow in the second coordinates from
bottom to top. A corresponding sorted grid is given in Figure 2a. Note how it – in this
example – recovers the combinatorial neighborhood relation from the points.

In order to use the grid to determine a neighborhood estimate for a given point pi, find
that point in the sorted grid. Then, consider a small neighborhood around that point in
the grid, e.g. the one-ring around it. The size of this neighborhood should not depend on
the number of inserted points such that this lookup runs in asymptotically constant time
O(1). From that neighborhood in the grid, find the closest point to the considered point and
output it as estimated nearest neighbor to pi.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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4.07, 5.13

2.06, 7.76

8.23, 4.79

3.73, 6.84

1.77, 5.46

8.41, 1.964.27, 1.45

9.18, 9.05

1.53, 1.30

(a) Coordinates are sorted to grow
in their x-values in rows and in their
y-values in columns.

4.07, 5.13

2.06, 7.76

8.23, 4.79

3.73, 6.84

1.77, 5.46

8.41, 1.964.27, 1.45

9.18, 9.05

1.53, 1.30

(b) Determining the neighbors of the
upper left point by looking at its
neighbors in the grid.

Figure 2 Second part of the neighborhood grid pipeline.

In this report, we present new results on the neighborhood grid data structure. A more
extensive version of our results can be found in a corresponding paper on ArXiv [6]. Malheiros
and Walter [2] investigated several iterative building strategies for the data structure. Despite
the evidences of practical relevance, as given in the publication cited above, neither Joselli
nor Malheiros investigated the asymptotic building times of the grid or answered the question
for a time-optimal building algorithm. Therefore, this paper contains:

a polynomial-time algorithm to build a neighborhood grid (Theorem 2.2),
a proof of asymptotic time-optimality of the presented algorithm (Section 3.1),
a comparison with the parallel building algorithm of Malheiros and Walter (Section 3.2).

The mentioned ArXiv paper contains – apart from more examples and proofs – several
combinatorial results on the number of possible sorted placements, a complete list of unique
sorted placements for n ∈ {1, 2, 3}, and a proof of non-existence of unique sorted placements
for n ≥ 4. So far, the following question remains unanswered:

For a given n ∈ N, n ≥ 4, what is a point set with the least or largest number of stable
states?

For the case of the largest number we give a conjecture.

2 The Neighborhood Grid

In this first section, we present the neighborhood data structure, fix corresponding notation,
and prove a first theorem on a polynomial-time building algorithm.

2.1 Definition of the Data Structure
Given a set of points P = {p1, . . . , pN | pi ∈ Rd}. In the following we will assume that
N = n2 for some n ∈ N and d = 2. Therefore, each point is given by pi = (pi1, pi2) ∈ R2,
where pi1 will be referred to as x- and pi2 as y-value. Furthermore, we assume that pi 6= pj
for all i 6= j. Finally, we can restrict w.l.o.g. to {pik | i ∈ [N ]} = [N ] for k ∈ {1, 2}, which
will be important in Section 3.1. Consider [6] for the general case without these restrictions.

The points will be placed in an n× n matrix, where each cell of the matrix contains a
point pi. That is, we consider a matrix M ∈ (R2)n×n which then has the form

M =
(a1n, b1n) . . . (ann, bnn)

... . .
. ...

(a11, b11) . . . (an1, bn1)
. (1)
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Ultimately, we want to order the points in the matrix such that the following state is
reached.

I Definition 2.1. The matrix M as given in (1) is said to be in a stable state if and only
if the following two conditions are satisfied for any i, j ∈ [n], i 6= j.

1. For all k ∈ [n] it is: i < j ⇒ aki < akj ∨ (aki = akj ∧ bki < bkj).
2. For all ` ∈ [n] it is: i < j ⇒ bi` < bj` ∨ (bi` = bj` ∧ ai` < aj`).

In other words, a matrix M is in a stable state, if the points in each row of M are
ordered lexicographically according to the first and then the second coordinate. Similarly, all
columns of M have to be ordered lexicographically according to the second and then the
first coordinate. An illustration of Definition 2.1 is given in Figure 3. We call a stable state
unique, if there exists no other stable state for the same point set P .

(55, 42) (60, 49)

(26, 61) (13, 69)

(95, 13) (95, 65) (06, 69) (26, 61) (86, 89)

(02, 55) (80, 34) (86, 41)

(05, 19) (47, 11) (95, 13)

Figure 3 On the left a partially filled matrix with a violation of Definition 2.1 marked red. On
the right a 3 × 3 matrix M in stable state.

2.2 Polynomial-Time building algorithm
Now the following question arises naturally: For any set of points P as specified above, is
there a bijective placement π : [n2]→ [n]× [n], i 7→ (k, `) such that the matrix Mπ(P ) with

M =
(pπ−1(n,1)1, pπ−1(n,1)2) . . . (pπ−1(n,n)1, pπ−1(n,n)2)

... . .
. ...

(pπ−1(1,1)1, pπ−1(1,1)2) . . . (pπ−1(1,n)1, pπ−1(1,n)2)
. (2)

is in a stable state? In other words, given n2 points, can these be written into an n× n
matrix such that it is in a stable state as defined in Definition 2.1.

I Theorem 2.2. For every set of points P = {p1, . . . , pN | pi ∈ R2} there is a bijective
placement π such that Mπ(P ) is in a stable state. A placement π can be found in O(N log(N)).

Proof. Consider the points p1, . . . , pN as a sequence. Sort this sequence according to the
first condition given in Definition 2.1. Obtain a sequence

(q11, q12), (q21, q22), . . . , (qN1, qN2),

where for i, j ∈ [n], i < j we have qi1 < qj1 or (qi1 = qj1 ∧ qi2 < qj2). Now split this sequence
into n blocks as follows:

(q11, q12), . . . , (qn1, qn2)︸ ︷︷ ︸
=:Q1

, (q(n+1)1, q(n+1)2), . . . , (q(2n)1, q(2n)2)
︸ ︷︷ ︸

=:Q2

,

. . . (q(n2−n+1)1, q(n2−n+1)2), . . . , (qN1, qN2),
︸ ︷︷ ︸

=:Qn

.

EuroCG’18



30:4 Results on the Neighborhood Grid

Now consider each sequence Qi and sort it according to the second condition given in
Definition 2.1. Obtain a sequence

Rk := (r11, r12), (r21, r22), . . . , (rn1, rn2), k ∈ [n],

where for i < j we have ri2 < rj2 or (ri2 = rj2 ∧ ri1 < rj1). That is, the points in the
sequence Rk are sorted according to the second condition of Definition 2.1. Furthermore, for
i < j, any point from Ri satisfies the first condition of Definition 2.1 when compared to any
point from Rj , since the Rk derive from the Qk. Therefore, placing the sequence Rk into the
kth column of the matrix M results in a stable state.

Concerning the runtime, in the first step, N points were sorted, which takes O(N log(N)).
In the second step, n sets of n points each were sorted, which takes

n · O(n log(n)) = O(n2 log(
√
N)) = O(N log(N)),

as N = n2. Hence, the stable state was computed in O(N log(N)). J

Theorem 2.2 imposes an upper bound on the runtime of any time-optimal comparison-
based algorithm that creates a stable state of a matrix M . The next question is then: What
is a lower bound?

3 Optimality of the Algorithm

3.1 A Lower Bound
To prove a lower bound, consider a comparison-based algorithm A. The input to A is a
point set P , the output is a stable placement π. Each query of A establishes pik < pjk for
i, j ∈ [N ], k ∈ {1, 2} and can be seen as a node of a decision-tree. The leafs of this tree
correspond to placements of which some are stable for the given point set. A time-optimal
algorithm builds this tree such that it is of depth log((n2)!).

If we fix a placement π, we can say w.l.o.g. that π fixes the x-coordinates in the matrix
such that they satisfy Definition 2.1. When counting the number of point sets for which π is
stable, we can now pair the already placed x-values with y-values as follows: When setting
up the y-values for the first column, one can pick n of the possible N = n2 values, which
then admit to a unique order in the column. Therefore, for the y-values in the first column,
there are

(
n2

n

)
possibilities. For the second column, there are

(
n2−n
n

)
possibilities, until there

is
(
n2−(n−1)n

n

)
= 1 possibility for the last column. Overall, there are

(n−1)∏

k=0

(
n2 − kn

n

)
= n2!

(n2 − n)!n! ·
(n2 − n)!

(n2 − 2n)!n! · . . . ·
(2n)!
n!n! ·

n!
n! = (n2)!

(n!)n

possibilities to put y-values into the matrix and obtain a stable state from them utilizing the
fixed π. That is, a placement π is always stable for exactly (n2)!

(n!)n point sets.
Thus, when building its decision-tree, the algorithm A cannot stop at a subtree with

more than (n2)!
(n!)n leafs, as one of them will surely not be stable under the currently considered

placement. That is, the tree has to be traversed to depth at least

log((n2)!)− log
(

(n2)!
(n!)n

)
= log

(
(n2)! · (n!)n

(n2)!

)
= log((n!)n) = n · log(n!) = O(n2 · log(n)).

Therefore, each decision-based algorithm building a stable state needs to perform at least
Ω(n2 · log(n)) operations. Together with Theorem 2.2 this proves the following:
I Theorem 3.1. The algorithm outlined in Theorem 2.2 is asymptotically time-optimal.
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3.2 Comparison to Malheiros and Walter
In the previous section, we have seen that a decision-based algorithm running on a single
core has optimal asymptotic runtime O(n2 · log(n)). However, both Joselli et al. [3, 4] and
Malheiros and Walter [2] utilize a parallelized version of odd-even sort. Assuming n2/2
processors given, they alternately perform one step of the odd-even sort algorithm on rows
and columns. By exchanging two points that violate Definition 2.1, they claim to converge
to a stable state. Even though they do not prove this claim, it can easily be established
when plugging the matrix M from Equation (1) into the energy

E(M) =
n∑

i,j=1
i · aij + j · bij , (3)

which grows for each exchange, but is bounded from above. Thus, the procedure converges
to a stable state.

As a point can only move by one row or column in each step, consider the element (1, 1)
that has to be placed in the lower left corner given our restrictions. In case it starts in
the upper right corner, the algorithm needs to perform 2n − 2 = O(n) steps to move the
element to its designated position. Therefore, this parallel algorithm has a lower bound of
ω(n). There are even examples for elements that cycle through the grid, consider [6] for an
example.

Note that the algorithm presented in Theorem 2.2 needs to sort the given points. When
utilizing n2/2 processors, sorting can be performed in log(n2) time, see [1]. Therefore, the
presented algorithm can be parallelized to run in O(log(n2)). However, this is of rather
theoretical relevance, as the constants in [1] are comparably large.

Compare this to building a KdTree in parallel. In each step i, we have to sort i sets of
n2/2i points in the dimension with largest spread, which takes log(n2)− i time for each of
the log(n2) levels of the tree, resulting in a total building time of O(log2(n)). Therefore, the
neighborhood grid can be build slightly faster, but only gives estimated answers, while the
KdTree provides exact neighbor relations.

4 Combinatorial Questions

4.1 Point Set with a unique Stable State
In the previous section it was shown that the running time of the algorithm outlined in
Theorem 2.2 is asymptotically time-optimal. However, the question remains whether the
stable state found by the algorithm for a given point set P is unique. By iterating over all
possible point sets P with n = 4, we found that none of the two-dimensional point sets on 16
points has a unique stable state. Utilizing an inductive argument, we show that given any
point set P with n ≥ 5, there exists no unique stable state. See [6] for details and a complete
enumeration of unique stable states in the case of n ∈ {1, 2, 3}. The fact that for n ≥ 4 there
is no point set with a single unique stable state raises the following question:

Open Question. Given n ∈ N, n ≥ 4, what is a point set P with the minimum number of
stable states among all point sets with n2 points?

4.2 Point Set with largest number of Stable States
We proceed by turning the question from the last section around. What is the maximal
number of stable states a point set can obtain for some given n ∈ N? In order to investigate
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this question, we first turn to a specific point set, for which we can count the number of
stable states. Consider the identity: {(1, 1), (2, 2), . . . , (n2, n2)}. Counting the number of
stable states for the identity is equivalent to placing only one number in each field of the
n× n matrix, which then has to satisfy both conditions of Definition 2.1. But this is exactly
the number of standard Young tableaux of shape (n, . . . , n). See [5] for an introduction into
the underlying combinatorics and [6] for the application of these to the given setup. The
number of stable states of the identity is then given by

f (n,...,n) = N !∏n
i=1
∏n
j=1(2n− i− j + 1) . (4)

The results for n ∈ {1, 2, 3} and computational experiments lead us to state the following
conjecture.

I Conjecture 4.1. Given n ∈ N, the number of stable states of any point set P on n2 points
is less or equal to f (n,...,n).

5 Conclusion and Future Work

We have presented a polynomial-time algorithm to build a stable state for a given point set P .
Furthermore, we have proven the parallel algorithm from [2–4] to converge to a stable state
and provided a lower bound on its runtime. Finally, we have deduced two open combinatorial
questions resulting from the investigations of the data structure. A question not addressed in
this paper concerns the quality of neighborhood estimates obtained from the grid. Answering
these is left as future work.
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Abstract
A planar monohedral tiling is a decomposition of R2 into congruent tiles. We say that such a
tiling has the flag property if for each triple of tiles that intersect pairwise, the three tiles intersect
in a common point. We show that for convex tiles, there exist only three classes of tilings that are
not flag, and they all consist of triangular tiles; in particular, each convex tiling using polygons
with n ≥ 4 vertices is flag. We also show that an analogous statement for the case of non-convex
tiles is not true by presenting a family of counterexamples.

1 Introduction

Problem statement and results. A plane tiling in the plane is a countable family of planar
sets {T1, T2, . . .}, called tiles, such that each Ti is compact and connected, the union of all Ti
is the entire plane and the Ti are pairwise interior-disjoint. We call such a tiling monohedral
if each Ti is congruent to T1. In other words, a monohedral tiling can be obtained from the
shape T1 by repeatedly placing (translated, rotated, or reflected) copies of T1. Two of the
simplest examples for such monohedral tilings are shown in Figure 1. These are also instances
of convex tilings, where we require that each tile is convex. A comprehensive study of tilings
with numerous examples can be found in the monograph by Grünbaum and Shephard [3].

Figure 1 Monohedral tiling with squares (left) and equilateral triangles (right). On the right, an
obstructing triple for the flag property is shaded.

We are interested in a special property of (monohedral) tilings: We say that a tiling is
flag if whenever three tiles intersect pairwise, they also intersect in a point common to all
three tiles. It can easily be verified that the left tiling in Figure 1 is flag, whereas the right
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tiling is not: the three edge neighbors of any triangle intersect pairwise (in single points), but
have no common intersection. We call such a triple an obstructing triple. We are interested
in the following question: which monohedral tilings have the flag property?

Our main result is that “most” convex monohedral tilings in the plane are flag. There
are only three types of counterexamples, namely the ones depicted in Figure 1 (right) and
in Figure 2. In particular, all counterexamples require triangles as tiles. As a consequence,
every convex monohedral tiling with convex polygons having 4 or more vertices is flag.

To explain the three types of non-flag tilings, we observe that the union of the three tiles
of an obstructing triple divides the complement into a bounded and an unbounded connected
component. We call the closure of the bounded component the cage of the triple. Of course,
the cage has to be filled out by copies of the same tile. We define the cage number of a cage
as the number of tiles inside the cage, and the cage number of a tiling as the maximal cage
number of all cages in the tiling. The three counterexamples correspond to tilings with cage
number 1, 2, and 3. We show that no convex tiling with cage number 4 or higher exists.

The situation changes significantly for non-convex monohedral tilings. In that case,
non-flag tilings exist for polygons with an arbitrary number of vertices and the cage number
can go well beyond 3. As a further contribution, we present a general construction that, for
an arbitrary fixed integer c, generates a tiling with cage number c.

Figure 2 Non-flag Monohedral tilings with cage number 2 (left) and 3 (right). These tilings are
obtained from the equilateral tiling from Figure 1 (right) by splitting each triangle in two congruent
copies using an altitude, or by splitting each triangle in three congruent copies using the barycenter,
respectively. An obstructing triple with the maximal cage number is shaded.

Motivation. The term “flag” originates from the following concepts: A simplicial complex
C is called a flag complex (also clique complex) if it has the following property: if for vertices
{v0, . . . , vk}, all edges (vi, vj) are in C, then the k-simplex spanned by {v0, . . . , vk} is also in
C. Equivalently, C is a flag complex if it is the inclusion-maximal simplicial complex that
can be constructed out of the edges of C.

In our setup, a tiling gives rise to a dual simplicial complex, called the nerve of the tiling,
obtained by defining one vertex per tile, and adding a k-simplex if the corresponding k+1 tiles
have a non-empty common intersection. Note that this complex might be high-dimensional –
for instance, the nerve of the triangular tiling in Figure 1 contains 5-simplices. The tiling
being flag is a necessary condition for the nerve of the tiling being a flag complex. Indeed, if
a triple of tiles violates the flag property, the dual complex consists of three edges forming
the boundary of a 2-simplex, but the 2-simplex is missing as the three tiles do not commonly
intersect. For convex tilings, the tiling is flag if and only if its nerve is a flag complex, which
is a simple consequence of Helly’s Theorem.
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Our question is motivated from an application in computational topology. In [2], the
d-dimensional Euclidean space is tiled with permutahedra, and the nerve of a subset of them
is the major object of study. In that paper, it is proven (Lemma 10 of [2]) that this nerve is
a flag complex (for all d), which simplifies the computation of the complex. The first part of
the proof is to show that the tiling has the flag property; for that, two disjoint facets of a
permutahedron are considered and it is proven that the neighboring permutahedra along
these two facets do not intersect, which implies the flag property. This proof makes use
of the special structure of permutahedra and explicitly defines a separating hyperplane for
the two neighboring permutahedra, involving lengthy calculations. This note is a first step
towards generalizing this useful property of permutahedra to a larger class of tilings, starting
with a complete analysis of the planar case.

2 Convex non-flag tilings

We fix a convex monohedral non-flag tiling with an obstructing triple (T1, T2, T3) throughout.
Clearly, T1 (and so, T2 and T3) must be a polygon, since any convex non-linear boundary
component would require a neighboring tile with a concave boundary component. Since the
triple (T1, T2, T3) intersects pairwise, but not commonly, the union T1∪T2∪T3 is a connected
set with a hole. While this can also be shown with elementary geometric considerations, a
short proof uses the Nerve theorem [1] [4, Ch 4.G], stating that the union of convex shapes
is homotopically equivalent (see e.g. [4] for a definition) to their nerve, which in our case is a
cycle with three edges. Hence, the union of the three tiles is homotopically equivalent to S1,
a circle.

We call the closure of the (unique) bounded connected component of the complement
the cage X of the triple. We start with studying the structure of X, relating it with a
structure from computational geometry: a (polygonal) pseudotriangle is a simple polygon in
the plane that is bounded by three concave chains [5]. The degenerate case in which one or
several concave chains are just line segments is allowed; hence triangles are a special case of
pseudotriangles.

I Lemma 2.1. The cage X is a pseudotriangle.

Proof. The boundary of X consists of boundary curves of the three convex polygons T1, T2,
and T3. By convexity, these curves are convex with respect to Ti, and hence concave with
respect to the complement. J

A pseudotriangle has three corners where two concave chains meet. In our case, these
corners correspond to intersections of two tiles among {T1, T2, T3}. The diameter of a
compact point set is the maximal distance between any pair of points in the set. Two points
realizing this distance are called a diametral pair. For pseudotriangles, it is easy to see that
only corners can form diametral pairs.

I Lemma 2.2. Let X be a cage, and let TX be a tile in the cage. Then, TX contains two
corners of X that form a diametral pair. Moreover, the corresponding concave arc connecting
these corners along the boundary of X is a line segment.

Proof. We define the latitude of a compact set S in the plane as the length of the longest line
segment that is contained in S. Clearly, congruent sets have the same latitude, and S′ ⊆ S

implies that the latitude of S′ is at most the latitude of S. Let ` = `(T1) be the latitude
of T1. Then, X must have latitude at least ` because it contains at least one congruent copy
of T1.
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On the other hand, the latitude of a set is upper bounded by the diameter and for convex
sets, both values coincide. Note that for any pair of corners of X, the line segment connecting
them is completely contained in some Ti, because the corners are intersection points of tiles.
Because all Ti are congruent, the diameter of T1 is at least the distance of any pair of corners.
It follows that the diameter of T1 is at least the diameter of X. Putting all together, we have

diam(X) ≥ `(X) ≥ `(T1) = diam(T1) ≥ diam(X)

which implies that all quantities coincide. Since TX has the same latitude as T1, it must
contain a diametral pair of X, which consists of two corners. Moreover, since TX is convex,
it contains also the line segment between these two corners, implying that X is bounded by
this line segment. J

Since each tile in a cage has to cover a line segment between two corners, it follows that:

I Corollary 2.3. A cage contains at most 3 tiles.

Finally, we can analyze the three possible numbers of tiles inside a cage to show that all
of them can only appear for triangular tiles.

I Theorem 2.4. If a convex monohedral tiling is not flag, then the tiles are triangles.

Proof. Assume that tiles (T1, T2, T3) exist that form a cage X. Let c be the number of tiles
inside the cage. We know that c ∈ {1, 2, 3} from Corollary 2.3.

If c = 1, then X is a tile itself, and hence convex. Because the cage is a pseudotriangle, it
is convex if and only if it is a triangle.

If c = 2, Lemma 2.2 implies that X has two line segments as sides, and a third concave arc
which might be a line segment or a polyline with two segments; a polyline with more vertices
is impossible because X is the union of two convex sets. Let v be the corner of X opposite
to that third concave arc. Since the two tiles inside the cage intersect in a line segment from
v to a point on the opposite arc, the only possibility is that the tiles are triangles.

If c = 3, the three tiles inside the cage have to intersect in a common point x as otherwise,
they would form a cage again, and X would contain at least 4 tiles. Moreover, by Lemma 2.2,
X is a triangle, and each corner is an intersection point of two tiles inside the cage. It follows
that the three line segments joining x with the corners of X are the boundaries of the three
tiles. However, these line segments split X into three triangles. J

We remark that the converse of Theorem 2.4 is not true: there are triangular tilings
which are flag (an example can be obtained from the square tiling in Figure 1 (left) by
subdividing each square into two triangles arbitrarily). However, the converse becomes true
with a further restriction: we call a tiling face-to-face if the intersection of two tiles is a facet
of both tiles (that is, the tiling carries the structure of a cell complex). For a face-to-face
tiling with triangles, it is easy to see that for any triangle T , the three neighboring tiles
sharing an edge with T form a cage that contains exactly T . Hence, a planar monohedral
face-to-face tiling is flag if and only if the tiles are not triangles.

3 Non-convex tilings

Non-convex monohedral tilings have a long history of research. A remarkable case of instances
are spiral tilings, for instance the Voderberg tiling1 or the spiral version of the “Bent Wedge

1 See https://en.wikipedia.org/wiki/Voderberg_tiling
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tiling”2. By inspecting these tilings, it is not difficult to detect obstructing triples, refuting
the possibility that Theorem 2.4 remains true without the convexity assumption.

For an arbitrary integer n ≥ 3, we describe a construction of a non-convex monohedral
tiling with tiles having 2n + 1 vertices such that an obstructing triple with cage number n− 1
exists. This shows that also Corollary 2.3 is a property that crucially relies on the convexity
of the tiles. Our construction is a variant of so-called radial tilings3. Consider the regular
6n-gon P inscribed in the unit circle and fix an arbitrary vertex B on that polygon (Figure 3
(left)). Let D be a point on the unit circle such that the triangle OBD is equilateral. In fact,
D is a vertex of P . Let c be the circular arc between O and B of the (unit) circle centered
at D. Divide c in n sub-arcs of identical length, using n− 1 additional subdivision points.
Let p1 denote the polyline from O to B defined by these subdivision points.

p2

p1

C

B

O

D

Figure 3 Left: Illustration of the construction of T for n = 5. Right: Radial tiling using T .

Next, apply a rotation around the origin (in either direction) by 2π
6n , so that B is mapped

to a neighboring vertex C of P . This rotation maps p1 into a polyline p2 from O to C. The
polygon T bounded by p1, p2, and the line segment BC is a polygon with 2n + 1 vertices.

We argue that T indeed admits a monohedral tiling. First of all, by rotating T around the
origin by multiples of 2π

6n , 6n copies of T cover P . To cover the polygonal annulus between
P and 2P , we observe that the 6n reflections of the inner tiles can be completed with 12n

congruent tiles to fill out the annulus. Extending this idea for the annulus between iP and
(i + 1)P , we can cover the entire plane with copies of T (see Figure 3 (right)).

Finally, to construct a large cage, we modify the tiling inside P : we split the 6n tiles
into 6 pairwise disjoint groups, each consisting of n consecutive copies of T . Consider such a
group G and denote with B and D its two extreme vertices on P . Note that the triangle
OBD is equilateral and that the boundary of G consists of three identical polygonal chains
(two of them convex and one reflex). It is therefore possible to reflect the whole group G,
such that it again covers the same space, and that all tiles in the group intersect at D instead
of O. We reflect 3 of the 6 groups inside P , alternating between reflected and unreflected
groups. The tiles outside of P are left unchanged. See Figure 4 for two examples. We observe
that the cage number of these tilings is n− 1.

2 See Steve Dutch’s webpage https://www.uwgb.edu/dutchs/symmetry/radspir1.htm
3 See also https://www.uwgb.edu/dutchs/symmetry/rad-spir.htm
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Figure 4 The final outcome of our construction after rearranging the innermost tiles for n = 4
(left) and n = 8 (right). In both cases, there are 6 groups of tiles around the origin, and three of
them are rotated. The tile of a rotated group at the boundary of the 6n-gon together with the
extremal tiles of the neighboring (unrotated) groups form an obstructing triple with cage number 3
on the left, and 7 on the right.

4 Conclusion

Various questions remain open for the non-convex case. For instance: is there a monohedral
tiling that is flag such that its nerve is not a flag complex? While it is rather simple to give
an example of four non-convex shapes whose nerve is the boundary of a tetrahedron, it is not
so simple to provide such an example with congruent shapes, and even less so to construct
such a scenario in a monohedral tiling. Another question is what would be the maximal cage
number possible for a monohedral tiling with a k-vertex polygon. Our paper establishes the
lower bound of k−3

2 . We are currently not able to provide any upper bound.
More in line with our original motivation, we plan to investigate convex monohedral

tilings in higher dimension next. In detail, we want to characterize large classes of such tilings
for which the nerve is a flag complex. Already in three dimensions, the natural generalization
of Theorem 2.4 that all non-tetrahedral tilings have this property fails because we can simply
extend Figure 1 (right) to the third dimension using triangular prisms. A statement in reach
seems to be the following: restricting to face-to-face tilings, we call a tiling in Rd generic if
at most d + 1 tiles meet in a common point. We claim that the nerve of a generic tiling is a
flag complex. This would include the permutahedral scenario considered in [2].
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Abstract
We consider the problem of finding a maximum cut in a graph G = (V,E), that is, a partition
V1∪̇V2 of V such that the number of edges between V1 and V2 is maximum. It is well known that
the decision problem whether G has a cut of at least a given size is in general NP-complete. We
show that this problem remains hard when restricting the input to segment intersection graphs.
These are graphs whose vertices can be drawn as straight-line segments, where two vertices share
an edge if and only if the corresponding segments intersect. We obtain our result by a reduction
from a variant of Planar Max-2-SAT that we introduce and also show to be NP-complete.

1 Introduction

For a graph G = (V,E), consider a partition V = V1∪̇V2 of V . The set E12 ⊆ E of edges
with one endpoint in V1 and one endpoint in V2 is called a cut (induced by V1 and V2), and
the cardinality |E12| is called the size of the cut. A maximum cut of G is a cut whose size is
as large as possible. The problem MaxCut is to find the size of a maximum cut in a given
graph G. MaxCut can also be cast as a vertex coloring problem: what is the maximum
number of bichromatic edges that can be obtained by coloring each vertex with one of two
possible colors? The decision version of MaxCut asks whether G contains a cut of size at
least k, for a given k ∈ N. It is NP-complete for general graphs [3]. Moreover, MaxCut is
hard to approximate [7, 8]. On the other hand, there exists a PTAS for MaxCut in dense
graphs [1]. For planar graphs, MaxCut can be solved in polynomial time [6], and the same
is true for several other graph classes [2].

A segment intersection graph is a graph whose vertices can be drawn as straight-line
segments (that pairwise intersect in at most one point, in their relative interiors), such
that two vertices share an edge if and only if the corresponding segments intersect. In a
(representation of a) segment intersection graph, a maximum cut corresponds to a 2-coloring
of the segments such that the number of bichromatic crossings, i.e., crossings of segments
with different colors, is maximum. So far, the complexity status of MaxCut on line segment
intersection graphs seems to be open [2]. We show that the decision version of MaxCut is
NP-complete even when the input is restricted to segment intersection graphs. We obtain
this result via a reduction from a variant of Planar Max-2-SAT, that we introduce and
show to be NP-complete as well in Section 2.

This project has been supported by the Austrian Science Fund (FWF) grant W1230 and
the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 734922.
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In addition to the intrinsic interest of the problem, our study is motivated by the following
question that was posed by Ruy Fabila-Monroy at the workshop “Reunión de Optimización,
Matemáticas y Algoritmos” in the framework of the project CONNECT: let D be a straight-
line drawing of the complete graph Kn on n vertices. A k-edge-coloring χ of Kn assigns to
each edge of Kn a color from {1, . . . , k}. Let c̄rk(D,χ) be the number of monochromatic
edge crossings in D for the χ, that is, crossings of edges with the same color. What is the best
drawing D and the best k-edge-coloring χ of Kn in order to minimize c̄rk(D,χ)? During the
workshop, Francisco Javier Zaragoza Martínez observed the following relation to maximum
cuts: For a fixed drawing D, the total number of crossings is fixed. Thus, a k-edge-coloring χ
with the minimum number of monochromatic crossings maximizes the number of bichromatic
crossings. Further, any geometric graph can be interpreted as a segment intersection graph.
Hence finding a 2-edge coloring of Kn with the minimum number of monochromatic crossings
is equivalent to finding a maximum cut in the segment intersection graph D. We remark
that our construction does not show hardness of MaxCut for straight-line drawings of Kn.

2 Planar Max-2-SAT

We will use a reduction from a variant of Max2Sat. In Max2Sat, we are given a Boolean
formula φ in conjunctive normal form (CNF) with at most two literals per clause and an
integer k. We need to determine whether there is an assignment to the variables of φ that
satisfies at least k clauses. Max2Sat it NP-complete [4]. We will consider a variant of
Max2Sat where we require the 2-CNF formula φ to be planar and clause-tree-linked, two
notions that we will now define.

Given a CNF formula φ with clause set C and variable set V , the incidence graph
Gφ = (C ∪ V,E) is the graph that contains an edge between a variable and a clause if and
only if the variable or its negation appear as a literal in the clause. We say that φ is planar if
Gφ is a planar graph. The problems Planar 3-SAT and Planar Max-2-SAT are 3-SAT
and Max2Sat restricted to planar formulas. Planar 3-SAT is NP-complete [9]. To see
that Planar Max-2-SAT is NP-hard, it can be checked that the reduction from 3-SAT to
Max-2-SAT in [4] preserves planarity; see for example Theorem 2 in [5] and the proof of
Theorem 2.1 below.

For Planar 3-SAT, we can enforce even more conditions without making the problem
tractable: we say that a planar 3-CNF formula φ is clause-linked if there exists a path
P connecting the clauses in G(φ) such that G(φ) ∪ P is still a planar graph. Clause-
Linked Planar 3-SAT, which is 3-SAT restricted to clause-linked planar formulas, is still
NP-complete, see for example [10].

Similarly, we can add more conditions on Max-2-SAT: we say that a planar 2-CNF
formula φ is clause-tree-linked if there exists a spanning tree T of the clauses in G(φ) such
that G(φ)∪T is still a planar graph. We define Clause-Tree-Linked Planar Max-2-SAT
as Max-2-SAT restricted to clause-tree-linked planar formulas.

I Theorem 2.1. Clause-Tree-Linked Planar Max-2-SAT is NP-complete.

Proof. To show NP-completeness of Clause-Tree-Linked Planar Max-2-SAT, we need
to show its membership in NP and its NP-hardness. Membership in NP directly follows
from the fact that Clause-Tree-Linked Planar Max-2-SAT is a special case of the NP-
complete problem Max-2-SAT. We prove NP-hardness by reduction from Clause-Linked
Planar 3-SAT.

In Clause-Linked Planar 3-SAT, we have as input a 3-CNF formula φ with variable
set V and clause set C, together with a linear ordering o of the elements of C. Further,
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the incidence graph G(φ) = (C ∪ V,E) together with the path P (o) = (C,EP ) on C that
is induced by the linear ordering o is still planar. To transform this input to an input of
Clause-Tree-Linked Planar Max-2-SAT, we utilize the following reduction function of
the well known reduction from 3-SAT to Max-2-SAT [4]: Every clause c = (x, y, z) in φ is
replaced by a 2-CNF formula c′ of the form

c′ := x ∧ y ∧ z ∧ w ∧ (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ ¬z) ∧ (x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w),

where w is an additional variable that is used exclusively used for one clause of φ. The
complete 2-CNF formula for the Max-2-SAT is then φ′ :=

∧
c∈C c

′. The target value for the
number of clauses that should be satisfied in φ′ is k′ := 7|C|. The reduction from 3-SAT to
Max-2-SAT follows from the fact any variable assignment that does not satisfy a clause
c in φ satisfies at most six of the clauses in c′, while an assignment satisfying c satisfies
exactly seven clauses in c′. What remains to be proven is that the resulting incidence graph
G′(φ′) admits a tree T (o) = (C ′, ET ) such that G′(φ′) together with T (o) is still a planar
graph. To this end, consider a plane embedding D of the graph G(φ) together with the
path P (o) = (C,P ). We first construct a plane embedding1 of G′(φ′) from D. For a clause
c = (x ∨ y ∨ z) in φ, the sub graph in G(φ) induced by c and its variables x, y, and z is a
tree with center c and leaves x, y, and z; see Figure 1 (left). To obtain an embedding of
G(φ′), we start with the embedding of G(φ). For every clause c in φ replace the tree of c
(and its variables) by an embedding of the sub graph induced by c′ (and its variables) in
G′(φ′) as depicted in Figure 1 (right). Because the variable vertices x, y and z all lie in the
unbounded face of this drawing, the resulting embedding of G′(φ′) is again plane.

x

y z

(x ∨ y ∨ z)

x

y z

(¬x ∨ ¬y)

(¬x ∨ ¬z)

(¬y ∨ ¬z)

(x ∨ ¬w)

(y ∨ ¬w)

(z ∨ ¬w)

(x)

(y)

(z)

(w)

w

Figure 1 The subgraph of a clause c and its variables in φ (left), and the according subgraph
of the transformation c′ and its variables (right). Variable vertices are drawn as dots while clause
vertices are drawn shaded.

Further, in P (o), c is incident to one or two edges going to its neighbor(s) in the linear
order o on C. We extend the drawing of P (o) in D to a drawing of a tree through all clauses
of φ′ in D′ such that the total drawing remains plane. It is easy to see that the drawing
in Figure 1 (right) can be extended by a path P ′ through all the clauses that starts and
ends in the unbounded face. If c is an endpoint of P (o) and in D, the edge of P (o) at c is
between the ones to z and x or y, respectively, then we replace c in the drawing P (o) by
(x) or (y), respectively, and append P ′ to the drawing of P (o). If in D, the two path edges

1 It has been known that the reduction from 3-SAT to Max-2-SAT preserves planarity [5]. We reprove
the statement via a concrete embedding, which we then utilize to also show clause-tree-linkedness.
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at c are neighboring and between the ones to z and x or y, respectively, then we replace c
in the drawing P (o) by (x) or (y), respectively, and append P ′ as a branch to the drawing
of P (o). If in D, the path separates z from x and y in the order around c, then we replace
the vertex c in the drawing of P (o) by the path P ′. Finally, note that the drawing of c′ and
its variables is not symmetric, but c′ itself is. Hence, an appropriate permutation of x, y,
and z in the drawing always yields a drawing of c′ that fits one of the above cases. This
finishes the reduction. J

3 Max-Cut for Segment Intersection Graphs

I Theorem 3.1. The decision version of the Max-Cut problem is NP-complete even when
restricted to segment intersection graphs.

Proof. We prove NP-hardness by reduction from Clause-Tree-Linked Planar Max-2-
SAT. For any clause-tree-linked planar 2-SAT formula φ with m clauses we construct a line
segment arrangement S with the property that there is an assignment satisfying at least
m − k clauses of φ if and only if there is a 2-coloring of the segments of S with at most
m+ 2k monochromatic crossings.

Let φ be a clause-tree-linked planar 2-SAT formula and let G(φ) be its associated graph
and T the tree through its clauses. Consider a plane drawing of G(φ)∪T . We will mimic the
formula φ by constructing line segment configurations, called gadgets, that serve as variables,
wires, splits, negations and clauses, and concatenating them according to the drawing of the
graph G(φ). We will use wire gadgets and split gadgets to propagate the truth assignment of
a variable along the edges between the variable and the clauses containing it, while negation
gadgets will serve to invert the truth assignment of a variable (for negative literals).

As variable gadget, we just take a single line segment. Each line segment will be colored
with one of two colors, without loss of generality red and blue, one of them representing the
true state, the other one the false state. For a wire gadget, we draw two segments a and b
that do not cross each other and 2m + 1 other segments, each of which crosses a and b

but no other segment. See Figure 2 (left) for an illustration. It follows that if a and b

get the same color, we can color the gadget without monochromatic crossings, whereas
if a and b get different colors, any coloring of the remaining edges yields exactly 2m + 1
monochromatic crossings. To build a split gadget, we repeat the construction of the wire
gadget twice; see Figure 2 (middle). For the negation gadget, we again draw two segments
a and b that do not cross each other. Further, we draw two families C and D of 2m + 1
pairwise non-crossing segments each, such that each segment of C crosses a, each segment of
D crosses b, and each segment of C crosses each segment of D; see Figure 2 (right). Note
that for the negation gadget we have at least 2m+ 1 monochromatic crossings if a and b have
the same color. However, if a and b have different colors, this gadget can again be colored
without monochromatic crossings.

a

b

a

b

b′

a bC D

Figure 2 A wire gadget (left), a split gadget (middle) and a negation gadget (right).
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It remains to construct the clause gadgets. For any two literals that form a clause, draw
two corresponding segments a and b and a segment t, called tree segment, such that both
a and b cross t. Further, we draw two additional segments c and d, where c crosses only
a and d and d crosses only b and c. See Figure 3 for an illustration. Assume that t is colored
red. If both a and b are blue, coloring c and d without obtaining a monochromatic crossing
is impossible, but we can color c and d such that we have only one monochromatic crossing.
The same holds if both a and b are red, but in this case there are also two monochromatic
crossings between t, a, and b. If a is red and b is blue or vice versa, we have a monochromatic
crossing between a or b and t, but we can color c and d such that they are not involved in any
monochromatic crossing. So, to summarize, every clause requires at least one monochromatic
crossing and we have a coloring with exactly one such crossing unless a and b have the
same color as t, in which case the clause requires at least three monochromatic crossings.
In our construction, the colors of the tree segments will represent the false state. Hence,
any satisfied clause can be drawn with only one monochromatic crossing, while unsatisfied
clauses require at least three monochromatic crossings.

a b

c d

t

Figure 3 A clause gadget and some possible colorings of it. Monochromatic crossings are marked
with small circles.

Using these gadgets, we construct a line segment arrangement that goes essentially along
the edges of the given drawing of G(φ). To enforce that the tree segments have the same
color, we connect them using wire gadgets according to the drawing of T . Let S be the line
segment arrangement obtained by this construction. See Figure 4 for a small example.

(x ∨ ¬w)

(y ∨ ¬z)

(x ∨ y)

(w ∨ z)

x

w y

z

w

x

y

z

T

T

Figure 4 A drawing of G(φ) for the 2-SAT formula φ = (x ∨ ¬w) ∧ (x ∨ y) ∧ (w ∨ z) ∧ (y ∨ ¬z),
with a tree T connecting the clauses (left) and the segment arrangement derived from this drawing
(right). Dashed edges correspond to sets of 2m+ 1 line segments.

Next we show that there is an assignment satisfying at leastm−k out of them clauses of φ
if and only if there is a 2-coloring of the segments of S with at most m+ 2k monochromatic
crossings, for any 0 ≤ k ≤ m.
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First assume that there is a 2-coloring of the segments of S with at most 2k +m ≤ 3m
monochromatic crossings. As each of the m clause gadgets needs at least one monochromatic
crossing, at most k clause gadgets can have three (or more) monochromatic crossings.
Furthermore, in each wire gadget, the segments corresponding to a and b in the illustration in
Figure 2 (left) must have the same color. Otherwise the gadget alone would already contain
at least 2m+ 1 monochromatic crossings and hence the whole drawing would contain at least
2m+ 1 +m ≥ 3m+ 1 monochromatic crossings, a contradiction. For the same reason, all tree
segments have the same color and furthermore the segments corresponding to a, b, and b′ in
a split gadget share the same color; and in any negation gadget, the segments corresponding
to a and b must have different colors. Hence, interpreting the color of the tree segments as
representing the false state and assigning the truth states to the variables in φ according to
the color of their respective variable gadgets, we obtain a variable assignment for φ with at
most k unsatisfied clauses.

For the other direction, assume that there is an assignment satisfying at least m − k
clauses of φ. Color the variable gadgets blue if the corresponding variable is assigned the
true state, and red otherwise. Color the tree segments in red and all the gadgets, except the
clause gadgets, without monochromatic crossings. Then the only monochromatic crossings
occur in the clause gadgets. Each of them induces one monochromatic crossing, and two
more if and only if the corresponding clause is unsatisfied. As there are at most k unsatisfied
clauses the coloring has at most 2k +m monochromatic crossings.

It is not hard to see that the line segment arrangement S can be constructed in polynomial
time, which concludes the NP-hardness part. Furthermore, the problem is clearly in NP as it
is a restricted version of the NP-complete problem Max-Cut, which finishes the proof. J
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Abstract
We study non-monochromatic and conflict-free colorings on tree spaces, that is, one-dimensional
spaces with a tree topology. More specifically, we analyze the number of colors needed to color a
set A of n objects in a tree space T with k leaves, with each object being a connected subset of T ,
in a non-monochromatic or conflict-free fashion. We prove that there exists a non-monochromatic
coloring with O(min(`,

√
k)) colors, where ` denotes the maximum number of leaves of any object

in A. This bound is tight in the worst case. This result implies that there exists a conflict-free
coloring with O(` log k) colors.

1 Introduction

Conflict-free colorings, or CF-colorings for short, were introduced by Even et al. [4] and
Smorodinsky [8] to model frequency assignment to base stations in wireless networks. In the
basic setting one is given a set S of objects in the plane—often disks are considered—and
the goal is to assign a color to each object such that the following holds: for any point p
in the plane such that the set Sp := {D ∈ S | p ∈ D} of objects containing p is non-empty,
Sp must contain an object whose color is different from the colors of the other objects
in Sp. Even et al. proved, among other things, that any set of disks admits a CF-coloring
with O(logn) colors. Since then many different geometric variants of CF-colorings have been
studied. For example, Har-Peled and Smorodinsky [5] generalized the result to objects with
near-linear union complexity, while Even et al. [4] considered the dual version of the problem.
See the survey by Smorodinsky [10] for an overview. A restricted type of CF-colorings are
unique-maximum colorings (UM-colorings), in which the colors are identified with integers,
and the maximum color in the set Sp is required to be unique. Another type of coloring,
often used as an intermediate step to obtain a CF-coloring, is non-monochromatic (NM). In
an NM-coloring—sometimes called a proper coloring—we only require that, for any point p
in the plane, if the set Sp contains at least two elements, not all of them have the same color.
Smorodinsky [9] showed that if an NM-coloring on n elements using β(n) colors is given, one
can create a CF-coloring using O(β(n) logn) colors.

CF-colorings can also be defined in a more abstract setting. Here one is given a hypergraph
H = (V,E) and the goal is to color V such that for every (non-empty) hyperedge e ∈ E, there
is a vertex in e whose color is different from that of the other vertices in e. Ashok et al. [2]
showed that deciding whether a given hypergraph can be CF-colored using k colors is
fixed-parameter tractable. Note that the basic geometric version mentioned above—coloring
objects in R2 with respect to points—can be phrased in terms of hypergraphs by letting the
objects be the vertex set V and for each point p in the plane creating a hyperedge e := Sp.
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project no. 024.002.003. BA has been supported by NSF Grants CCF-11-17336, CCF-12-18791, and
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Another avenue for constructing a hypergraph H to be colored is to start with a graph G,
let the vertices of H be the vertices of G and create hyperedges for (the sets of vertices
of) certain subgraphs of G. For example, Pach and Tardos [7] considered the case where
hyperedges are all the vertex neighborhoods. For this case, Abel et al. [1] recently showed
that a planar graph can always be colored with only three colors, if we allow some vertices
to be uncolored. (Otherwise, we can use a dummy color, increasing the number of colors to
four.) As another example, we let the hyperedges be induced by all the paths. This setting
is equivalent to an older notion of vertex ranking [3], also known as ordered coloring [6].

In this paper we study CF- and NM-colorings in a setting that is closely related to both
the geometric and the graph-based setting. More precisely, the spaces that we consider are
tree spaces—that is, one-dimensional spaces with a tree topology—and the objects that we
want to color are connected subsets (in other words, subtrees) of the given tree space. In this
setting, we are interested in how the complexity of the given tree space and of the objects
to be colored influence the chromatic number. Note that, if the given tree space is a single
curve, the problem reduces to coloring intervals on the real line.

Our contributions. Let T be the given tree space. It may be convenient to visualize T as
being embedded in R2, although the embedding is actually immaterial. We assume without
loss of generality that T is bounded—it does not have infinitely long branches—and define the
vertices of T in the natural manner. Any vertex of T is either an internal vertex (a branching
point of degree at least three) or a leaf. The curves connecting the vertices, whose union
is T , are called the edges of the tree space. We denote the number of leaves of T by k.

Let A be the set of n objects that we wish to color, where each object T ∈ A is a
connected subset of T . Thus each object itself is also a tree. From now on, we will refer to
the objects in A as “trees”, and always use “tree space” when talking about T . We denote
the maximum number of leaves of any tree in A by `. Note that internal vertices of a tree are
necessarily internal vertices of T , but leaves of a tree may also lie in the interior of an edge
of T . CF-colorings of such a set A are now defined as above: for any point p ∈ T , the set
Sp := {T ∈ A | p ∈ T} (if non-empty) should have a tree with a unique color. We now define
the CF-chromatic number Xtree,tree

cf (k, `;n) as the minimum number of colors sufficient to
CF-color any set A of n trees of at most ` leaves each in a tree space of at most k leaves.
The NM-chromatic number Xtree,tree

nm (k, `;n) is defined similarly. We will show that1

I Theorem 1.1 (Main result).
(i) Xtree,tree

nm (k, `;n) 6 min(`+ 3, 2
√

6k + 2), and (ii) Xtree,tree
cf (k, `;n) = O(` log k).

In the full version we also (a) show how to use two fewer colors in part (i) of the
theorem and (b) provide two lower bounds for NM-colorings, namely Xtree,tree

nm (k, `;n) >
min

(
`+ 1,

⌊√
1+8k

2

⌋
, n
)
, which clearly also apply to CF-colorings, and Xtree,tree

cf (k, `;n) >
blog2 min(k, n)c; and (c) study other variants, for example by considering more general
network spaces (rather than tree spaces) and other types of objects to be colored.

2 The coloring algorithms

Preliminaries: The chain method. We start by describing a folklore technique, called the
chain method, to color intervals in R1 in a non-monochromatic fashion using at most two

1 Obviously the number of trees, n, is an upper bound as well. To avoid cluttering the bounds, we usually
omit this trivial bound.
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Figure 1 The original tree T (left), the set
⋃

e∈E(T ) e ∩ T (middle), and the new tree T ′ (right).

colors. We order the intervals left-to-right by their left endpoints (in case of ties, we take
the longest interval first) and color them in this order using the so-called active color which
is defined as follows. We start with blue as the active color. We color the first interval,
then change the active color to red. We then use the following procedure: we color the
next interval I in the ordering using the active color, then if the right endpoint of I is not
contained in any other colored interval, we change the active color from red to blue or blue
to red. It is easy to show the resulting coloring is non-monochromatic.

Overview of the coloring procedure. Let T be a tree space and let A be a set of n trees
on T , each with at most ` leaves. We will NM-color A in two phases: first, we select a
subset C ⊆ A of size at most 6k − 12 and color it with at most min(`+ 1, 2

√
6k) colors. In

the second phase we extend this coloring to the whole set A using at most two extra colors.
An edge e of T is a leaf edge if it is incident to a leaf; the remaining edges are internal.

We define C ⊆ A as the set of at most 6k − 12 trees selected as follows. For every pair (e, v),
where e is an edge of T and v is an endpoint of e that is not a leaf of T , we choose two trees
containing v and extending the furthest into e (if they exist), that is, trees T of A containing v
for which length(T ∩ e) is maximal, and place them in A(e, v). Note that if two or more
trees of A fully contain e, then A(e, v) contains two of them, chosen arbitrarily. Note also
that, if a tree contains an internal edge e fully, it may be chosen by both endpoints. We now
define A(e) := A(e, u) ∪ A(e, v) for each internal edge e = {u, v}, define A(e) := A(e, v) for
each leaf edge e = {u, v} with v being its non-leaf endpoint. Finally, we define C :=

⋃A(e),
with the union taken over all edges e of T . Since A(e) contains at most four trees for any
internal edge e and at most two trees for any leaf edge e, and since the number of internal
edges of T is at most k− 3 and the number of leaf edges is at most k, where k is the number
of leaves of T (which, as a topological tree, does not have degree-two vertices), |C| 6 6k− 12,
as claimed. We first explain how to color C.

Coloring C. We color C in two steps. Let E(T ) be the set of edges e of T with T ∈ A(e).
Firstly, if ` > 2

√
6k we select all subtrees T with |E(T )| >

√
6k, and give each of them a

unique color. Since
∑

e |A(e)| 6 6k − 12 there are at most
√

6k − 1 such trees, so we use at
most

√
6k − 1 colors. Then for each uncolored T ∈ C we create a new tree T ′, defined as the

smallest tree containing
⋃

e∈E(T ) e∩T ; see Fig. 1. Note that T ′ has at most `′ := min(`,
√

6k)
leaves because |E(T )| <

√
6k. Define C′ := {T ′ | T ∈ C}. The second step is to color C′. We

need the following lemma, which shows that an NM-coloring of C′ carries over to C.

I Lemma 2.1. Any NM-coloring of C′ corresponds to an NM-coloring of C, that is, if we give
each tree T ∈ C the color of the corresponding tree T ′ ∈ C′ then we obtain an NM-coloring.
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v

non-monochromatic

singly-colored

uncolored
v

Figure 2 A coloring of trees (left) and an illustration of the invariant for v (right).

Proof. Let q be a point on an edge e of T contained in at least two trees of C (if no such
trees exists, the coloring is trivially non-monochromatic at q). Since q is contained in at least
two trees of C, it is also contained in two trees of A(e). Call these trees T1 and T2. Note
that T1 either receives a color in the first coloring step—namely when |E(T1)| > 2

√
6k—or

T ′
1 ∈ C′ contains q (since e ∈ E(T1)). A similar statement holds for T2. Since the colors used

in the first step are unique and C′ is NM-colored, this implies that T1 and T2 have different
colors. Hence, C is NM-colored. J

Next we show how to NM-color C′. Fix an arbitrary root r of the tree space T . Our
coloring procedure for C′ maintains the following invariant: any path from r to a leaf v
of T consists of three disjoint consecutive subpaths (some possibly empty), in this order, as
illustrated in Fig. 2:

a non-monochromatic subpath containing the root on which at least two trees are colored
with at least two different colors,
a singly-colored subpath containing exactly one colored tree, and
an uncolored subpath containing the leaf on which no tree is colored.

I Observation 2.2. Any set of trees containing r and satisfying the invariant described above
is NM-colored if we disregard uncolored trees.

We color the trees T ∈ C′ that contain r in an arbitrary order, using `′ + 1 colors, as
follows: for each leaf v of T , we follow the path from v to the root r to find a singly-colored
part. Note that if we find a singly-colored part—by the invariant there is at most one such
part on the path from v to r—we cannot use that color for T . Since T has at most `′ leaves,
this eliminates at most `′ colors. Hence, at least one color remains for T .

I Lemma 2.3. The procedure described above maintains the invariant and colors all trees
of C′ containing r with at most `′ + 1 colors.

Proof. Suppose the invariant holds before the coloring of T . Then we need to make sure the
invariant still holds after T has been colored. Let w be a leaf of T and πw the path from w

to the root. If πw does not contain a leaf of T then the invariant obviously still holds on πw.
Now suppose πw contains a leaf v of T , and let πv ⊆ πw be the path from v to r. The part
of πv that was uncolored (if it was non-empty) now is singly-colored. The part that was
singly-colored now becomes non-monochromatic, as we eliminated that color for T . And
the part that was already non-monochromatic stays so. Therefore the invariant is indeed
maintained for πw, concluding the proof. J

Once all the trees containing r are colored we delete r from T , that is, we consider the
space T \ {r}, and we take the closures of the resulting connected components. This creates
a number of subspaces such that each uncolored tree in C′ is contained in exactly one of



B. Aronov, M. de Berg, A. Markovic, and G. Woeginger 33:5

r

r′ r′ r′ r′

Figure 3 When recursing on the subspace rooted at r′ (leftmost), the invariant does not hold
anymore (middle left), as the parts are switched on the edge between r and r′. To remedy this, we
first color the tree extending the furthest into that edge (middle right), starting from r′. We then
trim the tree to fix the invariant (rightmost).

them. Consider such a subspace T ′ and let r′ be the neighbor of r in T ′. We now want
to recursively color the uncolored trees in T ′, taking r′ as the root of T ′. However, the
invariant might not hold on the edge e from r′ to the old root r: Since now r is considered
a child of r′, the order of the three parts might switch on e—see Fig. 3. Suppose this is
the case, and let ce be the color of the singly-colored part on the edge e. Note that for the
order to switch, the non-monochromatic part needs to end on e, and therefore the only color
used in any singly-colored part of the tree rooted at r′ is ce. We overcome this problem
by carefully choosing the order in which we color the trees containing r′. Namely, we first
color the tree T extending the furthest in e. In this case, there is only one color forbidden,
namely ce. We can therefore easily color T . We can then trim the tree space T ′ to remove
any non-monochromatic part and hence restore the invariant and continue with the coloring.

I Lemma 2.4. C admits an NM-coloring with min(`+ 1, 2
√

6k) colors.

Proof. The fact that the procedure above produces an NM-coloring follows from Lemmas 2.1
and 2.3. When ` > 2

√
6k we use

√
6k − 1 colors to deal with trees T with |E(T )| >

√
6k

and `′ + 1 6 min(`, 2
√

6k) + 1 6
√

6k + 1 colors for the other trees, giving 2
√

6k colors in
total. When ` 6 2

√
6k we do not treat the trees with |E(T )| >

√
6k separately, so we just

use `′ + 1 6 min(`,
√

6k) + 1 6 `+ 1 colors. J

Extending the coloring from C to A. Let c : C → N be an NM-coloring on C. We extend
the coloring to A as follows. We start by coloring all trees containing an internal vertex of
T using an arbitrary color already used. Then, for each edge e = {r, r′} we color the set of
uncolored trees contained in e using the chain method. For this we use two new colors, which
are used for all chains—we can re-use the same two colors for the chains, since trivially the
chains in any two edges e, e′ do not interact. (In the full version we describe a more careful
approach, which avoids using two new colors.) The following lemma proves the extended
coloring is non-monochromatic.

I Lemma 2.5. Any NM-coloring c on C can be extended to A by using two extra colors.

Proof. Let A1 be the subset of trees in A \ C that contain an internal vertex of T , and let
A2 be the remaining trees in A \ C. By Lemma 2.4 we have an NM-coloring on C, and the
chain method gives us an NM-coloring for the trees in A2 using two additional colors. It is
easy to see that together this gives us an NM-coloring on C ∪A2. The trees in A1 received an
arbitrary color already used. To prove that this gives an NM-coloring for A = C ∪ A1 ∪ A2,
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it suffices to prove that each tree T ∈ A1 is doubly-covered by C, that is, any point q ∈ T is
contained in at least two trees in C. To this end, let e be an edge such that q ∈ e. Then,
since T 6∈ C and T contains an endpoint v of e, the two trees in A(e, v) contain q. Hence, T
is doubly-covered by C, as claimed. J

Proof of Theorem 1.1. For the NM-coloring part of the theorem, we use Lemmas 2.4 and 2.5.
For the second part, if ` > 2

√
6k we again reduce C to C′ using at most

√
6k− 1 colors. Then

use the result by Smorodinsky [9] on the NM-coloring on C′ provided by Lemma 2.3. Since this
coloring uses at most `′ + 1 colors and |C′| 6 6k − 12, the CF-coloring uses O(` log k) colors.
We then extend the coloring to A using similar techniques as for the NM-coloring. This
coloring uses O(

√
k log k) colors if ` > 2

√
6k, which is in O(` log k), and directly O(` log k)

colors otherwise. Note that a direct application of the result by Smorodinsty [9] would give
a O(` logn) bound instead. J

3 Concluding remarks

We studied NM- and CF-colorings on tree spaces, where the objects to be colored are
connected subsets of the tree space. We showed that the number of colors can be bounded
as a function of the complexity (that is, number of leaves) of the tree space and the objects,
rather than on the number of objects. In the full version we show that this is also the case for
balls on network spaces. It would be interesting to find more settings where this is the case.
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Abstract
A consistent expansion of the well-spread dynamic two player split-screen to a larger number of
players is introduced and formally defined. Unfortunately such a pure solution does not exist, as
is proven in this paper. A visually appealing approximation is presented and discussed.

1 Introduction

1.1 Motivation through Multiplayer Games
In the early days of 2d computer games, most local multiplayer games were played on a
single screen. Newer gaming consoles revived this scenario for multiple players in front of a
single television set or console display.

This leaves two options to the developer: either all players have to stay very close to each
other in the virtual realm, or each player has its own independent window to the game’s
world and is allowed to stroll around freely. The former case severely limits gameplay while
the latter case requires a subdivision of the physical screen space into as many independent
windows as players participating. The most obvious and often used subdivisions for two
players are horizontally or vertically in the respective center. Applying both subdivisions
simultaneously solves the typical four player scenario.

The mentioned stationary horizontal and/or vertical subdivisions have multiple drawbacks,
we are going to tackle in this paper:

1. If two players stand right next to each other, both their windows would show the exact
same surroundings, essentially wasting half of the total screen space.

2. Multiplayer games might want to hint the players on their relative positions, e.g. player
one being left and slightly above player two. This requires additional display elements
like arrows, further cluttering the screen.

1.2 Dynamic Split-Screens to the Rescue
The two problems mentioned above can be fixed with a single simple concept often called
“dynamic split-screen”. A simple variation of it already appeared in a game in 1983 [2] basically
only solving the first mentioned drawback. Developers sporadically used and improved it
to also solve the second drawback ever since without much scientific interest. It realizes
the simple idea, that the separating line between two players need not be static but might
change and even vanish according to the player positions, as indicated in figure 1.

For two players there is not a lot of math to it. The separator in screen space is
perpendicular to the vector between the player positions in world space, and can therefore
be computed with a single arctan.

1.3 Formal Problem Formulation
Note that there is no ground truth. All criteria were chosen with aesthetics, fluent graphics
and gameplay in mind.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
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Figure 1 The separator (red) changes its orientation dynamically according to the player positions
(green, blue) while they move (arrows). It will vanish for players being close to each other (right
image).

The following definition is helpful to simplify writing.

I Definition 1.1. Let the sum of a polygon P and a vector v be the polygon translated by
that vector, i.e. the vector added to every point of the polygon: P + v = {p + v | p ∈ P}.

Today game worlds are massive in size but usually not infinite. We consider them finite
and surrounded by thick impassable walls, so we can treat them as infinite here.

I Definition 1.2. The world space is R2. Players move continuously through the world with
position wi(t) ∈ R2 for player i at time t.

The display hardware has a fixed amount of pixels and a given aspect ratio, but we
abstract this and use a square with real coordinates.

I Definition 1.3. The screen space is [−1, 1]2. The screen space position for player i at time
t is denoted by si(t) ∈ [−1, 1]2.

Since every coordinate used here is time dependent, the parameter t is omitted throughout
the paper to avoid cluttering. A “scene” with fixed t is considered and the following main
definition must hold for every t.

I Definition 1.4. A fair voronoi split-screen for n players comprises a set of n convex
polygons S0, . . . , Sn−1 forming a subdivision of the screen space, one for each player, and
one designated point (screen space position) inside each Si, fulfilling the following criteria:

1. Fair: All Si have equal area.
2. Direction-indicating: If Si and Sj share a boundary, this boundary would be parallel

to the bisector of wi and wj .
3. Fusible: If Si and Sj overlap in world space, formally (Si − si + wi)∩(Sj − sj + wj) 6= ∅,

the boundary between Si and Sj would be omitted, thereby fusing Si and Sj .
4. Centered: si is the center of the inscribed circle of Si for all non-fused Si. If Si is fused

with one or more other polygons Sj , Sk, . . . , the centroid cW
i of wi, wj , wk, . . . is mapped

to the centroid cS
i of the inscribed circles of Si, Sj , Sk, . . . and si ← cS

i + wi − cW
i .

5. Continuous: Just as wi moves continuously, so too si and the boundary vertices of Si.

Fairness is obvious from a gameplay perspective, direction-indication and fusibility are
the requested features from section 1.1, centeredness helps providing good visibility in every
direction, and continuity is required for aesthetics and fluent animation.

Figure 2 illustrates parts of the definition. The three equally sized (fair) Si are depicted
including the corresponding si (centered). The red boundaries have the correct angles
(direction-indicating). In figure 2b two screen space regions are fused.
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(a) All three players are sufficiently far away
from each other in world space, resulting in
three disjoint screen space regions.

(b) The screen space regions for the green and
yellow player overlap in world space, hence
they become visually fused in screen space.

Figure 2 Three players (thick squares in green, blue, yellow) with their respective region in screen
space, the shared boundaries of the Si in red, and the relative positions of the Si projected to world
space (colored polygons at the bottom).

Parts of definition 1.4 resemble the well-known voronoi diagram [3]. Hence the name
voronoi split-screen became commonly accepted. Do not jump to conclusions because
observation 1.6 tells us that we are not dealing with normal voronoi diagrams here.

I Observation 1.5. The dynamic split-screen for two players mentioned in section 1.2 equals
the voronoi diagram of the two player positions and fulfills definition 1.4.

I Observation 1.6. The voronoi diagram of n > 2 players in world space scaled uniformly
to screen space usually violates the fairness and centeredness conditions, while providing
direction-indication and being fusible. Therefore it is not a fair voronoi split-screen.

1.4 Related Results

The two player dynamic/voronoi split-screen appears quite often in games without special
emphasis, but only a few approaches for more than two players exist.

At GDC 2016 Eiserloh presented an approach [4]. They build the voronoi diagram of the
player positions in world space, map it to screen space, and reposition the player in screen
space to be the center of the inscribed circle in their corresponding area. Although the last
step guarantees a nice centeredness, the split-screen is neither fair, nor continuously fusible.

A different implementation, utilizing only the GPU, was made freely available by an
author with the pseudonym gorsman [5]. The voronoi diagram is used directly and hence the
cells are nicely fusible, but the split-screen is neither fair, nor centered.

Both mentioned approaches are expandable to an arbitrary number of players without
further complications. They lack fairness and either centeredness or fusibility.
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2 Fair Voronoi Split-Screens are Almost Impossible

The fact that no fair split-screen by definition 1.4 is known for at least three players becomes
quite understandable, as the following theorem states their non-existence.

The proof is quite lengthy, so it is given in two lemmas. Both consider the following case
to derive a contradiction:

Let three players be positioned in world space at w0 = (0, 2), w1 = (0,−2), w2 = (100, 0).
w0 and w1 are close to each other, but their distance is slightly larger than the screen space’s
side length. w2 is very far to the right, vertically between w0 and w1. Obviously no two
regions can overlap in world space, hence fusion is prohibitive in this setting.

I Lemma 2.1. S0, S1, S2 all pairwise share a bounding edge (“they are neighbors”).

Proof. Since S0, S1, S2 are convex polygons with equal area and they form a subdivision of a
square, either all are neighbors and we are done, or one polygon must separate the other two.
Since the angles of possible boundary edges are fixed by the direction-indication property,
one can go through all three cases and show that a correct subdivision is impossible under
these circumstances. Illustrated in figure 3a is the case where S2 should separate S0 and S1.
Hence no polygon can separate the other two. J

I Lemma 2.2. Fair Voronoi Split-screens are impossible for three players.

Proof. Since S0, S1, S2 must be pairwise neighbors in screen space by lemma 2.1, and the
angles of their pairwise boundaries are given by the direction-indication property, we have
two possibilities:

Try to keep all sisj parallel to the corresponding wiwj. The only angle preserving
transformation of the player positions from world space to screen space is uniform scaling.
Since w2 is far away, the scaling factor must be very small, and therefore the distance
between s0 and s1 becomes very small.
The common boundary of S0 and S1 must be between s0 and s1 which are very close to
each other, hence there is no placement for the boundary with s0 and s1 being centered
in their respective polygons, see figure 3b.
Parallelity is not preserved from world space to screen space. Let x, y be two players
where the shared boundary between Sx and Sy is perpendicular to wxwy due to direction-
indication, but not perpendicular to sxsy. Let player x and y move towards each other
on the line wxwy, effectively not changing the angle of the boundary of Sx and Sy. At
some point wx = wy, but sx 6= sy, see figure 3c. This motion is not continuously fusible.

The only two possibilities are either not centered or not continuous and therefore contradict
definition 1.4. J

I Theorem 2.3. Fair Voronoi Split-screens are impossible for three or more players.

Proof. For any number larger than three, we place the first three players as in the proof for
lemma 2.2 and the others reasonably far to the right of the first three points. For the local
situation of the first three players, the proof of the three player case applies respectively. J

3 A Quasi-Solution for Three Players

As established in the previous sections, a fair voronoi split-screen exists and is easy to
implement for two players, while being impossible—and therefore obviously quite hard to
implement—for three or more players.
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S0

S1

S2

(a) Placing S1 not next to S0
is impossible with given angles
for boundary edges.

S0

S1

S2

(b) The common boundary of
S0 and S1 prohibits centered-
ness.

Sx

Sy
−−−→wxwy

(c) Displacing centers leads
to non-continuous fusion prob-
lems.

Figure 3 Illustrations for several parts of the main lemma’s proof.

Since the proposed split-screen might appear in fast-paced games and the human eye is
sluggish, some minor violations of the properties in definition 1.4 could be tolerable. The
maybe most noticeable violation would be disruptions in the continuous movement and
fusion, while a slight deviation in area sizes or centeredness could go unnoticed.

The presented algorithm 1 will utilize a relaxed centeredness condition to achieve fairness,
fusibility and a smooth movement. It starts by computing the screen space regions. Collinear
(or “almost collinear” for numeric stability) player positions are handled as a special case
because their voronoi diagram has no voronoi vertex with finite coordinates. Otherwise the
voronoi diagram is computed and moved around until all voronoi cells in the intersection
with the screen space have almost equal area. Since we work with a finite amount of pixels
in the end, a reasonable error threshold would be 0.01.

Computing the si involves the “cheating” and violates the centeredness condition for
close-by player positions. The real center is computed and then slightly offset towards the
centroid from definition 1.4 scaled by the distance to the other players.

Afterwards fusibility is checked for all regions. If all are fusible, all three players would
act in the same window to the game world. Otherwise only two or none are fused. The
OpenGL stencil buffer [1] or a similar tool can be used to limit the rendering to an arbitrarily
shaped region of the screen space. Rendering the game world is always the same procedure,
only translated individually for each region.

4 Conclusion & Room for Lots of Variations

Fairness and centeredness are both very important gameplay aspects. This is the first solution
to provide both almost always, and its the first fair split-screen ever. The impossibility to
achieve all naturally desired features is shown. The approximation is visually quite close to
the (non-existing) optimum and barely interfering with fast-paced gameplay.

Quasi-solutions for more than three players remain a mystery. It seems, that fairness
becomes much harder to achieve for more than three players. Maybe fairness and direction-
indication together are impossible for a large enough number of players.

Many variations are possible: different kinds of “center”, i.e. intentionally misplaced with
more visibility in front than in the back, allow different sizes where stronger/faster units
have a larger area, relaxed direction-indication condition by a few degrees. Let’s discuss. . .
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1 if w0, w1, w2 are collinear on line L then
2 S0, S1, S2 ← find two copies of L⊥ dividing the screen space into three equally

sized parts
3 else
4 V D ← compute voronoi diagram of w0, w1, w2
5 vv ← sole voronoi vertex of V D

6 translate vv (and the complete diagram with it) to (0, 0)
7 repeat
8 S0, S1, S2 ← cells of V ∩ screen space
9 compute area sizes si of all Si

10 error← max2
i=0 si −min2

i=0 si

11 translate vv by an amount scaled by error in the general direction of largest Si

12 until error small enough;
13 for i← 0 to 2 do
14 centeri ← compute center of Si

15 for i← 0 to 2 do
16 si ← is obtained by linear interpolating between centeri, and the midpoint of

centeri and the center of its closest neighbor, weighted with their distance
17 foreach (i, j) ∈ {(0, 1), (0, 2), (1, 2)} do
18 if (Si − centeri + wi) ∩ (Sj − centerj + wj) 6= ∅ then
19 mark Si and Sj as fusible
20 if S0, S1, S2 all marked as fusible then
21 render world centered at 1

3 (s0 − w0 + s1 − w1 + s2 − w2)− vv

22 else if only two regions marked as fusible: Sa, Sb then
23 set stencil mask to Snon-fusible
24 render world centered at snon-fusible − wnon-fusible − vv

25 invert stencil mask
26 render world centered at 1

2 (sa − wa + sb − wb)− vv

27 else
28 for i← 0 to 2 do
29 set stencil mask to Si

30 render world centered at si − wi − vv

Algorithm 1: Computing an almost fair voronoi split-screen for three players
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Abstract
In many domains, the aggregation or classification of data elements leads to various intersecting
sets. To allow for intuitive exploration and analysis of such data, set visualization aims to
represent the elements and sets graphically. In more theoretical literature, such set systems are
often referred to as hypergraphs. A support graph is a notion for drawing such a hypergraph,
understood as a regular graph spanning the same vertices (elements), in which each hyperedge
(set) induces a connected subgraph.

In this paper, we investigate finding a support graph of a hypergraph with fixed vertex loca-
tions under various constraints. We focus on enforcing planarity using a straight-line embedding,
while minimizing the total length of the edges of the support graph, and consider the effect of
the additional requirement that the support graph is acyclic.

1 Introduction

Intersecting sets are used in many domains to model various ways of clustering, grouping or
aggregating measurements or data elements. To allow for effective exploration and analysis
of such set systems, visualization is often used. Indeed, set visualization is an active subfield
of information visualization; Alsallakh et al. [3] recently surveyed it. We focus on the case
where elements have fixed positions in the plane, arising e.g. from geospatial locations.

On the theoretical side, such a set system is often referred to as a hypergraph H = (V, S),
with a set of vertices V (elements) and hyperedges S (sets), where each hyperedge s ∈ S is
some nonempty subset of V . A support graph of a hypergraph H = (V, S) is a (regular) graph
G = (V,E) on the same vertex set such that every hyperedge s ∈ S induces a connected
subgraph in G [8]. In the remainder, we assume that V is a set of points in the plane and
that a support graph is embedded using straight-line edges.

Though there are various ways of visualizing sets, support graphs match to a popular
style in set visualization, namely that of connecting elements using colored links, such as
seen for example in Kelp-style diagrams [9, 13] (see also Fig. 1) or LineSets [2]. Finding
an embedded support graph that satisfies certain criteria therefore readily translates into a
good rendering of the corresponding set system. A “good” support graph should avoid edge
crossings, a standard quality criterion in the graph-drawing literature [14]. Moreover, as per
Tufte’s principle of ink minimization [15], it should have small total edge length.

∗ This work was started at Dagstuhl seminar 17332, Scalable Set Visualizations. T. Castermans is
supported by the Netherlands Organisation for Scientific Research (NWO, 314.99.117). W. Meulemans
is partially supported by the Netherlands eScience Centre (NLeSC, 027.015.G02).
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Figure 1 (a) A set system with colors indicating set membership. (b) The shortest plane support
of the corresponding hypergraph. (c) A Kelp-style rendering of the set system.

Contributions In Section 2, we explore theoretical properties of requiring planarity. In
particular, if there is at least one vertex that occurs in all hyperedges, then a plane support
tree exists. However, we show that the minimum spanning tree on these vertices is not
necessarily contained in any support tree or graph that is an approximation of the shortest
one. An analogous statement holds for plane versus nonplane support trees. In Section 3,
we turn to computational aspects and show that finding a plane support tree or graph with
minimal total edge length is NP-hard, even for only two hyperedges that are disjoint or if one
contains the other. In Section 4, we sketch an integer linear program to solve the problem.

Related Work Regarding support graphs for elements with fixed locations, some results are
already known. The results of Bereg et al. [5] imply that existence of a plane support tree
for two disjoint hyperedges can be decided in polynomial time; this readily implies the same
result for a plane support graph. To the best of our knowledge, the problem is still open
for |S| > 2; our result proves a sufficient condition but not a necessary one. This problem
has also been studied in a Steiner setting [4], where additional points may be placed. Van
Goethem et al. [16] enforce a stricter planarity than that of planar supports and investigate
the resulting properties for elements on a regular grid, where only neighboring elements can
be connected. However, length of the solution is of no concern in their results.

Without planarity, existence and length minimization of a (nonplane) support tree for
fixed elements can be solved in polynomial time [11, 12]. However, acyclicity makes this
problem easier. Indeed, length minimization of a (nonplane) support graph is NP-hard for
three or more hyperedges [1]. In contrast, we show that this is in fact hard for two hyperedges
if we require a plane support graph or tree. Without the planarity requirement, Hurtado et
al. [10] show that length minimization for two hyperedges is solvable in polynomial time.

Planar support graphs without fixed elements have also received attention. For example,
Buchin et al. [8] show that deciding whether a planar support graph exists is NP-hard in
general; this proof readily works for elements with fixed locations, but note that it requires
many hyperedges. In contrast, our result requires only two hyperedges, but uses length
minimization. Brandes et al. [7] investigate support trees without fixed vertex locations,
under the additional constraint that the induced subgraph of each hyperedge is Hamiltonian,
and show that the existence of such a support can be checked in polynomial time.

2 Existential results

Before we study the computational problem of finding shortest plane support trees for a
given hypergraph, we observe that a plane support tree always exists if there is at least one
vertex that is contained in all hyperedges. To see why this is the case, consider the minimum
spanning tree T of the nonempty set A =

⋂
s∈S s, which is crossing-free. We can connect
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each remaining point to its closest point in A. The resulting graph is obviously a tree since
we add only leaves to T , it is a support as every hyperedge induces a connected subgraph,
and it is plane as no edge crossings are created when connecting to the closest point in A.
I Observation 1. Consider a hypergraph H = (V, S) with no three vertices in V on a line,
such that

⋂
s∈S s 6= ∅. H has a plane support tree.

We note that in a support tree the subgraph induced by A must be a connected subtree
in order to satisfy the support property for all hyperedges. Next we show that using the
above idea to start with a minimum spanning tree of A, the length of the resulting support
tree cannot be bounded to be within a constant factor of the shortest plane support tree.

I Lemma 2.1. There is a family of n-vertex hypergraphs H = (V, S) with two hyperedges
S = {r, b} and A = r ∩ b 6= ∅ such that any plane support tree of H that includes a minimum
spanning tree of A is a factor O(n) longer than the shortest plane support tree.

Proof. The hypergraph family is illustrated in Fig. 2. The set A = {u, v, w} consists of
three vertices whose minimum spanning tree T has length `+ 1 and is indicated by the black
edges in Fig. 2(a). The remaining vertices in V \A are indicated in red and blue (indicating
membership of r and b) and placed inside a disk of radius ε just left of the midpoint of edge
uv. The vertices alternate in colors from left to right and form two mirrored convex chains.

1

`

`/2

ε

w

u v

w

u v

(a) (b)

Figure 2 An n-point instance with approximation ratio O(n) if using a minimum spanning tree
on A. All edges are straight-line segments; curvature just emphasizes the effect of the convex chain.

Since edge uv of T splits the vertices in V \A and by their placement on convex chains, the
shortest extension of T into a plane support tree is to connect every vertex to u (Fig. 2(a)).
This yields a total length of the support tree of O(n) · `. If, however, A is connected by
a slightly longer tree, the remaining vertices in V \ A can be joined by two comb-shaped
structures as shown in Fig. 2(b). The resulting plane support tree has length of O(1) · `. J

The above result also holds if we allow a general plane support graph. By removing the
vertex w from the instance of Fig. 2 one can show in a similar fashion that a plane support
tree, which now necessarily includes the edge uv, is a factor O(n) longer than a shortest
nonplane support tree; this corollary does not immediately generalize to support graphs.

I Corollary 2.2. There is a family of n-vertex hypergraphs H = (V, S) with two hyperedges
S = {r, b} and A = r ∩ b 6= ∅ such that any plane support tree of H is a factor O(n) longer
than the shortest nonplane support tree.

3 Computing a shortest plane support graph is NP-hard

Let us now turn towards the computational problem of finding the shortest plane support
graph. Unfortunately, this problem and several restricted variants are NP-hard.

I Theorem 3.1. Let H = (V, S) be a hypergraph with vertices V having fixed locations in R2

and with S containing two hyperedges r and b such that r ⊆ b. It is NP-hard to decide
whether H admits a plane support tree with length at most L for some L > 0.

EuroCG’18
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Proof. We use a reduction from (rectilinear) planar monotone 3-SAT [6]. Here, we are given
a 3-CNF formula φ with n variables v1, . . . , vn and m clauses c1, . . . , cm such that every
clause either has three positive literals or three negative literals. Moreover, we are given
an embedding of φ as a plane graph, with rectangular vertices for variables on a horizontal
line, and clauses as rectangles above or below the line (depending on whether the clause is
positive or negative). Vertical edges connect clauses to the variables of their literals. We
assume without loss of generality that the clauses are numbered according to their nesting:
that is, ci < cj if ci is closer to the line of vertices than cj in the embedding.

We must construct a hypergraph H = (V, {r, b}) such that r ⊆ b. In the remainder, we
assign vertices to either r (red) or b (blue), understanding that any red vertex is also in b.

First, we place 3(n+1) red vertices using coordinates (3i · (m+1), y) for integers i ∈ [0, n]
and integers y ∈ [−1, 1]. Furthermore, we place n · (3m+ 2) blue vertices using coordinates
(3i(m+ 1) + j, 0) for integers i ∈ [0, n− 1] and j ∈ [1, 3m+ 2].

We now place additional blue vertices for each clause ca. We assume that this clause has
positive literals for variable vi, vj , and vk; the construction for clauses with negative literals
is symmetric, using negative y-coordinates instead. First, we place 3a+ 1 blue vertices from
(3(i− 1)(m+ 1) + 3p, 2) to (3(i− 1)(m+ 1) + 3p, 2 + 3a) at unit distance, to represent the
incidence from ca to variable vi, using the given embedding to determine that ca is the pth
clause incident from above to vi. Analogously, we place the blue vertices for vj and vk. Now,
we place further blue vertices at unit distance with y-coordinate 2 + 3a from the leftmost to
the rightmost top vertex we just placed. The result is given in Fig. 3.

One clause requires at most 3(3m+ 1) vertices for the variable incidence and less than
3n · (m+ 1) for the horizontal line connecting these. We can now readily measure the length
of the minimum spanning tree on the blue vertices of one clause. We use La to denote this
length; note that La is an integer at most 3(3m+ 1) + 3n · (m+ 1).

The value of L that we select is 2(n+ 1) + 3n · (m+ 1) + n(3m+ 2) + 2m+
∑
a∈[1,m] La.

This finalizes the construction. It is polynomial since we placed 3(n+ 1) red vertices and
n · (3m− 2) blue vertices for the variables and at most m · (3(3m+ 1) + 3n · (m+ 1)) for
the clauses: this is O(nm2) vertices. Moreover, we claim that our constructed hypergraph
admits a plane support tree of length at most L, if and only if φ is satisfiable.

Assume we have a plane support tree of length at most L. First, we observe that all

(a)

(b)

Figure 3 Construction for φ = (v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ v4). Vertices in r and b
are red, vertices in b are blue. A plane support tree with length at most L is given in black lines.
(a) Representation of variable v1; the solution sets v1 to true. (b) Representation of the first clause.
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points in r must be connected: the minimal way of doing so connects the three vertices with
the same x-coordinate and uses one horizontal line to connect one triplet to the next. This
has exactly length 2(n+ 1) + 3n · (m+ 1), corresponding to the first two terms defining L.
The minimal way of connecting the lines inside the variables to the red tree takes length
n(3m+ 2) in total: this is the third term defining L. Finally, to connect the clause vertices,
we need length at least La per clause, the last term of L. We note that any solution must
use these constructions on the blue vertices, since all vertices are at unit distance; other blue
vertices are at distance at least 2. However, the support tree is connected: thus it must still
have connections from each gadget to either a red vertex or a blue vertex of a variable. The
budget we have for this is 2m in total. Since each clause needs a connection of length at least
2, all clauses use exactly length 2. The only vertices within distance 2 of a clause are the
three blue vertices of the variables with y-coordinate zero (one of each literal of the clause).
Thus, each clause must have exactly one length-2 edge to one of these variable vertices. Since
the support tree is plane, this cannot cross the horizontal links used to connect the red
vertices. We can now readily obtain a satisfying assignment for φ, by looking at which of the
two horizontal lines is used to connect the red vertices: if the one at the top is used, that
variable is set to false; it is set to true otherwise.

To prove the converse, assume that we have a satisfying assignment. Using the same
reasoning as above, we can construct the plane support tree by picking the connecting
horizontal lines for the red vertices according to the satisfying assignment: this readily leads
us to conclude that we can connect each clause using a length-2 connection that does not
intersect the horizontal lines for the red vertices. J

We observe that the above proof readily implies that finding the shortest plane support
graph is also NP-hard, as is the case that r is not a subset of b. Moreover, the proof can be
easily adapted to show the other special case of disjoint r and b: this needs slightly more
spacing such that we can add a few extra blue vertices that can be used to connect all the
blue vertices of the variables into a single component using only length-1 edges.

4 Integer linear program

We showed in Section 3 that finding the shortest plane support is NP-hard, and so are several
restricted versions of that problem. It is however possible to formulate these problems as
integer linear programs (ILP), allowing us to leverage effective ILP solvers. Below, we briefly
sketch how to obtain an ILP for a hypergraph H = (V, S).

We introduce variables eu,v ∈ {0, 1}, indicating whether edge uv is selected for the support
graph. This readily allows us to represent a graph with fixed vertices. Because the vertex
locations are fixed, we can precompute edge lengths du,v as well as which pairs of edges
intersect. This gives the following basic program

minimize
∑
u,v∈V du,v · eu,v

subject to eu,v + ew,x ≤ 1 for all u, v, w, x ∈ V if edges uv and wx intersect.

What remains is to ensure that the graph is also a support: we need additional constraints
that imply that each hyperedge in S induces a connected subgraph. To this end, we construct
a flow tree for each hyperedge s. We pick an arbitrary sink for the hyperedge, σs ∈ s, that
may receive flow, and let the remaining vertices in s generate one unit of flow. To formalize
this, we introduce variables fs,u,v ∈ {0, 1, . . . , |s| − 1} for each s ∈ S and u, v ∈ s with u 6= v.
We now need the following constraints: (a) the incoming flow at σs is exactly |s| − 1; (b)
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the outgoing flow at σs is zero; (c) except for σs, each vertex in s sends out one unit of flow
more than it receives; (d) flow can be sent only over selected edges.

(a)
∑
u∈s\{σs} fs,u,σs

= |s| − 1 for all s ∈ S
(b) fs,σs,v = 0 for all s ∈ S, v ∈ s \ {σs}
(c)

∑
v∈s\{u}(fs,u,v − fs,v,u) = 1 for all s ∈ S, u ∈ s \ {σs}

(d) fs,u,v ≤ eu,v · (|s| − 1) for all s ∈ S, u, v ∈ s with u 6= v

Variants The above ILP results in the shortest plane support graph for H. It can easily
be modified to give a (shortest plane) support tree as well as to penalize or admit a limited
number of intersections. The latter requires additional variables to indicate whether both
edges of a crossing pair are used.
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Abstract
We show the exact values of Tverberg numbers of Z2 and improve the bounds for Z3 and Zj×Rk.

1 Introduction

Consider n points in Rd and a positive integer m ≥ 2. If n ≥ (m− 1)(d+ 1) + 1, the points
can always be partitioned into m subsets whose convex hulls contain a common point. This
is the celebrated theorem of Tverberg [11], which has been the topic of many generalizations
and variations since it was first proved in 1966. In this paper we formalize new versions of
Tverberg’s theorem where the coordinates of the points are integer. Our opening result closes
a gap in the literature. It deals with a Tverberg-type theorem in the case of Z2. According
to Eckhoff [6] it was stated by Doignon in a conference. Doignon (personal communication)
confirmed that this was not published.

I Theorem 1. Consider n points in Z2 and a positive integer m ≥ 3. If n ≥ 4m− 3, then
the points can be partitioned into m subsets whose convex hulls contain a common point in
Z2.

Such a partition is an integer m-Tverberg partition and such a common point is an in-
teger Tverberg point for that partition. Regarding the case m = 2, the integer 2-Tverberg
partitions are integer Radon partitions. Any configuration of at least 6 points admits an
integer Radon partition. This was proved by Doignon in his PhD thesis [5] and later dis-
covered independently by Onn [10]. All these values are optimal as shown by following
examples. The 5-point configuration {(0, 0), (0, 1), (2, 0)(1, 2), (3, 2)}, exhibited by Onn in
the cited paper, has no Radon partition. To address the optimality when m ≥ 3, consider
the set {(i, i), (i,−i+ 1): i = −m+ 2,−m+ 3, . . . ,m− 2,m− 1}. (According to Eckhoff [6],
this set was proposed by Doignon during a conference.) It has 4m− 4 points and a moment
of reflection might convince the reader that it has no integer m-Tverberg partition.

More generally, one can define the Tverberg number Tv(S,m) for a subset S of Rd and
an integer m ≥ 2 as the smallest integer number n such that any multiset of n points in S
admits a partition into m subsets A1, A2, . . . , Am with

(
m⋂

i=1
conv(Ai)

)
∩ S 6= ∅.

(Here, by “partition of a multiset”, we mean that each element of a multiset A is contained
in a number of subsets that does not exceed its multiplicity in A.) Theorem 1 together with
the discussion that follows can then be rephrased as

Tv(Z2,m) =
{

6 if m = 2,
4m− 3 otherwise.
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Our second main result improves the upper bound for the case S = Z3.

I Theorem 2. The following inequality holds for all m ≥ 2:

Tv(Z3,m) ≤ 24m− 31.

Proofs of Theorems 1 and 2 are respectively given in Sections 2 and 3. The strategy of
both proofs is standard: we show that there exists an integer centerpoint (which we define
at the end of this section) of sufficient depth and that this centerpoint is actually a Tverberg
point of an m-Tverberg partition.

Choosing S of the form Zj ×Rk leads to the “mixed integer” case, which is the common
generalization of the real and the integer cases. Our third main result is an inequality
simultaneously involving the three already considered instantiations of S: real, integer, and
mixed integer.

I Theorem 3. The following inequality holds for all positive integers j and k and all m ≥ 2:

Tv(Zj × Rk,m) ≤ Tv(Zj ,Tv(Rk,m)).

Finally, in Section 4, we prove Theorem 3 and collect some consequences of the main
theorems presented above, including the following result:

2j(m− 1)(k + 1) + 1 ≤ Tv(Zj × Rk,m) ≤ j2j(m− 1)(k + 1) + 1. (1)

To conclude the introduction we mention a key lemma about integral centerpoints that is
used for proving Theorems 1 and 2. Given a multiset A of points, a point p is a centerpoint
of depth σ in A if every closed half-space containing p contains at least σ points of A.

I Lemma 4. Consider a multiset A of points in Zd. If |A| ≥ 2d(m − 1) + 1 (counting
multiplicities), then there is a centerpoint p ∈ Zd of depth m in A.

Although the present version is new, similar lemmas have been used throughout the
literature and their proofs typically rely on some version of Helly’s theorem [7]. We omit the
classical details here, and simply mention that we need the following theorem of Doignon
[4]: If F is a finite family of at least 2d convex subsets of Zd such that any 2d members of
F have an intersection point in Zd, there is a point p ∈ Zd in every set in F .

In Sections 2 and 3 when we refer to Tverberg partitions or Tverberg points we focus on
integer Tverberg partitions.

Related Results from the Literature
The problem of computing the Tverbeg number for Zd with d ≥ 3 seems to be challenging.
It has been identified as an interesting problem since the 1970’s and yet the following in-
equalities are almost all that is known about this problem: For the general case, De Loera
et al. [8] proved

2d(m− 1) + 1 ≤ Tv(Zd,m) ≤ d2d(m− 1) + 1 for d ≥ 1 and m ≥ 2. (2)

Two special cases get better bounds:

Tv(Z3, 2) ≤ 17 and 5 · 2d−2 + 1 ≤ Tv(Zd, 2) for d ≥ 2. (3)

The left-hand side inequality is due to Bezdek and Blokhuis [2] and the right-hand side was
proved by Doignon in his PhD thesis (and rediscovered by Onn).
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The bounds for the “mixed integer” case include the bounds for the Radon number
(2-Tverberg number) found by Averkov and Weismantel [1].

2j(k + 1) + 1 ≤ Tv(Zj × Rk, 2) ≤ (j + k)2j(k + 1)− j − k + 2.

Later, De Loera et al. [8] gave the following general bound for all Tverberg numbers:

Tv(Zj × Rk,m) ≤ (j + k)2j(m− 1)(k + 1) + 1.

Note that (1) above is a simultaneous improvement of both of these.

2 Tverberg Numbers over Z2: Proof of Theorem 1

The theorem will follow easily from the following two lemmas, the first covering the case
m ≥ 3 and the second the case m = 2.

I Lemma 5. Consider a multiset A of points in Z2 with |A| ≥ 4m− 3 and m ≥ 3. If p /∈ A
is a centerpoint of depth m, then there is an m-Tverberg partition with p as Tverberg point.

I Lemma 6. Consider a multiset A of points in Z2 with |A| ≥ 6. If p /∈ A is a centerpoint
of depth two, then there is a Radon partition with p as Tverberg point.

Proof of Theorem 1. Consider a multiset A of at least 4m−3 points in Z2. By Lemma 4, A
has an integer centerpoint p of depthm. If p is an element of A with multiplicity µ ≥ 0, then
take the singletons {p} as µ of the sets in the Tverberg partition. Then p is a centerpoint of
depth m− µ of the remaining 4m− µ− 3 points. If µ ≥ m, we are done, and if µ = m− 1,
the point p is in the convex hull of the remaining points and we take them to be the last set
in the desired partition. If µ ≤ m− 3, according to Lemma 5, there is an (m− µ)-Tverberg
partition of the remaining points with p as Tverberg point. There is thus an m-Tverberg
partition of A with p as Tverberg point. The case µ = m − 2 is treated similarly with the
help of Lemma 6 in place of Lemma 5 J

Proof of Lemma 5. Since p is not in A, up to a radial projection, we can assume that the
points of A are arranged in a circle around p. Define q and r to be respectively the quotient
and the remainder of the Euclidean division of |A| by m. Define moreover e to be d r

q e.
Suppose first that p is a centerpoint of depth m+ e. In such a case, we arbitrarily select

a first point in A, and label clockwise the points with elements in [m] according to the
following pattern:

1, 2, . . . ,m, 1, 2, . . . , e, 1, 2, . . . ,m, 1, 2, . . . , e, 1, 2, . . .m, 1, 2, . . . k,

where k = |A|− qm− (q−1)e. Note that we have k ≤ e. Each half-plane delimited by a line
passing through p contains at least m + e consecutive points in this pattern and thus has
at least one point with each of the m different labels. Partitioning the points so that each
subset consists of all points with a fixed label, we therefore obtain an m-Tverberg partition
with p as Tverberg point.

Suppose now that p is not a centerpoint of depth m+e. There is thus a closed half-plane
H+ delimited by a line passing through p with |H+∩A| < m+e. The complementary closed
half-plane to H+, which we denote by H−, is such that |H−∩A| > 4m−3− (m+ e). Define
` to be |H−∩A|. Since e ≤ m

3 , we have ` ≥ 2m. Denote the points in H−∩A by x1, . . . ,x`,
where the indices are increasing when we move clockwise. We label xi with r + i from x1
to xm−r, and then label xm−r+j with j from xm−r+1 to xm. We then continue labeling
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Figure 1 Labeling of the points in the half-plane H−.

the points of A, still moving clockwise, using labels 1, 2, . . . ,m, . . . , 1, 2, . . .m, 1, 2, . . . r. See
Figure 1 for an illustration of the labeling scheme.

The labeling pattern is such that any sequence of m consecutive points either has all m
labels, or contains the two consecutive points xm and xm+1. Let us prove that any closed
half-plane H delimited by a line passing through p contains at least one point with each
label. Once this is proved, the conclusion will be immediate by taking as subsets of points
those with same labels, as above.

If such an H does not simultaneously contain xm and xm+1, then H contains at least
one point with each label. Consider thus a closed half-plane H delimited by a line passing
through p and containing xm and xm+1. Note that according to Farkas’ lemma, xm+1
cannot be separated from x1 and x` by a line passing through p, since they are all in H−.
This means that either H contains x1,x2, . . . ,xm+1, or H contains xm+1,xm+2, . . . ,x`. In
any case, H contains a point with each label. J

The proof of Lemma 6 is similar and left to the reader for brevity.

3 Tverberg Numbers over Z3: Proof of Theorem 2

We will make use of the following two lemmas. Lemma 7 is a consequence, upon close
inspection of the argument, of the proof of the main theorem in the already mentioned
paper by Bezdek and Blokhuis [2].

I Lemma 7. Consider a multiset A of at least 17 points in R3 and a centerpoint p of depth
3 in A. There is a bipartition of A into two subsets whose convex hulls contain p.

I Lemma 8. Consider a multiset A of points in R3 with |A| ≥ 24m − 31 and m ≥ 2. If
p /∈ A is a centerpoint of depth 3m − 3, then there is an m-Tverberg partition of A with p

as Tverberg point.

Proof. Since p is not an element of A, we assume without loss of generality that the points
of A are located on a sphere centered at p, as in the proof of Lemma 5.

We claim that we can find pairwise disjoint subsets X1, X2, . . . , Xm−2 of A, each having p

in its convex hull and each being of cardinality at most four. (Here “pairwise disjoint” means
that each element of A is present in a number of Xi’s that does not exceed its multiplicity in
A.) We proceed by contradiction. Suppose that we can find at most s < m− 2 such subsets
Xi’s. Then, by Carathéodory’s theorem [3], p is not in the convex hull of the remaining
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points in A.Therefore there is a half-space H+ delimited by a plane containing p such that
H+ ∩A ⊆

⋃s
i=1 Xi. On the other hand, since each Xi contains p in its convex hull (and we

can assume the Xi are minimal with respect to containing p), we have |H+ ∩Xi| ≤ 3 for all
i ∈ [s]. Therefore |H+ ∩ A| ≤ |H+ ∩ (

⋃s
i=1 Xi)| ≤ 3s < 3(m − 2), which is a contradiction

since p is a centerpoint of depth 3m − 3 in A. There are thus m − 2 disjoint subsets
X1, X2, . . . , Xm−2 as claimed.

Let X denote
⋃m−2

i=1 Xi. Consider an arbitrary half-space H+ delimited by a plane
containing p. Since |H+ ∩ Xi| ≤ 3 for all i, we have |H+ ∩ X| ≤ 3(m − 2). Furthermore
|H+∩A| ≥ 3m−3, so |H+∩ (A\X)| ≥ 3. Since H+ is arbitrary, p is a centerpoint of depth
3 of A \ X. Also, |A \ X| ≥ |A| − 4(m − 2) ≥ 20m − 23 ≥ 17, so Lemma 7 implies that
A \X can be partitioned into two sets whose convex hulls contain p. With the subsets Xi,
we have therefore an m-Tverberg partition of A, with p as Tverberg point. J

From these two lemmas we can now finish the proof of Theorem 2.

Proof of Theorem 2. Consider a multiset A of 24m − 31 points in Z3. The case m = 2
is the already mentioned result by Bezdek and Blokhuis. Assume that m ≥ 3. Applying
Lemma 4, A has an integer centerpoint p of depth 3m − 3. If p is an element of A with
multiplicity µ ≥ 0, then take the singletons {p} as µ of the sets in the Tverberg partition.

If µ ≥ m, we are done. If µ = m − 1, the point p is still in the convex hull of points
in A, and thus we are done. And if µ ≤ m − 2, the point p is still a centerpoint of depth
3m− µ− 3 ≥ 3(m− µ)− 3 of the remaining 24m− µ− 31 ≥ 24(m− µ)− 31 points. Thus,
we may apply Lemma 8 to get an (m− µ)-Tverberg partition of the remaining points, with
p as Tverberg point, and conclude the result. J

4 Tverberg Numbers over Zj × Rk

In this section, we prove Theorem 3. We adapt an approach by Mulzer and Werner [9,
Lemma 2.3] and show how all the results of our paper can be combined to improve known
bounds and to determine new exact values for the Tverberg number in the mixed integer
case.

Proof of Theorem 3. Let t = Tv(Rk,m) = (m − 1)(k + 1) + 1. Choose a multiset A in
Zj × Rk with |A| ≥ Tv(Zj , t). It suffices to prove that A can be partitioned into m subsets
whose convex hulls contain a common point in Zj × Rk.

Let A′ be the projection of A onto Zj . Since |A′| ≥ Tv(Zj , t), there is a partition of A′
into t subsets Q′1, . . . , Q′t whose convex hulls contain a common point q in Zj . The Q′i are
the projections onto Zj of t disjoint subsets Qi forming a partition of A. For each i ∈ [t],
we can find a point qi ∈ conv(Qi) projecting onto q.

The t points q1, . . . , qt belong to {q} × Rk. As t = Tv(Rk,m), there exists a partition
of [t] into I1, . . . , Im and a point p ∈ {q} ×Rk such that p ∈ conv

(⋃
i∈I`

qi

)
for all ` ∈ [m].

For each ` ∈ [m], define A` to be
⋃

i∈I`
Qi. We have for each ` ∈ [m]

p ∈ conv
(⋃

i∈I`

qi

)
⊆ conv

(⋃

i∈I`

conv(Qi)
)

= conv(A`)

and the A` form the desired partition. J

Here are the new bounds and exact values we get:

(a) Tv(Z× Rk,m) = 2(m− 1)(k + 1) + 1.
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(b) Tv(Z2 × Rk,m) = 4(m− 1)(k + 1) + 1.
(c) Tv(Z3 × Rk,m) ≤ 24(m− 1)(k + 1)− 7.
(d) 2j(m− 1)(k + 1) + 1 ≤ Tv(Zj × Rk,m) ≤ j2j(m− 1)(k + 1) + 1.

The lower bound in (d) is obtained by repeated applications of Lemma 9 below, whose
proof, almost identical to that of Proposition 2.1 in [10], is omitted for brevity. The upper
bounds follow from Theorem 3, combined with the fact that Tv(Z,m) = 2m − 1 (consider
the median), Theorem 1, Theorem 2, and the upper bound in Equation (2), respectively.

I Lemma 9. Let j and k be two non-negative integers. Then we have

Tv(Zj+1 × Rk,m) > 2 Tv(Zj × Rk,m)− 2.
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Abstract
Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open
problem for a long time. Similarly for concrete Voronoi diagrams of generalized sites, other than
points. In this abstract we present a simple, expected linear-time algorithm for this task. We
introduce the concept of a Voronoi-like diagram, a relaxed version of a Voronoi construct, that
has a structure similar to an abstract Voronoi diagram without however being one. Voronoi-
like diagrams serve as intermediate structures, which are considerably simpler to compute, thus,
making an expected linear-time construction possible.

1 Introduction

The Voronoi diagram of a set S of n simple geometric objects, called sites, is a well-known
geometric partitioning structure revealing proximity information for the input sites. Abstract
Voronoi diagrams [7] offer a unifying framework to various concrete instances. Some classic
Voronoi diagrams have been well investigated and optimal construction algorithms exist in
many cases, see [2] for references and more information.

For certain tree-like Voronoi diagrams linear-time construction algorithms are well known
to exist, e.g., [1, 4, 9, 5]. The first technique was introduced by Aggarwal et al. [1] for the
Voronoi diagram of points in convex position, given their convex hull. It can be used to
derive linear-time construction algorithms for other fundamental problems such as updating
a Voronoi diagram of point-sites in linear time, after deleting one site. A much simpler
randomized approach for the same problem has been introduced by Chew [4]. Klein and
Lingas [9] adapted the linear-time framework of [1] to abstract Voronoi diagrams under
restrictions, and showed that a Hamiltonian abstract Voronoi diagram can be computed in
linear time, given the order of Voronoi regions along an unbounded simple curve, which visits
each region exactly once and can intersect each bisector only once. This construction has
been extended recently to include forest structures [3] under similar conditions, where no
region can have multiple faces within the domain enclosed by a curve. The medial axis of a
simple polygon is another well-known problem to admit a linear-time construction [5].

In this abstract we consider the problem of updating an abstract Voronoi diagram after
deletion of one site and provide an expected linear-time algorithm to achieve this task. To the
best of our knowledge, no linear-time construction algorithms are known for concrete diagrams
of non-point sites, nor for abstract Voronoi diagrams. Related is our expected linear-time
algorithm for the farthest-segment Voronoi diagram [6]. The approach in [6], however, is
geometric, relying on star-shapeness and visibility properties of segment Voronoi regions that
do not extend to the abstract model. In this abstract we provide a new formulation.

Abstract Voronoi diagrams (AVDs). AVDs were introduced by Klein [7]. Instead of
sites and distance measures, they are defined in terms of bisecting curves that satisfy some

∗ Supported in part by the Swiss National Science Foundation under DACH project SNF 200021E-154387.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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D(p, q) J(p, q)

p
qD(q, p)

Figure 1 A bisector J(p, q) and its dominance
regions; D(p, q) is shown shaded.

J(p, r)

r
q p

p
r

q
J(q, r)

J(p, q)

Figure 2 The Voronoi diagram V({p, q, r}) in
solid lines. The shaded region is VR(p, {p, q, r}).

simple combinatorial properties. Given a set S of n abstract sites, the bisector J(p, q) of two
sites p, q ∈ S is an unbounded curve, homeomorphic to a line, that divides the plane into two
open domains: the dominance region of p, D(p, q) (with label p), and the dominance region of
q, D(q, p) (with label q), see Fig. 1. The Voronoi region of p is: VR(p, S) =

⋂
q∈S\{p}D(p, q)

and the (nearest-neighbor) abstract Voronoi diagram of S is V(S) = R2 \⋃p∈S VR(p, S), see
Fig. 2. Following the traditional model of abstract Voronoi diagrams [7] an admissible system
of bisectors J is assumed to satisfy the following axioms, for every subset S′ ⊆ S:

(A1) Each nearest Voronoi region VR(p, S′) is non-empty and pathwise connected.
(A2) Each point in the plane belongs to the closure of a nearest Voronoi region VR(p, S′).
(A3) After stereographic projection to the sphere, each bisector is a Jordan curve through the

north pole.
(A4) Any two bisectors J(p, q) and J(r, t) intersect transversally and in a finite number of

points. (It is possible to relax this axiom, see [8]).

V(S) is a plane graph of structural complexity O(n) and its regions are simply-connected.
It can be computed in time O(n logn), randomized or deterministic, see [2]. To update V(S),
after deleting one site s ∈ S, we compute V(S \ {s}) within VR(s, S). The sequence of sites
along ∂VR(s, S) forms a Davenport-Schinzel sequence (DSS) of order 2 and this constitutes
a major difference from the respective problem for points where no repetition can occur.

Our results. We give a simple randomized algorithm to compute V(S \{s}) within VR(s, S)
in expected time linear on the complexity of ∂VR(s, S). The algorithm is simple, not more
complicated than its counterpart for points [4], and this is achieved by computing simplified
intermediate structures. These are Voronoi-like diagrams, having a structure similar to an
abstract Voronoi diagram, without however being such diagrams. We prove that Voronoi-like
diagrams are well-defined and robust under an insertion operation, thus, making possible a
randomized incremental construction for V(S \ {s}) ∩VR(s) in expected linear time. Our
approach can be adapted (in fact, simplified) to compute, in expected linear time, the farthest
abstract Voronoi diagram after the sequence of its faces at infinity is known; the latter can
be computed in time O(n logn). Our technique can be applied to concrete diagrams that
may not strictly fall under the AVD model such as Voronoi diagrams of line segments that
may intersect and of planar straight-line graphs (including simple and non-simple polygons).
For intersecting line segments, ∂VR(s, S) is a Davenport-Schinzel sequence of order 4 [10].

2 Problem formulation

Let S be a set of n abstract sites that define an admissible system of bisectors J = {J(p, q) :
p 6= q ∈ S}. Bisectors that have a site p in common are called p-related. Two related bisectors
J(p, q) and J(p, r) can intersect at most twice; bisector J(q, r) also intersects with them at
the same point(s) [7]. Since related bisectors in J intersect at most twice, the sequence of
site occurrences along ∂VR(p, S), p ∈ S, forms a DSS of order 2 (by [11, Theorem 5.7]).
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Ds

∂Ds

Γ

Ds

Ds

Γ Γ

Figure 3 The domain Ds = VR(s, S) ∩DΓ.

p p
sα sβ

(b)

VR(p)α β

(a) (c)
ββ α

αVR(p) VR(p)

Figure 4 (a) Arcs α, β fulfill the p-monotone
path condition; they do not fulfill it (b) and (c).

To update V(S) after deleting one site s ∈ S, we compute V(S \ {s}) within VR(s, S),
i.e., we compute V(S \ {s}) ∩VR(s, S); its structure is given in the following lemma.

I Lemma 1. V(S \ {s}) ∩ VR(s, S) is a forest having exactly one face for each Voronoi
edge of ∂VR(s, S). Its leaves are the Voronoi vertices of ∂VR(s, S), and points at infinity if
VR(s, S) is unbounded. If VR(s, S) is bounded then V(S \ {s}) ∩VR(s, S) is a tree.

We make a general position assumption that no three p-related bisectors intersect at the
same point. This implies that Voronoi vertices have degree 3. We consider a closed Jordan
curve Γ large enough to enclose all intersections of bisectors in J , and such that each bisector
crosses Γ exactly twice and transversally; the interior of Γ is denoted DΓ. Our domain of
computation is Ds = VR(s, S) ∩DΓ and we compute V(S \ {s}) ∩Ds, see Figure 3.

Let S denote the sequence of Voronoi edges along ∂VR(s, S), i.e., S = ∂VR(s, S) ∩DΓ.
Each arc α ∈ S is induced by a site sα ∈ S \ {s}, where α ⊆ J(s, sα). We can interpret the
arcs in S as sites that induce a Voronoi diagram V(S), where V(S) = V(S \ {s}) ∩Ds, see
Figure 7(a). In this respect, each arc α ∈ S has a Voronoi region, VR(α,S), which is the
face of V(S \ {s}) ∩Ds incident to α.

In the remaining of this section we define a Voronoi-like diagram for a subset S ′ of arcs
in S (Def. 2). To this aim we need some definitions. For a site p ∈ S and S′ ⊆ S, let
Jp,S′ = {J(p, q) | q ∈ S′, q 6= p} denote the set of all p-related bisectors involving sites in S′.

A path P in a bisector system Jp,S′ is a connected subset of alternating edges and
vertices in the arrangement of Jp,S′ . An arc α of P is a maximal connected set, along P , of
consecutive edges and vertices of the arrangement, which belong to the same bisector. The
common endpoint of two consecutive arcs of P is a vertex of P ; an arc of P is also called an
edge. For an arc α ∈ P , let sα ∈ S be the site that induces α, i.e., α ⊆ J(p, sα).

A path P in Jp,S′ is called p-monotone, if any two consecutive arcs α, β ∈ P correspond
to the Voronoi edges in ∂VR(p, {p, sα, sβ}) that are incident to the common endpoint of α, β
(see Fig. 4). The envelope of Jp,S′ , with respect to site p, is the boundary of the Voronoi
region VR(p, S′ ∪ {p}), env(Jp,S′) = ∂VR(p, S′ ∪ {p}). Fig. 5 illustrates two p-monotone
paths, where (a) is an envelope. Notice, S = env(Js,S\{s}) ∩DΓ.

Consider S ′ ⊆ S and let S′ = {sα ∈ S |α ∈ S ′} ⊆ S \ {s} be its corresponding set of sites.
A boundary curve for S ′ is a closed s-monotone path in Js,S′ ∪ Γ that contains all arcs in S ′.
Note that we include Γ in the definition of a boundary curve so that we unify the various
connected components of Js,S′ and obtain a single curve. The part of the plane enclosed in

p r p
q

ptp
qE P

p
p p

q
r t

(b)(a)

Figure 5 (a) The envelope E = env(Jp,{q,r,t}).
(b) A p-monotone path P in Jp,{q,r,t}.

β∗

P
J(sβ , s)yx

J(β)

Figure 6 Pβ = P⊕β, core arc β∗ is bold and
black. The endpoints of β ⊇ β∗ are x and y.
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Figure 7 (a) illustrates S in black (bold) and V(S) in red, S = (α, β, γ, δ, ε, ζ, η, ϑ). (b) illustrates
Vl(P) for boundary curve P = (α, β, γ, β′, ε, η, g). S ′ = (α, β, γ, ε, η) is shown in bold. The arcs of
P are original except the auxiliary arc β′ and the Γ-arc g.

a boundary curve P is called the domain of P, denoted by DP . Given P, we also use SP to
denote the set of sites S′.

Figure 7(b) illustrates a boundary curve for S ′ ⊂ S, where S is shown bold in Figure 7(a).
S ′ can admit several different boundary curves, one being the envelope env(Js,S′ ∪ Γ). A
boundary curve P consists of pieces of bisectors in Js,S′ , called boundary arcs, and pieces of
Γ, called Γ-arcs; Γ-arcs indicate the openings of the domain to infinity. Among the boundary
arcs in P, those that contain an arc of S ′ are called original and others are called auxiliary
arcs. Original arcs are expanded versions of the arcs in S ′; to differenciate among them the
arcs in S are called core arcs (shown bold in Figure 7).

I Definition 2. Given a boundary curve P in Js,S′ ∪ Γ, a Voronoi-like diagram of P is a
plane graph on J (S′) = {J(p, q) ∈ J | p, q ∈ S′} inducing a subdivision on the domain DP
as follows (see Figure 7(b)): (1) There is exactly one face R(α) for each boundary arc α of P ;
∂R(α) consists of the arc α and an sα-monotone path in Jsα,S′ ∪Γ. (2)

⋃
α∈P\ΓR(α) = DP .

The Voronoi-like diagram of P is Vl(P) = DP \
⋃
α∈P R(α).

In the full paper, we prove that Voronoi-like regions are related to real Voronoi regions
as supersets. For example, in Figure 7, the Voronoi-like region R(η) (shown in 7(b)) is a
superset of Voronoi region VR(η,S) in 7(a); similarly for R(α). Real Voronoi regions are
induced by the envelope E of S ′, where E = env(Js,S′ ∪ Γ), and V(E) = V(S′)∩DE . It is not
hard to see that V(E) = Vl(E). Thus, Vl(S) coincides with the real Voronoi diagram V(S).

In the full paper, we also prove that the Voronoi-like diagram of a boundary curve is
unique (if it exists). The complexity of Vl(P) is O(|P|), where | · | denotes complexity, since
it is a planar graph with exactly one face per boundary arc and vertices of degree 3 (or 1).

3 Insertion in a Voronoi-like diagram

Consider a boundary curve P for S ′ ⊂ S and its Voronoi-like diagram Vl(P) within the
domain DP . Let β∗ be an arc in S \ S ′, thus, β∗ is contained in the closure of the domain
DP . We define arc β ⊇ β∗ as the connected component of J(s, sβ) ∩DP that contains β∗
(see Figure 6). We also define an insertion operation ⊕ that inserts arc β in P , deriving a new
boundary curve Pβ = P ⊕ β, and inserts R(β) in Vl(P), deriving Vl(Pβ) = Vl(P)⊕ β. Pβ is
the boundary curve obtained by deleting the portion of P ∩D(sβ , s) between the endpoints
of β and substituting it with β, see Figure 6. Figure 8 enumerates the possible cases of
P ⊕ β which is summarized in the following observation.
I Observation 3. Possible cases of inserting arc β in P, see Figure 8. DPβ ⊆ DP .
(a) β straddles the endpoint of two consecutive boundary arcs; no arcs in P are deleted.
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(a) (b) (c) (d)
P

(e)
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β
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Figure 8 Insertion cases for an arc β ⊇ β∗. The domain DP is shown shaded.

(b) (Auxiliary) arcs in P are deleted by β; their regions are also deleted from Vl(Pβ).
(c) An arc α ∈ P is split into two arcs by β; R(α) in Vl(P) will also be split.
(d) A Γ-arc is split in two; Vl(Pβ) may switch from being a tree to being a forest.
(e) A Γ-arc is deleted or shrunk by inserting β. Vl(Pβ) may become a tree.
(f) P already contains a boundary arc β̄ ⊇ β∗; then β = β̄ and Pβ = P.

Note that Pβ may contain fewer, the same number, or even one extra auxiliary arc
compared to P.
I Lemma 4. The curve Pβ = P ⊕ β is a boundary curve for S ′ ∪ {β∗}.

Given Vl(P) and arc β, where β∗ ∈ S \ S ′, we define a merge curve J(β), within DP ∪ Γ,
which delimits ∂R(β) in Vl(Pβ), see Figure 6. We define J(β) incrementally, starting at
an endpoint of β. Let x and y denote the endpoints of β, where x, β, y are assumed in
counterclockwise order around Pβ .
I Definition 5. Given Vl(P) and arc β ⊂ J(s, sβ), the merge curve J(β) is a path (v1, . . . , vm)
in the arrangement of sβ-related bisectors Jsβ ,SP ∪ Γ, connecting the endpoints of β, v1 = x

and vm = y. Each edge ei = (vi, vi+1) is an arc of a bisector J(sβ , ·) or an arc on Γ. For
i = 1: if x ∈ J(sβ , sα), then e1 ⊆ J(sβ , sα); if x ∈ Γ, then e1 ⊆ Γ. Given vi, vertex vi+1 and
edge ei+1 are defined as follows. (Wlog we assume a clockwise ordering of J(β)).
1. If ei ⊆ J(sβ , sα), let vi+1 be the other endpoint of the component J(sβ , sα) ∩ R(α)

incident to vi. If vi+1 ∈ J(sβ , ·) ∩ J(sβ , sα), then ei+1 ⊆ J(sβ , ·). If vi+1 ∈ Γ, then
ei+1 ⊆ Γ.

2. If ei ⊆ Γ, let g be the Γ-arc incident to vi. Let ei+1 ⊆ J(sβ , sγ), where R(γ) is the first
region, incident to g clockwise from vi, such that J(sβ , sγ) intersects g ∩R(γ); let vi+1
be this intersection point.
In the full paper we prove the following theorem, which shows that J(β) is well defined.

I Theorem 6. J(β) is a unique sβ-monotone path in Jsβ ,SP∪Γ, which connects the endpoints
of β. J(β) can contain at most one edge per region of Vl(P), with the exception of the first
and last edge, if v1 and vm are incident to the same face in Vl(P). J(β) cannot intersect the
interior of arc β.

We define R(β) as the area enclosed by β ∪ J(β). Let Vl(P)⊕ β =
(
(Vl(P) \ R(β)) ∪

J(β)
)
∩DPβ be the subdivision of DPβ obtained by inserting J(β) in Vl(P) and deleting

any portion of Vl(P) enclosed by J(β).
I Theorem 7. Vl(P)⊕ β is a Voronoi-like diagram for Pβ = P ⊕ β, denoted Vl(Pβ).

The time complexity to compute J(β) and update Vl(Pβ) is as follows: Let P̃ denote
the finer version of P as obtained by intersecting P with Vl(P). |P̃| is O(|P|), since |Vl(P)|
is O(|P|). Let α and γ be the first original arcs on Pβ occurring before and after β. Let
d(β) be the number of arcs in P̃ between α and γ (both boundary and Γ-arcs). Given α, γ,
and Vl(P), in all cases of Observation 3, except (c), the merge curve J(β) and the diagram
Vl(Pβ) can be computed in time O(|R(β)|+ d(β)). In case (c), where an arc is split and a
new arc ω is created by the insertion of β, the time is O(|∂R(β)|+ |∂R(ω)|+ d(β)).
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4 A randomized incremental algorithm

Consider a random permutation of the set of arcs S, o = (α1, . . . , αh). For 1 ≤ i ≤ h define
Si = {α1, . . . , αi} ⊆ S to be the subset of the first i arcs in o. Given Si, let Pi denote a
boundary curve for Si, which induces a domain Di = DPi . The randomized algorithm is
inspired by the randomized, two-phase, approach of Chew [4] for the Voronoi diagram of
points in convex position; however, it constructs Voronoi-like diagrams of boundary curves Pi
within a series of shrinking domains Di ⊇ Di+1. In phase 1, the arcs in S get deleted one by
one in reverse order of o, while recording the neighbors of each deleted arc at the time of its
deletion. Let P1 = ∂(D(s, sα1)∩DΓ) and D1 = D(s, sα1)∩DΓ. Let R(α1) = D1. Vl(P1) = ∅
is the Voronoi-like diagram for P1. In phase 2, we start with Vl(P1) and incrementally
compute Vl(Pi+1), i = 1, . . . , h−1, by inserting arc αi+1 in Vl(Pi), where Pi+1 = Pi ⊕ αi+1
and Vl(Pi+1) = Vl(Pi) ⊕ αi+1. At the end, we obtain Vl(Ph), where Ph = S. We have
already established that Vl(S) = V(S), thus, the algorithm is correct. Pi may contain at
most 2i arcs (see Observation 3), thus, the complexity of Vl(Pi) is O(i).

Given the results on Voronoi-like diagrams in Sections 2 and 3, the time analysis becomes
similar to the one for the farthest-segment Voronoi diagram [6], with some additional cases
to consider since Vl(Pi) is a forest and not necessarily a tree.

I Lemma 8. The expected number of arcs in P̃i (auxiliary boundary arcs and fine Γ-arcs)
that are visited while inserting αi+1 is O(1).
I Theorem 9. Given an abstract Voronoi diagram V(S), V(S \ {s}) ∩ VR(s, S) can be
computed in expected O(h) time, where h is the complexity of ∂VR(s, S). Thus, V(S \ {s})
can also be computed in expected time O(h).
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Abstract
We study the problem mentioned in the title, assuming the underlying sensor network is a unit
disk graph. That is, let S be a set of n sensors with transmission range 1. We wish to find a
data gathering tree (i.e., a rooted spanning tree) for the network, and to augment it with a data
mule based at one of the nodes of the tree. The mule’s job is to collect the data from the children
of a node u, if u is faulty. The goal is to find a gathering tree and to locate the mule at one of
its nodes, so that the expected length of the mule’s tour is minimized, where the mule can move
freely in the plane. We present an O(n logn)-time constant-factor approximation algorithm for
this problem. Our algorithm is faster by a linear factor than the previous one due to Yedidsion
et al. [5].

1 Introduction

Given a set S of n sensors with wireless capabilities deployed in the plane, one would like to
gather the data collected by the sensors using a data gathering tree — a hierarchical structure
that determines the paths in which data flows from the sensors to the storage center (i.e., a
directed rooted tree). The transmission range of the sensors is 1, so our starting point is the
unit disk graph (UDG) G induced by S, that is, the graph over S in which there is an edge
between two sensors s1, s2 ∈ S if and only if the Euclidean distance between them, d(s1, s2),
is at most 1.

Assuming G is connected, our goal is to find a rooted spanning tree T of G. However,
it is possible that some node u of the tree is faulty, in which case, in order not to lose the
data at the children of u, we employ a data mule that visits each of u’s children and collects
the data from them. The mule’s location is fixed when the gathering tree is determined; it
is at one of the nodes of the tree. Then, if some node u is faulty, the mule must leave its
base, travel to each of u’s children and return to its base, where the mule can move freely
in the plane. Thus, we would like to find a rooted spanning tree T of G and to determine
the mule’s location, such that the expected length of the mule’s tour is minimum. In other
words, our goal is to find a rooted tree T and a node v of T , such that the sum of TSP v(u),
over all internal nodes u of T , is minimum, where TSP v(u) is the shortest tour beginning
and ending at v and visiting each of the children of u.

This problem was introduced by Crowcroft et al. [2], who only studied its one-dimensional
version. Subsequently, Yedidsion et al. [5] considered the two-dimensional version of the
problem and presented an O(n2 logn)-time constant-factor approximation algorithm for it.
That is, their algorithm finds a rooted tree and places the mule at one of its nodes, so
that the sum of tours corresponding to their tree is bounded by a constant times the sum
corresponding to the optimal solution. In this paper, we present an alternative, more efficient,
constant-factor approximation algorithm for the (two-dimensional version of the) problem.
The running time of our algorithm is O(n logn).
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
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In general, some research has been done on various problems related to sensor networks
that are augmented with mobile elements, see, e.g., [2–4]. See [5] for more details on related
work.

2 Tree Construction

In this section we describe how to construct a spanning tree of the UDG induced by the set
of sensors S. The constructed tree will have some desirable properties, mentioned below. In
the subsequent section we will choose one of the nodes to serve as the tree’s root (and as the
mule’s base); this will determine the direction of the edges of the tree.

We begin by laying a regular grid of edge length 1√
2 over the input scene. (Notice that any

two nodes within the same cell are at distance at most 1 from each other and are therefore
connected by an edge in the underlying UDG.) Next, in each non-empty grid cell, we pick an
arbitrary node to be the cell’s central node (CN) and connect all other nodes in the cell to
the CN. At this point the set of central nodes is a dominating set (DS) of UDG.

We now add some edges to connect between adjacent stars. More precisely, for any pair
of stars, if the distance between them is at most one, i.e., if there exist a node u in one and
v in the other such that d(u, v) ≤ 1, then add an edge between the closest such pair of nodes.
We do so by running the following algorithm.

1. For each cell X:
Construct the Voronoi diagram of the nodes in X and preprocess it for point location
queries.

2. For each cell X:
For each of the 24 cells Y surrounding X (i.e., for each cell in the first or second circle
around X):
a. For each node u ∈ Y :

Find the node v of X which is closest to u.
b. Let (u, v) be the closest pair that was found.
c. If d(u, v) ≤ 1

E ← E ∪ {(u, v)}
3. Eliminate the cycles from the current graph by running DFS.

Let T be the tree that was obtained and notice that the set of its internal nodes is a
connected dominating set (CDS) of UDG. We call an internal node of T a backbone node, and
denote the set of internal nodes of T by BBNT . Thus BBNT is a CDS of UDG. Actually,
BBNT is an area constrained CDS (ACCDS) of UDG, where a CDS is an ACCDS if the
number of nodes of the set in any disk of constant area A is O(A). This is because the
number of backbone nodes in any cell is bounded by 25 (the cell’s CN plus at most 24
backbone nodes that are created by the code fragment above).

Finally, it is easy to see that the total time required to construct T is O(n logn). The
total time spent on building the Voronoi diagrams and their corresponding search structures
is O(n logn), and, for each node we perform a constant number of point location queries, so
the total time spent on querying the diagrams is O(n logn).
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3 Fixing the root and placing the mule

In [5], it was shown that the optimal solution with the additional constraint that the mule
must be placed at the root is a 2-approximation of the unconstrained optimal solution. We
therefore restrict our attention to the constrained version and present a constant-factor
approximation for it, which in turn is a constant-factor approximation for the unconstrained
version.

We focus on the more interesting and difficult case, where the area of the union of the
unit disks around the sensors is greater than some constant. When this area is small, the
number of backbone nodes (which is a linear function of the area) is small and the problem
becomes much easier.

3.1 Placing the mule
Let T be the tree that was constructed in the previous section, and let BBNT = {u1, . . . , um}
be the set of its internal nodes (i.e., backbone nodes). In this section, we describe how to
determine the node of T in which the mule will be placed (and that will serve as the root of
T ). For a node u of T , let w(u) =

∑m
i=1 d(u, ui), that is, w(u) is the sum of distances from u

to the internal nodes of T . We would like to place the mule at the node of T for which this
value is minimum, however we cannot afford to compute all these values. Instead, we choose
a node v′ whose value w(v′) is a good approximation of the minimum value.

We use the data structure of Bose et al. [1], which is built over a set of points in the
plane (given some ε > 0), and which supports sum-of-distances queries. More precisely, we
construct the data structure over the set BBNT , in O( 1

ε2n logn) time and O( nε2 ) space, and
perform n queries in it, one per each node in T , in total O( 1

ε2n logn) time. The answer to a
query with node u is a value wε(u), such that (1− ε

√
2)w(u) ≤ wε(u) ≤ (1 + ε

√
2)w(u), and

let v′ be the node whose returned value (i.e., wε(v′)) is minimum.
Denote by OPTT the sum of tours corresponding to the optimal location in tree T , and

denote by OPTT∗ the sum of tours corresponding to the optimal location in the (unknown)
optimal tree T ∗. We prove below that the sum of tours corresponding to v′ is bounded by
some constant times OPTT∗ .

I Theorem 3.1. Choosing v′ as the location for the mule yields a constant-factor approxima-
tion of OPTT∗ , for sufficiently large m. Moreover, the total running time of our algorithm is
O(n logn).

Proof. The proof is based on the following three claims, which correspond to Lemmas 3.2–3.5
below.

1. There exists a constant c′ such that OPTT ≤ c′ ·OPTT∗ .
2. Placing the mule at the node v such that w(v) = min{w(u) : u ∈ BBNT } yields a

2-approximation of OPTT , for sufficiently large m.
3. The sum of tours corresponding to v′ is a 4-approximation of the sum of tours corre-

sponding to v, for sufficiently large m.
From these claims it follows that placing the mule at v′ yields a c = 8c′-approximation
of OPTT∗ , for sufficiently large m. As for the running time, the tree T is constructed in
O(n logn) time, after which the node v′ is found in O(n logn) time. J

We now prove the 3 lemmas mentioned in the proof of Theorem 3.1.

I Lemma 3.2. There exists a constant c′ such that OPTT ≤ c′ ·OPTT∗ .

EuroCG’18
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Figure 1 Proof of Lemma 3.2. Left: CT (ui) = {a, b, c, d, e}. Right: The nodes that T ’s mule will
visit if ui is faulty.

Proof. Let v∗ be the optimal location in T ∗. We will show that the sum of tours corresponding
to v∗ in T is already bounded by some constant c′ times the sum of tours corresponding to
v∗ in T ∗. But the former sum is at least OPTT and the latter sum is equal to OPTT∗ , so we
may conclude that OPTT ≤ c′ ·OPTT∗ .

Let CT (ui) be the set of ui’s children in T . Instead of visiting the nodes in CT (ui) if ui
is faulty, T ’s mule will do the following. For each node w, which in T ∗ is a parent of a node
in CT (ui), T ’s mule will visit the nodes in CT∗(w). In other words, we replace TSP v∗T (ui)
by

∑
w TSP

v∗
T∗(w), where the sum is over all nodes w which in T ∗ have a child in CT (ui);

see Figure 1. Clearly, by doing so, T ’s mule will still visit the nodes in CT (ui), but it may
also visit other nodes, and in either way, the total distance traveled by T ’s mule can only
increase.

Observe, however, that each of the nodes w in the latter sum is at distance at most 2 from
ui. So, since the internal nodes of T constitute an ACCDS, the number of internal nodes of
T that lie within distance at most 2 from w is bounded by some constant c′, and therefore,
the number of times that T ’s mule will need to visit the nodes in CT∗(w) is bounded by some
constant c′. We conclude that the total distance traveled by T ’s mule (after replacing the terms
TSP v

∗
T (ui) by the corresponding sums) is bounded by c′

∑
w∈BBNT∗

TSP v
∗

T∗(w) = c′ ·OPTT∗ ,
which implies that

∑m
i=1 TSP

v∗
T (ui) ≤ c′ ·OPTT∗ . J

From now on, we are dealing only with the tree T , so we write TSP v instead of TSP vT
and BBN instead of BBNT . Our proof of the next two lemmas relies on the following
observation, which follows immediately from the way T was constructed.

I Observation 3.3. Let v1, v2 be two nodes and let u be a backbone node. Then, there exists
at most one node that is a child of u, when the mule is at v1, but is not a child of u, when
the mule is at v2.

I Lemma 3.4. Placing the mule at the node v such that w(v) = min{w(u) : u ∈ BBN} is
a 2-approximation of OPTT , for sufficiently large m.

Proof. Let v∗ be the node in which the mule is placed in the optimal solution for T , i.e.,∑m
i=1 TSP

v∗(ui) = OPTT . We first show that
∑m
i=1 TSP

v(ui) ≤
∑m
i=1(TSP v∗(ui) + 6).

Denote by si and ti the first and last nodes that are visited in the tour taken by the mule
based in v∗ when ui fails, and denote by π(si, . . . , ti) the length of the portion of this tour
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beginning at si and ending at ti. Then, TSP v
∗(ui) = d(v∗, si) + π(si, . . . , ti) + d(ti, v∗), and,

by Observation 3.3, TSP v(ui) ≤ d(v, ui) + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + d(ui, v) + 2,
where 2 is an upper bound on the total length of the back-and-forth trips from ui to visit
the at most one child of v that is not also v∗’s child. So,
m∑

i=1
TSP v(ui) ≤

m∑

i=1
(d(v, ui) + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + d(ui, v) + 2)

≤(i)
m∑

i=1
(d(v∗, ui) + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + d(ui, v∗) + 2)

≤(ii)
m∑

i=1
(d(v∗, si) + 1 + d(ui, si) + π(si, . . . , ti) + d(ti, ui) + 1 + d(ti, v∗) + 2)

≤
m∑

i=1
(TSP v

∗
(ui) + 6) ,

where inequality (i) is true since w(v) ≤ w(v∗) and inequality (ii) is true since d(v∗, ui) ≤
d(v∗, si)+d(si, ui) ≤ d(v∗, si)+1, and similarly, d(ui, v∗) ≤ d(ui, ti)+d(ti, v∗) ≤ 1+d(ti, v∗).

Now, since BBN is an ACCDS, if we assume that m is sufficiently large, then the
average tour length from v∗ (i.e., (

∑m
i=1 TSP

v∗(ui))/m) is greater than 6, and there-
fore

∑m
i=1(TSP v∗(ui) + 6) ≤ 2

∑m
i=1 TSP

v∗(ui). Thus, for sufficiently large m, we get∑m
i=1 TSP

v(ui) ≤ 2
∑m
i=1 TSP

v∗(ui) = 2OPTT . J

I Lemma 3.5.
∑m
i=1 TSP

v′(ui) ≤ 4
∑m
i=1 TSP

v(ui), for sufficiently large m.

Proof. Since wε(v′) ≤ wε(v),

(1− ε
√

2)w(v′) ≤ wε(v′) ≤ wε(v) ≤ (1 + ε
√

2)w(v) ,

or
m∑

i=1
d(v′, ui) ≤

1 + ε
√

2
1− ε

√
2

m∑

i=1
d(v, ui) .

Now, as in the proof of Lemma 3.4, we write TSP v(ui) = d(v, si) + π(si, . . . , ti) + d(ti, v),
where si and ti are the first and last nodes visited by the mule based at v when ui fails, and
π(si, . . . , ti) is the portion of TSP v(ui) beginning at si and ending at ti. Then,

m∑

i=1
d(v′, si) ≤

m∑

i=1
(d(v′, ui) + d(ui, si)) ≤

1 + ε
√

2
1− ε

√
2

m∑

i=1
(d(v, ui) + d(ui, si)) ,

and, similarly,
m∑

i=1
d(v′, ti) ≤

1 + ε
√

2
1− ε

√
2

m∑

i=1
(d(v, ui) + d(ui, ti)) .

Again, as in the proof of Lemma 3.4,
m∑

i=1
TSP v

′
(ui) ≤

m∑

i=1
(d(v′, si) + π(si, . . . , ti) + d(ti, v′) + 2) ,

so
m∑

i=1
TSP v

′
(ui) ≤

1 + ε
√

2
1− ε

√
2

m∑

i=1
(d(v, ui) + d(ui, si) + π(si, . . . , ti) + d(v, ui) + d(ui, ti) + 2)

≤ 1 + ε
√

2
1− ε

√
2

m∑

i=1
(TSP v(ui) + 6) .
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Now, since BBN is an ACCDS, if we assume that m is sufficiently large, then the
average tour length from v (i.e., (

∑m
i=1 TSP

v(ui))/m) is greater than 6, and therefore∑m
i=1(TSP v(ui)+6) ≤ 2

∑m
i=1 TSP

v(ui). Thus, for sufficiently largem, we get
∑m
i=1 TSP

v′(ui) ≤
4

∑m
i=1 TSP

v(ui), by choosing ε < 1/(3
√

2). J
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Abstract
We study several problems concerning convex polygons whose vertices lie on a grid defined by
the Cartesian product of two sets of n real numbers, using each coordinate at most once. First,
we prove that all such grids contain a convex polygon with Ω(log n) vertices and that this bound
is asymptotically tight. Second, we present two polynomial-time algorithms that find the largest
convex polygon of a restricted type. These algorithms give an approximation of the unrestricted
case. It is unknown whether the unrestricted problem can be solved in polynomial time.

1 Introduction

A fast way to generate a random convex polygon, based on a proof by Pavel Valtr [7], first
generates two random sets of n integer coordinates before significantly transforming the
y-coordinates to produce a convex n-gon with the original x-coordinates. What happens
if we do not transform the y-coordinates, and instead ask for a convex polygon with the
original x- and y-coordinates?

Formally, we say that two sets, X and Y , each containing n real numbers, form a grid
X × Y . A grid supports a convex polygon P if for every vertex of P , its x-coordinate is in X

and its y-coordinate is in Y , and no two vertices of P share an x- or y-coordinate.
It turns out that not every n × n grid supports a convex n-gon. In fact, this is true

already for n = 5 (see Figure 1). This raises several interesting questions. Can we quickly
decide whether a grid supports a convex n-gon? Or can we find the largest k such that it
supports a convex k-gon? And what is the largest k such that any n × n grid supports a
convex k-gon? We initiate the study of these questions.

There is a rich history of problems involving convex subsets, including the famous Happy
Ending Problem: that any set of five points in the plane in general position contain four
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Figure 1 Maximum-size supported convex polygons of respective sizes 3, 4, 4, and 5 in n × n

grids, where n is between 3 and 6.

points in convex position. Generalizing this result, Erdős and Szekeres conjectured that every
set of 2n−2 + 1 points in general position contains n points in convex position and that this
is tight [2]. While this conjecture has been proven only for n ≤ 6 [6], and the current best
upper bound is 2n+o(n) [5], the asymptotics are known to be correct for the lower bound: a
set of n points in general position always contains Ω(log n) points in convex position [2].

Algorithmically, the problem of finding the largest convex subset of a set of n points in
the plane in general position can be solved in O(n3) time [1]. While this approach likely
generalizes to finding the largest convex subset in a grid, it is not clear how to include
the restriction that each coordinate is used at most once. On the negative side, it was
recently shown that the problem of finding the largest convex subset in a point set in Rd for
dimensions d ≥ 3 is NP-hard [3].

The remainder of the paper is structured as follows. First, in Section 2, we give an
asymptotically tight lower bound on the maximum size convex polygon supported by an
n× n grid. Then, in Section 3, we provide algorithms to find, for a given grid, the largest
supported convex polygon of two special types. These algorithms give a constant-factor
approximation of the size of the largest supported convex polygon.

2 General bounds

We consider two special types of convex polygons. We classify a convex polygon P with
vertices ((x1, y1), . . . , (xk, yk)) (in clockwise order), as follows:

Convex caps come in four types {y, y,

y,

y }. We have
P ∈y if and only if (xi)k

i=1 is increasing;
P ∈ y if and only if (yi)k

i=1 is increasing;
P ∈ y if and only if (xi)k

i=1 is decreasing;
P ∈ y

if and only if (yi)k
i=1 is decreasing.

Convex chains come in four types { , , , }. We have
= y ∩y, = y ∩ y

, = y∩ y, =

y ∩ y.

Figure 1 illustrates some maximum-size supported convex polygons for various grids.
For n×n grids with n ≤ 4, the largest supported convex polygon always has size n. For n > 4,
this size can be less than n (as for n = 5 in Figure 1). Interestingly, for n = 6, there always
exists a supported convex polygon of size at least 5.

I Lemma 2.1. Every 6× 6 grid X × Y supports a convex polygon of size at least 5.

Proof. Let X ′ = X \ {min(X), max(X)} and Y ′ = Y \ {min(Y ), max(Y )}. The 4 × 4
grid X ′ × Y ′ supports a convex chain P ′ of size 3 between two opposite corners of X ′ × Y ′.
Then one x-coordinate x′ ∈ X ′ and one y-coordinate y′ ∈ Y ′ are not used by P ′. Without
loss of generality, assume that P ′ ∈ . Then the convex polygon containing the points of P ′

and (x′, min(Y )) and (max(X), y′) is a supported convex polygon of size 5 on X × Y . J
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Figure 2 An 8× 8 grid without convex chains of size greater than 4 = log2 8 + 1. X = {1, . . . , 8},
Y = {0, 7, 63, 70, 511, 518, 574, 581}. Two lines through pairs of grid points are drawn in blue.

More generally, by Lemma 2.2, every grid supports a convex chain of size Ω(log n). We
show in Lemma 2.3 that this bound is asymptotically tight: for each n, there exists a grid
for which the maximum convex chain has size O(log n). Since every convex cap consists of
two convex chains (some of which may be empty), and each convex polygon is composed of
two convex caps, the same asymptotic bounds hold for maximum convex caps and polygons.

I Lemma 2.2. Every n× n grid X × Y supports a convex polygon of size Ω(log n).

Proof. By Payne and Wood [4], every set of k points with at most ` collinear contains a set
of Ω(

√
k/ log `) points in general position. Here, we have n2 points with at most n collinear,

so there is a set of Ω(
√

n2/ log n) = Ω(n/
√

log n) points in general position. By Suk [5], every
set of 2k+o(k) points in general position contains a set of k points in convex position. Hence,
we can find a subset of Ω

(
log(n/

√
log n)

)
= Ω(log n) points in convex position. Eliminating

points with the same x- or same y-coordinate reduces the size by at most 75%, so this
asymptotic bound also holds when coordinates in X and Y may be used at most once. J

For the upper bound, we construct a family of grids without any large convex chain.
For n = 8, this grid is depicted in Figure 2.

I Lemma 2.3. For every n ∈ N, there exists an n× n grid X × Y that does not support any
convex chain of size greater than dlog ne+ 1.

Proof. Let g(n) be the maximum value such that for all X and Y of size n, the grid X × Y

supports a convex polygon of size g(n); clearly g(n) is nondecreasing. Let k be the minimum
integer such that n ≤ 2k. We show that g(2k) ≤ k + 1 to establish that g(n) ≤ g(2k) ≤ k + 1.

Without loss of generality, assume that n = 2k, and let X = {1, . . . , n}. For a k-bit
integer m, let mi be the bit at its i-th position, such that m =

∑k−1
i=0 mi2i. Let Y =

{∑k−1
i=0 mi(ni+1−1) | 0 ≤ m ≤ n−1}. Both X and Y are symmetric: X = {max(X)+1−x |
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x ∈ X} and Y = {max(Y ) − y | y ∈ Y }. Thus, it suffices to show that no P ∈ of size
greater than k + 1 exists.

Consider p = (x, y) and p′ = (x′, y′) ∈ X × Y with y =
∑k−1

i=0 mi(ni+1 − 1) and y′ =∑k−1
i=0 m′i(ni+1 − 1). The slope of the line between p and p′ is slope(p, p′) =

∑k−1
i=0 (m′i −

mi)(ni+1 − 1)/(x′ − x). Let j be the largest index such that mj 6= m′j . Assume that x < x′

and y < y′, then 1 ≤ x′ − x ≤ n− 1 and we bound the slope as follows:

nj+1 − 1
n− 1 ≤ nj+1 − 1 +

∑j−1
i=0 (m′i −mi)(ni+1 − 1)

x′ − x
= slope(p, p′)

=
∑j

i=0(m′i −mi)(ni+1 − 1)
x′ − x

≤
∑j

i=0 ni+1 − 1
1 = n

nj+1 − 1
n− 1 − 1 < n

nj+1 − 1
n− 1 .

Hence, slope(p, p′) ∈ Ij = [ nj+1−1
n−1 , n nj+1−1

n−1 ]. Consider the family of intervals I0, I1, . . . , Ik−1
defined analogously. For n > 1, we have max(Ij) < min(Ij+1). Suppose for a contradiction
that some P ∈ is of size greater than k + 1. Then, since the slopes of the first k + 1 edges
of P decrease monotonically, there must be three consecutive vertices p = (x, y), p′ = (x′, y′),
and p′′ = (x′′, y′′) of P such that both slope(p, p′) ∈ Ij and slope(p′, p′′) ∈ Ij . Let y =∑k−1

i=0 mi(ni+1 − 1) and y′ =
∑k−1

i=0 m′i(ni+1 − 1) and y′′ =
∑k−1

i=0 m′′i (ni+1 − 1). Then j

is the largest index such that mj 6= m′j , and also the largest index such that m′j 6= m′′j .
Because m < m′ < m′′, we have mj < m′j < m′′j , which is impossible since each of mj , m′j
and m′′j is either 0 or 1. Hence, there are no convex chains of size greater than k + 1. J

3 Algorithms

In this section, we describe polynomial time algorithms for finding convex chains and caps of
maximum size, as well as polynomial time approximation algorithms for finding the maximum
size of a convex polygon. We make use of the following general observation:

I Observation 3.1. If a supported convex polygon P is in a set of , , , , y,

y

, y,
or y, then any subsequence of P also lies in that set.

Convex chains. Given a grid X × Y , we provide an algorithm to compute a supported
convex chain P ∈ of maximum size. For this, we use a dynamic program to compute for
each edge (p1, p2) ∈ E = (X × Y )2, the maximum size R(p1, p2) of a chain of with p1 and
p2 as first two vertices, or (p1) if p1 = p2 (in which case R(p1, p2) = 1). By Observation 3.1,
removing the first vertex from a chain of again yields a chain of .

I Observation 3.2. If A = (a1, . . . , ak) ∈ and B = (b1, . . . , b`) ∈ with k ≥ 2, ` ≥ 2
and ak−1 = b1 and ak = b2, then (a1, . . . , ak−2, b1, . . . , b`) also lies in and has size k +`−2.

Conversely, by Observation 3.2, for a chain P in , adding a vertex v at the front yields
a chain of if (v, p1, p2) ∈ : the x- (resp., y-) coordinate of v is less (resp., greater) than
those of vertices of P , so distinctness is maintained. Therefore we can find the maximum
size of a chain starting with p1 and p2 based on chains without p1 as follows:

R(p1, p2) =





−∞ if p1 6= p2 and (p1, p2) /∈
1 if p1 = p2
max(p1,p2,v)∈ or v=p2 R(p2, v) + 1 otherwise.

Since the x-coordinate of the first vertex of a chain is less than those of subsequent
vertices, this formula is well defined. For sequences of constant size, membership in
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can be checked in constant time. So the running time to compute R(e) for all edges
is O(|E| · |X × Y |) = O(n6), and the space complexity is O(|E|) = O(n4). This algorithm
can easily be adapted to find the maximum size convex chains in { , , , } with the same
time and space complexity. We thus conclude the following:

I Lemma 3.3. For a given n × n grid, we can compute a maximum size convex chain in
O(n6) time and O(n4) space.

Convex caps. To compute the maximum size of a convex cap in y, we compute the
maximum size of two convex chains that use distinct y-coordinates. Specifically, for two
edges l = (l1, l2) and r = (r1, r2), we compute the maximum total size C(l, r) of a pair
of chains A ∈ and B ∈ such that their vertices use distinct y-coordinates and such
that A ends with vertices l1 and l2 (or A = (l1) if l1 = l2), and B starts with vertices r1
and r2 (or B = (r1) if r1 = r2). To compute C(l, r), we reuse the algorithm of Lemma 3.3
to compute L(p1, p2) (resp., R(p1, p2)), the size of a largest convex chain P in (resp., ),
ending (resp., starting) in vertices p1 and p2, or P = (p1) if p1 = p2.

The desired quantity C(l, r) can now be computed using a dynamic program. The main
idea is that we can always safely eliminate the highest vertex of the two chains, to find a
smaller subproblem, as this vertex cannot be (implicitly) part of the optimal solution to a
subproblem. In particular, if l is a single vertex and it is highest, we can simply use the value
of R(r1, r2), incrementing it by one for the one vertex of l. Analogously, we handle the case
if r is or both l and r are a single vertex. The interesting case is when both chains end in
an edge. Here, we observe that we can easily check whether l and r use unique coordinates.
If not, then this subproblem is invalid; otherwise, we may find a smaller subproblem by
eliminating the highest vertex and checking all possible subchains that could lead to it.

With the reasoning above, we obtain the recurrence below. The first case eliminates
invalid edges and combinations that use a coordinate more than once or that do not give a
cap. After the first, it holds that l ∈ , r ∈ and that l and r use unique coordinates.

C(l, r) =





−∞ if l1 6= l2 and l /∈ , or
r1 6= r2 and r /∈ , or
{l1.y, l2.y} ∩ {r1.y, r2.y} 6= ∅

2 otherwise, if l1 = l2 and r1 = r2
L(l1, l2) + 1 otherwise, if r1 = r2 and l2.y < r1.y

R(r1, r2) + 1 otherwise, if l1 = l2 and l2.y > r1.y

max(v,l1,l2)∈ or v=l1 C((v, l1), r) + 1 otherwise, if l2.y > r1.y

max(r1,r2,v)∈ or v=r1 C(l, (r2, v)) + 1 otherwise, l2.y < r1.y.

We can compute C(l, r) for all l and r in O(|E|2|X × Y |) = O(n10) time and O(|E|2) =
O(n8) space. With C(l, r), we can easily find the size of a maximum size cap P in y, using
the observation below, and analogous observations for the special case k = 1 and/or ` = 1.

I Observation 3.4. If A = (a1, . . . , ak) ∈ and B = (b1, . . . , b`) ∈ with k ≥ 2, ` ≥ 2
and (ak−1, ak, b1, b2) ∈y and A and B use distinct y-coordinates, then (a1, . . . , ak−2, b1, . . . , b`)
lies in y and has size k + `.

I Lemma 3.5. For a given n×n grid, we can compute a maximum size convex cap in O(n10)
time and O(n8) space.

Convex n-chains and n-caps. If we are solely interested in deciding whether a convex chain
or cap exists that has |X| = |Y | = n vertices, we can improve upon the previous algorithms
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considerably. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} with xi < xi+1 and yi < yi+1. To
test whether supports a chain of size n, it suffices to test the chain ((x1, y1), . . . , (xn, yn)),
which can be done in linear time.

To test whether y supports a convex cap of size n, we adapt the algorithm of Lemma 3.5.
Suppose P is a cap of y of size n. For k < n, let Ak ∈ and Bk ∈ be the subchains of AP

and BP obtained after discarding vertices with y-coordinates greater than yk. Let (l1, l2)
be the last edge of Ak and let (r1, r2) be the first edge of Bk. Then h, i and j exist
such that i < j < k and l1.x = xh, l2.x = xh+1, r1.x = xn−k+h+2, r2.x = xn−k+h+3
and {l1.y, l2.y, r1.y, r2.y} = {yi, yj , yk−1, yk}. Suppose we adapt the formula for C(l, r) to
consider only entries of this form, and adapt the formulas for L and R to consider only entries
of the form ((xi−1, yi−1), (xi, yi)) and ((xn−i, yi−1), (xn−i+1, yi)), respectively. We then
obtain O(|Y |3|X|) possible values for (l, r), and the corresponding values can be computed
in O(|Y |4|X|) = O(n5) time and O(n4) space. Testing whether y supports a cap of size n

can be done within the same time and space bounds.

Approximation. Although an efficient algorithm for computing the maximum size of a
supported convex polygon is left as an open problem, the algorithms above provide constant-
factor approximations. A convex cap P ∈ y is composed of two convex chains (AP ∈
and BP ∈ as defined before), which are themselves caps in y, and one of which has at
least half the size of P . Hence, the algorithms to compute the maximum size of an x- and
y-monotone chain provide a factor 1

2 -approximation on the size of the largest cap. Similarly,
a convex polygon P is composed of four x- and y-monotone convex chains, one of which
contains at least a quarter of the vertices of P . Furthermore, P is composed of a convex
cap and a convex cup, one of which contains at least half of the vertices of P . Thus, the
algorithms in Lemma 3.3 and Lemma 3.5, respectively, yield factor 1

4 - and
1
2 -approximations

for the maximum size of a convex polygon supported by X × Y .
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Abstract
A rollercoaster is a sequence of real numbers for which every maximal contiguous subsequence,
that is increasing or decreasing, has length at least three. By translating this sequence to a set of
points in the plane, a rollercoaster can be defined as a polygonal path for which every maximal sub-
path, with positive- or negative-slope edges, has at least three points. Given a sequence of distinct
real numbers, the rollercoaster problem asks for a maximum-length (not necessarily contiguous)
subsequence that is a rollercoaster. It was conjectured that every sequence of n distinct real
numbers contains a rollercoaster of length at least dn/2e for n > 7, while the best known lower
bound is Ω(n/ logn). In this paper we prove this conjecture. Our proof is constructive and implies
a linear-time algorithm for computing a rollercoaster of this length. Extending the O(n logn)-
time algorithm for computing a longest increasing subsequence, we show how to compute a
maximum-length rollercoaster within the same time bound. A maximum-length rollercoaster in
a permutation of {1, . . . , n} can be computed in O(n log logn) time.

The search for rollercoasters was motivated by orthogeodesic point-set embedding of cater-
pillars. A caterpillar is a tree such that deleting the leaves gives a path, called the spine. A
top-view caterpillar is one of degree 4 such that the two leaves adjacent to each vertex lie on
opposite sides of the spine. As an application of our result on rollercoasters, we are able to find a
planar drawing of every n-node top-view caterpillar on every set of 25

3 n points in the plane, such
that each edge is an orthogonal path with one bend. This improves the previous best known
upper bound on the number of required points, which is O(n logn). We also show that such a
drawing can be obtained in linear time, provided that the points are given in sorted order.

1 Introduction

A run in a sequence of real numbers is a maximal contiguous subsequence that is increasing
(an “ascent”) or decreasing (a “descent”). A rollercoaster is a sequence of real numbers such
that every run has length at least three. For example the sequence (8, 5, 1, 3, 4, 7, 6, 2) is a
rollercoaster with runs (8, 5, 1), (1, 3, 4, 7), (7, 6, 2), which have lengths 3, 4, 3, respectively.
The sequence (8, 5, 1, 7, 6, 2, 3, 4) is not a rollercoaster because its run (1, 7) has length 2.
Given a sequence S = (s1, s2, . . . , sn) of n distinct real numbers, the rollercoaster problem
is to find a maximum-size set of indices i1 < i2 < · · · < ik such that (si1 , si2 , . . . , sik

) is a
rollercoaster. In other words, this problem asks for a longest rollercoaster in S, i.e., a longest
subsequence of S that is a rollercoaster.

One can interpret S as a set P of points in the plane by translating each number si ∈ S
to a point pi = (i, si). With this translation, a rollercoaster in S translates to a “rollercoaster”
in P , which is a polygonal path whose vertices are points of P and such that every maximal
sub-path, with positive- or negative-slope edges, has at least three points. See Figure 1(a).
Conversely, for any point set in the plane, the y-coordinates of the points, ordered by their
x-coordinates, forms a sequence of numbers. Therefore, any rollercoaster in P translates to a
rollercoaster of the same length in S.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 (a) Translating the sequence (8, 5, 1, 3, 4, 7, 6, 2) to a set of points. (b) A planar L-shaped
drawing of a top-view caterpillar.

The best known lower bound on the length of a longest rollercoaster is Ω(n/ logn) due to
Biedl et al. [2]. They conjectured that
I Conjecture 1.1. Every sequence of n > 7 distinct real numbers contains a rollercoaster of
length at least dn/2e.

Conjecture 1.1 can be viewed as a statement about patterns in permutations, a topic
with a long history, and the subject of much current research. For example, the Eulerian
polynomials, introduced by Euler in 1749, are the generating function for the number of
descents in permutations. For surveys of recent work, see, for example, Linton et al. [7] and
Kitaev [6]. Specifically, Conjecture 1.1 is related to the following seminal result of Erdős
and Szekeres [3] in the sense that they prove the existence of an increasing or a decreasing
subsequence of length at least

√
n+ 1 for n = ab+ 1, which is essentially a rollercoaster with

one run.

I Theorem 1.2 (Erdős and Szekeres, 1935). Every sequence of ab+ 1 distinct real numbers
contains an increasing subsequence of length at least a+ 1 or a decreasing subsequence of
length at least b+ 1.

Hammersley [5] gave an elegant proof of the Erdős-Szekeres theorem that is short, simple,
and based on the pigeonhole principle. The Erdős-Szekeres theorem also follows from the
well-known decomposition of Dilworth (see [9]). The following is a restatement of Dilworth’s
decomposition for sequences of numbers.

I Theorem 1.3 (Dilworth, 1950). Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences where k is the maximum length of a descending
sequence in S.

Besides its inherent interest, the study of rollercoasters is motivated by point-set em-
bedding of caterpillars [2]. A caterpillar is a tree such that deleting the leaves gives a path,
called the spine. An ordered caterpillar is a caterpillar in which the cyclic order of edges
incident to each vertex is specified. A top-view caterpillar is an ordered caterpillar where all
vertices have degree 4 or 1 such that the two leaves adjacent to each vertex lie on opposite
sides of the spine. Planar orthogonal drawings of trees on a fixed set of points in the plane
have been explored recently, see e.g., [2, 4, 8]; in these drawings every edge is drawn as an
orthogonal path between two points, and the edges are non-intersecting. A planar L-shaped
drawing is a simple type of planar orthogonal drawing in which every edge is an orthogonal
path of exactly two segments. Such a path is called an L-shaped edge. For example see the
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top-view caterpillar in Figure 1(b) together with a planar L-shaped drawing on a given point
set. Biedl et al. [2] proved that every top-view caterpillar on n vertices has a planar L-shaped
drawing on every set of O(n logn) points in the plane that is in general orthogonal position,
meaning that no two points have the same x- or y-coordinate.

Due to space restrictions we cannot give all the proofs. We refer the interested reader to
the full version [1].

2 Rollercoasters

Our main result is to show that Conjecture 1.1 holds. In fact we prove something stronger:
every sequence of n distinct numbers contains two rollercoasters of total length n. Our proof
is constructive and yields a linear-time algorithm for computing such rollercoasters. The
length 4 sequence (3, 4, 1, 2) has no rollercoaster, and it can be shown that for n = 5, 6, 7 the
longest rollercoaster has length 3. Therefore, we only consider n ≥ 8.

I Theorem 2.1. Every sequence of n > 8 distinct real numbers contains a rollercoaster of
length at least dn/2e; such a rollercoaster can be computed in linear time. The lower bound
of dn/2e is tight in the worst case.

Proof. Consider a sequence with n > 8 distinct real numbers, and let P be its point-set
translation with points p1, . . . , pn that are ordered from left to right. We define a pseudo-
rollercoaster as a sequence in which every run is a 3-ascent (an ascent of length at least 3)
or a 3-descent, except possibly the first run. We present an algorithm that computes two
pseudo-rollercoasters R1 and R2 in P such that |R1| + |R2| > n; the length of the longer
one is at least dn/2e. Then with a more involved proof we show how to extend this longer
pseudo-rollercoaster to obtain a rollercoaster of length at least dn/2e; this will prove the
lower bound.

First we provide a high-level description of our algorithm as depicted in Figure 2. Our
algorithm is iterative, and proceeds by sweeping the plane by a vertical line ` from left to
right. We maintain the following invariant: At the beginning of every iteration we have two
pseudo-rollercoasters whose union is the set of all points to the left of ` and such that the last
run of one of them is an ascent and the last run of the other one is a descent. Furthermore,
these two last runs have a point in common.

`

RA

RD

a

d

Figure 2 One iteration of algorithm: Constructing two pseudo-rollercoasters.

During every iteration we move ` forward and try to extend the current pseudo-rollercoas-
ters. If this is not immediately possible with the next point, then we move ` farther and
stop as soon as we are able to split all the new points into two chains that can be appended
to the current pseudo-rollercoasters to obtain two new pseudo-rollercoasters that satisfy the
invariant. See Figure 2. Now we present our iterative algorithm in detail.
The First Iteration: We take the leftmost point p1, and initialize each of the two pseudo-
rollercoasters by p1 alone. We may consider one of the pseudo-rollercoasters to end in an
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ascent and the other pseudo-rollercoaster to end in a descent. The two runs have a point in
common.
An Intermediate Iteration: By the above invariant we have two pseudo-rollercoasters RA

and RD whose union is the set of all points to the left of ` and such that the last run of one
of them, say RA, is an ascent and the last run of RD is a descent. Furthermore, the last
run of RA and the last run of RD have a point in common. During the current iteration
we make sure that every swept point will be added to RA or RD or both. We also make
sure that at the end of this iteration the invariant will hold for the next iteration. Let a
and d denote the rightmost points of RA and RD, respectively; see Figure 2. Let pi be the
first point to the right of `. If pi is above a, we add pi to RA to complete this iteration.
Similarly, if pi is below d, we add pi to RD to complete this iteration. In either case we
get two pseudo-rollercoasters that satisfy the invariant for the next iteration. Thus we may
assume that pi lies below a and above d. In particular, this means that a lies above d.

Consider the next point pi+1. (If there is no such point, go to the last iteration.) Suppose
without loss of generality that pi+1 lies above pi as depicted in Figure 3. Then d, pi, pi+1
forms a 3-ascent. Continue considering points pi+2, . . . , pk until for the first time, there is
a 3-descent in a, pi, . . . , pk. In other words, k is the smallest index for which a, pi, . . . , pk

contains a descending chain of length 3. (If we run out of points before finding a 3-descent,
then go to the last iteration.)

pk′
pi+1

pi
RA

RD

a

d

pred(pk′ , A1)

A′
1

A2

A′′
1pk′′

pi+2

pk

Figure 3 Illustration of an intermediate iteration of the algorithm.

Without pk there is no descending chain of length 3. Thus the longest descending chain
has two points, and by Theorem 1.3, the sequence P ′ = a, pi, pi+1, . . . , pk−1 is the union of
two ascending chains. We give an algorithm to find two such chains A1 and A2 with A1
starting at a and A2 starting at pi. The algorithm also finds the 3-descent ending with pk.
For every point q ∈ A2 we define its A1-predecessor to be the rightmost point of A1 that is
to the left of q. We denote the A1-predecessor of q by pred(q, A1).

The algorithm is as follows: While moving ` forward, we denote by r1 and r2 the rightmost
points of A1 and A2, respectively; at the beginning r1 = a, r2 = pi, and pred(pi, A1) = a.
Let p be the next point to be considered. If p is above r1 then we add p to A1. If p is
below r1 and above r2, then we add p to A2 and set pred(p,A1) = r1. If p is below r2, then
we find our desired first 3-descent formed by (in backwards order) pk = p, pk′ = r2, and
pk′′ = pred(r2, A1). See Figure 3. This algorithm runs in time O(k− i), which is proportional
to the number of swept points.

We add point d to the start of chain A2. The resulting chains A1 and A2 are shaded in
Figure 3. Observe that A2 ends at pk′ . Also, all points of P ′ that are to the right of pk′ (if
there are any) belong to A1, and lie to the right of pk′′ , and form an ascending chain. Let
A′′1 be this ascending chain. Let A′1 be the sub-chain of A1 up to pk′′ ; see Figure 3. Now we
form one pseudo-rollercoaster (shown in red/dashed) consisting of RA followed by A′1 and
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then by the descending chain pk′′ , pk′ , pk. We form another pseudo-rollercoaster (shown in
blue/solid) consisting of RD followed by A2 and then by A′′1 . We need to verify that the
ascending chain added after d has length at least 3. This chain contains d, pi and pk′ . This
gives a chain of length at least 3 unless k′ = i, but in this case pk′′ = a, so pi+1 is part of
A′′1 and consequently part of this ascending chain. Thus we have constructed two longer
pseudo-rollercoasters whose union is the set of all points up to point pk, one ending with
a 3-ascent and one with a 3-descent and such that the last two runs share the point pk′ .
Figure 4(a) shows an intermediate iteration.
The Last Iteration: If there are no points left, then we terminate the algorithm. Otherwise,
let pi be the first point to the right of `. Let a and d be the endpoints of the two pseudo-
rollercoasters obtained so far, such that a is the endpoint of an ascent and d is the endpoint
of a descent. Notice that pi is below a and above d, because otherwise this iteration would
be an intermediate one. For the same reason, the remaining points pi, . . . , pn do not contain
a 3-ascent together with a 3-descent. If pi is the last point, i.e., i = n, then we discard this
point and terminate this iteration. Assume that i 6= n, and suppose without loss of generality
that the next point pi+1 lies above pi. In this setting, by Theorem 1.3 and as described in
an intermediate iteration, with the remaining points, we can get two ascending chains A1
and A2 such that A2 contains at least two points. By connecting A1 to a and A2 to d we get
two pseudo-rollercoasters whose union is all the points (in this iteration we do not need to
maintain the invariant).

p1

d

a = pk′′

pi

pi+1 = pk′

pk

p1 pn

R1

R2

(a) (b)

Figure 4 (a) An intermediate iteration. (b) A point set for which any rollercoaster of length at
least n/4 + 3 does not contain p1 and pn. The green (dashed) rollercoaster, which contains p1, has
length n/4 + 2. The red (solid) and blue (dash-dotted) chains are the two rollercoasters returned by
our algorithm.

Final Refinement: At the end of the algorithm, we obtain two pseudo-rollercoasters R1
and R2 that share p1, and their union contains all points of P , except possibly pn. Thus,
|R1|+ |R2| > n, and the length of the longer one is at least

⌈
n
2

⌉
.

This ends the presentation of our algorithm. It is not hard to see that the algorithm runs
in O(n) time.

To obtain rollercoasters (not just pseudo-rollercoasters), we remove p1 from R1 and/or
R2 if the first run only contains two points. This gives two rollercoasters R1 and R2 whose
union contains all points, except possibly p1 and pn. The length of the longer one is at least⌈

n−2
2

⌉
. We can improve this bound to

⌈
n
2

⌉
by revisiting the first and last iterations of our

algorithm with some case analysis.
We note that there are point sets, with n points, for which every rollercoaster of length

at least n/4 + 3 does not contain any of p1 and pn; see e.g., the point set in Figure 4(b). To
verify the tightness of the dn/2e lower bound, consider a set of n points in the plane where

EuroCG’18
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dn/2e of which lie on a positive-slope line segment in the (−,+)-quadrant and the other
bn/2c points lie on a positive-slope lines segment in the (+,−)-quadrant. J

3 Further Results

Our result can be extended to k-rollercoasters, i.e., sequences of real numbers in which every
run is either a k-ascent or a k-descent. Namely, for k > 4, every sequence of n > (k− 1)2 + 1
distinct real numbers contains a k-rollercoaster of length at least n

2(k−1) − 3k
2 .

The algorithm presented in the proof of Theorem 2.1 does not necessarily compute the
longest rollercoaster in a sequence. This can be done in O(n logn)-time by an algorithm
extending the classical algorithm for computing a longest increasing subsequence. This
algorithm can be implemented in O(n log logn) time if each number in the input sequence is
an integer that fits in a constant number of memory words. Connected to this last result, we
give an estimate on the number of permutations of {1, . . . , n} that are rollercoasters. Namely,
let r(n) be the number of permutations of {1, 2, . . . , n} that are rollercoasters. We show that
r(n) ∼ c′ · n! · λn−3 where c′ is a constant, approximately 0.204.

Finally, we study the problem of drawing a top-view caterpillar, with L-shaped edges, on
a set of points in the plane that is in general orthogonal position. Recall that a top-view
caterpillar is an ordered caterpillar of degree 4 such that the two leaves adjacent to each
vertex lie on opposite sides of the spine; see Figure 1(b) for an example. The best known
upper bound on the number of required points for a planar L-shaped drawing of every
n-vertex top-view caterpillar is O(n logn); this bound is due to Biedl et al. [2]. We use
Theorem 2.1 and improve this bound to 25

3 n+O(1).

I Theorem 3.1. Any top-view caterpillar of n vertices has a planar L-shaped drawing on
any set of 25

3 n+O(1) points in the plane that is in general orthogonal position.
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Abstract
We show that the problem of guarding an x-monotone terrain from an altitude line and the
problem of guarding a uni-monotone polygon are equivalent. We present a polynomial time
algorithm for both problems, and show that the cardinality of a minimum guard set and the
cardinality of a maximum witness set coincide. Thus, uni-monotone polygons are perfect.

1 Introduction

Both the Art Gallery Problem (AGP) and the 1.5D Terrain Guarding Problem (TGP) are
well known problems in Computational Geometry. We are given a polygon P (AGP) or
an x-monotone chain T of line segments in R2 (1.5D TGP) and need to place a minimum
number of point-shaped guards in P or on T , such that they cover all of P or T , respectively.
Both problems have been shown to be NP-hard: Krohn and Nilsson [3] proved the AGP to
be hard even for monotone polygons, and King and Krohn [2] established the NP-hardness
of both the discrete and the continuous TGP (with guards restricted to the terrain vertices
or guards located anywhere on the terrain).

The problem of guarding a uni-monotone polygon (an x-monotone polygon with a single
horizontal segment as one of its two chains) and the problem of guarding a terrain with
guards placed on a horizontal line above the terrain appear to be problems somewhere
between the 1.5D TGP and the AGP in monotone polygons. We show that, surprisingly,
both problems allow for a polynomial time algorithm: a simple sweep.

Moreover, we are able to construct a maximum witness set of the same cardinality as the
minimum guard set for uni-monotone polygons. Hence, we establish the first non-trivial class
of perfect polygons (earlier only proven for “rectilinear”[5] and “staircase” visibility [4]).

One application of guarding a terrain with guards placed on a horizontal line above
the terrain, the Altitude Terrain Guarding Problem (ATGP), comes from the idea of using
drones to surveil a complete geographical area. Usually, these drones will not be able to
fly arbitrarily high, which motivates to cap the allowed height for guards (and without this
restriction a single sufficiently high guard above the terrain will be enough). Of course,
eventually we are interested in working in two dimensions and a height, the 2.5D ATGP—one
dimension and height is a natural starting point for this.

2 Notation and Preliminaries

A polygon P is x-monotone if any line orthogonal to the x-axis has a simply connected
intersection with P . Its leftmost and rightmost vertex split the boundary in two x-monotone
polygonal chains. A uni-monotone polygon P is an x-monotone polygon, such that one of
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
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its two chains is a single horizontal segment. W.l.o.g. we will assume the single horizontal
segment to be the upper chain for the remainder of this paper; we denote this segment
by H. The lower chain of P , LC(P ), is defined by its vertices V (P ) = {v1, . . . , vn} and
has edges E(P ) = {e1, . . . , en−1} with ei = vivi+1. Due to uni-monotonicity the vertices
of P are totally ordered w.r.t. their x-coordinates. A point p ∈ P sees or covers q ∈ P if
and only if pq is fully contained in P . VP (p) is the visibility polygon (VP) of p in P with
VP (p) := {q ∈ P | p sees q}. For G ⊂ P we abbreviate VP (G) :=

⋃
g∈G VP (g).

A terrain T is an x-monotone chain of line segments in R2 defined by its vertices
V (T ) = {v1, . . . , vn} that has edges E(T ) = {e1, . . . , en−1} with ei = vivi+1; and int(ei) :=
ei \ {vi, vi+1} is ei’s interior. Due to monotonicity the points on T are totally ordered w.r.t.
their x-coordinates. For p, q ∈ T , we write p ≤ q (p < q) if p is (strictly) left of q.

An altitude line A at height ah for a terrain T is a horizontal line located ah above
the lowest (y-)coordinate of all vertices of T , with the leftmost point vertically above v1
and the rightmost point vertically above vn. For this abstract we consider only the case
where the altitude line lies completely above T . The points on A are totally ordered as
well w.r.t. their x-coordinates, and we adapt the same notation as for two points on T .
A point p ∈ A sees or covers q ∈ T if and only if pq is nowhere below T (i.e. pq lies on
or above T ). VT (p) is the visibility region of p with VT (p) := {q ∈ T | p sees q}. For
G ⊆ A we abbreviate VT (G) :=

⋃
g∈G VT (g). We also define the visibility region for p ∈ T :

VT (p) := {q ∈ A | p sees q}.
For an edge e ∈ P or e ∈ T the strong VP (weak VP) is the set of points that see all of

e (at least one point of e): Vs
P (e) := {p ∈ P : ∀q ∈ e p sees q} and Vs

T (e) := {p ∈ A : ∀q ∈
e p sees q} (Vw

P (e) := {p ∈ P : ∃q ∈ e p sees q} and Vw
T (e) := {p ∈ A : ∃q ∈ e p sees q}).

I Definition 2.1 (Altitude Terrain Guarding Problem). In the Altitude Terrain Guarding
Problem (ATGP), abbreviated ATGP(T,A), we are given a terrain T and an altitude line A.
A guard set G ⊂ A is optimal w.r.t. ATGP(T,A) if G is feasible, that is, T ⊆ VT (G), and
|G| = OPT(T,A) := min{|C| | C ⊆ A is feasible w.r.t. ATGP(T,A)}.

I Definition 2.2 (Art Gallery Problem). In the Art Gallery Problem (AGP), abbreviated
AGP(G, W ), we are given a polygon P and sets of guard candidates and points to cover
G, W ⊆ P . A guard set C ⊆ G is optimal w.r.t. AGP(G, W ) if C is feasible, that is,
W ⊆ VP (C), and |C| = OPT(G, W ) := min{|C| | C ⊆ G is feasible w.r.t. AGP(G, W )}. In
general, we want to solve the AGP for G = P and W = P , that is, AGP(P, P ).

A set W ⊂ P (W ⊂ T ) is a witness set if ∀ wi 6= wj ∈W we have VP (wi) ∩ VP (wj) = ∅.
A polygon class P is perfect if the cardinality of an optimum guard set and the cardinality of
a maximum witness set coincide for all polygons P ∈ P.

I Lemma 2.3. Let P be a uni-monotone polygon, with guard set G. Then there exists a
guard set GH with |G| = |GH| and g ∈ H ∀g ∈ GH. That is, if we want to solve the AGP
for a uni-monotone polygon, w.l.o.g. we can restrict our guards to be located on H.

Proof. Let G be an optimal guard set. Consider a point p ∈ P , there exists a guard g ∈ G

that covers p. Let gH be the point located vertically above g on H. Because of P being
uni-monotone the triangle ∆(g, p, gH) must be empty, hence, also gH sees p. J

An analogous proof shows that we can always place guards on the altitude line A even if
we would be allowed to place them anywhere between the terrain T and A.

I Lemma 2.4. Let P be a uni-monotone polygon, G a guard set with g ∈ H ∀g ∈ G that
covers LC(P ), that is, LC(P ) ⊂ VP (G). Then G covers all of P , that is, P ⊆ VP (G).
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(a)
(b)

Figure 1 (a) Terrain T and altitude line A is shown in black and red, resp.. g1, . . . , g4 are an
optimal guard cover. g2 and g3 both cover a critical edge both to their left and to their right. (b)
Example: each of the O(n) guards needs to shoot O(n) (colored) rays.

Proof. Assume there is a point p ∈ P, p /∈ LC(P ) with p /∈ VP (G). Consider the point pLC ,
which is located vertically below p on LC(P ). Let g ∈ G be a guard that sees pLC . LC(P )
does not intersect the line pLCg, and because P is uni-monotone the triangle ∆(g, p, pLC) is
empty, hence, g sees p; a contradiction. J

Consequently, the ATGP and the AGP for uni-monotone polygons are equivalent; we will
only refer to the ATGP in the remainder of this paper, with the understanding that all our
results can be applied directly to the AGP for uni-monotone polygons.

I Lemma 2.5. Let g ∈ A, p ∈ T, g < p. If p /∈ VT (g) then ∀g′ < g, g′ ∈ A : p /∈ VT (g′).

Before we present our algorithm, we observe that the ATGP is intrinsically different
from TGP. We repeat (and extend) a definition from [1]: For a feasible guard cover C of
T (C ⊂ T for TGP and C ⊂ A for ATGP), an edge e ∈ E is critical w.r.t. g ∈ C if C \ {g}
covers some part of, but not all of int(e). If e is critical w.r.t. some g ∈ C, we call e critical
edge (e is critical iff more than one guard is responsible for covering its interior). g ∈ C is a
left-guard (right-guard) of ei ∈ E if g < vi (vi+1 < g) and ei is critical w.r.t. g. We call g a
left-guard (right-guard) if it is a left-guard (right-guard) of some e ∈ E.
I Observation 2.6. For the TGP we have: Let C be finite and cover T , then no g ∈ C \ V (T )
is both a left- and a right-guard, that is, no guard that is not on a vertex is responsible to
cover critical edges to its left and right, see Friedrichs et al. [1]. However, for the ATGP, any
guard g on A may be responsible to cover critical edges both to its left and to its right, that
is, guards may be both a left- and a right-guard, see Figure 1(a).

3 Sweep Algorithm

Our algorithm is a sweep, and informally it can be described as follows (the pseudocode for
our algorithm, using definitions from Section 3.1, is presented in Algorithm 1):
• We start with an empty set of guards, G = ∅, and at the leftmost point of A; all edges

E(T ) are completely unseen.
• We sweep along A from left to right and place a guard gi whenever we could no longer
see all of an edge e′ if we would move more to the right.

• We compute the visibility polygon of gi, VT (gi), and for each edge e = {v, w} partially
seen by gi, we split the edge, and only keep the open interval that is not yet guarded.

• Thus, whenever we insert a new guard gi we have a new set of “edges” Ei(T ) that are
still completely unseen, and ∀f ∈ Ei(T ) we have f ⊆ e ∈ E(T ).

• We continue placing new guards until T ⊆ VT (G).
• As we can define a witness set of |G| our guard set is optimal: we place a point witness

on e′ at the point p we would lose coverage of, if we had not placed guard gi.

EuroCG’18
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3.1 How to Split the Partly Seen Edges
For each edge in the initial set of edges, e ∈ E(T ), we need to determine the point pc

e

that closes the interval on A from which all of e is visible. We denote the set of points
pc

e ∀e ∈ E(T ) as the set of closing points C, that is, C = ∪e∈E(T ){pc
e ∈ A : (e ⊆ VT (pc

e)) ∧
(e * VT (p) ∀p > pc

e, p ∈ A)}. The points in C are the rightmost points on A in the strong
visibility polygon of the edge e, for all edges. Analogously, we define the set of opening points
O: O = ∪e∈E(T ){po

e ∈ A : (e ⊆ VT (po
e)) ∧ (e * VT (p) ∀p < po

e, p ∈ A)}. For each edge e the
point in O is the leftmost point on A in the strong visibility polygon of e.

Moreover, whenever we place a new guard, we need to split partly seen edges to obtain
the new, completely unseen, possibly open, interval, and determine the point on A where we
would lose coverage of this edge (interval). That is, whenever we split an edge we need to
add the appropriate point to C.

To be able to easily identify whether an edge e of the terrain needs to be split due
to a new guard g, we define the set of “soft openings” S: the leftmost point on A in the
weak visibility polygon of e (if g is to the right of this point—and to the left of the closing
point—it can see at least parts of e). We define S = ∪e∈E(T ){ps

e ∈ A : (∃q ∈ e, q ∈ VT (ps
e))∧

(@q ∈ e, q ∈ VT (p) ∀p < ps
e, p ∈ A)}.

So, how do we preprocess our terrain such that we can easily identify the point on A that
we need to add to C when we split an edge? We make an initial sweep from the rightmost
to the leftmost vertex; for each vertex we shoot a ray to all other vertices to its left and
mark the points, mark points, where these rays hit the edges of the terrain. This leaves us
with O(n2) preprocessed intervals. For each mark point m we store the rightmost of the two
terrain vertices that defined the ray hitting the terrain at m, let this vertex be denoted by
vm. For each edge ej = {vj , vj+1} with vj+1 convex, this includes vj+1 as a mark point.

Whenever the placement of a guard g splits an edge e such that the open interval e′ ⊂ e

is not yet guarded, see for example Figure 2(a), we identify the mark, me′ to the right of e′

and shoot a ray r from the right endpoint of e′ through vme′ (the one we stored with me′).
The intersection point of r and A defines our new closing point pc

e′ , see Figure 2(b).

3.2 Minimum Guard Set and Perfect Polygons
I Lemma 3.1. The set G output by Algorithm 1 is feasible, that is, T ⊆ VT (G).

Proof. Assume there is a point p ∈ T with p /∈ VT (G). p ∈ e for some edge e ∈ E(T ). As p

is not covered, there exists no guard in G in the interval [po
e, pc

e] on A. Thus, pc
e is never the

(a) (b)
Figure 2 Terrain T and altitude line A is shown in black and red, resp.. The orange lines show

the rays from the preprocessing step, their intersection points with the terrain define the mark points.
Assume the open interval e′, shown in light green, is still unseen. To identify the closing point for e′

we identify the mark to the right of e′, me′ , and shoot a ray, shown in dark green, from the right
end point of e′ through vme′ . The intersection point of r and A defines our new closing point pc

e′ .
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INPUT : Terrain T , altitude line A, its leftmost point a, sets C,O,S of closing, opening, and soft
opening points for all edges in T , all ordered from left to right.

OUTPUT : An optimal guard set G.
1 Eg = E(T ) // set of edges that still need to be guarded
2 i := 1
3 g0 := a // the point on A before the first guard is a
4 while Eg 6= ∅ // as long as there are still unseen edges
5 do
6 1. Sweep right from gi−1 along A until the first closing point c ∈ C is hit
7 2. Place gi on c, G = G ∪ {gi}, i := i + 1
8 3. for all e ∈ Eg // gi ≯ pc

e by construction
9 do

10 if po
e ≤ gi ≤ pc

e then
11 Eg = Eg \ {e} // if all of e is seen, delete it from Eg

12 C = C \ {pc
e} // and delete the closing point from the event queue

13 else if gi < po
e then

14 if ps
e ≤ gi // if gi can see the right point of e

15 then
16 Shoot a visibility ray from gi onto e, let the intersection point be re // all points on e

to the right of re (incl. re) are seen
17 Identify the mark me immediately to the right of re on e
18 Shoot a ray r from re through vme
19 Let pc

e′ be the intersection point of r and A // pc
e′ is the closing point for the still

unseen interval e′ ⊂ e
20 C = C ∪ {pc

e′} \ {p
c
e}

21 Sort C
22 Eg = Eg ∪ {e′} \ {e}

Algorithm 1: Optimal Guard Set for ATGP

event point that defines the placement of a guard in lines 6,7 of Algorithm 1. Moreover, as
@gi : po

e ≤ gi ≤ pc
e, e is never completely deleted from Eg in lines 10–12. Consequently, for

some i we have gi < po
e and ps

e ≤ gi (lines 14–22). As p /∈ VT (G), we have p ∈ e′ ⊂ e.
Again, because p /∈ VT (G), @gj ∈ [po

e, pc
e′ ] ⊂ A, j ≥ i. Due to line 6 no guard may be

placed to the left of pc
e′ , hence, there is no guard placed in [po

e, b] (b being the right end point
of A). So, e′ is never deleted from Eg, a contradiction to G being the output of Alg. 1. J

I Theorem 3.2. The set G output by Algorithm 1 is optimal.

Proof. To show that G is optimal, we need to show that G is feasible and that G is minimum.
Feasibility follows from Lemma 3.1, it remains to show that G is minimum. Given a witness
set W and a guard set G, |W | ≤ |G| holds. Thus, if we can find a witness set W with
|W | = |G|, we can show that G is minimum. We will place a witness for each guard
Algorithm 1 places. First, we need an auxiliary lemma (and omit the proof):

I Lemma 3.3. Let c ∈ C be the closing point for a complete edge (and not just an edge
interval) in line 6 of Algorithm 1 that enforces the placement of a guard gi. Then there exists
an edge ej = {vj , vj+1} ∈ E(T ) for which c is the closing point, such that vj+1 is a reflex
vertex, and vj is a convex vertex.

Now we can define our witness set: we consider the edges or edge intervals, which define
the closing point c ∈ C that leads to a placement of guard gi in lines 6,7 of Algorithm 1.

If c is defined by some complete edge ej ∈ E(T ), let Ec ⊆ Eg be the set of edges for
which c is the closing point. We pick the rightmost edge ej ∈ Ec such that vj is a convex
vertex and vj+1 is a reflex vertex, which exists by Lemma 3.3, and choose wi = vj .

Otherwise, that is, if c is only defined by edge intervals, we pick the rightmost such edge
interval e′ ⊂ ej . Then e′ = [vj , q) for some point q ∈ ej , q 6= vj+1, and we place a witness at
qε, a point εi to the left of q on T : wi = qε. We define W = ∪|G|i=1wi. By definition |W | = |G|,
and we still need to show that W is indeed a witness set.
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Let Si be the strip of all points with x-coordinates between x(gi−1) + ε and x(gi). Let
pT and pA be the vertical projection of a point p onto T and A, respectively. Si = {p ∈
R2 : (x(gi−1) + ε ≤ x(p) ≤ x(gi)) ∧ (y(pT ) ≤ y(p) ≤ y(pA))}. We show that VT (wi) ⊆ Si∀i,
hence, VT (wk) ∩ VT (w`) = ∅ ∀wk 6= w` ∈W , which shows that W is a witness set.

If wi = vj for an edge ej ∈ E(T ), VT (wi) contains the guard gi, but no other guard: If
gi−1 could see vj , we would have ∠(gi−1, vj , vj + 1) ≤ 180◦ because vj is a convex vertex,
thus, gi−1 could see all of ej , a contradiction to ej ∈ Eg. Moreover, assume wi could see some
point p with x(p) ≤ x(gi−1). The terrain does not intersect the line wip, and because the
terrain is monotone the triangle ∆(wi, p, gi−1) would be empty, a contradiction to gi−1 not
seeing wi. Hence, no guard gj , j < i sees wi; a similar argument can be given for gj , j > i.

If wi = qε for e′ = [vj , q), VT (wi) contains the guard gi, but no other guard: If gi−1
could see wi, q would not be the endpoint of the edge interval, a contradiction. Moreover,
assume wi could see some point p with x(p) ≤ x(gi−1). T does not intersect the line wip, and
because T is monotone the triangle ∆(wi, p, gi−1) would be empty, a contradiction. Thus,
again, no guard gj , j < i sees p (and the case j > i can be shown similarly). J

We showed that there exists a maximum witness set W ⊂ T and a minimum guard set
G ⊂ A with |W | = |G|. By Lemma 2.3 and 2.4 the ATGP and the AGP for uni-monotone
polygons are equivalent. Thus, for a uni-monotone polygon P we can find a maximum
witness set W ⊂ LC(P ) ⊂ P and a minimum guard set G ⊂ H ⊂ P with |W | = |G|:

I Theorem 3.4. Uni-monotone polygons are perfect.

3.3 Algorithm Runtime
The preprocessing step to compute the mark points costs O(n2), based on these we can
compute the closing points for all edges of the terrain. Similarly, we compute the mark points
from the left to compute the opening points (using the left vertex of an edge to shoot the
ray) and the soft opening points (using the right vertex of an edge to shoot the ray). Then,
whenever we insert a guard (of which we might add O(n)), we need to shoot O(n) rays, see
Figure 1(b), which altogether costs O(n2 log n). Similarly, for each of the intersection points
re, we need to shoot a ray through vme

. This gives a total runtime of O(n2 log n). In fact,
when we stepwise build the convex hull of the terrain vertices from the right and only shoot
rays through vertices of this CH, we can reduce the preprocessing step to O(n).
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Abstract
The search for efficient algorithms to compute the straight skeleton of a simple polygon has resulted
in a variety of algorithms. We present a new approach that applies the divide-and-conquer paradigm
with the divide step based on the motorcycle graph. A practical randomized algorithm is obtained
that derives the straight skeleton from the motorcycle graph, with an expected running time of
O(dn logn), where d is the decomposition depth of the motorcycle graph.

1 Introduction

The straight skeleton of a simple polygon was introduced to computational geometry about
two decades ago in [1]. It is defined as the trace of the vertices as the polygon shrinks by
moving its edges in a self-parallel manner towards the interior of the polygon. During this
offsetting process edges disappear (so-called edge events, see the dotted offset in Figure 1
where the edge e disappears), and reflex vertices may run into other edges (so-called split
events, see the dashed offset in Figure 1 where the vertex r runs into some edge and splits
it). For more detailed information see, for example, the section on straight skeletons in [2].

Initially, a simple priority queue algorithm with a running time of O(n2 log n) has been
proposed, simulating the shrinking process by computing all edge and split events. A theo-
retical breakthrough was the first sub-quadratic algorithm, by Eppstein and Erickson in [5]
who also introduce the motorcycle graph. This graph consists of straight traces of ‘motor-
cycles’ that start at reflex vertices, with the speed and direction of the reflex vertex during
the shrinking process; see Figure 2 for an example. A motorcycle’s trace stops when it hits
either the (already existing) trace of another motorcycle or the boundary of the polygon
(as in [3] we assume that no two motorcycles collide). It seems that the motorcycle graph
encodes essential information needed for the construction of the straight skeleton; several
of the more recent algorithms for the straight skeleton build upon it. However, even the

r

e

Figure 1 Straight skeleton offsetting
process with edge and split events.

Figure 2 The motorcycle graph partitions
a nonconvex polygon into convex cells.
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C5 C4

C3

C2
C1

Figure 3 Motorcycle regions C5 (motorcy-
cle cell) and C2 ∪ C3 (union of two regions).
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Figure 4 An inner motorcycle cell C,
bounded by a cycle of dominant motorcycles.

derivation of the straight skeleton from the motorcycle graph has remained a complicated
task being hard to implement. Also, the computation of the motorcycle graph itself is a
challenging problem (the best known algorithm has a running time of O(n4/3+ε) [6]).

The global nature of split events complicates the design of efficient divide-and-conquer
algorithms for the straight skeleton. It took almost two decades (and several failing at-
tempts) until the first correct and efficient algorithm of this type was published, in Cheng
et al. [3]. Interestingly, this algorithm shows the currently best theoretical running time,
O(n log n log r + r4/3+ε), for a polygon with n edges and r reflex vertices.

Here and later on, let P denote a simple n-vertex polygon,M(P) its motorcycle graph,
and S(P) its straight skeleton (or just skeleton for brevity). The line segments forming S(P)
will be called arcs.

In this note, we present a very simple divide-and-conquer algorithm that computes S(P)
once M(P) is given. The idea is to divide P into cells according to M(P), to compute
the skeletons of the motorcycle cells separately, and then merge them into S(P). We start
in Section 2 by defining motorcycle regions and related concepts. The skeletons of regions
are the topic of Section 3, in particular the relationship between the skeleton of a region
and the skeletons of its subregions. The results from Section 3 are put to use in Section 4
for a divide-and-conquer algorithm that computes S(P). The divide step is trivial provided
M(P) is available. The conquer step is as simple as Chew’s [4] incremental method for the
medial axis of a convex polygon. We first describe the algorithm for motorcycle graphs that
are free of cycles. General motorcycle graphs are handled in Section 5, along with runtime
considerations depending on the structure of these graphs. If the structure ofM(P) is nice
enough, the expected running time is O(n log2 n), while in the general case it is O(n2 log n).

2 Motorcycle regions

The motorcycle graph M(P) partitions P into polygons called cells, which are convex be-
cause a motorcycle egde emanates from each reflex vertex of P, bisecting its interior angle.
We first assume that each cell is supported by edges of P. (Inner motorcycle cells, which are
caused by cycles inM(P), will be handled later.) To combine motorcycle cells we introduce
motorcycle regions. A motorcycle region, R, ofM(P) is either a motorcycle cell defined by
M(P), or R = R1 ∪ R2 where R1 and R2 are regions sharing some motorcycle edge. See
Figure 3 for an illustration of both kinds of regions.

From now on let R = R1 ∪ R2 be a region of M(P), let m be the common motorcycle
edge of R1 and R2, and denote with r the reflex vertex that defines m. To associate R with
a skeleton suitable for future merging steps, a so-called region polygon for R (which is a
superset of R and actually generates the desired skeleton) is needed. Following the recursive
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Figure 5 Motorcycle cell polygon (dashed,
open) using only the cell’s polygon edges.

e

Figure 6 Motorcycle cell polygon (dashed)
with the dominating edge e.

definition of motorcycle regions, we will define the region polygon for a motorcycle cell first,
and then show how the region polygons for R1 and R2 are combined to obtain the region
polygon for R.

Consider some motorcycle cell C. Each edge of C is either supported by an edge of P
or by an edge of M(P). The former type of edges could be used to construct a (possibly
unbounded) convex polygon by extending them until adjacent edges intersect; see Figure 5
for an example. However, merging two such polygons can create a polygon whose skeleton
contains an arc longer than its motorcycle edge inM(P). This leads to complications during
the merging process.

The solution is to also add edges of P that define motorcycle edges supporting C. Let
m be a motorcycle edge supporting C, and let r be its reflex vertex in P. The edge e of P
incident to r and on the same side of m as C is called a dominating edge of C. Combining all
dominating edges of C with all edges of P that support C still results in a convex polygon,
the motorcycle cell polygon; see Figure 6 for an example. Note that the combined size of all
motorcycle cell polygons is O(n).

In the following, let R, R1 and R2 be the region polygons of R, R1 and R2, respectively.
To obtain R, the polygons R1 and R2 need to be merged at both endpoints, say r and v,
of m. At the reflex vertex r this is done by simply truncating the respective edges of R1 and
R2. Concerning v, this endpoint either lies on a polygon edge (which, therefore, is already
part of the subregions’ polygons), or on another motorcycle edge m′ that dominates m, and
thus the corresponding dominating edge is already part of the subregions’ polygons. As a
consequence, the merging of R1 and R2 at v is simple as well. Note that r is the only new
reflex vertex that gets introduced by the merge.

3 Straight skeletons of motorcycle regions

The skeleton of a region R of M(P) is defined as the part of the skeleton of R’s region
polygon that lies within R. That is, S(R) = S(R) ∩R.

As an important property of S(R), the skeleton arcs of reflex vertices are contained in R.
Therefore, such skeleton arcs cannot cross region boundaries during the merge process.

I Lemma 3.1. Let u be the arc of a reflex vertex r in S(R). Then u ⊂ R.

Proof. Vertex r is part of R, therefore its motorcycle edge m is completely contained in R.
If m hits the boundary of P, then the hit edge of P is also part of R, and thus the arc
u is contained in R. Assume now that m is blocked by another motorcycle edge m′. The
motorcycle cells that have parts of bothm andm′ on their boundary are part of R. Therefore
the associated dominating edge of m′ with respect to these cells contributes to the boundary
of R. Thus u cannot cross m′, and u ⊂ R again. J

EuroCG’18



42:4 On Merging Straight Skeletons

Let us now look in more detail at the straight skeleton within a single motorcycle cell C.
We say that an edge e of P is relevant for C, if the unique face fP(e) that e defines in S(P)
has a nonempty intersection with C.

I Theorem 3.2. The relevant edges for C (extended if necessary) form a convex polygon in
the cyclic order given by P.

Proof. Clearly, the edges of P that support C are all relevant for C, and they form a convex
polygon. All other edges relevant for C must cross a motorcycle edge during the shrinking
process to have a part of C in their face in S(P). Therefore, they must form convex angles
with the adjacent edges in the polygon formed by all relevant edges; the arcs of reflex vertices
are shorter than their corresponding motorcycle edges. J

I Corollary 3.3. Let e be an edge of R2 that is not an edge of R1, and such that its face
fR(e) in the straight skeleton of R = R1 ∪R2 has a nonempty intersection with R1. Then e

forms convex angles when inserted into R1.

Proof. For each motorcycle cell C ⊆ R1 with fR(e) ∩ C 6= ∅, we know from Theorem 3.2
that e is in convex position with C’s motorcycle cell polygon, that is, e cuts off a single
convex vertex from this polygon. Therefore e forms convex angles with its adjacent edges
in R1. J

The straight skeleton behaves nicely when inserting an edge in convex position. During
the shrinking process, the new edge is always ahead of the parts of the adjacent edges that
were cut off. All other edges remain unchanged. Thus the skeleton faces of old edges can
shrink but never expand.

For the merge of S(R1) and S(R2) we need to find the edges from one region that
can influence the skeleton of the other region within S(R). The following lemma gives a
necessary condition for such edges.

I Lemma 3.4. Only edges of R2 whose faces in S(R2) are bounded by the common motor-
cycle edge m can change S(R1) within S(R), the merged skeleton.

Proof. Let e be an edge ofR2 whose face fR(e) in S(R) has a nonempty intersection with R1.
Then fR(e) must be intersected by m, since e is on the opposite side of m. Edges of R1 with
faces that have nonempty intersection with R2 in S(R) are in convex position with respect
to R2, by Theorem 3.3. Consequently, e’s face in S(R2) can only shrink; more precisely,
fR(e) ∩R2 ⊆ fR2

(e). But this implies that fR2
(e) is bounded by m. J

The following related lemma is stated without proof, due to lack of space.

I Lemma 3.5. Let E be the (cyclically ordered) set of edges of R2 whose faces in S(R2)

are bounded by m, excluding the edge adjacent to m’s reflex vertex r in R2. Then E forms
a convex chain, and its edges form convex angles when inserted into R1.

4 Divide-and-conquer

We are now ready to describe our divide-and-conquer algorithm. In the divide part, we
use the motorcycle graph M(P) to recursively divide P along motorcycle edges. Since we
assumedM(P) to have no cycles, there exists a motorcycle edge m that hits the boundary
of P. This divides P into two polygons, P1 and P2. This dividing step can be repeated,
using motorcycle edges m1 and m2 that split P1 and P2 into two parts, respectively, and is
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iterated until all motorcycle edges have been used and the final polygons are the motorcycle
cells ofM(P). The division process can be represented in a tree, which inherits the future
merge plan and is therefore called the merge tree.

In the conquer part of our algorithm, the results from the previous section are put to
use. Suppose S(R1) and S(R2) have already been computed, and need to be merged into
S(R). For S(R1), all edges with faces bounded by m are computed. By Lemma 3.5, these
edges form a convex chain E1 that forms convex angles when inserted into R2. Inserting E1

into S(R2) results in S(R2 ∪E1). The same is done with the roles of R1 and R2 exchanged,
to obtain S(R1∪E2). Note that both skeletons coincide along m, and only need to be glued
together along m to obtain S(R).

Still missing is the part of the algorithm that updates a straight skeleton during the
insertion of a convex chain E. We adapt the approach from Chew [4] that computes the
medial axis of a convex polygon (which equals its straight skeleton). We insert the edges
of E in random order, with each update taking time proportional to the number of arcs of
the inserted edge’s face as its boundary is traced out.

Suppose an edge e in convex position is inserted into a region polygon and its skeleton
needs to be updated. The expected number of arcs defined by e and other (already inserted)
edges from E is still constant (here Chew’s analysis still applies), but the expected number of
arcs defined by e and edges from the original polygon (so-called mixed arcs) is not constant.
Let l be the size of the original polygon, k the size of E, and n = l+k. Suppose that i−1 edges
have already been inserted and the skeleton of the resulting polygon computed. Inserting the
ith edge may cause the construction of new mixed arcs. The maximal number of mixed arcs
after the insertion is l+i−1, and since the insertion order is randomized, the expected number
of mixed arcs supported by the new edge is (l + i− 1)/i. Summing over all insertions gives
the expected total number of mixed arcs when E is inserted:

∑k
i=1(l+ i−1)/i = O(n log n).

As a conseqence, the expected running time for all merges on a single level of the merge
tree is O(n log n). The running time of the complete algorithm depends on the depth of the
merge tree and we get the following theorem:

I Theorem 4.1. Let d be the height of the merge tree. Then the straight skeleton of P can
be computed in O(d n log n) expected time.

5 General motorcycle graphs and runtime considerations

Now we lift the restriction that the motorcycle graph must be free of cycles. A motorcycle
graph cycle is created by a cycle of dominating motorcycles bounding an inner region (see
Figure 4). Merges cannot be performed as above, since no two regions share a complete
motorcycle edge. However, it is possible to first compute the skeleton of the inner cell, and
use the known merge procedure for the skeletons of the outer regions.

Let C be an inner motorcycle cell, bounded by the cycle of dominating motorcycle edges
m1, . . . ,mk. Let Ri denote the region bounded by mi and mi+1 (indices modulo k).

Now consider an edge e of Ri, such that its face fP(e) in S(P) has a nonempty inter-
section with C. Then the face of e in S(Ri) must be bounded by mi+1, giving a necessary
condition for an edge to have a face in S(P) intersecting with C. It can be shown that all
such edges form a convex polygon, enabling the computation of S(C) in linear time.

Having computed S(C), it is now possible to detect the edges that sweep over C during
the shrinking process, and thus need to be included in the skeletons of the outer regions
adjacent to C. Merging all these edges into the skeletons of the appropriate regions Ri can
be done in overall O(l log l) expected time, with l being the number of edges involved.
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C

Figure 7 All ears are merged into C. Figure 8 The merge tree degenerates to a path.

Finally, the updated skeletons of the outer regions are combined. First, these skeletons
can be restricted to their region (remember that the skeleton of C does not change). Then
they can be merged using the original merge procedure along a common motorcycle edge.
Balanced binary merges can be used to get an overall expected running time of O(n log2 n).

Whereas motorcycle graphs with cycles can be integrated into the divide step with-
out causing the running time to increase, the dependency on the height of the merge tree
(Theorem 4.1) can cause an expected running time of O(n2 log n). There are two kinds
of motorcycle graph structures producing merge trees with linear height. The first one re-
sults from a ‘central’ motorcycle cell C with linearly many adjacent cells that need to be
merged with C as they have no common motorcycle edge with another cell (see Figure 7
for an example). The second kind occurs when for linearly many motorcycles m1, . . . ,mk,
the motorcycle mi crashes into the trace of mi+1, and mk hits the polygon boundary as in
Figure 8. For both structures, there are efficient solutions once they have been identified in
the motorcycle graph. However, detecting these structures efficiently is an open problem.

6 Conclusions

We have presented a simple and easy-to-implement divide-and-conquer algorithm that de-
rives the straight skeleton of a polygon from its motorcycle graph. The running time depends
on the structure of the motorcycle graph, and is expected O(n log2 n) if the motorcycle graph
is reasonably ‘balanced’, competing with the best known algorithm [3]. Still, it seems to be
a long way till such a running time may be achieved for constructing the straight skeleton
from scratch, as precomputing the motorcycle graph is believed to be the hardest part.
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Abstract
We introduce a new distance measure for comparing polygonal chains: the k-Fréchet distance.
As the name implies it is closely related to the well-studied Fréchet distance but allows to find
similarities between curves that resemble each other only piecewise. As we will explain it pro-
vides a nice transition between (weak) Fréchet distance and Hausdorff distance. We prove NP-
completeness for the k-Fréchet distance of polygonal curves in different variants and furthermore
APX-completeness for the optimization version of our problem, discuss algorithmic approaches
and present open questions.

1 Introduction

During the past decades several methods for comparing geometrical shapes have been studied
in a variety of applications, for example analysing geographic data, such as trajectories, or
comparing chemical structures, e.g. protein chains or human DNA.

The Fréchet distance has been well-studied in the past decades since it has proven to
be very helpful in applications such as the above mentioned geographic data analysis or
computer aided design. The Hausdorff distance, another similarity measure, has also proven
to be useful in applications and can be computed more efficiently than the Fréchet distance.
However, it provides us with less information by taking only the overall shape of curves into
consideration, not how they are traversed.

We introduce the k-Fréchet distance as a distance measure in between Hausdorff and
(weak) Fréchet distance. The k-Fréchet distance allows to compare shapes consisting of
several parts by cutting a curve into a number of subcurves where the subcurves resemble
each other in terms of the (weak) Fréchet distance. Therefore it allows to find similarities
between objects of rearranged pieces such as chemical structures or handwritten characters
and symbols.

Characterizing these distance measures in the free space shows that the k-Fréchet distance
bridges between the (weak) Fréchet distance and Hausdorff distance (see below for details):
the weak Fréchet distance can be characterized by one component in the free space projecting
surjectively onto both parameter spaces, and the Hausdorff distance can be characterized
by all components of the free space projecting surjectively onto both parameters. For the
k-Fréchet distance we ask that k components of the free space project surjectively onto both
parameter spaces.

This paper is organized as follows: first we recall some necessary definitions and formally
define the k-Fréchet distance. In Section 3 we prove NP- and APX-completeness of the
k-Fréchet problem. In Section 4 we present an approximation algorithm of factor 2 as well
as an exact algorithm which runs in polynomial time for fixed k. We conclude the paper
with open questions.
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2 Definitions

Recall the Fréchet distance [1], a well-known measure for curves, which is defined as follows:
For curves P,Q : [0, 1]→ [0, 1] the Fréchet distance is given by

δF (P,Q) = inf
σ

max
t∈[0,1]

‖P (t)−Q(σ(t))‖,

where the reparametrisations σ : [0, 1]→ [0, 1] range over all orientation-preserving homeomor-
phisms. A variant is the weak Fréchet distance δwF , where both curves are reparameterised
by σ and τ , respectively, which range over all continuous surjective functions.

A well-known characterisation which is key to efficient algorithms for computing both
weak and (strong) Fréchet distance [1] uses the free space diagram. First we recall the
free space Fε:

Fε(P,Q) = {(t1, t2) ∈ [0, 1]2 : ‖P (t1)−Q(t2)‖ 6 ε}.

The free space diagram puts this information into a (n×m)-grid, where n and m are the
number of segments in P and Q, respectively.

The Fréchet distance of two curves is at most a given value ε if there exists a monotone
path through the free space connecting the bottom left to the top right corner. For the
weak Fréchet distance to equal at most ε such a path need not be monotone. The Hausdorff
distance δH can be characterised as the free space projecting surjectively onto both parameter
spaces.

We define the k-Fréchet distance δkF as in between Hausdorff and weak Fréchet distance
using only a constant number k of components in the free space to project onto both
parameter spaces:

δkF (P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where now σ, τ : [0, 1]→ [0, 1] range over all surjective functions which are piecewise defined,
allowing at most k − 1 jump discontinouities, such that the images of the continuous parts
partition the curve. That is, we cut the curves P and Q into at most k pieces or subcurves
such that two resembling subcurves have small weak Fréchet distance. For the decision version
of the problem, we ask whether the weak Fréchet distance between pieces can be bounded a
given value ε (note that k is a fixed upper bound of cuts here). Naturally, for a fixed distance
ε, we would like to cut the curves into as few subcurves as possible (optimization version).

We will also consider the variant where we use (strong) Fréchet distance instead of weak
Fréchet distance for the subcurves, that is the reparameterizations σ, τ have to be piecewise
homeomorphisms. However, as the weak Fréchet distance (arguably) results in the more
natural definition for the k-Fréchet distance we use it as the standard variant.

By definition k-Fréchet distance lies in between Hausdorff and (weak) Fréchet distance

δH(P,Q) ≤ δkF (P,Q) ≤ δF (P,Q).

Also, the k-Fréchet distance decreases as k increases, and for k = 1 it equals weak Fréchet
distance, whereas for k ≥ n2 it equals Hausdorff distance.

3 NP-Completeness

I Theorem 3.1. Deciding wether δkF (P,Q) ≤ ε for fixed ε and k is NP-complete. Finding
the minimum number of cuts (or components) k is NP-complete as well.
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Proof. First note that we can easily verify a given solution to our problem: we compute the
free space diagram of P and Q and identify the free space components resembling mappings
of the respective subcurves. Next we need to check whether the union of these components
projects surjectively onto both parameter spaces. This can be done in polynomial time,
therefore we have k-Fréchet ∈ NP.

To show NP-hardness of our problem we reduce from the Minimum Common String
Partition (MCSP)-Problem. Let us first recall the MCSP-Problem [7]: Given two strings
A and B we want to partition them into substrings such that A = A1A2 . . . An and B =
B1B2 . . . Bn where for all i = 1, . . . , n holds that Ai = Bj for some j ∈ {1, . . . , n}.

There are several variants of MCSP, such as k-MCSP where each letter occurs at most
k times in each string (which was proven to be an NP-hard optimization problem in [5])
or MCSPc where there are at most c elements in the alphabet of the strings (an NP-hard
problem even for the decision version, presented in [4]). Both 2-MCSP and MCSP2 have
been proven to be NP-hard (therefore MCSP is NP-hard as well), the first variant is even
APX-hard ( [5], [7]).

Now, for an instance of MCSP we construct curves P and Q as follows: first we subdivide
the unit interval into c intervals of equal size, where c denotes the number of different letters
in both strings (which is bounded since we consider finite strings). We then identify every
letter of the alphabet Σ with a number in {1, . . . , c}. Next we transform string A into a
curve P and string B into curve Q: for every letter l in a string we form a polygonal chain
consisting of five segments: the first connecting ( 1

2 , 0) to ( 1
2 ,

l
c ) vertically, a second connecting

( 1
2 ,

l
c ) to (0, lc ) horizontally, followed by (0, lc ) to (1, lc ), back to ( 1

2 ,
l
c ) and finally back to

(0, lc ). The result is a T -shape, as shown in Figure 1.

Figure 1 A T -shaped curve fragment resembling the letter l in a string

Since beginning and ending of each T -shaped curve fragment is the same, the fragments
can be concatenated. In this manner we produce curves consisting of as many T -shapes as
there are letters in the strings, both curves lying on top of each other. We can choose ε to
be any number smaller than 1/c, e.g. 1/2c.

The T -shapes only differ by length of their vertical line segments, and each length
corresponds to a certain letter of the respective string. By choosing ε < 1/c, T -shapes
resembling different letters cannot be matched. Hence our construction leads to the following
result for all pairs of subcurves:

∀Pi, Qj : Pi = Qj ⇔ δwF (Pi, Qi) 6 ε.

In fact we even have δwF (Pi, Qi) = 0 6 ε, since we place Q on top of P and construct
identical concatenations of T -shaped subcurves for equal substrings. Because all letters start
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in ( 1
2 , 0), we get that two substrings are equal iff the respective subcurves have weak Fréchet

distance less than ε.
In the free space the following picture arises: we get components in the free space of P

and Q resembling equal substrings of A and B. Hence, the longer identical substrings, the
larger their resembling component in the free space. Therefore finding a minimum collection
of k components projecting surjectively onto the parameter spaces equals finding a minimum
number of blocks where each block of A equals a block in B. See Figure 2 for an example.

Figure 2 The curves and resulting free space diagram corresponding to strings A and B.

Note that the antenna-like symbol in the bottom left corner consists of the actual curves
P and Q that resemble the input strings A and B. To make the curves more visible we
added illustrations P̃ , Q̃ above.

For the decision problem we need to identify a collection of components of size at most k,
which is a constant and part of the input in this case, that projects surjectively onto the
parameter spaces. As discussed this corresponds to the problem of finding a common string
partition consisting of at most k substrings per string. The latter has been proven to be
NP-hard [7] and the result transfers to our problem.

When we use (strong) Fréchet distance instead of weak Fréchet distance for the subcurves,
our reduction still works. In fact, even a simpler construction suffices for this variant:
we construct the curves as before but omit the horizontal line segments, i.e., we only get
(one-dimensional) "I"-shaped subcurves. Again, we get that two letters are equal iff the
corresponding subcurves have Fréchet distance 0. Observe that this simplified reduction does
not work for the weak Fréchet distance which allows to backtrack. Therefore we use the
T -shape for the weak Fréchet, which makes backtracking ineffective, in the sense that it is
impossible to map a subcurve of P representing a letter of A to a subcurve of Q representing
a letter of B with reversed orientation. J

I Remark. Our reduction from MCSP also works for the variants MCSPc and k-MCSP,
which translate to curves with at most c different heights of T -shapes (so basically the same
curves as above) and curves with no more than k identical copies of T -shapes of each height.

I Theorem 3.2. The optimization version of the k-Fréchet-problem is APX-complete.
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Proof. The reduction above provides a one-to-one relationship between MCSP and k-Fréchet,
as any selection of components can be directly translated into common substrings. Therefore
a selection of components (say, of quality k + c with c being a constant and k the size of an
optimal solution) corresponds to a division of the input strings into the exact same number of
substrings, thus proving that our reduction is a strict AP-reduction. Since k-MCSP is APX-
hard (in the optimization version), so is the k-Fréchet-Problem. APX-completeness follows
from the existence of a 2-approximation algorithm which we present in the Section 4. J

I Lemma 3.3. For curves in one dimension, that is P,Q : [0, 1] → R, k-Fréchet distance
equals Hausdorff and weak Fréchet distance, whereas strong k-Fréchet distance remains
NP-complete.

Proof. Equality of k-Fréchet distance, Hausdorff and weak Fréchet distance can be shown
using the Mountain Climbing Theorem, which states that it is possible for two climbers to
proceed from foot to top of a mountain while always remaining on equal height. Of course,
the climbers have to start at the same time but on different sides of the same mountain [2], [6].
For the strong Fréchet distance as underlying distance measure the simplified reduction
mentioned above (I-shapes) shows NP-hardness for one-dimensional curves. J

4 Algorithmic approaches

First, we observe that a brute force approach results in a runtime exponential in k, and then
present an efficient 2-approximation algorithm (regarding the size of the found selection of
components) using a greedy approach.
I Remark. The k-Fréchet distance can be computed in O(k · n2k) time.

The brute force approach simply checks for all selections of k components of the free
space whether their joint projections cover both parameter spaces. That means we have
to check at most

(
n2

k

)
possible combinations of components, which results in a runtime of

O(k · n2k) for fixed k which is only feasible for very small k.
To approximately decide the k-Fréchet distance, we greedily choose a set of components

that cover both parameter spaces.
For this we compute the free space Fε, project its components onto the two parameter

spaces and interpret the projections as intervals. We store the intervals in sorted lists. For
each parameter space we then use a scan to greedily select the smallest number of intervals
that cover it. The worst case that might result is the following: the intervals we select
correspond to different components in the free space for the two parameter spaces, so that
the union of our selections is of size s1 + s2 where s1 and s2 are the number of selected
components for the respective parameter spaces. A different selection of size s = max(s1, s2)
might cover both parameter spaces but is not detected by the greedy scan. So the size of
our selection indicates whether δkF 6 ε: if it is smaller or equal to k the answer is positive,
i.e. δkF 6 ε, and if it is larger than 2k the answer is definitely negative. For any number of
selected components in between k and 2k we cannot rule out that there might be a smaller
selection of at most k components that covers the parameter spaces.

Computing the free space takes quadratic time. Sorting the lists adds another logarithmic
factor while the scan takes linear time in the number of intervals. All in all we get a runtime
of O(n2 logn).

I Theorem 4.1. The algorithm described above runs in O(n2 logn) time and finds a selection
of components that covers both parameter spaces iff one exists. A found selection contains at
worst twice the minimum number of components needed.
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We conjecture that the approximation factor 2 is probably not tight, as we were not able
to construct an example where it is. Showing that it is or that a better approximation factor
holds remains open.

5 Conclusion and further work

We introduced a new distance measure, the k-Fréchet distance, which lies in between Haus-
dorff and (weak) Fréchet distance. We showed NP-hardness of deciding two variants of this
distance between polygonal curves. Finding the minimum number of subcurves is even APX-
hard. Furthermore, we presented a polynomial time algorithm that works for small fixed k as
well as an efficient 2-approximation algorithm. We close this section with some open questions.

Since the MCSP-Problem has been studied intensively, we hope to transfer more of
the interesting results to our k-Fréchet-Problem: It was shown in [3] that MCSP is fixed-
parameter tractable, therefore we plan to investigate whether our problem is as well. We
defined the k-Fréchet distance as subdivision of curves where we match subcurves in terms
of the weak Fréchet distance, but it would be interesting to just reparameterize the curves
allowing jump discontinuities. As a result it is possible to match a subcurve of one to several
subcurves of the other original curve. Our reduction does not work in that case and we
believe it is an even harder problem. Furthermore it would be interesting to see if there are
special cases for our problem to which we can find algorithms with polynomial runtimes since
the curves we construct are neither monotone, nor κ-straight, κ-bounded or c-packed. Finally
it remains open to improve the approximation factor achieved by our greedy approach.

Acknowledgments. We are grateful to Simon Pflips for proofreading and interesting, helpful
discussions.
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Abstract
An ω-wedge is the set of all points contained between two rays emanating from a single point
(the apex) and separated by an angle ω < π. Given a convex polygon P , we place the ω-wedge
so that it contains P and its both rays are tangent to P . The ω-cloud of P is the curve traced
by the apex of the ω-wedge as it rotates around P while maintaining tangency in both rays.

We investigate reconstructing a polygon P from its ω-cloud. Previous work on reconstructing
P from probes with the ω-wedge required knowledge of the points of tangency between P and the
two rays of the ω-wedge. Here we show that if ω is known, the ω-cloud alone uniquely determines
P , and we give a linear-time reconstruction algorithm. Furthermore, even if we only know that
ω < π/2, we can still reconstruct P , albeit in cubic time in the number of vertices. This reduces
to quadratic time if in addition we are given the location of one of the vertices of P .

1 Introduction
“Geometric probing considers problems of determining a geometric structure or some as-
pect of that structure from the results of a mathematical or physical measuring device, a
probe.” [6, Page 1] Many probing tools have been studied in the literature such as finger
probes, hyperplane (or line) probes, diameter probes [5], x-ray probes, histogram (or parallel
x-ray) probes, half-plane probes and composite probes to name a few. See the review of
Skiena [6] and for more recent results, see Bose et al. [1] and references therein.

Closely related to a geometric probing problem is a reconstruction problem: Can one
reconstruct an object given a set of probes? Surprisingly, for diameter probes this is not the
case [5]. An ω-wedge, introduced by Bose et al. [1], is a probing device that is the (closed)
set of all points contained between two rays emanating from a single point called the apex of
the wedge. The angle ω formed by the two rays is such that 0 < ω < π. A probe of a convex
n-gon P is valid when P is inside the wedge and both rays of the wedge are tangent to P , see
Fig. 1a. A valid probe returns the coordinates of the apex and of the two points of contact
between the rays and the polygon. A convex n-gon can be reconstructed using between
2n− 3 and 2n+ 5 such probes [1], depending on the value of ω and the number of narrow
vertices (vertices whose internal angle is at most ω) in P . As the ω-wedge rotates around P ,
the locus of the apex of the ω-wedge describes a curve called an ω-cloud (see Fig. 1c).

The ω-cloud is a generalization of the diameter function of Rao and Goldberg [5]. A
diameter probe consists of two parallel calipers turning around a convex object P in the plane.
The diameter function returns the distance between the calipers as they turn around P . As
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ar
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q
ω

(a)
d`(u)dr(u)

u

(b) (c)

Figure 1 A convex polygon P (shaded area), and: (a) A minimal ω-wedge of P (tiling pattern);
(b) A narrow vertex u of P , wedges W`(u) and Wr(u) (bounded by, resp., blue and green solid lines)
and their directions d`(u) and dr(r) (dashed lines); (c) The ω-cloud Ω of P : the arcs (orange lines),
pivots (purple disk marks), and all the supporting circles (light-pink lines).

two different convex polygons can have the same diameter function [5], recovering a convex
n-gon given only its diameter function is not always possible. An ω-wedge can be seen as
two non-parallel calipers turning around P . Here we show that the ω-cloud function is free
from the above drawback, and thus is a more advantageous than the diameter function.

In this paper, we analyze the structure of ω-cloud, resulting in many interesting properties,
including the uniqueness of the polygon for a given ω-cloud (see Sec. 2). Further, we show,
that if the value of ω is known, P can be reconstructed from its ω-cloud in O(n) time and
O(k) space, where k is the number of narrow vertices; the required space is constant for any
fixed value of ω (see Sec. 3.1). If the value of ω is not known, we can still recover P , as long
as ω < π/2. In this case, we give an O(n3) time and O(n2) space reconstruction algorithm.
The time complexity reduces to O(n2) if, in addition, we know a vertex of P and no three
vertices of P are on one supporting circle of an arc of the ω-cloud (see Sec. 3.2). Due to space
constraints, many proofs are omitted; they can be found in the full version of this paper [2].

2 Properties of the ω-cloud

In this section we introduce the necessary definitions and notation, and then we list the
properties of the ω-cloud (Lemmas 2.2-2.6), which lead to the uniqueness of the polygon for
a given ω-cloud (Thm. 2.8) and are the basis for our reconstruction algorithms (see Sec. 3).

Let P be an n-vertex convex polygon in R2. For any vertex v of P , let α(v) be the
internal angle of P at v. Let ω be an angle with 0 < ω < π. Consider an ω-wedge W ; recall
that it is the set of points contained between two rays emanating from the same point q (the
apex of W ) such that the angle between the two rays is ω. We call the ray a` (resp., ar) that
bounds W from the left (resp., right) as seen from q, the left (resp., right) arm of W . See
Fig. 1a. We say that an ω-wedge W is minimal for P if P is contained in W and the arms
of W are tangent to P . The direction of W is given by the bisector ray of the two arms of
W . For each direction, there is a unique minimal ω-wedge.

I Definition 2.1. The ω-cloud of P is the locus of the apexes of all minimal ω-wedges for P .

The ω-cloud Ω of P is a circular sequence of circular arcs, where each two consecutive
arcs share an endpoint. An arc Γ of the ω-cloud is a maximal contiguous portion of Ω that
corresponds to apexes of combinatorially same ω-wedges (i.e., the arms of all the wedges
touch the same pair of vertices in P ). Each two consecutive arcs share an endpoint called
pivot of Ω. If ω ≥ π/2, two consecutive arcs of the ω-cloud can have same supporting circle.
We call the pivot connecting such arcs a hidden pivot. There are between n and 2n pivots [3].
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A vertex v of P is narrow if α(v) ≤ ω. A pivot of Ω coincides with a vertex of P if and
only if that vertex is narrow; such a pivot is also narrow. If α(v) < ω, we call v (the vertex
or the pivot) strictly narrow. As the portion of Ω between two points s, t ∈ Ω, denoted by
Ωst, we refer to the open portion of Ω encountered when traversing Ω from s to t clockwise.
The angular measure of an arc Γ is the angle spanned by Γ, measured from the center of
its supporting circle. For two points s, t on Ω, the total angular measure of Ω from s to t,
denoted by DΩ(s, t), is the sum of the angular measures of all arcs in Ωst.

Each point x in the interior of an arc corresponds to a unique minimal ω-wedge W (x)
with direction d(x). Let u be a pivot of Ω. If u is not strictly narrow, u also corresponds
to a unique minimal ω-wedge W (u) with direction d(u). Otherwise, u corresponds to a
closed interval of directions [d`(u), dr(u)], where the angle between d`(u) and dr(u) equals
ω − α(u). See Fig. 1b. Let W`(u) and Wr(u) denote the minimal ω-wedges with apex at u
and directions resp. d`(u) and dr(u). For points x on Ω that are not strictly narrow pivots,
we define dr(x) and d`(x) both to be equal to d(x), and both W`(x),Wr(x) equal to W (x).

The following is a crucial property of the ω-cloud, lying in the basis of the other properties.

I Lemma 2.2. Let s and t be two points on Ω such that there are no narrow pivots between
s and t. Then the angle β between dr(s) and d`(t) is DΩ(s, t)/2.
Proof (sketch). If Ωst is a single arc, angle β equals the angle between the left arms
of the two minimal ω-wedges corresponding to dr(s) and d`(t). This angle by elementary
geometry equals DΩ(s, t)/2. If Ωst consists of several arcs, since none of the pivots between
s and t narrow, angle β is the total sum of the corresponding angles for all the arcs.

x

d(x)

xr

x`

(a)

u

ur
u`

u

(b)

u

ur
u`

(c)

Figure 2 (a) Point x in the interior of an arc of Ω, wedge W (x), direction d(x), and points x` and
xr. (b) Narrow pivot u, wedges W`(u) and Wr(u), points u` and ur. (c) Narrow pivot u, the points
v = u` and w = ur, and the supporting circles of all the arcs between them (bold brown lines).

I Corollary 2.3. For any arc Γ of Ω, |Γ| ≤ 2(π − ω).

Let x be a point on Ω. The open ray of the right arm of W`(x) intersects Ω at least once.
Among the points of this intersection, let x` be the one closest to x. Define the point xr

analogously for the left arm of Wr(x). See Figs. 2a,b.

I Lemma 2.4. (a) Both Ωx`x, Ωxxr contain no narrow pivots. (b) If x is a narrow pivot, then
DΩ(x`, x) = DΩ(x, xr) = 2(π − ω). (c) If x is not narrow, then either DΩ(x, xr) = 2(π − ω),
or xr is the clockwise first narrow pivot after x. A symmetric statement holds for x`.

I Lemma 2.5. Let u be a pivot of Ω, and let v and w be the points on Ω such that
DΩ(v, u) = DΩ(u,w) = 2(π − ω). (a) If pivot u is narrow, then the supporting circles of all
the arcs of Ωvw pass through u. See Fig. 2c. (b) If Ωvu consists of a single arc, or there is
an arc Γ of Ωvu that is not incident to u, such that the supporting circle of Γ contains u,
then u is narrow. A symmetric statement holds for Ωuw.
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With Lemma 2.5 we can identify all narrow pivots on Ω that are not hidden, so we now
turn our attention to the properties of hidden pivots.

I Lemma 2.6. Let u be a hidden pivot of Ω, let Γ` and Γr be the two arcs of Ω incident to
u, and let v and w be the other endpoints of Γ` and Γr, respectively. Then v, u, and w are
all narrow and each of the arcs Γ`, Γr has angular measure 2(π − ω).

I Corollary 2.7. If all arcs of the ω-cloud of P have the same supporting circle C, then
k = π/(π − ω) is an integer and P is a regular k-gon inscribed in C.

Suppose Ω is the ω-cloud of a convex polygon P . Lemmas 2.5 and 2.6 uniquely identify
the narrow pivots of Ω, which are the narrow vertices of P (including hidden narrow pivots).
By Lemma 2.4a, the portion of Ω between any two narrow pivots has total angular measure
at least 2(π − ω). Thus the components of P as defined by excluding all narrow vertices
are uniquely determined by Ω: For each such component Lemma 2.4b,c gives the minimal
ω-wedge W with the apex at some point x in that component. Wedge W intersects the
supporting circle of an arc Γ, incident to or containing x, in the two vertices of P tangent to
the arms of the minimal ω-wedge as its apex traverses Γ. This proves the following.

I Theorem 2.8. Given an angle ω, and a circular sequence Ω of at least two circular arcs,
there is at most one convex polygon P such that Ω is the ω-cloud of P .

3 Reconstructing P from its ω-cloud

Let Ω be a circular sequence of circular arcs. Our goal is to reconstruct the convex polygon
P for which Ω is the ω-cloud, or determine that no such polygon exists. Sec. 3.1 and 3.2
consider respectively ω to be given or not. As opposed to the above sections, here we consider
arcs of Ω to be maximal portions of the same circle, that is, no two neighboring arcs have
the same supporting circle. This is natural for the reconstruction task, since as an input we
are given a locus of the apexes of all the minimal ω-wedges and no additional information.

If Ω is a single (maximal) arc, i.e., it is a circle C, then P is not unique: By Cor. 2.7, it
is a regular π/(π − ω)-gon inscribed in C; but the position of its vertices on C is impossible
to identify given only Ω and ω. Thus we assume that Ω has at least two arcs.

3.1 An ω-aware reconstruction algorithm
We are given an angle ω, 0 < ω < π, and a circular sequence of at least two circular arcs Ω.
We want to check if Ω is the ω-cloud of some convex polygon P , and to return P if this is
the case. Our algorithm performs two passes through Ω. The first pass computes a list S of
all strictly narrow vertices of P that are not hidden pivots. With each such vertex u, we
store the supporting lines of the two edges of P incident to u. The second pass reconstructs
separately the portion of P for each connected component of Ω induced by the vertices in S.
After giving the procedure for the latter task in Lemma 3.1, we present the two passes.

For two points u and v on Ω, let Puv be the union of the edges and vertices of P touched
by the arms of the minimal ω-wedge as its apex traverses Ωuv. Note that Puv consists of at
most two connected portions of P ; it is possible that one of the portions is a single vertex.

I Lemma 3.1. Given a portion Ωuv with no strictly narrow pivots and direction dr(u), the
portion Puv can be reconstructed in time linear in the number of arcs in Ωuv and O(1) space.

Proof. Let Γ = uu′ be the arc of Ωuv incident to u, and let C be the supporting circle of
Γ. See Fig. 3a. The values of ω and dr(u) determine the wedge Wr(u). The intersection
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Figure 3 (a) Illustration for the proof of Lemma 3.1. First pass of the ω-aware algorithm: (b) u

is a strictly narrow pivot, and (c) u is not a narrow pivot.

between Wr(u) and C gives the two vertices of P touched by the minimal ω-wedges with
apex on Γ. See the points u, p in Fig. 3a. Direction d`(u′) equals dr(u) +DΩ(u, u′)/2 due to
Lemma 2.2. If u′ is inside Ωuv, then u′ is not a strictly narrow vertex, and thus the minimal
ω-wedge with apex at u′ is unique. This way we find the pair of vertices of P corresponding
to each arc of Ωuv. By visiting the pivots of Ωuv in order, we find the vertices of each of the
two chains of Puv ordered clockwise. To avoid double-reporting vertices of Puv, we keep the
startpoints of the two chains, and if one chain reaches the startpoint of the other one, we
stop reporting the points of the former one. This procedure visits each pivot of Ωuv once,
performing O(1) operations at each pivot. Only O(1) storage is required. J

First pass. We iterate through the pivots of Ω. For the currently processed pivot u, we
maintain the point v on Ω such that DΩ(v, u) = 2(π − ω). If pivot u is narrow, we jump to
the point on Ω at the distance 2(π − ω) from u. Moreover, if u is strictly narrow, we add u
to the list S. If u is not narrow, we process the next pivot of Ω. We now give the details.

Let Γ be the arc of Ω incident to u and following it. Let Γr be the arc following Γ, and Cr

be the supporting circle of Γr. We consider cases depending on the angular measure |Γ| of Γ:

(a) |Γ| < 2(π − ω). See Fig. 3b,c.
(i) Circle Cr passes through u (see Fig. 3b). Then u is narrow by Lemma 2.5b. By tracing

Ω, find the point w on it with DΩ(u,w) = 2(π − ω). Add u to the list S with the
lines through vu and uw, if u is strictly narrow (∠vuw < ω). Set v := u, and u := w

(regardless the later condition).
(ii) Circle Cr does not pass through u (see Figure 3b). Then u is not narrow by Lemma 2.5a.

Set u to be the other endpoint of Γ, and update v accordingly.
(b) |Γ| = 2(π − ω). Then u is narrow by Lemma 2.5b. Let w be the other endpoint of Γ.

Update S, v, and u as in item a(i).
(c) |Γ| = 2t(π − ω) for some integer t > 1. Then Γ is in fact multiple arcs separated by

hidden pivots, see Lemma 2.6 and Corollary 2.3. Let p be the other endpoint of Γ. Let
w and w′ be the points on Γ such that DΩ(u,w) = 2(π − ω) and DΩ(w′, p) = 2(π − ω).
Update S, v, and u as in item a(i).

(d) Otherwise, stop and report that Ω is not an ω-cloud of any polygon.

Second pass. If list S is empty, we apply the procedure of Lemma 3.1 to the whole
Ω. In particular, as both the start and the endpoint, we take the point x with which we
completed the first pass of the algorithm; the point x′ such that DΩ(x′, x) = 2(π − ω) is
already known from the first pass. Then dr(x) = d(x) is the direction of the minimal ω-wedge
with the apex at x and the right arm passing through x′.
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Suppose now the list S contains k vertices. They subdivide Ω into k connected portions
that are free from strictly narrow non-hidden pivots. Each portion is treated as follows. If it
is a single maximal arc of measure 2t(π − ω), we separate it by t− 1 equidistant points, and
those points are exactly the vertices of the saught portion of P , see Lemma 2.6. Otherwise,
it is a portion free from any strictly narrow pivots. We process it as in Lemma 3.1.
I Theorem 3.2. Given an angle ω such that 0 < ω < π, and a circular sequence of circular
arcs Ω which is not a single circle, there is an algorithm to check if Ω is the sequence of
the maximal arcs, corresponding to the ω-cloud of some n-vertex convex polygon P , and to
return P if this is the case. The algorithm works in O(n) time, making two passes through
the input, and it requires O(k) storage, where k is the number of strictly narrow vertices of
P . In particular, the required storage is constant for any fixed value of ω.

3.2 An ω-oblivious reconstruction algorithm
I Theorem 3.3. Given a circular sequence of circular arcs Ω, there is an algorithm that finds
the convex polygon P such that Ω is the ω-cloud of P for some angle ω with 0 < ω < π/2, if
such a polygon exists. Otherwise, it reports that such a polygon does not exist.
(i) If no additional information is given, the algorithm works in O(n3) time and O(n2) space.
(ii) If a vertex v of P is given, and each supporting circle of an arc of Ω is guaranteed to pass

through exactly two vertices of P , the algorithm works in O(n2) time and O(n2) space.
Proof. Our algorithm, summarized below, is based on the following property: if 0 < ω < π/2,
each vertex of P lies on at least two distinct supporting circles of arcs of the ω-cloud of P .

In both cases (i) and (ii), we first construct the arrangement A of all the supporting
circles of the arcs of Ω. This can be done in O(n2) time and O(n2) space [4].

(i) For each pair of vertices u, v of A incident to the same circle C, we do the following.
Construct a wedge W passing through u and v, such that the apex x of W lies in the interior
of the unique arc Γ of Ω supported by C, such that the corresponding angle ω at x is less
than π/2. Run the algorithm of Thm. 3.2 for Ω, angle ω, and the direction d(x) of W .

We process O(n2) pairs of vertices in total, processing one pair takes O(n) time, thus the
total time spent on the reconstruction of P is O(n3).

(ii) If v is not a vertex of A, stop and return a negative answer. Otherwise, choose a circle
C containing v. Run the above procedure for v and each vertex u of A with u ∈ C, u 6= v.

Since each circle of A incident to v is incident to only one other vertex of P , the minimal
ω-wedge corresponding to Γ must pass through v. Thus we just consider one circle C incident
to v. Since there are O(n) vertices of A on the circle C, the algorithm runs in O(n2) time. J
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Abstract
We augment a plane Euclidean network with a segment or shortcut to minimize the largest
distance between any two points along the edges of the resulting network. In this continuous
setting, the problem of computing distances and placing a shortcut is much harder as all points
on the network, instead of only the vertices, must be taken into account. Our main result for
general networks states that it is always possible to determine in polynomial time whether the
network has an optimal shortcut and compute one in case of existence. We also improve this
general method for networks that are paths, restricted to using two types of shortcuts: those of
any fixed direction and shortcuts that intersect the path only on its endpoints.

1 Introduction

A geometric network of points in the plane is an undirected graph whose vertices are points
in R2 and whose edges are straight-line segments connecting pairs of points. A Euclidean
network is an edge-weighted geometric network: edges are assigned lengths equal to the
Euclidean distance between their endpoints. When in addition there are no crossings between
edges, the Euclidean network is said to be plane. In the following, we shall simply say
network, it being understood as plane Euclidean network.

In this work we study a variant of the Diameter-Optimal-k-Augmentation problem that
deals with inserting k additional segments into a network, while minimizing the largest
distance in the resulting network (see the survey [7] for more on augmentation problems
over plane geometric graphs). Concretely, we consider a continuous version of the problem
for k = 1: the endpoints of the inserted segment, called shortcut, are allowed to be any two
points on the network (instead of only vertices), and we seek to minimize the largest distance
between any two points on the edges of the augmented network. The complexity of the
problem, which lies in the fact that all points must be considered in computing distances and
placing the shortcut, motivates that there are very few results on this continuous version.

Yang [8] designed three different approximation algorithms to compute for certain types
of paths an optimal shortcut which, informally, is a segment that attains the minimum
of that largest distance. De Carufel et al. [3] gave an algorithm to determine in linear
time optimal shortcuts for paths and optimal pairs of shortcuts (k = 2) for convex cycles.
We want to stress that their definition of shortcut is simpler, as they do not consider the
intersections between the shortcut and the network as points of the augmented network. The
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same definition of shortcut was used in [4] to develop a study for trees, which includes the
computation of an optimal shortcut for a tree of size n in O(n logn) time.

The first approach for general networks was presented in [2] where the authors compute
shortcuts (i.e., segments whose insertion improve the diameter) in polynomial time, but they
do not obtain optimal shortcuts. In Section 2, we do decide existence and compute such
optimal shortcuts in polynomial time. Section 3 focuses on paths: we first analyze how
distances change by the insertion of a shortcut, and compute the largest distance between
any two points on the augmented network in Θ(n) time. We also improve the method of
Section 2 for shortcuts of any fixed direction and shortcuts that intersect the path only at
its endpoints. Due to space limitations, proofs are briefly sketched.

1.1 Preliminaries
The locus of a network N = (V (N ), E(N )), denoted by N`, is the set of all points of the
Euclidean plane that are on N . Thus, N` is treated indistinctly as a network or as a closed
point set. We write a ∈ N` for a point a on N`, and V (N ) ⊂ N`. We will use P` instead of
N` when N` is a path. A path P connecting two points a, b on N` is a sequence au1 . . . ukb

such that u1u2, . . . , uk−1uk ∈ E(N ), a is a point on an edge ( 6= u1u2) incident to u1, and b
is a point on an edge ( 6= uk−1uk) incident to uk. We use |P | to denote P ’s length, i.e., the
sum of the lengths of all edges uiui+1 plus the lengths of the segments au1 and buk The
length of a shortest path P from a to b is the distance between a and b on N`. This distance
is written as dN`

(a, b) or d(a, b) when the network is understood, and whenever ab /∈ E(N`),
it is different from the Euclidean distance between the points, denoted by |ab|.

The eccentricity of a point a ∈ N` is ecc(a) = maxb∈N`
d(a, b), and the diameter of N` is

diam(N`) = maxa∈N`
ecc(a). Two points a, b ∈ N` are diametral whenever d(a, b) = diam(N`),

and a shortest path between them is then called diametral path.
A shortcut for N` is a segment s with endpoints on N` such that diam(N`∪s) < diam(N`).

We say that shortcut s is simple if its two endpoints are the only intersection points with
N`, and s is maximal if it is the intersection of a line and (N` ∪ s), i.e., s = (N` ∪ s) ∩ `, for
some line `. A shortcut is optimal if it minimizes diam(N` ∪ s) among all shortcuts s for N`.

2 General networks

The main result in [2] states that one can always determine in polynomial time whether a
network N` has a shortcut, and compute one in case of existence. In this section, we first
state the analogous result but for optimal shortcuts. Our proof mainly uses the ideas in [2],
but some additional information is needed to capture the property of being optimal.

By Lemma 3.2 of [2], diam(N`) can be computed in polynomial time, and the diametral
pairs of points on N` are either two vertices, or two points on distinct non-pendant edges, or
a pendant vertex and a point on a non-pendant edge (an edge is pendant if one of its vertices
has degree one). Thus, with some abuse of notation, we say that a diametral pair may be
vertex-vertex, edge-edge, or vertex-edge.

Let α, β ∈ V (N ) ∪ E(N ), and let e = uv and e′ = u′v′ be two edges of N . When α

is an edge, we use ecc(u, α) to indicate the maximum distance from u to the points on α
(analogous for β and the remaining endpoints of e and e′); if α is a vertex, ecc(u, α) = d(u, α).
In general, ecc(α, β) = maxt∈α,z∈βd(t, z).

I Lemma 2.1. Let y = ax+b be a line intersecting edges e = uv and e′ = u′v′ on, respectively,
points p and q, and let α, β ∈ V (N ) ∪ E(N ). For each pair (w, z) with w ∈ {u, v} and
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op q

pi

qj

Figure 1 Θ(n) spikes placed symmetrically with respect to the midpoint o of a shortcut pq. The
spikes are spaced by one unit each, while their heights are set such that the distance from o to the
top of the spike is always the same, namely |pq|/2. Thus, the distance between the top of one spike
on the left of o and one on its right, like pi and qj , is |pq|, and equals the diameter of P` ∪ pq.

z ∈ {u′, v′}, function fw,zα,β (a, b) = ecc(w,α) + d(w, p) + |pq|+ d(q, z) + ecc(z, β) is linear in b.

Given a line m that crosses two fixed edges e, e′ ∈ E(N ), let Pe,e′(m) be the set of
equivalent lines to m that intersect edges e and e′.1 Consider a line r ≡ y = ax+b in Pe,e′(m)
and the set I = {e = e0, e1, . . . , ek, ek+1 = e′} of edges that it intersects in between e and e′;
let ei = uivi and pi = r ∩ ei. For a fixed diametral pair α, β ∈ V (N ) ∪ E(N ), a function of
the type fw,zα,β (a, b) with w ∈ {ui, vi} and z ∈ {uj , vj}, 0 ≤ i 6= j ≤ k + 1, computes ecc(α, β)
when using a path that passes through vertices w, z and contains segment pipj . For a fixed
value of a, each function fw,zα,β (a, b) becomes a linear function on b. Thus, geometrically, an
optimal shortcut for N` in Pe,e′(m) is given by the minimum of the upper envelope of the
set of lines fw,zα,β (a, b). Note that any shortcut s satisfies that ecc(t) < diam(N`) for every
t ∈ s, and so all segments pipj must be included in the set of diametral pairs α, β. Applying
the same argument to the O(n2) regions Pe,e′(m), we obtain the following theorem.

I Theorem 2.2. It is always possible to determine in polynomial time whether a network
N` admits an optimal shortcut, and compute one in case of existence.

It would be interesting to characterize the networks N` that have an optimal shortcut,
even restricted to simple shortcuts. The following proposition is a first approach to this
question. Note that one must distinguish between an optimal simple shortcut and a simple
optimal shortcut. The first is a shortcut that is optimal in the set of simple shortcuts; this is
different of being optimal in the set of all shortcuts and, in addition, to be simple.
I Proposition 1. Let N be a network whose locus N` admits a simple shortcut, and let N be
the network resulting from adding to N all edges of the convex hull of V (N ). If all faces of
N are convex, then N` has an optimal simple shortcut.

3 Path networks

We begin by noting that the insertion of a shortcut to a path can create a quadratic number
of diametral pairs; as illustrated in the construction in Figure 1.

3.1 Diameter after inserting a shortcut
The diameter of P` can be immediately computed in linear time, however, the addition of a
shortcut s can create a linear number of new bounded faces, thus in principle it is not clear

1 Two lines are equivalent if the half-planes to the right (left) they define contain the same vertices of N
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Figure 2 Left: faces created by s; f0 and f8 are degenerate faces. Right: detail for f3 (note that
the chain bounding f4 is not considered for f3). Thick lines are used here to denote distances.

whether diam(P` ∪ s) can be computed in linear time, i.e., without computing the diameter
between each pair of faces. The main result in this section is that this is still possible.

Suppose, without loss of generality, that s = pq is horizontal and maximal. Assume
(bounded) faces are numbered in the order of their left endpoints from left to right along
s (using right endpoints to disambiguate). If the first vertex of P` is not on s, we consider
the path from its first vertex to the first intersection of P` with s as a (degenerate) face
(analogous for the last vertex of P`), see Figure 2(left). A face fi can be bounded by several
chains of P`. However, we are only interested in associating fi to its chain with leftmost
endpoint on s. Thus a face fi will be defined by a subsegment si of s from point pli to pri ,
and a polygonal chain Ci on one side of s, see Figure 2(right). Let |Ci| be the length of Ci,
and let Li = |ppli| and Ri = |pri q| be the distances to the leftmost and rightmost endpoints
of s. Finally, let Di be the distance on P` ∪ s from pli to its furthest point p̄li on fi. Note
that this is identical to the distance from pri to the analogously defined point p̄ri , and also to
the semiperimeter of fi, which is equal to (|Ci|+ |si|)/2.

I Observation 3.1 (Disjoint faces). Let fi, fj be two faces of (P` ∪ s) with si ∩ sj = ∅ and si
to the left of sj . The diameter of Ci∪pliprj ∪Cj is Di+ |pri plj |+Dj = Di+Ri−Rj−|sj |+Dj

and is achieved by p̄ri and p̄lj.

I Observation 3.2 (Nested faces). Let fi, fj be two faces of (P` ∪ s) with sj ⊂ si. The
diameter of Ci∪ si∪Cj is 1

2 (|Ci|+ |pliplj |+ |pri prj |+ |Cj |) = 1
2 (|Ci|+Lj −Li+Rj −Ri+ |Cj |).

I Observation 3.3 (Overlapping faces). Let fi, fj be two faces of (P` ∪ s) with si ∩ sj 6= ∅,
pli /∈ sj and prj /∈ si. The diameter of Ci ∪ pliprj ∪ Cj is 1

2 (|Ci| + |pliplj | + |pri prj | + |Cj |) =
1
2 (|Ci|+ Lj − Li +Ri −Rj + |Cj |).

The preceding observations reveal a key property: the linear ordering between faces
induced by s defines uniquely how the diameter between two faces is achieved. Thus, the
algorithm for computing diam(P` ∪ s) in linear time starts by going along P` and computing
all intersections with s in the order of P`. Then we apply a linear-time algorithm for Jordan
sorting [6] to obtain the intersections in the order along s, say, from right to left. Within
the same running time we can obtain the necessary information of each face created by the
insertion of s. Next we compute and store certain information for each face fi: its furthest
faces, respectively, to the right and to the left, its furthest face nested inside fi, and its
furthest face with one endpoint in fi and the other one outside. When sweeping the faces
along s, this information allows us to find in O(1) time, for each face fi, its furthest face
from the ones seen so far, so the maximum distance between any two faces can be found in
total linear time.
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I Theorem 3.4. Given a path P` with n vertices and a shortcut s, the diameter of (P` ∪ s)
can be computed in Θ(n) time.

3.2 Optimal horizontal shortcuts
The observations in Section 3.1 also give us a way to compute an optimal horizontal shortcut
for a path considerably faster than using the general method in Section 2. After a suitable
rotation, this allows to find optimal shortcuts of any fixed orientation.

Assume again that shortcuts are horizontal and maximal, so they can be treated as
horizontal lines. Now, consider the vertices in P` sorted increasingly by y-coordinate, and
let ya, yb, with ya < yb, be the y-coordinates of two consecutive vertices in that order. By
Observations 3.1–3.3, the distance between any two faces fi and fj is a linear function dij(y)
for ya ≤ y ≤ yb. Thus, each face is associated with k − 1 lines in 2D where k is the total
number of faces, leading to a set L of Θ(k2) lines (note that k = O(n)). The optimal shortcut
over all y ∈ [ya, yb] is given by the minimum of the upper envelope of L, which can be
computed in O(k2 log k) time [5]. If this is done with each of the n − 1 horizontal strips
formed by consecutive vertices of N`, the optimal horizontal shortcut is obtained in total
O(n3 logn) time. Now, this method can be improved if, instead of computing from scratch
the upper envelope of L at each horizontal strip, we maintain the upper envelope between
consecutive strips and only add or remove the lines that change when going from one strip to
the next one. The changes between two consecutive strips are of three types: (i) one of the
two line segments bounding a face within the strip changes; (ii) a face ends; (iii) a new face
appears. In the worst case, n− 1 lines are removed from L and another n− 1 lines are added
to L. Maintaining the upper envelope of n lines is equivalent to maintaining the convex hull
of n points in 2D, which can be done in O(n logn) amortized time and using O(n2) space [1].

I Theorem 3.5. For every path P` with n vertices, it is possible to find an optimal horizontal
shortcut in O(n2 logn) time, using O(n2) space.

3.3 Optimal simple shortcuts
Consider now a simple shortcut s = pq for a path P` with endpoints u, v. Suppose that
point p is closer to u than q along P`; let x = d(u, p) and y = d(v, q). There is only one
bounded face in P` ∪ s whose boundary is a cycle C(p, q). Let p and q be the farthest
points from, respectively, p and q on C(p, q), and let z = (dP`

(p, q) − |pq|)/2. Note that
d(p, q) = |pq| and z = d(p, q) = d(p, q). See Figure 3(left). There are three candidates for
diametral path in P` ∪ s (see [3]): (1) the path from u to v via s is diametral if and only if
z = min{x, y, z}, (2) the path from u to p via s is diametral whenever y = min{x, y, z}, (3)
the path from v to q via s is diametral if and only if x = min{x, y, z}. Thus, diam(P` ∪ s) ∈
{x+ y + |pq|, x+ z + |pq|, y + z + |pq|}. Further, in [3] it is proved that P` has an optimal
shortcut satisfying x = y, which allows to compute it in linear time. Their method does not
apply here because, as explained in the Introduction, their definition of shortcut leads to a
much simpler situation. Nevertheless, in the same fashion, we can prove the following lemma.

I Lemma 3.6. Let pq be an optimal simple shortcut for P`. The following statements hold.

1. If neither p nor q are vertices of P` then x = y = z.
2. If p or q are vertices of P` then the two smallest values among x, y, z are equal.

With Lemma 3.6 in hand, we first compute the points p, q where x = y = z by solving
O(n) quadratic equations, and obtain O(n) candidates for optimal simple shortcut such that
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Figure 3 Left: Inserting a simple shortcut pq. Right: Shortcut that is pivoting on a vertex.

p, q /∈ V (P`). We then classify them into three sets: S of simple shortcuts, L of limit cases
(the segment intersects P` on three points), and shortcuts that intersect P` on four points.
Candidate segments with at least one endpoint in V (P`) must then be included in S and
L; this last set also contains those segments that are pivoting on a vertex of P` (see Figure
3(right)) and such that the two smallest values among x, y, z are equal. Finally, we obtain
the minimum value of diam(P` ∪ s) over s ∈ S ∪ L; there exists an optimal simple shortcut
whenever the minimum is attained by a segment in S.
I Theorem 3.7. It is always possible to decide whether a path P` with n vertices has an
optimal simple shortcut and compute one (in case of existence) in O(n2) time.

4 Conclusion

We compute optimal shortcuts for general networks and improve our method for paths but
restricted to simple shortcuts and those of any fixed direction. This is an ongoing research
and our first priority is to investigate techniques that allow us to design a more efficient
algorithm for computing an optimal shortcut (with no restriction) for a path. It would be
then interesting to develop a similar algorithmic study for more general networks and to
consider the analogous problems when augmenting the network with more than one shortcut.
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Abstract
Rectangulations are partitions of a square into axis-aligned rectangles. A number of results
provide bijections between combinatorial equivalence classes of rectangulations and families of
pattern-avoiding permutations. Other results deal with local changes involving a single edge of
a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a
graph on equivalence classes of rectangulations, related to so-called flip graphs on triangulations
and other families of geometric partitions. In this note, we consider a family of flip operations
on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions
in the associated Baxter permutations, avoiding the vincular patterns t3142, 2413u. This com-
plements results by Law and Reading (JCTA, 2012) and provides a complete characterization of
flip operations on diagonal rectangulations, in both geometric and combinatorial terms.

1 Introduction

In order to understand the underlying combinatorial structure of geometric space partitions
such as triangle meshes or floorplans, it is often useful to define elementary operations
that modify this structure locally. We can then connect distinct partitions using sequences
of such operations. In triangulations, such a notion is known under the term of flip. A
flip in a triangulation is typically defined as the replacement of an edge shared by two
triangles forming a convex quadrilateral by the other diagonal of the quadrilateral. This
allows the definition of a flip graph, the vertices of which are triangulations, and in which
two triangulations are adjacent whenever one can be obtained from the other by a single
flip. Flip graphs have applications in enumeration and random generation of geometric
partitions as well as optimization, and have also been shown to have intimate links with
many important structures in combinatorics, such as the Catalan objects, the Tamari lattice
and the associahedra, cyclohedra, and partial cubes.

The objects of interest in this paper are rectangulations, defined as partitions of a square
into axis-aligned rectangles. There exists a collection of results establishing bijections between
classes of rectangulations and pattern-avoiding permutations [2, 4, 5, 8, 9]. A permutation σ
is said to contain the pattern π, where π is another permutation, whenever there exists a
subsequence of σ whose elements are in the same relative order as the elements of π. Pattern-
avoiding permutations are families of permutations that do not contain any occurrence of one
or more given patterns. We use the more general vincular notation for forbidden patterns, in
which an underlined pair of elements indicates that they need to occur consecutively in the
permutation . For instance, forbidding the pattern 3142 amounts to forbidding all occurrences
of the pattern 3142 with the added condition that 1 and 4 must occur consecutively.

∗ V.S. and R.I.S. were partially supported by projects Gen. Cat. 2017SGR1640 and MTM2015-63791-R
(MINECO/FEDER). R.I.S. was also supported by MINECO through the Ramón y Cajal program.
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Different types of local operations can be defined on rectangulations, which have been
given different names, such as flips, local moves, edge rotations, or edge pivoting. In general,
they all consist in replacing a horizontal edge of the rectangulation by a vertical one, or
vice versa. In what follows, and with a slight abuse of terminology, we will refer to all those
operations under the common name of flip.

Law and Reading [8] described a family of flips on rectangulations and provided an elegant
combinatorial characterization. They showed that two rectangulations were connected by
such a flip if and only if they were in the cover relation of a certain natural lattice structure,
analogous to the Tamari lattice on triangulations. This lattice was also studied by Giraudo [7]
under the name of Baxter lattice. Ackerman, Barequet and Pinter [3] defined related flip
operations on rectangulations of a point set. These rectangulations are defined on a given
point set so that every point lies on a segment of the rectangulation, and vice versa. Ackerman
et al. studied the flip graph induced by these operations [1]. The flips considered by Ackerman
et al. are the same as the ones in Law and Reading whenever the point set lies on the diagonal.
Their results include a linear upper bound on the diameter of this flip graph (see [1], Section
4).

Our results. We first describe a known bijection from diagonal rectangulations to Baxter
permutations, avoiding the vincular patterns t3142, 2413u. Then we consider flip operations
on diagonal rectangulations, classify the different kinds of flips and give a combinatorial
interpretation for each. Those involving edges that do not intersect the diagonal of the square,
have already been characterized by Law and Reading [8]. For the others, we prove that the
obtained flip graph is isomorphic to the graph on the corresponding Baxter permutations in
which two Baxter permutations are adjacent whenever they differ by a single transposition of
consecutive elements. This provides a complete one-to-one correspondence not only between
rectangulations and Baxter permutations, but also between these sets of natural operations
on the geometric and combinatorial structures. Due to space constraints, all proofs are
omitted from this abstract, but can be found in the arXiv version.1

2 Diagonal rectangulations and Baxter permutations

The material of this section is adapted from Ackerman et al. [2], and Law and Reading [8]. A
description of an essentially equivalent map in terms of pairs of twin binary trees was given
by Felsner et al. [6].

Figure 1 A diagonal
rectangulation.

A rectangulation is a partition of the unit square into axis-
aligned rectangles. We define vertices as corners of the rectangles,
and edges as line segments connecting two vertices, with no other
vertex in between. The term segment is used to refer to inclu-
sionwise maximal line segments of the rectangulation, possibly
composed of several edges. We consider only rectangulations in
which every vertex has exactly three incident edges, except the
four vertices of the square, which have exactly two incident edges.
We classify the vertices into four self-explanatory classes denoted
by $, %, J, and K.

Figure 2 Forbidden con-
figurations.

We refer to the top-left to bottom-right diagonal of the square
as the main diagonal. A diagonal rectangulation is a rectangu-
lation in which every rectangle intersects the main diagonal. An

1 https://arxiv.org/abs/1712.07919
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example of diagonal rectangulation is given in Figure 1. However, we actually define diagonal
rectangulations as equivalence classes of such partitions of the square, with respect to changes
of vertex locations that preserve the adjacency relation between the rectangles. We have the
following characterization of (the equivalence classes of) diagonal rectangulations.

� Lemma 2.1. A rectangulation is diagonal if and only if it does not contain one of the two
forbidden configurations of Figure 2.

Figure 3 Wall slides.

We can also consider the equivalence classes of rectangulations
for which we can change the adjacency relation between the
rectangles. Two rectangulations are then said to be equivalent
when one can be obtained from the other by performing so-called
wall slides, as shown on Figure 3. The equivalence relation is
sometimes referred to as R-equivalence [4], and the R-equivalence
classes are called mosaic floorplans.

� Lemma 2.2. Every mosaic floorplan, or R-equivalence class, has a unique representative
as a diagonal rectangulation.

1 2

3

4 5

6 7 4 6

5

1 3 7

2

Figure 4 Illustration of the map B on the
rectangulation R of Figure 1. The obtained
Baxter permutation is BpRq � 4651372.

We now describe the bijection B between
diagonal rectangulations and Baxter permuta-
tions, which avoid the patterns t3142, 2413u.
In order to define B, we define two linear or-
ders on the rectangles of a rectangulation: the
n-order and the m-order. The n-order is the
order in which the rectangles are intersected
by the main diagonal, from top-left to bottom-
right. The m-order is obtained by taking the
representative mR of R in the equivalence class
of mosaic floorplans such that the bottom-left

to top-right diagonal intersects every rectangle. By Lemma 2.2, this representative exists
and is unique. The order in which this diagonal intersects the rectangle is the m-order. The
map B can then be described as follows:

1. label the rectangles with respect to the n-order,
2. enumerate the labels of the rectangles in the m-order.

� Theorem 2.3. [2] The map B is a bijection between diagonal rectangulations with n

rectangles and Baxter permutations on n elements.

3 Flips

We consider only flipping edges that are not part of the boundary of the square. We say
that an edge is matched at one of its endpoints whenever this endpoint is incident to another
edge with the same (horizontal/vertical) orientation.

Simple flips involve edges cutting a rectangle into two rectangles, which are precisely
the edges that are unmatched at both endpoints. In a diagonal rectangulation, all such
edges must intersect the diagonal. A simple flip consists in replacing such a horizontal edge
by a vertical one, or vice versa. When replacing the edge, we can always do it in such a
way that the resulting rectangulation remains diagonal. An example of simple flip in the
rectangulation of Figure 1 is given in Figure 5a.

EuroCG’18
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(a) Simple flips (b) Flip involving an edge that does not intersect
the diagonal

(c) Flip involving an edge intersecting the diagonal (d) The four types of unflippable edges matched
at only one endpoint

Figure 5 Flips in diagonal rectangulations.

In some cases, an edge that is matched only at one of its endpoints can be rotated about
this endpoint to yield another diagonal rectangulation. Examples of such flips are given in
Figures 5b and 5c.

However, not all edges can be flipped. An edge is said to be unflippable in two cases.
If the edge is matched at both endpoints, and if rotating this edge about any of the two
endpoints yields a partition that is not a rectangulation. It can also be the case that an edge
is matched at only one endpoint, and rotating it about this endpoint yields a rectangulation,
but the obtained rectangulation is not diagonal. Unflippable edges matched at only one
endpoint can be shown to come in four types, illustrated in Figure 5d.

4 A complete combinatorial characterization of flips

A transposition maps a permutation π � πp1qπp2q . . . πpjq . . . πpkq . . . πpnq to a permutation
π1 � πp1qπp2q . . . πpkq . . . πpjq . . . πpnq. Furthermore, if the two values j and k satisfy |πpjq �
πpkq| � 1, then the transposition is said to be a transposition of consecutive elements. If
k � j � 1, then the transposition is said to be an adjacent transposition. Note that an
adjacent transposition corresponds to a transposition of consecutive elements in the inverse
permutation.

We first summarize a result of Law and Reading, characterizing some of the flip operations
described above as a cover relation in a lattice, which can be found in Section 7 of [8]. In
what follows, we will use the term Law-Reading flips to refer to those flips. In the original
description (Section 7 of [8]), Law-Reading flippable edges are defined in terms of a locking
operation. The following lemma gives a simple alternative definition of Law-Reading flips.

� Lemma 4.1. Law-Reading flips are exactly the flips that are either simple, or that involve
the rotation of a flippable edge that does not intersect the diagonal, as illustrated in Figure 5b.

We now give a combinatorial characterization of Law-Reading flips proved in [8] using the
map from rectangulations to Baxter permutations. Before stating the result, we must define
the lattice dRecn of diagonal rectangulations with n rectangles.

The weak order (also known as the weak Bruhat order) is a partial order on the set Sn of
permutations of n elements in which a permutation π is smaller than another permutation
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π1 whenever the set of inversions of π is a subset of the set of inversions of π1. The cover
relation of the weak order is the set of pairs of permutations that differ by a single adjacent
transposition. The lattice dRecn on diagonal rectangulations can be defined as the restriction
of the weak order to the Baxter permutations corresponding to diagonal rectangulations
with n rectangles. Recall that BpRq is the Baxter permutation associated with the diagonal
rectangulation R.

� Theorem 4.2 (Law and Reading [8]). Let R and R1 be two diagonal rectangulations. Then
R and R1 are connected by a Law-Reading flip if and only if BpRq and BpR1q are in a cover
relation in dRecn.

This means that the two Baxter permutations corresponding to the pair of rectangula-
tions are related by a monotone sequence of adjacent transpositions, and the intermediate
permutations, if any, are not Baxter permutations.

We define Barcelona flips as those flips that involve a flippable edge intersecting the main
diagonal. Barcelona flips are either simple flips, or flips involving the rotation of an edge
intersecting the diagonal, as shown in Figure 5c.

� Lemma 4.3. Let R and R1 be two diagonal rectangulations that are connected by a Barcelona
flip. Then mR and mR1 are connected by a Law-Reading flip.

e

f
g

h

e

f g

h

Figure 6 Illustration of Lemma 4.3:
edges that can be flipped by a Barcelona
flip in R (left) can be flipped by a Law-
Reading flip in mR (right).

The lemma is illustrated in Figure 6. Combining
the above lemma with an observation on the way
to obtain mR from the inverse permutation BpRq�1,
and the characterization of Law-Reading flips in The-
orem 4.2, we can already conclude that a Barcelona
flip in a rectangulation R corresponds to a sequence
of adjacent transpositions in BpRq�1, that is, a se-
quence of transpositions of consecutive elements in
BpRq. In fact, we can prove the following precise
correspondence, involving only single transpositions.

� Lemma 4.4. Let R and R1 be two diagonal rectangulations. Then R and R1 are connected
by a Barcelona flip if and only if BpRq and BpR1q differ by a single transposition of consecutive
elements.

The following theorem summarizes our results.

� Theorem 4.5. Two diagonal rectangulations R and R1 are connected by a flip if and only
if one of these two conditions hold:

BpRq and BpR1q differ by a single transposition of consecutive elements,
BpRq and BpR1q are in a cover relation in dRecn.

Furthermore, R and R1 are connected by a simple flip if and only if both conditions hold.

The flip graph on diagonal rectangulations with four rectangles is given in Figure 7.

Acknowledgments. This work was initiated while the first author was visiting UPC
Barcelona in spring 2017. The authors wish to thank A. Asinowski, S. Felsner, and V. Pilaud
for useful discussions and comments.
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2341 1432

4132

1423

3214

4213
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2431

1243

1234

1324

4231

4321

3421
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3412
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4312
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Figure 7 The flip graph on diagonal rectangulations made of four rectangles. In each rectangula-
tion, the green edges are simply-flippable, and the blue and red edges are respectively Law-Reading
and Barcelona-flippable, but not simply flippable.
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Abstract
In this article, we consider the problem of finding in three dimensions a minimum volume axis-
parallel cuboid container into which a given set of unit size disks can be packed under translations.
The problem is neither known to be NP-hard nor to be in NP. We give a constant factor approxi-
mation algorithm based on reduction to finding a shortest Hamiltonian path in a weighted graph.
As a byproduct, we can show that there is no finite size container into which all unit disks can
be packed simultaneously.

1 Introduction

Packing a set of geometric objects in a nonoverlapping way into a minimum size container is
an intriguing problem and because of its practical significance it has been widely investigated.
For a survey see [1, 6] and the references therein. Even simple variants like packing a set
of rectangles into a rectangular container turn out to be NP-hard [4]. Whereas that simple
problem is in NP, in many cases not much is known about the true complexity of the problem.

Constant factor approximation algorithms of polynomial running time have been found
for many variants of the packing, in particular for finding minimum size rectangular or
convex containers for a set of convex polygons under translations [2], i.e., the objects may be
translated but rotations are not allowed. Also, approximation algorithms for rigid motions
(translations and rotations) are known in this case.

In three dimensions, approximation algorithms for packing cuboids or convex polyhedra
into minimum volume cuboid or convex containers are known if rigid motions are allowed [3].
It remains an open problem whether this is possible for translations only. In this paper, we
give a positive answer for a restricted set of possible objects, namely disks of unit radius and
axis-parallel cuboid containers. So far, our approximation factor is forbiddingly high but it
should be of theoretical interest that the problem, which is neither known to be NP-hard nor
to be in NP, can be approximated in polynomial time at all.

Packing disks in 3D is meant in the following sense: We say that two disks touch if their
intersection contains only one point and that two disks intersect if their intersection consists
of more than one point. By nonoverlapping, we mean that no two disks intersect whereas it
is allowed that two disks touch. The main problem we study in this work is then defined as
follows:

I Definition 1.1 (3D-3D-Disk-Packing). Given a set of unit disks by their unit normal vectors
in R3. The goal is to find

an axis-parallel box of minimum volume such that all disks can be packed without
overlapping under translation inside the box

∗ This work was partially supported by a fellowship within the FITweltweit program and by the Johann-
Gottfried-Herder program of the German Academic Exchange Service (DAAD).
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47:2 3D-Disk-Packing

and the actual packing of the disks inside the box.
We assume that no two disks are the same, i.e., no two normal vectors are parallel.

We will reduce approximating this problem with a constant factor to approximating the
following problem with a constant factor.

I Definition 1.2 (1D-3D-Disk-Packing). Given a set of nonidentical unit disks by their normal
vectors in three dimensional space and an additional vector defining the direction of a line.
The goal is to find an ordering of the disks with the following property: If the disks are
placed nonoverlappingly with their centers in this order on the line, the distance from the
center of the first to the center of the last disk is minimum. We call the distance of the
center of the first to the center of the last disk when stabbed by the line the length of the
ordering. See Figure 1 for a 2D example.

length of the ordering

stabbing line

1D unit disks in 2D

length of the ordering

Figure 1 A (nonoptimal) solution to the 1D-2D-Interval-Packing problem. Here, the unit disks
are unit line segments.

This problem then again will be reduced to finding the shortest Hamiltonian path in a
complete weighted graph.

Let a ∈ R3 be a vector. Define ha(D1, D2) to be the distance of the centers of the disks
D1 and D2 when placed with their centers on a line parallel to the vector a such that D1
and D2 touch. ha(D1, D2) can be computed easily from the normal vectors of D1 and D2
and it can be shown that ha(D1, D2) = ha(D2, D1). The following lemma will be used for
the reduction to Hamiltonian path.

I Lemma 1.3. For disks D1, D2, D3 and axis a, it holds that ha(D1, D2) + ha(D2, D3) ≥
ha(D1, D3), i.e., the triangle inequality holds.

We omit the proof due to space constraints. It can be shown by contradiction, assuming that
D1 touches D3 in a point x that is not part of D2. Then considering the triangle formed by
the centers of D1 and D3, and x, it can be shown that D2 cannot fit between D1 and D3.

2 Approximation Algorithms

Next, we will show how to reduce the 1D-3D-Disk-Packing problem to finding the shortest
Hamiltonian path in a complete weighted graph and obtain a constant factor approximation
in this way. Afterwards we will use this approximation algorithm to compute a constant
factor approximation for 3D-3D-Disk-Packing.

2.1 1D-3D-Disk-Packing Approximation
Algorithm 1 computes an approximate 1D-3D-Disk-Packing. In fact, since an ordering of the
disks directly corresponds to a Hamiltonian path in G, the triangle inequality holds in G by
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Lemma 1.3, and Hoogeveen’s algorithm computes a 5
3 -approximation for it in polynomial

time. So, we get the following theorem.

Input: n unit disks given by their normal vectors, vector a
Output: Ordering of the n disks

1 Generate complete weighted graph G with n vertices:
2 Set the weight of the edge (i, j) to ha(Di, Dj) for all 1 ≤ i, j ≤ n, i 6= j;
3 For all 1 ≤ i, j ≤ n with i 6= j, approximate shortest Hamiltonian path on the graph

with endpoints i and j with Hoogeveen’s algorithm [5] and determine the overall
shortest path;

4 return the ordering of the overall shortest path;
Algorithm 1: Approximation algorithm for 1D-3D-Disk-Packing

I Theorem 2.1. Algorithm 1 computes a 5
3 -approximation for 1D-3D-Disk-Packing in

polynomial time.

In the next section, we will use Algorithm 1 to approximate 3D-3D-Disk-Packing.

2.2 3D-3D-Disk-Packing Approximation
We define wmin, dmin, hmin to be the maximum extension of any disk in x-,y-, and z-direction
respectively and, thus, the minimum width, depth, and height any container for the disks
must have. Let w = s · wmin and d = s · dmin for a constant s > 1 to be defined later.
Algorithm 2 computes an approximate 3D-3D-Disk-Packing.

dmin

wmin

hmin

Figure 2 Example container for s = 10.5. The green boxes are the enlarged pieces obtained by
dividing the container-box computed by Algorithm 1 for the disks in X . Here, they form two layers.
The blue boxes contain disks from Y and the orange boxes contain disks from Z.

To analyze Algorithm 2 we first give a bound on W , D, and H. Observe that the angle
between the normal vector of a disk and the axis it gets stabbed by in Algorithm 2 can be at
most ϕ = arccos( 1√

3 ).

I Lemma 2.2. It holds that

W ≤ 109 · OPT
dminhmin

, D ≤ 109 · OPT
wminhmin

, H ≤ 109 · OPT
wmindmin

,

where OPT is the volume of an optimal container.
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Input: n unit disks given by their normal vectors
Output: nonoverlapping packing of the disks into an axis-parallel box

1 Partition the n disks into three sets X ,Y,Z according to the axis their normal vectors
form the smallest angle with;

2 Call Algorithm 1 for the disks in X and vector (1, 0, 0). If Lx is the length of the
returned ordering, this can be interpreted as a packing of the disks in X into an
axis-parallel box of width W = Lx + wmin, depth dmin, and height hmin;

3 Analogously to Step 2 get packings for the disks in Y and Z into boxes of dimensions
wmin ×D × hmin and wmin × dmin ×H respectively;

4 Divide the box obtained for X into pieces of width w − wmin;
5 Assign each disk to the piece its point with smallest x-coordinate lies in;
6 Enlarge each piece from width w − wmin to width w such that all disks that are

assigned to a piece are completely contained in that piece;
7 Divide the box obtained for Y into pieces of depth d analogously to Steps 4 to 6;
8 Divide the box obtained for Z into

⌊
w

wmin

⌋ ⌊
d

dmin

⌋
pieces of width wmin and depth dmin;

9 Analogously to Steps 5 and 6, enlarge the height of each piece by hmin;
10 Arrange the pieces to a box of width w and depth d. The pieces containing disks of X

form
⌈⌈

W
w−wmin

⌉
/
⌊

d
dmin

⌋⌉
layers of height hmin, the pieces containing disks of Y form

⌈⌈
D

d−dmin

⌉
/
⌊

w
wmin

⌋⌉
layers of height hmin, and the pieces containing disks from Z

form one layer of height H/
(⌊

w
wmin

⌋ ⌊
d

dmin

⌋)
+ hmin (See Figure 2 for an example);

11 return the resulting box with the packed disks;
Algorithm 2: Approximation algorithm for 3D-3D-Disk-Packing

Proof. Consider an optimal container with width WOPT, depth DOPT, and height HOPT
and let X ,Y,Z be the partition of disks into subsets as in Algorithm 2. Furthermore consider
a grid with some side length g on the x-z-plane and lines parallel to the y-axis through the
grid cell centers. Then, each point has distance at most g√

2 to the closest line. So, every disk
in Y is stabbed by a line in a point of distance at most g√

2 sin( π
2−ϕ) from the disk center if

g is small enough, i.e. cg < 1, where c = 1√
2 sin( π

2−ϕ) =
√

3
2 . See Figure 3 for illustration.

Therefore, each disk in Y contains a disk of radius 1− cg stabbed by a line through its center.

≤ ϕ≥ π
2 − ϕ

≤ g√
2

unit disk

normal vector
of disk

disk center

stabbing line

Figure 3 Distance of a disk center to the stabbing line

So, by placing the line segments that are the intersection of the container and the lines
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behind each other so that they touch, we get a solution to the 1D-3D-Disk-Packing-Problem
for the disks in Y but with radius 1− cg. By stretching this solution by 1/ (1− cg), we get
a solution for disks of radius 1. Let LOPTY be the length of an optimal solution for the
1D-3D-Disk-Packing problem for the disks in Y . Then, this length can be at most the length
of our solution, i.e.,

LOPTY ≤
⌈
HOPT
g

⌉⌈
WOPT
g

⌉
DOPT ·

1
1− cg .

By using wmin, hmin ≤ 2 and WOPT ≥ wmin, HOPT ≥ hmin, it can be shown that

LOPTY ≤
(g + 2)2

g2 (1− cg) ·
OPT

wminhmin
. (1)

Since we use Algorithm 1 to compute a 1D-3D-Disk-Packing solution for Y, we get by
Theorem 2.1

D ≤ 5
3 · LOPTY + dmin,

where the extra term dmin comes from the fact that the length of a 1D-3D-Disk-Packing is
defined as the distance of the center of the first disk to the center of the last disk and we are
interested in the total depth of the packing. By inequality (1),

Dwminhmin ≤
(

5 (g + 2)2

3g2 (1− cg) + 1
)

OPT.

Optimizing for g yields g =
√

1
3
(
27 + 4

√
6
)
− 3 and a factor of approximately 108.49. The

calculations for W and H are analogous. This implies the lemma. J

Now, we are ready to state the main theorem of this article.

I Theorem 2.3. Algorithm 2 computes a 593-approximation for 3D-3D-Disk-Packing in
polynomial time.

Proof. The container computed by Algorithm 2 is a box with base area w · d and height⌈⌈
W

w−wmin

⌉
/
⌊

d
dmin

⌋⌉
hmin +

⌈⌈
D

d−dmin

⌉
/
⌊

w
wmin

⌋⌉
hmin + H/

(⌊
w

wmin

⌋ ⌊
d

dmin

⌋)
+ hmin (See

step 10 in Algorithm 2). Using Lemma 2.2, the definition of w and d (see the begin-
ning of this section), and wmindminhmin ≤ OPT it can be shown that the volume of the
container is at most

s2

(
2 · 109

s−1 + 1
s− 1 + 109

(s− 1)2 + 3
)

OPT.

Optimizing for s gives a long term as approximation factor that is smaller than 593. J

3 Unbounded containers are necessary

In this section, we will conclude from our previous results that there is no bounded size
container into which all unit disks can be packed. More precisely, we will show:
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I Theorem 3.1. Packing a set of n unit disks requires a container of size Ω(
√
n) in the

worst case.

Proof. In the following, we will show that Ω(
√
n) is a lower bound for the container con-

structed by Algorithm 2 which is within a constant factor of the optimal container. From
that the theorem follows immediately.

Identify any unit disk with its normal vector in the unit sphere S2. Consider a sufficiently
small rectangular surface patch P = I1 × I2 ⊂ S2 where I1, I2 are nonempty intervals of
spherical coordinates. Let P be symmetric to the equator and I1 and I2 sufficiently small,
so that all disks corresponding to points in P are stabbed by the same axis in Algorithm 2.
Furthermore, for any two points in P the shorter grand circle segment connecting them
should lie completely inside P . For a given ε > 0, subdivide P by horizontal and vertical
lines at distance ε, yielding a grid of points in P of size n ≥ c1/ε

2 for some constant c1 > 0.
Let A be the set of unit disks corresponding to the grid points. With standard geometric
arguments it is possible to prove the following
I Claim 3.2. There is a constant c2 > 0 such that for any two grid points having distance δ
on S2 the centers of the corresponding unit disks have distance at least c2δ when stabbed
consecutively on a line as in Algorithm 1.
Now observe, that if P is chosen close enough to the equator, any two distinct points in
A have distance at least c3ε for some constant c3 > 0. Therefore, by the previous claim
the distance of the centers of the corresponding unit disks, when stabbed consecutively, is
at least c4ε for some constant c4 > 0. Consequently the length of a line segment stabbing
all disks in A must be at least c4ε(n− 1). Since n ≥ c1/ε

2, this is in Ω(
√
n) as ε tends to

0. From Lemma 2.2 follows that this is also a lower bound for the volume of a container
computed by Algorithm 2. J

From Theorem 3.1, we obtain immediately

I Corollary 3.3. There is no finite size container into which all unit disks can be packed.

This seems obvious at first glance, but observe that for the case of one-dimensional objects it
is false. In fact, all unit length line segments can be packed in arbitrary dimension d ≥ 2
into a container of finite size for example by placing them with one endpoint in the origin.
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Abstract
A beacon is a point-like object that can be enabled to exert a magnetic pull on other point-like
objects in space. Those objects then move towards the beacon in a greedy fashion until they are
either stuck at an obstacle or reach the beacon’s location. Beacons placed inside polyhedra can
be used to route point-like objects from one location to another.

The notion of beacon-based routing was introduced by Biro et al. [FWCG’11] in 2011 for two
dimensions and covered in detail by Biro in his PhD thesis [SUNY-SB’13].

We extend Biro’s results to polyhedra in three dimensions. We show that
⌊

m+1
3

⌋
beacons

are always sufficient and sometimes necessary to route between any pair of points in a given
polyhedron P , where m is the number of tetrahedra in a tetrahedral decomposition of P . This
is one of the first results that show that beacon routing is also possible in three dimensions.

1 Introduction

A beacon b is a point-like object in a polyhedron P that, when enabled, exerts a magnetic
pull on points inside P . The points then move in the direction in which the distance to b
decreases most rapidly, possibly moving along obstacles. If an attracted point p ends its
movement at b, we say that b covers p. A point p can be routed via beacons towards a point q
if there exists a sequence of beacons b1, b2, . . . , bk = q such that b1 covers p and bi+1 covers bi

for all 1 ≤ i < k. The target q = bk is an implicit beacon, i.e., we need only k − 1 additional
beacons. We can route between two points p and q if p can be routed via beacons towards q
and vice versa. In our model, at most one beacon is enabled at any time and a point has to
reach the beacon’s location before the next beacon can be enabled. The notion of beacon
attraction was introduced by Biro et al. [4,5] for two dimensions. It extends the classic notion
of visibility [8]: the visibility region of a point p is a subset of the attraction region of p.

Here, we study the case of three-dimensional polyhedra. A three-dimensional polyhedron
is a compact connected set bounded by a piecewise linear 2-manifold. The results in this work
are based on the master’s thesis of the first author [7] in which various aspects of beacon-based
routing and guarding were studied in three dimensions. Simultaneously, Aldana-Galván
et al. [1, 2] looked at orthogonal polyhedra and introduced the notion of edge beacons.

For two dimensions, Biro [4] provided bounds on the number of beacons for routing in a
polygon. He also showed that it is NP-hard and APX-hard to find a minimum set of beacons
for a given polygon such that it is possible to (a) route between any pair of points, (b) route
one specific source point to any other point, (c) route any point to one specific target point,
or (d) cover the polygon, i.e., every point in P is covered by at least one beacon.

It is easy to reduce the two-dimensional problems to their three-dimensional counterparts
by lifting the polygon into three dimensions. Thus the corresponding problems in three
dimensions are also NP-hard and APX-hard. More details can be found in [7, Chapter 4].
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2 Preliminary Thoughts on Tetrahedral Decompositions

In two dimensions, Biro et al. [5] look at a triangulation of a polygon to show that for every
two additional triangles at most one beacon is needed. This yields the upper bound of⌊

n
2

⌋
− 1 beacons. Even though there is a slight flaw in the case analysis of their proof, this

can be easily repaired, see [7, Chapter 3.1] for more details and the working proof. We extend
their approach to three dimensions by looking at the decomposition of a polyhedron into
tetrahedra. However, Lennes [9] has shown that polyhedra exist which cannot be decomposed
into tetrahedra without additional vertices. To decide whether such a decomposition (without
additional vertices) exists was proved to be NP-complete by Ruppert and Seidel [10].

In two dimensions, every triangulation of a polygon with n vertices and h holes has
exactly n − 2 + 2h triangles (h = 0 for simple polygons). In three dimensions, however,
Chazelle [6] showed that there exist polyhedra with Θ(n) vertices for which Ω

(
n2)

convex
parts are needed in every decomposition. Bern and Eppstein [3, p. 52] show that all polyhedra
can be triangulated with O

(
n2)

tetrahedra with the help of O
(
n2)

additional Steiner points.
Additionally, one polyhedron can have different tetrahedral decompositions with different

numbers of tetrahedra, see [10, p. 228]. Our results will therefore be relative to the number
of tetrahedra m rather than the number of vertices n. We do not assume general position
and thus decompositions with Steiner points are also allowed.

To successfully apply the ideas for two dimensions to three dimensions, we need the
following preliminary definition and lemma.

I Definition 2.1. Given a polyhedron with a tetrahedral decomposition Σ = {σ1, . . . , σm}
into m tetrahedra, its dual graph is an undirected graph D(Σ) = (V,E) where
(1) V = {σ1, . . . , σm} and
(2) E = {{σi, σj} ∈ (V

2 ) | σi and σj share exactly one triangular facet}.
I Observation 2.2. Unlike in two dimensions, the dual graph of a tetrahedral decomposition
is not necessarily a tree. Still, each node in the dual graph has at most 4 neighbors.

I Lemma 2.3. Given a tetrahedral decomposition Σ of a polyhedron together with its dual
graph D(Σ) and a subset S ⊆ Σ of tetrahedra from the decomposition whose induced subgraph
D(S) of D(Σ) is connected, then
(1) |S| = 2 implies that the tetrahedra in S share one triangular facet,
(2) |S| = 3 implies that the tetrahedra in S share one edge, and
(3) |S| = 4 implies that the tetrahedra in S share at least one vertex.

Proof. We show this seperately for every case.
(1) This follows directly from Definition 2.1.
(2) In a connected graph of three nodes there is one node neighboring the other two. By

Definition 2.1, the dual tetrahedron shares one facet with each of the other tetrahedra.
In a tetrahedron every pair of facets shares one edge.

(3) By case (2), there is a subset of three (connected) tetrahedra that shares one edge e.
This edge is therefore part of each of the three tetrahedra. By Definition 2.1, the fourth
tetrahedron shares a facet f with at least one of the other three (called σ). Since f
contains three and e two vertices of σ, they share at least one vertex. J

3 An Upper Bound for Beacon-based Routing

We can now show an upper bound on the number of beacons needed to route within a
polyhedron with a tetrahedral decomposition. The idea of the proof is based on the proof by
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Figure 1 The possible configurations in the inductive step. The shaded region can be covered by
one beacon, the circled tetrahedra are removed. Subfigure (f) has to be looked at independently.

Biro et al. [5] for (two-dimensional) polygons. We want to show the following

I Hypothesis 3.1. Given a polyhedron P with a tetrahedral decomposition Σ with m = |Σ|
tetrahedra, it always suffices to place

⌊
m+1

3
⌋
beacons to route between any pair of points in P .

Due to the length and number of cases, the proof is split up into various lemmas which are
finally combined in Theorem 3.5.

Given the polyhedron P and a tetrahedral decomposition Σ with m = |Σ| tetrahedra, we
look at the dual graph D(Σ) of the decomposition. We look at a spanning tree T of D(Σ)
rooted at some arbitrary leaf node because we want the dual graph to be a tree. This can
only lead to more beacons being placed—never less. We will refer to nodes of T as well as
their corresponding tetrahedra with σi—the meaning should be clear from the context.

The main idea of the proof is as follows: In a recursive way, we are going to place a
beacon and remove tetrahedra until no tetrahedra are left. As will be shown, for each beacon
we place, we can remove at least three tetrahedra. This yields the claimed upper bound. We
will show this by induction on the number of tetrahedra. We first cover the base case:

I Lemma 3.2. Given a polyhedron P with a tetrahedral decomposition Σ with m = |Σ| ≤ 4
tetrahedra, it always suffices to place

⌊
m+1

3
⌋
beacons to route between any pair of points in P .

Proof. If m = 1, then P is a tetrahedron and, due to convexity, no beacon is needed.
If 2 ≤ m ≤ 4, we can apply Lemma 2.3 which shows that all tetrahedra share at least

one common vertex v. Since v is contained in all tetrahedra and can thus attract and be
attracted by all points in P , we are done by placing one beacon at v. J

We can now proceed with the inductive step, that is, polyhedra with a tetrahedral
decomposition of m > 4 tetrahedra. Our goal is to place k beacons that are contained in
at least 3k + 1 tetrahedra and can therefore mutually attract all points in those tetrahedra.
Afterwards, we will remove at least 3k tetrahedra, leaving a polyhedron with a tetrahedral
decomposition of strictly less than m tetrahedra, to which we can apply the induction
hypothesis. We then need to show how to route between the smaller polyhedron and the
removed tetrahedra.

To do this, we look at a deepest leaf σ1 of the spanning tree T . If multiple leaves with
the same depth exist, we choose the one whose parent σ2 has the largest number of children,

EuroCG’18
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breaking ties arbitrarily. In Fig. 1, we can see different cases how the part of T that contains
σ1 and σ2 might look like. We first show the inductive step for Figs. 1a to 1e. Note that in
all five cases there needs to be at least one additional root node—either because we have
strictly more than four tetrahedra or because the tree is required to be rooted at a leaf node.
The inductive step for Fig. 1f will be dealt with in Lemma 3.4.

I Lemma 3.3. Given a polyhedron P with a tetrahedral decomposition Σ with m = |Σ| > 4
tetrahedra and a spanning tree T of its dual graph D(Σ) rooted at some arbitrary leaf node.
Let σ1 be a deepest leaf of T with the maximum number of siblings and let σ2 be its parent.
Assume further that either
(1) the configuration in the neighborhood of σ1 and σ2 looks like any of Figs. 1a to 1d or
(2) the configuration in the neighborhood of σ1 and σ2 looks like Fig. 1e.
Then we can place one beacon b at a vertex of σ1 that is contained in at least four tetrahedra.
We can then remove at least three tetrahedra containing b without violating the tree structure
of T and while there is at least one tetrahedron left in T that contains b.

Proof. We show this individually for the conditions.
(1) In all those cases the induced subgraph of the nodes σ1, σ2, σ3, and σ4 is connected.

From Lemma 2.3(3) it follows that they share at least one vertex at which b is placed.
Afterwards the circled tetrahedra are removed from T which preserves the tree structure
of T . Additionally, at least one tetrahedron covered by b remains in T .

(2) Looking at Fig. 1e we see that we have three different sets, each containing σ3, a child σi

of σ3, and σi’s child: {σ1, σ2, σ3}, {σ5, σ4, σ3}, and {σ7, σ6, σ3}.
By Lemma 2.3(2) each set shares one edge giving us three edges of σ3. Since at most
two edges in any tetrahedron can be disjoint, at least two must share a common vertex.
Without loss of generality, let these be the edges shared by {σ1, σ2, σ3} and {σ5, σ4, σ3}.
We can then place b at the shared vertex and afterwards remove σ1, σ2, σ4, and σ5. The
beacon b is also contained in σ3 which remains in T . J

Until now, we have ignored the configuration in Fig. 1f. The problem here is that, in
general, to remove the tetrahedra σ1 to σ5, we need to place two beacons. Placing two
beacons but only removing five tetrahedra violates our assumption that we can always remove
at least 3k tetrahedra by placing k beacons. If we removed σ6 and σ6 had additional children,
then T would no longer be connected which also leads to a non-provable situation. Thus, we
need to look at the number and different configurations of the (additional) children of σ6.

Since there are many different configurations of σ6’s children (and their subtrees) we
decided to use a brute force approach to generate all cases we need to look at. Afterwards
we removed all cases where Lemma 3.3 can be applied and all cases where only the order of
the children differed. This leaves us with nine different cases and the following

I Lemma 3.4. Given a polyhedron P with a tetrahedral decomposition Σ with m = |Σ| > 4
tetrahedra and a spanning tree T of its dual graph D(Σ) rooted at some arbitrary leaf node.
Let T ′ ⊆ T be a subtree of T with height 3 for which Lemma 3.3 cannot be applied.

In T ′ we can then place k ≥ 2 beacons which are contained in at least 3k + 1 tetrahedra
and whose induced subgraph is connected.

We can then remove at least 3k tetrahedra from T ′, each of which contains a beacon,
without violating the tree structure of T . After removal there is at least one tetrahedron left
in T which contains one of the beacons. J

Due to space constraints we omit the proof which can, however, be found in [7, Lemma 5.9,
pp. 34ff.]. There we also argue why either of the Lemmas 3.3 and 3.4 can always be applied.
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We can now restate Hypothesis 3.1 as a theorem:

I Theorem 3.5. Given a polyhedron P with a tetrahedral decomposition Σ with m = |Σ|
tetrahedra it always suffices to place

⌊
m+1

3
⌋
beacons to route between any pair of points in P .

Proof. We show this by induction. The base case is shown by Lemma 3.2.
Look at a spanning tree T of the dual graph D(Σ) rooted at an arbitrary leaf node. Let

σ1 be a deepest leaf node with the largest number of siblings, breaking ties arbitrarily. We
can then apply either Lemma 3.3 or Lemma 3.4 and know at least the following:
(1) We have placed k ≥ 1 beacons and removed at least 3k tetrahedra.
(2) Every removed tetrahedron contains at least one beacon.
(3) The induced subgraph of the beacons on the vertices and edges of P , i.e. the graph which

contains only the beacons as vertices and the edges between two beacons, is connected.
(4) There is at least one beacon b contained in the remaining polyhedron P ′.

From (1) it follows that the new polyhedron P ′ has a tetrahedral decomposition of
m′ ≤ m− 3k tetrahedra. We can then apply the induction hypothesis for P ′. Thus we only
need to place k′ =

⌊
m′+1

3
⌋
≤

⌊
m−3k+1

3
⌋

=
⌊

m+1
3

⌋
− k beacons in P ′ to route between any

pair of points in P ′. Since k′ + k ≤
⌊

m+1
3

⌋
we never place more beacons than we are allowed.

With (2) to (4) we know that we can route from any point in P ′ to b, every point in the
removed tetrahedra to at least one placed beacon, and between all placed beacons.

This completes the inductive step and thus, by induction, we have proved the theorem. J

4 A Lower Bound for Beacon-based Routing

We now want to show a lower bound for the number of beacons needed to route within
polyhedra with a tetrahedral decomposition. To do this we first show a different lower bound
proof for two dimensions which can then be easily applied to three dimensions. The idea for
the following construction is similar to the one used by Shermer [11] for the lower bound for
beacon-based routing in orthogonal polygons. We will present the results very briefly, for
more details see [7].

We construct a class of outwards-spiraling polygons for which for every two additional
vertices one additional beacon is needed. An example with n = 12 vertices and thus⌊

n
2

⌋
− 1 = 5 needed beacons is shown in Fig. 2. It can easily be shown that it is not possible

to route from s to t with less beacons, which gives the following

Figure 2 A spiral polygon with n = 12 vertices
and c = 5 corners. Every such polygon needs
c = n

2 − 1 beacons to route from s to t.

0π

2
3 π

4
3 π

s t
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I Lemma 4.1. Given a spiral polygon with c corners and n = 2c+ 2 vertices, c beacons are
necessary to route from s to t. J

The construction of the spiral polygon can be easily lifted to three dimensions by adding
one vertex to each corner. This then directly leads to

I Lemma 4.2. Given a spiral polyhedron with c corners and n = 3c+ 2 vertices, c beacons
are necessary to route from s to t. J

5 A Sharp Bound for Beacon-based Routing

I Theorem 5.1. Given a polyhedron P for which a tetrahedral decomposition with m tetra-
hedra exists, it is always sufficient and sometimes necessary to place

⌊
m+1

3
⌋
beacons to route

between any pair of points in P .

Proof. In Theorem 3.5 we have shown that
⌊

m+1
3

⌋
is an upper bound.

For any given m we can construct a spiral polyhedron Pm with c =
⌊

m+1
3

⌋
corners for

which, by Lemma 4.2, c beacons are necessary. The number of tetrahedra in Pm is m′ = 3c−1
and this is also the smallest number of tetrahedra in any tetrahedral decomposition of Pm:
If there was a tetrahedral decomposition with less tetrahedra then by Theorem 3.5 less than
c beacons would be needed which contradicts Lemma 4.2.

If m′ < m, i.e., due to the flooring function the c-corner spiral contains one or two
tetrahedra less than m, we add the missing tetrahedra as if constructing a spiral polyhedron
with c+ 1 corners. This does not lead to less beacons being needed. J
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Abstract
We extend a known result about L2-Delaunay triangulations to L∞-Delaunay. Let TS be the set
of all non-crossing spanning trees of a planar n-point set S. We prove that for each element T

of TS , there exists a length-decreasing sequence of trees T0, . . . , Tk in the L∞-metric such that
T0 = T, Tk = MST�(S) and Ti does not cross Ti−1 for all i = 1, . . . , k, where MST�(S) denotes
the minimum spanning tree of S in the L∞ metric. We also give an Ω(log n) lower bound for the
length of the sequence.

1 Introduction

The Delaunay triangulation is one of the most studied objects in computational geometry.
In its most common form, L2 or circle-based, it can be defined for a set of points S ⊂ R2

as a graph DT©(S) where the vertex set is S, and an edge between two vertices u and v

exists if and only if there exists a circle with u and v on its boundary containing no point of
S in its interior. It is well-known that DT©(S) is a triangulation if no four points of S are
co-circular. The L2-Delaunay triangulation has received a vast amount of attention. The
aspects studied range from graph-theoretic properties like Hamiltonicity [5], or functionals
for which it is optimal [6], to recent results on their spanning and routing properties [2, 7].

The definition of Delaunay graphs is easy to generalize by using some shape other than
the circle that is required to be empty, such as a triangle, a square, or in fact any convex
shape, leading to so-called convex-Delaunay graphs [4]. However, there are relatively few
results on properties of convex Delaunay graphs for shapes other than circles, despite the fact
that different shapes result in different properties of the Delaunay graphs. A recent result
by Bonichon et al. [3] shows that, when the shape is a triangle, every plane triangulation
can be realized as a triangle-based Delaunay triangulation, for some point set in the plane.
Whereas, it is known that there exist triangulations that cannot be DT©-realizable.

For this reason, it is interesting to understand which properties of the Delaunay graphs
depend on the circular shape, and what properties do not. In this paper we explore one
of the properties of DT©(S), and show that it also holds for the square or L∞-Delaunay
graph, denoted DT�(S). Aichholzer et al. [1] showed that the minimum spanning tree of S

can be obtained by repeatedly computing minimum spanning trees of constrained Delaunay
triangulations. More precisely, the following iterative procedure converges to the minimum
spanning tree of S. Start by computing an arbitrary spanning tree T0 of S. Compute
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the Delaunay triangulation of S taking the edges of T0 as constraints. Next, compute the
minimum spanning tree T1 of that constrained triangulation, and repeat.

In this paper we show that the same occurs with squares, i.e., when the L∞ metric is used,
this procedure converges to the L∞-minimum spanning tree of S. The main ingredient of
our result is, as in [1], a fixed tree theorem (Theorem 3.1) that states that once one iteration
of the above procedure does not produce a change, then it must have reached the minimum
spanning tree of S. We note, however, that our proofs are different from those used for the
L2-metric, since several key lemmas in [1] rely on properties of circles.

1.1 Definitions
Let G be a plane geometric graph on S and let Q be an axis-aligned square. In the L∞
metric, the set of points within a fixed distance from a given point is an axis-aligned square
centered on the point. Recall that in Rn, ||x||∞ = sup{|xi| : i ∈ {1, . . . , n}}. The Delaunay
graph of S with respect to the L∞ metric, denoted as DT�(S), contains an edge between p

and q if and only if there is some homothet of Q with p and q on its boundary without any
other point of S in its interior.

Given two vertices p and q, we denote by Q(p, q) any homothet of Q with p and q on its
boundary. Let G = (S, E) where E(G) is called a set of constraints and each element of E(G)
is called a constraint. We say that a point p is visible to q if no constraint crosses the line
segment pq, and in that case we say that (p, q) is a visible edge in G. We define the visibility
graph of G as the graph with vertices S and the set of all visible edges in G as the edge set.
Notice that the visibility graph is always a connected graph. Also, that every constraint is
a visible edge. We define CDT�(G), the constrained L∞-Delaunay graph of G, as follows.
The constrained L∞-Delaunay graph contains an edge between p and q if and only if pq is
a constraint or there exists a Q(p, q) such that there are no vertices of S in the interior of
Q(p, q) visible to both p and q. It is known that any convex shape-CDT (G) is a plane graph.

We say that p and q are separated in a square Q if p and q are in Q and there exists a
constraint e crossing Q such that e divides Q into two different convex sets and with p and q in
different sets, we refer to Figure 1. For any two points p = (x1, y1) and q = (x2, y2), we define
the width (respectively height) between p and q as w(p, q) = |x1 − x2| (h(p, q) = |y1 − y2|).

p

q

e

Q

Figure 1 The points
p and q are separated in
Q by the edge e.

Let G be a graph with vertex set S and p, q be vertices in G and
let P be a path from p to q. We will refer to P as a pq-path. We de-
note by MST (G) the minimum spanning tree of the visibility graph
of G. An important property of the classic Delaunay triangulation
of a point set S is that MST©(S) ⊂ DT©(S). The same property
holds for L∞-Delauny triangulation, i.e., MST�(S) ⊂ DT�(S). We
assume throughout that all edges in S × S have different lengths.

Let TS be the set of all crossing-free spanning trees of S. For
each element T ∈ TS of S, we define the sequence T0, T1, T2, . . .

where T0 = T , Ti = MST (CDT�(Ti−1)) for all 0 < i. In this paper we will prove the
convergence of this sequence to the MST�(S). We begin with some helping lemmas.

2 Properties of L∞-minimum spanning trees and L∞-Delaunay graphs

The following properties will be essential for the proof of the fixed tree theorem.

I Property 2.1. An edge e ∈ G is not present in MST (G) if and only if there is a path in
G between e’s endpoints that solely consists of edges shorter than e.
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The next two lemmas show that if there exists a visibility path between two points p

and q contained in a square Q, then there exists a pq-path of the L∞-constrained Delaunay
triangulation contained in Q as well.

I Lemma 2.2. Let p, q be two vertices such that (p, q) is visible in G. Then any Q(p, q)
contains a pq-path in CDT�(G).

The proof of Lemma 2.2 follows by induction on the number of vertices of S contained in
Q(p, q).

I Lemma 2.3. Let Q be a square that contains p and q such that there is no edge separating
p and q in Q, then there exists a pq-path of CDT�(G) contained in Q.

Proof. Since there is no edge separating p and q in Q there exists a pq-path in the visibility
graph of G in Q. The proof follows from Lemma 2.2. J

Let t = (u, v) be an edge of the MST�(S) crossed by a set of constraints BEi(t) from Ti.
Let Qt be a smallest empty square containing u and v on its boundary, i.e., ||uv||∞ = w(Qt)
and u, v ∈ Qt. We say that c ∈ BEi(t) is a diagonal edge when c crosses t in consecutive
sides of Qt, or call it vertical edge otherwise. We say that c is the constraint nearest to u if
it is the first constraint crossing t from u to v. Similarly c is the constraint nearest to v if it
is the first constraint crossing t from v to u. The weight of a square Q corresponds to its
sides length, denoted by W (Q).

t

u

v

c

a

b

Figure 2 The dot-
ted squares represent
Q(a, v), Q(b, v), Q(a, u)
and Q(b, u), which have
shorter weight than
||ab||∞ = h(a, b).

The following lemma basically states that if a constraint c =
(a, b) crossing t is vertical, then the distances ||av||∞, ||au||∞, ||bv||∞
and ||bu||∞ are shorter than ||ab||∞, we refer to Figure 2.

I Lemma 2.4. Let T ∈ TS, and let t = (u, v) ∈MST�(T ) and Qt

defined as above. Let c = (a, b) be a vertical edge crossing t. Then
there exist squares Q(a, v), Q(b, v), Q(a, u) and Q(b, u) with weight
than ||ab||∞.

The next lemma shows a similar property fo diagonal edges.

I Lemma 2.5. Let T ∈ TS, t = (u, v) ∈MST�(S) and Qt defined
as above. Let c = (a, b) ∈ T be the nearest edge to v crossing t. If c

is a diagonal edge such that c is crossing the side of Qt containing
v, then no edge from CDT�(T ) crosses t nearer to v than c.

Proof. Assume by contradiction that there exists an edge e = (p, q) ∈ CDT�(T ) nearer to v

than c. Then e is also diagonal and crosses the same sides of Qt as c. Since e is diagonal and
crosses the side of Qt that contains v, the rectangle with diagonal e contains v in its interior.
Hence, any square containing e’s endpoints has v in its interior, we refer to Figure 3b. Since
c was the nearest constraint to v crossing t, then any square containing e’s endpoints has a
visible point to both endpoints, which is a contradiction with e being in CDT�(T ). J

I Lemma 2.6. Let T ∈ TS, t = (u, v) ∈MST�(S) and Qt defined as above. Let c = (a, b) ∈
T be the nearest edge to v crossing t. If c is a vertical edge and there exists an edge e = (p, q)
in CDT (T ) crossing t nearer to v than c, then e is shorter than c.

Proof. Using the same arguments in the proof of Lemma 2.5 we notice that e cannot be
a diagonal edge. Thus, e is vertical and crosses the same sides of Qt as c, we refer to
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u

v

a

b

t

p

q

e
c

(a) Vertical case.

u

v

p

q

e

a

b

t

c

(b) Diagonal case.

Figure 3 Examples where edge e is a nearer to v than c.

Figure 3a. Without loss of generality, assume that e crosses top and bottom sides of Qt.
Let Qe = Q(p, q) be a smallest square defining e in CDT�(T ), then W (Qe) = ||e||∞. Notice
that since e crosses opposite sides of Qt, then ||e||∞ > ||uv||∞. Hence, Qe contains either u

or v in its interior. This point is u otherwise any square containing e would have a visible
point to both e’s endpoints in its interior. Hence, c blocks u from both p and q. Thus, c

crosses Qe at opposite sides, otherwise Qe would contain a visible point for both of p and q.
Therefore, ||c||∞ > ||e||∞. J

3 Main result

3.1 Fixed tree theorem
I Theorem 3.1. Let T ∈ TS. T = MST�(CDT�(T )) if and only if T = MST�(S).

Proof. The “if” part is trivial by definition of MST�(S). Let us prove the “only if” part.
Assume by contradiction that T 6= MST�(S) then there exists an edge t = (u, v) ∈MST�(S)
that does not belong to T . Since t /∈ T then t /∈ CDT�(T ), otherwise t must be in
MST�(CDT�(T )). Hence, there is at least one constraint crossing t in CDT�(T ).

Let Qt = Q(u, v) be a smallest square defining t in DT�(S). Qt exists since t is in
MST�. Without loss of generality suppose that u and v belong to the left and right side
of Qt respectively. Thus each edge in CDT�(T ) crossing t crosses Qt and has its endpoints
outside Qt. Let c = (a, b) ∈ T be the nearest constraint to v and let Qc be a square Q(a, b)
with sides of length ||c||∞.

Case 1) c is diagonal. Let Qa = Q(a, v) be a square with size ||av||∞ and Qb = Q(v, b)
be a square with size ||vb||∞.

If c crosses the right side of Qt, then w(a, b) = w(a, v) + w(v, b) and h(a, b) = h(a, v) +
h(v, b). Hence Qa and Qb have smaller size than Qc. Since c is the nearest constraint to
v, then by Lemma 2.5 there is no edge separating a from v in Qa nor b from v in Qb. By
Lemma 2.3 there is a av-path, Pa and a vb-path, Pb, in Qa and Qb respectively. Therefore
there is an ab-path in Pa ∪ Pb with edges solely shorter than c, contradicting our hypothesis
by Property 2.1.

If c crosses the left side of Qt then let c′ = (a′, b′) be the nearest constraint to u. The edge
c′ crosses the left side of Qc as well, otherwise c′ and c cross each other which is a contradiction.
Thus, w(a′, b′) = w(a′, u) + w(u, b′) and h(a′, b′) = h(a′, u) + h(a, b′). Analogously as before
we get a contradiction.

Case 2) c is vertical. By Lemma 2.4 there exist Qv
a = Q(a, v) and Qv

b = Q(b, v) with
lower size than Qc. Since c is the first constraint crossing t from v to u, by Lemma 2.6 there
does not exist an edge separating a and v in Qv

a nor an edge separating b and v in Qv
b . From

Lemma 2.3 there exists an av-paths Pa in Qv
a and a vb-path Pb in Qv

b . Hence, there exists
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a path in Pa ∪ Pb from a to b with edges solely shorter than c which is a contradiction by
Property 2.1. Therefore T = MST�(S). J

Consider an arbitrary tree T ∈ TS and a sequence T0, T1, . . ., such that T0 = T, Ti =
MST (CDT�(Ti−1)) for all i ≥ 1. Notice that this is a length-decreasing sequence, since Ti

is shorter than Ti−1 unless both are identical trees. Also, by definition of Ti, the trees Ti and
Ti−1 do not cross since they belong to the same plane graph, namely CDT�(Ti−1), for all
i > 1. As a consequence of the Fixed tree theorem we obtain a length-decreasing sequence of
trees in TS which reaches a fixed point Tk = MST�(S) in a finite number of steps.

I Theorem 3.2. For any T ∈ TS there exists a sequence T0, T1, . . . , Tk such that T0 = T

and Tk = MST�(S).

Figure 4 shows a sequence T0, T1, . . . , Tk such that T0 = T , Ti = MST�(Ti−1) and
Tk = MST�(S) for all 1 ≤ i ≤ k which converges in 4 steps.

u u u u u

v v v v v
x x x x x

e1 e3 e5 e7

e2 e6

e4

Figure 4 Example of a sequence with a spanning tree of a 10-point set that converges in 4 steps.
The dashed edges represent the appearing edges at stage i + 1.

3.2 Lower bound
A natural question, once we know that this sequence converges, is how fast it reaches the
MST�(S). As a first step for answering this question we give a lower bound based on a
construction shown in Figure 4, similar to the one given in [1], which has length Θ(log n).
The edge t = (u, v) is an edge of the MST�(S) where t is a diagonal of the square Q that
defines the edge t in DT�(S). Let n = 2m + 2 for some m ∈ N. Let x be a point below Q

such that all the n− 1 edges of the initial tree T are incident to x and the edges that are not
incident to u and v are vertical edges, i.e., edges crossing the top and bottom sides of Qt. We
order the vertical edges e1, e2, . . . en−3 from left to right, refer to Figure 4. The edges with
odd index have length `. For i = 2, . . . , m, the length of the edge ej where j ≡ 2i modulo
2i+1 is `

3i−1 . Notice that at step i− 1, the longest edges of Ti−1 are the edges with length
`

3i−1 and these edges are the only ones of Ti−1 not present at Ti for 1 ≤ i < m. Indeed, let
ek = (a, x) be a vertical edge crossing t in Ti−1 where k 6≡ 2i modulo 2i+1, then ||e||∞ ≤ `

3i−1 .
Then any xa-path different from (x, a) would contain an edge with length 2`

3i−1 , refer to
Figure 5. Also, the edges ej where j ≡ 2i modulo 2i+1 disappear at stage i− 1, since there
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exists a path between ej ’s endpoints with edges shorter than ej , refer to Figure 5. Hence the
tree undergoes m + 1 = log2(n− 2) + 1 iterations.

a

u

v
x

e2 e6

u

v

x

ek

t

Figure 5 The dashed edges have length ||e||∞ = 2`
3i−1 and all the xa-paths different from (x, a)

contain one of the endpoint different from x of e2 or e6.

I Theorem 3.3. There exists a point set S and T ∈ TS, such that the sequence T0, T1, . . . , Tk

with T0 = T, Ti = MST�(CDT�(Ti−1)) and Tk = MST�(S) has length Θ(log n).

4 Conclusions

We have extended the convergence of sequences of crossing-free spanning trees for the L2
metric [1] to the L∞ metric. We have also given an Ω(log n) lower bound for the maximum
length of these sequences. In the full version of this paper, which is in preparation, we
show that every sequence T0, . . . , Tk has length O(log n), but due to space limitations we
cannot include more details here. We also believe that the same techniques can be applied
to other Delaunay triangulations defined by regular polygonal shapes. However, the diffi-
culty is that we have to consider many different cases because of the different variations of
edges crossing such polygons (for squares we only had to consider vertical and diagonal edges).

Acknowledgments. The authors thank Vera Sacristán for useful comments and discussions.
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Abstract
Partial edge drawing (PED) is a drawing style for non-planar graphs, in which edges are drawn
only partially as pairs of opposing stubs on the respective end-vertices. In a PED, by erasing
the central parts of edges, all edge crossings and the resulting visual clutter are hidden in the
undrawn parts of the edges. We study symmetric partial edge drawings (SPEDs), in which the
two stubs of each edge are required to have the same length. It is known that maximizing the ink
(or the total stub length) when transforming a straight-line drawing with crossings into a SPED is
tractable for 2-plane input drawings, but generally NP-hard. We show that the problem remains
NP-hard even for 3-plane input drawings. Yet, for k-plane input drawings whose edge intersection
graph forms a collection of trees or cacti we present efficient algorithms for ink maximization.

1 Introduction

Visualizing non-planar graphs as node-link diagrams is challenging due to the visual clutter
caused by edge crossings. The layout readability deteriorates as the edge density and thus
the number of crossings increases. Therefore alternative layout styles are necessary for
non-planar graphs. A radical approach first used in applied network visualization work by
Becker et al. [1] is to start with a traditional straight-line graph drawing and simply drop
a large central part of each edge and with it many of the edge crossings. This idea relies
on the closure and continuation principles in Gestalt theory, which imply that humans can
still see a full line segment based only on the remaining edge stubs by filling in the missing
information in our brains. User studies have confirmed that such drawings remain readable
while reducing clutter significantly [6, 7].

(a) (b)

Figure 1 A straight-line graph drawing (a)
and a maximum-ink symmetric partial edge
drawing (b) of the same graph.

The idea of drawing edges only partially has
been formalized in graph drawing as follows [5].
A partial edge drawing (PED) is a graph drawing
that maps vertices to points and edges to pairs of
crossing-free edge stubs of positive length point-
ing towards each other. These edge stubs are
obtained by erasing one contiguous central piece
of the straight-line segment connecting the two
endpoints of each edge. In other words each
straight-line edge is divided into three parts, of
which only the two outer ones are drawn (see
Fig. 1). More restricted and better readable [2] variations of PEDs are symmetric PEDs, in
which both stubs of an edge must have the same length (see Fig. 1(b)), and homogeneous
PEDs, in which the ratio of the stub length to the total edge length is the same for all edges.
Symmetric stubs facilitate finding adjacent vertices due to the identical stub lengths at both
vertices, and symmetric homogeneous stubs additionally indicate the distance at which to
find a neighboring vertex. The natural optimization problem in this formal setting is ink
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
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maximization, i.e., maximizing the total stub length, so that as much information as possible
is given in the drawing while all crossings disappear in the negative background space.

We study the ink maximization problem for symmetric partial edge drawings (SPEDs)
with a given geometric input drawing. This problem is known as MaxSPED. Bruckdorfer
and Kaufmann [5] presented an integer linear program for solving MaxSPED. Later,
Bruckdorfer et al. [4] gave an O(n logn)-time algorithm for MaxSPED on the class of
2-plane input drawings (no edge has more than two crossings), where n is the number of
vertices, and an efficient 2-approximation algorithm for the dual problem of minimizing
the amount of erased ink for arbitrary input drawings. Bruckdorfer [3] further gives an
NP-hardness proof for MaxSPED.

Contribution. We extend the results of Bruckdorfer et al. [4] on 2-plane geometric graph
drawings to k-plane graph drawings for k > 2. In particular, we show that MaxSPED is
NP-hard even for 3-plane input drawings. However, for k-plane graph drawings whose edge
intersection graphs are collections of trees or cacti (which have maximum degree k), we give
polynomial-time algorithms for solving MaxSPED.

2 Preliminaries

Throughout the paper let G be a simple graph with edge set S = {s1, . . . , sm} and Γ a
straight-line drawing of G in the plane. We call Γ k-plane if every edge si ∈ S is crossed
by at most k other edges from S in Γ. We use the terms edge in S and segment in Γ
interchangeably. Hence we can also interpret S as a set of line segments.

The intersection graph C = (V,E) of Γ is the graph containing a vertex vi in V for every
si ∈ S and an edge vivj ∈ E between vertices vi, vj ∈ V if the corresponding edges si, sj ∈ S
intersect in Γ. We also denote the segment in S corresponding to a vertex v ∈ V by s(v).
Observe that the intersection graph C of a k-plane drawing Γ has maximum degree k. Using
a standard sweep-line algorithm, computing the intersection graph C of a set of m line
segments takes O(m logm+ |E|) time [8], where |E| is the number of intersections.

A symmetric partial edge drawing (SPED) D of Γ draws a fraction 0 < fs ≤ 1 of each
edge s = uv ∈ S by drawing two symmetric edge stubs at u and v of length fs · |s|/2 each.
No two stubs in D may intersect. The ink or ink value I(D) of a SPED D is the total
stub length I(D) =

∑
s∈S fs|s|. In the problem MaxSPED, the task is to find for a given

drawing Γ a SPED D∗ such that its ink I(D∗) is maximum over all SPEDs.

3 Hardness of MaxSPED for k ≥ 3

In this section we close the gap between the known hardness of MaxSPED [3] and the
polynomial-time algorithm for 2-plane drawings [4] as stated in the following theorem.

I Theorem 3.1. MaxSPED is NP-hard even for 3-plane graph drawings.

Proof. We reduce from the NP-hard problem Planar 3-Sat [9] using similar ideas as in
Bruckdorfer’s sketch of the hardness proof for general MaxSPED [3]. Here we specify
precisely the maximum ink contributions of all gadgets needed for a satisfying variable
assignment. Our variable gadgets are cycles of edge pairs that admit exactly two maximum-
ink states. Finally we construct clause gadgets consisting of three pairwise intersecting edges
so that all crossings are between two edges only, while Bruckdorfer’s gadgets have multiple
edges intersecting in the same point. Let φ be a planar 3-Sat formula with n variables
{x1, . . . , xn} and m clauses {c1, . . . , cm}, each consisting of three literals. We can assume
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x1 = true

x2 = false

x3 = false

x1 ∨ ¬x2 ∨ x3

Figure 2 Example of three variable gadgets and a satisfied clause gadget. Dotted parts do not
belong to the SPED.

that φ comes with a planar drawing of its variable-clause graph Hφ, which has a vertex for
each variable xi and a vertex for each clause cj . Each clause vertex is connected to the three
variables appearing in the clause. In the drawing of Hφ all variable vertices are placed on a
horizontal line and the clause vertices connect to the adjacent variable vertices either from
above or from below the horizontal line. In our reduction (see Fig. 2) we mimic the drawing
of Hφ by creating a 3-plane drawing Γφ as a set of line segments of uniform length and a
value L such that Γφ has a SPED with ink at least L if and only if φ is satisfiable.

All segments in the gadgets are of length 5. We use pairs of intersecting segments,
alternatingly colored red and green. The intersection point of each red-green segment pair is
at distance 1 from an endpoint. Thus, the maximum amount of ink contributed by such a
pair is 7 (one full segment of length 5 and the other one with two stubs of length 1 each).

Each variable gadget is a cycle of segment pairs, with (at least) one pair for each occurrence
of the variable in φ, see Fig. 2. Observe that this cycle has exactly two ink-maximal SPEDs:
either all red edges are full segments and all green edges are length-1 stubs or vice versa. We
associate the configuration with green stubs and full red segments with the value true and
the configuration with full green segments and red stubs with the value false.

For each clause we construct a triple of mutually intersecting segments, see the gadget
on yellow background in the upper part of Fig. 2. Again, their intersection points are at
distance 1 from the endpoints. It is clear that in such a clause triangle at most one of the
three segments can be fully drawn, while the stubs of the other two can have length at most 1.
Hence, the maximum amount of ink in a SPED contributed by a clause gadget is 9.

Finally, we connect variable and clause gadgets in such a way that a clause gadget can
contribute its maximum ink value of 9 if and only if the clause is satisfied by the selected
truth assignment to the variables. For a positive (negative) literal, we create a path of even
length between a green (red) edge of the variable gadget and one of the three edges of the
clause gadget as shown in Fig. 2. The first edge s of this path intersects the corresponding
variable edge s′ such that s′ is split into a piece of length 2 and a piece of length 3, whereas
s is split into a piece of length 1 and a piece of length 4. The last edge of the path intersects
the corresponding clause edge with the same length ratios. The path itself consists of a chain
of red-green segment pairs, so each pair contributes an ink value of at most 7.

Since the drawing of Hφ has polynomial size, the number of segments created in the
reduction is polynomial. Further, no segment intersects more than three other segments, so
the constructed drawing is 3-plane.

For the correctness of the reduction, let L be the ink value obtained by counting 7 for each
red-green segment pair and 9 for each clause gadget. First assume that φ has a satisfying
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p(u)
s(u)

Figure 3 A segment s(u) with five intersecting segments and the different induced stub lengths.
The boxed stub lengths are considered in short(u) and do not affect p(u).

truth assignment and put each variable gadget in its corresponding state. For each clause,
select exactly one literal with value true in the satisfying truth assignment. We draw the
clause segment that connects to the selected literal as a full segment and the other two as
length-1 stubs. Recall that the literal paths are oriented from the variable gadget to the
clause gadget. Since the last segment of the selected literal path must be drawn as length-1
stubs, the only way of having a maximum contribution of that path is by alternating stubs
and full segments. Hence, the first segment of the path must be a full segment. But because
the variable is in the state that sets the literal to true, the intersecting variable segment is
drawn as two stubs and the path configuration is valid. For the two non-selected literals, we
can draw the last segments of their paths as full segments, as well as every segment at an even
position, while the segments at odd positions are drawn as stubs. This is compatible with
any of the two variable configurations and proves that we can indeed achieve ink value L.

Conversely, assume that we have a SPED with ink value L. By construction, every
red-green segment pair and every clause gadget must contribute its respective maximum ink
value. In particular, each variable gadget is either in state true or false. By design of the
gadgets it is straight-forward to verify that the corresponding truth assignment satisfies φ. J

4 Two polynomial special cases

Section 3 showed that MaxSPED is generally NP-hard for k ≥ 3. Now we consider the
special case that the intersection graph of the k-plane input drawing is a tree or a cactus. In
both cases we present polynomial-time dynamic programming algorithms. Let C = (V,E) be
the intersection graph of a given drawing Γ of a graph G as defined in Section 2. Let u ∈ V
and δ = deg(u). Then for the corresponding segment s(u) ∈ S there are δ + 1 relevant stub
pairs including the whole segment, see Fig. 3. Let `1(u), . . . , `δ(u) ∈ R+ be the stub lengths
induced by the intersection points of s(u) with the segments of the neighbors of u, sorted
from shorter to longer stubs. We define `0(u) as the length of the whole segment s(u).

4.1 Trees
Here we assume that C = (V,E) is a rooted tree of maximum degree k. We give a bottom
up dynamic programming algorithm for solving MaxSPED on C. For each vertex u ∈ V we
compute and store the maximum ink values Ti(u) for i = 0, . . . , δ with δ = deg(u) for the
subtree rooted at u such that s(u) is drawn as a pair of stubs of length `i(u). For u ∈ V let
p(u) denote the parent of u in C and let c(u) denote the set of its children. For u ∈ V let ip
be the index of the stub length `ip(u) induced by the intersection point of s(u) and s(p(u)).
We define the following two values, which allow us to categorize the stub lengths into those
not affecting the stubs of the parent and those that do affect the parent:

short(u) = max{T1(u), . . . , Tip(u)}
long(u) = max{T0(u), . . . , Tδ(u)}.
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Figure 3 highlights the stub lengths that are considered in short(u). We recursively define

Ti(u) = `i(u) +
∑

v∈c(u)

{
short(v) if s(u) with length `i(u) intersects s(v)
long(v) otherwise.

(1)

The correctness of Recurrence (1) follows by induction. For a leaf u in C the set c(u) is empty
and the correctness of Ti(u) is immediate. Further, short(u) = T1(u) and long(u) = T0(u)
are set correctly for the parent p(u). For an inner vertex u with degree δ we can assume by
the induction hypothesis that the values short(v) and long(v) are computed correctly for
all children v ∈ c(u). Each value Ti(u) for 0 ≤ i ≤ δ is then the stub length `i(u) plus the
sum of the maximum ink we can achieve among the children subject to the stubs of u being
drawn with length `i(u). Setting long(u) and short(u) as above yields the two maximum ink
values that are relevant for p(u).

Recurrence (1) can be solved naively in O(mk2) time, where m = |V |. Using the
order on the stub lengths we can improve this to O(mk) time by computing all Ti(u) for
one u ∈ V in O(k) time. Let u ∈ V be a vertex with degree deg(u) = δ. The values
T0(u) = `0(u) +

∑
v∈c(u) short(v) and T1(u) = `1(u) +

∑
v∈c(u) long(v) for the whole segment

s(u) and the shortest stubs can be computed in O(k) time each. Now Tj+1(u) can be
computed from Tj(u) in O(1) time as follows. Let vj be the neighbor of u that induces
stub length `j(u) and assume vj 6= p(u). In Tj(u) we could still count the value long(vj),
but in Tj+1(u) the stub length of u implies that vj can contribute only to short(vj). Then
Tj+1(u) = Tj(u)− long(vj) + short(vj). If vj = p(u), then the two values Tj(u) and Tj+1(u)
are equal as the corresponding change in stub length has no effect on the children of u.
Computing short(u) and long(u) clearly takes O(k) time.

So by solving Recurrence (1) in O(mk) time we find an optimal solution to the MaxSPED
problem on G with drawing Γ using standard backtracking from max{T0(r), . . . , Tdeg(r)(r)}
for the root r of C. Since the intersection graph C is a tree with O(m) edges it can be
computed in O(m logm) time and we obtain the following theorem.

I Theorem 4.1. Let G be a simple graph with m edges and Γ a straight-line drawing of G.
If the intersection graph C = (V,E) of G is a tree with maximum degree k ∈ N, then problem
MaxSPED can be solved in O(mk +m logm) time and space.

4.2 Cactus graphs
We now generalize our previous algorithm to cactus graphs. Due to space constraints we
provide only a sketch of the arguments and omit further details. Let the intersection graph
C = (V,E) be a cactus graph, i.e. a simple graph in which no edge e ∈ E is part of more than
one cycle. For a cactus graph C the block-cut tree is an arbitrarily rooted tree T = (V, E),
where V contains a node for every cycle and for every cut vertex in C. We call a node u ∈ V a
block node if it represents an induced cycle on vertices V (u) ⊆ V and an articulation node of
the cut vertex a(u) = v ∈ V otherwise. We have an edge uv ∈ E between a block node u and
an articulation node v whenever a(v) ∈ V (u) and an edge uv ∈ E between two articulation
nodes whenever a(u)a(v) ∈ E. We re-use the notation p(u) and c(u) to refer to the parent
and to the children of a node u ∈ V.

We further define for each node u ∈ V two indices ip(u) ≤ iq(u). For an articulation node
u, ip and iq are the indices corresponding to the stub lengths induced by the intersection
points of s(a(u)) and its neighbors in C among the vertex set of p(u). For a block node u,
ip and iq are the indices corresponding to the intersection points of the parent’s segment
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s(a(p(u))) with its neighbors in V (u). Similar to Section 4.1 we now define three values for
each articulation node u ∈ V with degree δ:

long(u) = max{T0(u), . . . , Tδ(u)}
mid(u) = max{T1(u), . . . , Tiq (u)}

short(u) = max{T1(u), . . . , Tip(u)}.

Further, we define the recurrence Ti(u) for all articulation nodes u ∈ V:

Ti(u) = `i(a(u)) +
∑

v∈c(u)





Tip(v)(v) if 1 ≤ i < ip(v)
Tiq(v)(v) if ip(v) < i ≤ iq(v)
T0(v) otherwise.

(2)

For a block node u ∈ V we cut open the cycle it represents at vertex a(p(u)) (refer to
Bruckdorfer et al. [4] for details) and consider the three relevant stub lengths of the parent’s
segment s(a(p(u))) induced by ip(u) and iq(u) and the whole segment. The resulting subgraph
is a path on V (u) with attached children that are articulation vertices in T , so we can apply
our algorithm of Section 4.1 with minor modifications. Once all values in the subgraph of
block node u are computed, we can derive the values Ti(u) for the block node u.

Correctness can be proved by modifying the inductive arguments of Section 4.1 accordingly.
Combining the linear running time for cycles of Bruckdorfer et al. [4] with the running time
for trees of Theorem 4.1 we can argue that cactus graphs can in fact be handled in the same
time and space bounds as trees.

I Theorem 4.2. Let G be a simple graph with m edges and Γ a straight-line drawing of G.
If the intersection graph C = (V,E) of G is a cactus with maximum degree k ∈ N, problem
MaxSPED can be solved in O(mk +m logm) time and space.
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Abstract
Given n sites in the plane, their Euclidean minimum spanning tree (EMST), is the minimum

spanning tree with the sites as vertices, where the weight of the edge between two sites is their
Euclidean distance. In this paper, we revisit this problem, and design algorithms to compute the
EMST in a limited-workspace model. In this model the input of size n lies in a random access
read-only memory. The output has to be reported sequentially, and it cannot be accessed or
modified. In addition, there is a read-write workspace of O(s) words, where s ∈ {1, . . . , n} is a
given parameter. We present an algorithm that computes EMST using O(n3 log s/s2) time and
O(s) words of workspace. Using the fact that EMST is a subgraph of the bounded-degree relative
neighborhood graph (RNG), we apply Kruskal’s MST algorithm on RNG. To achieve this with
limited workspace, we introduce a compact representation of planar graphs, called an s-net which
allows us to manipulate RNG’s component structure during the execution of the algorithm.

1 Introduction

A significant amount of research was focused on the design of algorithms using few variables.
Many of them dating from the 1970s, when memory used to be an expensive commodity.
While in recent days the cost has been substantially reduced, the amount of data has increased,
and the size of some devices has been dramatically reduced. Sensors and small devices,
where larger memories are neither possible nor desirable, have proliferated in recent years.
Moreover, even if a device is procured with a large memory, it might still be preferable to
limit the number of write operations, since they are slow and costly. Therefore, while many
memory-constrained models exist, the general scheme is the following: the input resides in a
read-only memory where data cannot be modified by the algorithm. The algorithm is allowed
to store a few variables to solve the problem. These variables reside in a local memory and
can be modified as needed (usually called workspace). Since the output may also not fit in
our local memory, the model provides us with a write-only memory where the desired output
is sequentially reported by the algorithm.

In general, one might consider algorithms that are allowed to use a workspace of O(s)
words for some parameter s, where a word is a collection of θ(logn) bits. The goal is then
to design algorithms whose running time decreases as s increases, and that provides a nice
trade-off between workspace size and running time.

Asano et al. [1] proposed an algorithm to compute the EMST of a set of n given sites in
O(n3) time using a workspace of O(1) words. In this paper, we provide an algorithm that
computes the EMST in O(n3 log s/s2) time using O(s) words of workspace. This algorithm
provides a smooth transition between the O(n3) time algorithm [1] with constant words of
workspace and the O(n logn) time algorithm [2] using a workspace of O(n) words.

∗ Supported in part by DFG project MU/3501/2 and by the ETH Postdoctoral Fellowship.
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u
v

Du

Dv

Figure 1 The graph RNG for a set of sites. The disk Du (resp. Dv) is centered at u (resp. v)
and passes through v (resp. u). The edge uv is in RNG, since there is no site in the lens Du ∩ Dv.

2 Preliminaries and Definitions

Let V be a set of n points (sites) in the plane. The Euclidean minimum spanning tree of V ,
EMST(V ), is the minimum spanning tree of the complete graph G on V , where the edges
are weighted by the Euclidean distance between their endpoints. We assume that V is in
general position, i.e., the edge lengths in G are pairwise distinct, thus EMST(V ) is unique.
Given V , we can compute EMST(V ) in O(n logn) time using O(n) words of workspace [2].

The relative neighborhood graph of V , RNG(V ), is the undirected graph with vertex set V
obtained by add an edge between any two sites u, v ∈ V if and only if the intersection of the
two disks centered at u or v and passing through the other one, which is called the lens of u
and v, is empty of sites in V [7]; see Figure 1. A plane embedding of RNG(V ) is obtained by
the straight line drawing of the edges. Furthermore, the maximum degree of RNG(V ) is six
and so, the number of edges of RNG(V ), which is denoted by m, is O(n). It is well-known
that EMST(V ) is a subgraph of RNG(V ). This implies that RNG(V ) is connected. Given
V , we can compute RNG(V ) in O(n logn) time using O(n) words of workspace [5–7].

Recall the classic algorithm by Kruskal to find EMST(V ) [4]: start with an empty forest
T , and consider the m = O(n) edges of RNG(V ) one by one, by increasing weight. In each
step, insert the current edge e = vw into T iff there is no path between v and w in T . In the
end, T is EMST(V ). This takes O(n logn) total time and O(n) words of workspace.

Let s ∈ {1, . . . , n} be a parameter, and let V be a set of n sites in general position (as
above) in a read-only array. The goal is to find EMST(V ), with O(s) words of workspace.
We use RNG(V ) in order to compute EMST(V ). By general position, the edge lengths in
RNG(V ) are pairwise distinct. Thus, we define ER = e1, . . . , em to be the sorted sequence
of the edges in RNG(V ), in increasing order of length. For i ∈ {1, . . . ,m}, we define RNGi

to be the subgraph of RNG(V ) with vertex set V and edge set {e1, . . . , ei−1}.
In the limited workspace model, we cannot store RNGi explicitly. Instead, we resort to

the computing instead of storing paradigm [1]. That is, we completely compute the next
batch of edges in ER whenever we need new edges of RNG(V ) in Kruskal’s algorithm. To
check whether a new edge ei ∈ ER belongs to EMST(V ), we need to check if ei connects
two distinct components of RNGi. To do this with O(s) words of workspace, we will use a
succinct representation of its component structure; see below. In our algorithm, we represent
each edge ei ∈ ER by two directed half-edges. The two half-edges are oriented in opposite
directions such that the face incident a half-edge lies to the left of it. Obviously, each
half-edge in RNGi has an opposing partner. However, in our succinct representation, we will
rely on individual half-edges. We denote directed half-edges as −→e , and undirected edges as e.
For a half-edge −→e = −→uv with u, v ∈ V , we call v the head of −→e , and u the tail of −→e .
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Figure 2 A schematic drawing of RNGi is shown in black. The face-cycles of RNGi are shown in
gray. All the half-edges of a face-cycle are directed according to the arrows.

3 The Algorithm

In Lemma 3.1 we compute batches of edges of RNG(V ) using O(s) words of workspace. Then
using this lemma we enumerate the edges of RNG(V ) by increasing lengths, in Lemma 3.2.

I Lemma 3.1. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. Given a set Q ⊆ V of s sites, we can compute for each u ∈ Q the at most
six neighbors of u in RNG(V ) in total time O(n log s), using O(s) words of workspace.

Proof. Let Vj ⊆ V , j = 1, . . . dn/se, be the j-th batch of s sites of V . In the first step,
we compute RNG(Q ∪ V1) with standard algorithms in O(s log s) time using O(s) words of
workspace. We store N1, the set of all neighbors in RNG(Q ∪ V1) of all sites in Q. Then, in
each step j 6= 1, we compute RNG(Q ∪ Vj ∪Nj−1) in O(s log s) time using O(s) words of
workspace. We store Nj , the set of all neighbors in RNG(Q ∪ Vj ∪Nj−1) of all sites in Q.
Since the degree of sites in Q is at most six, |Nj | = O(s). Notice that for a pair u ∈ Q, v ∈ V ,
if v is not among the neighbors of u in Ndn/se, at some step there was a site in the lens of u
and v. Thus, only the sites in Ndn/se define edges of RNG(V ). However, all of them are not
necessarily the neighbors of sites of Q in RNG(V ). To filter these neighbors, we again scan
V in batches of size s: for each u ∈ Q, we test if the lens between u and each of its neighbors
in Ndn/se is empty of sites of V . After scanning V , the candidates with empty lens define
neighbors of u in RNG(V ). Since we use O(s log s) time per step, the claim follows. J

I Lemma 3.2. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. Let ER = e1, . . . , em be the sequence of edges in RNG(V ), by increasing
length. Let i ≥ 1. Given ei−1 (or null, if i = 1), we can find ei, . . . , ei+s−1 (or ei, . . . , em, if
i+ s− 1 > m), in O(n2 log s/s) time using O(s) words of workspace.

Proof. We generate all the edges of RNG(V ) by applying O(n/s) times Lemma 3.1. Since,
we obtain the edges in batches of size O(s), each taking O(n log s) time, the total time
amounts to O(n2 log s/s). During this process, we find ei, . . . , ei+s−1 of ER with a trick by
Chan and Chen [3]. More precisely, whenever we produce new edges of RNG(V ), we store the
edges that are longer than ei−1 in an array A of size O(s). Whenever A contains more than 2s
elements, using a linear time selection procedure, we find the edge with rank s, and we remove
all edges lorger than that [4]. This needs O(s) operations per step, repeating for O(n/s)
steps, giving total time O(n) for selecting the edges. In the end, we have ei, . . . , ei+s−1 in A,
albeit not in sorted order. Thus, we sort the final A in O(s log s) time. The running time is
dominated by the time needed to compute the edges of RNG(V ), so the claim follows. J

For i ∈ {1, . . . ,m}, a face-cycle in RNGi is the circular sequence of half-edges that bounds
a face in RNGi. All half-edges in a face-cycle are oriented in the same direction, and RNGi

can be represented as a collection of face-cycles; see Figure 2. Asano et al. [1] observe that
to run Kruskal’s algorithm on RNG(V ), it suffices to know the structure of the face-cycles.
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ej

u

v
p(u)

p(v)

s(u)

s(v)

Figure 3 A schematic drawing of RNGi. The endpoints u and v of ej identify the predecessors
of ej , shown by p(u) and p(v) in green, and the successors of ej , shown by s(u) and s(v) in blue.

I Observation 3.3. Let i ∈ {1, . . . ,m}. The edge ei ∈ ER belongs to EMST(V ) if and only
if there is no face-cycle C in RNGi such that both endpoints of ei lie on C.

For j ≥ i ≥ 1, we define predecessor (successor) of ej in RNGi, regarding each endpoint w
of ej , as the half-edge in RNGi which has w as its head (tail) and is the first edge encountered
in a counterclockwise (clockwise) sweep from ej around w; see Figure 3. If there is no edge
incident to w in RNGi, we set null to the predecessor p(w), and successor s(w), of ej . Here,
we can already derive a simple time-space trade-off for computing EMST(V ).

I Theorem 3.4. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. We can output all the edges of EMST(V ), in sorted order, in O(n3 log s/s)
time using O(s) words of workspace.

Proof. Let ER = e1, . . . , em be the edges of RNG(V ), sorted by length. We simulate
Kruskal’s algorithm on ER: take batches of s edges of ER and report the ones which are in
EMST(V ). More precisely, we use Lemma 3.2 to find a batch of s edges ei, . . . , ei+s−1, in
O(n2 log s/s) time. For each such edge ej , we pick an endpoint uj ∈ V and we find first its
incident edges in RNG(V ) (Lemma 3.1), and then its incident edges in RNGj (compare the
edges from RNG(V ) with ej). Then, we identify the successor s(uj) of each ej in RNGj (if it
exists), and we perform s parallel walks, where walk j takes place in RNGj . In each step, we
have s current half-edges and we advance each half-edge along its face-cycle, using Lemma 3.1
in O(n log s) time. A walk j continues until either it encounters the other endpoint of ej

or until it arrives at the predecessor p(uj) of ej in RNGj . Only in the latter case, ej is in
EMST(V ), and we report it. Since there are O(n) half-edges in RNG(V ), it takes O(n) steps
to conclude all the walks. Thus, we can process a single batch of edges in O(n2 log s) time,
using O(s) words of workspace. Since we have O(n/s) many batches, the claim follows. J

For the case of linear space s = n, the running time of Theorem 3.4 is O(n2 logn), while
the classic algorithm takes O(n logn) time to find EMST(V ). The bottleneck in Theorem 3.4
is performing the walks in RNGj , that might take up to Ω(n) steps, leading to a running
time of Ω(n2 log s) for processing a single batch. To avoid this, we maintain a compressed
representation of RNGj that allows us to reduce the number of steps in each walk to O(n/s).

An s-net N for RNGi, i ∈ {1, . . . ,m}, is a collection of half-edges, called net-edges, in
RNGi such that: (i) each face-cycle in RNGi with at least bn/sc+ 1 half-edges contains at
least one net-edge; and (ii) for any net-edge −→e ∈ N , let C be the face-cycle of −→e in RNGi.
Then, between the head of −→e and the tail of the next net-edge on C, there are at least bn/sc
and at most 2bn/sc other half-edges on C. Note that the next net-edge on C after −→e could
be possibly −→e itself. This implies that face-cycles with less than bn/sc edges contain no
net-edges. The following observation records two important properties of s-nets.
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Figure 4 (a) A schematic drawing of RNGi is shown in gray. The half-edges of N are in black
and the edges of the next batch Ei,s are dashed red segments. (b) The auxiliary graph H including
the batch-edges (in red). The graph H contains the net-edges (in black), and the successors of the
batch-edges and the compressed edges (which are combined in green paths in this picture).

IObservation 3.5. Let i ∈ {1, . . . ,m}, and N be an s-net for RNGi. Then, (N1) |N | = O(s);
(N2) let −→f be a half-edge of RNGi, and C be the face-cycle that contains it. Then, it takes
at most 2bn/sc steps along C from the head of −→f until either a net-edge or the tail of −→f .

Proof. Property (ii) implies that only face-cycles of RNGi with at least bn/sc+ 1 half-edges
contain net-edges. Furthermore, on these face-cycles, we can uniquely charge Θ(n/s) half-
edges to each net-edge, again by (ii). Thus, since there are O(n) half-edges in total, we have
the first statement. For (N2), note that if C contains less than 2bn/sc half-edges, the claim
holds trivially. Otherwise, C contains at least one net-edge, by property (i). Now, property
(ii) shows that we reach a net-edge in at most 2bn/sc steps from −→f . J

Now, we show how to use the s-net in order to speed up the processing of a single batch.

I Lemma 3.6. Let i ∈ {1, . . . ,m}, and let Ei,s = ei, . . . , ei+s−1 be a batch of s edges of ER.
Suppose we have an s-net N for RNGi in our workspace. Then, we can determine which
edges from Ei,s belong to EMST(V ), using O(n2 log s/s) time and O(s) words of workspace.

Proof. Let F be the set of half-edges that contains all net-edges from N , as well as, for
each batch-edge ej ∈ Ei,s, the two successors of ej in RNGi, one for each endpoint of ej . By
definition, we have |F | = O(s), and it takes O(n log s) time to compute F , using Lemma 3.1.
Now, we perform parallel walks through the face-cycles of RNGi, as in Theorem 3.4. We
have one walk for each half-edge in F , and each walk proceeds until it encounters the tail of a
half-edge from F (including the starting half-edge itself). In each step of these parallel walks
we need O(n log s) time to find the next edge on the face-cycle and then we need O(s log s)
time to check whether these new edges are in F . Since F contains N , by property (N2), each
walk finishes after O(n/s) steps. Thus, the total time for this procedure is O(n2 log s/s).

Next, we build an auxiliary undirected graph H as follows: the vertices of H are the
endpoints of the half-edges in F . Furthermore, H contains undirected edges for all the
half-edges in F and additional compressed edges representing the outcomes of the walks: if a
walk started from the head u of a half-edge in F and ended at the tail v of a half-edge in F ,
we add an edge from u to v in H, and we label it with the number of steps during the walk.
Thus, H contains F -edges and compressed edges; see Figure 4. After all the walks have been
performed, we can construct H in O(s) time, using O(s) words of workspace.

Next, using Kruskal’s algorithm we insert the batch-edges of Ei,s into H: we determine
the connected components of H, in O(s) time using depth-first search. Then, we insert
the batch-edges into H, one after another, in sorted order and we keep track of how the
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connected components of H change, using a union-find data structure [4]. Whenever a batch-
edge connects two different connected components, we output it as an edge of EMST(V ).
Otherwise, we do nothing. Note that even though H may have a lot more components than
RNGi, the algorithm is still correct, by Observation 3.3. This execution of Kruskal’s algorithm,
and updating the structure of connected components of H takes O(s log s) time, which is
dominated by the running time of O(n2 log s/s) from the first phase of the algorithm. J

The following lemma shows how to compute an s-net for RNGi+s, having an s-net for
RNGi and the graph H described in the proof of Lemma 3.6, for each i ∈ {1, . . . ,m}.
I Lemma 3.7. Let i ∈ {1, . . . ,m}, and suppose we have the graph H derived from RNGi as
above, such that all batch-edges have been inserted into H. Then, we can compute an s-net
N for RNGi+s in time O(n2 log s/s), using O(s) words of workspace.
Proof. By construction, all big face-cycles of RNGi+s, which are the faces with at least
bn/sc+ 1 half-edges appear as faces in H. Thus, by walking along all faces in H, and taking
into account the labels of the compressed edges, we can determine these big face-cycles in
O(s) time. The big face-cycles are represented through sequences of F -edges, compressed
edges, and batch-edges. For each such sequence, we determine the positions of the half-edges
for the new s-net N , by spreading the half-edges equally at distance bn/sc along the sequence,
again taking the labels of the compressed edges into account. Since the compressed edges
have length O(n/s), for each of them, we create at most O(1) new net-edges. Now that we
have determined the positions of the new net-edges on the face-cycles of RNGi+s, we perform
O(s) parallel walks in RNGi+s to actually find them. As it was explained in Theorem 3.4,
this can be done in O(n2 log s/s) time using Lemma 3.1. J

The following theorem provides a smooth trade-off between the cubic time constant
workspace algorithm and the classical O(n logn) time algorithm with O(n) words of workspace.
I Theorem 3.8. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. We can output all the edges of EMST(V ), in sorted order of length, in
O(n3 log s/s2) time using O(s) words of workspace.
Proof. This follows immediately from Lemma 3.6 and Lemma 3.7, because we need to
process O(n/s) batches of edges from ER. J
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Abstract
We generalize the offsetting process that defines straight skeletons of polygons to circular arc
polygons. The offsets and the associated skeleton are obtained by applying an evolution process
to the boundary and tracing the paths of vertices. These paths define the associated patch
decomposition. While the skeleton is a forest, the patches of the decomposition possess a radial
monotonicity property. Analyzing the events that occur during the evolution process is non-
trivial. This leads us to an event-driven algorithm for offset and skeleton computation. Several
examples (both manually created ones and approximations of planar free-form shapes by arc
polygons) are presented and used to analyze the performance of our algorithm.

1 Introduction

Arc polygon Polygon

Classical
offset

Mitered
offset

Figure 1 Comparison of classical and
mitered offsets.

We define mitered offsets and straight skeletons
for planar free-form shapes represented as circu-
lar arc polygons, see Fig. 1, which also provides
a comparison with classical offsets and polygons.

Offsets and skeletons of planar shapes are
widely used in shape analysis, shape design, mo-
tion planning, image processing and tool path
generation. Besides classical offsets, various gen-
eralizations have been considered.

The singularities and self-intersections of off-
set curves are closely related to the medial
axis [6], which is a particular skeleton, i.e., a
structural shape descriptor. Algorithms for com-
puting the medial axes of planar shapes are stud-
ied in several publications, see [1, 7].

In the case of piecewise linear shapes, mitered offsets provide an alternative to classical
offsets with enhanced shape-preserving properties around reflex vertices [9]. They are defined
procedurally, by specifying the evolution of the boundary of a shape as the offset distance
increases. Special attention has to be paid to topological changes of the offsets, which can
be classified into events.

An evolution is used in [3, 4, 8] to define the straight skeleton of simple polygons and
planar straight line graphs.

Circular arc polygons are potentially piecewise G1 smooth and possess a better ap-
proximation order than piecewise linear boundaries [5]. Algorithms for the approximate
conversion of general shapes into arc polygons are also well understood. The mitered offsets
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
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are again defined by specifying the evolution of the boundary, where the use of arcs leads
to a wider variety of events.

2 Definitions

We define offsets, and consequently the skeleton, for arc polygons P as the result of an
evolution of its boundary. Offsetting P means that the edges shrink or expand in radial
direction (parallel for straight line segments) with constant speed towards the interior of the
polygon. Simultaneously, the edges’ endpoints travel on certain paths, which are determined
by the evolution of the adjacent edges. This process is well-defined until we encounter (self-)
intersections or the boundary becomes disconnected, see splice event below. We introduce
events in order to obtain a globally consistent definition of trimmed offsets. More precisely,
we distinguish between four classes of events.

Vanish event An edge e of P vanishes. This happens if the two endpoint vertices of e
become coincident and the length of e shrinks to zero, see Fig. 4.

Terminal event These events occur if a connected component of P has three or fewer edges.
Depending on the situation, these events can be grouped into seven possible types, see
Fig. 2. The label kTv` of each type depends on the number k of involved edges and ` of
vanishing edges.

(a) Events 1Tv1, 2Tv0 and 2Tv2 (from left to right).

(b) Events 3Tv0, 3Tv1, 3Tv2 and 3Tv3 (from left to right).

Figure 2 Terminal events.

Contact event The arc polygon touches itself in its interior. There are three events of this
type (Fig. 3): A split event occurs when a reflex vertex hits an edge of P . Two touching
edges create a squeeze event. Finally, a bubble event happens when the endpoints of a
shrinking edge e meet while the length of that edge is not zero.

Circular edges can become disconnected during the offsetting process. Since this situation
was not encountered for straight skeletons, we need to introduce a new event:
Splice event A reflex vertex splices at the moment when the adjacent edges become tangen-

tial. The continuation of the evolution is not unique. We propose to close the gap in P
by inserting a semicircle that starts to expand, thereby creating two smooth vertices, see
Fig. 4. This solution ensures the property of local invertibility, which will be discussed
in the next section.

Terminal events play a role in the later stages of the evolution. In these situations, it is
common that three endpoints meet in a single point. While this might happen also in
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Figure 3 Split, squeeze and bubble event.

earlier stages of the evolution, we do not consider it as it has zero probability, i.e., it occurs
in non-generic cases only.

Most events are of local nature, since they involve only a small number of adjacent edges.
The only exceptions are split and squeeze events, which entail global modifications of the
polygon’s topology. Consequently we will distinguish between local and global events.

3 Properties and computation

Figure 4 Vanish event (left) and
splice event (right). The gray curve is
the offset. The dashed lines are part of
the skeleton.

The arc polygon P consists of N vertices vi (with
indices modulo N) connected by edges ei = vivi+1
in counterclockwise order. Each edge has a center
mi (possibly at infinity) and a radius ri (non-zero,
possibly infinite). Positive and negative values of the
radius correspond to arcs with counterclockwise and
clockwise orientation, respectively. Vertices with an
inner angle of π are called smooth. The path of a
vertex vi is a conic section and is determined by its
neighbor edges. Note that all edges can be straight
line segments, hence we include straight skeletons [3]
as a special case.

Due to the fact that our offsets are defined by an evolution process there is a local
invertibility: It is possible to reverse the evolution between two consecutive events. In
addition, it is possible to reverse the process when contact or splice events occur. However,
this does not hold for vanished edges. The local invertibility is not valid for classic offsets
where we would loose convex corners as shown in Fig. 5.

I Definition 3.1. The skeleton S of a circular arc polygon P is defined as the path of all
non-smooth vertices.

Figure 5 Local
invertibility.

Figure 6 shows an arc polygon P (black) and its skeleton (blue). The
extended skeleton is the union of S with the paths of all smooth vertices
(green). This extended skeleton together with P separates the domain
into disjoint patches, the so called patch decomposition P. In Fig. 6 there
is a hyperbolic part of S emerging from the reflex vertex. The upper part
of S from left to right, consists of a hyperbolic arc, an elliptic arc and
another hyperbolic arc, joined smoothly. The skeleton S is a forest and
has, in general, several connected components. It can be shown that S
has linear complexity. While this is rather obvious for straight skeletons
of polygons [3], the analysis is slightly more involved for circular arc
polygons, due to the presence of splice events.

EuroCG’18
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The straight skeleton possesses a monotonicity perpendicular to the defining edge, while
the patch decomposition P has radial monotonicity. That means, every radial line inter-
sected with its patch is connected (Fig. 6, red segments).

Figure 6 shows the skeleton S (blue)
and the paths of smooth vertices in
green. The radial red lines show the ra-
dial monotonicity property.

The skeleton S is a generalization of straight
skeletons. It is not obvious how to apply well known
principles like sweep-line and divide & conquer since
straight skeletons do not have a Voronoi structure [4].
The intuitive reason for this is that the velocity of
a vertex is determined by its inner angle. In fact,
the vertex velocity tends to infinity as the angle ap-
proaches zero. Instead, our approach is based on a
simulation of the event driven evolution that defines
mitered offsets.

Our main data structures consists of a list E con-
taining edges and vertices which represents P and an
event queue Q. Events are interlinked to edges and
vertices and stored in Q, ordered consecutively. The arc polygon P and its offsets are rep-
resented by patches on right circular cones in space-time, where the time has been added
as third (vertical) coordinate. The patch associated with the edge ei is denoted by ci. A
patch is represented by its boundary curves. Splice events create new edges and associated
patches. Vanish and terminal events trigger the deletion of edges from the arc polygon. At
this stage, the associated patch is complete.

Our algorithm takes P given as an edge list E and computes the skeleton and patch
structure. Initially, the event queue Q is populated by all local events that can be computed
from P . Now we loop over E as long as it is not empty. Each loop performs three steps:
First, computation of the next possible global event and comparison with the next local
event give us the next event e. Second, grow S and P until we reach the event. Third, the
event is handled (see details below). This may trigger the insertion of new local events into
Q.

The computation of events is done differently for local and global ones. All local events
are computed by intersecting cones in space-time, which represent the edges, and certain
planes. For instance, a splice event of vi is computed by analyzing the intersection ci−1 ∩
ci ∩ pi, where pi is the vertical plane defined by the points mi−1, mi.

While computing local events of edges or vertices requires knowledge about their local
neighborhood only, the computation of global events is more expensive since the entire
arc polygon P has to be considered. To speed up this computation, we use a sweep-line
algorithm over axis–aligned bounding boxes of edges and vertices of P .

The procedure for handling an event operates on E which represents P , the event queue
Q, the event e itself and the data structures holding the skeleton S and patches P.

1. Add/delete/split edges.
2. Reconnect edges properly such that there is no gap in P .
3. Update S and P.
4. Delete e from Q.
5. Q← Q ∪ {local events for edges having a new neighbour}

The splice event is necessary to close the gap of the polygon boundary if it breaks. We
suggested in Section 2 to do this at the latest possible point. However, an earlier splice is
achievable: The introduction of an angle σ, which is the inner angle of a reflex vertex v,
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allows us to control the splice behavior of P . Choosing σ = 2π results in the known splice
event. An angle of π < σ < 2π forces v to splice earlier and σ = π cause each reflex vertex to
splice immediately which results in classical offsets and the obtained skeleton is the medial
axis. The analysis of the algorithms’ complexity is still ongoing work. Experimental results
are provided in the next section.

4 Examples

We perform experiments with manually designed arc polygons as well as approximations of
planar free form shapes by circular arc polygons. These arc splines are created by spiral
biarcs following the approach described in [2]. The results are depicted in Fig. 7.

(a) The lion shape for σ = 180◦, 280◦, 320◦ and 360◦.
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(b) The examples easy, reflex and computation times.

Figure 7 Offsets of examples easy and reflex (left and center). Computation times (right) for
arc splines of different size representing these examples. As a reference, the black line indicates
O(N2 logN).

Figure 7a shows offsets of the lion shape, which is represented by spiral biarcs, for
various values of the splicing parameter σ. The leftmost picture visualizes the classical
offset. Increasing σ delays the occurring splice events, thereby preserving the reflex vertices.

The examples easy and reflex (Fig. 7b) are used to analyze the complexity of the
algorithm. Finally, we also include Fig. 8, containing straight line segments (arcs with
infinite radii) on the left. The right of Fig. 8 shows the skeleton (blue) and the paths of
smooth vertices (green).

The proposed algorithm has been implemented in Python 3.6 on an Intel i7-6700 CPU
machine with 8 GB RAM. We demonstrate experimentally that our algorithms’ complexity
does not exceed O(N2 logN) in practice: Figure 7b (right) shows the computation time in
seconds over the number of edges N for the easy and reflex examples. Both axes use loga-
rithmic scales. Since the graphs depicting the computation times for the two examples seem
to become tangential to the reference line (black) Fig. 7b supports the claimed complexity.

EuroCG’18
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Figure 8 Mitered offsets (left) and skeleton (right, blue).

5 Conclusion

We presented an extension of straight skeletons to shapes bounded by circular arc polygons.
Experimental results indicate that the proposed algorithm computes offsets and its skeleton
for N edges in O(N2 logN) time in practice. The size of the resulting skeleton is linear,
the patch decomposition possesses a radial monotonicity property and the offsets are locally
invertible. The introduction of the parameter σ allows us to control the inner angle at which
reflex vertices splice, thereby influencing the structure of the skeleton. Consequently, our
algorithm can be adapted to compute either the medial axis or the straight skeleton (for
polygons with only straight edges) as special cases. Finally we note that the algorithm can
be extended to general circular arc figures in the plane.
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Abstract
Given a set of colored points in the plane, we ask if there exists a crossing-free straight-line
drawing of a spanning forest, such that every tree in the forest contains exactly the points of one
color class. We show that the problem is NP-complete, even if every color class contains at most
five points, but it is solvable in O(n2) time when each color class contains at most three points.
If we require that the spanning forest is a linear forest, then the problem becomes NP-complete
even if every color class contains at most four points.

1 Introduction

Let P = {p1, . . . , pn} be a set of n points in the plane and let C = {C1, . . . , Ck} be a
partition of P into k sets of points, called color classes, such that every point belongs to
exactly one color class. We study the partition spanning forest problem which is defined as
follows: Is there a crossing-free straight-line drawing of a spanning forest F that consists of k
trees T1, . . . , Tk such that each tree Ti, 1 ≤ i ≤ k, contains exactly the points of the color
class Ci? Figure 1 shows an example with three color classes.

For k = 1, the problem is equivalent to finding a geometric spanning tree of P which
trivially always exists. Hence, several optimization versions of this problem have been studied
in the past; see Eppstein [4] for a survey. Bereg et al. [3] showed how to solve the problem
in O(n logn) time in the case of k = 2. Hiu and Schaefer [5] proved that it is NP-complete
to decide for two color classes A = {a1, . . . , an} and B = {b1, . . . , bn} whether there exists
an ordering π such that the geometric paths aπ1 , . . . , aπn

and bπ1 , . . . , bπn
are crossing-free.

Bereg et al. [2] asked for not necessarily straight-line Steiner trees for each color class of
minimum total length and gave a PTAS for k = 2 and a (k + ε)-approximation for k > 2.

In this paper, we analyze the complexity of the partition spanning forest problem for color
classes of bounded size. We give an O(n2)-time algorithm when each color class contains at
most three points (Sec. 2) and show that the problem is NP-complete for up to five points
per color class (Sec. 3); the complexity for four points remains open. In Section 4, we show
that the partition spanning linear forest problem, where each tree is required to be a path, is
NP-complete, even if every color class contains at most four points.

∗ This work started at the 14th European Research Week on Geometric Graph (GGWeek’17) in Vierhouten,
The Netherlands. This research was funded in part by Humility & Conviction in Public Life, a project
of the University Connecticut sponsored by the John Templeton Foundation.
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Figure 1 A solution to a problem instance with three color classes.

2 Color classes with at most three points

In the case where each color class of the input instance contains of at most three points,
the partition spanning forest problem can be solved in polynomial time. In fact, with this
restriction the problem can be formulated as a 2-SAT problem.

Assume that our point set P = {p1, . . . , pn} consists of n points. In the following we will
understand the color classes as subsets I ⊆ [n] := {1, . . . , n} of indices. For a point pi we
denote its color class by I(pi). We refer to the edges (pi, pj) where pi and pj are in the same
color class as the potential edges of the instance. Observe that an arbitrary choice of the
potential edges forms a solution to the problem (with at most three points per color class) if
and only if it satisfies the following conditions: (i) For each point pi, if |I(pi)| > 1, then at
least one potential edge incident to pi must be chosen. (ii) For any pair of potential edges
pipj and pkpl that intersect in the interior, at most one of them is chosen. (iii) For any color
class I with |I| = 3 one of the potential edges of that color is not chosen.

Observe that condition (iii) can be skipped, as any choice of potential edges satisfying
conditions (i) and (ii) can be extended to also satisfy (iii).

We model the possible choices of potential edges that satisfy conditions (i) and (ii) by a
2-SAT formula as follows. For each potential edge (pi, pj) there is a variable xij with the
interpretation that if xij is true, then the edge connecting pi to pj is not chosen as part of
the solution, and otherwise it is.

Conditions (i) and (ii) can be expressed as 2-SAT formulas using the variables xij as
follows. For condition (i), we create for each point pi the (sub)formula

∨
j∈I(pi)\{i} ¬xij .

Note that this is a 2-SAT formula since |I(pi) \ {i}| ≤ 2 by the assumption that each color
class has size at most three. For any two potential edges (pi, pj) and (pk, pl) that cross, we
add the clause xij ∨ xkl, thus enforcing condition (ii). It follows that the resulting 2-SAT
formula ϕ is satisfiable if and only if the original instance of the partition spanning forest
problem admits a solution. The formula has length at most O(n2) and can be constructed
in O(n2) time as well. By using an efficient algorithm for 2-SAT [1], we get the desired
algorithm. We summarize our construction in the following theorem.

I Theorem 1. The partition spanning forest problem for n points can be solved in O(n2)
time if every color class contains at most three points.

3 Color classes with at most five points

In this section we prove the following theorem:

I Theorem 2. The partition spanning forest problem is NP-complete, even if every color
class contains at most five points.

The problem is obviously contained in NP. In order to show the NP-hardness, we perform
a polynomial-time reduction from Planar 3-Satisfiability. In this NP-hard [7] special
case of 3SAT the input is a 3SAT formula ϕ whose variable–clause graph is planar. We can
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Figure 2 (a–c) The configurations of the wire gadget and (d) the splitting gadget.

assume that such a formula is given together with a contact representation R of ϕ [6]. Thus,
all variables are represented as horizontal line segments arranged on one line. Each clause c
is represented as an E-shape turned by 90◦ such that the three vertical legs of the E-shape
touch precisely the variables contained in c. For our reduction, we construct a set of colored
points that admits a partition drawing if and only if ϕ is satisfiable.
Overview. We introduce five types of gadgets. For each variable u we create a variable
gadget which admits exactly two distinct partition drawings. These drawings correspond
to the two truth states of u. Wire gadgets are used to propagate these states to the clause
gadgets, one of which is created for every clause c. The clause gadget of c ensures that gadget
configurations of the variables contained in c correspond to a truth assignment in which at
least one of the literals of c is satisfied. In order to connect our gadgets appropriately we
also require a splitting gadget, which splits one wire into two wires, and we require a gadget
that flips the state transported along a wire. We proceed by describing our gadgets in detail.
Note that different gadgets always use different color classes, even if we might give them the
same name in the construction (so there are many red color classes in an instance).
The wire gadget. The wire gadget consists of four color classes; see Figure 2. The points of
the red color class R = {r1, r2, r3} and the blue color class B = {b1, b2, b3} are arranged such
that the convex hulls of R and B intersect in the two points b1b2 ∩ r1r2 and b1b3 ∩ r1r3. As
a consequence, there are exactly two possible configurations for the red and blue spannings
trees which can be used in a partition drawing, see Figure 2a and Figure 2b. Either choice
uniquely determines the spanning tree of both the green color class G = (g1, . . . , g5) and the
orange color class O = (o1, . . . , o5), as the edges of the red and blue spanning trees obstruct
all other possible green and orange edges. Thus, there are exactly two possible partition
drawings of the wire gadget. In particular, these two drawings satisfy the following.

I Observation 3. Any partition drawing of the wire gadget either contains (i) the edges g1g2
and o1o2, but not the edges g1g3 and o1o3, see Figure 2a; or (ii) the edges g1g3 and o1o3, but
not the edges g1g2 and o1o2, see Figure 2b.

These two states (i) and (ii) may be propagated by creating chains of wire gadgets in which
the convex hulls of consecutive gadgets intersect in two points as illustrated in Figure 2c.
Consider two consecutive wire gadgets in a chain. By Observation 3, either both gadgets
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Figure 3 The clause gadget between literals `1, `2, `3.
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x1 ∨ ¬x3 ∨ ¬x4

Figure 4 A full example.

are in state (i) or both gadgets are in state (ii) due to the way their convex hulls intersect.
As a consequence, the first gadget of the chain is in state (i) if and only if the last one is
in state (i) as well. Chains are flexible structures and turns can easily be implemented by
curving a chain. Further, the length of a chain may be adjusted by increasing or decreasing
the distance between consecutive wire gadgets.
Splitting and inverting. The splitting gadget consists of two color classes V = {v1, . . . , v5}
(violet) and P = {p1, . . . , p5} (purple) whose points are placed between two consecutive wires
W1,W2 in a chain, see Figure 2d. The functionality of these two color classes is similar to
the one of the color classes green and orange in the wire gadget: the state of W1 and W2
uniquely determines the spanning tree of both the violet and the purple color class. We may
now attach one or two additional wires perpendicular to the chain such that their convex
hulls intersect the convex hull of the splitting gadget, see W3 and W4 in Figure 2d. The
edges incident to p1 and v1 in the purple and violet spanning trees allow precisely one state
for both W3 and W4.

I Observation 4. In any drawing of the splitting gadget, the state of the wires W3 and W4
differs from the state of W1 and W2.

In this sense, the splitting gadget does not only split a wire into two wires, it can also be
used to flip the state propagated along a chain.
The variable gadget. The variable gadget is a horizontal chain to which we attach
multiple wires using splitters. The number of wires attached from the top (bottom) matches
the number of E-shape legs touching the variable from the top (bottom) in the contact
representation R of ϕ.
The clause gadget. The clause gadget for a clause of three literals `1, `2, `3 consists of one
color class with exactly five vertices c1, . . . , c5. We place c1, c2, and c3 inside a wire gadget
representing `1, `2, and `3, respectively, and we place c4 and c5 between those as depicted in
Figure 3. We will now show that the gadget is drawable if and only if at least one of `1, `2, `3
is true. In particular, we can always use an edge to connect c4 and c5. We can connect c3
to c4 if `3 is true and we can connect c3 to c5 otherwise; similarly, we can connect c2 to c5
if `2 = true and we can connect c2 to c4 otherwise. If `1 = true, then we can always
connect c1 to c5. However, if `1 = false, then we cannot connect c1 to c4 or c5, and we
can connect it to c2 or c3 only if `2 or `3 is true, respectively. Hence, the gadget is not
drawable if `1 = `2 = `3 =false. Note that the connection from c1 to c3 might intersect the
connection from c2 to c4. However, we only have to use it if `1 = `2 = false and `3 = true;
in this case, we can connect c2 to c3 instead of c4. Thus, the gadget is drawable if and only
if at least one of `1, `2, and `3 is true.
Layout and correctness. The wires that are attached to the variable gadgets are vertical
and, by Observation 4, their state is inverted, so they propagate the negated variable. Hence,
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Figure 5 The wire gadget.
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Figure 6 The splitting gadget and its assignments.

if a literal is positive, we have to invert the state of the wire again. Two of the wires are
supposed to enter the clause horizontally; for these two, if they correspond to a positive
literal, we simply use another splitting gadget to make the wire horizontal. Otherwise, the
wire makes a 90◦ degree turn to become horizontal and to propagate the negated variable.
The third wire is supposed to enter the clause gadget vertically, so if its literal is negative,
the vertical wire can directly connect to the clause. Otherwise, we use another splitting
gadget followed by a 90◦ degree turn. See Figure 4 for an example of that shows all cases.
Since the clause gadgets are drawable if and only if one of their literals is true and since the
wires propagate the states of the variable gadgets, the resulting instance is drawable if and
only if the planar 3SAT formula ϕ is satisfiable, which proves the correctness of Theorem 2.

4 Linear forests for color classes with at most four points

In this section we consider the additional restriction that the spanning forest is a linear forest,
that is, each connected component is a path. Note that, if every color class contains at most
three points, then every spanning forest is linear, so in this case we can solve the problem
in polynomial time. On the other hand, we show that under this additional restriction, the
problem is NP-complete already if every color class contains at most four points.

I Theorem 5. The partition spanning linear forest problem is NP-complete, even if every
color class contains at most four points.

Again, the problem is clearly contained in NP. In order to show the NP-hardness, we again
perform a polynomial-time reduction from Planar 3-Satisfiability, but using different
gadgets. As before, we construct a variable gadget, a splitting gadget, a wire gadget, and an
inverter gadget. Instead of directly constructing a clause gadget, we will however construct
an OR-gadget. The clause gadget can then be built by concatenating two OR-gadgets and
enforcing the resulting variable gadget to be set to true by crossing the appropriate edge
with a new color class consisting of two points.
The variable, wire, and inverter gadgets. The variable gadget consists of one color
class, the black color class X = {x1, x2, x3}. Using a second color class, the blue color class
B = {b1, b2, b3}, we can enforce that the edge x1x2 must be drawn in any partition drawing.
The classes B and X are placed in such a way that their convex hulls intersect in two points.
In particular, there are two distinct partition drawings for B and X, corresponding to two
truth states and x1x2 is present in both of them.

The wire gadget consists of four color classes, the red color class R = {r1, r2, r3, r4}
and the blue color class B = {b1, b2, b3}, and two black color classes X = {x1, x2, x3} and
Y = {y1, y2, y3}, see Figure 5. Classes B and X are placed as in the variable gadget. Class Y
is a copy of X, placed outside the convex hull of X and B. The point r1 is placed inside the
convex hull of B but outside the convex hull of X. The point r4 is placed inside the convex
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Figure 7 Assignments of the OR-gadget.

hull of Y and r2 and r3 are placed such that the line through them separates the convex
hulls of B and Y . Then, either partition drawing on X and B induces a unique partition
drawing of R and Y , where the drawing on Y is the same as the drawing on X.

Placing Y as a copy of B instead of X, i.e., with only one point in the convex hull of R,
we can also turn this gadget into an inverter gadget.
The splitting gadget. The splitting gadget consists of three variable gadgets X, Y , and Z,
and two additional color classes, the red color class R and the blue color class B, see Figure 6.
The truth assignment on X enforces some edges in R and B to be present, which then uniquely
determines the partition drawing on the whole gadget. Note that the truth assignments on Y
and Z are enforced as the negated truth assignment on X, so an additional inverter gadget
might be needed depending on the required literal.
The OR-gadget. The OR-gadget consists of three variable gadgets X, Y , and Z, and two
additional color classes, the red color class R and the blue color class B, see Figure 7. The
truth assignments on X and Y enforce some edges in R and B to be present. It can be seen
that the drawing of Z corresponding to the value true can only be drawn if X or Y are
also drawn corresponding to the value true. In some of these cases, Z could also be drawn
according to the value false, but this does not affect the proof as it is still true that the
constructed point set admits a partition drawing if and only if the planar 3SAT formula ϕ is
satisfiable.
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Protecting a highway from fire∗†
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Abstract
Suppose a fire spreads at speed 1 along a highway given by a horizontal line in the L1 plane. A

fighter is tasked to protect the highway by building barriers along or perpendicular to the highway
with a building speed v. The fighter can move without delay or additional costs between different
construction sites. We show that v > 1.5 is necessary and v > 2+

√
5√

5 = 1.8944 . . . is sufficient.

1 Introduction and problem statement

In fire fighting theory and practice, different tasks are important: quenching or enclosing
a fire, and protecting objects from fire; see [6]. Results in continuous and discrete models
differ significantly; see [1–5,7].

In our scenario, a horizontal highway of infinite length in the L1 plane must be protected
from a fire originating from (0, 0) at speed 1 in all directions. The highway is considered
as protected if no point on the highway is ever touched by the fire. For protection, a fire
fighter may build barriers at speed v while the fire is spreading. Barriers are impassable for
the fire, but can only be built at locations where the fire has not arrived, yet.

One way to protect the highway would be to enclose the fire by barriers in some fashion.
This model has been investigated e. g. by Bressan [2]. He considers a fighter that can build
arbitrary curves and is able to fly between construction sites without delay and free of costs.
For the L2 plane, he showed that a building speed of v > 1 is necessary and v > 2 is
sufficient. Despite serious effort, this gap is still open.

We discuss a different model and obtain better bounds, where v > 1.5 is necessary and
v > 1.8944 . . . suffices. In our model the flying fighter is tasked to protect the highway by
building barriers along, or perpendicular to, the highway in the L1 plane. Note that in this
model the highway is protected if we can guarantee that the barriers along the highway can
always be built before the fire arrives there. Thus, the purpose of the perpendicular barriers
is only to slow down the fire. Namely, the fire has to move up and down to overcome the
vertical barrier, while the fighter can set it up in one go; see e. g. barrier d2 in Figure 1.
This involves that d2 must be ready where the fire crawls upwards. However, it need not be
built a second time, when the fire crawls downwards along the backside. The question is,
whether these savings allow to improve on the naive approach, which only builds horizontal
barriers along the highway and obviously requires v ≥ 2.

2 Model

In our model, the highway is the x-axis and the fire originates from the point (0, 0) and
continuously expands over time equally in all directions with speed 1 according to the L1
metric. Since we allow the fire to start at the highway, we allow an arbitrarily small head-
start of barrier of length s into both directions along the highway.

∗ This work has been supported by DFG grant Kl 655/19 as part of a DACH project.
† We thank all anonymous reviewers of EuroCG for their valuable comments.
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A barrier set is described by two series of pairs (ai, bi) and (ci, di), one for each direction.
While ai and ci denote the distance to the previous barrier in the series (or to (0, 0) for i = 1),
bi and di denote the length of the vertical barrier; see Figure 1 for an example of a general
barrier set. Note that this barrier set also includes horizontal barriers along the highway.

A necessary condition for a barrier set solution with speed v can be obtained as follows.
Assume that the final system of barriers has been built and then the fire spreads. At any
moment of time t, the total amount of barrier consumed by the fire must not exceed v · t.
Here we consider a piece of the barriers as consumed, as soon as the fire has reached this
piece for the first time; see Figure 1.

highway (0,0)

a1
b1

a2

b2

a3

b3

c1
d1 c2

d2

c3

d3fire

s

Figure 1 A snapshot of the fire burning along a barrier set. Dashed lines mark the consumed
pieces of the barriers. The fire burns along barriers at 4 places, namely twice at b2 and once at a2
and d2. However, the current consumption is only 3, since the fire burning along the back of d2,
which had already been reached, does not count.

Thus, we define the total consumption and consumption-ratio for a barrier set S:

CS(t) := length of all pieces of barriers ∈ S consumed by the fire until time t
QS(t) := CS(t)

t .

As the fire spreads over the barrier set, it represents a geodesic L1 circle. At some points in
time, the structure of its boundary changes. Between such events, the derivative of CS(t) is
an integer given by the number of places, where the fire burns along a part of the barrier
set for the first time. We call this value k the current consumption and the time interval
between the events a k-interval. In Figure 1, there are four boundary points, but only three
of them count, thus the current consumption is 3.

Note that all these definitions can easily be restricted to either side of the barrier set,
e. g. denoted by QlS(t) and QrS(t). Obviously, QS(t) = QlS(t) +QrS(t).

A barrier set is then called viable for any speed v such that v > maxtQS(t). Viability
is necessary and sufficient, too, as Lemma 2.1 shows. Due to space limitations, we omit the
proof of this technical lemma.

I Lemma 2.1. For any barrier set that is viable for a speed v, there exists a building plan
for this barrier set with speed v + δ, where δ > 0 can be arbitrarily small.

The extra speed δ is required if we assume that the fighter cannot build single points and
has to build pieces of positive length one at a time instead.
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The question then obviously is: What is the minimum speed v for which a viable barrier
set exists?

3 A lower bound of v > 1.5

First, we show that not all possible barrier sets have to be considered.

I Lemma 3.1 (Increasing barrier lengths). For any barrier set S viable for a speed v, there
exists a barrier set consisting of vertical barriers of strictly increasing length in each direction
which is also viable for v. That is, bi+1 > bi and di+1 > di, ∀i ≥ 1.

Proof. Assume S contains a vertical barrier w2 that is at most as long as the previous one w1
in that direction. Then consider the barrier set S ′ = S \w2. Removing w2 does not decrease
the shortest L1 path from the fire origin (0, 0) to any point in the plane including points on
all other barriers, as those paths are prolonged by w1. However, w2 is no longer consumed
and hence the total consumption CS′(t) ≤ CS(t) for all t and therefore QS′(t) ≤ QS(t). J

I Theorem 3.2 (Lower Bound). There exists no viable barrier set for any speed v ≤ 1.5.

Proof. The idea of the proof is to show that the ratios Ql,rS (t) are always larger than 0.5,
for t greater than some threshold and sometimes exceed 1 for arbitrarily large t. We start
with the latter.

Assume there exists a barrier set S∗ which is viable for v < 1.5. For every time t0 > 0
there must exist some point in time t1 > t0, where the current consumption is at most 1.
Because the current consumption takes on integer values, it would otherwise be greater or
equal than 2 all the time, requiring speed v ≥ 2. Hence, at t1 at least for one of the directions
the current consumption is 0. This can only happen if the fire burns along the back of a
vertical barrier and has fully consumed all barriers previously touched in this direction. For
example, such a 0-interval can be seen at d2 in Figure 1.

W. l. o. g. assume this happens on the left-hand side. By Lemma 3.1, we can also assume
that barriers are strictly increasing in length in both directions. Consider the time t and
total consumption ClS∗(t) in the left direction at the beginning of a 0-interval.

t =
i∑

k=1
ak + bi + max(0, 2bi−1 − bi) ClS∗(t) =

i∑
k=1

ak +
i∑

k=1
bk − s

For an explanation of the max(0, 2bi−1 − bi) summand, see Figure 2.

ai ai

t t

bi > 2bi−1 bi−1 bi < 2bi−1 bi−1

Figure 2 The two possible configurations at the beginning of a 0-interval at time t. In the first
case, the fire reached the lower end of the bi barrier first, so the 0-interval starts exactly when the
upper end is reached. In the second case, the upper end was reached first, so the 0-interval begins
when the lower end is reached after additional time 2bi−1 − bi.
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Assume QlS∗(t) ≤ 1, then C
l
S∗ (t)
t ≤ 1 and ClS∗(t) ≤ t

⇒
i∑

k=1
ak +

i∑
k=1

bk − s ≤
i∑

k=1
ak + bi + max(0, 2bi−1 − bi)

⇒
i−2∑
k=1

bk + bi−1 + bi ≤ max(bi, 2bi−1) + s

Due to Lemma 3.1 bi−1 + bi > max(bi, 2bi−1) and
∑i−2
k=1 bk > (i − 2) · b1 > s for i larger

than some threshold i0. As the left-hand current consumption is 0 for arbitrarily large t, we
can assume i > i0. But this is a contradiction. Hence QlS∗(t) > 1 at the beginnings of all
0-intervals after some threshold t0 in the left-hand direction.

Hence for the whole barrier set S∗ to be viable for v < 1.5, the consumption-ratio
QrS∗(t) in the right-hand direction must be below 0.5 at exactly these moments. Hence for
the right-hand direction 0-intervals exist for arbitrarily large t.

The ends of those 0-intervals are local minima of that directions consumption-ratio.
Consider the time t and total consumption CrS∗(t) in the right-hand direction at the end of
such an interval.

t =
i∑

k=1
ck + di + min(ci+1, di) CrS∗(t) =

i∑
k=1

ck +
i∑

k=1
dk − s

For an explanation of the min(ci+1, di) summand, see Figure 3.

di < ci+1

di > ci+1

di+1 di+1

ci+1 ci+1

t t

Figure 3 The two possible configurations at the end of a 0-interval at time t. In the first case,
the 0-interval ends, when the fire reaches the highway, di time units after passing the top of the di

barrier. In the second case, the next barrier is reached before the highway, so the 0-interval ends,
ci+1 time units after passing the top of the di barrier.

Assume QrS∗(t) < 0.5, then C
r
S∗ (t)
t < 0.5 and 2 · CrS∗(t) < t

⇒ 2 ·
i∑

k=1
ck + 2 ·

i∑
k=1

dk − 2s <
i∑

k=1
ck + di + min(ci+1, di)

⇒
i∑

k=1
ck + 2 ·

i∑
k=1

dk < 2di + 2s⇒
i∑

k=1
ck + 2 ·

i−1∑
k=1

dk < 2s

As above
∑i−1
k=1 dk > (i−1)d1 > 2s for i larger than some threshold i0. Hence after some

threshold time t0, even at the local minima the consumption-ratio of the right-hand direction
is above 0.5, hence it is always above 0.5. Therefore QS∗(t) exceeds 1.5 for arbitrarily large t,
which makes S∗ not viable for v ≤ 1.5. J

4 A viable barrier set for v = 1.8944 . . .

Assume we want to construct a barrier set S improving on the naive strategy, which is viable
for v = 2. The consumption-ratio only decreases when the current consumption is below
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the current ratio. As the current consumption is an integer value, this only happens when
it is at most 1, which means we have a 0-interval in at least one direction. Hence we would
want these intervals to be as long as possible, which results in the following conditions:

ai+1 ≥ bi ∧ bi+1 ≥ 2bi ∀i ≥ 1
equivalently ci+1 ≥ di ∧ di+1 ≥ 2di ∀i ≥ 1

This forces the 0-intervals to always start exactly when the fire reaches the upper end of
a vertical wall and end when the fire reaches the highway again after burning along the
full length along the back of the already consumed vertical wall; see Figure 2 and 3. For
a single direction this results in a repeating cycle of time intervals as seen in Figure 4.
From our reasoning about the lower bound, we know that 0-intervals are necessary for both

0 1 3 1

bi ai+1 − bi bi bi+1 − 2bi bi+1

bi

bi+1

ai+1

0
1

3

1

Figure 4 A repeating time interval cycle. The values 0, 1 and 3 denote the current consumption
in this direction.

directions in order to achieve v < 2. The idea is to construct the barrier set in such a
way that the 0-intervals always appear in an alternating fashion, so the local maxima in the
consumption-ratio of one direction can be countered by the 0-intervals of the other direction.

Consider the periodic interlacing of time intervals as illustrated in Figure 5, where the
end point of the 0-interval from one direction coincides with the beginning of the 3-interval
of the other direction.

0 1 3 1

bi ai+1 − bi bi bi+1 − 2bi bi+1

011 13 3

di−1ci − di−1 di ci+1 − di di

0 1
left

right

di − 2di−1

t1 t2 t3 t4 t5 t6

1

Figure 5 The periodic interlacing of time intervals.

The current consumption is always greater than 1, since the 0-intervals do not overlap.
As we are trying to construct a barrier set viable for some v < 2, QS(t) must be smaller
than 2 at all times. Then, t1, t3 and t5 have to be local maxima, while t2, t4 and t6 have
to be local minima of QS(t). The idea to ensure that the global maximum of QS(t) stays
below 2 is to make all local maxima attain the same value µ and hope that it stays below 2.

So let µ := QS(t1). Then QS(t3) = µ if and only if, between t1 and t3, the ratio of
consumption over time interval length is also µ. Thus,

bi·(0+1)+di−1·(1+3)+(di−2di−1)·(1+1)
bi+di−1+di−2di−1

= µ

⇔ bi + 2di = µ(bi + di − di−1)

⇔ di = µ−1
2−µbi −

µ
2−µdi−1 .
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Similarly, by applying the same reasoning to t3 and t5, we obtain a second recursive formula
bi+1 = µ−1

2−µdi−
µ

2−µbi. Together these recursions can be represented by a matrix and solved
by applying standard techniques. The values for ai (and ci) can be expressed as linear
combinations of di and bi – see the interval between t2 and t4 (t4 and t6) in Figure 5.

Analysing the zeros of the characteristic polynomial indicates that this recursion has real
solutions for bi and di as long as µ ≥ (2+

√
5)/
√

5. For the limiting case µ = (2+
√

5)/
√

5 =
1.8944 . . . , we get bi =

(
2 +
√

5
)
di−1 =

(
2 +
√

5
)2
bi−1.

To prove the final theorem, it remains to find initial values to get the recursion started,
while maintaining QS(t) ≤ µ. Suitable values are

bi := s ·
(
2 +
√

5
)2i

µ := 2+
√

5√
5 ≈ 1.8944 c1 := (µ−2)d1+2s+b1

2−µ
di := s ·

(
2 +
√

5
)2i+1

a1 := s a2 := 2d1 + c1 − a1 − b1,

which results in intervals given in Figure 6. Note that all barrier lengths only depend on s.

t = 0

0

0 1

1 0 1

1 0

3

1

1 0

3

1

s b1

c1 − ss d1

a2 − b1

d1

b1 b2 − 2b1 b2 a3 − b2

d1c2 − d1

left

right

b1

Figure 6 Illustration of time intervals for a suitable starting situation.

I Theorem 4.1. The highway can be protected with speed v > µ = 2+
√

5√
5 = 1.8944 . . .

5 Conclusion

We have shown the first non-trivial bounds for the highway protection problem. One future
goal is to examine whether these results can be extended to more general barrier systems
and/or the L2 plane. We expect the analysis in the L2 plane to be more difficult, especially
finding the beginning and end times of the 0-intervals.
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Abstract
Given a set D = {d1, ..., dn} of imprecise points modeled as disks, the minimum diameter problem
is to locate a set P = {p1, ..., pn} of fixed points, where pi ∈ di, such that the furthest distance
between any pair of points in P is as small as possible. This introduces a tight lower bound on
the size of the diameter of any instance P . In this paper, we present a fully polynomial time
approximation scheme (FPTAS) for this problem that runs in O(n3ε−2) time, where the input is
a set of disjoint disks.

1 Introduction

One of the most extensively quantitative techniques used to deal with uncertainty of the
input is the Region-based model, where the input is a set R = {r1, r2, . . . , rn} of regions and
each region represents an imprecise point. In this model, the minimum diameter problem
was studied by Löffler and van Kreveld [1], who presented a PTAS in O(n3π/

√
ε) time, where

the uncertainty of the input was modeled by arbitrary disks. In the same paper, the authors
also presented an exact algorithm that runs in O(n logn) time and computes an upper bound
on the diameter (maximum diameter problem). Recently, a new approximation algorithm
was presented for this problem, where the uncertainty of the input is modeled by convex
objects in d-dimensional space [5]. The presented algorithm runs in O(2ε−d

ε−2dn3) time.
The minimum diameter problem is also studied in other models of uncertainty [2–4,6, 9].

Contribution. We formulate our problem as follows. We are given a set D ={
d1, d2, . . . , dn

}
of imprecise points modeled as disjoint disks; choose a set P = {p1, ..., pn}

of points, where pi ∈ di, such that the size of the diameter of P is as small as possible among
all choices for each pi.

As for the result, we present an FPTAS for this problem which runs in O(n3ε−2) time
(Section 3).

2 Preliminaries
αi

di−1

di+1
di

Figure 1 Critical sequence (gray
disks).

In terms of definitions and terminology, we will follow
Löffler and van Kreveld [1]. For a given set D ={
d1, d2, . . . , dn

}
of imprecise points modeled as disks,

an extreme disk di ∈ D has a line ` tangent to some
point on the boundary of di, where no other disk can have its interior completely on the
same side of di, unless it is tangent to `, as illustrated in Figure 1. The critical sequence ∆D

is the set of all extreme disks of D. Without loss of generality, suppose the elements of ∆D

are ordered clock-wise. The ordered set ∆D can be found in O(n logn) time [8].
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
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In the minimum diameter problem it is possible that the diameter occurs at several pairs
at the same time, and many points are involved in the diameter, such that moving any of
them would increase the distance between at least one pair of them. This property makes
the problem difficult (see Figure 3(right)). In this situation, the diameter constructs a graph,
the star graph. A star graph G is defined as G = (P ∗, E), where P ∗ = {b1, ..., bm} (m ≤ n)
is a collection of points, such that bi ∈ di for some i, and all the elements of E have equal
length, which is the optimal diameter and denoted by d∗. Since this is the diameter, no two
points can be more than |d∗| away from each other. It follows that all the elements of E
must intersect each other, and the path makes an angle of at most 60◦ at each vertex. Thus
the degree of each vertex of G can be at most two, and each element of P ∗ (with degree 2)
is in balance between its neighbors, that is, it could move closer to one neighbor but only
by moving further from the other neighbor. Note that we can remove any vertex in this
graph that can come closer to some element without moving further from another element.
Also notice that all n points could be involved in such a construction, where none of the
points can be moved without increasing the diameter. The elements of P ∗ are called bends.
Indeed, computing the exact positions of the bends is a difficult problem. Any two adjacent
disks on ∆D introduce a common tangent line (see Figure 1). The extreme arc αi of an
extreme disk di is defined by two disks di−1 and di+1 that are neighbors of di on ∆D, such
that the endpoints of αi are the touching points of the common tangent lines, as illustrated
in Figure 1. Note that αi is the part of the boundary of disk di that must contain bi. Let ri
and ci denote the radius and the center of di, respectively. The distance from a point x on
disk di to a disk dj is the minimum distance between x and any point on dj . The distance
between two arcs αi and αj (resp. two disks di and dj) is the minimum distance from any
point on αi (resp. di) to any point on αj (resp. dj).

I Observation 2.1. For a given set D of n unit disks with n ≥ 3, the smallest diameter |d∗|
is at least 0.28 and for n ≥ 7, |d∗| ≥ 2.

The observation can be easily proved by considering Figure 2.

I Lemma 2.2. Let D = {d1, ..., dn} be a set of disjoint disks, and let |αi| denote the size
of the constructed angle where the two lines through the endpoints of the extreme arc αi of
extreme disk di meet the center. Then

∑n
i=1 |αi| = 2π.

d∗
d∗

π
3

Figure 2 (left) For n ≥ 3, |d∗| ≥ 0.28.
(right) For n ≥ 7, |d∗| ≥ 2.

Cherry disks. For any disk di that shares bend
bi on the star graph, there always exist two other
disks dj , dk ∈ ∆D with j 6= k, such that bend bi is in
balance between them, that is bi could move closer to
one of them but only by moving further from the other
one. We call dj and dk the cherry disks of di. An
example is illustrated in Figure 3. If a disk di ∈ ∆D

does not have two cherry disks, di cannot introduce
a bend on the star graph. It is an interesting open
question to compute all the possible cherry disks efficiently, since then the minimum diameter
problem can be formulated as a second order cone program, and its optimal solution can be
computed in quadratic time [7]. This results in an O(n2n!) time exact algorithm.1

For any disk di ∈ ∆D, let eij and eik denote the intersection of disk di by line segments
cicj and cick, respectively (see Figure 3(right)), such that dj and dk are the cherry disks of

1 In a model of computation that we can exactly compute the roots of any constant degree polynomials.
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dj

dk
dj

dk

ci
eij

eik

eki

eji

bi

di

cj

di

Figure 3 (left) Extreme disk di ∈ D
has two cherry disks dj and dk. (right)
All the cherry disks of D; the con-
structed star graph on them is shown
in green. Bend bi is located in the inter-
val [eij , eik].

di. The points eij and eik are the startpoint and the endpoint of the arc on which bend bi
on αi is in balance between the cherry disks of di (which we will prove later). We denote
this interval by [eij , eik]. Obviously di is also a cherry disk for both dj and dk.

I Lemma 2.3. Let dj and dk with j < k denote the cherry disks of di. Then bi is located in
the interval [eij , eik].

Proof. Suppose this is false. Then bend bi is strictly located either before eij or after eik
(on the boundary of di). Consider the case where bi is strictly located before the position
eij (the other case is similar). In this case, at least bj is strictly located after eji (on the cw
ordering of the boundary of dj). But then the two disks (or even one) which determine the
position of bj on dj must be located between di and dj . Let dp and dq denote these disks.
Since bj is strictly located after eji, at least one of dp and dq is different from di. Clearly,
bibk, bjbp and bjbq are some edges of the star graph. But bjbp and bjbq never intersect the
edge bibk. This gives a contradiction with the fact that all the edges of the star graph are
pairwise intersecting. J

3 Minimum diameter problem
If the disks are not unit but still disjoint, Observation 2.1 holds if the smallest disk is a unit disk.

3.1 Unit disks
From Lemma 2.2 we know that if D consists of disjoint disks, the total sum of the angles of extreme
arcs equals 2π. First, suppose D consists of disjoint unit disks. We proceed by covering the boundary
of a unit disk U by all the extreme arcs of set ∆D, such that they just intersect at the endpoints,
as illustrated in Figure 4(a). This covering is indeed a translation transformation. We decompose
the boundary of U into smaller, equal-length sub-arcs by regularly inserting 2π/ε points. Then, for
any disk di, the added points on the boundary of U which is covered by αi will be transferred to
the boundary of di, as illustrated in Figure 4(a). Consequently the extreme arcs get divided into
sub-arcs of length at most ε.

Recall that P ∗ denote the optimal point set. Let P ′ = {p1, ..., pm} denote the optimal point set
restricted to the endpoints of the sub-arcs. The set P ′ minimizes the furthest distance between any
pair of points on P ′ among all possible choices for P ′ 2. Let d denote the diameter of P ′. As said
before, d∗ denote the optimal diameter of P ∗. We will show that d approximates d∗ within a factor
(1 + ε).

For any disk di ∈ ∆D, we define the optimal sub-arc α∗i that includes (if any) the bend bi. Also,
α∗i minimizes the difference of distances of the endpoints of α∗i to the approximated cherry disks of

2 We use the name P for the set of all the candidate points of set D, where P ′ ⊆ P . It is easy to observe
that the diameter d′ of P ′ equals the diameter d of P .

EuroCG’18



55:4

Figure 4 (a) Subdivisions
of the extreme arcs into sub-
arcs of length ε. (b-d) The
configuration of the approx-
imated diameter (gray) and
the optimal diameter (green).

ε

d∗ d

ε

d∗ d
d∗ d

(a) (b) (c) (d)

θ1

θ2

U

di, where the diameter which realizes by this selection of α∗i , is as small as possible. Note that in
the optimal solution, the length of each α∗i equals 0.

We will postpone the discussion of computing the optimal sub-arcs, and we first consider how
set P ′ approximates the minimum diameter. Note that the optimal diameter d∗ at least equals the
largest distance between any two optimal sub-arcs (where the distance between two arcs αi and αj
is the minimum distance from any point on αi to any point on αj). Thus, we show that for any
two optimal sub-arcs which include the vertices of the potential minimum diameter, the ratio of the
smallest distance to the furthest distance equals (1 + ε). There exist two configurations to consider
the ratio of the smallest distance to the furthest distance of a pair of optimal sub-arcs.

The case where d and d∗ intersect each other (see Figure 4(b)). Let d1 and d2 (resp. d∗1 and d∗2)
denote the two segments which are determined on d (resp. d∗) by intersection with d∗ (resp. d),
such that d1 and d∗1 form a triangle, where the endpoints of its base are located on an optimal
sub-arc.
Since the length of the optimal sub-arc is at most equal to ε, by the triangle inequality we have
|d∗1|+ ε > |d1| and |d∗2|+ ε > |d2|, and since |d∗| ≥ 2, |d| ≤ |d∗|(1 + ε).
The case where d and d∗ do not intersect each other, in which case d∗ selects its two vertices
at the endpoints of its optimal sub-arcs, or d∗ selects one vertex at the middle of one of its
optimal sub-arcs (as illustrated in Figure 4(c,d)). Let θ1 and θ2 denote the angles between d
and (tangents of) the optimal sub-arcs, then |d| ≤ ε(cos θ1 + cos θ2) + |d∗|. This again gives us
|d| ≤ |d∗|(1 + ε).

Computing the optimal sub-arcs. Let m denote the number of extreme disks of D. We show
that for any disk di ∈ ∆D, we can find α∗i efficiently. For any disk di ∈ ∆D we first select point pi
which is chosen to be one of the endpoints of the sub-arcs of αi. This is the initialization of set P ′.
Then, during the algorithm, we try to move each element of P ′ to its best position, so that the final
set P ′ minimizes the diameter among all possible choices for P ′. Indeed, for any disk di we look for
the optimal sub-arc α∗i , where one of the endpoints of α∗i determines one element of P ′.

In each step of the algorithm we start by computing the diameter of P ′. Let d′ denote the
diameter of P ′ with pi and pj as the vertices. If pi (or pj) is not yet in balance, we move it forward
among the endpoints of the sub-arcs of αi in the direction that the size of d′ is decreasing. In each
possible movement, we update the size of d′, and stop moving pi, when in the next movement, the
distance of pi to any other point pk will be greater than the current size of d′. Let d′′ < d′ denote
the diameter with a vertex at pj . Then we move pj forward in the direction that the size of d′′
is decreasing, and also we update the size of d′′ in each movement, until in the next movement,
the distance of pj to any other point pl is greater than the current size of d′′. We also repeat this
procedure for pk and pl, respectively, by computing the corresponding diameter with a vertex at
pk and pl, respectively. We stop this step when we have checked/corrected the position of all the
elements of P ′, each of which one time.

In the second step, we again start by computing the diameter of P ′. We continue above procedure,
until we check the position of all the elements of P ′. Since the vertices of the diameter may already
be in balance, it is not always possible to move them to reduce the diameter. In the following we
prove that it is always possible to reduce the value of the diameter after O(mε−1) consecutive steps
of the algorithm.

In the last step of the algorithm, we only can check the position of all the elements of P ′, while
no other movement is possible. This way we have approximated the cherry disks of any disk di, and
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also one endpoint of the optimal sub-arc α∗i . The other endpoint is the one which is closer to both
cherry disks of di.

I Lemma 3.1. After at most O(mε−1) steps of the algorithm, the size of d′ reduces by a factor of√
2/2.

Proof. In the worst case, in each step, we only could move one point pa to its balanced position.
Then in the next step, at least another point pb, with b 6= a can be moved (otherwise the algorithm
will be terminated) which could not be moved in the previous step. This point can only be the
point which previously was in balance between pa and another point pc. Then we may go back to
move pb, and then pa and pc, if they make a bend with its two cherry disks. Since the distances
of the bend from its cherry disks are only decreasing, in at most O(ε−1) consecutive steps of the
algorithm, either the algorithm stops, or we can move a new point which is distinct from pa, pb and
pc. Consequently, after at most O(mε1−) steps, we have changed the position of all the elements of
P ′, and since we have reduced all the furthest distances of the bends from the corresponding cherry
disks, the size of the diameter is decreased. Now we clarify the changes on the size of the diameter
that occur during the algorithm. Let pi and pj denote the vertices of the diameter d′ which we have
reduced its value. Thus we at least move one vertex of the diameter from a position xi to xi+1.

Let θ1 denote the angle subtended by the arc with length ε at the center of di, and let θ2 denote
the determined angle by the intersection of pjxi and the tangent line of di at xi, and let θ3 denote
the angle between pjxi and pjxi+1, as illustrated in the below Figure. Notice that the size of the
angles θ2 and θ3 change during the algorithm. Also let y denote the height of triangle xixi+1pj
from the triangle’s vertex xi+1 to the base pjxi, and let p denote the intersection point of y and
pjxi. Since |y| < |xixi+1| and, |xixi+1| < 2 and |pjxi| = |d′| ≥ 2, the angle |θ3| < 45◦. Consequently
|y|
|d′| <

√
2

2 . Also since |pjxi+1| = |d′′| ≥ 2, |xixi+1| < 2 and |θ3| < 45◦, the angle |θ2| > 45◦. Then we
have |y|

|d′′| <
√

2
2 and |xip|

|xixi+1| <
√

2
2 , and thus |xip|·|y|

|xixi+1|·|d′′| <
2
4 . Since

|y|
|xixi+1| <

√
2

2 , |xip| < 1√
2 |d
′′|

and since |d′′| < |d′| we have |xip| < 1√
2 |d
′| 3. J

The importance of the reduced value from the diameter is on the convergence of the iterative
process. Also 2 ≤ |d∗| < |dmax|, where dmax denote the maximum diameter of D (it can be computed
in O(n logn) time [1]). Obviously the same bound also holds for d′. Consequently, the algorithm
will be terminated after O(mε−1(log√2 |dmax|) steps. Since log√2 |dmax| is a constant, we omit it
from the total running time. Now we consider the running time of each step.

xi+1

xi θ2

pj

ε

θ1

ci

θ3

p

y

Since we know the cw order of the elements of P ′, the
diameter of P ′ can be computed in linear time in each step
of the algorithm. In each movement of any element pi of
P ′, we should be careful for not increasing the size of the
diameter with a vertex at pi. Thus we costs O(m+mε−1)
for each element in one step. The later m is the time
costs to check whether the corresponding element gets in balance or not. Thus the algorithm takes
O(m3ε−1(1 + ε−1)) time.

I Lemma 3.2. For any disk di ∈ ∆D, computed α∗i includes possible bend bi.

Proof. Suppose this is false. Then bi is located on a sub-arc α′i which is distinct from α∗i . Then
either we have passed over this sub-arc during the algorithm, or we did not find it and we stopped.
Let dj and dk denote the approximated cherry disks of di by the algorithm.

In the first case, at both endpoints of α′i, the computed distance of di to both dj and dk must
be greater than our current diameter, while we have found a solution with strictly a smaller size.
This contradicts the optimality of the computed minimum diameter.

In the second case, since α′i and α∗i are distinct, at least one computed cherry disk for α′i has
to be distinct from dj or dk (if not; α′i = α∗i , and we are done). But then we could move pi to

3 Notice that this lemma holds for a set of arbitrary disks where the smallest disk is a unit disk, since
we do not let the length of the sub-arcs (which is ε) on the smallest disk to be as large as π, |y| must
always be smaller than 2.

EuroCG’18



55:6

reduce the distance of di to at least one of dj and dk. This contradicts the stop criterion of the
algorithm. J

3.2 Disks with different size cd′

cd′

cd′/2

di

djci

Figure 5 The maximum possible
length for an extreme arc appears be-
tween two disks di and dj with |ri| =
|cd′|/2 and |rj | ≈ 0. Thus the total
sum of the extreme arcs is bounded by
|2π(cd′/2)|. Note that the subtended
angle of a sub-arc cannot equals π, it
is supposed so to compute the upper
bound.

In the case where D consists of arbitrary disjoint disks, the
total sum of the angles of the extreme arcs still equals 2π,
but with the idea we used on unit disks, the optimal sub-
arcs will not necessarily have the same length. In this case,
we first apply the presented constant factor approximation
algorithm [1] for the minimum diameter problem on a
set of disks. The presented algorithm approximates the
smallest diameter within a constant factor c in linear time.
Let d′ denote the approximated smallest diameter of D
within factor c. We define h = ε · c · |d′| as the new length
of the sub-arcs. Note that if h is greater than the extreme
arc of a disk di, we consider αi instead of a sub-arc of
length h. In this case, the total sum of the lengths of the
extreme arcs is bounded by |2π(cd′/2)|, since any circle
whose radius is greater than |cd′/2| will share an extreme arc with less curvature (and thus with less
arc length), also any circle whose radius is less than |cd′/2| will share an extreme arc with a shorter
arc length (see Figure 5). Thus the maximum number of the points that approximates the extreme
arcs is bounded by 2π(cd′/2)

h
, which is in O(ε−1). Since computed sub-arcs admit the same length h,

the considered ratio of the furthest distance to the smallest distance between the optimal sub-arcs
(in Section 3.1) still holds, and the presented algorithm works in O(n3ε−2) time.

I Theorem 3.3. Given a set of n disjoint disks, the problem of choosing a point on the boundary of
each disk such that the diameter of the resulting point set is as small as possible can be approximated
within a factor (1 + ε) in O(n3ε−2) time.
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Abstract
A known geometrical problem is to find low density zones (voids) in planar point sets and to
represent them as polygons. In this paper we recall the concept of terminal-edge region to identify
subvoid candidates over a triangulation, present a linear algorithm to find subvoids taking as input
a Delaunay triangulation, and show that this new strategy can be naturally parallelized using
GPU computing. We also show preliminary experimental results.

1 Introduction

A real geometrical problem is to find underdense zones in planar point sets and represent
their shapes by polygons. This problem is particularly relevant in astronomy, where the
regions almost empty of bright galaxies are known as cosmological voids. In computational
geometry, a similar and well studied problem is to find large convex holes in a planar point
set P. A convex hole is represented by a convex polygon that contains no point of P in its
interior. The key question is the expected size (number of vertices) of the existent convex
polygons [2, 8]. Convex polygons solutions would not generally apply to the problem in
astronomy, where the cosmological voids are usually not convex and may contain a few
galaxies in its interior. The computation of the α-shape of a set of points [3], which is a
generalization of the convex hull of it can also be seen as a related problem. The original goal
of the α-shape algorithm is to represent the shape of the set of points and not to compute
the empty spaces inside the convex hull of the point set but it has been also used to study
the topology of the cosmic web [11].
In the last years, a new algorithm was developed to detect and build polygons representing
underdense regions or voids on a planar point set [1, 4]. The algorithm starts from terminal-
edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low
density terminal-edge regions around them. A terminal-edge region can represent either an
entire void or part of a void (subvoid). The algorithm is divided in two main steps: (1)
Building subvoids and (2) Joining subvoids. In the first step, each triangle is attached to
the terminal-edge region (a triangle set) it belongs to. In the second step, fragmented voids,
represented by several terminal-edge regions, are joined to build whole voids. Each void is
described by a polygon defined by the edges which appear only once in the region.
In this paper, we (a) summarize the foundations of the Building subvoids step introduced
in [1], (b) present the design of a linear algorithm to find terminal-edge regions starting from
a Delaunay triangulation, and (c) show that this new solution can be naturally parallelized
using GPU computing. We also show preliminary experimental results.

2 Problem Statement and Solution

In this section we summarize the concepts and some theoretical foundations of the algorithm
to find underdense regions (voids) published in [1]. These concepts are required to understand
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
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the new algorithm presented in § 3. It is worth to mention that a region whose interior
point density is lower than the background density is considered a void candidate. Each
application must define the corresponding threshold density value.

2.1 Main Approach
A Delaunay triangulation is geometric structure that allows one to find naturally the input
points (sites) that are (locally) close or far from each other. By definition, an edge is a
Delaunay edge, if there exists an empty circle that passes through its endpoints. If the
empty circles are large enough, they are candidates to be part of a void. That is why a
Delaunay triangulation (in time O(n logn)) over the input points is generated first and used
later as input to look for subvoids. As basic strategy, the algorithm described in [1] builds
empty regions around local longest-edges. Each two triangles that share "large enough" local
longest-edge will be part of a subvoid and so define the boundaries of initial empty polygons.
The question is now which other triangles should be added to these two initial triangles to
form a larger empty polygon. The strategy includes triangles that are adjacent to the two
initial triangles and that share their longest-edge with these two initial triangles. Then the
empty polygon will be now defined by the two initial triangles plus the neighbor triangles
that fulfill this criterion. This process is repeated for the newly added triangles until no
other triangle can be added. Notice that this criterion avoids going from a large empty
region to another large empty region trough a zone like a tunnel or a region with higher
point density [4].

2.2 Basic Definitions
Let T be a conforming triangulation of n points and m triangles. Let ti be a triangle,
i = 0, ...,m− 1. Each triangle has a unique longest-edge and a shortest-edge except for
isosceles and equilateral triangles. We assume that there are neither isosceles nor equilateral
triangles but if they would exist, the equal length edges are arbitrarily ordered. The terms
Longest-edge propagation path and terminal-edge were first introduced by Rivara in the
context of new algorithms for the refinement/improvement of triangulations [9]. In [1]
these terms are used to define and characterize the terminal-edge regions, that is, the subvoid
candidates. That is why they are also recalled here.
I Definition 2.1. Terminal-triangles and -edges [10]: Two triangles are called terminal
triangles if they share their longest-edge. This shared longest-edge is called terminal-edge.
I Definition 2.2. Longest-edge propagation path [10]: For any triangle t0 in any conforming
triangulation T , the Longest-Edge Propagation Path of t0 (Lepp(t0)) is the ordered list
of all the triangles t0 , t1, t2, ..., tl−1, tl, such that ti is the neighbor triangle of ti−1 by
the longest-edge of ti−1, for i = 1, 2, . . . , l. The longest-edge shared by tl−1 and tl is a
terminal-edge and tl−1 and tl are terminal-triangles.
I Definition 2.3. Boundary edge and boundary terminal-edge: The edges that belong to
only one triangle of a triangulation are called boundary edges. If a boundary edge is the
longest-edge of the triangle, it will be called boundary terminal-edge.

2.3 Algorithm Foundations
In this section we recall the definitions and theorems published in [1] required to understand
the new sequential algorithm proposed in § 3.1 and the parallel algorithm presented in § 3.2.
Theorem 2.9 was extended to show that terminal-edges regions cover the whole space.
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I Definition 2.4. Terminal-edge region: A terminal-edge region R is a region formed by
the union of all triangles ti such that Lepp(ti) has the same terminal-edge. In case the
terminal-edge is a boundary-edge the region will be called boundary terminal-edge region. As
illustration see Figure 1.

I Definition 2.5. Frontier-edge: A frontier-edge is an edge that is shared by two triangles,
each one belonging to a different terminal-edge region.

I Lemma 2.6. Let ti and tj be two triangles that share the edge e. If the edge e is a
frontier-edge, then e is neither the longest-edge of ti nor of tj.

Proof: See [1].
Note that the opposite is false. It is possible that two triangles ti, tj whose shared edge is
not the longest-edge of any of them and these two triangles belong to the same terminal-edge
region Ri. e is still a particular case frontier-edge in the sense that the region Ri can not
grow through it. Since e does not separate two different regions, it was called a barrier-edge.

I Definition 2.7. Barrier-edge: A barrier-edge of a region R is an edge shared by two
triangles of R which is not the longest-edge of any of them.

I Definition 2.8. Internal-edge: An internal-edge of a region R is an edge that is neither a
terminal-edge, a frontier-edge, a barrier-edge nor a boundary-edge.

I Theorem 2.9. Let T be a conforming triangulation of any set of points P and let CH be
the convex hull of P . Then T can be partitioned into a set of terminal-edge regions covering
the whole convex hull area as shown in Figure 1, and without overlapping.

Proof: In [1] was demonstrated that terminal-edge regions do not overlap, then we only need
to show that terminal-edge regions cover P. Let us assume that the triangulation T has n
triangles and m terminal-edges ei, i = 0, . . . ,m− 1. ei can also be a boundary terminal-edge.
By definition 2.4, each terminal-edge ei has associated a terminal-edge region Ri. Let assume
that there exists a triangle tj , j = 0, . . . , n− 1 which does not belong to any terminal-edge
region Ri, i = 0, . . . ,m − 1. By definition 2.2 each triangle tj has a Lepp(tj) and so an
associated terminal-edge e. Then tj must be included in the terminal-edge region associated
to e and this fact contradicts our assumption. �

3 The New Algorithm

The algorithms presented in this section decrease the computational cost of the Building
subvoids step published in [1]. The original algorithm sorts the triangles of the Delaunay
triangulation by their longest-edge, and so computes the terminal-edge regions associated to
the largest-terminal edges first. In this way, the Building subvoids step is done in O(n logn),
where n is the number of points. The new algorithm works over a graph representation
G = (V,E) of a triangulation [7] and builds the terminal-edge regions in O(n). In G each
node v ∈ V represents a triangle and E contains the adjacency relations. More specifically,
arc (u, v) ∈ E if and only if the triangles represented by the nodes u and v are adjacent in
the actual triangulation.

3.1 Sequential Algorithm
Algorithm 1 partitions the adjacency graph G = (V,E) into terminal-edge regions by removing
arcs of E associated with adjacencies between triangles sharing frontier-edges. The graph is
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divided into terminal-edge regions, each one a subvoid candidate. The regions are classified
into boundary subvoids or subvoids. Algorithm 2 uses a simple navigation strategy to
compute the area and to check if it is a boundary component or not. The Building subvoids
step is now in O(n).

Input: A adjacency graph G = (V,E) of the Delaunay triangulation
Input: A threshold_value

1 foreach v ∈ V do
2 Label the longest-edge in triangle related to v
3 foreach (u, v) ∈ E do
4 if the triangles related to u and v share a frontier edge then
5 E ← E \ {(u, v)}
6 foreach v ∈ V do
7 if v is not visited yet then
8 total_area, touches_border ← Visit(G, v)
9 if total_area ≥ threshold_value then

10 if touches_border then
11 Component type of v ← Boundary subvoid candidate
12 else
13 Component type of v ← Subvoid candidate
14 return G = (V,E)

Algorithm 1: Building subvoids algorithm

3.2 Parallel Algorithm

The sequential algorithm is naturally parallelizable on GPU because the computation of
terminal-edge regions can be partitioned into O(n) smaller tasks and solved by threads
per arc and threads per nodes using similar data structures as the ones described in [5,6].
Currently, the tasks per thread are O(1) except for the area computation (Algorithm 2),
which in the worst case is O(n). The steps of the kernels are:

1. Kernel Initialization
Create a thread per node v (triangle)
Each thread labels its triangle longest-edge
Each thread computes its triangle area

2. Kernel Generation of terminal-edge regions
Create a thread per arc e
Each thread eliminates arc e if the shared edge is a frontier-edge
Each thread labels the shared edge as terminal-edge if corresponds

3. Kernel Terminal-edge regions classification
Create a thread per terminal-edge region
Each thread computes the area of its terminal-edge region
Each thread labels its region as subvoid, boundary subvoid or null according to a
threshold value.
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Input: G = (V,E) the graph
Input: A node v ∈ V belonging to a terminal-edge region

1 Mark v as visited
2 total_area← Area of the triangle related to v
3 touches_border ← Triangle related to v is a boundary triangle
4 foreach (u, v) ∈ E do
5 if u is not visited yet then
6 u_total_area, u_touches_border ← visit(G, u)
7 total_area← total_area+ u_total_area
8 touches_border ← touches_border ∨ u_touches_border
9 return total_area,touches_border

Algorithm 2: The Visit subroutine

Figure 1 Terminal-edge regions in a Delaunay triangulation. The green edges are terminal-edges,
the light blue are internal edges and the black edges are frontier edges. At the left, each terminal-edge
region is delimited by the black edges, and at the right, the light blue regions are the ones with area
greater than a threshold value. These are subvoids candidates.

4 Empirical Evaluation

Figure 2 shows a comparison of the three implementations of the Building subvoids step.
The x-axis shows the number of points and the y-axis the classification time. The green line
represents the performance of the original solution written in Python [1], the blue line the
time of Algorithm 1 in § 3.1 and the red line, the performance of the parallel implementation
described in § 3.2. Both new implementations are written in C and Opencl.

5 Conclusions and Ongoing work

We have presented a new algorithm to find terminal-edge regions (subvoids candidates) in
planar points sets. This new strategy allowed us to propose sequential and parallel algorithms
which have a lower time complexity than the approach published in [1]. The parallel strategy
is still in the worst case O(n) due to the linear computation of each terminal-edge region
area, but this computation can also be improved by parallelizing inside each terminal-edge
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region. We also plan to compare our approach with prior work in related problems [11].
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Abstract
In this paper we study the problem of L(2, 1)-labeling of intersection graphs of disks. An L(2, 1)-
labeling is a mapping from the vertex set of the graph to non-negative integers, in which labels
assigned to adjacent vertices differ by at least 2, and labels assigned to vertices at distance 2
are different. The span of an L(2, 1)-labeling is the difference between the maximum and the
minimum label used, and the span λ(G) of a graph G is the minimum span of an L(2, 1)-labeling
of G. We show that if G is an intersection graph of disks, then λ(G) ≤ 4

5 ∆(G)2 + 25∆(G) + 22,
where ∆(G) denotes the maximum degree in graph G.

1 Introduction

Problems arising in frequency assignment in radio networks gave raise to many interesting
graph-theoretical questions, especially concerning various variants of graph coloring. Notable
and well-studied members of a big family of such problems are channel assignment prob-
lem [14], T -coloring [19], distance-constrained labeling [9, 14, 19], and L(p, q)-labeling [8, 2].
They are interesting for their potential applications [23], and purely theoretical properties.

In this paper, we consider one of such problems, i.e. the L(2, 1)-labeling problem. It
asks for a vertex labeling with non-negative integers, in which adjacent vertices get labels
that differ by at least two, and vertices at distance two get different labels. The chromatic
parameter related to this problem is the L(2, 1)-span of a graph G, denoted by λ(G), which
is the minimum possible difference between the largest and the smallest label used by an
L(2, 1)-labeling of G. Griggs and Yeh [8] showed that for every G it holds that λ(G) ≤
∆(G)2 + 2∆(G), where ∆(G) denotes the maximum vertex degree in G. Moreover, they
conjectured that λ(G) ≤ ∆(G)2 for every graph G with ∆(G) ≥ 2. This conjecture attracted
a considerable attention and upper bounds were successfully improved, e.g. Gonçalves [6]
showed an algorithm finding and L(2, 1)-labeling of any graph with ∆(G) ≥ 3, whose span
is at most ∆(G)2 + ∆(G) − 2. Using a non-constructive method, Havet et al. [10] settled
the “delta-square conjecture” in affirmative for graphs with ∆(G) ≥ 1069. For graphs with
smaller maximum degree the problem remains open. Another open direction is finding a
constructive proof of the conjecture.

What makes the delta-square conjecture even more interesting is the fact that we know
only two graphs G, which satisfy the equality λ(G) = ∆(G)2: they are the Petersen graph
and the Singleton-Hoffman graph. Recently Lu [15] presented an infinite family of graphs
G with λ(G) = ∆(G)2 −∆(G) + 1, which is the largest value for any known infinite family.

Besides the results for general graphs, also restricted graph classes received a considerable
attention. For example it is known that λ(G) ≤ ∆(G)+2 if G is a tree [8], λ(G) ≤ 2∆(G)+23
if G is planar [22], and λ(G) ≤ d−2

d−1 ∆(G)2 +2∆(G), if G is K1,d-free [20]. We refer the reader
to the survey by Calamoneri [2] for more information about L(2, 1)-labeling and related
problems.

∗ Joanna Sokół was partially supported by the National Science Center of Poland under grant
no. 2016/23/N/ST1/03181.
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In this paper we focus on the class of intersection graphs of disks in the Euclidean plane
called disk graphs or DG in short. This class with its subclass where all disks are required
to have equal diameter (shortly denoted as UDG) are among the most extensively studied
classes of geometric intersection graphs, both from the combinatorial and the algorithmic
point of view [3, 5, 7, 18]. They are also especially interesting and natural in the context of
L(2, 1)-labeling, since they are the simplest class used for modeling radio networks [16, 17,
23]. Since unit disk graphs areK1,6-free (see Fig.1), the bound by Shao et al. [20] implies that

Figure 1 A maximal independent
set in the neighborhood of a vertex of
UDG. (Points represent the centers of
the disks. Disks with centers in each re-
gion form a clique. For any point we
can rotate the partition so that it is on
the boundary of two regions, and then
we can only add 4 other points to the
independent set.)

λ(G) ≤ 4
5 ∆(G)2 + 2∆(G). Fiala et al. [4] consid-

ered offline and online algorithms for L(2, 1)-labeling
of disk and unit disk graphs. Among other re-
sults, they have shown that λ(G) ≤ 18ω(G) for
G ∈ UDG, where ω(G) denotes the cardinality of
the largest clique in G. This clearly implies that
λ(G) ≤ 18∆(G) + 18 for such graphs.

In this paper we continue the line of research
started by Fiala et al. [4], Shao et al. [20] and
Junosza-Szaniawski et al. [12]. We solve the delta-
square conjecture for disk graphs with maximum de-
gree at least 126, by proving the following theorem.

I Theorem 1.1. For any disk graph G with max-
imum degree ∆(G) we have λ(G) ≤ 4

5 ∆(G)2 +
25∆(G) + 22.

To the best of our knowledge, this is the first non-
trivial upper bound for λ(G) ifG is a disk intersection graph, without any further assumption
on the radii of the disk in a geometric representation.

Throughout the paper, we assume that the input disk intersection graph is given along
with its geometric representation. Note that this assumption is important, as the problems
of recognizing unit disk graphs [1] and disk graphs [11] are NP-hard. Actually, the problem
of recognizing unit disk graphs is known to be ∃R-complete [13], which is a strong evidence
that it may not even be in NP.

2 Preliminaries

For a graph G = (V,E), by ∆(G) and ω(G) we denote, respectively, the maximum degree
and the size of the maximum clique in G. By Ḡ we denote the complement of G, i.e. a
graph with the vertex set V and the edge set

(
V
2
)
\ E. For vertices u, v of G, by dG(u, v)

we denote the number of edges on the shortest u-v–path in G (i.e., the distance between u
and v in the graph G). By N(v) we denote the neighborhood of the vertex v, i.e. the set of
vertices u with dG(u, v) = 1. By N2(v) we denote the set of vertices u with dG(u, v) = 2.

A function c : V → N0 is called an L(2, 1)-labeling of G = (V,E), if
1. |c(v)− c(w)| ≥ 1 for all v, w ∈ V such that dG(u,w) = 2,
2. |c(v)− c(w)| ≥ 2 for all v, w ∈ V such that dG(v, w) = 1.
A span of an L(2, 1)-labeling c of G is the difference between the maximum and the minimum
label used by c (note that some labels may not be used at all). An L(2, 1)-span of G, denoted
by λ(G), is the minimum possible span in an L(2, 1)-labeling of G. Note that the number
of labels that might be used in an L(2, 1)-labeling with the minimum span is λ(G) + 1.

For u, v ∈ R2 , by dist(v, u) we denote the euclidean distance between u and v. For r ∈ R
and v ∈ R2 by D(v, r) we denote the set {p ∈ R2 : dist(v, p) ≤ r}, i.e., the disk with a center
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in v and the radius r. For a set D = {D1, D2, . . . , Dn} of disks in the plane, we define their
intersection graph G = (V,E), whose vertex set is {v1, v2, . . . , vn}, and the vertices vivj are
adjacent if and only if Di ∩Dj 6= ∅. We will often identify the vertices of G with the centers
of the disks in D. Notice that vivj ∈ E if and only if dist(vi, vj) is at most the sum of the
radii of Di and Dj .

For such a graph G, the set D is called geometric representation by intersection disks,
or a representation in short. A graph G is called a disk intersection graph, or a disk graph
in short, if it has a geometric representation by intersecting disks. If a graph G admits a
geometric representation, where all disks have the same radius, we say that G is a unit disk
intersection graph, or unit disk graph. The classes of disks intersection graphs and unit disks
intersection graphs are denoted by DG and UDG, respectively.

We will also use the celebrated Turán Theorem.

I Theorem 2.1 (Turán [21]). For integers d ≥ p, every Kp-free graph with d vertices has at
most p−2

p−1
d2

2 edges.

3 General disk intersection graphs

In this section we prove Theorem 1.1. Consider a disk graph G = (V,E) along with its
geometric representation by the collection of intersecting disks D = {D1, D2, . . . , Dn}. Let
vi be the center and ri be the radius of Di. We will identify points v1, v2, . . . , vn with the
corresponding vertices of G. Moreover, we assume that disks are ordered by non-increasing
radius, i.e. r1 ≥ r2 ≥ . . . ≥ rn.

Consider any vertex vi ∈ V . We start with defining two special types of vertices inN2(vi).
We say that vj is an LL-neighbor of vi, or, equivalently, vj ∈ N2

LL(vi), if vj ∈ N2(vi), rj ≥ ri

and there exists a disk Dk intersecting both Di and Dj such that rk ≥ ri (“LL” stands for
Large-Large, as both Dj and Dk are larger than Di). Analogously, we say that vj is an
SL-neighbor of vi, or vj ∈ N2

SL(vi), if vj ∈ N2(vi), vj is not an LL-neighbor of vi, rj ≥ ri,
and there exists a disk Dk intersecting both Di and Dj such that rk < ri (here “SL” stands
for Small-Large, as Dk is smaller than Di and Dj is larger than Di).

Now we want to bound the cardinalities of N2
SL(vi) (in Lemma 3.1) and N2

LL(vi) (in
Lemma 3.2) of each vertex vi of G.

I Lemma 3.1. |N2
SL(vi)| ≤ 22ω(G), for any vertex vi in a disk graph G.

Proof. Let vj ∈ N2
SL(vi). Since Di and Dj do not intersect, we have dist(vi, vj) > ri + rj ≥

2ri. On the other hand there exists a disk Dk intersecting both Di and Dj , such that rk ≤ ri.
Thus we obtain

dist(vi, vj) ≤dist(vi, vk) + dist(vk, vj) ≤ (ri + rk) + (rk + rj)
≤ri + 2rk + rj ≤ 3ri + rj . (?)

We partition R2−D(vi, 2ri) into 22 regions, which will form cliques, in the following manner.
First we divide R2 − D(vi, 2ri) by a circle with the center in vi and radius 2t · ri, where
t = 1√

2−
√

2
≈ 1.3. Then we partition the ring D(vi, 2tri) − D(vi, 2ri) into 8 congruent

bounded regions, and R2 − D(vi, 2tri) into 14 congruent unbounded regions, as presented
on Figure 2. In the remainder of the proof, we will show that disks with the radius at least
ri, whose centers lie inside one region, form a clique. Clearly this will imply the lemma. It
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Figure 2 Partition of R2 −D(vi, 2ri) into 22 regions: R1, R2, . . . , R22, (t = 1√
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is straightforward to verify that the diameter of each bounded region is at most

diam = max
{

2ri

√(
t cos π4 − 1

)2
+
(
t sin π4

)2
, 2ti

√(
t cos π4 − t

)2
+
(
t sin π4

)2
}

= max
{

2ri

√
t2 − t

√
2 + 1, 2ri

√
(2−

√
2)t2

}
.

Since t = 1√
2−
√

2
, we obtain diam = max

{
2ri

√
1

2−
√

2 −
√

2√
2−
√

2
+ 1, 2ri

}
= 2ri. Thus any

two disks with centers in one bounded region and radii at least ri must intersect.
Now consider two disks Dp, Dq, whose centers lie in an unbounded region and vp, vq ∈

N2
SL(vi). We consider three cases. First, suppose that both vp and vq are at distance at

most 4ri from vi. Then the distance between vp and vq is at most

max
{

2ri

√
(2 cos π7 − t)

2 + (2 sin π7 )2, 2ri

√
(2 cos π7 − 2)2 + (2 sin π7 )2

}
< 2ri.

Since rp, rq ≥ ri, we know that rp + rq ≥ 2ri, and thus Dp and Dq intersect.
Now consider the second case where vp is at distance at most 4ri from vi, but the

distance between vq and vi is greater than 4ri (see Figure 3). Let Q be the intersection
point of the line containing points vi and vq, and the circle with radius 4ri, centered at vi.
Let DQ := D(Q, rq − dist(Q, vq)) be the disk with the center Q, contained in and tangent
to Dq. Notice that the radius of DQ is at least ri (since, by (?), we obtain rq−dist(Q, vq) ≥
dist(vi, vq)− 3ri−dist(Q, vq) = dist(vi, Q)− 3ri = 4ri− 3ri = ri). Hence, from the previous
case, we know that DQ and Dp intersect. Since DQ ⊆ Dq, disks Dq and Dp also intersect.

For the last case, suppose that vp and vq both at distance greater than 4ri from vi. As
in the previous case we define the disk DQ ⊆ Dq and analogously DP ⊆ Dp. The radii of
both DQ and DP are at least ri, so the disks intersect. Consequently Dq and Dp intersect.

J

Now we consider the cardinality of N2
LL(vi).
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vp

vqQ

vi

Figure 3 Case 2. Location of the point Q.

I Lemma 3.2. |N2
LL(vi)| ≤ 4

5 ∆(G)2, for any vertex vi in a disk graph G.

Proof. Let vi be a vertex of graph G. Let H be a graph induced by the neighbors of vi

corresponding to disks with radius at least ri. We define ∆ := ∆(G) and d := |V (H)| ≤ ∆.
Notice that vi cannot have 6 independent neighbors - recall the argument showing that UDG
are K1,6-free. Thus the graph H is K6-free, and hence H is K6-free. By Theorem 2.1, the
maximum number of edges in H is 4

5
d2

2 . Therefore the number of edges in H is at least(
d
2
)
− 4

5
d2

2 = d2

10 − d
2 .

The obvious upper bound on the number of all possible vertices in N2
LL(vi) is d(∆− 1).

Each edge in H reduces this number by two. Thus we obtain the following upper bound on
|N2

LL(vi)|:
d(∆− 1)− 2

(
d2

10 −
d

2

)
= d∆− d2

5 .

One can easily verify this expression is maximized for d = ∆. Hence |N2
LL(vi)| ≤ 4

5 ∆2. J

Now Theorem 1.1 is an easy consequence of Lemmas 3.1 and 3.2.
Proof of Theorem 1.1. Consider a greedy algorithm labeling vertices of G, ordered by non-
increasing radii of disks in the geometric representation. Let vi be a vertex of G and let
V ′ = {v1, v2, . . . , vi−1} be the set of vertices that are already labeled. We will compute
the maximum possible number of labels that cannot be used to label a vertex vi. Each
neighbor of vi that belongs to V ′ blocks at most 3 labels, which gives at most 3∆(G) labels
in total. Each vertex in V ′ ∩ N2(vi) blocks 1 label. Recall that we can partition the set
V ′ ∩ N2(vi) into two subsets – N2

SL(vi) and N2
LL(vi). By Lemma 3.1, N2

SL(vi) blocks at
most 22ω(G) ≤ 22(∆(G) + 1) labels in total. By Lemma 3.2, N2

LL(vi) blocks at most
4
5 ∆(G)2 labels in total. Hence the number of labels that cannot be used for vi is at most
4
5 ∆(G)2 + 25∆(G) + 22. J

4 Conclusion

A very natural question to ask is whether the upper bounds presented in this paper are
tight. It is interesting to look for non-trivial constructions of families of (unit) disk graphs
with large L(2, 1)-span, compared to their maximum degree. It is even more interesting,
since very little is known about the topic. To the best of our knowledge the largest lower
bound is equal to 2∆(G) and is obtained by a 2k-th power of a cycle of length 4k+ 1, so by
the unit disk graph. Clearly this bound is very far from the known upper bounds. It is also
very interesting if we can actually force a quadratic span in general disk intersection graphs.
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Abstract
The objective of clustering is to discover natural groups in datasets and to identify geometrical
structures which might reside there, without assuming any prior knowledge on the characteristics
of the data.The problem can be seen as detecting the inherent separations between groups of a
given point set in a metric space governed by a similarity function. The pairwise similarities
between all data objects form a weighted graph adjacency matrix which contains all necessary
information for the clustering process, which can consequently be formulated as a graph partition-
ing problem. In this context, we propose a new cluster quality measure which uses the maximum
spanning tree and allows to compute the optimal clustering under the min-max principle in
polynomial time. Our algorithm can be applied when a load-balanced clustering is required.

1 Introduction

The objective of clustering is to divide a given dataset into groups of similar objects in
an unsupervised manner. Clustering techniques find frequent application in various areas,
including computational biology, computer vision, data mining, gene expression analysis,
text mining, social network analysis, VLSI design, and web indexing, to name just a few.
Commonly, a metric is used to compute pair-wise similarities between all items and the
clustering task is formulated as a graph partitioning problem, where a complete graph is
generated from the similarity matrix. In fact, many graph-theoretical methods have been
developed in the context of detecting and describing inherent cluster structures in arbitrary
point sets using a distance function [2].

Here, we propose a novel clustering algorithm based on a quality measure that uses the
maximum spanning tree of the underlying weighted graph and addresses a balanced grouping
with the min-max principle. More specifically, we aim to detect clusters which are balanced
with respect to their ratio of intra-cluster variance to their distance to other data instances.
In other words, we allow clusters with weaker inner edges to be formed, if they are located
at large distance of other clusters (Figure 1). We prove that an optimal clustering under this
measure can be computed in polynomial time using dynamic programming.

Such cluster properties are typically desired when grouping sensors in Wireless Sensor
Networks [1] and multi-robot task allocation in Cooperative Robotics where the goal is to
allocate tasks to cooperative robots while minimizing costs [5]. Another application area
arises from the field of Music Information Retrieval, where several applications rely on the
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C1 C2

C3

C4
C5

Figure 1 Illustration of the desired cluster properties: The ratios of inner variance to distance to
other clusters is balanced among groups. Clusters C1 and C5 exhibit a higher variance but are also
further apart from the other clusters.

unsupervised discovery of similar (but not identical) melodies or melodic fragments. In this
context, clustering methods can be used to explore large music collections with respect to
melodic similarity, or to detect repeated melodic patterns within a composition [4].

2 Problem statement

Let V = {v1, v2, . . . , vn} be a set of points or nodes in a metric space and suppose that there
exists a function to estimate the similarity between two nodes. Let A be the matrix holding
similarity values computed for every pair of elements in V . The value A[i, j] is the similarity
between the nodes vi and vj . If A[i, j] > A[i, l] then the node vi is more similar to vj than
to vl. Our goal is to create groups such that similar nodes are located in the same cluster
and dissimilar nodes are in separate clusters.

Let G = (V,E,w) be a weighted and undirected graph induced by A. In this paper, such
graphs are simply referred to as “graph”. E is the set of edges and contains an edge for every
unordered pair of nodes, and w is a weight function w : E −→ (0, 1) such that w(e) is the
similarity between the nodes connected by e (i.e. if e = {vi, vj}, then w(e) = A[i, j]).

Let C ⊆ V be a cluster. The outgoing edge set of C, denoted by Out(C), is the set of
edges connecting C with V \ C. Let MST (C) be the maximum spanning tree of C. Let
max(Out(C)) and min(MST (C)) be the weights of the heaviest and lightest edges of Out(C)
and MST (C), respectively. We define the following function Φ(C) as the quality measure of
a cluster C:

Φ(C) =





0 if C = V,

max(Out(C)) if |C| = 1,
max(Out(C))
min(MST (C)) otherwise

Note that higher values of Φ(·) correspond to worse clusters. Let Π = {C1 . . . , Ck}
be a k-clustering (clustering formed by k clusters) of G. To evaluate the quality of Π we
use the quality of the worst cluster, Φ(Π) = kmax

i=1
{Φ(Ci)}. Denoting the set of all possible

k-clusterings on G by P(k,G), we state the following optimization problems:

I Problem 2.1.
min Φ(Π) subject to: Π ∈ P(k,G).

When the value of k is unknown, the problem can be stated as follows:

I Problem 2.2.

min Φ(Π) subject to: Π ∈
n⋃

k=2
P(k,G).
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3 Properties of the optimal clustering

Note that the problems stated above can be generalized to connected (not necessarily
complete) graphs, by simply setting P(k,G) as the set of all the possible partitions of G in
k connected components. In this extended abstract most of the proofs are omitted. A full
version of the paper can be found in [3].

I Lemma 3.1. Let G be a graph and let Π∗ be an optimal clustering of G for Problem 2.1
in P(k,G). Then, Φ(Π∗) ≤ 1.

I Lemma 3.2. Let G be a graph and let Π∗ be an optimal clustering of G for Problem 2.1.
Let C be a cluster in Π∗. If |C| > 1, then every bipartition of C has a crossing edge in a
maximum spanning tree of G.

I Theorem 3.3. Let G be a graph and let Π∗ ∈ P(k,G) be an optimal clustering of G for
Problem 2.1. For every cluster C ∈ Π∗, the maximum spanning tree of C is a subtree of a
maximum spanning tree of G and the heaviest outgoing edge of C is in a maximum spanning
tree of G.

Proof. (Sketch) Let C be a cluster of Π∗. If |C| = 1 then, obviously, MST (C) ⊂MST (G).
If |C| > 1 then MST (C) ⊆ MST (G) by Lemma 3.2. The second part of the theorem,
claiming that the heaviest edge in Out(C) is in MST (G), is deduced from the properties of
the MST. J

I Corollary 3.4. Let G be a graph and let Π∗ ∈ ⋃nk=2 P(k,G) be an optimal clustering of G
for Problem 2.2. For every cluster C ∈ Π∗, the maximum spanning tree of C is a subtree of
a maximum spanning tree of G and the heaviest outgoing edge of C is in a MST (G).

We introduce the following notion: Let T be a spanning tree of a graph G. Let Π ∈ P(k,T )
be a clustering of T . The evaluation function ΦT (Π) operates as usual, but it is restricted
to the set of edges forming T . Therefore, the optimal solution for Problem 2.1 on T is
Π† ∈ P(k,T ) such that ΦT (Π†) ≤ ΦT (Π) for every other clustering Π ∈ P(k,T ).

I Theorem 3.5. Let G be a graph and let T be a maximum spanning tree of G. If
Π∗ ∈ P(k,G) and Π† ∈ P(k,T ) are the optimal clusterings for Problem 2.1 on G and
T , respectively; then Φ(Π∗) = ΦT (Π†).

I Corollary 3.6. Let G be a graph and let T be a maximum spanning tree of G. If Π∗ ∈⋃n
k=2 P(k,G) and Π† ∈ ⋃nk=2 P(k,T ) are the optimal clusterings for Problem 2.2 on G and

T , respectively; then Φ(Π∗) = ΦT (Π†).

4 The algorithm

First, recall that Theorem 3.5 and Corollary 3.6 provide a nice property, which allows us
to reduce Problems 2.1 and 2.2 from a graph to its maximum spanning tree. Consequently,
given a similarity graph, we can operate on its maximum spanning tree T = (V,E,w). From
now on, we will use E to denote the set of edges in the maximum spanning tree. Observe
that every cluster C in T determines only one subtree of T . Then, using MST (C) to denote
the maximum spanning tree in C, may be confusing or redundant. Therefore, instead of
using MST (C) we will use E(C) (set of edges connecting nodes in C).

The proposed algorithm is based on dynamic programming. We show that the stated
problems have an optimal substructure which allows us to build the optimal solution in T

EuroCG’18
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Figure 2 (a) A subtree S′ which is not considered. (b) A considered subtree S. (c) Representation
of a clustering Π of S. The head cluster is above the curve g. The edges of OutS(h(Π)) are the edges
in S stabbed by g. The clusters of Π that are below g constitute the headless clustering Π \ {h(Π)}.

from local solutions for subtrees of T . From here on, we consider that the tree T is rooted at
r ∈ V . Let p(v) be the parent of v and c(v) be the set of children of v. Given a tree T , let S
be a subtree of T and let v be the node with minimum depth in S. Then we say that S is
rooted at v. In the rest of this paper, we only consider subtrees S rooted at v that contain
all the descendants of vertices v′ ∈ S \ {v} (see Figures 2a and 2b). We say S = Tv if S
contains all the descendants of v.

The main idea of our algorithm is to operate on (local) clusterings of a subtree and
perform a bottom-up dynamic programming strategy with two basic operations:

UpToParent: knowing an optimal clustering of a subtree S = Tv such that Tv 6= T ,
compute an optimal clustering of the subtree S formed by adding p(v) to S.
AddChildTree: knowing an optimal clustering of a subtree S rooted at p(v), v /∈ S; and
knowing the optimal clustering of Q = Tv; compute an optimal clustering of the subtree
resultant of joining S and Q.

Now, we elaborate on a (local) clustering Π of a subtree S rooted at v. We call the cluster
containing the node v (root of the subtree) the head cluster of Π and we denote it h(Π) (see
Figure 2c). Let OutS(C) be the set of outgoing edges of C in S. In Figure 2c, OutS(h(Π))
is formed by the edges stabbed by the curve g.

Given a clustering Π of a subtree S, let M denote the weight of the heaviest edge in
OutS(h(Π)), that is, M = max(OutS(h(Π))). If h(Π) contains all the nodes in S then we
set M = 0. On the other hand, let µ denote the weight of the lightest edge in E(h(Π)), that
is µ = min(E(h(Π))). If h(Π) is formed by single node we set µ = 1. For convenience we
introduce the functions ΦS(·) and ΦS(·) as restricted quality measures of a cluster and a
clustering, respectively. They work as defined above, but are restricted to the edges of the
subtree S, thus:

ΦS(h(Π)) = M

µ
. (1)

Note that, if S = T , then ΦS(h(Π)) = Φ(h(Π)). If S = Tv 6= T , then: Φ(h(Π)) =
max{M,w({v,p(v)})}

µ . For every other cluster C ∈ Π, such that C is not the head cluster, the
usual evaluation and the restricted one have the same value, Φ(C) = ΦS(C). Consequently,
the restricted evaluation of the “headless” clustering Π \ {h(Π)} is:

ΦS(Π \ {h(Π)}) = Φ(Π \ {h(Π)}) = max { Φ(C) | C ∈ Π \ {h(Π)} } , (2)
and the restricted evaluation of the clustering Π is:

ΦS(Π) = max {ΦS(h(Π)), Φ(Π \ {h(Π)})} . (3)
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Let S be a subtree of T , and let H(l,S , µ) denote the set of l-clustering of S in which µ
is the weight of the lightest edge in the head cluster. That is:

H(l,S , µ) = { Π | Π ∈ P(l,S) and µ = min(E(h(Π))) } .

Now we are ready to state an encoding of a local solution and the invariant that allows
us to apply dynamic programming:
I Notation 4.1. Suppose H(l,S , µ) is not empty, then a clustering Π in H(l,S , µ) is encoded
by the ordered pair OS(l, µ) = (M, b) if the following properties are fulfilled:

1. b = ΦS(Π) = min { ΦS(Π′) | Π′ ∈ H(l,S , µ)}, and
2. M = max(OutS(h(Π))) = min

{
max(OutS(h(Π′)))

∣∣∣∣
Π′ ∈ H(l,S , µ) and
ΦS(Π′) = b

}
.

If H(l,S , µ) is empty, then OS(l, µ) = (∞,∞), where ∞ indicates the “infinity” value.
We set OS(l, µ) as (∞,∞) if 1 < min { ΦS(Π) | Π ∈ H(l,S , µ) }. Then, given a subtree

S, OS(·, ·) is a function whose domain is N[1,k]× (w(E)∪{1}) and image {(∞,∞)}∪ (w(E)∪
{0})×R[0,1] where w(E) = { w(e) | e ∈ E }. If OS(l, µ) = (M, b) 6= (∞,∞), then, by using
equations (1), (2) and (3), we obtain that OS(l, µ) encodes a clustering Π (not necessarily
unique) where:

ΦS(Π) = b = max
{
M

µ
,Φ(Π \ {h(Π)})

}
. (4)

For the sake of simplicity, we use the following notation for OS(l, µ) = (M, b): OS(l, µ)[1] =
M and OS(l, µ)[2] = b. Note that if we have the function OT then the evaluation of the
optimal clusterings for Problems 2.1 and 2.2 are min { OT (k, µ)[2] | µ ∈ w(E) ∪ {1} } , and
min

{
OT (k, µ)[2] | k ∈ N[2,n] and µ ∈ w(E) ∪ {1}

}
, respectively.

I Lemma 4.2. Let S be a subtree rooted at v. Let Π and Π′ be two different cluster-
ings of S such that min(E(h(Π))) = min(E(h(Π′))) = µ. If ΦS(Π) < ΦS(Π′) ≤ 1 then
max(OutS(h(Π))) ≤ max(OutS(h(Π′))).

I Corollary 4.3. Let S be a subtree. For a given value OS(l, µ) = (M, b) 6= (∞,∞), every
l-clustering Π ∈ H(l,S , µ) fulfills that: ΦS(Π) ≥ b, and max(OutS(h(Π))) ≥M .

The following lemma is the key of the proposed dynamic programming:

I Lemma 4.4. Let S be a subtree rooted at v. Let OS(l, µ) = (M, b) 6= (∞,∞) and let Π be an
l-clustering of S encoded by OS(l, µ). Let Q be a subtree of S rooted at v′ ∈ c(v). By removing
the edge e = {v′, v} from S, an l′-clustering A of Q is induced. Let µ′ = min(E(h(A))).
By replacing A with a clustering B encoded by OQ(l′, µ′) and restoring the edge e, a new
clustering Π′ of S is obtained, which is also encoded as OS(l, µ) = (M, b) (Figure 3 depicts
the case when e connects nodes in different clusters).

Using above properties, the recurrence formulas for dynamic programming can be estab-
lished. Let us mention here one of them, which corresponds to one case in the proof of the
Theorem 4.5 (UpToParent operation). Let ω = w({v, p(v)}). For µ = 1 we can prove that:

OS(l, 1) =
(
ω,min

µ′

{
max

{
ω,OS(l − 1, µ′)[2], max{ω,OS(l − 1, µ′)[1]}

µ′

}})
.

I Theorem 4.5 (UpToParent operation). Let S = Tv such that Tv 6= T , and let S be the
subtree formed by adding p(v) to S. If we know the function OS, then the function OS can
be computed in O(kn).

EuroCG’18
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Figure 3 Removing the edge e = {v, v′} when e connects nodes in different clusters. (a) Initial
situation. (b) Induced clustering A when e is removed. (c) Replacing A with another clustering B.
(d) Restoring the edge e and obtaining a new clustering Π′.

Finally, for the second operation we have:

I Theorem 4.6 (AddChildTree operation). Let Q = Tv such that Tv 6= T , and let S be a
subtree rooted at p(v) such that v is not in S. Let P denote the subtree formed by joining
S and Q. If we know the functions OS and OQ, then the function OP can be computed in
O(k2n2).

4.1 Complexity of the algorithm
Given a tree T and a value k we can calculate OT by computing OTv for every node v in
T in a bottom-up (from the leaves to the root) procedure using the mentioned operations.
Note that, if v is leaf, then OTv

(1, 1) = (0, 0) and OTv
(l, µ) = (∞,∞) if l > 1 or µ < 1.

To compute the function OTv of an inner node v, we proceed as follows: Let {v1, . . . , vm}
be the set of children of v. First, considering S = Tv1 , compute OS from OS using the
UpToParent operation. Subsequently, we proceed with joining the subtrees Tvi one by one
using the AddChildTree operation. When all the children have been added, the resultant
subtree corresponds to Tv. Note that we apply a single operation per edge. Consequently,
this algorithm takes O(k2n3) time. Note, that with this algorithm, we obtain the evaluation
of the optimal clustering; the clusters of an optimal solution can be computed “navigating
backwards” through the computed functions.

Problem 2.2 can be solved using the same idea with a slightly more complex approach.
We can use a similar algorithm based on functions OS(µ), saving the parameter l, (which
corresponds to the number of clusters) and then the spent time is O

(
n3) time.
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Abstract
In this work we present the key ingredients to construct a linear-size data structure that stores a
set of spheres or axis-parallel hypercubes in Rd and supports what we define as 2m-approximate
stabbing queries in logarithmic time and local replacement in sub-logarithmic time, if the regions
not overlap “too much”. This work uses known techniques such as quadtrees and marked-ancestor
trees and introduces a new concept: key facets in a d-dimensional quadtree. We show the intuition
behind how this new concept can help us perform fast (approximate) stabbing queries with sub-
logarithmic local replacement if the dimension d and the approximation variable m are constant.
For a detailed description of the query algorithm and for proofs of correctness we refer to our full
version.

1 Introduction

An important and well-studied problem in Computational Geometry is the problem where
one is given a set B of n regions in Rd and needs to find the regions in that set that contain
a given query point q. Queries of this form are called stabbing queries and in this work we
focus on the reporting variant where we have to return the regions that contain q. In a static
environment, it is common to make a subdivision of the space based on the regions. Given
q, we then quickly find the cell in the subdivision that contains q. Well-known subdivision
methods are R-trees, quadtrees and (after applying a duality transformation) k-d trees [4].
Most current research on this topic focuses on the dynamic version of the problem where
one wants to maintain a set of regions subject to stabbing queries and adding, removing
or translating regions. These dynamic stabbing queries appear as a sub-problem in many
day-to-day applications such as GPS tracking, handling data imprecision and data analysis.
In certain applications a special kind of update called local replacement (Definition ??) [5] is
frequently performed. Intuitively, a local replacement replaces a region by another region
similar to it. For example: the ever-increasing uncertainty radius between GPS updates or
the moving action radius of an ambulance could both be modeled using local replacement.
We assume that the unit itself has a finger to its location in the data structure and we want
to use the finger to update the data structure and any auxiliary data structures.

In this paper regions in R1 will be defined as compact intervals. Regions in Rd will be
spheres and axis-parallel hypercubes. A local replacement does not “change too much” in the
set of regions and because of this, it is conjectured [5] that it should be possible to perform
such a replacement strictly faster than the traditional logarithmic time required for deleting
and inserting a region. Löffler et al. in [4] present a data structure that supports stabbing
queries in logarithmic time and local replacement in sub-logarithmic time for disjoint regions
in R1 and R2. In [3] Khramtcova and Löffler extend this approach by allowing regions in
R1 to overlap. In this work, we improve the data structure in [3, 4] to work for overlapping
regions in Rd if regions are spheres or axis-aligned hypercubes and if queries are not exact,
but what we call 2m-approximate for constant m. The question of whether exact logarithmic
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stabbing queries can be performed in logarithmic time with sub-logarithmic replacement
remains open.

1.1 Problem definition
In this paper we are given a set B of n spheres or axis-aligned hypercubes in Rd. We measure
the size of any region B ∈ B as its diameter. We assume that all regions are contained within
an axis-aligned bounding hypercube K. In [4] Löffler et al. demanded that the regions in B
are disjoint. In [3] Khramtcova and Löffler relaxed this constraint by introducing limited ply:
the ply of a set B of regions in Rd is the maximum over all points q ∈ Rd of the number
of B ∈ B that contain q. With this restriction from [3] on the set of regions B we want to
perform stabbing queries subject to sub-logarithmic local replacement. Local replacement is
defined as replacing a region B1 with a region B2 such that the two regions are ρ-similar for
constant ρ:

I Definition 1. Given two regions B1, B2 ∈ B and a ρ ≥ 1, we call B1 and B2 ρ-similar if
there exists a region A ⊂ Rd with |A| ≤ ρmin{|B1|, |B2|} such that B1, B2 ⊂ A.
I Definition 2. We call replacing a B1 ∈ B with B2 a local replacement if B1 and B2 are
ρ-similar for a constant ρ.

Figure 1 Three examples of a region B1 and a 2-similar region B2.

To perform this local replacement we use what we later define as a level query. In the
full version of this paper we show that level queries cannot be solved in sub-logarithmic time
in Rd, so we decided to relax the requirements for stabbing queries and replace exact stabbing
queries with approximate queries. Intuitively, we approximate each region B with a smaller
inner region. Approximate stabbing queries return all regions B whose inner region I(B)
contains q and possibly regions B whose outer region B\I(B) contains q, whilst ply is still
defined on the outer region B. The area between the outer and inner region could be seen as
a “buffer” that safeguards the inner region. We define our 2m-approximate stabbing queries
using this concept of inner and outer region, the time bounds of our operations depend on
the approximation constant m.

I Definition 3. For any convex region B, we define the inner region with respect to m
as a map Im which takes a region and produces its 2m-approximate inner region. Given
a region B, Im(B) is the scaled down version of B with |B| = (1 + 2−m)|Im(B)| with the
center of Im(B) on the center of B.

I Definition 4. A 2m-approximate query on a set of regions B is a query that given a point
q ∈ Rd returns all B ∈ B for which q is contained in Im(B) and might return other regions
which contain q but does not return regions which not contain q.

Our main result is the following theorem:

I Theorem 5. Given a set B of either spheres or axis-aligned hypercubes in Rd with ply k
and fixed m we can construct a data structure that
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takes O(dn) space,
supports regular insertion and deletion of elements and a 2m-approximation of the stabbing
queries in O(3dk log(n)

log(log(n)) + log(n) +m) time,
supports local replacement in O(2(d−1)mk log(n)

log(log(n)) ) time.

2 Preliminaries

Quadtrees. We always work within an axis-aligned bounding hypercube K with finite size.
A quadtree T on K is a hierarchical partition of K into smaller axis-aligned cells. Given B
we build a dynamic compressed quadtree T that stores B with the following storing condition:
A cell C stores a region B if C is the largest (possible) cell in T such that B contains C and
C contains the center point of B. In this extended abstract we assume for any set B we can
compute quadtree T storing B with the following three properties (see [2] for details):

The tree takes O(dn) space.
If for any two cells C1, C2 ∈ T their corresponding hypercubes are ρ-similar for constant
ρ, we can walk from C1 to C2 in constant time using pointers.
For each point q we can locate the smallest cell in T that contains q in logarithmic time.

Marked-ancestor trees. Suppose we are given a tree T with nodes (cells in our case)
and a fixed simple directed path π over T (this path does not have to follow pre-existing
edges in the tree, it is just an arbitrary simple path through the cells in T ) where some cell
in the path can be marked. In this model we want to support the following query for any
cell C: Which is the first marked cell which comes after cell C in the path?. We also want to
support updates where cells can be marked or unmarked and inserted into or deleted from
the path. This is known as the marked successor problem. This problem is solved in [1] with
the use of marked-ancestor trees. These trees support the marking and unmarking of cells
in the path in O( log(n)

log(log(n)) ) time. Each marked-ancestor tree with a path π in T allows for
what they call the firstmarked query:

I Definition 6. Given a connected path π in T , we can construct a marked-ancestor tree
over T such that for each cell C ∈ π, firstmarked(C, π, T ) gives the first marked cell in π
starting from C.

The firstmarked query can be solved in O( log(n)
log(log(n)) ) time [1]. This paper will make

extensive use of the firstmarked query. The marked successor problem is a more generic
version of the marked-ancestor problem: “Given a cell C in a tree T , which is the first marked
node that is an ancestor of C in T?”. Observe that the marked-ancestor problem can be
solved with a firstmarked query, we call this a marked-ancestor query.

3 Intuition and key facets

Let B be a set of closed and bounded intervals in R1. The goal of this section is twofold:
we introduce a new concept called key facets and we use this new concept to introduce
a data structure that supports exact stabbing queries in B in logarithmic time and local
updates in sub-logarithmic time. The results in the remainder of this paper are already
known: this abstract is an adaption of the data structure and methods used in [3] so that it
works with key facets. However, this work contains the basic data structure that we use for
2m-approximate stabbing queries in Rd in the full version [2].

Assume that we have a quadtree T that stores B and that for any query point q we can
find the quadtree cell C ∈ T which contains q in logarithmic time. Then any region B that
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contains q either covers C, or intersects C from the left or the right. Let R be the set of
all regions that have their center point to the right of C. Let B1 ∈ R be the region with
the left-most left endpoint of the regions in R. If any region in R contains q then B1 must
also contain q. We can symmetrically construct the set L. Because the ply is limited by k,
we only have to find the k left-most/right-most regions in R and L respectively to find all
regions that can contain q. As in [3] we find these regions in O(k log(n)

log(log(n)) ) time using two
marked-ancestor trees TL and TR and 2k marked-ancestor queries.

In [3] the authors obtained the marked-ancestor trees TL and TR by looking at which
cells contained the left-most and right-most endpoints of the regions B and by marking those
cells in TR and TL respectively. If we want to extend these results to Rd we must ask what
an equivalent structure would look like in higher dimensions: given q we need to identify a
constant number of directions and somehow find the k closest regions to q per direction. To
do this we introduce key facets.

If T is a quadtree in Rd then its cells are hypercubes in Rd. Each of these cells C have
3d − 1 d′-dimensional facets with d′ < d. Given T we intuitively define the key facet set Ξ
as the abstract notion of all these facets. For example: in R2 the set Ξ contains the abstract
notion of four vertices and four edges.

I Definition 7. Let K be a d-dimensional bounding box and P(K) be the infinite set of all
potential quadtree cells in K. We then define the key facet set Ξ as a set of maps (key
facets) χ :: P(K) → Rd where χ projects each cell C to the same d′-dimensional facet of
that cell. By the key facets of a cell C we mean the set Ξ(C) := {χ(C) | χ ∈ Ξ}.

Figure 2 A quadtree in R2, We can choose χ as
the general concept of the "top right vertex". This
Figure then contains a rotated quadtree T , and
the projection χ(T ) as red dots.

Let χ ∈ Ξ be any key facet and let C ∈ T
be an arbitrary quadtree cell. Let p be the
center of C. If χ(C) is a point then the
half-line l through p and χ(C) is unique.
Otherwise let l be a half-line through p and
χ(C) perpendicular to χ(C). Observe that
for any cell C ∈ T , l has the same direction
and observe that we can therefore rotate
Rd such that l aligns with the x-axis. This
rotation allows us to create a partial order
on the cells in T for each χ ∈ Ξ by ordering
the cells on their lowest x-coordinate after
the rotation. Figure 2 shows this rotation
where the cells in the partial order are A <χ
B =χ C <χ D <χ E.

I Definition 8. Let T be an arbitrary
quadtree in Rd and χ ∈ Ξ be a key facet. We
then define a facet path πχ as any simple
path through T with two properties: the linear order of this path is an extension of the
partial ordering given by χ and if C1 =χ C2 but C2 ⊂ C1 then C1 is in the path before C2.

I Observation 1. In Rd there exists a facet path for each key facet. In R1 the facet path is
unique and it is the pre-order traversal of the quadtree in both directions.
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4 The solution in R1

Marked-ancestor trees together with key facets provide the tools we need to perform approx-
imate stabbing queries in Rd with sub-logarithmic local replacement. However the algorithm
and construction in Rd is beyond the scope of this paper. We instead introduce the data
structure for Rd and show that with this data structure we can perform exact stabbing
queries in R1 with the same time bounds as in [3] with sub-logarithmic local replacement.

Let the ply of B be bounded by k. In our data structure we maintain a quadtree T
that stores B as specified in the Preliminaries. Together with T we maintain k|Ξ| + 1
marked-ancestor trees over T as follows: for each χ ∈ Ξ we maintain k marked-ancestor trees
or levels denoted as a family of trees {T iχ}i≤k. In this family of trees each tree T iχ will get
the same facet path πχ. Apart from these k|Ξ| trees we maintain another marked-ancestor
tree denoted by T ∗. For each region B ∈ B, we mark all the cells C that B intersects in one
of the marked-ancestor trees. If B is stored in C, it marks C in T ∗. Else it marks C based
on the following condition:
I Condition 1. For any family of marked-ancestor trees {T iχ} apart from T ∗, a cell C is
marked by a region B in T iχ if:
1. χ(C) is the highest-dimensional key facet of C that B intersects and
2. i is the largest i such that there is a descendant Cd of C which is marked in T i−1

χ and B
intersects χ(Cd).

Stabbing queries in R1: With this marking condition we can use our marked-ancestor
trees to solve any exact stabbing query in logarithmic time. Given a point q, we find the
smallest cell C in T that contains q in logarithmic time. We then query each marked-ancestor
tree T iχ with the firstmarked query from C with the path πχ, this takes O(log(n)+k log(n)

log(log(n)) )
time. In the remainder of this section we prove that the returned regions are the only regions
that can contain q ∈ R1.

I Lemma 9. Let C and Ca both be marked in T iχ in the same level i by a region B and Ba
respectively. Let χ be the map to rightmost point of each cell. If Ca is an ancestor of C then
the leftmost point of the region Ba must lie to the right of the leftmost point of the region B.
A symmetric property holds if χ is the rightmost point.

Proof. We prove this by contradiction: assume that the leftmost point of Ba lies to the left
of B. Then clearly all C ′ where B intersects χ(C ′) are also intersected by Ba and thus also
χ(C). If i < k then because χ(C) is intersected by Ba, Ba should have been stored in T i+1

χ

and not T iχ. If i = k then per definition, B intersects the key facet χ(Cd) of a descendant Cd
of C. Cd is therefore per definition marked in T iχ by a region Bd. By our earlier observation,
Ba must also intersect Bd in χ(Cd). We continue this argument all the way down to T 1

χ and
see that we violate a ply of k. J

I Lemma 10. Given a point q ∈ R1 contained in a cell C, if C has a lowest-marked ancestor
C1 marked in T iχ for any i, χ by an interval B1 then B1 is the only region marking an
ancestor of C in T iχ that can contain q.

Proof. Let T iχ be an arbitrary marked-ancestor tree in R1. Then χ is either the left-most or
right-most vertex of a cell. Assume that we have found the lowest marked ancestor of the
cell C in the marked-ancestor tree T iχ, the cell C1 marked by a region B1. Then B1 either
contains the query point q or does not. If B1 does not contain q then Lemma 9 demands
that any ancestor of C1 marked in T iχ is marked by a region that reaches less far than B1
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does and so any other region marking an ancestor of C1 cannot reach q. If B1 does contain
q then any region marking a higher ancestor of C in T iχ that reaches q must also intersect
χ(C1) and should therefore have marked the ancestor in T i+1

χ or violate the ply of k. J

The result of this lemma is that in R1 with constant ply we can solve stabbing queries in
logarithmic time with a marked-ancestor query in each marked-ancestor tree (the lowest-
marked ancestor in T ∗ always contains q).

The level query in R1: Assume we want to replace a region B1 with a region B2
such that B1 and B2 are ρ-similar and that we have a finger to the cell C1 that stores B1.
Because B1 and B2 are ρ-similar we can use at most O(ρ) pointers to reach the cell C2 that
should store B2 (See preliminaries). What remains is to update the marked-ancestor trees in
sub-logarithmic time. For that we define the level query.

I Definition 11. A level query checks for a given region B, cell C that B intersects and a
family of marked-ancestor trees {T iχ} in which level i the region B marks C (if any).

In R1 the level query can be solved for each {T iχ} by just incrementally performing at most
k firstmarked queries with the unique facet path πχ. One can show that the result of that
query gives the unique region that could “force” B to mark C in a higher level.

The solution in Rd. We show in the full version [2] that in Rd the abstract level
query has a lower bound of logarithmic time. This version also contains a more elaborate
description of the data structure required to store and approximately query regions in Rd.
Specifically we introduce an extension of the marking Condition 1 and show how to perform
2m-approximate stabbing queries and local replacements with the query times as specified in
Theorem 5.

In this version and the full version we have demonstrated how the concept of key facets
can give information about the closest regions that lie in a certain direction from a query
point q. Given the cell that contains the query point, we can even provide this information
in sub-logarithmic time. A future research direction could be to see if we can use key facets
and marked-ancestor queries for sub-logarithmic visibility queries.
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Abstract
For many algorithms dealing with sets of points in the plane, the only relevant information
carried by the input is the combinatorial configuration of the points: the orientation of each
triple of points in the set (clockwise, counterclockwise, or collinear). This information is called
the order type of the point set. In the dual, realizable order types and abstract order types
are combinatorial analogues of line arrangements and pseudoline arrangements. Too often in
the literature we analyze algorithms in the real-RAM model for simplicity, putting aside the
fact that computers as we know them cannot handle arbitrary real numbers without some sort
of encoding. Encoding an order type by the integer coordinates of some realizing point set is
known to yield doubly exponential coordinates in some cases. Other known encodings can achieve
quadratic space or fast orientation queries, but not both. In this contribution, we give a compact
encoding for abstract order types that allows efficient query of the orientation of any triple:
the encoding uses O(n2) bits and an orientation query takes O(logn) time in the word-RAM
model. This encoding is space-optimal for abstract order types. We show how to shorten the
encoding to O(n2(log logn)2

/ logn) bits for realizable order types, giving the first subquadratic
encoding for those order types with fast orientation queries. We further refine our encoding to
attain O(logn/ log logn) query time at the expense of a negligibly larger space requirement. In
the realizable case, we show that all those encodings can be computed efficiently. Finally, we
generalize our results to the encoding of point configurations in higher dimension.

1 Introduction

At SoCG’86, Chazelle asked [16]:

“How many bits does it take to know an order type?”

This question is of importance in Computational Geometry for the following two reasons:
First, in many algorithms dealing with sets of points in the plane, the only relevant information
carried by the input is the combinatorial configuration of the points given by the orientation
of each triple of points in the set (clockwise, counterclockwise, or collinear) [7]. Second,
computers as we know them can only handle numbers with finite description and we cannot
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(a) Realizable order type. (b) Abstract order type which is not realizable.

Figure 1 Pappus’s configuration.

assume that they can handle arbitrary real numbers without some sort of encoding. The
study of robust algorithms is focused on ensuring the correct solution of problems on finite
precision machines. Chapter 41 of The Handbook of Discrete and Computational Geometry
is dedicated to this issue [23].

The (counterclockwise) orientation ∇(p, q, r) of a triple of points p, q, and r with coordi-
nates (xp, yp), (xq, yq), and (xr, yr) is the sign of the determinant

∣∣∣∣∣∣

1 xp yp

1 xq yq

1 xr yr

∣∣∣∣∣∣
.

Given a set of n labeled points P = { p1, p2, . . . , pn }, we define the order type of P to
be the function χ : [n]3 → {−, 0,+ } : (a, b, c) 7→ ∇(pa, pb, pc) that maps each triple of point
labels to the orientation of the corresponding points, up to isomorphism. The order type
of a point set has been further abstracted into combinatorial objects known as (rank-three)
oriented matroids [10]. The chirotope axioms define consistent systems of signs of triples [3].
From the topological representation theorem [4], all such abstract order types correspond to
pseudoline arrangements, while, from the standard projective duality, order types of point
sets correspond to straight line arrangements. See Chapter 6 of The Handbook for more
details [21].

When the order type of a pseudoline arrangement can be realized by an arrangement of
straight lines, we call the pseudoline arrangement stretchable. As an example of a nonstretch-
able arrangement, Levi gives Pappus’s configuration where eight triples of concurrent straight
lines force a ninth, whereas the ninth triple cannot be enforced by pseudolines [19] (see Fig-
ure 1). Ringel shows how to convert the so-called “non-Pappus” arrangement of Figure 1 (b)
to a simple arrangement while preserving nonstretchability [22]. All arrangements of eight or
fewer pseudolines are stretchable [13], and the only nonstretchable simple arrangement of nine
pseudolines is the one given by Ringel [20]. More information on pseudoline arrangements is
available in Chapter 5 of The Handbook [11].

Figure 1 shows that not all pseudoline arrangements are stretchable. Indeed, most are not:
there are 2Θ(n2) abstract order types [8] and only 2Θ(n log n) realizable order types [1, 15].

Information theory implies that we need quadratic space for abstract order types whereas
we only need linearithmic space for realizable order types. Hence, storing all

(
n
3
)
orientations

in a lookup table seems wasteful. Another obvious idea for storing the order type of a point
set is to store the coordinates of the points, and answer orientation queries by computing the
corresponding determinant. While this should work in many practical settings, it cannot work
for all point sets. Perles’s configuration shows that some configuration of points, containing
collinear triples, forces at least one coordinate to be irrational [18]. Order types of points in
general position can always be represented by rational coordinates. It is well known, however,
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that some configurations require doubly exponential coordinates, hence coordinates with
exponential bitsizes if represented in the normal way [17].

Goodman and Pollack defined λ-matrices which can encode abstract order types using
O(n2 logn) bits [14]. They asked if the space requirements could be moved closer to the
information-theoretic lower bounds. Felsner and Valtr showed how to encode abstract
order types optimally in O(n2) bits via the wiring diagram of their corresponding allowable
sequence [8, 9] (as defined in [12]). Aloupis et al. gave an encoding of size O(n2) that can be
computed in O(n2) time and that can be used to test for the isomorphism of two distinct
point sets in the same amount of time [2]. However, it is not known how to decode the
orientation of one triple from any of those encodings in, say, sublinear time. Moreover, since
the information-theoretic lower bound for realizable order types is only Ω(n logn), we must
ask if this space bound is approachable for those order types while keeping orientation queries
reasonably efficient.

Our Results
In this contribution, we are interested in compact encodings for order types: we wish to
design data structures using as few bits as possible that can be used to quickly answer
orientation queries of a given abstract or realizable order type.

I Definition 1.1. For fixed k and given a function f : [n]k → [O(1)], we define a (S(n), Q(n))-
encoding of f to be a string of S(n) bits such that, given this string and any t ∈ [n]k, we can
compute f(t) in Q(n) query time in the word-RAM model.

We give the first optimal encoding for abstract order types that allows efficient query of the
orientation of any triple: the encoding is a data structure that uses O(n2) bits of space with
queries taking O(logn) time in the word-RAM model.

I Theorem 1.2. All abstract order types have an (O(n2), O(logn))-encoding.

Our encoding is far from being space-optimal for realizable order types. We show that its
construction can be easily tuned to only require O(n2(log logn)2

/ logn) bits in this case.

I Theorem 1.3. All realizable order types have an (O( n2(log log n)2

log n ), O(logn))-encoding.

We further refine our encoding to reduce the query time to O(logn/ log logn).

I Theorem 1.4. All abstract order types have an (O(n2), O( log n
log log n ))-encoding.

I Theorem 1.5. All realizable order types have a (O( n2 logε n
log n ), O( log n

log log n ))-encoding.

In the realizable case, we give quadratic upper bounds on the preprocessing time required to
compute an encoding in the real-RAM model.

I Theorem 1.6. In the real-RAM model and the constant-degree algebraic decision tree
model, given n real-coordinate input points in R2 we can compute the encoding of their order
type as in Theorems 1.4 and 1.5 in O(n2) time.

We generalize our encodings for chirotopes of point sets in higher dimension.

I Theorem 1.7. All realizable chirotopes of rank k ≥ 4 have a (O( nk−1(log log n)2

log n ), O( log n
log log n ))-

encoding.

EuroCG’18
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I Theorem 1.8. In the real-RAM model and the constant-degree algebraic decision tree
model, given n real-coordinate input points in Rd we can compute the encoding of their
chirotope as in Theorem 1.7 in O(nd) time.

Our data structure is the first subquadratic encoding for realizable order types that
allows efficient query of the orientation of any triple. It is not known whether a subquadratic
constant-degree algebraic decision tree exists for the related problem of deciding whether a
point set contains a collinear triple. Any such decision tree would yield another subquadratic
encoding for realizable order types. We see the design of compact encodings for realizable
order types as a subgoal towards subquadratic nonuniform algorithms for this related problem,
a major open problem in Computational Geometry. Note that pushing the preprocessing
time below quadratic would yield such an algorithm.

2 Encoding Order Types via Hierarchical Cuttings

We assume that we can access some arrangement of lines or pseudolines that realizes the
order type we want to encode. We thus exclusively focus on the problem of encoding the
order type of a given arrangement. This does not pose a threat against the existence of an
encoding. In this extended abstract, we sketch the general idea for a simple subquadratic
encoding. For full details, proofs, and improvements, we refer to the arXiv version [5].

Hierarchical Cuttings

We encode the order type of an arrangement via hierarchical cuttings as defined in [6].
A cutting in Rd is a set of (possibly unbounded and/or non-full dimensional) constant-
complexity cells that together partition Rd. A 1

r -cutting of a set of n hyperplanes is a cutting
with the constraint that each of its cells is intersected by at most n

r hyperplanes. There exist
various ways of constructing 1

r -cuttings of size O(rd). In the plane, hierarchical cuttings can
be constructed for arrangement of pseudolines with the same properties.

Idea

We want to preprocess n pseudolines { `1, `2, . . . , `n } in the plane so that, given three indices
a, b, and c, we can compute their orientation, that is, whether the intersection `a ∩ `b lies
above, below or on `c. Our data structure builds on cuttings as follows: Given a cutting Ξ
and the three indices, we can locate the intersection of `a and `b inside Ξ. The location of
this intersection is a cell of Ξ. The next step is to decide whether `c lies above, lies below,
contains or intersects that cell. In the first three cases, we are done. Otherwise, we can
answer the query by recursing on the subset of pseudolines intersecting the cell containing
the intersection. We build on hierarchical cuttings to solve all subproblems efficiently.

Intersection Location

When the `a are straight lines, locating the intersection `a ∩ `b in Ξ is trivial if we know
the real parameters of `a and `b and of the descriptions of the subcells of Ξ. However, in
our model we are not allowed to store real numbers. To circumvent this annoyance, and to
handle arrangements of pseudolines, we make a simple observation illustrated by Figure 2.
I Observation 1. Two pseudolines `a and `b intersect in the interior of a full-dimensional cell
C if and only if each pseudoline properly intersects the boundary of C exactly twice and their
intersections with its boundary alternate.
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`2

`1

C

π

(a) `a ∩ `b ∩ C = ∅.

C

`2`1

π

(b) `a ∩ `b ∩ C 6= ∅.

Figure 2 Cyclic permutations (π).

This gives us a way to encode the location of the intersection of `a and `b in Ξ using only bits.
We define the cyclic permutation of a full-dimensional cell C and a finite set of pseudolines
L to be the finite sequence of properly intersecting pseudolines from L encountered when
walking along the boundary of C in clockwise or counterclockwise order, up to rotation and
reversal. Location in a non-full-dimensional cell can be encoded similarily.

Encoding

Given n pseudolines in the plane and some fixed parameter r, compute a hierarchical 1
r -

cutting of those pseudolines. This hierarchical cutting consists of ` levels labeled 0, 1, . . . , `−1.
Level i has O(r2i) cells. Each of those cells is further partitioned into O(r2) subcells. The
O(r2(i+1)) subcells of level i are the cells of level i+ 1. Each cell of level i is intersected by
at most n

ri pseudolines, and hence each subcell is intersected by at most n
ri+1 pseudolines.

We compute and store a combinatorial representation of the hierarchical cutting as follows:
For each level of the hierarchy, for each cell in that level, for each pseudoline intersecting that
cell, for each subcell of that cell, we store two bits to indicate the location of the pseudoline
with respect to that subcell. When a pseudoline intersects the interior of a 2-dimensional
subcell, we also store the two indices of the intersections of that pseudoline with the subcell
in the cyclic permutation associated with that subcell, beginning at an arbitrary location in,
say, clockwise order. Location in a non-full-dimensional subcell can be encoded similarily.

The hierarchy is such that each subcell of the last level is intersected by no more than
t = n

r` pseudolines. For those subcells, we answer the queries by table lookup. The use of
hierarchical cuttings essentially guarantees we get quadratic preprocessing time, quadratic
space, and logarithmic query time in the abstract case. In the realizable case, we know there
can only be 2O(t log t) distinct lookup tables. Choosing the right superconstant t leads to
subquadratic space in that case.
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Abstract
A disk graph is the intersection graph of closed disks in the plane. We show the structural result
that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those
cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm
running in time 2Õ(n2/3) for Maximum Clique on disk graphs. In contrast, the problem is
unlikely to have such algorithms on intersection graphs of filled ellipses or filled triangles.

1 Introduction

Intersection graphs for many different families of geometric objects have been widely studied
due to their practical applications and rich structural properties [13]. Among the most
studied ones are (unit) disk graphs, which are intersection graphs of closed (unit) disks in
the plane with applications ranging from sensor networks to map labeling.

Clark et al. [8] gave a polynomial-time algorithm for Maximum Clique on unit disk
graphs. The complexity of the problem on general disk graphs is unfortunately still unknown.
Ambühl and Wagner [1] gave a simple 2-approximation algorithm for Maximum Clique on
general disk graphs, showed the problem to be APX-hard on intersection graphs of ellipses
and gave a 9ρ2-approximation algorithm for filled ellipses of aspect ratio at most ρ.

Results. We show that the disjoint union of two odd cycles is not the complement of a disk
graph, providing an infinite family of forbidden induced subgraphs, an analogue to the work
of Atminas and Zamaraev on unit disk graphs [2]. Using this property we give a QPTAS
and a subexponential-time algorithm for Maximum Clique on disk graphs. Finally, we
show that for filled ellipses or filled triangles, there is a constant α > 1 for which an α-
approximation algorithm running in subexponential time is highly unlikely.

Definitions and notations. For two integers i 6 j, let [i, j] be the set {i, i+1, . . . , j−1, j}
and [i] the set [1, i]. For a subset S of vertices of a graph, let N(S) be the open neighborhood
of S and N [S] the set N(S)∪S. The 2-subdivision of a graph G is the graph H obtained by
subdividing each edge of G twice. The co-2-subdivision of G is the complement of H. The
co-degree of G is the maximum degree of its complement. A co-disk is the complement of a
disk graph. For two distinct points x and y in the plane, we denote by `(x, y) the unique line
going through x and y, and by seg(x, y) the closed straight-line segment whose endpoints
are x and y. For a segment s with positive length, let `(s) be the unique line containing s.
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2 Disk graphs with co-degree 2

We fully characterize the degree-2 complements of disk graphs by showing the following.

I Theorem 1. A disjoint union of cycles is the complement of a disk graph if and only if
the number of odd cycles is at most one.

We only show the first part of this theorem, i.e., the union of two disjoint odd cycles is not
the complement of a disk graph. As disk graphs are closed under taking induced subgraphs,
two vertex-disjoint odd cycles in the complement of a disk graph have to be linked by at
least one edge. The second part, i.e., how to represent the complement of the disjoint union
of even cycles and one odd cycle, is deferred to the full version of this abstract [4].

2.1 The disjoint union of two odd cycles is not co-disk
A proper representation is a disk representation where every edge is witnessed by a proper
intersection of the two corresponding disks, i.e., the interiors of the two disks intersect. It
is easy to transform a disk representation into a proper one (of the same graph) where,
additionally, no three disk centers are aligned. With this assumption, we can show that in
a representation of a K2,2 with the four centers in convex position, both non-edges have to
be diagonal.

I Lemma 2. In a disk representation of K2,2 with the four centers in convex position, the
non-edges are between vertices corresponding to opposite centers in the quadrangle.

A useful consequence of the previous lemma is the following.

I Corollary 3. In any disk representation of K2,2 with centers c1, c2, c3, c4 with the two
non-edges between the vertices corresponding to c1 and c2, and between c3 and c4, it should
be that `(c1, c2) intersects seg(c3, c4) or `(c3, c4) intersects seg(c1, c2).

We can now prove the main result of this section thanks to the previous corollary, parity
arguments, and some elementary properties of closed plane curves.

I Theorem 4. The complement of the disjoint union of two odd cycles is not a disk graph.

Proof. Let s and t be two positive integers and G = C2s+1 + C2t+1 the complement of the
disjoint union of two cycles of lengths 2s+ 1 and 2t+ 1. Assume that G is a disk graph. Let
C1 (resp. C2) be the cycle embedded in the plane formed by 2s+1 (resp. 2t+1) straight-line
segments joining the consecutive centers of disks along the first (resp. second) cycle. We
number the segments of C1 from S1 to S2s+1, and the segments of C2, from S′1 to S′2t+1.

For the i-th segment Si of C1, let ai be the number of segments of C2 intersected by the
line `(Si) prolonging Si, let bi be the number of segments S′j of C2 such that `(S′j) intersects
Si, and let ci be the number of segments of C2 intersecting Si. For the second cycle, we
define similarly a′j , b′j , c′j . The quantity ai + bi − ci counts the number of segments of C2
which can possibly represent a K2,2 with Si according to Corollary 3. Since G is a disk
graph, ai + bi − ci = 2t + 1 for every i ∈ [2s + 1]. Otherwise there would be at least one
segment S′j of C2 such that `(Si) does not intersect S′j and `(S′j) does not intersect Si.

Observe that ai is an even integer since C2 is a closed curve. Also, Σ2s+1
i=1 ai + bi − ci =

(2t + 1)(2s + 1) is an odd number, as the product of two odd numbers. This implies
that Σ2s+1

i=1 bi − ci shall be odd. Σ2s+1
i=1 ci counts the number of intersections of the two

closed curves C1 and C2, and is therefore even. Hence, Σ2s+1
i=1 bi shall be odd. Observe that

Σ2s+1
i=1 bi = Σ2t+1

j=1 a
′
j by reordering and reinterpreting the sum from the point of view of the

segments of C2. Since the a′j are all even, Σ2s+1
i=1 bi is also even; a contradiction. J
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3 Algorithmic consequences

As a clique in a graph G is an independent set in G, we focus on Maximum Independent
Set on graphs without two vertex-disjoint odd cycles with no edges connecting them.

3.1 QPTAS
The odd cycle packing number ocp(H) of a graph H is the maximum number of vertex-
disjoint odd cycles in H. The condition that G does not contain two vertex-disjoint odd
cycles with no edges between them is not the same as saying that ocp(G) = 1. Otherwise,
we could directly use the PTAS on graphs H with n vertices and ocp(H) = o(n/ logn) by
Bock et al. [3], which does not need the odd cycle packing as an input. This is important,
since finding a maximum odd cycle packing is NP-hard [11]. Using Theorem 4, we can show
the following lemma, which spares us having to determine the odd cycle packing number.

I Lemma 5. Let H be a graph with n vertices, whose complement is a disk graph. If
ocp(H) > n/ log2 n, then H has a vertex of degree at least n/ log4 n.

If G has no vertex of degree at least n/ log4 n, by Lemma 5, we know that ocp(G) 6
n/ log2 n = o(n/ logn) and run the PTAS of Bock et al. If G has a vertex v of degree at least
n/ log4 n (it may still hold that ocp(G) = o(n/ logn)), we branch on v: either we include
v in our solution and remove N [v], or we discard v. The complexity of this is given by
F (n) 6 F (n− 1) + F (n− n/ log4 n), which solves to the running time below.

I Theorem 6. For any ε > 0, Maximum Clique can be (1 + ε)-approximated in time
2O(log5 n), when the input is a disk graph with n vertices.

3.2 Subexponential algorithm
An odd cycle cover is a subset of vertices whose deletion makes the graph bipartite. Györi
et al. [9] showed that graphs with small odd girth have small odd cycle cover. This can be
seen as relativizing the fact that odd cycles do not have the Erdős-Pósa property. Bock et
al. [3] turned the non-constructive proof into a polynomial-time algorithm.

I Theorem 7 ([9] and [3]). Let H be a n-vertex graph with no odd cycle shorter than δn.
H has a polynomial-time computable odd cycle cover of size at most (48/δ) ln(5/δ).

We start by showing three variants of an algorithm.

I Theorem 8. Let G be a disk graph with n vertices and ∆, c the maximum degree and odd
girth of G. Maximum Clique has a branching or can be solved, up to a polynomial factor,
in time: (i) 2Õ(n/∆) (branching), (ii) 2Õ(n/c) (solved), (iii) 2O(c∆) (solved).

Proof. We look for a maximum independent set in G. For (i), let v be a vertex of degree ∆
in G. We branch on v: either we include v in our solution and remove N [v], or discard v.
The complexity is given by F (n) 6 F (n−1)+F (n− (∆+1)), which solves to (i). This does
not give a 2Õ(n/∆)-time algorithm as the maximum degree might drop. We do the branching
as long as it is good enough and finish with the algorithms corresponding to (ii) and (iii).

For (ii) and (iii), let C be the cycle of length c, it can be found in polynomial time. By
Theorem 7, with δ = c/n, we find an odd cycle cover X in G of size Õ(n/c) in polynomial
time. We exhaustively guess in time 2Õ(n/c) the intersection I of an optimum solution with
X and finish by finding, in polynomial time, a maximum independent set in the bipartite
graph G− (X ∪N(I)). The total complexity of this case is 2Õ(n/c), which shows (ii).

EuroCG’18
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For (iii), G −N [C] is bipartite as G contains no two vertex-disjoint odd cycles with no
edges between them. As every vertex in G has degree at most ∆, it holds that |N [C]| 6
c(∆−1) 6 c∆. Indeed, a vertex of C can only have c(∆−2) neighbors outside C. We guess
the intersection of the optimal solution with N [C] and find the maximum independent set
in a bipartite graph (a subgraph of G−N [C]), which can be done in total time 2O(c∆). J

The structure of G affects the bounds in Theorem 8 as follows.

I Corollary 9. Let G be a disk graph with n vertices. Maximum Clique can be solved in
time: (a) 2Õ(n2/3), (b) 2Õ(

√
n) if the maximum degree of G is constant, (c) polynomial, if

both the maximum degree and the odd girth of G are constant.

On general graphs, (b) is the hardest case for Maximum Clique. Moreover, the win-win
strategy of Corollary 9 can be directly applied to solve Maximum Weighted Clique.

4 Intersection graphs of filled ellipses and filled triangles

For Maximum Clique on intersection graphs of (non-filled) ellipses and triangles, APX-
hardness was shown by Ambühl and Wagner [1]. Their reduction also implies that there is
no subexponential algorithm for this problem, unless the ETH fails [10]. They claim that
their hardness result extends to filled ellipses since “intersection graphs of ellipses without
interior are also intersection graphs of filled ellipses”. Unfortunately, this claim is incorrect.

I Theorem 10. There is a graph which has an intersection representation with ellipses
without their interior, but has no intersection representation with convex sets.

Figure 1 shows a counterexample and the argument is similar to the one used by Brimkov
et al. [5], which was in turn inspired by the construction by Kratochvíl and Matoušek [12].

c
db

a

a

c

d
b

Figure 1 A graph (left), which has a representation with empty ellipses (right) but no repres-
entation with convex sets.

Fortunately, we can show that the hardness result does hold for filled ellipses (and filled
triangles) with a different reduction. Our construction can be seen as streamlining the ideas
of Ambühl and Wagner [1] and, we believe, is simpler.
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I Theorem 11. There is a constant α > 1, such that for every ε > 0, Maximum Clique
on intersection graphs of filled ellipses or filled triangles has no α-approximation algorithm
running in subexponential time 2n1−ε , unless the ETH fails. For ellipses, this holds even
when they have arbitrarily small eccentricity and arbitrarily close value of major axis.

This contrasts with the subexponential algorithm and QPTAS for eccentricity 0 (disks).
It also subsumes [6] (where NP-hardness is shown for connected shapes contained in a disk
of radius 1 and containing a concentric disk of radius 1− ε for arbitrarily small ε > 0).

We first show the lower bound for Maximum Weighted Independent Set on the
class of all 2-subdivisions, and, hence, the same for Maximum Weighted Clique on all
co-2-subdivisions. Then we show that intersection graphs of filled ellipses or of filled triangles
contain all co-2-subdivisions.

The following inapproximability result for Maximum Independent Set on bounded-
degree graphs was shown by Chlebík and Chlebíková [7]. As their reduction is almost linear,
the PCP of Moshkovitz and Raz [14] boosts this hardness result from ruling out polynomial-
time up to ruling out subexponential time 2n1−ε for any ε > 0.

I Theorem 12 ([7, 14]). There is a constant β > 0 such that Maximum Independent
Set on graphs with n vertices and maximum degree ∆ cannot be 1+β-approximated in time
2n1−ε for any ε > 0, unless the ETH fails.

I Theorem 13. There is a constant α > 1 such that for any ε > 0, Maximum Independent
Set on the class of all the 2-subdivisions has no α-approximation algorithm running in
subexponential time 2n1−ε , unless the ETH fails.

Proof. Let G be a graph with maximum degree ∆, n vertices v1, . . . , vn and m edges
e1, . . . , em. Let H be its 2-subdivision. The 2m vertices in V (H) \ V (G), representing
edges, are called edge vertices and denoted by v+(e1), v−(e1), . . . , v+(em), v−(em), as op-
posed to the other original vertices of H. If ek = vivj is an edge of G, then v+(ek) (resp.
v−(ek)) has two neighbors: v−(ek) and vi (resp. v+(ek) and vj).

There is a maximum independent set S which contains exactly one of v+(ek), v−(ek) for
every k ∈ [m]. S cannot contain both v+(ek) and v−(ek) as they are adjacent. If S contains
neither v+(ek) nor v−(ek), then adding v+(ek) to S and potentially removing the other
neighbor of v+(ek), can only increase the size of the independent set. Hence S contains m
edge vertices and s 6 n original vertices, and there is no larger independent set in H.

Assume an approximation with ratio α := 1 + 2β
(∆+1)2 for Maximum Independent Set

on 2-subdivisions running in subexponential time, where ratio 1+β > 1 is not attainable for
Maximum Independent Set on graphs of maximum degree ∆ (Theorem 12). On instance
H, this algorithm would output a solution with m′ edge vertices and s′ original vertices.
This solution can be easily (in polynomial time) transformed into an at-least-as-good solution
with m edge vertices and s′′ original vertices forming an independent set in G. We assume
that s′′ > n/(∆ + 1) since for any independent set of G, we can obtain an independent set
of H consisting of the same set of original vertices and m edge vertices. Since m 6 n∆/2
and s′′ > n/(∆ + 1), we obtain m 6 s′′∆(∆ + 1)/2 and 2m/(∆ + 1)2 6 s′′∆/(∆ + 1). From
m+s
m+s′′ 6 α and ∆ > 3, we easily get that s 6 s′′(1 + β), contradicting the Theorem 12. J

Finally, we can prove the following lemma; see Figure 2 for an example with filled
triangles. This, together with Theorem 13, proves Theorem 11.

I Lemma 14. The class of intersection graphs of filled triangles or filled ellipses contains
all co-2-subdivisions.

EuroCG’18



61:6 REFERENCES

Figure 2 A co-2-subdivision of a graph with 5 vertices (in red) represented with triangles. Two
edges are represented: between vertices 1 and 4 (in green) and between vertices 2 and 3 (in blue).
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Abstract
The Tokyo subway is one of the most complex networks in the world, and it is difficult to obtain its
easy-to-read metro map using existing layout methods. In this paper, we present a new method
that can generate complex metro maps like the Tokyo metro map. Our method consists of two
phases. The first phase generates rough metro maps. It decomposes the metro networks into
smaller subgraphs, and generates rough metro maps partially. In the second phase, we use a local
search technique to improve the aesthetic quality of the rough metro maps. The experimental
results including the Tokyo metro map are shown.

1 Introduction

Metro maps are useful tools for passengers in complex metro networks. They help us in
planning the route from one station to another promptly. Metro maps give us information,
such as where to change stations, which direction to go for the destination, and how many
stations that are from the departure point to the goal. Passengers access the topology of
the network before the exact geographical location.

Such a metro map was first created by Henry Beck [1], who was an English technical
draftsman. He proposed the criteria for drawing maps that are easy to read. It is still
difficult to draw them manually, even if a draftsman takes sufficient time. Therefore, the
problem of drawing metro map layouts automatically (in general, we call it the metro map
layout problem) has been investigated for a long time.

Hong et al. [3] presented five methods for the metro map layout problem. These methods
are based on the spring-embedder paradigm, where several attracting and repelling forces act
between the vertices. The forces iteratively optimize the metro map until a locally optimal
equilibrium. They experimented with real-world data, and were able to produce metro maps
quickly. The Tokyo metro map can be obtained by using their method. However, there are
crossings of edges and labels.

Stott et al. [4] described a method of drawing metro maps using multi-criteria optimiza-
tion based on hill climbing. They defined various metrics, which are used in a weighted
sum to find a fitness value for a layout of metro maps. Their approach uses some clustering
mechanisms to avoid local minima.

Nöllenburg and Wolff [2] considered the layout problem of railroad lines connecting sta-
tions and the labeling problem for the stations simultaneously using mixed-integer program-
ming (MIP). The solvability of the problem depends on the size of the MIP. If their method
can solve the problem in terms of the size of the MIP, the results obtained by their method
almost satisfy Beck’s criteria and they are easy to read.
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
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2 The Metro Map Layout Problem

This section describes the metro map layout problem based on the formulation defined by
Nöllenburg and Wolff [2]. A metro network consists of metro lines and stations, and it
can be seen as a planar graph. If two metro lines intersect at the stations, by adding such
intersections as vertices, the network can be considered as a planar graph G = (V,E). Let
L be a set of metro lines. Each edge of G belongs to at least one metro line. An embedded
graph of G in the plane is called a metro map Γ. Let le > 0 be the minimum length of
Γ(e) for each edge e ∈ E, and dmin > 0 be the minimum distance between each pair of
non-incident edges in Γ. Nöllenburg and Wolff gave seven design rules for drawing metro
maps, and split these rules into hard and soft constraints. The following formulation of the
metro map layout problem has been defined by Nöllenburg and Wolff [2].

(H1) For each edge e, Γ(e) must be octilinear.
(H2) For each vertex v, the circular order of its neighbors must agree in Γ and the input

embedding.
(H3) For each edge e, Γ(e) must have a length at least le.
(H4) For each edge e, Γ(e) must have a distance of at least dmin > 0 from each non-incident

edge in Γ.
(S1) The lines in L should have few bends in Γ, and the bend angle(< 180◦) should be as

large as possible.
(S2) For each pair of adjacent vertices (u, v), their relative position should be preserved in

Γ.
(S3) The total edge length of Γ should be small.

The objective function is the sum obtained by multiplying soft constraints by each weight.
Thus the problem can be defined in [2] as follows:

Metro-Map Layout Problem� �
Input: a plane graph G = (V,E) with maximum degree eight, metro lines L of G,

minimum edge lengths le > 0, for each e ∈ E, and a minimum distance dmin >

0.
Output: a metro map Γ that satisfies the hard constraints and optimizes the soft con-

straints.� �
The method can be applied to metro networks having station name labels as follows.

They considered the label region of some stations as a quadrilateral. They added edges
expressing the boundaries of the label regions into the metro network. They formulated a
MIP model for this modified graph. Further, they presented some heuristics that reduce the
size of the graph and the MIP model because the size of the MIP is generally large. The
approach that reduces the size of the graph replaces each path of continued vertices with
degree two temporarily by a path of length 3. The approach does not consider overlapping-
free constraints in the initial MIP formulation. Then, during the optimization process, they
add the constraints on demand, and repeat until the constraints are satisfied.

3 The Metro Map Drawing Method

If the solution can be obtained by the MIP formulation defined by Nöllenburg and Wolff [2],
the results are good metro maps. However, the metro map in Tokyo is too complex and,
in our experiment, their method did not succeed to generate the Tokyo metro map; our
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implementation of their method with CPLEX ran out of memory and terminated after
running for five days without finding any feasible solution. The implementation used the
size reduction techniques (simplification of degree-2 vertices and callback-based resolution
of edge intersections) and ran on the system described in Section 4. Therefore, in this paper,
we try to modify their method and optimize partially rather than overall. Our method has
two phases: a brief incremental construction phase and an iterative improvement phase.
The first incremental construction phase draws rough metro maps by MIP based on the
methods in [2]. The second iterative improvement phase improves the maps generated by
the incremental construction phase to make them more aesthetic. We forgo the optimum
solution for the soft constraints. Instead, our method improves the metro maps that satisfy
the hard constraints by a local search technique, and gives a local optimum solution.

3.1 Preprocessing
We preprocess the Tokyo metro network by adding the label regions and replace every
long path with a path with three edges using an approach similar to Nöllenburg and Wolff’s
method. The Tokyo metro network has stations whose degree is greater than eight. However,
such stations cannot use the MIP formulation in [2]. Therefore, we modify the graph such
that for every vertex, its degree is less than nine. A vertex vin, whose degree is greater than
two, is called an interchange vertex (See Figure 1 (a)). We split each interchange vertex
into three vertices and connect these three vertices by horizontal line segments to reduce
its degree (See Figure 1 (b)). Subsequently, the vertices that are initially adjacent to the
interchange vertex vin reconnect to one of the three new vertices by the direction of the
original edge. We set the label of the interchange vertex using line segments connecting the
three vertices as the interchange label region. For the rest of this paper, the graph obtained
after splitting interchange vertices is described as G̃

(a) (b)

Figure 1 (a) An interchange vertex vin. (b) An interchange vertex after adding two vertices and
reconnecting.

3.2 Reduced Optimization
We generate metro maps by reduced optimization using MIP formulation [2]. In reduced
optimization, we formulate as some edges can move and the others cannot move but these
length can be adjustable. By doing so, it is easy to move edges while satisfying the constraint
of overlapping-free (H4), and to generate good metro maps.

3.3 Incremental Construction
The incremental construction method presented in this section generates metro maps that
satisfy the hard constraints.

EuroCG’18



62:4 A Contribution to EuroCG 2018

Division method
It is difficult to generate a metro map from a large input graph even if we use Nöllenburg and
Wolff’s method. Therefore, our method decomposes the input graph into smaller subgraphs,
external trees, and faces. We define a external edge as an edge incident with only non-
boundary face, and an external tree T as a tree consisting of connected external edges. The
trees consisting of the edges {e1, e2, e3, e4, e5} and {e6} in Figure 2(a) are external trees.
For each face f of G, there is a subgraph that forms a boundary of f . We call it the
facial subgraph of f . Next, for a vertex v incident with an inner face, we define its facial
neighborhood N(v) as the union of the facial subgraphs of all the inner faces incident with
v. Note that the union of graphs G1 = (V1, E1), G2 = (V2, E2), ..., Gk = (Vk, Ek) is defined
as the graph whose vertex set is ∪ki=1Vi and whose edge set is ∪ki=1Ei. See Figure 2(b). We
sort {N(v)} in terms of the degree of the vertex v in G in descending order, and this sorted
list is described as N = {N(v1), N(v2), ..., N(vm)}.

(a) External trees are
{e1, e2, e3, e4, e5} and
{e6}.

(b) A facial neighborhood of
v, and facial subgraphs of
f1, f2, f3, f4 and f5.

Figure 2 Division method in the incremental construction
method.

Figure 3 An interchange path
that is defined as a set of edges
that is from a non-degree 2 vertex
to another non-degree 2 vertex.

The Incremental Construction Algorithm
Suppose that all external trees and the sorted list N = {N(v1), N(v2), ..., N(vm)} are known.
For this input data, the incremental construction algorithm treats subgraphs in order of the
facial neighborhoods and external trees. When we generate a rough metro map by reduced
optimization, we use the MIP formulation and heuristics from [2]. To reduce the size of the
input graph, all the paths between two interchange vertices and external trees {T1, T2, ..., Tl}
in the graph G̃ are simplified, and they consist of at most three edges. Note that the paths
in N(vi) are also simplified.

First, we treat the facial neighborhoods in order of the sorted list. Then, we treat the
external trees one at a time.

Step 1
Set G0 to an empty set.
For each i = 1, ...,m:
Add N(vi) = (VN(vi), EN(vi)) to Gi−1 and the obtained graph is called Gi = (Vi, Ei).
That means Vi = Vi−1 ∪ VN(vi) and Ei = Ei−1 ∪ EN(vi).
However, if all vertices and edges in N(vi) have already been added to Gi−1, N(vi) is

not added to Gi−1, and Gi−1 becomes Gi.
Then, we solve the MIP for Gi by fixing the direction of the edge in Γi−1, and obtain

the new map Γ.
Step 2

For each j = 1, ..., l:
Add Tj to Gm+j−1 and obtain a graph Gm+j .
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Solve the MIP for Gm+j by fixing the direction of the edge in Γm+j−1, and obtain the
new map Γm+j .

After step 2, the map Γ satisfies all the hard constraints and this can be used as the
input of the next iterative improvement method. By generating metro maps from facial
neighborhood of the vertex with large degree, it is possible to generate metro maps satisfying
the constraint of cyclic ordering (H2).

3.4 Iterative Improvement
An iterative improvement method improves the metro map generated by the incremental
construction algorithm to obtain a local optimal solution. We decompose a metro map into
paths. In Γ, an interchange path is defined as a set of edges that are from a non-degree 2
vertex to another non-degree 2 vertex. For example, the edges e1, e2, and e3, or the edges
e4, e5, and e6 in Figure 3.

In the iterative improvement method, for each interchange path we generate metro maps
by reduced optimization. Thus, an iterative improvement method generates optimal metro
maps so that only each interchange path can move direction.

Because the original objective function is linear with respect to the variables representing
edge lengths, it does not penalize non-uniform edge lengths. Therefore, the results might be
poorly balanced. To prevent this, we add the following soft constraint:

(S4) For each degree 2 vertex v whose adjacent vertices u, w do not have degree 2, the
difference between the lengths of Γ(uv) and Γ(vw) should be as small as possible.

Accordingly, we add the following cost function to the objective function
∑

v∈V,deg(v)=2,deg(u)̸=2,deg(w) ̸=2

|λ (uv)− λ (vw) |,

where deg(v) is the degree of vertex v and λ(uv) is the length of edge uv. This cost function,
proposed in [4], is linear and explicitly penalizes non-uniform edge lengths.

4 Experimental Results

We applied our methods to the Tokyo metro network that has 434 vertices and 531 edges.
We solved the MIP with the optimizer CPLEX 12.7.1 running on a computer with a 6-core
Intel Xeon 3.60 GHz processor, and 128 GB RAM.

The Tokyo metro map drawn using our methods is shown in Figure 4. The weights used
in the objective function were as following: in the incremental construction method, (S1)
is 1, (S2) is 30, and (S3) is 1, and in the iterative improvement method, (S1) is 1, (S2) is
20, (S3) is 5, and (S4) is 1. To speed up the computation, we experimentally increased the
weight of relative position (S2). Conversely, increasing the weight of the edge length (S3)
tends to increase the calculation time. The layout was mostly generated within 5 hours: the
incremental construction method took 13 minutes, and the iterative improvement method
took 5 hours.

5 Conclusion

We have proposed an incremental construction method and an iterative improvement method
that improves metro maps generated by the incremental construction method. The former
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Figure 4 Layout of Tokyo railway network produced by our approach.

can generate complex metro maps that satisfy hard constraints quickly, because we decom-
pose the input graph into subgraphs and generate a rough metro map partially. The latter
improves metro maps and arranges vertices in a balanced position. Our methods can gen-
erate complex metro maps such as the Tokyo metro map that cannot be directly produced
by the approach of Nöllenburg and Wolff [2].

One limitation of the iterative improvement method is that it is slow. We plan to reveal
the cause for why phase 2 takes so much longer than phase 1. Another limitation is that
there are some artifacts around terminal stations and dummy crossings in the results. We
also plan to improve it using a post-processing.
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Abstract
For a given graph, we want to find crossing-free straight-line drawings of low visual complexity.
A measure for the visual complexity of a drawing that has been considered before is the minimum
number of lines needed to cover all vertices. In 3D, this number, the 3D weak line cover number,
is denoted by π1

3(G) for a given graph G. In 2D, for any planar graph G, the 2D weak line cover
number is denoted by π1

2(G).
We inductively construct an infinite family of polyhedral graphs with maximum degree 6,

treewidth 3, and unbounded π1
2-value. We also determine the π1

2- and π1
3-values of the Platonic

graphs. We pose a number of open questions about the 2D and 3D weak line cover numbers.

1 Introduction

Recently, there has been considerable interest in representing graphs with as few objects as
possible. The idea behind this objective is to keep the visual complexity of a drawing low for
the observer. The types of objects that have been used are straight-line segments [4–7] and
circular arcs [6, 10].

Chaplick et al. [1] considered covering straight-line drawings of graphs by unbounded
objects (lines, planes) and defined the following new graph parameters. Let 1 ≤ l < d, and
let G be a graph. The l-dimensional affine cover number of G in Rd, denoted by ρl

d(G), is
defined as the minimum number of l-dimensional planes in Rd such that G has a crossing-free
straight-line drawing that is contained in the union of these planes. The weak l-dimensional
affine cover number of G in Rd, denoted by πl

d(G), is defined similarly to ρl
d(G), but under

the weaker restriction that the vertices (and not necessarily the edges) of G are contained in
the union of the planes.

Clearly, for any suitable combination of l and d, it holds that πl
d(G) ≤ ρl

d(G). For any
graph G, if l′ ≤ l and d′ ≤ d then πl

d(G) ≤ πl′
d′(G) and ρl

d(G) ≤ ρl′
d′(G). Chaplick et al.

showed that it suffices to study the parameters ρ1
2, ρ1

3, ρ2
3, and π1

2 , π1
3 , π2

3 :

I Theorem 1 (Collapse of the Affine Hierarchy [1]). For any integers 1 ≤ l < 3 ≤ d and for
any graph G, it holds that πl

d(G) = πl
3(G) and ρl

d(G) = ρl
3(G).

We call π1
2(G) and π1

2(G) also the 2D and 3D weak line cover number of G, respectively.
For a given graph G, π1

2(G) is at most as large as ρ1
2(G) but it can be much smaller. For

instance, Chaplick et al. showed that for the nested-triangles graph Tk = C3 × Pk (shown in
Fig. 2 for k = 4) with n = 3k vertices it holds that ρ1

2(Tk) ≥ n/2, whereas clearly π1
2(Tk) ≤ 3.

Chaplick et al. [2] also investigated the complexity of computing the (weak) affine cover
numbers. Among others, they showed that in 3D, for l ∈ {1, 2}, it is NP-complete to decide
whether πl

3(G) ≤ 2 for a given graph G. In 2D, the question is still open.

I Open Problem 1. Is it NP-hard to compute, for a given planar graph G, its weak line
cover number π1

2(G)?
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Independently of this complexity issue, Chaplick et al. also asked the following question:

I Open Problem 2. Does the class of planar graphs admit a sublinear upper bound for π1
2?

Even for restricted graph classes, the problem remains open. So far only two graph
families with unbounded π1

2-value are known [1,9]. The first graph family, by Ravsky and
Verbitsky [9], has treewidth 8 (which we define below). As Da Lozzo et al. [3] noted, the
construction can be modified so that the treewidth of the graphs in the family becomes 5. In
the second graph family, by Chaplick et al. [1], the maximum degree is bounded by 12 and
π1

2(G) ≥ n0.01. This yields a new type of open question:

I Open Problem 3. How small can we make the maximum degree in a family of planar
graphs such that their π1

2-value is still unbounded?

In this paper, we’ll improve upon the result of Chaplick et al. in this respect.
We can also ask the opposite question – if we restrict the maximum degree of a graph

family, how large can we make its π1
2-value?

I Open Problem 4. Does the class of planar graphs with constant maximum degree admit
a sublinear upper bound on π1

2? In particular, is there a constant upper bound on π1
2 for the

class of planar graphs of maximum degree 3?

Another thread of research concerns the (un)boundedness of π1
2 in the class of graphs of

bounded treewidth. A graph has treewidth at most k if it is a subgraph of a k-tree. The
class of k-trees (consisting of not necessarily planar graphs) is defined recursively as follows.
The complete graph Kk+1 is a k-tree; if G is a k-tree and H is obtained from G by adding a
new vertex and connecting it to a k-clique of G then H is also a k-tree. Observe that the
1-trees are exactly the usual trees.

It is well known that the treewidth of any outerplanar graph is at most 2, and all graphs
of treewidth 2 are planar. Chaplick et al. [1] proved that π1

2(G) ≤ 2 for any outerplanar
graph G and asked the following question, which is still open.

I Open Problem 5. Does the class of treewidth-2 graphs have constant π1
2-value?

Our contribution. As a warm-up, we compute the weak line cover numbers π1
2 and π1

3
of the Platonic graphs (1-skeletons of the Platonic solids) in 2D and 3D, respectively; see
Section 2. Our main result is the construction of an infinite family of polyhedral graphs with
maximum degree 6, treewidth 3, and unbounded π1

2-value; see Section 3.

2 Optimal Weak Line Covers of the Platonic Graphs

The Platonic solids are convex polyhedra; hence, the Platonic graphs are planar. Kryven et
al. [8] computed various parameters of visual complexity for these graphs. We compute the
weak line cover numbers of the Platonic graphs in 2D and 3D. Interestingly, two graphs in
this family behave differently in 2D and 3D.

Recall that a linear forest is a forest whose connected components are paths.

I Proposition 1. Let G be a Platonic graph. Then

(a) π1
2(G) = 2 if G is the graph of the tetrahedron, the cube, or the dodecahedron;

(b) π1
2(G) = 3 if G is the graph of the octahedron or the icosahedron.
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(a) tetrahedron (b) cube (c) dodecahedron (d) octahedron (e) icosahedron

Figure 1 π1
2-optimal drawings of the Platonic graphs.

Figure 2 The nested-tri-
angles graph T4 = C3 × P4.

Figure 3 For any Platonic graph, its vertex set can be
partitioned into two subsets that each induces a linear forest.

Proof. (a) See Figs. 1a, 1b, and 1c and note that only linear forests have π1
2-value 1.

(b) Let G be the graph of the octahedron or the icosahedron. Then π1
2(G) ≤ 3; see

Figs. 1d and 1e. On the other hand, π1
2(G) ≥ 3. Indeed, assume that there exists a plane

drawing of G such that all vertices of G are covered by two straight lines `1 and `2. Since
the outer face of G is a triangle, one of these straight lines, say `1, contains two vertices of
the outer face. Thus `1 contains no other vertices of G; all of them are placed on `2. But
this is impossible since the subgraph induced by these vertices is not a linear forest (in fact,
it even contains a triangle), a contradiction. Hence, π1

2(G) = 3. J

Chaplick et al. [1] related the affine cover numbers to standard combinatorial characteristics
of graphs. The linear vertex arboricity lva(G) of a graph G is the smallest size r of a partition
V (G) = V1 ∪ · · · ∪ Vr such that every Vi induces a linear forest. Chaplick et al. showed that
the combinatorial parameter lva(G) actually coincides with the geometric parameter π1

3(G).

I Theorem 2 ([1]). For any graph G, it holds that π1
3(G) = lva(G).

We exploit this to compute the π1
3-values of the Platonic graphs.

I Proposition 2. For any Platonic graph G, it holds that π1
3(G) = 2.

Proof. If G is the graph of the tetrahedron, the cube or the dodecahedron, the claim follows
from the fact that π1

3(G) ≤ π1
2(G). If G is the graph of the octahedron or the icosahedron,

we use Theorem 2 and note that lva(G) = 2; see Fig. 3. J

3 A Family of Graphs with Unbounded Weak Line Cover Number

We say that two plane graphs are strongly equivalent (have the same combinatorial embedding)
if they are obtainable from one another by a plane homeomorphism, and are equivalent if
they are obtainable from one another by a plane homeomorphism, up to the choice of the
outer face.

EuroCG’18
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Figure 4 The graph G1
from the proof of Proposi-
tion 3. The graph H1 is ob-
tained from G1 by removing
the vertices of the outer face.

Figure 5 The plane graph H2 is constructed by replacing each
of the special faces of H1 by another copy of H1.

1

2 3

Figure 6 The prism
(solid edges) has tree-
width 3 since it has mini-
mum degree 3 and is a sub-
graph of a 3-tree (numbers
indicate insertion order).

I Proposition 3. There is an infinite family of polyhedral graphs with maximum degree 6,
treewidth 3, and unbounded (logarithmic) π1

2-value.

Proof. The base of our inductive construction is the graph G1 depicted in Fig. 4. It has
four special gray faces (the three triangles and the outer face); they are disjoint from the
unique K4-subgraph (red in Fig. 4), which we imagine to be a tetrahedron with four equal
faces. Let H1 be the plane graph obtained by removing from G1 the vertices of its outer face.
Assume that, at the induction step i ≥ 1, we are given a graph Gi and a plane graph Hi

with 4 · 3i−1 and 3i special faces, respectively. We construct a graph Gi+1 from Gi and a
plane graph Hi+1 from Hi by replacing each of their special faces by a copy of the graph H1;
see Fig. 5. Then Gi+1 and Hi+1 have 4 · 3i and 3i+1 special faces, respectively. Note that Gi

can be naturally interpreted as a 1-skeleton of a convex polyhedron, and the construction
of Gi+1 preserves this property. Thus, the graph Gi+1 is polyhedral.

Using the fact that the special faces of Gi+1 are disjoint from Gi, it is easy to see
that ∆(Gi+1) = 6. Since Gi is polyhedral, by a well-known result of Whitney [11], all its
plane embeddings are equivalent. But, independently of the choice of the outer face in this
equivalence, each plane embedding of Gi contains a subgraph strongly equivalent to Hi.

It is easy to check that we can build a 1-skeleton of a triangular prism from a triangle
keeping treewidth 3; see Fig. 6. So during both actions, (a) attaching to a tetrahedron gray
triangles in order to construct G1 and (b) replacing each of the special faces of the graph Gi

by a copy of H1, the treewidth of the resulting graph remains at most 3. On the other hand,
the treewidth of Gi is lowerbounded by the minimum degree of Gi, which is 3.

We need at least two straight lines to cover all vertices of a graph strongly equivalent
to H1. For i ≥ 1, let the central vertex of Hi be the unique vertex that is incident to all
vertices on the outer face. If i ≥ 1, it is not difficult to check that, for each straight line `
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containing the central vertex of a graph strongly equivalent to Hi, there exists a subgraph
strongly equivalent to Hi−1 drawn inside a special face of Hi disjoint from `. Taking into
account this subgraph, we need at least one more line to cover the central vertex of the graph
strongly equivalent to Hi. By induction we see that we need at least i+ 1 straight lines to
cover all vertices of a graph strongly equivalent to Hi. Since any drawing of Gi contains
such a graph, we have π1

2(Gi) ≥ i + 1. The graph Gi has ni = 20 · 3i−1 − 4 vertices, thus
π1

2(Gi) ∈ Ω(logni). J
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Abstract
We study the problem of convexifying drawings of planar graphs. Given any planar straight-
line drawing of a 3-connected graph G, we show how to morph the drawing to one with convex
faces while maintaining planarity at all times. Furthermore, the morph is convexity increasing,
meaning that angles of inner faces never change from convex to reflex. We give a polynomial
time algorithm that constructs such a morph as a composition of a linear number of steps where
each step either moves vertices along horizontal lines or moves vertices along vertical lines.

1 Introduction

A morph between two planar straight-line drawings Γ0 and Γ1 of a graph G is a continuous
movement of the vertices from one to the other, with the edges following along as straight-
line segments between their endpoints. A morph is planar if it preserves planarity of the
drawing at all times. Motivated by applications in animation and in reconstruction of 3D
shapes from 2D slices, the study of morphing has focused on finding a morph between two
given planar drawings. The existence of planar morphs was established long ago [4, 15],
followed by algorithms that produce good visual results [7, 8], and algorithms that find
“piece-wise linear” morphs with a linear number of steps [1, 2].

Our focus is somewhat different, and more aligned with graph drawing goals—our input
is a planar graph drawing and our aim is to morph it to a better drawing, in particular to
a convex drawing. A morph convexifies a given straight-line graph drawing if the end result
is a convex graph drawing, i.e. a planar straight-line graph drawing in which every face is a
convex polygon.

We first observe that it is easy, using known results, to find a planar morph that con-
vexifies a given graph drawing—we can just create a convex drawing with the same faces
(assuming such a drawing exists), and morph to that specific drawing using the known planar
morphing algorithms. However, ideally, convex angles should remain convex throughout a
morph. We therefore impose the stronger condition that the morph be convexity-increasing,
meaning that an angle of an inner face never switches from convex to reflex. Besides the
theoretical goal of studying continuous motion that is monotonic in some measure (e.g. edge
lengths [10]), another motivation comes from visualization—a morph of a graph drawing
should maintain the user’s “mental model” [13] which means changing as little as possible,
and making observable progress towards a goal. Previous morphing algorithms fail to provide
convexity-increasing morphs even if the target is a convex drawing because they all start
by triangulating the drawing. This means that an original convex angle may be subdivided
by new triangulation edges, so there is no constraint that keeps it convex. (An exception is
Angelini et al. [2] which morphs a convex drawing to a convex drawing, preserving convexity.)
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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1 2

34

Figure 1 A sequence of convexity-increasing morphs (horizontal, vertical, horizontal) that morph
a straight-line drawing of a graph G (drawn in black) into a strictly convex drawing of G.

Our Results. We give the first algorithm to convexify any straight-line planar drawing of a
3-connected graph via a planar convexity-increasing morph. We show a surprising stronger
property—that the morph can be composed of a linear number of horizontal and vertical
morphs. A horizontal morph moves all vertices at constant speeds along horizontal lines,
and a vertical morph is defined similarly. See Figure 1. Orthogonality is a very desirable and
well-studied criterion for graph drawing [6], in part because there is evidence that the human
visual cortex comprehends orthogonal lines more easily [3, 14]. Similarly, it seems natural
that orthogonal motion should be easier to comprehend, though morphing algorithms have
so far not explored this criterion. To be precise, we prove the following theorem.

I Theorem 1.1. Let Γ be a planar straight-line drawing of a 3-connected graph G on n

vertices. Then Γ can be morphed to a strictly convex drawing via a sequence of convexity-
increasing planar morphs each of which is either a horizontal morph or a vertical morph.
If Γ has a convex outer face then the number of morphs in the sequence is at most r + 1,
where r is the number of internal reflex angles in Γ. In general, the number of morphs in
the sequence is at most 1.5n. Furthermore there is an O(n1+ω/2) time algorithm to find the
sequence of morphs, where ω is the matrix multiplication exponent.

Due to space constraints, some proofs in this paper are only sketched or omitted entirely.
Full proofs of all claims can be found in the full preprint [11].

2 Preliminaries

Two planar drawings of a graph G have the same combinatorial embedding if they have the
same clockwise cyclic ordering of edges around the outer face and around each inner face.
We use the terms convex, strictly convex, reflex with their standard meanings. We say that
a face of a planar graph drawing is y-monotone if the boundary of the face consists of two
y-monotone chains. A chain is y-monotone if the y-coordinates of points along the chain are
strictly increasing.

Horizontal and vertical morphs are special cases of unidirectional morphs [1] which move
vertices along parallel lines, with each vertex moving at constant speed (different vertices
are allowed to move at different speeds, and some may remain stationary). A unidirectional
morph is completely specified by the initial and final drawings. We use the notation 〈Γ1, Γ2〉
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to denote the linear morph from drawing Γ1 to Γ2. We use the following nice properties of
unidirectional morphs; details are in the long version.

I Lemma 2.1. [1, Lemma 13] If Γ and Γ′ are two planar straight-line drawings of the same
graph such that every line parallel to the x-axis crosses the same ordered sequence of edges
and vertices in both drawings, then the linear morph from Γ to Γ′ is planar.

I Lemma 2.2. Let Γ1, Γ2, Γ3 be three planar straight-line drawings where the linear morphs
〈Γi, Γi+1〉, i = 1, 2 are horizontal and planar. Then the linear morph 〈Γ1, Γ3〉 is a horizontal
planar morph.

I Lemma 2.3. During a horizontal morph, an angle cannot change more than once between
reflex and convex or vice versa. If 〈Γ1, Γ2〉 is a horizontal morph and any convex internal
angle of Γ1 is also convex in Γ2 then the morph is convexity-increasing.

I Observation 2.4. [1, Lemma 13] If Γ is a (not necessarily straight-line) planar graph
drawing of a graph G with all faces (including the outer face) y-monotone and Γ′ is another
planar drawing of G that has the same combinatorial embedding, the same y-coordinates of
vertices, and has y-monotone edges, then every line parallel to the x-axis crosses the same
ordered sequence of edges and vertices in both drawings.

2.1 Redrawing with Convex Faces while Preserving y-Coordinates
We build upon an algorithm due to Hong and Nagamochi [9] that redraws a planar graph
to have convex faces while preserving the y-coordinates of the vertices. Angelini et al. [2]
strengthened the result to strictly convex faces. We limit ourselves to 3-connected graphs
and improve the running time.

I Lemma 2.5 (based on [9, 2]). Let Γ be a planar drawing of a 3-connected graph G such that
every face is y-monotone (including the outer face). Let C be a strictly convex straight-line
drawing of the outer face of G such that every vertex of C has the same y-coordinate as in
Γ. Then there is a straight-line strictly convex drawing Γ′ of G that has C as the outer face
and such that every vertex of Γ′ has the same y-coordinate as in Γ. Furthermore, Γ′ can be
found in time O(nω/2), where ω is the matrix multiplication exponent.

We prove Lemma 2.5 in the long version using Tutte’s graph drawing algorithm. This is
quite different from the previous approaches, and gives the improved run-time.

Hong and Nagamochi [9] proved a version of Lemma 2.5, but did not guarantee a strictly
convex drawing and gave a run-time of O(n2). Angelini et al. [2] strengthened the result to
strictly convex faces by perturbing vertices to avoid angles of 180◦. They did not analyze
run-time. Our run time is O(n1.5) without fast matrix multiplication, O(n1.1865) with.
Both [9] and [2] expressed their results in terms of level planar drawings of hierarchical
plane st-graphs, and handled more generally the class of graphs that have [strictly] convex
drawings.

3 Computing Convexity-Increasing Morphs

3.1 Morphing Drawings with a Convex Outer Face
To give some intuition about the proof, we first consider an easy case where the outer face of
Γ is strictly convex and all faces are y-monotone. Then we can immediately apply Lemma 2.5
with the outer face fixed to obtain a new straight-line strictly convex drawing Γ′ with all
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vertices at the same y-coordinates. The properties of unidirectional morphs can then be
used to show that the morph from Γ to Γ′ is planar, horizontal, and convexity-increasing.

A face f is y-monotone if and only if it has only one local maximum and only one local
minimum, where a vertex v is a local minimum (local maximum) of face f if the neighbors
of v in f lie above v (below v, respectively). A local extremum refers to a local minimum or
a local maximum. We can augment a graph drawing to have y-monotone faces by adding
y-monotone edges (not necessarily straight-line). This is a standard operation in upward
planar (or “monotone”) drawing [5, Lemma 4.1] [12, Lemma 3.1], but we need the stronger
property that new edges are only incident to local extrema:

I Proposition 3.1. Any straight-line planar graph drawing can be augmented to have y-
monotone inner faces by adding edges such that each edge can be drawn as a y-monotone
curve joining two local extrema in some face. Furthermore, these edges can be found in time
O(n log n).

This proposition allows us to prove the following:

I Lemma 3.2. Let Γ be a straight-line planar drawing with a convex outer face and no
horizontal edge. There exists a horizontal planar morph to a straight-line drawing Γ′ such
that Γ′ has a strictly convex outer face and every internal angle that is not a local extremum
is strictly convex in Γ′. Furthermore, the morph is convexity-increasing, and can be found
in time O(nω/2), where ω is the matrix multiplication exponent.

Proof sketch. We use Proposition 3.1 to augment Γ with a set of edges A such that Γ ∪A

is a planar drawing in which all faces are y-monotone, and any edge of A goes between two
local extrema in some inner face. This takes time O(n log n). Next, we apply Lemma 2.5
to obtain a new straight-line strictly convex drawing Γ′ ∪ A′ with all vertices at the same
y-coordinates as in Γ. Finally, we apply the unidirectional properties to prove that the
morph from Γ to Γ′ is planar, horizontal, and convexity-increasing. Any internal angle of Γ
that is not a local extremum has no edge of A incident to it, and thus is strictly convex in
Γ′. The time required is O(nω/2). J

Lemma 3.2 convexifies any h-reflex angle, where a reflex angle of inner face f is h-reflex
if it occurs at a vertex that has one neighbor in f above and the other below (i.e., it is not a
local extremum of f). To convexify the remaining reflex angles, the plan is to conceptually
“turn the paper” by 90◦ and perform a vertical morph to make any v-reflex angle convex,
where a reflex angle of inner face f is called v-reflex angle if it occurs at a vertex that has
one neighbor in f to the left and the other to the right. The final aspect of the proof is to
ensure that at each step there is at least one h-reflex or v-reflex angle, so that the algorithm
makes progress in each step. To do this we strengthen Lemma 3.2:

I Lemma 3.3. Let Γ be a straight-line planar drawing with a convex outer face and no
horizontal edge. There exists a horizontal planar morph to a straight-line drawing Γ′′ such
that
(i) the outer face of Γ′′ is strictly convex,
(ii) every internal angle that is not a local extremum is convex in Γ′′,
(iii) Γ′′ has no vertical edge, and
(iv) if Γ′′ is not convex, then it has at least one v-reflex angle.
Furthermore, the morph is convexity-increasing, and can be found in time O(nω/2).

Proof sketch. See Figure 2. We first apply Lemma 3.2 to obtain a morph from Γ to a draw-
ing Γ′ that satisfies (i) and (ii). If Γ′ satisfies all the requirements, we are done. Otherwise
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(a) (b) (c)Figure 2 (left) A face that is not y-monotone. (middle) The face after application of Lemma 3.2.
There is a vertical edge and the single reflex vertex is not v-reflex. (right) After applying a horizontal
shear transformation, the reflex vertex is v-reflex and there are no vertical edges.

we will achieve the remaining properties by choosing one reflex angle (necessarily a local
extremum), say at vertex u in inner face f , and applying a horizontal shear transformation
to create a drawing Γ′′ in which the angle at u becomes v-reflex. Since shearing is an affine
transformation, the convexity status of all angles is preserved. We then use the properties
of unidirectional morphs to show that the morph from Γ to Γ′′ is planar, horizontal, and
convexity-increasing. The morph can be found in time O(nω/2). J

Proof sketch of Theorem 1.1 for a convex outer face. Apply Lemma 3.3 alternately in
the horizontal and vertical directions until the drawing is convex. In each step there is
at least one h-reflex or v-reflex angle that becomes convex. Thus the number of horizontal
morphs is at most r + 1 and the run-time is O(n1+ω/2). J

3.2 Morphing Drawings with a Non-convex Outer Face
In this section we outline the proof of Theorem 1.1 when the outer face is not convex. We
augment the outer face of Γ with new edges A from its convex hull to obtain a drawing with
a convex outer face. We apply the results from Section 3.1 to morph to a strictly convex
drawing and then remove the edges of A one-by-one. After each edge is removed we morph
to a strictly convex drawing of the reduced graph using at most three horizontal or vertical
morphs. Each edge e ∈ A is part of the boundary of an inner face fe of Γ ∪ A. We call fe

the pocket of e. In order to remove edge e we “pop” its pocket outward using the following
lemma:

I Lemma 3.4. Let Γ be a strictly convex drawing of graph G, with an edge e on the outer
face. Suppose that G − e is 3-connected. Then Γ − e can be morphed to a strictly convex
drawing of G− e via at most three convexity-increasing morphs, each of which is horizontal
or vertical. Furthermore, the morphs can be found in time O(nω/2).

See Figure 3 for the proof idea. Observe that each application of Lemma 3.4 increases
the number of vertices of G on the convex hull. Thus, by induction we obtain the proof of
Theorem 1.1. We have used at most 3 horizontal and vertical morphs per pocket. To obtain
the initial strictly convex drawing of Γ ∪ A we require at most n morphs. Thus, the total
number of morphs is bounded by 4n. In the full version we decrease the total number of
morphs to 1.5n. The run time of the algorithm is O(n1+ω/2).

Acknowledgments. We wish to thank André Schulz for helpful discussions on generaliza-
tions of Tutte’s algorithm. This work was begun at Dagstuhl workshop 17072, “Applications
of Topology to the Analysis of 1-Dimensional Objects.” We thank Dagstuhl, the organizers,
and the other participants for a stimulating workshop. In particular, we want to thank
Carola Wenk and Regina Rotmann for joining some of our discussions, and Irina Kostitsyna
for contributing many valuable ideas.
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(a) (b) (c)
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Figure 3 (left) Schematic of the convex drawing of G ∪ A. Graph G is depicted in gray, edges
of A are dashed, and the pockets are white. (middle),(right) Illustration of Lemma 3.4. If a pocket
puv is x-monotone we can pop it out (middle), otherwise we first make it x-monotone (right).
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Abstract
Motivated by motion planning applications, we study 2-dimensional surfaces embedded in 3-
dimensional space with the property that their vertical projection is an immersion. We provide
bounds on the complexity of a triangulation of such a surface, given that the projection of the
boundary is a polygon with m segments. We then show how these bounds lead to efficient
algorithm to compute such a triangulation. Finally, we relate our result to concrete motion
planning setting and review related open questions.

1 Introduction

Simulations and computer games are often occupied by virtual characters that need to move
autonomously through a virtual environment. This asks for efficient data structures and
algorithms for path planning and crowd simulation. An environment such as a multi-storey
building is three-dimensional, but the characters are restricted to surfaces on which they
can walk. Therefore, while these surfaces are embedded in R3, they are (in some ways)
locally similar to R2. They form an interesting class of environments that we call walkable
environments (WEs).

For the purpose of path planning, it is important to automatically obtain an efficient
representation of a walkable environment [3, 4, 9, 10]. In particular, it is desirable to
subdivide a walkable environment into surfaces that can each be projected onto R2 without
overlap. We refer to such a decomposition as a multi-layered environment (MLE). An
individual surface within an MLE is called a layer, and the ‘cuts’ made for the decomposition
are called connections. The main advantage of an MLE is that each separate layer can be
treated as a 2D component, which allows the extension of 2D data structures [9].

Technically, a connection is a curve along the WE between two boundary vertices of
the WE. For the application’s data structures and algorithms, it is also important that
each connection is a straight line segment when projected onto R2. Furthermore, it is
often desirable to obtain an MLE with a small number of connections because this number
influences the complexity of various algorithms. To understand these demands better, we
first need to study the topological properties of a walkable environment.

Contributions In this paper, we study the topology of walkable environments, and we
present an algorithm that triangulates a WE. Suppose a walkable environment W is given
as a triangulated surface with n vertices and m boundary vertices. (We will give a more
precise definition in Section 2.) We prove that any triangulation of W has O(m) diagonals,
and we present an algorithm that computes a triangulation of W in O(n + m logm) time,
in such a way that each diagonal is a line segment when projected onto R2.

At this point, an alert reader may wonder why we should wish to triangulate a sur-
face that is already triangulated. The difference is that the input triangulation has linear
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
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complexity in n, while the output triangulation only has linear complexity in m, which can
be much smaller. For example, an environment containing hilly terrains has many interior
vertices, which will not be present in our output triangulation. The output triangulation
does not have straight edges in R3, but the projections of its edges are straight segments in
R2. This type of triangulation is interesting for path planning applications because these
applications often use projected distances [10], and the diagonals of this triangulation may
be good candidates for connections in an MLE.

Related work There are several applications and algorithms that are already using some
form of a multi-layered environment. Van Toll et al. [9] use an MLE to create a multi-layered
navigation mesh based on the medial axis, which allows for fast path planning queries.
Rodriguez and Amato [8] convert a multi-layered environment to a roadmap representation,
which they then use to find a strategy for efficiently clearing a building. However, both of
these works do not describe how to obtain such an MLE from an arbitrary 3D environment.

A popular way to convert a 3D environment to a walkable environment is to approximate
the environment by 3D grid cells (voxels), in which each voxel is marked as walkable or non-
walkable. Voxelization typically uses the graphics card. Several methods use this concept
as the first step in a pipeline for computing a navigation mesh [1, 6, 7].

Converting a walkable environment to a multi-layered environment, preferably with a
small number of cuts, is a separate problem. Hillebrand et al. [3, 4] model this as a graph
problem. They prove that obtaining an MLE with a minimum number of cuts is NP-hard,
but that good MLEs can often be obtained using heuristics. However, these cuts are not
always suitable as connections since they are restricted to edges of the input triangulation.

Outline To obtain our results, we first introduce some subtly different concepts in Section 2
that capture the special properties of the surfaces we encounter. In Section 3, we analyse
the possible values of the genus of these surfaces. Then, in Section 4, we show how an
adaptation of the polygon decomposition algorithm by Lee and Preparata [5] can be used
to triangulate our surfaces. Finally, in Section 5, we discuss how these results relate to the
problem of finding a good MLE, and we pose the main open question in this area.

2 Definitions

Sloths and walkable environments. We define a sloth to be a compact surface Σ contin-
uously embedded in R3 so that the vertical projection of Σ to R2 is an immersion with a
polygonal boundary consisting of m line segments (or, equivalently, m vertices). That is,
the vertical direction is transverse to Σ. We say that a sloth is realistic if the turning angle
(projected to R2) around any boundary vertex is at most 360 degrees (aka 2π).

We define a walkable environment (WE) as a geometric representation of a realistic sloth
by a set of connected triangles in R3. By definition, a WE has the following properties:

The angle between the normal of each triangle and the normal of the ground plane is
less than 90 degrees.
The minimal vertical distance between any two triangles in the WE is non-zero, with the
exception of shared edges and vertices.

Let n be the total number of vertices in the WE. Note that n can be much larger than
the number of boundary vertices m. Thus, a WE is a particular type of sloth represented by
triangles. Some parts of this paper apply to sloths in general; other parts apply specifically
to realistic sloths or to WEs because they rely on extra properties.
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Triangulations of sloths. We define a topological triangulation of a sloth Σ to be a subdi-
vision of Σ into topological triangles whose vertices coincide with the vertices of Σ; that is,
we add arbitrary arcs on the surface that connect pairs of vertices that were not connected
before, and the arcs do not intersect each other except possibly at endpoints.

We define a geometric triangulation of a sloth Σ to be a topological triangulation with
the additional restriction that each edge, when projected to R2, is a straight line segment.

3 Bounds on the genus of sloths

In this section, we provide bounds on the potential genus of sloths, expressed in the com-
plexity of their boundaries. Specifically, for a sloth Σ with m boundary vertices, we are
interested in possible values of genus(Σ) as a linear function of m.

Gauss–Bonnet Recall that the Euler characteristic of a compact, orientable surface Σ is:

χ(Σ) = 2− 2genus(Σ)−#∂Σ,

where #∂Σ is the number of connected components in the boundary of Σ. The following
result relates the topology of the surface to its geometry. We use the special case when the
curvature vanishes on the interior and the curvature of the boundary is zero except at the
polygonal corners.

I Theorem 3.1 (Gauss–Bonnet, flat version). Let Σ be a surface with a locally Euclidean
metric and polygonal boundary, with corners at ci with interior angle θi. Then

χ(Σ) = 1
2π

∑

i

(π − θi).

Here, π − θi should be thought of as the bending angle at ci: zero if there is no actual
corner, positive if the corner is convex as on the boundary of a convex polygon in the plane,
and negative if the corner is concave.

Application to sloths We use Theorem 3.1 to prove an upper bound of the genus of a sloth.

I Theorem 3.2. Let Σ be a surface with boundary and let f : Σ → R2 be an immer-
sion on the interior of Σ so that f(∂Σ) is a polygonal path with m line segments. Then
genus(Σ) ≤ m(m + 1)/4. Furthermore, there are examples coming from embeddings in R3

with genus(Σ) = (m/8− 1)2.

Proof. The examples achieving quadratic genus growth are “parking garages” Pk,l, as shown
in Figure 1:

take k parallel rectangular sheets;
cut out l slits from each sheet (stacked on top of each other); and
rejoin across the slits, shifting down one level as you go.

We can apply Theorem 3.1 (the Gauss–Bonnet theorem) to the metric on Σ coming from
the map to R2. Here, π − θi should be thought of as the bending angle at ci: zero if there
is no actual corner, positive if the corner is convex as on the boundary of a convex polygon
in the plane, and negative if the corner is concave. Some of the corners in Pk,l are very
concave, with a total internal angle of approximately 2kπ. The result of this computation
is that genus(Pk,l) = (k − 1)(l − 1). Furthermore, Pk,l can be realized with a polygonal
boundary with 4k + 4l corners.

EuroCG’18
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Figure 1 A parking garage, shown for k = 3 and l = 3. Edges with corresponding marking are
glued; this can be achieved by stacking the sheets in 3 dimensions and attaching connecting ramps.

For the upper bounds on genus, we again apply Theorem 3.1 and give an upper bound
on the interior angles θi. To do this, we first bound the total multiplicity in any region, the
degree by which it is covered by Σ. The multiplicity at a point x ∈ R2 can be computed by
sending a ray out to infinity in either direction from x, and so is at most m/2. The angle θi

at a corner ci is bounded by 2π times the multiplicity in any adjoining region. This yields
the stated upper bound on genus. J

The last observation leads to the following theorem:

I Theorem 3.3. For a realistic sloth Σ with m boundary vertices, genus(Σ) is O(m).

4 Geometric triangulations of sloths

We are interested in geometric triangulations of walkable environments because these can
be useful representations for the purpose of path planning and crowd simulation. In this
section, we first discuss triangulations of sloths in general, and then we present an algorithm
for triangulating a WE.

I Observation 4.1. If a sloth has m vertices, b boundary components, and genus g, then
every (topological or geometric) triangulation has t = 4g + b+m− 4 triangles.

I Lemma 4.2. Every sloth has at least one geometric triangulation.

Proof. We show that whenever Σ is not yet triangulated, we can always find a diagonal
that splits Σ into two valid sloths, which we can then recursively triangulate again.

Consider a convex vertex v. A surface ray is a curve in R3 that lies completely inside
Σ, but whose vertical projection to R2 is a straight line segment. We shoot a surface ray r
from v over the sloth in an arbitrary direction; note that, once we fix the direction, the ray
is unique except potentially when it passes through a vertex of Σ. If r does pass through a
vertex of Σ, we are happy. If r does not pass through a vertex of Σ, we can continuously
rotate r about v until it does; note we can rotate r in two directions until it coincides with
either of the incident boundary edges of Σ at v. We distinguish two cases.

1. The ray r passes through a vertex x of Σ, and x is not a neighbour of v on the boundary
of Σ. By construction, there is a unobstructed path on Σ from v to x which projects to
a line segment. We add edge vx to our triangulation, and recursively triangulate the one
or two smaller sloths.

2. When sweeping in both directions, the ray r hit no vertices other than u and w, the
neighbours of v on the boundary of Σ. Consider the edge uw, which projects to a
straight segment. If uw crosses any existing boundary edge e of Σ, there must be either
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be a vertex x contained in the triangle uvw (on Σ), or the edge e crosses (passes over
or under) uv or uw. In the first case, we should have found x when sweeping r. In the
second case, there must be another edge e′ on Σ that e crosses, in order to move over
or under uv or uw. We now argue similarly about the endpoinds of e′: either, there is
an endpoint inside uvw, or e′ also crosses uv or uw. Eventually, we run out of edges.
Contradiction. We add edge uw to our triangulation, and recursively triangulate the
smaller sloth. J

Combined with Theorem 3.3, we can conclude the following:

Every sloth with m vertices has a geometric triangulation with O(m2) triangles.
Every sloth with m vertices, whose vertices all have a constant maximum turning angle,
has a geometric triangulation with O(m) triangles. By definition, this also holds for
every realistic sloth, and for every walkable environment with m boundary vertices.
All triangulations of a given sloth have the same number of triangles and diagonals.

We now describe an algorithm that computes a geometric triangulation of a WE with n
vertices and m boundary vertices in O(n + m logm) time. It applies only to WEs because
it relies on the maximum turning angle of realistic sloths around the boundary vertices.

I Lemma 4.3. A geometric triangulation of a walkable environment W with n vertices and
m boundary vertices can be computed in O(n+m logm) time.

Proof sketch. The idea is to split W into y-monotone pieces via a 2D plane sweep over all
boundary points sorted by y-coordinate, similar to the algorithm by Lee and Preparata [5]
for splitting a 2D polygon (with or without holes) into y-monotone pieces. However, several
complications arise due to the nature of WEs.

First, we need to obtain a boundary representation of W such that we can move from
any boundary vertex to any adjacent boundary vertex in constant time. This can be done
in O(n) time if W is given as a DCEL.

Using this boundary representation as input, we sweep a plane H parallel to the x- and
z-axes, starting at y = −∞, and we maintain a set of curves on H where it intersectsW. We
may encounter four types of events, reminiscent of the Reeb graph: start events (where a
new curve appears), split events (where a curve splits into two curves), merge events (where
two curves merge into a single curve), and end events (where a curve disappears).

Since the projection in the z-direction of the boundary ofW is polygonal, and the sweep
plane is parallel to the z-axis, all events occur at vertices of W. Furthermore, because W
is a realistic sloth, all events are indeed related to at most two curves. (This would not be
the case in the non-realistic parking garage from Figure 1, where a single vertex can induce
many curves). Hence, we can detect and sort all events in O(m logm) time.

Now, we process the events maintaining the latest merge vertex, as in the classic algo-
rithm in [5]. We provide a complete description of the algorithm in the full version of this
paper.

After applying the algorithm, we have subdivided W into a set of y-monotone pieces.
Observe that each y-monotone piece Pi is a simple polygon when projected to R2. Therefore,
each Pi (with mi boundary vertices) can be triangulated in O(mi) time, and the combined
time for triangulating all parts is O(m). The result is a triangulation of the WE.

Combined with the pre-processing time for obtaining a boundary representation, this
proves the lemma. J
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5 Layers and Connections

The results from the previous sections form a first step towards the practical decomposition of
a walkable environment into layers for path planning purposes. Recall that we are interested
in obtaining a multi-layered environment (MLE) with a minimum number of connections,
where each connection is a straight line segment when projected onto R2.

Expressed in terms of sloths, we define a sloth to be flat if its projection to R2 is a
polygon without self-intersections; that is, no two points on the sloth project to the same
point in R2. The generalized version of our problem is to decompose a sloth Σ into flat
sloths, by cutting Σ in such a way that the endpoints of each cut are boundary vertices of
Σ, and each cut projects to a line segment in R2.

The triangulation algorithm from Section 4 first decomposes Σ into y-monotone pieces
(and then into triangles). This subdivision into y-monotone pieces already induces a valid
MLE. However, better subdivisions (with fewer connections) might exist.

Let C∗(Σ) be the minimum number of connections required for subdividing a sloth Σ
into layers. We conclude by stating the following open question:
I Question 1. Given a sloth Σ represented as a WE with n internal vertices and m boundary
vertices, (how) can we subdivide it into a multi-layered environment with C∗(Σ) connections,
or with a number of connections that approximates C∗(Σ)?
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1 Introduction

The Witness is a puzzle video game that was produced by Thekla [1]. Since its release in
2016 the game has been critically acclaimed, and has been praised for its intelligence and
astonishing visuals. The Witness contains 9 principal types of puzzles, and a number of
hidden “environmental” puzzles, totaling to an amount of 664 puzzles spread over the open
world of the game. A player is invited to explore the world and to deduce the rules of various
puzzles they encounter.

Most of the puzzles in the game are based on a square grid, requiring the player to
connect a starting point to an end point with a simple grid path while satisfying certain
constraints, such as splitting the grid cells of different colors, passing through a set of given
points, and drawing polyomino shapes comprising of a set of tetris blocks, among others. For
example, the puzzle depicted in Figure 1 asks to connect the bottom-left corner of the grid
to the top-right corner with a grid path separating the white square from the black squares.

Figure 1 An example of a Black and White
Squares puzzle from the Witness. (Image
from [1].)

ts

Figure 2 An example of a solved colored
squares puzzle. All red squares are separated
from the blue squares by the path.

In this short paper we resolve the complexity of two out of the nine types of puzzles in
the game, namely the Black and White Squares and the Multicolor Squares puzzles. We show
that in a restricted setting these types of puzzles can be solved in polynomial running time,
but that in general they are NP-complete.

To formalize the setting, consider a rectangular grid of size w×h, which we interpret as a
graph G = (V, E), where V = [0, 1, . . . , w]× [0, 1, . . . , h] and two vertices (a, b) and (c, d) are
connected by an edge in E if and only if a = c and |b− d| = 1, or |a− c| = 1 and b = d. G is
a planar graph whose natural embedding decomposes the plane into (w − 1)(h− 1) square
faces that we call cells, and one unbounded outer face. Cells are colored by a color c from a
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(AGA 2016) in Vierhouten, The Netherlands, supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 639.023.208. M.L., M.S. and W.S. are supported by the Netherlands
Organisation for Scientific Research (NWO) under project no. 614.001.504 (M.L.) and 639.023.208
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set C ∪ {�}. Cells colored by � are called empty. Furthermore, two vertices s and t from V

lying on the outer face are selected as the start and end point respectively. The decision
version of the puzzle asks whether there exists a simple path P from s to t in the graph G,
whose embedding on the grid splits the grid into several connected components of cells, that
each contain cells of only one color from C and possibly some empty cells. We call such a
path P a color-separating path. An example of a puzzle and its solution is given in Figure 2.

Related work. The Witness puzzle is closely related to Sheep and Wolves, a puzzle where
one has to build a fence that separates sheep from wolves on a grid introduced by Dave
Tuller.1 In his version, however, some cells contain additional clues describing the number
of fences directly incident to the cell. This puzzle type is known, among other names, as
Slither Link, which was proven to be NP-hard by Yato [9]. The study of the computational
complexity of puzzle games is as old as the notion of NP-completeness itself [8], and has a
rich history, which is beyond the scope of this short note to discuss; instead, we refer the
interested reader to the excellent surveys by Demaine and Hearn [3] and by Kendall et al. [4].

The object of the puzzles in The Witness, to find a curve separating white from black
cells on a grid, is also closely related to the problem of finding a grid-aligned approximation
of a shape: given a region overlaid by a grid, we wish to find a curve that has all cells that lie
completely inside the shape inside, and all cells that lie completely outside the shape outside,
with applications ranging from early computer graphics (casting characters to low-resolution
screens) [7] to geographical information systems. Often, one has additional objectives, such
as minimizing the symmetric difference or another distance measure of the two shapes. This
area remains an active domain of research [2, 6].

2 Algorithms

First we consider the problem every cell is colored either red or blue. We will give an
algorithm to solve this problem in time linear in the size of the grid O(wh).

Observations. We can make a couple of basic observations about the path that will help us in
understanding the problem. We let a border be defined as a maximal set of connected edges
between an area of red cells and blue cells. Furthermore we let p1 and p2 be the paths from
s to t along the edges of the outer face (see Figure 3). We observe that if a color-separating
path P exists, then it must go through all the edges of all borders to separate the colors.
Moreover as soon as the path P encounters a vertex on some border, it cannot deviate from
the border. If it could deviate then only one endpoint of an edge e would be on P as P must
be simple, and thus the colors adjacent to e would not be separated. It follows that the path
through a border must start at either p1 or p2, as that is where the endpoints of the borders
are. Large parts of any potential path P are thus fixed.

We categorize the borders into two types: crossings (that start on p1 and end on p2, or
vice versa) and bumps (that both start and end on either p1 or p2). These are depicted in
Figure 4. As a special case, borders that start or end in s or t, respectively, are considered
bumps. A third possible type would be an island (that does not have any vertices on p1 or
p2). These however cannot exist if a simple color-separating path P exists, as P would need
to contain all edges around the island, which results in a cycle. Furthermore, bumps cannot
be nested if there is to be a solution, as any color-separating path needs to traverse all of
those bumps, which requires the path to be non-simple.

1 https://www.amazon.com/Challenge-Brain-Logic-Puzzles-Mensa/dp/1402714491
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ts

p1

p2

Figure 3 Paths p1 and p2 go from s to t

along the outer face.

ts

crossing

bump

Figure 4 An example of a crossing and a
bump are shown in black.

Witty algorithm. The idea of the algorithm is to construct a directed graph G′ that admits
an st-path if and only if there is a simple color-separating path in our input grid. It works as
follows. We cut the grid along all crossings, producing a sequence of pieces G = [g1, g2, . . . , gk],
ordered such that s is in g1, t is in gk, and for all 1 < i < k, gi shares a border with gi−1
and gi+1. For each piece we remove all vertices (and adjacent edges) that are part of its
adjacent crossings, except for the endpoints on p1 and p2. As we have subdivided G along
all crossings, the only borders left within the pieces are bumps.

For each grid g ∈ G, we now create a small directed graph g′. Let s1, s2 be the vertices
on p1 and p2, respectively, that are closest to s, and similarly let t1, t2 be the vertices on p1
and p2 that are closest to t. For g1 it holds that s = s1 = s2, and in gk, t = t1 = t2. For
each grid g we put vertices representing s1, s2, t1, t2 into g′.

Grids gi and gi+1 used to be connected to each other by a crossing in the original grid.
We know that any separating path P must use this crossing and thus we connect t1 of g′i to
s2 of g′i+1 and s1 of g′i to t2 of g′i+1 to form G′. It then remains to determine how P can
route within the grids g ∈ G.

As each border must be followed from start to end by P , the path in a grid gi must
always start at s1,2 and end at t1,2. We add an edge between sx and ty in g′ if there exists
a color-separating path in gi starting at sx and ending at ty. The existence of such paths
can be determined by checking two conditions on gi. Firstly, if there are bumps on both p1
and p2, then there must be at least two grid cells between the bumps on p1 and p2 such that
the path can pass between them. Secondly, there must be enough vertices between bumps
on p1 and p2 such that we can exit/enter p1 and p2 to go to the other side (and back again
if needed). We need to enter/exit each path at most once. Figure 5a shows an example of
such a path: Graph g2 has an extra vertex after the bump on p2, and enough space between
the bumps on p1 and p2. A path starting at the bottom left can separate all bumps at the
bottom, route back to the top left and separate all bumps at the top to end in the top right.

The graph G′ now exactly represents all possible paths P can take. The answer to our
original problem is thus reduced to whether there exists a path from s to t in G′.

I Lemma 1. There exists a simple color-separating path P from s to t in a fully 2-colored
grid G iff there exists a simple path from s to t in G′.

More colors. In Lemma 1 we assumed that the grid contained only two colors. The same
algorithm works using any number of colors, if we make some small adjustments. We
construct graph g′ to characterize P , and we use the fact that P should always follow the
borders. However, if we have more than two colors, borders no longer have to be paths.
Three/four faces with distinct colors can share a vertex v. Whenever this happens we know
that there is no color-separating path, because the path would need to visit v more than
once. We thus know that all borders are paths, and these borders can only be crossings or
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g1
g2

g3

s t

(a)

s t

t1 s1 t1 s1

s2t2s2t2

g′1 g′2 g′3

(b)

Figure 5 (a) Sequence of graphs created by removing crossings. (b) The graph that is created to
decide whether there is a simple path that separates squares of different colors.

(a) (b) (c) (d)

Figure 6 An egg. (a) The input. (b) One possible internal state of a path traversing the egg. (c)
The other possible state. (d) The fixed edges and sockets of the egg. The egg outline is drawn in
black, for easy recognition when used in later constructions.

bumps. We can therefore recolor the grid using only colors from {r, b}, such that on both
sides of each crossing we get a different color. Assume that r is used to color cells between
two crossings (or between s or t and a crossing) then b can be used to color the bumps (or
vice versa). We can now apply Lemma 1 to find out whether there is a color separating path.

Running time. We can find the at most O(wh) crossing borders in O(wh) time by walking
over p1 and following the outline of every color to check if it hits p2. As the total size of all
pieces combined is bounded by O(wh), we can thus create the graph G′ in O(wh). Finally
we can determine if a path from s to t exists in the graph G′ in O(wh) with a simple DFS.

I Theorem 2. Deciding whether there exists a simple color-separating path P from s to t in
a fully-colored grid G can be done in O(wh) time.

3 Hardness

In this section we show that deciding whether there exists a simple color-separating path P

from s to t in a grid G with 2 colors is NP-hard if the grid contains empty squares. To prove
this we provide a reduction from planar rectilinear 3-SAT [5].

Eggs. Our reduction is built from several gadgets. Our most basic gadget consists of a 5× 4
grid with 12 colored squares, which we call an egg. The gadget is illustrated in Figure 6a.
Note that five edges of G inside the egg must be on P , because the adjacent cells are of
different colors. There are then only two possible ways how P can traverse the egg (note
that it is not possible to connect the edges to the boundary of the gadget using multiple
paths), depicted in Figures 6b and 6c. Two pair vertices of G are used by only one of the
two paths, we refer to those vertices as the sockets of the egg (see Figure 6d).

Variables. Variables are built by connecting many eggs together at their sockets: if one egg
uses a socket, the adjacent egg cannot use the same socket. We define an egg snake of length
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Figure 7 An egg snake of length 3.

Figure 8 A clause comb. There are 6 sets of adjacent empty cells; one at the handle, two
ornaments and three teeth.

k to be an arrangement of 12k − 2 eggs, as depicted in Figure 7.
If xi is true, then all top left and bottom right sockets (in the orientation shown in

Figure 6d) of every egg are used, otherwise all bottom left and top right sockets of every egg
are used. Note that, by the nature of their arrangement, all eggs in a snake must be in the
same state. We globally place all variable egg snakes in a horizontal line; see Figure 9.

Clauses. We represent each clause of the SAT instance by a comb gadget, consisting of long
strips of adjacent blue and red squares; see Figure 8. The exact shape of the comb is flexible:
horizontal and vertical stretches can be made longer as required. The outside of the comb is
covered by red squares, except for a single blue square in the top left which we refer to as
the handle of the comb. Any color-separating path P must enter through the handle, collect
(surround) all blue squares, and then leave again through the same gap.

There are five places in a comb where a choice can be made: three teeth and two ornaments,
each can be found in Figure 8 as a set of adjacent empty cells. We can think of the choice
to make as filling each tooth and ornament with either red or blue squares; this then fully
determines the course of P . However, not all choices lead to valid paths: the two ornaments
cannot both be set to blue because they would cause P to touch itself, and the left ornament
and left tooth or the right ornament and right tooth cannot both be set to blue because this
would create a red island. Similarly, we argue that exactly two out of the five teeth/ornaments
must be blue and three must be red, otherwise there will be either a red or a blue island. It
follows that at least one of the teeth must be blue.

Now, we observe that when a tooth is blue, it causes the path to run lower than when a
tooth is red. We have a left and a right socket on each tooth of the comb, which we will let
overlap with sockets of eggs. We connect a variable to the left socket for positive variables as
the top right socket is not used in the case, and the right socket for negative variables for
the same reason. Figure 9 shows a small example of an instance, leaving out most of the
puzzle details, but showing how a color-separating path can be routed. The remaining space
between variable and clause gadgets is filled by a grid of empty cells.

Satisfiability. We now show that we can efficiently find a solution to a planar 3-SAT formula

EuroCG’18
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Figure 9 An example of a small satisfiable instance. The left egg snake represent the variable x

and the right egg snake represent the variable y. The clause represent the statement x ∨ ¬x ∨ ¬y.
The color-separating path shows us that setting x to true and y to false satisfies the clause.

if we can efficiently find a color-separating path in the constructed instance for such a formula.
To find a color-separating path, we thread six horizontal paths through all variables. The

ends of the topmost and bottommost of these paths will be routed through the clause gadgets
above and below the variable line respectively. Finally, we connect the six paths through the
variables into a single path to create a color-separating path.

I Theorem 3. Deciding whether there exists a simple color-separating path P from s to t in
a grid G with two colors is NP-hard if the grid contains empty squares.
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Abstract
Suppose we are given a set S ⊂ R2 of n point sites in the plane, each with an associated radius
rs > 0, for s ∈ S. The disk graph D(S) for S is the undirected graph with vertex set S and an
edge between s and t in S if and only if |st| ≤ rs + rt, i.e., if the disks with radius rs around s
and with radius rt around t intersect. The transmission graph T (S) for S is the directed graph
with vertex set S and an edge from s to t if and only if |st| ≤ rs, i.e., if the disk with radius rs
around s contains the site t.

We consider two problems concerning cycles in disk graphs and transmission graphs. First,
we show that the weighted girth of a disk graph can be found in O(n logn) expected time, almost
matching the bounds for planar graphs. Second, we present an algorithm for finding a directed
triangle in a transmission graph in O(n log2 n) time. Thus, these problems are much easier for
disk and transmission graphs than for general graphs.

1 Introduction

Despite decades of research, many seemingly simple problems on graphs continue to stump
researchers. For example, given a simple graph G = (V,E), the best “combinatorial”
algorithm to determine whether G contains a triangle (i.e., a cycle of length three) requires
O(n3 polyloglog(n)/ log4 n) time [13], only a slight improvement over the trivial algorithm.
Using fast matrix multiplication, the problem can be solved in O(nω) time, where ω < 2.37287
is the matrix multiplication exponent [7, 8]. For planar graphs, the problem becomes much
easier: here, the unweighted girth (i.e., the length of the shortest cycle) can be found in
linear time [5].

Two interesting graph classes that invite further study are disk graphs and transmission
graphs. In both cases, we are given a set S ⊂ R2 of n point sites in the plane. Each site s ∈ S
has an associated radius rs > 0 and an associated disk Ds centered around s with radius rs.
The disk intersection graph D(S) for S is the undirected graph on S where two sites s, t ∈ S
are adjacent if and only if their associated disks intersect, i.e., if Ds ∩Dt 6= ∅. The edges
of D(S) are weighted according to the euclidean distance of their endpoints. The directed
transmission graph T (S) for S is the directed graph on S where there is an edge from a site
s to a site t if and only if t ∈ Ds. Both graphs are well studied in computational geometry,
since they serve as simple theoretical models for geometric sensor networks (see [9] and the
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references therein). Previously, Kaplan et al. [10] have studied the girth and triangles in
disk intersection graphs. They showed that for a disk intersection graph with n sites, one
can compute the unweighted girth in O(n logn) deterministic time and that one can find a
shortest triangle in O(n logn) expected time. The running time for the unweighted girth is
optimal in the algebraic decision tree model [12]. We extend the results of Kaplan et al. [10]
to the weighted girth in disk graphs and to the triangle problem in transmission graphs.

2 Weighted girth of a disk graph

In this section we consider the problem of finding the weighted girth of a disk intersection
graph. First, we describe an algorithm that, given a vertex and an abstract graph with some
restrictions, finds the shortest cycle in the graph containing that vertex. This algorithm is
then used as a subroutine in Section 2.2 to compute the weighted girth of a disk intersection
graph.

2.1 Finding the shortest cycle containing a given vertex
Let G = (V,E) be an abstract graph with nonnegative edge weights, such that all shortest
paths and all cycles in G have pairwise distinct lengths and such that for all edges uv ∈ E,
the shortest path from u to v is the edge uv. Let |V | = n and |E| = m. We present an
algorithm that, given G and a vertex s ∈ V , computes a shortest cycle in G containing s.
A simple randomized algorithm for this problem was presented by Yuster [14]. We give a
deterministic algorithm.

We run Dijkstra’s algorithm to determine the shortest path tree T for s in G in O(n logn+
m) time. Then, we traverse T to find for each v ∈ V the vertex b[v] ∈ V that comes after s
on the shortest path from s to v. This takes O(n) steps. Finally, we iterate over all edges
e ∈ E that do not occur in T . For each such edge e = uv, we check if b[u] 6= b[v]. If this is
the case, then e closes a cycle in T that contains s. We determine the length of this cycle in
O(1) time, using the shortest path distances and the length of e. We return the shortest
such cycle. Overall, the algorithm requires O(n logn+m) time. The following lemma shows
the shortest cycle in G that contains s is of the desired form.

I Lemma 2.1. The shortest cycle in G that contains s consists of two paths in the shortest
path tree T of s, and one additional edge.

Proof. Let C = (v0 = s), v1, v2, . . . , v`−1, s be the shortest cycle in G containing s, where
all vertices vi are pairwise distinct and ` ≥ 3. For vi ∈ C, let d1(vi) be the length of the
path s, v1, . . . , vi, and let d2(vi) be the length of the path vi, vi+1, . . . , s. Let π(vi) denote
the shortest path from s to vi, and let |vivi+1| be the length of the edge vivi+1.

Suppose that C is not of the desired from. Let vk, vk+1 be the edge on C with d1(vk) <
|vkvk+1|+ d2(vk+1) and d2(vk+1) < d1(vk) + |vkvk+1|. By our assumptions on G, the edge
vkvk+1 exists and k 6= 0, `− 1. We distinguish two cases.

First, suppose that π(vk) ∩ π(vk+1) = {s}. Consider the cycle C ′ given by π(vk), the
edge vkvk+1, and π(vk+1). Since s 6= vk, vk+1 and since the edge vkvk+1 does not appear
on π(vk) and π(vk+1), it follows that C ′ is a proper cycle. Furthermore, by assumption, C ′
is strictly shorter than C, because π(vk) is shorter than d1(vk) or π(vk+1) is shorter than
d2(vk+1). This contradicts our choice of C.

Second, suppose that |π(vk) ∩ π(vk+1)| ≥ 2. Since π(vk) and π(vk+1) are shortest paths,
their intersection is a prefix of each path. By the assumption on G, at least one of v1, v`−1
is not in π(vk) ∪ π(vk+1). Without loss of generality, this vertex is v1. Let j ≥ 1 be the
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smallest index such that vj ∈ π(vk) ∪ π(vk+1). We have j ∈ {2, . . . , k}. Consider the cycle
C ′ that starts at at s, follows C along v1, v2, . . . up to vj , and then returns along π(vk) or
π(vk+1) to s. By construction, C ′ is a proper cycle. Furthermore, C ′ 6= C, because even if
j = k, the path π(vk) does not use the edge vkvk+1 due to the choice of k. Finally, C ′ is
strictly shorter than C, because the second part of C ′ from vj to s follows a shortest path
and is thus strictly shorter than d2(vj). Again, C ′ contradicts our choice of C. J

2.2 Computing the girth
We describe an algorithm to compute the weighted girth of a disk intersection graph D(S).
First, we find the shortest triangle in the disk graph D(S). This takes O(n logn) expected
time using the algorithm of Kaplan et al. [10].

If D(S) contains no triangle, then it is plane [6] [10, Lemma 1]. Thus, we can explicitly
construct D(S) with a sweep line algorithm in time O(n logn) and determine the girth of
this weighted graph with an appropriate algorithm for planar graphs.

If D(S) contains a triangle, its length W can serve as an upper bound for the length
of the shortest cycle in D(S). We use the same partition of S into large and small sites as
Kaplan et al. [10]. Namely, we set ` = W/12

√
2, and we call all sites with radius at least `

large and the remaining sites small. Still following Kaplan et al., we cover the plane with four
overlapping axis parallel grids G1, G2, G3, and G4. The open grid cells have side length 4`,
and the grids are defined such that the points (0, 0), (2`, 0), (0, 2`) and (2`, 2`) are vertices
of G1, G2, G3, and G4, respectively.

We want to find the shortest cycle with at least four vertices and with length at most
W . First, we consider cycles that consist only of small sites. From the choice of `, it follows
that there is no triangle consisting only of small sites: otherwise, there would be a triangle
of length at most 3 · 4` < W , contradicting the choice of W . Thus, the subgraph D′ of D(S)
induced by the small vertices is plane [6] [10, Lemma 1]. As before, we can compute D′ and
its girth directly, using a plane sweep and known results for planar graphs. Let ∆1 be this
girth.

Finally, we consider cycles with at least one large site. By the choice of `, every triangle
that is completely contained in an open grid cell has length less than W . Since there are no
such triangles in D(S), we can apply Lemma 6 of Kaplan et al. [10] to conclude that each
grid cell contains O(1) large sites.

By the triangle inequality, in a cycle of length less than W , the maximum distance
between any two sites is less than W/2. Thus, any such cycle containing a given site s ∈ S
completely lies in a rectangle with side length W around s. This corresponds to a 7 × 7
neighborhood N(σ) around a grid cell σ containing s. Since N(σ) consists of O(1) cells and
since each cell contains O(1) large sites, there are O(1) large sites in N(σ).

We iterate over all grid cells σ. For each σ, we consider all large sites s ∈ σ. As discussed,
we must find the shortest cycle containing s in the subgraph D(Sσ) of D(S) induced by
the sites Sσ = S ∩N(σ). Suppose D(Sσ) contains n′σ small sites and n′′σ large sites. Since
the graph induced by the small sites is plane and since n′′σ = O(1), the graph D(Sσ) has
O(nσ) edges. This means that we can explicitly compute D(Sσ) in time O(nσ lognσ) and
apply the algorithm from Section 2.1 in order to compute the shortest cycle containing s
in time O(nσ lognσ). Let ∆2 be the length of the shortest cycle encountered in this step.
If we also want to output the shortest cycle in the end, we also store a pointer to σ and
s. Since each small site is involved only in a constant number of neighborhoods, we have:∑4
i=1

∑
σ∈Gi

nσ = O(n), and thus the overall running time of this step is O(n logn). In the
end, we return min{W,∆1,∆2}. Thus, we obtain the following theorem:
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Figure 1 Three disks with associated radius at least r/3 are in the same grid cell form a clique

I Theorem 2.2. Given a set S of n point sites in R2 with associated radii, we can compute
the weighted girth of D(S) in P (n) +O(n logn) expected time, where P (n) is the time needed
to compute the weighted girth of a planar graph with real edge weights.

I Corollary 2.3. Using the algorithm of Ła̧cki and Sankowski [11], we can compute the
weighted girth of a disk graph in O(n logn) expected time.

3 Directed triangles in transmission graphs

In this section we consider directed triangles in transmission graphs. Given a disk transmission
graph T (S) we want to decide, if this graph contains at least one directed triangle.

First we consider the following structural lemma. It gives a condition on the disks that
will help us find certain triangles.

I Lemma 3.1. Let D be a disk of radius r. If D contains more than 152 sites with associated
radius at least r/3, then T (S) has a directed triangle.

Proof. We cover D with a grid, where each cell has diameter r/3. Each grid cell has side
length

√
2r/6, so we need at most 76 such cells (see Figure 1). By our choice of the diameter,

for each site s ∈ D with rs ≥ r/3, the associated disk Ds completely covers the grid cell that
contains s.

If D contains more than 152 sites with associated radius at least r/3, the pigeonhole
principle shows that one grid cell contains at least three such sites. Since the corresponding
disks contain the complete grid cell, these three sites form a directed clique in T (S). In
particular, there is a directed triangle. J

Now we show how the condition of Lemma 3.1 can be checked for a given disk transmission
graph. This will later be the first part of the algorithm to find a triangle.
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I Lemma 3.2. In O(n log2 n) time, we can check whether S contains a site s such that Ds

contains more than 152 sites with associated radius at least rs/3. Furthermore, if every disk
contains at most 152 such sites, we can find all these sites in O(n log2 n) time.

Proof. We use the halfspace range reporting structure by Afshani and Chan [1]. This
structure allows us to preproccess a planar n-point set P ⊂ R2 in O(n logn) time so that for
any query point q ∈ R2 and for any k ∈ {1, . . . , n}, we can find the k nearest neighbors of q
in time O(logn+ k) [4]. We will actually need a semi-dynamic version of this data structure
that supports insertions. For this, we apply the classic Bentley-Saxe transform to obtain a
structure with O(logn) amortized insertion time and O(log2 n+ k logn) worst-case query
time [3].

We consider the sites by decreasing radius. Our range reporting data structure will always
contain all sites with associated radius at least rs/3, where s is the current site. When
processing s ∈ S, we first insert all sites with radius at least rs/3 that are not yet present
in the data structure. Then, we query the 153 nearest neighbors of s in the structure, and
we determine which of them lie in Ds. If all of them do, then T (S) contains a triangle.
Otherwise, we store this set with s. One such query takes O(log2 n) time, for a total of
O(n log2 n) time. The total time to sort the sites by descending radius and for inserting
them into the structure is O(n logn). The claim follows. J

With Lemma 3.2 we now know how to check if a graph contains a triangle because of
the condition of Lemma 3.1. Furthermore Lemma 3.2 allows us to find for each site s all
sites with radius at least rs/3, contained in Ds. In the next lemma we show how, given this
information, we can find a triangle in a transmission graph were no disk obeys the condition
of Lemma 3.1.

I Lemma 3.3. Suppose we are given a set S of n sites such that for each s ∈ S, the disk
Ds contains at most 152 sites with associated radius at least rs/3 and such that these sites
are known. We can find a directed triangle in T (S) in O(n log2 n) time, if it exists.

Proof. We need a static nearest neighbor data structure for the additively weighted eu-
clidean distance. Using an appropriate Voronoi diagram, this can be done with O(n logn)
preprocessing time and O(logn) query time [2]. We will have queries of the following form:
given a query point q ∈ R2, find the nearest site to q whose radius lies in a given interval.
For this, we build a perfect binary search tree on S, sorted by radius. In each inner vertex v
of the tree, we store an additively weighted Voronoi diagram for all disks in the subtree of v.
The weight for each site s is −rs.

This tree can be constructed in O(n log2 n) time in bottom up fashion. Given a query
point q and a radius range (r, r′), we must perform O(logn) queries to the Voronoi diagrams,
since we can follow the paths to r and r′ and query all the diagrams of tree vertices whose
intervals are completely contained in (r, r′). Thus, the query time is O(log2 n).

We iterate over the sites by decreasing radius. We will check for each site s ∈ S if it is
the site with smallest radius in a directed triangle in T (S). Suppose there is such a triangle
of the form s → t → u → s. Thus, we have rs ≤ rt and rs ≤ ru. Since t ∈ Ds, there are
at most 152 known candidates for t. Having fixed such a candidate t, there are two cases
regarding u:

1. ru ≥ rt/3: in this case, having fixed t, there are only 152 known candidates for u, and all
of them can be checked in O(1) time.

2. ru < rt/3: by definition, we have s ∈ Du. From this, it follows that that Du ⊂ Dt. Thus,
to find a triangle of the desired kind, it is enough to find any site u with ru < rt/3 and
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with s ∈ Du. This can be done by finding the nearest site to s with radius in (rs, rt/3).
As explained, this takes O(log2 n) time.

Since we iterate over all sites, this results in a total running time of O(n log2 n). J

Now we can combine the Lemma 3.2 and Lemma 3.3 to get the following theorem:

I Theorem 3.4. Given a set S of n point sites in R2 with associated radii, we can find a
directed triangle in the associated directed transmission graph T (S) in time O(n log2 n).

Proof. First we use the procedure described in Lemma 3.2 in time O(n log2 n). If it finds a
triangle, we return yes. Otherwise we use the resulting information, to apply the algorithm
from Lemma 3.3. This results in an algorithm with O(n log2 n) running time. J
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Abstract
Let G[1,b] be the graph with the set of vertices R2 and adjacency between points at distance in
the set [1, b]. We obtain new lower bounds for χ(G[1,b]) for certain values of b. Combined with
known upper bounds, this result gives two intervals of values of b for which we exactly determine
χ(G[1,b]) to be 7 and 9, respectively. The first interval contains and substantially enlarges the
only known set of values of b with determined χ(G[1,b]) coming from the work of Exoo (2004).

1 Introduction

1.1 Background
Probably the most known and challenging question of geometric graph theory is the Hadwiger-
Nelson problem. It asks for the minimal number of colors in a coloring of the Euclidean
plane R2 with a restriction that any two points at distance 1 obtain distinct colors. In other
words: what is the chromatic number of the unit distance graph of R2 (a graph defined on
the set of vertices R2 and with edges between vertices at distance 1)? The problem was first
posed by Edward Nelson in 1950 and made known to the mathematical society by Hugo
Hadwiger. As soon as in 1950’s, Nelson and John Isbell were first to prove that the answer
is at least 4 and at most 7, respectively. Unfortunately, after several decades, these classic
bounds are still the best known in general. Although far from being solved, Hadwiger-Nelson
problem inspired a vast number of challenging questions, interesting results and applications
in the intersection of combinatorics and geometry. For more information on the history of
the problem and selected related problems, we refer to the book of Soifer [9].

One of possible directions in order to obtain more understanding of such problems is to
consider a more general set of restricting distances. Let G[a,b] denote the graph with the
set of vertices R2 and two vertices adjacent if they are at distance from the interval [a, b].
However, by scaling, we can assume that a = 1. In this paper, we will consider these graphs.

Some important results on coloring of such graphs were presented by Exoo [2] (using
slightly different notation). In particular, he showed the following theorem.

I Theorem 1.1 ([2]).
For b ∈ (

√
43/5,

√
7/2] ≈ (1.31149, 1.32287] there holds χ(G[1,b]) = 7.

To our knowledge, the interval given in Theorem 1.1 was the only known set of values of b
such that χ(G[1,b]) was determined. We note that the real contribution of Theorem 1.1 lays
in establishing the lower bound for χ(G[1,b]). The upper bound comes from the observation
that the well known 7-coloring of G[1,1] based on hexagonal tiling is proper also for G[1,b] for
any b ≤

√
7/2. Exoo provided also a small δ > 0 such that for any b > 1 + δ, it holds that

χ(G[1,b]) ≥ 5. Later, it was published in [3] that the latter statement can be strengthened
to any b > 1. However, it appears that before the mentioned two papers, the last result
was already surpassed by two independent works. In a series of papers by Brown, Dunfield,
Perry [6–8], among other results, the authors gave an elegant proof by Dunfield that for any
b > 1 we have χ(G[1,b]) ≥ 6. The proof is based on a result by Woodall (incorrect proof [12])
and Townsend (correct proof based on similar idea, see [10,11]). Without giving the precise
34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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statement, the Woodall-Townsend theorem can be expressed in the following way: if the unit
distance graph of the plane is colored with the condition that color classes are defined with
Jordan curves, then at least 6 colors are necessary. The key ingredient of the proof of the
Woodall-Townsend theorem, very roughly speaking, is to find a point in the plane, which has
at least 3 colors in any ε-neighborhood. A related idea was used by Currie and Eggleton in
their manuscript [5], where they independently prove the same result as Dunfield. Although
the manuscript was not properly published, it was already mentioned by Currie in his other
paper published in 1992 [1]. Currie and Eggelton consider a coloring of G[1,b] and then for
ε ∈

(
0, (b− 1)/2

)
find a point x for which the closed ε-ball centered at x contains at least 3

colors. Then they prove that the annulus {p ∈ R2 : 1 + ε ≤ dist(p, x) ≤ b− ε} needs at least
3 colors and observe that it cannot use any of the colors from the closed ε-ball centered at x.
This ends the proof.

1.2 Our approach
It seems that the idea of a point close to at least 3 colors was not exploited for larger values
of b. In our work, we use this concept to provide new lower bounds for χ(G[1,b]) for certain
values of b > 1. The approach consists of two steps. First, we use the mentioned fact that
any coloring of G[1,b] for any b > 1 and any sufficiently small ε > 0 admits a closed ε-ball
centered at some point x containing at least 3 colors. We give a new proof of this statement.
As the second step, we consider the annulus Ab,ε centered at x with the inner radius 1+ε and
the outer radius b− ε. Clearly, none of at least 3 colors found in the closed ε-ball centered at
x can be used in Ab,ε. If for some k we are able to prove that Ab,ε itself requires at least k
colors, then we obtain χ(G[1,b]) ≥ k + 3.

In order to show a lower bound for coloring of G[1,b] or a subset of G[1,b], one may try
to construct a finite subset for which finite graph coloring techniques can be applied. For
example Exoo, in order to prove the lower bound in Theorem 1.1, considered coloring of
a finite part P of a carefully chosen regular triangular grid. Using computer aided calculations,
he showed that for the specified range of b the subgraph of G[1,b] induced by P requires at
least 7 colors. However, it is unlikely that his choice of parameters for the grid is optimal
(in terms of range of b), as it is limited by the computer computational power. In order to
show a lower bound for coloring of Ab,ε, we also construct a certain finite subset of it. Our
analysis suggested that it is reasonable to consider sets created by taking a number of points
regularly placed on a small number of circles of radius chosen between 1 + ε and b− ε.

The benefit of this approach is that we reduce the search for finite configurations to a
relatively small part of the plane. On the other hand, it is likely that for many values of b
the chromatic number of the subgraph of G[1,b] induced by Ab,ε plus 3 is strictly smaller than
χ(G[1,b]). However, this plan proves itself to be effective in providing a new contribution, as
we were able to determine χ(G[1,b]) for two intervals of values of b. In particular, we improve
the important part of Theorem 1.1 in the meaning that we give a more general lower bound.

Our lower bounds on the number of colors for finite configurations are obtained by
computer-based computations. We used a slightly modified standard mixed integer program-
ming formulation of graph coloring and solved the models using IBM ILOG CPLEX solver
(version 12.7.1).

2 The results

We start with a key lemma already proved in [5]. However, we give a new, shorter proof
of this fact.
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I Lemma 2.1 ([5]; a new proof).
Let c be a proper coloring of G[1,b] for b > 1. Consider any ε > 0 satisfying b− 1 > ε. Then
there exists a point x in R2 such that in the closed ε-ball centered in x there are at least 3
colors (with respect to c).

Proof. For a monochromatic set A colored with c1 and X ⊆ R2 denote by S(A,X) the set
of all c1-colored points in X that can be obtained from A by a sequence of c1-colored
points belonging to X with consecutive distances at most ε. For S,X ⊆ R2, let Hε(S,X) =
{p ∈ X : ∃s∈S dist(p, s) ≤ ε}. In the proof, we will use the following observation.
(∗) If S is a bounded, connected set and X contains the unbounded component of R2 \ S,

then there exists a simple closed curve C in Hε(S,X) \ S so that all points from S are
inside C.

For a simple closed curve C, let In(C) be the bounded component of R2 \ C.
Suppose to the contrary to the thesis, that there is no such point x. Let X1 = R2. Take

any point y ∈ R2. Set S1 = S({y}, X1). Note that S1 is a bounded set. Otherwise it would
contain a sequence of points of the same color with consecutive distances less than ε and
realizing arbitrarily large distance. Hence S1 would contain a pair of points at distance in
(1, b), a contradiction. Since Hε/2(S1, X1) is bounded and connected, by (∗) we can find a
simple closed curve C1 in Hε(S1, X1)\Hε/2(S1, X1) = Hε/2(Hε/2(S1, X1), X1)\Hε/2(S1, X1)
so that all points from Hε/2(S1, X1) are inside C1. Observe that all points of C1 have the
same color, as otherwise we would have a closed ε-ball with 3 colors. We continue the
construction for i > 1 in the following way. We set Xi = Xi−1 \ In(Ci−1), Si = S(Ci−1, Xi).
Since Hε/2(Si, Xi) is bounded and connected, by (∗) we can find a simple closed curve Ci
in Hε(Si, Xi) \Hε/2(Si, Xi) = Hε/2(Hε/2(Si, Xi), Xi) \Hε/2(Si, Xi) so that all points from
Hε/2(Si, Xi) are inside Ci. Again, all points of Ci have the same color, as otherwise we
would have a closed ε-ball with 3 colors.

We claim that diam(Ci) − diam(Ci−1) ≥ ε for i > 1. Consider two points y1, y2 that
realize diam(Ci−1) and take the line ` containing y1, y2. Let y′1, y′2 be the points from `

satisfying dist(y′1, y1) = ε/2, dist(y′2, y2) = ε/2 and dist(y′1, y′2) = dist(y1, y2) + ε. Clearly,
y′1, y

′
2 ∈ Hε/2(Si, Xi) ⊆ In(Ci) and hence diam(Ci) ≥ dist(y′1, y′2), as claimed. Thus

diam(Ci) − diam(Ci−1) ≥ ε. Therefore for sufficiently large i we have diam(Ci) > 1 and
there are two points in Ci at distance from (1, b). On the other hand, all points Ci have the
same color, which contradicts with the fact that c is a proper coloring of G[1,b]. J

I Theorem 2.2. The following inequalities hold:

1. χ(G[1,b]) ≥ 7 for b >
√

2− 2 sin( 18π
325 ) ≈ 1.28599

2. χ(G[1,b]) ≥ 8 for b >
√

2 + 2 sin( π38 ) ≈ 1.47145
3. χ(G[1,b]) ≥ 9 for b >

√
2 + 2 sin( 7π

45 ) ≈ 1.71433

Proof. Consider b > 1 and a proper coloring c ofG[1,b] with χ(G[1,b]) colors, say 1, . . . , χ(G[1,b]).
Fix ε > 0. Let x be a point such that in the closed ε-ball centered at x there are at least 3
colors with respect to c, say colors 1, 2, 3. Without loss of generality we can assume that
x = (0, 0). Then no point in the annulus Ab,ε = {p ∈ R2 : 1 + ε ≤ dist(p,0) ≤ b− ε} can be
colored with any of the colors 1, 2, 3.

The general outline is that in each case for a fixed b, we will construct a finite subset
of Ab,ε (for sufficiently small ε) such that it needs at least k colors, for some k. In other
words, we will find a subgraph of G[1,b] consisting of vertices from Ab,ε forcing k colors.
This will imply that χ(G[1,b]) ≥ 3 + k. Denote by Xn

r the set consisting of n points evenly
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distributed on the circle with the center in (0, 0) and radius r so that one point lays in the
set {0} × (0,+∞).

1. Assume that b >
√

2− 2 sin( 18π
325 ). Consider Yε = X1300

1+ε ∪ X1300
b−ε ⊆ Ab,ε. It can be

checked that for sufficiently small ε > 0, any proper coloring of the graph induced by Yε
in G[1,b] uses at least 4 colors.

2. Assume that b >
√

2 + 2 sin( π38 ). Consider Yε = X190
1+ε ∪X190

b−ε ⊆ Ab,ε. It can be checked
that for sufficiently small ε > 0, any proper coloring of the graph induced by Yε in G[1,b]
uses at least 5 colors.

3. Assume that b >
√

2 + 2 sin( 7π
45 ). Consider Yε = X180

1+ε ∪X180
(1+b)/2 ∪X180

b−ε ⊆ Ab,ε. It can
be checked that for sufficiently small ε > 0, any proper coloring of the graph induced by
Yε in G[1,b] uses at least 6 colors.

J

The exact right-hand side values in three inequalities on b in Theorem 2.2 are the
optimal values for which the given finite configurations of points posses the desired chromatic
properties. That is, in each case for any smaller value of b, the given set Yε can be colored with
fewer colors than stated in the theorem. Nevertheless, we are far from claiming optimality of
the given sets. In Theorem 2.2 we simply present the best constructions that we were able
to find and verify. We expect that there exist sets of similar form which work for (possibly
only slightly) smaller values of b.

By combining Theorem 2.2 with previously known bounds, we can obtain two intervals
of values of b for which the chromatic number can be determined. Namely, let us use that
Exoo [2] observed that χ(G[1,b]) ≤ 7 for b ≤

√
7/2 and Ivanov [4] showed that χ(G[1,b]) ≤ 9

for b ≤
√

3.

I Corollary 2.3. For b ∈
(√

2− 2 sin( 18π
325 ),

√
7/2
]
≈ (1.28599, 1.32287] it holds χ(G[1,b]) = 7.

I Corollary 2.4. For b ∈
(√

2 + 2 sin( 7π
45 ),
√

3
]
≈ (1.71433, 1.73205] it holds χ(G[1,b]) = 9.

Note that the first interval contains and substantially enlarges the interval obtained by
Exoo in Theorem 1.1. Moreover, the second interval was not known at all.

3 Conclusions

We note that our method combines a theoretical reasoning of continuous nature and con-
structions of finite sets for which the coloring properties are checked by computer. Therefore,
the approach differs from the previously used in the literature. Similar constructions for
larger values of b and larger number of colors are in preparation. However, it seems that
the method should work better for relatively small values of b (and hence small number of
colors), as in this case the 3 colors reserved by the ε-ball make a greater difference.

One may observe that we do not have any interval with the chromatic number determined
to 8 colors. The reason is that we do not have a good 8-coloring of the plane. That is,
an 8-coloring of G[1,b] that would work for b substantially larger than the known 7-colorings.
It would be interesting to obtain an 8-coloring of G[1,b] even for b > 1.4.
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Abstract
Given a set of n red and n blue points in the plane, we are interested in matching red points with
blue points by straight line segments so that the segments do not cross. Bottleneck matching
is such a matching that minimizes the length of the longest segment. We develop tools which
enable us to solve the problem of finding bottleneck matchings of points in convex position in
O(n2) time. We use the same approach to design an O(n)-time algorithm for the case where all
points lie on a circle. Previously best known results were O(n3) for points in convex position,
and O(n logn) for points on a circle.

1 Introduction

Let R and B be sets of n red and n blue points in the plane, respectively, with P = R ∪B.
Let M be a perfect matching between points from R and B, using n straight line segments
to match the points, that is, each point is an endpoint of exactly one line segment, and each
line segment has one red and one blue endpoint. We forbid line segments to cross. The
length of a longest line segment in M is called the value of M . Our goal is to find a matching
under given constraints with the minimum value. Any such matching is called a bottleneck
matching of P .

1.1 Related work
Monochromatic case The monochromatic variant of the problem is the case when points
are not assigned colors, and any two points are allowed to be matched. The problem of
computing bottleneck monochromatic non-crossing matching of a point set is shown to be
NP-complete by Abu-Affash, Carmi, Katz and Trablesi in [2]. They also proved that it does
not allow a PTAS, gave a 2

√
10 factor approximation algorithm, and showed that the case

where all points are in convex position can be solved exactly in O(n3) time. We improved
this result in [6] by constructing O(n2)-time algorithm. In [1], Abu-Affash, Biniaz, Carmi,
Maheshwari and Smid presented an algorithm for computing a bottleneck monochromatic
non-crossing matching of size at least n/5 in O(n log2 n) time. They extended the same
approach to provide an O(n logn)-time approximation algorithm which computes a plane
matching of size at least 2n/5 whose edges have length at most

√
2 +
√

3 times the length of
the longest edge in a non-crossing bottleneck matching.

Bichromatic case The problem of finding a bottleneck bichromatic non-crossing matching
(BBNCM) was proved to be NP-complete by Carlson, Armbruster, Bellam and Saladi in [4].
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But for the version where crossings are allowed, Efrat, Itai and Katz showed in [5] that a
bottleneck matching between two point sets can be found in O(n3/2 logn) time.

Biniaz, Maheshwari and Smid in [3] studied special cases of BBNCMs. They showed that
the case where all points are in convex position can be solved in O(n3) time, utilizing an
algorithm similar to the one for monochromatic case presented in [2]. They also considered
the case where the points of one color lie on a line and all points of the other color are on
the same side of that line, providing an O(n4) algorithm to solve it. The same results for
these special cases are independently obtained in [4]. In [3], an even more restricted problem
is studied, a case where all points lie on a circle, for which an O(n logn)-time algorithm is
provided.

1.2 Our results
Here, we develop tools which enable us to solve the problem of finding a BBNCM of points
in convex position in O(n2) time. Also, using the same toolset we design an optimal O(n)
algorithm for the case when the points lie on a circle.

Some important structural properties of BBNCMs of points in convex position that we
aim to exploit are captured well by the concept of (what we refer to as) orbit. Informally
speaking, orbits form a partition of the point set that turns out to have the following property
– two differently colored points can be connected by a segment in some non-crossing matching
if and only if they belong to to the same orbit.

As it turns out, there is a number of additional properties of orbits that we can put to
good use, and once we combine them with ideas used to efficiently solve the monochromatic
case in [6], we are able to get a considerable improvement of the algorithm running time,
both in the convex case and in the case where all points lie on a circle.

For detailed exposition of our results and all the proofs, please refer to [7].

2 Orbits

In what follows we consider the case where all points of P are in convex position, i.e. they
are the vertices of a convex polygon. Here we only deal with matchings without crossings, so
from now on, the word matching is used to refer only to pairings that are crossing-free.

Let us label the points v0, v1, . . . , v2n−1 in positive (counterclockwise) direction. To
simplify the notation, we will often use only the indices when referring to the vertices.
We write {i, . . . , j} to represent the sequence i, i+ 1, i+ 2, . . . , j − 1, j. All operations are
calculated modulo 2n; note that i is not necessarily less than j, and that {i, . . . , j} is not
the same as {j, . . . , i}.

We say that (i, j) is a feasible pair if there exists a matching containing (i, j). It can
be shown that every set of n blue and n red points in a convex position can be perfectly
matched, implying that a pair (i, j) is feasible iff i and j are of different colors and each of
{i+ 1, . . . , j − 1} and {j + 1, . . . , i− 1} contains the same number of red and blue points.

Let o(i) be the first point j starting from i in positive direction such that (i, j) is feasible.
The function o has an inverse, denoted by o−1, and it is easy to see that o−1(j) is the first
point i starting from j in the negative (clockwise) direction such that (i, j) is feasible. We
define o0(i) := i.

I Definition 2.1. An orbit of i, denoted by O(i), is defined by O(i) := {ok(i) : k ∈ Z},
see Figure 1. By O(P ) we denote the set of all orbits of a convex point set P , that is
O(P ) := {O(i) : i ∈ P}.
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Figure 1 Orbits.

It can be seen that each point belongs to exactly one orbit. Any two neighboring points
on an orbit have different colors, so each orbit has an equal number of red and blue points.

Next, we state a number of properties that can be shown to hold for orbits.

I Property 2.2. Points i and j of different colors form a feasible pair iff O(i) = O(j).

If i and j are neighboring vertices of a convex polygon defined by the points of an orbit
such that i precedes j in the positive direction, then j = o(i). Informally, by repeatedly
applying function o we visit all points of an orbit in a single turn around the polygon.

All feasible point pairs can be split into the two categories depending on their mutual
position in their orbit. Pairs consisting of two neighboring vertices of the orbit are called
edges, and all other pairs are called diagonals. More precisely, for j ∈ O(i), (i, j) is an edge if
and only if i = o(j) or j = o(i), otherwise, it is a diagonal.

I Lemma 2.3. Orbits can be computed in O(n) time.

We say that an edge (i, o(i)) is a red-blue edge if i ∈ R, and blue-red edge if i ∈ B.
We consider edges directed from i to o(i), so points right of an edge (i, o(i)) are points
{i, . . . , o(i)} \ {i, o(i)}.
I Property 2.4 (Orbit synchronicity). Let A,B ∈ O(P ). There are no points of B on the
right side of red-blue edges of A if and only if there are no points of A on the right of blue-red
edges of B.
I Definition 2.5. Let A,B ∈ O(P ). We say that A ≤ B iff there are no points of B right of
red-blue edges of A and no points of A right of blue-red edges of B

It can be proven that the relation ≤ on orbits is transitive, which together with orbit
synchronicity gives us the following important property of orbits.

I Property 2.6. The relation ≤ on O(P ) is a total order.

2.1 Orbit graph
The orbit graph for P is a directed acyclic graph in which each vertex corresponds to an
orbit in O(P ), and there is a directed edge from A to B iff A ≤ B and orbits A and B are
different and intersect each other (meaning that there is a line segment between a pair in A
and a line segment between a pair in B so that those line segments intersect).

I Property 2.7. Each weakly connected component of the orbit graph has a Hamiltonian
path.

These Hamiltonian paths are possible to calculate without constructing the full orbit
graph first, as the following lemma states.

I Lemma 2.8. All Hamiltonion paths of connected components of the orbit graph can be
computed in O(n) total time.
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3 Finding bottleneck matchings

3.1 Cascades
Now, what remains is to utilize the theory that we developed for orbits and the orbit graph,
combining it with some parts of the approaches used in [6] to tackle the monochromatic case.

Let us consider the division of the polygon defined by points in P into regions obtained by
cutting it with diagonals (but not edges) of the given matching M . Each region is bounded
by some diagonals of M and by the polygon’s boundary. We call a region k-bounded if
there are exactly k diagonals bounding it. Any maximal sequence of diagonals connected by
2-bounded regions is called a cascade, see Figure 2. We can prove the following lemma.

Figure 2 Matching consisting of edges (dashed lines) and diagonals (solid lines). There are three
cascades in this example: one consist of the three diagonals in the left part, one consist of the two
diagonals in the lower right, and one consist of the single diagonal in the upper right.

I Lemma 3.1. There is a bottleneck matching having at most three cascades.

It is not possible for a matching to have exactly two cascades, so we know that there is a
bottleneck matching either with at most one cascade, or with exactly three cascades. We
define a set of subproblems that is used to find an optimal solution in both of these cases.

3.2 Subproblems
When talking about matchings with minimal value under certain constraints, we will refer to
these matchings as optimal.

Let (i, j) be such that {i, . . . , j} contains the same number of red and blue points. We
define Matching(i, j) to be the problem of finding an optimal matching Mi,j of points
{i, . . . , j}, so that Mi,j has at most one cascade, and pair (i, j) belongs to a region bounded
by at most one diagonal from Mi,j different from (i, j).

All these subproblems can be solved in O(n2) total time using dynamic programming.
Beside the value Si,j of matchingMi,j , we determine if pair (i, j) is necessary for constructing
Mi,j , i.e. do all solutions to Matching(i, j) contain (i, j). If that is true then such a pair is
called necessary. This can be easily calculated together with the solution to subproblems.

An optimal matching of the whole set P having at most one cascade can be found in
linear time from calculated solutions to subproblems. We run through all subproblems of the
form Matching[i+ 1, i] for all feasible pairs (i, i+ 1), and take the minimum.

Next, we focus on finding an optimal matching among all matchings with exactly three
cascades (3-cascade matchings). Any three distinct points i, j and k, where (i, j), (j + 1, k)
and (k + 1, i− 1) are feasible pairs, can be used to construct a 3-cascade matching by taking
a union of Mi,j , Mj+1,k and Mk+1,i−1. We can run through all possible triplets (i, j, k) and
see which one minimizes max{S[i, j], S[j+ 1, k], S[k+ 1, i−1]}. However, that requires O(n3)
time, and thus is not suitable, since our goal is to design a faster algorithm. Our approach is



M. Savić and M. Stojaković 70:5

to show that instead of looking at all (i, j) pairs, it is enough to select (i, j) from a set of
linear size, which would reduce the search space to quadratic number of possibilities.

3.3 Candidate pairs and polarity
In 3-cascade matching, we call the three diagonals at the inner ends of the three cascades
the inner diagonals. We take the largest region by area, such that it is bounded, but not
crossed by matched pairs, and such that each two of the three cascades are separated by
that region. We call this region the inner region. Matched pairs defining the boundary of
the inner region are called the inner pairs.

I Lemma 3.2. If there is no bottleneck matching with at most one cascade, then there is a
bottleneck 3-cascade matching whose every inner pair is necessary.

The turning angle of {i, . . . , j}, denoted by τ(i, j), is the angle by which the vector −−−→vivi+1
should be rotated in positive direction to align with vector −−−−→vj−1vj , see Figure 3.

Figure 3 Turning angle. Figure 4 {i + 1, . . . , j − 1} ∩O(i) all
lie inside either Π− or Π+.

We say that (i, j) is a candidate pair, if it is a necessary pair and τ(i, j) ≤ 2π/3.

I Lemma 3.3. If there is no bottleneck matching with at most one cascade, then there is a
3-cascade bottleneck matching M , such that at least one inner pair of M is a candidate pair.

Let us now look at a candidate pair (i, j), and examine the position of points {i+1, . . . , j−
1} ∩ O(i). We construct the circular arc h on the right side of the directed line vivj , from
which the line segment vivj subtends an angle of π/3, see Figure 4. Let A be the midpoint of
h. Points vi, A and vj form an equilateral triangle, so we can construct the arc a− between
A and vi with the center in vj , and the arc a+ between A and vj with the center in vi. These
arcs define three areas: Π−, bounded by h and a−, Π+, bounded by h and a+, and Π0,
bounded by a−, a+ and the line segment vivj . With Π−(i, j) and Π+(i, j) we respectively
denote areas Π− and Π+ corresponding to the candidate pair (i, j).

I Lemma 3.4. If (i, j) is a candidate pair, then points {vi+1, . . . , vj−1} ∩ O(i) either all
belong to Π− or all belong to Π+.

Two possibilities for a candidate pair (i, j) provided by Lemma 3.4 bring forth a concept
of polarity. If points {i+ 1, . . . , j − 1} ∩ O(i) lie in Π−(i, j) we say that candidate pair (i, j)
has negative polarity and has i as its pole. Otherwise, if these points lie in Π+(i, j), we
say that (i, j) has positive polarity and pole in j. The following lemma gives us the crucial
observation about polarity, which enables us to limit the search space of the algorithm.

I Lemma 3.5. No two candidate pairs of the same polarity have the same point as a pole.
Hence, there are O(n) candidate pairs.

EuroCG’18
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Finally, we use our findings from Lemma 3.3 and Lemma 3.5, to construct an algorithm
which finds a BBNCM in O(n2) time. We first solve all subproblems and find candidate pairs.
Then, we minimize max{S[i, j], S[j + 1, k], S[k + 1, i− 1]} by running through all candidate
pairs (i, j) and for each such pair through all k ∈ {j + 1, . . . , i− 1}.

4 Points on a circle

Now, let us consider the special case where all points lie on a circle. The geometry of a
circle provides us with the following lemma (also stated in [3]), which together with orbit
properties enables us to construct an O(n) time algorithm for this problem.

I Lemma 4.1. There is a bottleneck matching in which each point i is connected either to
o(i) or o−1(i).

This means there is a bottleneck matching ME which can be constructed by taking
alternating edges from each orbit, that is from each orbit we take either all red-blue or
all blue-red edges. To find a bottleneck matching we want to search through only such
matchings, and to reduce the number of possibilities, we use the properties of the orbit graph.

Consider the Hamiltonian path L1,L2, . . . ,Lm for some connected component of the orbit
graph, as provided by Property 2.7. Since there is a directed edge from Lk to Lk+1, those
two orbits intersect each other, and by Property 2.4 we know that only edges from Lk that
intersect Lk+1 are blue-red edges, and only edges from Lk+1 that intersect Lk are red-blue
edges. Hence, ME cannot have blue-red edges from Lk and red-blue edges from Lk+1. This
further implies that there is l ∈ 0, 1, . . . ,m such that L1, . . . ,Ll all contribute to ME with
red-blue edges and Ll+1, . . . ,Lm all contribute to ME with blue-red edges.

For each l, we can compute the longest red-blue edge in L1, . . . ,Ll and the longest
blue-red edge in Ll+1, . . . ,Lm, and computing all of this can be done in O(n) total time.
After we obtain these values, we can quickly get the value of a matching for each possible l,
and take the one with the minimum value.

By Lemmas 2.3 and 2.8, each step in this process has time complexity not greater than
O(n), so we get an algorithm for points on a circle which runs in linear time.
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Abstract
An ortho-radial drawing is an embedding of a graph into an ortho-radial grid, whose gridlines
are concentric circles around the origin and straight-line spokes emanating from the origin but
excluding the origin itself. Recently, Barth et al. [1] showed that such drawings can be de-
scribed combinatorially by so-called valid ortho-radial representations, which only specify angles
at vertices and bends on the edges, but neglects any kind of geometric information. A similar
representation for embeddings in orthogonal grids is a central ingredient for bend minimization
in this setting [5]. However, the result of Barth et al. [1] is existential and does not provide
an efficient algorithm for testing whether a given ortho-radial representation is valid, let alone
actually obtaining a drawing from a valid ortho-radial representation. In this paper, we provide
efficient algorithms (with quadratic running time) for these two problems.

1 Introduction

Grid drawings of graphs embed graphs into grids such that vertices map to grid points
and edges map to internally disjoint curves on the grid lines that connect their endpoints.
Orthogonal grids, whose grid lines are horizontal and vertical lines, are popular and widely
used in graph drawing. Ortho-radial drawings are a generalization of this concept to grids
that are formed by concentric circles and straight-line spokes from the center but excluding
the center. Among other applications, they are used to visualize network maps; see Fig. 1.
Equivalently, they can be viewed as graphs drawn in an orthogonal fashion on the surface of
a standing cylinder; see Fig. 2. We will use these different points of view interchangeably.

The main objective in orthogonal graph drawing is to minimize the number of bends
on the curves. The core of a large fraction of the algorithmic work on this problem is
the Topology-Shape-Metrics framework (TSM) introduced by Tamassia [5], which shows
that orthogonal drawings can be described purely combinatorially by giving an orthogonal
representation, which describes (i) the angles formed by consecutive edges around each vertex
and (ii) the directions of bends along the edges. Such a representation is valid if (I) the
angles around each vertex sum to 360°, and (II) the sum of the angles around each face with
k vertices is (2k − 2) · 180° for internal faces and (2k + 2) · 180° for the outer face.

Recently Barth et al. [1] generalized orthogonal representations to ortho-radial drawings,
called ortho-radial representations. Previously such representations were only known to exist
for cycles and Θ-graphs [4] as well as cubic graphs with rectangular faces [3].

Let G = (V, E) be a planar graph with an ortho-radial drawing ∆. We distinguish two
types of simple cycles in G. If the center of the grid lies in the interior of a simple cycle, the
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Figure 1 Metro map of Berlin using an
ortho-radial layout. Image copyright by Max-
well J. Roberts. Reproduced with permission.

up

left right

c

down

(a) Ortho-radial grid. (b) Cylinder drawing.

Figure 2 An ortho-radial drawing of a graph on
a grid (a) and its equivalent interpretation as an
orthogonal drawing on a cylinder (b).

cycle is essential; otherwise it is non-essential. Further, there is an unbounded face in ∆ and
a face that contains the center of the grid; we call the former the outer face and the latter
the central face, which we mark by a small “x”; see Fig. 2a. All other faces are called regular.

Consider now an ortho-radial drawing Γ of G (as in [1] we restrict our attention to drawings
without bends). An ortho-radial representation can be obtained from Γ by measuring for each
incidence of a vertex v to a face f that lies to the right of the edges uv and vw the clockwise
angle a ∈ {90◦, 180◦, 270◦, 360◦}. We call such a set of angles to vertex–face incidences an
angle assignment. Given an angle assignment, for two edges uv and vw incident to the same
vertex v, we define the rotation rot(uvw) as 1 if there is a right turn at v, 0 if uvw is straight,
and −1 if there is a left turn at v. In the special case that u = w, we define rot(uvw) = −2.
The rotation of a path P = v1, . . . , vk is rot(P ) =

∑k−1
i=1 rot(vi−1vivi+1) and the rotation

of a cycle C = v1, . . . , vk, v1 is rot(C) =
∑k

i=1 rot(vi−1vivi+1), where we take v0 = vk and
vk+1 = v1. For a face f we use rot(f) to denote the rotation of the facial cycle that bounds
f (oriented such that f lies on the right side of the cycle).
A representation obtained from an ortho-radial drawing satisfies the following conditions.

(I) The sum of all angles around each vertex is 360◦.

(II) For each face f : rot(f) =





4, f is a regular face
0, f is the outer or the central face but not both
−4, f is both the outer and the central face.

We call a representation satisfying these properties an ortho-radial representation. However,
not every ortho-radial representation has a corresponding ortho-radial drawing [1]. Barth
et al. show that this requires a third condition, which essentially states that each essential
cycle that contains an edge that points upward (on the cylinder) also has to contain an edge
that points downward (and vice versa). More formally, fix a horizontal edge e? = st on the
outer face that points to the right as reference edge.

For a simple, essential cycle C in G and a path P from the endpoint s of the reference
edge e? to a vertex v on C the labeling `P

C assigns to each edge e on C the label `P
C(e) =

rot(e? + P + C[v, e]). Note that we use + to denote concatenation of paths and C[v, e] to
denote the subpath of C starting at v and ending with the edge e. In this paper we always
assume that P is elementary, i.e., P intersects C only at its endpoints. For these paths the
labeling is independent of the actual choice of P [1]. We therefore drop the superscript P

and write `C(e) for the labeling of an edge e on an essential cycle C. We call an essential
cycle monotone if either all its labels are non-negative or all its labels are non-positive. A
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monotone cycle is a decreasing cycle if it has at least one strictly positive label, and it is an
increasing cycle if C has at least one strictly negative label. An ortho-radial representation is
valid if it contains neither decreasing nor increasing cycles. The validity of an orthor-radial
representation ensures that on each essential cycle with at least one non-zero label there is
at least one edge pointing up and one pointing down. Barth et al. [1] prove the following
theorem1.

I Proposition 1 (Theorem 5 in [2]). A 4-plane graph admits a bend-free ortho-radial drawing
if and only if it admits a valid ortho-radial representation.

To that end, Barth et al. [2] prove the following results among others. Since we use them
throughout this paper, we restate them for the convenience of the reader. Both assume
ortho-radial representations that are not necessarily valid.

I Proposition 2 (Lemma 12 in [2]). Let C1 and C2 be two essential cycles and let H = C1+C2
be the subgraph of G formed by these two cycles. For any common edge vw of C1 and C2
where v lies on the central face of H, the labels of vw are equal, i.e., `C1(vw) = `C2(vw).

I Proposition 3 (Lemma 16 in [2]). Let C and C ′ be two essential cycles that have at least one
common vertex. If all edges on C are labeled with 0, C ′ is neither increasing nor decreasing.

Proposition 2 is a useful tool for comparing the labels of two interwoven essential cycles.
For example, if C1 is decreasing, we can conclude for all edges of C2 that also lie on C1 and
that are incident to the central face of H that they are non-negative. Proposition 3 is useful
in the scenario where we have an essential cycle C with non-negative labels, and a decreasing
cycle C ′ that shares a vertex with C. We can then conclude that C is also decreasing. In
particular, these two propositions together imply that the central face of the graph H formed
by two decreasing cycles is bounded by a decreasing cycle.

While it is not hard to test whether a given angle assignment is an ortho-radial rep-
resentation, Barth et al. left open the problem of testing whether a given ortho-radial
representation is valid. Moreover, following their proof of Proposition 1, which constructs
from a valid ortho-radial representation a corresponding ortho-radial drawing, requires a
quadratic number of such validity tests. In this paper, we show that such a validity test can
indeed be implemented to run in quadratic time. Used naively, this would result in a quartic
algorithm for constructing a drawing for a valid ortho-radial drawing. We further improve
on this and reduce also that running time to quadratic. Thus, our main result is that, given
an ortho-radial representation of a graph, we can test in quadratic time whether it is valid,
and in the positive case we can produce a corresponding drawing, whereas in the negative
case, we find a monotone cycle witnessing that the representation is not valid.

2 Finding Monotone Cycles

The two conditions for ortho-radial representations are local and checking them can easily
be done in linear time. We therefore assume in this section that we are given a planar graph
G with an ortho-radial representation Γ. The condition for validity however references all
essential cycles of which there may be exponentially many. We present an algorithm that
checks whether Γ contains a monotone cycle and computes such a cycle if one exists. The
main difficulty is that the labels on a decreasing cycle C depend on an elementary path P

1 In the following we refer to the full version [2] of [1], when citing lemmas and theorems.
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from the reference edge to C. However, we know neither the path P nor the cycle C in
advance, and choosing a specific cycle C may rule out certain paths P and vice versa.

We only describe how to search for decreasing cycles; increasing cycles can be found by
searching for decreasing cycles in a suitably defined mirrored representation. A decreasing
cycle C is outermost if it is not contained in the interior of any other decreasing cycle. Clearly,
if Γ contains a decreasing cycle, then it also has an outermost one, and in fact it can be
shown that this cycle is uniquely determined.

I Lemma 4. If Γ contains a decreasing cycle, there is a unique outermost decreasing cycle.

The core of our algorithm is an adapted left-first DFS. Given a directed edge e, it
determines the outermost decreasing cycle C in Γ such that C contains e in the given
direction and e has the smallest label among all edges on C, if such a cycle exists. By running
this test for each directed edge of G as the start edge, we find a decreasing cycle if one exists.

Our algorithm is based on a DFS that visits each vertex at most once. A left-first search
maintains for each visited vertex v a reference edge ref(v), the edge of the search tree via
which v was visited, and whenever it has a choice which vertex to visit next, it picks the
first outgoing edge in clockwise direction after the reference edge that leads to an unvisited
vertex. In addition to that, we employ a filter that ignores certain outgoing edges during the
search. To that end, we define for all outgoing edges e incident to a visited vertex v a search
label ˜̀(e) by setting ˜̀(e) = ˜̀(ref(v)) + rot(ref(v) + e) for each outgoing edge e of v. In our
search we ignore edges with negative search labels. For a given directed edge e = vw in a
graph G with ortho-radial representation Γ, we initialize the search by setting ref(w) = vw,
˜̀(e) = 0 and then start searching from w.

Let T denote the directed search tree with root w constructed by the DFS in this fashion.
If T contains v, then this determines a candidate cycle C containing the edge vw. If C is
a decreasing cycle, which we can easily check by determining an elementary path from the
reference edge to C, we report it. Otherwise, we show that there is no outermost decreasing
cycle C such that vw is contained in C and has the smallest label among all edges on C.

I Lemma 5. Assume Γ contains a decreasing cycle. Let C be the outermost decreasing cycle
of Γ and let vw be an edge on C with the minimum label, i.e., `C(vw) ≤ `C(e) for all edges e

of C. Then the left-first DFS from vw finds C.

Proof Sketch. To prove this we assume for a contradiction that the search does not find C.
Then, starting from vw there is a first edge xy of C that is not followed by the search. This
can be for one of two reasons. Either it was filtered out, since the search label ˜̀(xy) is less
then 0, or, at the point the edge xy is considered by the search vertex y has already been
visited. The first case is easily excluded using the assumption that `C(vw) is minimal. In the
second case, we find that our search contains a search path Q that at some point deviates
from C and then reaches y, before it eventually backtracks and reaches xy.

Let P be the subpath of Q from the vertex b where Q first leaves C to the first vertex p

that again lies on C; see Fig. 3. The subgraph H = P + C that is formed by the decreasing
cycle C and the path P is a Θ-graph consisting of the three internally vertex-disjoint paths
P [b, p], C[b, p] and C[b, p] between b and p. Due to the left-first rule, the circular ordering of
the edges around the vertex b is fixed, and C is essential. Consequently the interior of C is
the central face. We denote the cycle bounding the outer face but in which the edges are
directed such that the outer face lies locally to the left by C ′. Depending on which of the
two remaining faces is the outer face, the situation is as shown in Fig. 4. One can then show
that in either case the cycle bounding the outer face is a decreasing cycle, thus contradicting
the assumption that C is outermost. In the remainder we sketch the proof of the easier case.
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Figure 3 Path Q and its
prefix P that leaves C once
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Figure 4 The two possible embed-
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decreasing cycle C and the path P ,
which was found by the search.

Figure 5 Candidate
edges (bold) for a port u.

If C ′ = C[b, p] + P [p, b] forms the outer face of H, vw lies on C ′; see Fig. 4, left. We
show that C ′ is a decreasing cycle, which contradicts the assumption that C is the outermost
decreasing cycle. Since P is simple and lies in the exterior of C, the path P is a part
of C ′, which means C ′[w, p] = P . The other part of C ′ is formed by C[p, w]. Since C

forms the central face of H, the labels of the edges on C[p, w] are the same for C and C ′

by Proposition 2. In particular, `C(vw) = `C′(vw) and all the labels of edges on C[p, w]
are non-negative because C is decreasing. The label of any edge e on both C ′ and P is
`C′(e) = `C′(vw) + rot(vw + P [w, e]) = `C(vw) + ˜̀(e) ≥ 0. Thus, the labeling of C ′ is
non-negative. Further, not all labels of C ′ are 0 since otherwise C is not a decreasing cycle
by Proposition 3. Hence, C ′ is decreasing and contains C in its interior, a contradiction. J

The left-first DFS clearly runs in O(n) time. We run it for each of the O(n) directed
edges of G. Since some edge must have the lowest label on the outermost decreasing cycle,
Lemma 5 guarantees that we eventually find a decreasing cycle if one exists. Decreasing
cycles can be detected symmetrically.

I Theorem 6. Let G be a 4-planar graph on n vertices and let Γ be an ortho-radial repres-
entation of G. It can be determined in O(n2) time whether Γ is valid.

3 Rectangulation

The core of the algorithm for drawing a valid ortho-radial representation Γ of a graph G by
Barth et al. [1] is a rectangulation procedure that successively augments G with new vertices
and edges to a graph G? along with a valid ortho-radial representation Γ? where every face of
G? is a rectangle, i.e., a face with no concave angles. In particular the algorithm only inserts
edges that preserve the validity of the ortho-radial representation. To that end it applies
O(n2) validity tests. Using the validity test from Section 2 the rectangulation algorithm
runs in O(n4) time. We now sketch the procedure in more detail and briefly describe how to
improve its running time to O(n2) time.

Consider a face f with a concave angle at u such that the following two turns when
walking along f (in clockwise direction) are right turns; see Fig. 5. We call u a port of f and
define a set of candidate edges that contains those edges e of f , for which rot(f [u, e]) = 2.
We treat this set as a sequence e1, . . . , el, where the edges appear in the same order as in f

beginning with the first candidate after u. The augmentation Γu
vw with respect to a candidate

edge vw is obtained by splitting vw into the edges vz and zw, where z is a new vertex,
and adding the edge uz in the interior of f such that the angle formed by zu and the edge
following u on f is 90°. The direction of the new edge uz in Γu

vw is the same for all candidate
edges. If this direction is vertical, we call u a vertical port and otherwise a horizontal port.

The rectangulation algorithm successively removes ports by inserting edges. For a vertical
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port u it inserts a vertical edge from u to its first candidate e1, which yields a valid ortho-
radial representation Γu

e1 [2, Lemma 21]. For a horizontal port u it successively goes through
candidates e1, . . . , el of u and takes the first valid augmentation Γu

ei
, which always exists [2]

and can be identified by the validity test of Section 2. Since there are O(n) concave angles
to remove and O(n) candidates per augmentation, the algorithm runs in O(n4).

Exploiting structural insights we speed up each validity test to O(n) time obtaining O(n3)
running time in total. Since validity tests are only performed for horizontal ports, we focus
on removing the concave angle at a horizontal port u in the remainder of the section. We
further assume without loss of generality that the new edge uz points right. The key insight
to improve the running time of a single validity tests is the following structural observation.
I Lemma 7. If the first augmentation Γu

e1 contains a decreasing cycle, the new edge uz in
any augmentation Γu

e has label `C(uz) = 0 on any decreasing cycle C.
Hence, uz has the minimum label on all decreasing cycles and therefore one DFS from uz

suffices to check for decreasing cycles. For increasing cycles a similar observation does not
hold but in the rectangulation procedure only the final test for u needs to test for increasing
cycles. This test can be replaced by a test for a horizontal path [2, Lemmas 25, 26]. This
improves the running time of each applied validity test to O(n).

Finally, we reduce the number of validity tests to O(n) obtaining O(n2) running time for
the rectangulation algorithm. We introduce a post-processing phase after each augmentation
step, which ensures that all but a constant number of candidates that were considered for u

lie on rectangular faces. Thus, these edges will not be candidates for any future port. All
concave angles introduced in the post-processing phase become vertical ports, for which no
validity tests are performed. Hence, the total number of validity tests is reduced to O(n).
I Theorem 8. Given a valid ortho-radial representation Γ of a graph G, a corresponding
rectangulation can be computed in O(n2) time.

In particular, using Corollary 19 from [2], given a graph G with valid ortho-radial
representation Γ, a corresponding ortho-radial drawing ∆ can be computed in O(n2) time.
This concludes the construction of a TSM framework for ortho-radial drawings. An interesting
open problem is to devise algorithms that construct valid ortho-radial representations using
a small number of bend vertices. In particular, what is the complexity of testing whether a
given graph with a fixed embedding has an ortho-radial drawing without bends?
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Abstract
The Koebe-Andreev-Thurston Circle Packing Theorem states that every triangulated planar
graph has a circle-contact representation. The theorem has been generalized in various ways.
The arguably most prominent generalization assures the existence of a primal-dual circle repre-
sentation for every 3-connected planar graph. The aim of this note is to give a streamlined proof
of this result.

1 Introduction

For a 3-connected plane graph G = (V,E) with face set F , a primal-dual circle representation
of G consists of two families of circles (Cx : x ∈ V ) and (Dy : y ∈ F ) such that:
(i) The vertex-circles Cx have pairwise disjoint interiors.
(ii) All face-circles Dy are contained in the circle Do corresponding to the outer face o, and

all other face-circles have pairwise disjoint interiors.
Moreover, for every edge xx′ ∈ E with dual edge yy′ (i. e., y and y′ are the two faces separated
by xx′), the following holds:
(iii) Circles Cx and Cx′ are tangent at a point p with tangent line txx′ .
(iv) Circles Dy and Dy′ are tangent at the same point p with tangent line tyy′ .
(v) The lines txx′ and tyy′ are orthogonal.
Figure 1 shows an example.

I Theorem 1. Every 3-connected plane graph G admits a primal-dual circle representation.
Moreover this representation is unique up to Möbius transformations.

The proof presented here combines ideas from an unpublished manuscript of Pulleyblank
and Rote, from Brightwell and Scheinerman [2] and from Mohar [11]. The motive for the
write-up is that the amount of calculations needed for the proof has been reduced significantly.

(a) (b) (c)

Figure 1 (a) a 3-connected graph G, (b) a primal-dual circle representation of G, (c) straight-line
drawings of G and the dual graph G∗, yielding a tessellation by kites.
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The proof of the theorem is given in the next section. Before getting there we give a brief
account of the history of the theorem and links to applications.

In graph theory the study of circle contact representations can be traced back to the
1970’s and 1980’s; the term “coin representation” was used there. In a note written in 1991,
Sachs [13] mentions that he found a proof of the circle packing theorem which was based on
conformal mappings. This eventually lead him to the discovery that the theorem had been
proved by Koebe as early as 1936 [8].

In the context of his study of 3-manifolds, Thurston [14, Sec. 13.6] proved that any
triangulation of the sphere has an associated “circle packing” which is unique up to Möbius
transformations. This result was already present in earlier work of Andreev [1]. Nowadays
the result is commonly referred to as the Koebe-Andreev-Thurston Circle Packing Theorem.

In the early 1990’s new proofs of the circle packing theorem where found. Colin de Verdière
gave two proofs. The first is an existential proof using ‘invariance of domain’ [3]; the second
is based on the minimization of a convex function [4]. Pulleyblank and Rote (unpublished)
and Brightwell and Scheinerman [2] gave proofs of the primal-dual version (Theorem 1) based
on an iterative algorithm, similar to the proof given in this note. Mohar [10] analyzed an
improved iterative approach and proved its convergence in polynomial time.

Primal-dual circle representations yield simultaneous orthogonal drawings of G and its
dual G∗, i. e., straight-line drawings of G and G∗ such that the outer vertex of G∗ is at infinity
and each pair of dual edges is orthogonal. The existence of such drawings was conjectured
by Tutte [15].

The Circle Packing Theorem has been used to prove Separator Theorems. The approach
was pioneered by Miller and Thurston and generalized to arbitrary dimensions by Miller,
Teng, Thurston, and Vavasis [9]. The 2-dimensional case is reviewed in Pach and Agarwal [12,
Chapter 8]. A slightly simpler proof was proposed by Har-Peled [7].

The theorem also has applications in Graph Drawing. Eppstein [5] used circle repre-
sentations to prove the existence of Lombardi drawing (a drawing in which the edges are
drawn as circular arcs, meeting at equal angles at each vertex) for all subcubic planar graphs.
Felsner et al. [6] used circle representations to show that 3-connected planar graphs have
planar strongly monotone drawings, i. e., straight-line drawings such that for for any two
vertices u, v there is a path which is monotone with respect to the connecting line of u and v.

2 Primal-Dual Circle Representation: The Proof

Before diving into details we give a rough outline of the proof. A primal-dual circle repre-
sentation of G induces a straight-line drawing of G and a straight-line drawing of the dual.
Superimposing the two drawings yields a plane drawing whose faces are special quadrangles
called kites, see Figures 1c and 3. After guessing radii for the circles, the shapes of the kites
are determined. It is then checked whether the angles of kites meeting at a vertex sum up
to 2π. If at some vertex the angle sum does not match 2π, the radii are changed to correct
the situation. The process is designed to make the radii converge and to make the sum of
angles meet the intended value at each vertex. The second part of the proof consists of
showing that the kites corresponding to the final radii can be laid out to form a tessellation,
thus giving the centers of a primal-dual circle representation of G.

Proof of Theorem 1. Given a primal-dual circle representation of G, we can use a stereo-
graphic projection to lift it to a primal-dual circle representation on the sphere. This spherical
representation has the advantage that the circle Do has no special role. On the sphere the face-
circles can be viewed as a family with pairwise disjoint interiors. Rotating this representation
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Figure 2 (a) A plane graph G. (b) Its reduced
angle graph G�

o. (c) Its primal-dual completion
(skeleton graph of kites).
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αxy x′x
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Figure 3 The kite corresponding to the inci-
dent vertex-face pair x,y.

and mapping it back to the plane, we can get a primal-dual circle representation of G or of the
dual G∗ where any prescribed element z ∈ V ∪ F has the role of the outer face. This process
can be reverted. Therefore, we use the well-known fact that G or G∗ has a triangular face,
(from Euler’s formula), and assume that the outer face o of the given plane graph is a triangle.

Given a primal-dual circle representation of G we can use the centers of the circles Cx for
x ∈ V to obtain a planar straight-line drawing of G. Similarly the centers of the circles Dz

for z ∈ F \ {o} yield a planar straight-line drawing of G∗ \ {o}. Looking at the two draw-
ings simultaneously and adding appropriate rays for the edges yo of G∗ we see kites, i. e.,
quadrangular shapes with two opposite right angles, tessellating the polygon formed by the
centers of the outer vertices of G, see Figure 1c.

The kites are in bijection with the incident pairs (x, y), where x is a primal vertex and y is a
dual vertex. Since the involved circles intersect orthogonally, the kite of x and y (see Figure 3)
is completely determined by the radii rx of Cx and ry ofDy. The angles at x and y are given by

αxy = 2 arctan ry

rx
and αyx = 2 arctan rx

ry
. (1)

The angle graph of a plane graph G = (V,E) is the graph G� whose vertex set is V ∪ F
and whose edges are the incident pairs xy with x ∈ V , y ∈ F , i. e., x is a vertex on the
boundary of y. The graph G� is plane, bipartite and every face is a 4-gon, i. e., G� is a
quadrangulation. Let G�o = (U,K) be the reduced angle graph, obtained by deleting the
vertex corresponding to the outer face of G from G�, see Figure 2(b). (Note that the outer
face of the graph G in this example is a pentagon, unlike in our setup, where we assume a
triangular outer face.) The set K of edges of G�o is in bijection to the kites of a primal-dual
circle representation of G. We will need the following property of G�o.
I Claim 1. Every subset S of the vertices of G�o with |S| ≥ 5 induces at most 2|S| − 5 edges.

Proof. Since G�o is bipartite, every subset S induces at most 2|S| − 4 edges, with equality
only if S induces a quadrangulation. Since the outer face of G is incident to 3 vertices we
have |K| = 2(|U |+ 1)− 4− 3 = 2|U | − 5. Now let S ( U . Since G is 3-connected, there is
no separating 4-cycle in G�. This implies that the outer face of the induced graph G�o[S]
is not a 4-cycle, whence G�o[S] has at most 2|S| − 5 edges. J

We specify that the triangle formed by the three outer vertices should be equilateral.
This is no loss of generality, since it can be achieved for any primal-dual circle representation
by applying a Möbius transformation. After this normalization, the following equations hold:
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∑

w : uw∈K

αuw =
{
π/3 if u is an outer vertex of G
2π else.

Define the target angles β(u) for u ∈ U such that β(u) = π/3 if u is an outer vertex and
β(u) = 2π for all other vertices and all bounded faces of G.

Given an arbitrary assignment r : U → R+ of radii, we can form the corresponding kites.
The angle sum at u ∈ U is then α(u) =

∑
w : uw∈K αuw. We aim at finding radii such that

α(u) = β(u) for all u ∈ U . Later we will show that such radii induce a primal-dual circle
representation.

We first show that
∑

u α(u) =
∑

u β(u), i. e., any choice of radii attains the correct target
angles on average. Indeed,
∑

u

α(u) =
∑

xy∈K

π = |K|π and

∑

u

β(u) =
(
(|V | − 3) + (|F | − 1)

)
2π + 3π3 =

(
|V |+ |F | − 1

)
2π − 5π = (2|U | − 5)π = |K|π.

As a consequence, whenever α(u) 6= β(u) for some u, the following two sets are nonempty:

U− = {u ∈ U : α(u) < β(u)} and U+ = {u ∈ U : α(u) > β(u)}

If we increasing the radius ru of a vertex u ∈ U+, we observe from (1) that for every incident
edge uw ∈ K, the angle αuw decreases monotonically to 0 as ru →∞. Hence, it is possible
to increase ru to the unique value where α(u) = β(u).

The core of the proof is the following infinite iteration.

repeat forever: for all u ∈ U : if u ∈ U+ then increase ru to make α(u) = β(u) (2)

We claim that the radii converge to an assignment with α(u) = β(u) for all u. The increase
of ru may cause another element w ∈ U− to move to U+, but a transition from U+ to U−
is impossible. It follows that some element u0 must belong to U− indefinitely unless the
iteration comes to a halt with U− = U+ = ∅. Since radii can only increase, u ∈ D implies that
ru →∞. We want to show that the set D ⊆ U+ ( U of elements whose corresponding radii
do not converge is empty. The subset of outer vertices of V in D is denoted by Do. If u ∈ D
and w ∈ U \D, then αuw converges to 0 according to (1). Thus, for given ε > 0, the iteration
will eventually lead to vectors of radii such that

∑

w∈U\D : uw∈K

αuw ≤
ε

|U | for each u ∈ D. We now

consider the case |D| ≥ 5 and use Claim 1: (The cases 1 ≤ |D| ≤ 4 must be treated separately.)
∑

u∈D

α(u) ≤ ε+
∑

kite with x, y ∈ D

(αxy + αyx) = ε+
∑

xy edge of G�o[D]

π ≤ ε+ (2|D| − 5)π (3)

∑

u∈D

α(u) =
∑

u∈D∩U+

α(u) >
∑

u∈D

β(u) = 2π|D| − 5|Do|
3 π.

By comparing these bounds, we see that |Do| = 3 and the subgraph G�o[D] of G�o induced
by D has 2|D| − 5 edges. This implies that G�o[D] is connected and that the outer face
of G�o[D] includes the three outer vertices of G. Thus, by the edge count, G�o[D] is an internal
quadrangulation, and the outer face of G�o[D] coincides with the hexagonal outer face of G�o
because this face bounds the unique shortest cyclic walk through the 3 nonadjacent vertices
of Do. Since G�o has no separating 4-cycles, we conclude that G�o[D] = G�o. This contradicts
D ( U and shows that D must be empty.
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We have shown that all radii are bounded, and hence they converge. It follows that the
angle sums α(u) converge as well, and by the nature of the iteration (2), their limits α̂(u) are
bounded by α̂(u) ≤ β(u). Since

∑
u α̂(u) =

∑
u β(u), we must have α̂(u) = β(u) for all u.

Uniqueness up to scaling. Let r and r′ be two vectors of radii such that αr(u) = αr′(u) =
β(u) for all u and ru0 = r′u0 for some u0. Suppose that S = {u : ru > r′u} is nonempty and
observe that u0 ∈ S̄ = U \ S.

0 =
∑

u∈S

αr(u)−
∑

u∈S

αr′(u) =
∑

u∈S

∑

w∈U : uw∈K

αuw(r) −
∑

u∈S

∑

w∈U : uw∈K

αuw(r′) (4)

=
∑

u∈S,w∈S̄,uw∈K

(
αuw(r)− αuw(r′)

)
< 0 (5)

The equality between (4) and (5) holds because the equation αuw + αwu = π is independent
of the radii, and hence the contributions of the edges uw with u,w ∈ S cancel. For the last
inequality, note that αuw(r) < αuw(r′) due to (1), because ru > r′u and rw ≤ r′w, and there
is some pair uw ∈ K with u ∈ S and w ∈ S̄. The contradiction proves uniqueness.
Laying out the kites. To finish the proof of Theorem 1, it remains to show that the kites
defined by the limiting radii r can be laid out in the plane with the intended side-to-side
contacts, and that the circles with radii given by r and centers as given by the laid-out kites
have the properties (i)–(v), i. e., they form a primal-dual circle representation of G.

We first show that if the kites can be laid out without overlap, they yield a primal-dual
circle representation. The kites induce a straight-line drawing of G and a straight-line drawing
of the dual G∗ with the outer vertex o at ∞ and edges yo being represented by rays. The
point p where an edge xx′ crosses its dual edge yy′ is a right angle of kites. This implies (v).

For a vertex u ∈ U , consider the set of kites containing u. These kites can be put together
in the cyclic order given by the rotation of u in G�o to form a polygon Pu. If u is not one of the
three outer vertices Vo, Pu is a convex polygon surrounding u, because α̂(u) = β(u) = 2π. By
the geometry of the kites, all edges incident to u have the same length ru, and the circle Cu of
radius ru centered at u is inscribed in Pu and touches Pu at the common corners of neighboring
kites. For u ∈ Vo, the polygon Pu has u as a corner, but the circle Cu still goes through the
right-angle corners of the kites. From the incidences of the kites, and since the polygons Pu

for u ∈ V are pairwise disjoint, we obtain that the family (Cx : x ∈ V ) satisfies (i) and (iii).
The union of all kites forms an equilateral triangle T . This forces the radii of the three

outer vertices to be equal, whence the touching points of the outer circles are the midpoints
of the sides of T . Now, define Do as the inscribed circle of T . Let the family of circles defined
for dual vertices be (Dy : y ∈ F ). Properties (ii) and (iv) follow from the layout of kites.

The layout of kites is warranted by the following Lemma 2. When we apply this lemma,
the graph H is the bipartite primal-dual completion of G = (V,E). The vertices of H are
V ∪ F \ {o} ∪ E, and the edges of H are the pairs (z, e) ∈ (V ∪ F \ {o})× E for which z is
incident to the edge e. This graph is the skeleton of the laid-out kites, see Figure 2(c). J

I Lemma 2. Let H be a 3-connected plane graph. For every inner face f of H let Pf be
a simple polygon whose corners are labeled with the vertices from the boundary of f in the
same cyclic order. The corner of Pf labeled with v is denoted p(f, v) and αi,v denotes the
angle of Pf at p(f, v). If the following conditions are satisfied:

(i)
∑k

i=1 αi,v = 2π for every inner vertex v of H with incident faces f1, . . . , fk.
(ii)

∑k
i=1 αi,v ≤ π for every outer vertex v of H with incident faces f1, . . . , fk.

(iii) ‖p(f1, v)− p(f1, w)‖ = ‖p(f2, v)− p(f2, w)‖ for every inner edge vw of H with incident
faces f1, f2.
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Then there is a crossing-free straight-line drawing of H in which the drawing of every inner
face f can be obtained from Pf by a rigid motion, i. e., translation and rotation.

Proof. LetH∗ be the dual graph ofH without the vertex corresponding to the outer face ofH.
Further let S be a spanning tree of H∗. Then by (iii) we can glue the polygons Pf of all inner
faces f ofH together along the edges of S. This determines a unique position for every polygon,
up to a global motion. We need to show that the resulting shape has no holes or overlaps. For
the edges of S we already know that the polygons of the two incident faces are touching such
that corners corresponding to the same vertex coincide. For the edges of the complement S
of S we need to show this. Considering S as a subset of the edges ofH, the set S is a forest inH.
Let v be a leaf of this forest that is an inner vertex ofH, and let e be the edge of S incident to v.
Then for all incident edges e′ 6= e of v we already know that the polygons of the two incident
faces of e touch in the right way. But then also the two polygons of the two incident faces of e
touch in the right way because v fulfills property (i). Since the set of edges we still need to check
remains always a forest, we can iterate this process until all inner edges ofH are checked. After
gluing all the polygons Pf , every vertex v has a unique position, and because of property (ii),
all angles at the boundary of the union are convex. An easy double-counting argument with an
application of Euler’s Formula shows that the sum of angles at the outer vertices equals (d−2)π
if there are d outer vertices. This is just the right value for a d-gon, whence the boundary
of the union of the glued polygons Pf is a convex polygon and therefore nonintersecting. J

References
1 E. M. Andreev, Convex polyhedra in Lobačevskĭı spaces, Mat. Sb. (N.S.), 81 (123) (1970),
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Abstract
We investigate the problem of recognizing the ratio of the sides of a parallelogram by a finite-
state automaton robot with pebbles operating on a triangular grid. Our goal is to determine the
computational power of a single finite automaton robot in this setting with and without the help
of pebbles. We demonstrate that a robot without pebbles can determine whether a given shape
is a parallelogram whose sides have a ratio of h to ah+b for constant integers a and b, but cannot
detect whether the ratio is h to f(h), where f(x) = ω(x) is a superlinear function. For a robot
with a single pebble, we present an algorithm to decide whether the sides ratio is h to p(h) for a
given polynomial p(·) of constant degree. Finally, we present algorithms to decide more complex
functions, such as exponential functions, using multiple pebbles.

1 Introduction

Motivated by the problem of shape recognition in restricted computational models, we study
the problem of recognizing shapes of specific side ratios. We build upon the model introduced
in [7] where finite-state automaton robots move on a triangular grid and assemble hexagonal
tiles into various shapes.

In this paper, rather than exploring shape formation problems, we investigate the problem
of shape recognition by a single robot. Specifically, we begin with testing whether a given tile
formation is of a certain simple shape—in particular, a parallelogram—and then deciding for
a given function f whether the longer side has length f(h) where h is the shorter side’s length.
We further consider a variant of this problem where the robot is given a set of pebbles that
can be used to mark certain positions. Our ultimate goal is to investigate the computational
capabilities of a simple robot concerning shape recognition, and to what extent the robot
can benefit from employing pebbles.
Model. Let a single robot be placed on a finite set of hexagonal tiles; each tile occupies
exactly one node of an infinite triangular grid graph, as shown in Figure 1, such that the
subgraph induced by all nodes occupied by tiles is connected. The robot is initially placed
on a tile and carries a (possibly empty) set of pebbles. It can drop a pebble on a tile that is
not already occupied by another pebble.

The robot acts as a deterministic finite automaton and operates in look-compute-move
cycles. In the look phase the robot can observe the node it occupies and the six neighbors

∗ This work was partially supported by DFG grant SCHE 1592/3-1. Fabian Kuhn is supported by ERC
Grant No. 336495 (ACDC).
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N

S
SW

NW NE

SE

Figure 1 An exemplary tile configuration.
The top right part of the figure shows the com-
pass directions we use to describe the move-
ment of a robot.

Figure 2 A N -NE-parallelogram with height 4
and length 10 = 2 ·4+2. The black arrows indicate
the zig-zag movement of a robot as described in
the proof of Theorem 3.1. The red arrow shows
the final NE movement.

of that node. For each of these nodes it can determine whether it is occupied by a tile and
whether a pebble is placed on that tile. In the compute phase the robot potentially changes
its state and determines its next move according to the observed information and the number
of carried pebbles. In the move phase the robot can either take a pebble from its current
node, place a pebble it is carrying at that node, or move to an adjacent tile.

Note that even though we describe the algorithms as if the robot knew its global orientation,
we do not actually require the robot to have a compass. For the algorithms presented in this
paper, it is enough for the robot to be able to maintain its relative orientation with respect
to its original orientation.
Related Work. To the best of our knowledge, shape recognition has never been investigated
in our model. However, solving problems by traversing a tile structure with simple agents
has been studied in many different areas. For instance, [14] considers the problem of deciding
whether a structure is simply-connected. Other problems include Gathering and Rendezvous
(e.g., [13]), Intruder Caption and Graph Searching (e.g., [2], [5]), or Black Hole Search
(e.g., [12]).

For many of the above problems it has also been investigated whether pebbles can be
helpful. This question is particularly well-studied for the classical Network Exploration
Problem (see, e.g., [4]). For example, it is known that a finite automaton robot can neither
explore all planar graphs [6] nor find its way out of a planar labyrinth [3] without any pebble.
For the Labyrinth Exploration Problem (see [10,11] for a comprehensive survey), it is known
that having an additional pebble does not help the robot [8]. However, a robot with two
pebbles can solve the problem [1].

2 Recognizing Simple Shapes

First, observe that a single robot can easily detect whether the initial structure is a line, a
triangle, a hexagon, or a parallelogram.
Line. For example, to test if a given tile shape is a line, the robot first chooses a direction
in which there is a tile (say, w.l.o.g., N ), walks in that direction as far as possible (i.e., until
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there is no tile in that direction anymore), and then traverses the structure into the opposite
direction until no longer possible. If it ever encounters a tile to the left or right of any
traversed tile, the structure is not a line.
Parallelogram. To test if a given tile shape is a (filled) parallelogram axis aligned along the
directions N and NE (see Figure 2), first, the robot moves to a locally southernmost tile of
the structure by moving S and SW as long as there is a tile in any of these directions. It
then traverses the shape column by column in a snake-like fashion by repeating the following
movements: First, the robot moves N as far as possible; it then moves one step NE ; then it
moves S as far as possible, and it finally moves one step NE. The above procedure is repeated
until a NE movement is impossible. By performing local checks alongside the movements
described above the robot can verify whether the tile shape is a parallelogram.

The other simple shapes can be easily tested in a similar fashion.
I Observation 2.1. A robot without any pebble can detect whether the initial tile configuration
is a line, a triangle, a hexagon, or a parallelogram.

3 Recognizing Parallelograms with Specific Side Ratio

As noted in Observation 2.1, a single robot without pebbles can verify whether a given shape
is a parallelogram. To investigate the computational power of a finite automaton, in this
section we consider the problem of deciding whether a parallelogram has a given side ratio.
Additionally, we examine how pebbles can be helpful to decide more complex side ratios.

We assume w.l.o.g. that the robot needs to detect whether the given tile configuration
is a parallelogram that is axis-aligned along the north and north-east direction (we say
N-NE-parallelogram), as indicated in Figure 2. We denote a maximal sequence of consecutive
tiles from N to S as a column and a maximal sequence of consecutive tiles from SW to NE
as a row. Let h be the size of each column, i.e., the parallelogram’s height, ` be the size
of each row, i.e., the parallelogram’s length, and let h ≤ `. We number the columns of the
parallelogram from 0 to `− 1 growing in the north-eastern direction.

3.1 A Robot without any Pebble
First, we point out that a single robot can detect whether the structure is a parallelogram in
which its length ` is a linear function of its height h.

I Theorem 3.1. A single robot can detect whether the tile configuration is a parallelogram
with ` = ah + b for any constants a, b ∈ N.

Proof. First, the robot verifies whether the structure is a parallelogram. If so, the robot
moves to the northernmost tile of the column 0. It then traverses the tile structure in two
stages to verify the ratio of the sides. In the first stage the robot “measures” the distance ah

along the length of the parallelogram moving in a zig-zag fashion as depicted in Figure 2. In
the second stage the robot measures the second term b. More specifically, in the first stage,
the robot repeats the following movements in a loop: (1) move SE as far as possible, (2)
move N as far as possible, and (3) make one step NE. After having performed the complete
sequence of SE movements a times, the robot moves on to the second stage, in which it
makes an additional b NE steps.

If the robot reaches the easternmost column before completing the above procedure, or
finally halts on a tile with a neighboring tile at NE, it terminates with a negative result.
Otherwise, it terminates with a positive result. It is easy to see that ` = ah + b if and only if
the robot terminates with a positive result. J
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I Remark. The algorithm in the previous theorem can be adapted for b ∈ Z, i.e., b can also
be a negative integer. To achieve that, we halt the execution of the first stage once the robot
has performed |b| SE steps, then move SW as far as possible, and continue the first stage
from there. Then, ` = ah + b if and only if the robot eventually reaches the southernmost
tile of the easternmost column.
I Remark. The algorithm can be further extended to apply in the case of a rational a. Let
a = p/q be an irreducible fraction. Instead of moving in a zig-zag fashion in the first stage,
the robot alternates between moving p steps NE and q steps S. To exactly end up at the
southernmost tile of the easternmost column, the robot needs to skip the very first NE and
S step.

We have shown that a single robot can determine whether the length of a parallelogram
is given by a certain linear function of its height. However, that is as much as one robot can
hope for. Indeed, one robot is not able to decide whether the length of the parallelogram is
given by a superlinear function of its height, as the following theorem states. Its proof can
be found in the full version of this paper.

I Theorem 3.2. A single robot without any pebbles cannot decide whether the tile configura-
tion is a parallelogram with ` = f(h), where f(x) = ω(x).

3.2 A Robot with a Single Pebble
In the following, we demonstrate that, in contrast to the negative result of Theorem 3.2, a
single robot can decide any polynomial of constant degree.

I Theorem 3.3. A single robot with a pebble can decide whether the tile configuration is
a parallelogram of height h and length ` = p(h) for any given polynomial p(·) of constant
degree n.

Proof. Define the falling factorial of x as (x)i := x(x − 1) · · · (x − i + 1), and transform
the input polynomial into the form p(x) = an · (x)n + an−1 · (x)n−1 + . . . + a0. We will
show that the robot can move the pebble in phases, by |ai · (h)i| steps in each phase
i. Let lcmi(x) := lcm(x, . . . , x − i + 1), where lcm is the least common multiple, and
gi(x) := (x)i/lcmi(x). From [9] it follows that lcmi(x) | (x)i, and that gi(x) is periodic with
period lcm(1, . . . , i− 1), i.e., gi(x) = gi(x + lcm(1, . . . , i− 1)). Let pi(x) be the sum of the
first n− i summands of p(x), i.e., pi(x) = an · (x)n + an−1 · (x)n−1 + . . . + an−i+1 · (x)n−i+1.

Initially, the pebble is located on the northernmost tile of column 0. To test whether
` = p(h), the robot will move the pebble along the northernmost row in phases, until
eventually it is shifted p(h)−1 steps to the NE from its original position. If upon termination
the pebble is located at the northernmost tile of column `− 1, then p(h) = `.

The algorithm proceeds in phases n, . . . , 0. We maintain the invariant that after phase
i for all i > 0, the pebble is located at the northernmost tile of column pi(h). That is, in
phase i, the robot moves the pebble |ai · (h)i| steps NE, if ai is positive, and SW, otherwise.
In the final phase i = 0, the robot moves the pebble by |a0 − 1| steps NE, if a0 ≥ 1, and SW,
otherwise. For now, assume that each movement can be carried out without moving the
pebble outside of the parallelogram. We will later describe how to lift this restriction.

We now describe how the pebble is moved by |ai · (h)i| steps. First, note that ai · (h)i =
ai ·gi(h) · lcmi(h). The first factor ai is a constant. The second factor gi(h) can be determined
as follows. We preliminarily encode all possible values of gi(·) for all i ∈ {0, . . . , n} into
the robot’s memory, which can be done since n is constant and gi(·) has a constant period.
Before the main algorithm’s execution, the robot can compute gi(h) for all i by moving
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through the westernmost column from north to south: Starting with gi(1), in every step
to the south the robot computes the subsequent function value until the period of gi(·) is
reached, in which case it restarts with gi(1). When it reaches the southernmost tile of the
column, it knows gi(h) for all i.

We next show how the robot moves the pebble by lcmi(h) steps, which, by repeating
the movement |ai · gi(h)| times, concludes how the complete movement by |ai · (h)i| steps is
performed. Assume the pebble is in some column c and lcmi(h) | c (which we will prove by
induction shortly). The robot alternates between the following two operations: (1) move
the pebble into column c′ by moving it one step NE, if ai > 0, or SE, otherwise; (2) verify
whether lcmi(h) | c′ as follows. The robot first performs the zig-zag movement from the
proof of Theorem 3.1 to verify whether h | c′, i.e., whether a NE movement moves the robot
onto a tile occupied by the pebble. It continues to analogously verify whether h − 1 | c′,
h− 2 | c′, . . . , h− i + 1 | c′ by performing a modified zig-zag movement an additional i− 1
times. Here, the zig-zags of the j-th verification are adjusted accordingly by moving j steps
S prior to each sequence of SE movements. The robot stops alternating between the two
above operations once the pebble has been moved to a column c′ such that lcmi(h) | c′ for
the first time. Then, the pebble must have been moved by lcmi(h) steps.

It remains to prove that when the robot wants to move the pebble, currently occupying a
node of column c, by lcmi(h) steps for some i, then lcmi(h) | c. The invariant holds initially
for c = 0. Now assume it holds immediately after having moved the pebble by lcmi(h) steps
into column c± lcmi(h). Afterwards, the robot can move it by either lcmi(h) steps again,
in which case lcmi(h) | c ± lcmi(h) holds, or it wants to move it by lcmi−1(h) steps, and
lcmi−1(h) | c± lcmi(h) holds since lcmi−1(h) | lcmi(h).

Finally, we show how the robot can resolve overflows, i.e., situations in which the above
algorithm would move the pebble outside of the parallelogram. First, note that the execution
of the algorithm after an overflow can, in principle, be continued by the robot by “mirroring”
all movements beyond the westernmost or easternmost column, carrying them out into
reverse direction. Assume that h is sufficiently large such that | ai · (h)i + . . . + a0 |≤ p(h) for
all i. For all small h = O(maxi(|ai|)) we can encode the constantly many possible function
values into the robot’s state and test them prior to the algorithm’s execution by traversing
the two sides of the parallelogram once. If throughout the execution of the algorithm the
robot ever attempts to move the pebble into a column west of column 0 or east of “virtual”
column 2` (while performing the mirroring method from above), it would subsequently not
be able to ever move the pebble back into column ` (following from the assumption that
h is sufficiently large), and consequently ` 6= p(h). Therefore, the robot can prematurely
terminate with a negative result whenever it encounters such a situation. J

In contrast to the previous theorem, for a fixed k, we believe that a polynomial p(·) of
degree ω(k) can be constructed such that a single robot with k states and a pebble cannot
decide whether ` = p(h).

3.3 A Robot with Multiple Pebbles
Finally, we show that having multiple pebbles enables the robot to decide some more complex
functions.
I Theorem 3.4. A robot with two pebbles can decide whether the tile configuration is a
parallelogram with ` = 2h.
Proof. We only provide a high-level idea of the algorithm and omit some of the implementa-
tion details. We call the pebbles a and b. Pebble a will always be in the northernmost row of
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the parallelogram. The robot first places pebble a at the northernmost tile of column 1, and
b on the southern neighbor of a. It then repeatedly performs the following procedure: First,
the robot alternatingly moves a NE and b SW until there is no tile SW from b. Afterwards,
the robot brings b back into the current column of a by repeatedly moving b NE and verifying
whether a is in the northernmost tile of the column. It then moves b one step S.

In the i-th iteration of the above procedure, pebble a gets moved 2i−1 times. Thus, the
distance between a and the westernmost column doubles in each iteration. By moving b one
step S, the robot counts the number of doubling operations up to h. If a has reached the
easternmost column after h doubling operations, then ` = 2h. J

The proof of the following theorem can be found in the full version of this paper.

I Theorem 3.5. A robot with three pebbles can decide whether a given tile configuration is a
parallelogram with

` = 22
. . . 2h

,

where the power tower is of constant height.

I Remark. It can be shown that a single robot can also decide a power tower of height h.
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Abstract
Given a set O of k orientations in the plane, two points inside a simple polygon P O-see each
other if there is an O-staircase contained in P that connects them. The O-kernel of P is the
subset of points which O-see all the other points in P . This work initiates the study of the
computation and maintenance of the O-Kernel of a polygon P as we rotate the set O by an
angle θ, denoted O-Kernelθ(P ). In particular, we design efficient algorithms for (i) computing
and maintaining {0°}-Kernelθ(P ) while θ varies in [−π2 , π2 ), obtaining the angular intervals where
the {0°}-Kernelθ(P ) is not empty and (ii) for orthogonal polygons P , computing the orientation
θ ∈ [0, π2 ) such that the area and/or the perimeter of the {0°, 90°}-Kernelθ(P ) are maximum or
minimum. These results extend previous works by Gewali, Palios, Rawlins, Schuierer, and Wood.

1 Introduction

The problem of computing the kernel of a polygon is a well-known visibility problem in
computational geometry [2, 3, 6], closely related to the problem of guarding a polygon and to
the motion problem of a robot inside a polygon with the restriction that the robot path must
be monotone in some predefined set of orientations [5, 7, 8]. The present contribution goes a
step further in the latter setting, by allowing that set of predefined orientations to rotate.

A curve C is 0°-convex if its intersection with any 0°-line (parallel to the x-axis) is
connected or, equivalently, if the curve C is y-monotone. Extending this definition, a curve C
is α-convex if the intersection of C with any line forming angle α with the x-axis is connected
or, equivalently, if the curve C is monotone with respect to the direction perpendicular to such
a line. Let us now consider a set O of k orientations in the plane, each of them given by an
oriented line `i through the origin of the coordinate system and forming a counterclockwise
angle αi with the positive x-axis, so that O = {α1, . . . , αk}. Then, a curve is O-convex if it
is αi-convex for all i, 1 ≤ i ≤ k. Notice that the orientations in O are between 0° and 180°.
From now on, an O-convex curve will be called an O-staircase.

I Definition 1.1. Let p and q be points inside a simple polygon P . We say that p and q O-see
each other or that they are O-visible from each other if there is an O-staircase contained in P
that connects p and q. The O-Kernel of P , denoted O-Kernel(P ), is the subset of points

∗ David Orden is supported by MINECO projects MTM2014-54207, MTM2017-83750-P, and by UE
H2020-MSCA-RISE project 734922-CONNECT. Carlos Seara is supported by Gen. Cat. project DGR
2014SGR46, by MINECO project MTM2015-63791-R, and by UE H2020-MSCA-RISE project 734922-
CONNECT. Paweł Żyliński is supported by the grant 2015/17/B/ST6/01887 (National Science Centre,
Poland).
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in P which O-see all the other points in P . We denote by O-Kernelθ(P ) the O-kernel when
the set O is rotated by an angle θ.

Schuierer, Rawlins, and Wood [7] defined the restricted orientation visibility or O-visibility
in a simple polygon P with n vertices, giving an algorithm to compute the O-Kernel(P ) in
time O(k+ n log k) with O(k log k) preprocessing time to sort the set O of k orientations. In
order to do so, they used the following observation:

I Observation 1.2. For any simple polygon P , the O-Kernel(P ) is O-convex and connected.
Furthermore, O-Kernel(P ) =

⋂
αi∈O αi-Kernel(P ).

The computation of the O-Kernel has been considered by Gewali [1] as well, who described
an O(n)-time algorithm for orthogonal polygons without holes and an O(n2)-time algorithm
for orthogonal polygons with holes. The problem is a special case of the one considered by
Schuierer and Wood [9] whose work implies an O(n)-time algorithm for orthogonal polygons
without holes and an O(n logn+m2)-time algorithm for orthogonal polygons with m ≥ 1
holes. More recently, Palios [5] gave an output-sensitive algorithm for computing the O-
Kernel of an n-vertex orthogonal polygon P with m holes, for O = {0°, 90°}. This algorithm
runs in O(n+m logm+ `) time where ` ∈ O(1 +m2) is the number of connected components
of the {0°, 90°}-Kernel(P ). Additionally, a modified version of this algorithm computes the
number ` of connected components of the {0°, 90°}-Kernel in O(n+m logm) time.

2 The rotated {0°}-Kernelθ(P )

In this section, for a given n-vertex simple polygon P , we deal with the rotation by θ ∈ [−π2 , π2 )
of the O-Kernel(P ) in the particular case of O = {0°}. For the steady case θ = 0, when
the kernel is composed by the points which see every point in P via a y-monotone curve,
Schuierer, Rawlins, and Wood [7] presented the following results.

I Definition 2.1. A reflex vertex pi in P where pi−1 and pi+1 are both below (respectively,
above) pi is a reflex maximum (respectively, reflex minimum). A horizontal edge with two
reflex vertices may also form a reflex maximum or minimum.

Let C(P ) be the (infinite) strip defined by the horizontal lines hN and hS passing through
the lowest reflex minimum, pN , and the highest reflex maximum, pS .

I Lemma 2.2 ([7]). The {0°}-Kernel(P ) is the intersection C(P ) ∩ P .

I Observation 2.3. Notice that P may not have a reflex maximum, and in that case we
have to take as the highest reflex maximum the lowest vertex of P . Analogously, if P has no
reflex minimum, then we take as the lowest reflex minimum the highest vertex of P . Notice
also that a horizontal edge of P may also form a reflex maximum or minimum. If P is a
convex polygon then the {0°}-Kernel(P ) is the whole P .

I Corollary 2.4 ( [7]). The {0°}-Kernel(P ) can be computed in O(n) time.

It is clear that there are neither reflex minima nor reflex maxima within C(P ). Moreover,
the lines hN and hS contain the segments of the north and south boundary of the {0°}-
Kernel(P ). See Figure 1, left.

Let cl and cr denote the left and the right polygonal chains defined by the respective left
and right parts of the boundary of P inside C(P ). Because of Lemma 2.2, both chains are
0°-convex curves, i.e., y-monotone chains.
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I Corollary 2.5. The area and perimeter of {0°}-Kernel(P ) can be computed in O(n) time.

Proof. To compute the area of the {0°}-Kernel(P ) = C(P ) ∩ P we proceed as follows. The
lines hN and hS contain the segments of the north and south boundary of the {0°}-Kernel(P ).
The area can be computed by decomposing it into (finite) horizontal strips, which in fact
are trapezoids defined by the edges of P inside C(P ) in such a way that correspond to
consecutive vertices from the merging of the sorted list of the vertices of either cl or cr. Each
strip is computed in constant time, and therefore, the area of {0°}-Kernel(P ) = C(P ) ∩ P
can be computed in O(|cl|+ |cr|) time.

Computing the perimeter is simpler, because we only need to add the lengths of both
chains cl and cr and the lengths of the sides of the north and south boundary of the {0°}-
Kernel(P ); this requires computing the intersection of the lines hN and hS with the boundary
of P and can be done in O(|cl|+ |cr|) time. J

vW

lN

lS

pN

pS

vE

pW
rN

rS

pE

pk+1
pk

Figure 1 A rotating {0°}-Kernelθ(P ) for θ = 0 (left), θ = π
8 (middle), and θ = π

4 (right).

Next, we will compute the {0°}-Kernelθ(P ) as θ varies from −π2 to π
2 . To do that, first

we need to maintain the strip boundary Cθ(P ) during the variation of θ, i.e., the equations
of the two horizontal lines hN (θ) and hS(θ) which contain the current horizontal sides of
{0°}-Kernelθ(P ), in such a way that for a given value of θ the boundary of Cθ(P ) can be
computed from these equations. Second, we also need to maintain the set of vertices of the
left and right chains clθ and crθ of {0°}-Kernelθ(P ).

First, we observe that Definition 2.1 of a reflex maximum and a reflex minimum, with
respect to the horizontal orientation, extends easily for any given orientation θ ∈ [−π2 , π2 ).
Then, for every reflex vertex pi ∈ P we compute in constant time the angular interval
(θi1, θi2) ⊂ [−π2 , π2 ) of the orientations such that pi ∈ P is a candidate reflex maximum or
reflex minimum. Finally, in constant time we compute the corresponding slope intervals
(mi

1,m
i
2) ⊂ (−∞,∞) for the lines with these orientations. Using these to sweep in the dual

plane [4], we get the following result, where α(n) is the extremely slowly-growing inverse
of Ackermann’s function and O(nα(n)) comes from the complexity of the upper and lower
envelopes of a set of n straight line segments in the plane:

I Theorem 2.6. For an n-vertex simple polygon P , there are O(n α(n)) angular intervals
(θ1, θ2) ⊂ [−π2 , π2 ) such that {0°}-Kernelθ(P ) 6= ∅ for all the values of θ ∈ (θ1, θ2), and the
set of such intervals can be computed in O(n logn) time.

I Observation 2.7. To maintain the polygonal chains clθ and crθ of {0°}-Kernelθ(P ) we
compute the intersections of the lines hN (θ) and hS(θ) with the boundary of P , maintaining
the information of the first and the last vertices of clθ and crθ in the current interval (θ1, θ2).

3 The rotated {0°, 90°}-Kernelθ(P ) of simple orthogonal polygons

We now extend our study to O = {0°, 90°} for the particular case of orthogonal polygons,
where it suffices to consider θ ∈ [0, π2 ).

EuroCG’18
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Each edge of an orthogonal polygon is a N-edge, S-edge, E-edge, or W-edge if it bounds the
polygon from the north, south, east, or west, respectively. For D ∈ {N, S,E,W}, a D-edge is
a D-dent (resp., D-extremity) if both of its endpoints are reflex (resp., convex) vertices of
the polygon. Next, a NE-staircase is a sequence of alternating N- and E-edges and similarly
we can define the NW-staircase, SE-staircase, and SW-staircase; clearly, each such staircase
is both x- and y-monotone. Finally, depending on the type of incident edges, a reflex vertex
of the given orthogonal polygon P is called a NE-reflex vertex if it is incident to a N-edge
and an E-edge, and analogously for NW-, SE- and SW-reflex vertices. See Fig. 2(a).

Figure 2 (a) Clipping lines through the reflex vertices of the polygon, where a, b, c, d are respec-
tively a NE-, NW-, SW-, and SE-reflex vertex. (b) Illustration for Lemma 3.2. (c) An orthogonal
polygon belonging to the family Q.

The size of the kernel. For θ = 0, in accordance with Observation 1.2 and Lemma 2.2,
the {0°, 90°}-Kernel0(P ) equals the intersection of P with the four closed halfplanes defined
below the lowermost N-dent, above the topmost S-dent, right of the rightmost W-dent,
and left of the leftmost E-dent, if such dents exist; thus, the {0°, 90°}-Kernel0(P ) can be
computed in O(n) time. For θ ∈ (0, π2 ), the {0°, 90°}-Kernelθ(P ) can be obtained by clipping
P about appropriate lines; it turns out that every reflex vertex contributes such a clipping
line. In particular, each NW- or SE-reflex vertex contributes a clipping line parallel to 0°

θ

whereas each NE- or SW-reflex vertex contributes a clipping line parallel to 90°
θ, where αθ

denotes the rotation of the orientation α by the angle θ; see Fig. 2(a). Thus, if there exist
reflex vertices of all four types, the {0°, 90°}-Kernelθ(P ) has two pairs of sides, with one pair
parallel to each of the rotated orientations. Moreover, an extremity may contribute an edge
to the kernel; however, we can prove that only one extremity from each of the four kinds
may do so [4]. On the other hand, if the polygon has no NE-reflex vertices then there is a
unique N-extremity and a unique E-extremity, which share a common endpoint, and then
the {0°, 90°}-Kernelθ(P ) has no additional edges in such a case. Similar results hold in the
cases of absence of NW-reflex, SW-reflex, or SE-reflex vertices. Therefore, we obtain:

I Lemma 3.1. The rotated {0°, 90°}-Kernelθ(P ) has at most eight edges.

In order to compute the {0°, 90°}-Kernelθ(P ) for each value of θ, we need to collect the
sets of the four types of reflex vertices of P and compute the convex hull of each of them,
which will give us the corresponding minimum or maximum. We can show the following (v.x
and v.y denote the x- and y-coordinates of a vertex v, respectively):

I Lemma 3.2. Let P be an orthogonal polygon. If u and v are a NE-reflex and a SW-reflex
vertex of P , respectively, such that v.x ≥ u.x and v.y ≥ u.y (see Fig. 2(b)), then for each
θ ∈ (0, π2 ), the {0°, 90°}-Kernelθ(P ) is empty. Similarly, if u′, v′ are a NW-reflex and a
SE-reflex vertex of P , respectively, such that v′.x ≤ u′.x and v′.y ≥ u′.y, then for each
θ ∈ (0, π2 ), the {0°, 90°}-Kernelθ(P ) is empty.
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Proof. For each θ ∈ (0, π2 ), let Lθ(u), Lθ(v) be the lines forming angle 90° + θ with the
positive x-axis that are tangent at u, v, respectively (see Fig. 2(b)). Clearly, Lθ(u) is below
and to the left of Lθ(v). This leads to a contradiction since the kernel can neither be higher
than Lθ(u) nor lower than Lθ(v). J

Next, let Q be the family of simple orthogonal polygons whose boundary (in ccw traversal)
consists of the concatenation of (i) a y-monotone chain from the lowermost E-extremity
to the topmost E-extremity, (ii) a NE-staircase to the rightmost N-extremity, (iii) an x-
monotone chain to the leftmost N-extremity, (iv) a NW-staircase to the topmost W-extremity,
(v) a y-monotone chain to the lowermost W-extremity, (vi) a SW-staircase to the leftmost
S-extremity, (vii) an x-monotone chain to the rightmost S-extremity, and (viii) a SE-staircase
to the lowermost E-extremity. See Fig. 2(c). Note that each pair of extremities and the
monotone chain between them may degenerate into a single extremity, whereas each staircase
may degenerate into a 2-edge chain.

I Corollary 3.3. If P 6∈ Q, then the {0°, 90°}-Kernelθ(P ) is empty for each θ ∈ (0, π2 ).

Proof. Let E (resp., N ) be the subset of E-extremities (resp., N-extremities) such that e ∈ E
(resp., e ∈ N ) iff for every point p of e ∈ E (resp., e ∈ N ), the rightward horizontal ray (resp.,
upward vertical ray) from p does not intersect the interior of P ; clearly, E 6= ∅ and N 6= ∅.

If the ccw chain of edges from the topmost E-extremity e in E to the rightmost N-
extremity e′ in N contains a S-edge, and let e′′ be the first encountered S-edge from e to
e′, then the rightmost edge in the ccw boundary chain from e′′ to e′ is an E-extremity in E
higher than e, whereas if it contains an W-edge then the edge preceding the first-encountered
W-edge in the ccw boundary chain from e to e′ is a N-extremity in N to the right of e′;
a contradiction. Hence, the ccw boundary chain from e to e′ is a NE-staircase. Next, we
show that if the ccw chain of edges from the lowermost E-extremity e1 in E to the topmost
E-extremity e2 in E is not y-monotone, then the {0°, 90°}-Kernelθ(P ) is empty for each
θ ∈ (0, π2 ). For contradiction, suppose that this chain is not y-monotone. Then, it contains
an W-edge; let e be the first encountered such edge. Two cases are possible; see Figure 3.

e2

e1

e

v

A

a)

e2

e1

e

b)

Figure 3 The two possible cases for the proof of Corollary 3.3.

In the case shown on the left in Figure 3, the edge preceding e is a S-edge and their
common endpoint v is a SW-reflex vertex. Let A be the bottom-left quadrant defined by the
lines supporting the edges incident on v and let ρ be the part of the boundary chain from
e1 to e that belongs to A. Then, the bottom vertex of the leftmost edge in ρ is a NE-reflex
vertex which is to the left and below v, and Lemma 3.2 implies that the {0°, 90°}-Kernelθ(P )
is empty for each θ ∈ (0, π2 ), as desired. The case shown on the right in Figure 3 is a top-down
mirror image of the case shown on the left; hence, the same result holds also for this case. J
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Algorithm. Corollary 3.3 shows that the {0°, 90°}-Kernelθ of orthogonal polygons not
in Q is empty for all θ ∈ (0, π2 ). For those in Q, their particular form allows the efficient
computation of the kernel. In particular, for any polygon P ∈ Q, a single traversal of the
vertices of P allows us to compute the maxima of the SW-reflex vertices of P in linear
time. Indeed, the SW-reflex vertices of such a polygon P belong to the ccw boundary chain
from the topmost W-extremity to the rightmost S-extremity; then, both the maxima in
the y-monotone chain from the topmost W-extremity to the leftmost S-extremity and the
maxima in the x-monotone chain from the leftmost S-extremity to the rightmost S-extremity
can be computed in linear time, and the two maxima sequences can be merged in linear
time as well. Then, the cw part of the boundary of their convex hull from its topmost to
its rightmost vertex (the red dashed line in Fig. 2(c)), which is the useful one, can also be
computed in linear time by using the iterative step of the Graham scan algorithm. In a
similar fashion, we can compute in linear time the useful boundary parts of the convex hulls
of the other three types of reflex vertices; see the dashed lines in Fig. 2(c).

Since the {0◦, 90◦}-Kernelθ(P ) for each angle θ ∈ [0, π2 ) is mainly determined by the, at
most, 4 reflex vertices through which clipping lines are passing (Lemma 3.1), the algorithm
needs to maintain these vertices. Therefore, for each edge of each of the at most 4 convex
hulls, we compute the corresponding angle θ ∈ [0, π2 ) and we associate it with the edge’s
endpoints, and these angles are sorted by merging the 4 ordered lists of angles. Then, for each
pair of consecutive angles θprev, θcur, we have the reflex vertices through which the clipping
lines pass for any θ ∈ [θprev, θcur), and we compute the at most 8 vertices of the kernel
parameterized on θ. Next, we maximize the kernel’s area/perimeter for θ ∈ [θprev, θcur), and
if needed, we update the overall maximum and store the corresponding angle. Thus, we have:

I Theorem 3.4. Given a simple orthogonal polygon P on n vertices, the value of the angle θ ∈
[0, π2 ) such that the {0°, 90°}-Kernelθ(P ) has maximum (or minimum) area/perimeter can be
computed in O(n) time and space.
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Abstract
We propose a generalization of the concept visibility kernel which finds use in art gallery problems.
For a point p in a simple polygon P and a subset X of P , we refer the set of points visible by
every point in X that is seen by p as the generalized visibility kernel of p with respect to X. We
present an O(n+m logm) time algorithm for computing the generalized visibility kernel, where
n,m are the complexities of P and X respectively. As essential components of our approach, we
also propose two efficient algorithms for computing the relative convex hull and the complete
visibility polygon of a set of points.

1 Introduction

We consider a generalized version of the well known Art Gallery Problem. For a polygon P ,
and two subsets of it, X,Y ⊆ P , AGP(X,Y ) asks to find the minimum subset of X as guard
locations, such that all the points of Y are guarded [4]. A recent approach for solving art
gallery problems involves use of witness sets [2–4]. A witness set W of a polygon P is defined
as a set such that any set G that guards W also guards P . In [1], we extended the notion of
witness sets for the parametrized version AGP(X,Y ) and outlined an iterative refinement
scheme for the art gallery problem. Formulation and computation of visibility kernels turns
out to be an essential step of this refinement scheme. For a point p ∈ P , the set of points
visible by every point in P that is seen by p is called the visibility kernel of p [3], denoted
as VK(p). We present a generalization of this concept. For a point p ∈ P and X ⊆ P , the
set of points visible by every point in X that is seen by p is called the generalized visibility
kernel of p with respect to X, denoted as GVK(p,X). Note that VK(p) = GVK(p, P ). While
this generalization is seemingly simple, several algorithmic challenges arise.

Contribution. In Section 3, we present a O(n+m logm) time algorithm for computing
generalized visibility kernel, where n,m are the complexities of P and X, respectively. Our
algorithm for computing generalized visibility kernel involves computation of relative convex
hulls. Relative convex hull of a set of points S is defined as the region with minimum
circumference that includes S within a polygon P [10]. In Section 3.2, we present an efficient
algorithm for computing the relative convex hull of a set of points in a visibility polygon of
a point. Our algorithm works in O(n + m) time when the result of Section 3.1 is given in
O(n+m logm) time cumulatively. Previously, an algorithm is given to find a single viewpoint
that sees a given relative convex hull in O(n + m) time [6]. We present an algorithm that
calculates the set of all viewpoints of a set of points in the same time complexity.

2 Preliminaries and definitions

The input for AGP (X,Y ) is a simple (non-convex) polygon P with n vertices and two sets
X,Y ⊆ P . We assume that X is given as a union of non-intersecting sets of points, line
segments, and convex polygonal regions within P . Let m denote the complexity of X. For
any polygon Q, ∂Q denotes the boundary of Q and ref(Q) denotes the reflex vertices of Q.
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Two points p, q ∈ P see each other if the whole line segment pq is in P . The set of points
in P that can be seen from a point p ∈ P is called the visibility polygon of p, denoted as
V(p) (See Figure 1). The set of points that can see every point in V(p) is called the visibility
kernel of p, denoted as VK(p). For a set of points S ⊆ P , the set of points that are visible
from all points in S is called its complete visibility polygon [7]. It is denoted as CV(S) and
can be formulated as

∩
p∈S V(p).

p

q

b

p

Figure 1 (Left) Visibility polygon V(p) (shaded area) and visibility kernel VK(p) (dark shaded
area) of a point p. (Right) For a given set X (dark shaded area), GVK(p,X) is the shaded area.

The counter-clockwise (CCW ) angle defined by ordered three points x, p, y is denoted
as x̂py. The shortest path within a polygon P between two points p, q ∈ P is denoted
as SP (P, p, q). A chain is an ordered list of j line segments s1...sj between j + 1 points
p1...pj+1 such that si = pipi+1 for 1 ≤ i ≤ j. A chain on a boundary of a polygon P

between two points q1, q2 ∈ ∂P , is defined as the CCW chain on ∂P from q1 to q2, denoted
as chain(P, q1, q2). The half plane on the left of the ray −→pq is denoted as HP (−→pq). The closure
of the half plane is denoted as CHP (−→pq). A wedge is determined by three points l, p, r ∈ P

and denoted as wedge(l, p, r). If l̂pr ≤ π, then wedge(l, p, r) = V(p) ∩ HP (−→lp) ∩ HP (−→pr).
Otherwise, wedge(l, p, r) = V(p) ∩ (HP (−→lp) ∪HP (−→pr)).

2.1 Generalized visibility kernel and its properties

From the definitions, we simply have GVK(p,X) = CV(V(p) ∩ X). Also note that if a
guard g ∈ X sees p, then g is guaranteed to see all points in GVK(p,X). Indeed this very
observation has been the motivation for us to propose a generalization of visibility kernels.
Below, we list some more properties.

▶ Lemma 2.1. Given two sets X1, X2 ⊆ P such that X1 ⊆ X2. For any point p ∈ P we
have GVK(p,X2) ⊆ GVK(p,X1).

▶ Lemma 2.2. For p ∈ P and X ⊆ P , we have VK(p) ⊆ GVK(p,X).

▶ Lemma 2.3. For p ∈ P and X ⊆ P , we have p ∈ GVK(p,X).

▶ Lemma 2.4. The following statements are equivalent for p, q ∈ P and X ⊆ P : (i) Any
point r ∈ X that sees p also sees q; (ii) q ∈ GVK(p,X); (iii) GVK(q,X) ⊆ GVK(p,X).

▶ Theorem 2.5. A point set W ⊆ P is a witness set for Y with respect to X if and only if
Y ⊆ ∪p∈W GVK(p,X).
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3 Algorithms

Our algorithm for computing GVK(p,X) = CV(V(p)∩X) consists of four steps. Due to the
space limitations, we present the summary of the algorithms in this extended abstract. The
details of the algorithms can be found in the full version of the paper.

1. First, we use the linear-time algorithm by Joe and Simpson [8] to compute V(p).
2. Second, we present a angular plane sweep algorithm to find V(p) ∩X in Section 3.1.
3. Third, we calculate the relative convex hull of V(p) ∩X in Section 3.2.
4. Finally, we compute the complete visibility polygon of V(p) ∩ X in Section 3.3 relying

on the relative convex hull computed in Step 3.

3.1 Calculating V(p) ∩X
After computing V(p), we divide V(p) into wedges Wi = wedge(ri, p, ri+1), where ri is the
ith reflex vertex of V(p) in CCW order. Assume that r1 = rj+1 where j is the number of
reflex vertices. Without loss of generality, we assume that r̂jpr1 ≥ r̂ipri+1 for 1 ≤ i < j.
Note that each wedge, except Wj in some cases, is convex. (See Figure 2).

W1
W2

W3

W4
W5

r1

r2r3

r4 r5

p p

Figure 2 (Left) V(p) is partitioned into wedges with apices of p. (Right) For a given X (pink
and orange shaded areas), V(p) ∩ X is the orange shaded area. Yellow and orange shaded areas
together shows RCH(V(p) ∩X)

.

Our sweepline is a ray anchored at p. We record the geometric objects in X that intersects
the sweepline in a balanced binary search tree (BBST ) in the order of the distance from
p to the object. Since the objects in X are convex, the order of the nodes do not change.
A node is active if p is closer to the corresponding object than ∂P in the direction of the
sweepline. A node of the BBST records the geometric object in X, whether the object is
active, and the event points where the node is activated and deactivated.

The event points in our angular plane sweep algorithm are the vertices of X and reflex
vertices of V(p) in the angular order from p. For this, we sort the elements of X in CCW
order with respect to the viewpoint p. The node corresponding to an object x ∈ X is
inserted to (deleted from) the BBST at the rightmost (leftmost) vertex of x with respect
to p. The object x can be activated or deactivated at a reflex vertex r ∈ ref(V(p)). We
prune x through the sweepline when it is activated or deactivated. The output V(p) ∩X is
recorded as a sequence of nodes sorted in the angular order of the appearance from p.

Each element of x ∈ X is added to and removed from BBST once, and activated and/or
inactivated at most once. Add, remove operates in O(logm) time, activation and inactiva-
tion takes O(1) time per element. Calculating the cutting points of x takes an amortized
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O(1) time. Data structure operations in total takes O(n+m logm) time and sorting takes
O(m logm). Therefore the total complexity of calculating V(p) ∩ Y is O(n+m logm).

3.2 Calculating the relative convex hull of V(p) ∩X
To calculate CV(V(p)∩X), we use the relative convex hull for a set of points S in a polygon
P , denoted as RCH(S) [10]. RCH(S) is defined as the polygon that has the minimum
circumference such that S ⊆ RCH(S) ⊆ P . Note that RCH(S) can be a degenerate polygon
(See Figure 3).

Ghosh [6] states that if a point p in a simple polygon P sees a set of points S ⊆ P if and
only if p sees RCH(S). Based on this, we can conclude that CV(V(p)∩X) = CV(RCH(V(p)∩
X)). Let us call RCH(V(p) ∩X) as Q for the rest of the paper for brevity.

p

Q
gl gr

α p

Figure 3 (Left) Q is the relative convex hull of V(p) ∩ X for a given X. The near chain is
chain(Q, gl, gr), the far chain is chain(Q, gr, gl), and α is the outer angle between the tangents
from p to Q. (Right) A degenerate relative convex hull.

▶ Lemma 3.1. For a point p ∈ P and a set X ⊆ P , we have RCH(V(p) ∩X) ⊆ V(p).

Let gl, gr ∈ Q be the points that make the angle α = ĝlpgr maximal such that wedge(gl, p, gr)∩
X = ∅. (See Figure 3). In other words, if p /∈ Q, then gl and gr are the tangent points from
p to Q. We decide whether p is in Q based on α.

▶ Lemma 3.2. The point p is in RCH(V(p) ∩X), if and only if α ≤ π or p ∈ X.

To calculate Q, we define two chains based on whether p is in Q or not. If p /∈ Q, then
chain(Q, gr, gl) is the near chain and chain(Q, gl, gr) is the far chain. If p ∈ Q, then ∂Q is
the far chain. Based on Lemma 3.2, if α > π and p /∈ X, we calculate both the near chain
and the far chain. Otherwise, we calculate only the far chain.

For each wedge Wi, we calculate the convex hull of X ∩Wi by calculating the far and (if
necessary) the near chains. From the previous calculation, we have V(p)∩X in CCW order
from the viewpoint of p. We traverse the points in the wedge by updating the far chain in
CCW from p. While traversing, if the current point creates a right turn in the far chain,
then the previous points are popped from the far chain until there is no right turn in the
chain. The process is similar for the near chain.

After calculating the the far and (if necessary) the near chains for each wedge, we merge
each of them to calculate Q. The merge is also done in CCW order from p, using the reflex
vertices of V(p) as pivot points and draw tangents to the near and the far chains of the
wedges. If α > π and p ∈ X, then we concatenate line segments glp and grp to the far chain
to yield Q. If α > π and p /∈ X, we concatenate the near chain and the far chain. If α ≤ π,
only the far chain gives us Q.
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The time complexity of calculating Q is O(n + m), since there are O(n + m) points to
be considered in the convex hull and each vertex in V(p) ∪X and ref(P ) is traversed once
and inserted to and/or removed from a chain at most once.

3.3 Calculating the complete visibility polygon of RCH(V(p) ∩X)
Here, we present an algorithm to calculate the complete visibility polygon of Q as a sub-
method of calculating the GVK(p,X). However, p is not particularly relevant in our algo-
rithm other than the assumption of the existence of at least one viewpoint for the relative
convex hull.

Let k be the number of reflex vertices of Q. Let us define ri ∈ ref(Q) as the reflex
vertices of Q in the CCW order, where 1 ≤ i ≤ k. Without loss of generality, let us assume
that r1 is the reflex vertex that maximizes the angle r̂kpr1 and i is an integer such that
1 ≤ i ≤ k. We also assume that rk+1 = r1. Now, we calculate CV(Q) by handling different
cases depending on some properties of Q.

Case 1: k = 0, or k = 1. Ghosh [7] gave an algorithm to find the complete visibility
polygon of a given convex chain within a simple polygon in linear time. When k = 0 i.e.,
Q is convex, CV(Q) can be calculated directly using his algorithm. If Q has only one reflex
vertex, then we can represent ∂Q as a chain starting and ending at r1 that has only left
turns. This allows us to use the same algorithm to calculate CV(Q).

Case 2: k ≥ 2. We have the following property:

▶ Lemma 3.3. If r̂ipri+1 ≤ π, then ri and ri+1, see each other.

From Lemma 3.3, we yield that there can be at most one consecutive reflex vertex pair
in Q that cannot see each other. Then, we have the following sub-cases:

Case 2.1: r1 and rk see each other. For each pair of consecutive reflex vertices
ri, ri+1 ∈ ref(Q), we denote the polygon bounded by chain(Q, ri, ri+1) and riri+1 as Qi.
We call the rest of Q after removing all Qi’s as Qcore (See Figure 4).

Case 2.1.1: Qk is convex. For each Qi, we define a superset Pi, which is bounded
by riri+1 and chain(P, ri, ri+1). We calculate the complete visibility polygon of Qi inside
Pi using [7] and call it Ci. Then, we create a polygon that is bounded by chain(Ci, ri, ri+1)
for all i and call it as G. For each reflex vertex ri, two incident vertices to ri on ∂Q are
denoted as ti and ui, such that ti, ri, ui is the CCW order of these vertices on ∂Q. Then we
have CV(Q) = G ∩∩k

i=1(CHP (−→tiri) ∩ CHP (−−→riui)).
We use a similar approach as Lee and Preparata’s algorithm [9] to calculate the half

plane intersections. Our algorithm starts with initializing a partially bounded intersection
region K as CHP (−−→t1r1)∩CHP (−−→r1u1). We initially assign the left and right tangents from r1
to K as −−→t1r1 and −−→u1r1 respectively. Then, we traverse the reflex vertices of Q in CCW order
starting from r1. In the ith step, we trim K with the rays −−→riui, −−−−−→ti+1ri+1 and chain(G, ri, ri+1)
using [5] and update the tangents from ri to K. After k steps, K yields us CV(Q).

Case 2.1.2: Qk is not convex. In this case G will not be a simple polygon. However,
we have GVK(Q) ⊆ Ck ⊆ CHP (−−→r1t1) assuming that r1 is a reflex vertex of Qk without loss
of generality. We initialize Ck to K and iteratively trim K through the reflex vertices of Q
using the half plane intersections.

Case 2.2: r1 and rk do not see each other. This case is similar to Case 2.1.2,
except in this case, Qk is defined as the polygon bounded by chain(Q, rk, r1) and SP (r1, rk).
Similarly, Pk is bounded by chain(P, rk, r1) and SP (r1, rk). We calculate Ck as the inter-
section of the complete visibility polygon of chain(Q, rk, r1) and Pk. Then, we use the same
algorithm initializing Ck ∩ CHP (−−→t1r1) ∩ CHP (−−→r1u1) to K using [5].
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p

Q1
Q2

Q3

Q4

Qcore

Qcore

p

Q1
Q2Q3

Q4

Q5

p

Q5

r1r5

Figure 4 Partition of Q for Cases (Upper Left) 2.1.1, (Upper Right) 2.1.2, (Lower) 2.2.

These cases cover all the possible situations assuming that there exists at least one point
in P that sees every point in Q. We can also spot whether CV(Q) is empty if there are more
than one ri, ri+1 pairs that do not see each other or K becomes empty at some step in the
half plane intersections. All the submethods can be calculated in linear time with respect
to the number of vertices in P , Q, Qcore and G all of which are in O(n+m).
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