
Algorithmic Enumeration of Surrounding Polygons
Katsuhisa Yamanaka1, Takashi Horiyama2, Yoshio Okamoto3,4,
Ryuhei Uehara5, and Tanami Yamauchi1

1 Iwate University, Japan
yamanaka@cis.iwate-u.ac.jp, tanami@kono.cis.iwate-u.ac.jp

2 Saitama University, Japan
horiyama@al.ics.saitama-u.ac.jp

3 The University of Electro-Communications, Japan
okamotoy@uec.ac.jp

4 RIKEN Center for Advanced Intelligence Project, Japan
5 Japan Advanced Institute of Science and Technology, Japan

uehara@jaist.ac.jp

Abstract
We are given a set S of points in the Euclidean plane. We assume that S is in general position.
A simple polygon P is a surrounding polygon of S if each vertex of P is a point in S and every
point in S is either inside P or a vertex of P . In this paper, we present an enumeration algorithm
of the surrounding polygons for a given point set. Our algorithm is based on reverse search by
Avis and Fukuda and enumerates all the surrounding polygons in polynomial delay.

1 Introduction

Enumeration problems are fundamental and important in computer science. Enumerating
geometric objects are studied for triangulations [2, 3, 9], non-crossing spanning trees [9],
pseudoline arrangements [20], non-crossing matchings [19], unfoldings of Platonic solids [8],
and so on. In this paper, we focus on an enumeration problem of simple polygons of a given
point set. We are given a set S of n points in the Euclidean plane. A surrounding polygon
of S is a simple polygon P such that each vertex of P is a point in S and every point in S

is either inside the polygon or a vertex of the polygon. A surrounding polygon P of S is a
simple polygonization1 of S if every point of S is a vertex of P . See Figure 1 for examples.

Simple polygonizations are studied from various perspectives. As for the counting, the
current fastest algorithm was given by Marx and Miltzou [10], and it runs in nO

√
n time when

a set of n points is given. It is still an outstanding open problem to propose a polynomial-time
algorithm that counts the number of simple polygonizations of a given point set [12]. Much
attention has been paid for combinatorial counting, too. A history on the lower and upper
bounds is summarized by Demaine [4] and O’Rourke et al. [14]. Let bP be the number of
simple polygonizations of a point set P , and let bn be the maximum of bP among all the sets
P of n points. The current best lower and upper bounds for bn are 4.64n [5] and 54.55n [15],
respectively.

Another research topic is a random generation of simple polygonizations. Since no
polynomial-time counting algorithm is known for simple polygonizations, it seems to be a
hard task to propose a polynomial-time algorithm that uniformly generates simple polygoniza-
tions. However, uniformly random generations are known for restricted classes: x-monotone
polygons [21] and star-shaped polygons [16]. These uniform random generations are based

1 The simple polygonizations are also called spanning cycles, Hamiltonian polygons, and planar traveling
salesman tours.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

1:2 Algorithmic Enumeration of Surrounding Polygons

(a) (b) (c)

Figure 1 (a) A point set S. (b) A surrounding polygon of S. (c) A simple polygonization of S.

on counting. For general simple polygonizations, heuristic algorithms are known [1, 17, 21].
Those algorithms efficiently generate simple polygons, but not uniformly at random.

On the other hand, nothing is known for the problem of enumerating all the simple
polygonizations, as mentioned in [18]. A trivial enumeration is to generate all the permutations
of given points, then output only simple polygonizations. However, this is clearly a time-
consuming algorithm. It is an interesting and challenging question whether all the simple
polygonizations of a given point set can be enumerated efficiently (for example, in output-
polynomial time2 or in polynomial delay3).

As the first step toward the question, we consider the problem of enumerating the
surrounding polygons of a given point set S. From the definition, the set of surrounding
polygons of S includes the set of simple polygonizations of S. We show that, for this
enumeration problem, the reverse search by Avis and Fukuda [2] can be applied. First, we
introduce an “embedding” operation: deleting a vertex from a surrounding polygons and
putting it inside the polygon. Then, using this operation, we define a rooted tree structure
among the set of surrounding polygons of S. We show that, by traversing the tree, one
can enumerate all the surrounding polygons. The proposed algorithm enumerates them in
polynomial delay.

Due to space limitation, all the proofs and some details are omitted.

2 Preliminaries

A simple polygon is a closed region of the plane enclosed by a simple cycle of edges. Here, a
simple cycle means that two adjacent line segments intersect only at their common endpoint
and no two non-adjacent line segments intersect. An ear of a simple polygon P is a triangle
such that one of its edges is a diagonal of P and the remaining two edges are edges of P .
The following theorem for ears is known.

I Theorem 2.1 ([11]). Every simple polygon with n ≥ 4 vertices has at least two non-
overlapping ears.

Let S be a set of n points in the Euclidean plane. We assume that S is in general
position, i.e., no three points are collinear. The upper-left point of S is the point with the
minimum x-coordinate. If a tie exists, we choose the point with the maximum y-coordinate
among them. A surrounding polygon of S is a simple polygon such that every point in S is
either inside the polygon or a vertex of the polygon. For example, the convex hull of S is a

2 The running time of an enumeration algorithm A for an enumeration problem is output-polynomial if
the total running time of A is bounded by a polynomial in the input and output size of the problem.

3 The running time of an enumeration algorithm A for an enumeration problem is polynomial-delay if
the delay, which is the maximum computation time between any two output, of A is bounded by a
polynomial in the input size of the problem.

K. Yamanaka, T. Horiyama, Y. Okamoto, R. Uehara, and T. Yamauchi 1:3

(a) (b)

P18

P17
P16

P15

P14

P13

P12

P11

P10

P9
P2

P8

P7

P6
P5

P4

P3

P1

P19
P20

P18

P17
P16

P15

P14

P13

P12

P11

P10

P9
P2

P8

P7

P6
P5

P4

P3

P1

P19
P20

(c)

P18

P17
P16

P15

P14

P13

P12

P11

P10

P9
P2

P8

P7

P6
P5

P4

P3

P1

P19
P20

Figure 2 (a) A surrounding polygon, where p6, p7, p11, p14, p15, p16, and p17 are embeddable. (b)
The surrounding polygon obtained by embedding p16. The point p16 is embedded inside the polygon.
(c) The parent of the polygon in (a), which is obtained by embedding p17.

surrounding polygon of S. Note that any surrounding polygon has the upper-left point in S

as a vertex.
We denote by P(S) the set of surrounding polygons of S, and denote by CH(S) the convex

hull of S. We denote a surrounding polygon of S by a (cyclic) sequence of the vertices in the
surrounding polygon. Let P = 〈p1, p2, . . . , pk〉 be a surrounding polygon of S. Throughout
this paper, we assume that p1 is the upper-left point in S, the vertices on P appear in
counterclockwise order, and the successor of pk is p1. Let p be a vertex of a surrounding
polygon P of S. We denote by pred(p) and succ(p) the predecessor and successor of p on P ,
respectively.

3 Family tree

Let S be a set of n points in the Euclidean plane, and let P(S) be the set of surrounding
polygons of S. In this section, we define a tree structure over P(S) such that its nodes
correspond to the surrounding polygons. To define a tree structure, we first define the parent
of a surrounding polygon using the “embedding operation” defined below. Then, using the
parent-child relationship, we define the tree structure rooted at CH(S).

Now, we introduce some notations. Let P = 〈p1, p2, . . . , pk〉 be a surrounding polygon
of S. Recall that p1 is the upper-left vertex on P and the vertices on P are arranged in
the counterclockwise order. We denote by pi ≺ pj if i < j holds, and we say that pj is
larger than pi. The vertex p of P is embeddable if the triangle consisting of pred(p), p, and
succ(p) does not intersect the interior of P . See examples in Figure 2(a). In the figure,
p6, p7, p11, p14, p15, p16, and p17 are embeddable.

I Lemma 3.1. Let S be a set of points, and let P be a surrounding polygon in P(S)\{CH(S)}.
Then, P has at least one embeddable vertex.

Now, let us define an operation that makes another surrounding polygon from a surround-
ing polygon. Let p be an embeddable vertex on P . An embedding operation is to remove the
two edges (pred(p), p) and (p, succ(p)) and insert the edge (pred(p), succ(p)). Intuitively, an
embedding operation “embeds” a vertex into the interior of P . See Figure 2.

We denote by larg(P) the largest embeddable vertex on P . The parent of P , denoted
by par(P), is the polygon obtained by embedding larg(P) on P . Note that par(P) is also a
surrounding polygon of S. By repeatedly finding the parents from P , we obtain a sequence
of surrounding polygons. The parent sequence PS(P) = 〈P1, P2, . . . , P`〉 of P is a sequence of

EuroCG’19

1:4 Algorithmic Enumeration of Surrounding Polygons

par(P) par(par(P))

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

par(par(par(P)))P

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

P11

P12

P3

P13

P7

P14

P2

P6

P4

P5

P8

P1

P10

P9

Figure 3 A parent sequence.

Input point set

Figure 4 An example of a family tree.

surrounding polygons such that the first polygon is P itself and Pi is the parent of Pi−1 for
each i = 2, 3, . . . , `. See Figure 3. As we can see in the following lemma, the last polygon in
a parent sequence is always CH(P).

I Lemma 3.2. Let S be a set of n points in the Euclidean plane, and let P be a surrounding
polygon in P(S) \ {CH(S)}. The last polygon of PS(P) is CH(S).

From Lemma 3.2, for any surrounding polygon, the last polygon of its parent sequence is
the convex hull. By merging the parent sequences for all surrounding polygons in P(S), we
have the tree structure rooted at CH(S). We call such a tree the family tree. An example of
the family tree is shown in Figure 4.

4 Enumeration algorithm

In this section, we present an algorithm that, for a given set S of n points, enumerates all
the surrounding polygons in P(S). In the previous section, we defined the family tree among
P(S). We know that the root of the family tree is the convex hull of S. Hence, we have the
following enumeration algorithm. We first construct the convex hull of S. Then, we traverse
the (implicitly defined) family tree with depth first search. This algorithm can enumerate
all the surrounding polygons in P(S). To perform the search, we design an algorithm that
finds all the children of any surrounding polygon of S. Starting from the root, we apply the
child-enumeration algorithm recursively, and then we can traverse the family tree.

To describe how to construct children, we introduce some notations. Let P = 〈p1, p2, . . . , pk〉
be a surrounding polygon in P(S). For an edge (pi, pi+1) of P and a point p inside P , we
denote by P (pi, pi+1; p) the polygon obtained by removing (pi, pi+1) and inserting two edges

K. Yamanaka, T. Horiyama, Y. Okamoto, R. Uehara, and T. Yamauchi 1:5

(pi, p) and (p, pi+1). Intuitively, this operation is the reverse one of embedding operation.
We call it a dig operation. Any child of P is described as P (pi, pi+1; p) for some p, pi, and
pi+1. Hence, for all possible P (pi, pi+1; p), if we can check whether or not P (pi, pi+1; p) is a
child, then one can enumerate all the children. We have the following observation.

I Lemma 4.1. Let P be a surrounding polygon of a set of points. For an edge (pi, pi+1) of
P and a point p inside P , P (pi, pi+1; p) is a child of P if

(1) P (pi, pi+1; p) is a surrounding polygon of S and
(2) par(P (pi, pi+1; p)) = P holds.

Note that the condition (2) in Lemma 4.1 can be rephrased as follows: p is the largest
embeddable vertex in P (pi, pi+1; p). Using the conditions in Lemma 4.1, we obtain the
child-enumeration algorithm. For every possible P (pi, pi+1; p), we check whether or not
P (pi, pi+1; p) is a child of P . We apply the algorithm recursively starting from the convex hull.
Thus, we can traverse the family tree. In this way, one can enumerate all the surrounding
polygons. In each recursive call, there are O(n2) child candidates P (pi, pi+1; p). We can
check whether or not P (pi, pi+1; p) is a child in O(log n) time using triangular range query [6]
with O(n2)-time preprocessing and O(n2) additional space for an input point set and shortest
path query [7] with O(n)-time preprocessing for each surrounding polygon. Thus, each
recursive call takes O(n2 log n) time. Now we have the following theorem.

I Theorem 4.2. Let S be a set of n points in the Euclidean plane. One can enumerate all
the surrounding polygons in P(S) in O(n2 log n |P(S)|)-time and O(n2) space.

From the theorem above, one can see that our algorithm is output-polynomial. Using
the even-odd traversal in [13], we have a polynomial-delay enumeration algorithm. In the
traversal, the algorithm outputs polygons with even depth when we go down the family tree
and output polygons with odd depth when we go up. See [13] for further details. We have
the following corollary.

I Corollary 4.3. Let S be a set of n points in the Euclidean plane. There is an O(n2 log n)-
delay and O(n2)-space algorithm that enumerates all the surrounding polygons in P(S).

Acknowledgments. Part of this work has been discussed during the Japan-Austria Bilateral
Seminar: Computational Geometry Seminar with Applications to Sensor Networks in Novem-
ber 2018. The authors thank the organizers for providing an encouraging atmosphere. They
also thank the anonymous referees for their valuable comments. This work was supported
by JSPS KAKENHI Grant Numbers JP15K00009, JP15H05711, JP16K00002, JP17H06287,
JP18H04091, JP18K11153. The third author is also supported by JST CREST Grant Number
JPMJCR1402 and Kayamori Foundation of Informational Science Advancement.

References
1 Thomas Auer and Martin Held. Heuristics for the generation of random polygons. In

Proceedings of the 8th Canadian Conference on Computational Geometry, pages 38–43,
1996.

2 David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathe-
matics, 65(1-3):21–46, 1996.

3 Sergei Bespamyatnikh. An efficient algorithm for enumeration of triangulations. Computa-
tional Geometry Theory and Applications, 23(3):271–279, 2002.

4 Erik D. Demaine. http://erikdemaine.org/polygonization/, 2012.

EuroCG’19

http://erikdemaine.org/polygonization/

1:6 Algorithmic Enumeration of Surrounding Polygons

5 Alfredo García, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-free
subgraphs of KN . Computational Geometry, 16(4):211–221, 2000.

6 Partha P. Goswami, Sandip Das, and Subhas C. Nandy. Triangular range counting query
in 2D and its application in finding k nearest neighbors of a line segment. Computational
Geometry, 29(3):163 – 175, 2004.

7 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. Journal of Computer and System Sciences, 39(2):126 – 152, 1989.

8 Takashi Horiyama and Wataru Shoji. Edge unfoldings of platonic solids never overlap. In
Proceedings of the 23rd Annual Canadian Conference on Computational Geometry, pages
65–70, 2011.

9 Naoki Katoh and Shin-ichi Tanigawa. Enumerating edge-constrained triangulations and
edge-constrained non-crossing geometric spanning trees. Discrete Applied Mathematics,
157(17):3569–3585, 2009.

10 Dániel Marx and Tillmann Miltzow. Peeling and nibbling the cactus: Subexponential-
time algorithms for counting triangulations and related problems. In 32nd International
Symposium on Computational Geometry, SoCG 2016, pages 52:1–52:16, 2016.

11 Gary H. Meisters. Polygons have ears. American Mathematical Monthly, 82(6):648–651,
1975.

12 Joseph S. B. Mitchell and Joseph O’Rourke. Computational geometry column 42. Interna-
tional Journal of Computational Geometry and Applications, 11(5):573–582, 2001.

13 Shin-ichi Nakano and Takeaki Uno. Generating colored trees. Proceedings of the 31th
Workshop on Graph-Theoretic Concepts in Computer Science, (WG 2005), LNCS 3787:249–
260, 2005.

14 Joseph O’Rourke, Subhash Suri, and Csaba D. Tóth. Polygons. In Handbook of Discrete
and Computational Geometry, Third Edition., pages 787–810. Chapman and Hall/CRC,
2017.

15 Micha Sharir, Adam Sheffer, and Emo Welzl. Counting plane graphs: Perfect matchings,
spanning cycles, and Kasteleyn’s technique. J. Comb. Theory Ser. A, 120(4):777–794, 2013.

16 Christian Sohler. Generating random star-shaped polygons. In Proceedings of the 11th
Canadian Conference on Computational Geometry, pages 174–177, 1999.

17 Sachio Teramoto, Mitsuo Motoki, Ryuhei Uehara, and Tetsuo Asano. Heuristics for gener-
ating a simple polygonalization. IPSJ SIG Technical Report 2006-AL-106(6), Information
Processing Society of Japan, May 2006.

18 Emo Welzl. Counting simple polygonizations of planar point sets. In Proceedings of the
23rd Annual Canadian Conference on Computational Geometry, 2011. URL: http://www.
cccg.ca/proceedings/2011/papers/invited3.pdf.

19 Manuel Wettstein. Counting and enumerating crossing-free geometric graphs. Journal of
Computational Geometry, 8(1):47–77, 2017.

20 Katsuhisa Yamanaka, Shin-ichi Nakano, Yasuko Matsui, Ryuhei Uehara, and Kento
Nakada. Efficient enumeration of pseudoline arrangements. In Proceedings of European
Workshop on Computational Geometry 2009, pages 143–146, March 2009.

21 Chong Zhu, Gopalakrishnan Sundaram, Jack Snoeyink, and Joseph S. B. Mitchell. Gener-
ating random polygons with given vertices. Computational Geometry: Theory and Appli-
cations, 6:277–290, 1996.

http://www.cccg.ca/proceedings/2011/papers/invited3.pdf
http://www.cccg.ca/proceedings/2011/papers/invited3.pdf

A 1/4-Approximation Algorithm for the Maximum
Hidden Vertex Set Problem in Simple Polygons∗

Carlos Alegría†1, Pritam Bhattacharya‡2, and Subir Kumar Ghosh3

1 Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional
Autónoma de México
calegria@uxmcc2.iimas.unam.mx

2 Department of Computer Science and Engineering, Indian Institute of
Technology Kharagpur
pritam.bhattacharya@cse.iitkgp.ernet.in

3 Department of Computer Science, School of Mathematical Sciences,
Ramakrishna Mission Vivekananda University
subir.ghosh@rkmvu.ac.in

Abstract1

Given a simple polygon, two points in its interior are said to be hidden to each other if the straight2

line segment connecting them intersects the exterior of the polygon. We study the Maximum3

Hidden Vertex Set problem, where given a simple polygon, we are required to find a subset of4

vertices of maximum cardinality such that every pair of them are hidden to each other. This5

problem is known to be NP-hard, and in fact also APX-hard. In this paper we present a O(n2)6

time algorithm to compute a 1/4-approximation to the maximum hidden vertex set of a simple7

polygon. Although exact algorithms are known for some special classes of polygons (such as8

polygons that are weakly visible from a convex edge), to the best of our knowledge this is the9

first deterministic polynomial-time algorithm to compute a constant-factor approximation to the10

optimal solution for general simple polygons without holes.11

Lines 170

1 Introduction12

Visibility problems are some of the most prominent and intensively studied problems in13

Computational Geometry. Since the classic Art Gallery Problem was proposed in 1973 by14

Victor Klee, many extensions have been studied [11, 15, 9], and combinatorial as well as15

computational results have been applied to practical problems that can commonly be found16

in computer generated graphics [4], computer vision [6], and robotics [10].17

A well known class of visibility problems are those related to hiding. Given a simple18

polygon, we say that two points in its interior are visible to each other if the line segment19

connecting the points does not intersect the exterior of the polygon. Conversely, the points20

are said to be hidden to each other if they are not mutually visible. In this paper we study21

the so called Maximum Hidden Vertex Set (MHVS) problem, where given a simple polygon22

∗ Preliminary results were obtained during the working and interacting sessions of the Intensive Research
Program in Discrete, Combinatorial and Computational Geometry. We thank the Centre de Recerca
Matemàtica, Universitat Autónoma de Barcelona, for hosting this event and the organizers for providing
us with the platform to meet and collaborate. We also thank Jayson Lynch from Massachusetts Institute
of Technology and Bodhayan Roy from Masaryk University for useful discussions.

† Partially supported by the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 734922.

‡ Supported by cycle 11 of the Tata Consultancy Services (TCS) Research Scholarship.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://dccg.upc.edu/irp2018/
https://dccg.upc.edu/irp2018/
http://www.crm.cat
http://www.crm.cat

100:2 A 1/4-Approximation Algorithm for Maximum Hidden Vertex Set Problem

P , we want to find a subset of vertices of maximum cardinality such that every pair of them23

are hidden to each other.24

The MHVS problem, which can also be looked upon as the problem of computing a25

maximum independent set in the vertex visibility graph of P , is known to be NP-hard [13].26

It is in fact not even easy to find an approximate solution. It was shown to be APX-hard27

by Eidenbenz [5] even in polygons with no holes. Nevertheless, an exact solution can be28

computed in polynomial time for special classes of simple polygons. A maximum hidden29

vertex set can be computed in O(n2) time in a polygon weakly visible from a convex edge [7]30

(we describe weakly visible polygons in Section 2), and in O(ne) time in the class of so called31

convex fans, where e is the number of edges of their vertex visibility graph [8]. Heuristic-based32

algorithms have also been explored which seem to work well in practice, as evidenced by33

experimental results showing that they provide solutions that are usually quite close to the34

exact solution for input polygons without holes [1]. Recently, there has also been a study on35

gender-aware facility location problems [12], which are closely related to the MHVS problem.36

In this paper, we describe a deterministic O(n2) time algorithm to compute a 1/4-37

approximation to the maximum hidden vertex set of an n-sided simple polygon with no holes.38

As far as we are aware, this is the first deterministic algorithm to compute a constant-factor39

approximation to the optimal solution of the MHVS problem for general simple polygons.40

2 Preliminaries41

Hereafter, let P be a simple polygon with no holes. For the sake of simplicity, we assume42

that no three vertices of P are collinear. Given a point x inside P , we denote with VP(x)43

the visibility polygon of x. The boundary of VP(x) is a closed polygonal chain formed44

by polygonal edges and non-polygonal edges called constructed edges. A constructed edge45

connects a reflex vertex v with a point u lying on an edge of P (see Figure 1a), where the46

points x, v, and u are collinear.47

Let x and y be two points inside P that are visible to each other. A point inside P is said48

to be weakly visible from the line segment xy, if it is visible from at least one point of xy.49

The set of points inside P that are weakly visible from xy is called the weak visibility polygon50

of xy. We denote this polygon with VP(xy). Like the visibility polygon of a point, the51

boundary of VP(xy) is a closed polygonal chain formed by polygonal edges and constructed52

edges. If the boundary of VP(xy) contains no constructed edges, then VP(xy) = P and the53

polygon is said to be weakly visible from xy (see Figure 1b).54

Let ∂P denote the boundary of P . Given two points a, b ∈ ∂P , let bd(a, b) denote the61

clockwise boundary of P from a to b, so we have ∂P = bd(a, a) = bd(a, b) ∪ bd(b, a). Consider62

a point x inside P and a constructed edge vu of VP(x), where v is a vertex and u is a point on63

an edge of P . The segment vu divides P into two subpolygons: one bounded by bd(v, u) ∪ vu64

and the second one bounded by bd(u, v) ∪ vu. Out of these two, the subpolygon that does65

not contain x is called a pocket of VP(x). We denote this pocket with P (v, u). If x is not66

contained in the polygon bounded by bd(v, u) ∪ vu, then vu is called a left constructed edge67

and P (v, u) is called a left pocket. Otherwise, vu is called a right constructed edge and P (v, u)68

is called a right pocket. The constructed edges and left and right pockets of a weak visibility69

polygon are defined in a similar way. Examples of these definitions are shown in Figure 1. In70

particular, in Figure 1a the segment vu is a left constructed edge and P (v, u) is a left pocket71

of VP(x). On the other hand, in Figure 1b the segment vu is a right constructed edge and72

P (v, u) is a right pocket of VP(xy).73

C. Alegría, P. Bhattacharya, S. K. Ghosh 100:3

x

u v

(a) The visibility polygon of x.55

x
y

u

v

(b) The weak visibility polygon of xy.56

Figure 1 A simple polygon along with (a) the visibility polygon of a point, and (b) the weak
visibility polygon of a line segment, both in gray. The constructed edges of the visibility polygons
are shown in dashed lines, the left pockets in yellow, and the right pockets in red. The polygon is
weakly visible from the thick edge.

57

58

59

60

I Lemma 2.1 (Lemma 2 from Bärtschi et al. [2]). Let v1u1 and v2u2 be two left constructed74

edges (or similarly, two right constructed edges) of VP(xy), where v1 and v2 are reflex vertices75

of P . Possibly excluding v1 and v2, the vertices of P inside the left (or right) pocket P (v1, u1)76

are hidden from the vertices of P inside the left (or right) pocket P (v2, u2).77

3 The polygon partition78

Our algorithm is based on a link-distance-based partition from Bhattacharya et al. [3] (which79

is itself adapted from the partitioning method used by Suri [14]) that decomposes the polygon80

P into a set of disjoint visibility windows. We next outline how this partition is constructed81

and describe properties that are relevant to our algorithm.82

Given two points x and y inside P , the link distance from x to y is the minimum number of83

line segments required in a polygonal chain inside P to connect x to y. The visibility window84

decomposition is a hierarchical partition of P into visibility polygons, where polygons on the85

same level contain points at the same link distance from a given vertex p. The first level86

of the hierarchy is formed by the set V1 = {VP(p)} that contains the points of P at link87

distance one from p. Let v1u1, . . . , vcuc be the constructed edges of VP(p) in clockwise order88

around p, where vi is a vertex and ui is a point lying on an edge of P . The region P \ VP(p)89

consists of c disjoint polygons we denote with P1, . . . , Pc. Let V2,i = VP(viui) ∩ Pi be the90

weak visibility polygon of viui inside Pi. The second level of the hierarchy is formed by91

the set V2 = {V2,1, . . . , V2,c} of disjoint weak visibility polygons. The remaining levels are92

formed by the sets V3, V4, . . . obtained by repeating the previous process until we have a93

set Vd of disjoint weak visibility polygons with no constructed edges. We thus have that94

P = V1 ∪ · · · ∪ Vd = VP(p) ∪ V2,1 ∪ V2,2 ∪ · · · ∪ Vd,1 ∪ Vd,2 ∪ · · · . The set Vi is formed by the95

disjoint regions containing the points at link distance i from p, and d is the maximum link96

distance from p to any point inside P (see Figure 2).97

I Lemma 3.1. The following statements hold true for the visibility window partition of P :100

i) The vertices of P lying in any subpolygon belonging to Vi are hidden from the vertices of101

P lying in any subpolygon belonging to Vj, unless |j − i| ≤ 1.102

ii) Let uv be a constructed edge of the weak visibility polygon Vi,j. Then, the constructed103

edge uv is actually a convex edge with respect to every subpolygon Vi+1,j = VP(uv) ∪ Pj.104

EuroCG’19

100:4 A 1/4-Approximation Algorithm for Maximum Hidden Vertex Set Problem

p

u4

v4

v1

u1

V2,3

V2,1

V2,2

V2,4

V2

V3

V4

V5

V1

Figure 2 The partition of a simple polygon into weak visibility subpolygons, where each subpoly-
gon consists of points at the same link distance from the vertex p.

98

99

Proof. The lemma follows directly from the construction of the partition. For details, please105

refer to the proof of Lemma 2 from Bhattacharya et al. [3]. J106

4 The algorithm107

We now describe an O(n2) time 1/4-approximation algorithm for the Maximum Hidden108

Vertex Set problem in simple polygons. The overall strategy of our algorithm is to decompose109

P into regions as we described in Section 3, and classify the regions of the partition into four110

disjoint sets such that vertices of regions belonging to different sets are hidden to each other.111

We then compute the (exact) maximum hidden set of every region using the algorithm from112

Ghosh et al. [7], and keep the hidden set with more guards in the same group. Hereafter, we113

denote by n the number of vertices of P .114

1. Partition the polygon P using link distance115

Create the decomposition of P based on the link-distance from an arbitrary vertex that116

we described in Section 3. This partition can be created in O(n) time [3].117

2. Classify visibility windows118

As P is a simple polygon without any holes, the dual graph of the partition is a tree.119

Each node of this tree represents a visibility polygon of the partition, and the children of120

a node are the regions inside the pockets formed by constructed edges belonging to their121

parent’s visibility polygon. Using this tree, we separate the nodes into four disjoint sets122

in the following manner. First we separate the nodes into two sets: those appearing at123

odd levels in the tree, and those appearing at even levels in the tree. Then, we further124

separate the nodes in each of the above sets into two subsets: those created due to a left125

constructed edge, and those created due to a right constructed edge. At the end of this126

separation process, we obtain four disjoint subsets, which are as follows:127

R1, containing regions at odd levels in the tree created by a left constructed edge128

R2, containing regions at odd levels in the tree created by a right constructed edge129

R3, containing regions at even levels in the tree created by a left constructed edge130

R4, containing regions at even levels in the tree created by a right constructed edge131

C. Alegría, P. Bhattacharya, S. K. Ghosh 100:5

Observe that the vertices of P inside different regions of the same set are hidden from132

each other (see Figure 3), either because they belong to non-consecutive levels of the tree133

(see Lemma 3.1), or because both of them belong to the same level in the tree and are134

both created by a left (or right) constructed edge (see Lemma 2.1). Also note that the135

separation process can be completed in O(n) time.136

p

R1

R2

R4

R3

Figure 3 The separation of the regions into four independent sets.137

3. Compute an approximate maximum hidden vertex set138

Observe that each region of the partition is a polygon which is weakly visible from the139

constructed edge (of its parent’s visibility polygon) that created it. So, within each region,140

we can compute the (exact) maximum hidden set of vertices using the algorithm by141

Ghosh et al. [7], which computes the maximum hidden set of a weak visibility polygon142

with n vertices in O(n2) time.143

Since the vertices of P inside two regions belonging to the same set (from among144

R1, R2, R3, R4) are hidden from each other, the union of the maximum hidden sets of the145

regions in a particular set is a valid hidden set for P . Thus, we can compute four valid146

hidden sets S1, S2, S3, S4, that correspond to the sets R1, R2, R3, R4 respectively, in O(n2)147

time. Out of these four valid hidden vertex sets of P , we choose as our approximation of148

the maximum hidden set the one containing the most number of vertices.149

Let Sopt denote an exact maximum hidden vertex set of P . Also, let Sopti,j ⊆ Sopt denote
the subset of vertices that lie within the weak visibility subpolygon Vi,j in the partitioning
of P . If we denote the exact maximum hidden set computed for each subpolygon Vi,j by
S∗

i,j , then observe that |S∗
i,j | ≥ |S

opt
i,j |. Therefore, we have:

|S1|+ |S2|+ |S3|+ |S4| =
∑
i,j

|S∗
i,j | ≥

∑
i,j

|Sopt
i,j | = |Sopt|

max (|S1|, |S2|, |S3|, |S4|) ≥
|S1|+ |S2|+ |S3|+ |S4|

4 ≥ |Sopt|4
Therefore, by choosing from among S1, . . . , S4 the set containing the maximum number150

of vertices, we obtain a 1
4 -approximation of Smax. Note that Step 3 is the most expensive151

EuroCG’19

100:6 A 1/4-Approximation Algorithm for Maximum Hidden Vertex Set Problem

step of the algorithm described above, so the algorithm runs in O(n2) time. This leads us to152

our main result, which we summarize below.153

I Theorem 4.1. Given a simple polygon P with n vertices, there exists a 1
4 -approximation154

algorithm for computing the maximum hidden vertex set in P , which runs in O(n2) time.155

5 Concluding remarks156

We present a O(n2) time algorithm to compute a 1/4-approximation to the maximum hidden157

vertex set of a simple polygon with n vertices and no holes. To the best of our knowledge,158

this is the first constant-factor approximation algorithm for general simple polygons without159

holes. Observe that our current algorithm cannot be applied when the input polygon P160

has holes, since then the dual graph of the visibility window partitioning of P is no longer161

guaranteed to be a tree. However, we are currently investigating possible improvements to162

our algorithm which could make it work even for input polygons containing holes. Another163

future research direction is to explore variants of the problem involving restricted-orientation164

models of visibility, such as rectangular, periscope, or O-visibility.165

Acknowledgments166

We thank the reviewers for their careful reading and many useful comments, which really167

helped us to improve the quality and readability of this paper. In particular we thank168

the reviewer who pointed out to us some interesting references that might motivate future169

research directions.170

References
1 Antonio L. Bajuelos, Samtiago Canales, Gregorio Hernández, and A. Mafalda Martins.

Estimating the maximum hidden vertex set in polygons. In International Conference on
Computational Sciences and Its Applications, ICCSA 2018, pages 421–432, 2008. doi:
10.1109/ICCSA.2008.19.

2 Andreas Bärtschi, Subir Kumar Ghosh, Matúš Mihalák, Thomas Tschager, and Peter Wid-
mayer. Improved bounds for the conflict-free chromatic art gallery problem. In Proceedings
of the Thirtieth Annual Symposium on Computational Geometry, SOCG’14, pages 144:144–
144:153. ACM, 2014. doi:10.1145/2582112.2582117.

3 Pritam Bhattacharya, Subir Kumar Ghosh, and Sudebkumar Pal. Constant approximation
algorithms for guarding simple polygons using vertex guards. ArXiv e-prints, 2017. arXiv:
1712.05492v2.

4 Michael F. Cohen and John R. Wallace. Radiosity and realistic image syntheses. Academic
Press Professional, 1993.

5 Stephan Eidenbenz. Inapproximability of finding maximum hidden sets on polygons and
terrains. Computational Geometry, 21(3):139–153, 2002. doi:10.1016/S0925-7721(01)
00029-3.

6 Olivier Faugeras. Three-Dimensional Computer Vision. The MIT Press, 1993.
7 Subir Kumar Ghosh, Anil Maheshwari, Sudebkumar Prasant Pal, Sanjeev Saluja, and

C.E. Veni Madhavan. Characterizing and recognizing weak visibility polygons. Computa-
tional Geometry, 3(4):213–233, 1993. doi:10.1016/0925-7721(93)90010-4.

8 Subir Kumar Ghosh, Thomas Caton Shermer, Binay Kumar Bhattacharya, and Partha Pra-
tim Goswami. Computing the maximum clique in the visibility graph of a simple polygon.
Journal of Discrete Algorithms, 5(3):524–532, 2007. doi:10.1016/j.jda.2006.09.004.

http://dx.doi.org/10.1109/ICCSA.2008.19
http://dx.doi.org/10.1109/ICCSA.2008.19
http://dx.doi.org/10.1145/2582112.2582117
http://arxiv.org/abs/1712.05492v2
http://arxiv.org/abs/1712.05492v2
http://dx.doi.org/10.1016/S0925-7721(01)00029-3
http://dx.doi.org/10.1016/S0925-7721(01)00029-3
http://dx.doi.org/10.1016/0925-7721(93)90010-4
http://dx.doi.org/10.1016/j.jda.2006.09.004

C. Alegría, P. Bhattacharya, S. K. Ghosh 100:7

9 Sumir Kubar Ghosh. Visibility algorithms in the plane. Cambridge University Press, 2007.
10 Jean-Claude Latombe. Robot motion planning. Kluwer Academic Publishers, 1991.
11 Joseph O’Rourke. Art gallery theorems and algorithms. The international series of mono-

graphs on Computer Science. Oxford University Press, 1987.
12 Valentin Polishchuk and Leonid Sedov. Gender-Aware Facility Location in Multi-Gender

World. In Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe, editors, 9th
International Conference on Fun with Algorithms (FUN 2018), volume 100 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 28:1–28:16, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FUN.2018.28.

13 T. Shermer. Hiding people in polygons. Computing, 42(2):109–131, 1989. doi:10.1007/
BF02239742.

14 Subhash Suri. Minimum link paths in polygons and related problems. PhD thesis, The
Johns Hopkins University, Baltimore, Maryland, 1987.

15 Jorge Urrutia. Handbook of computational geometry, chapter Art Gallery and illumination
problems, pages 973–1027. Elsevier, 2000.

EuroCG’19

http://dx.doi.org/10.4230/LIPIcs.FUN.2018.28
http://dx.doi.org/10.1007/BF02239742
http://dx.doi.org/10.1007/BF02239742

Skeleton-based decomposition of simple polygons

Maike Buchin1, Axel Mosig2, and Leonie Selbach2

1 Technical University Dortmund
maike.buchin@tu-dortmund.de

2 Ruhr University Bochum
Axel.Mosig|Leonie.Selbach@rub.de

Abstract
In the application of polygon decomposition for the dissection of tissue samples certain constraints
on the size and convexity of the subpolygons are given. We present a decomposition method in
which different feasibility criteria can be included. Our method is based on a discrete skeleton of
the given polygon and can be modified for different optimization problems.

1 Introduction

Polygon decomposition is a common method in algorithmic geometry. Depending on the
application different constraints for the shape of the subpolygons are used, for example in
triangulations or convex decompositions. We present a skeleton-based decomposition method
where cuts are restricted by the skeleton points and various constraints for size or shape can
be incorporated. Our work is motivated by a problem that arises in histopathology when
dissecting disease-specific subregions from tissue samples using the so-called laser capture
microdissection (LCM) [3]. The extraction with LCM is not successful unless the regions
fulfill certain conditions based on their size and shape. Hence we develop a method to
decompose the regions of interest into smaller parts which all satisfy the given constraints.

1.1 Problem Statement and Solution

Let P be a simple polygon without holes. We want to find a feasible decomposition Z

of P given some feasibility criteria, where a decomposition Z is feasible if every polygon
in Z is feasible. Our method is based on the medial axis or skeleton of P and allows only
specific cuts. Because discrete data in form of digital images is given and a discrete output
is expected we use discrete skeletons, that is skeletons consisting of a finite set of points resp.
pixels. This leads naturally to a finite number of possible cuts we have to consider. Let S be
the skeleton of P consisting of n skeleton points. If the degree of the skeleton points does
not exceed three, a feasible decomposition of P based on S can be computed in time O(nk),
where k is the number of skeleton points with degree one. This holds also for the minimum
number problem and the minimum edge length problem that is minimizing the number of
subpolygons in the decomposition or the total length of inserted cuts.

Here we will disregard the actual computation of the feasibility and assume that the
feasibility of a subpolygon can be tested efficiently. In our research we consider criteria such
as size or (approximate) convexity. In both cases we can compute those values for all adjacent
cuts beforehand in time O(m) for m being the number of boundary points of the input
polygon. Given the information for adjacent cuts we can iteratively generate all information
needed during the execution of our algorithm in constant time. For other feasibility criteria
this may not be the case, in which case this would need to be included in the overall runtime.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

3:2 Skeleton-based decomposition of simple polygons

Figure 1 Decomposition in a histopathological tissue sample given as a classified image (left).
This decomposition was generated using the algorithm from [7] using area for feasibility.

1.2 Basic Definitions
Let D ⊂ R2 be a connected bounded domain. The medial axis or skeleton S(D) of the set
D is the locus of centers of maximal disks in D. A maximal disk B in D is a closed disk
contained in D such that every other disk containing B is not contained in D. Let s be the
center of a maximal disk B(s), s is called a skeleton point. We define the contact set of s as
C(s) = B(s) ∩ ∂D. A connected component of C(s) is called a contact component of s and
the elements of C(s) are called contact points. The degree of a skeleton point is defined as the
number of its contact components. A skeleton S is given as a graph consisting of connected
arcs Sk which are called skeleton branches. Skeleton branches meet at skeleton points of
degree three or higher. We call these points branching points.

s
B(s)

p1

p2

p3

Figure 2 A skeleton point s with its maximal disk B(s) and contact points p1, p2, p3 ∈ C(s).

In our application we consider digital images where we interpret a given object as a
polygon by defining each boundary pixel as a corner vertex. We skeletonize the polygon
resulting in a simplified discrete skeleton using the method from [2]. The discrete skeleton
consists of pixels but fulfills some of the basic properties of the medial axis such that contact
components are given. In the skeleton-based decomposition of a polygon P the cuts are
restricted to line segments connecting a skeleton point to a contact point. The cuts induce
subpolygons between two or more consecutive skeleton points. Pk(i, j) denotes a polygon
generated by two skeleton points i, j on the same skeleton branch Sk as shown in Figure 3.

Since a branching point belongs to more than one branch and has at least three contact
points those two points corresponding to the considered branch are chosen, see Figure 4 (a).
Notice that a polygon generated by more than two skeleton points can always be represented
as a union of subpolygons generated by two skeleton points. See Figure 4 (b) for an example.

M. Buchin, A. Mosig, L. Selbach 3:3

i j

Pk(i, j)

Sk

Figure 3 Polygon Pk(i, j) generated by two skeleton points i, j on the same branch Sk.

Sk

b

i

(a) In blue: Pk(b, i).

S1

S2

S3

i3i1

i2

b

(b) In blue: P1(b, i1) ∪ P2(b, i2) ∪ P3(b, i3).

Figure 4 Subpolygons at a branching point (left) and generated by three skeleton points (right).

1.3 Related Results from the Literature
Skeletons are used in many applications such as object recognition, medical image analysis
and shape decomposition [6]. Leonard et al. [4] use the medial axis for the decomposition of
2D objects to determine a parts hierarchy. Simmons and Séquin [9] compute a hierarchical
decomposition of an object using the related axial shape graph. Tănase and Veltkamp [10]
use the straight line skeleton to compute decompositions of polygonal shapes into possibly
overlapping parts. There are several methods which use a one-dimensional curve skeleton of
3D shapes. Reniers and Telea [5] use the curve skeleton for the segmentation of 3D shapes
into meaningful components. Serino et al. [8] propose a method for decomposing a 3D object
by using a polygonal approximation of the curve skeleton.

2 Decomposition algorithms

For a polygon P without holes the skeleton S is given as an acyclic graph. We represent S

as a tree T . For this we pick an arbitrary branching point as root r. All other vertices are
labeled vk and correspond to a skeleton branch Sk. We define C(v) as the set of children
of a vertex v. This tree gives us a chronological order of how to work our way through the
skeleton. The skeleton points on each branch Sk are labeled from top to bottom – according
to the chosen tree representation T – starting with 1 at the top. See Figure 5 for an example.

Before we describe our general decomposition method we consider a special case – which
is discussed by Selbach in [7] – where we decompose the polygon by considering each branch
of the skeleton on its own. In this case we only have to deal with linear skeletons.

EuroCG’19

3:4 Skeleton-based decomposition of simple polygons

S1

S2

S3

S4

S5

v3 v4 v5

v1 v2

r

n3

1

n5

n4

1
1

1

n2

n1

1

Figure 5 A representation of a skeleton with two branching points as a tree.

2.1 Decomposition based on linear skeletons

Given a polygon Pk belonging to a skeleton branch Sk with a linear skeleton of size nk, i.e.
Pk = Pk(1, nk). A feasible decomposition can be found by dynamic programming, using an
array Xk such that Xk(i) equals True if there exists a feasible decomposition of Pk(i, nk).

Xk(i) =
{

True if ∃ j : i < j ≤ nk s.t. Pk(i, j) is feasible and Xk(j) = True.

False else.

We can adjust the formula of Xk(i) easily to solve different optimization problems. By
defining Xk(i) as mini<j≤nk

Xk(j) + 1 resp. r(i), where Pk(i, j) is feasible, we can solve the
minimum number problem resp. the minimum edge length problem.

This results in an O(n2) time algorithm [7] for computing a feasible decomposition of
a polygon with a linear skeleton. Note that for certain combinations of (simple) feasibility
criteria and optimization goals decomposing polygons with linear skeletons is closely related
to segmentation and can be done more efficiently, see for example [1].

2.2 General decomposition

In the following we restrict ourselves to skeletons where the degree of the skeleton points does
not exceed three. If there are m branching points, there will be m + 2 end points, namely
skeleton points of degree one. We now consider decompositions consisting of subpolygons
which can be generated by more than two skeleton points. As stated above those polygons
can be represented as a union of subpolygons that are generated by two skeleton points.
Notice that the largest number of skeleton points generating a polygon is equal to the number
of leaf vertices in the skeleton tree.

The decomposition problem can be solved using a bottom-up approach in the skeleton tree.
We will present the method for the minimum number problem, but as before our method can
be modified for other optimization problems. The general idea is that we compute for each
skeleton point the size of a minimal feasible decomposition of the subpolygon up to this point.
For this, we compute entries Xk(i) for all i ∈ Sk for every vertex vk working our way up the
tree T . Here Xk(i) is the number of polygons in the minimal feasible decomposition of the
polygon Pk(i) corresponding to skeleton point i on branch Sk, see Figure 6. We eventually
compute the value Xr for the root vertex, which is defined as the number of polygons in the
minimal feasible decomposition of the entire polygon.

M. Buchin, A. Mosig, L. Selbach 3:5

i
P3(i)

P2(1)

P1(1)

P3(n3)

P5(j)

j

Figure 6 Different subpolygons according to the tree representation given in Figure 5.

For computing the entry Xk(i) observe that a minimal feasible decomposition of Pk(i)
consists of a feasible subpolygon P ending at i and minimal feasible decompositions of
the connected components of Pk(i)\P . Hence to compute Xk(i) we search over all possible
combinations of cuts, i.e. skeleton points, in the corresponding subpolygon Pk(i) that together
with i generate a feasible polygon P , and return the minimal size at these.

To do this we use a function Q[s, I, a, P], which searches through the subtree rooted at s.
The parameter I is a set of vertices which corresponds to the currently considered skeleton
branches, on which we are searching for cuts – starting at index s. In P the generated
polygon is stored and updated as the search continues. The parameter a is the size of minimal
decomposition where cuts have already been chosen. Hence initially, P is empty, a = 0, s = i

and I = {vk} for a skeleton point i on branch Sk. Now for every vertex vk ∈ I we have two
choices: Either we cut on the branch Sk and check the possible cuts on the other branches
in I \ {vk}. Or we continue the search in the subtree of vk by including the children C(vk)
into the set of considered branches – in this case the generated polygon contains the whole
subpolygon Pk(s, nk). For the computation of Q[s, I, a, P] we choose an arbitrary vertex
vk ∈ I for the first iteration. The function is then defined as follows:

Q[s, I, a, P] = min
{

min
j≥s∈Sk

Q[1, I \ {vk}, a + Xk(j), P ∪ Pk(s, j)], (1a)

Q[1, (I \ {vk}) ∪ C(vk), a, Pk(s, nk)] (1b)

Q[1, ∅, a, P] =
{

a + 1 if P is feasible.
∞ else.

We define Xk(i) = Q[i, {vk}, 0, ∅] and Xr = Q[1, C(r), 0, ∅]. Notice that when s = 1 we
search over all j ∈ Sk. This is the case in every iteration except for the initial one.

EuroCG’19

3:6 Skeleton-based decomposition of simple polygons

I Example 2.1 (Two branching points). In case of two branching points we have three
different cases of computation to consider, see Figure 7 for an illustration.

1. Leaf vertex: For computation of the entries of Xk for k = 1, 2, 4, 5 the equation for Xk(i)
equals the formula for the linear skeleton.

2. Inner vertex: A feasible decomposition of the polygon up to the skeleton point i on the
branch S3 contains a polygon generated by either i and some j > i on branch S3 or i

and two points (i1, i2) ∈ S1 × S2. Where the first case is calculated by (1a) as for linear
skeletons and the second is calculated by (1b) as follows:

Q[1, {v1, v2}, 0, P3(i, n3)]
= min

i1∈S1
Q[1, {v2}, X1(i1), P3(i, n3) ∪ P1(1, i1)]

= min
(i1,i2)∈S1×S2

Q[1, ∅, X1(i1) + X2(i2), P3(i, n3) ∪ P1(1, i1) ∪ P2(1, i2)]

= min
(i1,i2)∈S1×S2

{X1(i1) + X2(i2) + 1 | P3(i, n3) ∪ P1(1, i1) ∪ P2(1, i2) is feasible}

3. Root vertex: For the root we compute:

Xr = Q[1, {v3, v4, v5}, 0, ∅] = min

 min
i3∈S3

Q[1, {v4, v5}, X3(i3), P3(1, i3)]

Q[1, {v1, v2, v4, v5}, 0, P3(1, n3)]

This results in a calculation of the minimum feasible decomposition size over (i3, i4, i5) ∈
S3 × S4 × S5 for the first case and (i1, i2, i3, i4) ∈ S1 × S2 × S4 × S5 for the second.

I Theorem 2.2. Let P be a polygon with skeleton S. Let S consist of n skeleton points with
degree less or equal 3. A feasible decomposition of P based on S can be computed in time
O(nk), where k is the number of leaves in the skeleton tree (or skeleton points with degree 1).

Proof. We argue the runtime by assigning weights to the skeleton tree. The weight of a
vertex v is g(v) = |Sv| +

∏
w∈C(v) g(w), which is the maximal number of skeleton points

considered in the computation of one Xv(i). The first part of this sum corresponds to (1a)
and the second part to (1b). The computation of Xv(i) for all i ∈ Sv takes |Sv|·g(v) time. Let
L(v) be the number of leaves in the subtree with root v. We can show that g(v) = O(nL(v)).
The overall runtime is asymptotically dominated by the computation of Xr which takes time

|Sr| · g(r) = g(r) = O(nL(r)) = O(nk). (2)

Sketch of correctness: As we compute Xk(i): A feasible decomposition of the considered
subpolygon up to skeleton point i consists of a feasible polygon P generated by the skeleton
point i and feasible decompositions of the remaining polygon (or polygons). The polygon P

is either generated by another skeleton point on the branch Sk – as computed by (1a) – or
by some other skeleton points in the subtree of vk – as computed recursively by (1b). J

M. Buchin, A. Mosig, L. Selbach 3:7

i

j

ij

i

i1

i2

i1

i2

i3

i4

i5

i4

i5

X1(i)

analogous X2, X4, X5

X3(i)

Xr

r

r

r

v3 v4 v5

v1 v2

r

r

min
i3∈S3

Q[1, {v4, v5}, X3(i3), P3(1, i3)]

Q[1, {v1, v2, v4, v5}, 0, P3(1, n3)]

min
j≥i∈S3

Q[1, ∅, X3(j), P3(i, j)]

Q[1, {v1, v2}, 0, P3(i, n3)]

v3 v4 v5

v1 v2

v3 v4 v5

v1 v2

v3 v4 v5

v1 v2

v3 v4 v5

v1 v2

min
j>i∈S1

Q[1, ∅, X1(j), P1(i, j)]

Figure 7 Decomposition of a polygon with two branching points. The non-dashed polygon is the
currently considered subpolygon and the polygon generated in a certain iteration is shown in blue.

EuroCG’19

3:8 Skeleton-based decomposition of simple polygons

3 Conclusion

We presented a method to find an optimal feasible decomposition of a simple polygon based
on a discrete skeleton, which allows to include different feasibility criteria. The algorithm
will be further implemented and analysed in the application. In practice we do not expect
the runtime to be O(nk) – as we may stop the iteration if P is no longer feasible. Also we
use a pruned skeleton which means that have some control over the factor k – for the tissue
sample in Figure 1 it was k < 10. We are currently working on an algorithm for higher
degrees. Also we are looking into the similarities to tree resp. graph decomposition/partition
problems. And there is the question if our methods can be adjusted for polygons with holes.

References
1 Sander P. A. Alewijnse, Kevin Buchin, Maike Buchin, Andrea Kölzsch, Helmut Kruck-

enberg, and Michel A. Westenberg. A framework for trajectory segmentation by stable
criteria. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, Dallas/Fort Worth, TX, USA, November 4-7,
2014, pages 351–360, 2014.

2 Xiang Bai, Longin Jan Latecki, and Wen-Yu Liu. Skeleton pruning by contour partition-
ing with discrete curve evolution. IEEE transactions on pattern analysis and machine
intelligence, 29(3), 2007.

3 Frederik Großerueschkamp, Thilo Bracht, Hanna C Diehl, Claus Kuepper, Maike Ahrens,
Angela Kallenbach-Thieltges, Axel Mosig, Martin Eisenacher, Katrin Marcus, Thomas
Behrens, et al. Spatial and molecular resolution of diffuse malignant mesothelioma hetero-
geneity by integrating label-free ftir imaging, laser capture microdissection and proteomics.
Scientific reports, 7:44829, 2017.

4 Kathryn Leonard, Geraldine Morin, Stefanie Hahmann, and Axel Carlier. A 2d shape
structure for decomposition and part similarity. In Pattern Recognition (ICPR), 2016 23rd
International Conference on, pages 3216–3221. IEEE, 2016.

5 Dennie Reniers and Alexandru Telea. Skeleton-based hierarchical shape segmentation. In
Shape Modeling and Applications, 2007. SMI’07. IEEE International Conference on, pages
179–188. IEEE, 2007.

6 Punam K Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja. A survey on skeletoniza-
tion algorithms and their applications. Pattern Recognition Letters, 76:3–12, 2016.

7 Leonie Selbach. Algorithmen zur Zerlegung von einfachen Polygonen unter Nebenbedin-
gungen. Master’s thesis, Ruhr-Universität Bochum, 2018.

8 Luca Serino, Carlo Arcelli, and Gabriella Sanniti di Baja. Decomposing 3d objects in simple
parts characterized by rectilinear spines. International Journal of Pattern Recognition and
Artificial Intelligence, 28(07):1460010, 2014.

9 Maryann Simmons and Carlo H Séquin. 2d shape decomposition and the automatic genera-
tion of hierarchical representations. International Journal of Shape Modeling, 4(01n02):63–
78, 1998.

10 Mirela Tănase and Remco C Veltkamp. Polygon decomposition based on the straight line
skeleton. In Geometry, Morphology, and Computational Imaging, pages 247–268. Springer,
2003.

Recognizing Visibility Graphs of Polygons with
Holes
Hossein Boomari1, Mojtaba Ostovari2, and Alireza Zarei3

1 Mathematical Science Faculty, Sharif University of Technology
h.boomari1@student.sharif.ir

2 Mathematical Science Faculty, Sharif University of Technology
mojtaba.ostovari@alum.sharif.ir

3 Mathematical Science Faculty, Sharif University of Technology
zarei@sharif.ir

Abstract
The visibility graph of a polygon corresponds to its internal diagonals and boundary edges. For
each vertex on the boundary of the polygon, we have a vertex in this graph and if two vertices
of the polygon see each other there is an edge between their corresponding vertices in the graph.
Two vertices of a polygon see each other if and only if their connecting line segment completely
lies inside the polygon, and they are externally visible if and only if this line segment completely
lies outside the polygon. Recognizing visibility graphs is the problem of deciding whether there
is a simple polygon whose visibility graph is isomorphic to a given input graph. This problem
is well-known and well-studied, but yet widely open in geometric graphs and computational
geometry.

Existential Theory of the Reals is the complexity class of problems that can be reduced to the
problem of deciding whether there exists a solution to a quantifier-free formula F (X1, X2, ..., Xn),
involving equalities and inequalities of real polynomials with real variables. The complete prob-
lems for this complexity class are called ∃R-Complete.

In this paper, we show that recognizing visibility graphs of polygons with holes is ∃R-Complete.

1 Introduction

The visibility graph of a simple planar polygon is a graph in which there is a vertex for
each vertex of the polygon and for each pair of visible vertices of the polygon there is an
edge between their corresponding vertices in this graph. Two points in a simple polygon
are visible from each other if and only if their connecting segment completely lies inside the
polygon. In this definition, each pair of adjacent vertices on the boundary of the polygon
are assumed to be visible from each other. This implies that we always have a Hamiltonian
cycle in a visibility graph which determines the order of vertices on the boundary of the
corresponding polygon. A polygon with holes has some non-intersecting holes inside the
boundary of the polygon. In these polygons the area inside a hole is considered as the outside
area and internal and external visibility graphs of such polygons are defined in the same way
as defined for simple polygons. In the visibility graph of a polygon with holes, we have the
sequence of vertices corresponding to the boundary of each hole, as well.

Computing the visibility graph of a given simple polygon has many applications in
computer graphics [19], computational geometry [11] and robotics [2]. There are several
efficient polynomial time algorithms for this problem [11].

This concept has been studied in reverse as well: Is there any simple polygon whose
visibility graph is isomorphic to a given graph, and, if there is such a polygon, is there any
way to reconstruct it(finding positions for its vertices in the plane)? The former problem is
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

4:2 Recognizing Visibility Graphs of Polygons with Holes

known as recognizing visibility graphs and the latter one is known as reconstructing a polygon
from a visibility graph. The computational complexity of these problems are widely open.
The only known result about the computational complexity of these problems are that they
belong to PSPACE [7] complexity class. More precisely, they belong to the class of Existential
theory of the reals [15]. This means that it is not even known whether these problems are in
NP or can be solved in polynomial time. Even, if we are given the Hamiltonian cycle of the
visibility graph which determines the order of vertices on the boundary of the target polygon,
the exact complexity classes of these problems are still unknown.

However, these problems have been solved efficiently for special cases of tower and
spiral polygons. The recognizing and reconstruction problems have been solved for tower
polygons [6] and spiral polygons [8] in linear time in terms of the size of the graph.

Although there is some progress on recognizing and reconstruction problems, there have
been plenty of studies on characterizing visibility graphs. In 1988, Ghosh introduced three
necessary conditions for visibility graphs and conjectured their sufficiency [9]. In 1990,
Everett proposed a graph that rejects Ghosh’s conjecture [7]. She also refined Ghosh’s third
necessary condition to a new stronger one [10]. In 1992, Abello et al. built a graph satisfying
Ghosh’s conditions and the stronger version of the third condition which was not the visibility
graph of any simple polygon [1], disproving the sufficiency of these conditions. In 1997,
Ghosh added his forth necessary condition and conjectured that this condition along with
his first two conditions and the stronger version of the third condition are sufficient for a
graph to be a visibility graph. Finally, in 2005 Streinu proposed a counter example for this
conjecture [18].

Existential theory of the reals (∃R) is a complexity class that was implicitly introduced in
1989 [3], introduced by Shor in 1991 [17] and explicitly defined by Schaefer in 2009[16]. It is the
complexity class of problems which can be reduced to the problem of deciding, whether there
is a solution for a Boolean formula φ : {True, False}n → {True, False} in propositional
logic, in the form φ(F1(X1, X2, ..., XN), F2(X1, X2, ..., XN), ..., Fn(X1, X2, ..., XN)), where
each Fi : RN → {True, False} consists of a polynomial function Gi : RN → R on some real
variables, compared to 0 with one of the comparison operators in {<,≤,=, >,≥} (for example
Gi(X1, X2) = X3

1X
2
2 −X1X

3
2 and Fi(X1, X2) ≡ Gi(X1, X2) < 0). Clearly, satisfiability of

quantifier free Boolean formulas belong to ∃R. Therefore, ∃R includes all NP problems. In
addition, ∃R belongs to PSPACE [5] and we have NP ⊆ ∃R ⊆ PSPACE. Many other
decision problems, especially geometric problems, belong to ∃R and some are complete for
this complexity class. Recognizing LineArrangement (Stretchability), simple order type,
intersection graphs of segments, recognizing visibility graphs of a point set, and intersection
graphs of unit disks in the plane are some problems which are complete for ∃R or simply
∃R-Complete [5]. The computational complexity of these problems was open for years and
after proving ∃R-Completeness, the study of the ∃R class and ∃R-Complete problems gets
more attention in computational geometry literature. We discuss the problem, Recognizing
LineArrangement (Stretchability), in more details in this paper in Section 2.

In this paper, we show that recognizing a visibility graph of polygon with holes is
∃R-Complete. In this problem we assume that the sequence of vertices corresponding to the
boundary of the polygon and its holes, is given as input1

1 While (in Dec-2017) we submitted this result to SOCG2018 and later submitted it to arXiv in Apr-
2018[4], in an independent work by Hoffmann and Merckx[13] in Jan-2018 they used another technique
to prove the ∃R-Completeness of recognizing the visibility graphs of polygon with holes. First, they
proved the ∃R-Completeness of recognizing the AllowableSequences and then reduced this problem to
recognizing the visibility graphs of polygon with holes.

H. Boomari, M. Ostovari and A. Zarei 4:3

2 Preliminaries and Definitions

2.1 Line arrangement and stretchability

Considering a set of lines in the plane, the problem of describing their arrangement is
called LineArrangement. This is an important and fundamental problem in combinatorics
and a well-studied problem in computational geometry. This description for a set of lines
l1, l2, ..., ln consists of their vertical order with respect to a vertical line to the left of all their
intersections, and for each line li, the order of lines that are intersected by li when we traverse
li from left to right (we assume that none of the input lines li is vertical). Recognizing
whether there can be a set of lines in the plane with the given LineArrangement, is called
Recognizing LineArrangement or simply LineArrangement problem. When the lines are in
general position (all pairs of lines intersect and no 3 lines intersect at the same point) the
problem is called SimpleLineArrangement. It has been proved that SimpleLineArrangement
is ∃R-Complete [5, 14].

A pseudo-line is a monotone curve with respect to the X axis. Assuming that no pair of
pseudo-lines intersect each other more than once, we can describe an instance of recognizing
PseudoLineArrangement problem in the same way as we did for LineArrangement. However,
Recognizing PseudoLineArrangement belongs to the P complexity class and it can be decided
with a Turing machine in polynomial time [12]. A pseudo code implementation and the
details of this algorithm has been given in [4] and depicted in Figure 1.

l1

l2

l3

l4

l1

l2

l3

l4

l5

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

(a) (b)

(c) (d)

P

Figure 1 The reconstruction algorithm for PseodoLineArrangement.

Trivially, if an instance of the LineArrangement problem is realizable, it has a Pseudo-
LineArrangement realization as well. On the other hand, if an instance of the PseudoLin-
eArrangement problem has a realization in which all segments of each pseudo-line lie on the
same line, the input instance has also a LineArrangement realization as well.

Therefore, we can describe the LineArrangement problem as follows:
Is it possible to stretch a PseudoLineArrangement of a given line arragement description
such that each pseudo-line lies on a single line?

This problem is known as Stretchability. As stated before, pseudo-line arragement belongs
to the P complexity class and can be recognized and reconstructed efficiently. Therefore,
∃R-Completeness of LineArrangement implies that Stretchability is ∃R-Complete.

EuroCG’19

4:4 Recognizing Visibility Graphs of Polygons with Holes

2.2 Visibility graph of a polygon with holes
A polygon with holes is a simple polygon that has a set of non-colliding areas (simple polygons)
inside it. The internal areas of the holes belong to the outside area of the polygon. In these
polygons, two vertices are visible from each other if their connecting segment completely lies
inside the polygon. The visibility graph of a polygon with holes is a graph whose vertices
correspond to the vertices of the polygon and the holes, and in this graph there is an edge
between two vertices if and only if their corresponding vertices in the polygon are visible
from each other (see Fig. 2). In this paper, we assume that along with the visibility graph,
we have the cycles that correspond to the order of vertices on the boundary of the polygon
and the holes. The cycle that corresponds to the external boundary of the polygon is called
the external cycle(see Fig. 2).

A

B

C

E D

a

b

c

A

B

C

E D

a

b

c

(a) (b)

Figure 2 A polygon with one hole (a), and its visibility graph (b).

3 Complexity of Recognizing Visibility Graphs of Polygons with Holes

In this section, we show that recognizing a visibility graph of polygon with holes is
∃R-Complete. This is done by reducing an instance of the stretchability problem to an
instance of this problem.

In Section 2.1 we showed that we can describe the line arragement problem as an instance
of stretchability of pseudo-lines in which each pseudo-line is composed of a chain of segments
and the break-points of these chains(except the first and the last endpoints of the chains)
correspond to the intersection points of the pseudo-lines. We build a visibility graph G, an
external cycle P, and a set of boundary cycles H from an instance of such a stretchability
problem, and prove that the pseudo-line arragement is stretchable in the plane if and only if
there exists a polygon with holes whose visibility graph is G, its external cycle is P and the
set of boundary cycles of its holes is H.

Assume that (L,S) is an instance of the stretchability problem where, as described in [4],
L = 〈l1, l2, ..., ln〉 is the sequence of the pseudo-lines and S = 〈S1, S2, ..., Sn〉 is the sequence
of the intersections of these pseudo-lines in which Si = 〈la(i,1),...,a(i,n−1)〉 is the order of lines
intersected by li. Let denote by (G,P,H) the corresponding instance of the visibility graph
realization in which G is the visibility graph, P is the external cycle of the outer boundary of
the polygon and H = {H1, H2, ...,Hk} is the set of boundary cycles of its holes. To build
this instance, consider an example of such an (L,S) instance shown in Fig. 3-a. This figure
shows a pseudo-line realization obtained from the pseudo-line reconstruction algorithm for
an instance of four pseudo-lines. If this instance is stretchable, like the one shown in Fig. 3-b,
we can build a polygon with holes like the one shown in Fig. 3-c. The outer boundary of this
polygon and the boundary of its holes lie along a set of convex curves connecting the endpoints
of each stretched pseudo-line. Precisely, for each stretched pseudo-line li, as in Fig. 3-b, there
is a pair of convex chains on both of its sides which connect its endpoints. These pair of
convex chains are sufficiently close to their corresponding stretched pseudo-lines, and their

H. Boomari, M. Ostovari and A. Zarei 4:5

break-points are the intersection points of these chains(like point o in Fig. 3-c). This pair of
convex chains, for each pseudo-line li, makes a convex polygon which is called its channel
and is denoted by Ch(li). The outer boundary of the target polygon and the boundary of its
holes are obtained by removing those segments of the chains that lie inside another channel
(see Fig. 3-c). Note that, we do not have the stretched realization of (L,S) instance of the
stretachability problem. But, from the pseudo-line realization, we can determine G, P and
H of the corresponding instance (G,P,H) in polynomial time. As shown in Fig. 3-d, P and
H are obtained by imaginary drawing a channel for each pseudo-line li. Finally, the vertex
set of graph G is the set of all break-points of these convex chains, and, two vertices are
connected by an edge if and only if they belong to the boundary of the same channel. The
following theorem shows the relationship between (L,S) and (G,P,H) problem instances.
The detailed proof of the theorem is given in [4].

o

l1

l2

l3

l4

l1

l2

l3

l4

l1

l2

l3

l4

(a) (b)

(c) (d)

Figure 3 A polygon with holes which is constructed from an instance of the PseudoLineArrange-
ment problem.

I Lemma 1. An instance (L,S) of the stretchability problem is realizable if and only if its
corresponding (G,P,H) instance of the visibility graph is realizable.

It is easy to show that recognizing a visibility graph of a polygon with holes belongs to
∃R. It can be done by constructing a set of boolean formulas on a set of functions Fi : R→ R
on the set of vertices (a pair of two real numbers) of the polygon with hole, that verifies
the visibility constrains in it. While the stretchability problem is ∃R-Complete and our
reduction is polynomial, Theorem 1 implies the ∃R-Hardness of recognizing visibility graph
of polygon with holes. Therefore, we have the following theorem.

I Theorem 2. Recognizing visibility graph of polygon with holes is ∃R-Complete.

4 Conclusion

In this paper, we showed that the visibility graph recognition problem is ∃R-Complete for
polygons with holes.

EuroCG’19

4:6 Recognizing Visibility Graphs of Polygons with Holes

References
1 James Abello, Hua Lin, and Sekhar Pisupati. On visibility graphs of simple polygons.

Congressus Numerantium, pages 119–119, 1992.
2 Calin Belta, Volkan Isler, and George J Pappas. Discrete abstractions for robot motion

planning and control in polygonal environments. IEEE Transactions on Robotics, 21(5):864–
874, 2005.

3 Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines. Bulletin
of the American Mathematical Society, 21(1):1–46, 1989.

4 Hossein Boomari, Mojtaba Ostovari, and Alireza Zarei. Recognizing visibility graphs of
polygons with holes and internal-external visibility graphs of polygons. arXiv preprint
arXiv:1804.05105, 2018.

5 John Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 460–467. ACM, 1988.

6 Paul Colley, Anna Lubiw, and Jeremy Spinrad. Visibility graphs of towers. Computational
Geometry, 7(3):161–172, 1997.

7 Hazel Everett. Visibility graph recognition - PhD thesis. 1990.
8 Hazel Everett and Derek G. Corneil. Recognizing visibility graphs of spiral polygons. Jour-

nal of Algorithms, 11(1):1–26, 1990.
9 Subir K. Ghosh. On recognizing and characterizing visibility graphs of simple polygons. In

Scandinavian Workshop on Algorithm Theory, volume LNCS 318, pages 96–104. Springer,
1988.

10 Subir K. Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete & Computational Geometry, 17(2):143–162, 1997.

11 Subir K. Ghosh. Visibility algorithms in the plane. Cambridge University Press, 2007.
12 Jacob E Goodman and Richard Pollack. Allowable sequences and order types in discrete

and computational geometry. In New trends in discrete and computational geometry, pages
103–134. Springer, 1993.

13 Udo Hoffmann and Keno Merckx. A universality theorem for allowable sequences with
applications. arXiv preprint arXiv:1801.05992, 2018.

14 Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. Journal of Combina-
torial Theory, Series B, 62(2):289–315, 1994.

15 Jürgen Richter-Gebert. Mnëv’s universality theorem revisited. Séminaire Lotaringien de
Combinatorie, 1995.

16 Marcus Schaefer. Complexity of some geometric and topological problems. In International
Symposium on Graph Drawing, pages 334–344. Springer, 2009.

17 Peter Shor. Stretchability of pseudolines is NP-hard. Applied Geometry and Discrete
Mathematics-The Victor Klee Festschrift, 1991.

18 Ileana Streinu. Non-stretchable pseudo-visibility graphs. Computational Geometry,
31(3):195–206, 2005.

19 Seth Teller and Pat Hanrahan. Global visibility algorithms for illumination computations.
In Proceedings of the 20th annual conference on Computer graphics and interactive tech-
niques, pages 239–246. ACM, 1993.

Approximating the Sweepwidth of Polygons with
Holes
Dorian Rudolph1

1 Paderborn University
dorian@mail.upb.de

Abstract
Consider a contaminated polygon P with the goal of decontaminating P by sweeping it with
barrier curves, where the contaminant spreads instantly along all paths not blocked by a barrier.
The maximum length of curves in a sweep needed to decontaminate P is defined as its sweepwidth.
This problem was introduced Karaivanov et. al (2014) [8] who also proved that computing the
sweepwidth of even simple, orthogonal polygons is NP-hard. Therefore, we propose a polynomial
time O(log n)-approximation algorithm for the sweepwidth of n-vertex polygons with holes. We
accomplish this by rasterizing the polygon into a grid which allows a reduction to the well known
node search problem on graphs. In order to obtain a polynomially sized rasterization, we first
apply a compression technique to the polygon.

1 Introduction

Karaivanov et al. [8] introduced the problem of decontaminating an initially contaminated
planar region by sweeping it with moving barriers in the form of curves while the contaminant
instantly spreads along any path that is not blocked by a barrier. It can be seen as an
extension of the node search problem introduced by Kirousis and Papadimitriou [9] where a
graph has to be decontaminated with as few searchers (or pebbles) as possible. Next, we will
formally define these problems.

Sweepwidth [8]. Let P be a closed n-vertex polygon with holes and no intersecting edges.
P ⊂ R2 shall also denote the set of points on the polygon including its boundary. Every point
of P is either contaminated or decontaminated. We sweep P using a set of moving barriers
b : [0, 1]→ 2P , where the barriers at any time t ∈ [0, 1] consist of the points b(t). All points
in b(t) become decontaminated. Initially, all points of P (except b(0)) are contaminated.
A decontaminated point q becomes recontaminated at time t if there exists a path from a
contaminated point p to q not intersecting b(t). We say b decontaminates P if all points in
P are decontaminated at time 1 (see [8] for a more formal definition). We restrict barriers
to piecewise continuously differentiable barrier curves with a finite number of pieces and
barriers. This allows us to describe a sweep by a function b : [0, 1]2 → P such that b(s, t) is
piecewise continuous in both curve parameter s and time t, and for any t, b(·, t), is piecewise
continuously differentiable. The function s 7→ b(s, t) describes the barriers at time t. We
measure the total length of barriers at time t as the sum of the arc lengths of all pieces of
b(·, t). The bottleneck length of b is defined as the supremum over time of the sum of the
lengths of barriers in b(·, t). An exemplary sweep is depicted in Fig. 1. We refer to the
minimum bottleneck length of all decontamination sweeps of P as sweepwidth of P , denoted
sw(P). Karaivanov et al. show that each decontamination sweep can be transformed into
a canonical sweep without increasing its bottleneck length, i. e., a sweep where all barriers
consist of one or two straight line segments connecting two points on the boundary of P .
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

5:2 Approximating the Sweepwidth of Polygons with Holes

Figure 1 Incomplete sweep of a polygon with holes. The contaminated area is depicted as light
gray, barriers as dark lines.

Node search [9]. Let G = (V, E) be an undirected graph. All edges e ∈ E are initially
considered contaminated. To decontaminate G, we can place and remove searchers on
nodes. We refer to this sequence of moves as node-search strategy. Nodes with a searcher are
considered guarded. An edge e = (v, w) ∈ E is decontaminated if v and w are guarded. e is
recontaminated if there exists a path W of unguarded nodes from u or v to a node incident
to a contaminated edge. Let the node-search number of G, ns(G), be the minimum number
of searchers needed to decontaminate all edges of G.

Related Work. For the polygon decontamination problem defined above, Karaivanov et al.
[8] construct optimal sweeps for rather simple classes of polygons and prove that computing
sweepwidth is NP-hard for simple, orthogonal polygons. To the best of our knowledge, no
approximation algorithms for the sweepwidth of general polygons are known. That problem
is generalized by Markov et al. [12] to the directed sweepwidth where barriers must start and
end on predefined parts of the boundary. They also give a rather involved lower bound for
the sweepwidth based on the sweepwidth of three non-intersecting subshapes. Various other
search problems for polygons have been analyzed in literature, including observing the entire
polygon (art gallery problem) [13], or agents having to catch [10] or spot [1] an intruder.
Another related problem is sweeping terrains with aerial vehicles [3]. If restricted to a single
curve and simple polygons, sweepwidth is equivalent to the elastic ring-width [14], solved in
time O(n2 log n) [6]. Hence, ring-width constitutes an upper bound on sweepwidth. However,
that bound can be arbitrarily bad, e. g., for an arbitrarily narrow T-shaped polygon.

Regarding different search problems on graphs, we refer the reader to the survey [4].

Our Contribution. We develop a polynomial time O(log n)-approximation algorithm for
the sweepwidth of n-vertex polygons with holes. We do this by rasterizing the polygon as a
grid graph and computing its node-search number. It will follow that O(1)-approximation of
sweepwidth is at most as hard as O(1)-approximation of the node-search number.

2 Algorithm

We will construct a sweep of P with a bottleneck length of O(log n · sw(P)) by rasterizing P

using hexagonal cells (each cell is a closed set). Their adjacency graph GP is an induced sub-

D. Rudolph 5:3

graph of the infinite triangular lattice graph 1. First, we will argue sw(P) = Θ(ns(GP)) (using
an appropriate scale). Afterwards, we describe a compression technique to construct a polygon
P ′ with sw(P) = Θ(sw(P ′)) and polynomially sized GP ′ . We can compute an O(log n)-
approximation of ns(GP ′) in polynomial time, also yielding an O(log n)-approximation of
sw(P).

2.1 Rasterization
Cell size. Let RP be the diameter of the largest inscribed circle in P . We define the size
of cells, i. e., the length of edges in the lattice, as rP := RP /n. As sw(P) ≥ RP [8], we can
guard O(n) cells throughout the entire sweep using curves of length O(sw(P)). To compute
RP , we construct the Voronoi diagram of the edges of P in time O(n log n) with Fortune’s
algorithm [5]. One of the Voronoi nodes must be the center of the largest inscribed circle.

Cell categories. We can now describe the rasterization process. There are different types
of cells that will need to be treated differently by the algorithm. To that end, we introduce
categories for cells intersecting P . Each cell not completely outside P belongs to exactly one
of the following categories:
(a) Blocked cell: cell that either contains a vertex of P , or is completely inside P and is

adjacent to two cells on opposing sides that are both intersected by at least one edge
(dark gray in Fig. 2).

(b) Full cell: cell fully inside P that is not a blocked cell (white).
(c) Empty cell: any other cell (light gray).
All cells between the outermost blocked cells belonging to the same edge pair that do not
contain a vertex shall be redefined as empty cells (see striped cells in Fig. 3).

If m cells intersect P , then we can easily compute the categories in time polynomial in
m. Let GP be the graph induced by full cells. We will argue that there are O(n) blocked
cells and that placing barriers around them separates cells belonging to different connected
components of GP .

I Lemma 1. There are O(n) blocked cells.

I Theorem 2. It holds that sw(P) = Θ(ns(GP) · rP).

Proof sketch. In order to prove sw(P) = O(ns(GP) · rP), we construct a sweep by first
placing barriers at a distance of two around all blocked cells and decontaminate the inside
of these barriers. One can show that this separates cells belonging to different connected
components of GP . Hence, we can decontaminate the resulting regions of P separately.
Regions without full cells can easily be decontaminated with a curve of length O(rP). For
each component of GP , consider an optimal node-search strategy. Whenever a searcher is on
a node of GP , we place barriers at a distance of 2 around the corresponding cell. This can
be shown to decontaminate regions of full cells including adjacent empty cells.

GP has a connected component C such that ns(GP) = ns(C) = Ω(n), as separate
connected components can be decontaminated one after another. ns(C) = Ω(n) follows from
the fact that it takes Ω(n) searchers to decontaminate an Ω(n)× Ω(n) parallelogram of cells,
which is contained in the largest inscribed circle. Let PC ⊂ P be the polygon of cells in C. It
is straightforward to prove sw(PC) = Θ(ns(PC) · rP). sw(P) = Ω(ns(GP) · rP) follows. J

1 We use hexagonal cells since then GP is planar, which would not be the case for square cells due to
diagonal adjacencies.

EuroCG’19

5:4 Approximating the Sweepwidth of Polygons with Holes

Figure 2 Polygon rasterized into a hexagonal grid. Blocked cells are depicted dark gray, empty
cells light gray, and full cells white.

Figure 3 Cells between outermost blocked cells of an edge pair are redefined as empty (marked
with dots).

Since GP is planar, we can compute an O(1)-approximation of its treewidth tw(GP) in time
O(m log4 m) [7] if GP has m nodes. As ns(GP) = Ω(tw(GP)) and ns(GP) = O(tw(GP) log m)
[2], we have an O(log m)-approximation for ns(GP).

2.2 Polygon Compression
GP may still contain arbitrarily many cells if P contains long, narrow sections. Thus, we
will compress intervals along the x- and y-axes such that the resulting polygon P ′ can be
rasterized using a polynomial number of cells. In the following, we will describe how to
compress an interval along the x-axis where P has no vertices. We only consider maximal
such intervals with a length greater than (n + 6)RP and compress them down to that length,
thereby bounding the distance between vertices. Compressed intervals will not overlap.

Let I ′ := [x′0, x′1] ⊂ R, x′1 − x′0 > (n + 6)RP be maximal such that no vertices of P have

D. Rudolph 5:5

Figure 4 Blocked cells between two polygon edges.

their x-coordinate inside I ′. That interval will look like the top of Fig. 5, i. e., there are k

pairs of subsegments of edges, bordering part of the polygon. For each pair, we compute
their minimum distances d1, . . . , dk which are bounded by RP and the distance of the two
points of the intersection of the edge with the line x = x0 or x = x1. Then, we cut out
I := [x0, x1] := [x′0 + 2RP , x′1 − 2RP], and replace that part as illustrated at the bottom
of Fig. 5. More specifically, each pair of edges is replaced by a rectilinear path of width
di from left to right, beginning with the lowest edge. The opening between the edges is
constricted to di on both sides. For each pair of edges i, let yi (y′i) be the y-coordinate of the
intersection of the lower edge with the left (right) boundary of I. W.l.o.g., we may assume
yi ≤ y′i. We then replace the lower edge by a path constructed as follows. Begin in (x0, yi)
and move right until either reaching x1 (see d1 in Fig. 5) or an edge of pair i− 1 (see d3).
We can clearly move right until at least x1 −

∑i−1
j=1 di ≥ x1 − n ·RP . Then we move straight

up to y′i and continue to (x1, y′i). Since x1 − x0 ≥ (n + 2) · RP , we move a distance of at
least RP right before moving up. The upper edge is replaced analogously such that that the
distance between parallel segments is di. There will be an interval I ′′ with a size of at least
x1 − x0 − (n + 1) ·Rp ≥ RP inside I where all edges are parallel to the x-axis. We compress
I ′′ to a length of RP . We obtain a polygon P ′ in polynomial time by performing the above
steps on P both in x- and y-direction.

I Lemma 3. P ′ has O(n4) vertices and intersects a polynomial number of cells of size
rP ′ = O(RP /n4).

Consequently, the size of GP ′ is polynomial in n. What remains to show is that the
compression steps did not change sweepwidth by much.

I Lemma 4. Let P̃ be the result of compressing P along one axis. Then sw(P̃) = Θ(sw(P)).

Proof sketch. Given a canonical decontamination sweep of P , we construct a decontamina-
tion sweep b of P which does not maintain barriers inside each interval Î := [x0−RP , x1 +RP],
where x0, x1 are defined as above. Instead, b only uses barriers inside Î for sweeping the
region between edge pairs and subsequently places barriers just outside Î to block off that
region if necessary. We can show that this construction increases bottleneck length by at
most a constant factor. Next, we construct a sweep b̃ of P̃ from b, where b and b̃ have the
same barriers outside compressed regions and sweep corresponding compressed regions at
the same time. This allows us to show sw(P̃) = O(sw(P)). sw(P) = O(sw(P̃)) follows
analogously. J

The above lemmas directly imply the final theorem.

EuroCG’19

5:6 Approximating the Sweepwidth of Polygons with Holes

Figure 5 Illustration of polygon compression. d1, d2, d3 are the minimum distance between their
respective lines. The area inside P is depicted gray.

I Theorem 5. There exists a polynomial time O(log n)-approximation algorithm for com-
puting sw(P).

The exact computation of ns(GP) is in NP [11], which implies the following corollary.

I Corollary 6. O(1)-approximation of the sweepwidth of is in NP.

I Remark. If P is simple, it can be shown that sw(P) = O(RP log n), which immediately
gives an O(log n)-approximation.

D. Rudolph 5:7

3 Conclusion

We constructed a polynomial time approximation algorithm for the relatively novel problem
of computing a polygon’s sweepwidth. Our proofs imply explicit constructions of sweeps.
However, the runtime can be considered prohibitively bad. Improving approximation factors
and runtime, potentially also for simple polygons, might therefore be interesting future work.

Acknowledgments. I thank Christian Scheideler and Kristian Hinnenthal for their help
and advice.

References
1 Binay Bhattacharya, Tsunehiko Kameda, and John Z. Zhang. Surveillance of a polygo-

nal area by a mobile searcher from the boundary: Searchability testing. In 2009 IEEE
International Conference on Robotics and Automation, pages 2461–2466, May 2009.

2 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1):1 – 45, 1998.

3 Alon Efrat, Mikko Nikkilä, and Valentin Polishchuk. Sweeping a terrain by collaborative
aerial vehicles. In Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL’13, pages 4–13, New York,
NY, USA, 2013. ACM.

4 Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed
graph searching. Theoretical Computer Science, 399(3):236 – 245, 2008. Graph Searching.

5 Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2(1):153, Nov
1987.

6 Jacob E. Goodman, János Pach, and Chee K. Yap. Mountain climbing, ladder moving, and
the ring-width of a polygon. The American Mathematical Monthly, 96(6):494–510, 1989.

7 Qian-Ping Gu and Gengchun Xu. Near-linear time constant-factor approximation algorithm
for branch-decomposition of planar graphs. In Dieter Kratsch and Ioan Todinca, editors,
Graph-Theoretic Concepts in Computer Science, pages 238–249, Cham, 2014. Springer In-
ternational Publishing.

8 Borislav Karaivanov, Minko Markov, Jack Snoeyink, and Tzvetalin S. Vassilev. Decontam-
inating planar regions by sweeping with barrier curves. In 26th Canadian Conference on
Computational Geometry, CCCG 2014, pages 206–211, 2014.

9 Lefteris M. Kirousis and Christos H. Papadimitriou. Searching and pebbling. Theoretical
Computer Science, 47:205–218, 1986.

10 Kyle Klein and Subhash Suri. Catch me if you can: Pursuit and capture in polygonal
environments with obstacles. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, AAAI’12, pages 2010–2016. AAAI Press, 2012.

11 Andrea S. LaPaugh. Recontamination does not help to search a graph. J. ACM, 40:224–245,
1993.

12 Minko Markov, Vladislav Haralampiev, and Georgi Georgiev. Lower bounds on the directed
sweepwidth of planar shapes. 2015.

13 Jorge Urrutia. Chapter 22 - art gallery and illumination problems. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 973 – 1027. North-Holland,
Amsterdam, 2000.

14 Chee-Keng Yap. How to move a chair through a door. IEEE Journal on Robotics and
Automation, 3(3):172–181, June 1987.

EuroCG’19

Probabilistic smallest enclosing ball in high
dimensions via subgradient sampling∗

Amer Krivošija1 and Alexander Munteanu2

1 Department of Computer Science, TU Dortmund, Germany
amer.krivosija@tu-dortmund.de

2 Department of Computer Science, TU Dortmund, Germany
alexander.munteanu@tu-dortmund.de

Abstract
We study a variant of the median problem for a collection of point sets in high dimensions. This
generalizes the geometric median as well as the (probabilistic) smallest enclosing ball (pSEB)
problems. Our main objective and motivation is to improve the previously best algorithm for
the pSEB problem by reducing its exponential dependence on the dimension to linear. This is
achieved via a novel combination of sampling techniques for clustering problems in metric spaces
with the framework of stochastic subgradient descent. As a result, the algorithm becomes appli-
cable to shape fitting problems in Hilbert spaces of unbounded dimension via kernel functions.
We present an exemplary application by extending the support vector data description (SVDD)
shape fitting method to the probabilistic case. This is done by simulating the pSEB algorithm
implicitly in the feature space induced by the kernel function.

1 Introduction

The (probabilistic) smallest enclosing ball (pSEB) problem in Rd is to find a center that
minimizes the (expected) maximum distance to the input points (see Definition 3.1). It
occurs often as a building block for complex data analysis and machine learning tasks like
estimating the support of high dimensional distributions, outlier detection, novelty detection,
classification and robot gathering [5, 15, 16, 18]. It is thus very important to develop efficient
algorithms for the base problem. This involves reducing the number of points but also keeping
the dependence on the dimension as low as possible. We study both objectives and focus on
a small dependence on the dimension. This is motivated as follows. Kernel methods are a
common technique in machine learning. These methods implicitly project the d-dimensional
input data into much larger dimension D where simple linear classifiers or spherical data
fitting methods can be applied to obtain a non-linear separation or non-convex shapes in the
original d-dimensional space. The efficiency of kernel methods is usually not harmed since
inner products and thus distances in the D-dimensional space can be evaluated in O(d) time.

In some cases, however, a proper approximation relying on sampling and discretizing the
ambient solution space may require a polynomial or even exponential dependence on D. The
algorithm of Munteanu et al. [11] is the only fully polynomial time approximation scheme
(FPTAS) and the fastest algorithm to date for the pSEB problem in fixed dimension. However,
it suffers from the stated problems. In particular, the number of realizations sampled by
their algorithm had a linear dependence on D stemming from a ball-cover decomposition
of the solution space. The actual algorithm made a brute force evaluation (on the sample)

∗ The full version of this paper will appear at SoCG 2019. This work was supported by the German
Science Foundation (DFG) Collaborative Research Center SFB 876 "Providing Information by Resource-
Constrained Analysis", projects A2 and C4.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

6:2 Probabilistic smallest enclosing ball in high dimensions

of all centers in a grid of exponential size in D. This is prohibitive in the setting of kernel
methods since the implicit feature space may have infinite dimension. Even if it is possible
to exploit the up to n-dimensional subspace spanned by n points in infinite dimensions, we
would still have D = n � d leading to exponential time algorithms. To make the pSEB
algorithm viable in the context of kernel methods and generally in high dimensions, it is
desirable to reduce the dependence on the dimension to a small polynomial occurring only in
evaluations of inner products and distances of low dimensional vectors.

Related work: The study of probabilistic clustering problems was initiated by Cormode
and McGregor [7]. They developed approximation algorithms for the probabilistic settings
of k-means, k-median as well as k-center clustering. Munteanu et al. [11] gave the first
fully polynomial time (1 + ε)-approximation scheme (FPTAS) for the pSEB problem, in
fixed dimensions, in time O(nd/εO(1) + 1/εO(d)). We reduce its exponential dependence
on d to linear, using sampling techniques. The stochastic subgradient descent from convex
optimization [6, 12] is a quite popular and often only implicitly used technique in the core-
set literature [2, 4, 10]. Indyk and Thorup [8, 17] showed that a uniform sample of size
O(logn/ε2) is sufficient to approximate the discrete metric 1-median within a factor of (1+ε).
We adapt these ideas to find a (1 + ε)-approximation to the best center in our setting.

Kernel functions simulate an inner product space in large or even unbounded dimensions
but can be evaluated via simple low dimensional vector operations in the original dimension
of input points [14]. This enables simple spherical shape fitting via a smallest enclosing ball
algorithm in the high dimensional feature space, which implicitly defines a more complex
and even non-convex shape in the original space. The smallest enclosing ball problem in
kernel spaces is well-known as the support vector data description (SVDD) problem [16, 18].

1.1 Contributions and outline

We extend the geometric median in Euclidean space to the more general problem of finding
a center c ∈ Rd that minimizes the sum of maximum distances to sets of points in a given
collection of N point sets. We show how to solve this problem via estimation and sampling
techniques combined with a stochastic subgradient descent algorithm, see Theorem 2.2.

The elements in the collection are sets of n points in Rd. In [11] they were summarized
via strong coresets of size 1/εΘ(d). This is not an option in high dimensions. Reviewing
the techniques of [1] we show that no reduction below min{n, exp(d1/3)} is possible unless
sacrificing an additional approximation factor of roughly

√
2, see Theorem 2.3. However, it is

possible to achieve roughly a (
√

2 + ε)-approximation in streaming via the blurred-ball-cover
[1] of size O(1/ε3 · log 1/ε), and in an off-line setting via weak coresets [2, 3] of size O(1/ε).

We show in Theorem 3.2 how Theorem 2.2 improves the previously best FPTAS for
the pSEB problem from O(dn/ε3· log 1/ε+ 1/εO(d)) to O(dn/ε4· log2 1/ε). In particular the
dependence on the dimension d is reduced from exponential to linear and more precisely
occurs only in distance evaluations between points in d-dimensional Euclidean space, but not
in the number of sampled points nor in the number of candidate centers to evaluate.

This enables working in very high D-dimensional Hilbert spaces whose inner products and
distances are given implicitly via positive semidefinite kernel functions. These functions can
be evaluated in O(d) time although D is large or even unbounded. We extend the well-known
SVDD method to the probabilistic case, see Theorem 3.3.

A. Krivošija and A. Munteanu 6:3

1.2 General notation
We denote the set of positive integers up to n ∈ N by [n] = {1, . . . , n}. For any convex
function f : Rd → R we denote by ∂f(x) =

{
g ∈ Rd | ∀y ∈ Rd : f(x)− f(y) ≤ 〈g, x− y〉

}
the

set of subgradients of f at x. We assume the error parameter satisfies 0 < ε < 1/9.

2 A generalized median problem

The pSEB problem can be reduced to two different types of 1-median problems [11]. One of
them is defined on the set of all non-empty locations in Rd where probabilistic points may
appear, equipped with the Euclidean distance. The other is defined on the collection of all
possible realizations of probabilistic point sets, and the distance measure between a center
c ∈ Rd and a realization Pi ⊂ Rd is m(c, Pi) = maxp∈Pi

‖c− p‖. We state a generalized
median problem that we call the set median problem and covers both of these cases.

I Definition 2.1 (set median problem). Let P = {P1, . . . , PN} be a family of finite non-empty
sets where ∀i ∈ [N] : Pi ⊂ Rd and n = max{|Pi| | i ∈ [N]}. The set median problem on P
consists in finding a center c ∈ Rd that minimizes the cost function

f(c) =
N∑

i=1
m(c, Pi).

Note that in case of singleton sets, the set median problem is equivalent to the well-known
Fermat-Weber problem (a.k.a. 1-median or geometric median). Also, for N = 1 it coincides
with the smallest enclosing ball or 1-center problem. For both of these problems there are
known algorithms based on the subgradient method from convex optimization [2, 6].

The Lipschitz constant of the function f can be bounded by N . We want to minimize
f via the subgradient method, see [12]. For that sake we need to compute a subgradient
g(ci) ∈ ∂f(ci) at the current center ci. The subgradient computation takes O(dnN) time to
calculate, since in each of the N terms of the sum we maximize over |Pi| ≤ n distances in d
dimensions to find a point in Pi that is furthest away from c. To remove the dependence
on N we replace the exact subgradient g(ci) by a uniform sample of only one nonzero term
which points into the right direction in expectation. Then we can adapt the deterministic
subgradient method from [12] using the random unbiased subgradient in such a way that the
result is in expectation a (1 + ε)-approximation to the optimal solution. Given an initial
center c0, a fixed step size s, and a number of iterations `, our algorithm iteratively picks
a set Pj ∈ P uniformly at random and chooses a point pj ∈ Pj that attains the maximum
distance to the current center. This point is used to compute an approximate subgradient.
The algorithm finally outputs the best center found in all iterations.

To bound in expectation the quality of the output of our algorithm to be a (1 + ε)-
approximation, we choose the values of parameters c0, s, and ` in an appropriate way. It
suffices to run our algorithm for ` ∈ O(1/ε2) iterations, and to choose c0 to be an arbitrary
point in a randomly chosen input set from P. We estimate the average cost on a sample of
size 1/ε [9], which bounds the value of s. It remains to describe how to find the best center
out of all iterations of our algorithm efficiently. We cannot do this exactly since evaluating
the cost even for one single center takes time O(dnN). However, we use a sampling technique
[8, 17] (cf. the related work above), adapted here to work in our setting, to find a point
that is a (1 + ε)-approximation of the best center in a finite set of candidate centers. The
main difference is that in the original work the set of input points and the set of candidate
solutions are identical. In our setting, however, we have that the collection of input sets and

EuroCG’19

6:4 Probabilistic smallest enclosing ball in high dimensions

the set of candidate solutions may be completely distinct. Putting all pieces together we
have the following Theorem.

I Theorem 2.2. Consider an input P = {P1, . . . , PN}, where for every i ∈ [N] we have
Pi ⊂ Rd and n = max{|Pi| | i ∈ [N]}. There exists an algorithm that computes a center c̃
that is with constant probability a (1 + ε)-approximation to the optimal solution c∗ of the set
median problem (see Definition 2.1). Its running time is O(dn/ε4 · log2 1/ε).

The removal of the linear dependence on n for the maximum distance computations was
achieved in [11] via a grid based strong coreset of size 1/εΘ(d). However, here we focus on
reducing the dependence on d, and exponential is not an option if we want to work in high
dimensions. It turns out that without introducing an exponential dependence on d, we would
have to lose a constant approximation factor. We adapted the techniques of [1] to show
that no small data structure can exist for answering maximum distance queries to within a
factor of less than roughly

√
2. In comparison to the previous results, it is not limited to the

streaming setting, as in [1], and it is not restricted to subsets of the input, as in [13].

I Theorem 2.3. Any data structure that, with probability at least 2/3, α-approximates
maximum distance queries on a set S ⊂ Rd of size |S| = n, for α <

√
2
(
1− 2/d1/3), requires

Ω
(
min{n, exp

(
d1/3)}) bits of storage.

3 Applications

3.1 Probabilistic smallest enclosing ball
We apply our result to the pSEB problem, as given in [11]. In such a setting, the input is
a set D = {D1, . . . , Dn} of n discrete and independent probability distributions. The i-th
distribution Di is defined over a set of z possible locations qi,j ∈ Rd ∪ {⊥}, for j ∈ [z], where
⊥ indicates that the i-th point is not present in a sampled set, i.e., qi,j = ⊥ ⇔ {qi,j} = ∅. We
call these points probabilistic points. Each location qi,j is associated with the probability pi,j ,
such that

∑z
j=1 pi,j = 1, for every i ∈ [n]. Thus the probabilistic points can be considered

as independent random variables Xi. A probabilistic set X of probabilistic points is also a
random variable.

I Definition 3.1. ([11]) Let D be a set of n discrete distributions, where each distribution
is defined over z locations in Rd ∪ {⊥}. The pSEB problem is to find a center c∗ ∈ Rd that
minimizes the expected smallest enclosing ball cost: c∗ ∈ argminc∈Rd E [m(c,X)], where the
expectation is taken over the randomness of X ∼ D.

Our pSEB algorithm adapts the framework of [11], but plugging in Theorem 2.2 it differs
mainly in three points. First, the number of samples had a dependence on d hidden in the
O-notation. This is not the case any more. Second, the sampled realizations are not sketched
via coresets of size 1/εΘ(d) any more. Third, the running time of the actual optimization
task is reduced instead of an exhaustive grid search.

I Theorem 3.2. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. Let c̃ ∈ Rd be the output of our pSEB algorithm on input D.
Let ε < 1/9. With constant probability c̃ is a (1 + ε)-approximation for the pSEB problem,

EX [m(c̃, X)] ≤ (1 + ε) minc∈Rd EX [m(c,X)] .

The running time of our pSEB algorithm is O(dn · (z/ε3 · log 1/ε+ 1/ε4 · log2 1/ε)).

REFERENCES 6:5

Comparing to the result of [11], the running time is reduced from O(dnz/εO(1) + 1/εO(d)) to
O(dnz/εO(1)). The factor of d plays a role only in computations of distances between two
points in Rd. Further the sample size and the number of centers that need to be evaluated
do not depend on the dimension d any more. This is crucial in the following.

3.2 Probabilistic support vector data description (pSVDD)
We consider the SVDD problem, i.e., the SEB problem in kernel spaces, and show how to
extend it to its probabilistic version. Let K : Rd × Rd → R be a positive semidefinite kernel
function with feature map ϕ : Rd → H, where H is a high dimensional Hilbert space, say RD,
where D � d [14].

I Theorem 3.3. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. There exists an algorithm that implicitly computes c̃ ∈ H that
with constant probability is a (1 + ε)-approximation for the probabilistic SVDD problem. It is

EX [m(c̃, ϕ(X))] ≤ (1 + ε) minc∈H EX [m(c, ϕ(X))] ,

where the expectation is taken over the randomness of X ∼ D, and ϕ(X) = {ϕ(xi) | xi ∈ X}.
The running time of the algorithm is O(dn ·

(
z/ε3· log 1/ε+ 1/ε8· log2 1/ε

)
).

References

1 P. K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in high
dimensions. Algorithmica, 72(1):83–98, 2015.

2 M. Bădoiu and K. L. Clarkson. Smaller core-sets for balls. In Proceedings of the 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 801–802, 2003.

3 M. Bădoiu and K. L. Clarkson. Optimal core-sets for balls. Comput. Geom, 40(1):14–22,
2008.

4 M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pages
250–257, 2002.

5 M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by
mobile robots: Gathering. SIAM J. Comput., 41(4):829–879, 2012.

6 M. B. Cohen, Y. T. Lee, G. L. Miller, J. Pachocki, and A. Sidford. Geometric median
in nearly linear time. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 9–21, 2016.

7 G. Cormode and A. McGregor. Approximation algorithms for clustering uncertain data.
In Proceedings of the 27th Symposium on Principles of Database Systems (PODS), pages
191–200, 2008.

8 P. Indyk. High-dimensional Computational Geometry. PhD thesis, Stanford University,
2000.

9 A. Kumar, Y. Sabharwal, and S. Sen. Linear-time approximation schemes for clustering
problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010.

10 A. Munteanu and C. Schwiegelshohn. Coresets-methods and history: A theoreticians
design pattern for approximation and streaming algorithms. KI, 32(1):37–53, 2018.

11 A. Munteanu, C. Sohler, and D. Feldman. Smallest enclosing ball for probabilistic data.
In 30th Annual Symposium on Computational Geometry (SoCG), pages 214–223, 2014.

12 Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied
Optimization. Springer, New York, 2004.

EuroCG’19

6:6 REFERENCES

13 R. Pagh, F. Silvestri, J. Sivertsen, and M. Skala. Approximate furthest neighbor with
application to annulus query. Inf. Syst., 64:152–162, 2017.

14 B. Schölkopf and A. J. Smola. Learning with Kernels: support vector machines, regular-
ization, optimization, and beyond. Adaptive computation and machine learning series.
MIT Press, 2002.

15 M. Stolpe, K. Bhaduri, K. Das, and K. Morik. Anomaly detection in vertically partitioned
data by distributed core vector machines. In Proceedings of Machine Learning and
Knowledge Discovery in Databases - European Conference, (ECML/PKDD) Part III,
pages 321–336, 2013.

16 D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine Learning, 54
(1):45–66, 2004.

17 M. Thorup. Quick k-median, k-center, and facility location for sparse graphs. SIAM J.
Comput., 34(2):405–432, 2005.

18 I. W. Tsang, J. T. Kwok, and P. Cheung. Core vector machines: Fast SVM training on
very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.

Practical volume estimation by a new annealing
schedule for cooling convex bodies
Apostolos Chalkis1, Ioannis Z. Emiris2, and Vissarion Fisikopoulos3

1 Department of Informatics & Telecommunications
National & Kapodistrian University of Athens, Greece
achalkis@di.uoa.gr

2 Department of Informatics & Telecommunications
National & Kapodistrian University of Athens, Greece, and
ATHENA Research & Innovation Center, Greece
emiris@di.uoa.gr

3 Department of Informatics & Telecommunications
National & Kapodistrian University of Athens, Greece
vfisikop@di.uoa.gr

Abstract
We experimentally study the problem of estimating the volume of convex bodies, focusing on H-
and V-polytopes, as well as zonotopes. Although a lot of effort is devoted to practical algorithms
for H-polytopes there is no such method for the latter two representations. We propose a new,
practical method for all representations which also improves upon the performance of existing
methods on H-polytopes.

1 Introduction

Volume computation of a convex body in general dimension is a fundamental problem in
discrete geometry. In the past 28 years randomized algorithms, for this problem, have
made great progress. The two existing [5], [2] practical methods and the corresponding
implementations are based on theoretical results, but they make some practical adjustments
and show experimentally that they estimate volumes with small errors and high probability.
Our new practical method can be used for general convex bodies but in this paper we focus
on convex polytopes. A convex polytope P can be given as (a) an intersection of q halfspaces
(H-polytope), (b) a convex hull of a set of points (V-polytope) and (c) a Minkowski sum of k
segments (zonotope). We assume that an H-polytope is given by a matrix A ∈ Rq×d and a
vector b ∈ Rq, s.t. P = {x | Ax ≤ b} and a zonotope by a matrix G ∈ Rd×k which contains
the k segments column-wise.

Exact volume computation is #P-hard for H- and V-polytopes, including zonotopes [6].
There are several implementations in packages such as VINCI or qHull but, as expected,
they do not scale beyond, say, d ≥ 15 dimensions. The first approximation algorithm, is
given in [4] with complexity O∗(d23).

The main approach relies on a Multiphase Monte Carlo (MMC) sequence of convex bodies
P0 ⊆ · · · ⊆ Pm = P such that rejection sampling would efficiently estimate vol(Pi)/vol(Pi−1),
i.e. sample uniform points from Pi and reject/accept points in Pi−1. Assuming P is well-
rounded and also that the unit ball Bd is the largest inscribed ball in P , defining P1. Then
each convex body Pi is defined by the intersection of a scaled copy of Bd with P while the
largest ball, which defines Pm = P , is an enclosing ball of P . Then we estimate vol(P)
through the telescopic product (2). The critical complexity issue is to minimize the length
of the sequence in MMC, called m, while each ratio remains large enough to use rejection
sampling. In [7] the sequence of balls in MMC is defined deterministically for each instance,
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

07:2 Practical volume estimation

Figure 1 Balls in MMC in [7] left and from the annealing schedule right (r=0.25, δ=0.05)

while m = O(d lg d). Our method uses a new annealing schedule to define a sparser sequence
of balls, (Fig. 1), and a new practical convergence criterion for each ratio in the MMC in order
to minimize the number of sampled points to estimate each ratio. Moreover for zonotopes of
order ≤ 4 we do not use balls in MMC but we define a centrally symmetric convex polytope
which reduces the number of bodies (or phases) significantly.

Current state-of-the-art software is based on the above paradigms and, for H-polytopes,
typically uses Hit-and-Run (HnR). VolEsti [5], which scales up to hundreds of dimensions,
uses Coordinate-Direction HnR. We shall also juxtapose the software of [2] (for H-polytopes),
which implements [1] with an annealing schedule.

These implementations can not handle efficiently zonotopes or V-polytopes as they require
an inscribed ball (ideally the largest one). Additionally the software of [2] requires the number
of facets which is typically exponential in the dimension for both zonotopes and V-polytopes.
Our software outperforms for d ≤ 100 software for H-polytopes by [2] and [5]. Moreover
we provide the first practical method for V-polytopes and zonotopes that scales to high
dimensions (currently 100 for V-polytopes and low-order zonotopes).

We introduce some notions from statistics and refer to [3] for details. Given a random
sample of size ν from a random variable X ∼ N (µ, σ2) with unknown variance σ2, the (one
tailed) t-test checks the null hypothesis that the population mean exceeds a specified value
µ0 using the statistic t = x̄−µ0

s/
√
ν
∼ tν−1, where x̄ is the sample mean, s the sample standard

deviation and tν−1 is the t-student distribution with ν − 1 degrees of freedom. Given a
significance level α > 0 we test the null hypothesis for the mean value of the population,
H0 : µ ≤ µ0. We reject H0 if,

t ≥ tν−1,α ⇒ x̄ ≥ µ0 + tν−1,αs/
√
n, (1)

where tν−1,α is the critical value of the t-student distribution. Inequality 1 implies Pr(H0 true |
reject H0) = α. Otherwise we fail to reject H0.

2 Volume algorithm

Our method introduces some new algorithmic features. The MMC of the algorithm constructs
a sequence of convex bodies C1 ⊇ · · · ⊇ Cm intersecting the given polytope P ; we introduce
a new annealing schedule in order to minimize m. A typical choice for the Ci’s is a sequence
of co-centric balls but any set of convex bodies can be used in our method. We re-write the

A. Chalkis et al. 07:3

telescopic product in [7] as follows:

vol(P) =
vol(Pm)
vol(Cm)

vol(P1)
vol(P0)

vol(P2)
vol(P1)

· · · vol(Pm)
vol(Pm−1)

vol(Cm), where P0 = P, Pi = Ci ∩ P. (2)

The behavior of our method is parametrized by: the error of approximation ε, cooling
parameters 0 < r < 1, δ > 0, s.t. 0 < r + δ < 1 which are used in the schedule, significance
level α > 0 of the statistical tests, ν the degrees of freedom for the t-student used in t-tests,
parameter N that controls the number of points νN generated in Pi, and n the length of the
sliding window. From the telescopic product (2) it is clear that in practical estimations Cm
has to be a convex body whose volume is computed much faster than vol(P) (ideally by a
closed formula) and which can be sampled efficiently.

The annealing schedule specifies C1 ⊇ · · · ⊇ Cm using the following two statistical tests:

testL(P1, P2, r, δ, α, ν,N): testR(P1, P2, r, α, ν,N):
H0 : vol(P2)/vol(P1) ≥ r + δ H0 : vol(P2)/vol(P1) ≤ r
Successful if H0 is rejected Successful if H0 is rejected

These tests are being used by annealing schedule to restrict each ratio ri = vol(Pi+1)/vol(Pi)
in the interval [r, r + δ] with high probability in order to avoid unnecessarily big ratios in
MMC. Then we can use rejection sampling to estimate efficiently each ratio. Given Pi,
testL is used to define Pi+1 ⊆ Pi s.t. ratio vol(Pi+1)/vol(Pi) is not too large, while testR is
used so that the ratio is not too small, with high probability. In general, if we sample N
uniform points from a body Pi then random variable X that counts points in Pi+1, follows
X ∼ b(N, ri), the binomial distribution, and random variable Y = X/N ∼ N (ri, ri(1−ri)/N)
is Gaussian. If we sample νN points from Pi and split the sample into ν sublists of length
N , the corresponding ν ratios are experimental values that follow N (ri, ri(1− ri)/N) and
can be used to check both null hypotheses for ri in testL and testR. Using the mean µ0 of
the ν ratios, ri is restricted to [r, r + δ] with high probability when the following holds:

r + δ − tν−1,α
s√
ν
> µ0 > r + tν−1,α

s√
ν
, (3)

Initialization of the annealing schedule is to compute the body C ′ s.t. the volume of
C ′ ∩ P could be efficiently estimated using rejection sampling, i.e. sampling from C ′ and
accepting points in C ′ ∩ P . Body C ′ is also used for the stopping criterion: the annealing
schedule stops in the i-th step if testR(Pi, C ′ ∩P) succeeds, which means that the vol(Pi) is
close enough to vol(C ′ ∩ P), so that rejection sampling can be used. Then set m = i+ 1 and
Cm = C ′, Pm = Cm ∩ P . When balls are used in the MMC, the smallest ball Cm is not an
inscribed ball and the largest one, C1, is not an enclosing ball as in [7]. Hence in practice
the number of phases in [5] is an upper bound, with high probability, on the number of
phases of our method, when 0 < r + δ < 1/2. Fig. 1 shows the sequence of balls for a given
polytope P with our method (m=1) and in [7] (m=6). The ratios our method estimates are:
vol(P1)/vol(P0) and vol(P1)/vol(C1), where P0 = P, P1 = C1 ∩ P .

The annealing schedule returns m bodies and we estimate m+ 1 volume ratios. For fixed
step i and each sample point generated in Pi, we keep the value of the i-th ratio. We store
the last n such values in a queue called sliding window denoted by W whose length is n. We
update W for each new point by inserting the new ratio and by popping out the oldest ratio
in W . For each ratio ri, we bound error by εi s.t.

∑m
i=0 ε

2
i = ε2 then, from standard error

propagation analysis, (2) estimates vol(P) with error at most ε.

EuroCG’19

07:4 Practical volume estimation

At step i, let µ̂ be the mean, s the st.d. of W and Pr = 3/4. Using p = (1 + Pr)/2,
where zp =

√
2 · erf−1(2p − 1), we consider the interval [µ̂ − zps, µ̂ + zps], where erf is the

Gauss error function. The values that the sliding window contains are not independent, so
we can not define a confidence interval using t-student distribution, but we experimentally
show that the following practical criterion is very efficient:

if 2zps
µ̂− zps

≤ εi/2, then declare convergence. (4)

In practice we set n = O(d2) so that our method estimates volumes with error ≤ ε with high
probability.

We use Hit-and-Run (HnR) with uniform target distribution for sampling from Pi at step
i of the annealing schedule. One step of HnR is described below. For a value t we return a
point after t iterations.

Hit-and-Run(P, p): Convex polytope P , current point p ∈ P
Pick a uniformly distributed line ` through p
Return a uniform point on the chord ` ∩ P

For zonotopes each step in both Coordinate-Directions HnR and Random-Directions HnR
solves the following LP to compute one extreme point on ` ∩ P : minimize α, s.t. p+ αv =∑k
i=1 λigi, −1 ≤ λi ≤ 1. For the second extreme point, keep the same constraints and

minimize −α. This LP uses the basic feasible solution of the first one.
Moreover, for zonotopes we study different types of convex bodies than ball for the MMC

sequence. GTG has k − d zero eigenvalues; the corresponding eigenvectors form matrix
Q ∈ Rk×(k−d). The intersection of the hypercube [−1, 1]k with the d-dimensional affine
subspace defined by QT = 0 equals a d-dimensional polytope C in Rk. SVD yields an
orthonormal basis for the linear constraints, and its orthogonal complement W⊥:

Q = USV T =
[
W

W⊥

]T [
S1 0
0 0

]
V T .

LetAy ≤ b, A ∈ R2k×k be an H-representation of [−1, 1]k, thenMx ≤ b, M = AWT
⊥ (GWT

⊥)−1 ∈
Rd×d is an H-representation of the full-dimensional, centrally symmetric polytope C ⊆ P

with ≤ 2k facets to be used in MMC. Each Ci arises from parallel shifting of the facets of C.
This C improves the schedule when order is low, i.e. ≤ 4.

3 Implementation and experiments

We perform extended experiments analyzing various aspects of our method such as practical
complexity and how is affected by the bodies used in MMC and we compare our implemen-
tation with the matlab code of [2] and C++ package VolEsti [5]. Our C++ software is open
source1. When we use balls in MMC we call our implementation CoolingBall and when we
use the H-polytope for zonotopes we call it CoolingHpoly. We call the implementation of
[2] CoolingGaussian and that of [5] SeqOfBalls.

Set r = 0.1 and δ = 0.05 in order for the next convex body in MMC to have about 10%
of the volume of the previous one; let s.l. be α = 0.10. We set the number of points sampled
in Pi per step to be νN = 1200 + 2d2 and ν = 10. Set the length of the sliding window
n = 2d2 + 250 and the step of HnR t = 1.

1 https://github.com/TolisChal/volume_approximation/tree/v_poly

https://github.com/TolisChal/volume_approximation/tree/v_poly

A. Chalkis et al. 07:5

Figure 2 Left: the number of steps for for unit cubes in H-representation, d = 5, 10, . . . , 100.
Right: the number of steps for random zonotopes of order 2, d = 5, 10, . . . , 80 . In both plots we use
log10 scale for the y-axis

To study the practical complexity of our method we experimentally correlate the total
number of HnR steps with the dimension. In the right plot in Fig. 2 we compare the number
of steps for random zonotopes. CoolingGaussian fails to estimate volumes for d > 15 as
the upper bound for the number of facets is the bottleneck for this implementation while
SeqOfBalls takes > 1hr for d > 15. In the left plot we notice that our method is faster than
both CoolingGaussian and SeqOfBalls for d ≤ 100. In Table 1 we estimate the volumes of
random zonotopes. The number of phases for high-order zonotopes is m = 1 as our methods
defines just an enclosing ball and applies rejection sampling, whereas for low-order zonotopes
the H-polytope we defined reduces significantly the number of phases and run-time. The
maximum number of phases for zonotopes (up to what our software computes in < 10hr)
is m ≤ 3. None of the volumes of the zonotopes in Table 1 can be computed using exact
computations in practice. To define a random zonotope z-d-k we choose a random direction
for each segment s ∈ S, where

∑
s∈S s, and pick a random length in the interval [0,

√
d].

z-d-k Body order V ol m e steps time

z-10-1000 Ball 100 2.62e+29 1 0.1 0.1400e+04 130.1
z-15-1500 Ball 100 5.00e+45 1 0.1 0.1650e+04 506.1
z-20-2000 Ball 100 2.79e+62 1 0.1 0.2000e+04 1428
z-60-90 Hpoly 1.5 5.81e+82 2 0.1 5.355e+04 943.9
z-80-120 Hpoly 1.5 8.48e+114 3 0.1 12.35e+04 4180
z-100-150 Hpoly 1.5 2.32+149 3 0.1 15.43e+04 10060
z-80-160 Hpoly 2 2.01e+131 3 0.2 11.31e+04 5356
z-100-200 Hpoly 2 5.27e+167 3 0.2 15.25e+04 34110

Table 1 Body the type of body in MMC; order is k/d, V ol the estimated volume; m the number
of phases in MMC; ε the requested error; time the time in seconds; e the input value for error.

Acknowledgements. AC and IE acknowledge support by the EU Horizon 2020 research and
innovation programme under grant agreement No 734242 (Project LAMBDA). They are both
members of team AROMATH joint between NKUA and INRIA Sophia-Antipolis (France).

References

1 B. Cousins and S. Vempala. Bypassing KLS: Gaussian cooling and an o∗(n3) volume
algorithm. In Proc. ACM STOC, pages 539–548, 2015.

EuroCG’19

07:6 Practical volume estimation

2 B. Cousins and S. Vempala. A practical volume algorithm. Mathematical Programming
Computation, 8, June 2016.

3 H. Cramer. Mathematical methods of statistics. Princeton University Press, 1946.
4 M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for ap-

proximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991. URL: http:
//doi.acm.org/10.1145/102782.102783.

5 I.Z. Emiris and V. Fisikopoulos. Practical polytope volume approximation. ACM Trans.
Math. Soft., 44(4):38:1–38:21, 2018. Prelim. version: Proc. Symp. Comp. Geometry, 2014.
URL: http://doi.acm.org/10.1145/3194656, doi:10.1145/3194656.

6 E. Gover and N. Krikorian. Determinants and the volumes of parallelotopes and zonotopes.
Linear Algebra and its Applications, 413:28–40, 2010.

7 L. Lovász, R. Kannan, and M. Simonovits. Random walks and an o∗(n5) volume algorithm
for convex bodies. Random Structures and Algorithms, 11:1–50, 1997.

http://doi.acm.org/10.1145/102782.102783
http://doi.acm.org/10.1145/102782.102783
http://doi.acm.org/10.1145/3194656
http://dx.doi.org/10.1145/3194656

On the Complexity of Nesting Polytopes
Michael G. Dobbins1, Andreas F. Holmsen2, and Tillman Miltzow3

1 Department of Mathematical Sciences, SUNY Binghampton
2 Department of Mathematical Sciences, KAIST
3 Department of Information and Computing Sciences, Utrecht University

Abstract
Given two rational convex polytopes A ⊆ B ⊂ Rd and a number k where A is given by vertices and
B is given by halfspaces, the Nested Polytope Problem asks whether there exists a polytope
X with k vertices such that A ⊆ X ⊆ B. We prove that Nested Polytope Problem is ∃R-
complete, which implies that Nested Polytope Problem is not contained in the complexity
class NP, unless ∃R = NP. Although this result was, to the best of our knowledge, never pointed
out explicitly, it follows from some known results easily, as we will explain [17, 8].

1 Introduction

Given two rational convex polytopes A ⊆ B ⊂ Rd and a number k where A is given by
vertices and B is given by halfspaces, the Nested Polytope Problem asks whether there
exists a polytope X with k vertices such that A ⊆ X ⊆ B. The earliest mention of this
problem that we know of is by Silio in 1979 [18], who found an O(nm) time algorithm for
nesting a triangle between an n-gon and m-gon. Independently Victor Klee suggested the
same problem as was pointed out in several papers [11, 2, 9, 16, 10]. Gillis and Glineur
showed that the Nested Polytope Problem is polynomial time equivalent to a variant of
the Non-negative Matrix Factorization (NMF) problem called Restricted NMF
[13]. These problems respectively generalize the Intermediate Simplex problem, where
the polytopes A and B are required to be full dimensional and k = d + 1, and a special
case of NMF called Exact NMF. Vavasis showed that these two problems are polynomial
time equivalent to each other, and are NP-hard [19]. Yannakakis showed that NMF is a
generalization of the extension complexity problem for polytopes. More specifically, the
non-negative rank of the slack-matrix of a polytope corresponds precisely to the extension
complexity of the polytope defined by the set of defining linear constraints. Thereby he
gave lower bounds on the size of symmetric linear programs needed to describe certain
combinatorial problems such as the Traveling Salesman problem [20], see also [12] for the
asymmetric case. Yannakakis’s paper may be celebrated for showing that a swath of fruitless
attempts to prove P= NP are untenable. This situation is laid out in Figure 1. Our main
contribution is an independent proof that the Nested Polytope Problem is ∃R-complete
by a simple geometric construction.

Note that although this seems never to be pointed out explicitly, the result is not
novel. In 2016, it was shown elegantly by Shitov that NMF is ∃R-complete [17]. Cohen
and Rothblum described already in 1993 a simple polynomial reduction from NMF to the
Nested Polytope Problem [8].

I Theorem 1.1. The Nested Polytope Problem is ∃R-complete.1

1 Our method of proof also implies a universality theorem similar to Mnëv’s theorem for oriented matroids,
but we do not include it in this abstract.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

08:2 Complexity - Nested Polytopes

Extension Complexity

Non-negative Matrix Factorization

Intermediate Simplex

Nested Polytope

Exact NMF

Restricted NMF

=

=

Figure 1 The long and winding road from extension complexity to nested polytopes.

For more work on Nested Polytope Problem and NMF, we refer the reader to the
following literature [2, 5, 7, 14, 4, 13, 15, 3, 6].

The proof works in two steps. As a first step, we introduce a variant of the existential
theory of the reals, denoted ETR-INV-array, and we show this variant is ∃R-complete. This
is described in Section 2. It ensures that we only have to encode algebraic relations that have
a specific form. In the second step, we define gadgets, which are small Nested Polytope
Problem instances where the coordinates of certain vertices of the nested polytope X are
forced to satisfy the algebraic relations from the first step, and then we assemble these
small gadgets to define a Nested Polytope Problem instance corresponding to each
ETR-INV-array instance.

2 Encoding ETR

As a first step to encode an instance of the existential theory of the reals as an instance of
the Nested Polytope Problem, we first simplify the algebraic structure.

An instance A of ETR-INV-array of size m × n is an m-by-n matrix A of variables
αi,j together with a system of equations of the form

αi,j + αi,k = 5
2 , αi,j + αi,k + αi,l = 5

2 , αi,k · αj,k = 1.

Note that the linear equations relate variables in the same row and the quadratic equations
relate variables in the same column. A solution toA is an assignment of values αi,j ∈ [1

2 , 2]m×n

to each variable that satisfies each equation of A. The corresponding decision problem asks
whether an instance of A has a solution.

I Lemma 2.1. ETR-INV-array is ∃R-complete.

This can be proven by introducing intermediate variables. For example, the relation
αi,j + αi,k = αi,l could be obtained by introducing a variable αi,m and using the equations
αi,j + αi,k + αi,m = 5

2 and αi,m + αi,l = 5
2 . A similar reduction is given in [1, Lemma 12].

3 Building the polytopes

This section is devoted to show the following lemma. Together, Lemma 2.1 and Lemma 3.1
establish Theorem 1.1.

I Lemma 3.1. Let A be an ETR-INV-array of size m× n. There exists convex polytopes
A ⊂ B ⊂ R2+n+m such that there exists a nested polytope A ⊂ X ⊂ B with k = mn+ 2m+ 2
vertices, if and only if A has a solution.

M. G. Dobbins and A. F. Holmsen and T. Miltzow 08:3

I Remark. In fact we will show something stronger. In our construction, the polytopes
A ⊂ B in Theorem 3.1 will have precisely 2m+ 2 vertices in common. It follows that any
nested polytope A ⊂ X ⊂ B must contain these common vertices. Thus X will have m · n
remaining vertices, and our construction will force these remaining vertices to be contained
in certain segments of some of the edges of the outer polytope B. By parametrizing each
of these segments by the interval [1

2 , 2] we obtain a correspondence between the remaining
m · n vertices and a subset of [1

2 , 2]m·n. The key step in the proof of Lemma 3.1 is to show
that a positioning of the remaining vertices of X gives us A ⊂ X ⊂ B, if and only if those
vertex positions correspond to a solution of A.

3.1 Two geometric observations

Here we state two simple geometric observations that are used for the “gadgets” needed in
our construction of the polytopes of Lemma 3.1. The proofs are simple calculations and left
to the reader.

Let {v0, v1, . . . , vk} be a set of linearly independent points in Rd. For 1 ≤ i ≤ k let
wi = vi + v0 and define the prism P as

P = conv({v1, . . . , vk, w1, . . . , wk}).

For t ∈ [0, 1] define the point qt ∈ P as

qt = (1− t)(1
kv1 + · · ·+ 1

kvk) + t(1
kw1 + · · ·+ 1

kwk) = 1
kv1 + · · ·+ 1

kvk + tv0.

Finally, for 1 ≤ i ≤ k define points pi as

pi = (1− λi)vi + λiwi = vi + λiv0,

where λi ∈ [0, 1]. We have the following.

I Observation 3.2. qt ∈ conv({p1, . . . , pk}) if and only if
∑k

i=1 λi = tk.

I Observation 3.3. Let α1, α2 ∈ [1
2 , 2] and p1 = (α1,−1) and p2 = (−1, α2). Then it holds

that the origin (0, 0) ∈ conv({p1, p2}) if and only if α1 · α2 = 1.

3.2 A basic outline of the construction

We now give an outline of the construction of the polytopes in Lemma 3.1, without giving
explicit coordinates, and rather focusing on the three “gadgets” that will be used to encode
the three types of equations in A.

3.2.1 The outer polytope

The outer polytope B is a product of an orthogonal simplex of dimension m with a regular
simplex of dimension n + 1. That is, we start with an “orthogonal frame” spanning Rm,
consisting of m mutually orthogonal segments of length 3 all meeting in a common point.
Note that the convex hull of these segments form an m-dimensional orthogonal simplex.
We now take n + 2 distinct copies of the orthogonal frame, U1, U2, V1, . . . , Vn, each one
translated into “independent dimensions” so that their union now lives in R2+n+m. We label

EuroCG’19

08:4 Complexity - Nested Polytopes

the segments of these orthogonal frames as

U1 = {τ1,1, . . . , τm,1}
U2 = {τ1,2, . . . , τm,2}
V1 = {σ1,1, . . . , σm,1}

...
Vn = {σ1,n, . . . , σm,n}

such that the segments τi,1, τi,2, σi,1, . . . , σi,n are all parallel.
We now take the outer polytope B to be the convex hull of U1 ∪ U2 ∪ V1 ∪ · · · ∪ Vn. It is

straight-forward to show that B is an n+m+ 1-dimensional polytope with (n+ 2)(m+ 1)
vertices. In what follows, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, the “second half” of segment
σi,j , parametrizing the interval [1

2 , 2], will correspond to the variable αi,j in ETR-INV-array
A. The segments τi,j will play an auxiliary role which we now describe.

3.2.2 Building the inner polytope: Enforcing vertices to segments
The first step in building the inner polytope A is to enforce the following.

I Property 3.4. Let X be a nested polytope, with k = mn+ 2m+ 2 vertices and A ⊂ X ⊂ B.
For every 1 ≤ i ≤ m and 1 ≤ j ≤ n, the segment σi,j ∈ Vj contains exactly one vertex of X,
which we denote by xi,j .

(More specifically, each segment of the orthogonal frame Vi will contain exactly one vertex
from X in its “second half”, thus encoding a value in the interval [1

2 , 2].) This can be done as
follows. Fix indices 1 ≤ i ≤ m and 1 ≤ j ≤ n, and consider segment τi,1 ∈ U1 and its parallel
copy σi,j ∈ Vj , which are edges of a 2-dimensional face of the outer polytope B. Define the
point yi,j to be the unique point in this 2-face such that segment τi,1 ∈ U1 is mapped to the
second half of its parallel copy σi,j ∈ Vj by central projection through yi,j . Similarly, we
define the analogous point zi,j in the 2-face of A spanned by the segment τi,2 ∈ U2 and its
parallel copy σi,j ∈ Vj . (See Figure 2.)

. .
.

.

.
.

.
xi,j

τi,1

τi,2

σi,j

yi,j

zi,j

-

-

-

−1

1
2

2

Figure 2 The vertices of any nested polytope A ⊂ X ⊂ B (marked in red) must include the
endpoints of segments τi,1 ∈ U1 and τi,2 ∈ U2, while the last vertex, xi,j , must be contained in the
segment σi,j ∈ Vj restricted to the interval [1

2 , 2].

M. G. Dobbins and A. F. Holmsen and T. Miltzow 08:5

At this stage of the construction the inner polytope A will consist of the orthogonal
frames U1 and U2 together with the points {yi,j , zi,j} for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Moreover, if X is a nested polytope, with mn+ 2m+ 2 vertices and A ⊂ X ⊂ B, then X
must contain the orthogonal frames U1 and U2 (which accounts for 2m+ 2 of the vertices)
and one vertex in each of the segments of the orthogonal frames V1, . . . , Vn (accounting for
the remaining m · n vertices). Thus Property 3.4 is satisfied, and we let xi,j denote the
unique vertex of X which is contained in the (second half of the) segment σi,j ∈ Vj , which
we associate with the variable αi,j ∈ [1

2 , 2].

3.2.3 Building the inner polytope: Encoding the linear equations
In order to enforce the relation αi,j + αi,k = 5

2 , we add a new vertex pi,j,k to the inner
polytope A as follows. We consider the rectangular 2-face of the outer polytope B spanned
by the segments σi,j ∈ Vj and σi,k ∈ Vk. Define pi,j,k to be the point in this 2-face such that
pi,j,k is contained in the convex hull of the vertices xi,j and xi,k of the nested polytope X
(satisfying Property 3.4) if and only if the associated variables αi,j + αi,k = 5

2 . (The unique
point pi,j,k exists by Observation 3.2. See Figure 3.)

.
σi,j

.xi,k

σi,k

pi,j,k

.xi,j

−1

1
2

2

−1

1
2

2

Figure 3 The vertices xi,j and xi,k contain the point pi,j,k in their convex hull if and only if the
associated variables satisfy the equation αi,j + αi,k = 5

2

By adding the vertex pi,j,k to A, it follows that for any nested polytope X satisfying
Property 3.4, the associated variables satisfy the equation αi,j + αi,k = 5

2 .

Enforcing the relation αi,j + αi,k + αi,l = 5
2 is similar to the previous case, and we add

a new vertex qi,j,k,l to the inner polytope A as follows. We consider the triangluar prism
spanned by the segments σi,j ∈ Vj , σi,k ∈ Vk, and σi,l ∈ Vl, which is a 3-face of the outer
polytope B.

Define qi,j,k,l to be the point in this 3-face such that qi,j,k,l is contained in the convex
hull of the vertices xi,j , xi,k, and xi,l of the nested polytope X (satisfying Property 3.4) if
and only if the associated variables αi,j + αi,k + αi,l = 5

2 . (The unique point qi,j,k,l exists by
Observation 3.2. See Figure 4.)

By adding the vertex qi,j,k,l to A, it follows that for any nested polytope X satisfying
Property 3.4, the associated variables satisfy the equation αi,j + αi,k + αi,l = 5

2 .

3.2.4 Building the inner polytope: Encoding the quadratic equations
In order to enforce the relation αi,k · αj,k = 1 we add a new vertex ri,j,k to the inner
polytope A as follows. Consider the triangular 2-face of B spanned by segments σi,k ∈ Vk

and σj,k ∈ Vk. We can coordinatize the plane containing this 2-face such that the segment
σi,k is parametrized by {(x,−1) : −1 ≤ x ≤ 2} and the segment σj,k is parametrized by
{(−1, y) : 1 ≤ y ≤ 2}. We then define ri,j,k to be the origin with respect to this coordinate

EuroCG’19

08:6 Complexity - Nested Polytopes

.xi,j

.xi,k

.xi,l.
-

-

-

−1

1
2

2

−1

1
2

2

-

-

-

-

-

-

−1

1
2

2

qi,j,k,l

σi,j

σi,k

σi,l

Figure 4 The vertices xi,j , xi,k, and xi,l contain the point qi,j,k,l if and only if the associated
variables satisfy the equation αi,j + αi,k + αi,l = 5

2 .

system. It follows from Observation 3.3 that the vertices xi,k and xj,k contain the point ri,j,k

in their convex hull if and only if the associated coordinates satisfy the equation αi,k ·αj,k = 1.
(See Figure 5.)

.
| | |

−1 1
2

2
-

-

-

−1

1
2

2

.
.

ri,j,k

xj,k

xi,k

σj,k

σi,k

Figure 5 The vertices xi,k and xj,k contain the point ri,j,k if and only if the associated variables
satisfy the equation αi,k · αj,k = 1.

By adding the vertex ri,j,k to A, it follows that for any nested polytope X satisfying
Property 3.4, the associated variables satisfy the equation αi,k · αj,k = 1.

References

1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem
is ∃R-complete. In Symposium on Theory of Computing, STOC 2018, pages 65–73, 2018.
arxiv 1704.06969. URL: http://doi.acm.org/10.1145/3188745.3188868, doi:10.1145/
3188745.3188868.

2 Alok Aggarwal, Heather Booth, Joseph O’Rourke, Subhash Suri, and Chee K. Yap. Finding
minimal convex nested polygons. Information and Computation, 83(1):98–110, 1989. also
appeared at the first symposium on Computational geometry in 1985.

3 Sanjeev Arora, Rong Ge, Ravi Kannan, and Ankur Moitra. Computing a nonnegative
matrix factorization - provably. SIAM J. Comput., 45(4):1582–1611, 2016. a preliminary
version appeared at STOC 2012. URL: https://doi.org/10.1137/130913869, doi:10.
1137/130913869.

4 A Berman. Rank factorization of nonnegative matrices. SIAM Review, 15(3):655, 1973.
5 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite vc-

dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.

http://doi.acm.org/10.1145/3188745.3188868
http://dx.doi.org/10.1145/3188745.3188868
http://dx.doi.org/10.1145/3188745.3188868
https://doi.org/10.1137/130913869
http://dx.doi.org/10.1137/130913869
http://dx.doi.org/10.1137/130913869

M. G. Dobbins and A. F. Holmsen and T. Miltzow 08:7

6 Dmitry Chistikov, Stefan Kiefer, Ines Marusic, Mahsa Shirmohammadi, and James Wor-
rell. Nonnegative matrix factorization requires irrationality. SIAM Journal on Applied
Algebra and Geometry, 1(1):285–307, 2017. previous versions appeared at SODA 2017 and
ICALP 2016.

7 Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Workshop
on Algorithms and Data Structures, pages 246–252. Springer, 1993.

8 Joel E. Cohen and Uriel G. Rothblum. Nonnegative ranks, decompositions, and factoriza-
tions of nonnegative matrices. Linear Algebra and its Applications, 190:149–168, 1993.

9 Gautam Das. Approximation schemes in computational geometry. PhD thesis, The Univer-
sity of Wisconsin-Madison, 1990.

10 Gautam Das and Michael T. Goodrich. On the complexity of optimization problems for
3-dimensional convex polyhedra and decision trees. Comput. Geom., 8(3):123–137, 1997.

11 Gautam Das and Deborah Joseph. The complexity of minimum convex nested polyhedra.
In Proc. 2nd Canad. Conf. Comput. Geom, pages 296–301, 1990.

12 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald De Wolf.
Linear vs. semidefinite extended formulations: exponential separation and strong lower
bounds. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 95–106. ACM, 2012.

13 Nicolas Gillis and François Glineur. On the geometric interpretation of the nonnegative
rank. Linear Algebra and its Applications, 437(11):2685–2712, 2012.

14 Joseph S.B. Mitchell and Subhash Suri. Separation and approximation of polyhedral objects.
Computational Geometry, 5(2):95–114, 1995.

15 Ankur Moitra. An almost optimal algorithm for computing nonnegative rank. SIAM
J. Comput., 45(1):156–173, 2016. URL: https://doi.org/10.1137/140990139, doi:10.
1137/140990139.

16 Joseph O’Rourke. The computational geometry column# 4. ACM SIGGRAPH Computer
Graphics, 22(2):111–112, 1988.

17 Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. Preprint,
https: // arxiv. org/ abs/ 1606. 09068 , 2016.

18 Charles B. Silio Jr. An efficient simplex coverability algorithm in E2 with application to
stochastic sequential machines. IEEE Trans. Computers, 28(2):109–120, 1979.

19 Stephen A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal
on Optimization, 20(3):1364–1377, 2009.

20 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
Journal of Computer and System Sciences, 43(3):441–466, 1991.

EuroCG’19

https://doi.org/10.1137/140990139
http://dx.doi.org/10.1137/140990139
http://dx.doi.org/10.1137/140990139
https://arxiv.org/abs/1606.09068

Green-Wins Solitaire Revisited — Simultaneous
Flips that Affect Many Edges∗

Michael Hoffmann†1, János Pach2, and Miloš Stojaković‡3

1 Department of Computer Science, ETH Zürich
hoffmann@inf.ethz.ch

2 Department of Mathematics, EPF Lausanne and Rényi Institute, Budapest
pach@cims.nyu.edu

3 Department of Mathematics and Informatics, University of Novi Sad
milos.stojakovic@dmi.uns.ac.rs

Abstract
We study the Green-Wins Solitaire game, which is a single player edge flipping game played on
a given edge-colored geometric triangulation. An edge is flippable if it is a diagonal of a convex
quadrilateral, and a flip replaces it by the other diagonal of that quadrilateral. Initially all edges
are colored black. A move consists of flipping a black edge and coloring the resulting new edge
along with all four edges of the surrounding convex quadrilateral green. The goal is to maximize
the number of green edges. We show that in every triangulation on n vertices, for n sufficiently
large, at least a fraction of 5/18 ≈ 0.277 edges can be colored green. On the other hand, there
exist infinitely many triangulations in which no more than a 1/3 fraction of edges can be colored
green. These results improve earlier bounds of Aichholzer et al. [1].

1 Introduction

In this paper, the term triangulation denotes a maximal geometric plane graph: all edges are
realized as straight-line segments and all bounded faces are triangles. Conversely, a triangle
in a triangulation is a bounded facial triangle. Aichholzer et al. [1] studied various games
related to triangulations, in particular, the Green-Wins Solitaire game. This game is played
on a given triangulation, which we consider as edge-colored.

Edge flips. An edge in a triangulation is flippable if the union of the two incident faces
forms a convex quadrilateral. Flipping a flippable edge amounts to replacing said edge
by the other diagonal of the surrounding convex quadrilateral; see Figure 1. We say that
these five edges, the flipped edge and the four edges of the surrounding quadrilateral, are
affected by the flip. Edge flips are among the most prominent and well-studied operations
for local modification of triangulations and, more generally, planar subdivisions. They serve
as a crucial tool in many applications, such as counting and sampling, or optimization, for
instance, to compute Delaunay triangulations; see, e.g., the survey by Bose and Hurtado [2].

∗ This work was started at the 13th Gremo’s Workshop on Open Problems (GWOP), June 1–5, 2015, in
Feldis (GR), Switzerland. We thank May Szedlák and Antonis Thomas for helpful discussions.

† Research partly supported by the Swiss National Science Foundation within the collaborative DACH
project Arrangements and Drawings as SNSF Project 200021E-171681.

‡ Research partly supported by Ministry of Education, Science and Technological Development, Re-
public of Serbia, and Provincial Secretariat for Higher Education and Scientific Research, Province of
Vojvodina.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

9:2 Green-Wins Solitaire Revisited

Figure 1 A sequence of moves in Green-Wins Solitaire. The flipped edge is shown red dotted.

Green-Wins Solitaire. Initially all edges are colored black. A move consists of picking
a flippable black edge. This edge is flipped, and then all edges that are affected by the
flip are colored green; see Figure 1. As green edges cannot be picked anymore, the set of
edges flipped over the course of the game is simultaneously flippable [3], that is, the convex
quadrilaterals surrounding the flipped edges are pairwise interior-disjoint. It also follows
that the order of edge flips in a game is irrelevant, and we can describe every strategy as a
set of (simultaneously flippable) edges.

For a triangulation T let γ(T) denote the ratio of edges of T that can be colored green.
Similarly, let γ := infT γ(T), where T is sufficiently large so as to exclude trivial cases like
a single triangle or a K4 (where no edge can be flipped). Aichholzer et al. [1] show that
1/6 ≤ γ ≤ 5/9 and specifically ask whether γ ≥ 1/2. They also show that an optimal set of
edges to flip can be computed in linear time for convex point sets.

Improvements. The lower bound γ ≥ 1/6 uses a lower bound for the number of simulta-
neously flippable edges in any triangulation by Galthier et al. [3]. Later Souvaine et al. [7]
improved this bound by showing that in any (geometric) triangulation on n vertices at least
(n− 4)/5 edges are simultaneously flippable, which is best possible in general [3]. Plugging
this bound into the argument of Aichholzer et al. [1] immediately gives γ ≥ 1/5 = 0.2. Our
goal in the following is to further improve this lower bound to 5/18 ≈ 0.277 > 1/4.

I Theorem 1. In every triangulation of n points, for n sufficiently large, there exists a
simultaneously flippable set of edges that affects at least a 5/18 fraction of all edges.

Before attacking the lower bound, let us note that the upper bound γ ≤ 5/9 can be easily
improved by considering families of triangulations for which the lower bound on the number
of simultaneously flippable edges is tight (see Figure 2). It must have been an oversight that
this was not observed by Aichholzer et al. [1] because the upper bound on the number of
simultaneously flippable edges [3] was already known at that time.

I Observation 2. For infinitely many n ∈ N, there exists a triangulation on n points such
that every simultaneously flippable set of edges affects at most n− 4 out of 3n− 6 edges.

In summary we have 5/18 ≤ γ ≤ 1/3. The rest of the paper is devoted to derive the
lower bound and prove Theorem 1.

2 Preliminaries

Sets of triangles. Consider a triangulation T on n ≥ 5 vertices and a set U of triangles in
T . The unbounded face is bounded by a cycle of r vertices that form the convex hull, where
3 ≤ r ≤ n. By the Euler Formula, T has 3n− r − 3 edges and 2n− r − 1 faces, all but one
of which are triangles. A vertex or edge of T is interior if it is not on the convex hull.

A vertex or edge of T is (1) internal to U if all incident faces are in U , (2) external to U
if no incident face is in U , or (3) on the boundary of U if it is incident to at least one face

M. Hoffmann, J. Pach, and M. Stojaković 9:3

(a) (b) (c)

Figure 2 The upper bound construction for the number of simultaneously flippable edges by
Souvaine et al. [7]. Recursively the central vertex of K4 subconfigurations is replaced by a hexagon,
connected as shown in (b). All flippable edges are shown in red; they appear in triangles. In each
such triangle, no more than one edge can be selected for any simultaneous flip.

in U and at least one face that is not in U . Note that a vertex or edge on the convex hull
is not internal to U by definition. See Figure 3a for illustration.

(a) U (b) T ∗|U

Figure 3 (a) A set U of gray triangles with 1 internal vertex (red), 16 internal edges, 3 compo-
nents, 1 hole, and 19 boundary edges (red). Confirming Alpaca 3 we have 3 ·1+3 ·1+19 = 16+3 ·3.

Let T ∗|U denote the following graph on the triangles of T : Two triangles of T are
connected in T ∗|U if (1) they share an edge and are both in U or (2) they share a vertex
and are both not in U . A component of U is a component of U in T ∗|U . A hole in U is
a component of T ∗|U \ U that is contained inside a cycle of triangles from U in T ∗|U . We
obtain the following variation of the Euler Formula for sets of triangles in a triangulation.1

I Alpaca 3. Consider a triangulation T and a subset U of triangles of T . Then

3h+ 3vi + eb = ei + 3c,

where h denotes the number of holes in U , vi denotes the number of internal vertices of U ,
eb denotes the number of boundary edges of U , ei denotes the number of internal edges of U
and c denotes the number of components of U in T ∗|U .

Strategy. Let F denote a maximum size set of simultaneously flippable edges in T , and let
U denote the set of triangles in T that are incident to an edge in F . We flip the f := |F |

1 It is named after the cute animals that the authors watched when working on this problem and they
realized: It is not a lama but an alpaca. . .

EuroCG’19

9:4 Green-Wins Solitaire Revisited

edges in F and color them green. For every flip, the four edges of the bounding quadrilateral
are also colored green. However, each of these edges may be colored green twice overall in
case the edge is incident to two triangles from U . Exactly the eb edges on the boundary of
U are colored once only. Therefore, the number of green edges after flipping F is

f + 4f/2 + eb/2 = 3f + eb/2. (GF)

In order to bound this quantity, we want to obtain a good lower bound for eb to combine
with the known lower bound f ≥ (n− 4)/5.

I Lemma 4. We have eb ≥ 4c.

Proof. As T is a triangulation, every component of U in T ∗|U is bounded by at least three
edges. Furthermore, every component of U consists of pairs of triangles and hence an even
number of triangles. A triangulation whose outer boundary forms a triangle corresponds to
a maximal planar graph, which has 2n − 5 bounded faces—an odd number. Therefore, no
component of U has a triangle as an outer boundary. J

3 Counting black edges: Proof of Theorem 1

We color the edges of T as follows. An edge e of T is colored green if it is incident to a triangle
from U ; otherwise, e is colored black. Note that we work with the original triangulation T ,
no edges are flipped. If a black edge was flippable, then we could flip it to color more edges
green, contradicting the maximality of F . Hence no black edge is flippable. As a first step
we observe that not too many vertices, relatively speaking, are on the convex hull.

I Lemma 5. For every α ∈ (0, 1) and r ≥ 3α
1+αn, at least an (α− ε) fraction of the edges in

T are green, where ε = ε(n) tends to zero when n→∞.

Proof. At least r−3 edges are flippable in T [4]. Clearly, every flippable edge can be colored
green: if it is not, then flip it. Hence, at least a fraction of (r − 3)/(3n − r − 3) edges is
colored green. This expression is monotonically increasing in r, for 3 ≤ r ≤ n. Therefore,

r − 3
3n− r − 3 ≥

3α
1+αn− 3

3n− 3α
1+αn− 3

= αn− (1 + α)
n− (1 + α) ≥ α−

2
n− 2

which converges to α, for n→∞. J

In the following, we investigate the subgraph B of T that is induced by the black edges.
The vertices of B fall into three groups: vertices on the convex hull, vertices on the boundary
of U , and internal vertices (vertices that are not on the convex hull and not incident to any
green edge). An edge of B is internal if it is incident to two triangles in B. In particular,
an internal edge is not a convex hull edge.

Following standard terminology [6], we call an edge e = uv of T separable at its endpoint
u if there exists a line ` through u so that e is the only edge of T incident to u on one side
of `. In other words, u is pointed (has a free angle ≥ π) in T \ e. We observe (cf. [5, 6]):

(S1) Every unflippable edge is separable at one of its endpoints and only the convex hull
edges are separable at both endpoints.

(S2) At an interior vertex v of degree ≥ 4, at most two incident edges are separable; if two
incident edges are separable, then they are consecutive in the circular order around v.

M. Hoffmann, J. Pach, and M. Stojaković 9:5

In particular, (S1) implies that an edge that is incident to two convex hull vertices is
either a convex hull edge or flippable. So no internal edge of B connects two convex hull
vertices. By the following lemma, all internal vertices of B have degree 3 (in B and T).

I Lemma 6 ([5, Lemma 4.2]). In a triangulation, every interior (not on the convex hull)
vertex of degree four or higher is incident to a flippable edge.

In a triangulation, no two interior degree three vertices are adjacent. Let us bound the
number of black edges. Every black edge connects two vertices from the abovementioned
three groups: At most r edges are convex hull edges, and every edge that is incident to an
internal vertex is incident to exactly one internal vertex (because every internal vertex has
degree three). All remaining edges are incident to at least one vertex on the boundary of U
but not on the convex hull (because there is no internal black edge between any two convex
hull vertices). Denote the number of these remaining edges by ei, denote by d3 the number
of internal (hence degree-3) vertices of B, and denote by eC the number of convex hull edges
on the boundary of U . We select F so that the number d3 is smallest over all maximum size
sets of simultaneously flippable edges in T .

I Lemma 7. We have 3d3 + eC ≤ 2eb.

Let us derive a bound for ei by applying Alpaca 3 to T \ U . The boundary of T \ U
is formed by edges that are on the convex hull or on the boundary of U , and there are
(eb− eC) + (r− eC) = eb+ r−2eC such edges. The edges incident to the d3 internal vertices
of B are not counted in ei, and so we have no internal vertices to consider. Every hole
in T \ U corresponds to at least one separate component of U , which in turn corresponds
to a separate component of U in T , and so the number of holes is upper bounded by c.
Altogether we obtain

3c+ eb + r − 2eC ≥ ei. (1)

I Lemma 8. There are no more than 3eb + 3c+ 2r − 4eC black edges.

Proof. We have exactly r− eC black convex hull edges, exactly 3d3 edges that are incident
to an interior vertex, and exactly ei other edges. Using Lemma 7 and (1), we can bound the
number of black edges as (r−eC)+3d3 +ei ≤ (r−eC)+(2eb−eC)+(3c+eb+r−2eC). J

I Lemma 9. There are at least 3(n− r − eb − c− 1) + 4eC green edges.

Proof. The total number of edges in T is 3n− r − 3. Thus, by Lemma 8, we have at least
(3n− r − 3)− (3eb + 3c+ 2r − 4eC) = 3(n− r − eb − c− 1) + 4eC green edges. J

If we head for a bound of γ ≥ α, then we may assume that

c ≤ 3n
(
α

2 −
1
10

)
− α

2 r.

Otherwise, by Lemma 4 and the lower bound f ≥ (n− 4)/5, we have

3f + 1
2eb ≥

3
5n+ 2c ≥ 3

5n+ 3n
(
α− 1

5

)
− αr ≥ α(3n− r − 3),

and we are done. In combination with (GF) and Lemma 9 we get

3f + 1
2eb ≥ 3(n− r − eb − c)
7
2eb ≥ 3(n− r − f − c)
1
2eb ≥

3
7(n− r − f − c)

EuroCG’19

9:6 Green-Wins Solitaire Revisited

and, therefore,

3f + 1
2eb ≥ 3f + 3

7(n− r − f − c)

= 18
7 f + 3

7(n− r − c)

≥ 18
35n+ 3

7(n− r − c)

= 33
35n−

3
7(r + c)

≥ 33
35n−

3
7r −

3
7

(
3n
(
α

2 −
1
10

)
− α

2 r
)

= 1
70

(
(75− 45α)n− (30− 15α)r

)
.

Thus, the fraction of green edges is at least

3f + 1
2eb

3n− r ≥
(75− 45α)n− (30− 15α)r

70(3n− r) = 1
70

(
30− 15α− 15n

3n− r

)
.

The fraction −15n
3n−r is monotonically decreasing as a function of r and so it is minimized for

r maximal, that is, r = 3α
1+αn, due to Lemma 5. In this case, we obtain a fraction of

1
70

(
30− 15α− 15n

3n− 3α
1+αn

)
= 1

70

(
30− 15α− 5(1 + α)

)
= 1

14(5− 4α).

Optimizing for α yields γ ≥ α = 5/18 > 0.277, which completes the proof of Theorem 1.

References
1 Oswin Aichholzer, David Bremner, Erik D. Demaine, Ferran Hurtado, Evangelos Kranakis,

Hannes Krasser, Suneeta Ramaswami, Saurabh Sethia, and Jorge Urrutia. Games on
triangulations. Theoret. Comput. Sci., 343(1–2):42–71, 2005. URL: https://doi.org/10.
1016/j.tcs.2005.05.007.

2 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Comput. Geom. Theory Appl.,
42(1):60–80, 2009. URL: https://doi.org/10.1016/j.comgeo.2008.04.001.

3 Jérôme Galtier, Ferran Hurtado, Marc Noy, Stephane Perennes, and Jorge Urrutia. Simul-
taneous edge flipping in triangulations. Internat. J. Comput. Geom. Appl., 13(2):113–133,
2003. URL: https://doi.org/10.1142/S0218195903001098.

4 Michael Hoffmann, André Schulz, Micha Sharir, Adam Sheffer, Csaba D. Tóth, and Emo
Welzl. Counting plane graphs: Flippability and its applications. In János Pach, editor,
Thirty Essays on Geometric Graph Theory, pages 303–325. Springer-Verlag, 2013. URL:
https://doi.org/10.1007/978-1-4614-0110-0_16.

5 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete
Comput. Geom., 22(3):333–346, 1999. URL: https://doi.org/10.1007/PL00009464.

6 Micha Sharir and Emo Welzl. Random triangulations of planar point sets. In Proc. 22nd
Internat. Sympos. Comput. Geom., pages 273–281, 2006. URL: https://doi.org/10.
1145/1137856.1137898.

7 Diane L. Souvaine, Csaba D. Tóth, and Andrew Winslow. Simultaneously flippable edges
in triangulations. In Computational Geometry—XIV Spanish Meeting on Computational
Geometry, volume 7579 of Lecture Notes Comput. Sci., pages 138–145. Springer-Verlag,
2011. URL: https://doi.org/10.1007/978-3-642-34191-5_13.

https://doi.org/10.1016/j.tcs.2005.05.007
https://doi.org/10.1016/j.tcs.2005.05.007
https://doi.org/10.1016/j.comgeo.2008.04.001
https://doi.org/10.1142/S0218195903001098
https://doi.org/10.1007/978-1-4614-0110-0_16
https://doi.org/10.1007/PL00009464
https://doi.org/10.1145/1137856.1137898
https://doi.org/10.1145/1137856.1137898
https://doi.org/10.1007/978-3-642-34191-5_13

Triangles in the colored Euclidean plane∗

Oswin Aichholzer1 and Daniel Perz1

1 Institute of Software Technology, Graz University of Technology, Austria
[oaich|daperz]@ist.tugraz.at

Abstract
We study a variation of the well known Hadwiger-Nelson problem on the chromatic number
of the Euclidean plane. An embedding of a given triangle T into the colored plane is called
monochromatic, if the three corners of the triangle get the same color. We provide a classification
of triangles according to the number of colors needed to color the plane so that the triangle can
not be embedded monochromatically. For example, we show that for near-equilateral triangles
three colors are enough and that for almost all triangles six colors are sufficient.

1 Introduction

An r-coloring of the Euclidean plane is a partition such that every point of the plane gets one
of r colors assigned. The famous Hadwiger-Nelson problem (see Soifer [10] for an extensive
history) asks for the minimum r to r-color the Euclidean plane so that every two points at
unit distance from each other have different colors. It was well known that this so-called
chromatic number of the plane is at least 4, and that 7 colors are for sure sufficient. Most
recently de Grey [1] constructed an explicit unit-distance graph with 1581 vertices with
chromatic number 5. This was further optimized by Heule [5] to graphs with ‘only’ 553
vertices. So the chromatic number of the Euclidean plane is now 5, 6 or 7.

To shed more light on the Hadwiger-Nelson problem, Graham [3] posed the following
question.

I Problem 1. What is the smallest number c, so that for every triangle T , there exists a
c-coloring of the Euclidean plane so that it is not possible to embed T in such a way that
all three vertices of T have the same color?

If a triangle T , or its reflected copy, can be embedded in the colored plane such that all
three vertices have the same color, we call the embedding and the triangle monochromatic,
and non-monochromatic otherwise. If the color of all three vertices is for example red, we
also call the triangle red.

As for a lower bound on c it has been shown that some triangles exist monochromatically
in every 2-coloring of the plane [2, 9]. For example in [2] they show that a triangle with
smallest side of length 1 and angles 30◦, 60◦, and 90◦ is monochromatic in every 2-coloring.
The following argumentation for this statement is based on Soifer [10]. As in any 2-coloring
an equilateral triangle has two vertices with the same color, there always exist two points
with the same color, say blue, with distance 2 (or any other fixed distances). Consider the
corners of a regular hexagon where these two blue points are antipodal, see Figure 1. If any
other corner of the hexagon is also blue, we are done. Otherwise, the remaining 4 corners
are all red, and we have the required triangle in red. Surprisingly, this example constitutes
the best known lower bound, and thus Graham conjectured that c = 3 could be the true
bound.

∗ Partially supported by the Austrian Science Fund within the collaborative DACH project Arrangements
and Drawings as FWF project I 3340-N35. Work based on the master thesis [7] of the second author.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

10:2 Triangles in the colored Euclidean plane

Figure 1 A triangle with 30◦, 60◦, and 90◦ always exists monochromatically in every 2-coloring.

Obviously an upper bound for the chromatic number of the plane is also an upper bound
for c, and thus we have c ∈ {3, 4, 5, 6, 7}.

In this work we concentrate our considerations on specific triangles and how many colors
guarantee their non-monochromatic embedding.
I Problem 2. Given a triangle T . What is the smallest number c(T), so that we can c(T)-
color the Euclidean plane, such that T can not be embedded monochromatically.

An upper bound on c in Problem 1 is also an upper bound for all c(T) in Problem 2, and
if we can show an upper bound for c(T) for all triangles T then this implies an upper bound
for c. For example in [6] it has been shown that the equilateral triangle with side length s

is non-monochromatic in a 2-coloring with halfopen horizontal strips of height
√

3
2 s. We call

such a coloring zebra coloring. Also other colorings for equilateral triangles are provided
in [6]. Pritikin [8] used colorings, where points with the same color and distance 1 only
occur in one color. Modifying his 7-coloring so that it becomes a proper 6-coloring of the
plane leads to results which are slightly worse than what we will go to present. In addition,
in his 5-coloring almost all triangles occure monochromatic. Graham and Tressler [4] show
bounds for degenerated triangles and mentioned that zebra colorings avoid a large class of
triangles, without giving explicit bounds.

1.1 Results
In Section 2 we will consider triangles for which a 6-coloring exists such that a monochromatic
embedding is not possible. We show that this holds for almost all triangles, thus lowering
the upper bound for Problem 1 from 7 to 6 with the exception of almost isosceles triangles
with a short base. In Section 3 we categorize triangles according to the number of colors
which are needed to guarantee that a monochromatic embedding is not possible. We show
that for near equilateral triangles 3 colors are sufficient. The flatter a triangle gets, the more
colors are needed. Due to space limitations several proofs will be omitted in this note.

2 Non-monochromatic triangles in the 6-colored plane

Let T be a triangle with vertices A, B and C. We write AB for the line segment AB and
AB for its length. Without loss of generality we assume that AB is the longest side of T .

I Definition 2.1. We denote the heights of T as depicted in Figure 2. We call T a normed
triangle, if the longest side AB of T has length 1, and BC ≤ AC holds.

Observe that a triangle T with side lengths a, b and c is non-monochromatic in some
r-coloring, if and only if there exists an r-coloring F , so that the triangle Ta with side
lengths 1, b

a and c
a is non-monochromatic in F . Therefore we can restrict our investigations

Oswin Aichholzer and Daniel Perz 10:3

A B

C

hA
hC

hB

Figure 2 Normed triangle with BC ≤ AC ≤ AB = 1. The grey area shows all possible locations
for vertex C.

to normed triangles. The grey area in Figure 2 shows all possible locations of vertex C to
be considered.

2.1 Zebra colorings
In a zebra coloring the plane is cyclically colored with horizontal strips, all of the same
height. The strips are halfopen, that is, the boundary between two neighboured strips has
the same color as the strip above it. For a normed triangle T we have that hC is the shortest
height of T . Thus the height of the strips has to be at most hC , as otherwise T fits into
one strip and obviously would be monochromatic. So assume that the height of each strip is
exactly hC . This implies that the vertices of the triangle have to lie in at least two different
strips.

A

B

C

hC

Figure 3 Zebra coloring with 6 colors with halfopen strips of height hC

For 6 colors the distance between two points in two different strips with the same color
is strictly larger than 5hC , because there are five strips between two strips with the same
color. So if two points have the same color and have distance at most 5hC , then these two
points have to lie in the same strip. Similarly, if a point of the triangle is the only one in
a strip, then the distances to both other points are at least 5hC if all the points are of the

EuroCG’19

10:4 Triangles in the colored Euclidean plane

same color. Therefore a normed triangle T is non-monochromatic if the second longest side
AC ≤ 5hC and we obtain the following lemma.

I Lemma 2.2. All normed triangles with AC ≤ 5hC are non-monochromatic in a zebra
coloring with 6 colors, where all strips have height hC .

For triangles where every angle is at most 90◦ we can slightly improve this result. The
basic idea is to place the triangle between two strips of the same color such that the longest
height hA is vertical. If we rotate the triangle around the vertex A until one of the sides
AB or AC is vertical, then one of the two vertices B and C moves upwards while the other
one moves downwards, and eventually one of them has to leave the strip. The details of the
proof are omitted.

I Theorem 2.3. Every normed triangle, in which every angle is at most 90◦ and hA ≤ 5hC

is non-monochromatic in a zebra coloring with 6 colors, where all strips have height hC .

By comparing different expressions of the area of the triangle, we get the following
corollary.

I Corollary 2.4. Every normed triangle, in which every angle is at most 90◦, and BC ≥ 1
5

is non-monochromatic in a zebra coloring with 6 colors, where all strips have height hC .

2.2 Hexagon colorings

2
3

1

1

4
6

5

2

5

4
6

5
4

P1

P4

P3

P2

Figure 4 6-coloring with hexagons, where all diagonals have length 1 and opposing sides are
parallel

Consider the hexagonal 6-coloring shown in Figure 4. The vertices of a hexagon lie on a
circle with radius 1

2 and are center symmetric. Thus the three central diagonals have length
1 and opposing sides are parallel. The hexagons are halfopen in the sense that we color
the two lowest vertices of a hexagon as well as the three sides, which are incident to these

Oswin Aichholzer and Daniel Perz 10:5

C ′

BA

a Locations covered by Lemma 2.2

C ′

BA

b Locations covered by Corollary 2.4
C ′

BA

c Locations covered by Theorem 2.5
A B

C ′

d Total area covered by our results

Figure 5 Possible locations for vertex C so that there exists a 6-coloring, such that the triangle
ABC is non-monochromatic.

vertices, with the same color as the hexagon. For example in Figure 4 the vertex P4 and
side P3P4 have color 3, but P3 has color 1.

Our goal is to maximize the shortest of the lengths P1P2, P2P3 and P1P4, as they are
also the lower bounds for the distance of two points in different hexagons with the same
color. Details on how to compute the exact lengths of the hexagons will be given in the full
version of this work.

I Theorem 2.5. All normed triangles T with AC ≤ 0.992076 are non-monochromatic in
the hexagon coloring in Figure 4 with specific lengths.

2.3 Summarizing bounds
Let us look which types of normed triangles are covered by the previous results. Recall that
the grey area in Figure 2 shows the relevant region of vertex C. Figures 5a to 5c show which
locations are covered by our results, and Figure 5d gives their union.

For almost all triangles T there exists a 6-coloring so that T is non-monochromatic.
Only for near-isosceles triangles with 0.992076AB < AC ≤ AB and BC < 1

5 AB we have no
such 6-coloring. This has to be seen in context of the Hadwiger-Nelson problem. For these
triangles the vertex C is rather close to the end of the unit length segment AB, meaning
that in the extreme case these triangles approach the segment.

Furthermore, Figure 5c shows that Theorem 2.5 covers almost all possible choices of C.
For locations of C which are not covered by Theorem 2.5 we see that Corollary 2.4 covers

EuroCG’19

10:6 Triangles in the colored Euclidean plane

slightly more than Lemma 2.2. Actually Lemma 2.2 is not needed for 6-colorings, as for
almost isosceles triangles, Corollary 2.4 is better than Lemma 2.2.

3 Non-monochromatic triangles with fewer colors

We have shown that for most triangles there exists a 6-coloring that prevents a monochro-
matic embedding. A natural question is to ask for which triangles less colors are sufficient.
We can use zebra colorings to generalize Lemma 2.2 and Corollary 2.4. Similar to Lemma 2.2
we get.

I Theorem 3.1. All normed triangles with AC ≤ (k − 1)hC are non-monochromatic in a
zebra coloring with k colors, 3 ≤ k ≤ 6, where all strips have height hC .

Corollary 2.4 generalizes to

I Theorem 3.2. All normed triangles for which every angle is at most 90◦ and BC ≥ 1
k−1

are non-monochromatic in a zebra coloring with k colors, 2 ≤ k ≤ 6. where all strips have
height hC .

Since our arguments for the proofs of Lemma 2.2, Theorem 2.3 and Corollary 2.4 were
about the distance between two points with the same color in different strips, we can prove
these statements in a similar way. Actually we just need to replace 5 by k − 1. Note that
Theorem 3.2 also works for 2 colors, whereas Theorem 3.1 only works for 3 or more colors.

1

2

3

4

3

3

4

2

1

1

2

Figure 6 4-coloring with regular hexagons of diameter 1

In the 4-coloring in Figure 6 all hexagons have diameter 1. The three sides and two
vertices below have the same color as the hexagon. This gives us the following theorem
(proof omitted).

I Theorem 3.3. In the 4-coloring in Figure 6, all normed triangles with AC ≤
√

3
2 are

non-monochromatic.

As before we summarize the results in a diagam, see Figure 7. For all possible locations
of the third vertex C of a normed triangle the colors indicate which k is sufficient so that a
k-coloring exists such that the triangle is non-monochromatic in this coloring. For example,
if C is in the yellow shaded area, then there exists a 3-coloring such that the triangle ABC

is non-monochromatic. This includes all triangles where the length of the three edges does
not differ too much. For Figure 7a only zebra colorings are used, while for Figure 7b also
hexagonal colorings are allowed.

Oswin Aichholzer and Daniel Perz 10:7

A B

C ′

a Only zebra colorings
A B

C ′

b All colorings

3 colors

4 colors

5 colors

6 colors

c Color code

Figure 7 Location of vertex C of triangles for which a k-coloring, 3 ≤ k ≤ 6 exists so that they
are non-monochromatic.

4 Conclusion

We have shown that for almost all triangles there exists a 6-coloring, such that the trian-
gle is non-monochromatic in this coloring. To be precise, for every normed triangle with
AC ≤ 0.992076 or BC ≥ 1

5 we can give such a 6-coloring. We have also seen that some
triangles are non-monochromatic in colorings with less than 6 colors. It remains an open
problem, if for every triangle there exists a 6-coloring of the plane, such that the triangle is
non-monochromatic. Or more generally, what is the smallest c so that there exists for every
triangle a c-coloring, such that the triangle is non-monochromatic.

References
1 A. de Grey. The chromatic number of the plane is at least 5, 2018. arXiv:1804.02385.
2 P. Erdős, R. Graham, P. Montgomery, B. Rothschild, J. Spencer, and E. Straus. Euclidean

Ramsey theorems. i. Journal of Combinatorial Theory, Series A, 14(3):341–363, 1973.
3 R. Graham. Problem 58: Monochromatic Triangles.

http://cs.smith.edu/~orourke/TOPP/P58.html#Problem.58.
4 R. Graham and E. Tressler. Open problems in Euclidean Ramsey Theory. In A. Soifer,

editor, Ramsey Theory: Yesterday, Today, and Tomorrow, pages 115–120. Birkhäuser
Boston, Boston, MA, 2011.

5 M.J.H. Heule. Computing Small Unit-Distance Graphs with Chromatic Number 5, 2018.
arXiv:1805.12181.

6 V. Jelínek, J. Kyncl, R. Stolar, and T. Valla. Monochromatic triangles in two-colored plane.
Combinatorica, 29:699–718, 2009.

7 D. Perz. Triangles in the colored Euclidean plane.
8 D. Pritikin. All Unit-Distance Graphs of Order 6197 Are 6-Colorable. Journal of Combi-

natorial Theory, Series B, 73:159–163, 1998.
9 L. Shader. All right triangles are Ramsey in E2. Journal of Combinatorial Theory, Series

A, 20:385–389, 1976.
10 A. Soifer. The Mathematical Coloring Book. Springer, 2009.

EuroCG’19

http://arxiv.org/abs/1804.02385
http://arxiv.org/abs/1805.12181

A Wavefront-Like Strategy for Computing
Multiplicatively Weighted Voronoi Diagrams
M. Held1 and S. de Lorenzo2

1 University of Salzburg
held@cs.sbg.ac.at

2 University of Salzburg
slorenzo@cs.sbg.ac.at

Abstract
We study multiplicatively weighted Voronoi diagrams (MWVDs) of point sites in the Euclidean
plane and present a wavefront-like approach for computing the MWVD of n points in near-
optimal O(n2 log n) time and Θ(n2) space. The key advantage of our algorithm is its simplicity.
Furthermore, it can be extended to handle additive weights at no additional computational cost.

1 Introduction

Let S denote a finite set of n distinct weighted points in R2, so-called sites. A weight function
w : S → R+ assigns a strictly positive weight w(s) to every site s ∈ S. It is common to
regard the weighted Euclidean distance dw(p, s) from an arbitrary point p in R2 to a site
s ∈ S as the standard Euclidean distance d(p, s) from p to s divided by the weight of s:

dw(p, s) := 1
w(s) · d(p, s).

For s ∈ S, the (weighted) Voronoi region VRw(s, S) of s relative to S is the set of all points
of the plane that are not farther to s than to any other site s′ in S, that is

VRw(s, S) := {p ∈ R2 : dw(p, s) ≤ dw(p, s′) for all s′ ∈ S with s 6= s′}.

The multiplicatively weighted Voronoi diagram (MWVD), VDw(S), of S is simply defined as

VDw(S) :=
⋃
s∈S

∂ VRw(s, S).

An example of a MWVD is shown in Figure 1.
A connected component of a Voronoi region is called a face. Voronoi region. For two

distinct sites s, s′ of S, the bisector b(s, s′) of s, s′ models the set of points of the plane
that are at the same weighted distance from s and s′. Hence, a non-empty intersection of
two Voronoi regions is a subset of the bisector of the two defining sites. Following common
terminology, a connected component of such a set is called a (Voronoi) edge of VDw(S). An
endpoint of an edge is called a (Voronoi) node. It is known that the bisector between two
unequally weighted sites forms a circle1. Hence, the Voronoi edges of VDw(S) are given by
straight-line segments and circular arcs. In contrast to the standard Voronoi diagram, a
MWVD may include a quadratic number of Voronoi nodes, edges, and faces [2].

In the sequel we present work in progress on computing MWVDs. Our current algorithm
operates entirely in the plane and runs in O(n2 log n) time and Θ(n2) space. It is based on a

1 Apollonius of Perga defined a circle as a set of points that have a specific distance ratio to two foci.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

11:2 Computing Multiplicatively Weighted Voronoi Diagrams

35
60

40
90

21

80
52

95

20

66

46

82

10

33

71
76

75

78

29

83

47

72

53

63
59

68

Figure 1 The MWVD (shown in black) of a set of input points (in green). The numbers next to
the points indicate their weights.

wavefront-like expansion of weighted circles. As time progresses the wavefrontWF(t) covers a
growing portion of R2. Certain events mark topological changes ofWF(t) and aid us in finding
the individual Voronoi nodes. Although it is no wavefront propagation in the strict meaning
of the word, we will (for the sake of simplicity) omit the qualifier “like” from here on. Our
approach can be extended to handle both additive and multiplicative weights at no additional
cost. (Details are omitted due to lack of space.) We developed a prototype implementation
of our algorithm in C++ which uses standard IEEE 754 floating-point arithmetic.

2 Related Work

MWVDs were initially studied by Boots [3] in terms of market area analysis. In 1984,
Aurenhammer and Edelsbrunner [2] presented an optimal algorithm for constructing the
MWVD of a set of n points in R2 in O(n2) time and space. They define spheres on the bisector
circles and convert them into half-planes using a spherical inversion. We are not aware of
an implementation of their algorithm, though. Later Aurenhammer uses divide&conquer
to obtain an O(n log n) time and O(n) space algorithm for the one-dimensional weighted
Voronoi diagram [1], where all weighted input points lie on a line. Har-Peled and Raichel
[4] show that MWVDs have a slightly super-linear expected combinatorial complexity if
the weights are chosen randomly. Their result provides the motivation for working on an
algorithm whose running time is output-sensitive.

Vyatkina and Barequet [5] present a wavefront-like strategy to compute the weighted
Voronoi diagram of a set of lines in the plane in O(n2 log n) time. The Voronoi nodes are
computed based on edge and break-through events. An edge event takes place when an
active arc vanishes. A break-through event happens whenever a new wavefront arc appears.

M. Held and S. de Lorenzo 11:3

3 Algorithm

For the sake of descriptional simplicity we assume that no point in R2 has the same weighted
distance to more than three input sites of S. For time t ∈ R+

0 , each site s ∈ S is associated
with an expanding offset circle o(s, t) which is centered at s and whose radius equals t ·w(s).
We find it convenient to regard o(s, t) as a function of either time or distance since at time t

every point on o(s, t) is at Euclidean distance t · w(s) from s, i.e., at weighted distance t.
The wavefront WF(t) at time t is the set of all points p of the plane whose weighted

distance from S equals t: We have p ∈ WF(t) if and only if mins∈S dw(p, s) = t. The
wavefront is formed by parts of offset circles which we will refer to as wavefront arcs. Every
wavefront arc starts and ends at a moving wavefront vertex, i.e., a specific intersection point
with another offset circle. These vertices will trace out the MWVD, see Figure 2.

35
60

40
90

21

80
52

95

20

66

46

82

10

33

71
76

75

78

29

83

47

72

53

63
59

68

Figure 2 A wavefront WF(t) (in blue) and the MWVD traced out till some time t for the setting
of Figure 1.

We now consider two sites s1, s2 ∈ S, with w(s1) < w(s2), and assume that o(s1, t) and
o(s2, t) intersect in the points i1 and i2. These two moving intersection points trace out
b(s1, s2). (Of course, the moving intersection point i1 depends on time t but we simply write
i1 instead of i1(t).) Since w(s1) < w(s2), it is easy to see that the arc of o(s1, t) which is
inside o(s2, t) will not belong to WF(t′) for any t′ > t. We refer to such an arc of an offset
circle as inactive. All other arcs in the arrangement of all offset circles are called active, see
Figure 3. Thus, it is necessary (but not sufficient) for an arc of an offset circle to be active
for all times t′ with 0 ≤ t′ < t if it is active at time t.

We now describe an event-handling scheme that allows to trace out the Voronoi diagram
by simulating the expansion of all active arcs. During the wavefront propagation process,
collision events mark the initial contact of two offset circles, domination events happen
as soon as the offset circle of a higher-weighted site fully contains the offset circle of a
lower-weighted one, and edge events as well as break-through events take place whenever an
active arc vanishes or appears. These events capture topological changes of the wavefront and
determine the corresponding Voronoi nodes of VDw(S). The latter two events are triggered

EuroCG’19

11:4 Computing Multiplicatively Weighted Voronoi Diagrams

35
60

40
90

21

80
52

95

20

66

46

82

10

33

71
76

75

78

29

83

47

72

53

63
59

68

Figure 3 The arrangement of all active arcs that corresponds to the wavefront depicted in
Figure 2.

whenever one or more active arcs vanish, i.e., shrink to zero length.
Every site s keeps track of the active arcs of its expanding offset circle o(s, t) by storing

them in a self-balancing binary search tree T (s) that is updated whenever events occur.
It maintains these arcs in sorted angular order as they appear when o(s, t) is traversed
counter-clockwise.

We start with computing the collision times for every pair of offset circles and insert them
into a priority queue Q. The initial wavefront WF(t), for t > 0 small enough, contains the
full offset circles of all sites, and every offset circle forms one active arc. Every active arc is
also marked to belong to WF(t).

As soon as the initialization phase is completed, the events are successively popped from
Q. Let e be the current event at time te. Note that the number and order of the active arcs
along a specific offset circle cannot change between two consecutive events, but their extents,
i.e., the portions of the offset circle which they occupy, may change. Hence it is important to
recompute the positions of the moving intersection points on the fly whenever we perform a
search in one of our search trees at time te.

Collision event: If e is a collision event then two offset circles o(s1, te) and o(s2, te) meet at
a single point q for the first time; see Figure 4. We search T (s1) and T (s2), and determine
the arcs a1 and a2 which contain q. If either of them is inactive then this event requires no
further processing. Otherwise we create two moving intersections i′

12 and i′′
12 at q and we

split both a1 and a2 at q. W.l.o.g., w(s1) < w(s2). As time progresses, i′
12 and i′′

12 limit a
new active arc on o(s2, t) and an inactive arc on o(s1, t). (If w(s1) = w(s2) then both new
arcs are inactive.)

Domination Event: If e is a domination event then the offset circle o(s1, te) fully contains
the offset circle o(s3, te) for the first time at time te, with w(s3) < w(s1); see Figure 5. That

M. Held and S. de Lorenzo 11:5

q

s1

s2

s3

s1

s2

s3

i′′12

i′12 s1

s2

s3
i′′12

i′12

Figure 4 The collision events (depicted by black dots) of the offset circles that correspond to the
three input sites s1, s2, and s3, where w(s1) := 5, w(s2) := 6, and w(s3) := 8. The active arcs of
the offset circles are drawn in magenta whereas the inactive arcs are shown in gray. The red dots
indicate the moving intersection points i′

12 and i′′
12.

is, the two offset circles touch at a point q. Let a1 and a3 be the corresponding arcs that
contain q. If one of them is inactive then we ignore this event. Otherwise, all arcs of o(s3, te)
become inactive and a1 is merged with its neighboring arcs.

s3 s2

s1

Figure 5 A domination event that involves s1 and s3 takes place.

Edge Event: An edge event occurs at time te if at least one active arc along an offset circle
shrinks to a point q, i.e., to zero length; see Figure 6. If an entire circular-arc triangle shrinks
to q at time te then all active arcs involved can be removed from their corresponding offset
circles. Otherwise, a single active arc a1 on one of the two higher weighted offset circles
o(s1, te) just disappeared. The two other sites s2 and s3, where s3 is w.l.o.g. the site with
the lowest weight, whose offset circles cause a1 to vanish can be derived from the moving
intersection points i12 and i13 that limit a1. We remove a1 from o(s1, te) and add a new
active arc which is bound by i12 and i23 to o(s2, te). Additionally, the moving intersection
point i13 that bounds an active arcs along o(s3, te) needs to be replaced by i23.

Break-Through Event: A break-through event is a special kind of edge event and can be
treated similarly. It also occurs if an active arc a1 arc on o(s2, te) shrinks to a point q. Let,
again, s1 and s3 be the other two sites that participate in this event, where s3 is associated
with the lowest weight; see Figure 7. The arc a1 is deleted from o(s2, te) and a new active
arc a′

1 spawns between the corresponding moving intersection points i12 and i13 on o(s1, te),
and i23 that bounds a neighboring active arc along o(s3, te) is replaced by i13.

Common to all these events is the necessity to compute and store a future edge event for
every newly created active arc. Furthermore, every inactive arc is deleted from its search
data structure, while every new active arc is inserted into the search data structure of its site.

EuroCG’19

11:6 Computing Multiplicatively Weighted Voronoi Diagrams

i12

i13i23

i12

i13 i23

i13i12

i12i13

i23

i12 i13

i12i13

i23

Figure 6 In the top-most subfigure the configuration before and after the collapse of an entire
circular-arc triangle is displayed. The remaining subfigures illustrate the collapse of a single active
arc on the offset circle of the highest-weighted (medium-weighted, resp.) site.

i23

i12 i13

s1

s2

s3

i13
i23

i12

s1

s2

s3

i23

i12 i13

a1

i13
i23

i12
a′1

Figure 7 An active arc a1 disappears and a new active wavefront arc a′
1 spawns between the

moving intersection points i12 and i13 at a break-through event.

M. Held and S. de Lorenzo 11:7

We process events until the priority queue Q is empty. If the largest weight is associated
with a strict subset Smax of S then Q will be empty once the wavefront contains only arcs
of offset circles of sites of Smax. If all sites have identical weight then VDw(S) equals the
standard Voronoi diagram and Q will be empty once the wavefront contains only arcs of
offset circles of sites which lie on the convex hull of S.

4 Analysis

All topological changes of the wavefront are properly detected by our algorithm, as they
coincide with the collapse of at least one active arc of the wavefront. It remains to determine an
upper bound on the number of events that may take place during the wavefront propagation.

I Lemma 4.1. During the wavefront propagation Θ(n2) many collision and O(n2) many
domination events are computed.

Proof. Recall that every pair of input sites corresponds to at most one collision and at most
one domination event, with all collision events being computed a priori. J

I Lemma 4.2. During the wavefront propagation O(n2) many break-through events occur.

Proof. Let s1, s2 and s3 be the sites whose expanding offset circles o(s1, t), o(s2, t) and
o(s3, t) are involved in a break-through event at time te. These offset circles define the three
moving intersection points i12, i13 and i23, where i23 is shared by active arcs of o(s2, t) and
o(s3, t) for t < te; recall Figure 7. At the time of the event, the offset circle o(s1, te) passes
through i23 and this moving intersection point will be contained inside of o(s1, t) for all
t > te. Hence, for t > te, no active arc of o(s2, t) can share a common vertex with an active
arc of o(s3, t). (Note that otherwise the MWVD of {s1, s2, s3} would potentially include
multiply-connected Voronoi regions.) This implies that a break-through event can occur at
most once for each pair of input sites. J

I Lemma 4.3. During the wavefront propagation O(n2) many edge events occur.

Proof. At every collision and domination event a constant number of new active arcs is
generated, and every break-through event results in exactly one new active arc, resulting in
a total of O(n2) new active arcs during the entire run of the wavefront propagation. Every
edge event either reduces the number of active arcs by at least one or, if this number stays
constant, then it is coupled to exactly one of the at most quadratically many break-through
events, recall the right part of Figure 6. J

Summarizing, Θ(n2) events take place during the wavefront propagation. Each of these
events consumes up to O(log n) time, since every event requires a constant number of lookups,
insertions, and/or deletions in a self-balancing binary search tree of size O(n) or in a priority
queue of size Θ(n2). Thus, we get an overall runtime of O(n2 log n). Additionally, this
algorithm requires Θ(n2) memory because our current approach computes all quadratically
many collision events a priori. Avoiding this computational burden is work in progress.

Acknowledgments Work supported by Austrian Science Fund (FWF): Grant P31013-N31.

EuroCG’19

11:8 Computing Multiplicatively Weighted Voronoi Diagrams

References
1 Franz Aurenhammer. The One-Dimensional Weighted Voronoi Diagram. Information

Processing Letters, 22(3):119–123, 1986. doi:10.1016/0020-0190(86)90055-4.
2 Franz Aurenhammer and Herbert Edelsbrunner. An Optimal Algorithm for Constructing

the Weighted Voronoi Diagram in the Plane. Pattern Recognition, 17(2):251–257, 1984.
doi:10.1016/0031-3203(84)90064-5.

3 Barry N Boots. Weighting Thiessen Polygons. Economic Geography, 56(3):248–259, 1980.
doi:10.2307/142716.

4 Sariel Har-Peled and Benjamin Raichel. On the Complexity of Randomly Weighted Mul-
tiplicative Voronoi Diagrams. Discrete & Computational Geometry, 53(3):547–568, 2015.
doi:10.1007/s00454-015-9675-0.

5 Kira Vyatkina and Gill Barequet. On Multiplicatively Weighted Voronoi Diagrams
for Lines in the Plane. Trans. Computational Science, 13:44–71, 2011. doi:10.1007/
978-3-642-22619-9_3.

http://dx.doi.org/10.1016/0020-0190(86)90055-4
http://dx.doi.org/10.1016/0031-3203(84)90064-5
http://dx.doi.org/10.2307/142716
http://dx.doi.org/10.1007/s00454-015-9675-0
http://dx.doi.org/10.1007/978-3-642-22619-9_3
http://dx.doi.org/10.1007/978-3-642-22619-9_3

Linear-size farthest color Voronoi diagrams:
conditions and algorithms∗

Ioannis Mantas1, Evanthia Papadopoulou1, Vera Sacristán2, and
Rodrigo I. Silveira2

1 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
{ioannis.mantas,evanthia.papadopoulou}@usi.ch

2 Departament de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain
{vera.sacristan,rodrigo.silveira}@upc.edu

Abstract
The farthest-color Voronoi diagram (FCVD) is a farthest-site Voronoi diagram defined on a
family of m clusters (sets) of points in the plane. Its combinatorial complexity in the worst case
is Θ(mn), where n is the total number of points. In this paper we give structural properties of the
FCVD and list sufficient conditions under which this diagram has O(n) combinatorial complexity.
For such cases we present efficient construction algorithms.

1 Introduction

The Voronoi diagram is a well-known geometric partitioning structure, defined by a set of
simple geometric objects in a space, called sites. The ordinary (nearest-neighbor) Voronoi
diagram of a set of points in two dimensions is a subdivision of the plane into maximal
regions such that all points in one region share the same nearest site. In the farthest-site
Voronoi diagram, points in a single region have the same farthest site. Many generalizations
of this simple concept have been considered for different types of sites, metrics and spaces.
For a comprehensive list of results see [2].

We are interested in color Voronoi diagrams, where each site is a cluster (a set) of points
in R2, identified by a distinct color. The distance between a point x ∈ R2 and a cluster P is
realized by the nearest point in P , i.e., dc(x, P) = minp∈P d(x, p). The nearest-color Voronoi
diagram (NCVD) of a family P of clusters, is a min-min diagram that can be easily derived
from the ordinary Voronoi diagram of all points in P: the region of a cluster P is the union
of the Voronoi regions of points belonging to P (see Fig. 1a). Its farthest counterpart, the
farthest-color Voronoi diagram (FCVD) of P is a max-min diagram and its properties have
not been extensively looked into (see Fig. 1b).

The FCVD was first studied by Huttenlocher et al. [9], showing that the combinatorial
complexity of the diagram in the worst case is Ω(mn) and O(mnα(mn)), where m is the
number of clusters and n is the overall number of points. This was later settled to Θ(mn) by
Abellanas et al. [1]. Using a geometric transformation in 3D, the diagram can be computed
in O(mn logn) time [9]: for every cluster P , each point in the plane is lifted in 3 dimensions,
with height equal to the distance from the nearest point in P , yielding a surface; the upper

∗ This research and in particular the work of I. M. and E. P. has been supported in part by the Swiss
National Science Foundation, under the DACH project VORONOI++, SNF 200021E-154387. R. S.
was supported by MINECO through the Ramón y Cajal program. V. S. and R. S. were also supported
by projects MINECO MTM2015-63791-R and Gen. Cat. 2017SGR1640. This project has received
funding from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 734922.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

12:2 Linear-size farthest-color Voronoi diagrams

(a) (b)

Figure 1 A family P of clusters along with (a) NCVD(P) and (b) FCVD(P).

envelope of these surfaces projected back onto the plane gives the FCVD. Instances of
linear-size diagrams have been considered by Bae [3], Claverol et al. [6] and Iacono et al. [10].
Applications of the FCVD include facility location problems [1], variants of the Steiner tree
problem [4], sensor deployment problems [13] and finding stabbing circles for line segments [6].

Closely related to the FCVD is the Hausdorff Voronoi diagram (HVD) of a family of point
clusters. The HVD is a min-max diagram: the distance from a point x ∈ R2 to a cluster is
the farthest distance, df = maxp∈P d(x, p), and the plane is subdivided into maximal regions
with the same nearest cluster. The HVD has been extensively studied, see e.g. [8, 15], and
many algorithmic paradigms have been considered for its construction, see e.g. [7, 11, 15, 16].
Interestingly, the algorithm presented in [8] can be adapted to also yield an O(n2)-time
algorithm for the FCVD. This has been remarked in [6] for point clusters of cardinality two.
In the worst case, this is optimal as the diagram may have complexity Θ(n2). However, the
algorithm remains Θ(n2) even if the diagram has only O(n) structural complexity.

In this work, we study structural properties of the FCVD, give sufficient conditions
under which the diagram has O(n) structural complexity and present efficient algorithms to
construct it when these conditions are met.

2 Definitions and basic properties

Let P := {P1, ..., Pm} be a family of m clusters of points in R2, where no two clusters share
a point. We assume that m > 1 and let

∑
i=1...m

|Pi| = n. We define the following diagrams.

I Definition 1. The nearest color Voronoi diagram (NCVD) of P is the subdivision of R2

into nearest color Voronoi regions. The nearest color Voronoi region of a cluster Pi ∈ P is
ncreg(Pi) = {x ∈ R2 | dc(x, Pi) < dc(x, Pj) ∀Pj ∈ P, j 6= i}.

I Definition 2. The farthest color Voronoi diagram (FCVD) of P is the subdivision of R2

into farthest color Voronoi regions. The farthest color Voronoi region of a cluster Pi ∈ P is
fcreg(Pi) = {x ∈ R2 | dc(x, Pi) > dc(x, Pj) ∀Pj ∈ P, j 6= i}.

A region fcreg(Pi) may consist of several maximally connected components, called faces.
Faces of fcreg(Pi) are further subdivided by the ordinary Voronoi diagram of Pi, which is
denoted Vor(Pi). This is called the internal subdivision of a face. For p ∈ Pi : fcreg(p) =
{x ∈ fcreg(Pi) | d(x, p) < d(x, q) ∀q ∈ Pi \ {p}}. A region fcreg(p) may have several faces.

I Definition 3. Given two clusters Pi, Pj , their color bisector is the locus of points equidistant
from the two clusters, that is, bc(Pi, Pj) = {x ∈ R2 | dc(x, Pi) = dc(x, Pj)}.

I. Mantas et al. 12:3

(a) (b) (c)

Figure 2 (a) A bisector consisting of a cycle and a chain. (b) Two bisectors sharing a site
intersecting linearly many times. (c) Hull of the clusters in Fig. 1 and the associated normal vectors.

Bisector bc(Pi, Pj) is a subgraph of the Voronoi diagram Vor(Pi ∪Pj). It is a collection of
edge-disjoint cycles and unbounded chains of total complexity O(|Pi|+ |Pj |), which is tight
in the worst case (see Fig. 2a).

We refer to edges of the FCVD belonging to color bisectors as pure edges, and to edges
or vertices of the internal subdivisions as internal. Voronoi vertices incident to three color
bisectors are called pure vertices, and vertices incident to two color bisectors and one internal
edge are called mixed vertices. See Fig. 3 for an illustration of these features.

The following lemma characterizes the structure of farthest color regions.

I Lemma 2.1. A face f of fcreg(Pi) satisfies:
1. If f is bounded, its internal subdivision is a tree whose leaves are mixed vertices on ∂f .
2. If f is unbounded, its internal subdivision is a (possibly empty) forest, where each tree

has exactly one unbounded edge and its remaining leaves are mixed vertices on ∂f .
The boundary of a face fcreg(p), p ∈ Pi, is a sequence of convex chains (as seen from p).

We use a refinement of the FCVD derived by the visibility decomposition, defined anal-
ogously to [16]: For each region fcreg(p) and for each pure or mixed vertex u on ∂fcreg(p),
draw the portion of the line through p and u that lies inside fcreg(p) (see Fig. 3).

The cluster hull, for short hull, of a family of point clusters is a closed (not necessarily
simple) polygonal chain that characterizes the unbounded faces of the FCVD and the HVD.
We review the definition from [16], see Fig. 2c.

I Definition 4. Given a family of clusters P, a point p ∈ Pi is a hull vertex if p admits a
supporting line l, such that Pi lies completely on one of the two halfplanes defined by l and
the other one intersects every cluster Pj ∈ P \ {Pi}. A hull edge is a segment connecting two
hull vertices p ∈ Pi, q ∈ Pj such that the line through p, q leaves Pi and Pj on one halfplane,
while the other halfplane intersects all other clusters in P . Such an edge is associated with a
normal vector in the direction of the halfplane that does not include Pi, Pj . The hull edges
sorted by the circular ordering of all such normal vectors define a closed polygonal chain
called the cluster hull of P, denoted CLH (P).

We show that there is a one-to-one correspondence between the unbounded faces of the
FCVD and the HVD. Therefore, results for hulls [16] directly follow.

I Lemma 2.2. A region fcreg(p) is unbounded if and only if p is a vertex of CLH(P). The
circular order of hull edges along CLH(P) is equal to that of unbounded edges of FCVD(P).

EuroCG’19

12:4 Linear-size farthest-color Voronoi diagrams

p ∈ Pi

p

fcreg(p)

p

(a) (b)

Pure vertex

Internal vertex

Mixed vertex

Visibility decomposition

Internal edge

Pure edge

Figure 3 (a) An unbounded and (b) a bounded face of a point p ∈ Pi.

3 Conditions for linear-size diagrams

Abstract Voronoi diagrams were introduced by Klein [12]. Instead of sites and distance
measures, these diagrams are defined in terms of bisecting curves satisfying a set of simple
combinatorial properties, called axioms. In the context of color Voronoi diagram, these
axioms can be stated as follows, for every subset P ′ ⊆ P:
(A1) Each region in NCVD(P ′) is non-empty and path-wise connected.
(A2) Each point in the plane belongs to the closure of a region in NCVD(P ′).
(A3) Each color bisector is an unbounded Jordan curve.
(A4) Any two color bisectors intersect transversally and in a finite number of points.

A family of clusters is called admissible if the system of bisectors satisfies (A1)-(A4). By
the structural properties of farthest abstract Voronoi diagrams [5, 14] we derive the following.

I Lemma 3.1. If P is admissible, then the skeleton of FCVD(P) is a tree of O(n) total
structural complexity. One region may consist of Θ(m) disjoint faces and the total number
of faces is O(m).

Two clusters are called linearly-separable if they have disjoint convex hulls. A family of
pairwise linearly-separable clusters is also called linearly-separable. The color bisector of two
linearly-separable clusters is a single unbounded, monotone chain. The color bisectors of
three pairwise linearly-separable clusters, however, bc(Pi, Pj) and bc(Pj , Pk) may intersect
Θ(|Pi| + |Pj | + |Pk|) times (see Fig. 2b). Thus, a linearly separable family need not be
admissible. By showing that if the regions of NCVD(P) are connected then the same should
hold for NCVD(P ′), for any P ′ ⊆ P, we derive the following.

I Lemma 3.2. Let P be a linearly-separable family of clusters. If the regions in NCVD(P)
are path-connected, then P is admissible.

Lemma 3.2 indicates that we can determine if a family P is admissible in O(n logn) time.
A family of clusters P is called disk-separable if for every cluster Pi ∈ P there exists a disk
containing Pi and no point from other clusters (see Fig. 4). By proving that disk separability
implies connected regions in NCVD(P), we derive:

I Lemma 3.3. Any family of disk-separable clusters P is admissible.

We now look into linearly-separable families of clusters. The following statement has
been proven for clusters of cardinality two [6] but holds also for general clusters.

I Lemma 3.4. If P is linearly-separable, then FCVD(P) has O(m) unbounded faces.

I. Mantas et al. 12:5

(a) (b) (c)

Figure 4 (a) A disk-separable family of clusters P along with (b) NCVD(P) and (c) FCVD(P).

A pair of points (p1, p2) ∈ Pi, which defines a Voronoi edge e in Vor(Pi), is said to be
straddled by a cluster Qj ∈ P if the line through (p1, p2) intersects the segment q1q2 defined
by (q1, q2) ∈ Qj and the circles through (q1, p1, p2) and (q2, p1, p2) are both centered on e
(see Fig. 5a). We also say that (q1, q2) and Qj straddle the Voronoi edge e.

We define the straddling number of e, denoted s(e), as the number of clusters in P that
straddle e. Clearly, for a cluster Pi, s(Pi) = O(m|Pi|). The straddling number of family P,
is s(P) =

∑
Pi∈P s(Pi). In the worst case, s(P) = Θ(mn) .

I Lemma 3.5. If P is linearly-separable, then the number of bounded faces, and the overall
structural complexity of FCVD(P), is O(n+ s(P)).

Proof. (sketch) For each Voronoi edge e of Vor(Pi) we allow one bounded face of fcreg(Pi)
and count the number of mixed vertices that may be incident to additional faces of fcreg(Pi)
on e. Let v1, v2 be two consecutive mixed vertices on a Voronoi edge e of Vor(Pi), induced
by points (p1, p2), such that segment v1v2 6∈ fcreg(Pi) (see Fig.5). Suppose v1 is induced by
q1 ∈ Qj . By considering a disk moving from left to right on e and touching (p1, p2), we can
show that v2 must be induced by a point q2 ∈ Qj such that (q1, q2) defines a straddle on e.
In addition, cluster Qj cannot induce any other mixed vertex on e. Thus, the pair of vertices
(v1, v2) is charged to a unique cluster counted in the straddling number of e. J

By Lemma 3.5, if the straddling number s(P) is O(n), then FCVD(P) has complexity O(n).

4 Construction algorithms

Consider a divide & conquer approach. Split P into PL and PR by a vertical line; Com-
pute FCVD(PL) and FCVD(PR) recursively; Merge FCVD(PL) and FCVD(PR) to obtain
FCVD(P). Merging requires constructing the merge curveM(PL ∪ PR), which is the set of
pure edges of FCVD(PL ∪ PR) belonging to bisectors bc(Pi, Pj) with Pi ∈ PL and Pj ∈ PR.
A merge curve may consist of linearly many chains, called components. To construct it, a
starting point has to be found on each component and then the chain has to be traced.

Given a starting point on a component we can efficiently trace it, by adapting standard
tracing methods and exploiting the visibility decomposition, similarly to [16].

I Lemma 4.1. Given diagrams FCVD(PL),FCVD(PR) and a starting point on a component
M ofM(PA,PB), the component M can be computed in O(|M |) time.

Due to Lemma 2.2, we can identify starting points on the unbounded components of
M(PA,PB) by merging CLH(PL) and CLH(PR), before merging the two diagrams. This
can be done in time O(|CLH(PL)|+ |CLH(PR)|), see [16].

If P is admissible, (such as a family of disk separable clusters), then all regions of

EuroCG’19

12:6 Linear-size farthest-color Voronoi diagrams

(a)

p1

p2

q2

q1

r1

r2 P,Q,R

circumcenters

Vor(P)

Pi, Qj
(b)

p1

p2

e

q1

q2

v1 v2

mixed vertex

fcreg(Pi)

Figure 5 (a) A family P, where pair (p1, p2) is straddled by two clusters Q, R.(b) Illustration of
the proof of Lemma 3.5.

FCVD(P) are unbounded (Lemma 3.1) and this is true for all components of the merge
curve. Thus, we derive the following.

I Theorem 1. If P is admissible, then FCVD(P) can be constructed in O(n logn) time.

Note that for an admissible family P, FCVD(P) could also be computed using the
randomized algorithm of [14] for abstract Voronoi diagrams. Color bisectors, however, may
have Θ(n) complexity, so, a direct application would give time complexity O(n2 logn).

When P is not admissible, the challenge is to identify starting points on the bounded
components of the merge curve. For linearly-separable families where clusters have a constant
straddling number, there are constant number of bounded components. To identify starting
points on these components, the data structure and technique of [10] can be used to do this
in O(n logn) time, yielding an O(n log2 n)-time algorithm.

I Theorem 2. If P is a linearly-separable family of clusters, where s(Pi) is constant for any
Pi ∈ P, then FCVD(P) can be constructed in O(n log2 n) time.

We conjecture that for linearly-separable families the FCVD can have complexity Θ(mn).

References
1 Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong

Ma, Belén Palop, and Vera Sacristán. The farthest color Voronoi diagram and related
problems. Technical report, Rheinische Friedrich–Wilhelms–Universität Bonn, 2006.

2 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay
Triangulations. World Scientific, 2013.

3 Sang Won Bae. On linear-sized farthest-color Voronoi diagrams. IEICE Transactions on
Information and Systems, 95(3):731–736, 2012.

4 Sang-Won Bae, Chun-Seok Lee, and Sung-Hee Choi. On exact solutions to the euclidean
bottleneck steiner tree problem. Information Processing Letters, 110(16):672–678, 2010.

5 Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Papadopoulou,
and Maksym Zavershynskyi. On the complexity of higher order abstract Voronoi diagrams.
Computational Geometry, 48(8):539 – 551, 2015.

6 Mercè Claverol, Elena Khramtcova, Evanthia Papadopoulou, Maria Saumell, and Carlos
Seara. Stabbing circles for sets of segments in the plane. Algorithmica, pages 1–36, 2017.

I. Mantas et al. 12:7

7 Frank Dehne, Anil Maheshwari, and Ryan Taylor. A coarse grained parallel algorithm
for hausdorff voronoi diagrams. In Parallel Processing, 2006. ICPP 2006. International
Conference on, pages 497–504. IEEE, 2006.

8 Herbert Edelsbrunner, Leonidas J Guibas, and Micha Sharir. The upper envelope of piece-
wise linear functions: algorithms and applications. Discrete & Computational Geometry,
4(1):311–336, 1989.

9 Daniel P Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of Voronoi
surfaces and its applications. Discrete & Computational Geometry, 9(3):267–291, 1993.

10 John Iacono, Elena Khramtcova, and Stefan Langerman. Searching edges in the overlap of
two plane graphs. arXiv preprint arXiv:1701.02229, 2017.

11 Elena Khramtcova and Evanthia Papadopoulou. Randomized incremental construction for
the Hausdorff Voronoi diagram revisited and extended. In International Computing and
Combinatorics Conference, pages 321–332. Springer, 2017.

12 Rolf Klein. Concrete and abstract Voronoi diagrams, volume 400. Springer Science &
Business Media, 1989.

13 Chunseok Lee, Donghoon Shin, Sang Won Bae, and Sunghee Choi. Best and worst-case
coverage problems for arbitrary paths in wireless sensor networks. Ad Hoc Networks,
11(6):1699–1714, 2013.

14 Kurt Mehlhorn, Stefan Meiser, and Ronald Rasch. Furthest site abstract Voronoi diagrams.
International Journal of Computational Geometry & Applications, 11(06):583–616, 2001.

15 Evanthia Papadopoulou. The Hausdorff Voronoi diagram of point clusters in the plane.
Algorithmica, 40(2):63–82, 2004.

16 Evanthia Papadopoulou and Der-Tsai Lee. The Hausdorff Voronoi diagram of polygonal
objects: A divide and conquer approach. International Journal of Computational Geometry
& Applications, 14(06):421–452, 2004.

EuroCG’19

Unbounded Regions of Higher-Order Line and
Segment Voronoi Diagrams in Higher Dimensions∗

Gill Barequet1, Evanthia Papadopoulou2, and Martin Suderland3

1 Dept. of Computer Science, The Technion—Israel Inst. of Technology,
Haifa 3200003, Israel
barequet@cs.technion.ac.il

2 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
evanthia.papadopoulou@usi.ch

3 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
martin.suderland@usi.ch

Abstract
We study the behavior at infinity of farthest and higher-order Voronoi diagrams of line segments
or/and lines in a d-dimensional Euclidean space. The unbounded parts of these diagrams can be
encoded by a Gaussian map on the sphere of directions Sd−1. We show that the combinatorial
complexity of the Gaussian map for the order-k Voronoi diagram of n line segments or/and
lines is O(min(k, n−k)nd−1), which is tight for n−k = O(1). The Gaussian map of the farthest
Voronoi diagram of line segments or/and lines in R3 can be constructed in O(n2) time.

1 Introduction

The Voronoi diagram of a set of n geometric objects, called sites, is a well-known geometric
space-partitioning structure. The nearest variant partitions the underlying space into maximal
regions, such that all points within a region have the same nearest site. A very well-studied
type of Voronoi diagram is the Euclidean Voronoi diagram of n points in Rd, see [4, 7, 9].

Many algorithmic paradigms, such as plane sweep, incremental construction, and divide
and conquer have been applied to construct the Voronoi diagram of line segments in the
plane [2]. Already in a three-dimensional space, the algebraic description of the features,
such as the edges, of the Voronoi diagram of line segments become complicated [8].

The order-k (resp., farthest) Voronoi diagram of a set of sites is a partition of the
underlying space into regions, such that the points of one region have the same k nearest sites
(resp., same farthest site). In two dimensions, the farthest Voronoi diagram of n segments
has already been studied by Aurenhammer et al. [1], who give results on its structure and
an algorithm to compute it in O(n log n) time. The order-k counterpart of this diagram
has O(k(n− k)) complexity and it can be constructed iteratively [11]. Already in a three-
dimensional space with the Euclidean metric, no tight asymptotic bound on the complexity
of the farthest Voronoi diagram is known, and similarly for the nearest-neighbor diagram [10].
In both cases, the only known bounds are Ω(n2) and O(n3+ε), for any ε > 0 [3, 12].

The Euclidean farthest-neighbor Voronoi diagrams of lines and/or line segments in three
dimensions has the property that all cells are unbounded [3]. This property motivated
us to first study the unbounded parts of the farthest Voronoi diagram. Barequet and
Papadopoulou [3] introduced a structure on the sphere of directions, called the Gaussian
map, describing those unbounded parts. The Gaussian map associates with each cell of a
diagram its unbounded directions. This results in a subdivision of the sphere of directions.

∗ Work on this paper by the first author was supported in part by BSF Grant 2017684. The last two
authors were supported in part by the Swiss National Science Foundation, project SNF-200021E-154387.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

13:2 Gaussian Map of order-k Voronoi Diagrams

Figure 1 The order-2 Voronoi diagram (in red) of three segments s1, s2, s3 in the plane.

In the current paper, we study the Gaussian map of order-k (and farthest) Voronoi
diagrams of line segments and lines as sites in Rd. We characterize the unbounded directions
of the cells in these diagrams. We derive the bound O(min(k, n− k)nd−1) on the complexity
of the Gaussian map of order-k Voronoi diagrams for these sites. We prove that when sites are
segments, the complexity of the Gaussian map is Ω(kd−1), which is tight when n− k = O(1).
We also derive the bound Ω(kd−1) on the complexity of the entire order-k Voronoi diagram.
We state an algorithm which computes the Gaussian map of the farthest Voronoi diagram in
a three-dimensional space in worst-case optimal time O(n2).

2 Preliminaries

2.1 Order-k Voronoi diagrams
Let S be a set of non-intersecting sites in Rd. In this paper, we consider n line segments
or/and lines in Rd as sites. We assume that the directions of any d lines are linearly
independent and no d + 1 sites touch the same hyperplane, where sites contained in that
hyperplane are counted twice. We denote by d(x, y) the Euclidean distance between two
points x, y ∈ Rd. The distance d(x, s) from a point x ∈ Rd to a site s ∈ S is defined as
d(x, s) = min{d(x, s)|y ∈ s}.

I Definition 2.1. For a subset of sites H ⊂ S of cardinality |H| = k, the order-k region
of H is the set of points in Rd whose distance to any site in H is smaller than to any site
not in H, denoted as

regk(H) = {p ∈ Rd | ∀h ∈ H ∀s ∈ S \H : d(p, h) < d(p, s)}.

The order-k regions form a subdivision of Rd. The induced cell complex, denoted
by VDk(S), is called the order-k Voronoi diagram of S. If k = 1, this diagram is the
well-known nearest-neighbor Voronoi diagram. For k = n − 1, it is the farthest Voronoi
diagram, denoted by FVD(S). Its farthest regions can also be defined directly as

freg(h) = {p ∈ Rd | s ∈ S \ {h} : d(p, h) > d(p, s)}.

The i-skeleton of a Voronoi diagram is the union of all its j dimensional cells, where j ≤ i.

G. Barequet and E. Papadopoulou and M. Suderland 13:3

T −1(p)a

b

T (b)

T (a)

T (b)

T (a)p

Figure 2 Point-hyperplane duality applied to segments: (left) Segments in primal space; and
(right) their corresponding wedges in dual space

2.2 Point-Hyperplane Duality
Under the well-known standard point-hyperplane duality T in Rd, a point p ∈ Rd is
transformed to a nonvertical hyperplane T (p), and vice versa. The transformation maps
a point with coordinates (p1, p2, ..., pd) to the hyperplane T (p) which satisfies the equa-
tion xd = −pd +

∑d−1
i=1 pixi. The transformation is an involution, i.e., T = T −1.

For a segment s = uv, the hyperplanes T (u) and T (v) partition the dual space into four
wedges, among which the lower wedge (resp., the upper wedge) is the one that lies below (resp.,
above) both T (u) and T (v). The apex of the wedge is the intersection of T (u) and T (v).

Let S be a set of n segments, which corresponds in dual space to an arrangement of lower
wedges. Let Lk be the kth level of that arrangement. Let p be a point on Lk, which touches
the dual wedge of segment s, and let H be the set of segments whose wedge is below p. Then,
the point p corresponds to a hyperplane T −1(p) which touches the segment s. The closed
halfspace above T −1(p) has a non-empty intersection with the segments in H. The open
halfspace above T −1(p) does not intersect any segment in S \H, see Figure 2. We will use
this property when we study the Gaussian map, which is defined in the next section.

2.3 Definition of the Gaussian Map
Let M be a cell complex in Rd. We generalize the notion of the Gaussian map [3] which
encodes information about the unbounded cells of M . This structure is of particular interest
when all cells of M are unbounded. For example, all d-dimensional cells of the farthest
Voronoi diagram of segments and/or lines are unbounded.

I Definition 2.2. A cell in M is called unbounded in direction −→v if it contains a ray with
direction −→v . The Gaussian map of M , denoted by GM(M), maps each cell in M to its
unbounded directions, which are encoded on the unit sphere Sd−1, see Figure 3. Let c be a
cell of M ; the set of directions, in which c is unbounded, is called the region of c on GM(M).

In this paper, we focus on cell complexes, such as the farthest Voronoi diagram and the
order-k Voronoi diagram of lines and segments, where cells have unbounded direction and
the Gaussian map implies a partition of Sd−1. This induces a cell complex on Sd−1. The
collection of cells on the Gaussian map of a Voronoi diagram VDk(S), which correspond
to the same set of sites H ⊂ S, is called the region of H on GM(VDk(S)). Note that a
Gaussian map region of a cell can consist of several cells, e.g., reg2({s3, s4}) in Figure 3.

The order-k Voronoi diagram and its Gaussian map consist of vertices, edges, and cells in
higher dimensions. The complexity of the order-k Voronoi diagram or the Gaussian map is
the total number of all its cells of all dimensions.

EuroCG’19

13:4 Gaussian Map of order-k Voronoi Diagrams

Figure 3 An order-2 Voronoi diagram VD2({s1, s2, ..., s5}) (left) and its Gaussian map (right).

P

−→v

H

S \H

Figure 4 A supporting hyperplane P (in black, dashed) of sites H (in red) in direction −→v .

3 Results

3.1 Supporting hyperplane

We first derive a characterization of the segments which induce an unbounded region of the
order-k Voronoi diagram in a given direction.

I Definition 3.1. Let S be a set of segments, and let H be a subset of S. A hyperplane P

is called a supporting hyperplane of H and S in direction −→v if
1. P is orthogonal to −→v ;
2. The closed halfspace P +, bounded by P and unbounded in direction −→v , has a non-empty

intersection with each of the sites in H; and
3. The sites in S \ H do not intersect the interior of P +, and at least one site in S \ H

touches P .
Figure 4 illustrates a hyperplane supporting three segments.

I Theorem 3.2. A set of segments H, with |H| = k, induces an unbounded region in
direction −→v in the order-k Voronoi diagram of segments S, if and only if there exists a
supporting hyperplane of H and S in direction −→v .

A supporting hyperplane, which touches i segments, corresponds to an unbounded cell
of dimension d − i + 1 in the order-k Voronoi diagram. The proof of Theorem 3.2 and
Theorem 3.7 is given in the full version.

G. Barequet and E. Papadopoulou and M. Suderland 13:5

Figure 5 An instance of 5 segments (left), which has one region reg3({s1, s2, s3}), shown in blue,
on the Gaussian map of the order-3 Voronoi diagram (right) with high complexity.

3.2 Combinatorial Properties of the Gaussian Map
The next theorem provides a lower bound on the complexity of the Gaussian map of order-k
Voronoi diagrams. This bound is meaningful if k is a function of n.

I Theorem 3.3. Let S be a set of n line segments in Rd. The complexity of a single region
of the Gaussian map of the order-k Voronoi diagram is Ω(kd−1) in the worst-case.

Proof. The bound is shown by a generalization of the examples provided for R2 [1, 11].
Place k long segments connecting almost antipodal points on a (d−1)-dimensional hypersphere
and n−k additional short segments near the center of the sphere, see Figure 5. Any d−1
tuple of long segments, together with a specific short segment, define a supporting hyperplane
corresponding to an unbounded edge of the order-k Voronoi diagram. An unbounded edge of
the diagram manifests as a vertex on GM(FVD(S)). All these vertices are on the boundary
of the Gaussian map region of the long segments. J

I Theorem 3.4. The complexity of the Gaussian map of the order-k Voronoi diagram of n

segments in Rd is O(min(k, n−k)nd−1).

Proof. In order to derive an upper bound on the complexity of the Gaussian map, we use the
point-hyperplane duality transformation T , which establishes a 1-1 correspondence between
the upper Gaussian map of the order-k Voronoi diagram and the kth level of the arrangement
of d-dimensional wedges. The lower Gaussian map is constructed in the same manner. Each
segment is mapped to a lower wedge in dual space, which is bounded by two half-hyperplanes.
Let p be a point in dual space. Each wedge below p corresponds to a segment in primal
space, which has a non-empty intersection with the open halfspace above hyperplane T −1(p).
Each wedge touching p corresponds to a segment in primal space, which is touching the
closed halfspace above hyperplane T −1(p). Each wedge above p corresponds to a segment in
primal space, whose intersection with the closed halfspace above hyperplane T (p) is empty.
Therefore, every point on the kth level of the arrangement of the lower wedges corresponds
to a hyperplane in primal space which supports k segments. The upper or lower envelope of
those wedges, composed of two half-hyperplanes each, has complexity O(nd−1) [6].

Using the bound on the lower envelope, we can now also bound the complexity of the ≤k-
level of the arrangement of lower wedges. We apply a result by Clarkson and Shor [5] to

derive a complexity of O

(
(k + 1)d

(
n

k+1

)d−1
)

= O
(
knd−1) . We can derive a similar upper

EuroCG’19

13:6 Gaussian Map of order-k Voronoi Diagrams

bound of O((n− k)nd−1) by using the complexity of the upper envelope of lower wedges as a
basis. The upper Gaussian map of the order-k Voronoi diagram corresponds to the ≤k-level
of the lower wedges. Combining the two bounds completes the proof. J

Note that the bounds in Theorems 3.3 and 3.4 are tight for n− k = O(1). In that case,
the complexity of the Gaussian map of the order-k Voronoi diagram of n segments is Θ(nd−1)
in the worst case.

3.3 Algorithm
I Theorem 3.5. Let S be a set of n lines segments in R3. Then, GM(FVD(S)) can be
constructed in worst-case optimal O(n2) time.

Proof. We dualize each segment to derive a set of n lower wedges. The upper Gaussian map
of the segments corresponds to the upper envelope of the lower wedges in dual space, as
described in the proof of Theorem 3.4. The upper envelope of those wedges, each composed
of two halfplanes, can be constructed in O(n2) time [6]. The lower Gaussian map can be
constructed in the same manner. J

3.4 Properties of the order-k Voronoi Diagram
It was mentioned [3] that the complexity of the farthest Voronoi diagram in R3 is O(n3+ε) (for
any ε > 0), following the general bound on the upper envelope of “well-behaved” surfaces [12].
The same upper bound also holds for the order-k Voronoi diagram.

I Corollary 3.6 (Theorem 3.3). The order-k Voronoi diagram of n segments in Rd has Ω(kd−1)
complexity in the worst case. This bound becomes Ω(nd−1) for the farthest Voronoi diagram.

Obviously, the stated lower bound for the order-k diagram is meaningful only for high
values of k. Theorem 3.6 can be proven by showing that the number of vertices of the
Gaussian map is Ω(kd−1) in the worst case. Each vertex of the Gaussian map corresponds to
one edge in the Voronoi diagram. On the other hand, one edge of the diagram creates at
most two vertices on the Gaussian map.

I Theorem 3.7. The (d−1)-skeleton of the farthest Voronoi diagram of segments is connected.

4 Lines and Combinations of Lines and Segments

For any set of n lines, there is a set of n segments, such that the Gaussian map of the order-k
Voronoi diagram of the lines is the same as the one of the segments. Hence, Theorems 3.4, 3.5
extend to lines as sites. The same bounds hold for combined segments and lines as sites.

G. Barequet and E. Papadopoulou and M. Suderland 13:7

References
1 Franz Aurenhammer, Robert L. S. Drysdale, and Hannes Krasser. Farthest line segment

Voronoi diagrams. Information Processing Letters, 100(6):220–225, 2006.
2 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay tri-

angulations. World Scientific Publishing Company, 2013.
3 Gill Barequet and Evanthia Papadopoulou. On the farthest-neighbor Voronoi diagram of

segments in three dimensions. In 10th International Symposium on Voronoi Diagrams in
Science and Engineering (ISVD), pages 31–36. IEEE, 2013.

4 Bernard Chazelle. An optimal convex hull algorithm and new results on cuttings (extended
abstract). In 32nd Annual Symposium on Foundations of Computer Science, San Juan,
Puerto Rico, pages 29–38. IEEE Computer Society, 1991.

5 Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computational
geometry, II. Discrete & Computational Geometry, 4(5):387–421, 1989.

6 Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. The upper envelope of piece-
wise linear functions: Algorithms and applications. Discrete & Computational Geometry,
4:311–336, 1989.

7 Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Dis-
crete & Computational Geometry, 1:25–44, 1986.

8 Hazel Everett, Daniel Lazard, Sylvain Lazard, and Mohab Safey El Din. The Voronoi
diagram of three lines. Discrete & Computational Geometry, 42(1):94–130, 2009.

9 Victor Klee. On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik,
34(1):75–80, 1980.

10 Joseph S. B. Mitchell and Joseph O’Rourke. Computational geometry column 42. Interna-
tional Journal of Computational Geometry & Applications, 11(5):573–582, 2001.

11 Evanthia Papadopoulou and Maksym Zavershynskyi. The higher-order Voronoi diagram
of line segments. Algorithmica, 74(1):415–439, 2016.

12 Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Dis-
crete & Computational Geometry, 12:327–345, 1994.

EuroCG’19

Hamiltonicity for convex shape Delaunay and
Gabriel graphs∗

Prosenjit Bose1, Pilar Cano1,2, Maria Saumell3,4, and Rodrigo I.
Silveira2

1 School of Computer Science, Carleton University, Ottawa
jit@scs.carleton.ca

2 Department de Matemàtiques, Universitat Politècnica de Catalunya
{m.pilar.cano, rodrigo.silveira}@upc.edu

3 Institute of Computer Science, The Czech Academy of Sciences
4 Department of Theoretical Computer Science, Faculty of Information

Technology, Czech Technical University in Prague
maria.saumell@fit.cvut.cz

Abstract
We study Hamiltonicity for some of the most general variants of Delaunay and Gabriel graphs.
Let S be a point set in the plane. The k-order Delaunay graph of S, denoted k-DGC(S), has
vertex set S and edge pq provided that there exists some homothet of C with p and q on its
boundary and containing at most k points of S different from p and q. The k-order Gabriel
graph k-GGC(S) is defined analogously, except for the fact that the homothets considered are
restricted to be smallest homothets of C with p and q on its boundary. We provide upper bounds
on the minimum value of k for which k-GGC(S) is Hamiltonian. Since k-GGC(S) ⊆ k-DGC(S),
all results carry over to k-DGC(S). In particular, we give upper bounds of 24 for every C and
15 for every point-symmetric C. We also improve the bound to 7 for squares, 11 for regular
hexagons, 12 for regular octagons, and 11 for even-sided regular t-gons (for t ≥ 10).

1 Introduction

The study of the combinatorial properties of geometric graphs has played an important role
in the area of Discrete and Computational Geometry. One of the fundamental structures
that has been studied intensely is the Delaunay triangulation of a planar point set (see [9]
for an encyclopedic treatment of this structure). It was conjectured by Shamos [10] that the
Delaunay triangulation contains a Hamiltonian cycle. This was disproved by Dillencourt [5].
However, Dillencourt [6] showed that Delaunay triangulations are almost Hamiltonian, in
the sense that they are 1-tough.1

Focus then shifted on determining how much the definition of the Delaunay triangulation
can be loosened to achieve Hamiltonicity. To this end, Chang et al. [4] showed that the
19-Delaunay graph is Hamiltonian.2 Given a planar point set S, the k-Delaunay graph has
vertex set S and edge pq provided that there exists a disk with p and q on the boundary

∗ P.B. was partially supported by NSERC. P.C. was supported by CONACyT. M.S. was partially
supported by the Czech Science Foundation, grant number GJ19-06792Y, and by institutional support
RVO:67985807. R.S. was supported by MINECO through the Ramón y Cajal program. P.C. and R.S.
were also supported by projects MINECO MTM2015-63791-R and Gen. Cat. 2017SGR1640. This project
has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 734922.

1 A graph is 1-tough if removing any k vertices from it results in at most k connected components.
2 According to the definition of k-DG in [4], they showed Hamiltonicity for 20-DG.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

14:2 Hamiltonicity for convex shape Delaunay and Gabriel graphs

Type of shape C k

Convex 24
Point-symmetric convex 15
Regular octagons 12
Regular hexagons & even-sided regular t-gons, with t ≥ 10 11
Squares 7

Table 1 Obtained upper bounds on the minimum k for which k-GGC(S) is Hamiltonian.

containing at most k points of S different from p and q.3 If the disk with p and q on its
boundary is restricted to disks with pq as diameter, then the graph is called the k-Gabriel
graph and is a subgraph of the k-Delaunay graph. In fact, Chang et al. [4] showed that
the 19-Gabriel graph is Hamiltonian. This was subsequently lowered to k = 15 [1] and the
current best bound is k = 10 [8]. It is conjectured that 1-Delaunay is Hamiltonian [1].

In this article, we generalize the above results by replacing the disk with an arbitrary
convex shape. We show that the k-Gabriel graph is Hamiltonian for any convex shape C
when k ≥ 24, and give improved bounds for various more specific convex shapes. Table 1
summarizes the bounds obtained. Our results rely on tools from metrics and packings.

2 Convex distances and the C-Gabriel graph

Let p and q be two points in the plane. Let C be a compact convex set that contains the
origin, denoted ō, in its interior. The convex distance dC(p, q) is defined in the following way:
If p = q, then dC(p, q) = 0. Otherwise, dC(p, q) = d(p,q)

d(p,q′) , where q
′ is the intersection of the

ray from p to q with the translate of C by the vector −→̄op (see Figure 1). The convex set C is
the unit C-disk of dC with center ō, i.e., every point p in C satisfies that dC(ō, p) ≤ 1. The
C-disk with center c and radius r is defined as the homothet of C centered at c and with
scaling factor r.

p

q

q′1

d

Figure 1 Convex distance from p to q.

The triangle inequality holds: dC(p, q) ≤ dC(p, r) + dC(r, q),∀p, q, r ∈ R2. However, this
distance may not define a metric when C is not point-symmetric4 about the origin, since there
may be points p, q for which dC(p, q) 6= dC(q, p). When C is point-symmetric with respect
to the origin, dC is called a symmetric convex distance function. Such a distance defines a
metric; moreover, dC(ō, p) defines a norm5 of a metric space. In addition, if a point p is on
the line segment ab, then dC(a, b) = dC(a, p) + dC(p, b) (see [2, Chapter 7]).

3 Note that this implies that the standard Delaunay triangulation is the 0-Delaunay graph.
4 A shape C is point-symmetric with respect to a point x ∈ C provided that for every point p ∈ C there is

a corresponding point q ∈ C such that pq ∈ C and x is the midpoint of pq.
5 A function ρ(x) is a norm if: (a) ρ(x) = 0 if and only if x = ō, (b) ρ(λx) = |λ|ρ(x) where λ ∈ R, and (c)
ρ(x+ y) ≤ ρ(x) + ρ(y).

P. Bose, P. Cano, M. Saumell, and R. I. Silveira 14:3

Ĉ

C
Ĉ

C

Figure 2 Left: A triangle is a C shape. Center: Ĉ for this triangle is a hexagon. Right: the shape
Ĉ with radius 1

2 does not contain C.

Let S be a set of points in the plane satisfying the following general position assumption:
For each pair p, q ∈ S, any minimum homothet of C having p and q on its boundary does not
contain any other point of S on its boundary. The k-order C-Delaunay graph of S, denoted
k-DGC(S), is the graph with vertex set S such that, for each pair of points p, q ∈ S, the edge
pq is in k-DGC(S) if there exists a C-disk that has p and q on its boundary and contains at
most k points of S different from p and q. When k = 0 and C is a circle, k-DGC(S) is the
standard Delaunay triangulation.

Aurenhammer and Paulini [3] showed how to define a point-symmetric distance function
from any convex shape C, as follows. Denote by Cv the shape C with ō translated by vector v.
The distance from p to q is given by the scaling factor of a smallest homothet containing p
and q on its boundary, which is equivalent to minv∈C dCv

(p, q) = dĈ(p, q) where Ĉ =
⋃

v∈C Cv.
The set Ĉ is a point-symmetric convex set that is the Minkowski sum6 of C and its shape
reflected about its center. For an example, see Figure 2. The diameter and width of Ĉ
is twice the diameter and width of C, respectively. Moreover, when C is point-symmetric,
dĈ(p, q) = dC(p,q)

2 .
We define the k-order C-Gabriel graph of S, denoted k-GGC(S), as the graph with vertex

set S such that, for every pair of points p, q ∈ S, the edge pq is in k-GGC(S) if and only if
there exists a C-disk with radius dĈ(p, q) that has p and q on its boundary and contains at
most k points of S different from p and q. From the definition of k-GGC(S) and k-DGC(S)
we note that k-GGC(S) ⊆ k-DGC(S), and it can be a proper subgraph. See Figure 3 for an
example. Further, when C is not point-symmetric, then Ĉ contains C in its interior; however,
for some shapes it is not true that the Ĉ-disk with radius 1

2 contains C (refer to Figure 2,
right). Thus, for asymmetric shapes C, in general GGĈ * GGC .

3 Hamiltonicity for convex shapes

3.1 General convex shapes
Define H to be the set of all Hamiltoninan cycles of the point set S. Define the dĈ-length
sequence of h ∈ H, denoted dsC(h), as the edge sequence sorted in decreasing order with
respect to the length of the edges in dĈ-metric. Sort the elements of H in lexicographic order
with respect to their dĈ-length sequence, breaking ties arbitrarily. This order is strict. For
h1, h2 ∈ H, if h1 is smaller than h2 in this order, we write h1 ≺ h2.

6 The Minkowski sum of two sets A and B is defined as A⊕B = {a+ b : a ∈ A, b ∈ B}.

EuroCG’19

14:4 Hamiltonicity for convex shape Delaunay and Gabriel graphs

p q

Figure 3 C is a regular hexagon. Edge pq is in 2-DGC(S) but it is not in 2-GGC(S).

a

b

Figure 4 Many C-disks C(a, b) may exist for a and b.

For simplicity, denote by Cr(a, b), a C-disk with radius r containing the points a and b
on its boundary. For the special case of a diametral disk, i.e., when the radius of Cr(a, b)
is dĈ(a, b), we denote it as C(a, b). Note that C(a, b) may not be unique, see Figure 4. In
addition, we denote by DC(c, r) the C-disk centered at point c with radius r.

I Claim 3.1. Let C be a point-symmetric convex shape. Let u be a point in the plane different
from the origin ō. Let r < dC(u, ō). Let p be the intersection point of DC(u, r) and line
segment ōu. Let u′ = λu, with λ > 1 ∈ R, be a point defined by vector u scaled by a factor
of λ. Then DC(u, r) ⊂ DC(u′, dC(u′, p)). (See Figure 5.)

Proof. Let q ∈ DC(u, r); then dC(u, q) ≤ dC(u, p). Since u is on the line segment u′p,
we have that dC(u′, p) = dC(u′, u) + dC(u, p). Hence dC(u′, q) ≤ dC(u′, u) + dC(u, q) ≤
dC(u′, u) + dC(u, p) = dC(u′, p). Therefore, DC(u, r) is contained in DC(u′, dC(u′, p)). J

ō

u

u′

p

DC(u′, dC(u′, p))

DC(u, r)

Figure 5 DC(u, r) is contained in DC(u′, dC(u′, p)), where u′ = λu with λ > 1.

P. Bose, P. Cano, M. Saumell, and R. I. Silveira 14:5

The approach we follow to prove our bounds, which is similar to the approach in [1, 4, 8],
is to show that the minimum element in H is contained in k-GGC(S) for a small value of k.
Let h be the minimum element in H. Let ab ∈ h; we can assume without loss of generality
that dĈ(a, b) = 1. Let U = {u1, u2, . . . , uk} be the set of points in S different from a and b
that are in the interior of C(a, b).7 We assume that, when traversing h from b to a, we visit
the points of U in order u1, . . . , uk. For each point ui, we define si to be the point preceding
ui in h. See Figure 6.

a

b

C(a, b)

s1
u1

s2

u2

u3

s3

Figure 6 Example of U in C(a, b).

Note that if a point p is in the interior of C(a, b), then there exists a C(p, q) contained in
C(a, b) for any point q on the boundary of C(a, b). Therefore, dĈ(a, ui) < 1 and dĈ(b, ui) < 1
for any i ∈ {1, . . . , k}. Furthermore, we have the following:
I Claim 3.2. Let 1 ≤ i ≤ k. Then dĈ(a, si) ≥ max{dĈ(si, ui), 1}.

Proof. If s1 = b, then dĈ(a, s1) = 1 and dĈ(s1, u1) < 1. Otherwise, we define h′=(h \
{ab, siui})∪{asi, uib}. For the sake of a contradiction, assume that dĈ(a, si)<max{dĈ(si, ui), 1}.
Since dĈ(a, b) = 1, this implies that dĈ(a, si) < max{dĈ(si, ui), dĈ(a, b)}. Moreover, since ui ∈
C(a, b), we have dĈ(ui, b) < 1. Thus, max{dĈ(a, si), dĈ(ui, b)} < max{dĈ(si, ui), dĈ(a, b)}.
Therefore h′ ≺ h, which contradicts the definition of h. J

Claim 3.2 implies that, for each i ∈ {1, . . . , k}, the point si is not in the interior of C(a, b).
I Claim 3.3. Let 1 ≤ i < j ≤ k. Then dĈ(si, sj) ≥ max{dĈ(si, ui), dĈ(sj , uj), 1}.

The proof of this claim is similar to the proof of Claim 3.2.
Without loss of generality we assume that a is the origin ō. Then, by the definition

of Ĉ, we have that DĈ(ō, 1) contains C(a, b). Also, from Claim 3.2, we have that si is not in
the interior of DĈ(ō, 1) for all i ∈ {1, . . . , k}. Let DĈ(ō, 2) be the Ĉ-disk centered at a with
radius 2. For each si /∈ DĈ(ō, 2), define s′

i as the intersection of DĈ(ō, 2) with the ray −→asi.
We let s′

i = si when si is inside DĈ(ō, 2). See Figure 7.
I Observation 3.4. If sj /∈ DĈ(ō, 2) (with 1 ≤ j ≤ k), the dĈ-distance from s′

j to DĈ(ō, 1) is 1.

I Lemma 3.5. For any pair si and sj with i 6= j, we have that dĈ(s′
i, s

′
j) ≥ 1.

Proof. If both si and sj are in DĈ(ō, 2), then from Claim 3.3 we have that dĈ(s′
i, s

′
j) =

dĈ(si, sj) ≥ 1. In the following, we assume, without loss of generality, that dĈ(ō, sj) ≥
dĈ(ō, si). Since s′

j is on the line segment ōsj , we have sj = λs′
j for some λ > 1 ∈ R.

Let p be the intersection point of DĈ(ō, 1) and ōsj . Since dĈ defines a norm, we have

7 By our general position assumption, the only points of S on the boundary of C(a, b) are a and b.

EuroCG’19

14:6 Hamiltonicity for convex shape Delaunay and Gabriel graphs

ō=a

b

C(a, b)

si

sj = λs′j

s′i

s′j
DĈ(ō, 2)

DĈ(ō, 1)
p

Figure 7 The points s′
i and s′

j are projections of si and sj on DĈ(ō, 2), respectively.

dĈ(λs′
j , ō) = λdĈ(s′

j , ō). By Observation 3.4 we have that dĈ(sj , p) = dĈ(sj , ō)− dĈ(p, ō) =
λdĈ(s′

j , ō) − 1 = 2λ − 1, which is the distance from sj to DĈ(ō, 1). Further, dĈ(sj , s
′
j) =

dĈ(sj , ō)− dĈ(s′
j , ō) = 2λ− 2. For the sake of a contradiction, assume that dĈ(s′

i, s
′
j) ≤ 1. If

sj /∈ DĈ(ō, 2), we consider two cases:
Case 1) si ∈ DĈ(ō, 2). Then dĈ(ō, si) ≤ 2. Let Ds′

j
= DĈ(s′

j , 1). Since dĈ(s′
i, s

′
j) ≤ 1, we

have si ∈ Ds′
j
. From Claim 3.1 it follows that dĈ(sj , s

′
i) = dĈ(sj , si) ≤ dĈ(sj , p) < dĈ(sj , uj),

which contradicts Claim 3.3.
Case 2) si /∈ DĈ(ō, 2). Then dĈ(ō, si) > 2. Thus, si = δs′

i for some δ > 1 ∈ R. Moreover,
since dĈ(ō, sj) ≥ dĈ(ō, si) and s′

i, s
′
j are on the boundary of DĈ(ō, 2), δ ≤ λ. Hence, si is

on the line segment s′
i(λs′

i). Let Dsj
= DĈ(sj , 2λ − 1). Note that λ < 2λ − 1 because

λ > 1. Since dĈ defines a norm, dĈ(sj , λs
′
i) = dĈ(λs′

j , λs
′
i) = λdĈ(s′

j , s
′
i) ≤ λ < 2λ − 1.

Hence, λs′
i ∈ Dsj

. In addition, from Claim 3.1 it follows that Ds′
j
⊆ Dsj

. Therefore,
s′

i ∈ Dsj
. Thus, the line segment s′

i(λs′
i) is contained in Dsj

. Hence, si ∈ Dsj
. Then,

dĈ(sj , si) ≤ 2λ− 1 = dĈ(sj , p) < dĈ(sj , uj) which contradicts Claim 3.3. J

I Theorem 3.6. For any set of points S in general position and convex shape C, the graph
24-GGC(S) is Hamiltonian.

Proof. For each si we define the Ĉ-disk Di = DĈ(s′
i,

1
2). We also set D0 := DĈ(a, 1

2). By
Lemma 3.5, each pair of Ĉ-disks Di and Dj (i 6= j) are internally disjoint. See Figure 8. Since
s′

i ∈ DĈ(ō, 2) for all i, each disk Di is inside DĈ(a, 5
2). There can be at most Area(DĈ(ō, 5

2))
Area(D0) =

(5
2)2Area(Ĉ)

(1
2)2Area(Ĉ) = 25 disjoint disks in DĈ(ō, 2). Thus, there are at most 24 points s′

i in DĈ(ō, 1),
since D0 is centered at a. Hence, there are at most 24 points in the interior of C(a, b). J

3.2 Point-symmetric convex shapes
Using the fact that dC defines a metric when C is point-symmetric, we can improve the upper
bound for point-symmetric convex shapes. Indeed, given that dC = 2dĈ we can prove that:
(i) dC(si, a) ≥ max{dC(si, ui), 2}; and (ii) dC(si, sj) ≥ max{dC(si, ui), dC(sj , uj), 2}, for any
1 ≤ i < j ≤ k. By using C(a, b) instead of DĈ(ō, 1), DC(ō, 3) instead of DĈ(ō, 2), and DC(ō, 4)
instead of DĈ(ō, 5

2), in combination with arguments similar to those in the previous section,
we obtain that 15-GGC is Hamiltonian.

P. Bose, P. Cano, M. Saumell, and R. I. Silveira 14:7

a

b

C(a, b)

s′i

s′j

DĈ(ō, 2)

DĈ(ō, 1)

DĈ(ō, 5
2

)

Dj

Di

s′t
Dt

D0

Figure 8 The Ĉ-disks Di, Dj and Dt are contained in DĈ(a, 5
2).

When C is a regular polygon Pt with t even sides we can improve this bound by analyzing
specific values of t. When C is a square, we divide DP4(ō, 3) into nine disjoint squares of
radius 1 and show that only seven of them can contain points from {s′

1, . . . , s
′
k}, with at

most one point in each square. Using similar arguments as those for squares, we show that
11-GGP6 is Hamiltonian. Finally, for the remaining regular polygons with even sides we use
that the ex-circle of DP10(ō, 3) contains DPt(ō, 3) for all even t ≥ 10. Such a circle has radius
r ≈ 3.154. Hence, we can prove Hamiltonicity for 11-GGPt

using a result by Fodor [7] that
states that the minimum radius of a circle having 13 points at pairwise Euclidean distance at
least 2 is R ≈ 3.236, which is greater than r. Analogously, we show that there are at most 13
points inside DP8(ō, 3) such that each pair is at Euclidean distance at least 2, which proves
Hamiltonicity for 12-GGP8 .

References
1 Manuel Abellanas, Prosenjit Bose, Jesús García-López, Ferran Hurtado, Carlos M. Nicolás,

and Pedro Ramos. On structural and graph theoretic properties of higher order Delaunay
graphs. Internat. J. Comput. Geom. Appl., 19(6):595–615, 2009.

2 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay tri-
angulations. World Scientific Publishing Company, 2013.

3 Franz Aurenhammer and Günter Paulini. On shape Delaunay tessellations. Inf. Process.
Lett., 114(10):535–541, 2014.

4 Maw-Shang Chang, Chuan Yi Tang, and Richard C. T. Lee. 20-relative neighborhood
graphs are Hamiltonian. J. Graph Theory, 15(5):543–557, 1991.

5 Michael B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay triangulation. Inf.
Process. Lett., 25(3):149–151, 1987.

6 Michael B. Dillencourt. Toughness and Delaunay triangulations. Discrete Comput. Geom.,
5:575–601, 1990.

7 Ferenc Fodor. The densest packing of 13 congruent circles in a circle. Beitr. Algebra Geom.,
44(2):431–440, 2003.

8 Tomáš Kaiser, Maria Saumell, and Nico Van Cleemput. 10-Gabriel graphs are Hamiltonian.
Inf. Process. Lett., 115(11):877–881, 2015.

9 Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley, 2000.

10 Michael Shamos. Computational geometry. PhD Thesis, Yale University, 1978.

EuroCG’19

Delaunay triangulations of symmetric hyperbolic
surfaces
Matthijs Ebbens1, Iordan Iordanov2, Monique Teillaud2, and Gert
Vegter1

1 Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, University of Groningen, Netherlands

2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract
Of the several existing algorithms for computing Delaunay triangulations of point sets in Eu-
clidean space, the incremental algorithm has recently been extended to the Bolza surface, a
hyperbolic surface of genus 2. We will generalize this algorithm to so called symmetric hyper-
bolic surfaces of arbitrary genus. Delaunay triangulations of point sets on hyperbolic surfaces
can be constructed by using the fact that such point sets can be regarded as periodic point sets
in the hyperbolic plane. However, one of the main issues is then that the result might contain 1-
or 2-cycles, which means that the triangulation is not simplicial. As the incremental algorithm
that we use can only work with simplicial complexes, this situation must be avoided.

In this work, we will first compute the systole of the symmetric hyperbolic surfaces, i.e., the
length of the shortest non-contractible loop. The value of the systole is used in a condition to
ensure that the triangulations will be simplicial. Secondly, we will show that it is sufficient to
consider only a finite subset of the infinite periodic point set in the hyperbolic plane. Finally, we
will algorithmically construct a point set with which we can initialize the algorithm.

1 Introduction

The incremental algorithm, one of the known algorithms for computing Delaunay trian-
gulations of point sets in Euclidean space, inserts the points one by one and updates the
triangulation after each insertion [3]. It is used in practice for example in triangulation
packages of CGAL [9]. This algorithm has been extended to periodic point sets, which
can be seen as the image of a finite point set under the action of a group of translations
[6, 5]. For example, given a finite point set in the unit square in the Euclidean plane and
the group generated by the Euclidean translations of unit length in the x- and y-direction,
one obtains a periodic point set in the Euclidean plane. Equivalently, this can be seen as a
finite point set on the flat torus, where the flat torus is identified with the quotient space
of the Euclidean plane under the action of the group mentioned above. If we consider the
Delaunay triangulation of the periodic point set in the Euclidean plane, and project this tri-
angulation to the flat torus, the result may be non-simplicial. Namely, if for example both
endpoints of an edge project to the same point, then we obtain a loop. Since the incremental
algorithm that we use assumes that the triangulation is a simplicial complex, this situation
must be avoided. It is known that 1− and 2−cycles can be avoided when the inequality
sys(M) > 2δP is satisfied, where sys(M) denotes the systole of the surface M, i.e. the length
of the shortest non-contractible curve, and δP the diameter of a largest disk not containing
any points from the input set P in its interior. Intuitively, this condition means that the
length of every edge in the triangulation is less than 1

2 sys(M), which implies that there can
be no 1− or 2−cycles. To make sure that this condition is satisfied, the triangulation can
be initialized with a dummy point set, for which the inequality is satisfied by construction.
After inserting the input points, the dummy points are removed (if possible).
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

15:2 Delaunay triangulations of symmetric hyperbolic surfaces

In this work, we will consider Delaunay triangulations on hyperbolic surfaces. Unlike
Euclidean surfaces, in general the systole of a hyperbolic surface is unknown. An upper
bound of order O(log g) is known [4, Lemma 5.2.1], where g denotes the genus, but lower
bounds exist only for specific families of surfaces, often constructed using algebraic methods;
in general the systole can be made arbitrarily small. The exact value of the systole is known
for only a few specific hyperbolic surfaces. The Bolza surface, the most symmetric hyperbolic
surface of genus 2, is one of the hyperbolic surfaces for which the systole is known. Here
the regular hyperbolic octagon is a fundamental region for the group of translations. A
generalization and implementation of the incremental algorithm for the Bolza surface is
known [2, 8].

We will generalize the incremental algorithm for the Bolza surface to what we call ‘sym-
metric hyperbolic surfaces’ of arbitrary genus. Just like the Bolza surface (genus g = 2)
corresponds to the regular hyperbolic octagon, the symmetric hyperbolic surface Mg of
genus g ≥ 2 corresponds to the regular hyperbolic 4g-gon. Firstly, we derive the value of
the systole of these surfaces to be able to verify the condition sys(Mg) > 2δP . Secondly,
we show that it is sufficient to consider a finite subset of the (infinite) periodic point set.
Finally, we will construct for each symmetric hyperbolic surface a dummy point set with
which to initialize the algorithm.

2 Preliminaries

2.1 Hyperbolic geometry
We will study periodic triangulations in the hyperbolic plane, or equivalently, triangulations
on hyperbolic surfaces. There are several models for the hyperbolic plane; we will use the
Poincaré disk model [1]. Here, the hyperbolic plane H2 is represented by the open unit
disk D in the complex plane. This space is endowed with a specific metric, for which the
hyperbolic lines (i.e. geodesics) are represented by diameters of D or circle arcs intersecting
the boundary of D orthogonally (see Figure 1a). Isometries of H2 can be written in the form

f(z) = αz + β

βz + α
,

where α, β ∈ C such that |α|2 − |β|2 = 1. There are several types of isometries of H2,
of which we will only consider hyperbolic isometries, also called translations, for which the
real part of α is larger than 1. Every hyperbolic translation f has an invariant hyperbolic
line, called the axis of f (see Figure 1b). A striking difference between translations of the
Euclidean plane and translations of the hyperbolic plane is that the latter are in general not
commutative.

I Definition 2.1. A hyperbolic surface is a connected 2-dimensional manifold that is locally
isometric to an open subset of H2.

It is known that every hyperbolic surface M can be written as a quotient space M = H2/Γ
of the hyperbolic plane under the action of a Fuchsian group Γ, i.e., a discrete subgroup of
the group of isometries of H2 [11]. This quotient space can be represented by a polygon that
is a fundamental region for the action of Γ, combined with a side pairing. In the case of
the flat torus, the unit square is a fundamental polygon and the side pairings are given by
the translations in the x− and y−direction. For the Bolza surface, a fundamental domain
is given by the regular hyperbolic octagon with total interior angle 2π, where opposite sides
are paired (see Figure 2). In the same way, the symmetric hyperbolic surface Mg = H2/Γg

Matthijs Ebbens, Iordan Iordanov, Monique Teillaud, and Gert Vegter 15:3

(a) The Poincaré disk model of the
hyperbolic plane with some hyperbolic
lines

p a(p)

q
a(q)

Xa`(a)

> `(a)

(b) A hyperbolic translation a, its axis
Xa and the image of a point q not on
the axis

Figure 1 Hyperbolic geometry

of genus g ≥ 2 corresponds to the regular hyperbolic polygon Fg with total interior angle
2π, where opposite sides are paired.

Figure 2 The Bolza surface

The action of the group Γg on the fundamental region Fg induces a tesselation of the
hyperbolic plane into 4g-gons. Because the interior angles of the 4g-gon Fg add up to 2π, it
can be seen that 4g polygons meet in every vertex in the tesselation. As a comparison, the
group of translations of the flat torus induce a tesselation of the Euclidean plane into unit
squares.

Finally, the systole of a hyperbolic surface M is the length of smallest non-contractible
closed curve and is denoted by sys(M). We will sketch a derivation of the value of the systole
of the symmetric hyperbolic surfaces in Section 3.

2.2 Delaunay triangulations
In this work we will consider simplicial Delaunay triangulations, which satisfy the following
two conditions:

they are a simplicial complex,

EuroCG’19

15:4 Delaunay triangulations of symmetric hyperbolic surfaces

they satisfy the empty circle property.

Figure 3 Example of a Delaunay triangulation of a periodic point set in the hyperbolic plane

Consider a finite point set P on a hyperbolic surface M = H2/Γ. To define the Delaunay
triangulation DTM(P) of P on M, we can consider the images ΓgP of P under the group
action of Γg. Then we project the Delaunay triangulation DTH(ΓP) of the infinite point
set ΓP in H2 to M using the universal covering map π : H2 → H2/Γ. In that case, we
could define “DTM(P) = π(DTH(ΓP))”. However, the result is not necessarily a simplicial
complex. It is known that the following criterion is sufficient to guarantee that π(DTH(ΓP))
is a simplicial complex [2]. Here δP denotes the diameter of the largest disk in H2 that does
not contain any point of ΓP in its interior.

I Proposition 2.2. Let M = H2/Γ be a hyperbolic surface and P ⊂M a finite point set. If
sys(M) > 2δP , then π(DTH(ΓP)) is a simplicial complex.

Because δQ ≤ δP for Q ⊇ P, it follows that if sys(M) > 2δP for some set P, then the
Delaunay triangulation of any superset of P is a simplicial complex as well. This makes the
incremental algorithm work in this case.

3 Systole of symmetric hyperbolic surfaces

Recall that Mg denotes the symmetric hyperbolic surface of genus g. As mentioned before,
to be able to verify the inequality sys(Mg) > 2δP , we have to know the value of sys(Mg).
This value is given in the following theorem.

I Theorem 3.1. The systole of the surface Mg corresponding to the regular 4g-gon satisfies

cosh(1
2 sys(Mg)) = 1 + 2 cos(π2g).

In the proof, we first show that there exists a closed, non-contractible curve with the stated
length. To prove that there are no shorter such curves, we represent each closed geodesic
on the surface Mg as a sequence of hyperbolic line segments between sides of the regular
4g-gon Fg (see Figure 4) and analyze the different configurations of sequences of segments.

Matthijs Ebbens, Iordan Iordanov, Monique Teillaud, and Gert Vegter 15:5

Figure 4 Representation of a systole of Mg as a sequence of segments between sides

4 Representation of Delaunay triangulations

In Section 2.2 we considered the Delaunay triangulation of ΓgP. However, practically speak-
ing it is not possible to work with triangulations of point sets with infinitely many points.
For this reason, let DN be the union of translates of Fg, that share are least one point with
Fg (see Figure 5).

Figure 5 The union DN of neighboring regions for the Bolza surface

Now, the next proposition states that it is sufficient to consider the combinatorics of the
Delaunay triangulation of the points inside DN if the inequality sys(Mg) > 2δP is satisfied.

I Proposition 4.1. Assume that P satisfies sys(Mg) > 2δP . Let ∆ be a triangle in
DTH(ΓgP). If ∆ ∩ Fg 6= ∅, then ∆ ⊂ DN .

In other words, as soon as the condition sys(Mg) > 2δP is satisfied, it suffices to compute the
Delaunay triangulation of the finite point set ΓgP∩DN instead of the Delaunay triangulation
of ΓgP. As we mentioned before, a dummy point set Q is used to guarantee that the
condition holds. However, we cannot use Proposition 4.1 to find the Delaunay triangulation
of the dummy point set. Instead we will use the following proposition. Here, Q0 denotes
the set consisting of the origin, the vertex and the midpoints of the sides of Fg.

I Proposition 4.2. Assume that Q ⊇ Q0. Let ∆ be a triangle in DTH(ΓgQ). If ∆∩Fg 6= ∅,
then ∆ ⊂ DN .

EuroCG’19

15:6 Delaunay triangulations of symmetric hyperbolic surfaces

Now, if we construct the dummy point set Q in such a way that it contains Q0, then we can
find the Delaunay triangulation ofQ by considering the Delaunay triangulation of ΓgQ∩DN .

5 Initialization

In this section we will present an algorithm to compute a dummy point set, i.e., a finite
point set Q that satisfies sys(Mg) > 2δQ. The idea of this algorithm is similar to Delaunay
refinement, also known as Ruppert’s algorithm [10]. This works as follows. Initially, the
dummy point set Q will only contain Q0. Then we consider the Delaunay triangulation
DTH(ΓgQ ∩ DN) of ΓgQ ∩ DN in H2. If there is a triangle in this triangulation with
circumradius at least 1

2 sys(Mg), which has a non-empty intersection with the fundamental
polygon, then the circumcenter of this triangle is added to Q. This process continues until
there are no more such triangles. See Figure 6 for an application of the algorithm to the
symmetric hyperbolic surface of genus 3. A more formal description can be found below.
Algorithm 1: Dummy point algorithm

Input : hyperbolic surface Mg

Output: finite point set Q ⊂Mg such that sys(Mg) > 2δQ

1 Initialize: let Q = Q0.
2 Compute DTH(ΓgQ∩DN).
3 while there exists a triangle ∆ in DTH(ΓgQ∩DN) with circumdiameter at least

1
2 sys(Mg) and ∆ ∩ Fg 6= ∅ do

4 Add the circumcenter of ∆ to Q
5 Update DTH(ΓgQ∩DN)
6 end

I Theorem 5.1. The dummy point algorithm terminates. The resulting dummy point set Q
satisfies sys(Mg) > 2δQ and has cardinality of order Θ(g).

To give an idea of the proof that the number of iterations of the while loop is of order Θ(g)
(and hence, that the algorithm terminates), we observe that the distance between every pair
of points in Q is at least 1

4 sys(Mg). It follows that we can construct a circle packing on Mg

with circles of radius 1
8 sys(Mg) centered at the points in Q. Since the area of Mg is of order

Θ(g), the above claims follows. Finally, we note that the size complexity of the resulting
dummy point set is asymptotically optimal [7, Prop. 9.1].

Matthijs Ebbens, Iordan Iordanov, Monique Teillaud, and Gert Vegter 15:7

(a) Triangulation of Q0 (b) First insertion

(c) After first insertion (d) After last insertion

Figure 6 Several steps in the dummy point algorithm

EuroCG’19

15:8 Delaunay triangulations of symmetric hyperbolic surfaces

References
1 Alan F. Beardon. The geometry of discrete groups, volume 91 of Graduate Texts in Math-

ematics. Springer-Verlag, 2012.
2 Mikhail Bogdanov, Monique Teillaud, and Gert Vegter. Delaunay triangulations on ori-

entable surfaces of low genus. In Leibniz International Proceedings in Informatics, editor,
Proceedings of the Thirty-second International Symposium on Computational Geometry
(SoCG 2016), pages 20:1–20:17, 2016. doi:10.4230/LIPIcs.SoCG.2016.20.

3 A. Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24(2):162–166, 1981.
doi:10.1093/comjnl/24.2.162.

4 Peter Buser. Geometry and spectra of compact Riemann surfaces. Springer-Verlag, 2010.
5 Manuel Caroli, Aymeric Pellé, Mael Rouxel-Labbé, and Monique Teillaud. 3D peri-

odic triangulations. In CGAL Editorial Board, editor, CGAL User and Reference Man-
ual. 4.13 edition, 2018. URL: http://doc.cgal.org/latest/Manual/packages.html#
PkgPeriodic3Triangulation3Summary.

6 Manuel Caroli and Monique Teillaud. Delaunay triangulations of closed Euclidean d-
orbifolds. Discrete & Computational Geometry, 55(4):827–853, 2016. URL: https:
//hal.inria.fr/hal-01294409, doi:10.1007/s00454-016-9782-6.

7 Matthijs Ebbens. Delaunay triangulations on hyperbolic surfaces. Master’s thesis, Uni-
versity of Groningen, 2017. URL: http://fse.studenttheses.ub.rug.nl/id/eprint/
15727.

8 Iordan Iordanov and Monique Teillaud. Implementing Delaunay triangulations of the Bolza
surface. In Leibniz International Proceedings in Informatics, editor, Proceedings of the
Thirty-third International Symposium on Computational Geometry (SoCG 2017), pages
44:1–44:15, 2017. doi:10.4230/LIPIcs.SoCG.2017.44.

9 Clément Jamin, Sylvain Pion, and Monique Teillaud. 3D triangulations. In CGAL Editorial
Board, editor, CGAL User and Reference Manual. 4.13 edition, 2018. URL: http://doc.
cgal.org/latest/Manual/packages.html#PkgTriangulation3Summary.

10 Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.
Journal of algorithms, 18(3):548–585, 1995.

11 John Stillwell. Geometry of surfaces. Springer-Verlag, 1992.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.20
http://dx.doi.org/10.1093/comjnl/24.2.162
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3Summary
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3Summary
https://hal.inria.fr/hal-01294409
https://hal.inria.fr/hal-01294409
http://dx.doi.org/10.1007/s00454-016-9782-6
http://fse.studenttheses.ub.rug.nl/id/eprint/15727
http://fse.studenttheses.ub.rug.nl/id/eprint/15727
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.44
http://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation3Summary
http://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation3Summary

Computing the Straight Skeleton of an
Orthogonal Monotone Polygon in Linear Time∗

Günther Eder1, Martin Held1, and Peter Palfrader1

1 Universität Salzburg, FB Computerwissenschaften, 5020 Salzburg, Austria
{geder,held,palfrader}@cs.sbg.ac.at

Abstract
We introduce a simple algorithm to construct the straight skeleton of an n-vertex orthogonal
monotone polygon in optimal O(n) time and space.

1 Introduction

The straight skeleton S(P) of a simple polygon P was introduced by Aichholzer et al. [2]. It
is the result of a wavefront-propagation process where the edges of P move inwards at unit
speed in a self-parallel manner, forming one or more wavefront polygons whose combinatorics
change when wavefront edges collapse or wavefront vertices move into other parts of the
wavefront. The straight skeleton is the trace of the vertices of these wavefront polygons over
their propagation, cf. Figure 1.

Figure 1 A polygon (black) with its straight skeleton (blue) and some wavefronts (dotted).

The currently best known algorithm for constructing the straight skeleton of unrestricted
input is by Eppstein and Erickson [5] and runs in O(n17/11+ε) time and space for an n-vertex
polygon and any ε > 0. In the case of a convex input polygon, the straight skeleton coincides
with the medial axis and can be computed in linear time [1]. For monotone polygons, Biedl
et al. [3] present an algorithm to compute the straight skeleton in O(n logn) time.

In this work we show that an approach which is similar to that of Biedl et al. [3] makes
it possible to construct S(P) in optimal linear time if P is monotone and orthogonal: We
also construct the straight skeleton for each of the two monotone chains of P separately and
then merge them to obtain S(P). Since P is orthogonal, S(P) coincides with the Voronoi
diagram of P in the L∞-norm [2]. Papadopoulou shows how to compute the L∞-norm
Voronoi diagram of orthogonal planar straight-line graphs in O(n logn) time [6].

∗ Work supported by Austrian Science Fund (FWF): Grant ORD 53-VO.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

16:2 Computing the Straight Skeleton of an Orthogonal Monotone Polygon

1.1 Preliminaries
Let P be an x-monotone, axis-aligned orthogonal polygon. For the sake of descriptive
simplicity we assume that P has no vertex with interior angle equal to π. (Our algorithm can
be extended to handle such input at no additional computational cost.) Let Cl and Cu denote
the lower and upper monotone chain of P , respectively. As the leftmost and rightmost edges
of P are vertical, we arbitrarily assign the leftmost edge to Cl and the rightmost edge to Cu.

For an edge e of P , denote by I(e) the half-plane induced by the supporting line `(e) of e
which locally (close to e) overlaps with the interior of P. For two non-parallel edges ei and
ej of the polygon, the bisector bi,j is the ray lying on the angular bisector of the supporting
lines of ei and ej within the common interior region I(ei) ∩ I(ej). If the edges ei, ej are
parallel then we use their wavefront edges ei(t) and ej(t) to build bi,j . (But we will still refer
to bi,j as the bisector of ei and ej .) If the wavefront edges overlap at a specific time t′ then
bi,j is the segment formed by the non-empty intersection ei(t′) ∩ ej(t′). Otherwise, if ei(t′)
and ej(t′) share a common end-point p then bi,j is the ray perpendicular to them that starts
at p and lies in the common interior I(ei)∩ I(ej). A wavefront vertex that moves along such
a bisector is called a ghost vertex [4], and we call the resulting straight-skeleton arc a ghost
arc. It is unfinished if its extent is not yet known.

Let C be an x-monotone polygonal chain. For ei ∈ C, let Πi denote the portion of I(ei)
that is incident at ei and limited by the two bisectors through the endpoints of ei. We call
Πi the half-plane slab of ei.

I Lemma 1.1. Every face of S(C) is monotone with respect to its defining edge and is also
monotone with respect to a line perpendicular to its defining edge.

I Corollary 1.2. Every face of S(C) is x-monotone.

I Lemma 1.3. For every edge ei of C the straight-skeleton face f(ei) incident at ei lies
inside of the half-plane slab Πi.

2 Computing the Straight Skeleton of a Single Chain

In order to compute the straight skeleton of a polygon, we first construct the straight skeletons
of its lower and upper chains individually, and then we merge them; cf. Section 3. We start
with describing the construction of the skeleton S(Cl) of the lower chain Cl := e1, . . . , en′ .
(The upper chain Cu is processed in an identical fashion.) If we extend the leftmost edge
e1 and rightmost edge en′ of Cl to infinity then the plane is split into two areas. The area
which contains P is tessellated by S(Cl) into straight-skeleton faces, with one face f(ei)
being incident at each input edge ei. As f(ei) is monotone with respect to the normal of ei

(Lemma 1.1), we can meaningfully split the arcs bounding f(ei) into a left and a right chain.
Each chain is a list of arcs (edges and potentially one ray) that starts in a vertex of ei and
either ends in a ray for unbounded faces or ends when it meets the other chain. If the final
arc of a chain is parallel to ei then it can be assigned arbitrarily to the left or the right chain.

We construct the straight skeleton of Cl incrementally. As we insert edges of Cl from left
to right, we maintain a partial straight skeleton S∗. We store in S∗ for each input edge ei

the left chain of f(ei) as a list of arcs. Additionally, S∗ maintains a stack R of edges whose
faces have a left chain that terminates in a ray and another stack G of edges which have
faces whose left chain terminates in an unfinished ghost arc, a vertical edge where the second
endpoint is not yet known. Figure 2 (left) shows blue and purple rays of R and G, respectively.
Initially, R contains e1, which does not have a left chain as it extends to infinity itself.

G. Eder, M. Held, and P. Palfrader 16:3

Once an edge ei has been inserted into S∗, the left chain of f(ei) in S∗ can be modified
only in two specific ways: If the left chain of f(ei) ends in a ray, this ray may be replaced by
a bounded segment. If the left chain of f(ei) ends in an unfinished ghost arc, this arc may
be replaced by a bounded, finished ghost arc, or it may be replaced by a bounded, finished
ghost arc followed by another bounded segment. In Figure 2, the ray b2,3 is replaced by a
bounded segment and the ghost arc a′ is terminated at the intersection with arc a. As we

ei

vi

aa′

e1
e2

e3

ei

vi

aa′

e1
e2

e3

eivi

a
e1
e2

e3

Figure 2 (Left, Center) Inserting edge ei; (Right) Incrementing i and adding the next edge ei;
S∗, including rays, in blue; (Unfinished) Ghost arcs in purple, and arcs added due to ei in orange.

insert edge ei, we have to build the left chain of its face. We do this iteratively, starting
at the left vertex of ei. This chain starts with an arc that lies on a bisector with direction
vector either

(−1
1

)
or

(1
1
)
. We continue to append arc segments, starting each arc where the

previous segment terminated. We stop when we append a ghost arc (which we will complete
later), when we append a ray, or in some cases when we appended a bounded (vertical) arc
segment. Note that all arcs lie on bisectors with direction vectors

(−1
1

)
,

(0
1
)
, or

(1
1
)
. The

direction of the initial arc segment is given by the bisector of ei and its predecessor ei−1. For
all subsequent arcs, the direction depends on ei and the edge on top of the stack R.

I Lemma 2.1. No arc inserted into S∗ with direction
(1

1
)
can intersect any arc of S∗ and,

thus, is a ray which escapes to infinity.

Arcs with Direction
(1

1
)

Therefore, if the left chain of f(ei) ever includes an arc on a(1
1
)
-bisector, this arc will be a

(1
1
)
-ray because nothing in the current S∗ can intersect it.

Thus, this arc terminates the left chain. We add ei with this chain to S∗ and also put ei on
the corresponding stack R.

Arcs with Direction
(−1

1
)

If the arc a to be added to the left chain of f(ei) lies on a(−1
1

)
-bisector, then this arc may be a ray but it may also be bounded and interact with faces

previously inserted. If this is the first arc of the left chain of f(ei) then we check whether
the previous face, f(ei−1), has its left chain already completed, terminating in a bounded
segment. If this is true then a is an arc from the left vertex of ei along the bisector to the
end of the previous face’s chain. Otherwise, or if this is not the first arc of the left chain, we
look at the top of our stack R. Let et be the edge on top of R. If the left chain of f(et) does
not terminate in a

(1
1
)
-ray, then there is no

(1
1
)
-ray in S∗, and a therefore is a

(−1
1

)
-ray which

finishes the left chain of this face. An argument similar to the one used in Lemma 2.1, now
applied to

(−1
1

)
-direction, shows that a cannot be intersected by any new arc. If G is not

empty then all unfinished ghost arcs on that stack get turned into finished ghost-arcs which
terminate at their intersection points with a. If, however, the left chain of f(et) terminates
in a

(1
1
)
-ray r then a will intersect r in a point p. We modify f(et) by replacing r with a line

EuroCG’19

16:4 Computing the Straight Skeleton of an Orthogonal Monotone Polygon

segment r′ terminating at p, and we remove et from R. Furthermore a is a line segment that
terminates at p. Lastly, we have to process any elements on G that had been inserted after et

was processed, as these ghost arcs lie below r′ and a. These get popped from G and their
unfinished ghost arcs are replaced with arcs terminating where they intersect a or r′.

Arcs with Direction
(0

1
)

The last possible direction that an arc a of the left chain of ei may
have is

(0
1
)
. Let p be the point where the previous arc ended. Then a is either a ghost arc or

a standard vertical arc. In the first case we push ei onto G. We also store a reference to the
edge on top of R at this time, and thereby complete the processing of f(ei). The latter case
is the result of two vertical input segments whose wavefront segments meet. Let et be the
edge at the top of R. Then a is the line segment from p that is contained in both Πt and Πi.
If the extent of a is limited by Πi only, then this finishes the construction of the left chain of
f(ei). Otherwise, the ray of the left chain of f(et) touches the end-point of a. We replace
that ray with a bounded segment terminating at this intersection and pop et from R. If the
extent of a was limited by Πt only, we continue with constructing the next arc of the left
chain of f(ei) whose direction is determined by ei and the edge now on top of R. Otherwise,
if a was limited by both Πt and Πi, the construction of the left chain of f(ei) is also finished.

I Lemma 2.2. All arcs created by inserting ei intersect only rays or ghost arcs of S∗.

Finalizing S(Cl) Once all input edges have been inserted into S∗, we may still have elements
on the stack G. For every element on G, we replace the unfinished ghost arc with a segment of
finite length that terminates at the

(1
1
)
-ray which it intersects first. We know where to look

since we stored a reference to the correct face when we pushed an element onto G. If there is
no

(1
1
)
-ray (because the reference was to e1), then these ghost arcs are finalized as vertical

rays that go to infinity. The resulting structure S∗ is now the straight skeleton S(Cl).

I Theorem 2.3. Our incremental construction computes the straight skeleton of a monotone
orthogonal chain of n vertices in O(n) time and space.

3 Merging S(Cl) and S(Cu) into S(P)

While merging the two skeletons we create a polygonal merge chainM := a1, . . . , am. This
chain connects the first (western) vertex vW of Cl and Cu to their last (eastern) vertex vE .
This merge is similar to the algorithm used for merging Voronoi diagrams of point sites [7].

I Lemma 3.1 (Lemmas 4 and 5 in Biedl et al. [4]). The polygonal chainM created by merging
S(Cu) and S(Cl) is x-monotone.

We use the notion of a bisector between two faces and thereby relate to the bisector
between the two edges that define these faces. Let fl(i) and fu(j) denote the i-th and j-th
face of S(Cl) and S(Cu), ordered from left to right along each chain, where 0 < i < n′ and
0 < j < n′′. Clearly, every arc ofM is a portion of a bisector between two such faces, one
from S(Cl) and one from S(Cu); cf. Figure 3 (Left).

We start at the first vertex p := vW and look at the bisector b between fl(1) and fu(1).
It starts at p. Let p′ denote the intersection closest to p between b and S(Cl) as well as b
and S(Cu). W.l.o.g., we assume that p′ is formed between b and an arc a of S(Cl). Let fl(i)
denote the second face incident at a, with 1 < i ≤ n′. Then p′ forms a node in S(P) that
has the same distance to the edges of fu(1), fl(1), and fl(i). Thus, we let a end at p′ and
add an arc a1 := pp′ toM. This arc also forms an arc in S(P). For the next incremental

G. Eder, M. Held, and P. Palfrader 16:5

vW
eu1

el1
eln′

eun′′

vE

M M

p

p′ p′′

ei ej

ek

Figure 3 (Left) Monotone orthogonal polygon (black) with the upper (orange) and lower (blue)
partial skeleton and the merge line M (purple); (Right) The merge step creates a vertical arc pp′.

step, let p := p′ and let b denote the bisector between fu(1) and fl(i). It starts at p. Again
we find the next intersection p′ closest to p of b with both skeletons that does not lie left of
p. We repeat this process until we arrive at the last vertex vE .

Note that the intersection between b and one of the skeletons can form a vertical line
segment instead of a single point if b coincides with a vertical skeleton arc; cf. Figure 3 (Right).
To find the next node p′ in this case we have to look at the relevant faces of S(Cl) and S(Cu).
Let s denote the vertical segment formed by such an intersection and let a denote the vertical
arc that is intersected. W.l.o.g., we assume that a belongs to S(Cu). Let fu(i) and fu(j)
denote the two faces incident at a. Let fl(k) together with fu(i) define b. Thus, the next
bisector b′ that starts on some point on s is defined by fu(j) and fl(k). We observe that both
ej and ek must be vertical and have the same distance to s, since the bisector between ei, ej

and between ei, ek lies on a common line. Hence, ej and ek lie on a common supporting line
and their faces in the upper and lower skeleton contain s. We can infer that the wavefront
edges ej(t) and ek(t) must become adjacent at some point p′′. At that point a ghost vertex
traces out a horizontal arc. Since we are in the process of merging the two skeletons, this arc
is not yet present in either of the two skeletons. Both faces, fu(j) and fl(k), are x-monotone.
To find p′′ we start at their defining input edge and walk along their boundary until we find
that intersection. A horizontal line through p′′ intersects s and defines the node p′ sought.

Complexity of the Merge At every step a pair of faces fl(i) and fu(j) contributes a single
arc toM. Upon insertion of this arc we increase at least one of the two indices i, j. Thus,
M has size at most n′ + n′′, which is equal to n. It remains to discuss how to find the next
intersection p′ efficiently. A new bisector b, defined by the faces fl(i) and fu(j), starts at the
known point p. Both faces are x-monotone; cf. Corollary 1.2. The monotonicity of a face also
holds after the merge sinceM is x-monotone as well. We use the x-coordinate of the vertex
that traces out b to walk along the boundary of both faces. When an intersection is found
we add a node, cross to the neighboring face, and start a new arc. SinceM is x-monotone
we can simply continue traversing the face whose boundary was not intersected. Therefore,
we traverse every arc of both S(Cl) and S(Cu) at most once.

I Theorem 3.2. The merge process merges S(Cl) and S(Cu) and obtains S(P) for an n-vertex
monotone orthogonal polygon P in O(n) time.

EuroCG’19

16:6 Computing the Straight Skeleton of an Orthogonal Monotone Polygon

References
1 Alok Aggarwal, Leonidas J. Guibas, James Saxe, and Peter W. Shor. A Linear-Time Algo-

rithm for Computing the Voronoi Diagram of a Convex Polygon. Discrete & Computational
Geometry, 4(6):591–604, 1989. doi:10.1007/BF02187749.

2 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A Novel Type
of Skeleton for Polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.
doi:10.1007/978-3-642-80350-5_65.

3 Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. A Simple
Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.
Information Processing Letters, 115(2):243–247, February 2015. doi:10.1016/j.ipl.2014.
09.021.

4 Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. Weighted
Straight Skeletons in the Plane. Computational Geometry: Theory and Applications,
48(2):120–133, 2015. doi:10.1016/j.comgeo.2014.08.006.

5 David Eppstein and Jeff Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Ap-
plications of a Data Structure for Finding Pairwise Interactions. Discrete & Computational
Geometry, 22(4):569–592, 1999. doi:10.1145/276884.276891.

6 Evanthia Papadopoulou. Critical Area Computation for Missing Material Defects in VLSI
Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
20(5):583–597, May 2001. doi:10.1109/43.920683.

7 Michael I. Shamos and Dan Hoey. Closest-Point Problems. In Foundations of Computer
Science, 1975, 16th Annual Symposium on, pages 151–162. IEEE, October 1975. doi:
10.1109/sfcs.1975.8.

http://dx.doi.org/10.1007/BF02187749
http://dx.doi.org/10.1007/978-3-642-80350-5_65
http://dx.doi.org/10.1016/j.ipl.2014.09.021
http://dx.doi.org/10.1016/j.ipl.2014.09.021
http://dx.doi.org/10.1016/j.comgeo.2014.08.006
http://dx.doi.org/10.1145/276884.276891
http://dx.doi.org/10.1109/43.920683
http://dx.doi.org/10.1109/sfcs.1975.8
http://dx.doi.org/10.1109/sfcs.1975.8

Maximum Rectilinear Convex Subsets ∗

Hernán González-Aguilar1, David Orden2, Pablo Pérez-Lantero3,
David Rappaport4, Carlos Seara5, Javier Tejel6, and Jorge Urrutia7

1 Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Mexico
hernan@fc.uaslp.mx

2 Departamento de Física y Matemáticas, Universidad de Alcalá, Spain
david.orden@uah.es

3 Departamento de Matemática y Ciencia de la Computación, Universidad de
Santiago de Chile, Chile
pablo.perez.l@usach.cl

4 School of Computing, Queen’s University, Canada
daver@cs.queensu.ca

5 Departament de Matemàtiques, Universitat Politècnica de Catalunya, Spain
carlos.seara@upc.edu

6 Departamento de Métodos Estadísticos, IUMA, Universidad de Zaragoza,
Spain
jtejel@unizar.es

7 Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico
urrutia@matem.unam.mx

Abstract
Let P be a set of n points in the plane. We consider a variation of the classical Erdős-Szekeres
problem, presenting efficient algorithms with O(n3) running time and O(n2) space which com-
pute: (1) A subset S of P such that the boundary of the rectilinear convex hull of S has the
maximum number of points from P , (2) a subset S of P such that the boundary of the rectilinear
convex hull of S has the maximum number of points from P and its interior contains no element
of P , and (3) a subset S of P such that the rectilinear convex hull of S has maximum area and
its interior contains no element of P .

1 Introduction

Let P be a point set in general position in the plane. A subset S of P with k points is
called a convex k-gon if the elements of S are the vertices of a convex polygon, and it is
called a convex k-hole if the interior of the convex hull of S contains no point of P . The
study of convex k-gons and convex k-holes of point sets started in a seminal paper by Erdős
and Szekeres [11]. Since then, a plethora of papers studying both the combinatorial and the
algorithmic aspects of convex k-gons and convex k-holes has been published. The reader
can consult the two survey papers [8, 12] about so-called Erdős-Szekeres type problems.

Some recent papers studying the existence and the number of convex k-gons and convex
k-holes for sets of points in the plane are [1, 2, 3]. Papers dealing with the problem of finding

∗ This work has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 734922. D. O. is supported by
project MTM2017-83750-P of the Spanish Ministry of Science (AEI/FEDER, UE). P. P-L. is supported
by project CONICYT FONDECYT/Regular 1160543 (Chile). D. R. is supported by NSERC of Canada
Discovery Grant RGPIN/06662-2015. C. S. is supported by projects Gen. Cat. DGR 2017SGR1640 and
MINECO MTM2015-63791-R. J. T. is supported by project MTM2015-63791-R MINECO/FEDER. J.
U. is supported by PAPIIT grant IN102117 from UNAM.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

17:2 Maximum Rectilinear Convex Subsets

largest convex k-gons and convex k-holes are, respectively, Chvátal and Kincsek [10] and
Avis and Rappaport [7], which solve these problems in O(n3) time and O(n2) space.

In this paper we study Erdős-Szekeres type problems under a variation of convexity
known as rectilinear convexity (or orthoconvexity): Let P = {p1, . . . , pn} be a n point set in
the plane in general position. A quadrant is the intersection of two open half-planes whose
supporting lines are parallel to the x- and y-axes. We say that a quadrant Q is P -free if it
contains no point of P . The rectilinear convex hull (or orthogonal convex hull) of P , denoted
as RCH(P), was introduced by Ottmann et al. [13] (see also [15]) and is defined as:

RCH(P) = R2 −
⋃

Q is P -free
Q.

The rectilinear convex hull of a point set might be a simply connected set, yielding an
intuitive and appealing structure (see Figure 1, left). However, in other cases the rectilinear
convex hull can have several connected components (see Figure 1, right), some of which
might be single points which we call pinched points. The size of RCH(S) is the number of
points of S on the boundary of RCH(S). The sizes of the rectilinear convex hulls in Figure 1
are thirteen and twelve. In this paper, we present algorithms for the following problems:

a

b

c

d

1− staircase

2− staircase

3− staircase4− staircase

a = d

b

c

u

Figure 1 Left: A point set with a connected rectilinear convex hull. Right: A point set whose
rectilinear convex hull is disconnected. Two of its components are pinched points.

(1) MaxRCH: Given a set P of n points in the plane, find a subset S ⊆ P such that the
size of RCH(S) is maximized. We solve the MaxRCH problem given an algorithm which
runs in O(n3)-time and O(n2)-space. Then, we adapt our algorithm to solve the following
problems, each in O(n3) time and O(n2) space.
(2) MaxEmptyRCH: Given a set P of n points in the plane, find a subset S ⊆ P such that
the interior of RCH(S) contains no point of P and the size of RCH(S) is maximized.
(3) MaxAreaRCH: Given a set P of n points in the plane, find a subset S ⊆ P such that the
interior of RCH(S) contains no point of P and the area of RCH(S) is maximized.
Related work: Erdős-Szekeres type problems have also been studied for colored point sets.
Let P be a set of points such that each of its elements is assigned a color, say red or blue.
Bautista-Santiago et al. [9] studied the problem of finding a monochromatic subset S of P
of maximum size such that all of the elements of P contained in the convex hull of S have
the same color. They also solve the same problem for each element of P having a weight.
All of these algorithms run in O(n3) time and O(n2) space.
Notation and definitions: For a point p of the plane, let px and py denote the x- and
y-coordinates of p, respectively. For p 6= q ∈ R2, we write p ≺ q to denote that px < qx and

Hernán G-A., David O., Pablo P-L., David R., Carlos S., Javier T., Jorge U. 17:3

py < qy, and p ≺′ q to denote that px < qx and py > qy. Any point p in the plane defines
four axis-aligned quadrants Qi(p), i = 1, 2, 3, 4 as follows (see Figure 2, left):

Q2(p) = {q ∈ R2 | q ≺′ p}, Q1(p) = {q ∈ R2 | p ≺ q},
Q3(p) = {q ∈ R2 | q ≺ p}, Q4(p) = {q ∈ R2 | p ≺′ q}.

p

Q1(p)Q2(p)

Q3(p) Q4(p) M1(P)

p

q

v2

vk−1

Figure 2 Left: The definition of the sets Qi(p). Middle: A 7-point set P and the set M1(P).
The vertices of M1(P) in P are the 1-extremal points of P . Right: A 1-staircase.

Given P , for i = 1, 2, 3, 4, let Mi(P) =
⋃

p∈P Qi(p) where Qi(p) denotes the closure
ofQi(p). The elements of P that belong to the boundary ofMi(P), are called the (rectilinear)
i-extremal points of P (see Figure 2, middle). For every J ⊆ {1, 2, 3, 4}, we say that p ∈ P
is J-extremal if p is j-extremal for every j ∈ J . The rectilinear convex hull of P is the set1

RCH(P) =
4⋂

i=1
Mi(P),

see Figure 1, left. For the sake of simplicity, we assume that all point sets P considered
in this paper are in general position, which here means that no two points of P share the
same x- or y-coordinate. Let a, b, c, d denote the leftmost, bottommost, rightmost, and
topmost points of P , respectively. Note that a is {1, 4}-extremal, b is {1, 2}-extremal, c is
{2, 3}-extremal, and d is {3, 4}-extremal.
i-staircases: Let S = {v1, . . . , vk} be a set of vertices such that v1 = p, vk = q, and vi ≺′ vj

for every i < j. A 1-staircase joining p to q (Figure 2, right) is the boundary of M1(S)
minus the infinite rays (Figure 2, middle), i.e., it is an orthogonal polygonal chain such that
two consecutive points of S are joined by an elbow, i.e., a horizontal followed by a vertical
segment. A 3-staircase joining p to q is defined similarly using elbows whose first segment
is vertical. Similarly for 2- and 4-staircases, except that we require vi ≺ vj (Figure 1, left).

The boundary of the rectilinear convex hull of a point set P is a subset of the union of four
staircases, a 1-, a 2-, a 3-, and a 4-staircase whose vertices are the 1-, 2-, 3-, and 4-extremal
points of P . See again Figure 1. Observe that the rectilinear convex hull RCH(P) of a point
set P is disconnected when either the complements R2 −M1(P) and R2 −M3(P) intersect,
as shown in Figure 1, right, or the complements R2 −M2(P) and R2 −M4(P) intersect.
A pinched point u of RCH(P) occurs when u is either both 1-extremal and 3-extremal, as
shown in Figure 1, right, or both 2-extremal and 4-extremal. Note that the size of RCH(P)
is the number of points of P which are i-extremal for at least one i ∈ {1, 2, 3, 4}.

1 Some recent works [4, 5, 6] use the notation RH(P) for the rectilinear convex hull of P .

EuroCG’19

17:4 Maximum Rectilinear Convex Subsets

Throughout this paper, we will use a, b, c, and d to denote the leftmost, bottommost,
rightmost, and topmost points of P , where a, b, c, d are not necessarily different (see Figure 1,
right). Given two points u and v in the plane, let B(u, v) be the smallest open axis-aligned
rectangle containing u and v, and let P (u, v) = P ∩ B(u, v). We say that RCH(P) is
vertically separable if B(a, d) and B(b, c) are separated by a vertical line. Given P and a
horizontal line `, let P ′ be the image of P under a reflection around `. The following lemma
is key for our algorithms, and we assume, when needed, that P is vertically separable.

I Lemma 1.1. RCH(P) or RCH(P ′) is vertically separable.

2 Rectilinear convex hull of maximum size

In this section, we solve the MaxRCH problem. For every pair of points p, q such that p ≺ q,
let Ci

p,q, i = 2, 4, be an i-staircase with endpoints p and q of maximum size. Similarly, if
p ≺′ q, let Ci

p,q, i = 1, 3, be an i-staircase with endpoints p and q of maximum size, see
Figure 3. Our goal is to combine four staircases in order to obtain a subset S of P whose
rectilinear convex hull is of maximum size. All of this has to be done carefully, since the
occurrence of pinched points may lead to over counting.

p

q

p

q

C2
p,q C4

p,q

p

qC1
p,q

p

qC3
p,q

Figure 3 Examples of Ci
p,q.

Our algorithm to solve the MaxRCH problem proceeds in three steps: In the first step
we calculate all of the Ci

p,q, i = 1, . . . , 4. In the second step we calculate what we call triple
staircases (yet to be defined). In the third step we show how to combine triple staircases
and the C4

p,q staircases to solve the MaxRCH problem. In this step we will make sure that
the solution thus obtained is vertically separable. Our algorithm will run in O(n3) time
and O(n2) space. The main tool is the use of dynamic programming applying to some
recurrences. (In the appendix we describe in detail the steps of our algorithm.) Let Ci

p,q

be the number of elements of P in Ci
p,q. Note that Ci

p,q equals the maximum number of
i-extremal points over all X ⊆ {p, q} ∪ P (p, q) with p, q ∈ X.

The first step: Compute the numbers Ci
p,q, for i ∈ {1, 2, 3, 4}, p, q ∈ P . These can be

done in O(n3) time and O(n2) space, using dynamic programming applying the recurrence:

Ci
p,q =

{
1 if p = q

max{1 + Ci
r,q} over all r ∈ P (p, q) if p 6= q.

(1)

Using the Ci
p,q, it is a routine matter to determine a staircase Ci

p,q of maximum size.
The second step: Given a point set S, we define the triple staircase associated to S,

as the concatenation of the 1-, 2-, and the 3-staircases of the rectilinear convex hull of S. In
this step, our goal is to obtain triple staircases of maximum cardinality starting and ending
at some pairs of points of P . Triple staircases allow us to manage pinched points.

Consider p, q ∈ P such that p ≺ q or p = q. Let Z(p, q) = B(p, q) ∪Q4(p) ∪Q4(q), and
let z(p, q) = Z(p, q) ∩ P (see Figure 4). Let S′ be a subset of z(p, q) such that the triple

Hernán G-A., David O., Pablo P-L., David R., Carlos S., Javier T., Jorge U. 17:5

staircase, denoted as Tp,q, associated to S′ ∪{p, q} is of maximum cardinality. Observe that
M1(S′) ∩M2(S′) ∩M3(S′) may contain points in P (p, q), it may be disconnected, and it
may have pinched points. Note that p and q are always the endpoints of Tp,q (see Figure 5).
Let Xp,q denote the set of extreme vertices of Tp,q, and let Tp,q be the cardinality of Xp,q.

p

q

Rp\q

Rq\p

Rp,q

q

Rq\p

p

p

q

r

p

q

r

r
p

q

r

p

q

s

(B) (C) (D) (E)

p

q

Z(p, q) Rp,q

p

Rp\q

q

Rp,q

Figure 4 Top: Region Z(p, q) and subsets Rp\q, Rq\p, and Rp,q. Bottom: cases in the recursive
computation of Tp,q.

We calculate all of the Tp,q’s using Equation (2). Let αp,q = 1 if p = q, and αp,q = 2
if p 6= q. We use dynamic programming to compute the values of the table T using the
following recurrence:

Tp,q = max

C2
p,q (A)

1 + Tr,q over all r ∈ Rp\q : P (p, r) = ∅ (B)
1 + Tp,r over all r ∈ Rq\p : P (q, r) = ∅ (C)
αp,q + Tr,r over all r ∈ Rp,q : P (p, r) = P (q, r) = ∅ (D)
αp,q + Up,r over all r ∈ Rp,q : P (p, r) = P (q, r) = ∅ (E)

(2)

where
Up,r = max{Tr,s} over all s ∈ Rp\r : P (p, s) = ∅. (3)

I Lemma 2.1. The previous recurrence correctly calculates Tp,q, the size of Xp,q.

We use now triple staircases and the C4
p,q staircases to solve the MaxRCH problem.

The third step: We proceed as follows. For a, d ∈ P with a ≺ d, we compute an optimal
solution Sa,d ⊆ P having a as its leftmost point and d as its topmost point. Finding Sa,d

is not as simple as joining the maximum 4-staircase of size C4
a,d with Ta,d, since Ta,d might

have extreme vertices in the rectangle B(a, d) which can also be vertices of the 4-staircase.
To see how we arrive to this solution, consider a vertically separable optimal solution Sa,d.
We traverse the 1-staircase of Sa,d from a to d, and let e ∈ Sa,d be the first point of P that
belongs to the set Ra,d. Let f ∈ Sa,d be the point of P that precedes e in the staircase and
belongs to {a} ∪Ra\d (see Figure 6). Let ` be the horizontal line through e. Then, f must
satisfy the conditions of the next lemma.

I Lemma 2.2. By the optimality of Sa,d, the point f satisfies: (i) P (f, e) = ∅, (ii) C1
a,f is

maximum among all points of P in {a} ∪Ra\d that are above ` (see Figure 7).

EuroCG’19

17:6 Maximum Rectilinear Convex Subsets

p

q

p

q

p

q

p = q

p

q

p

q

C2
p,q

Figure 5 Examples of triple staircases Tp,q.

a

d

f

e

s

C4
a,d C3

d,s

C1
a,f

b

cTe,s

a

d

f

e

s

C4
a,d

C3
d,s

C1
a,f

b

cTe,s

u

v

s′

Figure 6 The third step of the algorithm.

Using Lemma 2.2, Sa,d can be found as follows. Sweep a line ` from top to bottom,
stopping at all the points of {a}∪Ra\d∪Ra,d. Every time ` passes over a point of {a}∪Ra\d,
we update the point f satisfying condition (ii) in O(1) time. Furthermore, every time `
passes over a point e ∈ Ra,d, we verify whether condition (i) is satisfied. If this is the case,
we consider e as a candidate to be the first point of the 1-staircase of Sa,d in Ra,d, and set
f(e) = f . Let E be the set of all points that are candidates to be point e. If E = ∅, we
return Ta,d = −1. Otherwise, we return:

max
e∈E

{
C4

a,d + C1
a,f(e) + Vd,e − 2

}
(4)

as the size of the optimal Sa,d, where table V (similar to table U) is a table such that it
contains an entry Vd,e for every pair d, e ∈ P such that d ≺′ e. Each Vd,e satisfies:

Vd,e = max
{
C3

d,s + Te,s − 1
}

over all s ∈ Rd\e ∪ {e} such that pred(s, d) ≺′ e (5)

where pred(s, d) (s′ in Figure 6) is the point of P on C3
d,s which precedes s while travers-

ing C3
d,s from d to s. Hence, the size of RCH(Sa,d) equals:

C4
a,d + C1

a,f + C3
d,s + Te,s − 3 = C4

a,d + C1
a,f + Vd,e − 2. (6)

Hernán G-A., David O., Pablo P-L., David R., Carlos S., Javier T., Jorge U. 17:7

a

d

f

e

C4
a,d

C1
a,f

u′

v′

f ′

u

v

a

d

f

e

C4
a,d

C1
a,f ′

u

f ′
v

a

d

f

C4
a,d

C1
a,f ′

u′

v′

f ′

e

u

v

a

d

f

e

C4
a,d

C1
a,f

u

f ′
v

Figure 7 Illustration of Lemma 2.2.

We subtract 3 since a, d, and s are counted twice each. By using table V and Equations (4)
and (5), we compute the optimal solution in O(n3) time and O(n2) space. Note that all the
pred(s, d) can be computed in O(n3) time using Equation (1). Hence, we have:

I Theorem 2.3. The MaxRCH problem can be solved in O(n3) time and O(n2) space.

3 Maximum size/area empty rectilinear convex hulls

In this section, we adapt the algorithm of Section 2 to solve the MaxEmptyRCH and the
MaxAreaRCH problems. Note that, by Lemma 1.1, we can assume that B(a, d) and B(b, c)
are separated by a vertical line in both the MaxEmptyRCH and MaxAreaRCH problems.

To solve the MaxEmptyRCH problem in O(n3) time and O(n2) space, we make modifi-
cations to the steps of our previous algorithm. The rest of the algorithm is the same.

I Theorem 3.1. The MaxEmptyRCH problem can be solved in O(n3) time and O(n2) space.

Given a bounded set Z ⊂ R2, let Area(Z) denote the area of Z. To solve the MaxAreaRCH
problem, we will proceed as in the previous result, but we need to sum areas, not to
count points in all of our recurrences. Given an empty i-staircase Ci

p,q, let Ci
p,q be now

Area(B(p, q) ∩Mi(P (p, q))).

I Theorem 3.2. The MaxAreaRCH problem can be solved in O(n3) time and O(n2) space.

EuroCG’19

17:8 Maximum Rectilinear Convex Subsets

References
1 O. Aichholzer, R. Fabila-Monroy, H. González-Aguilar, T. Hackl, M. A. Heredia, C. Hue-

mer, J. Urrutia, P. Valtr, and B. Vogtenhuber. On k-gons and k-holes in point sets.
Computational Geometry, 48(7):528–537, 2015.

2 O. Aichholzer, R. Fabila-Monroy, H. González-Aguilar, T. Hackl, M. A. Heredia, C. Hue-
mer, J. Urrutia, and B. Vogtenhuber. 4-holes in point sets. Computational Geometry,
47(6):644–650, 2014.

3 O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber. Lower
bounds for the number of small convex k-holes. Computational Geometry, 47(5):605–613,
2014.

4 C. Alegría-Galicia, T. Garduño, A. Rosas-Navarrete, C. Seara, and J. Urrutia. Rectilinear
convex hull with minimum area. In Computational Geometry, LNCS, vol 7579 - XIV
Spanish Meeting on Computational Geometry, EGC 2011, 226–235, 2012.

5 C. Alegría-Galicia, D. Orden, C. Seara, and J. Urrutia. Rectilinear and O-convex hull with
minimum area. CoRR, abs/1710.10888, 2017.

6 C. Alegría-Galicia, C. Seara, and J. Urrutia. Computing containment relations between rec-
tilinear convex hulls. In Mexican Conference on Discrete Mathematics and Computational
Geometry, 60th birthday of Jorge Urrutia, November 11–15, 2013.

7 D. Avis and D. Rappaport. Computing the largest empty convex subset of a set of points.
In Proceedings of the 1st Annual Symposium on Computational Geometry, 161–167, 1985.

8 P. Brass, W. Moser, and J. Pach. Convex polygons and the Erdős Szekeres problem.
Chapter 8.2 in Research Problems in Discrete Geometry, Springer, 2005.

9 C. Bautista-Santiago, J. M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, J. Urrutia, and I. Ven-
tura. Computing optimal islands. Operations Research Letters, 39(4):246–251, 2011.

10 V. Chvátal and G. Klincsek. Finding largest convex subsets. Congressus Numerantium,
29:453–460, 1980.

11 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,
2:463–470 1935.

12 W. Morris and V. Soltan. The Erdős-Szekeres problem on points in convex position–a
survey. Bulletin of the American Mathematical Society, 37(4):437–458, 2000.

13 T. Ottmann, E. Soisalon-Soininen, and D. Wood. On the definition and computation of
rectilinear convex hulls. Information Sciences, 33(3):157–171, 1984.

14 Preparata, Franco P. and Shamos, Michael I. Computational geometry: an introduction,
2012, Springer Science & Business Media.

15 G. J. Rawlins and D. Wood. Ortho-convexity and its generalizations. In Machine Intelli-
gence and Pattern Recognition, 6:137–152, 1988.

Routing in Histograms∗

Man-Kwun Chiu1, Jonas Cleve1, Katharina Klost1, Matias
Korman3, Wolfgang Mulzer1, André van Renssen4, Marcel
Roeloffzen5, and Max Willert1

1 Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
{chiumk,jonascleve,kathklost,mulzer,willerma}@inf.fu-berlin.de

3 Department of Computer Science, Tufts University, Medford, MA, USA
matias.korman@tufts.edu

4 School of Computer Science, University of Sydney, Sydney, Australia
andre.vanrenssen@sydney.edu.au

5 TU Eindhoven, Eindhoven, The Netherlands
m.j.m.roeloffzen@tue.nl

Abstract
Let P be a histogram with n vertices, i.e., an x-monotone orthogonal polygon whose upper
boundary is a single edge. Two points p, q ∈ P are co-visible if and only if the (axis-parallel)
bounding rectangle of p and q is in P . In the r-visibility graph of P , we connect two vertices of P
with an unweighted edge if and only if they are co-visible. We consider routing with preprocessing
in P . We may preprocess P to obtain a label and a routing table for each vertex of P . Then, we
must be able to route a packet between any two vertices s and t of P , where each step may use
only the label of the target node t, the routing table, and the neighborhood of the current node.

We present a routing scheme for histograms that sends any data packet along a shortest path.
Each label needs O(logn) bits, while the routing table of each node consists of a single bit.

1 Introduction

The routing problem is a classic question in distributed graph algorithms [15, 22]. We have
a graph G and would like to preprocess it for the following task: route a data packet located
at some source vertex s to a target vertex t, given by its label – a bit string that identifies
the node in the network. The routing should have the following properties: (A) locality: to
determine the next step of the packet, it should use only information available locally at the
current vertex. The most important local information consists of a routing table for each
vertex; (B) efficiency: the packet should travel along a path whose length is not much larger
than the length of a shortest path between s and t. The ratio between the length of this
routing path and a shortest path is called the stretch factor ; and (C) compactness: the space
requirements for labels and routing tables should be small. Storing the complete shortest
path tree of v in every node v of G leads to a perfect efficiency but lacks compactness.

There are many compact routing schemes for general graphs [1, 2, 11–13, 23, 24]. For
example, the scheme by Roditty and Tov [24] needs to store a poly-logarithmic number of
bits in the packet header and it routes a packet from s to t on a path of length O

(
k∆+m1/k

)
,

where ∆ is the shortest path distance between s and t, k > 2 is any fixed integer, n is the
number of nodes, and m is the number of edges. The local routing tables use mnO(1/

√
log n)

space. In the late 1980’s, Peleg and Upfal [22] proved that in general graphs, any routing

∗ Partially supported by ERC STG 757609, DFG grant MU 3501/1-2, MEXT KAKENHI No. 17K12635,
NSF award CCF-1422311, and JST ERATO Grant Number JPMJER1201, Japan. A full version is
available on the arXiv under arXiv:1902.06599.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

18:2 Routing in Histograms

Figure 1 The boundary of a histogram has an x-monotone chain and a single horizontal edge.

scheme with constant stretch factor must store Ω(nc) bits per vertex, for some constant
c > 0. Thus, it is natural to focus on special graph classes to obtain better routing schemes.
For instance, there are compact and efficient routing schemes for trees, planar graphs, unit
disk graphs, and metric spaces with bounded doubling dimension [14,18,19,25–27,29].

Another approach is geometric routing: the graph resides in a geometric space, and
the routing algorithm has to determine the next vertex for the packet purely based on the
local geometric information (and possibly the packet header), see for instance [9, 10] and
the references therein. There are no routing tables. In a recent result, Bose et al. [10] show
that when vertices do not store any routing tables, no geometric routing scheme can achieve
stretch factor o(

√
n). This lower bound applies irrespective of the header size.

We consider routing in visibility graphs of polygons. Banyassady et al. [3] presented an
efficient and compact routing scheme for polygonal domains assuming Euclidean weights.
They ask whether there is an efficient routing scheme for visibility graphs with unit weights,
arguably a more applied setting. We address this open problem by combining the two
approaches of geometric and compact routing: we use routing tables at the vertices to
represent information about the structure of the graph, but we also assume that the labels of
all adjacent vertices are stored in a link table and are therefore available for each node. This
is reasonable from a practical point of view. The link table is not part of the routing table
and the size of this list is not relevant for the compactness, since it depends purely on the
graph and cannot be influenced during preprocessing. We focus on r-visibility (rectilinear-
visibility) graphs of histograms: a histogram P is an orthogonal polygon bounded by an
x-monotone polygonal chain and a single horizontal line segment, see Figure 1. Two vertices
v, w in P are connected in the r-visibility graph G(P) by an unweighted edge if and only if
the axis-parallel rectangle spanned by v and w is contained in the (closed) region P . Even
this seemingly simple case turns out to be quite challenging and reveals the whole richness
of the compact routing problem in unweighted, geometrically defined graphs. Furthermore,
histograms constitute a natural starting point, since they are crucial building blocks in many
visibility problems; see, for instance, [4–8, 17]. In addition, r-visibility is a popular concept
that enjoys many useful structural properties, see, e.g., [16, 17,20,21,28].

We present a routing scheme for G(P) with label size 2 · dlogne, routing table size 1 and
stretch 1, i.e., we route on a shortest path.

M.-K. Chiu et al. 18:3

v

cv(w)w

`(v)
`(w)r(v)

u

`(u)

s

r(s)

I(v)

w

r(w)

cv(v)

Figure 2 The interval I(v) as well as left, right, and corresponding vertices.

2 Preliminaries

Routing schemes. Let G = (V,E) be an undirected, unweighted, simple, connected graph.
The (closed) neighborhood of a vertex v ∈ V , N(v), is the set containing v and its adjacent
nodes. The length of a path π in G is denoted by |π|. Moreover, for v, w ∈ V , we let d(v, w)
denote the length of a shortest path in G with endpoints v and w.

We define a routing scheme. Every node v is assigned a label lab(v) ∈ {0, 1}∗ to identify
v in the network and a routing table ρ(v) ∈ {0, 1}∗ storing relevant properties of G. Labels
and routing tables are chosen during preprocessing. Moreover, every node has a link table—a
list of the labels of N(v). The algorithm to find the next step of a packet is modeled by
a routing function f :

(
{0, 1}∗)3 → V . The function uses the link and routing table at a

current node s as well as the label lab(t) of the target node t to determine a next node v
adjacent to s where the packet is forwarded to. The routing scheme is correct if the following
holds: for any s, t ∈ V , let p0 = s and pi+1 = f

(
lab

(
N(pi)

)
, ρ(pi), lab(t)

)
, for i ≥ 0. Then,

there is a k = k(s, t) ≥ 0 with pk = t and pi 6= t, for i < k. The routing scheme reaches t in
k steps. We call π : 〈p0, . . . , pk〉 the routing path from s to t. The routing distance is k(s, t).

The various pieces of information used for the routing should be small. This is measured
by the label and routing table size. The routing path should be as small as possible. This is
measured by the stretch—the ratio of the lengths of the routing and the shortest path.

Polygons. Let P be an x-monotone orthogonal polygon in general position with n vertices
V (P). No three vertices in V (P) lie on a horizontal line. We call P a histogram if the upper
boundary is a single horizontal base edge. Its endpoints are the base vertices. The vertices
of P are indexed counterclockwise from 0 to n − 1 starting at the left base vertex. For
v ∈ V (P), we write vx for the x-coordinate, vy for the y-coordinate, and vid for the index.

We consider the r-visibility graph G(P) =
(
V (P), E(P)

)
of P : there is an edge between

two vertices v, w ∈ V (P) if they are co-visible, i.e., the axis-aligned rectangle spanned by v
and w is in (the closed set) P . We call d(v, w) the hop distance between two vertices in v, w.

Next, we classify the vertices of P . A vertex v in P is incident to exactly one horizontal
edge h. We call v a left vertex if it is the left endpoint of h; otherwise, v is a right vertex.
Furthermore, v is convex if the interior angle at v is π/2; otherwise, v is reflex. Accordingly,
every vertex of P is either `-convex, r-convex, `-reflex, or r-reflex.

Visibility Landmarks. Let P be a histogram. We associate with each v ∈ V (P) three
landmark vertices in P ; see Figure 2. The corresponding vertex of v, cv(v), shares the same
horizontal edge with v. The left bounding vertex of v, `(v), is the leftmost visible vertex

EuroCG’19

18:4 Routing in Histograms

s

t1

nd(s, t1)

fd(s, t1)

t2

nd(s, t2)

fd(s, t2) = r(s)

`(s) = fd(s, t3)

t3

nd(s, t3)

I(s, t1)

Figure 3 The near and the far dominators. Observe that fd(s, t3) is not a vertex.

from v closest to the base edge, i.e., `(v) = argmin{wid | w ∈ N(v)}. The right bounding
vertex of v, r(v), is defined analogously, i.e., r(v) = argmax{wid | w ∈ N(v)}.

Let v, w ∈ V (P). The interval [v, w] is the set of vertices in P whose x-coordinates lie
between those of v and w, i.e., [v, w] =

{
u ∈ V (P) | vx ≤ ux ≤ wx

}
. By general position,

this corresponds to index intervals. More precisely, if v is either an r-reflex vertex or the left
base vertex and w is either `-reflex or the right base vertex, then [v, w] =

{
u ∈ V (P) | vid ≤

uid ≤ wid
}
. The set I(v) = [`(v), r(v)] is called the interval of v. We have N(v) ⊆ I(v).

Let s and t be two vertices with t ∈ I(s) \ N(s). We define two more landmarks for
s and t. Assume sx < tx, the other case is symmetric. The near dominator nd(s, t) of t
with respect to s is the rightmost vertex in N(s) that is not to the right of t. If there is
more than one such vertex, nd(s, t) is the vertex closest to the base line. The far dominator
fd(s, t) of t with respect to s is the leftmost vertex in N(s) that is no to the left of t. If
there is more than one such vertex, fd(s, t) is the vertex closest to the base line. The interval
I(s, t) =

[
nd(s, t), fd(s, t)

]
has all vertices between the near and far dominator; see Figure 3.

3 Visibility and Paths

Let P be a histogram. We present some observations on the visibility in P . Then, we analyze
the structure of (shortest) paths in a histograms. We omit the proofs for space reasons.

I Observation 3.1. Let v ∈ V (P) be r-reflex or the left base vertex, and let u ∈ [v, r(v)] be
a vertex distinct from v and r(v). Then, I(u) ⊆ [v, r(v)].

I Observation 3.2. Let v ∈ V (P) be a left (right) vertex distinct from the base vertex.
Then, v can see exactly two vertices to its right (left): cv(v) and r(v) (`(v)).

The following lemma identifies some vertices that must appear on any path; see Figure 4.

I Lemma 3.3. Let v, w ∈ V (P) be co-visible vertices such that v is either r-reflex or the
left base vertex and w is either `-reflex or the right base vertex. Let s and t be two vertices
with s ∈ [v, w] and t /∈ [v, w]. Then, any path between s and t includes v or w.

The next lemma shows that if t /∈ I(s), there is a shortest path from s to t that uses the
higher vertex of `(s) and r(s); see Figure 4.

I Lemma 3.4. Let s and t be two vertices with t /∈ I(s). If `(s)y > r(s)y (`(s)y < r(s)y),
then there is a shortest path from s to t using `(s) (r(s)).

The next lemma considers the case where t is in I(s). Then, the near and far dominator are
the potential vertices that lie on a shortest path from s to t.

M.-K. Chiu et al. 18:5

v
w = r(v)

s

cv(v)

⊆ P

t

t

s

Figure 4 Left: Any s-t-path includes v or w. Right: A shortest s-t path using the higher vertex.

v = br(u)

br(v)
w

br(w)

u
b

br(b)

Figure 5 The breakpoints of some vertices.

I Lemma 3.5. Let s and t be two vertices with t ∈ I(s) \N(s). Then, nd(s, t) is reflex and
either fd(s, t) = `(nd(s, t)) or fd(s, t) = r(nd(s, t)).

4 The Routing Scheme

Let P be a histogram, |V (P)| = n. Our approach is as follows: as long as a target vertex t
is not contained in the interval I(s) of a current vertex s, i.e., as long as there is a higher
vertex blocking visibility between s and t, we have to leave the current pocket as quickly as
possible. Once we have reached a high enough spike, we find the pocket containing t.

Labels and routing tables. Let v be a vertex. If v is convex and not a base vertex we
let lab(v) = vid. Otherwise, suppose that v is an r-reflex vertex or the left base vertex.
The breakpoint of v, br(v), is the left endpoint of the horizontal edge with the highest y-
coordinate to the right of and below v visible from v; analogous definitions apply to `-reflex
vertices and the right base vertex; see Figure 5. We set lab(v) = (vid, br(v)id). The routing
table ρ(v) stores one bit, indicating whether `(v)y > r(v)y, or not.

The routing function. We are given the current vertex s and the label lab(t) of the target
vertex t. If t is visible from s, i.e., if lab(t) ∈ lab(N(s)), we directly go from s to t. Thus,
assume t /∈ N(s). First, we check t ∈ I(s) as follows: we determine the smallest and largest
id in the link table of s, i.e., we determine `(s)id and r(s)id and check tid ∈ [`(s)id, r(s)id],
which is the case if and only if t ∈ I(s). There are two cases, illustrated in Figure 6.

First, assume t /∈ I(s). If ρ(s) indicates `(s)y > r(s)y, we take the hop to `(s); otherwise,
we take the hop to r(s). By Lemma 3.4, this hop is on a shortest path from s to t.

Second, suppose that t ∈ I(s) \N(s). This case is a bit more involved. We use the link
table of s and the label of t to determine fd(s, t) and nd(s, t). Again, we can do this by

EuroCG’19

18:6 Routing in Histograms

s
`(s)

.

r(s)

fd

nd

t t t ttt

Figure 6 The cases where the vertex t lies and the vertices where the data packet is sent to.

comparing the ids. Lemma 3.5 states that either fd(s, t) = `(nd(s, t)) or fd(s, t) = r(nd(s, t)).
We discuss the case that fd(s, t) = r(nd(s, t)), the other case is symmetric. By Lemma 3.3,
any shortest path between s and t includes fd(s, t) or nd(s, t). Moreover, due to Lemma 3.5,
nd(s, t) is reflex, and we can use its label to access bid = br(nd(s, t))id. The vertex b splits
I(s, t) = [nd(s, t), fd(s, t)] into two disjoint subintervals [nd(s, t), b] and [cv(b), fd(s, t)]. Also,
b and cv(b) are not visible from s, as they are located strictly between the far and the near
dominator. Based on bid, we can now decide on the next hop.

If t ∈ [nd(s, t), b], we take the hop to nd(s, t). If t = b, our packet uses a shortest path.
Assume that t lies between nd(s, t) and b. Then, b is `-reflex and we can apply Lemma 3.3
to see that any shortest path from s to t includes nd(s, t) or b. But since d(s, b) = 2, our
data packet routes along a shortest path. If t ∈ [cv(b), fd(s, t)], we take the hop to fd(s, t).
The argument is similar. The following theorem summarizes our discussion.

I Theorem 4.1. Let P be a histogram with n vertices. There is a routing scheme for G(P)
with label size 2 · dlogne, routing table size 1, and stretch 1.

5 Conclusion

We gave the first routing scheme for the hop-distance in simple polygons. In particular, we
have a routing scheme for histograms with label size 2 · dlogne, routing table size 1, and
stretch 1. As we show in the full version, our method also extends to more general double
histograms. The following open problems arise naturally. First, it would be interesting to
see how the routing scheme extends to monotone polygons as well as arbitrary orthogonal
polygons, assuming r-visibility. After that, it will be interesting to take a closer look at (or-
thogonal) polygons assuming the more common notion of l-visibility (line-visibility). Here,
the structure of visibility—even in simple histograms—is much more complicated and we
can no longer assume integer coordinates.

References
1 Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes

with affine stretch. In Proc. 25th Int. Symp. Dist. Comp. (DISC), pages 404–415, 2011.
2 Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved routing

strategies with succinct tables. J. Algorithms, 11(3):307–341, 1990.
3 Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André van

Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber, and Max

M.-K. Chiu et al. 18:7

Willert. Routing in polygonal domains. In Proc. 28th Annu. Internat. Sympos. Algorithms
Comput. (ISAAC), pages 10:1–10:13, 2017.

4 Andreas Bärtschi. Coloring variations of the art gallery problem. Master’s thesis, Depart-
ment of Mathematics, ETH Zürich, 2011.

5 Andreas Bärtschi, Subir Kumar Ghosh, Matúš Mihalák, Thomas Tschager, and Peter Wid-
mayer. Improved bounds for the conflict-free chromatic art gallery problem. In Proc. 30th
Annu. Sympos. Comput. Geom. (SoCG), page 144, 2014.

6 Andreas Bärtschi and Subhash Suri. Conflict-free chromatic art gallery coverage. Algorith-
mica, 68(1):265–283, 2014.

7 Pritam Bhattacharya, Subir Kumar Ghosh, and Sudebkumar Pal. Constant approximation
algorithms for guarding simple polygons using vertex guards. arXiv:1712.05492, 2017.

8 Pritam Bhattacharya, Subir Kumar Ghosh, and Bodhayan Roy. Approximability of guard-
ing weak visibility polygons. Discrete Applied Mathematics, 228:109–129, 2017.

9 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal
local routing on Delaunay triangulations defined by empty equilateral triangles. SIAM J.
Comput., 44(6):1626 – 1649, 2015.

10 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competitive
local routing with constraints. J. of Computational Geometry, 8(1):125–152, 2017.

11 Shiri Chechik. Compact routing schemes with improved stretch. In Proc. ACM Symp.
Princ. Dist. Comp. (PODC), pages 33–41, 2013.

12 Lenore J Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–183,
2001.

13 Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low stretch
factor. J. Algorithms, 46(2):97–114, 2003.

14 Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Proc. 28th Internat. Colloq.
Automata Lang. Program. (ICALP), pages 757–772, 2001.

15 Silvia Giordano and Ivan Stojmenovic. Position based routing algorithms for ad hoc net-
works: A taxonomy. In Ad hoc wireless networking, pages 103–136. Springer-Verlag, 2004.

16 Frank Hoffmann. On the rectilinear art gallery problem. In Proc. 17th Internat. Colloq.
Automata Lang. Program. (ICALP), pages 717–728, 1990.

17 Frank Hoffmann, Klaus Kriegel, Subhash Suri, Kevin Verbeek, and Max Willert. Tight
bounds for conflict-free chromatic guarding of orthogonal art galleries. Comput. Geom.
Theory Appl., 2018.

18 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in unit disk
graphs. Algorithmica, 80(3):830–848, 2018.

19 Goran Konjevod, Andréa W. Richa, and Donglin Xia. Scale-free compact routing schemes
in networks of low doubling dimension. ACM Trans. Algorithms, 12(3):27:1–27:29, 2016.

20 Rajeev Motwani, Arvind Raghunathan, and Huzur Saran. Covering orthogonal polygons
with star polygons: The perfect graph approach. J. Comput. System Sci., 40(1):19–48,
1990.

21 Joseph O’Rourke. Art gallery theorems and algorithms. Oxford University Press, 1987.
22 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J.

ACM, 36(3):510–530, 1989.
23 Liam Roditty and Roei Tov. New routing techniques and their applications. In Proc. ACM

Symp. Princ. Dist. Comp. (PODC), pages 23–32, 2015.
24 Liam Roditty and Roei Tov. Close to linear space routing schemes. Distributed Computing,

29(1):65–74, 2016.
25 Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks. The Com-

puter Journal, 28(1):5–8, 1985.

EuroCG’19

18:8 Routing in Histograms

26 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM, 51(6):993–1024, 2004.

27 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. 13th ACM Symp. Par.
Algo. Arch. (SPAA), pages 1–10, 2001.

28 Chris Worman and J Mark Keil. Polygon decomposition and the orthogonal art gallery
problem. Internat. J. Comput. Geom. Appl., 17(02):105–138, 2007.

29 Chenyu Yan, Yang Xiang, and Feodor F Dragan. Compact and low delay routing labeling
scheme for unit disk graphs. Comput. Geom. Theory Appl., 45(7):305–325, 2012.

Peeling Digital Potatoes
Loïc Crombez1, Guilherme D. da Fonseca1, and Yan Gérard1

1 Université Clermont Auvergne and LIMOS, Clermont-Ferrand, France

Abstract
The potato-peeling problem (also known as convex skull) is a fundamental computational geom-
etry problem and the fastest algorithm to date runs in O(n8) time for a polygon with n vertices
that may have holes. In this paper, we consider a digital version of the problem. A set K ⊂ Z2 is
digital convex if conv(K)∩Z2 = K, where conv(K) denotes the convex hull of K. Given a set S
of n lattice points, we present polynomial time algorithms for the problems of finding the largest
digital convex subset K of S (digital potato-peeling problem) and the largest union of two digital
convex subsets of S. The two algorithms take roughly O(n3) and O(n9) time, respectively. We
also show that those algorithms provide an approximation to the continuous versions.

1 Introduction

The potato-peeling problem [16] (also known as convex skull [23]) consists of finding the
convex polygon of maximum area that is contained inside a given polygon (possibly with
holes) with n vertices. The fastest exact algorithm known takes O(n7) time without holes
and O(n8) if there are holes [9]. The problem is arguably the simplest geometric problem
for which the fastest exact algorithm known is a polynomial of high degree and this high
complexity motivated the study of approximation algorithms [8, 17]. Multiple variations
of the problem have been considered, including triangle-mesh [1] and orthogonal [14, 24]
versions. In this paper, we consider a digital geometry version of the problem.

The digital potato-peeling problem is defined as follows and is illustrated in Figure 1(a,b).
I Problem 1 (Digital potato-peeling). Given a set S ⊂ Z2 of n lattice points described by their
coordinates, determine the largest set K ⊆ S that is digital convex (i.e., conv(K)∩Z2 = K),
where largest refers either to the area of conv(K), or |K|.

Heuristics for the digital potato-peeling problem have been presented in [7, 10], but no
exact algorithm. We also consider the question of covering the largest area with two digital
convex subsets. The problem is defined as follows and is illustrated in Figure 1(a,c).

(a) (b) (c)

Figure 1 (a) Input lattice set S. (b) Largest digital convex subset of S (Problem 1). (c) Largest
union of two digital convex subsets of S (Problem 2).

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

19:2 Peeling Digital Potatoes

I Problem 2 (Digital 2-potato peeling). Given a set S ⊂ Z2 of n lattice points described by
their coordinates, determine the largest set K = K1 ∪ K2 ⊆ S such that K1 and K2 are
both digital convex, where largest refers to the area of conv(K1) ∪ conv(K2).

A related continuous problem consists of completely covering a polygon by a small num-
ber of convex polygons inside of it. O’Rourke showed that covering a polygon with the
minimum number of convex polygons is decidable [18, 19], but the problem has been shown
to be NP-Hard with or without holes [13, 20]. Shermer [22] presents a linear time algorithm
for the case of two convex polygons and Belleville [5] provides a linear time algorithm for
three. We are not aware of any previous results on finding a fixed (non-unit) number of
convex polygons inside a given polygon and maximizing the area covered.

Our results
We present polynomial time algorithms to solve each of these two problems. In Section 2,
we show how to solve the digital potato-peeling problem in O(n3 log r) time, where r is
the diameter of the input S. Our algorithm builds the convex polygon conv(K) through
its triangulation, using a triangle range counting data structure [11] together with Pick’s
theorem [21] to test the validity of each triangle. The O(log r) factor comes from the
gcd computation to apply Pick’s theorem. Our algorithm makes use of the following two
properties: (i) it is possible to triangulate K using only triangles that share a common
bottom-most vertex v and (ii) if the polygons lying on both sides of one such triangle
(including the triangle itself) are convex, then the whole polygon is convex.

These two properties are no longer valid for Problem 2, in which the solution conv(K1)∪
conv(K2) is the union of two convex polygons. Also, since convex shapes are not pseudo-
disks (the boundaries may cross an arbitrarily large number of times), separating the input
with a constant number of lines is not an option. Instead of property (i), our approach
uses the fact that the union of two (intersecting) convex polygons can be triangulated with
triangles that share a common vertex ρ (that may not be a vertex of either convex polygon).
Since ρ may not have integer coordinates, we can no longer use Pick’s theorem, and resort
to the formulas from Beck and Robins [4] or the algorithm from Barvinok [3] to count the
lattice points inside each triangle in O(polylog r) time.

Furthermore, to circumvent the fact that the solution no longer obeys property (ii),
we use a directed acyclic graph (DAG) that encapsulates the orientation of the edges of
both convex polygons. For those reasons, the running time of our algorithm for Problem 2
increases to O(n9 + n6 polylog r). The corresponding algorithm is described in Section 3.

2 Digital Potato Peeling

In this section, we present an algorithm to solve the digital potato-peeling problem in
O(n3 log r) time, where n is the number of input points and r is the diameter of the set.

A digital convex set K can be described by its convex hull conv(K) whose vertices are
lattice points. Instead of explicitly buildingK, our algorithm constructs conv(K). Note that
it is always possible to triangulate a convex polygon with k vertices using k−2 triangles that
share a bottom-most vertex ρ (fan triangulation). We first consider the rooted variation of
the digital potato-peeling problem, where the point ρ is given as part of the input.

I Problem 3 (Rooted digital potato peeling). Given a set S ⊂ Z2 of n lattice points given by
their coordinates and a point ρ ∈ S, determine the largest set K ⊆ S that is digital convex
and has ρ as the right-most point at the bottom-most row of K.

L. Crombez, G. D. da Fonseca, and Y. Gérard 19:3

(a) (b)

Figure 2 (a) The two optimal sets intersect. (b) The two optimal sets are disjoint and there is
a supporting separating line.

Without loss of generality, we assume that all points in S lie either on the same row or
on a row above ρ and all points on the same row of ρ are to the left of ρ. We refer to ρ as
the root. Let p1, . . . , pn denote the points of S sorted clockwise around ρ, starting from left.

Let 4i,j denote the (closed) triangle whose vertices are ρ, pi, pj with i < j. We say that
a triangle 4i,j is valid if 4i,j ∩ Z2 = 4i,j ∩ S. To algorithmically verify that 4i,j is valid,
we compare |4i,j ∩ S| and |4i,j ∩ Z2| using Pick’s theorem and a triangle range counting
query [11]. The total time to test the validity of a triangle (after preprocessing) is O(log r).

The algorithm incrementally builds the fan triangulation of conv(K) by appending valid
triangles from left to right using dynamic programming.

For all pi, pj ∈ S with i < j and such that 4i,j is valid, the algorithm determines the
largest convex polygon that has 4i,j as the right-most triangle. We refer to this convex
polygon as Ci,j . The key property to efficiently compute Ci,j is

Ci,j = 4i,j ∪max
h

Ch,i, where h < i is such that 4i,j ∪4h,i is convex.

For a given i, by sorting all Ch,i with h < i according to their size and sorting all 4i,j

according to the position of pj around pi, all the Ci,j can be computed in O(n logn) time
using the aforementioned property.Considering all n values of i and the initial sorting, the
total time to solve Problem 3 is O(n2 log r). In order to solve Problem 1, we test all n
possible values of ρ ∈ S, proving the following theorem.

I Theorem 1. There exists an algorithm to solve Problem 1 (digital potato peeling) in
O(n3 log r) time, where n is the number of input points and r is the diameter of the input.

3 Digital 2-Potato Peeling

In this section, we show how to find two digital convex sets K1,K2, maximizing the area of
conv(K1) ∪ conv(K2). Either the two convex hulls intersect or they do not (Figure 2). We
treat those two cases separately and the solution to Problem 2 is the largest among both.
Hence, we consider the two following variations of the 2-potato-peeling problem.
I Problem 4 (Disjoint 2-potato peeling). Given a set S ⊂ Z2 of n lattice points given by
their coordinates, determine the largest two digital convex sets K1 ∪ K2 ⊆ S such that
conv(K1) ∩ conv(K2) = ∅.
I Problem 5 (Intersecting 2-potato peeling). Given a set S ⊂ Z2 of n lattice points given
by their coordinates, determine the largest union of two digital convex sets K1 ∪ K2 ⊆ S

such that conv(K1) ∩ conv(K2) 6= ∅. In this case, largest means the maximum area of
conv(K1) ∪ conv(K2).

EuroCG’19

19:4 Peeling Digital Potatoes

no points

e1
e2

p1

pb

pa

pn

(a) (b)

ρρ

H1

H2

conv(K1)

conv(K2)

Figure 3 (a) A fan triangulation of two intersecting convex polygons from a point ρ. (b)
Definitions used to solve Problem 6.

3.1 Disjoint Convex Polygons
It is well known that any two disjoint convex shapes can be separated by a straight line.
Moreover two convex polygons can be separated by a supporting line of an edge of one of
the convex polygons that contains no vertex of the other convex polygon (Figure 2(b)).

For each ordered pair of distinct points p1, p2 ∈ S, we define two subsets S1, S2. The
set S1 contains the points on the line p1, p2 or to the left of it (according to the direction
p2 − p1). The set S2 contains the remaining points of S.

For each pair of sets S1, S2, we independently solve Problem 1 for S1 and S2. Since there
are O(n2) pairs and each pair takes O(n3 log r) time, we solve Problem 4 in O(n5 log r) time.

3.2 Intersecting Convex Polygons
The more interesting case is when the two convex polygons intersect (Problem 5). Note
that it is possible to triangulate the union of two convex polygons that share a common
boundary point ρ using a fan triangulation around ρ (Figure 3). Hence we consider the
following rooted version of the problem.

I Problem 6 (Rooted 2-potato peeling). Given a set S ⊂ Z2 of n lattice points represented
by their coordinates and two edges e1, e2 ∈ S2 that cross at a point ρ, determine the largest
union of two digital convex sets K1,K2 ⊆ S such that e1 is an edge of conv(K1) and e2 is
an edge of conv(K2).

Let ρ be the intersection point of e1, e2. To solve Problem 6 we encode the problem into
a DAG (V,E) whose longest path corresponds to the solution. To avoid confusion, we use
the terms node and arc for the DAG and keep the terms vertex and edge for the polygons.

Let T be the set of valid triangles with two vertices from S and ρ as the remaining
vertex. The nodes V = T 2 ∪ {v0} are ordered pairs of valid triangles and a starting node
v0. The number of nodes is |V | = O(n4).

Each node (41,42) ∈ V is such that41 (resp. 42) is used to build the fan triangulation
of conv(K1) (resp. conv(K2)). The arcs are defined in a way such that, at each step as we
go through a path of the DAG, we add one triangle either to conv(K1) or to conv(K2). The
arcs enforce the convexity of both conv(K1) and conv(K2). Furthermore, we enforce that
we always append a triangle to the triangulation that is the least advanced of the two (in
clockwise order), unless we have already reached the last triangle of conv(K1). This last
condition allows us to define the arc lengths in a way that it corresponds to the area of the
union of the two convex polygons. Figure 4 illustrates the result of following a path on the
DAG. As there is O(n4) pairs of starting edges and each DAG has O(n5) arcs, the total
running time is roughly O(n9).

L. Crombez, G. D. da Fonseca, and Y. Gérard 19:5

ρ ρ ρ

(a) (b) (c) (d)

ρ

(e)

ρ

(f)

ρ

(g) (h)

ρ ρ

p1

pb

e1
pa

e2

pn

pb

e1 e2

pn

p1

pa
e1e2

Figure 4 Steps of the algorithm from Section 3.2. Figure (a) represents the solution, while
Figures (b) to (h) represent the triangulation obtained at each node of a path. The newly covered
area that is assigned as the length of the corresponding arc is marked. In (b), we have the initial
pair of edges e1, e2 which corresponds to the starting vertex. A first pair of triangles with vertices
p1 and pa is obtained in (c). From (c) to (d) and from (f) to (g), the triangle 41 (less advanced
than triangle 42) advances. From (d) to (e) and from (e) to (f), triangle 42 advances. In (g), the
triangle 41 has reached the final node pb. 42 advances until it reaches the end.

4 Conclusion and Open Problems

The (continuous) potato peeling problem is a very peculiar problem in computational geom-
etry. The fastest algorithms known have running times that are polynomials of substantially
high degree. Also, we are not aware of any algorithms (or difficulty results) for the natural
extensions to higher dimensions (even 3d) or to a fixed number of convex bodies.

In this paper, we focused on a digital version of the problem. Many problems in the
intersection of digital, convex, and computational geometry remain open. Our study falls in
the following framework of problems, all of which receive as input a set of n lattice points
S ⊂ Zd and are based on a fixed parameter k ≥ 1.

1. Is S the union of at most k digital convex sets?
2. What is the smallest superset of S that is the union of at most k digital convex sets?
3. What is the largest subset S that is the union of at most k digital convex sets?

In [12], the authors considered the first problem for k = 1 , presenting polynomial time
solutions (which may still leave room for major improvements for d > 3). We are not aware
of any previous solutions for k > 1. In contrast, the continuous version of the problem is
well studied. The case of k = 1 can be solved easily by a convex hull computation or by
linear programming. Polynomial algorithms are known for d = 2 and k ≤ 3 [5, 22], as well
as for d = 3 and k ≤ 2 [6]. The problem is already NP-complete for d = k = 3 [6]. Hence,
the continuous version remains open only for d = 2 and fixed k > 3.

It is easy to obtain polynomial time algorithms for the second problem when k = 1,
since the solution consists of all points in the convex hull of S. The continuous version for
d = k = 2 can be solved in O(n4 logn) time [2]. Also, the orthogonal version of the problem
is well studied (see for example [15]). We know of no results for the digital version.

The third problem for d > 2 or k > 2 remains open. The DAG approach that we used for
d = 2 is unlikely to generalize to higher dimensions, since there is no longer a single order by
which to transverse the boundary of a convex polytope. Surprisingly, even the continuous
version seems to be unresolved for d > 2 or k ≥ 2.

EuroCG’19

19:6 Peeling Digital Potatoes

References
1 Boris Aronov, Marc Van Kreveld, Maarten Löffler, and Rodrigo I. Silveira. Peeling meshed

potatoes. Algorithmica, 60(2):349–367, 2011.
2 Sang Won Bae, Hwan-Gue Cho, William Evans, Noushin Saeedi, and Chan-Su Shin. Cov-

ering points with convex sets of minimum size. Theoretical Computer Science, 718:14–23,
2018.

3 Alexander I. Barvinok. A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed. Mathematics of Operations Research, 19(4):769–779,
1994.

4 Matthias Beck and Sinai Robins. Explicit and efficient formulas for the lattice point count in
rational polygons using Dedekind-Rademacher sums. Discrete & Computational Geometry,
27(4):443–459, Jan 2002.

5 Patrice Belleville. On restricted boundary covers and convex three-covers. In 5th Canadian
Conference on Computational Geometry (CCCG), pages 467–472, 1993.

6 Patrice Belleville. Convex covers in higher dimensions. In 7th Canadian Conference on
Computional Geometry (CCCG), pages 145–150, 1995.

7 Gunilla Borgefors and Robin Strand. An approximation of the maximal inscribed convex
set of a digital object. In 13th International Conference on Image Analysis and Processing
(ICIAP), pages 438–445, 2005.

8 Sergio Cabello, Josef Cibulka, Jan Kyncl, Maria Saumell, and Pavel Valtr. Peeling potatoes
near-optimally in near-linear time. SIAM Journal on Computing, 46(5):1574–1602, 2017.

9 Jyun S. Chang and Chee K. Yap. A polynomial solution for the potato-peeling problem.
Discrete & Computational Geometry, 1(2):155–182, 1986.

10 Jean-Marc Chassery and David Coeurjolly. Optimal shape and inclusion: open problems.
In Mathematical Morphology: 40 Years On, International Symposium on Mathematical
Morphology, Computational Imaging and Vision. Springer Verlag, 2005.

11 Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Algorithmica, 8(1-6):407–429, 1992.

12 Loïc Crombez, Guilherme D. da Fonseca, and Yan Gérard. Efficient algorithms to test
digital convexity. In 21st International Conference on Discrete Geometry for Computer
Imagery (DGCI), 2019. URL: http://fc.isima.fr/~fonseca/digitalconvexity.pdf.

13 Joseph Culberson and Robert A. Reckhow. Covering polygons is hard. Journal of Algo-
rithms, pages 17:2–44, 1994.

14 Mousumi Dutt, Arindam Biswas, Partha Bhowmick, and Bhargab B. Bhattacharya. On
finding an orthogonal convex skull of a digital object. International Journal of Imaging
Systems and Technology, 21(1):14–27, 2011.

15 Cem Evrendilek, Burkay Genç, and Brahim Hnich. Covering points with minimum/maxi-
mum area orthogonally convex polygons. Computational Geometry, 54:32–44, 2016.

16 Jacob E. Goodman. On the largest convex polygon contained in a non-convex n-gon, or
how to peel a potato. Geometriae Dedicata, 11(1):99–106, 1981.

17 Olaf Hall-Holt, Matthew J. Katz, Piyush Kumar, Joseph S.B. Mitchell, and Arik Sityon.
Finding large sticks and potatoes in polygons. In 17th annual ACM-SIAM symposium on
Discrete algorithm (SODA), pages 474–483, 2006.

18 Joseph O’Rourke. The complexity of computing minimum convex covers for polygons. In
20th Allerton Conference on Communication, Control, and Computing, pages 75–84, 1982.

19 Joseph O’Rourke. The decidability of covering by convex polygons. Technical Report
JHU-EECS 82-4, Johns Hopking University, 1982.

20 Joseph O’Rourke. Some NP-hard polygon decomposition problems. IEEE Transactions on
Information Theory, IT-30, pages 181–190, 1983.

http://fc.isima.fr/~fonseca/digitalconvexity.pdf

L. Crombez, G. D. da Fonseca, and Y. Gérard 19:7

21 Georg Pick. Geometrisches zur zahlenlehre. Sitzungsberichte des Deutschen
Naturwissenschaftlich-Medicinischen Vereines für Böhmen "Lotos" in Prag., v.47-48 1899-
1900, 1899.

22 Thomas C. Shermer. On recognizing unions of two convex polygons and related problems.
Pattern Recognition Letters , 14(9), pages 737–745, 1993.

23 Tony C. Woo. The convex skull problem. Technical report, Department of Industrial and
Operations Engineering, University of Michigan, 1986.

24 Derick Wood and Chee K. Yap. The orthogonal convex skull problem. Discrete & Com-
putational Geometry, 3(4):349–365, 1988.

EuroCG’19

Consistent Digital Curved Rays
Jinhee Chun1, Kenya Kikuchi1, and Takeshi Tokuyama1

1 GSIS Tohoku University
jinhee/kikuchi/tokuyama@dais.is.tohoku.ac.jp

Abstract
Representing a family of geometric objects in the digital world where each object is represented
by a set of pixels is a basic problem in graphics and computational geometry. One important
criterion is the consistency, where the intersection pattern of the objects should be consistent
with axioms of the Euclidean geometry, e.g., the intersection of two lines should be a single
connected component. Previously, the set of linear rays and segments has been considered. In
this paper, we extend this theory to families of digital curves going through the origin.

1 Introduction

In geometric computation, we often experience that finite-precision computation causes
geometric inconsistency. This is because the representation of geometric objects in the pixel
world does not always satisfy geometric properties such as Euclidean axioms. Figure 1 shows
that a naive definition of digital lines may cause inconsistency, where the intersection of a
pair of digital lines has more than one connected components.

Thus, it is important to seek for a digital represention of a family of geometric objects
such that they satisfy a digital version of geometric properties. We propose the consistent
digital curved rays in this paper, generalising consistent digital rays for straight lines [1, 4].

We consider the triangular region ∆ defined by {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ n} in the
plane, and the integer grid G = {(i, j) : i, j ∈ {0, 1, . . . , n}, i+ j ≤ n} in the region. We can
also handle a square region, but use ∆ for ease of description of our method.

Each element of G is called a pixel (usually, a pixel is a square, but we represent it by its
lower-left-corner grid point in this paper). We say a pixel is a boundary pixel if it lies on
x+ y = n. We consider an undirected graph structure under the four-neighbor topology such
that (i, j) ∈ G is connected to (k, `) ∈ G if (k, `) ∈ {(i− 1, j), (i, j − 1), (i+ 1, j), (i, j + 1)}.

A digital ray S(p) is a path in G from the origin o to p, where S(o) = {o} is a zero-length
path. A family {S(p) : p ∈ G} of digital rays uniquely assinged to each pixel is called
consistent if the following three conditions hold:

1. If q ∈ S(p), then S(q) ⊆ S(p).
2. For each S(p), there is a (not necessarily unique) boundary pixel r such that S(p) ⊆ S(r).
3. Each S(p) is a shortest path from o to p in G.

Figure 1 Inconsistency of intersection (green pixels) of two digital line segments

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 Consistent Digital Curved Rays

Figure 2 Consistent digital rays simulating linear rays (left) and parabolic rays(right)

The third condition is sometimes omitted in the literature, since it is not suitable for
other types of grids such as a triangular grid, but we include it in this paper. The consistency
implies that the union of paths S(p) form a spanning tree T in G such that all leaves are
boundary pixels as shown in Figure 2, and accordingly the intersection of two digital rays
consists of single connected component. The tree T and also the family of digital rays are
called CDR (Consistent Digital Rays).

Previously, the theory has been considered only for digital straightness [3]. Lubby [4] first
gave a construction of CDR so that each S(p) simulates a linear ray within Hausdorff distance
O(logn), and showed that it is asymptotically tight. The construction was re-discovered
by Chun et al.[1] to give further investigation, and Christ et al.[2] gave a construction of
consistent digital line segments where the lines need not go through the origin.

We will extend the theory to families of curves with the same topology as linear rays.
A family F of nondecreasing curves in ∆ is called ray family if each curve goes through

the origin o, and for each point (x, y) ∈ ∆ \ {o} there exists a unique curve of F going
through it. We call an element of F a ray. Accordingly, each pair of rays intersect each other
only at the origin. A typical example is the family of parabolas y = ax2 for a ≥ 0.

We give a construction method of CDR TF in G such that the (unique) ray of F connecting
o and a pixel p is simulated by the path S(p) well, and show an O(

√
n logn) bound of the

Hausdorff distance for several ray families. Although the theoretical bound is much worse
than the Θ(logn) bound for the linear ray, it is the first nontrivial result for curved rays as
far as the authors know, and experimentally the construction works better.

2 Consistent digital rays and their properties

Let us consider a CDR T of G. The set of pixels of G on the diagonal x + y = k for
k = 0, 1, . . . , n is called the level set L(k). We call an edge from L(k − 1) towards L(k) an
incoming edge to (resp. outgoing edge from) a node in the level L(k) (resp. L(k − 1)). The
following observation was given by Chun et al.[1](see Figure 3 for its illustration).

I Lemma 2.1. In the level set L(k) for k ≥ 1, there exists a real value 0 < x(k) ≤ k such
that incoming edge of T to each node whose x-value is smaller than (resp. larger than or
equal to) x(k) is vertical (resp. horizontal). Accordingly, there exists a unique branching node
of T in L(k − 1) (colored yellow in Figure 3).

Thus, a CDR is completely characterized by the integer sequence dx(1)e, dx(2)e, . . . , dx(n)e,
where 1 ≤ x(i) ≤ i. The following lemma is easy to verify.

I Lemma 2.2. A (unique) CDR exists for each of (n− 1)! possible sequences as above.

Chun, Kikuchi, Tokuyama 20:3

Figure 3 The branching nodes (colored yellow) and partition of incoming edges to the 5th level.

2.1 CDR for linear rays revisited

The CDR of linear rays given by Chun et al.[1] can be obtained by selecting x(k) as uniformly
as possible from [1, k] by using a low-discreapancy pseudorandom sequence.

Let us consider the binary representation k =
∑∞

i=0 a(i)2i of a natural number k. The van
der Courput sequence (see [5]) is the sequence defined by a function V (k) =

∑∞
i=1 a(i)2−i

from natural numbers to [0, 1]. We remove V (0) = 0 from our consideration so that the
range becomes (0, 1]. For example, for 6 = 2 + 4 = 1102, V (6) = 0.112 = 1

2 + 1
4 = 3

4 , where a
sequence with a subscript 2 means the 2-adic representation of numbers.

The van der Courput sequence is known to be a low discrepancy sequence as shown in
the following lemma (see e.g. [5]).

I Lemma 2.3. Consider the set of points S = {k, V (k) : k = 0, 1, 2, . . . , n} in the region
X = [0, n] × [0, 1]. Then, for any axis parallel rectangle R in X, the difference from the
number of points in S ∩R and the area of R is O(logn).

In particular, for each m < n, the set {V (i) : m ≤ i 6= n} gives an almost uniform
distribution on [0, 1] deterministically. We can set x(k) = kV (k) to obtain a CDR that
approximates the linear rays emanating from the origin with O(logn) distance bound. In
order to generalize to the curved rays, we give the following interpretation.

Consider a line y = ax intersecting x+ y = k at q = (x0, k − x0). By definition, its slope
is a, which is k−x0

x0
. Naturally, we want to draw the line in the neighborhood of q with a

segment of slope k−x0
x0

, but we need to approximate it with a grid path. Therefore, ideally the
ratio of vertical edges to the horizontal edges in the paths should be k−x0

x0
in a neighborhood

of q.
By the definition of x(k), the edge incoming to q is vertical if and only if q lies on the

left of x(k). If we take x(k) = kV (k), the probability1 that q is to the left of x(k) is x0
k ,

since V (k) gives a uniform distribution. Thus, the incoming edge becomes horizontal and
vertical with probabilities x0

k and k−x0
k , respectively. Hence, the ratio between them is k−x0

x0
as desired.

We would like to extend this argument for other families of curves.

1 Since the process is deterministic, we should say “ratio" rigorously, but we use the term “probability"
for convenience’ sake.

EuroCG’19

20:4 Consistent Digital Curved Rays

Figure 4 CDR Tpara. Green nodes are branching nodes. Red path gives a digital parabolic ray.

3 CDR for families of curves

3.1 CDR for a family of parabolas
To improve readability, we start with the ray family y = ax2 (a ≥ 0) of parabolas. We
include the y-axis x = 0 in the family (this convention is applied to all other cases).

Consider a parabola y = ax2 intersecting the level x+y = k at q = (x0, k−x0), The slope
of tangent at q is 2ax0, which is 2(k−x0)

x0
. In order to approximate the parabola nicely, the

tangent segment in the neighborhood of q should be approximated by a path that contains
the horizontal edge with probability x0

2k−x0
.

Thus, we should select x(k) to be located on the left of q with probability x0
2k−x0

. If we
set x0 = kt, this probability equals t

2−t . We consider a monotonically increasing function
F in the range [0, 1] and set x(k) = kF (V (k)). The probability that x0 = kt < x(k) is the
probability that F−1(t) < V (k) from the monotonicity of F . Because of uniformity of V (k),
this probability equals F−1(t) (ignoring the small discrepancy).

Then, the probability (over k) that q is on the left of x(k) is same as t = x(k)/k ≤ F (V (k)).
This probability is same as the probability that F−1(t) ≤ V (k) from the monotonicity of
F . Because of uniformity of V (k), this means F−1(t) = t

2−t to meet our requirement, and
F (z) = 2z

z+1 . Thus, we have x(k) = 2kV (k)
V (k)+1 to define a CDR Tpara illustrated in Figure 4.

The following theorem ensures that Tpara approximate parabola rays well theoretically,
and we will also demonstrate it works even better by implementation later.

I Theorem 3.1. For each node p = (i, j) ∈ G, the Hausdorff distance between the parabola
ray going through p and the path S(p) from p towards the origin in Tpara is O(

√
n logn).

The theorem is derived from the following lemma, which is obtained from Lemma 2.3.
We omit proofs in this version.

I Lemma 3.2. Consider the set of points S = {(k, V (k)) : k = 0, 1, 2, . . . , n}. Let f(x) be
a nonincreasing or nondecreasing continuous function from [0, n] to [0, 1], and let QI(f) =
{(x, y) : 0 ≤ y ≤ f(x), x ∈ I} for any given interval I ⊂ [0, 1]. Then, the discrepancy (i.e.,
difference from the number of points in S ∩ QI(f) and the area A(QI(f))) is bounded by
c
√
n logn for a suitable constant c.

Note that for the discrepancy discussed in the above lemma, an Ω(
√
n) lower bound is

known even for a linear function [5].

Chun, Kikuchi, Tokuyama 20:5

3.2 Homogeneous polynomials
Le us consider the family Fj of curves defined by y = fa(x) = axj for a ≥ 0. Here, the
slope of the tangent of a curve at (x, y) is jaxj−1, which is jy/x. Thus, analogously to the
parabola case, we have F−1(t) = t

j−(j−1)t and F (z) = jz
1+(j−1)z . We set x(k) = jkV (k)

(j−1)V (k)+1
for k = 1, 2, . . . , n to define a CDR TFj

. The following is obtained analogously to the parabola
case.

I Theorem 3.3. The path from p to the origin o in the CDR TFj
approximates the curve in

Fj going through p and o with an O(
√
n logn) distance bound.

3.3 Framework for a family of constant-multiplied curves
More generally, let us consider a nondecreasing differentiable function y = f(x) for x ∈ [0, n]
such that f(0) = 0 and f(x) > 0 for x > 0. We define the family F = {Ca : a ≥ 0} of curves,
where Ca is defined by y = af(x).

If Ca goes through (x0, y0), then a = y0
f(x0) . The slope of the curve Ca at (x0, y0) is

af ′(x0), which is (eliminating a) f ′(x0)
f(x0) (y0). We consider the slope T (x, k) = f ′(x)

f(x) (k − x)
along the diagonal x+ y = k for each k. We assume that it is monotonically decreasing in x
for each fixed k.

Thus, we want to control so that the probability that the edge incoming to a pixel
(x, k − x) in L(k) is horizontal with probability 1

1+T (x,k) .
We consider a F such that x(k) = kF (V (k)) so that (x, k − x) becomes horizontal with

probability 1
1+T (x,k) . Because of uniformity of V (k), we set F−1(t) = 1

1+T (kt,k) . Note that we
can show that F is monotone and the above argument holds. Although the explicit form of
F might not be obtained, we can apply binary search to compute F (z) for a given z utilizing
the monotonicity. Thus, we can compute x(k) = kF (V (k)) within the pixel precision in
O(logn) time.

3.3.1 Sigmoid curves and sine curves
Let Fsig = {aσ(x) : 0 ≤ a}, where σ(x) = 1

1+e−x − 1
2 is the shifted sigmoid function.

The curves y = aσ(x) satisfy our conditions, and we have a CDR with distance bound
O(
√
n logn).

The sine curve y = sin(x) is not monotone, but we can define ˜sin(x) by ˜sin(x) = 0 for
x < 0, ˜sin(x) = sin x for 0 ≤ x ≤ π/2 and ˜sin(x) = 1 for x > π/2. The curve y = ˜sin(x) is
monotonically nondecreasing and differentiable, and we can apply our CDR construction for
the family of curves y = a ˜sin(x) for a ≥ 0.

The family of logarithmic functions y = a log(x+ 1) can be also similarly handled.
The O(

√
n logn) distance bound follows analogously to the parabola case for each family.

Details are omitted in this version.
Figure 5 illustates CDR of families discussed above.

4 Experimental result and conclusion

For each grid width n = 2m up to n = 214, the worst-case Hausdorff distance between
parabolas and digital rays in Tpara is given in Figure 5, where it is about 12 for n = 214.

The experimental result suggests that the distance bound could be polylogarithmic, and
our O(

√
n logn) bound seems to be loose, although currently the lower bound mentioned

for Lemma 3.2 prevents us to improve it beyond
√
n. On the other hand, Figure 6 suggests

EuroCG’19

20:6 Consistent Digital Curved Rays

Figure 5 CDRs for (left to right) y = ax3, y = a ˜sinx, y = aσ(x), and y = a log(x+ 1). Green
nodes are branching nodes. Each red path goes to the center boundary node.

the distance bound tends to be slightly larger than O(logn) for this construction, and
investigation on both lower and upper bounds remains an interesting open problem. Another
interesting problem is to find construction of consistent digital curves removing the ray
condition. For example, it is curious to handle the set of all axis parallel parabolas.
Acknowledgement This work is supported by JSPS Kakenhi 17K19954 and 18H05291.

Figure 6 The largest distance from parabola ray and path in Tpara.

References
1 J. Chun, M. Korman, M. Nöllenburg, T. Tokuyama, Consistent Digital Rays, Discrete &

Computational Geometry 42-3 (2009) pp.359-378.

2 T. Christ, D. Pálvölgyi, M. Stojaković, Consistent Digital Line Segment, Discrete & Com-
putational Geometry 47-4 (2012), pp. 691-710.

3 R. Klette, A. Rosenfeld, Digital straightness – a review Discrete Applied Math. 139 (2004),
197-230.

4 M.G.Lubby, Grid geometries which preserve properties of euclidean geometry: A study
of graphics line drawing algorithms. In NATO Conference on Graphics/CAD, pages 397-
432,1987.

5 J. Matousěk, Geometric Discrepancy, Springer Verlag 1991.

A Note on Universal Point Sets for Planar Graphs∗

Manfred Scheucher1, Hendrik Schrezenmaier1, and Raphael
Steiner1

1 Institut für Mathematik, Technische Universität Berlin, Germany
{scheucher,schrezen,steiner}@math.tu-berlin.de

Abstract
We investigate which planar point sets allow simultaneous straight-line embeddings of all planar
graphs on a fixed number of vertices. We first show that at least (1.293 − o(1))n points are
required to find a straight-line drawing of each n-vertex planar graph (vertices are drawn as the
given points); this improves the previous best constant 1.235 by Kurowski (2004).

Our second main result is based on exhaustive computer search: We show that no set of 11
points exists, on which all planar 11-vertex graphs can be simultaneously drawn plane straight-
line. This strengthens the result by Cardinal, Hoffmann, and Kusters (2015), that all planar
graphs on n ≤ 10 vertices can be simultaneously drawn on particular “universal” sets of n points
while there are no universal sets of size n ≥ 15. Moreover, we provide a set of 23 planar 11-vertex
graphs which cannot be simultaneously drawn on any set of 11 points. This, in fact, is another
step towards a (negative) answer of the question, whether every two planar graphs can be drawn
simultaneously – a question from Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov,
Lubiw, and Mitchell (2007).

1 Introduction

A point set S in the Euclidean plane is called n-universal for a family G of planar n-vertex
graphs if every graph G from G admits a plane straight-line embedding such that the vertices
are drawn as points from S. A point set, which is n-universal for the family of all planar
graphs, is simply called n-universal. We denote by fp(n) the size of a minimal n-universal
set (for planar graphs), and by fs(n) the size of a minimal n-universal set for stacked
triangulations, where stacked triangulations (a.k.a. planar 3-trees) are defined as follows:

I Definition 1.1 (Stacked Triangulations). Starting from a triangle, one may obtain any
stacked triangulation by repeatedly inserting a new vertex inside a face (including the outer
face) and making it adjacent to all the three vertices contained in the face.

Figures 2 and 3 show examples of stacked triangulations on 11 vertices.

De Fraysseix, Pach, and Pollack [10] showed that every planar n-vertex graph admits a
straight-line embedding on a (2n− 4)× (n− 2) grid – even if the combinatorial embedding
is prescribed. Moreover, the graphs are only embedded on a triangular subset of the grid.
Hence, fp(n) ≤ n2 −O(n). This bound was further improved to the currently best known
bound fp(n) ≤ n2

4 −O(n) [4] (cf. [19, 5]). Also various subclasses of planar graphs have been
studied intensively: Any stacked triangulation on n vertices (with a fixed outer face) can be
drawn on a particular set of fs(n) ≤ O(n3/2 logn) points [13]. The first lower bound on the
size of n-universal sets substantially greater than n was also given by de Fraysseix, Pach,
and Pollack [10], who showed a lower bound of fp(n) ≥ n+ (1− o(1))

√
n. This was further

∗ The full version is available online [18].

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

21:2 A Note On Universal Point Sets for Planar Graphs

improved by Chrobak and Karloff [9], and later on Kurowski [16] obtained the previous best
lower bound of (1.235− o(1))n for fs(n) and thus also fp(n).

Cardinal, Hoffmann, and Kusters [8] showed that n-universal sets of size n exist for
every n ≤ 10, whereas for n ≥ 15 no such set exists – not even for stacked triangulations.
Moreover, they found a collection of 7,393 planar graphs on n = 35 vertices which cannot be
simultaneously drawn straight-line on a common set of 35 points. We call such a collection
of graphs a conflict collection. This was a first big step towards an answer to the question by
Brass and others [6], which can be reformulated as follows:

I Question 1. Is there a conflict collection of size 2?

2 Results

Our first result is the following theorem, which further improves the lower bound on fs(n).
We present the sketch of the proof in Section 3; for a detailed proof, see the full version [18].

I Theorem 2.1. It holds that fs(n) ≥ (α − o(1))n, where α = 1.293 . . . is the unique
real-valued solution of the equation αα

(α−1)α−1 = 2.

In Section 4 we present our second result, which is another step towards a (negative)
answer of Question 1 and strengthens the results from [8]. Its proof is based on exhaustive
computer search.

I Theorem 2.2 (Computer-assisted). There is a conflict collection consisting of 23 stacked
triangulations on 11 vertices. Furthermore, there is no conflict collection consisting of 16
triangulations on 11 vertices.

I Corollary 2.3. There is no 11-universal set of size 11 – even for stacked triangulations.
Hence, fp(11) ≥ fs(11) ≥ 12.

3 Proof of Theorem 2.1

To prove the theorem, we use a refined counting argument based on a construction of a
set of labeled stacked triangulations that was already introduced in [8]. There it was used
to disprove the existence of n-universal sets of n ≥ 15 points for the family of stacked
triangulations.

I Definition 3.1 (Labeled Stacked Triangulations, cf. [8, Section 3]). For every integer n ≥ 4,
we define the family Tn of labeled stacked triangulations on the set of vertices Vn := {v1, ..., vn}
inductively as follows:

(i) T4 consists only of the complete graph K4 with labels v1, . . . , v4.
(ii) If T is a labeled graph in Tn−1 with n ≥ 5, and vivjvk defines a face of T , then the

graph obtained from T by stacking the new vertex vn to vivjvk (i.e., connecting it to
vi, vj , and vk) is a member of Tn.

The following, which is a consequence of Lemmas 1 and 2 in [8], is the basis of the proof
of the new lower bound.

I Corollary 3.2. The following two statements hold:

(i) For any n ≥ 4, Tn contains exactly 2n−4(n− 3)! stacked triangulations.

M. Scheucher, H. Schrezenmaier, and R. Steiner 21:3

(ii) Let P = {p1, . . . , pm} be a set of m ≥ n ≥ 4 labeled points in the plane. Then for any
injection π : Vn → P , there is at most one T ∈ Tn such that the embedding of T , which
maps each vertex vi to the point π(vi), defines a straight-line-embedding of T .

Sketch of Proof for Theorem 2.1. Let n ≥ 4 be arbitrary and m := fs(n) ≥ n. There
exists an n-universal point set P = {p1, . . . , pm} for all stacked triangulations, hence for
every T ∈ Tn there exists a straight-line embedding of T on P , with (injective) vertex-
mapping π : Vn → P . By Corollary 3.2 (ii), we know that no two stacked triangulations
from Tn (each of which has the same vertex set) yield the same injection π. We conclude that

2n−4(n− 3)! = |Tn| ≤
m!

(m− n)! ,

Reformulating this inequality using Stirling’s approximation now yields with β(n) := fs(n)
n

2− o(1) ≤ β(n)β(n)

(β(n)− 1)β(n)−1 .

Consequently, β(n) ≥ (1− o(1))α, where α is the unique real-valued solution to αα

(α−1)α−1 = 2.
This proves fs(n) = n · β(n) ≥ (1− o(1))αn, which is the claim. J

4 Proof of Theorem 2.2 and Corollary 2.3

In the following, we outline the strategy which we have used to find a conflict collection of
23 stacked 11-vertex triangulations. Some details are omitted in this extended abstract but
can be found in the full version [18]. In particular, we there provide detailed descriptions of
all our programs – source codes are available on our supplemental website [17].

It is not hard to see that the embeddability of a given planar graph on a point set
does not depend on the exact positions of the points but only on its order type, which is a
combinatorial encoding of the point set determined by the orientations of triples of points in
the point set. Thus, when testing for universality, it suffices to check embeddability of the
corresponding graphs only on one representative point set for each order type.

4.1 Enumeration of Order Types

The database of all order types of up to n = 11 points was developed by Aurenhammer,
Aichholzer, and Krasser [2, 3] (see also Krasser’s dissertation [15]). The file for all order
types of up to n = 10 points (each represented by a point set) is available online, while the
file for n = 11 requires almost 100GB of storage and is available on demand [1]. In the full
version, we also present an alternative and independent approach to enumerate all abstract
order types from scratch and provide the corresponding source code [17].

4.2 Enumeration of Planar Graphs

To enumerate all non-isomorphic maximal planar graphs on 11 vertices (i.e, triangulations),
we have used the plantri graph generator [7]. For various computations on graphs, such as
filtering stacked triangulations, we have used SageMath [20].

EuroCG’19

21:4 A Note On Universal Point Sets for Planar Graphs

4.3 Deciding Universality using a SAT Solver
For a given point set S and a planar graph G = (V,E) we model a propositional formula in
conjunctive normal form (CNF) which has a solution if and only if G can be embedded on S.

We have used variables to describe the vertex-to-point mapping and variables to describe
whether the straight-line segments are “active” in a drawing. It is not hard to use clauses to
assert that such a vertex-to-point mapping is bijective. Also it is easy to assert that, if two
adjacent vertices u and v are mapped to points p and q, then the straight-line segment pq is
active. For each pair of crossing straight-line segments pq and rs (dependent on the order
type of the point set) at least one of the two segments is not allowed to be active.

We have implemented a C++ routine which, given a point set and a graph as input,
creates an instance of the above described model and then uses the solver MiniSat [11] (see
also [12]) to decide whether the graph admits a straight-line embedding.

4.4 Finding Conflict Collections – A Quantitive Approach
Before we actually tested whether a set of 11 points is 11-universal or not, we discovered a
few necessary criteria for the point set, which can be checked much more efficiently. These
considerations allowed a significant reduction of the total computation times.

Phase 1: Obviously, 11-universal point sets – if they exist – have to have triangular convex
hulls. Secondly, the planar graph depicted in Figure 1 asserts an 11-universal set S to have
a certain structure. Using these and a couple of other properties not mentioned here, only
293,114,696 of the 2,343,203,071 abstract order types on 11 points remain as candidates.

Figure 1 The two embeddings of a graph, which force the point set to have a certain layering.

Phase 2: For each of the remaining order types on 11 points from Phase 1, we have tested
the embeddability of all maximal planar graphs on n vertices separately using a SAT-solver
based approach. To speed up the computations we have used a priority queue: a graph which
does not admit an embedding gets increased priority for other point sets to be tested first.

To keep the conflict collection as small as possible, we first filtered out all point sets which
do not allow a simultaneous embedding of all planar graphs on 11 vertices with maximum
degree 10. Only 278,530 of the 293,114,696 abstract order types remained (computation time
about 100 CPU days).

At this point one can check with only a few CPU hours that the remaining 278,530
abstract order types are not 11-universal. Moreover, since some stacked triangulations on 11
vertices (e.g. the first graph from Figure 2) contain the graph from Figure 1 as a subgraph,
the statement even applies to stacked triangulations and Corollary 2.3 follows.

M. Scheucher, H. Schrezenmaier, and R. Steiner 21:5

Phase 3: We continued by testing the embeddability for each of the 434 stacked triangu-
lations and each of the 278,530 remaining abstract order types (additional 35 CPU days).
Based on this binary information, we formulated an integer program searching for a minimal
set of triangulations without simultaneous embedding. Using the Gurobi solver [14], we
managed to find a collection G of 11 stacked triangulations which cannot be embedded
simultaneously; see Figure 2. By joining those stacked triangulations to the ones used in
Phases 1 and 2, one already obtains a conflict collection of size 95.

Phases 4: To obtain smaller conflict collections, we again repeat the strategy from Phase 2,
except that we test for the embeddability of the 11 stacked triangulations from the collection G
obtained in Phase 3 instead of the 82 maximal planar graphs on 11 vertices with maximum
degree 10. After 230 CPU days, our program had filtered out 17,533 of the 293,114,696
abstract order types obtained in Phase 1.

Phases 5: We proceeded as in Phase 3 and tested for each of the 434 stacked triangulations
and each of the 17,533 order types from Phase 4, whether an embedding is possible (only
2 CPU days). Using the Gurobi solver, we managed to find a collection H of 12 stacked
triangulations, which cannot be simultaneously embedded on those order types; see Figure 2.

Together with the 11 stacked triangulations from G we obtain a conflict collection of
size 23, and the first part of Theorem 2.2 follows.

Phases 6: We have repeated our computations for the union of the two sets of point sets
obtained in Phase 3 and Phase 5, respectively, in order to also improve the lower bounds.
Using Gurobi, we obtained that any conflict collection consisting of 11-vertex planar graphs
has size at least 17. This completes the proof of the second part of Theorem 2.2.

5 Discussion

In Section 3, we provided an improved lower bound for fp(n) and fs(n). However, the best
known general upper bounds remain far from linear.

One could further proceed with the strategy from Section 4 to find even smaller conflict
collection (if such exist). Also one could simply test whether all elements from the conflict
collection are indeed necessary, or whether certain elements can be removed.

We also adapted our program to find all n-universal order types on n points for every
n ≤ 10, and hence could verify the results from [8, Table 1].

Unfortunately, we do not have an inductive argument for subsets/supersets of n-universal
point sets, and thus the question for n = 12, 13, 14 remains open. However, based on
computational evidence (see also [8, Table 1]), we strongly conjecture that no n-universal set
of n points exists for n ≥ 11.

EuroCG’19

21:6 A Note On Universal Point Sets for Planar Graphs

0

1

2
3

4

5

6

7

8

9

10

0

1

2
3

4

5
6

7

8

9

10

0

1

2
3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7
8

9

10
0

1

2
3

4

5

6

7

8

9 10

0

1

2
3

4

5

6

7 8
9

10

0

1

2
3

45

6

7

8

9

10

0

1

2
3 4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2
3

4

5
6

7

8
9

10

0

1

2
3

4
5 6

7

8

910

Figure 2 The 11 stacked triangulations from the conflict collection G obtained in Phase 3.

M. Scheucher, H. Schrezenmaier, and R. Steiner 21:7

0

1

2

3

4

5

6

7

8

9

10

0

1

2
3

4

5

6

7

8

9
10

0

1

2

3

4

56
7

8

9

10

0

1

2

3 4

5

6

7
8

9

10

0

1

2

3

4 5

6
7

8

9

10

0

1

2

3

4 5
6

7

8

910

0

1

2

3

4
5

6

7
8

9

10

0

1

2
3

4

5
6

7

8
9

10

0

1

2

3

4
5

6

7

8
910

0

1

2
3 4

5

6
7

8

9

10

0

1

2
3

4
5

6
78

9

10

0

1

2

3

4

5

6

7

8
9

10

Figure 3 The 12 stacked triangulations from the conflict collection H obtained in Phase 5.

EuroCG’19

21:8 A Note On Universal Point Sets for Planar Graphs

References
1 Oswin Aichholzer. Enumerating Order Types for Small Point Sets with Applications.

http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/.
2 Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating Order Types

for Small Point Sets with Applications. Order, 19(3):265–281, 2002. doi:10.1023/A:
1021231927255.

3 Oswin Aichholzer and Hannes Krasser. Abstract Order Type Extension and New Results
on the Rectilinear Crossing Number. Computational Geometry: Theory and Applications,
36(1):2–15, 2006. doi:10.1016/j.comgeo.2005.07.005.

4 Michael J. Bannister, Zhanpeng Cheng, William E. Devanny, and David Eppstein. Su-
perpatterns and Universal Point Sets. Journal of Graph Algorithms and Applications,
18(2):177–209, 2014. doi:10.7155/jgaa.00318.

5 Franz J. Brandenburg. Drawing planar graphs on 8
9n

2 area. Electronic Notes in Discrete
Mathematics, 31:37–40, 2008. doi:10.1016/j.endm.2008.06.005.

6 Peter Brass, Eowyn Cenek, Cristian A. Duncan, Alon Efrat, Cesim Erten, Dan P. Is-
mailescu, Stephen G. Kobourov, Anna Lubiw, and Joseph S.B. Mitchell. On simulta-
neous planar graph embeddings. Computational Geometry, 36(2):117–130, 2007. doi:
10.1016/j.comgeo.2006.05.006.

7 Gunnar Brinkmann and Brendan D. McKay. Fast generation of some classes of pla-
nar graphs. Electronic Notes in Discrete Mathematics, 3:28–31, 1999. doi:10.1016/
S1571-0653(05)80016-2.

8 Jean Cardinal, Michael Hoffmann, and Vincent Kusters. On Universal Point Sets for
Planar Graphs. Journal of Graph Algorithms and Applications, 19(1):529–547, 2015. doi:
10.7155/jgaa.00374.

9 Marek Chrobak and Howard J. Karloff. A Lower Bound on the Size of Universal Sets for
Planar Graphs. ACM SIGACT News, 20(4):83–86, 1989. doi:10.1145/74074.74088.

10 Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990. doi:10.1007/BF02122694.

11 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of Theory
and Applications of Satisfiability Testing - SAT 2003, pages 502–518, 2003. doi:10.1007/
978-3-540-24605-3_37.

12 Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing: 6th
International Conference, SAT 2003, pages 502–518. Springer, 2004. doi:10.1007/
978-3-540-24605-3_37.

13 Radoslav Fulek and Csaba D. Tóth. Universal point sets for planar three-trees. Journal of
Discrete Algorithms, 30:101–112, 2015. doi:10.1016/j.jda.2014.12.005.

14 Gurobi Optimization, LLC. Gurobi Optimizer, 2018. http://www.gurobi.com.
15 Hannes Krasser. Order Types of Point Sets in the Plane. PhD thesis, Institute for Theo-

retical Computer Science, Graz University of Technology, Austria, 2003.
16 Maciej Kurowski. A 1.235n lower bound on the number of points needed to draw all n-

vertex planar graphs. Information Processing Letters, 92(2):95–98, 2004. doi:10.1016/j.
ipl.2004.06.009.

17 Manfred Scheucher. Webpage: Source Codes and Data for Universal Point Sets.
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets.

18 Manfred Scheucher, Hendrik Schrezenmaier, and Raphael Steiner. A Note On Universal
Point Sets for Planar Graphs. http://arXiv.org/abs/1811.06482, 2018.

19 Walter Schnyder. Embedding Planar Graphs on the Grid. In Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 138–148. Society for Industrial and
Applied Mathematics, 1990.

http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://dx.doi.org/10.1023/A:1021231927255
http://dx.doi.org/10.1023/A:1021231927255
http://dx.doi.org/10.1016/j.comgeo.2005.07.005
http://dx.doi.org/10.7155/jgaa.00318
http://dx.doi.org/10.1016/j.endm.2008.06.005
http://dx.doi.org/10.1016/j.comgeo.2006.05.006
http://dx.doi.org/10.1016/j.comgeo.2006.05.006
http://dx.doi.org/10.1016/S1571-0653(05)80016-2
http://dx.doi.org/10.1016/S1571-0653(05)80016-2
http://dx.doi.org/10.7155/jgaa.00374
http://dx.doi.org/10.7155/jgaa.00374
http://dx.doi.org/10.1145/74074.74088
http://dx.doi.org/10.1007/BF02122694
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1016/j.jda.2014.12.005
http://www.gurobi.com
http://dx.doi.org/10.1016/j.ipl.2004.06.009
http://dx.doi.org/10.1016/j.ipl.2004.06.009
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets
http://arXiv.org/abs/1811.06482

M. Scheucher, H. Schrezenmaier, and R. Steiner 21:9

20 William A. Stein et al. Sage Mathematics Software (Version 8.1). The Sage Development
Team, 2018. http://www.sagemath.org.

EuroCG’19

http://www.sagemath.org

On Disjoint Holes in Point Sets∗†

Manfred Scheucher1

1 Institut für Mathematik, Technische Universität Berlin, Germany
{scheucher}@math.tu-berlin.de

Abstract
Given a set of points S ⊆ R2, a subset X ⊆ S, |X| = k, is called k-gon if all points of X lie
on the boundary of the convex hull conv(X), and k-hole if, in addition, no point of S \ X lies
in conv(X). We use computer assistance to show that every set of 17 points in general position
admits two disjoint 5-holes, that is, holes with disjoint respective convex hulls. This answers a
question of Hosono and Urabe (2001).

In a recent article, Hosono and Urabe (2018) present new results on interior-disjoint holes
– a variant, which also has been investigated in the last two decades. Using our program, we
show that every set of 15 points contains two interior-disjoint 5-holes. Moreover, our program
can also be used to verify that every set of 17 points contains a 6-gon within significantly smaller
computation time than the original program by Szekeres and Peters (2006).

1 Introduction

A set of points in the Euclidean plane S ⊆ R2 is in general position if no three points lie
on a common line. Throughout this paper all point sets are considered to be in general
position. A subset X ⊆ S of size |X| = k is a k-gon if all points of X lie on the boundary
of the convex hull of X. A classical result from the 1930s by Erdős and Szekeres asserts
that, for fixed k ∈ N, every sufficiently large point set contains a k-gon [12, 25]. They also
constructed point sets of size 2k−2 with no k-gon. Recently, Suk [31] significantly improved
the upper bound by showing that every set of 2k+o(k) points contains a k-gon. However, the
precise minimum number g(k) of points needed to guarantee the existence of a k-gon is still
unknown for k ≥ 7 (cf. [32]).

In the 1970s, Erdős [11] asked whether every sufficiently large point set contains a k-hole,
that is, a k-gon with no other points of S lying inside its convex hull. Harborth [17] showed
that every set of 10 points contains a 5-hole and Horton [18] introduced a construction of
large point sets without 7-holes. The question, whether 6-holes exist in sufficiently large point
sets, remained open until 2007, when Nicolas [26] and Gerken [15] independently showed that
point sets with large k-gons also contain a 6-hole (see also [33]). The currently best bound is
by Koshelev [23], who showed that every set of 463 points contains a 6-hole. However, the
largest set without 6-holes currently known has 29 points and was found by Overmars [27].

In 2001, Hosono and Urabe [19] started the investigation of disjoint holes, where two
holes X1, X2 of a given point set S are said to be disjoint if their respective convex hulls are
disjoint (that is, conv(X1) ∩ conv(X2) = ∅). This led to the following question: What is the
smallest number h(k1, . . . , kl) such that every set of h(k1, . . . , kl) points determines a ki-hole
for every i = 1, . . . , l, such that the holes are pairwise disjoint [21]?

∗ The full version of this paper is available online [30].
† Research was supported by the DFG Grant FE 340/12-1. We thank Stefan Felsner, Linda Kleist, Felix

Schröder, and Martin Balko for fruitful discussions and helpful comments. Thanks to Adrian Dumitrescu
for pointing out the variant of interior-disjoint holes.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

22:2 On Disjoint Holes in Point Sets

In Sections 2 and 3, we summarize the current state of the art for two- and three-
parametetric values and we present some new results that were obtained using computer-
assistance. The basic idea behind our computer-assisted proofs is to encode point sets and
disjoint holes only using triple orientations (see Section 4), and then to use a SAT solver to
disprove the existence of sets with certain properties (see Section 5).

In the Final Remarks (Section 6) we outline how our SAT model can be adapted to tackle
related questions on point sets. In particular, the program can be used to show that every set
of 15 points contains two interior-disjoint 5-holes, and to prove g(6) = 17 with significantly
smaller computation time than the original program from Szekeres and Peters [32].

2 Two Disjoint Holes

For two parameters, the value h(k1, k2) has been determined for all k1, k2 ≤ 5 except for
h(5, 5) [19, 20, 21, 5]. Table 1 summarizes the currently best bounds for two-parametric
values. Concerning the value h(5, 5), the best bounds are 17 ≤ h(5, 5) ≤ 19. The lower bound
h(5, 5) ≥ 17 is witnessed by the set of 16 points with no two disjoint 5-holes (taken from
Hosono and Urabe [21]), which is depicted Figure 1, and the upper bound h(5, 5) ≤ 19 was
shown by Bhattacharya and Das [6] by an elaborate case distinction.

2 3 4 5
2 4 5 6 10
3 6 7 10
4 9 12
5 17∗

Table 1 Values of h(k1, k2) [19, 20, 21, 5]. The entry marked with star (*) is new.

0 0
0 270

140 0
140 270

9 127
9 143

131 127
131 143
34 117
34 153

106 117
106 153
59 85
59 185
81 85
81 185

Figure 1 A set of 16 points with no two disjoint 5-holes. This point set and the one by Hosono
and Urabe [21, Figure 3] are of the same order type (see Section 4.1 for the definition of order type).

M. Scheucher 22:3

As our main result of this paper, we determine the precise value of h(5, 5). The proof is
based on a SAT model which we later describe in Section 5.

I Theorem 2.1 (Computer-assisted). Every set of 17 points contains two disjoint 5-holes,
hence h(5, 5) = 17.

We remark that the computations for verifying Theorem 2.1 take about two hours on a
single 3GHz CPU using a modern SAT solver such as glucose [3] or picosat [7]. Moreover, we
have verified the output of glucose and picosat with the proof checking tool DRAT-trim [34].

3 Three Disjoint Holes

For three parameters, most values h(k1, k2, k3) for k1, k2, k3 ≤ 4 and also the values h(2, 3, 5) =
11 and h(3, 3, 5) = 12 are known [21, 35]. Tables 2 and 3 summarize the currently best known
bounds for three-parametric values.

2 3 4
2 8 9 11
3 10 12
4 14

Table 2 Values of h(k1, k2, 4) [21, 35].

2 3 4 5
2 10 11 11..14 17∗

3 12 13..14 17..19∗

4 15..17 17..23∗

5 22∗..27∗

Table 3 Bounds for h(k1, k2, 5) [21, 35].

We now use Theorem 2.1 to derive new bounds on the value h(k, 5, 5) for k = 2, 3, 4, 5.

I Corollary 3.1. We have

h(2, 5, 5) = 17, 17 ≤ h(3, 5, 5) ≤ 19, 17 ≤ h(4, 5, 5) ≤ 23, and 22 ≤ h(5, 5, 5) ≤ 27.

Proof. To show h(2, 5, 5) ≤ 17, observe that, due to Theorem 2.1, every set of 17 points
contains two disjoint 5 holes that are separated by a line `. By the pigeonhole principle there
are at least 9 points on one of the two sides of such a separating line `. Again, using a SAT
instance similar to the one for Theorem 2.1, one can easily verify that every set of 9 points
with a 5-hole also contains a 2-hole which is disjoint from the 5-hole. We remark that also
the order type database of 9 points can be used to verify this statement.

Similarly we show h(3, 5, 5) ≤ 19: Every set of 19 points contains two disjoint 5-holes
that are separated by a line `. Now there are at least 10 points on one side of `, and since
h(3, 5) = 10, there is a 3-hole and a 5-hole that are disjoint on that particular side.

An analogous argument shows h(4, 5, 5) ≤ 2 · h(4, 5)− 1 = 23.
The point set from Figure 2 shows h(5, 5, 5) > 21, while h(5, 5, 5) ≤ h(5)+h(5, 5) = 27. J

4 Encoding with Triple Orientations

We describe how point sets and disjoint holes can be encoded only using triple orientations.
This combinatorial description allows us to get rid of the actual point coordinates and to
only consider a discrete parameter-space. This is essential for our SAT model of the problem.

EuroCG’19

22:4 On Disjoint Holes in Point Sets

0 161014
437034 595949
326347 343801
284425 294548
368806 311583
359850 306967
303825 276373
295136 271265
384946 285229
410465 282863
385025 275150
280383 244110
288858 238662
432159 221931
383508 211334
343366 205440
352134 200469
273710 191231
383027 201270
337326 179552
595182 0

Figure 2 A set of 21 points with no three disjoint 5-holes.

4.1 Triple Orientations
Given a set of points S = {s1, . . . , sn} with si = (xi, yi), we say that the triple (a, b, c) is
positively (negatively) oriented if

χabc := sgn det

 1 1 1
xa xb xc

ya yb yc

 ∈ {−1, 0,+1}

is positive (negative). Note that χabc = 0 indicates collinear points, in particular, χaaa =
χaab = χaba = χbaa = 0. It is easy to see, that convexity is a combinatorial rather than a
geometric property since k-gons can be described only by the relative position of the points: If
the points s1, . . . , sk are the vertices of a convex polygon (ordered along the boundary), then,
for every i = 1, . . . , k, the cyclic order of the other points around si is si+1, si+2, . . . , si−1
(indices modulo k). Similarly, one can also describe containment (and thus k-holes) only
using relative positions: A point s0 lies inside a convex polygon if the cyclic order around s0
is precisely the order of the vertices along the boundary of the polygon.

To observe that the disjointness of two point sets can be described solely using triple
orientations, suppose that a line ` separates point sets A and B. Then, for example by
rotating `, we can find another line `′ that contains a point a ∈ A and a point b ∈ B and
separates A \ {a} and B \ {b}. In particular, we have χaba′ ≤ 0 for all a′ ∈ A and χabb′ ≥ 0
for all b′ ∈ B, or the other way round. Altogether, the existence of disjoint holes can be
described solely using triple orientations.

Even though, for fixed n ∈ N, there are uncountable possibilities to choose n points from
the Euclidean plane, there are only finitely many equivalence classes of point sets when point

M. Scheucher 22:5

sets inducing the same orientation triples are considered equal. As introduced by Goodman
and Pollack [16], these equivalence classes are called order types.

4.2 An Abstraction of Point Sets
Consider a point set S = {s1, . . . , sn} where s1, . . . , sn have increasing x-coordinates. Using
the unit paraboloid duality transformation, which maps point s = (a, b) to line s∗ : y = 2ax−b,
we obtain the arrangement of dual lines S∗ = {s∗1, . . . , s∗n}, where the dual lines s∗1, . . . , s∗n
have increasing slopes. By the increasing x-coordinates and the properties of the unit
paraboloid duality (see e.g. [24, Chapter 1.3]), the following three statements are equivalent:

(i) The points si, sj , sk are positively oriented.
(ii) The point sk lies above the line sisj .
(iii) The intersection-point of the two lines s∗i and s∗j lies above the line s∗k.
Due to Felsner and Weil [14] (see also [4]), for every 4-tuple si, sj , sk, sl with i < j < k < l

the sequence
χijk, χijl, χikl, χjkl

(index-triples are in lexicographic order) changes its sign at most once. These conditions are
the signotope axioms. It is worth to note that the signotope axioms are necessary conditions
but not sufficient for point sets. There exist χ-configurations which fulfill the conditions
above – so-called abstract point sets, abstract order types, abstract oriented matroids (of
rank 3), or signotopes – that are not induced by any point set, and in fact, deciding whether
an abstract point set has a realizing point set is known to be ∃R-complete (see e.g. [13]).

4.3 Increasing Coordinates and Cyclic Order
In the following, we see why we can assume, without loss of generality, that in every point
set S = {s1, . . . , sn} the following three conditions hold:

the points s1, . . . , sn have increasing x-coordinates,
in particular, s1 is an extremal point, and
the points s2, . . . , sn are sorted around s1.

When modeling a computer program, one can use these constraints (which do not affect
the output of the program) to restrict the search space and to possibly get a speedup. This
idea, however, is not new and was already used for the generation of the order type database,
which provides a complete list of all order types of up to 11 points [24, 1, 2].

I Lemma 4.1. Let S = {s1, . . . , sn} be a point set where s1 is extremal and s2, . . . , sn are
sorted around s1. Then there is a point set S̃ = {s̃1, . . . , s̃n} of the same order type as S (in
particular, s̃2, . . . , s̃n are sorted around s̃1) such that s̃1, . . . , s̃n have increasing x-coordinates.

Proof. We can assume s1 = (0, 0) and xi, yi > 0 for i ≥ 2 – otherwise we can apply
an affine-linear transformation. Moreover, xi/yi is increasing for i ≥ 2 since s2, . . . , sn

are sorted around s1. Since S is in general position, there is an ε > 0 such that S and
S′ := {(0, ε)}∪{s2, . . . , sn} are of the same order type. We apply the projective transformation
(x, y) 7→ (x/y,−1/y) to S′ to obtain S̃. By the multilinearity of the determinant, we obtain

det

 1 1 1
xi xj xk

yi yj yk

 = yi · yj · yk · det

 1 1 1
xi/yi

xj/yj
xk/yk

−1/yi
−1/yj

−1/yk

 .

EuroCG’19

22:6 On Disjoint Holes in Point Sets

Since the points in S′ have positive y-coordinates, S′ and S̃ have the same triple orientations.
Moreover, as x̃i = x′

i/y′
i is increasing for i ≥ 1, the set S̃ fulfills all desired properties. J

5 SAT Model

The basic idea to prove Theorem 2.1 is to assume – towards a contradiction – that a point set
S = {s1, . . . , s17} with no two disjoint 5-holes exists. We formulate a SAT instance, where
boolean variables indicate whether triples are positively or negatively oriented and clauses
encode the necessary conditions described in Section 4. To be precise, we also have auxiliary
variables, e.g., to indicate whether 4 points are in convex position and whether 3 points form
a 3-hole. A detailled description of our SAT model can be found in the full version [30] and
the source code of our python program is available online on our supplemental website [29].

Using a SAT solver we verify that the SAT instance has no solution and conclude that
the point set S does not exist. This contradiction then completes the proof of Theorem 2.1.

It is folklore that satisfiability is NP-hard in general, thus it is challenging for SAT solvers
to terminate in reasonable time for certain inputs of SAT instances. We now highlight the
two crucial parts of our SAT model, which are indeed necessary for reasonable computation
times: First, due to Lemma 4.1, we can assume without loss of generality that the points
are sorted from left to right and also around the first point s1. Second, we teach the solver
that every set of 10 points gives a 5-hole, that is, h(5) = 10 [17]. By dropping either of these
two constraints (which only give additional information to the solver and do not affect the
solution space), none of the tested SAT solvers terminated within days.

6 Final Remarks

Interior-disjoint Holes: Two holes X1, X2 are called interior-disjoint if their respective
convex hulls are interior-disjoint [10, 28, 9, 8, 22]. In a recent article, Hosono and Urabe [22]
summarized the current status and presented some new results. By slightly adapting the
SAT model from Section 5, we managed to show that every set of 15 points contains two
interior-disjoint 5-holes; this further improves their result [22, Theorem 3].

Classical Erdős–Szekeres: The computation time for the computer assisted proof by Szek-
eres and Peters [32] for g(6) = 17 was about 1500 hours. By slightly adapting the model
from Section 5 we have been able to confirm g(6) = 17 using glucose and DRAT-trim with
about one hour of computation time.

References
1 Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating Order Types

for Small Point Sets with Applications. Order, 19(3):265–281, 2002. doi:10.1023/A:
1021231927255.

2 Oswin Aichholzer and Hannes Krasser. Abstract Order Type Extension and New Results
on the Rectilinear Crossing Number. Computational Geometry: Theory and Applications,
36(1):2–15, 2006. doi:10.1016/j.comgeo.2005.07.005.

3 Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern SAT
Solvers. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), pages 399–404, 2009. http://ijcai.org/Proceedings/2009/.

http://dx.doi.org/10.1023/A:1021231927255
http://dx.doi.org/10.1023/A:1021231927255
http://dx.doi.org/10.1016/j.comgeo.2005.07.005
http://ijcai.org/Proceedings/2009/

M. Scheucher 22:7

4 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing Numbers and Combinatorial Char-
acterization of Monotone Drawings of Kn. Discrete & Computational Geometry, 53(1):107–
143, 2015. doi:10.1007/s00454-014-9644-z.

5 Bhaswar B. Bhattacharya and Sandip Das. On the Minimum Size of a Point Set Containing
a 5-Hole and a Disjoint 4-Hole. Studia Scientiarum Mathematicarum Hungarica, 48(4):445–
457, 2011. doi:10.1556/SScMath.2011.1173.

6 Bhaswar B. Bhattacharya and Sandip Das. Disjoint empty convex pentagons in pla-
nar point sets. Periodica Mathematica Hungarica, 66(1):73–86, 2013. doi:10.1007/
s10998-013-9078-z.

7 Armin Biere. PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation (JSAT), 4:75–97, 2008. http://satassociation.org/jsat/index.php/jsat/
article/view/45.

8 Ahmad Biniaz, Anil Maheshwari, and Michiel H. M. Smid. Compatible 4-Holes in Point
Sets, 2017. arXiv:1706.08105.

9 Javier Cano, Alfredo García, Ferran Hurtado, Toshinori Sakai, Javier Tejel, and Jorge
Urrutia. Blocking the k-Holes of Point Sets in the Plane. Graphs and Combinatorics,
31(5):1271–1287, 2015. doi:10.1007/s00373-014-1488-z.

10 Olivier Devillers, Ferran Hurtado, Gyula Károlyi, and Carlos Seara. Chromatic variants
of the Erdős–Szekeres theorem on points in convex position. Computational Geometry,
26(3):193–208, 2003. doi:10.1016/S0925-7721(03)00013-0.

11 Paul Erdős. Some more problems on elementary geometry. Australian Mathematical Society
Gazette, 5:52–54, 1978. http://www.renyi.hu/~p_erdos/1978-44.pdf.

12 Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Math-
ematica, 2:463–470, 1935. http://www.renyi.hu/~p_erdos/1935-01.pdf.

13 Stefan Felsner and Jacob E. Goodman. Pseudoline Arrangements. In Toth, O’Rourke, and
Goodman, editors, Handbook of Discrete and Computational Geometry. CRC Press, third
edition, 2018. doi:10.1201/9781315119601.

14 Stefan Felsner and Helmut Weil. Sweeps, Arrangements and Signotopes. Discrete Applied
Mathematics, 109(1):67–94, 2001. doi:10.1016/S0166-218X(00)00232-8.

15 Tobias Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational
Geometry, 39(1):239–272, 2008. doi:10.1007/s00454-007-9018-x.

16 Jacob E. Goodman and Richard Pollack. Multidimensional Sorting. SIAM Journal on
Computing, 12(3):484–507, 1983. doi:10.1137/0212032.

17 Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathe-
matik, 33:116–118, 1978. In German, http://www.digizeitschriften.de/dms/img/
?PID=GDZPPN002079801.

18 Joseph D. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin,
26:482–484, 1983. doi:10.4153/CMB-1983-077-8.

19 Kiyoshi Hosono and Masatsugu Urabe. On the number of disjoint convex quadrilater-
als for a planar point set. Computational Geometry, 20(3):97–104, 2001. doi:10.1016/
S0925-7721(01)00023-2.

20 Kiyoshi Hosono and Masatsugu Urabe. On the Minimum Size of a Point Set Containing
Two Non-intersecting Empty Convex Polygons. In Proceedings of the Japanese Conference
on Discrete and Computational Geometry (JCDCG 2004), volume 3742 of LNCS, pages
117–122. Springer, 2005. doi:10.1007/11589440_12.

21 Kiyoshi Hosono and Masatsugu Urabe. A Minimal Planar Point Set with Specified Disjoint
Empty Convex Subsets. In Kyoto International Conference on Computational Geometry
and Graph Theory (KyotoCGGT 2007), volume 4535 of LNCS, pages 90–100. Springer,
2008. doi:10.1007/978-3-540-89550-3_10.

EuroCG’19

http://dx.doi.org/10.1007/s00454-014-9644-z
http://dx.doi.org/10.1556/SScMath.2011.1173
http://dx.doi.org/10.1007/s10998-013-9078-z
http://dx.doi.org/10.1007/s10998-013-9078-z
http://satassociation.org/jsat/index.php/jsat/article/view/45
http://satassociation.org/jsat/index.php/jsat/article/view/45
http://arXiv.org/abs/1706.08105
http://dx.doi.org/10.1007/s00373-014-1488-z
http://dx.doi.org/10.1016/S0925-7721(03)00013-0
http://www.renyi.hu/~p_erdos/1978-44.pdf
http://www.renyi.hu/~p_erdos/1935-01.pdf
http://dx.doi.org/10.1201/9781315119601
http://dx.doi.org/10.1016/S0166-218X(00)00232-8
http://dx.doi.org/10.1007/s00454-007-9018-x
http://dx.doi.org/10.1137/0212032
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://dx.doi.org/10.4153/CMB-1983-077-8
http://dx.doi.org/10.1016/S0925-7721(01)00023-2
http://dx.doi.org/10.1016/S0925-7721(01)00023-2
http://dx.doi.org/10.1007/11589440_12
http://dx.doi.org/10.1007/978-3-540-89550-3_10

22:8 On Disjoint Holes in Point Sets

22 Kiyoshi Hosono and Masatsugu Urabe. Specified holes with pairwise disjoint interiors in
planar point sets. AKCE International Journal of Graphs and Combinatorics, 2018. In
press. doi:10.1016/j.akcej.2018.08.003.

23 Vitalii A. Koshelev. On Erdős–Szekeres problem for empty hexagons in the plane.
Modelirovanie i Analiz Informatsionnykh Sistem, 16(2):22–74, 2009. In Russian, http:
//mi.mathnet.ru/eng/mais52.

24 Hannes Krasser. Order Types of Point Sets in the Plane. PhD thesis, Institute for Theo-
retical Computer Science, Graz University of Technology, Austria, 2003.

25 Jiří Matoušek. Convex Independent Subsets. In Lectures on Discrete Geometry, pages
29–39. Springer, 2002. doi:10.1007/978-1-4613-0039-7_3.

26 Carlos M. Nicolas. The Empty Hexagon Theorem. Discrete & Computational Geometry,
38(2):389–397, 2007. doi:10.1007/s00454-007-1343-6.

27 Mark Overmars. Finding Sets of Points without Empty Convex 6-Gons. Discrete & Com-
putational Geometry, 29(1):153–158, 2002. doi:10.1007/s00454-002-2829-x.

28 Toshinori Sakai and Jorge Urrutia. Covering the convex quadrilaterals of point sets. Graphs
and Combinatorics, 23(1):343–357, 2007. doi:10.1007/s00373-007-0717-0.

29 Manfred Scheucher. Webpage: On Disjoint Holes in Point Sets. http://page.math.
tu-berlin.de/~scheuch/supplemental/5holes/disjoint_holes/.

30 Manfred Scheucher. On Disjoint Holes in Point Sets, 2018. arXiv:1807.10848.
31 Andrew Suk. On the Erdős-Szekeres convex polygon problem. Journal of the American

Mathematical Society, 30:1047–1053, 2017. doi:10.1090/jams/869.
32 George Szekeres and Lindsay Peters. Computer solution to the 17-point Erdős-Szekeres

problem. Australia and New Zealand Industrial and Applied Mathematics, 48(2):151–164,
2006. doi:10.1017/S144618110000300X.

33 Pavel Valtr. On empty hexagons. In Surveys on Discrete and Computational Geometry:
Twenty Years Later, volume 453 of Contemporary Mathematics, pages 433–441. American
Mathematical Society, 2008. http://bookstore.ams.org/conm-453.

34 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient Checking
and Trimming Using Expressive Clausal Proofs. In Carsten Sinz and Uwe Egly, editors,
Theory and Applications of Satisfiability Testing – SAT 2014, pages 422–429. Springer, 2014.
doi:10.1007/978-3-319-09284-3_31.

35 X. S. You and X. L. Wei. On the Minimum Size of a Point Set Containing a 5-Hole
and Double Disjoint 3-Holes. Mathematical Notes, 97(5):951–960, 2015. doi:10.1134/
S0001434615050314.

http://dx.doi.org/10.1016/j.akcej.2018.08.003
http://mi.mathnet.ru/eng/mais52
http://mi.mathnet.ru/eng/mais52
http://dx.doi.org/10.1007/978-1-4613-0039-7_3
http://dx.doi.org/10.1007/s00454-007-1343-6
http://dx.doi.org/10.1007/s00454-002-2829-x
http://dx.doi.org/10.1007/s00373-007-0717-0
http://page.math.tu-berlin.de/~scheuch/supplemental/5holes/disjoint_holes/
http://page.math.tu-berlin.de/~scheuch/supplemental/5holes/disjoint_holes/
http://arXiv.org/abs/1807.10848
http://dx.doi.org/10.1090/jams/869
http://dx.doi.org/10.1017/S144618110000300X
http://bookstore.ams.org/conm-453
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1134/S0001434615050314
http://dx.doi.org/10.1134/S0001434615050314

Erdős-Szekeres-Type Games∗

Oswin Aichholzer1, José-Miguel Díaz-Báñez2, Thomas Hackl1,
David Orden3, Alexander Pilz1, Inmaculada Ventura2, and Birgit
Vogtenhuber1

1 Institute of Software Technology, Graz University of Technology, Austria.
[oaich|thackl|apilz|bvogt]@ist.tugraz.at

2 Department of Applied Mathematics II, University of Seville, Spain.
[dbanez|iventura]@us.es

3 Departamento de Física y Matemáticas, Universidad de Alcalá, Spain.
david.orden@uah.es

Abstract
We consider several combinatorial games, inspired by the Erdős-Szekeres theorem that states the
existence of a convex k-gon in every sufficiently large point set. Two players take turns to place
points in the Euclidean plane and the game is over as soon as the first k-gon appears. In the
Maker-Maker setting the player who placed the last point wins, while in the Avoider-Avoider
version this player loses. Combined versions like Maker-Breaker are also possible. Moreover,
variants can be obtained by considering that (1) the points to be placed are either uncolored or
bichromatic, (2) both players have their own color or can play with both colors, (3) the k-gon
must be empty of other points, or (4) the k-gon has to be convex.

1 Introduction

A central topic in combinatorial game theory are sequential games with perfect information.
These are often two-player games that have positions, in which the players take turns changing
these positions (in a defined way) to eventually achieve a specific winning position. Perfect
information means that the state of the game (the current position and usually also the
history of all moves so far) and the set of all possible moves is known to both players at any
time. This class includes Chess or Go, but also easy-to-analyze games like Tic-tac-toe. The
formal analysis of concrete games sometimes reveals challenging mathematical problems while
still having substantial recreational value. Along these lines, we study a class of combinatorial
games related to a well-known result in combinatorics, the Erdős-Szekeres theorem.

I Theorem 1.1 (Erdős and Szekeres [5]). For every integer k ≥ 3, there exists an n(k) s.t.
any set of at least n(k) points in general position has a k-element subset in convex position.

Decades later, Erdős [4] posed the problem of determining the smallest integer h(k), if
it exists, such that any set S of at least h(k) points in general position contains a convex
k-hole, that is, a convex k-gon that does not contain any point of S in its interior. Finding

∗ J.-M. D.-B. and I. V. supported by Project GALGO (Spanish Ministry of Economy and Competitiveness
and MTM2016-76272-R AEI/FEDER,UE). D. O. partially supported by Project MTM2017-83750-P of
the Spanish Ministry of Science (AEI/FEDER, UE). A. P. supported by a Schrödinger fellowship of the
Austrian Science Fund (FWF): J-3847-N35. B. V. partially supported by the Austrian Science Fund
within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No
734922.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

23:2 Erdős-Szekeres-Type Games

exact lower bounds on the number of points to guarantee the existence of convex k-gons (see
[6, 12, 16]) and k-holes (see [10, 11, 9, 15, 17]) has been a long line of research.

A simple polygon spanned by points of different color classes is called monochromatic if
all its vertices have the same color. Two results of interest for our games are the following.

I Theorem 1.2 (Devillers et al. [3]). Every bichromatic set of 9 points in general position
contains an empty monochromatic triangle.

I Theorem 1.3 (Devillers et al. [3]). There exist arbitrarily large bichromatic point sets in
general position without any convex monochromatic 5-hole.

The question of whether every bichromatic point set of sufficiently many points contains
a convex monochromatic 4-hole is still open, see [2, 8, 18]. However, we have:

I Theorem 1.4 (Aichholzer et al. [1]). Every bichromatic set of at least 5044 points contains
a (possibly non-convex) monochromatic 4-hole.

In this context, the following combinatorial game comes to mind immediately: Two players
alternately place one point at a time in the plane until a k-gon appears, with the points
required to be pairwise distinct and in general position. Different games arise depending
on whether the points are colored or not. We will call the players player A and player B if
both players can play both colors (say, red and green), and call them Red and Green if each
player is only allowed to use a specific color. Players A and Red will always start a game,
and are thus called first player. Consequently, we call players B and Green second player. In
this paper we study the following scenarios:
1. The Erdős-Szekeres Avoider-Avoider game (ESAA), in which the goal is to avoid the

formation of a convex monochromatic k-gon/k-hole. The player who places the last point
that results in a convex k-gon/k-hole loses.

2. The Erdős-Szekeres Maker-Maker game (ESMM), in which the goal is to build a convex
monochromatic k-gon/k-hole and the player who places the last point forming the convex
k-gon/k-hole wins.

3. The Erdős-Szekeres Maker-Breaker game (ESMB), in which the Red player aims to make
a red convex/general k-hole and the goal of the Green player is to prevent this.

Preliminaries. In combinatorial game theory, a sequential game is a game where one player
performs their action before the next player performs theirs. The players act in turns, where
one action of a player is called a ply. The term “ply” is used to avoid confusion when one
might otherwise use the term move (or turn). All considered or constructed point sets will
be in general position, i.e., no three points of a set are on a common line.

The Avoider-Avoider uncolored game for convex 5-gons and 5-holes was shown by Kolipaka
and Govindarajan [13] to be a win of B. We provide a shorter proof via a simple strategy
for B in Section 2. In Section 3, the bichromatic ESAA and ESMM games are addressed
both for A–B and Red–Green players, as well as the ESMB game for Red–Green players.

2 Uncolored variants

In the setting in which the points do not have different colors, the symmetric game types
Avoider-Avoider and Maker-Maker immediately come to mind. Observe that the Maker-Maker
variant for convex k-gons/k-holes corresponds to the Avoider-Avoider variant for k− 1. Here,
we thus discuss the Avoider-Avoider variant. (For holes, it would also make sense to consider
Maker–Breaker, at least for k ≥ 7, as there are point sets without convex 7-hole [11].)

Aichholzer et al. 23:3

I Game 1. Two players A and B alternate in placing a single (uncolored) point in the plane
with the restriction that no three points are on a line. The player who places a point resulting
in a convex k-gon/k-hole loses the game.

The cases for k ∈ {3, 4} are trivial. For k = 5, Kolipaka and Govindarajan [13] showed
that player B wins at the 9th ply. We provide a simpler strategy leading to a shorter proof
(the original proof results in a paper of 28 pages), which works for both 5-holes and 5-gons.

I Theorem 2.1 (Kolipaka and Govindarajan [13]). For k = 5, player B wins Game 1 at ply 9.

Proof (sketch). We start by showing the result for 5-holes. Player B will use the point
reflection strategy: After player A placed the first point, player B chooses a different point
acting as center of symmetry, around which B mimics the plies of player A. We can argue
that after 6 plies, this strategy leads to mostly equivalent configurations consisting of a
parallelogram with two points inside (having central symmetry); see Figure 1 (a) and (b).

(a) (b) (c)

Figure 1 Configurations of six points with central symmetry and no convex 5-hole/5-gon.

The next point of player A has to be placed in a gray or hatched region, as otherwise a
convex 5-hole occurs. If A plays in any gray region, then after ply 8 we get the situation
depicted in Figure 2 (a). If A plays in a hatched region of Figure 1 (b), then the setting of
Figure 2 (b) shows up. In both cases there is no convex 5-hole. Moreover, no additional
point can be placed without generating a convex 5-hole (although there exist sets of 9 points
in general position without any convex 5-hole [10]). Thus player B wins in ply 9.

(b)(a)

Figure 2 Any configuration without convex 5-hole must have the four points of the outer
parallelogram in the indicated regions. Situation (b) cannot occur when avoiding a convex 5-gon.

For 5-gons, the arguments are analogous up to ply 6 and also until the end if player A
places a point in a gray region of Figure 1 (a) or (b) in ply 7. So assume that player A
places a point in a hatched region of Figure 1(b), as depicted in Figure 1(c). Then in ply 8

EuroCG’19

23:4 Erdős-Szekeres-Type Games

Figure 3 Counterexample for the point reflection strategy for k-holes for k = 7. The two points
closest to the center are the last to be placed, where the last one causes the formation of two 7-holes.
The small purple crosses indicate how to generalize this example for k ≥ 7.

player B would produce a 5-gon with the point reflection strategy and hence has to make a
different move; see again Figure 2 (b). However, in this case Player B can put a point in any
of the grey regions indicated in Figure 1 (c). As every set of nine points in general position
contains a 5-gon [12], player B wins in ply 9. J

For any even k, the point reflection strategy cannot work for player B: if player A places
all points in convex position, then B creates a convex k-hole. For any odd k, a convex k-gon
can never be centrally symmetric. Hence, in centrally symmetric point sets they come in
pairs. Figure 3 shows that for odd k > 5 the strategy does not work either.

3 Bichromatic variants

In bichromatic games, either each player is assigned a color which they can use (then we call
the players Red and Green), or both players (called A and B) may use both colors. In either
case, the goal is to make or avoid a monochromatic k-gon or k-hole. A hole must not contain
any points in its interior, regardless of their color. We consider the game with players Red
and Green only for k-holes, as for k-gons the different colors do not influence each other.

3.1 Avoider–Avoider
We first consider the two-colored Avoider–Avoider setting in both versions, players A–B and
Red–Green. We show that, for any version, the second player can avoid losing. For triangles,
we provide upper bounds on the number of plies until the second player wins.

I Game 2. In both versions (players Red–Green and A–B), the players alternate in placing
a single point of one of two colors in the plane, avoiding collinear point triples. The goal for
each player is to avoid the formation of a (general or convex) monochromatic k-hole. The
player who placed the last point forming such a k-hole loses the game.

The next theorem follows from the point reflection strategy with color-inversion.

I Theorem 3.1. Players Green and B can avoid losing the respective variants of Game 2.

Aichholzer et al. 23:5

By Theorem 1.3, there exist arbitrarily large sets without convex monochromatic 5-holes.
It is open whether every sufficiently large bichromatic set has a convex monochromatic
4-hole [1], so we do not know if the game is finite for convex monochromatic k-holes, k ≥ 4.

For k = 3, every bichromatic point set of at least 9 points contains an empty monochro-
matic triangle (Theorem 1.2). Thus, Theorem 3.1 implies a 9-ply winning strategy for the
second player. We further show the following (proofs are omitted due to space constrains).

I Theorem 3.2. Player B can win the bichromatic A–B Avoider–Avoider empty monochro-
matic triangle game at latest after the 9th ply, even if the point set must be in strong general
position1. Player A can prevent to lose before the 9th ply.

I Theorem 3.3. Player Green can win the bichromatic Red–Green Avoider–Avoider empty
monochromatic triangle game at latest after the 7th ply.

For k = 4, the largest known point set not containing any convex monochromatic 4-hole
has 46 points [14]. It can be modified (changing also the order type) to be centrally symmetric,
with symmetry pairs having inverted colors [7]. From the latter set it follows that, if the
second player mirrors the moves of the first player, the game might take at least 47 plies.
For general monochromatic 4-holes, there is a set of 22 points not containing any of them [7],
but without such a special symmetry. Both sets have the same number of red and green
points. As the second player always has a strategy to not lose, the following questions arise.

I Question 1. Does the second player have a winning strategy for monochromatic 4-holes
by placing points centrally symmetric and color-inverted? What about for k-holes for k > 4?

I Question 2. Does every large enough centrally symmetric color-inverted bichromatic point
set contain a convex monochromatic 4-hole?

3.2 Maker–Maker
In the Maker–Maker variant the goal is to be the first to obtain a monochromatic k-hole.
For players A and B, both must avoid a monochromatic (k − 1)-hole; for convex k-holes,
this is also sufficient. For general 4-holes, player A always makes a monochromatic triangle
(empty or not) in the 5th ply. Then, player B can add another point inside this triangle as
in Figure 4 (left) and produce a non-convex monochromatic 4-hole, i.e., wins in ply 6. For
k = 5 we do not know any upper bound on the number of plies, convex or general.

Figure 4 Non-convex red 4-hole and Red–Green Maker–Maker after 7 plies for convex red 4-hole.

For players Red–Green, we argue that Red wins for k = 3, 4. A win in ply 5 for k = 3 is
obvious. For k = 4, Red makes an empty red triangle ∆R with the first three red points. In
ply 6 player Green must place a green point inside ∆R. Red can make two interior-disjoint
empty red triangles by placing the fourth red point inside ∆R and also inside the green
triangle, see Figure 4 (right). This is already a general red 4-hole. For convex 4-holes, Green

1 No two supporting lines of distinct point pairs are parallel; no three intersect in a common point; etc.

EuroCG’19

23:6 Erdős-Szekeres-Type Games

R2

R1

R3
R4

a

b

cd

e

Figure 5 A can build a red general 5-hole in 9 plies.

can neither extend the green triangle nor block both of the two empty red triangles. Thus,
Red wins in ply 9. We also show the following.

I Lemma 3.4. Player Red can always build a red (general) 5-hole as depicted in Figure 5 in
9 plies, that is, with the minimum number of 5 red points.

I Question 3. For players Red–Green, is there a winning strategy for convex monochromatic
5-holes? For which of the two players? How about k > 5?

3.3 Red–Green Maker–Breaker
In this section we consider an asymmetric game, where the two players have different goals.

I Game 3. Two players Red and Green alternate in placing a single point of their color,
avoiding collinearities. The goal for player Red is to make a red k-hole. Player Green wants
to block Red from doing so. Green k-holes do not matter.

The following result can be shown using the idea sketched in Figure 6.

I Theorem 3.5. In a Red–Green Maker–Breaker game, the Maker can always build a red
(general) k-hole by placing k points.

4 4

Figure 6 The Maker builds a chain of empty triangles (indicated by dashed lines and squares).
When the Breaker places a green point (cross) inside such a triangle 4, the Maker places a red point
inside 4, thereby repairing the chain and increasing its length by one.

From Lemma 3.4 we derive the following statements.

I Proposition 3.6. The Maker can always build a red convex 4-hole by placing 5 red points.

I Theorem 3.7. The Maker can always build a red convex 5-hole by placing 8 red points.

References
1 Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, and Birgit Vogtenhu-

ber. Large bichromatic point sets admit empty monochromatic 4-gons. SIAM J. Discrete
Math., 23(4):2147–2155, 2010. doi:10.1137/090767947.

http://dx.doi.org/10.1137/090767947

Aichholzer et al. 23:7

2 Peter Brass. Empty monochromatic fourgons in two-colored point sets. Combinatorics, 14,
2004.

3 Olivier Devillers, Ferran Hurtado, Gyula Károlyi, and Carlos Seara. Chromatic variants of
the Erdsős-Szekeres theorem on points in convex position. Comput. Geom., 26(3):193–208,
2003. doi:10.1016/S0925-7721(03)00013-0.

4 Paul Erdős. Some more problems on elementary geometry. Austral. Math. Soc. Gaz.,
5:52–54, 1978.

5 Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Math.,
2:463–470, 1935.

6 Paul Erdős and George Szekeres. On some extremum problems in elementary geometry.
Ann. Univ. Sci. Budapest. Eőtvős Sect. Math., 3–4, 1961. Reprinted in: Paul Erdős: The
Art of Counting. Selected Writings (J. Spencer, ed.), pp. 680-689, MIT Press, Cambridge,
MA, 1973.

7 EuroGiga. The Point Set Zoo. Retreived: Jan. 3, 2019. URL: http://www.
eurogiga-compose.eu/posezo.php.

8 Erich Friedmann. 30 two-colored points with no empty monochromatic fourgons. Combi-
natorics, 14, 2004.

9 Tobias Gerken. Empty convex hexagons in planar point sets. Discrete Comput. Geom.,
39(1-3):239–272, 2008. doi:10.1007/s00454-007-9018-x.

10 Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente Math., 33:116–118,
1978. In German.

11 Joseph D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482–484,
1983.

12 J. D. Kalbfleisch, J. G. Kalbfleisch, and R. G. Stanton. A combinatorial problem on convex
regions. pages 180–188, 1970. Congr. Numer. 1 (1970).

13 Parikshit Kolipaka and Sathish Govindarajan. Two player game variant of the Erdős-
Szekeres problem. Discrete Mathematics & Theoretical Computer Science, 15(3):73–100,
2013. URL: http://dmtcs.episciences.org/620.

14 Vitaliy Koshelev. On Erdős–Szekeres problem and related problems. ArXiv E-prints, 2009.
https://arxiv.org/abs/0910.2700.

15 Carlos M. Nicolas. The empty hexagon theorem. Discrete Comput. Geom., 38(2):389–397,
2007. doi:10.1007/s00454-007-1343-6.

16 Géza Tóth and Pavel Valtr. Note on the Erdős–Szekeres theorem. Discrete Comput. Geom.,
19(3):457–459, 1998. doi:10.1007/PL00009363.

17 Pavel Valtr. On empty hexagons. In J. E. Goodman, J. Pach, and R. Pollack, editors,
Surveys on Discrete and Computational Geometry, Twenty Years Later, pages 433–441.
AMS, New York, 2008.

18 Rob Van Gulik. 32 two-colored points with no empty monochromatic convex fourgons.
Geombinatorics, 15:32–33, 2004.

EuroCG’19

http://dx.doi.org/10.1016/S0925-7721(03)00013-0
http://www.eurogiga-compose.eu/posezo.php
http://www.eurogiga-compose.eu/posezo.php
http://dx.doi.org/10.1007/s00454-007-9018-x
http://dmtcs.episciences.org/620
https://arxiv.org/abs/0910.2700
http://dx.doi.org/10.1007/s00454-007-1343-6
http://dx.doi.org/10.1007/PL00009363

Approximating the Earth Mover’s Distance
between sets of points and line segments∗

Marc van Kreveld1, Frank Staals1, Amir Vaxman1, and Jordi L.
Vermeulen1

1 Department of Information and Computing Sciences, Utrecht University
{m.j.vankreveld;f.staals;a.vaxman;j.l.vermeulen}@uu.nl

Abstract
We show that a (1 + ε)-approximation algorithm exists for the Earth Mover’s Distance between
a set of n points and set of n line segments with equal total weight. Our algorithm runs in
O
(
n6

ε2 log2 (1
ε

)
log2

(
n2

ε log 1
ε

))
time.

1 Introduction

The Earth Mover’s Distance (EMD) is a metric that is widely used in fields such as image
retrieval [13], shape matching [5, 8, 16] and mesh reconstruction [3]. It models two sets A
and B as distributions of mass, and takes their distance D(A,B) to be the minimum cost of
transforming one distribution into the other, where cost is measured by the amount of mass
moved multiplied by the distance over which it is moved. More formally,

D(A,B) = inf
µ∈M

∫
A

∫
B

d(a, b) · µ(a, b) da db (1)

where M is the set of all mappings of mass between A and B. In the case where A and B
are sets of (weighted) points, we can rewrite this as

D(A,B) = min
µ∈M

∑
a∈A

∑
b∈B

d(a, b) · µ(a, b) (2)

For unweighted point sets, the solution can be obtained by solving an assignment problem;
for weighted point sets, this is an instance of a min cost max flow problem.

In this work, we consider the case where A is a set of weighted points and B is a set of line
segments in R2. We provide a polynomial-time algorithm that gives a (1 + ε)-approximation
to the Earth Mover’s Distance between A and B, and also gives an assignment of mass that
realises this cost. To our knowledge, this is the first combinatorial algorithm with a provable
approximation ratio for the Earth Mover’s Distance when the objects are continuous rather
than discrete points.

2 Related work

The general problem of optimally moving a distribution of mass was first described by Monge
in 1781 [11], and was reformulated by Kantorovich in 1942 [6]. It is known as the Earth
Mover’s Distance due to the analogy of moving piles of dirt around; it is also known as the
1-Wasserstein distance, and is a special case of the more general optimal transport problem.

∗ This research was supported by the Netherlands Organisation for Scientific Research under project
number 612.001.651.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

24:2 Approximating the EMD between sets of points and line segments

For a full treatment of the problem’s history and connections to other areas of mathematics,
the reader is referred to Villani’s book [17].

The Earth Mover’s Distance has been studied in many geometric contexts. Cabello et
al. [1] give a (2 + ε)-approximation to minimising the EMD between two point sets under
rigid transformations. For continuous distributions, rather than discrete point sets, many
numerical algorithms are known (see e.g. De Goes et al. [2], Lavenant et al. [7], Mérigot [9, 10]
and Solomon et al. [15]). For the case where one set contains weighted points and the other
is a bounded set C ⊂ Rd, Geiß et al. [4] give a geometric proof that there exists an additively
weighted Voronoi diagram such that transporting mass from each point p to the part of
C contained in its Voronoi cell is optimal. The weights of this Voronoi diagram can be
determined numerically.

De Goes et al. [3] discuss a problem similar to our own in the context of the reconstruction
and simplification of 2D shapes. Given a set of points, they want to reconstruct a simplicial
complex of a given number of vertices that closely represents the shape of the point set.
They start with computing the Delaunay triangulation of the point set, then iteratively
collapse the edge that minimises the increase in the EMD between the point set and the
triangulation. They use a variant of the EMD in which the cost is proportional to the square
of the distance (2-Wasserstein distance). This allows them to calculate this variant of the
EMD between a given set of points and a given edge of the triangulation exactly, as the
squared distance can be decomposed into a normal and a tangential component. However,
they determine the assignment of points to edges heuristically. In this work, we show how to
obtain a (1 + ε)-approximation to the true optimal solution.

3 Approximating the Earth Mover’s Distance

We are given a set of points P = {p1, . . . , pn} with weights {w1, . . . , wn} and a set of segments
S = {s1, . . . , sn}, with lengths {l1, . . . , ln}. We assume the mass associated with a segment is
equal to its length, and that this mass is distributed uniformly over each segment. Given that∑
wi =

∑
lj = n, we want to compute a “transport plan” of mass from P to S that minimises

the cost according to the Earth Mover’s Distance. We define for each pair (pi, sj) ∈ P × S a
function µi,j(t), with t ∈ [0, lj], that describes the density of mass being moved from pi to
the point sj(t). All these functions together describe the function µ used in the definition
of D(A,B). Such a set of functions needs to satisfy the following conditions to be a valid
transport plan:

0 ≤ µi,j(t) ≤ 1 (3)

∀i :
n∑
j=1

∫
t

µi,j(t) dt = wi (4)

∀j, t :
n∑
i=1

µi,j(t) = 1 (5)

We can then define the cost of a given transport plan as

n∑
i=1

n∑
j=1

∫ lj

0
µi,j(t) · d(pi, sj(t)) dt (6)

where sj(t) is the point on sj associated with value t and d(·, ·) is any metric. Our problem
is now to find a transport plan with minimal cost.

M. van Kreveld, F. Staals, A. Vaxman and J.L. Vermeulen 24:3

(a) (b)

(c) (d)

Figure 1 Our construction of Q for a single line segment under the Euclidean metric. (a) shows
the input. (b) shows the Voronoi diagram of the points and the parts of the segment with distance
at least δ/n. (c) shows the generated subsegments, and (d) all of Q, with the parts with distance
less than δ/n added back in.

We now describe a polynomial-time algorithm that finds a transport plan with a cost
that is at most 1 + ε times the cost of the optimal transport plan. Our strategy is as follows:
we subdivide each segment such that for each subsegment s′ the ratio of the distance to
the closest and furthest point on s′ for any pi ∈ P is at most 1 + δ. We then solve a min
cost max flow problem on a bipartite graph between P and the subdivided segments, where
the cost of any edge is equal to the shortest distance between a point and a subsegment.
Finally, we use the solution to this flow problem to build a discrete transport plan. For an
appropriate choice of δ, this gives a (1 + ε)-approximation.

We begin by subdividing our segments as follows. First, we remove all parts of segments
that lie within distance δ/n of any point in P (we will consider these parts separately later).
Call the remaining set of segments S′; we subdivide S′ by performing the following procedure:
for each point in p ∈ P , we consider the part of S′ that is within its Voronoi cell. Call this
part S′p. Now consider the closest point to p of any segment s ∈ S′p, call their distance d.
We create a subsegment s′, starting at the closest point of s to p, with length d · (1 + δ) (or
the length of s, if that is smaller). We remove this subsegment s′ from S′p, and iterate until
S′ is empty. Note that this way, the subsegments increase in size in both directions from the
closest point to p. Call the set of all s′ and all parts of the segments that lie within distance
δ/n Q; this is our subdivision of S.

EuroCG’19

24:4 Approximating the EMD between sets of points and line segments

I Lemma 1. Q has O
(
n2

δ log 1
δ

)
subsegments.

Proof. Consider any segment sj ∈ S. As the subsegments are created based on the closest
point, we define two variables ri and `i that denote the length of the part of sj contained
in pi’s Voronoi cell on either side of the perpendicular line from pi to the supporting
line of sj . We also have at most one subsegment per point for the part that is within
distance δ/n. The number of subsegments generated by pi on sj can then be expressed as
g(ri, `i) ≤ dlog1+δ(ri

δ/n)e+ dlog1+δ(`i

δ/n)e+ 1 ≤ log1+δ(ri

δ/n) + log1+δ(`i

δ/n) + 3. Here we are
counting the number of times we need to multiply the starting distance of δ/n by 1 + δ in
order to reach length ri or `i.

We are interested in the worst-case number of subsegments, so we want to find the
maximum value of

∑
g(ri, `i) subject to the constraint that

∑
(ri + `i) ≤ lj . As

∑
g(ri, `i)

is a sum of logarithms, this is the same as maximising the product of all g(ri, `i), which is
achieved when all ri and `i are equal (i.e. all are lj/2n). By the same argument, the worst
number of subsegments generated on all of S is upper bounded by making all lj equal (i.e.
all are 1). This gives us an upper bound on the total number of subsegments of

n∑
i=1

n∑
j=1

2 · log1+δ

(
1/2n
δ/n

)
+ 6 = 2n2 ·

ln
(1

2δ
)

ln(1 + δ) + 6n2 = O

(
n2

δ
log 1

δ

)
(7)

Note that we use the fact that ln(1 + δ) ≈ δ for small values of δ. We get that our number
of subsegments is O

(
n2

δ log 1
δ

)
in the worst case. J

We now define a complete bipartite graph G = (P ∪ Q,E), with edges between each
point-subsegment pair. The cost of each edge will simply be the shortest distance between
the point and segment it connects. A solution to a flow problem in G can be transformed
into a transport plan by assigning a piece of subsegment to a point with length equal to the
amount of flow along the corresponding edge. We will show that the EMD between P and S
is approximated by the cost of any transport plan derived from a min cost max flow in G.

First note the following general lower bound on the cost of an optimal solution:

I Lemma 2. The Earth Mover’s Distance between P and Q is bounded from below by the
cost ‖W‖ of a min cost max flow W in G.

Proof. Consider any transport plan that minimises the Earth Mover’s Distance; call the
cost associated with this plan OPT. If instead of spreading the mass equally over the whole
segment, we move all the mass to the closest point on the segment, we obtain a plan with
cost OPT∗ ≤ OPT. Such a plan is a solution to a maximum flow problem in G, as it moved
all available mass. It follows that the cost ‖W‖ of a minimum cost maximum flow W in G
satisfies ‖W‖ ≤ OPT. J

We also note the following lower bound on the value of ‖W‖:

I Lemma 3. ‖W‖ ≥ δ − 2δ2.

Proof. For each point-segment pair, the part of the segment that has distance at most
δ/n has length at most 2δ/n. The total length over all point-segment pairs is then 2δn.
This leaves n − 2δn length with distance of at least δ/n, which gives a minimum cost of
(n− 2δn) · δ/n = δ− 2δ2. Due to our construction of Q, we know that no subsegment crosses
the distance boundary of δ/n. It follows that δ − 2δ2 ≤ ‖W‖. J

M. van Kreveld, F. Staals, A. Vaxman and J.L. Vermeulen 24:5

Using the lower bound from Lemma 2 and the way we constructed Q, we can derive a
lower and upper bound on the solution obtained by the flow problem.

I Lemma 4. For any transport plan T derived from W we have that its cost ‖T ‖ ≤
(1 + δ) ‖W‖+ 2δ2.

Proof. We can upper bound ‖T ‖ by measuring all distances to the furthest point in each
subsegment. We constructed Q such that the ratio of the closest and furthest distance
between any point-subsegment pair was 1 + δ when the closest distance was at least δ/n. We
can therefore bound all parts of T where the distance is at least δ/n by (1 + δ) ‖W‖. The
total mass being moved over a distance at most δ/n in T is at most δn, giving a cost of 2δ2.
The total cost when measuring to the furthest point is therefore (1 + δ) ‖W‖+ 2δ2. J

I Corollary 5. ‖W‖ ≤ OPT ≤ (1 + δ) ‖W‖+ 2δ2.

Putting this all together, we can show that ‖T ‖ approximates OPT.

I Theorem 6. The cost of any transport plan T derived from W is a (1 + 5δ)-approximation
to the Earth Mover’s Distance between P and S for 0 < δ ≤ 1

4 .

Proof. The ratio between the upper and lower bound on ‖T ‖ is

(1 + δ) ‖W‖+ 2δ2

‖W‖

This ratio is the largest for small values of ‖W‖, so we plug in the lower bound from
Lemma 3:

(1 + δ) ‖W‖+ 2δ2

‖W‖

≤ (1 + δ)(δ − 2δ2) + 2δ2

δ − 2δ2

= 1 + δ − 2δ2

1− 2δ

= 1 + 3δ − 2δ2

1− 2δ

= 1 + δ + 2δ
1− 2δ

≤ 1 + 5δ (assuming δ ≤ 1
4)

As ‖W‖ is also a lower bound for OPT, and T can obviously not have lower cost than
the optimal transport plan, this gives a (1 + 5δ)-approximation. J

Setting δ = ε/5 gives a (1 + ε)-approximation.

3.1 Analysis
We can calculate W in O(|E| log |V |((|E| + |V |) log |V |)) time using Orlin’s algorithm for
minimum cost maximum flows [12]. In our case, |V | = O

(
n2

ε log 1
ε

)
and |E| = O

(
n3

ε log 1
ε

)
;

as |V | ∈ O(|E|), we can simplify the running time to O(|E|2 log2 |V |). This gives us a total
running time of O

(
n6

ε2 log2 (1
ε

)
log2

(
n2

ε log 1
ε

))
.

EuroCG’19

24:6 Approximating the EMD between sets of points and line segments

This time can be improved when the lengths of the segments in S are divisible by δ2/n,
by making all subsegments have the same length. When this is the case, W becomes a
minimum cost matching rather than a minimum cost maximum flow. We can then use the
algorithm by Sharathkumar and Agarwal to find a (1 + δ)-approximate bipartite matching
in O(|V | poly(log |V |, 1

δ)) time [14]. We pay for this approximate rather than optimal
matching by an extra 2δ in our approximation factor, giving a (1 + 7δ)-approximation.
Using this subdivision, the number of subsegments is n2/δ2, giving a total running time of
O
(
n2

ε2 poly
(

log n2

ε2 ,
1
ε

))
= O

(
n2 poly

(
log n

ε ,
1
ε

))
.

References
1 S. Cabello, P. Giannopoulos, C. Knauer, and G. Rote. Matching point sets with respect to

the Earth Mover’s Distance. Computational Geometry, 39(2):118–133, 2008.
2 F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun. Blue noise through optimal

transport. ACM Transactions on Graphics, 31(6):171, 2012.
3 F. de Goes, D. Cohen-Steiner, P. Alliez, and M. Desbrun. An optimal transport approach

to robust reconstruction and simplification of 2D shapes. Computer Graphics Forum,
30(5):1593–1602, 2011.

4 D. Geiß, R. Klein, R. Penninger, and G. Rote. Optimally solving a transportation problem
using voronoi diagrams. Computational Geometry, 46(8):1009 – 1016, 2013.

5 K. Grauman and T. Darrell. Fast contour matching using approximate Earth Mover’s Dis-
tance. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, pages 220–227, 2004.

6 L. V. Kantorovich. On the translocation of masses. Doklady Akademii Nauk, 37:199–201,
1942.

7 H. Lavenant, S. Claici, E. Chien, and J. Solomon. Dynamical optimal transport on discrete
surfaces. In SIGGRAPH Asia 2018 Technical Papers, pages 250:1–250:16, 2018.

8 F. Mémoli. Spectral Gromov-Wasserstein distances for shape matching. In Proceedings of
the 12th IEEE International Conference on Computer Vision Workshops, pages 256–263,
2009.

9 Q. Mérigot. A multiscale approach to optimal transport. Computer Graphics Forum,
30(5):1583–1592, 2011.

10 Q. Mérigot, J. Meyron, and B. Thibert. An algorithm for optimal transport between a
simplex soup and a point cloud. SIAM Journal on Imaging Sciences, 11(2):1363–1389,
2018.

11 G. Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie
Royale des Sciences de Paris, 1781.

12 J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations Re-
search, 41(2):338–350, 1993.

13 Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mover’s Distance as a metric for image
retrieval. International Journal of Computer Vision, 40(2):99–121, 2000.

14 R. Sharathkumar and P. K. Agarwal. A near-linear time ε-approximation algorithm for
geometric bipartite matching. In Proceedings of the 44th Annual ACM Symposium on
Theory of Computing, pages 385–394, 2012.

15 J. Solomon, F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and L. Guibas.
Convolutional Wasserstein distances: Efficient optimal transportation on geometric do-
mains. ACM Transactions on Graphics, 34(4):66, 2015.

16 Z. Su, Y. Wang, R. Shi, W. Zeng, J. Sun, F. Luo, and X. Gu. Optimal mass transport
for shape matching and comparison. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37(11):2246–2259, 2015.

17 C. Villani. Optimal Transport: Old and New. Springer Verlag, Heidelberg, 2008.

Balanced Covering Problem in Bicolored point
Sets
Sujoy Bhore1, Supantha Pandit2, and Sasanka Roy3

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
sujoy.bhore@gmail.com

2 Stony Brook University, Stony Brook, NY, USA
pantha.pandit@gmail.com

3 Indian Statistical Institute, Kolkata, India
sasanka.ro@gmail.com

Abstract
We study a variation of the classical set cover problem called the balanced covering (BC) problem
on a set of red and blue points in the Euclidean plane. Let P be a set of red and blue points in
the plane. An object is called a balanced object with respect to P , if it contains an equal number
of red and blue points from P . In the BC problem, the objective is to cover the points in P

with a minimum number of homogeneous geometric objects (i.e., unit squares, intervals) such
that each object is balanced. For points in the plane, we prove that the BC problem is NP-hard
when the covering objects are unit squares. For points on a line, we show that if the ratio of the
total numbers of reds and blues is more than 2 then, there exists no solution of the BC problem.
Subsequently, we devise a linear time exact algorithm for the BC problem with intervals. Finally,
we study the study the problem of computing a balanced object of maximum cardinality. For
this, we give polynomial time algorithms with unit squares in the plane and intervals on a line.

1 Introduction

Set cover is a well-studied problem in computer science with numerous application in various
fields. In this problem a set P of points and a set O of objects are given and the objective is
to cover all the points in P with a minimum number of objects in O. We consider a variation
of this problem on a bicolored (red and blue) point sets. Let P = R∪B be a set of bicolored
points in the plane, where R denotes a set of red and B denotes a set of blue points. We say
that a geometric object X is balanced if it covers an equal number of red and blue points.
Here we consider two problems based on the coverage of the points in P .

Balanced Covering (BC) Problem
Given a set P = R ∪ B of bicolored points in the plane, the objective is to find a
minimum collection set of balanced objects that covers P .

Maximum Balanced Object (MBO) Problem
Given a set P = R ∪ B of bicolored points in the plane, the objective is to find a
balanced object that covers the maximum number of points in P .

A related problem to the BC problem is the class cover problem: given a set of red and a
set of blue points and a set of objects, the goal is to cover all the blue points excluding the
red points with minimum number of objects [2, 1]. Another related problem is the red-blue
set cover problem [3]. Generalized versions of these problems are studied in [7]. Chan and
Hu [4] considered this problem when the covering objects are unit squares, and proved the
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

25:2 Balanced Covering Problem in Bicolored point Sets

NP-hardness and gave a PTAS. We would like to mention that, in the discrete setting, the
BC problem is equivalent to the standard geometric set cover problem and therefore becomes
NP-hard [6]. However, in the continuous setting, one would require to decide the particular
placement of the objects due to the color constraint.
Our Results: In Section 2, for points in the plane, we prove that the BC problem is
NP-hard when the covering objects are unit squares. In Section 3, for points on a line, we
show that if the ratio of the total numbers of reds and blues is more than 2 then, there
does not exist a solution of the BC problem. Subsequently, we devise a linear time exact
algorithm for the BC problem with intervals. Finally, we study the problem of computing a
single balanced object of maximum cardinality. For this, we give polynomial time algorithms
with unit squares (in section 3) in the plane and intervals on a line.

2 NP-Hardness: BC problem with Unit Squares

We prove that the BC problem with unit squares is NP-hard by a reduction from the
rectilinear planar monotone 3SAT (shortly RPM3SAT) problem that is known to be NP-
complete [5]. We define this problem as follows. A clause is said to be a positive (resp.
negative) clause if all the literals it contains are positive (resp. negative). We are given a
3SAT instance φ with n variables and m clauses either positive or negative. The variables
are positioned on a horizontal line. The positive clauses are above this line, and they connect
to its corresponding variables with three legs: (i) , (ii) , and (iii) . The negative clauses
are below the line, and they connect to its corresponding variables with three legs: (iv) ,
(v) , and (vi) . Finally, these legs do not intersect each other. The objective is to find a
satisfying assignment for φ. See Figure 1 for an instance of the RPM3SAT problem.

C1 = (X1 ∨X4 ∨X5)

X1 X2 X3 X4 X5

C3 = (X2 ∨X3 ∨X4)

C2 = (X3 ∨X4 ∨X5)

C1 = (X1 ∨X2 ∨X5)

Figure 1 An instance of the RPM3SAT problem.

We construct an instance Iφ of the BC problem from an instance φ of the RPM3SAT prob-
lem. Let {u, v} be a pair of two differently colored points that are ε (0 < ε� 1) distance
apart. We call such a pair a site. We assume that the given points are a collection of sites.
Variable Gadget: The gadget for the variable xi has two parts: a cycle and a set of chains
that are attached to the cycle. Let d be the maximum number of clauses in which xi is
present, i.e, the number of legs attached to xi. Then, xi contains d chains one for each
leg. Consider two imaginary axis-parallel horizontal lines `1 and `2 that are suitably placed
such that any two sites placed on `1 and `2 cannot be covered by a unit square (see Figure
2). We place 6m + 2 sites s1, s2, . . . , s6m+2 on `1 such that the distance between any two
consecutive sites is exactly 1. In a similar fashion, we place 6m + 2 sites t1, t2, . . . , t6m+2
sites on `2 as well (see Figure 2). We use 6 additional sites and place them in the following
way; 3 sites each to the left and right of the above arrangement (see Figure 2). Thus as a
total of 12m + 10 sites form a cycle like structure. Notice that, due to this construction,

S. Bhore et al. 25:3

Figure 2 The cycle gadget corresponding to a variable xi.

in the continuous balanced covering any unit square can cover at most two sites that are
consecutive along the cycle. In Figure 2, we demonstrate a set of possible canonical unit
squares that cover the sites. Note that in an optimal balanced covering exactly half of the
squares are selected: either all solid or all dotted. There are three types of chains that are
attached to the cycle of a variable gadget. Each chain is a specific geometric embedding of a
set of sites. The gadgets of types (i) and (ii) chains are shown in Figure 3(a) and Figure 3(b)
respectively. The other types ((iii)-(vi)) of chains are constructed by a simple modification
of types (i) and (ii) chains.

(a) (b)

Figure 3 The chains of a variable (a)Type 1 (b)Type 2.

It needs to be mentioned that the number of sites is not fixed for every chain, even
for similar chains of different clauses. Now we explain how the chains are attached to the
variable cycle. Let C1, C2, . . . be the order of the positive clauses that connect to a variable.
We associate the four site s6k−3, s6k−2, s6k−1, and s6k in the cycle with the k-th clause in
this order. We remove the two sites s6k−2 and s6k−1 from the cycle and perturb the other
two sites s6k−3 and s6k slight vertically up. See Figure 3 for detailed explanation.
I Observation 1. Let Sxi

be a set of unit squares associated with xi. Exactly δi = |Sxi
|/2

squares (either all solid or all dotted) are required for an optimal balanced-covering of xi.
Clause: We describe a clause gadget and how it interacts with variable gadgets. Assume,
w.l.o.g., that Ci = (xi, yi, zi) is a positive clause. For Ci, we take a special site wi called the

EuroCG’19

25:4 Balanced Covering Problem in Bicolored point Sets

Figure 4 Positive clause interaction with the three variables it contains.

clause-site that connects the chains corresponding to the variables. The placement of wi with
respect to the three chains is shown in Figure 4. Notice that, no two sites from two different
chains are covered by a single square. Clearly, Iφ can be constructed in polynomial time.

I Lemma 2.1. φ is satisfiable if and only if Iφ has a balance cover with δ =
∑n
i=1 δi squares.

Thereby, we conclude the following theorem.

I Theorem 2.2. The BC problem is NP-hard.

3 Points on a Line

Let P be a set of of m red and n blue points on a line. We show that there is no solution
for the BC problem when m

n > 2. Note, however it is not guaranteed that there is always a
solution for BC problem if mn ≤ 2.

I Theorem 3.1. Given a set P of m red points and n blue points on a real line L, if mn > 2
then, there does not exist a solution for the BC problem.

Proof. For the sake of contradiction, let us assume that there is an optimal solution,
OPT = {I1, . . . , Ij} of the BC problem that covers P .

I Claim 1. Every blue point bi ∈ P is contained in at most two intervals in OPT .

Proof. For the sake of contradiction, let bi be contained in at least three intervals (say
Ii, Ij , Ik) in OPT . We select the two intervals from Ii, Ij , Ik; one whose left end point is left
most and the other whose right end point is right most. Clearly, removing Ii, Ij , Ik from
OPT and adding these two intervals in OPT still covers all the points, a contradiction. J

For each interval Ii ∈ OPT , we define a red-blue pairing in the following manner. Let
S(Ii) ⊆ P be the subset of points contained in Ii. Let {r1, . . . , rp} and {b1, . . . , bp} be the
red and blue points in sorted order (x-coordinate wise) in Ii. Now, we consider the red-blue
pairs {{r1, b1}, . . . {rp, bp}}. For an interval Ik, consider a pair {ri, bi} (for some i), we say
bi balances ri. Now any blue point bi that is contained in an interval Ik can balance exactly
one red point in Ik. Using Claim 1, we conclude that each blue point bi can balance at most
two different red points. Hence, the ratio between reds and blues is at most 2. J

S. Bhore et al. 25:5

3.1 Exact Algorithms for Intervals

We give exact algorithms for BC and MBO problems while the covering objects are intervals.
We denote them as BCI and MBI problem, respectively. Let P = {p1, p2, . . . , pn} be a set of
red and blue points on a line given in sorted order. The idea is to obtains a set of candidate
intervals, and then choose intervals from this set with some modification. Observe that, in
any optimal solution, a chosen balanced interval is not contained in any other chosen interval.
Finding candidate intervals: We maintain a counter c (initially it is empty) and an
array A[n]. For each point pi ∈ P in the order, if pi is red we increase the value of c by 1,
otherwise decrease the value by 1, and set A[i] = c. Note that the values in A are integers
and in the range [−n, n]. Let l and h be the minimum and maximum values of the counter c,
respectively. Note that l and h can be negative. We construct a table T of (|l|+ |h|+ 1) rows
and 3 columns as follows. The first column stores the values in the range [l, h] in order. The
values of the second and third columns are initially empty. We update some of the entries
during the following procedure. We go through each entry of A one by one. For the ith entry
i.e., A[i], if T [A[i]][2] is empty then T [A[i]][2] = i. Else T [A[i]][3] = i. Now for each row i we
generate an interval if T [i][3] is non-empty. Therefore, we generates at most n/2 intervals
based on the indices of A between the l and h.

I Observation 2. For each candidate interval the difference in reds and blues is at most 1.

Now we make each candidate interval (say Ic) that is balanced in the following way. Let
(i, j) be the index of Ic. We consider the 9 intervals {i− 1, i, i+ 1} × {j − 1, j, j + 1} and
choose the maximum balance one. We make it for all candidate intervals. This process gives
us a set of candidate balance intervals. Now to find the maximum balance interval just return
the candidate balance interval that contains maximum number of points. For covering the
whole point set P , we run the standard greedy algorithm on the candidate balance intervals
and return the minimum cardinality subset of intervals that covers P .

I Theorem 3.2. Given a set P of red and blue points in sorted order on the line,
1. finding the largest balanced interval requires O(n) time and
2. finding minimum number of balanced intervals that cover P also requires O(n) time.

4 Exact Algorithm for Unit Squares

Let P = {p1, p2, . . . , pn} be a set of red and blue points on a line given in sorted order. We
study the MBO problem with unit square (shortly, MBS). Consider a unit square s, it is
called a 2-anchored square if there is at least two distinct points on any of its two consecutive
sides. Notice that, the output of the MBS problem is a 2-anchored square, otherwise we
can always translate it to make such one without loosing any point (see Figure 5(a)). The
naive algorithm for the MBS problem is following. First, we build a range tree T of P . Now,
for each 2-anchored square we check in T , the points that is contained in that square, and
report the maximum balanced square. This process takes O(n2 logn) time. We give a simple
O(n2) time algorithm for the MBS problem.

For each point pi ∈ P , let S(pi) be the square centered at pi. If pi is a blue point (resp.
red point) then, S(pi) is a blue square (resp. red square). Let S be the set of red and blue
squares based on the points of P . Let E be the set that contains the left and right endpoints
of the squares, and |E| = 2n. We consider the points in E in sorted order from left-to-right
based on their x-coordinates.

EuroCG’19

25:6 Balanced Covering Problem in Bicolored point Sets

(a)

`

(b)

Figure 5 (a) Translation into a 2-anchored square. (b) A vertical line intersecting a set of
bicolored squares.

I Observation 3. Consider any two points pi, pj ∈ P such that S(pi) and S(pj) intersect.
For an arbitrary point pk that is in the intersecting region of S(pi) and S(pj), the square
S(pk) contains both pi and pj .

We use the following procedure to find a maximum balanced square. Let ` be a vertical
sweep line that considers the squares from left-to-right. Whenever, ` reaches to a point in
E, we call it an event point and indeed we have 2n event points. For each i ∈ [2n], the
line ` passes through a point pi ∈ E, and let S ′ ⊆ S be a subset of squares intersecting `
(see Figure 5(b)). Beside that we maintain two counters (r, b) for each square. Whenever a
square s enters or leaves ` we update in the range tree the (r, b) values of all the nodes whose
corresponding squares intersecting s. Note that, at each event point, we basically have a set
of red and blue unit intervals on `. In linear time, we can compute the largest balanced subset
clique. We know that, their corresponding squares have a common intersecting region. It is
possible to place pk in that region such that S(pk) is a balanced square (from observation 3).
This process takes O(n2) time.

I Theorem 4.1. Let P be a set of red and blue points on a line given in sorted order, there
is an algorithm that computes maximum balanced unit square in O(n2) time.

References
1 Sergey Bereg, Sergio Cabello, José Miguel Díaz-Báñez, Pablo Pérez-Lantero, Carlos Seara,

and Inmaculada Ventura. The class cover problem with boxes. Computational Geometry,
45(7):294 – 304, 2012.

2 Adam Cannon and Lenore Cowen. Approximation algorithms for the class cover problem.
Ann. Math. Artif. Intell., 40(3-4):215–224, 2004.

3 Robert D. Carr, Srinivas Doddi, Goran Konjevod, and Madhav Marathe. On the red-blue
set cover problem. In SODA, pages 345–353, 2000.

4 Timothy M. Chan and Nan Hu. Geometric red–blue set cover for unit squares and related
problems. Computational Geometry, 48(5):380 – 385, 2015.

5 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geometry Appl., 22(3):187–206, 2012.

6 Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information processing letters, 12(3):133–137, 1981.

7 Apurva Mudgal and Supantha Pandit. Generalized class cover problem with axis-parallel
strips. In Workshop on Algorithms and Computation, WALCOM, pages 8–21, 2014.

Testing Transmission Graphs for Acyclicity∗

Haim Kaplan1, Katharina Klost2, Wolfgang Mulzer2, Liam
Roditty3, and Micha Sharir1

1 Tel Aviv University, Israel
{haimk, michas}@post.tau.ac.il

2 Institut für Informatik, Freie Universität Berlin, Germany
{kathklost,mulzer}@inf.fu-berlin.de

3 Bar Ilan University, Israel
liamr@macs.biu.ac.il

Abstract
Let S be a set of n point sites in the plane, such that each site s ∈ S has an associated radius
rs > 0. The transmission graph on S, denoted T (S), is the directed graph with vertex set S
where st is a directed edge if and only if |st| ≤ rs, i.e., if t lies in the disk Ds with center s
and radius rs. A basic question is to decide whether T (S) is acyclic, i.e., whether T (S) does
not contain a directed cycle. We show that if our notion of directed cycle also includes cycles
with two edges, then this problem can be solved in O(n logn) expected time, independent of the
number of edges in T (S).

Along the way, we encounter a batched range searching problem that may be interesting in
its own right: given O(n) query triples of the form (p, r1, r2), with p ∈ R2 and 0 < r1 < r2, report
for every query (p, r1, r2) one site s ∈ S with p ∈ Ds and rs ∈ [r1, r2), if it exists. We show how
to solve this range searching problem in O(n logn) expected time.

1 Introduction

Transmission graphs are a popular model for directed sensor networks with different trans-
mission radii (see, e.g., [8] and the references therein). We are given a set S of n point sites
in the plane, representing the locations of the sensors. Each site s ∈ S has an associated
radius rs > 0 that models the transmission strength of the corresponding sensor. The disk
for the site s, denoted Ds, is the disk with center s and radius rs. The directed transmission
graph T (S) has vertex set S and a directed edge from a site s to a site t if and only if t ∈ Ds,
i.e., if the sensor s can reach the sensor t. Throughout, we will assume that S is in general
position, which means that no site lies on the disk boundary of any other site and that all
associated radii are pairwise distinct. Even though transmission graphs may contain Ω(n2)
edges, it turns out that many problems on them can be solved without explicitly generating
all those edges [7, 8].

Here, we consider the basic problem of testing whether T (S) contains a directed cycle.
This is a sequence s1, . . . , sk of k ≥ 2 sites such that s1 ∈ Dsk

and such that si+1 ∈ Dsi
, for

i = 1, . . . , k − 1. There are two reasonable variants of this question, depending on whether
we allow the case k = 2 or insist on k ≥ 3. We show that if k = 2 is permitted, this problem
can be solved in O(n logn) expected time, independent of the number of edges.

Our algorithm is based on the observation that if T (S) contains a directed cycle, then
it must contain a directed cycle with two edges. Furthermore, we identify a batched range
query problem that may be interesting by itself. Given n disks in the plane, we want to
efficiently answer a batch of n queries, each consisting of a point and a radius range. For

∗ Partially supported by ERC STG 757609 and GIF grant 1367/2015.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

26:2 Testing Transmission Graphs for Acyclicity

each such query, we want to find a disk whose radius lies in the given range and that contains
the given query point. Kaplan et al. [7] considered a specialized version of this range query,
using a nearest neighbor data structure distributed on a balanced binary search tree. Their
solution achieves worst-case running time O(n log2 n). Another related query structure is
due to Imai et al. [6]. Their structure stores a set of n disks. The preprocessing time is
O(n logn), and it can find for any point p ∈ R2 in O(logn) time a disk that contains p, if it
exists. Our structure uses a similar high-level approach as the structure of Kaplan et al. [7].
To achieve a better running time, we lift the problem to R3 and draw on previous results on
convex hulls and the intersection of convex polyhedra.

2 Range Queries

We begin by describing our batched range searching problem. The setting is as follows: let S
be a set of n sites in R2, each with an associated radius rs > 0. Let Ds be the disk with
radius rs and center s. We will consider the following query problem:
(R) We are given O(n) query triples (p, r1, r2), where p ∈ R2 and r2 ≥ r1 > 0. For every

query triple, we would like to find a site s ∈ S with rs ∈ [r1, r2) and p ∈ Ds, if it exists.

2.1 Canonical Intervals, Paths, and Nodes
The queries in (R) concern sites whose associated radii lie in given intervals. Just as in range
trees [1, Chapter 5], we subdivide each such query interval [r1, r2) into O(logn) pieces from
a fixed set of canonical intervals. For this, we build a balanced binary tree B on S. For an
example of the tree, illustrating the concepts introduced in this section see Figure 1 The
leaves of B are the sites of S, sorted from left to right by increasing associated radius. The
tree B has n leaves, O(n) vertices, and height O(logn). For each vertex v ∈ B, let Iv be the
sorted list of sites in the leaves of the subtree rooted at v. We call the sets Iv, for v ∈ B, the
canonical intervals of S. There are O(n) of them.

Next, we define canonical paths and canonical nodes for a query q = (p, r1, r2). For a
radius r > 0, the predecessor of r in S is the site s ∈ S with the largest radius rs ≤ r. The
proper predecessor of r is the site s ∈ S with the largest radius rs < r. The successor and
proper successor of r are defined analogously. Let [r1, r2) be the query interval of q. We
consider the path π1 in B from the root to the leaf with the proper predecessor t1 of r1 and
the path π2 in B from the root to the leaf with the successor t2 of r2. If t1 does not exist,
we take π1 as the left spine of B, and if t2 does not exist, we take π2 as the right spine of
B. Then, π1 and π2 are called the canonical paths for q. The set of canonical nodes for q is
defined as follows: for each vertex v in π1 \ π2, we include the right child of v if it is not in
π1, and for each v in π2 \ π1, we include the left child of v if it is not in π2. Furthermore, we
include the last node of π1 if t1 does not exist, and the last node of π2 if t2 does not exist.

I Lemma 2.1. The total size of the canonical intervals is O(n logn), and the tree B together
with the sorted canonical intervals can be built in O(n logn) time. For any query q, there are
O(logn) canonical nodes, and they can be found in O(logn) time. The canonical intervals
for the canonical nodes of q constitute a partition of the query interval for q.

Proof. Since a site s ∈ S appears in O(logn) canonical intervals, the total size of the
canonical intervals is O(n logn). To construct B, we sort S according to the associated
radii rs, and we build B on top of the sorted list. To find the sorted canonical intervals, we
perform a bottom-up traversal of B, obtaining the canonical interval for each internal node
by copying and joining the canonical intervals of its children.

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, and M. Sharir 26:3

Canonical path of (p, rs3 , rs8)

Canonical nodes of (p, rs3 , rs8)

Vertex containing s9 in Iv

≤ s8

≤ s4

≤ s2

≤ s1

s1 s2

≤ s4

s3 s4

≤ s6

≤ s5

s5 s6

≤ s8

s7 s8

≤ s12

≤ s10

≤ s9

s9 s10

≤ s11

s11 s12

≤ s14

≤ s13

s13 s14

≤ s15

s15 s16

Figure 1 An example of canonical intervals, paths, and nodes.

The bound on the number of canonical nodes for q follows, since B has height O(logn).
To find them, we trace the canonical paths for q in B. The partition property holds directly
by construction. J

2.2 The Query Procedure
In order to solve a batch of queries of type (R), we build a dedicated search structure for
each canonical interval, and we solve all queries that encompass one canonical interval in
a single go. This means that we have a set of disks in the plane and a set of query points,
and we need to determine for each query point whether it is contained in the union of the
given disks. To solve this batched query efficiently, we exploit the well-known lifting map.
Let U =

{
(x, y, z) | x2 + y2 = z

}
be the three-dimensional unit paraboloid. For a point

p ∈ R2, the lifted version p̂ of p is its vertical projection onto U . Each disk Ds, for s ∈ S,
is mapped to an upper halfspace D̂s, so that the projection of D̂s ∩ U onto the xy-plane is
the set R2 \Ds;1 see Figure 2. Now, the union of a set of disks in R2 is represented as the
intersection of the lifted upper halfspaces in R3.

I Lemma 2.2. The range searching problem (R) can be solved in O(n logn) expected time.

Proof. For each v ∈ B, we construct a three-dimensional representation of the union of
the disks in the canonical interval Iv. As explained, this is the intersection Ev of the lifted
three-dimensional halfspaces D̂s, for s ∈ Iv. The intersection of two three-dimensional convex
polyhedra with a total of m vertices can be computed in O(m) time [2, 3]. Therefore, we
can construct all the polyhedra Ev, for v ∈ B, in overall O(n logn) time, by a bottom-up
traversal of B (by Lemma 2.1, the total number of vertices of these polyhedra is O(n logn)).

For the batched query processing, we computed a polytope Q̂v for each v ∈ B. The
polytope Q̂v is obtained by determining all the points p that appear in a query (p, r1, r2)

1 This halfspace is bounded by the plane z = 2xsx − x2
s + 2ysy − y2

s + r2
s , where s = (xs, ys).

EuroCG’19

26:4 Testing Transmission Graphs for Acyclicity

Ds
t

D̂s

t̂

Figure 2 Lifting disks and points. For D̂ only the bounding plane is shown.

that has v as a canonical node, lifting those point points p to their three-dimensional
representations p̂, and taking the convex hull of the resulting three-dimensional point set.
The lifted query points all lie on the unit paraboloid U , so every lifted query point appears
as a vertex on Q̂v. To find all polytopes Q̂v, for v ∈ B, efficiently, we proceed as follows: let
A be the three-dimensional point set obtained by taking all points that appear in a query
and by lifting them onto the unit paraboloid. We compute the convex hull of A in O(n logn)
time. Then, for each v ∈ B, we find the convex hull of all lifted queries that have v in their
canonical path. This can be done in O(n logn) total expected time by a top-down traversal
of B. We already have the polytope for the root of B. To compute the polytope for a child
node, given that the polytope for the parent node is available, we use the fact that for any
polytope E in R3 with m vertices, we can compute the convex hull of any subset of the
vertices of E in O(m) expected time [4]. Once we have for each v ∈ B the convex hull of the
lifted query points that have v on their canonical path, we can compute for each v ∈ B the
polytope Q̂v that is the convex hull of the lifted query points that have v as a canonical node.
For this, we consider the canonical path polytope stored at the parent node of v, and we
again use the algorithm from [4] to extract the convex hull for the lifted query points that
have v as a canonical node.

Now that the polyhedra Q̂v and the polytopes Ev are available, for all v ∈ B, we can
answer the queries as follows: for each node v ∈ B, we must find the vertices of Q̂v that do
not lie inside of Ev. These are exactly the vertices of Q̂v that are not vertices of Q̂v ∩ Ev. As
mentioned, the intersections Q̂v ∩ Ev can be found in linear time for each node v ∈ B, for a
total time O(n logn), and once the intersection is available, we can easily find all vertices
p̂ of Q̂v that are not vertices of Q̂v ∩ Ev (e.g., using radix sort). For any such vertex, we
need to find an answer for the corresponding query, if is has not yet been found. For this,
we create a data structure that supports ray shooting queries on Ev in O(logn) time. This

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, and M. Sharir 26:5

can be done in O(|Ev|) time [5], so the overall construction time is O(n logn). We answer
a vertical ray shooting query for the query point p in Ev in O(logn) to find a disk in the
given radius range that contains p. Since this is done at most once for each query triple, the
overall time remains O(n logn), as desired. J

3 Testing for Acyclicity

Now we consider the problem of testing if a given transmission graph is acyclic, where we
allow cycles with two edges. Let s, t be two sites such that the edges st and ts both exist in
T (S). We call s, t a double edge. Double edges in a transmission graph can be characterized
by certain configurations between sites:

I Lemma 3.1. Let s, t ∈ S with t ∈ Ds and rs ≤ rt. Then s, t is a double edge in T (S).

Proof. The edge ts exists, since t ∈ Ds, or, equivalently, |st| ≤ rs. By the second assumption,
we get |st| ≤ rs ≤ rt, and thus both edges exist. J

Now we use Lemma 3.1 to reduce the problem of deciding if T (S) is acyclic to finding
double edges in T (S).

I Lemma 3.2. A transmission graph T (S) contains a cycle if and only if it contains a double
edge.

Proof. If T (S) contains a double edge, we already have a cycle of length two. Now let
C = s1, . . . , sk be a cycle in T (S), such that s1 is the site of minimum radius in C. We have
s2 ∈ Ds1 by the definition of C and rs1 ≤ rs2 by assumption. By Lemma 3.1, we have that
s1, s2 is the desired double edge. J

We use the range query data structure from Section 2.2 to check if a given transmission
graph is acyclic.

I Lemma 3.3. Let T (S) be a transmission graph on a set S with n sites. In O(n logn)
expected time, we can check if T (S) is acyclic.

Proof. By Lemma 3.2, it suffices to check if T (S) contains a double edge. We can do this
by using the range query data structure as follows. Let rmin be the minimum radius of any
input disk. For each site t, we create a query triple (t, rmin, rt) and perform a batched range
query (R) with these triples on all sites. If there is a site t for which the query returns a
value, we have, by the choice of the queries, that t is contained in the disk for some smaller
site. This directly implies the existence of a double edge by Lemma 3.1. In the other case,
we know that there are no double edges and we can conclude that the graph is acyclic. J

4 Conclusion

We showed how to check a transmission graph for acyclicity in O(n logn) time, when we
include cycles of length two. Right now, we are working on the same setting, while disallowing
these cycles.

Regarding the range query data structure, it would be interesting to derandomize it
within the same time bound. Furthermore, at the moment we are only able to find one
disk containing each given point. In particular with regard to applications in transmission
graphs, it would be useful to be able to find all disks containing each query point, in overall
O((n+ k) logn) time, where k is the overall number of disks reported.

EuroCG’19

26:6 Testing Transmission Graphs for Acyclicity

References
1 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark H. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag, third edition, 2008.
2 Timothy M. Chan. A simpler linear-time algorithm for intersecting two convex polyhedra

in three dimensions. Discrete Comput. Geom., 56(4):860–865, December 2016.
3 Bernard Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhe-

dra. SIAM J. Comput., 21(4):671–696, 1992.
4 Bernard Chazelle and Wolfgang Mulzer. Computing hereditary convex structures. Discrete

Comput. Geom., 45(4):796–823, 2011.
5 David P. Dobkin and David G. Kirkpatrick. Fast detection of polyhedral intersections. In

Proc. 9th Internat. Colloq. Automata Lang. Program. (ICALP), pages 154–165, 1982.
6 Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the Laguerre geometry

and its applications. SIAM J. Comput., 14(1):93–105, 1985.
7 Haim Kaplan, Katharina Klost, Wolfgang Mulzer, and Liam Roditty. Finding the girth

in disk graphs and a directed triangle in transmission graphs. In Proc. 34th European
Workshop Comput. Geom. (EWCG), pages 68:1–6, 2018.

8 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Spanners for directed
transmission graphs. SIAM J. Comput., 47(4):1585–1609, 2018.

Dynamic Maintenance of the Lower Envelope of
Pseudo-Lines

Pankaj K. Agarwal1, Ravid Cohen2, Dan Halperin2, and Wolfgang
Mulzer3

1 Department of Computer Science, Duke University,
Durham, NC 27708, USA
pankaj@cs.duke.edu

2 School of Computer Science, Tel-Aviv University,
Tel-Aviv 69978, Israel

3 Institut für Informatik, Freie Universität Berlin,
D-14195 Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract
We present a fully dynamic data structure for the maintenance of lower envelopes of pseudo-
lines. The structure has O(log2 n) update time and O(logn) vertical ray shooting query time.
To achieve this performance, we devise a new algorithm for finding the intersection between
two lower envelopes of pseudo-lines in O(logn) time, using tentative binary search; the lower
envelopes are special in that at x = −∞ any pseudo-line contributing to the first envelope lies
below every pseudo-line contributing to the second envelope. The structure requires O(n) storage
space.

1 Introduction

A set of pseudo-lines in the plane is a set of infinite x-monotone curves each pair of which
intersects at exactly one point. Arrangements of pseudo-lines have been intensively studied
in discrete and computational geometry; see the recent survey on arrangements [7] for a
review of combinatorial bounds and algorithms for arrangements of pseudo-lines. In this
paper we consider the following problem: Given n pseudo-lines in the plane, dynamically
maintain their lower envelope such that one can efficiently answer vertical ray shooting
queries from y = −∞. The dynamization is under insertions and deletions. If we were
given n lines (rather than pseudo-lines) then we could have used any of several efficient
data structures for the purpose [3–5, 9, 10]; these are, however, not directly suitable for
pseudo-lines. There are several structures that rely on shallow cuttings and can handle
pseudo-lines [2,6,8]. The solution that we propose here is, however, considerably more efficient
than what these structures offer. We devise a fully dynamic data structure with O(log2 n)
update-time, O(logn) vertical ray-shooting query-time, and O(n) space for the maintenance
of n pseudo-lines. The structure is a rather involved adaptation of the Overmars-van Leeuwen
structure [10] to our setting, which matches the performance of the original algorithm for the
case of lines. The key innovation is a new algorithm for finding the intersection between two
lower envelopes of planar pseudo-lines in O(logn) time, using tentative binary search (where
each pseudo-line in one envelope is “smaller” than every pseudo-line in the other envelope in
a sense to be made precise below). To the best of our knowledge this is the most efficient
data structure for the case of pseudo-lines to date.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

27:2 Dynamic Maintenance of Lower Envelope of Pseudo-Lines

2 Preliminaries

Let E be a finite family of pseudo-lines in the plane, and let ` be a vertical line strictly to
the left of the left-most intersection point between lines in E (namely to the left of all the
vertices of the arrangement A(E)). The line ` defines a total order ≤ on the pseudo-lines in
E, namely for e1, e2 ∈ E, we have e1 ≤ e2 if and only if e1 intersects ` below e2. Since each
pair of pseudo-lines in E crosses exactly once, it follows that if we consider a vertical line `′
strictly to the right of the right-most vertex of A(E), the order of the intersection points
between `′ and E, from bottom to top, is exactly reversed.

The lower envelope L(E) of E is the x-monotone curve obtained by taking the pointwise
minimum of the pseudo-lines in E. Combinatorially, the lower envelope L(E) is a sequence of
connected segments of the pseudo-lines in E, where the first and last segment are unbounded.
Two properties are crucial for our data structure: (A) every pseudo-line contributes at most
one segment to L(E); and (B) the order of these segments corresponds exactly to the order
≤ on E defined above. In fact, our data structure works for every set of planar curves with
properties (A) and (B) (with an appropriate order ≤), even if they are not pseudo-lines in
the strict sense.

We assume a computational model in which primitive operations on pseudo-lines, such as
computing the intersection point of two pseudo-lines or determining the intersection point of
a pseudo-line with a vertical line can be performed in constant time.

3 Data structure and operations

The tree structure. Our primary data structure is a balanced binary search tree Ξ. Such a
tree data structure supports insert and delete, each in O(logn) time. The leaves of Ξ contain
the pseudo-lines, from left to right in the sorted order defined above. An internal node v ∈ Ξ
represents the lower envelope of the pseudo-lines in its subtree. More precisely, every leaf v
of Ξ stores a single pseudo-line ev ∈ E. For an inner node v of Ξ, we write E(v) for the set
of pseudo-lines in the subtree rooted at v. We denote the lower envelope of E(v) by L

(
v
)
.

The inner node v has the following variables:
f , `, r: a pointer to the parent, left child and right child of v, respectively;
max: the maximum pseudo-line in E(v);
Λ: a balanced binary search tree that stores the prefix or suffix of L(v) that is not on
the lower envelope L(f) of the parent (in the root, we store the lower envelope of E).
The leaves of Λ store the pseudo-lines that support the segments on the lower envelope,
with the endpoints of the segments, sorted from left to right. An inner node of Λ stores
the common point of the last segment in the left subtree and the first segment in the
right subtree. We will need split and join operations on the binary trees, which can be
implemented in O(logn) time.

Queries. We now describe the query operations available on our data structure. In a vertical
ray-shooting query, we are given a value x0 ∈ R, and we would like to find the pseudo-line
e ∈ E where the vertical line ` : x = x0 intersects L(E). Since the root of Ξ explicitly stores
L(E) in a balanced binary search tree, this query can be answered easily in O(logn) time.

I Lemma 3.1. Let ` : x = x0 be a vertical ray shooting query. We can find the pseudo-line(s)
where ` intersects L(E) in O(logn) time.

Proof. Let r be the root of Ξ. We perform an explicit search for x0 in r.Λ and return the
result. Since r.Λ is a balanced binary search tree, this takes O(logn) time. J

P. K. Agarwal, R. Cohen, D. Halperin and W. Mulzer 27:3

Update. To insert or delete a pseudo-line e in Ξ, we follow the method of Overmars and
van Leeuwen [10]. We delete or insert a leaf for e in Ξ using standard binary search tree
techniques (the v.max pointers guide the search in Ξ). As we go down, we construct the
lower envelopes for the nodes hanging off the search path, using split and join operations on
the v.Λ trees. Going back up, we recompute the information v.Λ and v.max. To update the
v.Λ trees, we need the following operation: given two lower envelopes L` and Lr, such that
all pseudo-lines in L` are smaller than all pseudo-lines in Lr, compute the intersection point
q of L` and Lr. In the next section, we will see how to do this in O(logn) time, where n
is the size of E. Since there are O(logn) nodes in Ξ affected by an update, this procedure
takes O(log2 n) time. More details can be found in the literature [10,11].

I Lemma 3.2. It takes O(log2 n) to insert or remove a pseudo-line in Ξ.

4 Finding the intersection point of two lower envelopes

Given two lower envelopes L` and Lr such that all pseudo-lines in L` are smaller than all
pseudo-lines in Lr, we would like to find the intersection point q between L` and Lr. We
assume that L` and Lr are represented as balanced binary search trees. The leaves of L`

and Lr store the pseudo-line segments on the lower envelopes, sorted from left to right. We
assume that the pseudo-line segments in the leaves are half-open, containing their right, but
not their left endpoint in L`; and their left, but not their right endpoint in Lr.1 Thus, it is
uniquely determined which leaves of L` and Lr contain the intersection point q. A leaf v
stores the pseudo-line L(v) that supports the segment for v, as well as an endpoint v.p of
the segment, namely the left endpoint if v is a leaf of L`, and the right endpoint if v is a leaf
of Lr.2 An inner node v stores the intersection point v.p between the largest pseudo-line in
the left subtree v.` of v and the smallest pseudo-line in the right subtree v.r of v, together
with the lower envelope L(v) of these two pseudo-lines. These trees can be obtained by
appropriate split and join operations from the Λ trees stored in Ξ.

Let u∗ ∈ L` and v∗ ∈ Lr be the leaves whose segments contain q. Let π` be the path
in L` from the root to u∗ and πr the path in Lr from the root to v∗. Our strategy is as
follows: we simultaneously descend in L` and in Lr. Let u be the current node in L` and v
the current node in Lr. In each step, we perform a local test on u and v to decide how to
proceed. There are three possible outcomes:
1. u.p is on or above L(v): the intersection point q is equal to or to the left of u.p. If u is

an inner node, then u∗ cannot lie in u.r; if u is a leaf, then u∗ lies strictly to the left of u;
2. v.p lies on or above L(u): the intersection point q is equal to or to the right of v.p. If v is

an inner node, then v∗ cannot lie in v.`; if v is a leaf, then v∗ lies strictly to the right of v;
3. u.p lies below L(v) and v.p lies below L(u): then, u.p lies strictly to the left of v.p (since

we are dealing with pseudo-lines). It must be the case that u.p is strictly to the left of q
or v.p is strictly to the right of q (or both). In the former case, if u is an inner node, u∗
lies in or to the right of u.r and if u is a leaf, then u∗ is u or a leaf to the right of u. In
the latter case, if v is an inner node, v∗ lies in or to the left of v.` and if v is a leaf, then
v∗ is v or a leaf to the left of v; see Figure 1.

1 We actually store both endpoints in the trees, but the intersection algorithm uses only one of them,
depending on the role the tree plays in the algorithm.

2 If the segment is unbounded, the endpoint might not exist. In this case, we use a symbolic endpoint at
infinity that lies below every other pseudo-line.

EuroCG’19

27:4 Dynamic Maintenance of Lower Envelope of Pseudo-Lines

Figure 1 An example of Case 3. L` is blue; Lr is red. The solid pseudo-lines are fixed. The
dashed pseudo-lines are optional, namely, either none of the dashed pseudo-lines exists or exactly
one of them exists. u.p and v.p are the current points; and Case 3 applies. Irrespective of the local
situation at u and v, the intersection point can be to the left of u.p, between u.p and v.p or to the
right of v.p, depending on which one of the dashed pseudo-lines exists.

Overmars and van Leeuwen [10,11] describe a method for the case that L` and Lr contain
lines. Unfortunately, it is not clear how their strategy applies in the more general setting of
pseudo-lines. The reason for this lies in Case 3: in this case, it is not immediately obvious
how to proceed, because the correct step might be either to go to u.r or to v.`. In the case
of lines, Overmars and van Leeuwen can solve this ambiguity by comparing the slopes of the
relevant lines. For pseudo-lines, however, this does not seem to be possible. For an example,
refer to Figure 1, where the local situation at u and v does not determine the position of the
intersection point q. Therefore, we present an alternative strategy.

u

v

L` Lr

Figure 2 The invariant: the current search nodes are u and v. uStack contains all nodes on the
path from the root to u where the path goes to a right child (orange squares), vStack contains all
nodes from the root to v where the path goes to a left child (orange squares). The final leaves u∗

and v∗ are in one of the gray subtrees; and at least one of them is under u or under v.

We will maintain the invariant that the subtree at u contains u∗ or the subtree at v
contains v∗ (or both). When comparing u and v, one of the three cases occurs. In Case 3,
u∗ must be in u.r, or v∗ must be in v.`; see Figure 3.

We move u to u.r and v to v.`. One of these moves must be correct, but the other move
might be mistaken: we might have gone to u.r even though u∗ is in u.` or to v.` even though
v∗ is in v.r. To correct this, we remember the current u in a stack uStack and the current v
in a stack vStack, so that we can revisit u.` or v.r if it becomes necessary. This leads to the
general situation shown in Figure 2: u∗ is below u or in a left subtree of a node on uStack,

P. K. Agarwal, R. Cohen, D. Halperin and W. Mulzer 27:5

u

v
Case 3

u

v

L` Lr L` Lr

Figure 3 Comparing u to v: in Case 3, we know that u∗ is in u.r or v∗ is in v.`; we go to u.r

and to v.`.

u

v

u

vu′

Case 1

Case 1 Case 2 Case 3

L` Lr

L` Lr

u
vu′

L` Lr

u

u′
v

L` Lr

u

u′
v

L` Lr

Figure 4 Comparing u to v: in Case 1, we know that u∗ cannot be in u.r. We compare u′ and v

to decide how to proceed: in Case 1, we know that u∗ cannot be in u′.r; we go to u′.`; in Case 2, we
know that u∗ cannot be in u.r and that v∗ cannot be in v.`; we go to u.` and to v.r; in Case 3, we
know that u∗ is in u′.r (and hence in u.`) or in v.`; we go to u.` and to v.`. Case 2 is not shown as
it is symmetric.

and v∗ is below v or in a right subtree of a node on vStack, and at least one of u∗ or v∗
must be below u or v, respectively. Now, if Case 1 occurs when comparing u to v, we can
exclude the possibility that u∗ is in u.r. Thus, u∗ might be in u.`, or in the left subtree of
a node in uStack; see Figure 4. To make progress, we now compare u′, the top of uStack,
with v. Again, one of the three cases occurs. In Case 1, we can deduce that going to u′.r
was mistaken, and we move u to u′.`, while v does not move. In the other cases, we cannot
rule out that u∗ is to the right of u′, and we move u to u.`, keeping the invariant that u∗
is either below u or in the left subtree of a node on uStack. However, to ensure that the
search progresses, we now must also move v. In Case 2, we can rule out v.`, and we move
v to v.r. In Case 3, we move v to v.`. In this way, we keep the invariant and always make
progress: in each step, we either discover a new node on the correct search paths, or we pop
one erroneous move from one of the two stacks. Since the total length of the correct search
paths is O(logn), and since we push an element onto the stack only when discovering a new
correct node, the total search time is O(logn); see Figure 5 for an example run. For the full
pseudocode and the formal proof see [1].

EuroCG’19

27:6 Dynamic Maintenance of Lower Envelope of Pseudo-Lines

1

2

3

4

5

6

7 1

2

3

4

5

6

7

2 3 4 5 6

7

1
2

3
4

5 6 7

1 2 3 4 5 6

71
2

3
4

5 6 7

Procedure case:

Case 3

Case 2? ?Case 2

Case 3

Case 1 Case 3

Case 3 ??End

uStack | vStack

? ? ? ? ? ? ?|

4 ? ? ? ? ? | 4

4 ? ? ? ? ? |?

4, 6 ? ? ? | 6

4, 6 ? ? ? | 6, 5

u ? | v

4 ? | 4

6 ? | 2

6 ? | 6

7 ? | 5

7* | 5*

Step

1.

2.

3.

4.

5.

1 ? ? ? ? ? ? 2 ? ? ? ? ? ? ?3 ? ? ? ? ? ? 4 ? ? ? ? ? ? ?5 ? ? ? ? ? ? 6 ? ? ? ? ? ? ? ? ?7 ? ? ? ? ? ? 8?

(a) Demonstration of two set of pseudo-lines and their lower envelope: (i) the blue and
green pseudo-lines, (ii) the red and orange pseudo-lines. The blue and the red dots
represents the intersection points on the lower envelopes.

1

2

3

4

5

6

7 1

2

3

4

5

6

7

2 3 4 5 6

7

1
2

3
4

5 6 7

1 2 3 4 5 6

7
1

2
3

4

5 6 7

Procedure case:

Case 3

Case 2? ?Case 2

Case 3

Case 1 Case 3

Case 3 ??End

uStack | vStack

? ? ? ? ? ? ?|

4 ? ? ? ? ? | 4

4 ? ? ? ? ? |?

4, 6 ? ? ? | 6

4, 6 ? ? ? | 6, 5

u ? | v

4 ? | 4

6 ? | 2

6 ? | 6

7 ? | 5

7* | 5*

Step

1.

2.

3.

4.

5.

1 ? ? ? ? ? ? 2 ? ? ? ? ? ? ?3 ? ? ? ? ? ? 4 ? ? ? ? ? ? ?5 ? ? ? ? ? ? 6 ? ? ? ? ? ? ? ? ?7 ? ? ? ? ? ? 8?

(b) The top figure shows the lower envelope of (a). The bottom figure shows the the trees
which maintain the lower envelopes. u(i) and v(i) shows the position of the pointers u

and v at step i, during the search procedure.

Figure 5 Example of finding the intersection point of two lower envelopes:
Step u v uStack vStack Procedure case
1 4 4 ∅ ∅ Case 3
2 6 2 4 4 Case 2 → Case 2
3 6 6 4 ∅ Case 3
4 7 5 4, 6 6 Case 1 → Case 3
5 7* 5* 4, 6 6, 5 Case 3 → End

P. K. Agarwal, R. Cohen, D. Halperin and W. Mulzer 27:7

Acknowledgments. We thank Haim Kaplan and Micha Sharir for helpful discussions. Work
by P.A. has been supported by NSF under grants CCF-15-13816, CCF-15-46392, and IIS-
14-08846, by ARO grant W911NF-15-1-0408, and by grant 2012/229 from the U.S.-Israel
Binational Science Foundation. Work by D.H. and R.C. has been supported in part by the
Israel Science Foundation (grant no. 825/15), by the Blavatnik Computer Science Research
Fund, by the Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University, and
by grants from Yandex and from Facebook. Work by W.M. has been partially supported by
ERC STG 757609 and GIF grant 1367/2016.

References
1 Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer. Dynamic mainte-

nance of the lower envelope of pseudo-lines, 2019. arXiv:arXiv:1902.09565.
2 Pankaj K. Agarwal and Jiří Matoušek. Dynamic half-space range reporting and its appli-

cations. Algorithmica, 13(4):325–345, 1995.
3 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query

time. In Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm Theory,
Bergen, Norway, July 5-7, 2000, Proceedings, pages 57–70, 2000.

4 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the
43rd Symposium on Foundations of Computer Science (FOCS 2002), pages 617–626, 2002.

5 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized
time. J. ACM, 48(1):1–12, 2001.

6 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010.

7 Dan Halperin and Micha Sharir. Arrangements. In Jacob E. Goodman, Joseph O’Rourke,
and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 28.
Chapman & Hall/CRC, 3rd edition, 2017.

8 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pages 2495–2504, 2017.

9 Haim Kaplan, Robert Endre Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic heaps and
their use in broadcast scheduling. In Proceedings of the Twelfth Annual Symposium on
Discrete Algorithms, January 7-9, 2001, Washington, DC, USA., pages 836–844, 2001.

10 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane.
Journal of Computer and System Sciences, 23(2):166–204, 1981.

11 Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction.
Springer-Verlag, New York, 1985.

EuroCG’19

http://arxiv.org/abs/arXiv:1902.09565

Computing α-Shapes for Temporal Range Queries
on Point Sets
Annika Bonerath1, Jan-Henrik Haunert1, and Benjamin
Niedermann1

1 Institute of Geodesy and Geoinformation, University of Bonn
(bonerath,haunert,niedermann)@igg.uni-bonn.de

Abstract
The interactive exploration of data requires data structures that can be repeatedly queried to
obtain simple visualizations of parts of the data. In this paper we consider the scenario that the
data is a set of points each associated with a time stamp and that the result of each query is
visualized by an α-shape, which generalizes the concept of convex hulls. Instead of computing
each shape independently, we suggest and analyze a simple data structure that aggregates the
α-shapes of all possible queries. Once the data structure is built, it particularly allows us to
query single α-shapes without retrieving the actual (possibly large) point set and thus to rapidly
produce small previews of the queried data.

1 Introduction

In scientific projects that deal with large amounts of spatio- and temporal data, the data
management is essential. As an example take a project dealing with a database of storm
events of the United States; see Figure 1. Each storm event is a data point with a geo-location
and a time stamp. Assuming a collection of storm events over several decades the amount of
data becomes enormous. On the other hand, for certain scientific questions the user may not
be interested in all data, but only in a subset in a pre-defined temporal range. Hence, before

Explore the data available for every month of 1991

Download raw data

User, who wants to work with the
data of some month in 1991

Storage

Visualization of data in 1991

Experiments, which
generate spatio-
temporal data

Figure 1 Scenario for the case that the user queries simplified visualizations for all storm events
in the year 1991 broken down to months. The α-shapes (lilac) were generated with
our approach. Data retrieved from Data.gov. Map tiles by Stamen Design, under CC
BY 3.0. Data by OpenStreetMap, under ODbL.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://www.data.gov/
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://www.openstreetmap.org/copyright

28:2 Computing α-Shapes for Temporal Range Queries on Point Sets

temporal range query

x

y

time

point not
in PQ

point in PQ

Sα(PQ)

p

q
−→pq

edge domain
of −→pq

α/2

Figure 2 The α-shape (lilac arcs) for a point set (filled blue disks) of a temporal range query.

downloading the actual data for a thorough analysis, the user may be interested in exploring
the data by querying simplified visualizations of the data within temporal ranges.

One approach to create a simplified visualization is to sketch the outline of the queried
data set providing the user with the possibility of roughly assessing the spatial distribution of
the data. For example, the convex hull is a simple polygonal representation for that purpose.
However, for most data sets this representation is not adequate, because the convex hull
may easily cover large areas that do not contain any points of the data set. A wide range of
more sophisticated polygonal representations exists; some of these are based on Delaunay-
triangulations and shortest-path graphs [5, 6, 9] while others use spatial grids to define the
representation [1, 3, 10, 13]. In this paper we use α-shapes [8, 9] for representing point sets,
which are a generalization of convex hulls and strongly related to Delaunay-triangulations.
Among others, this technique finds its application in digital shape sampling and processing
[2], in pattern recognition [14, 15] and micro-biology [7, 11].

An α-shape of a set P ⊂ R2 of n points in the plane is defined as follows. Let α > 0. The
edge domain of a directed edge pq ∈ P ×P with |q− p| ≤ α is the open disk Dpq with radius
α
2 whose center lies to the right of pq and whose boundary contains the points p and q. The
set Sα(P) ⊆ P ×P of all edges that are shorter than α and do not contain any point of P in
their edge domain is called α-shape; see Figure 2. It can be computed in O(n logn) time [9].

In our use-case each point p ∈ P additionally is associated with a time stamp tp ∈ R;
we assume that all points in P have pairwise distinct spatial and temporal coordinates. As
described in the running example the point set P is queried frequently. Such a query Q is a
temporal range [tstart

Q , tend
Q] and its result is the subset PQ =

{
p ∈ P | tp ∈

[
tstart
Q , tend

Q

]}
. We

are then interested in visualizing PQ by its α-shape. A straight-forward approach for a query
Q first queries the set P obtaining PQ and then computes the α-shape Sα(PQ). Utilizing a
balanced binary search-tree, finding PQ takes O(logn+ |PQ|) time. Additionally computing
the α-shape we obtain O(logn + |PQ| log |PQ|) running time in total. For our use-case of
frequently providing α-shapes for visualizing the query results, we aim at a better running
time per query. In particular, for creating previews of the data, we only want to retrieve
the α-shape of PQ but not the entire set PQ. In a pre-processing phase we compute a data
structure that aggregates the α-shapes of all possible queries; we call it the α-structure of P .
We use this data structure in the query phase to obtain the α-shapes of the incoming queries.

A. Bonerath, J.-H. Haunert, B. Niedermann 28:3

edge domain of e

α/2

q

p
e

points set R

time

y

x

tq tp

t1e t2e t3e t4e

tQs tQe

Figure 3 The edge domain with its contained point set R and the time attributes of an edge pq.

As we show in Section 3 the α-structure leads to quadratic memory consumption in the
worst case. However, a detailed analysis for points sets whose spatial distribution is uniform
and uncorrelated to their temporal distribution shows that the size of the α-structure is
more complaisant. In Section 4 we present an algorithm that computes an α-structure in
O(n(logn+mR logmR)) time utilizing linear and rotational sweeps, where mR denotes the
maximum number of points p ∈ P in a square of width 2α. For the query phase we use a
data structure for filtering search to answer a query in O(logn+ k) time, where k is the size
of the returned α-shape [4]. In Section 5 we present our initial experiments on real-world
data showing that the α-structure is applicable in our concrete use case.

2 On α-Structures

In the following we define the α-structure of P . We say that an edge pq ∈ P × P is active
for a temporal query Q if the α-shape Sα(PQ) contains pq. We observe that an edge pq can
be active for an infinite set of temporal queries, but it can only be active for O(n2) different
subsets of P . To characterize this set, we introduce the following notation; see Figure 3.

Let e = pq ∈ P × P with tp < tq, and let R ⊆ P be the set of points contained in the
edge domain of pq. Further, let tr with r ∈ R be the largest time stamp that is smaller
than tp; if r does not exist, we set tr = −∞. The minimal query start time is t1e := tr and
the maximal query start time is t2e := tp. Similarly, let ts with s ∈ R be the smallest time
stamp that is greater than tq; if s does not exist, we set ts = ∞. The minimal query end
time is t3e := tq and the maximal query end time is t4e := ts. We call t1e, t2e, t3e, t4e the time
attributes of pq. The next lemma characterizes for which queries a particular edge is active.

I Lemma 2.1. The edge e = pq is active for a query Q if and only if:

1. The distance between p and q is smaller than α, and
2. ∀r ∈ R : tr /∈ [tp, tq], and
3. tstart

Q ∈
[
t1e, t

2
e

]
and tend

Q ∈
[
t3e, t

4
e

]
.

Proof. Assume that e is active for Q. This is equivalent to the following three conditions; (i)
p and q are contained in PQ, which is equivalent to tp, tq ∈

[
tstart
Q , tend

Q

]
, (ii) e is shorter than

EuroCG’19

28:4 Computing α-Shapes for Temporal Range Queries on Point Sets

α (equivalent to Condition (1) of Lemma 2.1) and (iii) no point r ∈ PQ is contained in R,
which is equivalent to ∀r ∈ R : tr /∈

[
tstart
Q , tend

Q

]
. Applying the definition of t1e, t2e, t3e, and t4e

the Conditions (i) and (iii) are equivalent to Condition (2) and (3) of Lemma 2.1. J

The α-structure Sα(P) ⊆ P × P of P is the set of all active edges over all possible temporal
queries. We show that Condition (1) and (2) of Lemma 2.1 are necessary and sufficient for
an edge pq to be contained in Sα.

I Lemma 2.2. The edge e = pq ∈ P × P is contained in Sα(P) if and only if:

1. The distance between p and q is smaller than α.
2. ∀r ∈ R : tr /∈ [tp, tq]

Proof. Let e ∈ Sα(P), and let Q be a temporal range query for which e ∈ α(PQ). Then e
fulfills the conditions of Lemma 2.1 and therefore the conditions of Lemma 2.2. Conversely,
let e be shorter than α and all points r ∈ R be temporally not in [tp, tq]. Then the α-shape
of the query Q with tstart

Q = tp and tend
Q = tq contains the edge e. J

3 Memory Consumption

For our use-case of a database the memory consumption of our approach is decisive for
being deployed in practice. We first observe that O(n2) is an upper bound for the size of an
α-structure. The following theorem shows that this is also a lower bound in the worst case.

I Theorem 3.1. For a set P of n points the α-structure has size Ω(n2) in the worst case.

Proof. Let P = {p1, p2, . . . , pn} be a point set with time stamps t1 < t2 < . . . < tn such that
the points lie on a circle C of radius r < 1

2α ordered clockwise according to their time stamps;
see Figure 4. Let pi, pj ∈ P be two points with ti < tj . We show that pipj is contained in
the α-structure Sα(P) by proving the two conditions of Lemma 2.2. Due to r < 1

2α the
points pi, pj have distance smaller than α. Hence, Condition (1) of Lemma 2.2 is satisfied.

For the second condition let Rij be the set of points contained in edge domain Dij of
pipj . We observe that Dij and C intersect in pi and pj . Since the radius of C is smaller than

edge domain of −−→p1p3
⇒ R13 = {p4, p5}

p1

p2

p3p4

p5

−−→p1p3

r < 1
2
α

Figure 4 Worst-case example for the size of the α-structure as described in Theorem 3.1.

A. Bonerath, J.-H. Haunert, B. Niedermann 28:5

the radius of Dij , the boundary of Dij partitions C into two parts. One part is contained
in Dij and the other lies outside of Dij . Since the points p1, p2, . . . , pn appear in clockwise
order on C, and since the center of Dij lies to the right of pipj by definition, we obtain
Rij = {p1, . . . , pi−1, pj+1, . . . , pn−1}. Consequently, Condition (2) is satisfied. J

Hence, the database may exceed a size that is applicable in practice. However, the example
is rather unlikely to occur in practice. The next theorem indicates that the data structure is
more complaisant than the worst case example suggests. Following our use case we assume
that the points are contained in a rectangle B of width and height at least 2α.

I Theorem 3.2. For a finite set P ⊆ B of n points for which the spatial distribution is
uniform in B and the spatial distance is uncorrelated to the temporal distance the α-structure
has expected size O(n).

To prove Theorem 3.2 we show that the expected size of Sα is in O(nm/κ), where m is
the expected number of points in the CPN of a point over all points and κ is the expected
number of points in an edge domain over all possible edge domains. Since the area covered
by a CPN and an edge domain has a fixed ratio together with a uniform density distribution
we can show that m/κ is in O(1). In our experiments on real-world data we also observe a
linear relation between the number of points and the size of the α-structure; see Section 5.

4 Constructing and Querying α-Structures

We introduce an algorithm that computes an α-structure of a point set P in O(n(logn +
mR logmR)) time and describe how to query this data structure. The construction algorithm
applies two steps for each point p ∈ P ; see Algorithm 1. The first step, which we call
CPN-Search, computes all points Tp ⊆ P that fulfill Condition (1) of Lemma 2.2, i.e., all
points that lie in a circle with center at p and radius α. We call this circle the circle of
potential neighbors (CPN) of p. We use the sweep line approach by Peng and Wolff [12] to
find Tp in O(logn+mR) time. The second step, which we call CPN-Check, checks for each
point q ∈ Tp whether the edge pq fulfills Condition (2) of Lemma 2.2. If this is the case it
computes the time attributes of pq. To implement this efficiently, we use a rotational sweep.
More precisely, we use a circle C of radius α

2 which sweeps around p such that the center of C
moves along the circle with center p and radius α

2 ; see Figure 5. We call C the sweep circle of
p. Let R be the points contained in C; we represent R using a binary search tree ordered by
the time stamps of the points. The sweep circle C stops its rotation whenever its boundary
intersects with a point q ∈ Tp. Two kind of events are possible; either the point q enters
C, or it leaves C. Whenever a point q enters C, the sweep circle equals the edge domain
of pq. Utilizing the properties of the binary search tree R Condition (2) of Lemma 2.2 can
be checked in O(logmR) time. If this is the case the time attributes of pq can be computed

Algorithm 1: Computation of the α-structure
Input: Point set P , parameter α
Output: α-structure Sα(P)
foreach p ∈ P do

CPN-Search: Find all points Tp ⊆ P in the CPN of p
CPN-Check: Check for each edge pq with q ∈ Tp whether it fulfils Condition (2) of
Lemma 2.2, possibly compute the time attributes and add to Sα(P)

EuroCG’19

28:6 Computing α-Shapes for Temporal Range Queries on Point Sets

p

Sweep-
direction

q1

q2

q3

CPN of p
Sweep-circle

Event 1: insert q1 to R,
check edge pq1 for
Condition (2) of Lemma 2.2

Event 2: insert q2 to R,
check edge pq2 for
Condition (2) of Lemma 2.2

Event 3: remove q1 from R
Event 4: insert q3 to R,
check edge pq3 for
Condition (2) of Lemma 2.2

Event 5: remove q3 from R

Event 6: remove q2 from R

Figure 5 The rotational sweep CPN-Check method for point p and CPN points Tp = {q1, q2, q3}.

using the temporal order of R in O(logmR) time. This rotational sweep can be done in
O(mR logmR) time. Overall Algorithm 1 has running time O(n(logn+mR logmR)).

I Theorem 4.1. For a set P of n points the α-structure can be computed in O(n(logn +
mR logmR)) time, where mR is the maximum number of points in a square with width 2α.

For the query phase we represent each edge e with time attributes t1e, t2e, t3e and t4e of the
α-structure by a rectangle [t1e, t2e] × [t3e, t4e]. A query [tstart

Q , tend
Q] corresponds to finding all

rectangles containing the point (tstart
Q , tend

Q). Using a data structure for filtering search, we
can solve this problem in O(logn+ k) time per query, where k is the size of the α-shape [4].

5 Experimental Evaluation

We analyze the performance of α-structures using a data set of storm events in the United
States in the years 1991–2000 obtained from Data.gov; see Figure 6 for the year 1991. The
experiments1 indicate that the memory consumption is linear in n; see Figure 7. The
construction time for a point set of size n = 70 000 varies between several seconds and hours
depending on the value of α; see Figure 7. We assume this to be acceptable, since it is a pre-
processing step. Applying the α-structure for temporal range queries the experiments indicate
the query time to be nearly constant 200 [ms]; see Figure 8. In contrast an implemented
straight forward approach yields results that indicate a dependency to the subset size.

6 Conclusion and Outlook

Overall we presented the design and construction of a data structure that provides the
edges of α-shapes for temporal range queries on point sets. For future work we plan to
consider other aggregated representations of geographic objects. Further, to reduce memory

1 Implementation in Java, performed on a 4-core Intel Core i7-7700T CPU with 16 GiB RAM.

https://www.data.gov/

A. Bonerath, J.-H. Haunert, B. Niedermann 28:7

January 1991 February 1991 March 1991

April 1991 May 1991 June 1991

July 1991 August 1991 September 1991

Oktober 1991 November 1991 December 1991

Figure 6 Storm events for the months of 1991 represented by α-shapes (lilac). The actual
point set (blue) is drawn for illustration. Data retrieved from Data.gov. Map tiles by
Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

consumption we plan to work on an extension that only considers temporally long-lasting
α-shape edges.

References

1 Dominique Attali. r-regular shape reconstruction from unorganized points. In Proceedings
of the thirteenth annual symposium on Computational geometry, pages 248–253. ACM, 1997.

2 Fausto Bernardini and Chandrajit L. Bajaj. Sampling and reconstructing manifolds us-
ing alpha-shapes. Technical Report 97-013, Purdue University, Department of Computer
Science, 1997.

3 A. Ray Chaudhuri, Bidyut Baran Chaudhuri, and Swapan K. Parui. A novel approach to
computation of the shape of a dot pattern and extraction of its perceptual border. Computer
Vision and Image Understanding, 68(3):257–275, 1997.

4 Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM Journal
on Computing, 15(3):703–724, 1986.

5 M.T. de Berg, W. Meulemans, and B. Speckmann. Delineating imprecise regions via
shortest-path graphs. In 19th ACM SIGSPATIAL International Symposium on Advances

EuroCG’19

https://www.data.gov/
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://www.openstreetmap.org/copyright

28:8 Computing α-Shapes for Temporal Range Queries on Point Sets

77 Min.

20 Min.
4 Min.
1 Min.

13 Sec.

3 Sec.

Construction Time
Memory Consumption

Figure 7 Memory consumption and construction time of an α-structure.

Figure 8 Query phase time of the α-structure compared to a straight forward implementation.

in Geographic Information Systems (ACM GIS), pages 271–280, United States, 2011. As-
sociation for Computing Machinery, Inc. doi:10.1145/2093973.2094010.

6 Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient generation of sim-
ple polygons for characterizing the shape of a set of points in the plane. Pattern recognition,
41(10):3224–3236, 2008.

7 Herbert Edelsbrunner. Weighted alpha shapes. Technical Report UIUCDCS-R-92-1760,
University of Illinois at Urbana-Champaign, Department of Computer Science, 1992.

8 Herbert Edelsbrunner. Alpha shapes - a survey. Tessellations in the Sciences, 27:1–25,
2010.

9 Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of a set of
points in the plane. IEEE Transactions on information theory, 29(4):551–559, 1983.

10 Christopher B. Jones, Ross S. Purves, Paul D. Clough, and Hideo Joho. Modelling vague
places with knowledge from the web. International Journal of Geographical Information
Science, 22(10):1045–1065, 2008.

11 Jie Liang, Herbert Edelsbrunner, Ping Fu, Pamidighantam Sudhakar, and Shankar Subra-
maniam. Analytical shape computation of macromolecules: I. molecular area and volume
through alpha shape. Proteins: Structure, Function, and Bioinformatics, 33(1):1–17, 1998.

12 Dongliang Peng and Alexander Wolff. Watch your data structures. In Proc. 22th Annu.
Geograph. Inform. Sci. Research Conf. UK (GISRUK’14), Glasgow, 2014.

http://dx.doi.org/10.1145/2093973.2094010

A. Bonerath, J.-H. Haunert, B. Niedermann 28:9

13 Ross Purves, Paul Clough, and Hideo Joho. Identifying imprecise regions for geographic
information retrieval using the web. In Proceedings of the 13th Annual GIS Research UK
Conference, pages 313–18, 2005.

14 Jari Vauhkonen, Ilkka Korpela, Matti Maltamo, and Timo Tokola. Imputation of single-tree
attributes using airborne laser scanning-based height, intensity, and alpha shape metrics.
Remote Sensing of Environment, 114(6):1263–1276, 2010.

15 Jari Vauhkonen, Timo Tokola, Petteri Packalén, and Matti Maltamo. Identification of
scandinavian commercial species of individual trees from airborne laser scanning data using
alpha shape metrics. Forest Science, 55(1):37–47, 2009.

EuroCG’19

Simplicial Depth for Multiple Query Points
Luis Barba1, Stefan Lochau2, Alexander Pilz∗3, and Patrick
Schnider4

1 Department of Computer Science, ETH Zürich, Switzerland
luis.barba@inf.ethz.ch

2 Department of Mathematics, ETH Zürich, Switzerland
stefan.andrea.lochau@alumni.ethz.ch

3 Institute of Software Technology, Graz University of Technology, Austria
apilz@ist.tugraz.at

4 Department of Computer Science, ETH Zürich, Switzerland
patrick.schnider@inf.ethz.ch

Abstract
We consider the following generalization of simplicial depth: for a set of n data points P and a
set of k query points Q, the simplicial depth of Q with respect to P is the number of simplices
spanned by P that contain at least one point of Q. We study this generalization for point sets
in the plane. For two query points we give bounds on the maximal simplicial depth, as well as
an O(n log(n)) time algorithm to compute the simplicial depth. For a general number of query
points we prove a bound on on the maximal simplicial depth if the data point set is in convex
position. Finally, we give an O((n+k)7/3polylog(n+k)) time algorithm to compute the simplicial
depth of arbitrary query point sets with respect to arbitrary data point sets.

1 Introduction

Suppose we are given a set of n data points in Rd, which we would like to represent with just a
few points. For just one representative in R1, this could be the median. One way to view the
median is as the “deepest” point in the set of data points. Given a set P = {p1, . . . , pn} ⊆ R1

of n reals, it is quite intuitive to formalize a notion of “depth” w.r.t. P (the data points): for
a given q ∈ R, we merely count how many points of P are on each side of q and take the
minimum of these two numbers. Then finding the median equals finding a point of maximal
depth. Defining higher-dimensional medians requires to generalize not only the median itself,
but the entire notion of depth. Several such depth measures have been introduced over time,
most famously Tukey depth [21] (also called halfspace depth), simplicial depth [18], or convex
hull peeling depth [5]; see, e.g., the survey by Aloupis [3]. Here, we consider simplicial depth:

I Definition 1.1 (Simplicial depth). For a finite point set P ⊂ Rd and a query point q, the
simplicial depth σP (q) is the number of open simplices with d+ 1 vertices in P that contain q.

The definition is attributed to Liu [18]1; however, special cases were also addressed prior
to her article (e.g., already in 1955 by Kárteszi [14]). In R2, Boros and Füredi [7] showed that
for any set P of size n in general position there exists a point q with σP (q) ≥ n3/27 +O(n2),
and there are sets where every point has simplicial depth of at most n3/27 + n2. Clearly,
for n points in general position, not all triangles can hit a single point. The simplicial
depth cannot be more than

(bn+2
2 c
3
)

+
(dn+2

2 e
3
)

= n3

24 −
n
6 , and there are sets that allow for

∗ Supported by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.
1 While in [18] the simplices are closed, we follow, e.g., [7, 10, 13, 16] and consider them open. Still, this

will not make a significant difference herein, as we usually require the sets to be in general position.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

29:2 Simplicial Depth for Multiple Query Points

such a depth [7]. From an algorithmic point of view, Gil, Steiger, and Wigderson [13] and,
independently, Khuller and Mitchell [17] showed that in R2 the simplicial depth of a query
point can be computed in O(n log(n)) time and that all simplicial depths of the points in
P can be found in O(n2) time. For the simplicial depth of a query point in R3 and R4,
Cheng and Ouyang [9] found O(n2) and O(n4) time algorithms, respectively. Improving on a
previous general O(nd log(n)) time bound by Afshani, Sheehy, and Stein [1], Pilz, Welzl and
Wettstein [20] gave an O(nd−1) time algorithm for all d ≥ 3. The problem is #P-complete
and W[1]-hard if the dimension is part of the input [1]. The best known algorithm for finding
a point with maximal simplicial depth in a given set in R2 takes O(n4) time [4].

In this work, we consider the use of multiple query points q1, . . . , qk, instead of just one.
The idea is to find a higher-dimensional analogue to quantiles, which further describe samples
in R1. So we extend the definition by replacing the query point q by any of the points
qi, i ∈ {1, . . . , k}. That is, we count the simplices containing at least one of the query points.

I Definition 1.2 (Simplicial depth of multiple query points). Let P ⊂ Rd and Q ⊂ Rd be two
finite point sets. Then the simplicial depth of Q with respect to P is σP (Q), the number of
open simplices with d + 1 vertices in P that contain at least one point q ∈ Q. A simplex
that contains at least one of the query points Q hits Q.

Indeed, the two query points that maximize the simplicial depth for a one-dimensional
data set are the 1/3 and 2/3-quantiles, which accounts for this way of generalization. The
idea of generalizing quantiles by generalizing depth measures to several query points has
already been considered for the Tukey depth [19].

The problem of stabbing triangles spanned by a point set was studied by Katchalski
and Meir [16], as well as Czyzowicz, Kranakis and Urrutia [10], who independently proved
that, for an n-point set P with h extreme points, 2n− 2− h many points are sufficient and
necessary to stab every triangle spanned by P (i.e., to have simplicial depth of

(
n
3
)
).

2 Two query points

In this section we focus on finite point sets P and two query points q1, q2 in the plane. We
assume that all points in P ∪Q are in general position, i.e., no three points are collinear.

2.1 Computing the depth of two query points
We argue that computing the simplicial depth of two query points is also in O(n logn).
W.l.o.g., assume that the query points lie on the x-axis and that q1 has a smaller x-coordinate
than q2. Rather than computing the simplicial depth directly, we consider all

(
n
3
)
simplices

and subtract the number of those which do not hit the query points.
We partition P = U ∪̇L, where U and L are the points above and below the x-axis,

respectively. We thus have
(|U |

3
)
triangles above and

(|L|
3
)
below the x-axis. The triangles

intersecting the x-axis have one vertex on one side and two on the other side. For each point
p ∈ L, let sR(p) be the number of points in U to the right of the line pq2, let sL(p) be the
number of points in U the left of pq1, and let sB(p) = |U | − sL(p)− sR(p). For a point p ∈ U
the functions are defined analogously with the roles of L and U swapped. Thus, we get

σP (q1, q2) =
(
|P |
3

)
−
(
|U |
3

)
−
(
|L|
3

)
−
∑
p∈P

[(
sR(p)

2

)
+
(
sB(p)

2

)
+
(
sL(p)

2

)]
. (1)

It remains to compute the values of sL and sR efficiently. To this end, we first sort the
points radially around q1 and q2 in O(n logn) time. Then, for each point p ∈ U , we can

L. Barba, S. Lochau, A. Pilz and P. Schnider 29:3

count the points of L to the left of q1p in overall O(n) time, by considering the points in
clockwise order around q1 and maintaining this number (i.e., starting with |L|, decreasing
the number when reaching a point of L, and storing it when reaching a point of U). We thus
obtain a table for sR for all points in U , and do the analogous for the remaining values.

2.2 Bounds for two query points
We provide an upper bound for the simplicial depth of two query points. Let m1 = |L| and
m2 = |U |, i.e., m1 +m2 = n. First, consider a fixed point l ∈ L and all triangles it forms
with two points of U . For such a triangle lu1u2, we define C as the closed cone formed by
the rays

−→
lu1 and

−→
lu2, and call d := |C ∩ U | − 1 the span of the triangle. Then d is one plus

the number of points strictly between u1 and u2 in the radial ordering around l. We now
count how many of these triangles with a certain span d hit {q1, q2}.

We note that, for a fixed l, at most d triangles with span d can hit a query point, so at
most 2d of these can be hitting. On the other hand, for each d there are at most m2 − d
many triangles, hitting or not. We can do this for every lower and upper point, and sum up
to get an upper bound on the simplicial depth as follows:

σP (q1, q2) ≤
∑
l∈L

m2−1∑
d=1

min{2d,m2 − d}+
∑
u∈U

m1−1∑
d=1

min{2d,m1 − d}

This implies a simpler bound of σP (q1, q2) ≤ 1
3m1m2 (m1 +m2 + 4), which is maximized

for m1 = m2 = n/2 (see the full version), where we get the following:

I Theorem 2.1. Let P ⊆ R2 be a set of n data points and q1, q2 be two query points, all in
general position. Then

σP (q1, q2) ≤ n3/12 + n2/3.

There are indeed point sets in convex position that allow for a similar simplicial depth:
consider P as the vertex set of a regular n-gon for n = 2m (see Figure 1 for an illustration).
Place both q1 and q2 on the intersection c of the long diagonals and move them slightly
outwards such that they do not lie on any line through two points of P but such that the line
through them contains c. Then {q1, q2} has simplicial depth σP (q1, q2) = m3

3 +m2− 4m
3 . With

n = 2m, this translates to n3

24 + n2

4 −
2n
3 , which is roughly half of the bound in Theorem 2.1.

Further, recall that the maximal simplicial depth of a single point is n3

24 −
n
6 . Comparing

to this, we only improve by addition of a quadratic term. Nevertheless, for up to 14 data
points in convex position, computational experiments have shown that this construction is
optimal. We conjecture that this holds for all sets in convex position. Note that while for
one query point it is not hard to see that the simplicial depth is maximized for data point
sets in convex position, the same cannot be said for two query points. In fact, the same
question can be asked for any number of query points: is the simplicial depth of k query
points always maximized by data point sets in convex position?

3 More query points

3.1 Upper bound for data points in convex position
In this section we give an upper bound to the simplicial depth of any set of k query points
Q = {q1, . . . , qk} in a given point set P = {p1, . . . , pn} ⊂ R2 when P is in convex position.
We assume that P ∪Q is in general position and Q is in conv(P), the convex hull of P .

EuroCG’19

29:4 Simplicial Depth for Multiple Query Points

q1
q2

Figure 1 A point set of size 2m = 12 with conjectured maximal simplicial depth 100 for two
query points.

Figure 2 The different types of non-hitting triangles.

We again count the triangles not containing any points of Q. Let S be the set of
triangles spanned by points of P . We partition S into those triangles that do hit Q,
Σ := {S ∈ S : S ∩Q 6= ∅}, and those which do not hit Q, ∆ := {S ∈ S : S ∩Q = ∅}. Then
σP (Q) := |Σ| =

(
n
3
)
− |∆|. We devise a lower bound on |∆|. Let S ∈ ∆ be an arbitrary

non-hitting triangle. Note that S \ conv(Q) has at most three connected components, each
of which contains at least one original vertex of S. We partition ∆ into the triangles that
get split into i parts by conv(Q), ∆i for i ∈ {1, 2, 3}. We see that (see Figure 2):

(1) If S \ conv(Q) has only one component, then S and conv(Q) are disjoint (as S does not
hit Q). S has a unique pair of vertices w,w′ whose supporting line separates S and Q.

(2) If S \ conv(Q) has two components, we see that there are two vertices of S in one and a
single vertex p in the other component. This vertex p is again unique.

(3) If S \ conv(Q) has three components, we discard it and potentially worsen our bound.

Let ti(p) be the number of data points on the right side of the ray −→pqi, where the elements
of Q are indexed according to their radial order around p. We get that:

L. Barba, S. Lochau, A. Pilz and P. Schnider 29:5

σP (q1, . . . , qk) ≤
(
n

3

)
−
∑
p∈P

1
2

(
t1(p)

2

)
+

k−1∑
i=1

(
ti+1(p)− ti(p)

2

)
+ 1

2

(
n− 1− tk(p)

2

)
︸ ︷︷ ︸

=:fp(t1,...,tk)

 .

We count each simplex that does not intersect conv(Q) “a half times” for w and w′. The
function fp(t1, . . . , fk) is convex on {t ∈ Rk | 0 ≤ t1 ≤ · · · ≤ tk ≤ n− 1}, so we can bound it
from below separately using convex optimization techniques. (Intuitively, the value of fp is
small if the number of points between two consecutive points of Q is roughly the same; we
provide a formal reasoning in the full version.) With this, we obtain an upper bound of

σP (q1, . . . , qk) ≤ n3k

6(k + 3) −
3n2

2(k + 3) −
5n
24 .

For k = 2, we can compare this to Theorem 2.1 – we go from the older 1
12n

3 + 1
6n

2 bound
to 1

15n
3 − 3

10n
2 − 5

24n and improve asymptotically by a factor of 5
4 . (But recall that the new

bound is for P in convex position only.) Comparing thisto
(

n
3
)
we get the following theorem.

I Theorem 3.1. Let P ⊆ R2 be n points in convex position, and let q1, . . . , qk ∈ R2 be k
query points. Then at most a fraction of 1− 3

k+3 +O
(1

n

)
of the simplices with vertices in P

can contain any of the k query points.

3.2 Algorithmic aspects
I Theorem 3.2. The simplicial depth of a set Q ⊂ R2 w.r.t. a set P ⊂ R2, all in general
position, with N = |P |+ |Q| can be computed in O(N7/3polylog(N)) time.

Proof. We use an approach similar to one of computing the number of empty triangles in a
point set (see [12]). For a point p ∈ P , we define a simple polygon Rp that contains every
triangle spanned by p and two other points of P not hitting Q. Let B be a bounding box
of P . Shoot a ray from every point q ∈ Q in the opposite direction of p until hitting B and
add two edges for Rp in B starting at q with a small angle separated by the ray. See Figure 3.
Now two points of P \ {p} see each other in Rp iff they form a triangle with p not hitting Q.

Ben-Moshe et al. [6] construct the visibility graph of points inside a simple polygon.
While enumerating the edges of this graph is too costly here, their method can be adapted
to count them. They argue that edges of the visibility graph that cross an edge e separating
the polygon (that is not necessarily a diagonal of the polygon) correspond to bichromatic
crossings in an arrangement of red and blue segments: A point and the part on e which the
point sees defines a (possibly empty) wedge, whose dual is a line segment; two points define
an edge of the visibility graph crossing e iff their dual segments intersect; the red segments
correspond to points in one sub-polygon defined by e, and the blue segments to points in
the other sub-polygon. These segments can be given in O(N log(N)) time using standard
machinery for polygon visibility and point-line duality. Agarwal [2, Theorem 6.1] shows how
to count bichromatic crossings of n red and blue segments in O(n4/3polylog(n)) time.

As in [6, Section 2.1], we divide Rp into two parts, each containing at least a constant
fraction of the union of points and Rp’s vertices (e.g., 1/3 is doable by adapting an approach
from [8] not even using that Rp is star-shaped). Then, we recursively count the edges of the
visibility graph in the two sub-polygons and add the number of edges crossing the diagonal
using Agarwal’s algorithm [2, Sect. 6]. As this is the dominating task in each iteration, we can
use induction on the number of points to show that this algorithm requires O(N4/3polylog(N))
time for computing the number of triangles with a point p not hitting Q. J

EuroCG’19

29:6 Simplicial Depth for Multiple Query Points

p

Figure 3 The polygon Rp of a point p ∈ P . Any two points of P \ {p} (blue dots) that see each
other correspond to a triangle with p not containing a point of Q (red crosses).

We do not know about the complexity of finding a set Q, |Q| = k, with maximal simplicial
depth for a given integer k and data set P . Using a straight-forward reduction from monotone
planar 3-SAT [11], we show in the full version that extending a given set to have a point in
each triangle of P is NP-hard.

References
1 Peyman Afshani, Donald R. Sheehy, and Yannik Stein. Approximating the simplicial depth.

CoRR, abs/1512.04856, 2015. URL: http://arxiv.org/abs/1512.04856.
2 Pankaj K. Agarwal. Parititoning arrangements of lines II: applications. Discrete & Com-

putational Geometry, 5:533–573, 1990. doi:10.1007/BF02187809.
3 Greg Aloupis. Geometric measures of data depth. In Regina Y. Liu, Robert Serfling,

and Diane L. Souvaine, editors, Data Depth: Robust Multivariate Analysis, Computational
Geometry and Applications, pages 147–158. DIMACS/AMS, 2003.

4 Greg Aloupis, Stefan Langerman, Michael A. Soss, and Godfried T. Toussaint. Algorithms
for bivariate medians and a Fermat-Torricelli problem for lines. Comput. Geom., 26(1):69–
79, 2003. doi:10.1016/S0925-7721(02)00173-6.

5 Vic Barnett. The ordering of multivariate data. Journal of the Royal Statistical Society. Se-
ries A (General), 139(3):318–355, 1976. URL: http://www.jstor.org/stable/2344839.

6 Boaz Ben-Moshe, Olaf A. Hall-Holt, Matthew J. Katz, and Joseph S. B. Mitchell. Comput-
ing the visibility graph of points within a polygon. In Jack Snoeyink and Jean-Daniel Bois-
sonnat, editors, Proc. 20th ACM Symposium on Computational Geometry (SoCG 2004),
pages 27–35. ACM, 2004. doi:10.1145/997817.997825.

7 E. Boros and Z. Füredi. The number of triangles covering the center of an n-set. Geometriae
Dedicata, 17(1):69–77, Oct 1984. doi:10.1007/BF00181519.

8 Bernard Chazelle. A theorem on polygon cutting with applications. In 23rd Annual Sym-
posium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982,
pages 339–349. IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.58.

9 Andrew Cheng and Ming Ouyang. On algorithms for simplicial depth. In Proc. 13th
Canadian Conference of Computational Geometry (CCCG 2001), pages 53–56, 2001.

10 Jurek Czyzowicz, Evangelos Kranakis, and Jorge Urrutia. Guarding the convex subsets of
a point-set. In Proc. 12th Canadian Conference of Computational Geometry (CCCG 2000),
pages 47–50, 2000.

http://arxiv.org/abs/1512.04856
http://dx.doi.org/10.1007/BF02187809
http://dx.doi.org/10.1016/S0925-7721(02)00173-6
http://www.jstor.org/stable/2344839
http://dx.doi.org/10.1145/997817.997825
http://dx.doi.org/10.1007/BF00181519
http://dx.doi.org/10.1109/SFCS.1982.58

L. Barba, S. Lochau, A. Pilz and P. Schnider 29:7

11 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geometry Appl., 22(3):187–206, 2012.

12 David P. Dobkin, Herbert Edelsbrunner, and Mark H. Overmars. Searching for empty
convex polygons. Algorithmica, 5(4):561–571, 1990. doi:10.1007/BF01840404.

13 Joseph Gil, William Steiger, and Avi Wigderson. Geometric medians. Discrete Mathematics,
108(1):37 – 51, 1992. doi:10.1016/0012-365X(92)90658-3.

14 Franz Kárteszi. Extremalaufgaben über endliche Punktsysteme. Publ. Math. Debrecen,
4:16–27, 1955.

15 William Karush. Minima of functions of several variables with inequalities as side con-
straint. M.Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago, Chicago, Illinois, 1939.
URL: https://dissexpress.proquest.com/dxweb/results.html?QryTxt=&By=&Title=
&pubnum=TM11033.

16 Meir Katchalski and Amram Meir. On empty triangles determined by points in the plane.
Acta Mathematica Hungarica, 51(3-4):323–328, 1988.

17 Samir Khuller and Joseph S.B. Mitchell. On a triangle counting problem. Information
Processing Letters, 33(6):319 – 321, 1990. doi:10.1016/0020-0190(90)90217-L.

18 Regina Y. Liu. On a notion of data depth based on random simplices. Ann. Statist.,
18(1):405 – 414, 03 1990. doi:10.1214/aos/1176347507.

19 Alexander Pilz and Patrick Schnider. Extending the centerpoint theorem to multiple
points. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao, editors, 29th International
Symposium on Algorithms and Computation (ISAAC 2018), volume 123 of LIPIcs, pages
53:1–53:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. URL: http://www.
dagstuhl.de/dagpub/978-3-95977-094-1, doi:10.4230/LIPIcs.ISAAC.2018.53.

20 Alexander Pilz, Emo Welzl, and Manuel Wettstein. From Crossing-Free Graphs on Wheel
Sets to Embracing Simplices and Polytopes with Few Vertices. In Boris Aronov and
Matthew J. Katz, editors, 33rd International Symposium on Computational Geometry
(SoCG 2017), volume 77 of LIPIcs, pages 54:1–54:16. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.SoCG.2017.54.

21 John W. Tukey. Mathematics and picturing data. Proc. Int. Congr. Mathematics, Vancou-
ver, 2:523 – 531, 1975.

EuroCG’19

http://dx.doi.org/10.1007/BF01840404
http://dx.doi.org/10.1016/0012-365X(92)90658-3
https://dissexpress.proquest.com/dxweb/results.html?QryTxt=&By=&Title=&pubnum=TM11033
https://dissexpress.proquest.com/dxweb/results.html?QryTxt=&By=&Title=&pubnum=TM11033
http://dx.doi.org/10.1016/0020-0190(90)90217-L
http://dx.doi.org/10.1214/aos/1176347507
http://www.dagstuhl.de/dagpub/978-3-95977-094-1
http://www.dagstuhl.de/dagpub/978-3-95977-094-1
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2018.53
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.54

Encoding 3SUM
Sergio Cabello1, Jean Cardinal2, John Iacono2,3,
Stefan Langerman2, Pat Morin4, and Aurélien Ooms2

1 University of Ljubljana
2 Université libre de Bruxelles
3 New York University
4 Carleton University

Abstract
We consider the following problem: given three sets of real numbers, output a word-RAM data
structure from which we can efficiently recover the sign of the sum of any triple of numbers,
one in each set. This is similar to a previous work by some of the authors to encode the order
type of a finite set of points. While this previous work showed that it was possible to achieve
slightly subquadratic space and logarithmic query time, we show here that for the simpler 3SUM
problem, one can achieve an encoding that takes Õ(N 3

2) space for inputs sets of size N and
allows constant time queries in the word-RAM.

1 The Problem

Given three sets of N real numbers A = { a1 < a2 < · · · < aN }, B = { b1 < b2 < · · · < bN },
and C = { c1 < c2 < · · · < cN }, we wish to build a discrete data structure (using bits, words,
and pointers) such that, given any triple (i, j, k) ∈ [N]3 it is possible to compute the sign of
ai+ bj + ck by only inspecting the data structure (we cannot consult A, B, or C). We refer to
the map χ : [N]3 → {−, 0,+}, (i, j, k) 7→ sgn(ai + bi + ck) as the 3SUM-type of the instance
〈A,B,C〉. Obviously, one can simply construct a lookup table of size O(N3), such that triple
queries can be answered in O(1) time. We aim at improving on this trivial solution.

2 Motivation

In the 3SUM problem, we are given an array of numbers as input and are asked whether any
three of them sum to 0. In the mid-nineties, this problem was identified as a bottleneck of
many important problems in geometry, such as detection of affine degeneracies or motion
planning [5]. Since then, it has become a central problem in fine-grained complexity theory [9].
It has long been conjectured to require Ω(N2) time. In 2014, it was shown to be solvable in
o(N2) time, but no algorithm with running time O(N2−δ) with constant δ > 0 is known [7].

Lower bounds exist in restricted models of computation. Most notably, Ω(N2) 3-linear
queries are needed to solve 3SUM [4], and nontrivial lower bounds have also been proven
for slightly more powerful linear decision trees [1]. However, in a recent breakthrough
contribution, Kane, Lovett, and Moran showed that 3SUM could be solved using O(N log2N)
6-linear queries [8], hence within a O(logN) factor of the information-theoretic lower bound.

Linear decision trees are examples of nonuniform algorithms, in which we are allowed to
have different algorithms for different input sizes. Algebraic decision trees generalize linear
decision trees by allowing decision based on the sign of constant-degree polynomials at each
node [10].

Any decision tree identifying the 3SUM-type of a 3SUM instance yields a concise encoding
of this 3SUM-type: just write down the outcome of the successive tests. Knowing the decision
tree by convention, this sequence of bits is sufficient to recover the sign of any triple.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

30:2 Encoding 3SUM

Table 1 Table of results

Query time Space (in bits) Preprocessing time
Trivial O(1) O(N3) O(N3)

Almost trivial O(1) O(N2 logN) O(N2)
Order-type encoding [2] O(logN) O(N

2 log2 logN
logN) O(N2)

Order-type encoding [2] O(logN
log logN) O(N2

log1−εN
) O(N2)

Numeric representation (§4) O(N) O(N2) NO(1)

Space-optimal representation (§5) NO(1) O(N logN) NO(1)

Query-optimal (§6) O(1) Õ(N1.5) O(N2)

The question we consider here is how to make such a representation efficient, in the
sense that not only does it use merely a few bits, but the answer to any triple query can be
recovered efficiently. Understanding the interplay between nonuniform algorithms and such
data structures hopefully sheds light on the intrinsic structure of the problem.

3 Results

See table 1 for a summary. As there are only O(N3) queries, a table of size (log2 3)N3 +O(1)
bits suffices to give constant query time [3]. This can be improved to O(N2 logN) bits of
space by storing for each pair (i, j) the values k<(i, j) = max{0} ∪ {k : ai + bj + ck < 0} and
k>(i, j) = min{N + 1} ∪ {k : ai + bj + ck > 0}. For a query (i, j, k), we compare k against
the values k<(i, j) and k>(i, j) to recover χ(i, j, k) in O(1) time. All k<(i, j) and k>(i, j)
can be computed in O(N2) time via the classic quadratic time algorithm for 3SUM.

One seemingly simple representation is to store the numbers in A, B and C; however
these are reals and thus we need to make them representable using a finite number of bits.
In Section 4 we show that a minimal integer representation of a 3SUM instance may require
Θ(N) bits per value, which would give rise to a O(N) query time and O(N2) space, which is
far from impressive. In [2] the problem of given a set of N lines, to create an encoding of
them so that the orientation of any triple (the order type) can be determined was studied;
our problem is a special case of this where the lines only have three slopes. Can we do better
for the case of 3SUM? We answer this in the affirmative. In Section 5 we show how to use
an optimal O(N logN) bits of space with a polynomial query time. Finally, in section 6 we
show how to use Õ(N1.5) space to achieve O(1)-time queries.

4 Representation by numbers

A first natural idea is to encode the real 3SUM instance by rounding its numbers to integers.
We show a tight bound of Θ(N2) bits for this representation.

I Lemma 4.1. Every 3SUM instance has an equivalent integer instance where all values
have absolute value at most 2O(N). Furthermore, there exists an instance of 3SUM where all
equivalent integer instances require numbers at least as large as the N th Fibonacci number
and where the standard binary representation of the instance requires Ω(N2) bits.

Proof. Every 3SUM instance A = { a1 < a2 < . . . < aN }, B = { b1 < b2 < · · · < bN }, and
C = { c1 < c2 < · · · < cN } can be interpreted as the point (a1, . . . , aN , b1, . . . , bN , c1, . . . , cN)
in R3N . Let us use the variables x1, . . . , xN to encode the first N dimensions of R3N ,

S. Cabello et al. 30:3

y1, . . . , yN to encode the next N dimensions, and z1, . . . , zN for the remaining dimensions.
Consider the subset of R3N

∆ = {(x1, . . . , xN , y1, . . . , yN , z1, . . . , zN) | xi < xi+1, yj < yj+1, zk < zk+1 ∀i, j, k ∈ [N−1]}

and the set Π of N3 hyperplanes xi+yj+zk = 0, where i, j, k ∈ [N]. Let A be the arrangement
defined by Π inside ∆. Instances of 3SUM correspond to points in ∆. Moreoever, two 3SUM
instances have the same 3SUM-type if and only if they are in the same cell of A.

Consider an instance 〈A,B,C〉 and let σ = σ(A,B,C) be the cell of A that contains it.
Then σ is the cell defined by the inequalities

∀i, j, k ∈ [N] :

xi + yj + zk > 0 if χ(i, j, k) = +1,
xi + yj + zk = 0 if χ(i, j, k) = 0,
xi + yj + zk < 0 if χ(i, j, k) = −1.

∀i, j, k ∈ [N − 1] :

xi − xi+1 < 0,
yj − yj+1 < 0,
zk − zk+1 < 0.

Let σ′ be the subset of R3N defined by the following inequalities:

∀i, j, k ∈ [N] :

xi + yj + zk ≥ 1 if χ(i, j, k) = +1,
xi + yj + zk = 0 if χ(i, j, k) = 0,
xi + yj + zk ≤ −1 if χ(i, j, k) = −1.

∀i, j, k ∈ [N − 1] :

xi − xi+1 ≤ 1,
yj − yj+1 ≤ 1,
zk − zk+1 ≤ 1.

Clearly σ′ is contained in σ. Moreover, for a sufficiently large λ > 0 the scaled instance
〈λA, λB, λC〉 belongs to σ′. Therefore, σ′ is nonempty.

Since σ′ is defined by a collection of linear inequalities defining closed halfspaces, there
exists a point p in σ′ defined by a subset of at most 3N inequalities, where the inequalities
are actually equalities. Let us assume for simplicity that exactly 3N equalities define the
point p. Then, p = (x, y, z) is the solution to a linear system of equations M [x y z]T = δ

where M and δ have their entries in {−1, 0, 1} and each row of M has at most three non-zero
entries. The solution p to this system of equations is an instance equivalent to 〈λA, λB, λC〉.

Because of Cramer’s rule, the system of linear equations has solution with entries
det(Mi)/det(M), where Mi is the matrix obtained by replacing the ith column of M by δ.
We use the following simple bound on the determinant. Since det(M) =

∑
π sgn(π)

∏
imi,π(i),

where π iterates over the permutations of [3N], there are at most 33N summands where
π gives non-zero product

∏
imi,π(i) (we have to select one non-zero entry per row), and

the product is always in {−1, 0, 1}. Therefore | det(M)| ≤ 33N . Similarly, | det(Mi)| ≤ 43N

because each row of Mi has at most 4 non-zero entries. We conclude that the solution to the
system M [x y z]T = δ are rationals that can be expressed with O(N) bits. This solution
gives a 3SUM instance with rationals that is equivalent to 〈A,B,C〉. Since all the rationals
have the common denominator (det(M)), we can scale the result by det(M) and we get an
equivalent instance with integers, where each integer has O(N) bits.

EuroCG’19

30:4 Encoding 3SUM

The proof of the second statement is by implementing the Fibonacci recurrence in each
of the arrays A,B,C. This can be achieved by letting:

ai + b1 + cN−i+1 = 0, for i ∈ [N]
a1 + bi + cN−i+1 = 0, for i ∈ [N]

ai−1 + bi−2 + cN−i+1 < 0, for i ∈ {3, 4, . . . , N},

The first two sets of equations ensure that the two arrays A and B are identical, while the
array C contains the corresponding negated numbers, in reverse order. From the inequalities
in the third group, and depending on the choice of the initial values a1, a2, each array contains
a sequence growing at least as fast as the Fibonacci sequence. J

Note that this is a much smaller lower bound than for order types of points sets in the
plane, the explicit representation of which can be shown to require exponentially many bits
per coordinate [6].

5 Space-optimal representation

By considering the arrangement of hyperplanes defining the 3SUM problem, we get an
information-theoretic lower bound on the number of bits in a 3SUM-type.

I Lemma 5.1. There are 2Θ(N logN) distinct 3SUM-types of size N .

Proof. 3SUM-types of size N are in one-to-one correspondence with cells of the arrangement
of N3 hyperplanes in R3N . The number of such cells is O(N9N) and at least (N !)2. J

In order to reach this lower bound, we can simply encode the label of the cell of the
arrangement in Θ(N logN) bits. However, decoding the information requires to construct
the whole arrangement which takes NO(N) time. An alternative solution is to store a vertex
of the arrangement of hyperplanes ai + bj + ck ∈ {−1, 0, 1 }. There exists such a vertex
that has the same 3SUM-type as the input point, as shown in the proof of Lemma 4.1. To
answer any query, either recompute the vertex from the basis then answer the query using
arithmetic, or use linear programming. Hence we can build a data structure of O(N logN)
bits such that triple queries can be answered in polynomial time.

Note that we do not exploit much of the 3SUM structure here. In particular, the same
essentially holds for k-SUM, and can also be generalized to a Subset Sum data structure of
O(N2) bits, from which we can extract the sign of the sum of any subset of numbers.

6 Subquadratic space and constant query time

Our encoding is inspired by Grønlund and Pettie’s Õ(N1.5) non-uniform algorithm for
3SUM [7]. Our data structure stores three components, which we call the differences, the
staircase and the square neighbors.

Differences. Partition A and B into blocks of
√
N consecutive elements. Let D be the set

of all differences of the form ai − aj and bk − b` where the items come from the same
block. There are O(N1.5) such differences. Sort D and store a table indicating for each
difference in D its rank among all differences in D. This takes O(logN) bits for each of
the O(N1.5) differences, for a total of O(N1.5 logN) bits.

S. Cabello et al. 30:5

1 2 10 14 17 22 32 33 40 91 92 97 98 110 120 127
1 2 3 11 15 18 23 33 34 41 92 93 98 99 111 121 128
11 12 13 21 25 28 33 43 44 51 102 103 108 109 121 131 138
13 14 15 23 27 30 35 45 46 53 104 105 110 111 123 133 140
19 20 21 29 33 36 41 51 52 59 110 111 116 117 129 139 146
24 25 26 34 38 41 46 56 57 64 115 116 121 122 134 144 151
34 35 36 44 48 51 56 66 67 74 125 126 131 132 144 154 161
51 52 53 61 65 68 73 83 84 91 142 143 148 149 161 171 178
57 58 59 67 71 74 79 89 90 97 148 149 154 155 167 177 184
59 60 61 69 73 76 81 91 92 99 150 151 156 157 169 179 186
114 115 116 124 128 131 136 146 147 154 205 206 211 212 224 234 241
119 120 121 129 133 136 141 151 152 159 210 211 216 217 229 239 246
127 128 129 137 141 144 149 159 160 167 218 219 224 225 237 247 254
128 129 130 138 142 145 150 160 161 168 219 220 225 226 238 248 255
133 134 135 143 147 150 155 165 166 173 224 225 230 231 243 253 260
138 139 140 148 152 155 160 170 171 178 229 230 235 236 248 258 265
142 143 144 152 156 159 164 174 175 182 233 234 239 240 252 262 269

Figure 1 Illustration of the staircase and square neighbors of the constant query time encoding.
Here the 16 × 16 table is partitioned into a 4 × 4 grid of squares of size 4 × 4. If ck = 100, the grey
illustrates the squares that form the staircase, containing values both larger and smaller than 100.
Predecessors and successors within each staircase square are shown in red and blue.

Staircase. Look at the table G formed by all sums of the form ai + bj , which is monotonic in
its rows and columns due to A and B being sorted and view it as being partitioned into
a grid G′ of size

√
N ×

√
N where each square of the grid is also of size

√
N ×

√
N . For

each element c ∈ C, for each i ∈ [1,
√
N] we store the largest j such that some elements

of the square G′[i, j] are < c, denote this as V [c, i]. We also store, for each c ∈ C, for
each j ∈ [1,

√
N] the smallest i such that some elements of the square G′[i, j] are ≥ c,

denote this as H[c, j]. We thus store, in V and H,
√
N values of size O(logN) for each

of the N elements of C, for a total space usage of O(N1.5 logN) bits. We call this the
staircase as this implicitly classifies, for each c ∈ C, whether each square has elements
larger than c, smaller than c, or some larger and some smaller; only O(

√
N) can be in

the last case, which we refer to as the staircase of c.

Square neighbors. For each element c ∈ C, for each of the O(
√
N) squares on the staircase,

we store the location of the predecessor and successor of c in the squares G′[i, V [c, i]] and
G′[H[c, j], j], for i, j ∈ [1,

√
N]. This takes space O(N1.5 logN).

To execute a query (ai, bj , ck), only a constant number of lookups in the tables stored
are needed. If j <

√
N ·H[k, i], then we know ai + bj > ck. If i >

√
N · V [k, j], then we

know ai + bj < ck. If neither of these is true, then the square G′[di/
√
Ne, dj/

√
Ne] is on the

staircase of ci and thus using the square neighbors table we can determine the location of
the predecessor and successor of ck in this square; suppose they are at G[si, sj] and G[pi, pj]
and thus G[si, sj] ≤ ck ≤ G[pi, pj]. One need only determine how these two compare to
G[i, j] = ai + bj to answer the query. But this can be done using the differences as follows:
to compare G[si, sj] to G[i, j] this would be determining the sign of (ai + bj)− (asi + bsj)
which is equivalent to determining the result of comparing ai − asi and bj − bsj , which since
both are in the same square, these differences are in D and the comparison can be obtained
by examining their stored ranks. By doing this for the predecessor and successor we will
determine the relationship between ai + bj and ck.

EuroCG’19

30:6 REFERENCES

References

1 Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM,
52(2):157–171, 2005.

2 Jean Cardinal, Timothy M. Chan, John Iacono, Stefan Langerman, and Aurélien Ooms.
Subquadratic encodings for point configurations. In Symposium on Computational
Geometry, volume 99 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018.

3 Yevgeniy Dodis, Mihai Patrascu, and Mikkel Thorup. Changing base without losing
space. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 593–602, 2010.

4 Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago J. Theor. Comput.
Sci., 1999.

5 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995.

6 Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate representation of
order types requires exponential storage. In STOC, pages 405–410. ACM, 1989.

7 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,
65(4):22:1–22:25, 2018.

8 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for
k-sum and related problems. In STOC, pages 554–563. ACM, 2018.

9 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–1075, 2010.

10 J. Michael Steele and Andrew Yao. Lower bounds for algebraic decision trees. J.
Algorithms, 3(1):1–8, 1982.

3D Staged Tile Self-Assembly
Arne Schmidt1

1 Department of Computer Science, TU Braunschweig, Germany.
aschmidt@ibr.cs.tu-bs.de

Abstract
In the staged self-assembly model, building blocks, called tiles, are added to bins in stages.
This results in multiple subassemblies attaching to each other at each stage. Previous work by
Demaine et al. show that any polyomino can be created within O(log2 n) stages. We improve
this to O(logn) stages and also show that for any three-dimensional monotone polycube there
is a staged self-assembly system with O(logn) stages, O(1) glue types and a scale factor of five
constructing this shape.

1 Introduction

In 1998, Erik Winfree [11] introduced the abstract Tile Self-Assembly Model (aTAM) in
which unrotatable building blocks (called Wang tiles [10]) with specific glue types on their
sides successively attach to a given tile, called seed. Each glue type has a strength and a tile can
attach to an existing assembly through a matching glue type if the sum of corresponding glue
types is at least a threshold value τ , called temperature.

Ten years later, Demaine et al. [3] introduced the staged Tile Self-Assembly Model (sTAM).
Here, not only tiles but whole subassemblies can stick to each other rather than only attaching
to a seed. In the sTAM, the assembly process is split up into several phases, called stages. In
each stage, multiple subassemblies are created independently in various bins. The results can
then be mixed together in a next stage and unwanted assemblies can be filtered out. Two
subassemblies attach to each other if the sum of strengths of all matching glue types along the
common boundary exceeds the temperature.

Demaine et al. [4] showed that, in contrast to aTAM, where a line can only be built
with Ω(N) glue types, any shape can be built withinO(log2 n) stages usingO(1) glue types and
O(k) bins in sTAM. Here, N is the number of tiles of the shape, n is the side length of a smallest
enclosing square, and k is the number of corners of the shape.

1.1 Our Contribution
We prove that there are staged self-assembly systems using O(logn) stages, O(1) glue types, an
O(1) scale factor, temperature τ = 1, and full connectivity to assemble (i) any two-dimensional
shape using O(k) bins, and (ii) any monotone three-dimensional shape using O(n) bins.

1.2 Related Work
In the past few years, many models have been developed on top of the aTAM. Demaine et al. [3]
introduced the two-handed assembly model (2HAM) in which two partial assemblies can bind
to each other; from this model they developed the sTAM. Padilla et al. [5] introduced a
hierarchical system based on signal passing, i.e., glues are inactive until activated by a signal.

Stages are also considered in the literature: Reif [7] uses a step-wise model for parallel
computing, Park et al. [6] assemble DNA lattices with a hierarchical assembly technique and
Somei et al. [9] use a step-wise assembly of DNA tiles. However, non of these works consider
complexity aspects. In a recent paper, Chen and Doty [2] study the effects of parallelism in
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

31:2 3D Staged Tile Self-Assembly

hierarchical systems. In contrast to these works, Chalk et al. [1] consider the optimal stage
complexity for a fixed number of bins and glue types in the sTAM. They show that for b bins
and t tile types O(K(S)−t2−bt

b2 + log log b
log t) stages are sufficient, where K(S) is the Kolmogorov

complexity of a shape S. However, their technique uses a large scale factor; we use a scale
factor of only five.

2 Definitions

Due to space constraints we omit the formal definition of an sTAM, which can be found in [3].
Polyominoes. A polyomino P is a union of unit squares, called pixels, joined edge to edge
(see Fig. 1). W.l.o.g., we assume that the pixels are centered at points from Z2. A pixel
is a boundary pixel if at least one of the eight (axis parallel or diagonal) neighbor positions is not
occupied by a pixel in P . A boundary pixel p is a corner pixel of P if there are no two neighbor
pixels p′ and p′′ that are collinear with p and that are boundary pixels. The corner set of a
polyomino is the set of all corner pixels along all boundaries.

We define k as the cardinality of the corner set, N as the number of pixels of P , and n the
side length of a bounding square. We consider the following metrics:
Stage Complexity: The number of stages needed to assemble the shape.
Bin Complexity: The maximum number of different bins used at the same time.
Glue Complexity: The number of different glue types.
Scale Factor: A scale factor c replaces each tile of a polyomino by a c× c supertile.
Full Connectivity: A polyomino is called fully connected if and only if there is a matching glue

type between each pair of adjacent tiles.

Polycubes and the corresponding metrics are defined analogously.

Figure 1 A polyomino with N = 63 tiles, its k = 18 corner pixels (dark gray), and its ordinary
boundary pixels (light gray). A smallest square bounding the polyomino has side length n = 12.

3 Two Dimensions

We describe a staged tile self-assembly system that constructs an arbitrary two-dimensional
shape within O(logn) stages using only O(1) glue types and an appropriate scale factor. This
is an improvement of a factor of O(logn) compared to Demaine et al. [4]. However, the
construction is similar.

Consider a polyomino P 5, which is the result of scaling a polyomino P by five. We define
the backbone similar to the backbone in [4]: First, we add all boundary pixels of P 5 to the
backbone. Furthermore, we add tunnels starting at the leftmost bottommost boundary pixel
p belonging to a hole. The tunnel extends two lines to the left; one at p and one two rows above
p. We stop extending as soon as we reach another boundary pixel. Having a tunnel we remove

A. Schmidt 31:3

the boundary pixels enclosed by the tunnel (see Fig. 2 left). Note that special cases may occur
when connecting a tunnel to the boundary (see Fig. 2 right). This construction gives a single
cycle visiting all holes, which is easy to construct.

Figure 2 Left: Example of a backbone (blue and red). Blue pixels denote boundary pixels, red pixel
represent tunnels. The green pixel get removed from the backbone. Right: A special case that may
occur during construction of the backbone: The tunnel (red) reaches a corner. One side of the tunnel
connects to the first pixel after the corner.

I Theorem 1. The backbone BP of a polyomino P is constructible within O(logn) stages
using O(k) bins and three glue types at temperature τ = 1.

Proof. Each tile is connected to exactly two other tiles. Let p0 be any tile of BP and p1, p2 its
two neighbors. Also, let a be the glue type between p1 and p0, and b the glue type between p2
and p0. We remove p0 from BP , obtaining a path-like structure whose ends have glue types a
and b. Now, decompose this path by cutting it at a corner tile along an edge such that the
number of corner tiles in both substructures are the same. The glue type between the two tiles
where we made the cut will be the third glue type c. Again, we have path-like structures left,
thus we can repeat the procedure. At some point we have only straight line paths left. These
can be assembled with three glue types and O(1) bins within O(logn) stages at temperature
τ = 1 (see [3]). As there are at most O(k) different lines, O(k) bins will be sufficient. J

I Theorem 2. A polyomino P can be constructed within O(logn) stages using O(k) bins, O(1)
glue types with full connectivity, and a scale factor five at temperature τ = 1.

Proof. The construction of an arbitrary polyomino proceeds in three steps: (1) Construct the
backbone, (2) fill up missing boundary tiles and finally, (3) fill up all other tiles.

While constructing the backbone BP we can ensure that each side of a tile in BP

pointing to the inner side of the polyomino gets a glue type corresponding to the chart in
Fig. 3. For example, if the east side of a boundary tile points to the inner side, the glue type is
{0, 1}, {5, 6}, {10, 11}, {15, 16} or {20, 21} depending on the position within the scaled tile
(see Fig. 3). If a boundary tile in BP is adjacent to a missing boundary tile (green tile in Fig. 2),
then we set the glue type as shown in Fig. 4, increasing the number of glue types by seven.

After constructing the backbone with all glues needed, we add the missing boundary tiles in
a single stage. In another stage, we can now fill up the whole polyomino with the tiles shown in
Fig. 3. Because any side facing to a hole or to the outer face has no glue, no tile can be placed to
a position not belonging to the polyomino.

We conclude: For phase (2) and (3) we need two stages and O(1) glue types. Thus, in total
we have O(logn) stages, O(1) glue types, scale factor five, O(k) bins, and full connectivity at
temperature τ = 1. J

EuroCG’19

31:4 3D Staged Tile Self-Assembly

4 1 2 3 40

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 2324

9

14

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14
19
15 16 17 18 19

24
20 21 22 23 24

20 21 22 23 24

Figure 3 Glue types for tiles in a scaled tile; these are 25 different types.

z1

z2

z3

z4
20 23

z5

z7

z3

z4
20 23z6

Figure 4 Glue types for tiles on the boundary missing in BP .

4 Monotone, Three-Dimensional Shapes

Most assembly systems use the fact that the third dimension can be used to combine two
partial assemblies. However, this cannot be easily done while constructing three-dimensional
shapes, unless we can make use of a fourth dimension. Therefore, we need staged assembly
systems that only combine partial three-dimensional assemblies for which we have an obstacle-
free path. Previous work [8] considers assembly of polyominoes with straight free paths. In this
paper we only consider a special case of three-dimensional shapes: z-monotone polycubes.

IDefinition 3. A polycube P is z-monotone if the intersection of any x-y-plane with P results
in a two-dimensional connected polyomino. We call such an intersection a layer of P . See
Fig. 5 for an example.

The idea to construct three-dimensional monotone shapes is to construct slices that
are scaled by a factor of five, having plugs and sockets (similar to tabs and pockets for
two-dimensional shapes in [3]). Consider a polycube P scaled by a factor of five resulting
in P 5. We enumerate each layer of P 5 bottom to top modulo five. For each block of five layers,

Figure 5 Left: A three-dimensional z-monotone polycube. Right: Three layers of P .

A. Schmidt 31:5

we create two polycubes as follows: P1 gets layers 0 and 1 completely, and additionally
the boundary tiles of layer 2, which form a socket (brown in Fig. 6). If there is a layer -1 below
layer 0, then we form a plug with the tiles from layer -1. Let L-1 be the tiles in layer -1 having a
neighbor in layer 0. We add all tiles of L-1 to P1 except its boundary tiles (turquoise in Fig. 6).

The second polycube, P2, gets layer 3 and 4 completely, and additionally all tiles of layer 2
except its boundary tiles, which form a plug (turquoise in Fig. 6). If there is a layer above layer
4, namely layer 5, then we form a socket. Let L4 be the set of tiles of layer 4 having a neighbor
in layer 5. Then we remove all tiles except the boundary pixels of L4 from P2 (brown in Fig. 6).

Performing this procedure for each block of five layers results in a decomposition into
slices (an example is given in Fig. 6). Before we start describing how to assemble the slices, we
explain how the slices can be used to get the final shape (note that this construction is similar
to a rectangle decomposition in 2D [4]). We cut between two slices that split the polycube in
half. We give both, the plug and the socket, a set of glue types, say G1 (see Fig. 7 left). At
the next cut we use the set of glue types G2. Let G3 be the third set of glues. At each recursion
step, any subpolycube P̃ uses two of the three sets. We cut between two slices in P̃ and use the
third set of glues for the new plug and the socket. This gives us a decomposition tree with
logarithmic height and linear width, thus we need O(logn) stages and O(n) bins.

Bottom
view

Top
view

P
1

co
n
st
ru
ct
io
n

P
2

co
n
st
ru
ct
io
n

Figure 6 Decomposition of a polyomino (left) into slices (right). Slices have sockets (brown tiles) on
the top and plugs on the bottom side (turquoise tiles).

I Lemma 4. A slice can be constructed within O(logn) stages using O(1) glue types, O(k) bins
with full connectivity at temperature τ = 1.

Proof. For each slice we have at least one layer with all tiles, one socket on the top and a plug
on the bottom. Consider the tiles Tp we removed to obtain the plug, i.e., the tile of the socket of

EuroCG’19

31:6 3D Staged Tile Self-Assembly

blue

blueorange
orange

Figure 7 A slice with O(1) glue types for the socket and its 2D projection.

the slice below the current slice. Furthermore, let Ts be the set of tiles of the socket. If we
look at a 2D projection of Tp, Ts and a complete layer PL, i.e., we ignore the z-direction, then at
least one of Tp or Ts is the same as the boundary tiles TL of PL.

W.l.o.g., let Ts be unequal to TL. Due to space constraints we only consider the case where
PL has no holes and Ts and TL have common tiles (in other cases we can make use of tunnels
like in Section 3). Let P̃ be the polyomino obtained by projecting Ts, Tp and TL onto the
x-y-plane (see Fig. 7 right). The tiles of P̃ can be divided into three types of tiles: (i) tiles only
belonging to TL, (ii) tiles only belonging to Ts, and (iii) tiles belonging to both, TL and
Ts. We can decompose P̃ by cutting off type (i) and type (ii) tiles with O(logn) cuts first, such
that only lines with tiles of type (i), (ii) or (iii) remain. These lines can be built within O(logn)
stages with correct glue types on their sides.

We can now fill up the slice with tiles that have glues on the top and bottom encoding (1)
the glue type of the socket above, (2) the glue type of the plug below the current pixel,
and (3) the distance to the top/bottom of the slice. Because there are only a constant
number of such combinations possible, also a constant number of glue types will be sufficient. It
remains to differentiate between tiles that have the socket above and those that do not have the
socket above. We use 25 glue types to fill up the area, that is enclosed by type (ii) and (iii) tiles,
as shown in Section 3. Another 25 glue types can be used to fill up the remaining area. In total
these are O(1) glue types. J

I Theorem 5. A z-monotone polycube can be constructed within O(logn) stages using O(1)
glue types, O(n) bins with full connectivity, and a scale factor five at temperature τ = 1.

5 Conclusion and Future Work

In this paper we started the first investigation of three-dimensional shapes within the staged
self-assembly model. We showed that monotone three-dimensional shapes can be assembled
within O(logn) stages, O(1) glue types, O(n) bins using full connectivity and a scale factor of 5.
Future work could consider to look at upper and lower bounds for the stage complexity.
Is it still possible to assemble an arbitrary polycube within O(logn) stages and only O(1) glue
types?

References
1 C. Chalk, E. Martinez, R. Schweller, L. Vega, A. Winslow, and T. Wylie. Optimal staged

self-assembly of general shapes. Algorithmica, pages 1–27, 2016.

A. Schmidt 31:7

2 H.-L. Chen and D. Doty. Parallelism and time in hierarchical self-assembly. SIAM Journal
on Computing, 46(2):661–709, 2017.

3 E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin, R. T. Schweller, and
D. L. Souvaine. Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues.
Natural Computing, 7(3):347–370, 2008.

4 E. D. Demaine, S. P. Fekete, C. Scheffer, and A. Schmidt. New geometric algorithms for fully
connected staged self-assembly. Theoretical Computer Science, 671:4–18, 2017.

5 J. E. Padilla, W. Liu, and N. C. Seeman. Hierarchical self assembly of patterns from the
robinson tilings: DNA tile design in an enhanced tile assembly model. Natural Computing,
11(2):323–338, 2012.

6 S. H. Park, C. Pistol, S. J. Ahn, J. H. Reif, A. R. Lebeck, C. Dwyer, and T. H. LaBean.
Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures.
Angewandte Chemie, 118(5):749–753, 2006.

7 J. H. Reif. Local parallel biomolecular computation. In DNA-Based Computers, volume 3,
pages 217–254, 1999.

8 A. Schmidt, S. Manzoor, L. Huang, A. T. Becker, and S. P. Fekete. Efficient Parallel
Self-Assembly Under Uniform Control Inputs. IEEE Robotics and Automation Letters,
3(4):3521–3528, 2018.

9 K. Somei, S. Kaneda, T. Fujii, and S. Murata. A microfluidic device for DNA tile self-
assembly. In DNA Computing (DNA 11), pages 325–335. 2006.

10 H. Wang. Proving theorems by pattern recognition—II. Bell system technical journal,
40(1):1–41, 1961.

11 E. Winfree. Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technol-
ogy, 1998.

EuroCG’19

O-Hull Formation for Programmable Matter
Joshua J. Daymude1, Robert Gmyr2, Kristian Hinnenthal3, Irina
Kostitsyna4, Christian Scheideler3, and Andréa W. Richa1

1 Computer Science, CIDSE, Arizona State University, Tempe, AZ, USA
{jdaymude, aricha}@asu.edu

2 Department of Computer Science, University of Houston, Houston, TX, USA
rgmyr@uh.edu

3 Department of Computer Science, Paderborn University, Paderborn, Germany
{krijan, scheidel}@mail.upb.de

4 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
i.kostitsyna@tue.nl

1 Introduction

Research in self-organizing programmable matter is becoming increasingly popular in many
fields with potential for broad applications, for example, in nanomedicine. Imagine tiny
particles locating and repairing small wounds in the human body, or capturing harmful
cells and transporting them out of the body. In this context various problems such as
shape formation [6, 15, 10, 12], coating [7, 1], and shape recognition [9] have recently been
investigated under various theoretical models. Somewhat in between these lies the problem
of shape sealing, where the goal is to isolate an object by enclosing it with a shell of particles.

In this paper we study the problem of sealing a 2D object under the amoebot model [5, 4],
which models programmable matter as a collection of nanoscale agents (called particles) with
limited computational capabilities that move on a grid and can locally exchange information
in order to collectively achieve a given goal.

The Amoebot Model. In the amoebot model the underlying geometry is an infinite
triangular lattice G4 = (V, E). Each particle occupies either a single node in V (contracted
particle) or a pair of adjacent nodes in V (expanded particle). Particles move via a series of
expansions and contractions: a contracted particle can expand into an unoccupied adjacent
node, and contract into one of its nodes (see Fig. 1). Neighboring particles can coordinate
their movements in a handover, which can occur when: a contracted particle P “pushes” an
expanded neighbor Q by expanding into a node occupied by Q, forcing it to contract; or an
expanded particle Q “pulls” a contracted neighbor P by contracting, forcing P to expand
into the node it is vacating. Handovers help maintain the connectivity of the particle system.

The particles are assumed to be anonymous, with no global coordinate system or compass.
The only assumption is that the particles have a common chirality, which allows them to
number the incident edges in clockwise order.

We assume the standard asynchronous model of distributed computing (see, e.g., [11]). A
classical result under this model states that for any concurrent asynchronous execution of
atomic actions, there exists a sequential ordering of actions producing the same end result,
provided conflicts that arise in the concurrent execution are resolved. In the amoebot model,
an atomic action corresponds to a single particle activation in which a particle can perform
some computation involving its memory and the memories of its neighbors and at most one
expansion or contraction. Conflicts involving concurrent memory writes or simultaneous
particle expansions into the same unoccupied node are resolved arbitrarily such that at most
one particle is writing into a given memory location or expanding into a given node at a time.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

32:2 O-Hull Formation for Programmable Matter

Figure 1 Left: Expanded and contracted particles. Right: particles with edge numbering.

0
2
3

45

h5,0

h1,2

h2,3

h3,4

h4,5

1

h0,1

d4,5

d1,2

d3,4

d2,3d0,1

d5,0

Figure 2 Left: An example of an object S (highlighted in orange), enclosed by its strong O-hull
(solid line) and its O-hull (dashed line). Right: A particle’s local labeling of the six half-planes
composing the strong O-hull; D = {2, 2, 4, 3, 2, 2}.

While in reality many particles may be active concurrently, when analyzing our algorithms it
suffices to consider a sequence of activations where only one particle is active at a time. We
assume the activation sequence is fair : any particle P will be activated at some future time.
An asynchronous round is complete once all particles have been activated at least once.

Problem Description. Shape sealing in two dimensions reduces to enclosing an object in a
cycle. To optimize the number of particles needed to seal an object, we study the problem of
particles forming a convex hull. The amoebot model limits the movement of the particles to
three directions, thus we build a restricted-orientation hull, or an O-hull, of a given object.

The notions of O-convexity and an O-hull were introduced by Rawlins [14] (see also [8]).
Given a set of fixed orientations O, a set is O-convex if its intersection with any line with one
of the orientations in O is connected. An O-hull of a given set S is defined as an intersection
of all O-convex sets containing S. Furthermore, a strong O-hull of S is an intersection of all
half-planes bounded by lines with orientations in O and containing S. In our case O consists
of three orientations of the axes of the triangular grid G4.

Let S be a simply-connected subgraph of G4, and P be a connected system of initially
contracted amoebot particles on G4 (non-overlapping with S). The shape sealing problem
is to reconfigure P within G4\S so that every node of the O-hull of S is occupied by a
contracted particle. Note that as the particles are not allowed to occupy the nodes of S, the
hull that will be constructed by P will in fact be the offset-by-one O-hull of S (see Fig. 2
(left)). Nevertheless, to simplify the exposition, we will refer to it using the same term O-hull.
We further assume that P has enough particles to form an O-hull, that it contains a unique
leader particle1 ` initially adjacent to S, and that S does not contain any tunnels of width 1

1 Such a particle can be determined in O(|P|) asynchronous rounds with high probability using a slightly
modified version of the leader election algorithm of [3].

J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa 32:3

Figure 3 A particle (black dot) estimates strong O-hull (black) after having traversed the dotted
path from its starting point (black circle). Left: dh ≥ 1 for all h ∈ H, the next move does not push
any half-plane. Middle: d1,2 = 0. Right: Half-plane d1,2 has been pushed.

(that is, G4\S is 2-connected).
We present a fully distributed, local algorithm for the shape sealing problem that runs in

O(B +H) asynchronous rounds, where B is the perimeter of S, and H is the perimeter of the
O-hull of S. We present the algorithm in three parts: we first describe how a single particle
with unbounded memory can find the strong O-hull using a simple geometric observation.
The main difficulty of our result lies in emulating the single-particle algorithm with a system
of bounded-memory particles. The final part, converting the strong O-hull into the O-hull,
is rather straightforward: all particles at the convex vertices that are not adjacent to S can
move inside thus “deflating” the strong O-hull towards the O-hull; after additional O(H)
asynchronous rounds the O-hull is achieved. In the rest of this extended abstract we present
the first two parts of the algorithm. Due to space constraints, we omit the proofs of the
theorems, which can be found in the full version of this paper [2].

2 Single Particle Algorithm

Consider a single particle P with unbounded memory. Let P be initially placed somewhere
adjacent to S. The main idea of this algorithm is to let P traverse the boundary of S

clockwise, while internally maintaining a representation of the strong O-hull. The strong
O-hull can be represented with six half-planes H = {h0,1, h1,2, . . . , h5,0}, which P can label
clockwise (in Fig. 2 (right)). Particle P computes the locations of these half-planes by
maintaining six counters D = {dh : h ∈ H}, where dh holds the distance from P to the line
supporting h. If one of these counters is 0, P is on the current estimate of the strong O-hull.

Counters initially are set to 0. As P moves, it always stays parallel to two half-planes;
their counters do not get updated. For two other half-planes P gets further away; their
counters get incremented. For each of the remaining two half-planes, P either moves closer
to it (if its counter was > 0) or steps outside of the half-plane (if the counter was = 0). In
the former case the counter gets decremented, in the latter case the counter does not get
updated which corresponds to a half-plane getting “pushed”. Refer to Fig. 3 for an example.

Finally, P needs to detect when it has computed the strong O-hull. To do so, it stores six
terminating bits {bh : h ∈ H}, where bh = 1 if P has visited the line supporting half-plane
h since it last pushed any half-plane, and bh = 0 otherwise. Whenever P moves without
pushing a half-plane, for each h with dh = 0 it sets bh to 1. Otherwise, when P pushes a
half-plane, it sets bh to 0 for all h. If after a move all six terminating bits are 1, P contracts
and terminates.

EuroCG’19

32:4 O-Hull Formation for Programmable Matter

I Theorem 2.1. The single-particle algorithm terminates after O(B) asynchronous rounds
with particle P holding the correct representation of the strong O-hull in the six counters D.

3 The Strong O-hull Algorithm

Next we show how a system of n particles each with only constant-size memory can emulate
the single-particle algorithm. The leader particle ` of P is primarily responsible for emulating
the particle with unbounded memory in the single-particle algorithm. To do so, it utilizes
the other particles in the system as distributed memory. More precisely, as ` moves, it will
create a chain of particles behind it that will be used to store the distances dh from ` to the
lines supporting half-planes h as binary counters. Once these measurements are complete, `

uses them to lead the other particles in forming the O-hull.

A Binary Counter of Particles. We build upon an increment-only binary counter under
the amoebot model [13]. Suppose that the participating particles are organized as a simple
chain with the leader at its front. Each particle P has a bit value P.bit, that can be empty if
P is not part of the counter. A final token f is held by a particle marking the end of the
counter. Then the counter value is represented by the bits of the particles from ` (holding
the least significant bit) up to the particle holding the token f .

The leader ` initiates counter operations, and the rest of the particles carry these
operations out. To increment (decrement) the counter, the leader ` generates an increment
token c+ (decrement token c−). The tokens are consumed or passed along the chain (as a
carry bit) while updating the bits of the particles accordingly until they are consumed. To
test whether the counter is 0, the leader checks the status of its follower counter particle P1.
If P1 is holding a decrement token c− and P1.bit = 1, ` cannot conclusively test whether the
counter’s value is 0. Otherwise, the counter value is 0 if and only if `.bit = 0, P1 is holding
the final token f , and P1 is not holding an increment token c+.

The proof of the following theorem is rather involved, we omit it due to space constraints.

I Theorem 3.1. Given any fair asynchronous activation sequence of the particles, and any
nonnegative sequence of m operations, the distributed binary counter correctly processes all
operations in O(m) asynchronous rounds.

3.1 Estimating the Strong O-Hull

We now combine the movement rules of the single-particle algorithm with our distributed,
multi-particle binary counter to enable the leader to compute the strong O-hull of S.

First, using the spanning tree primitive (see, e.g., [7]), a spanning tree is constructed on
the particle system rooted at the leader `. Each activated particle P , if it has a neighbor Q

already in the tree, becomes a follower and sets P.parent to Q. Note that the leader can
immediately begin estimating the strong O-hull without waiting for the entire tree to form.

The first few followers of ` form a counter chain and store six counters dh in a distributed
fashion. Imitating the single-particle algorithm, ` performs a clockwise traversal of the
boundary of S using the right-hand rule, updating its counters along the way. It terminates
once it has moved in all six directions without pushing a half-plane, which it detects using
its six terminating bits bh. In the multi-particle setting, we need to carefully consider both
how ` interacts with its followers as it moves and how it updates its counters.

J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa 32:5

P0P1P2

P3

Q1

P4P5P6

Figure 4 The leader P0 and its followers. Followers with dots are on the counter, and P6 holds
the final token. Particle Q1 cannot handover with P3, while all other potential handovers are safe.

Rules for Distributed Counters. The increment and decrement tokens are handled as
described above. However, as at the beginning the particles form a tree, and not a simple
path, we enforce that the counters are only extended along followers on the object’s boundary.

As there may be role-swaps of the leader ` (described below), to maintain connectivity of
the counters we modify them to store two bits per particle. Then if a role-swap occurs, the
counter bits will need to be shifted towards the leader to keep all the bits of the particles
closest to ` “full”. This can be easily achieved by passing the bit value when a counter
particle P detects that there is a bit value missing in the memory of its parent P.parent.

Rules for Leader Computation and Movement. First suppose ` is contracted. If all its
terminating bits bh = 1, then ` has computed the strong O-hull. Else, if the zero-test
operation is unavailable on any of the counters, ` skips its turn; otherwise, ` will attempt
to expand into the node v along the boundary of S. If v is unoccupied, or is occupied by
an expanded particle, ` calculates the updated distances D, generates the corresponding
increment/decrement tokens and expands into v. If v is occupied by a contracted particle
P , ` will have to initiate a role-swap with P , such that P becomes the new leader and `

becomes its follower (the second particle in the counter). This is allowed only if ` has its
both bit values full, or if it is holding a final token fh. In the former case ` passes the value
only of one least significant bit to P (this is where the two bits are used to maintain the
connectivity), and in the latter case ` passes a bit (if it exists) and the final token to P . It
also updates its terminating bits bh for all h ∈ H.

Finally, if ` is expanded, let P be its follower child emulating bits of the counters. Then
if P is contracted, ` pulls P in a handover.

Rules for Follower Movement. For any follower P , if it is expanded and has no children in
the spanning tree nor any non-tree neighbor, then it simply contracts. If P is contracted and
is following the tail of its expanded parent Q = P.parent, then P pushes Q in a handover.
Similarly, if P is expanded and has a contracted child Q, P pulls Q in a handover. However,
we do not allow handovers that may disconnect the counters (see Fig. 4).

Once the counters contain an accurate representation of the strong O-hull, the leader
` can simply lead the particle system in tracing it out by traversing the strong O-hull in
clockwise order. While moving along the strong O-hull, ` uses its distributed counters to
detect when it reaches a vertex of the strong O-hull, at which point it turns 60◦ to follow
the next half-plane, and so on. The movement rules for the leader and the followers in this

EuroCG’19

32:6 O-Hull Formation for Programmable Matter

phase are very similar to those of the previous phase. With some careful analysis we can
show the following theorem.

I Theorem 3.2. The presented algorithm solves the strong O-hull formation problem for an
object S in O(B + H) asynchronous rounds in the worst case.

Acknowledgments. Joshua J. Daymude and Andrá W. Richa are supported in part by NSF
Awards CCF-1637393 and CCF-1733680.

References
1 J. J. Daymude, Z. Derakhshandeh, R. Gmyr, A. Porter, A. W. Richa, C. Scheideler, and

T. Strothmann. On the runtime of universal coating for programmable matter. Natural
Computing, 17(1):81–96, 2018.

2 J. J. Daymude, R. Gmyr, K. Hinnenthal, I. Kostitsyna, C. Scheideler, and A. W. Richa.
Convex hull formation for programmable matter. Available on arXiv, 2018.

3 J. J. Daymude, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Improved
leader election for self-organizing programmable matter. In Algorithms for Sensor Systems
(ALGOSENSORS), pages 127–140, 2017.

4 J. J. Daymude, A. W. Richa, and C. Scheideler. The amoebot model. Available online at
https://sops.engineering.asu.edu/sops/amoebot, 2017.

5 Z. Derakhshandeh, S. Dolev, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann.
Brief announcement: Amoebot - a new model for programmable matter. In Proc. 26th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 220–222,
2014.

6 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Universal
shape formation for programmable matter. In Proc. 28th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 289–299, 2016.

7 Z. Derakhshandeh, R. Gmyr, A. W. Richa, C. Scheideler, and T. Strothmann. Universal
coating for programmable matter. Theoretical Computer Science, 671:56–68, 2017.

8 E. Fink and D. Wood. Restricted-Orientation Convexity. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag Berlin Heidelberg, 2004.

9 R. Gmyr, K. Hinnenthal, I. Kostitsyna, F. Kuhn, D. Rudolph, and C. Scheideler. Shape
Recognition by a Finite Automaton Robot. In Proc. 43rd International Symposium on
Mathematical Foundations of Computer Science (MFCS), volume 117 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 52:1–52:15, 2018.

10 F. Hurtado, E. Molina, S. Ramaswami, and V. Sacristán. Distributed reconfiguration of
2D lattice-based modular robotic systems. Autonomous Robots, 38(4):383–413, 2015.

11 N. Lynch. Distributed Algorithms. Morgan Kauffman, 1996.
12 M. J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.

Natural Computing, 13(2):195–224, 2014.
13 A. Porter and A. W. Richa. Collaborative computation in self-organizing particle systems.

In Proc. 17th International Conference on Unconventional Computing and Natural Com-
putation (UCNC), 2018.

14 G. J. E. Rawlins. Explorations in Restricted Orientation Geometry. PhD thesis, University
of Waterloo, 1987. AAI0561642.

15 D. Woods, H.-L. Chen, S. Goodfriend, N. Dabby, E. Winfree, and P. Yin. Active self-
assembly of algorithmic shapes and patterns in polylogarithmic time. In Proc. 4th Confer-
ence on Innovations in Theoretical Computer Science (ITCS), pages 353–354, 2013.

https://sops.engineering.asu.edu/sops/amoebot

Characterization and Computation of the Feasible
Space of an Articulated Probe
Ovidiu Daescu and Ka Yaw Teo

Department of Computer Science, University of Texas at Dallas,
Richardson, TX, USA
{ovidiu.daescu, ka.teo}@utdallas.edu

Abstract
We present an efficient algorithm for computing the feasible solution space for a trajectory plan-
ning problem involving an articulated two-link probe constrained to a fixed sequence of motions
– a straight line insertion, possibly followed by a rotation of the end link. Given n line segment
obstacles in the workspace, we show that the feasible trajectory space of the articulated probe
can be characterized by an arrangement of simple curves of complexity O(k), which can be con-
structed in O(n logn+k) time using O(n+k) space, where k = O(n2) is the number of vertices of
the arrangement. Additionally, our solution approach produces a new data structure for solving
a special case of the circular sector intersection query problem.

1 Introduction

In minimally invasive surgeries, a rigid needle-like robotic arm is typically inserted through
a small incision to reach its given target, after which it may perform operations such as
tissue resection and biopsy. Some newly developed variants allow for a joint to be close to
the acting end (tip) of the arm; after inserting the arm in a straight path, the surgeon may
rotate the tip around the joint to reach the target. This enhances the ability to reach deep
targets but greatly increases the complexity of finding acceptable insertion/rotation pairs.

Unlike polygonal linkages that can rotate freely at the joints while moving between a
start and target configuration [2, 8, 9], a simple articulated probe is constrained to a fixed
sequence of moves – a straight line insertion, possibly followed by a rotation of the short link.
This type of motion has not received attention until very recently [3, 4].

As originally proposed in [4], an articulated probe is modeled in <2 as two line segments,
ab and bc, joined at point b. The length of ab can be arbitrarily large (infinitely long), while
bc, corresponding to the tip of the probe, has a fixed length r. A two-dimensional workspace
(see Figure 1) is given by the region bounded by a large circle S of radius R centered at t,
enclosing a set P of n disjoint line segment obstacles and a target point t in the free space.

At the start, the probe is outside S and assumes an unarticulated configuration, in which
ab and bc are collinear, with b ∈ ac. A feasible probe trajectory consists of an initial insertion
of straight line segment abc, possibly followed by a rotation of bc at b up to π/2 radians in
either direction, such that point c ends at t, while avoiding obstacles in the process. If a
rotation is performed, then we have an articulated final configuration of the probe.

The objective of this paper is to characterize and compute the feasible trajectory space
(i.e., set of all feasible trajectories) of the articulated probe.

Previous work. The articulated probe problem in two dimensions was formally introduced in
[4], where an algorithm was presented for finding so-called extremal feasible probe trajectories
in O(n2 logn) time using O(n logn) space. In an extremal probe trajectory, the probe is
tangent to one or two obstacle endpoints. Later, it was shown in [3] that, for any constant δ
> 0, a feasible probe trajectory with a clearance δ from the obstacles can be determined in
O(n2 logn) time using O(n2) space.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

33:2 Feasible Space of an Articulated Probe

Figure 1 Trajectory planning for an articulated probe. In order to reach point t, a straight
insertion of line segment abc may be followed by a rotation of line segment bc from its intermediate
position (black dashed line) to the final position (black solid line).

Results and contributions. We describe a geometric combinatorial approach for charac-
terizing and computing the feasible trajectory space of the articulated probe. The feasible
configuration space has worst-case complexity of O(n2) and can be described by an arrange-
ment of simple curves. By using the topological sweep method [1], the arrangement can be
constructed in O(n logn+ k) time using O(n+ k) working storage, where k is the number
of vertices of the arrangement. Our approach also results in a simplified data structure of
similar space/time complexity compared to that in [4] for solving a special instance of the
circular sector intersection query problem (i.e., for a query circular sector with a fixed radius
r and a fixed arc endpoint t).

2 Solution approach

We characterize 1) the final configuration space, 2) the forbidden final configuration space,
and 3) the infeasible final configuration space, as detailed in this section.

2.1 Final configuration space
In a final configuration of the articulated probe, point a can be assumed to be located
on S, and point b lies on a circle C of radius r centered at t (see Figure 1). Let θS and
θC be the angles of ta and tb relative to the x-axis, respectively, where θS , θC ∈ [0, 2π).
Since bc may rotate as far as π/2 radians in either direction, for any given θS , we have
θC ∈ [θS − cos−1 r/R, θS + cos−1 r/R]. We call this the unforbidden range of θC . A final
configuration of the articulated probe can be specified by a two-tuple (θS , θC), depending
on the locations of points a and b on circles S and C, respectively (see Figure 2). The final
configuration space Σfin of the articulated probe can be computed in O(1) time.

2.2 Forbidden final configuration space
A final configuration is called forbidden if the final configuration (represented by ab and bt)
intersects with one or more of the obstacle line segments. The following two cases arise.

Case 1. Obstacle line segment s outside C. The corresponding forbidden final configu-
ration space can be characterized as follows. Let angles θi, where i = 1, . . . , 6, be defined

O. Daescu and K.Y. Teo 33:3

Figure 2 Final configurations of the probe. The unshaded region of the (θS , θC)-plot represents
the unforbidden final configuration space when the workspace contains no obstacles.

in the manner depicted in Figure 3. Briefly, each θi corresponds to an angle θS at which
point a tangent line between C and s, or from t to s, intersects S. As θS increases from θ1
to θ3, the upper bound of the unforbidden range of θC decreases as a continuous function of
θS . Similarly, when θS varies from θ4 to θ6, the lower bound of the unforbidden range of θC

decreases as a continuous function of θS . For θ3 ≤ θS ≤ θ4, there exists no unforbidden final
configuration at any θC . For conciseness, the upper (resp. lower) bound of the unforbidden
range of θC is simply referred to as the upper (resp. lower) bound of θC hereafter.

Figure 3 Forbidden final configurations due to an obstacle line segment s outside C.

Case 2. Obstacle line segment s inside C. We compute the forbidden final configuration
space for s in a similar way. Note that, as shown in Figure 4, angles θi (where i = 1, . . . , 6)
are defined differently from the previous case. For θ1 ≤ θS ≤ θ4, the upper bound of θC is
equivalent to θ2. For θ3 ≤ θS ≤ θ6, the lower bound of θC equals to θ5.

We can find the forbidden final configuration space for an obstacle line segment (i.e.,
final configuration obstacle) in O(1) time. Thus, for n obstacle line segments, it takes a
total of O(n) time to compute the corresponding set of configurations. The union of these
configurations forms the forbidden final configuration space Σfin,forb of the articulated probe.

EuroCG’19

33:4 Feasible Space of an Articulated Probe

Figure 4 Forbidden final configurations due to an obstacle line segment s inside C.

The free final configuration space Σfin,free of the articulated probe is the complement of
Σfin,forb; that is, Σfin,free = Σfin \ Σfin,forb.

2.3 Infeasible final configuration space
The feasible trajectory space of the articulated probe can be characterized as a subset of
Σfin,free. A final configuration is called infeasible if the circular sector associated with the
final configuration (i.e., the area swept by segment bc to reach target point t) intersects with
any obstacle line segment. We denote the infeasible final configuration space as Σfin,inf .

Let C ′ be a circle centered at t and of radius
√

2r. A circular sector associated with
a final configuration can only intersect with an obstacle line segment lying inside C ′. In
contrast to characterizing the lower and upper bounds of θC as θS varies from 0 to 2π as in
the prior section, we herein perform the characterization in reverse. For conciseness, we only
present arguments for the negative half of the θS-range, which is [θC − cos−1 r/R, θC], and
the similar arguments apply to the other half due to symmetry. As before, two cases arise.

Case 1. Obstacle line segment s inside C. As shown in Figure 5, we are only concerned
with computing the lower bound of θS for θC ∈ [φ1, φ2], given that the entire negative half of
the θS-range (i.e., [θC − cos−1 r/R, θC]) is feasible for θC ∈ [0, φ1]∪ [φ3, 2π), and is infeasible
for θC ∈ [φ2, φ3] due to intersection of bt with s.

For brevity, the quarter-circular sector associated with a point b (i.e., the maximum
possible area swept by segment bc to reach point t), where the angle of tb (relative to the
x-axis) is θC , is henceforth referred to as the quarter-circular sector associated with θC .

φ1, φ2 and φ3 can be described in brief as follows (see Figure 5a). φ1 is the smallest angle
θC at which the circular arc (of the quarter-circular sector associated with θC) intersects
with s (at one of its endpoints or interior points). φ2 is the smallest angle θC at which bt (of
the quarter-circular sector associated with θC) intersects with s (at one of its endpoints).
φ3 is the largest angle θC at which bt (of the quarter-circular sector associated with θC)
intersects with s (at one of its endpoints). In other words, as θC varies from 0 to 2π, φ1 and
φ3 are the angles θC at which the quarter-circular sector associated with θC first and last
intersects with s, respectively.

For θC ∈ [φ1, φ2], the lower bound of θS can be represented by a piecewise continuous
curve, which consists of at most two pieces, corresponding to two intervals [φ1, α] and [α, φ2],

O. Daescu and K.Y. Teo 33:5

Figure 5 Infeasible final configurations due to an obstacle line segment s inside C. Illustration of
θS-lower bound for (a) θC ∈ [φ1, φ2], (b) φ1 < θC < α, (c) θC = α, and (d) α < θC < φ2.

where α is the angle θC of the intersection point between C and the supporting line of s.
Note that, if φ1 ≤ α, then the lower-bound curve of θS has two pieces; otherwise, the curve
is composed of one single piece.

For θC ∈ [φ1, α], as depicted in Figure 5b, the lower bound of θS is indicated by point a
of straight line segment abc′ (i.e., intermediate configuration), where c′ is the intersection
point between the circular arc centered at b and obstacle line segment s. If no intersection
occurs between the circular arc and obstacle line segment s, then the lower bound of θS

is given by point a of straight line segment abc′, where bc′ intersects with the endpoint of
obstacle line segment s farthest from point b.

For θC ∈ [α, φ2], the lower bound of θS is indicated by point a of straight line segment
abc′, where bc′ intersects with the endpoint of obstacle line segment s closest to point b (see
Figure 5d). Observe that the lower bound of θS is equivalent to θC when θC = φ2. A sketch
of the corresponding infeasible final configuration space is shown in Figure 6.

Case 2. Obstacle line segment s outside C and inside C ′. As depicted in Figure 7, we only
need to worry about computing the lower bound of θS for θC ∈ [φ1, φ2], given that the entire
negative half of the θS-range (i.e., [θC − cos−1 r/R, θC]) is feasible for θC ∈ [0, φ1] ∪ [φ2, 2π).
The analysis is similar to Case 1 and thus omitted. A sketch of the corresponding infeasible
final configuration space is shown in Figure 8.

EuroCG’19

33:6 Feasible Space of an Articulated Probe

Figure 6 Infeasible final configuration space due to an obstacle line segment s inside C.

2.4 Complexity and construction of the feasible trajectory space
The feasible trajectory space of the articulated probe is represented by Σfin \ (Σfin,forb ∪
Σfin,inf). A set of lower- and upper-bound curves – σfin, σfin,forb, and σfin,inf – was
obtained from characterizing the final, forbidden final, and infeasible final configuration
spaces, respectively. Each of these curves is a function of θS – that is, θC(θS).

As illustrated in Figure 2, σfin contains two linearly increasing curves, θC = θS−cos−1 r/R

and θC = θS + cos−1 r/R, which are totally defined over θS ∈ [0, 2π). Each curve in σfin,forb

is partially defined, continuous, and monotone in θS . Specifically, as shown in Figure 3 & 4,
the curves in Case 1 are monotonically decreasing with respect to θS , and the curves in Case
2 are of zero slopes (i.e., of some constant θC). Furthermore, any two curves in Case 1 can
only intersect at most once. Likewise, each curve in σfin,inf is bounded and monotonically
increasing with respect to θS (see Figure 6 & 8). Any curve in σfin,inf can only intersect
with another at most once.

From the observations above, it can be easily deduced that the number of intersections
between any two curves in σ = σfin ∪ σfin,forb ∪ σfin,inf is at most one. In other words, the
curves of σ are essentially lines, line segments, or pseudo-line segments. For a set σ of O(n)
x-monotone Jordan arcs, bounded or unbounded, with at most c intersections per pair of
arcs (for some fixed constant c), the maximum combinatorial complexity of the arrangement
A(σ) is O(n2) [6].

An incremental construction approach, as detailed in [5], can be used to construct
arrangement A(σ) in O(n2α(n)) time using O(n2) space, where α(n) is the inverse Ackermann
function. By using topological sweep [1] in computing the intersections for a collection of
well-behaved curves (e.g., Jordan curves described above), the time and space complexities
can be improved to O(n logn+ k) and O(n+ k), respectively.

I Theorem 2.1. The feasible trajectory space of the articulated probe can be represented as a
simple arrangement of maximum combinatorial complexity k = O(n2) and can be constructed
in O(n logn+ k) time using O(n+ k) space.

Remark. The analytical approach above, with a slight change of parameterization and
some additional data structure, can be used to solve a special case of the circular sector
intersection query problem, and the result is summarized in Theorem 2.2.

O. Daescu and K.Y. Teo 33:7

Figure 7 Infeasible final configurations due to an obstacle line segment s outside C and inside
C′. Illustration of θS-lower bound for (a) θC ∈ [φ1, φ2], (b) φ1 < θC < α, (c) θC = α, and (d)
α < θC < φ2.

I Theorem 2.2. A set P of n line segments in <2 can be preprocessed in O(n logn) time
into a data structure of size O(nα(n)) so that, for a query circular sector σ with a fixed
radius r and a fixed arc endpoint t, one can determine if σ intersects P in O(logn) time.

References

1 Ivan J Balaban. An optimal algorithm for finding segments intersections. In Proceedings
of the eleventh annual symposium on Computational geometry, pages 211–219, 1995.

2 Robert Connelly and Erik D Demaine. Geometry and topology of polygonal linkages.
Handbook of Discrete and Computational Geometry, pages 233–256, 2017.

3 Ovidiu Daescu, Kyle Fox, and Ka Yaw Teo. Computing trajectory with clearance for an
articulated probe. In 28th Annual Fall Workshop on Computational Geometry, 2018.

4 Ovidiu Daescu, Kyle Fox, and Ka Yaw Teo. Trajectory planning for an articulated probe.
In 30th Annual Canadian Conference on Computational Geometry, pages 296–303, 2018.

5 Herbert Edelsbrunner, Leonidas Guibas, János Pach, Richard Pollack, Raimund Seidel,
and Micha Sharir. Arrangements of curves in the plane – topology, combinatorics, and
algorithms. Theoretical Computer Science, 92(2):319–336, 1992.

6 Dan Halperin and Micha Sharir. Arrangements. Handbook of Discrete and Computational
Geometry, pages 723–762, 2017.

EuroCG’19

33:8 Feasible Space of an Articulated Probe

Figure 8 Infeasible space due to a line segment s outside C and inside C′.

7 John Hershberger. Finding the upper envelope of n line segments in O(n log n) time.
Information Processing Letters, 33(4):169–174, 1989.

8 John Hopcroft, Deborah Joseph, and Sue Whitesides. Movement problems for 2-
dimensional linkages. SIAM Journal on Computing, 13(3):610–629, 1984.

9 Steven M LaValle. Planning algorithms. Cambridge University Press, 2006.
10 Micha Sharir and Pankaj K Agarwal. Davenport-Schinzel sequences and their geometric

applications. Cambridge University Press, 1995.

Improved Time-Space Bounds for Grid Graph
Reachability
Rahul Jain1 and Raghunath Tewari2

1 Indian Institute of Technology Kanpur
jain@cse.iitk.ac.in

2 Indian Institute of Technology Kanpur
rtewari@cse.iitk.ac.in

Abstract
The reachability problem is to determine if there exists a path from one vertex to the other in a
graph. Grid graphs are the class of graphs where vertices are present on the lattice points of a
two-dimensional grid, and an edge can occur between a vertex and its immediate horizontal or
vertical neighbor only.

Asano et al. presented the first simultaneous time space bound for reachability in grid graphs
with n vertices by presenting an algorithm that solves the problem in polynomial time and
O(n1/2+ε) space [2]. In 2018, the space bound was improved to Õ(n1/3) by Ashida and Nakagawa
[4]. In this paper, we further improve the space bound and present a polynomial time algorithm
that uses O(n1/4+ε) space to solve reachability in a grid graph.

1 Introduction

Given a graph G and two vertices s and t in it, the reachability problem seeks to answer
whether there exists a path from s to t in G. It is of fundamental importance in the field
of computer science. Not only is it used as a subroutine in many graph algorithms, but
its study also gives insights into space bounded computations. Reachability in a directed
graph is complete for the class of problems solvable by a nondeterministic Turing machine in
logspace. A deterministic logspace algorithm for it would show NL to be equal to L, thus
solving an open question in the area of computational complexity. In an undirected graph,
reachability was shown to be in L by Reingold [11].

Standard graph traversal algorithms solve reachability in directed graphs using linear
time and space. We also know of Savitch’s algorithm which can solve reachability in O(log2 n)
space but the algorithm requires 2Ω(log2 n) time [12]. So, on one end we have algorithms that
require a small amount of time and a large amount of space, while on the other end, we have
Savitch’s algorithm which requires a small amount of space but a large amount of time. A
natural question we can ask is whether there exists an algorithm that uses time and space
both in small amounts. This question was formally asked by Wigderson in his survey of
reachability problems, if there exists an algorithm for graph reachability which maintains the
polynomial time bound while running in O(nε) space, for some ε < 1 [13].

Barnes, Buss, Ruzzo, and Schieber gave the first sublinear space polynomial time algorithm
for reachability in directed graph [5]. The space complexity of their algorithm is n/2Θ(

√
logn).

We know of polynomial time algorithms with better space complexity for various subclasses
of directed graphs. These include planar graphs [9][3], genus g graphs, H-minor-free graphs,
K3,3-minor-free graphs, K5-minor free graphs [7], Layered planar graphs [8] and Unique path
graphs [10].

Our concern here is with grid graphs. Grid graphs are a subclass of planar graphs.
Reachability in planar graphs belongs to a subclass of NL called unambiguous logspace UL
[6]. Reachability in planar graphs can be reduced to reachability in grid graphs in logspace
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

34:2 Improved Time-Space Bounds for Grid Graph Reachability

[1]. Asano and Doerr presented a polynomial time algorithm that uses O(n1/2+ε) space for
solving reachability in grid graphs [2]. Ashida and Nakagawa presented an algorithm with
improved space complexity of Õ(n1/3) [4]. Ashida and Nakagawa’s algorithm proceeded by
first dividing the input grid graph into subgrids. It then used a gadget to transform each
subgrid into a planar graph, making the whole of the resultant graph planar. Finally, it used
the planar reachability algorithm of Imai et al. [9] as a subroutine to get the desired space
bound.

In this paper, we present an algorithm with a space complexity of O(n1/4+ε), thereby
improving the bound of Ashida and Nakagawa.

I Theorem 1.1. For every ε > 0, there exists a polynomial time algorithm that decides
reachability in grid graphs using O(n1/4+ε) space.

Our algorithm works by first dividing the grid into subgrids. It then recursively solve
each grid to get an auxiliary graph. It then solves this auxiliary graph by using a space
efficient subroutine that we develop for it.

2 Preliminaries

We denote the vertex set of a graph G by V (G) and its edge set by E(G). For a subset U of
V (G), we denote the subgraph of G induced by the vertices of U as G[U]. For a graph G,
we denote the set of all its connected components by cc(G). For an edge e = (u, v), we let
tail(e) be u and head(e) be v.

In a drawing of a graph on a plane, each vertex is mapped to a point of the plane, and
each edge is mapped to a simple arc whose endpoints coincide with the mappings of the
end vertices of the edge. Also, the interior of an arc for an edge does not contain any other
vertex points.

We call a graph G an N ×N grid graph if its vertices can be drawn on coordinates (i, j)
where 0 ≤ i, j ≤ N and for all edges of G, their end vertices are at unit distance.

3 Main Result

For simplicity of discussion, we begin with an N ×N grid graph and present a polynomial
time algorithm with a space complexity O(N1/2+ε). When measured in terms of the number
of vertices n of the graph, this space complexity translates to O(n1/4+ε).

3.1 Auxiliary Graph
For a parameter α < 1, we first define the α-auxiliary graph Gα of a grid graph G. We divide
our grid graph G into N2α subgrids such that each subgrid is a N1−α ×N1−α grid as shown
in Figure 1a. Let Gαi,j be the graph obtained by solving reachability in the subgrid in the i-th
row and j-th column. We obtain Gα by replacing each subgrid by its corresponding solved
blocks. Since each of the subgrids contains 4N1−α vertices on its boundary, the total number
of vertices in Gα is at most 4N1+α. An example of Gα is shown in Figure 1b. For the rest of
this article, for any i and j, we will call the graph Gαi,j a block of Gα. Note that Gα might
have parallel edges. However, each such edge will belong to a different block of Gα.

Our algorithm for reachability constructs Gα by solving the N1−α×N1−α grids recursively.
It then uses a polynomial time subroutine which solves Gα. Note that we do not store the
graph Gα explicitly, since that would require too much space. Instead, we solve a subgrid
recursively everytime the subroutine queries for an edge in that subgrid of Gα.

R. Jain and R. Tewari 34:3

(a) Graph divided into subgrids (b) Auxiliary Graph

Figure 1 An example of a grid graph G and the corresponding auxiliary graph Gα

Our strategy is to show that for every small positive constant β, there exists a polynomial
time algorithm which solves reachability in Gα using Õ(ñ1/2+β/2) space where ñ is the
number of vertices in Gα. As discussed earlier, ñ can be at most 4N1+α. Hence, the main
algorithm would require Õ(N1/2+β/2+α/2+αβ/2) = O(N1/2+ε) space.

3.2 Properties of the Auxiliary Graph
The auxiliary graph that we construct might not be planar; there can be edges that cross
each other. However, since we construct it from a grid graph, we can make the following
essential observations about the auxiliary graph Gα.

I Observation 3.1. If two edges e and f of an auxiliary graph Gα cross each other, then
the graph G also has the edges (tail(e), head(f)) and (tail(f), head(e)).

I Observation 3.2. If two edges e1 and e2 crosses a certain edge f , and e1 is closer to
tail(f) than e2, then the edge (tail(e1), head(e2)) is also present in the graph Gα.

3.3 Constructing a pseudoseparator
Imai et al. used a separator construction to solve the reachability problem in planar graphs
[9]. A separator is a small set of vertices whose removal disconnects the graph into smaller
components. An essential property of a separator is that, for any two vertices, a path between
the vertices must contain a separator vertex if the vertices lie in two different components
with respect to the separator.

Unfortunately the graph Gα might not have a small separator. However, Gα has a different
kind of separator, which we call a pseudoseparator (see Definition 3.3). The pseudoseparator
allows us to decide reachability in Gα, in an efficient manner and obtain the claimed bounds.

I Definition 3.3. Let G be a grid graph and H be a vertex-induced subgraph of Gα with h
vertices. Let C be a subgraph of H and H(C) be the subgraph of H formed by removing all
the vertices of C and all the edges which crosses an edge of C. Let f : N→ N be a function.
We call C an f(h)-pseudoseparator if the size of every connected component in cc(H(C)) is
at most f(h). The size of C is the total number of vertices and edges of C summed together.

For a vertex-induced subgraph H of Gα, an f(h)-pseudoseparator is a subgraph of H
that has the property that, if we remove the vertices as well as all the edges which cross

EuroCG’19

34:4 Improved Time-Space Bounds for Grid Graph Reachability

one of the edges of pseudoseparator, the graph gets disconnected into small pieces. Now,
any path which connects two vertices in different components, must either contain a vertex
of pseudoseparator or must contain an edge that crosses an edge of pseudoseparator (see
Observation 3.4). We divide the graph using this pseudoseparator and show an algorithm
which recursively solves each subgraph and then combines their solution efficiently using the
above observations.

I Observation 3.4. Let G be a grid graph and let H be a vertex-induced subgraph of Gα.
Let C be a subgraph of H. Then the following holds:
1. For any two distinct U1 and U2 of cc(H(C)), U1 ∩ U2 = ∅.
2. V (C) ∪ (

⋃
U∈cc(H(C)) U) = V (H)

3. For every edge e in H, if there exist distinct sets U1 and U2 in cc(H(C)) such that one of
the endpoints of e is in U and the other is in U2, then there exists an edge f in C such
that e crosses f .

We construct a pseudoseparator using the next lemma.

I Lemma 3.5. Let G be a grid graph, and let H be a vertex-induced subgraph of Gα with
h vertices. For any constant β > 0, there exists an algorithm which takes H as input
and outputs an (h1−β)-pseudoseparator of H of size O(h1/2+β/2) in Õ(h1/2+β/2) space and
polynomial time.

We briefly comment on how to construct a pseudoseparator of a vertex-induced subgraph
H of Gα. First, we pick, in logspace, a maximal subset of edges from H so that no two edges
cross. Then, we triangulate the resulting graph and use Imai et al.’s algorithm to find its
separator. Call the triangulated graph Ĥ and the set of separator vertices S. The vertex set
of pseudoseparator of H contains all the vertices of S and four additional vertices for each
edge of Ĥ[S] that is not present in H. The edge set of pseudoseparator of H contains all
edges of H which are also in Ĥ[S] and four additional edges for each edge of Ĥ[S] that is
not present in H.

3.4 Sketch of an Algorithm to Solve Reachability in the Auxiliary Graph
Given a vertex-induced subgraphH ofGα, we first construct its pseudoseparator using Lemma
3.5. Call this pseudoseparator C. We ensure that s and t are part of the pseudoseparator.
Let I1, I2, . . . , Il be the components received after dividing the graph using pseudoseparator.
The subroutine performs a loop with |H| iterations and updates a set of marked vertices.
Initially, it marks the vertex s. After an iteration, it marks a vertex of C if there is a path
from a marked vertex to it such that the internal vertices of that path all belong to only
one of the components Ii. Also, for each edge e of C, the vertex v closest to tail(e) which
satisfies the following two conditions is marked: (i) There exists an edge f which cross e and
tail(f) = v, and (ii) there is a path from a marked vertex to v such that the internal vertices
of the path all belong to only one of the components Ii.

Let P be the shortest path from s to t in H. Suppose P passes through the components
Iσ1 , Iσ2 , . . . , IσL

in this order. The length of this sequence can be at most |H|. As the path
leaves the component Iσj

and goes into Iσj+1 , it can do this in the following two ways:
1. The path exits Iσj through a vertex of pseudoseparator as shown in Figure 2a. In this

case, our algorithm would mark the vertex w.
2. The path exits Iσj through an edge (u, v) whose other endpoint is in Iσj+1 . By Observation

3.4, this edge will cross an edge e of the pseudoseparator. In this case, the algorithm

R. Jain and R. Tewari 34:5

u

w

v

Iσj

Iσj+1

(a) The s-t path contains a vertex of the separator

u′ v′
u v

Iσj
Iσj+1e

(b) The s-t path crosses an edge of the separator

Figure 2 Types of crossing of an s-t path with the separator.

would mark the vertex u′ which is closer than u to tail(e) and an edge (u′, v′) crosses e.
By Observation 3.2, the edge (u′, v) would be present in the graph.

Thus after j iteration, the subroutine would traverse the fragment of the path in the
component Iσj

and either mark its endpoint or a vertex which is closer to the edge e of C
which the path crosses. Finally, t will be marked after L iterations if and only if there is a
path from s to t in H.

3.5 Complexity of the Algorithm
Our subroutine solves reachability in a subgraph H (having size h) of Gα. We do not
explicitly store a component of cc(H(C)), since it might be too large. Instead, we identify
a component with the lowest indexed vertex present in it and use Reingold’s algorithm
on H(C) to determine if a vertex is present in that component. We require Õ(h1/2+β/2)
space to calculate pseudoseparator by Lemma 3.5. We can potentially mark all vertices of
pseudoseparator and for each edge of pseudoseparator we mark at most one additional vertex.
Since the size of pseudoseparator is at most O(h1/2+β/2), we require Õ(h1/2+β/2) space. The
algorithm recurses on a graph with h1−β vertices. Hence the depth of the recursion is 1/β,
which is a constant. The total space complexity is thus Õ(ñ1/2+β/2).

Since the graph H is given implicitly in our algorithm, there is an additional polynomial
overhead involved in obtaining its vertices and edges. However, the total time complexity
remains a polynomial in the number of vertices since the recursion depth is constant.

References
1 Eric Allender, David A Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambud-

dha Roy. Planar and grid graph reachability problems. Theory of Computing Systems,
45(4):675–723, 2009.

2 Tetsuo Asano and Benjamin Doerr. Memory-constrained algorithms for shortest path prob-
lem. In Proceedings of the 23rd Annual Canadian Conference on Computational Geometry
(CCCG 2011), 2011.

3 Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe. Õ(
√
n)-space

and polynomial-time algorithm for planar directed graph reachability. In Proceedings of the
39th International Symposium on Mathematical Foundations of Computer Science (MFCS
2014), pages 45–56, 2014.

4 Ryo Ashida and Kotaro Nakagawa. Õ(n1/3)-space algorithm for the grid graph reachability
problem. In Proceedings of the 34th International Symposium on Computational Geometry
(SoCG 2018), pages 5:1–5:13, 2018.

5 Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear space,
polynomial time algorithm for directed s-t connectivity. SIAM Journal on Computing,
27(5):1273–1282, 1998.

EuroCG’19

34:6 Improved Time-Space Bounds for Grid Graph Reachability

6 Chris Bourke, Raghunath Tewari, and NV Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Transactions on Computation Theory (TOCT), 1(1):4,
2009.

7 Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and Lin F.
Yang. New time-space upperbounds for directed reachability in high-genus and h-minor-
free graphs. In Proceedings of the 34th Annual Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS 2014), pages 585–595, 2014.

8 Diptarka Chakraborty and Raghunath Tewari. An O(nε) space and polynomial time algo-
rithm for reachability in directed layered planar graphs. ACM Transactions on Computation
Theory (TOCT), 9(4):19:1–19:11, 2017.

9 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. V. Vinodchandran, and Osamu Watan-
abe. An O(n 1

2 +ε)-space and polynomial-time algorithm for directed planar reachability.
In Proceedings of the 28th Conference on Computational Complexity (CCC 2013), pages
277–286, 2013.

10 Sampath Kannan, Sanjeev Khanna, and Sudeepa Roy. STCON in Directed Unique-Path
Graphs. In Proceedings of the 28th Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2008), volume 2, pages 256–267, Dagstuhl,
Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

11 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),
55(4):17, 2008.

12 Walter J Savitch. Relationships between nondeterministic and deterministic tape complex-
ities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

13 Avi Wigderson. The complexity of graph connectivity. In Proceedings of the 17th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS 1992), pages
112–132. Springer, 1992.

Smoothed Analysis of the Art Gallery Problem
Michael Gene Dobbins1, Andreas Holmsen2, and Tillmann
Miltzow3

1 Department of Mathematical Sciences, Binghamton University
2 Department of Mathematical Sciences, KAIST
3 Department of Information and Computing Sciences, Utrecht University

Abstract
In the Art Gallery Problem we are given a polygon P on n vertices and a number k. We want
to find a guard set G of size k, such that each point in P is seen by a guard in G. Formally, a
guard g sees a point p ∈ P if the line segment pg is fully contained inside P .

We analyze the Art Gallery Problem under the lens of Smoothed Analysis. The significance
of our results is that algebraic methods are not needed to solve the Art Gallery Problem in typical
instances. This is the first time an ∃R-complete problem was analyzed by Smoothed Analysis.
Details can be found in the full-version [14].

A short video explaining the result is available at youtu.be/Axs7k-qL2zY.

1 Introduction

In the Art Gallery Problem we are given a polygon P and a number k. We want to find a
guard set G of size k, such that each point in P is seen by a guard in G. Formally, a guard
g sees a point p ∈ P if the line segment pg is fully contained inside P . We usually denote
the vertices of P by v1, . . . , vn, and the number of vertices by n.

One of the most fundamental questions on the Art Gallery Problem is whether it is
contained in the complexity-class NP. A first doubt of NP-membership was raised in 2017,
when Abrahamsen, Adamaszek and Miltzow showed that there exist polygons with vertices
given by integer coordinates, that can be guarded by three guards, in which case some guards
must necessarily have irrational coordinates [1]. (It is an open problem whether irrational
guards may be required for polygons which can be guarded by two guards.) Shortly after,
the same authors could show that the Art Gallery Problem is complete for the complexity
class ∃R [2].

The class ∃R is the class of all decision problems that are many-one reducible in polyno-
mial time to deciding whether a given polynomial Q ∈ Z[x1, . . . , xn] has a real root, i.e. a
solution x ∈ Rn such that Q(x) = 0. From the field of real algebraic geometry [4], we know
that

NP ⊆ ∃R ⊆ PSPACE.

The complexity class ∃R provides a tool to give much more compelling arguments that
a problem may not lie in NP than merely observing that the naive way of placing the
problem into NP does not work. Indeed various problems have been shown to be ∃R-
complete [8, 9, 13, 16, 17, 20–23] and thus either non of them lie in NP or all of them do.

While those theoretical results on the Art Gallery Problem are quite negative, the history
and practical experiences tell a more positive story. First of all, it took more than four
decades before an example could be found that requires irrational guards [1]. Regarding the
practical study of the Art Gallery Problem, we want to point out that several researchers
have implemented heuristics, that were capable of finding optimal solutions for a large class
of simulated instances [3, 5–7, 10–12, 15, 19]. Even up to 5000 vertices.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

youtu.be/Axs7k-qL2zY

35:2 Smoothed Analysis of the Art Gallery Problem

∃R-completeness is our main motivation, to see if there is a simple algorithm that solves
the Art Gallery Problem. As we don’t expect that such an algorithm is correct in the worst
case, we turn our attention to different ways to analyze algorithms.

Smoothed Analysis

Some algorithms perform much better than predicted by their worst case analysis. The
most famous example seems to be the Simplex-Algorithm. It is an algorithm that solves
linear programming efficiently in practice, although it is known that there are instances for
seemingly all variants of the algorithm that take an exponential amount of time (see for
instance [18]). There are several possible ways to explain this behavior. For example, it
could be that all practical instances have some structural properties, which we have not yet
discovered. We could imagine that a more clever analysis of the Simplex-Algorithm would
yield that it runs in polynomial time, assuming the property is presented. To the best of our
knowledge such a property has not yet been identified. Another approach would be to argue
that worst case examples are just very “rare in practice”. The problem with this approach is
that it is difficult to formalize. Smoothed Analysis is a nice combination of the average case
and the worst case analysis and generally referred to as Smoothed Analysis, as it smoothly
interpolates between the two. It was developed by Spielman and Teng [24], who introduced
the field in their celebrated seminal paper “Smoothed Analysis of algorithms: Why the
simplex algorithm usually takes polynomial time". Both authors received the Gödel Prize in
2008, and the paper was one of the winners of the Fulkerson Prize in 2009. In 2010 Spielman
received the Nevanlinna Prize for developing Smoothed Analysis.

The rough idea is to take the worst instance and perturb it slightly in a random way.
The smoothed expected running time can be defined as follows: Let us fix some δ, which
describes the maximum magnitude of perturbation. We denote by (Ωδ, µδ) a corresponding
probability space where each x ∈ Ωδ defines for each instance I a new ‘perturbed’ instance
Ix. We denote by T (Ix), the time to solve the instance Ix. Now the smoothed expected
running time of instance I equals

Tδ(I) = E
x∈Ωδ

T (Ix) =
∫
x∈Ωδ

T (x)µδ(x).

If we denote by Γn the set of instances of size n, then the smoothed running time equals:

Tsmooth(n) = max
I∈Γn

E
x∈Ωδ

T (Ix).

Roughly speaking this can be interpreted as saying, that not only do the majority of instances
have to behave nicely, but actually in every neighborhood the majority of instances behave
nicely. The expected running time is measured in terms of n and δ. If the expected running
time is small in terms of 1/δ then this means that difficult instances are fragile with respect
to perturbations. This serves as theoretical explanation why such instances may not appear
in practice.

Although the concept of Smoothed Analysis is more complicated than simple worst case
analysis, it is a new success story in theoretical computer science. It could be shown that
various algorithms actually run in smoothed polynomial time, explaining very well their
practical performance.

1.1 Defintions
The different models of perturbation are illustrated in Figure 1. A rigorous definition can
be found in the full-version of the paper [14].

Dobbins et al. 35:3

(a) The Minkowski-sum of a polygon together with a disk. This is also called a Minkowski-Inflation.

(b) The polygon together with an Edge-Inflation. Roughly speaking, every edge of the polygon is
“pushed” to the outside by the same amount.

(c) If we continue the edges, of a Minkowski-Inflation, we get an Edge-Inflation.

Figure 1 Overview, over various models, how a polygon can be perturbed. We use the uniform
distribution in each case.

1.2 Results

Our main result states that typical instances do not require irrational guards and the ex-
pected number of bits per guard is logarithmic in L, δ and n. The result establishes that
algebraic methods are not needed in typical instances.

I Theorem 1.1 (Bit-complexity). Let P be a polygon on n vertices, suppose P ⊂ [0, L]2
for some positive integer L. If δ > 0 is the magnitude of a Minkowski-Inflation or Edge-
Inflation, then the expected number of bits per guard to describe an optimal solution equals
O
(
log
(
nL
δ

))
.

As a simple corollary of the proof, we get that a fine grid of expected width w =
2O(log(nL/δ)) = (nL/δ)O(1) will contain an optimal guarding set. This may appear at first
sight as a candidate set of polynomial size, however recall that the vertices are given in
binary and thus L may be exponential in the input size.

It can be argued (see the full-version [14]) that this also leads to expected NP algorithms
in a specific sense. A very careful discussion of the different models of computation is
needed [14] to make the above statement precise. Our results can also be extended to other
types of perturbations [14].

EuroCG’19

35:4 Smoothed Analysis of the Art Gallery Problem

Notation

We write f(n) ≤c g(n), to indicate f(n) = O(g(n)) or equivalently f(n) ≤ cg(n), for some
large enough constant c. (Note that this is, in turn, equivalent to f(n) ≤ c1g(n) + c2. To
see this note that g(n) ≥ 1 and choose c = c1 + c2.)

2 Preliminaries

In this section we establish some general facts that will be needed throughout the paper.
The key idea of the paper are some monotonicity properties of Minkowski-Inflation and

Edge-Inflation. Roughly speaking guarding can only get easier after inflations. (We denote
by OPT (P) a guarding set of P of optimal size. We denote by OPT (P,C) a guarding set
of P of optimal size, when restricted to the set C.)

I Lemma 2.1 (Fixed Minkowski-Inflation). Let P be a polygon, t > 0 and Pt its Minkowski-
Inflation by magnitude t. Then |OPT (P)| ≥ |OPT (Pt, wZ2)|, for any w ≤

√
2t.

Proof. Given OPT = OPT (P), we define a set G ⊆ wZ2 of guards of size |G| = |OPT |, by
rounding every point in OPT to its closest grid point in wZ2. We will show that G guards
Pt. See Figure 2 for an illustration.

x

g1

x1

R
g

x

g

v

Figure 2 Top: The Region R is convex, and contains a guard g ∈ G and the point x. Thus x is
guarded by g. Bottom: The Region R′ is easily seen to be convex.

Let us fix some arbitrary point x ∈ Pt. It is sufficient to show that G guards x. By
definition of Pt, there exists an x1 ∈ P and an x2 ∈ disk(t) such that x = x1 + x2.
Furthermore let g1 be a guard of OPT that guards x1. (disk(t) is a disk of radius t.)
Consider the region R = g1x1⊕ disk(t), i.e., the Minkowski-sum of the segment g1x1 with a
disk of radius t. As the segment g1x1 is contained in P , it holds that R is contained in Pt.
Also as both the segment and the disk are convex, so is R. At last notice that R contains a
point g ∈ G, as every disk of radius t contains a point of the grid wZ2 with w =

√
2t. As R

is convex, g ∈ G guards x. J

I Lemma 2.2 (Fixed Edge Inflation). Let P be a polygon with integer coordinates and t > 0
and Pt the Edge-Inflation of P by t. Then |OPT (P)| ≥ |OPT (Pt, wZ2)|, for any w ≤

√
2t.

Proof. We follow closely the proof of Lemma 2.1. See Figure 2 for an illustration.

Dobbins et al. 35:5

Given OPT = OPT (P), we define a set G ⊆ wZ2 of guards of size |G| = |OPT |, by
rounding every point in OPT to its closest grid point in wZ2. We will show that G guards
the shape Pt. Note that in an edge inflation by t, we get the same shape as by a Minkowski-
Inflation by t, except that we have to add some small regions at the convex corners, as
illustrated in Figure 1c. We already know that G guards the Minkowski t-inflation of P . So
it remains to show that G guards those little extra regions, as discussed above.

Let us fix some arbitrary point x ∈ Pt inside one of those extra regions. We will show
that G guards x. Let v be the vertex according to the region that x sits in. Furthermore
let g1 be a guard of OPT that guards v. Consider the region R = g1v ⊕ disk(0, t). We
define R′ as the region R together with the region that x sits in. Obviously x ∈ R′ and also
there exists a point of G in R. It holds by construction that R′ is convex. This finishes the
proof. J

3 Expected Number of Bits

This section is devoted to show the main theorem.

Proof. Let us assume that there are some numbers 0 = t0 < t1 < . . . < t` = δ such that
for all i and s ∈ [ti−1, ti) holds that |OPT (Ps)| is constant. As |OPT (Ps)| is monotonically
decreasing, for increasing s, it holds that ` ≤ n. We denote by δi = ti − ti−1.

Note that if the perturbation happens to be s ∈ [ti−1, ti] then a grid of width w =√
2(s − ti−1) contains an optimal solution to guard Ps, see Lemma 2.1 and 2.2. Note that

we use the lemmas on the shape Pti−1 inflated by s − ti−1. Then the number of bits per
guard to describe the solution equals O(log(L/w)) per guard. To see this note that we can
use b = d1/we as denominator of all coordinates and the numerators are upper bounded by
dL/we. Thus O(log(L/w)) bits suffice. Let us denote the number of bits after a perturbation
by s as B(s). We denote by E(Bi) the expected number of bits for s ∈ [ti−1, ti). The expected
number of bits E(Bi) can be calculated as

E(Bi) = 1
δi

∫
s∈[ti−1,ti)

B(s) ≤c
1
δi

∫
s∈[ti−1,ti)

log(L/(s− ti−1)) = 1
δi

∫
s∈[0,δi]

log(L/s).

Using some computer algebra system and concavity of log(1/x), we get

= 1
δi
δi (1 + log(L/δi)) ≤c log(L/δi).

We are now ready to compute E(B).

E(B) = 1
δ

∑
i=1,...,`

δiE(Bi) ≤c
1
δ

∑
i=1,...,`

δi log(L/δi).

As the function x log(1/x) is concave the maximum is attained, if δ1 = . . . = δ` = δ/`. Thus
we get

E(B) ≤c
1
δ

∑
i=1,...,`

δ/` log(L`/δ) = log(L`/δ) ≤c log(Ln/δ). J

Acknowledgments. We want to thank Stefan Langerman, Jean Cardinal, John Iacono and
Mikkel Abrahamsen for helpful discussion on the presentation of the results. We want to
thank Joseph O’Rourke for pointing us to an algorithm to check if a given set of guard
positions is correct. Part of the research was conducted while visiting KAIST, and we

EuroCG’19

35:6 Smoothed Analysis of the Art Gallery Problem

thank KAIST and BK21 for their support and for providing an excellent working environ-
ment. Andreas Holmsen was supported by the Basic Science research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2016R1D1A1B03930998). Tillmann Miltzow acknowledges the generous support from the
ERC Consolidator Grant 615640-ForEFront and the Veni EAGER.

REFERENCES 35:7

References

1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. Irrational guards are
sometimes needed. In SoCG 2017, pages 3:1–3:15, 2017. Arxiv 1701.05475.

2 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem
is ∃R-complete. In STOC 2018, pages 65–73, 2018. Arxiv 1704.06969. URL: http:
//doi.acm.org/10.1145/3188745.3188868, doi:10.1145/3188745.3188868.

3 Yoav Amit, Joseph S.B. Mitchell, and Eli Packer. Locating guards for visibility cov-
erage of polygons. International Journal of Computational Geometry & Applications,
20(05):601–630, 2010.

4 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic
geometry. Springer-Verlag Berlin Heidelberg, 2006.

5 Dorit Borrmann, Pedro J. de Rezende, Cid C. de Souza, Sándor P. Fekete, Stephan
Friedrichs, Alexander Kröller, Andreas Nüchter, Christiane Schmidt, and Davi C. Tozoni.
Point guards and point clouds: Solving general art gallery problems. In SoCG 2013,
pages 347–348, 2013. URL: http://doi.acm.org/10.1145/2462356.2462361, doi:
10.1145/2462356.2462361.

6 Andrea Bottino and Aldo Laurentini. A nearly optimal sensor placement algorithm for
boundary coverage. Pattern Recognition, 41(11):3343–3355, 2008.

7 Andrea Bottino and Aldo Laurentini. A nearly optimal algorithm for covering the interior
of an art gallery. Pattern recognition, 44(5):1048–1056, 2011.

8 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogten-
huber. Intersection graphs of rays and grounded segments. Journal of Graph Algorithms
and Applications, 22:273–295, 2018.

9 Jean Cardinal and Udo Hoffmann. Recognition and complexity of point visibility graphs.
Discrete & Computational Geometry, 57(1):164–178, 2017.

10 Marcelo C. Couto, Pedro J. de Rezende, and Cid C. de Souza. An exact algorithm
for minimizing vertex guards on art galleries. International Transactions in Operational
Research, 18(4):425–448, 2011.

11 Marcelo C. Couto, Cid C. De Souza, and Pedro J. De Rezende. Experimental evaluation
of an exact algorithm for the orthogonal art gallery problem. In International Workshop
on Experimental and Efficient Algorithms, pages 101–113. Springer, 2008.

12 Pedro J. de Rezende, Cid C. de Souza, Stephan Friedrichs, Michael Hemmer, Alexander
Kröller, and Davi C. Tozoni. Engineering art galleries. In Peter Sanders Lasse Klie-
mann, editor, Algorithm Engineering – Selected Results and Surveys, pages 379–
417. Springer International Publishing, 2016. URL: http://dx.doi.org/10.1007/
978-3-319-49487-6_12, doi:10.1007/978-3-319-49487-6_12.

13 Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rza̧żewski. ∀∃R-
completeness and area-universality. WG 2018, 2018. Arxiv 1712.05142.

14 Michael Gene Dobbins, Andreas Holmsen, and Tillmann Miltzow. Smoothed analysis of
the art gallery problem. CoRR, abs/1811.01177, 2018. URL: http://arxiv.org/abs/
1811.01177, arXiv:1811.01177.

15 S. Friedrichs. Integer solutions for the art gallery problem using linear programming.
Masterthesis, 2012.

16 Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. ETR-completeness
for decision versions of multi-player (symmetric) Nash equilibria. In ICALP 2015, pages
554–566, 2015.

17 Ross J. Kang and Tobias Müller. Sphere and dot product representations of graphs. In
SoCG, pages 308–314. ACM, 2011.

EuroCG’19

http://doi.acm.org/10.1145/3188745.3188868
http://doi.acm.org/10.1145/3188745.3188868
http://dx.doi.org/10.1145/3188745.3188868
http://doi.acm.org/10.1145/2462356.2462361
http://dx.doi.org/10.1145/2462356.2462361
http://dx.doi.org/10.1145/2462356.2462361
http://dx.doi.org/10.1007/978-3-319-49487-6_12
http://dx.doi.org/10.1007/978-3-319-49487-6_12
http://dx.doi.org/10.1007/978-3-319-49487-6_12
http://arxiv.org/abs/1811.01177
http://arxiv.org/abs/1811.01177
http://arxiv.org/abs/1811.01177

35:8 REFERENCES

18 Victor Klee and George J. Minty. How good is the simplex algorithm. Technical report,
Washington Univ. Seattle Dept. of Mathematics, 1970.

19 Alexander Kröller, Tobias Baumgartner, Sándor P Fekete, and Christiane Schmidt. Ex-
act solutions and bounds for general art gallery problems. Journal of Experimental
Algorithmics (JEA), 17:2–3, 2012.

20 Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The complexity of drawing a
graph in a polygonal region. Arxiv, 2018. Graph Drawing 2018.

21 Jürgen Richter-Gebert and Günter M. Ziegler. Realization spaces of 4-polytopes are
universal. Bulletin of the American Mathematical Society, 32(4):403–412, 1995.

22 Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric
Graph Theory, pages 461–482. Springer, 2013.

23 Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. Arxiv
1606.09068, 2016.

24 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. Journal of the ACM (JACM),
51(3):385–463, 2004.

On Plane Subgraphs of Complete Topological
Drawings
Alfredo García∗1, Alexander Pilz†2, and Javier Tejel‡1

1 Departamento de Métodos Estadísticos and IUMA, Universidad de Zaragoza.
olaverri@unizar.es, jtejel@unizar.es

2 Institute of Software Technology, Graz University of Technology.
apilz@ist.tugraz.at

Abstract
We consider plane subgraphs of simple topological drawings ofKn, and in particular maximal ones.
Fulek and Ruiz-Vargas showed that between any plane connected subgraph F and a vertex v not
in F , there are two edges from v to F not crossing F . We give an O(n) time algorithm to find such
edges, and show that the result also holds if F is disconnected. In particular, any plane subgraph
can be augmented to a 2-connected one. This leads to our main structural result, showing that
maximal plane subgraphs are 2-connected and what we call essentially 3-edge-connected.

1 Introduction

In a topological drawing (in the plane or on the sphere) of a graph, vertices are represented by
points and edges are arcs with its two vertices as endpoints. It is simple if two edges intersect
at most in a single point, either at a common endpoint or at a crossing in their relative
interior. Let Dn be a simple topological drawing of the complete graph Kn on n vertices.
Clearly, all straight-line drawings are simple topological drawings, and thus problems on
embedding graphs on a set of points usually generalize to finding subgraphs of Dn. Such
problems are often concerned with crossing-free (i.e., plane) subgraphs. (Herein, we consider
graphs in connection with their drawings, and in particular when addressing subgraphs of
Kn we also consider the associated sub-drawing of Dn.) Crossing-free edge sets in Dn have
attracted considerable attention. Pach, Solymosi, and Tóth [4] showed that any Dn has
Ω

(
log1/6(n)

)
pairwise disjoint edges. This bound was subsequently improved [5, 1, 8]. The

current best bound of Ω(n1/2−ε) is by Ruiz-Vargas [7]. In the course of their work on disjoint
edges and empty triangles in Dn, Fulek and Ruiz-Vargas [2] showed the following lemma.

I Lemma 1.1 (Fulek and Ruiz-Vargas [2]). Between any plane connected subgraph F of Dn

and a vertex v not in F , there exist at least two edges from v to F that do not cross F .

In this work, we show that such edges incident to v can be found in O(n) time. Further,
we extend their result to disconnected plane subgraphs. It turns out that any plane subgraph
of Dn can be augmented to a 2-connected plane subraph of Dn. Maximal plane subgraphs
of Dn have further interesting properties. For example, we show that, when removing two
edges, they either stay connected or one of the two components is a single vertex.

∗ Supported by MINECO project MTM2015-63791-R and Gobierno de Aragón under Grant E41-17R.
† Supported by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.
‡ Supported by MINECO project MTM2015-63791-R and Gobierno de Aragón under Grant E41-17R.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No
734922.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

36:2 On Plane Subgraphs of Complete Topological Drawings

v

Figure 1 The order of the first intersections of S(v) along the face matches the rotation of v.

2 Adding a single vertex

Lemma 1.1 turns out to be a useful workhorse for identifying plane subgraphs. We provide
an efficient algorithm for computing the uncrossed edges. We assume that a topological
drawing Dn of Kn with vertex set V = {v1, . . . , vn} is given by its rotation system and the
inverse rotation system: The rotation of a vertex vi ∈ V is a permutation of V \ {vi} given
by the circular order in which the edges to all other vertices emanate from vi. We denote
these edges by S(v), i.e., the star with center v. The inverse rotation system that, for each
vertex vi and each index j 6= i gives the index of vj in the (linearized) rotation of vi. (It
can be obtained from the rotation system in O(n2) time.) Using these two structures, it is
well-known that one can determine whether two edges cross, in which direction an edge is
crossed, and in which order two non-crossing edges cross a third one in constant time [3].

I Theorem 2.1. Given a simple topological drawing of Kn, a connected plane subgraph F ,
and a vertex v not in F , we can find the edges from v to F not crossing F in O(n) time.

Proof. W.l.o.g., let the face that contains v be the outer face f . For each edge from v to F ,
consider its first intersection with F . The order in which these points are encountered in a
clockwise walk of the boundary of f matches the rotation of v (restricted to F); see Figure 1.
(Edges walked twice can be seen as two “half-edges”, essentially treating f as a cycle.) The
algorithm starts by finding, for any edge vw1, the edge of F that intersects vw1 closest to v
along vw1. Using the rotation system and its inverse, this edge e1 of face f can be found in
linear time. We keep uncrossed edges of S(v) on a stack σ and walk the boundary of f and
the rotation of v, in each step making progress in at least one of them or removing an edge
from σ. Let vwi be the next edge in the counterclockwise rotation of v (initially vw2). If vwi
crosses ek (initially e1), we iterate considering the counterclockwise successor vwi+1 of vwi
in the rotation of v. If there is no intersection of vwi and ek, we iterate with the clockwise
successor ek+1 of ek in f instead of ek, after popping all edges from σ that cross ek+1. We
do the same if wi is the clockwise endpoint of ek along f ; in addition, if vwi is clockwise
between ek and ek+1 in the rotation of wi, we put vwi on σ and in the next iteration consider
vwi+1. Note that in a generic step σ contains the explored edges of S(v) uncrossed by the
explored edges e1, . . . , ek−1 of f . Eventually, σ contains the uncrossed edges of S(v). J

We now discuss an extension of Lemma 1.1 to plane subgraphs. This will also follow
independently from Theorem 3.1. Still, our result (proven in the full version) gives further
insight on the position of the edges in the rotation of the additional vertex v.

A. García, J. Tejel, A. Pilz 36:3

Let F be a plane subgraph of Dn. The edges of star S(v) are called rays. Suppose that
ray vr first crosses the edge pq of F . W.l.o.g., we suppose that the rays vr, vp, and vq appear
in this clockwise order around v. Let x be the crossing of ray vr and edge pq. We define the
clockwise range Rcw of rays centered at v corresponding to crossing x: if no ray in the range
(vp, vq) crosses edge pq between x and p, then Rcw is the set of rays in the clockwise range
(vr, vp] (i.e., including vp but not vr); otherwise, if some rays in the clockwise range (vp, vq)
cross edge pq between x and p, then Rcw is the set of rays in clockwise range (vr, vl), where
vl is the ray in the range (vp, vq) crossing edge e between x and p in a point y closest to x
along pq. See Figure 2, which also indicates the analogous definition of the counterclockwise
range Rccw.

v

pq

r

qp

r

RcwRccw

x x

Rccw

Rcw

yy′

ll′

l′l
y′y q

r

x

Rccw

l′
y′p

v v
Rcw

Figure 2 The clockwise and counterclockwise ranges of a first crossing.

I Proposition 2.2. Suppose ray vr first crosses edge e of F at point x. Let Rcw and Rccw
be the ranges of rays of v corresponding to that crossing. Then, each one of those two ranges
contains an uncrossed ray. As a consequence, S(v) contains at least two uncrossed rays.

3 Structure of maximal plane subgraphs

I Theorem 3.1. A maximal plane subgraph of any Dn is spanning and 2-connected.

Proof. The proof is by induction on n. The result is obviously true for n ≤ 3. For n > 3,
suppose there exists a maximal plane subgraph F̄ that is not 2-connected.

We first argue that, under this assumption, F̄ does not have a vertex v of degree less
than 3. Suppose the contrary and let F ′ be the subgraph of F̄ after removing v, and let
F̄ ′ be a maximal plane subgraph (in the drawing Dn − {v} of Kn−1) containing F ′; by the
induction hypothesis, F̄ ′ is 2-connected. We observe that v cannot have degree less than 2,
as applying Lemma 1.1 to v and F̄ ′ would give two edges at v not crossing F̄ , contradicting
the maximality of F̄ . Suppose v has degree 2. As we assume that F̄ is not 2-connected,
F ′ cannot be 2-connected. However, F̄ ′ is 2-connected, and hence there exists an edge e′
in F̄ ′ − F ′. By the maximality of F̄ , e′ must cross at least one edge vw of F̄ incident to v.
But applying Lemma 1.1 to v and F̄ ′ gives at least two edges incident to v not crossing F̄ ′.
These two edges and also vw do not cross F̄ , contradicting the maximality of F̄ .

Assume that F̄ is not connected. Let C1, C2 be two connected components of F̄ . As
all vertices have degree at least 3, C1 cannot be an outerplanar graph, and thus has more
than one face. W.l.o.g., the unbounded face contains C2. Let v1 be an interior vertex of C1.
Let F ′ be the graph obtained from F̄ by removing v1, and let f1 be the face in F ′ that
contains v1. The face containing C2 remains unchanged by the removal. By induction, F ′

EuroCG’19

36:4 On Plane Subgraphs of Complete Topological Drawings

u0

u1 uk

v1 vk

vk+1

Figure 3 The black edges form a maximal plane subgraph with d3n/2e edges. The missing edges
should be drawn as straight line segments inside the convex hull of the set of points.

can be completed to a 2-connected plane graph F̄ ′. Due to the maximality of F̄ , all edges in
F̄ ′−F ′ must be in f1. As C2 is outside f1, F̄ ′ could not be connected. Thus, F̄ is connected.

By a similar reasoning we arrive at our contradiction to F̄ not being 2-connected. A block
is a 2-connected component of a graph, and a leaf block is a block with only one cut vertex.
As F̄ is not 2-connected, it has at least two leaf blocks B1 and B2. As all vertices have degree
at least 3, B1 cannot have all its vertices on the same face. Again, w.l.o.g., B2 is in the outer
face of B1, and there is an interior vertex v1 of B1. Removing v1 from F̄ , we obtain a plane
graph F ′ that has a face f1 containing v1, and F ′ is contained in a maximal plane graph F̄ ′
that is 2-connected. Again, by maximality of F̄ , all edges in F̄ ′−F ′ must be in f1. However,
this contradicts the fact that F̄ ′ is 2-connected. Hence, F̄ must be 2-connected. J

Theorem 3.1 gives a means of obtaining more properties of maximal plane subgraphs.

I Lemma 3.2. If a maximal plane subgraph F̄ of Dn contains a vertex v of degree 2, then
the subgraph of F̄ obtained after removing v is also maximal in Dn − {v}.

I Proposition 3.3. Any maximal plane subgraph F̄ of Dn with n ≥ 3 must contain at least
min(d3n/2e, 2n− 3) edges. This bound is tight.

A sketch for showing tightness of d3n/2e edges is given in Figure 3.

I Lemma 3.4. Let C = (v1, v2, . . . , vk) be a plane cycle of Dn, k ≥ 3, with faces f1 and f2.
If there is no diagonal of C entirely in f1, then all diagonals of C are entirely in f2.

Proof. The proof is by induction on k. For k < 5 the statement is obvious, so suppose k ≥ 5
and consider only the subgraph induced by the vertices of C. By Lemma 3.2, there must
exist a diagonal placed in f2 connecting two vertices at distance 2 on C. W.l.o.g., let this
diagonal be vkv2 and let ∆ be the triangle vkv1v2. Then the cycle C1 = (v2, v3, . . . , vk) with
k − 1 vertices has the faces f ′1 = f1 + ∆ and f ′2 = f2 −∆.

We argue that there cannot be diagonals of C1 entirely in f ′1. Such a diagonal e would
have to intersect ∆. When adding e to C ∪ {vkv2} and removing all edges crossed by e, we
obtain a plane graph F in which v1 has degree 0 or 1. By Lemma 1.1, there must be another
edge between v1 and C1, and this would be a diagonal of C entirely in f1. Thus, by induction,

A. García, J. Tejel, A. Pilz 36:5

any diagonal vivj of C1 is entirely in f ′2 and hence also in f2. It remains to see that the
diagonals with endpoint v1 are also in f2. By our induction hypothesis, diagonal v2v4 is in f ′2
and thus also in f2. Hence, applying the hypothesis on the cycle C3 = (v1, v2, v4, . . . , vk) we
deduce that all the diagonals incident to v3 must be in f2. So it remains to see that diagonal
v1v3 is also in f2. But also v3v5 is in f ′2, so it is also in f2, and again by induction on the
cycle (v1, v2, v3, v5, . . . , vk), all the diagonals not incident to v4 are also in f2. J

It was previously known that even for the case where there are diagonals intersecting both
faces, there are at least dk/3e of them not crossing C (cf. [6, Corollary 6.6]); Proposition 3.3
implies that for k ≥ 6, there are at leastdk/2e diagonals not crossing C.

To prove the next result we recall some definitions and properties of any 2-connected
graph G = (V,E). Two vertices v1, v2 are called a separation pair of G if the induced
subgraph G \ {v1, v2} on the vertices V \ {v1, v2} is not connected. Let G1, . . . , Gl, with
l ≥ 2, be the connected components of G \ {v1, v2}. For each i ∈ {1, . . . , l}, let G∗i be the
graph induced by V (Gi) ∪ {v1, v2}. Observe that G∗i contains at least one edge incident to
v1 and at least another incident to v2.

I Theorem 3.5. Let F̄ be a maximal plane subgraph of Dn, n ≥ 3. Then, for each separation
pair v1, v2 of F̄ , at least one of the components F̄ ∗i must be 2-connected.

Proof. Suppose that v1, v2 is a separation pair of F̄ , that F̄ \ {v1, v2} has the connected
components F̄1, F̄2, . . . , F̄l, and that none of the components F̄ ∗i is 2-connected. Then each
subgraph F̄ ∗i contains at least one cut vertex ui. Since F̄i is connected and there exist edges
in F̄ ∗i incident to v1 and v2, vertex ui is different from v1 and v2. The graph F̄ ∗i \ {ui} has
exactly two components, one containing v1 and the other containing v2, as otherwise F̄ would
not be 2-connected. Thus, any path in graph F̄ ∗i from v1 to v2 must use ui. In particular,
v1v2 cannot be an edge of F̄ . Besides, since v1, v2 are in different connected components of
F̄ ∗i \ {ui}, if R is the face of F̄ ∗i where point ui appears at least twice, then any continuous
curve connecting v1 to v2 either contains ui or some point of the interior of R.

Since F̄ is 2-connected, graph F̄ \ {v1} is connected with v2 as a cut vertex. As F̄ is
plane, we can suppose, w.l.o.g., that v1 is in the outer face of F̄ \ {v1} and that around
vertex v1 clockwise first there appear the edges to some vertices of component F̄1, then edges
connecting v1 to points of F̄2 and so on. See Figure 4. Therefore v1 and v2 must be in the
faces Ri of F̄ placed between the last edge from v1 to F̄i and the first edge from v1 to F̄i+1,
for i ∈ {1, . . . , l}. As, by maximality, no edge is entirely in any of those Ri faces, Lemma 3.4
implies that no point of the edge v1v2 in Dn can be inside any Ri. Thus, v1v2 must begin
between two edges v1v, v1v

′ with both v and v′ belonging to a common connected component
F̄i. However, since ui belongs to the faces Ri−1 and Ri, any curve from v1 and v2 passes
through point ui or through the interior of Ri−1 or Ri. Therefore, F̄ cannot be maximal. J

We call a graph essentially 3-edge-connected if it stays connected after removing any two
edges not sharing a vertex of degree 2 (i.e., the graph either stays connected or one component
is a single vertex). Theorem 3.5 implies that a maximal plane subgraph is essentially 3-edge-
connected: If the removal of two edges v1v2 and v′1v′2 results in two non-trivial components
(see Figure 5), then the separation pair v1, v

′
2 gives no 2-connected component.

I Corollary 3.6. Any maximal plane subgraph of a simple topological drawing of Kn is
essentially 3-edge-connected.

Finally, we mention another interesting implication of Theorem 3.1; for a vertex v, we
can augment S(v) to a 2-connected plane graph, and thus the remaining part contains a tree.

EuroCG’19

36:6 On Plane Subgraphs of Complete Topological Drawings

v1

v2

F ∗
3

F ∗
2

F ∗
1 u1u2

u3

Figure 4 A plane graph with separating pair v1, v2 and three components F ∗i , none 2-connected.

v1

R1

R2

C1
C2

v2

v′1 v′2

Figure 5 A graph that is not essentially 3-edge-connected. The separation pair v1, v′2 gives two
components C1 ∪ {v′1v′2} and C2 ∪ {v1v2}, neither of which is 2-connected.

I Corollary 3.7. Let S(u) be the edges of Dn incident to a vertex u. There exist a tree Tu
spanning the vertices V \ {u}, such that the edges of S(u) ∪ Tu form a plane subgraph of Dn.

I Open Problem 1. Given a not necessarily connected plane graph F in Dn, plus a vertex v
not in F , can the edges of S(v) incident to but not crossing F be found in o(n2) time?

References
1 Jacob Fox and Benny Sudakov. Density theorems for bipartite graphs and related Ramsey-

type results. Combinatorica, 29(2):153–196, 2009. doi:10.1007/s00493-009-2475-5.
2 Radoslav Fulek and Andres J. Ruiz-Vargas. Topological graphs: empty triangles and dis-

joint matchings. In Guilherme Dias da Fonseca, Thomas Lewiner, Luis Mariano Peñaranda,
Timothy M. Chan, and Rolf Klein, editors, Symp. on Computational Geometry (SoCG
2013), pages 259–266. ACM, 2013. doi:10.1145/2462356.2462394.

3 Jan Kynčl. Simple realizability of complete abstract topological graphs in P. Discrete
Comput. Geom., 45(3):383–399, 2011. doi:10.1007/s00454-010-9320-x.

4 János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete
topological graphs. Discrete & Computational Geometry, 30(2):311–320, 2003. doi:10.
1007/s00454-003-0012-9.

5 János Pach and Géza Tóth. Disjoint edges in topological graphs. In Jin Akiyama,
Edy Tri Baskoro, and Mikio Kano, editors, Combinatorial Geometry and Graph The-
ory, Indonesia-Japan Joint Conference (IJCCGGT 2003), Revised Selected Papers, vol-
ume 3330 of Lecture Notes in Computer Science, pages 133–140. Springer, 2003. doi:
10.1007/978-3-540-30540-8_15.

6 Jürgen Pammer. Rotation systems and good drawings. Master’s thesis, Graz University of
Technology, 2014.

http://dx.doi.org/10.1007/s00493-009-2475-5
http://dx.doi.org/10.1145/2462356.2462394
http://dx.doi.org/10.1007/s00454-010-9320-x
http://dx.doi.org/10.1007/s00454-003-0012-9
http://dx.doi.org/10.1007/s00454-003-0012-9
http://dx.doi.org/10.1007/978-3-540-30540-8_15
http://dx.doi.org/10.1007/978-3-540-30540-8_15

A. García, J. Tejel, A. Pilz 36:7

7 Andres J. Ruiz-Vargas. Many disjoint edges in topological graphs. Comput. Geom., 62:1–13,
2017. doi:10.1016/j.comgeo.2016.11.003.

8 Andrew Suk. Disjoint edges in complete topological graphs. Discrete & Computational
Geometry, 49(2):280–286, 2013. doi:10.1007/s00454-012-9481-x.

EuroCG’19

http://dx.doi.org/10.1016/j.comgeo.2016.11.003
http://dx.doi.org/10.1007/s00454-012-9481-x

Numerical Algorithm for the Topology of Singular
Plane Curves
George Krait1, Sylvain Lazard1, Guillaume Moroz1, and Marc
Pouget1

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Abstract
We are interested in computing the topology of plane singular curves. For this, the singular
points must be isolated. Numerical methods for isolating singular points are efficient but not
certified in general. We are interested in developing certified numerical algorithms for isolating
the singularities. In order to do so, we restrict our attention to the special case of plane curves
that are projections of smooth curves in higher dimensions. In this setting, we show that the
singularities can be encoded by a regular square system whose isolation can be certified by
numerical methods. This type of curves appears naturally in robotics applications and scientific
visualization.

1 Introduction

Computing the topology of a curve C (i.e., a set of dimension one that is the zero locus of
smooth maps) means computing a piecewise-linear graph that can be deformed continuously
toward that curve. If C is smooth (i.e., the tangent space exists and is of dimension one at
every point of C), there are several certified numerical methods for computing the topology.
One can mention for example the global subdivision [8, 12] and certified continuation
approaches [9]. On the other hand, if the curve is singular (i.e., not smooth), computing the
topology is more complicated. We need, first, to isolate its singularities, second, to compute
the topology in a neighborhood of those singularities and third to compute the topology of
the smooth remaining part of that curve (see Figure 1). The main challenge is to isolate the
singular points of the curve.

State-of-art methods to isolate the singular points of a curve are symbolic in general
e.g., based in resultant and sub-resultant theory [2], Gröbner basis or rational univariate
representations [13, 3]. However, symbolic approaches suffer from inefficiency while numerical
methods fail to be certified for singular curves. Our goal is to develop efficient numerical
methods that avoid losing the correctness that symbolic ones offer.

We show that this could be achieved for the specific class of plane curves that are
projections of smooth curves in higher dimension. This is achieved by exhibiting a regular
and square system that characterizes, under some generic assumptions, the singular points
of the plane projection of a generic curve (see Theorem 4.2). This system, being square and
regular, satisfies the conditions to apply certified numerical isolation methods [10, Chapter
8].

2 Assumptions

We first recall the definitions of a node and an ordinary cusp (see Figure 2).

I Definition 2.1. Let C be a curve in R2 and p ∈ C. We call p an ordinary cusp (resp. a
node) if there exists an open subset V of R2, a smooth diffeomorphism ϕ : V → V such that
V contains p and ϕ(V ∩ C) = V ∩ C ′, where C ′ is the zero set of the map x2

1 − x3
2 (resp.

x2
1 − x2

2), for some local coordinates system (x1, x2) at p.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

37:2 Numerical Algorithm for the Topology of Singular Plane Curves

(a) (b) (c)

Figure 1 (a): A given curve. (b) Isolating and classifying the singular points. (c) A graph
homeomorphic to the given curve.

Figure 2 A node and an ordinary cusp.

Let n ≥ 3 be an integer and U be a bounded open set in Rn. Let C∞(U,Rn−1) be the
space of smooth maps (i.e., the set of maps that are differentiable infinitely many times) from
U to Rn−1 equipped with the weak topology defined in [4, §3.9.2] or [5, p.34]. Consider the
map P = (P1, . . . , Pn−1) ∈ C∞(U,Rn−1). We denote by CP the solution set of the system
P1(x) = · · · = Pn−1(x) = 0, with x = (x1, . . . , xn) ∈ U . Also, consider the projection π from
CP to R2 that sends x to (x1, x2). Let JP be the Jacobian matrix of size (n− 1)× n of the
system P1(x) = · · · = Pn−1(x) = 0. We assume that:

Assumption 1. For all q ∈ CP , rank(JP (q)) = n− 1, which implies that CP is a smooth
curve.1

Assumption 2. The set of q ∈ CP that have tangent line orthogonal to R2 (the plane
defined by the first two coordinates of Rn), is finite.

Assumption 3. π is injective except at a finite number of points.
Assumption 4. The preimage of any point of R2 under π is at most two points (counted

with multiplicity).
Assumption 5. Every singular point of π(CP) is either an ordinary cusp or a node.

I Definition 2.2. We denote by U ⊂ C∞(U,Rn−1) the set of maps for which all the above
assumptions are satisfied.

We prove in Theorem 4.1 that our above assumptions are generic. Genericity in topology
is similar to the notion of almost everywhere in measure theory, see Section 3.2.6. in [4] for
more details. More formally:

1 Note that the converse is not true as the vertical (double) line defined by x2
1 = x2 = 0 in R3 is smooth

but the rank of its Jacobian is never full.

G. Krait, S. Lazard, G. Moroz, M. Pouget 37:3

I Definition 2.3. [4, Definition 3.2.5] A subset of C∞(U,Rn−1) is called residual if it contains
the intersection of a countable family of dense open subsets in C∞(U,Rn−1). A property is
generic if it holds for a residual subset.

I Remark. By [4, Proposition 3.9.3], since C∞(U,Rn−1) is a Baire space, every residual
subset of C∞(U,Rn−1) is dense.

Given a map P ∈ U, our goal is to isolate the singular points of π(CP), that is to find a
set of boxes (i.e., Cartesian products of 2 intervals) in R2 such that each box contains exactly
one singular point of π(CP). This is the first step towards computing the topology of the
curve π(CP).

3 Regular sytems

We recall the definition of regularity and illustrate it in Figure 3.

I Definition 3.1. A regular system is such that its Jacobian matrix is full rank at its
solutions.

p p

Figure 3 p = (0, 0) is a regular solution of the system {x1 + x2 = x1 − x2 = 0} (left) and it is
not a regular solution of the system {x1 + x2

2 = x1 − x2
2 = 0}(right).

In order to isolate singular points of π(CP) using certified numerical methods [10, Chapter
8], we first need to encode them as the solutions of a regular zero-dimensional system of
equations. To define such a system in Proposition 4.1, we introduce some notation.

I Definition 3.2. Let y, r be two sets of n− 2 real variables and x1, x2, t be real variables.
For a smooth map f : U → R, with U ⊆ Rn, we define the maps:

S · f(x1, x2, y, r, t) =

{
1
2 [f(x1, x2, y + r

√
t) + f(x1, x2, y − r

√
t)] for t 6= 0

f(x1, x2, y), for t = 0.

D · f(x1, x2, y, r, t) =

{
1

2
√

t
[f(x1, x2, y + r

√
t)− f(x1, x2, y − r

√
t)] for t 6= 0

∇f · (0, 0, r), for t = 0.

4 Contributions

I Theorem 4.1. Assumptions 1 − 5 in Section 2 are generic, that is, U is residual in
C∞(U,Rn−1).

We omit the proof Theorem 4.1 which is based on Thom’s Transversality Theorem [4,
Theorem 3.9.4].

I Theorem 4.2. For P ∈ U there exists a regular zero-dimensional system Ball(P) (defined
in Proposition 4.1) of 2n − 1 variables such that every real solution of Ball(P) projects
bijectively to a singular point in π(CP), where the projection here is the one that sends every
point in R2n−1 to its first two coordinates.

EuroCG’19

37:4 Numerical Algorithm for the Topology of Singular Plane Curves

CP
q1q

π(q)

π(CP)

q2

π(q1) = π(q2)

Figure 4 Illustration of Proposition 4.1 in the case n = 3.

More precisely, Proposition 4.1 explicits this bijection and Proposition 4.2 proves the
regularity.
I Remark. Analogously to [7], we can check, using a semi-algorithm, whether a given map
P ∈ C∞(U,Rn−1) satisfies Assumptions 1 − 4. This semi-algorithm stops if and only if
Assumptions 1 − 4 are satisfied. The reformulation of Assumption 5 as the regularity of
system Ball(P) in Proposition 4.2 also enables to check it via a semi-algorithm.

I Proposition 4.1. Consider a map P = (P1, . . . , Pn−1) ∈ C∞(U,Rn−1) that satisfies
Assumptions 1− 5. Let Ball(P) be the system:

S · P1 = · · · = S · Pn−1 = 0
D · P1 = · · · = D · Pn−1 = 0
r2

1 + · · ·+ r2
n−2 = 1.

(1)

Denote by MP ⊆ R2n−1 the set of real solutions of Ball(P). Let X = (x1, x2, y, r, t) ∈
R2n−1, with r2

1 + · · ·+ r2
n−2 = 1 and consider q1 = (x1, x2, y+ r

√
t) and q2 = (x1, x2, y− r

√
t)

in Rn. Then, X is in MP if and only if one of the following cases holds:

q1 6= q2, q1, q2 ∈ CP and π(q1) is a node.
q1 = q2, CP contains q1, (0, 0, r) ∈ Tq1CP and π(q1) is an ordinary cusp.

I Proposition 4.2. Assume that P ∈ C∞(U,Rn−1) satisfies Assumptions 1−4, then Ball(P)
is regular at its solution if and only if Assumption 5 is satisfied.

Proof. (Sketch) Let X = (x1, x2, y, r, t) be a solution of Ball(P). We consider two cases
depending on t and prove that X is a regular solution of Ball(P) if and only if (x1, x2) is
either a node (when t 6= 0) or an ordinary cusp (when t = 0).

Case t 6= 0. Let q1 = (x1, x2, y+r
√
t) and q2 = (x1, x2, y−r

√
t) and JBall(P) be Jacobian ma-

trix of Ball(P). By linear operations on JBall(P), we get that the latter is of full rank if and only

if the matrix M =
(
NP (q1) 0 MP (q1)
NP (q2) MP (q2) 0

)
is full rank, where MP (q1),MP (q2)

are the ((n−1)×(n−2))-submatrices that are obtained respectively by removing the first two
columns from JP (q1), JP (q2) and NP (q1), NP (q2) are the ((n− 1)× 2)-submatrices formed
by the first two columns of JP (q1), JP (q2) respectively.

Now, Ball(P) is not regular at X is equivalent to det(M) = 0, which is equivalent to the
fact that there exist α ∈ R2 \ {0} and β, γ ∈ Rn−2 such that (α, β, γ) is in the kernel of M .

G. Krait, S. Lazard, G. Moroz, M. Pouget 37:5

Under our assumption, the last statement is equivalent to say that (α, β) and (α, γ) are
in Tq1CP and Tq2CP respectively and none of them is trivial. Equivalently, π(q1) is not a
node. This concludes the proof in the case where t 6= 0 because we proved that X is not a
regular solution of Ball(P) if and only if π(q1) is not a node. Hence, π(q1) is a node if and
only if X is a regular solution of Ball(P).

Case t = 0. By Proposition 4.1, q1 is in CP . Using implicit function theorem [4, Corollary
2.7.2] and Hadamard‘s Lemma [4, Proposition 4.2.3] we can prove that, in a neighborhood
of q in U , there exists a local coordinates system (z1, . . . , zn) such that a neighborhood of
π(q1) in π(Cp) is the zero set of the equation z2

1 − z2k+1
2 = 0, for some integer k ≥ 1. By

computing explicitly the Jacobian of Ball(P) in this new coordinate system, we can see that
Ball(P) is regular at X if and only if k = 1. Thus, in the above local coordinate system,
π(Cp) has equation z2

1 − z3
2 = 0 and thus π(q1) is an ordinary cusp by Definition 2.1. Hence,

X is a regular solution of Ball(P) if and only if π(q1) is an ordinary cusp of π(Cp). J

5 Algorithmic aspects

Propositions 4.1 and 4.2 pave the way to the following algorithm:
The input of the algorithm is an integer n ≥ 3, a bounded open subset U in Rn and

P ∈ U. The output is a set of boxes S each of which lives in R2 and contains exactly one
singular point of π(CP). The idea of the algorithm is, first, to compute the system Ball(P).
Second, to isolate the solutions of Ball(P) using a certified numerical solver (see for example
[11]), computing a set of boxes S0 in R2n−1 (the Cartesian product of 2n− 1 intervals) each
of which contains exactly one solution of Ball(P). We can shrink every box of S0 in such a
way that their projections to R2 are pairwise disjoint. Finally, we project each box of S0
and we add the projection to S, where the projection here is the one that sends every point
in R2n−1 to its first two coordinates. Thus, every projected box in R2 contains exactly one
singular point of π(CP).

The bottleneck of this method is the resolution of Ball(P) in R2n−1. For the certified
numerical solver we can use homotopy methods [1] or subdivision methods [11]. Moreover, if
we use subdivision methods, we might try to use the structure of the Ball system to reduce
the dimension, as done in [6] for n = 3.

References
1 Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler.

Bertini: Software for numerical algebraic geometry. URL: https://bertini.nd.edu, doi:
10.7274/R0H41PB5.

2 Jean-Daniel Boissonnat and Monique Teillaud, editors. Effective computational geometry
for curves and surfaces. Mathematics and Visualization. Springer-Verlag, Berlin, 2007.

3 Jinsan Cheng, Sylvain Lazard, Luis Peñaranda, Marc Pouget, Fabrice Rouillier, and Elias
Tsigaridas. On the topology of real algebraic plane curves. Mathematics in Computer
Science, 4(1):113–137, Nov 2010. URL: https://doi.org/10.1007/s11786-010-0044-3,
doi:10.1007/s11786-010-0044-3.

4 Michel Demazure. Bifurcations and catastrophes. Universitext. Springer-Verlag, Berlin,
2000. Geometry of solutions to nonlinear problems, Translated from the 1989 French
original by David Chillingworth. URL: https://doi.org/10.1007/978-3-642-57134-3.

5 Morris William Hirsch. Differential topology. Springer-Verlag, New York-Heidelberg, 1976.
Graduate Texts in Mathematics, No. 33.

EuroCG’19

https://bertini.nd.edu
http://dx.doi.org/10.7274/R0H41PB5
http://dx.doi.org/10.7274/R0H41PB5
https://doi.org/10.1007/s11786-010-0044-3
http://dx.doi.org/10.1007/s11786-010-0044-3
https://doi.org/10.1007/978-3-642-57134-3

37:6 Numerical Algorithm for the Topology of Singular Plane Curves

6 Rémi Imbach, Guillaume Moroz, and Marc Pouget. Reliable location with respect to the
projection of a smooth space curve. Reliab. Comput., 26:13–55, 2018.

7 Rémi Imbach, Guillaume Moroz, and Marc Pouget. A certified numerical algorithm for
the topology of resultant and discriminant curves. Journal of Symbolic Computation, 80,
Part 2:285 – 306, 2017. URL: http://www.sciencedirect.com/science/article/pii/
S0747717116300128, doi:http://dx.doi.org/10.1016/j.jsc.2016.03.011.

8 Chen Liang, Bernard Mourrain, and Jean-Pascal Pavone. Subdivision methods for the
topology of 2d and 3d implicit curves. In Geometric modeling and algebraic geometry, pages
199–214. Springer, Berlin, 2008. URL: https://doi.org/10.1007/978-3-540-72185-7_
11, doi:10.1007/978-3-540-72185-7_11.

9 Benjamin Martin, Alexandre Goldsztejn, Laurent Granvilliers, and Christophe Jermann.
Certified parallelotope continuation for one-manifolds. SIAM J. Numer. Anal., 51(6):3373–
3401, 2013. URL: https://doi.org/10.1137/130906544, doi:10.1137/130906544.

10 Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to interval
analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
URL: https://doi.org/10.1137/1.9780898717716, doi:10.1137/1.9780898717716.

11 Arnold Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1991. doi:10.1017/CBO9780511526473.

12 Simon Plantinga and Gert Vegter. Isotopic approximation of implicit curves and sur-
faces. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Ge-
ometry Processing, SGP ’04, pages 245–254, New York, NY, USA, 2004. ACM. URL:
http://doi.acm.org/10.1145/1057432.1057465, doi:10.1145/1057432.1057465.

13 Fabrice Rouillier. Solving zero-dimensional systems through the rational univariate rep-
resentation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999. URL: https:
//doi.org/10.1007/s002000050114, doi:10.1007/s002000050114.

http://www.sciencedirect.com/science/article/pii/S0747717116300128
http://www.sciencedirect.com/science/article/pii/S0747717116300128
http://dx.doi.org/http://dx.doi.org/10.1016/j.jsc.2016.03.011
https://doi.org/10.1007/978-3-540-72185-7_11
https://doi.org/10.1007/978-3-540-72185-7_11
http://dx.doi.org/10.1007/978-3-540-72185-7_11
https://doi.org/10.1137/130906544
http://dx.doi.org/10.1137/130906544
https://doi.org/10.1137/1.9780898717716
http://dx.doi.org/10.1137/1.9780898717716
http://dx.doi.org/10.1017/CBO9780511526473
http://doi.acm.org/10.1145/1057432.1057465
http://dx.doi.org/10.1145/1057432.1057465
https://doi.org/10.1007/s002000050114
https://doi.org/10.1007/s002000050114
http://dx.doi.org/10.1007/s002000050114

Kinetic Volume-Based Persistence for 1D Terrains
Tim Ophelders1, Willem Sonke∗2, Bettina Speckmann†2, and
Kevin Verbeek‡2

1 Department of Computational Mathematics, Science and Engineering,
Michigan State University, USA
ophelder@egr.msu.edu

2 Department of Mathematics and Computer Science, TU Eindhoven,
The Netherlands
[w.m.sonke|b.speckmann|k.a.b.verbeek]@tue.nl

1 Introduction

The evolution of the channel network of braided rivers is an important topic in geomorphology.
The merges and splits of braided river channels evolve over time under the influence of water
pressure and sediment transport. Kleinhans et al. [6] recently presented algorithms to extract
a (static) network of significant channels from the elevation data of a river bed; this method
is already used in geomorphological studies [5, 8]. The challenge is to identify significant
channels from the river bed, since measurement errors and small variations in the terrain
generally cause a multitude of possible channels. Two channels can be considered similar if
the volume of terrain between the channels is small, modelling the fact that a small volume of
sediment can easily be eroded by water flow, merging the two channels into one. A network
of significant channels consists of channels which are sufficiently dissimilar.

To analyze the evolution of significant channels over time we could kinetically maintain
the network of significant channels computed by the method of Kleinhans et al. [6]. However,
these networks are not stable over time and also prohibitively expensive to compute. We
hence propose a simplified model which uses a volume-simplified terrain. Specifically, we
prune topological features of the terrain (minima and maxima) that can be eliminated by
removing only a small amount of volume. The idea is that the remaining topological features
separate significant channels.

Pruning of the terrain based on the volume of the removed features resembles terrain
simplification based on (height) persistence. The notion of topological persistence was
introduced by Edelsbrunner et al. [4]. Persistence can be defined via measures other than
the vertical distance between points. Carr et al. [3] describe a method to simplify contour
trees (which capture the topological structure of a terrain) using so-called local geometric
measures, such as (in 2D terrains) the line length of the contour, the area enclosed by the
contour, or the volume of the enclosed region. This last type of persistence is exactly the
one we use in this paper and we therefore refer to our simplified terrain as volume-persistent.

Our goal is to maintain a volume-persistent terrain over time, which is closely related to
maintaining its topological structure over time, as represented, for example, by its contour
tree or its split tree. Agarwal et al. [1] show how to maintain a 2D contour tree kinetically.
They also argue that they can maintain height persistence over time. However, maintaining
volume-persistence is much more challenging, because we have to detect the events that
occur when a pruned part of the terrain attains a certain threshold volume. The complexity

∗ Supported by the Netherlands Organisation for Scientific Research (NWO); 639.023.208.
† Partially supported by the Netherlands Organisation for Scientific Research (NWO); 639.023.208.
‡ Supported by the Netherlands Organisation for Scientific Research (NWO); 639.021.541.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

38:2 Kinetic Volume-Based Persistence for 1D Terrains

u

v

w2
w1

u

v

w2
w1

u

v

w2
w1

Figure 1 Pruning a terrain at the height of a saddle point v (split tree shown next to the terrain).

of the associated certificates can be high, since the volumes can be determined by linearly
many vertices. Furthermore, the volume above a particular contour in the terrain is not
continuous: when two contours merge the associated volumes are summed, whereas the
associated height is simply the maximum of the two heights. Hence the volume-based pruning
can be “stuck” at a critical point (see Fig. 1: pruning just below the saddle point requires a
much higher volume-threshold than pruning exactly at the saddle point). Since these issues
already manifest themselves for 1D terrains, we restrict ourselves to this setting.

Preliminaries. Let T be a 1D terrain with n vertices, of which each vertex v has a fixed
x-coordinate xv and height hv that changes linearly over time according to a known flight
plan: hv(t) = av t+ bv. Between vertices, the height is interpolated linearly; h(x, t) denotes
the height of T at x on time t. At time t, the superlevel set of T at height h is the set of
points in T with h(x, t) ≥ h. A superlevel set may consist of several connected components.
For h = −∞, the superlevel set spans the entire terrain. If we continuously increase h, at
certain moments topological changes happen to the superlevel set. The split tree S of T
represents those changes: a component splitting is represented by an internal vertex, and
a component disappearing is represented by a leaf [2] (see Fig. 2a). We consider S to be
rooted at the vertex at h = −∞, so every edge is directed upwards. Let e = (u, v) be a split
tree edge. Then the parent edge p(e) of e is the incoming edge of u, and the child edges of e
are the outgoing edges of v. The subtree rooted at e is the subtree rooted at v, plus e itself.

To prune the terrain we cut off a single split component at a particular height h (see
Fig. 2b). We can equivalently view this operation as pruning the split tree: we identify some
point on an edge of the split tree, and remove the entire subtree above it. If we prune at the
height of a minimum v, then we need to specify which of the outgoing edges of v we want to
prune. We define A(e, h) as the area of terrain that is cut off if we prune edge e at height h.
Let A ∈ R be some (fixed) positive area threshold. We define the area-persistent terrain

(a)

(b)

Figure 2 Area-simplifying a 1D terrain: (a) before, and (b) after.

T. Ophelders, W. Sonke, B. Speckmann and K. Verbeek 38:3

as the terrain left after pruning all edges e in S at height h, whenever A(e, h) ≤ A. In the
resulting terrain, all pieces that are cut off have area at most A.

Results. We describe a KDS that maintains the pruned split tree of an area-persistent
terrain under linear vertex motion. That is, for each edge e = (u, v), we maintain if A(e, hu)
is smaller or larger than A. This KDS is compact, responsive, local, and efficient.

2 A KDS for maintaining an area-persistent 1D terrain

We adapt the KDS for 2D contour trees by Agarwal et al. [1] to 1D split trees. This KDS uses
four types of events: shift, birth, death, and interchange events, which can all be handled by
changing the split tree. We maintain the split tree S as a link–cut tree [7]. Next, we add
area certificates to detect so-called area events when a pruning boundary moves from one
split tree edge to the other.

We define Ae := A(e, hu), so Ae is the area that is removed when we prune away the
subtree rooted at e from S, and we write Ae(t) to denote Ae at time t. If Ae(t) > A, we say
that e is significant at time t, otherwise we say that e is insignificant. We call a certificate
Ae > A (Ae < A) an upper (lower) area certificate for edge e (see Fig. 3a).

If an edge e is insignificant, then all edges in the subtree rooted at e are insignificant;
similarly, if e is significant, then all ancestor edges of e are significant. Therefore we do not
need to store area certificates for all edges in S: we store a lower area certificate for e only if
p(e) is significant, and an upper area certificate for e only if all children of e are insignificant
(see Fig. 3b, only stored area certificates are shown). On each root-to-leaf path through S,
at most two area certificates are stored: one upper and one lower certificate.

(a) (b)

Figure 3 Two area-persistent split trees with area certificates: (a) the terrain from Fig. 2b, and
(b) a more complicated terrain. (and denote upper and lower area certificates, respectively.)

Computing areas. We use an additional data structure that is based on the flight plans of
the vertices and that needs to be updated only when a flight plan changes. Using this data
structure, given two arbitrary terrain vertices v and w and some time t, we want to be able
to compute

∫ xw

xv
h(x, t)dx in O(logn) time. If e = (p, q) is a terrain edge, then∫ xq

xp

h(x, t)dx = 1
2 (xq − xp)(apt+ bp + aqt+ bq)

= 1
2 (xq − xp)(ap + aq)︸ ︷︷ ︸

=: ae

t+ 1
2 (xq − xp)(bp + bq)︸ ︷︷ ︸

=: be

.

EuroCG’19

38:4 Kinetic Volume-Based Persistence for 1D Terrains

Then for arbitrary terrain vertices v and w,∫ xw

xv

h(x, t)dx =
∑

e=(p,q)

∫ xq

xp

h(x, t)dx =
(∑

e

ae

)
t+
∑

e

be,

where the summations range over all terrain edges between v and w. To evaluate
∑

e ae and∑
e be efficiently, we compute ae and be for each terrain edge e and store them in a balanced

binary tree R, augmented with sums of subtrees, using O(n) preprocessing time. We then
support O(logn) time queries for the sum of ae or be values for all edges e between two query
vertices v and w, so we can compute

∫ xw

xv
h(x, t) in O(logn) time for any v, w and t.

Detecting area events. We need to answer the following question: Given a split tree edge
e = (u, v) at time t0, what is the next time tevent at which Ae(tevent) = A? We assume
without loss of generality that e = (u, v) is a right-going edge in S. Let xray(t) be the
x-coordinate of the first point on the terrain to the right of u where h(x, t) = hu(t). That is,
xray(t) is the point where a horizontal ray from u to the right stabs the terrain at time t.

We first assume that we know the edge eevent = (p, q) that xray(tevent) lies on, that is,
the first edge intersected by the ray at the time that the area certificate fails (see Fig. 4a).
In this case, we can compute the exact failure time tevent as follows. Ae(t) is the sum of the
areas induced by the terrain edges between u and p, which are fully above the ray, and the
area of the triangle between the ray and (p, q) (see Fig. 4b). This implies that Ae(tevent) = A

is a quadratic equation with a closed-form solution, and can therefore be solved exactly. In
other words, given eevent, we can compute tevent in O(logn) time.

p

qu
xray(tevent)

v

u

v

(a)

h(t)

w

(b)

Figure 4 Computing the area Ae(tevent) (shaded in blue).

Finding the stabbed chain. In the following we consider monotone chains of the terrain.
We call the chain that contains xray(t0) the stabbed chain of edge e = (u, v) and describe an
algorithm Stabbed-Chain that finds its lower endpoint m (see Fig. 5).

I Lemma 1. Let e = (u, v) be a right-going edge in S, and let (m,m′) be the last left-going
edge on the path π from the root to u. Then m is the lower endpoint of the stabbed chain of e.

u

m

v

m

u
v

m′m′
π

Figure 5 Finding the lower endpoint m of the stabbed chain (red) by traversing the split tree.

T. Ophelders, W. Sonke, B. Speckmann and K. Verbeek 38:5

Since path π may have linear length we cannot traverse it to search for m. Instead we query
the link–cut tree for a binary search tree containing all vertices on π (this is an Expose
query). In this tree we find the rightmost vertex m′ whose incoming edge is left-going in S,
and return the parent m of m′. For this we augment the link–cut tree: we store for each edge
whether it is left- or right-going. This results in a O(logn) running time for Stabbed-Chain.

Finding eevent. At current time t0 we first use Stabbed-Chain to find vertex m. The
predecessor of m in the split tree is the maximum M of the stabbed chain. We binary search
between M and m for the edge that xray(t0) lies on and then find the exact value for xray(t0).
Consider the point s on the terrain at x-coordinate xray(t0). We distinguish three cases
based on how s moves over time. In the simplest case, s moves at the same speed as u and
hence xray is constant, so we simply return the edge xray(t0) lies on. Otherwise, s may be
moving upwards or downwards relative to u. If s moves upwards, xray is strictly increasing
over time; if s moves downwards, xray is strictly decreasing. In the following we assume that
xray is strictly increasing (see Fig. 6); the other case is symmetric.

M

u

m

xray(t1)

xray(t0)
s

Figure 6 If s moves upwards, then xray is strictly increasing. Terrain at t0 in black; terrain at
later times in gray. The red arrows indicate how the vertices move relative to u.

We then find the time t1 at which the next shift, birth or death event occurs involving
vertices between u and m. (This can be done efficiently using a 1D range tree storing all
such events, with their x-coordinate as the key and their failure time as the value.) Since
therefore no events occur between t0 and t1, xray(t1) lies in the same chain as xray(t0).
Therefore we can compute xray(t1) in the same way we computed xray(t0). Given some
x ∈ [xray(t0), xray(t1)], let tray(x) be the time at which the point at x hits the ray. Being the
inverse of xray, tray is also strictly increasing.

I Lemma 2. The function A′
e(x) := Ae(tray(x)) is unimodal within [xray(t0), xray(t1)]: there

exists an xfixed such that A′
e(x) is strictly descending for x ∈ [xray(t0), xfixed) and strictly

increasing for x ∈ (xfixed, xray(t1)].

Proof. We study the derivative dA′
e/dx by considering the following extension of A′

e(x):

A′
e(x, t) =

∫ x

u

(
h(x′, t)− hu(t)

)
dx′.

A′
e(x, t) represents the area cut off by a horizontal ray to the right starting from vertex u,

until x-coordinate x, so A′
e(x) = A′

e(x, tray(x)). We set t = tray(x) and compute

dA′
e

dx = ∂A′
e

∂t

dt
dx + ∂A′

e

∂x
= ∂A′

e

∂t

dt
dx.

EuroCG’19

38:6 Kinetic Volume-Based Persistence for 1D Terrains

t

x

t1

t0

tray

xfixed

∂A′
e

∂t > 0
∂A′

e

∂t < 0

xray(t0) xray(t1)

Figure 7 Sketch of the function tray drawn in the (x, t)-plane.

The last equality follows because ∂A′
e/∂x = 0, as for x = xray(t) by definition h(x, t) = hu(t).

Because tray is increasing, dt/dx > 0, so dA′
e/dx has the same sign as ∂A′

e/∂t.
Let xfixed be the x-coordinate within [xray(t0), xray(t1)] such that A′

e(xfixed, t) is constant
in t, if such a coordinate exists. The average terrain height on [xu, xfixed] is hence constant,
and all terrain points in [xfixed, xray(t1)] are moving upwards relative to u. Therefore, for
x ∈ (xfixed, xray(t1)], the average terrain height on [xu, x] is growing, so ∂A′

e/∂t > 0 (see
Fig. 7). Similarly, within [xray(t0), xfixed), ∂A′

e/∂t < 0. If no xfixed exists, then ∂A′
e/dt > 0

or ∂Ae/dt < 0 throughout [xray(t0), xray(t1)]. Hence, A′
e(x) is unimodal. J

First we find xfixed by binary searching within the range [xray(t0), xray(t1)], using tree R.
Then, we compute A′

e(xray(t0)) and A′
e(xray(t1)) to determine whether eevent lies within

[xray(t0), xfixed) or (xfixed, xray(t1)], and do a binary search (again using R) on that range to
find eevent. The binary search takes O(logn) steps, each taking constant time, so it takes
O(logn) time to compute A′

e(x).

death

birth

death

birth

e

e

v1 v2

v1 v2

vv

v v

death

birth

e

v1 v2

vv

death

birth

e

v1 v2

v v

e

shrink

grow

e

e

shrink

grow

e

u

u u

u

Figure 8 Handling area events (left) and birth / death events (right).

T. Ophelders, W. Sonke, B. Speckmann and K. Verbeek 38:7

Event handling. There are two complementary types of area events: firstly, Ae < A may
fail (a grow event), and secondly, Ae > A may fail (a shrink event). Both of them can be
handled by inserting and removing area certificates (see the left of Fig. 8). Shift, birth, death,
and interchange events are handled like in the KDS from Agarwal et al., but some additional
actions are required to ensure that the area certificates are updated (see the right of Fig. 8).

Analysis. The KDS is still compact, responsive, local, and efficient. In particular, each
vertex is involved in a constant number of area certificates. Indeed, a vertex is involved in
the area certificate of a split tree edge e = (u, v) if it lies between u and m (see Fig. 5). A
chain is stabbed by only one upper area certificate, since any rays stabbing the same chain
need to originate from vertices on the same root-to-leaf path in the split tree (by Lemma 1);
as we store upper area certificates for an edge only if all its children are insignificant, this
path can contain only one upper area certificate. Therefore, each vertex in the interior of the
chain is involved in at most one upper area certificate and by similar reasoning, at most one
lower area certificate. A minimum is part of two chains and hence involved in at most two
upper and two lower area certificates. This implies that the locality is O(1).

References
1 Pankaj Agarwal, Thomal Mølhave, Morten Revsbæk, Issam Safa, Yusu Wang, and Jung-

woo Yang. Maintaining contour trees of dynamic terrains. In Proc. 31st International
Symposium on Computational Geometry (SoCG), pages 796–811, 2015.

2 Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 918–926,
2000.

3 Hamish Carr, Jack Snoeyink, and Michiel van de Panne. Simplifying flexible isosurfaces
using local geometric measures. In Proc. 15th IEEE Visualization Conference (VIS), pages
497–504, 2004.

4 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete Computational Geometry, 28:511–533, 2002.

5 Matthew Hiatt, Willem Sonke, Elisabeth Addink, Wout van Dijk, Marc van Kreveld, Tim
Ophelders, Kevin Verbeek, Joyce Vlaming, Bettina Speckmann, and Maarten Kleinhans.
Geometry and topology of estuary and braided river channel networks extracted from
topographic data. Abstract EP32A-08 presented at 2018 Fall Meeting, AGU, Washington,
D.C., 10-14 Dec.

6 Maarten Kleinhans, Marc van Kreveld, Tim Ophelders, Willem Sonke, Bettina Speckmann,
and Kevin Verbeek. Computing representative networks for braided rivers. In Proc. 33rd
International Symposium on Computational Geometry (SoCG), pages 48:1–48:16, 2017.

7 Daniel Sleator and Robert Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26:362–391, 1983.

8 Wout van Dijk, Jasper Leuven, Jana Cox, Jelmer Cleveringa, Marcel Taal, Matthew Hiatt,
Willem Sonke, Kevin Verbeek, Bettina Speckmann, and Maarten Kleinhans. The effects
of dredging and disposal activity on the resilience of estuary morphodynamics. Abstract
EP23C-2305 presented at 2018 Fall Meeting, AGU, Washington, D.C., 10-14 Dec.

EuroCG’19

Stability analysis of kinetic oriented bounding
boxes
Wouter Meulemans1, Kevin Verbeek1, and Jules Wulms1

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
[w.meulemans|k.a.b.verbeek|j.j.h.m.wulms]@tue.nl

1 Introduction

There exist many applications that desire an algorithm to be stable: small changes in the
input lead to small changes in the output. Stability is especially important when analyzing or
visualizing time-varying data. A sudden change to the input renders an unstable visualization
completely ineffective, as it will be hard or impossible to follow the temporal patterns. It is
therefore of interest to develop stable algorithms that deal with such changes in the input in
an elegant way, so that the output does not lose its effectiveness over time.

Shape descriptors are simplified representations of (complex) shapes and can be used to
effectively summarize data, even as it changes over time. They play an important role in
fields that rely on shape analysis, like computer vision (shape recognition) [4, 6, 29], computer
graphics (bounding boxes for broad-phase collision detection) [1, 12, 16, 24], medical imaging
(diagnosis or surgical planning) [7, 13, 15, 30], and machine learning (shape classification)
[22, 26, 27, 28]. In this abstract we focus on a shape descriptor that captures the overall
orientation of the underlying shape (represented by a point cloud). Specifically, we study
the oriented bounding box (obb): an oriented bounding box that contains all points (see
Figure 1 left). We say that oriented bounding boxes of smaller area are of better quality.
Unfortunately, oriented bounding boxes of optimal quality are unstable and may have discrete
“flips” in their orientation, even for continuously moving point sets (Figure 1 right). Hence,
we want to sacrifice some quality for stability.

Problem description. The main goal of this abstract is to formally analyze the trade-off
between quality and stability for an obb. Our input consists of a set of n moving points
P = P (t) = {p1(t), . . . , pn(t)} in 2 dimensions, where each pi(t) is a function pi : [0, T]→ R2.
We assume that, at each time t, not all points are at the same position. We further assume
that each point moves with at most unit speed, that is, ‖p′i(t)‖ ≤ 1 for all times t. As
output we want to compute an obb containing all the input points. The oriented bounding
box essentially describes an optimization function, which captures the quality of the shape
descriptor, that is, how well the descriptor represents (the orientation of) the underlying
shape. The optimization function is the area of the bounding box and it can be minimized
over all orientations. That is, we consider the optimization of function fobb(α, P) which
represents the area of the smallest bounding box with orientation α on point set P .

We can now also consider bounding boxes of suboptimal quality, with slightly larger
area than the smallest one. This allows us to make a trade-off between quality and other
desirable properties of obb, such as its stability. Since the optimization function optimizes
over orientations, the output consists of an orientation α(t) for every time step t ∈ [0, T].
This orientation is an element of the real projective line RP1, but we represent α(t) by a unit
vector in R2 and implicitly identify opposite vectors, which is equivalent. Furthermore, we
assume that the output α(t) is computed for all real values t ∈ [0, T].
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

39:2 Stability analysis of kinetic oriented bounding boxes

Figure 1 Examples of obb on different point sets. On the right two optimal boxes exist.

For obb we typically compute more than just an orientation. However, it is easy to see
that the stability of obb is mostly affected by the optimal orientation. We therefore ignore
other aspects of the shape descriptor to analyze the stability, and assume that these aspects
are chosen optimally for the given orientation without any cost with regard to the stability.

Stability analysis. To analyze the stability of obb we use the framework introduced by
Meulemans et al. [18]. This framework defines various stability measures, one of which is the
Lipschitz stability. An algorithm is K-Lipschitz stable if its output changes at most K units,
when the input points move one unit. We study the Lipschitz stability of obb and slightly
reformulate the definition by restricting it to our setting. Let A be an algorithm that takes
a point set as input and computes an orientation. The definition of the Lipschitz stability
ratio depends on the metrics (distance functions) on the input and output space. This is
straightforward: the input space is R2n and the output space is topologically equivalent to
S1, hence we can use the Euclidean and circle metric respectively. We define the K-Lipschitz
stability ratio of obb as follows:

ρLS(obb,K) = inf
A

sup
P (t)

max
t∈[0,T]

fobb(A(P (t)), P (t))
minγ fobb(γ, P (t)) (1)

where the infimum is taken over all algorithms A for which A(P (t)) is K-Lipschitz. Thus,
the difference in orientation or angle is at most K radians per unit of change in the input.
Informally, ρLS is the best approximation ratio any algorithm can achieve for a given K.

Kinetic algorithms. Algorithms for kinetic (moving) input can adhere to different models,
which may influence the results of the stability analysis. We focus on state-aware algorithms,
which map input I(t) on time t to output, but also maintain a state S (typically the output at
the previous time step) over time. This contrasts stateless and clairvoyant algorithms, which
depend only on the input I(t) at a particular time or the complete function I(t) respectively.

Interestingly, for stateless algorithms the K-Lipschitz stability ratio is unbounded for any
constant K. This can be argued topologically by realizing that a stable stateless algorithm
defines a continuous map between the input and output space, and we can show that an
algorithm with bounded approximation ratio must define a map between two subspaces that
are not homotopic. We therefore move our attention to state-aware algorithms.

Our results. A state-aware algorithm can enforce continuity by keeping the output at the
previous time step as the state. We define a chasing algorithm, which moves the output of
the previous time step with maximum allowed speed towards the optimal solution at the
current time. In the remainder of this abstract we analyze the quality and stability of such

W. Meulemans, K. Verbeek, and J. Wulms 39:3

an algorithm: Section 2.1 explains how stability is ensured, while Section 2.2 shows how the
quality is affected.

Related work. Computing obb for static point sets is a classic problem in computational
geometry. In two dimensions, one side of the optimal box aligns with a side of the convex hull
and it can be computed in linear time after finding the convex hull [11, 23]; a similar property
holds in three dimensions, allowing a cubic-time algorithm [19]. The relevance of bounding
boxes in 3D as a component of other algorithms led to efficient approximation algorithms,
such as a (1 + ε)-approximation algorithm in O(n+ 1/ε4.5) time or an easier algorithm with
running time O(n logn+ n/ε3) [2]. Bounding boxes find applications in tree structures for
spatial indexing [3, 14, 20, 21] and in collision detection and ray tracing [1, 12, 24]. Results
on the stability of facility location problems [5, 9, 10, 8] and the medial axis [17] all predate
a framework for analyzing stability introduced by Meulemans et al. [18]. In [18] the authors
apply the framework to maintaining the Euclidean minimum spanning tree on a set of moving
points. They show a bounded topological stability for various topologies on the space of
spanning trees, and that the Lipschitz stability is at most linear, but also at least linear if the
allowed speed for the changes in the tree is too low. Bounds on the topological stability of a
problem essentially are lower bounds on its Lipschitz stability. Van der Hoog et al. study
the topological stability of the k-center problem [25], showing upper and lower bounds on
the stability ratio for various measures. They also provide an algorithm to determine the
best ratio attainable for a given set of moving points.

2 Lipschitz stability of a state-aware algorithm

To derive meaningful bounds on the Lipschitz stability ratio, the relation between dis-
tances/speeds in input and output space should be scale-invariant [18]. This is currently
not the case: if we scale the coordinates of the points, then the distances in the input space
change accordingly, but the distances in the output space (between orientations) do not. To
remedy this problem, we require that diameter D of P (t) is at least 1 for every time t.

We use a chasing algorithm as introduced in Section 1. However, instead of chasing the
orientation of obb, we chase the orientation of a diametrical pair. Although chasing the
optimal shape descriptor would be better in general, chasing a diametrical pair is easier to
analyze and sufficient to obtain a bounded Lipschitz stability ratio for obb.

2.1 Chasing the diametrical pair
We denote the orientation of the diametrical pair as α = α(t) and the diameter as D =
D(t) ≥ 1. Furthermore, let W = W (t) be the width of the thinnest strip with orientation
α(t) covering all points in P (t), and let z = z(t) = W (t)/D(t) be the aspect ratio of the
diametric box with orientation α(t). We will generally omit the dependence on t if t is clear
from the context. Finally, we have a chasing algorithm that has orientation β = β(t) and the
difference in orientation is at most a constant K, when the input has moved one unit.

Approach. The main goal is to keep β as close to α as possible, specifically within a
sufficiently small interval around α. The challenge lies with the discrete flips of α. We
must argue that, although flips can happen instantaneously, they cannot happen often
within a short time-span – otherwise we can never keep β close to α with a bounded speed.
Furthermore, the size of the interval must depend on the aspect ratio z, since if z = 0, the
interval around α must have zero size as well to guarantee a bounded approximation ratio.

EuroCG’19

39:4 Stability analysis of kinetic oriented bounding boxes

α(t)

β(t)

α(t+ ε)

Figure 2 Interval I at time t (outer) and time t+ε (inner). The safe/danger zones and orientations
are indicated in blue, red and green respectively. Diametrical pairs are connected by dashed lines.

For the analysis we introduce three functions depending on z: T (z), H(z), and J(z).
Function H(z) defines an interval [α−H(z), α+H(z)] called the safe zone. We aim to show
that, if β leaves the safe zone at some time t, it must return to the safe zone within the time
interval (t, t+ T (z)]. We also define a larger interval I = [α−H(z)− J(z), α+H(z) + J(z)].
We refer to the parts of I outside of the safe zone as the danger zone (see Figure 2). Although
β may momentarily end up in the danger zone due to discontinuous changes, it must quickly
find its way back to the safe zone. We aim to guarantee that β stays within I at all times.
Let E = E(t) refer to an endpoint of I. We call J(z) the jumping distance and say it is valid
if J(z) upper bounds how far E can “jump” in a single time step. Note that J(z) is defined
recursively through E, so we need to be careful to choose the right function for J(z). For the
other functions we choose T (z) = z/4 and H(z) = c arcsin(z) for a constant c (chosen later).

Changes in orientation and aspect ratio. To verify that the chosen functions T (z) andH(z)
satisfy the intended requirements, and to define the function J(z), we need to bound how much
α and z can change over a time period of length ∆t. We refer to these bounds as ∆α(z,∆t)
and ∆z(z,∆t), respectively. Note that, since the diameter can change discontinuously, we
generally have that ∆α(z, 0) > 0 and ∆z(z, 0) > 0.

I Lemma 2.1. ∆α(z,∆t) ≤ arcsin(z + ∆t(1 + z)) for ∆t ≤ (1− z)/(1 + z).

I Lemma 2.2. ∆z(z,∆t) ≤ z − sin(1
2 arcsin(z))−2∆t

1+2∆t for ∆t ≤ sin(1
2 arcsin(z))/2.

Jumping distance. Using Lemma 2.1 and Lemma 2.2 we can derive a valid function for
J(z). Recall that we require that J(z) is at least the amount E can move in ∆t = 0 time.

I Lemma 2.3. J(z) = (c+ 2) arcsin(z) is a valid jumping distance function.

Proof. By Lemma 2.1 and Lemma 2.2 we get that ∆E(z, 0) ≤ ∆α(z, 0) + H(z) −H(z −
∆z(z, 0)) + J(z) − J(z − ∆z(z, 0)). Since ∆α(z, 0) ≤ arcsin(z) and ∆z(z, 0) ≤ z −
sin(1

2 arcsin(z)), we get after simplification that ∆E(z, 0) ≤ (1 + c/2) arcsin(z) + J(z) −
J(sin(1

2 arcsin(z))). Since we require that J(z) ≥ ∆E(z, 0), it suffices to show that the
following holds: J(sin(1

2 arcsin(z))) ≥ (1 + c/2) arcsin(z). Using the provided function, we
get that J(sin(1

2 arcsin(z))) = (c+ 2) arcsin(z)/2 as required. J

I Corollary 2.4. If β is in I, then |α− β| ≤ (2c+ 2) arcsin(z).

W. Meulemans, K. Verbeek, and J. Wulms 39:5

∆α

D

p1

p2

q1

q2

q1

q2
γ

D

Dz/2

Figure 3 Illustrations supporting proof of Lemma 2.7.

Bounding the speed. To show that the orientation β stays within the interval I, we argue
that over a time period of T (z) we can rotate β at least as far as E. As the endpoint of the
safe zone moves at most as fast as E, this implies that if β leaves the safe zone at time t, it
returns to it in the time period (t, t+ T (z)]. Thus we require that KT (z) ≥ ∆E(z, T (z)).
We need to keep up only when the safe zone does not span all orientations, that is, the above
inequality must hold only when H(z) ≤ π/2 or z ≤ sin(π2c). For the following speed bound
we choose a specific value c = 3. Hence we only need to chase α when z ≤ sin(π6) = 1

2 .

I Lemma 2.5. If K ≥ 40, then |β(t)− α(t)| ≤ 8 arcsin(z) (using c = 3) for all times t.

2.2 Lipschitz stability ratio
What remains is to analyze the approximation ratio of the chasing algorithm for obb.
Corollary 2.4 implies that the orientation β of the chasing algorithm is at most an angle
(2c+ 2) arcsin(z) away from the orientation of a diametrical pair of points.

I Lemma 2.6. sin(λ arcsin(x)) ≤ λx for λ ≥ 1 and 0 ≤ x ≤ 1:

I Lemma 2.7. If |β − α| ≤ (2c+ 2) arcsin(z), then fobb(β, P) ≤ (4c+ 6) minx fobb(x, P).

Proof. Assume that at some time t we have a diametric box with diameter D and aspect
ratio z, and let (p1, p2) be a diametrical pair. The smallest obb must contain p1 and p2 and
must hit the sides of the diametric box at, say, q1 and q2 (see Figure 3). Since the smallest
obb must contain the triangles formed by {p1, p2, q1} and {p1, p2, q2}, the area of this box
must be at least the sum of the areas of these two triangles, which is D2z/2.

Now consider the box of the chasing algorithm, where ∆α = |β − α| ≤ (2c+ 2) arcsin(z).
We assume that the major axis of the box has length D, which is worst possible. Let the
minor axis of the box be bounded by two points q1 and q2, where the angle between the line
through q1 and q2 and the line through the diametrical pair is γ. Note that the distance
between q1 and q2 is bounded by min(D, zD/ sin(γ)). The angle between the minor axis of
the box and the line through q1 and q2 is π/2−γ−∆α. Thus, the length of the minor axis is
min(D, zD/ sin(γ)) cos(π/2− γ −∆α) = min(D sin(γ + ∆α), zD sin(γ + ∆α)/ sin(γ)). Since
the function sin(γ+∆α)/ sin(γ) is decreasing in γ, we attain the maximum when z/ sin(γ) = 1
or γ = arcsin(z). Hence, the area of this box is at most D2 sin((2c+ 3) arcsin(z)), which is
at most D2z(2c+ 3) by Lemma 2.6. Thus, fobb(β, P) ≤ (4c+ 6)minxfobb(x, P). J

By combining Lemmata 2.5 and 2.7, we obtain this bound on the Lipschitz stability of obb.

I Theorem 2.8. The Lipschitz stability ratio for obb is bounded by ρLS(obb, 40) ≤ 18.

EuroCG’19

39:6 Stability analysis of kinetic oriented bounding boxes

References
1 Gill Barequet, Bernard Chazelle, Leonidas Guibas, Joseph Mitchell, and Ayellet Tal. BOX-

TREE: A hierarchical representation for surfaces in 3d. Comput. Graph. Forum, 15(3):387–
396, 1996.

2 Gill Barequet and Sariel Har-Peled. Efficiently approximating the minimum-volume bound-
ing box of a point set in three dimensions. J. Algorithms, 38(1):91–109, 2001.

3 Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-
tree: An efficient and robust access method for points and rectangles. In Proc. 1990 ACM
SIGMOD International Conference on Management of Data, pages 322–331, 1990.

4 Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recognition
using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):509–522, 2002.

5 Sergei Bespamyatnikh, Binay Bhattacharya, David Kirkpatrick, and Michael Segal. Mobile
facility location. In Proc. 4th Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, pages 46–53, 2000.

6 Michael Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signatures for non-
rigid shape recognition. In 23rd IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1704–1711, 2010.

7 Dragana Brzakovic, Xiao Mei Luo, and P. Brzakovic. An approach to automated detection
of tumors in mammograms. IEEE Transactions on Medical Imaging, 9(3):233–241, 1990.

8 Mark de Berg, Marcel Roeloffzen, and Bettina Speckmann. Kinetic 2-centers in the black-
box model. In Proc. 29th Symposium on Computational Geometry, pages 145–154, 2013.

9 Stephane Durocher and David Kirkpatrick. The steiner centre of a set of points: Sta-
bility, eccentricity, and applications to mobile facility location. International Journal of
Computational Geometry & Applications, 16(04):345–371, 2006.

10 Stephane Durocher and David Kirkpatrick. Bounded-velocity approximation of mobile
Euclidean 2-centres. International Journal of Computational Geometry & Applications,
18(03):161–183, 2008.

11 Herbert Freeman and Ruth Shapira. Determining the minimum-area encasing rectangle for
an arbitrary closed curve. Commun. ACM, 18(7):409–413, 1975.

12 Stefan Gottschalk, Ming Lin, and Dinesh Manocha. OBBTree: A hierarchical structure for
rapid interference detection. In Proc. 23rd Annual Conference on Computer Graphics and
Interactive Technique, pages 171–180, 1996.

13 Xianfeng Gu, Yalin Wang, Tony Chan, Paul Thompson, and Shing-Tung Yau. Genus zero
surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med.
Imaging, 23(8):949–958, 2004.

14 Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. 1984
ACM SIGMOD International Conference on Management of Data, pages 47–57, 1984.

15 András Kelemen, Gábor Székely, and Guido Gerig. Elastic model-based segmentation of
3-D neuroradiological data sets. IEEE Trans. Med. Imaging, 18(10):828–839, 1999.

16 James Klosowski, Martin Held, Joseph Mitchell, Henry Sowizral, and Karel Zikan. Efficient
collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Vis. Comput.
Graph., 4(1):21–36, 1998.

17 Kyle Sykes David Letscher and Kyle Sykes. On the stability of medial axis of a union of
disks in the plane. In Proc. 28th Canadian Conference on Computational Geometry, pages
29–33, 2016.

18 Wouter Meulemans, Bettina Speckmann, Kevin Verbeek, and Jules Wulms. A framework
for algorithm stability and its application to kinetic euclidean MSTs. In Proc. 13th LATIN,
LNCS 10807, pages 805–819, 2018.

19 Joseph O’Rourke. Finding minimal enclosing boxes. International Journal of Parallel
Programming, 14(3):183–199, 1985.

W. Meulemans, K. Verbeek, and J. Wulms 39:7

20 Nick Roussopoulos and Daniel Leifker. Direct spatial search on pictorial databases using
packed r-trees. In Proc. 1985 ACM SIGMOD International Conference on Management of
Data, pages 17–31, 1985.

21 Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-tree: A dynamic index
for multi-dimensional objects. In Proc. 13th International Conference on Very Large Data
Bases, pages 507–518, 1987.

22 Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view
convolutional neural networks for 3D shape recognition. In 2015 IEEE International Con-
ference on Computer Vision, pages 945–953, 2015.

23 Godfried Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE
Melecon, volume 83, page A10, 1983.

24 Gino van den Bergen. Efficient collision detection of complex deformable models using
AABB trees. J. Graphics, GPU, & Game Tools, 2(4):1–13, 1997.

25 Ivor van der Hoog, Marc van Kreveld, Wouter Meulemans, Kevin Verbeek, and Jules Wulms.
Topological stability of kinetic k-centers. CoRR, abs/1810.00794, 2018.

26 Manik Varma and Debajyoti Ray. Learning the discriminative power-invariance trade-off.
In Proc. IEEE 11th International Conference on Computer Vision, pages 1–8, 2007.

27 Jin Xie, Guoxian Dai, Fan Zhu, Edward Wong, and Yi Fang. DeepShape: Deep-
learned shape descriptor for 3D shape retrieval. IEEE Trans. Pattern Anal. Mach. Intell.,
39(7):1335–1345, 2017.

28 Hao Zhang, Alexander Berg, Michael Maire, and Jitendra Malik. SVM-KNN: discriminative
nearest neighbor classification for visual category recognition. In Proc. 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, pages 2126–2136,
2006.

29 Yu Zhong. Intrinsic shape signatures: A shape descriptor for 3d object recognition. In
Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference,
pages 689–696. IEEE, 2009.

30 Barbara Zitová and Jan Flusser. Image registration methods: a survey. Image Vision
Comput., 21(11):977–1000, 2003.

EuroCG’19

A Poisson sample of a smooth surface is a good
sample
Olivier Devillers1 and Charles Duménil1

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Olivier.Devillers@inria.fr, charles.dumenil@inria.fr

Abstract
The complexity of the 3D-Delaunay triangulation (tetrahedralization) of n points distributed

on a surface ranges from linear to quadratic. When the points are a deterministic good sample
of a smooth compact generic surface, the size of the Delaunay triangulation is O(n logn) [2].
Using this result, we prove that when points are Poisson distributed on a surface under the same
hypothesis, whose expected number of vertices is λ, the expected size is O(λ log2 λ).

1 Introduction

While the complexity of the Delaunay triangulation of n points is strictly controlled in two
dimensions to be between n and 2n triangles (depending on the size of the convex hull) the
gap between the lower and upper bound ranges from linear to quadratic in dimension 3. The
worst case is obtained using points on the moment curve1 and the best case by using the
center of spheres defining a packing.2

To get a more precise result on the size of the 3D Delaunay triangulation, it is possible
to make different kinds of hypotheses on the point set. A first possibility is to assume a
random distribution in 3D and if the points are evenly distributed in a sphere [6], (resp. in
a cube [3]), Dwyer (resp. Bienkoswski et al.) proved that the expected size is Θ(n). But
this hypothesis of random distribution is not relevant for all applications, for example when
dealing with 3D reconstruction the Delaunay triangulation is an essential tool and it is much
more natural to assume that the points are not distributed in space but on a surface [4]. If
the points are evenly distributed on the boundary of a polyhedron, the expected size was
proved to be Θ(n) in the convex case [9] and between Ω(n) and Õ(n) in the non convex case
by Golin and Na [8].

Instead of using probabilistic hypotheses one can assume that the points are a good
sampling of the surface, namely an (ε, η)-sample where any ball of radius ε centered on the
surface contains at least one and at most η points of the point-set. Under such hypothesis
Attali and Boissonnat proved that the complexity of the Delaunay triangulation of a poly-
hedron is linear [1]. Attali, Boissonnat, and Lieutier extend this result to smooth surfaces
verifying some genericity hypotheses with an upper bound of O(n logn) [2]. The genericity
hypothesis is crucial since Erickson proved that there exists good sample of a cylinder with a
triangulation of size Ω(n

√
n) [7]. In the example by Erickson the point set is placed in a very

special position on an helix, nevertheless, even with an unstructured point set it is possible
to reach a supra-linear triangulation since Erickson, Devillers, and Goaoc proved that the
triangulation of points evenly distributed on a cylinder has expected size Θ(n logn) [5].

1 The moment curve is parameterized by (t, t2, t3). When computing the Delaunay triangulation of
points on this curve, any pair of points define a Delaunay edge.

2 The kissing number in 3D is 12, thus in such a point set, the number of edges is almost 6n.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

40:2 Poisson sample is good

Contribution

In this paper we prove that a Poisson sample of parameter λ on a smooth surface of finite area
is an (ε, η)-sample for ε = 3

»
logλ
λ and η = 1000 log λ with high probability. Using the result

of Attali, Boissonnat, and Lieutier, it yields that the complexity of the Delaunay triangulation
of a Poisson sample of a generic surface is O(λ log2 λ) losing an extra logarithmic factor with
respect to the case of good sampling (see Section 3).

2 Notation, definitions, previous results

We consider a surface Σ embedded in R3, compact, smooth, oriented and without boundary.
At a point p ∈ Σ, for a given orientation, we denote by κ1(p) and κ2(p) the principal
curvatures at p with κ1(p) > κ2(p). We assume that the curvature is bounded and define
κsup = supp∈Σ max(|κ1(p)|, |κ2(p)|). We denote by σ(p,R) the sphere of center p and radius
R. We denote by B(σ) the closed ball whose boundary is the sphere σ, by E̊ the interior of a
set E and, for p ∈ Σ, by D(p,R) the intersection between Σ and the B̊(σ(p,R)). Abusively
we call D(p,R) a disk. For a discrete set X, we denote] (X) the cardinality of X. If X is a
set of points, Del (X) denotes the Delaunay triangulation of X. In the 3D case,] (Del (X)) is
the sum of the number of tetrahedra, triangles, edges and vertices belonging to the Delaunay
triangulation.

Without loss of generality, we assume that Area(Σ) = 1 and consider that the set of
points X is a Poisson point process with parameter λ > 0 over Σ.

We recall classical properties of a Poisson sample:

I Observation 2.1. For two regions R and R′ of Σ,

P [] (X ∩R) = k] = (λArea(R))k
k! e−λArea(R),

E [] (X ∩R)] = λArea (R),
R ∩R′ = ∅ ⇒] (X ∩R) and] (X ∩R′) are independent random variables.

In particular, we have P [] (X ∩R) = 0] = e−λArea(R) and E [] (X)] = λ.
We consider the same definition of genericity as Attali, Boissonnat and Lieutier, roughly:

the set of points where one of the principal curvatures is locally maximal is a finite set of
curves whose total length is bounded and, the number of contacts of any medial ball with
the surface is finite.

Then we define what is a good-sampling of a surface and precise the result by Attali,
Boissonnat and Lieutier.

I Definition 2.2 (Good sample). A point-set on a surface is an (ε, η)-sample if any ball of
radius ε centered on the surface contains at least one and at most η points of the sample.

I Theorem 2.3 ([2]). The 3D Delaunay triangulation of an (ε, η)-sample of a generic smooth
surface has complexity O

Ä
η2

ε2 log 1
ε

ä
.

While the result of Attali et al. provides a bound O(N lnN) on complexity of the
Delaunay triangulation of an (ε, η)-sample of N points and a constant η, by looking more
carefully at the result [2, Eq.(14)], we notice that the actual complexity can be expressed by
C(ηε)2 log(ε−1) for C being a constant of the surface.

O. Devillers and C. Duménil 40:3

√
3

2κsup

1
κsup

S

Figure 1 Illustration of the proof of Lemma 3.1 for the 2D case.

3 Is a random sample a good sample?

In a Poisson sampling of parameter λ on the surface, a disk of radius ε = 1√
λ
is expected to

contain π points, but with constant probability it can be empty or contains more than η points.
Thus with high probability there will be such disks even if their number is limited. Thus
such a sample is likely not to be a good sample with ε2 = 1

λ and η constant. Nevertheless, it
is possible to not consider η as a constant, namely, we take η = Θ(log(λ)). In a first Lemma,
we bound the area of D(p,R), for any p ∈ Σ and R > 0 sufficiently small.

I Lemma 3.1. Let Σ be a smooth surface of curvature bounded by κsup, and consider p ∈ Σ
and R > 0 smaller than 1

κsup
. The area of D(p,R) is greater than 3

4πR
2.

Proof. The bound is obtained by considering the fact that the surface must stay in between
the two tangent spheres of curvature κsup tangent to the surface at p. The tangent disk at p
of radius

√
3

2 R >
√

3
2

1
κsup

is included in the projection of D(p, r) on the tangent plane and
thus has a smaller area than D(p,R). J

I Lemma 3.2. Let Σ be a C3 surface of curvature bounded by κsup.
For R small enough, Area(D(p,R)) < 5

4πR
2.

Proof. Let z = f(x, y) := 1
2κ1x

2 + 1
2κ2y

2 +O(x3 + y3) be the Monge of Σ patch [10] at a
point p. We denote by dσ an element of surface and by A(p,R) the projection of D(p,R) on
the xy-plane. Since on D(p,R) the slope of the normal to Σ is bounded, we have:

Area (D(p,R)) =
∫
D(p,R)

dσ =
∫ ∫

A(p,R)

1 + (∂f

∂x
(x, y))2 + (∂f

∂y
(x, y))2dxdy

That is smaller than
∫ ∫

x2+y2≤R2

»
1 + (∂f∂x (x, y))2 + (∂f∂y (x, y))2dxdy, sinceD(p,R) ⊂ B(p,R).

Since f is in C3 and ∂f
∂x (x, y) ∼ κ1x, we can say that there exists a neighborhood of p on

which |∂f∂x | ≤
√

2κ1|x| ≤
√

2κsup|x|, i.e.,
Ä
∂f
∂x

ä2
≤ 2(κsupx)2. Applying the same for y, and

turning to polar coordinates, we get:

Area(D(p,R)) ≤
∫ 2π

θ=0

∫ R

r=0
r
»

1 + 2(rκsup)2drdθ = π

3
(2(Rκsup)2 + 1) 3

2 − 1
κ2

sup

EuroCG’19

40:4 Poisson sample is good

p

pi

ε

ε
3

Figure 2 A disk of radius ε always contains a disk of a maximal set of disks of radius ε
3 ,

Noticing that (a+ 1) 3
2 − 1 = aa+

√
a+1+2√
a+1+1 ≤ 15

8 a for a < 1, we can conclude that for any
R small enough,

Area(D(p,R)) ≤ π

3

15
4 (Rκsup)2

κ2
sup

= 5
4πR

2.

J

I Lemma 3.3. Let Σ be a C3 surface with Area(Σ) = 1. Let MR be a maximal set of kR
disjoint disks D(pi, R) on Σ. If R is small enough then kR ≤ 4

3πR2 .

Proof. By Lemma 3.1, for R small enough, we have D(p,R) ≥ 3
4πR

2. Thus:

kR ·
3
4πR

2 ≤
i=kR∑
i=1

Area (D(pi, R)) ≤ Area (Σ) = 1,

and we can deduce the following bound: kR ≤ 4
3πR2 . J

I Lemma 3.4. Let X be a Poisson sample of parameter λ distributed on a C3 smooth closed
surface Σ of area 1. If λ is large enough, the probability that there exists p ∈ Σ such that
D
(
p, 3
»

logλ
λ

)
does not contain any point of X is O(λ−1).

Proof. We prove that a Poisson sample has no empty disk of radius 3
»

logλ
λ with probability

O(λ−1). In a first part we use a packing argument. On the one hand, for any ε > 0 small
enough and given a maximal set Mε/3 and any point p ∈ Σ, the disk D(p, ε) contains entirely
one of the disksD(pi, ε3) belonging toMε/3. Indeed, by maximality ofMε/3, the diskD(p, ε/3)
intersects a disk of Mε/3 whose diameter is 2ε/3 so D(p, ε) contains it entirely. On the other
hand, remember from Lemma 3.1 that if ε is small enough then Area(D(p, ε))≥ 3

4πε
2. Then

we can bound the probability of existence of an empty disk for ε small enough:

O. Devillers and C. Duménil 40:5

P [∃p ∈ Σ,] (X ∩D(p, ε)) = 0] ≤ P
[
∃i < kε/3,] (X ∩D(pi, ε/3)) = 0

]
≤ kε/3 P [] (X ∩D(c, ε/3)) = 0] for a point c on Σ

≤ 4
3π(ε/3)2 e

−λ 3
4π(ε3)2

= 12
πε2 e

−λ 1πε2
12 .

By taking ε = 3
»

logλ
λ we get:

P
[
∃p ∈ Σ,]

(
X ∩D(p, 3

»
logλ
λ)
)

= 0
]
≤ 4λ

3π logλe
− 3π logλ

4 = O(λ−1).

J

We have proved that when a Poisson sample is distributed on a surface, the points
sufficiently cover the surface, i.e., there is no large empty disk on the surface with high
probability. Now we have to verify the other property of a good sample, namely, a Poisson
sample does not create large concentration of points in a small area.

I Lemma 3.5. Let X be a Poisson sample of parameter λ distributed on a C3 closed surface
of area 1. If λ is large enough, the probability that there exists p ∈ Σ such that D(p, 3

»
logλ
λ)

contains more than 1000 log(λ) points of X is O(λ−2).

Proof. Consider an Mε maximal set, we can notice that for any p ∈ Σ, the disk D(p, ε) with
p ∈ Σ is entirely contained in one disk D(pi, 3ε) that is an augmented disk of Mε. Indeed,
by maximality of Mε, the disk D(p, ε) intersects a disk from Mε say D(pj , ε) so D(pj , 3ε)
contains entirely D(p, ε).

Then we can bound the probability of existence of a disk containing more than η points:

P [∃p ∈ Σ,] (X ∩D(p, ε)) > η] ≤ P [∃i < kε,] (X ∩D(pi, 3ε)) > η]
≤ kε P [] (X ∩D(c, 3ε)) > η] for a point c on Σ

≤ 4
3πε2 P [] (X ∩D(c, 3ε)) > η]

We use a Chernoff inequality [11] to bound P [] (X ∩D(c, 3ε)) > η]: If V follows a Poisson
law of mean v0, then ∀v > v0,

P (V > v) ≤ ev−v0(v0

v
)v.

From Lemmas 3.1 and 3.2, we have that: 27
4 πε

2 ≤ Area(D(c, 3ε)) ≤ 45
4 πε

2 for ε small
enough. Consequently we can say that the expected number of points v0 in D(c, 3ε) verifies
27
4 λπε

2 ≤ v0 ≤ 45
4 λπε

2.
Then we apply the above Chernoff bound with v = 45

4 eπλε
2 (chosen for the convenience

of the calculus)

P
ï
] (X ∩D(c, 3ε)) > 45

4 eπλε
2
ò
≤ e 45

4 eπλε
2−v0

(
v0

45
4 eπλε

2

) 45
4 eπλε

2

≤ e 45
4 eπλε

2− 27
4 πλε

2
(45

4 πλε
2

45
4 eπλε

2

) 45
4 eπλε

2

= e−
27
4 πλε

2

EuroCG’19

40:6 Poisson sample is good

So for ε = 3
»

logλ
λ and η = 45

4 eπλε
2 = 405

4 eπ log λ, we have:

P
ï
∃p ∈ Σ,]

(
X ∩D(p, 3

»
logλ
λ)
)
>

405
4 eπ log λ

ò
≤ 4λ

27π logλe
− 243

4 π logλ = O(λ−189)

Since 405
4 eπ < 1000, it is sufficient for our purpose to say:

P
[
∃p ∈ Σ,]

(
X ∩D(p, 3

»
logλ
λ)
)
> 1000 log(λ)

]
= O(λ−2)

J

I Theorem 3.6. On a C3 closed surface, a Poisson sample of parameter λ large enough is a
(3
»

logλ
λ , 1000 log λ)-sample with probability 1−O(λ−1).

Proof. From Lemmas 3.4 and 3.5, we have that a Poisson sample is not a (3
»

logλ
λ , 1000 log λ)-

sample with probability O(λ−1). J

I Theorem 3.7. For λ large enough, the Delaunay triangulation of a point set Poisson
distributed with parameter λ on a closed smooth generic surface of area 1 has O(λ log2 λ)
expected size.

Proof. Given a Poisson sample X we distinguish two cases:
If X is a good sample, i.e., an (ε, η)-sample with ε = 3

»
logλ
λ and η = 1000 log λ, we

apply the O((ηε)2 log(ε−1)) bound from the paper by Attali et al., that is O(λ log2 λ).
If X is not a good sample, which arises with small probability by Lemma 3.6, we bound
the triangulation size by the quadratic bound:

∑
k∈N

k2 P [] (X) = k] =
∑
k∈N

k2λ
k

k! e
−λ = λ(λ+ 1) = O(λ2)

Combining the two results, we get

E [] (Del (X))] = E [] (Del (X)) |X good sample]P [X good sample]
+ E [] (Del (X)) |X not good sample]P [X not good sample]

≤ O
(
λ log2 λ

)
× 1 +O(λ2)×O

(
λ−1) = O(λ log2 λ)

J

O. Devillers and C. Duménil 40:7

References
1 Dominique Attali and Jean-Daniel Boissonnat. A linear bound on the complexity of the

Delaunay triangulation of points on polyhedral surfaces. Discrete and Computational Ge-
ometry, 31:369–384, 2004. doi:10.1007/s00454-003-2870-4.

2 Dominique Attali, Jean-Daniel Boissonnat, and André Lieutier. Complexity of the Delaunay
triangulation of points on surfaces: The smooth case. In Proc. 19th Annual Symposium on
Computational Geometry, pages 201–210, 2003. doi:10.1145/777792.777823.

3 Marcin Bienkowski, Valentina Damerow, Friedhelm Meyer auf der Heide, and Christian
Sohler. Average case complexity of voronoi diagrams of n sites from the unit cube. In
EuroCG, pages 167–170, 2005.

4 Frédéric Cazals and Joachim Giesen. Delaunay triangulation based surface reconstruc-
tion. In Jean-Daniel Boissonnat and Monique Teillaud, editors, Effective Computational
Geometry for Curves and Surfaces, pages 231–276. Springer-Verlag, Mathematics and Vi-
sualization, 2006.

5 Olivier Devillers, Jeff Erickson, and Xavier Goaoc. Empty-ellipse graphs. In Proc.
19th ACM-SIAM Sympos. Discrete Algorithms, pages 1249–1256, 2008. URL: http:
//hal.inria.fr/inria-00176204.

6 R. Dwyer. The expected number of k-faces of a Voronoi diagram. Internat. J. Comput.
Math., 26(5):13–21, 1993. URL: http://www.sciencedirect.com/science/article/pii/
0898122193900687, doi:10.1016/0898-1221(93)90068-7.

7 Jeff Erickson. Dense point sets have sparse Delaunay triangulations or “. . . but not
too nasty”. Discrete & Computational Geometry, 33:83–115, 2005. doi:10.1007/
s00454-004-1089-3.

8 Mordecai J. Golin and Hyeon-Suk Na. The probabilistic complexity of the Voronoi diagram
of points on a polyhedron. In Proc. 18th Annual Symposium on Computational Geometry,
2002. URL: http://www.cse.ust.hk/~golin/pubs/SCG_02.pdf, doi:10.1145/513400.
513426.

9 Mordecai J. Golin and Hyeon-Suk Na. On the average complexity of 3d-Voronoi diagrams
of random points on convex polytopes. Computational Geometry: Theory and Applications,
25:197–231, 2003. URL: http://www.cse.ust.hk/~golin/pubs/3D_Voronoi_I.pdf, doi:
10.1016/S0925-7721(02)00123-2.

10 Peter W Hallinan, Gaile Gordon, Alan L Yuille, Peter Giblin, and David Mumford. Two-
and three-dimensional patterns of the face. AK Peters/CRC Press, 1999.

11 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge university press, 2005.

EuroCG’19

http://dx.doi.org/10.1007/s00454-003-2870-4
http://dx.doi.org/10.1145/777792.777823
http://hal.inria.fr/inria-00176204
http://hal.inria.fr/inria-00176204
http://www.sciencedirect.com/science/article/pii/0898122193900687
http://www.sciencedirect.com/science/article/pii/0898122193900687
http://dx.doi.org/10.1016/0898-1221(93)90068-7
http://dx.doi.org/10.1007/s00454-004-1089-3
http://dx.doi.org/10.1007/s00454-004-1089-3
http://www.cse.ust.hk/~golin/pubs/SCG_02.pdf
http://dx.doi.org/10.1145/513400.513426
http://dx.doi.org/10.1145/513400.513426
http://www.cse.ust.hk/~golin/pubs/3D_Voronoi_I.pdf
http://dx.doi.org/10.1016/S0925-7721(02)00123-2
http://dx.doi.org/10.1016/S0925-7721(02)00123-2

The k-Fréchet distance revisited and extended

Hugo A. Akitaya1, Maike Buchin2, Leonie Ryvkin3, and Jérôme
Urhausen4

1 Department of Computer Science, Tufts University
hugo.alves_akitaya@tufts.edu

2 Faculty of Computer Science, TU Dortmund
maike.buchin@tu-dortmund.de

3 Department of Mathematics, Ruhr-Universität Bochum
leonie.ryvkin@rub.de

4 Department of Information and Computing Sciences, Universiteit Utrecht
j.e.urhausen@uu.nl

Abstract
We recently introduced a new distance measure for polygonal curves, the k-Fréchet distance. It
bridges between Hausdorff distance and weak Fréchet distance, and allows us to compare objects
of rearranged pieces such as chemical structures or hand-written characters. Here we distinguish
between two variants of the k-Fréchet distance, the cut distance and the cover distance. For the
first one, we presented an NP-hardness proof at EuroCG 2018 [6]. The approximation algorithm
we presented in that paper, however, only works for the cover distance. Here, we now prove NP-
hardness of the cover version and present an XP- as well as an FPT-algorithm for this version.

1 Introduction

During the last decades, several methods for comparing geometrical shapes have been studied
in a variety of applications, for example analysing geographic data, such as trajectories, or
comparing chemical structures, e.g., protein chains or human DNA. The (weak) Fréchet
distance has been well-studied in the past twenty years since it has proven to be helpful in
several of the mentioned applications. The Hausdorff distance, another similarity measure,
has also proven useful in applications and can be computed more efficiently than the Fréchet
distance [2]. However, it provides us with less information by taking only the overall shape
of curves into consideration, not how they are traversed.

We introduce both variants of the k-Fréchet distance as distance measures in between
Hausdorff and weak Fréchet distance. They allow us to compare shapes consisting of several
parts. Variants of partial curve matching using the Fréchet distance have been studied
before [4, 5, 9]. Gheibi et al. used the weak Fréchet distance and minimized the length of
the subcurves on which backtracking is necessary [8]. For the cover distance, we cover the
input curves by at most k (possibly overlapping) subcurves each and ask for a matching of
the subcurves such that each matched pair of subcurves has at most weak Fréchet distance ε
(for given ε > 0). For the cut version, the subcurves may not overlap. This implies that, as
opposed to the cover distance, both curves have to be cut into the same number of subcurves.

The paper is organized as follows: after recalling some basic definitions we formally define
both variants of our k-Fréchet distance and state decision and optimization problems. In
Section 2 we briefly discuss NP-hardness of the cover distance and sketch the proof. In
Section 3 we present an FPT algorithm for the cover distance.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

41:2 The k-Fréchet distance revisited and extended

1.1 Definitions
Recall the weak Fréchet distance [1], a well-known measure for curves, which is defined as
follows: For curves P,Q : [0, 1]→ [0, 1], the weak Fréchet distance is given by

δwF(P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where the reparametrisations σ, τ : [0, 1]→ [0, 1] range over all continuous surjective functions.
A well-known characterisation which is key to efficient algorithms for computing the weak

Fréchet distance [1] uses the free space diagram. First we recall the free space Fε:

Fε(P,Q) = {(t1, t2) ∈ [0, 1]2 : ‖P (t1)−Q(t2)‖ 6 ε}.

The free space diagram puts this information into an (n×m)-grid, where n and m are the
number of segments in P and Q, respectively.

The weak Fréchet distance of two curves is at most a given value ε if there exists a
continous path through the free space containing (0, y), (1, y′), (x, 0) and (x′, 1) for some
x, x′, y, y′ ∈ [0, 1]. The Hausdorff distance δH can be characterised as the free space projecting
surjectively onto both parameter spaces.

We define further terms connected to the free space diagram below: A component of
a free space diagram is a connected subset c ⊆ Fε(P,Q). A set S of components covers a
set I ⊆ [0, 1]P of the parameter space (corresponding to the curve P) if I is a subset of
the projection of S onto said parameter space, i.e., ∀x ∈ I : ∃c ∈ S, y ∈ [0, 1]Q : (x, y) ∈ c.
Covering on the second parameter space is defined analogously.

I Definition 1.1. For polygonal chains P,Q we define the cut version of the k-Fréchet
distance as

δcut(k, P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where now σ, τ : [0, 1]→ [0, 1] range over all surjective functions that are piecewise defined,
such that the images of the continuous parts partition the curve into at most k pieces. Note
that σ and τ have to consist of the same number of continous pieces, namely at most k many.

That is, we cut the curves P and Q into at most k pieces or subcurves each, such that two
resembling subcurves have small weak Fréchet distance. In the free space diagram, we can
insert the cuts on our curves as horizontal and vertical grid lines. For every row and column
of this “cutting grid”, we need to select exactly one cell. The cell corresponds to a matched
pair of subcurves and therefore needs to contain (a part of) a free space component that
projects surjectively onto both subcurves. Next we define the cover distance:

I Definition 1.2. For polygonal chains P,Q we define the cover version of the k-Fréchet
distance as

δcover(k, P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where σ, τ range over all surjective functions that are piecewise defined, such that the images
of the (at most k many) continuous parts may overlap but their union equals the curve.

Thus we define the cover distance as the minimal ε such that there is a set of at most k
components of Fε(P,Q) that covers both parameter spaces. In other words, we cover the
curves P and Q by at most k pieces (i.e., subcurves) such that there is a matching of the
pieces where two matched subcurves have small weak Fréchet distance.

H. Akitaya, M. Buchin, L. Ryvkin and J. Urhausen 41:3

For the decision problem of both distance measures, we ask whether the weak Fréchet
distance between pieces can be bounded by a given value ε, where the number of subcurves
is upper bounded by k. For fixed ε, we want to minimize k (optimization problem).

By definition both variants lie in between Hausdorff and weak Fréchet distance:

δH(P,Q) ≤ δcover(k, P,Q) ≤ δcut(k, P,Q) ≤ δwF(P,Q).

P

Q

ε1 ≥ δH(P,Q)

ε2 ≥ δcover(2, P,Q) ε3 ≥ δcut(2, P,Q)

ε4 ≥ δwF(P,Q)

Figure 1 Comparison of distance measures. In the bottom left diagram, two components are
sufficient to cover the parameter spaces, but cutting does not work, because by choosing the bottom
left and top right cell the red section on the bottom parameter space would not be covered.

2 NP-hardness

In [6], Buchin and Ryvkin proved that the cut distance is NP-complete by reducing from
Minimum Common String Partition (MCSP). For the cover distance, we reduce from the
following variant of 3-SAT, which was proven to be NP-complete by de Berg and Khosravi [3].

Rectilinear monotone planar 3-SAT:
Input: 3-SAT formula with strictly positive and strictly negative clauses, embedded as a
graph with only rectilinear, non-crossing edges; variables are drawn as vertices on a horizontal
line, positive clauses are vertices drawn above this line, negative clauses are drawn below;
Output: “Yes” if there exists a satisfying assignment for the variables, “No” otherwise.

Our goal is to construct curves that mimic our input graph (see Figure 2) and show that
in the free space resulting from these curves we can find a covering selection of components
of size k iff there exists a satisfying assignment for the underlying 3-SAT formula.

2.1 Construction
The construction is intricate, so we only give a brief overview here. A full version of this
paper, named “The k-Fréchet distance”, will be made available on arXiv.

Overall we create wires and clause gadgets to represent variables and clauses. They are
connected as the given embedding of the 3-SAT instance. Wire gadgets allow a boolean

EuroCG’19

41:4 The k-Fréchet distance revisited and extended

v1 v2 v3 v4 v5 v6

¬v3 ∨ ¬v4 ∨ ¬v5

¬v3 ∨ ¬v5 ∨ ¬v6¬v1 ∨ ¬v2 ∨ ¬v3

v2 ∨ v3 ∨ v4

v1 ∨ v4 ∨ v5

v1 ∨ v5 ∨ v6

Figure 2 Instance of rectilinear monotone planar 3-SAT.

choice that is propagated consistently throughout the wire. Clause gadgets test whether at
least one incoming wire carries an appropriate choice.

P
Q

Figure 3 (Left) A spike and a small perturbation of it. (Right) The wire gadget and its
corresponding free space diagram. Note that we connected the curves to give a small example, but
the horizontal segment on top is not part of the gadget itself.

Figure 3 shows a wire gadget. Both the yellow and the blue curves run along the sides
(the vertical parts of the curves, which we call base curves) and form spikes. The value ε is
chosen such that two adjacent spikes are just within distance ε. It follows that the spikes
induce components in the free space diagram that form a staircase. We say that a spike s is
covered by an adjacent spike t of the other curve if the component of the free space diagram
that covers the two intervals induced by these spikes is chosen for the covering selection. We
choose k such that each blue spike in any gadget can only be covered by one single adjacent
yellow spike. The choice for one blue spike must be consistent along a wire and encodes the
assignment of the corresponding variable.

Of course, we need a number of other gadgets, too. The wires correspond to edges in the
rectilinear monotone planar 3-SAT instance, but to draw them coherently we need to make
sure we can make 90° turns (so called bends) and do T-crossings, i.e., split a wire into two.
Last but not least we need to build a clause gadget where three wires connect. In Figure 4,
we show a bend and a clause gadget, connected through wires. The only basic gadget not
shown in Figure 4 is the split, which looks similar to the clause.

Additionally, we need to make sure that both curves are connected and follow the
embedding of the input graph G. In order to do so, we establish a number of other gadgets
which are explained in the full version of this paper, where we also explain how to connect
all gadgets and build the curves.

H. Akitaya, M. Buchin, L. Ryvkin and J. Urhausen 41:5

P

Q

wires

bend gadget

clause gadget

wire

Figure 4 Small example part of the construction consisting of wires, a bend and a clause gadget.

2.2 Correctness
I Theorem 2.1. For given polygonal curves P and Q, integer k, and ε > 0, it is NP-complete
to decide whether δcover(k, P,Q) ≤ ε.

Due to limited space, we only sketch the proof. We set k such that we can cover every
blue spike exactly once, so the choice made for one spike is propagated throughout its
wire (and corresponding gadgets). Therefore an assignment implies a unique selection of
components and vice versa; following the choices made for the blue spikes we can derive a
variable assignment for the underlying 3-SAT formula.

We can test in polynomial time whether the union of a selection of components covers
the parameter spaces. Thus the problem of deciding the cover distance lies in NP.

3 Algorithmic approaches

3.1 Earlier results
In [6], Buchin and Ryvkin presented a straight-forward XP-algorithm that simply checked for
all possible selections of size k, whether one of them covered both parameter sizes, which takes
O(k · n2k) time. As obvious, this approach does not apply to the cut version of the k-Fréchet
distance: a selection of components does not imply cutting the curves, the subcurves may
overlap. Cutting one curve affects the possible cuts of the other one, so determining correct
cuts even for a given selection of components is non-trivial.

In the same paper the authors also gave an approximation algorithm for the optimization
problem: by sweeping twice to determine the optimal selections to cover either parameter
space the algorithm outputs a selection of components that is at worst doubly the size of an
optimal one. Again, this only works for the cover distance, not for cutting.

3.2 Fixed-parameter tractability
Next we present an algorithm for deciding whether δcover(k, P,Q) ≤ ε for given ε and k.
The runtime of our algorithm is polynomial in the complexity of our curves P and Q, but
exponential in the two parameters k (the selection size) and z (the neighborhood complexity).

EuroCG’19

41:6 The k-Fréchet distance revisited and extended

We define the neighborhood complexity z of P and Q as the maximum number of segments
of one curve that intersect with the ε-neighborhood of any point of the other curve. Now, in
the free space diagram each horizontal and each vertical line intersects at most z components.

First of all, we build two bounded search trees TP and TQ (as described in Chapter 3
of [7]), see Figure 5 below. Consider the tree TP . The root is labelled by the left boundary
point of the parameter space of P (we assume without loss of generality that the bottom
boundary of the free space diagram corresponds to P). Now we use a sweep line initialized at
the left boundary of the free space diagram. We assign a node in the tree to all components
intersecting the sweep line, so the root has as many children as there are components touching
the left boundary. Whenever the sweep line is tangent to a component C, said component
either becomes active (sweep line touches the leftmost point) or inactive (its rightmost point
is touched). Becoming active does not immediately affect the tree; becoming inactive results
in new entries in the tree: for every node labelled C we insert a child for each currently
active component. The next time a compone By definition a node can never have more
than z children. Also, with every node we store its depth (the root has depth 0) and stop
assigning children at depth k - or as soon as a component touches the right boundary of the
free space diagram. If a leaf vl corresponds to a component touching the right boundary, the
path from the root to vl encodes a feasible selection of components for TP . The tree TQ is
built analogously by sweeping from bottom to top.

P

Q
1

2

3

4

5

6

7

8

ε

R

1

2

2

3

3

5

4 45

4

3

6 7

5

4 666 7 7 78 8 8 8

4 46 6 6 6

Figure 5 Curves P, Q, their free space diagram and the tree TP . Feasible paths are marked blue.

We store the feasible selections obtained from TP and TQ in sorted lists LTP and LTQ. For
each pair of selections SP,i, SQ,j , where 1 ≤ i, j ≤ zk, we test whether |SP,i ∪ SQ,j | ≤ k and
output this union if the answer is positive. The proof of the following theorem can also be
found in the full version.

I Theorem 3.1. The algorithm described above returns a selection S of k components in the
free space that surjectively projects onto both parameter spaces if and only if such a selection
exists. Therefore it decides whether δcover(k, P,Q) ≤ ε in time O(nk + kz2k).

References
1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. Internat. J. Comput. Geom. Appl., 5(1-2):75–91, 1995.
2 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for

planar curves. Algorithmica, 38(1):45–58, 2004.
3 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments

in the plane. Internat. J. Comput. Geom. Appl., 22(3):187–205, 2012. doi:10.1142/
S0218195912500045.

http://dx.doi.org/10.1142/S0218195912500045
http://dx.doi.org/10.1142/S0218195912500045

H. Akitaya, M. Buchin, L. Ryvkin and J. Urhausen 41:7

4 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve match-
ing via the Fréchet distance. In Proc. 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’09, pages 645–654, 2009. URL: http://dl.acm.org/citation.cfm?
id=1496770.1496841.

5 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance
with shortcuts is NP-hard. In Proc. 30th Annual Symposium on Computational Geometry,
SOCG’14, pages 367:367–367:376, 2014. doi:10.1145/2582112.2582144.

6 Maike Buchin and Leonie Ryvkin. The k-Fréchet distance of polygonal curves. In 34th
European Workshop on Computational Geometry (EuroCG), Book of Abstracts, page 4,
2018. URL: conference.imp.fu-berlin.de/eurocg18/.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer,
Cham, 2015. doi:10.1007/978-3-319-21275-3.

8 Amin Gheibi, Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer. Minimum
backward Fréchet distance. pages 381–388, 11 2014. doi:10.1145/2666310.2666418.

9 Christian Scheffer. More flexible curve matching via the partial Fréchet similarity. Int. J.
Comput. Geometry Appl., 26:33–52, 2016.

EuroCG’19

http://dl.acm.org/citation.cfm?id=1496770.1496841
http://dl.acm.org/citation.cfm?id=1496770.1496841
http://dx.doi.org/10.1145/2582112.2582144
conference.imp.fu-berlin.de/eurocg18/
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2666310.2666418

Coresets for (k, l)-Clustering under the Fréchet
Distance
Maike Buchin and Dennis Rohde

TU Dortmund University
maike.buchin@tu-dortmund.de dennis.rohde@cs.tu-dortmund.de

Abstract
We investigate the problem of clustering a set T of n polygonal curves in Rd under the Fréchet
distance, with respect to the (k, l)-center and the (k, l)-median objective functions. These were
recently defined by Driemel et al. as an adaption of the well-known k-center and k-median
objectives with the restriction that the center-curves are composed of up to l line segments.
Driemel et al. already developed approximation-schemes for these objectives, for d = 1. Recently
Buchin et al. developed a constant-factor approximation algorithm for the (k, l)-center objective
for general d. Further they provide hardness results for that objective. We tie in with these results
by providing construction-techniques for small size ε-coresets for the (k, l)-center objective, if the
given curves are of well-behaved structure, and for the discrete k-median objective. That is, we
restrict the possible center-sets to all subsets of T of cardinality k and thus ignore the restriction
on the complexity of the center-curves.

1 Introduction

Clustering is a thoroughly studied topic that has a great impact in the field of data analysis.
Every problem in this topic has an intrinsic property: Given a collection P of n objects and
an integer k, one wants to divide P into k pieces, the so called clusters, such that the objects
in those clusters are some kind of related, cf. [4]. In many problem-formulations each cluster
is induced by a representative object. In our setting, these representatives are given by an
objective function over which one optimizes. There are three such objective functions that
are well-known: k-means, k-median and k-center. Initially these functions were defined in
the context of clustering points in the Euclidean space. There are also definitions of the
k-median and the k-center in the context of clustering points in general metric spaces.

In our setting, we are given a set T of n polygonal curves in Rd endowed with the
Fréchet distance and an integer k, as well as an integer l. Again we want to divide T into k
clusters, i.e., we are looking for a partition of T of cardinality k. Driemel et al. [2] already
studied this setting for d = 1. They introduce two restrictions, one on the input-curves
and one on the representatives, namely the input-curves are composed of up to m line
segments each and the representative curves of the clusters are composed of up to l line
segments each. The respective objective functions that enforce these restrictions are called
(k, l)-center and (k, l)-median. The authors develop quasi linear-time approximation-schemes
for these objectives. Recently, Buchin et al. [1] developed a 3-approximate algorithm for the
(k, l)-center objective for d ∈ N, as well as hardness-results, i.e., for d = 1 the (k, l)-center is
hard to approximate within a factor of 1.5− δ and for d > 1 within a factor of 2.25− δ, for
δ > 0.

Let f be one of the objective functions and C be a set of k representative curves. A set
S is an ε-coreset for f , if for all choices of C it holds that |f(T,C)− f(S,C)| ≤ ε · f(T,C).
Such a coreset is particularly important when clustetring queries shall be answered efficiently,
i.e., return the cost for a given center-set C. In this work we give an overview of our results on
small cardinality ε-coresets for the (k, l)-center objective and the discrete k-median objective,
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

42:2 Coresets for (k, l)-Clustering under the Fréchet Distance

i.e., we restrict all possible center-sets to the subsets of T of cardinality k and therefore ignore
the restriction on the complexity of the center-curves. For a set of line segments we provide
ε-coresets of cardinality dependent on 1

ε2d , with respect to the (k, l)-center objective. For a
set of polygonal curves of complexity at most m each we provide ε-coresets of cardinality
dependent on lm

εdm +mm and the ratio δ
α , where α is the value of a c-approximate solution

and δ is the length of a longest line segment of any center-curve associated with that solution,
with respect to the (k, l)-center objective, but only if δ

α ∈ O(2m
√
n). Finally, for a set of n

polygonal curves we provide ε-coresets of cardinality dependent on ln(n)
ε2 , with respect to the

discrete k-median objective. All results presented here stem from the Master thesis of the
second author [6] (available on arXiv) and all proofs can be found there.

Related Work To the best of our knowledge, clustering polygonal curves under the (k, l)-
center or the (k, l)-median objective has only been studied in [2] and [1], in that order. As
it was already mentioned, Driemel et al. introduce the (k, l)-center and the (k, l)-median
objective functions. Additionally, they develop (1 + ε)-approximation algorithms for these
objectives under the restriction that d = 1 and ε, k and l are fixed. The algorithms have
running-time Õ (n ·m). They also provide first hardness results for the (k, l)-center and the
(k, l)-median objectives. Finally, they prove that the Fréchet space (∆, dF) (a formal definition
follows) has unbounded doubling dimension. The 3-approximation algorithm for the (k, l)-
center that is developed by Buchin et al. has running-timeO

(
km(nl log(l +m)) +m2 log(m)

)
.

Additional to this algorithm and the already mentioned hardness results they provide similar
hardness results for the discrete Fréchet distance and on the minimum enclosing ball problem
for polygonal curves under the Fréchet distance.

2 Preliminaries

IDefinition 2.1. A polygonal curve with vertices v1, . . . , vm ∈ Rd is defined as the parametric
curve connecting each contiguous pair of vertices by a line segment, which we call the edges
of the curve. The number of vertices is called complexity of the curve. By ∆m we denote the
equivalence class of polygonal curves of complexity at most m and by ∆ := ∪m∈N≥2∆m we
denote the equivalence class of all polygonal curves.

I Definition 2.2. Let F be the set of all continuous, injective and non-decreasing functions
f : [0, 1] → [0, 1] with f(0) = 0 and f(1) = 1. The Fréchet distance between polygonal
curves τ and σ is defined as dF (τ, σ) = inff∈F maxt∈[0,1] ‖τ(f(t))− σ(t)‖, where ‖ · ‖ is the
Euclidean norm.

I Definition 2.3. Given a set T of n polygonal curves of complexity at most m each
and two integers k and l, the (k, l)-center objective is to return the optimal cost of
minC⊂∆l,|C|=k maxτ∈T minc∈C dF (τ, c). The discrete k-median objective is to return the
optimal cost of minC⊂T,|C|=k

∑
τ∈T minc∈C dF (τ, c).

I Definition 2.4. Let T be a given set of n polygonal curves. Also, let f be an objective
function and C be a set of k cluster-representatives. A set S of polygonal curves is called ε-
coreset for T with respect to f , if for all possible choices of C it holds that |f(T,C)−f(S,C)| ≤
ε · f(T,C). S is called weighted ε-coreset if every s ∈ S is assigned a weight ws ∈ R, that
flows into the value of f .

Maike Buchin and Dennis Rohde 42:3

τ1(0)

p1

p2

p3

p4
p5

p6

τ1(1)

q1

q2

q3

q4
q5

q6

Figure 1 This is the construction used for Theorem 3.1, for d = 2. The curves are defined with
respect to the center points of the balls. The set T , which cannot be embedded into (Rd, dE), where
dE is the Euclidean distance, consists of τ(0)τ(1) (the common nearest neighbor), the line segments
piqi, for i ∈ {1, . . . , 6}, plus p1q2. The segment p1q2 breaks every possible isometric embedding.

3 What is the Difference between Points and Curves?

At first, we investigate whether we can transform the given polygonal curves into points in
the Euclidean space through an isometric embedding. Such a transformation would have
multiple benefits: When constructing an ε-coreset for any application, often one simply thins
out the input-set as much as possible. When such an embedding is available we could apply
existing construction-techniques, track which points are thrown out and then throw out all
curves that map to these points. If only the value of a clustering is needed this would give
us the opportunity to directly obtain the value through one of the numerous algorithms for
points in Rd. Unfortunately, such an isometric embedding does not exist for every possible
set of polygonal curves, even if we restrict ourselves to line segments.

I Theorem 3.1. For any d ∈ N, there exists a set of polygonal curves in Rd that cannot be
isometrically embedded into (Rd, dE), where dE is the Euclidean distance.

This result is achieved by proving that an isometric embedding, if existent, would violate
the d-dimensional kissing number, given certain sets of polygonal curves, cf. Fig. 1. The
d-dimensional kissing number is the maximum number of points in Rd that can share a
common nearest neighbor point (cf. [7]). We note that a similar result is implied due to
the fact that certain four-point graphs endowed with the shortest-path metric cannot be
embedded into Rd, for any d, while they can be embedded into (∆13, dF) with ambient space
R, cf. [3]. Nevertheless, our result is stronger because it holds for (∆m, dF), for any m ≥ 2.

4 Coresets for the (k, l)-center Objective

There is a common technique for constructing ε-coresets for the k-center objective, given
a set P of points in the Euclidean space: Run a c-approximate algorithm on P to obtain
a value α of the objective function. Let C be the center-set associated with this value. By
the structure of the objective function we have that P ⊆ ∪q∈C{p ∈ Rd | ‖p− q‖ ≤ α} =: E.
Additional, if α∗ is the optimal cost for P under the k-center objective, then α

c is a lower
bound on this number.

EuroCG’19

42:4 Coresets for (k, l)-Clustering under the Fréchet Distance

Now around every q ∈ C we place a grid Gq of edge length 2 · α, thus E ⊆ ∪q∈CGq.
We set the edge-length of the cells of every grid to ε · 1√

d
· αc , thus we cannot move a point

contained in a cell more than ε · α∗ without leaving the cell. At last we go through every cell
of all Gq and if it contains more than one point from P we remove all but one of those from
P . The resulting set P ′ is an ε-coreset for the k-center objective of cardinality O

(1
εd

)
.

This scheme can easily be adapted for a set T of polygonal curves, utilizing the 6-
approximation algorithm by Buchin et al. [1]. For line segments this is particularly easy:
Place such a grid around each end point of every center-curve. Again, by the structure of
the objective function the end points of the input-curves are contained in those grids. For a
curve τ call τ(0) its initial point and τ(1) its end point, further call the grid around τ(0)
the initial point grid and the grid around τ(1) the end point grid. Now, successively for
each center-curve, we go through every pair of a cell of the initial point grid and a cell of
the end point grid and remove all but one line segment from T that have their initial point,
respective end point in those cells. The resulting set T ′ is an ε-coreset for the (k, 2)-center
objective of cardinality O

(1
ε2d

)
.

I Theorem 4.1. There exists an algorithm that, given a set of n line segments in d-
dimensional Euclidean space and a parameter ε ∈ (0, 1), computes an ε-coreset for the
(k, 2)-center objective of cardinality O

(1
ε2d

)
, in time O

(
n
ε2d

)
.

For polygonal curves of complexity at least 3 this scheme has a flaw: The vertices of
the input-curves do not necessarily lie within distance α to any vertex of a center-curve.
Thus, we have to cover the whole center-curves with grids and therefore the cardinality of
the resulting ε-coreset depends on the ratio of roughly the length δ of a longest edge of
any center-curve and the value α of the c-approximate solution. For the ε-coreset to have
sublinear cardinality we have to check if δ

2α exceeds, say 2m
√
n, in advance. If this is the case

we are not able to provide an ε-coreset utilizing this technique. If this is not the case we now
have to consider any combination of m cells of the grids that cover a center-curve, therefore
the cardinality of the resulting ε-coreset is exponential in m.

I Theorem 4.2. There exists an algorithm that, given a set of n polygonal curves of
complexity at least 3 and at most m each, in d-dimensional Euclidean space and a parameter
ε ∈ (0, 1), computes an ε-coreset for the (k, l)-center objective of cardinality
O
(

23m ·
√
n · l

12d2m

εdm + 2mmm
)

in time

O
((

23m · n1.5 · l
12d2mm
εdm + 2mmm+1n

)
+ nm log(m) +m3 log(m)

)
, if δ

α ∈ O(2m
√
n). Oth-

erwise, the algorithm fails and then has running-time O
(
nm log(m) +m3 log(m)

)
.

5 Coresets for the discrete k-median Objective

For the (discrete) k-median objective we use standard-techniques for approximating sums.
In [5] Langberg and Schulman define a sensitivity sampling framework and show how it can
be used to approximate the value of sum-based clustering objectives such as the k-median
or the k-means. The proofs are formulated with respect to point-sets from the Euclidean
space and some arbitrary norm. Nevertheless, they also work for polygonal curves under the
Fréchet distance.

However, to the best of our knowledge, there are no results on the VC dimension of the
Fréchet space (∆, dF) yet1. Therefore, to bound the probability that a sample is an ε-coreset,

1 Though there are results to appear at SoCG ’19 by Driemel et al.

REFERENCES 42:5

2 · ĉost(T)

1/
√ d
· ε
· ĉo

st(
T)/6

Figure 2 Exemplary grid-cover that is used for the algorithm of Theorem 4.2, for general polygonal
curves and d = 2. A center-curve is depicted in green with cubes in black and associated grids in
light blue. A curve with Fréchet distance less than ĉost(T) := α is also depicted. It can be observed
that the vertices of this curve lie in at least one cell of a grid.

in particular that it can be used to approximate the value of the objective function for all
possible center-sets, we restricted ourselves to the discrete k-median objective.

The sensitivity sampling framework works as follows: We are given a set T of n polygonal
curves and run a 6-approximation algorithm to obtain a value α on the k-median objective
function and the associated center-set C. The approximation algorithm we use is a local-
search heuristic that uses a solution from the 6-approximation algorithm for the (k, l)-center
objective by Buchin et al. as initial guess and thus has running-time O(n2m2 log(m)). We
use α and C to assign every τ ∈ T a sensitivity value sτ . These sensitivities and the total
sensitivity S :=

∑
τ∈T st suffice to build a probability distribution ψ : T → [0, 1], such that a

sample of cardinality `(ε, n) ∈ Ω
(

ln(n)
ε2

)
from T with respect to ψ is a weighted ε-coreset

for the discrete k-median objective with probability at least 2
3 , where every member of the

sample is weighted by n
`(ε,n) . This is due to the fact that curves which have high impact

on the value of the objective function for at least one center-set are sampled with higher
probability, i.e., the probability to sample a curve is proportional to its “importance”.

I Theorem 5.1. There exists an algorithm that, given a set of n polygonal curves of complexity
at most m each, and a parameter ε ∈ (0, 1), computes an ε-coreset for the discrete k-median
objective of cardinality O

(
ln(n)
ε2

)
in time O

(
n2 ·m2 log(m) + ln2(n)

ε2

)
, with probability at

least 2
3 .

References

1 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, `)-center clustering for curves.

EuroCG’19

42:6 REFERENCES

In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2922–2938. 10.1137/1.9781611975482.181.

2 Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering Time Series Under the
Fréchet Distance. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 766–785. Society for Industrial and Applied Mathematics,
2016. ISBN 978-1-611974-33-1.

3 Piotr Indyk, Piotr Indyk, and Jiri Matousek. Low-Distortion Embeddings of Finite Metric
Spaces. Handbook of Discrete and Computational Geometry, pages 177—-196, 2004.

4 Anil K. Jain. Data Clustering: 50 Years Beyond k-means. Pattern Recognition Letters, 31
(8):651–666, 2010. ISSN 0167-8655. 10.1016/j.patrec.2009.09.011.

5 Michael Langberg and Leonard J. Schulman. Universal Epsilon-Approximators for Integrals.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 598–607, 2010. 10.1137/1.9781611973075.50.

6 Dennis Rohde. Coresets for (k, l)-Clustering under the Fréchet Distance. Master’s thesis,
TU Dortmund University, December 2018.

7 Kenneth Zeger and Allen Gersho. Number of Nearest Neighbors in a Euclidean Code.
IEEE Transactions on Information Theory, 40(5):1647–1649, 1994. ISSN 0018-9448.
10.1109/18.333884.

http://dx.doi.org/10.1137/1.9781611975482.181
http://dx.doi.org/10.1016/j.patrec.2009.09.011
http://dx.doi.org/10.1137/1.9781611973075.50
http://dx.doi.org/10.1109/18.333884

On the hardness of finding an average curve
Kevin Buchin1, Anne Driemel2, and Martijn Struijs1

1 Department of Mathematics and Computing Science, TU Eindhoven, The
Netherlands
{k.a.buchin,m.a.c.struijs}@tue.nl

2 University of Bonn, Hausdorff Center for Mathematics, Germany
driemel@cs.uni-bonn.de

Abstract
We study the complexity of clustering curves under k-median and k-center objectives in the
metric space of the Fréchet distance and related distance measures. The k-center problem has
recently been shown to be NP-hard, even in the case where k = 1, i.e. the minimum enclosing ball
under the Fréchet distance. We extend these results by showing that also the k-median problem
is NP-hard for k = 1. Furthermore, we show that the 1-median problem is W[1]-hard with the
number of curves as parameter. We show this under the discrete and continuous Fréchet and
Dynamic Time Warping (DTW) distance. Moreover, closing some gaps in the literature, we show
positive results for the (k, `)-center variant under the discrete Fréchet distance. In particular, we
give an Õ(mn)-time (1 + ε)-approximation algorithm and a polynomial-time exact algorithm for
fixed k, ` and ε.

1 Introduction

Clustering is an important tool in data analysis, used to split data into groups of similar
objects. Their dissimilarity is often based on distance between points in Euclidean space.
However, the dissimilarity of (polygonal) curves is more accurately measured by specialised
measures: Dynamic Time Warping (DTW) [9], continuous and discrete Fréchet distance [1, 6].

We focus on centroid-based clustering, where each cluster has a centre curve and the
quality of the clustering is based on the similarity between the centre and the elements inside
the cluster. In particular, given a distance measure δ, we consider the following problems:
I Problem 1 (k-median for curves with distance δ). Given a set G = {g1, . . . , gm} of polygo-
nal curves, find a set C = {c1, . . . ck} of polygonal curves that minimizes

∑
g∈G minki=1 δ(ci, g).

I Problem 2 (k-center for curves with distance δ). Given a set G = {g1, . . . , gm} of polygonal
curves, find a set C = {c1, . . . ck} of polygonal curves that minimizes maxg∈G minki=1 δ(ci, g).
We call the 1-median problem the average curve problem. Clustering on points for general
k in the plane or higher dimension is often NP-hard [8] and clustering curves tends to be
hard even when k = 1 and the curves lie in 1D. For instance, Buchin et. al. [2] show that the
1-center problem for the discrete and continuous Fréchet distance in 1D is NP-hard and that
for the discrete Fréchet distance, it is NP-hard to approximate with a ratio better than 2.
In this paper, we show that the average curve problem for discrete and continuous Fréchet
distance in 1D is NP-complete and W[1]-hard when parametrised in the number of curves m.

Denote the set of all warping paths (or alignments, see also [9]) between curves x and y by

Wx,y. For any integers p, q ≥ 1, define DTWq
p(x, y) :=

(
minW∈Wx,y

∑
(i,j)∈W |xi − yj |p

)q/p
.

We call DTWq
p the (p, q)-DTW distance.

The average curve problem for the (2, 2)-DTW distance has resisted efficient algorithms
so far, which motivated several heuristic approaches [7, 9]. A formal proof of NP-hardness
has only recently been given by Bulteau et. al. [3], who additionally show the (2, 2)-DTW
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

43:2 On the hardness of finding an average curve

problem is W[1]-hard when parametrised in the number of input curves m and there exists no
f(m) · no(m)-time algorithm unless the ETH fails. In this paper, we prove the same hardness
results of the average curve problem for the (p, q)-DTW distance for any p, q ∈ N, with a
different method. While Bulteau et. al. [3] note at the end of Section 5 their method might
generalise to more variants of the DTW distance, when p 6= q, the (p, q)-DTW distance
does not fit in their framework since then q/p is a non-trivial exponent. Furthermore, when
p = q = 1, the variant has the form required in their framework, but the condition required
for their hardness proof of an intermediate problems fails.

Since we still want efficient algorithms to do curve clustering, we look at a variant of
these problems: we only look for centre curves with at most a fixed complexity, denoted by
`. So, the (k, `)-center problem is to find a set of curves C = {c1, . . . ck}, each with at most
` vertices that minimizes maxg∈G minki=1 δ(ci, g) and the (k, `)-median problem is defined
analogously. Finding short centre curves is also useful for applications, as it can prevent
overfitting the centre to details of individual input curves.

Although the general case for this variant is still NP-hard, we can find efficient algorithms
when k and ` are fixed. The (k, `)-center and (k, `)-median problems were introduced by
Driemel et. al. [5], who obtained an Õ(mn)-time (1 + ε)-approximation algorithm for the
(k, `)-center and (k, `)-median problem under the Fréchet distance for curves in 1D, assuming
k, `, ε are constant. In [2], we gave polynomial-time constant-factor approximation algorithms
for the (k, `)-center problem under the discrete and continuous Fréchet distance for curves in
arbitrary dimension. In this paper, we give a (1 + ε)-approximation algorithm that runs in
Õ(mn) time and a polynomial-time exact algorithm to solve the (k, `)-center problem for
the discrete Fréchet distance, when k, ` and ε are fixed.

2 Hardness of finding average curves

To show the hardness of the average curve problem for the Fréchet and DTW distance, we
reduce from a variant of the NP-hard Shortest Common Supersequence (SCS) problem [10, 11],
which we will call the Fixed Character Common Supersequence (FCCS) problem. If s is a
string and x is a character, #x(s) denotes the number of occurrences of x in s.
I Problem 3 (Shortest Common Supersequence (SCS)). Given a set S of m strings with
length at most n over the alphabet Σ and an integer t, does there exists a string s∗ of length
t that is a supersequence of each string s ∈ S?
I Problem 4 (Fixed Character Common Supersequence (FCCS)). Given a set S of m
strings with length at most n over the alphabet Σ = {A,B} and i, j ∈ N, does there exists a
string s∗ with #A(s∗) = i and #B(s∗) = j that is a supersequence of each string s ∈ S?

I Lemma 1. The FCCS problem is NP-hard. The FCCS problem with m as parameter is
W[1]-hard. There exists no f(m) · no(m) time algorithm for FCCS unless ETH fails.

The proof idea is to reduce from SCS: given an instance (S, t) of SCS, construct S′ =
{s + AB2tA + c(s) | s ∈ S}, where c(s) denotes the string constructed by replacing all
A’s in s by B and vice versa. We reduce to the instance (S′, t + 2, 3t). If s∗ is a common
supersequence of length t for S, then s∗ +AB2tA+ c(s∗) is a supersequence of S′ with the
correct character count. Optimal supersequences of S′ can be decomposed into this form. J

2.1 Complexity of the average curve under the Fréchet distance
We will show the hardness of finding the average curve under the discrete and continuous
Fréchet distance ddF and dF via the following reduction from FCCS. Given an instance

Kevin Buchin, Anne Driemel, and Martijn Struijs 43:3

0
1
2
3

−1
−2
−3

γ(ABB)

γ(BBA)

γ(ABA)

0
1
2
3

−1
−2
−3

0
1
2
3

−1
−2
−3

0
1
2
3

−1
−2
−3

A2

A B B A

0
1
2
3

−1
−2
−3

B2

Figure 1 Five 1D-curves from G ∪Ri,j in the reduction for the Fréchet average curve problem
and a center curve constructed from ABBA (purple) as in Lemma 2. Matchings are indicated by
dotted lines. Note that each of these matchings achieves a (discrete) Fréchet distance of 1.

(S, i, j) of FCCS, we construct a set of curves using the following vertices in R: ga = −1,
gb = 1, gA = −3, and gB = 3. For a string s ∈ S, we map each character to a subcurve in R:

A→ (gagb)i+jgA(gagb)i+j B → (gbga)i+jgB(gbga)i+j .

The curve γ(s) is constructed by concatenating the subcurves resulting from this mapping,
G = {γ(s) | s ∈ S} denotes the set of these curves. Additionally, we use the curves

Ai = gb(gAgb)i Bj = ga(gBga)j .

We will call subcurves containing only gA or gB vertices letter gadgets and subcurves
containing only ga or gb vertices buffer gadgets. Let Ri,j contain curves Ai and Bj , both with
multiplicity α = |S|(|S| − 1) + 1. We reduce to the instance (G∪Ri,j , r) of the average curve
problem, where r = |S|+ 2α. We use the same construction for the discrete and continuous
case. For an example of this construction, take S = {ABB,BBA,ABA}, i = 2, j = 2. Then
ABBA is a supersequence of S with the correct number of characters, see Figure 1.

EuroCG’19

43:4 On the hardness of finding an average curve

I Lemma 2. If (S, i, j) is a true instance of FCCS, then (G ∪Ri,j , r) is a true instance of
the average curve problem for discrete and continuous Fréchet.
Proof. Since dF (x, y) ≤ ddF (x, y) for all curves x, y, considering the discrete version suffices.

Since (S, i, j) is a true instance of FCCS, there exists a common supersequence s∗ of S
with #A(s∗) = i and #B(s∗) = j. Construct the curve c of complexity 2|s∗|+ 1, given by

cl =

0 if l is odd
−2 if l is even and s∗l/2 = A

2 if l is even and s∗l/2 = B

,

for each l ∈ {1, . . . , 2|s∗|+ 1}. Note s∗ is a supersequence of the sequence of letter gadgets in
any curve g ∈ G ∪Ri,j and therefore we can match all letter gadgets from g within distance
1 such that we get ddF (c, g) ≤ 1. This means

∑
g∈G∪Ri,j

ddF (c, g) ≤ |S|+ 2α = r. J

For the converse, we can show that if there is a curve c∗ with
∑
g∈G∪Ri,j

dF (c∗, g) ≤ r,
then dF (c∗, g) < 2 for all g ∈ G ∪Ri,j . This means we can apply the hardness proof for the
1-center problem under the Fréchet distance from [2] to partition c∗ into A-parts, B-parts
and buffer parts and construct a supersequence for S from the sequence of A/B-parts in c∗.
I Lemma 3. If (G∪Ri,j , r) is a true instance of the average curve problem for discrete and
continuous Fréchet, then (S, i, j) is a true instance of FCCS.

Since the reduction runs in polynomial time and the number of input curves is bounded
by a quadratic function in |S|, we get the following result.
I Theorem 4. The average curve problem for discrete and continuous Fréchet distance is
NP-hard. When parametrised in the number of input curves m, this problem is W[1]-hard.

2.2 Complexity of the average curve under the DTW distance
We will show that the average curve problem for (p, q)-DTW is NP-hard for all p, q ∈ N. We
use the same reduction from Section 2.1, but now map the characters of s ∈ S to

A→ gβ0 g
β
ag

β
0 B → gβ0 g

β
b g

β
0 ,

use the curves Ai = gβ0 (gβag
β
0)i and Bj = gβ0 (gβb g

β
0)j , and set r =

∑
s∈S(i + j − |s|)q/p +

α(iq/p + jq/p), β = dr/εqe+ 1, α = |S|, where ε > 0 is chosen sufficiently small and depends
only on i, j, p, q. See Figure 2 for an example with S = {ABB,BBA,ABA} and i = j = 2.
I Lemma 5. If (S, i, j) is a true instance of FCCS, then (G ∪Ri,j , r) is a true instance of
(p, q)-DTW average curve.
Proof. This is analogous to Lemma 2. J

For the converse, we identify vertices in a satisfying curve c∗ that are close to ga or gb,
such that gβa and gβb subcurves must be matched to them and construct a supersequence s′
out of them. The curves Ai and Bj are used to show that #A(s′) = i and #B(s′) = j.
I Lemma 6. If (G ∪Ri,j , r) is a true instance of (p, q)-DTW average curve, then (S, i, j) is
a true instance of FCCS.

Since the reduction runs in polynomial time and the number of input curves is bounded
by a linear function in |S|, we get the following result:
I Theorem 7. The average curve problem for the (p, q)-DTW distance is NP-hard, for any
p, q ∈ N. When parametrised in the number of input curves m, this problem is W[1]-hard.
There exists no f(n) · no(m) time algorithm for this problem unless ETH fails.

Kevin Buchin, Anne Driemel, and Martijn Struijs 43:5

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

γ(ABB)

γ(BBA)

γ(ABA)

A2

B2

A B B A

Figure 2 Five 1D-curves from G ∪Ri,j and a center curve constructed from ABBA (purple) as
in Lemma 5. Fat horizontal lines indicate β consecutive vertices. Vertices that match at distance 0
touch, those matching at distance 1 are indicated by dotted lines. The center has 1 mismatch with the
first 3 curves and 2 with the final two, so the total cost here is 3 · (1p)q/p +2α · (2 ·1p)q/p = 3+2α ·2q.

EuroCG’19

43:6 On the hardness of finding an average curve

3 (1 + ε)-approximation for (k, `)-center clustering for the discrete
Frechet distance in Rd

In this section, we develop a (1 + ε)-approximation algorithm for the (k, `)-center problem
under the discrete Fréchet distance that runs in O(mn log(n)) time for fixed k, `, ε.

Given a set G of m input curves in Rd of complexity at most n each, use the algorithm
by Buchin et. al. [2] to compute a set C of k curves that forms a 3-approximation for the
(k, `)-center problem in O(km · `n log(`+ n)) time. Call the cost of these centers ∆. Let C∗
be an optimal solution that achieves cost O. For each vertex p∗ in C∗, there is a vertex q on
an input curve with ‖p∗ − q‖ ≤ O and there is a vertex p in C with ‖p− q‖ ≤ ∆. So, by the
triangle inequality, all vertices of C∗ lie within a ball of radius 2∆ centred at a vertex of C.

We can cover these balls with a regular grid of O(ε−d) vertices with distance of ε·2∆/(3
√
d),

so that there exists a vertex g(p∗) on such a grid with ‖p∗ − g(p∗)‖ ≤ ε∆/3 = εO. So, for
every curve c∗ ∈ C∗, there exists a single curve g(c∗) of gridpoints with ddF (g(c∗), c∗) ≤ εO,
which means that for all g ∈ G, there exists a curve c∗ such that ddF (g, g(c∗)) ≤ (1 + ε)O.
This means the set {g(c∗) | c∗ ∈ C∗} gives a (1 + ε)-approximation, which we can find by
iterating over all curves using the gridpoints. We conclude with the following theorem:

I Theorem 8. Given m curves in Rd, each of complexity at most n, and k, ` ∈ N and some
0 < ε ≤ 1, we can compute an (1 + ε)-approximation to the (k, `)-center problem for the

discrete Fréchet distance in O
(
((Ck`)k` + log(`+ n)) · k` ·mn

)
time, with C =

(
6
√
d
ε

)d
.

4 Exact algorithm for (k, `)-center for discrete Fréchet in 2D

We give an algorithm that solves the (k, `)-center problem for the discrete Fréchet distance
in 2D in polynomial time for fixed k and `. We first show how to solve the decision version.

The main idea of the algorithm for the decision version is based on the following observa-
tion: for a given r, we have minc∈C ddF (c, g) ≤ r for all g ∈ G if and only if each vertex p of a
curve in C lies in the intersection of the disks of radius r around all vertices q from curves in
G that p is matched with. Furthermore, it does not matter where the vertex p lies within the
intersection region. This means we can select one vertex for each region and exhaustively test
all sets with k curves of ` vertices that can be constructed by using only the selected vertices
to determine if there exists a set of curves C such that minc∈C ddF (c, g) ≤ r for all g ∈ G.

The corresponding arrangement of circles has complexity O((nm)2), and can be computed
in that time [4], see Figure 3 for an example. We solve the optimisation version by performing
a binary search over the at most O((mn)3) values of r at which the arrangement changes
combinatorially, which occurs only when some disks intersect at a single point.

I Theorem 9. Given a set of m curves G in the plane with at most n vertices each, we can
find a solution to the (k, `)-center problem in O((mn)2k`+1k` log(mn)) time.

References
1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry & Applications, 5:75–91, 1995.
doi:10.1142/S0218195995000064.

2 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, `)-center clustering for curves. In
Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms, pages 2922–2938,
2019. doi:10.1137/1.9781611975482.181.

http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1137/1.9781611975482.181

Kevin Buchin, Anne Driemel, and Martijn Struijs 43:7

f1

f2

f3

f4

f5

f6

f7

f8
f9

v

f10

f11

Figure 3 A possible arrangement of circles. Crosses indicate the vertices from the curves in G,
all bounded faces are numbered. The relevant intersection regions for the Fréchet distance are in red.

3 Laurent Bulteau, Vincent Froese, and Rolf Niedermeier. Tight hardness results for consen-
sus problems on circular strings and time series. arXiv preprint arXiv:1804.02854, 2018.
URL: http://arxiv.org/abs/1804.02854.

4 Bernard Marie Chazelle and Der-Tsai Lee. On a circle placement problem. Computing,
36(1-2):1–16, 1986.

5 Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering time series under the
Fréchet distance. In Proceedings of the 27th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 766–785. Society for Industrial and Applied Mathematics, 2016.

6 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria,
1994.

7 Lalit Gupta, Dennis L Molfese, Ravi Tammana, and Panagiotis G Simos. Nonlinear align-
ment and averaging for estimating the evoked potential. IEEE Transactions on Biomedical
Engineering, 43(4):348–356, 1996.

8 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common ge-
ometric location problems. SIAM Journal of Computing, 13(1):182–196, 1984. doi:
10.1137/0213014.

9 François Petitjean and Pierre Gançarski. Summarizing a set of time series by averag-
ing: From Steiner sequence to compact multiple alignment. Theoretical Computer Science,
414(1):76 – 91, 2012. doi:10.1016/j.tcs.2011.09.029.

10 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. Journal of Computer and
System Sciences, 67(4):757–771, 2003.

11 Kari-Jouko Räihä and Esko Ukkonen. The shortest common supersequence problem over
binary alphabet is NP-complete. Theoretical Computer Science, 16(2):187 – 198, 1981.
doi:10.1016/0304-3975(81)90075-X.

EuroCG’19

http://arxiv.org/abs/1804.02854
http://dx.doi.org/10.1137/0213014
http://dx.doi.org/10.1137/0213014
http://dx.doi.org/10.1016/j.tcs.2011.09.029
http://dx.doi.org/10.1016/0304-3975(81)90075-X

Maximum Physically Consistent Trajectories
Bram Custers1, Mees van de Kerkhof2, Wouter Meulemans1,
Bettina Speckmann1, and Frank Staals2

1 TU Eindhoven, the Netherlands
[b.a.custers,w.meulemans,b.speckmann]@tue.nl

2 Utrecht University, the Netherlands
[m.a.vandekerkhof,f.staals]@uu.nl

Abstract
We study the problem of detecting outlying measurements in a GPS trajectory. Our method
considers the physical possibility for the tracked object to visit combinations of measurements,
using simplified physics models. We aim to compute the maximum subsequence of the mea-
surements that is consistent with a given physics model. We give an O(n log3 n) time algo-
rithm for 2D-trajectories in a model with unbounded acceleration but bounded velocity, and an
output-sensitive algorithm for any model where consistency checks can be done in O(1) time and
consistency is transitive.

1 Introduction

The use of GPS trajectories in computing has greatly increased in recent years, with many
algorithms and applications using them as input for analysis. However, since trajectories
are created by performing real-world measurements there is always some amount of spatial
error. Thus, no matter the application, it is important to preprocess trajectories to try
and reduce the impact measurement errors have on the result. There are several types of
preprocessing that can be applied to a trajectory to limit the impact of errors. We focus on
outlier detection, where we find and remove data points with a large distance to the rest of
the data. These outliers are likely to have been the result of large measurement errors.

We approach the problem from a physics perspective. Trajectories track real-world ob-
jects with real-world physical properties. By considering if the tracked object could physi-
cally travel between its measured locations in the given time interval we can find outlying
measurements. We call a subsequence of the measurements of a trajectory consistent if there
is a path the object could have taken that visits the points in order and does not violate
the constraints of (is consistent with) the physics model. Our problem is then to find the
maximum consistent subsequence1 of the trajectory.

Contributions. We give an output-sensitive O(nd) time algorithm for finding the maximum
consistent subsequence of a trajectory, where d is the number of outliers, assuming a physics
model that allows consistency checks for a pair of measurements in O(1) time and has
transitive consistency. For the physics model where the object has bounded speed but no
other restrictions we additionally give an O(n log3 n) time algorithm.

Related work. Outlier detection is part of any application that must cope with imprecise
data. Hence, many different methods have been developed for many different contexts. A
general survey of outlier detection methodologies is given in [6]. Gupta et al. [5] give a
survey for outlier detection in data with a temporal component, including trajectories.

1 This subsequence does not need to be a consecutive subsequence.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

44:2 Maximum Physically Consistent Trajectories

Outlier detection for trajectories has mainly been studied as finding outlying trajectories
in a data set of trajectories, rather than finding outlying measurements in a single trajec-
tory [4, 8, 9, 13]. Although detection of outlying measurements in a single trajectory has
not been studied as such, the problem shows similarities to trajectory simplification and
trajectory smoothing, both well-studied topics. We refer to [14] for a survey.

2 Definitions & Notation

f A trajectory T = 〈p1, p2, . . . , pn〉 is an ordered sequence of n measurements, each of which
contains at least a location xi and timestamp ti. Additional data such as acceleration and
velocity may also be present. The measurements are ordered by their timestamp, so for any
pair (pi, pj) with i < j we have that ti < tj .

We use physics models to describe possible states that can be reached in the future, given
some measurement at a given time. Under a particular model, a subsequence 〈pi, . . . , pj〉 is
consistent iff a path exists that connects all measurements and obeys the constraints of the
physics model. We will denote this by C(pi, . . . , pj). We will restrict ourselves to models
where existence of such a path per measurement pair can be checked in O(1). In addition,
we require that the consistency is transitive. That is, for all i < j < k we have that

C(pi, pj) ∧ C(pj , pk) ⇐⇒ C(pi, pj , pk). (1)

For example, a model that bounds only the maximum speed meets the above criteria. We
use the generic model in Section 3 and the speed-bounded model in Section 4. An example
of a model without transitivity is one where both speed and acceleration are bounded. Here,
the situation can occur that reaching pj from pi requires a velocity at tj that makes reaching
pk within the physics model impossible, while the separate pairs are consistent.

3 Output-sensitive algorithm for models with transitive consistency

We assume the generic physics model with an O(1)-time consistency check and transitive
consistency. First, we observe that we can follow a similar methodology to the Imai-Iri
simplification algorithm [7]. Let G = (V,A) be a directed acyclic graph with a vertex for
each measurement of T and an arc from a vertex vi to vj if C(pj , pi). This graph has O(n2)
complexity and we can test for the existence of each arc in constant time: construction takes
O(n2) as well. Since consistency is transitive, a path in G corresponds to a consistent subse-
quence. We can determine the longest path, and thus the maximum consistent subsequence,
in this graph in O(|V |+ |A|) = O(n2) time.

We now show that we can further use transitivity to obtain an output-sensitive variant
of this algorithm. Rather than constructing the full DAG, we build a subgraph where each
vertex has at most one incoming arc coming from the vertex with the longest subsequence
that is consistent with it. This is captured in the theorem below.

I Theorem 1. Consider a physics model that allows checking the consistency of a pair of
measurements in constant time, and where consistency between measurements is a transitive
relation. The maximum consistent subsequence of a trajectory T = 〈p1, p2, . . . , pn〉 can be
computed in O(nd) time, where d is the number of outliers.

Proof. We handle the measurements in chronological order. We maintain a linked list that
stores all previously handled measurements, sorted in decreasing order of the largest length
of a path that ends in that measurement. For a new measurement, we go down this list in

B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, F. Staals 44:3

order, stopping as soon as we find a measurement that is consistent with the new one. We
then know that the length of the longest path ending in the new measurement is equal to
the length of the path ending in this previous measurement plus 1. During the list traversal,
we maintain the first occurrence of the latest unique path length, so that we can insert the
new element in O(1) time. After we have handled all measurements in this way we know the
longest path. Each of the (n − d) measurements that ends up in the longest path requires
only 1 successful check preceded by at most d failed checks, and the d outliers require at
most n checks, giving O(nd) total checks which is also the time bound. J

4 Subquadratic algorithm for the speed-bounded model

Here we consider the speed-bounded model for 2D trajectories. We denote the maximum
speed by smax. A subsequence S is consistent under this model if a path r(t) = (x(t), y(t))
exists with || d

dtr(t)|| < smax and (x(ti), y(ti)) = (xi, yi) for all pi ∈ S.
We develop an insertion-only data structure that, given a measurement q, can determine

the length k of the maximum subsequence ending at q in O(log3 n) time. Insertions are
supported in O(log3 n) time. By incrementally building the data structure in chronological
order, we can determine the maximum consistent trajectory in O(n log3 n) time.

4.1 Consistency data structure
We may view the measurements as points in 3D space, with the third axis being time, i.e.
pi = (xi, yi, ti). For all t > ti, measurements that are consistent with pi must lie inside a
cone, starting at pi with radius smax(t−ti) at time t ≥ ti. This representation of consistency
bears some similarity to the space-time prisms [10].

To determine if a measurement pi is consistent with any measurement of a set P of
previous measurements, we use an additively weighted Voronoi diagram (AWVD) for the
elements. Given a set of points {r1, . . . , rn} and weights {w1, . . . , wn}, this diagram par-
titions the plane into cells {c1, . . . , cn} associated with the points, such that for any point
r′ ∈ ci : d(r′, ri)− wi ≤ d(r′, rj)− wj , for all rj 6= ri. Here, d is a distance measure (in our
case the Euclidean distance), and the equality holds only on boundaries between cells.

We use the locations of the measurements in the set P for {ri} and for the weights, we pick
smax(t′−ti) for every measurement for some t′ > tn. This results in the construction depicted
in Figure 1. On this AWVD, we construct a point location structure D. A consistency query
with pi on D consists of two steps: first, we retrieve the element rc such that cell cc contains
the location of pi; then, we return pc if it is consistent with pi, or otherwise the query “fails”.

I Lemma 2. Let D be a consistency data structure on a set P of measurements. If a
consistency query with pi fails on D, no measurement of P is consistent with pi.

Proof sketch. The definition of AWVD tells us that the distance between the found location
in D and the query point, minus the points weight is at most the same value for any other
location. Using the strict inequality we get from inconsistency, we can derive that all other
locations in D are also inconsistent. J

We can construct the AWVD in O(m logm) time on m elements, where the complexity
of the AWVD is O(m) [3]. We may then construct a point location structure in O(m logm)
time on the AWVD that allows for querying in O(logm) time in which cell a point is
situated [2]. As a consistency check costs O(1) time, we obtain the lemma below.

EuroCG’19

44:4 Maximum Physically Consistent Trajectories

y

t

y

x

y

x

t′

Figure 1 Example of the AWVD on measurements with equal x-coordinates. (Left) The y-
coordinate of the measurements in time and the maximum speed cones progressing in time. (Middle)
A cross-section of the (x, y, t) cones at time t′ with accompanying centers (x, y). (Right) The
corresponding additively weighted Voronoi diagram.

I Lemma 3. Let P be a subset of T with |P | = m. We can construct a data structure
D for querying consistency of a later measurement with any of the measurements in P in
O(m logm) time. The data structure supports a consistency query in O(logm) time.

4.2 Insertion-only consistency data structure
Testing whether a measurement is consistent with any previous measurement of a subse-
quence of T is a decomposable search problem. Thus, we use the approach by Bently and
Saxe [1] to turn our consistency data structure into an efficient insertion-only data structure.

For a set ofm measurements, we maintain O(logm) instances of our static data structure
D1, ..,DO(log m). Every measurement is in one of these O(logm) data structures. Data
structure Di has size 2i. On insertion, we create a new D1 with the inserted measurement.
When we get two data structures of same size 2i, we remove both and replace them by
a single data structure of size 2i+1. We repeat this process until no duplicates exist. To
answer a query we simply query all O(logm) data structures.

The above construction together with the consistency query structure gives O(log2 m)
time for a query and O(log2 m) amortized time for an insertion. By the results of Overmars
and Van Leeuwen [12], the insertion time can be made a worst-case running time.

I Lemma 4. We can modify the consistency data structure D to be insertion-only, providing
a O(log2 m) query time and O(log2 m) insertion time in the worst-case.

4.3 A BB[α] tree for maximum subsequences
We combine processed measurements and the consistency data structure in a BB[α] tree [11].
We store the measurements in the leaves along with the length of the maximum consistent
subsequence ending at the measurement, k. In the intermediate nodes we keep an insertion-
only consistency structure as described before, built on all measurements in the subtree.
The leaves are kept sorted on k in ascending order.

We use the BB[α] tree to keep the tree of depth O(logn), while avoiding tree rotations
at insertions which require full recomputation of the intermediate node data structures.

B. Custers, M. van de Kerkhof, W. Meulemans, B. Speckmann, F. Staals 44:5

Instead, we rebuild a subtree when it becomes sufficiently unbalanced, which gives us a
better amortized running time.

We can query the tree with a measurement p to determine a predecessor q with largest k
such that C(q, p): at each level, we query the right child data structure or leaf measurement
if a measurement is consistent with p. If so, we traverse the right subtree, otherwise the
left subtree. We continue until we reach a leaf, giving us the largest k with associated
measurement that is consistent with the query measurement. Since we query O(logn)
intermediate nodes, this process takes O(log3 n) time.

After a query, we can insert the measurement p with value k+1 in the tree. We insert the
measurement in the consistency data structures of all ancestor nodes and possibly rebalance
the tree by rebuilding an unbalanced subtree. Using the BB[α] tree and the insertion-only
data-structures, this takes O(log3 n) amortized time.

I Lemma 5. Consider a BB[α] tree storing an insertion-only consistency structure at each
internal node. We can insert a new node into the tree, rebalance it and rebuild the necessary
consistency structures in O(log3 n) amortized time per insertion.

4.4 Running-time analysis
To determine the maximum consistent subsequence, we need to process all measurements,
querying for their predecessor in the tree and then inserting it into the tree. Finally, we query
for the largest k value. By maintaining pointers from measurements to their predecessors
during processing, we obtain the maximum consistent subsequence. Since we do a query
and an insert per measurement, the algorithm runs in O(n log3 n) as stated before.

I Theorem 6. Given a trajectory T with n measurements, we can determine the maximum
consistent subsequence of T for the 2D speed-bounded model in O(n log3 n) time.

5 Acknowledgement

Research on the topic of this paper was initiated at the 4th Workshop on Applied Geometric
Algorithms (AGA 2018) in Langbroek, The Netherlands, supported by the Netherlands
Organisation for Scientific Research (NWO) under project no. 639.023.208.

References
1 J. L. Bentley and J. B. Saxe. Decomposable searching problems i. static-to-dynamic trans-

formation. Journal of Algorithms, 1(4):301–358, 1980.
2 H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdi-

vision. SIAM Journal on Computing, 15(2):317–340, 1986.
3 S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1-4):153, 1987.
4 Y. Ge, H. Xiong, Z.-h. Zhou, H. Ozdemir, J. Yu, and K. C. Lee. Top-eye: Top-k evolving

trajectory outlier detection. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 1733–1736, 2010.

5 M. Gupta, J. Gao, C. C. Aggarwal, and J. Han. Outlier detection for temporal data: A
survey. IEEE Transactions on Knowledge and Data Engineering, 26(9):2250–2267, 2014.

6 V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial intelligence
review, 22(2):85–126, 2004.

7 H. Imai and M. Iri. Polygonal approximations of a curve—formulations and algorithms.
Computational Morphology, pages 71–86, 1988.

EuroCG’19

44:6 Maximum Physically Consistent Trajectories

8 J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect frame-
work. In Proceedings of the IEEE 24th International Conference on Data Engineering,
pages 140–149, 2008.

9 X. Li, J. Han, S. Kim, and H. Gonzalez. Roam: Rule-and motif-based anomaly detection in
massive moving object data sets. In Proceedings of the 2007 SIAM International Conference
on Data Mining, pages 273–284, 2007.

10 H. J. Miller. Time geography and space-time prism. International Encyclopedia of Geog-
raphy: People, the Earth, Environment and Technology, pages 1–19, 2017.

11 J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM Journal
on Computing, 2(1):33–43, 1973.

12 M. H. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion methods
for decomposable searching problems. Information Processing Letters, 12(4):168–173, 1981.

13 G. Yuan, S. Xia, L. Zhang, Y. Zhou, and C. Ji. Trajectory outlier detection algorithm based
on structural features. Journal of Computational Information Systems, 7(11):4137–4144,
2011.

14 Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent Systems
and Technology (TIST), 6(3):29, 2015.

Distance Measures for Embedded Graphs -
Revisited ∗

Hugo A. Akitaya†1, Maike Buchin2, and Bernhard Kilgus‡3

1 Department of Computer Science, Tufts University, Medford, MA, USA
hugo.alves_akitaya@tufts.edu

2 Department of Computer Science, Technical University Dortmund, Dortmund,
Germany
Maike.Buchin@tu-dortmund.de

3 Department of Mathematics, Ruhr-University Bochum, Bochum, Germany
Bernhard.Kilgus@rub.de

Abstract
In this extended abstract, we present new hardness and algorithmic results for the graph distances
presented at EuroCG 2017 [10]. We consider the case of the graph distance based on the Fréchet
distance for plane graphs. We prove that deciding this distance is NP-hard and show how our
general algorithmic approach yields an exact exponential time algorithm and a polynomial time
approximation algorithm for this case.

∗ Full version available on arXiv [6].
† Supported by National Science Foundation grants CCF-1422311 and CCF-1423615, and the Science
Without Borders scholarship program.

‡ Supported by the Deutsche Forschungsgemeinschaft (DFG), project BU 2419/3-1

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

45:2 Distance Measures for Embedded Graphs - Revisited

1 Introduction

Motivation We study the task of comparing two embedded graphs. There are many
applications that work with graphs embedded in an Euclidean space, such as road networks.
For instance, by comparing two road networks one can assess the quality of map construction
algorithms [3, 4], see Figure 1.

(a) Two partial map reconstructions of Chicago. (b) Different topology.

Figure 1 Figure (a) shows the results of two map construction algorithms (blue: reconstuction
by Davies et al. [12]; red: reconstruction by Ahmed et al. [5]). An appropriate measure for assessing
the quality of the reconstruction should compare both the geometry and the topology of the
reconstructions and the ground truth.

Related Work A few different approaches have been proposed for comparing such graphs.
These are subgraph-isomorphism, edit distance [11], algorithms that compare all paths [1]
or random samples of shortest paths [13], and the local persistent homology distance [2].
However, most of these capture only the geometry or only the topology of the embedded
graphs. The sampling-based distance presented in [9] captures both, but it is not a formally
defined distance. The traversal distance [7] is similar to the measures proposed here but
captures the combinatorial structure of the graphs to a lesser extent.

Definitions and Previous Results Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected
graphs with vertices embedded as points in Rd (typically in the plane) that are connected
by straight-line edges. We consider a mapping s : G1 → G2 that maps each vertex v ∈ V1
to a point s(v) on G2 (not necessarily a vertex) and that maps each edge {u, v} ∈ E1 to a
simple path in G2 with endpoints s(u) and s(v). Our graph distances are generalizations of
the (weak) Fréchet distance, popular distance measures for curves [8], to graphs: We define
the directed (weak) graph distance ~δ(w)G as

~δ(w)G(G1, G2) = infs:G1→G2 maxe∈E1 δ(w)F (e, s(e)),

where δ(w)F denotes the (weak) Fréchet distance, s ranges over all graph mappings from G1
to G2, and e and its image s(e) are interpreted as curves in the plane.

The general algorithm to compute the directed (weak) graph distances is based on the
definition of valid ε-placements of the vertices and edges. An ε-placement of a vertex v is a
maximally connected component of G2 restricted to the ε-ball Bε(v) around v. A (weak)

H. Akitaya et. al. 45:3

ε-placement of an edge e = {u, v} ∈ E1 is a path P in G2 with endpoints on ε-placements
Cu of u and Cv of v such that δ(w)F (e, P) ≤ ε. In that case, we say that Cu and Cv are
reachable from each other. An ε-placement Cv of v is (weakly) valid if for every neighbor u
of v there exists an ε-placement Cu of u such that Cv and Cu are reachable from each other.

Deciding the directed (weak) graph distance is NP-hard for general graphs, but we can
compute the (weakly) valid ε-placements in polynomial time [6, 10]. If there is a vertex with
no (weakly) valid ε-placement it follows that ~δ(w)G(G1, G2) > ε. Conversely, the existence
of a (weakly) valid ε-placement for each vertex ensures ~δ(w)G(G1, G2) ≤ ε for several cases,
namely if G1 is a tree (both graph distances) and if G1 and G2 are plane graphs (weak graph
distances). Therefore, the distances are decidable in polynomial time in these cases.

New Results In this paper, we show that deciding whether ~δG(G1, G2) ≤ ε remains NP-hard
if G1 and G2 are plane graphs, that is the existence of a valid ε-placement for each vertex is
not a sufficient criterion for ~δG(G1, G2) ≤ ε here. Furthermore, we prove an inapproximability
result for this case. Subsequently, we present an exact exponential time algorithm and a
polynomial time approximation algorithm based on the general algorithmic approach.

2 Hardness Results

I Theorem 1. For plane graphs G1, G2, deciding whether ~δG(G1, G2) ≤ ε is NP-hard.

Proof. Here, we give a concise version of the proof. For a more elaborated version, see [6].
We prove the NP-hardness by a reduction from Monotone-Planar-3-Sat (MP3S). That
is, we construct straight-line embedded graphs G1, G2 based on a MP3S instance A, with
edges of G2 labeled True or False. We describe the construction of the subgraphs (gadgets)
for the Variables and Clauses of A and prove which binary combinations can be realized
such that all edges and their images are within Fréchet distance at most ε. Figure 2 and 3
illustrate the gadgets and a partial graph construction. We denote the ε-tube around the
edge e by Tε(e) = e

⊕
Bε. A path labeled True (False) is shortly denoted as True (False)

signal. All vertices of the graph can be either placed arbitrarily within a given ε-surrounding
or must lie at the intersection of two lines. This ensures that the construction uses rational
coordinates only and can be computed in polynomial time.

For the Variable gadget, we draw two edges, e1, e2, of G1 in a 90◦− 120◦ angle incident
to a vertex v and add vertices w1 (w2) of G2 at the intersection of the outer boundary of
Tε(e2) (Tε(e1)) and a line through e1 (e2). Furthermore, we add a vertex w3 of G2 at the
intersection of the boundaries of Tε(e1) and Tε(e2). We connect w1 and w2 with w3 and draw
an edge from w1 and w2 inside the ε-tubes around e1 and e2, labeled True. Analogously, we
place two edges from w3 labeled False. For the Variable gadget a True-True combination
is not possible: The vertex v has two placements p1 and p2. Assume we choose p1. Then, one
can map e1 to a path containing the edge of G2 with the True labeling inside Tε(e1). Now,
we want to map e2 to a path P starting at some point of p1, where P contains the edge of
G2 with the True labeling inside Tε(e2). Thus P must contain w3 and w1. As δF (e2, P) > ε

(here, we only have δwF (e2, P) ≤ ε) for any such path P , this labeling is not realizable. It is
easy to see that any other labeling of paths e1 and e2 are mapped to is realizable.

A Permute gadget is a differently labeled Variable gadget. For the Split gadget,
we add a third edge e3 of G1 to the Variable gadget and add edges of G2 from w2 and
w3 inside the ε-tube around e3. For the labeling, see Figure 2. A False signal can not be
converted to a True signal in Split gadget or in the Permute gadget. However, a True
signal can but does not need to be converted to a False signal in the Permute gadget.

EuroCG’19

45:4 Distance Measures for Embedded Graphs - Revisited

Variable

True

True

False

False True

True

False

False

Split

False

True

e1

e2

v w3

w2

w1

p1

p2

NAE-Clause

PERMUTE

PERMUTE PERMUTE

Clause
True

True

False

False

Wire

True

True

False

False

Permute

vTrue

TrueFalse

True
False

False

NAE-Clause

q1

e1

w2

w1

Bε(q1)
Bε(v)

w3

e2

e3

s(v)

Figure 2 Gadgets to build a graph-similarity instance given a Monotone-Planar-3-Sat instance.

H. Akitaya et. al. 45:5

x1 x2

(x1 ∨ x2 ∨ x3)

x3

Figure 3 Construction of one Clause gadget given the MP3S instance A with variables V =
{x1, x2, . . . , x5} and clauses C = {(x1 ∨ x2 ∨ x3), (x3 ∨ x4 ∨ x5), (x̄1 ∨ x̄3 ∨ x̄5)}

EuroCG’19

45:6 Distance Measures for Embedded Graphs - Revisited

q1
q′

v 1

1 + δ

B1+δ(q1)

B1(v)

w1

Figure 4 Illustration of the proof of Theorem 2.

For the Clause gadget, we first introduce a NAE-Clause gadget where it is required
that not all three values in a clause are equal. For the construction, see Figure 2. Let q1
be the point on e1 with distance ε to w1 and w2. To force walking back and forth along e1
for a combination of labels which we want to exclude, we have to ensure that a path from
w1 to w2 leaves Bε(q1) but stays, once entered, inside Bε(v). For the other pairs, (w1, w3)
and (w2, w3) we do the same. A possible drawing of these paths maintaining the planarity
of G2 is shown in the lower sketch of Figure 2. Suppose we map v to s(v) as shown in
the Figure 2. Then, edges e2 and e3 can be mapped to paths through edges labeled True.
But we cannot map e1 to such a path P : When P reaches vertex w1, any corresponding
reparameterization of e1 realizing δF (e1, P) ≤ ε must have reached q1 as q1 is the only point
with distance at most ε to w1 on e2. As P leaves Bε(q1) between w1 and w2 and any point
on e1 with distance at most ε to the part of P outside Bε(q1) lies between v and q1 it follows
that δF (e1, P) > ε. For symmetric reasons it follows that any other all-equal labeling cannot
be realized. However, there is a placement of v, such that all three edges e1, e2 and e3 can
be mapped to a path in G2 with Fréchet distance at most ε, for every not-all-equal labeling.
Note that Monotone-Planar-NAE-3-Sat is in P but, as shown in Figure 2, we can use
the NAE-Clause gadget as the core of the Clause gadget.

Placing the other gadgets with no overlap (using the Wire gadget) and noting that all
constructed subgraphs are plane, we can, given a MP3S instance A, construct plane graphs
G1 and G2 such that a map from G1 to G2, which realizes ~δG(G1, G2) < ε, induces a solution
of A: For each positive NAE-clause, at least one of the outgoing edges of G1 must be mapped
to a path through an edge labeled True and thus the corresponding variable v gets the
value True. In this case, v cannot set any of the negative clauses True, because the other
outgoing edge must be mapped to a path through the edge of G2 labeled False and this
signal can never be switched to True. The same holds for the case of negative NAE-clauses.

Conversely, given a solution S of the MP3S instance A, we can construct a placement of
G1 by choosing p1 in the Variable gadget for each variable with a True label in S and
p2 for each variable with a False label in S. All edges of the other gadget can be mapped
to G2 in a signal preserving manner. Note that if there exists a clause C in A with three
positive labeled variables in S, we change one signal in the Permute gadget from True to
False. Thus, we have found a mapping realizing ~δG(G1, G2) ≤ ε. J

The characteristics of the gadget still hold for a slightly bigger value of ε which leads to:

I Theorem 2. For plane graphs G1, G2 it is NP-hard to approximate the directed graph
distance ~δG(G1, G2) within a 1.10566 factor.

H. Akitaya et. al. 45:7

Proof. We give a detailed proof for the NAE-Clause gadget and note that a similar
argument holds for the other gadgets. See Figure 4 for an illustration of the proof.

Let us fix ε = 1. We draw the green spike in the NEA-Clause gadget such that its
peak is arbitrarily close to the intersection of a straight line through the edge e1 and the
1-circle around v. Now, we need to compute the smallest value δmin, such that B1(v) is
completely contained in B1+δmin(q1). Then, for any value δ < δmin, there exists a drawing
of the spikes, such that the characteristics of the NAE-Clause gadget still hold, e.g., there
is no placement of v allowing an all-equal-labeling.

Note that δmin equals the distance from q1 to v, when q1 is at distance 1 + δmin to w1.
Let q′ be the position of q1 for δ = 0 and let d be the distance between q′ and q1. Then
we have tan(30◦) = δmin+d

1 = δmin + d. Furthermore, we have d =
√

(1 + δmin)2 − 1 and
therefore δmin = tan(30◦) −

√
(1 + δmin)2 − 1, which solves to δmin = 1

4 −
1

4
√

3 ≈ 0.10566.
The factor by which ε can be multiplied is greater than 1 + δmin for all other gadgets. Thus,
δmin is the critical value for the whole construction and the theorem follows. J

3 Algorithms for Plane Graphs

Our general algorithm consists of the following four steps. 1. Compute ε-placements of
vertices, 2. Compute reachability information, 3. Prune invalid ε-placements, 4. Based
on the remaining ε-placements, decide if there exists a mapping from G1 to G2 realizing
~δ(w)G(G1, G2) ≤ ε. See [6, 10] for a detailed presentation.

Deciding the Graph Distance in Exponential Time A brute-force method to decide the
directed graph distance is to iterate over all possible combinations of valid vertex placements.
For each such combination, we iterate over all edges of G1 to determine whether the vertex
placements allow to map each edge to a path with Fréchet distance smaller than ε. This can
be done in constant time per edge using the previously computed reachability information.
Thus, the runtime is O(m1 ·mn1

2), where ni = |Vi| and mi = |Ei|.
An alternative approach is the following, which in essence is an extension of step 3 of

the general algorithm. First, we remove all tree-like substructures of G1 and place these as
described in [10]. Next, we decompose the remainder of G1 into chordless cycles, where a
chord is a maximal path in G1 incident to two faces (see Figure 5). We place the parts of G1
from bottom up, deciding in each step if we can place two adjacent cycles and all the nested
substructures of the cycles simultaneously. The time and space complexity of this approach
are summarized in the following Theorem. For more details and a proof, see [6].

I Theorem 3. For plane graphs, the graph distance can be decided in O(Fm2F−1
2) time and

O(m2F−1
2) space, where F is the number of faces of G1.

Note that this method is superior to the brute-force method if 2F − 1 < n1.

Polynomial Time Approximation Algorithm The general algorithmic approach yields a
good approximation for deciding the graph distance for plane graphs with some geometric
restrictions. Again, the decision is based on the existence of valid ε-placements. Thus, the
runtime is the same as for the case where G1 is a tree (O(n1 ·m2

2) time and space).

I Theorem 4. Let G1 := (V1, E1) and G2 := (V2, E2) be plane graphs. Assume that each
edge of G1 has length greater than 2ε. Let αv be the smallest angle between two edges of G1
incident to vertex v with deg(v) ≥ 3, and let α := 1

2 minv∈V1(αv). If there exists at least one
valid ε-placement for each vertex of G1, then ~δG(G1, G2) ≤ 1

sin(α)ε.

EuroCG’19

45:8 Distance Measures for Embedded Graphs - Revisited

Figure 5 A plane graph is recursively decomposed into chordless cycles.

ε

α
ε

sin(α)

B ε
sin(α)

(v)a) b)

B ε
sin(45◦)

(v)

v

v

G1

G2

G1

G2

ε

Figure 6 Illustration of the proof of Theorem 4
.

Proof. Let α be the smallest angle between two edges incident to a vertex v with degree
at least three and let C1, C2, . . . , Cj be the valid placements of v for a given distance value
ε. Furthermore, let VCi

be the set of vertices of Ci. It can be easily shown that for a
larger distance value of ε1 ≥ 1

sin(α)ε there exist vertices v1, v2, . . . , vk, embedded inside Bε1 ,

such that the subgraph C = (V ′, E′), where V ′ =
j⋃
i=1

VCi ∪ {v1} ∪ {v2} ∪ · · · ∪ {vk} and

E′ = {e = {uw} ∈ E2|u ∈ V ′, w ∈ V ′} is connected (see Figure 6a)). Note that this property
is not true if we allow edges with length smaller than 2ε (see Figure 6b)). However, with
the condition of a minimal edge length of 2ε, there is only one valid 1

sin(α)ε-placement C
for each vertex with degree at least three. Furthermore, every valid ε placement is a valid

1
sin(α)ε-placement. Now, for two paths which start and/or end at a common vertex v, v is
mapped to a point on C. This ensures that each edge of G1 is mapped correctly. J

References

1 Mahmuda Ahmed, Brittany T. Fasy, Kyle S. Hickmann, and Carola Wenk. Path-based
distance for street map comparison. ACM Transactions on Spatial Algorithms and Systems,
28 pages, 2015.

H. Akitaya et. al. 45:9

2 Mahmuda Ahmed, Brittany Terese Fasy, and Carola Wenk. Local persistent homology
based distance between maps. In 22nd ACM SIGSPATIAL GIS, pages 43–52, 2014.

3 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. A comparison
and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica,
19(3):601–632, 2015.

4 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. Map Construction
Algorithms. Springer, 2015.

5 Mahmuda Ahmed and Carola Wenk. Constructing street networks from gps trajectories.
In Proceedings of the 20th Annual European Conference on Algorithms, ESA’12, pages
60–71, Berlin, Heidelberg, 2012. Springer-Verlag. URL: http://dx.doi.org/10.1007/
978-3-642-33090-2_7, doi:10.1007/978-3-642-33090-2_7.

6 Hugo A. Akitaya, Maike Buchin, Bernhard Kilgus, Stef Sijben, and Carola Wenk. Distance
measures for embedded graphs. arXiv e-print, 2018. https://arxiv.org/abs/1812.09095.

7 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal
of Algorithms, 49(2):262 – 283, 2003.

8 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(1&2):75–91,
1995.

9 James Biagioni and Jakob Eriksson. Inferring road maps from global positioning system
traces: Survey and comparative evaluation. Transportation Research Record: Journal of
the Transportation Research Board, 2291:61–71, 2012.

10 Maike Buchin, Stef Sijben, and Carola Wenk. Distance measures for embedded graphs. In
Proc. 33rd European Workshop on Computational Geometry (EuroCG), pages 37–40, 2017.

11 Otfried Cheong, Joachim Gudmundsson, Hyo-Sil Kim, Daria Schymura, and Fabian Stehn.
Measuring the similarity of geometric graphs. In International Symposium on Experimental
Algorithms, pages 101–112, 2009.

12 Jonathan J. Davies, Alastair R. Beresford, and Andy Hopper. Scalable, distributed, real-
time map generation. IEEE Pervasive Computing, 5(4):47–54, 2006.

13 Sophia Karagiorgou and Dieter Pfoser. On vehicle tracking data-based road network gen-
eration. In 20th ACM SIGSPATIAL GIS, pages 89–98, 2012.

EuroCG’19

http://dx.doi.org/10.1007/978-3-642-33090-2_7
http://dx.doi.org/10.1007/978-3-642-33090-2_7
http://dx.doi.org/10.1007/978-3-642-33090-2_7
https://arxiv.org/abs/1812.09095

Approximate strong edge-colouring of unit disk
graphs

Nicolas Grelier1, Rémi de Joannis de Verclos2, Ross J. Kang3, and
François Pirot4

1 Department of Computer Science, ETH Zürich
nicolas.grelier@inf.ethz.ch

2 Department of Mathematics, Radboud University Nijmegen
r.deverclos@math.ru.nl

3 Department of Mathematics, Radboud University Nijmegen
ross.kang@gmail.com

4 LORIA, Université de Lorraine and Department of Mathematics, Radboud
University Nijmegen
francois.pirot@loria.fr

Abstract
We show that the strong chromatic index of unit disk graphs is efficiently 6-approximable. This
improves on 8-approximability as shown by Barrett, Istrate, Kumar, Marathe, Thite, and Thu-
lasidasan (2006). We also show that strong edge-6-colourability is NP-complete for the class of
unit disk graphs. Thus there is no polynomial-time (7/6− ε)-approximation unless P=NP.

1 Introduction

A strong edge-k-colouring is a partition of the edges of a graph into k parts so that each part
induces a matching. The strong chromatic index is the least k for which the graph admits a
strong edge-k-colouring. If the vertices of the graph represent communicating nodes, say, in
a wireless network, then an optimal strong edge-colouring may represent an optimal discrete
assignment of frequencies to transmissions in the network so as to avoid both primary and
secondary interference [20, 18, 1]. It is then relevant to model the network geometrically,
i.e. as a unit disk graph [10]. Our interest is in approximative algorithmic aspects of strong
edge-colouring in this model. This was considered by Barrett, Istrate, Kumar, Marathe,
Thite, and Thulasidasan [1] who showed that the strong chromatic index of unit disk graphs
is efficiently 8-approximable. We revisit the problem and make some further advances.

We prove efficient 6-approximability.
We prove efficient online 8-approximability.
We show impossibility of efficient (7/6− ε)-approximation unless P=NP.

It is ∃R-complete to decide if a given graph has an embedding as a unit disk graph [12], but
both of the approximation algorithms we use are robust in the sense that they efficiently
output a valid strong edge-colouring upon the input of any abstract graph. Our contribution
is to prove that they are guaranteed to output a colouring with good approximation ratio
upon the input of a unit disk graph (regardless of any embedding).

Our work parallels and contrasts with work on the chromatic number of unit disk graphs,
for which the best approximation ratio known has remained 3 since 1991 [19]. Before stating
our main results in detail in Section 3 below, we first review some background material.
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

46:2 Approximate strong edge-colouring of unit disk graphs

2 Preliminaries

In this section, we highlight some graph theoretic notation, concepts and observations that
are relevant to our study. For other standard background, consult e.g. [7]. Given a graph
G = (V,E), the minimum degree, clique number, chromatic number and maximum degree of
G are denoted by δ(G), ω(G), χ(G) and ∆(G), respectively. The degeneracy of G is defined
as δ∗(G) = max{δ(H) |H ⊆ G} and G is called k-degenerate if δ∗(G) ≤ k. A simple but
useful set of inequalities for graph colouring is as follows. For any graph G,

ω(G) ≤ χ(G) ≤ δ∗(G) + 1 ≤ ∆(G) + 1. (1)

Note that the second inequality in (1) is algorithmic, in the sense that it follows from the
use of an efficient greedy algorithm that always assigns the least available colour, provided
we consider the vertices one by one in a suitable order, namely, according to degeneracy.
Moreover, a greedy algorithm taking any ordering uses at most ∆(G) + 1 colours.

The line graph of G is denoted L(G). The square G2 of G is the graph formed from
G by adding all edges between pairs of vertices that are connected by a 2-edge path in G.
The strong chromatic index of G (as defined above) is denoted χ′2(G). Note that χ′2(G) =
χ(L(G)2). The strong clique number ω′2(G) of G is ω(L(G)2). Obviously, (1) implies that

ω′2(G) ≤ χ′2(G) ≤ δ∗(L(G)2) + 1 ≤ ∆(L(G)2) + 1. (2)

It is worth reiterating that the following greedy algorithm efficiently generates a strong edge-
(δ∗(L(G)2) + 1)-colouring: order the edges of G by repeatedly removing from G an edge
e for which degL(G)2(e) is lowest, and then colour the edges sequentially according to the
reverse of this ordering, at each step assigning as a colour the least positive integer that does
not conflict with previously coloured edges. Again similarly, with an arbitrary ordering of
the edges the greedy algorithm produces a strong edge-(∆(L(G)2) + 1)-colouring. Our main
results will then follow from (2) by suitable bounds on δ∗(L(G)2) and ∆(L(G)2).

The strong chromatic index is a well-studied parameter in graph theory. Most notably,
Erdős and Nešetřil conjectured in the 1980s that χ′2(G) ≤ 1.25∆(G)2 for all graphs G [8].
About a decade later, Molloy and Reed [17] proved the existence of some minuscule but
fixed ε > 0 such that χ′2(G) ≤ (2− ε)∆(G)2 for all graphs G. Recently there have been im-
provements [3, 2] and extensions [11, 6], but all rely on Molloy and Reed’s original approach,
a reduction to a Ramsey-type colouring result. The conjecture remains wide open.

A graph G = (V,E) is said to be a unit disk graph if there exists a mapping p : V → R2

from its vertices to the plane such that uv ∈ E if and only if the Euclidean distance between
p(u) and p(v) is at most 1. Any explicit mapping p that certifies that G is a unit disk
graph is called an embedding. When we have an embedding p, we often make no distinction
between a vertex u and its corresponding point p(u) in the plane.

The class of unit disk graphs is popular due to its elegance and its versatility in capturing
real-world optimisation problems [5]. For example, an embedded unit disk graph may rep-
resent placement of transceivers so that circles of radius 1/2 centred at the points represent
transmission areas. Indeed, the class was originally introduced in 1980 to model frequency
assignment [10], with chromatic number one of the first studied parameters. Clark, Colbourn
and Johnson [5] published a proof that it is NP-hard to compute the chromatic number of

N. Grelier, R. de Joannis de Verclos, R. J. Kang, F. Pirot 46:3

unit disk graphs. They also showed the clique number of unit disk graphs is polynomial-time
computable. Therefore, any upper bound C on the extremal ratio

r := sup{χ(G)/ω(G) |G is a unit disk graph}

(algorithmic or not) implies an efficient C-approximation of the chromatic number: simply
output C ·ω(G). In 1991, Peeters [19] noted a simple 3-approximation: after lexicographically
ordering the vertices of G according to any fixed embedding, a basic geometric argument
proves that G is 3(ω(G)− 1)-degenerate (and then apply (1)). Since 3-colourability of unit
disk graphs is NP-complete, there is no efficient (4/3 − ε)-approximation unless P=NP.
Moreover, Malesińska, Piskorz and Weißenfels [16] exhibited some unit circular-arc graphs
that certify r ≥ 3/2. To date, the best approximation ratio known is 3.

Mahdian [14, 15] showed in 2000 that it is NP-hard to compute the strong chromatic
index, even restricted to bipartite graphs of large fixed girth. More recently, Chalermsook,
Laekhanukit and Nanongkai [4] showed that in general there is no polynomial-time (n1/3−ε)-
approximation algorithm (where n is the number of vertices in the input) unless NP=ZPP.

To the best of our knowledge, no previous work has shown NP-hardness upon restriction
to the class of unit disk graphs. Nevertheless, Barrett et al. [1] have initiated the study
of approximate strong edge-colouring for unit disk graphs. With an argument similar to
Peeters’ [19] for chromatic number, they showed that δ∗(L(G)2) ≤ 8ω′2(G) for any unit disk
graph G, which by (2) certifies that the greedy algorithm is an efficient 8-approximation
for the strong chromatic index. Kanj, Wiese and Zhang [13] noted an efficient online 10-
approximation for the strong chromatic index with essentially the same analysis as in [1].

3 Main results

Our work improves on [1] in several ways.

I Theorem 3.1. For any unit disk graph G, δ∗(L(G)2) ≤ 6(ω′2(G)− 1).

I Corollary 3.2. The greedy algorithm under a reverse degeneracy ordering of the edges is
an efficient 6-approximation for the strong chromatic index of unit disk graphs.

The proof of Theorem 3.1 is rather involved. It shows that, for any embedded unit disk
graph, some well-chosen edge-ordering certifies the required degeneracy bound. It would be
very interesting to improve on the approximation ratio of 6.

I Theorem 3.3. For any unit disk graph G, ∆(L(G)2) ≤ 8(χ′2(G)− 1).

I Corollary 3.4. The greedy algorithm is an efficient online 8-approximation1 for the strong
chromatic index of unit disk graphs.

To prove Theorem 3.3, it suffices to solve the following kissing number-type problem. Given
two intersecting unit disks C1 and C2 in R2, what is the size of a largest collection of pairwise
non-intersecting unit disks such that each one intersects C1∪C2? The corresponding problem
in R3 seems quite natural.

1 To avoid any ambiguity, in the online setting vertices are revealed one at a time and all edges between
a newly revealed vertex and previous vertices must be immediately and irrevocably assigned a colour.

EuroCG’19

46:4 Approximate strong edge-colouring of unit disk graphs

I Theorem 3.5. Strong edge-k-colourability of unit disk graphs is NP-complete, where k = 6
or k =

(
`
2
)

+ 4`+ 6 for some fixed ` ≥ 5.

I Corollary 3.6. It is NP-hard to compute the strong chromatic index of unit disk graphs.
Moreover, it cannot be efficiently (7/6− ε)-approximated unless P=NP.

For k ≤ 3, strong edge-k-colouring is polynomially solvable. It remains open to determine
the complexity when k is in {4, 5}. The proof of Theorem 3.5 borrows upon ideas in the
work of Gräf, Stumpf and Weißenfels [9], but with extra non-trivial difficulties for strong
edge-colouring.

4 Further discussion

We can state slightly more general versions of our approximation results that give a more
geometric flavour. We call a graph G = (V,E) a twin unit disk graph if there exists a
mapping p : V → R2 × R2 from its vertices to pairs of points in the plane such that

the Euclidean distance between p(u)1 and p(u)2 is at most 1 for every u ∈ V ; and
uv ∈ E if and only if the Euclidean distance between p(u)1 and p(v)1, between p(u)1
and p(v)2, between p(u)2 and p(v)1, or between p(u)2 and p(v)2 is at most 1.

Equivalently, this is the intersection class over unions of pairs of intersecting unit disks in R2.
Note that, for any unit disk graph G, both G and L(G)2 are twin unit disk graphs. Indeed for
any edge e = (p1, p2) in a unit disk graph, e can be represented by a vertex u in a twin unit
disk with p(u)1 = p1 and p(u)2 = p2. So it is NP-hard to determine the chromatic number
of twin unit disk graphs. We actually found the following stronger versions of Theorems 3.1
and 3.3, which imply efficient 6-approximation and online 8-approximation for the chromatic
number of twin unit disk graphs (by (1)).

I Theorem 4.1. For any twin unit disk graph G, δ∗(G) ≤ 6(ω(G)− 1).

I Theorem 4.2. For any twin unit disk graph G, ∆(G) ≤ 8(χ(G)− 1).

If we were able to efficiently compute or well approximate the clique number of twin unit
disk graphs or, in particular, the strong clique number of unit disk graphs, then we would
have a strong incentive to bound r′2 := sup{χ′2(G)/ω′2(G) |G is a unit disk graph}. This is
a natural optimisation problem regardless. We only know r′2 ≤ 6 by Theorem 3.1, and
r′2 ≥ 4/3 by considering the cycle C7 on seven vertices (since χ′2(C7) = 4 while ω′2(C7) = 3).
Relatedly, we believe that the following problem is worth investigating.
I Conjecture 4.3. It is NP-hard to compute the clique number of twin unit disk graphs.

5 A short proof for a 7-approximation

For expository purposes, we present a much shorter argument for a weaker approximation
than Theorem 4.1. The proof is nearly the same as what Barrett et al. [1] used for an upper
bound on the approximation ratio of 8, but with a small twist.
I Proposition 5.1. For any twin unit disk graph G, δ∗(G) ≤ 7(ω(G)− 1).

Proof. Let G = (V,E) be a twin unit disk graph. Fix any embedding p : V → R2×R2 of G
in the plane. Equipped with such an embedding, we first define an ordering of V and then
use it to certify the promised degeneracy property.

The ordering we use for this result, a lexicographic ordering, is the same used in [1].
Let (x1, y1), (x2, y2), . . . be a sequence of points in R2 defined by listing the elements of

N. Grelier, R. de Joannis de Verclos, R. J. Kang, F. Pirot 46:5

p(u)2

p(u)1

•

•

Figure 1 The seven sectors one of which must contain p(v)1 or p(v)2.

⋃
u∈V {p(u)1, p(u)2} according to the lexicographic order on R2 (i.e. (a, b) is before (c, d) if

and only if a < c or (a = c and b ≤ d)). We consider the points of this sequence in order
and add vertices at the end of our current ordering of V as follows. When considering point
(xj , yj) for some j ≥ 1, we add all vertices u ∈ V for which there is some i ≤ j such that
{p(u)1, p(u)2} = {(xi, yi), (xj , yj)}, and we do so according to the lexicographic order on R2.

It suffices to show that each vertex u ∈ V has at most 7(ω(G) − 1) neighbours that
precede it in the lexicographic ordering. To do so, we show that every such neighbour v of
u satisfies that either p(v)1 or p(v)2 is contained in one of seven unit (π/3)-sectors (each of
which is centred around either p(u)1 or p(u)2). This is enough, since the set of vertices that
map one of their twin points into one such sector induces a clique in G that includes u.

Let u ∈ V and suppose without loss of generality that p(u)1 is before p(u)2 in lexico-
graphic order. First observe that, if v ∈ V is before u in the lexicographic order, then both
p(v)1 and p(v)2 must be in the region of R2 that has smaller or equal y-coordinate com-
pared to p(u)2. If, moreover uv ∈ E, then p(v)1 or p(v)2 must lie in either a unit half-disk
centred at p(u)2 or in the unit disk centred at p(u)1. We partition the unit disk centred
at p(u)1 into six unit (π/3)-sectors such that the line segment [p(u)1, p(u)2] lies along the
boundary between two of the sectors. Note that any of the points in the two sectors incident
to [p(u)1, p(u)2] also lies in the unit disk centred at p(u)2. See Figure 1. Therefore, the
four other sectors together with the three sectors that partition the unit half-disk centred
at p(u)2 are the seven unit (π/3)-sectors that we desire. J

It turns out that for Theorem 4.1 we can take the same approach as in Proposition 5.1,
except with an ordering that is more subtle and an analysis that is substantially longer and
more difficult. Full proof details will be made available in a journal version of the manuscript
(also on arXiv).

Acknowledgments. This work was supported by a Vidi grant (639.032.614) of the Nether-
lands Organisation for Scientific Research (NWO).

EuroCG’19

46:6 Approximate strong edge-colouring of unit disk graphs

References

1 Christopher L Barrett, Gabriel Istrate, VS Anil Kumar, Madhav V Marathe, Shripad
Thite, and Sunil Thulasidasan. Strong edge coloring for channel assignment in wireless
radio networks. In Pervasive Computing and Communications Workshops, 2006, page 5.
IEEE, 2006.

2 M. Bonamy, T. Perrett, and L. Postle. Colouring Graphs with Sparse Neighbourhoods:
Bounds and Applications. ArXiv e-prints, October 2018. arXiv:1810.06704.

3 Henning Bruhn and Felix Joos. A stronger bound for the strong chromatic in-
dex. Combin. Probab. Comput., 27(1):21–43, 2018. URL: https://doi.org/10.1017/
S0963548317000244, doi:10.1017/S0963548317000244.

4 Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai. Coloring graph pow-
ers: graph product bounds and hardness of approximation. In LATIN 2014, volume 8392
of Lecture Notes in Comput. Sci., pages 409–420. Springer, Heidelberg, 2014. URL: https:
//doi.org/10.1007/978-3-642-54423-1_36, doi:10.1007/978-3-642-54423-1_36.

5 Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990.

6 Rémi de Joannis de Verclos, Ross J. Kang, and Lucas Pastor. Colouring squares of claw-free
graphs. To appear in Canadian Journal of Mathematics, 2018.

7 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Berlin, fifth edition, 2017. URL: https://doi.org/10.1007/978-3-662-53622-3, doi:
10.1007/978-3-662-53622-3.

8 Paul Erdős. Problems and results in combinatorial analysis and graph theory. In Pro-
ceedings of the First Japan Conference on Graph Theory and Applications (Hakone, 1986),
volume 72, pages 81–92, 1988. URL: https://doi.org/10.1016/0012-365X(88)90196-3,
doi:10.1016/0012-365X(88)90196-3.

9 Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs. Algo-
rithmica, 20(3):277–293, 1998.

10 W. K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, Dec 1980. doi:10.1109/PROC.1980.11899.

11 Tomáš Kaiser and Ross J. Kang. The distance-t chromatic index of graphs. Combin. Probab.
Comput., 23(1):90–101, 2014. URL: https://doi.org/10.1017/S0963548313000473,
doi:10.1017/S0963548313000473.

12 Ross J. Kang and Tobias Müller. Sphere and dot product representations of graphs.
Discrete Comput. Geom., 47(3):548–568, 2012. URL: https://doi.org/10.1007/
s00454-012-9394-8, doi:10.1007/s00454-012-9394-8.

13 Iyad A. Kanj, Andreas Wiese, and Fenghui Zhang. Local algorithms for edge colorings
in UDGs. Theoret. Comput. Sci., 412(35):4704–4714, 2011. URL: https://doi.org/10.
1016/j.tcs.2011.05.005, doi:10.1016/j.tcs.2011.05.005.

14 Mohammad Mahdian. The strong chromatic index of graphs. Master’s thesis, University
of Toronto, 2000.

15 Mohammad Mahdian. On the computational complexity of strong edge coloring. Discrete
Appl. Math., 118(3):239–248, 2002. URL: https://doi.org/10.1016/S0166-218X(01)
00237-2, doi:10.1016/S0166-218X(01)00237-2.

16 Ewa Malesińska, Steffen Piskorz, and Gerhard Weißenfels. On the chromatic number of
disk graphs. Networks, 32(1):13–22, 1998.

17 Michael Molloy and Bruce Reed. A bound on the strong chromatic index of a graph. J.
Combin. Theory Ser. B, 69(2):103–109, 1997. URL: https://doi.org/10.1006/jctb.
1997.1724, doi:10.1006/jctb.1997.1724.

http://arxiv.org/abs/1810.06704
https://doi.org/10.1017/S0963548317000244
https://doi.org/10.1017/S0963548317000244
http://dx.doi.org/10.1017/S0963548317000244
https://doi.org/10.1007/978-3-642-54423-1_36
https://doi.org/10.1007/978-3-642-54423-1_36
http://dx.doi.org/10.1007/978-3-642-54423-1_36
https://doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/0012-365X(88)90196-3
http://dx.doi.org/10.1016/0012-365X(88)90196-3
http://dx.doi.org/10.1109/PROC.1980.11899
https://doi.org/10.1017/S0963548313000473
http://dx.doi.org/10.1017/S0963548313000473
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-012-9394-8
http://dx.doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1016/j.tcs.2011.05.005
https://doi.org/10.1016/j.tcs.2011.05.005
http://dx.doi.org/10.1016/j.tcs.2011.05.005
https://doi.org/10.1016/S0166-218X(01)00237-2
https://doi.org/10.1016/S0166-218X(01)00237-2
http://dx.doi.org/10.1016/S0166-218X(01)00237-2
https://doi.org/10.1006/jctb.1997.1724
https://doi.org/10.1006/jctb.1997.1724
http://dx.doi.org/10.1006/jctb.1997.1724

N. Grelier, R. de Joannis de Verclos, R. J. Kang, F. Pirot 46:7

18 Thyagarajan Nandagopal, Tae-Eun Kim, Xia Gao, and Vaduvur Bharghavan. Achieving
MAC layer fairness in wireless packet networks. In Proceedings of the 6th Annual Interna-
tional Conference on Mobile Computing and Networking, pages 87–98. ACM, 2000.

19 René Peeters. On coloring j-unit sphere graphs. Technical report, Tilburg University, 1991.
20 Subramanian Ramanathan and Errol L Lloyd. Scheduling algorithms for multihop radio

networks. IEEE/ACM Transactions on Networking (TON), 1(2):166–177, 1993.

EuroCG’19

Recognizing embedded caterpillars with weak unit
disk contact representations is NP-hard∗

Man-Kwun Chiu†1, Jonas Cleve‡2, and Martin Nöllenburg§3

1 Institut für Informatik, Freie Universität Berlin
chiumk@zedat.fu-berlin.de

2 Institut für Informatik, Freie Universität Berlin
jonascleve@inf.fu-berlin.de

3 Institute of Logic and Computation, Technische Universität Wien
noellenburg@ac.tuwien.ac.at

Abstract
Weak unit disk contact graphs are graphs that admit a representation of the nodes as a col-
lection of internally disjoint unit disks whose boundaries touch if there is an edge between the
corresponding nodes. We provide a gadget-based reduction to show that recognizing embedded
caterpillars that admit a weak unit disk contact representation is NP-hard.

1 Introduction

A disk contact graph G = (V,E) is a graph that has a geometric realization as a collection of
internally disjoint disks mapped bijectively to the node set V such that two disks touch if
and only if the corresponding nodes are connected by an edge in E. It is well known that
the disk contact graphs are exactly the planar graphs [7]. If, however, all disks must be of
the same size, the recognition problem is NP-hard [3]. Investigating the precise boundary
between hardness and tractability for recognizing unit and weighted disk contact graphs has
been the subject of some recent work [1, 2, 4, 5]. For instance, recognizing embedded trees
admitting a unit disk contact representation (UDCR) is NP-hard [2], while the problem is
trivial for paths or stars. In this paper we study the open problem of recognizing embedded
caterpillars that have an embedding-preserving UDCR.

A caterpillar C = (V,E) is a tree whose internal nodes form a path, i.e., after removing
all leaves from C a backbone path remains. Accordingly we introduce the notions of leaf
and backbone nodes and disks of C. Klemz et al. [5] showed that for caterpillars without a
given embedding it can be decided in linear time whether a UDCR exists. Yet, if the cyclic
order of the neighbors of each node v ∈ V , i.e., the embedding of C, is specified and must be
preserved, we show that the decision problem is NP-hard, at least in the following weaker
sense. In a weak UDCR of a caterpillar we still require that the disks of any two adjacent
nodes in C must touch, yet we also allow that non-adjacent disks touch. According to this
definition we can obtain dense circle packings on a hexagonal grid with a maximum node
degree of 6, while according to the original definition of (strong) UDCRs proper gaps must
exist between any pair of non-adjacent nodes and hence if the graph is a tree all nodes have
degree at most 5. Generalizing the NP-hardness to strong UDCRs remains an open question.

∗ Research partly supported by the German Research Foundation within the collaborative DACH project
Arrangements and Drawings as DFG Project MU 3501/3-1.

† Supported by ERC StG 757609.
‡ Supported by ERC StG 757609.
§ Supported by FWF grant AJS 399.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

47:2 NP-hardness of caterpillar contact disk representations

(¬x1 ∨ x2 ∨ x3)

(x1 ∨ x2 ∨ x4)

(¬x2 ∨ x3 ∨ x4)

x1 x2 x3 x4

Figure 1 A rectilinear drawing of (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (¬x2 ∨ x3 ∨ x4). Variables
(orange) are connected to their involved clauses (blue). The caterpillar will follow the green path.

2 NP-hardness Reduction

To prove our NP-hardness result, we reduce from the NP-complete problem Planar 3-SAT.
We first give an overview and then describe the gadgets in detail. Given a Planar 3-SAT
instance φ with n variables and m clauses and its planar variable-clause graph G(φ), we
construct an embedded caterpillar of size O(m2 +nm) that admits a weak UDCR if and only
if φ is satisfiable. First, we will design a caterpillar C with a unique high-level realization
that mimics the planar drawing of the variable-clause graph G(φ) of the Planar 3-SAT
formula φ (see Figure 1). The unique realization can be obtained by locally optimal packings
of leaf disks to enforce the required grid positioning of the backbone disks (see Figure 2a).
We also call this a rigid construction. We then modify the subgraph of C near each variable
in G(φ) such that we now have two possible local realizations corresponding to the true/false
assignments in each variable gadget. The position of the realization will be propagated
through the rigid components to the involved clause gadgets such that each clause gadget
can be realized if and only if at least one of its literals is true. We obtain

I Theorem 1. The problem of deciding whether a caterpillar with a given embedding admits
a weak unit disk contact representation in the plane is NP-hard.

2.1 Planar 3-SAT
Given a Boolean formula φ in 3-CNF with n variables, its corresponding variable-clause
graph G(φ) has nodes for each variable xi and each clause cj of φ and there are edges between
a variable xi and a clause cj iff either xi or ¬xi appear in cj . Furthermore there is an
edge {xi, xi+1} for all 1 ≤ i < n plus {xn, x1}, i.e., a cycle through all variable nodes. The
Planar 3-SAT problem is to decide, given a formula φ for which G(φ) is planar, whether φ

M.-K. Chiu, J. Cleve, and M. Nöllenburg 47:3

(a) By starting with an inte-
rior node with 5 leaves this
is the graph’s only realiza-
tion (up to rotation).

(b) Five (of infinitely many) different realizations when allowing
freedom after the second interior node. Nodes which can move
around are marked. The third and fourth interior nodes together
regain rigidity. The fourth disk stays in the marked π/3 sector.

Figure 2 An interior node with six neighbors enforces rigidity, even after allowing some freedom.

Figure 3 If the lower and upper part travel in the annotated direction and cannot move vertically
apart by more than six disks, this is the only possible realization.

is satisfiable. Lichtenstein [8] showed that Planar 3-SAT is NP-complete. It is possible to
arrange all variables on a horizontal line and to use only rectilinear connectors to connect
the variables with the respective clauses in a comb-like fashion [6]. An example is shown in
Figure 1 where we added a directed path indicating how the caterpillar traverses G(φ).

2.2 Rigidity – Allowing Exactly One Realization (up to Rotation)

We first observe that we can use a locally optimal packing of unit disks to enforce the
direction in which the caterpillar continues. As observed in Figure 2a, starting with a node
with five leaves fixes the position of the next backbone-disk. Since the next backbone-disk
can have up to 3 more neighbors, adding two leaves to this node in a particular cyclic order
again fixes the next backbone-disk’s position. By repeatedly applying this construction, we
can build a rigid 3-disk-wide path on a hexagonal grid. Furthermore, as shown in Figure 2b,
even after allowing some freedom of movement, rigidity can be regained by an interior node
with four leaves and thus six neighbors. Hence, it is possible to have two rigid components
joined by a non-rigid part. Sometimes we would like to make sure that two parts of the

EuroCG’19

47:4 NP-hardness of caterpillar contact disk representations

(a) Reparenting one leaf to the next interior node gives a restrained freedom of movement. All
positions between the upper (left) and lower (center) position are possible (right).

(b) Adding a rigid structure which is aligned with the hexagonal grid removes the possibility to
realize the intermediate positions (right). Only the two extremal positions (left and center) remain.

Figure 4 A construction which allows for exactly two different realizations.

caterpillar have a certain position relative to each other. This can be achieved by introducing
a locking structure which is shown in Figure 3.

2.3 Variable Gadgets – Allowing Exactly Two Different Realizations
For the reduction we design a caterpillar and its embedding in such a way that there are
exactly two local realizations to simulate truth values in each variable gadget. As shown in
Figure 4a, flipping the connection of one leaf to the next interior node along the rigid path
allows the latter path to shift between two positions where the line passing through the two
positions forms an angle of 60 degrees relative to the direction of the backbone. However,
intermediate positions are also possible which we want to prevent. Since the movement
happens along a circular arc all intermediate positions might cause an intersection in other
grid-aligned paths. By deliberately introducing such a path, as shown in Figure 4b, we can
restrict this part of the graph to be realized in only two possible ways.

In Figure 5 we show the basic idea of the variable gadget. We assume to have a fixed
inner structure (represented by the uncolored inner hexagon) to which six different paths are
connected. Those paths are colored in alternating colors to distinguish them easily. The outer
paths can be pushed in a counter-clockwise or clockwise fashion (which can be interpreted
as x = true or x = false) which moves exactly one disk in each of the six main directions.
However, as before, intermediate positions are possible but they have to be avoided. By
making the hexagon bigger, we can use a similar construction as before to only allow the two
extremal positions in any realization of the caterpillar. The solution to this can be found
in Figure 6 which focuses on just one corner with two adjacent paths (a sketch of the full
hexagon can be seen in Figure 7). The gray part to the right is a corner of the inner hexagon
and considered fixed. If the green path is pushed to one extremal position, the blue path has
to follow so that no overlapping occurs. If the green path is in an intermediate position, the
blue hook cannot align itself with the green path without intersection such that it is still
touching the gray disk following the caterpillar.

All these ideas are combined to form a full variable gadget (see Figure 7). The caterpillar

M.-K. Chiu, J. Cleve, and M. Nöllenburg 47:5

x=true x=false x=?

Figure 5 The variable gadget idea. Assume that the white-gray hexagon in the center is somehow
fixed. Then, moving one of the colored parts in one direction forces the movement of all five others.
Again, we have two extremal positions (left and center) but also all intermediate positions (right).

Figure 6 Introducing an interlocking structure at the corner of the variable gadget prohibits all
but the two extremal positions (left and center). It also prevents any movement of the gray part.

path is assumed to be rigid when entering the gadget from the left. Each part with the same
color is completely rigid and the transitions between two colors are as in Figure 4 so that we
only have two possible local realizations. The path first traces the gray part on the lower
left which is to prevent movement of the hexagons in the up-down-direction. Afterwards the
construction from Figure 4b is used to allow exactly two positions for the following part.
The lock from Figure 3 will make sure that the corresponding part on its way back will be
together with the current part. The path moves counter-clockwise around the hexagon while
using the construction from Figure 6 for the corners and simultaneously some interlocking
path for the inner hexagon to make the interior completely rigid. When reaching the bottom
part of the outer hexagon we extend to the left to align the vertical position of the variable
with the outer structure. Then the path goes towards a clause and comes back to the same
place—if no clause is connected here, we just connect the two parts directly.

We continue on the lower side of the construction into the next hexagon. If the first
hexagon is pushed clockwise the second one is pushed counter-clockwise and vice-versa. This
means, that every second clause connector is pushed left while every other second is pushed
right. We finally finish the lower part of the construction of one variable gadget by reaching
the gray part on the lower right. Here the path enters another variable gadget and eventually
comes back to trace the upper part of the construction in the same fashion as the lower part.
To have more than six clause connections shown here, we can just repeat the first and second
hexagons arbitrarily often. Different variables are just chained to the right (cf. Figure 1).

EuroCG’19

47:6 NP-hardness of caterpillar contact disk representations

true true
true

true true
true

xi = true

to next
variable

to previous
variable

clause connector

clause connector clause connector clause connector

clause connectorclause connector

cf. Fig. 4a

cf. Fig. 6

cf. Fig. 3

false

false false
false

xi = false

to next
variable

to previous
variable

clause connector

clause connector clause connector clause connector

false

clause connector

false

clause connector

cf. Fig. 4a

cf. Fig. 6

cf. Fig. 3

Figure 7 A simplified variable gadget depiction for xi = true (top) and xi = false (bottom).
All six clause connectors are shifted by one disk to the left or right compared to the other state,
indicated by the red arrows. Repeating the last two hexagons adds more connectors. Chaining the
whole gadget gives arbitrarily many variables. Some appearances of previous figures are highlighted.

2.4 Clause Gadgets

We now have a variable gadget which moves a rigid sub-caterpillar between exactly two
possible positions on the hexagonal grid, namely left and right. With this we want to
construct a clause gadget which should be realizable if and only if at least one literal is set to
true. The idea for the clause gadget is shown in Figure 8: We have one larger part coming
from the right which has exactly one leaf missing and two smaller parts coming from the left,
each of which has one leaf protruding to the right. The three parts should be connected to
the corresponding variable gadgets such that a true value for the corresponding literal pulls
them away from the center and a false value pushes them towards the center. As we can
observe, if the right part is set to false there is room for at most one leaf of a left part but
not for both. Thus, setting all literals to false makes it impossible to realize this caterpillar,
while in all other cases a realization of the clause gadget exists.

M.-K. Chiu, J. Cleve, and M. Nöllenburg 47:7

true

true

true

false

false

true

false

true

false

true

false

false

Figure 8 The idea of the clause gadget: The two literals on the left have one bulge each whereas
the literal on the right has one notch which can accomodate either but not both bulges.

true false

true false

truefalse

Figure 9 The full clause gadget.

Each of the three parts has some missing leaves and thus causes some freedom to move
around. We need to make sure that, despite possible movement, they can be only realized
the way we intend. The result is shown in Figure 9. The long right side of the clause will be
realized as the first part—because of the one missing leaf it could be rotated by at most 60
degrees. By going all the way back with a small interlocking on the top this would lead to
self-intersection and thus the shown realization is the only one (ignoring the leaves which
could move up and down). The two paths on the left can only be realized as shown because
they would otherwise intersect with the right side or with themselves. The clause gadget is
connected like this on the upper side of the whole construction and rotated by 180 degrees on
the lower side of the construction. We finally show a full picture of one possible realization
of the abstract drawing of Figure 1 in Figure 10.

EuroCG’19

47:8 NP-hardness of caterpillar contact disk representations

tr
u
e

x
1
=
tr
u
e

fa
ls
e

x
2
=
fa
ls
e

fa
ls
e

fa
ls
e

tr
u
e

tr
u
e

fa
ls
e

tr
u
e

fa
ls
e

tr
u
e

tr
u
e
fa
ls
e

fa
ls
e

x
4
=
fa
ls
e

tr
u
e

tr
u
e

fa
ls
e

tr
u
e

x
3
=
tr
u
e

fa
ls
e

fa
ls
e

tr
u
e

Figure 10 One possible realization of the formula from Figure 1 with x1 = true, x2 = false,
x3 = true, and x4 = false. Due to space constraints the first hexagon of x4 behaves different from
the other variables. Otherwise a second hexagon would be needed.

M.-K. Chiu, J. Cleve, and M. Nöllenburg 47:9

2.5 Summary of the Reduction
Each variable gadget starts and end with a rigid part with constant size. Furthermore, each
literal needs at most two hexagons (of constant size) in its corresponding variable gadget to
have the correct connector. We have exactly 3m literals in φ and hence we need O(n+m)
many nodes for the variable gadgets. Each clause gadget has constant size and sits on its
individual level. We can have at most m levels and each of the three connectors per clause has
height and width of at most O(m) and O(n+m) respectively. Thus the clause gadgets with
the connectors need O(mn+m2) many nodes which is also the size of the full construction.

Since the variable gadgets always start the same way, a variable is set to true if and only
if the first hexagon is rotated counter-clockwise, false otherwise. Hence, by design of the
gadgets above, a formula φ is satisfiable if and only if the corresponding polynomial-size
caterpillar C(φ) can be recognized as a weak UDCR. This concludes the proof of Theorem 1.

Acknowledgments. This work was initiated during the Japan-Austria Bilateral Seminar:
Computational Geometry Seminar with Applications to Sensor Networks in Zao Onsen, Japan
in November 2018. We thank the organizers for providing a productive environment and the
other participants, especially Oswin Aichholzer, André van Renssen, and Birgit Vogtenhuber,
for the initial discussions.

References
1 Md. Jawaherul Alam, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and

Sergey Pupyrev. Balanced circle packings for planar graphs. In Christian Duncan and
Antonios Symvonis, editors, Graph Drawing (GD’14), volume 8871 of LNCS, pages 125–136.
Springer Berlin Heidelberg. URL: https://arxiv.org/abs/1408.4902, doi:10/gfvkfr.

2 Clinton Bowen, Stephane Durocher, Maarten Löffler, Anika Rounds, André Schulz, and
Csaba D. Tóth. Realization of simply connected polygonal linkages and recognition of unit
disk contact trees. In Emilio Di Giacomo and Anna Lubiw, editors, Graph Drawing and Net-
work Visualization (GD’15), volume 9411 of LNCS, pages 447–459. Springer International
Publishing. doi:10/gfvkfp.

3 Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. 9(1–2):3–24.
doi:10/dcr9m5.

4 Man-Kwun Chiu, Maarten Löffler, Marcel Roeloffzen, and Ryuhei Uehara. A hexagon-
shaped stable kissing unit disk tree. In Yifan Hu and Martin Nöllenburg, editors,
Graph Drawing and Network Visualization (GD’16), volume 9801 of LNCS, pages 628–630.
Springer International Publishing.

5 Boris Klemz, Martin Nöllenburg, and Roman Prutkin. Recognizing weighted disk contact
graphs. In Emilio Di Giacomo and Anna Lubiw, editors, Graph Drawing and Network Visu-
alization (GD’15), volume 9411 of LNCS, pages 433–446. Springer International Publishing.
URL: http://arxiv.org/abs/1509.00720, doi:10/gfvkfq.

6 Donald E. Knuth and Arvind Raghunathan. The problem of compatible representatives.
5(3):422–427. URL: http://epubs.siam.org/doi/10.1137/0405033, doi:10/fqq93q.

7 Paul Koebe. Kontaktprobleme der konformen Abbildung. 88:141–164.
8 David Lichtenstein. Planar formulae and their uses. 11(2):329–343. URL: http://epubs.

siam.org/doi/10.1137/0211025, doi:10/cgbttx.

EuroCG’19

https://arxiv.org/abs/1408.4902
http://dx.doi.org/10/gfvkfr
http://dx.doi.org/10/gfvkfp
http://dx.doi.org/10/dcr9m5
http://arxiv.org/abs/1509.00720
http://dx.doi.org/10/gfvkfq
http://epubs.siam.org/doi/10.1137/0405033
http://dx.doi.org/10/fqq93q
http://epubs.siam.org/doi/10.1137/0211025
http://epubs.siam.org/doi/10.1137/0211025
http://dx.doi.org/10/cgbttx

Simultaneous Representation of Proper and Unit
Interval Graphs
Ignaz Rutter1, Darren Strash2, Peter Stumpf1, and Michael
Vollmer3

1 Faculty of Computer Science and Mathematics, University of Passau, Germany
{rutter,stumpf}@fim.uni-passau.de

2 Department of Computer Science, Hamilton College, USA
dstrash@hamilton.edu

3 Department of Informatics, Karlsruhe Institute of Technology (KIT), Germany
michael.vollmer@kit.edu

Abstract
A simultaneous representation of graphs G1, . . . , Gk consists of a (geometric) intersection repres-
entation Ri for each graph Gi such that for each pair of graphs Gi and Gj the representations
Ri and Rj are compatible in the sense that vertices shared by Gi and Gj are represented by the
same geometric object in Ri and in Rj . An important special case is the sunflower case, where
we require that Gi∩Gj yields the same shared graph S for each i 6= j. While the existence of sim-
ultaneous interval representations for k = 2 can be tested efficiently, testing it for non-sunflower
graphs with k not fixed is NP-complete. We give efficient algorithms for testing the existence of
simultaneous proper and unit interval representations for sunflower graphs with k not fixed.

1 Introduction

A fundamental problem in the area of intersection graphs is the recognition problem, where
the task is to decide whether a given graph G admits a particular type of (geometric)
intersection representation. The simultaneous representation problem is a generalization of
the recognition problem which asks for a simultaneous graph G = (G1, . . . , Gk) whether it
admits a simultaneous geometric representation R = (R1, . . . , Rk).

Simultaneous representations have first been studied in the context of graph embeddings
where the goal is to embed each simultaneous graph without edge crossings while any shared
vertices have the same coordinates in all embeddings; see [1] for a survey. The notion of
simultaneous representation of general intersection graph classes was introduced by Jampani
and Lubiw [9]. They gave an O(n2 logn) recognition algorithm for simultaneous interval
graphs with k = 2 [8]. Bläsius and Rutter later improved the running time to linear [2]. Bok
and Jedličková very recently showed that recognizing simultaneous non-sunflower interval
graphs with k not fixed is NP-complete [3]. The problem is open in the sunflower case.

Contribution. We settle these problems with k not fixed for simultaneous proper and unit
interval graphs – those graphs with an interval representation where no interval properly
contains another and where all intervals have unit length, respectively. For the sunflower
case, we provide efficient recognition algorithms. The running time for proper interval graphs
is linear, while for the unit case it is O(|V | · |E|) where V and E are the set of vertices and
edges in the union of the sunflower graphs, respectively. For the non-sunflower case, we
prove NP-completeness. The reductions are similar to the simultaneous independent work
of Bok and Jedličková for simultaneous interval graphs [3].

48:2 Simultaneous Representation of Proper and Unit Interval Graphs

s1 s2
d

ba c

Figure 1 A simultaneous proper interval representation of a sunflower graph G = (P5, P3) without
simultaneous unit interval representation (P5 green dashed, P3 red dotted, P5 ∩ P3 black bold).

2 Preliminaries

All graphs in this paper are undirected. An interval representation R = {Iv | v ∈ V } of a
graph G = (V,E) associates with each vertex v ∈ V an interval Iv = [x, y] ⊂ R such that
for each pair of vertices u, v ∈ V we have Iu ∩ Iv 6= ∅ ⇔ uv ∈ E. An interval representation
R is proper if no interval properly contains another one, and it is unit if all intervals have
length 1. A graph is a (proper/unit) interval graph if and only if it admits a (proper/unit)
interval representation. It is well-known that proper and unit interval graphs are the same
graph class. However, the simultaneous unit interval graphs are a strict subclass of the
simultaneous proper interval graphs; see Figure 1.

We use the well-known characterization of proper interval graphs using straight enumer-
ations [6]. Two adjacent vertices u, v ∈ V are indistinguishable if we have N [u] = N [v]
where N [u] = {v : uv ∈ E(H)} ∪ {u} is the closed neighborhood. Being indistinguishable is
an equivalence relation and we call the equivalence classes blocks of G. Two blocks B, B′ are
adjacent if and only if uv ∈ E for (any) u ∈ B and v ∈ B′. A linear ordering σ of the blocks
of G is a straight enumeration of G if for every block, the block and its adjacent blocks
are consecutive in σ. A proper interval representation R defines a straight enumeration
σ(R) by ordering the intervals by their starting points and grouping together the blocks.
Conversely, for each straight enumeration σ, there exists a corresponding representation R
with σ = σ(R) [6]. A fine enumeration of a graph H is a linear ordering η of V (H) such
that for u ∈ V (H) the closed neighborhood N [u] is consecutive in η.

I Proposition 2.1 ([11, 6, 7]). For a graph G the following statements are equivalent: (i) G
is a proper interval graph, (ii) G has a straight enumeration, (iii) G has a fine enumeration.
Also, for a connected proper interval graph its straight enumeration is unique up to reversal.

In the following we only consider sunflower graphs G = (G1, . . . , Gk) with shared graph S.
Note that it is necessary that S is an induced subgraph of each input graphGi. Also note that
G admits a simultaneous (proper/unit) interval representation if and only if each component
of its union graph

⋃k
i=1 Gi does. We hence restrict our attention to sunflower graphs that

are connected in the sense that their union graph is connected.

3 Sunflower Proper Interval Graphs

Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES). By Proposi-
tion 2.1 each Gi has at least one fine enumeration. If there are fine enumerations σ1, . . . , σk
of G1, . . . , Gk that coincide on VS , then they induce a fine enumeration σS of S. We can
then find a proper interval representation of S corresponding to σS that can be extended
to proper interval representations of G1, . . . , Gk in linear time [10]. Otherwise there is no
simultaneous proper interval representation. Using PQ-trees [5, 4], the existence of such an
ordering σS can be tested in linear time.

I Theorem 3.1. Given a sunflower graph G = (G1, . . . , Gk), it can be tested in linear time
whether G admits a simultaneous proper interval representation.

I. Rutter, D. Strash, P. Stumpf, M. Vollmer 48:3

A B C

Figure 2 Simultaneous proper interval representation of G1 (green solid), G2 (red dotted), G3

(blue dashed) with shared graph S (black bold). S has three blocks A, B, C. We denote the
component of Gi containing a block D by CiD. C2

A, C2
B , C3

B , C2
C are loose. C2

A is independent.
(C2

B , C
3
B) is a reversible part. (C2

C) is not a reversible part, since C1
C is aligned at C and not loose.

Next we characterize all simultaneous proper interval representations of a sunflower
graph. Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES) and
for each Gi ∈ G let σi be a straight enumeration of Gi. We call the tuple (σ1, . . . , σk) a
simultaneous enumeration if for any i, j ∈ {1, . . . , k} and u, v ∈ VS the blocks Bi(u), Bi(v)
and Bj(u), Bj(v) of Gi and Gj containing u, v are not ordered differently by σi and σj , i.e.,
we do not have (Bi(u), Bi(v)) ∈ σi and (Bj(v), Bj(u)) ∈ σj or vice versa.

I Theorem 3.2. Let G = (G1, . . . , Gk) be a sunflower graph. There exists a simultaneous
proper interval representation R = (R1, . . . , Rk) of G if and only if there is a simultaneous
enumeration (σ1, . . . , σk) of G. If (σ1, . . . , σk) exists, there also exists a simultaneous proper
interval representation R = (R1, . . . , Rk) with (σ(R1), . . . , σ(Rk)) = (σ1, . . . , σk).

It turns out there is a unique straight enumeration of S induced by all simultaneous
proper interval representations of G (up to reversal) if G is connected. For the following
definitions see Figure 2. Let C be a component of a graph G in G. We call C loose if all
shared vertices in C are in the same block of S. Reversal of loose components is the only
“degree of freedom” among simultaneous enumerations, besides full reversal. We say two
vertices u, v ∈ VS align C if they are in different blocks of C. We call C independent if it is
loose and not aligned by any two vertices of S.

We say C is aligned at a block B of S if it is aligned by two vertices u, v in B. Any
two components aligned at the same block can not be reversed independently. For each
block B of S, let C(B) be the connected components among graphs in G aligned at B. If
all components in C(B) are loose, we call it a reversible part. Note that a reversible part
contains at most one component of each graphGi. Let (σ1, . . . , σk) and (σ′

1, . . . , σ
′
k) be tuples

of straight enumerations of G1, . . . , Gk. We say (σ′
1, . . . , σ

′
k) is obtained from (σ1, . . . , σk)

by reversing reversible part C(B) if σ′
1, . . . , σ

′
k are obtained by reversal of all components in

C(B). We characterize the simultaneous enumerations of G as follows.

I Theorem 3.3. Let G = (G1, . . . , Gk) be a connected sunflower graph with simultaneous
enumeration ρ. Then ρ′ is a simultaneous enumeration of G if and only if ρ′ can be obtained
from ρ or its reversal ρr by reversing independent components and reversible parts.

4 Sunflower Unit Interval Graphs

We now characterize for a sunflower graph G = (G1, . . . , Gk) with shared graph S the simul-
taneous enumerations (ζ1, . . . , ζk) that can be realized by a simultaneous unit interval rep-
resentation (R1, . . . , Rk), in the sense that σ(Ri) = ζi for i ∈ {1, . . . , k}. For i ∈ {1, . . . , k}
let (Vi, Ei) = Gi. Let further V = V1 ∪ · · · ∪Vk. For a straight enumeration η of some graph
H we say for u, v ∈ V (H) that u <η v if u is in a block before v, and we say u ≤η v if u = v

or u <η v. We call ≤η the partial order on V (H) corresponding to η. Note that for distinct
u, v in the same block we have neither u >η v nor u ≤η v. For convenience, we write u ≤i v
and u <i v instead of u ≤ζi

v and u <ζi
v, respectively.

EuroCG’19

48:4 Simultaneous Representation of Proper and Unit Interval Graphs

s1 a b s2
G1 G2

s1 d f s2 s1 s2
c

d

c e

fe

a b

Figure 3 A sunflower graph G = (G1, G2) with shared vertices s1, s2. In the corresponding
simultaneous enumeration ζ we have the (s1, s2)-chain C = (s1, a, b, c, s2) and the (s1, s2)-bar
B = (s1, d, e, f, s2), both of size 5. Hence, G has conflict (C,B) for ζ.

G1

G2

v w

u x

�

(a)

v w

u x

⇓

(b)

v w

u x

⇑

(c)

v w

u x

⇒

(d)

v w

u x

⇐

(e)

Figure 4 Two graphs G1, G2 with V1 = {v, w}, V2 = {u, x}, u ≤η x, and v ≤η w. In Figure 4a
we have a forbidden configuration with (i) vw ∈ E1, (ii) ux /∈ E2, (iii) v ≤η u, and (iv) x ≤η w. If
three of these four conditions are met, we can conclude that the remaining one is false. Namely, in
Figure 4b, 4c, 4d and 4e, we conclude ux ∈ E2, vw /∈ E1, w <η x, and u <η v, respectively. We
use arrows to represent a partial order between two vertices. We draw them green solid if they are
adjacent, red dotted if they are non-adjacent in some graph Gi, and black dashed otherwise.

Let u, v ∈ VS with u 6= v. A (u, v)-chain of size m in (Gi, ζi) is a sequence (u =
c1, . . . , cm = v) of vertices in Vi with c1 <i · · · <i cm that corresponds to a path in Gi. A
(u, v)-bar between u and v of size m in (Gi, ζi) is a sequence (u = b1, . . . , bm = v) of vertices
in Vi with b1 <i · · · <i bm that corresponds to an independent set in Gi; see Figure 3.

If there is a (u, v)-chain C in Gi of size ` ≥ 2 and a (u, v)-bar B in (Gj , ζj) of size at
least `, then we say that (C,B) is a (chain-bar-)conflict and that G has conflict (C,B) for ζ.
Note that one can reduce the size of a (u, v)-bar by removing intervals between u, v. Thus,
we can always assume that in a conflict, we have a bar and a chain of the same size ` ≥ 2.

Assume G has a simultaneous unit interval representation realizing ζ. If a graph G ∈ G
has a (u, v)-chain of size ` ≥ 2, then Iu, Iv have a distance smaller than ` − 2. On the
other hand, if a graph G ∈ G has a (u, v)-bar of size `, then Iu, Iv have a distance greater
than ` − 2. Hence, sunflower graph G has no conflict. The absence of conflicts is not only
necessary, but also sufficient.

I Theorem 4.1. A sunflower graph G with simultaneous enumeration ζ has a simultaneous
unit interval representation that realizes ζ if and only if it has no conflict for ζ.

Proof Sketch. Let α? be the union of the partial orders on V1, . . . , Vk corresponding to
ζ1, . . . , ζk. We set α to be the transitive closure of α?, meaning α is the partial order on
V induced by ζ. After identifying certain “indistinguishable” vertices of V , we can assume
that α is a linear ordering on V1, . . . , Vk. Assuming there is no conflict, we then construct
a simultaneous unit interval representation R. To this end, we first extend α to a linear
ordering on V and thus of the interval starting points. Afterwards, we decide for every
pair u, v of vertices from different graphs whether Iu, Iv intersect to obtain an order of the
interval end points. Note that each partial order α|Vi

already is a fine enumeration of Gi.
All necessary extensions of α and decisions for adjacencies between vertices of different

graphs arise from one forbidden configuration; see Figure 4a. We first go from right to left
and extend α according to Figure 4e. In that run only necessary extensions are made. The
key idea in that run is that the extensions of α correspond to extensions of pairs of chains and
bars of equal size with a shared end to the right. If the forbidden configuration is obtained,
then such a chain-bar pair also shares the second end and therefore yields a conflict. With

I. Rutter, D. Strash, P. Stumpf, M. Vollmer 48:5

this preparation, we can then go from left to right and greedily extend α to a linear ordering
τ that respects the implication of Figure 4e. As such τ avoids the forbidden configuration.
We finally use τ to decide adjacency for every pair of vertices according to Figure 4b and
thereby still avoiding the forbidden configuration. We obtain a graph H that has G1, . . . , Gk
as induced subgraphs and for which τ is a fine enumeration. By Proposition 2.1H is a proper
and thus a unit interval graph. A unit interval representation of H induces a simultaneous
unit interval representation of G = (G1, . . . , Gk). J

We now give a recognition algorithm for sunflower unit interval graphs. By Theorem 3.1
we obtain a simultaneous enumeration ζ of G, unless G is not even a simultaneous proper
interval graph. By Theorem 4.1 we need to decide if G has a simultaneous enumeration η
without conflicts. By Theorem 3.3, if it exists, η results from ζ by reversing reversible parts
and independent components. We formulate this as a 2-SAT formula with a variable for
each reversible part and for each independent component that encodes its orientation.

For each pair of shared vertices u, v we formulate clauses that exclude conflicts for u,v.
The minimal (u, v)-chains for Gi are independent of reversals. The size of a largest (u, v)-bar
in Gi only depends on the orientations of the connected components C and D containing
u and v, respectively, while components in-between always contribute their maximum inde-
pendent set regardless of whether they are reversed. For each of the at most four relevant
combinations of orientations we check whether it produces a conflict. In that case we add
a clause that forbids that combination (note that the orientations of C and D are determ-
ined by one reversible part or independent component each, if they are loose at all). The
2-SAT formula F contains these clauses for all shared vertex pairs and all graphs Gi. By
construction F has a solution if and only if G is a simultaneous unit interval graph.

I Theorem 4.2. Given a sunflower graph G = (G1, . . . , Gk), we can decide in O(|V | · |E|)
time, whether G is a simultaneous unit interval graph, where (V,E) = G1 ∪ · · · ∪Gk.

References
1 T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embedding of planar graphs.

CoRR, abs/1204.5853, 2012.
2 T. Bläsius and I. Rutter. Simultaneous PQ-ordering with applications to constrained em-

bedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46, 2015.
3 J. Bok and N. Jedličková. A note on simultaneous representation problem for interval and

circular-arc graphs. arXiv preprint arXiv:1811.04062, 2018.
4 K. S. Booth. PQ Tree Algorithms. PhD thesis, University of California, Berkeley, 1975.
5 K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,

and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences,
13(3):335–379, 1976.

6 X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper circular-
arc graphs and proper interval graphs. SIAM J. Comput., 25(2):390–403, 1996.

7 P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and repres-
enting proper interval graphs. SIAM J. Comput., 31(1):289–305, 2002.

8 K. R. Jampani and A. Lubiw. Simultaneous interval graphs. In O. Cheong, K.-Y. Chwa,
and K. Park, editors, Algorithms and Computation: 21st International Symposium, ISAAC
2010, Jeju Island, Proceedings, Part I, pages 206–217. Springer, 2010.

9 K. R. Jampani and A. Lubiw. The simultaneous representation problem for chordal,
comparability and permutation graphs. Journal of Graph Algorithms and Applications,
16(2):283–315, 2012.

EuroCG’19

48:6 Simultaneous Representation of Proper and Unit Interval Graphs

10 P. Klavík, J. Kratochvíl, Y. Otachi, I. Rutter, T. Saitoh, M. Saumell, and T. Vyskočil.
Extending partial representations of proper and unit interval graphs. Algorithmica,
77(4):1071–1104, Apr 2017.

11 F. S. Roberts. Representations of indifference relations. PhD thesis, Department of Math-
ematics, Stanford University, 1968.

Packing Disks into Disks with Optimal
Worst-Case Density
Sándor P. Fekete1, Phillip Keldenich1, and Christian Scheffer1

1 Department of Computer Science, TU Braunschweig, Germany
{s.fekete,p.keldenich,c.scheffer}@tu-bs.de

Abstract
We provide a tight result for a fundamental problem arising from packing disks into a circular
container: The critical density of packing disks in a disk is 1/2. This implies that any set of (not
necessarily equal) disks of total area δ ≤ 1/2 can always be packed into a disk of area 1; on the
other hand, for any ε > 0 there are sets of disks of area 1/2 + ε that cannot be packed. The
proof uses a careful manual analysis, complemented by a minor automatic part that is based on
interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a
blackbox lemma for the analysis of recursive packing algorithms.

An longer version will appear in the 35th Symposium on Computational Geometry [3].

1 Introduction

Deciding whether a set of disks can be packed into a given container is a fundamental
geometric optimization problem that has attracted considerable attention; see below for
references. Disk packing also has numerous applications in engineering, science, operational
research and everyday life, e.g., for the design of digital modulation schemes [19], packaging
cylinders [1, 8], bundling tubes or cables [24, 22], the cutting industry [23], or the layout of
control panels [1], or radio tower placement [23]. Further applications stem from chemistry
[25], foresting [23], and origami design [13].

Like many other packing problems, disk packing is typically quite difficult; what is more,
the combinatorial hardness is compounded by the geometric complications of dealing with
irrational coordinates that arise when packing circular objects. This is reflected by the
limitations of provably optimal results for the optimal value for the smallest sufficient disk
container (and hence, the densest such disk packing in a disk container), a problem that was
discussed by Kraviz [12] in 1967: Even when the input consists of just 13 unit disks, the
optimal value for the densest disk-in-disk packing was only established in 2003 [7], while the
optimal value for 14 unit disks is still unproven. The enormous challenges of establishing
densest disk packings are also illustrated by a long-standing open conjecture by Erdős and
Oler from 1961 [18] regarding optimal packings of n unit disks into an equilateral triangle,
which has only been proven up to n = 15. For other examples of mathematical work on
densely packing relatively small numbers of identical disks, see [9, 15, 5, 6], and [20, 14, 10]
for related experimental work. Many authors have considered heuristics for circle packing
problems, see [23, 11] for overviews of numerous heuristics and optimization methods. The
best known solutions for packing equal disks into squares, triangles and other shapes are
continuously published on Specht’s website http://packomania.com [21].

For deciding whether a set of not necessarily equal disks can be packed into a square
container, Demaine, Fekete, and Lang in 2010 [2] gave a proof of NP-hardness by using a
reduction from 3-Partition, so we cannot expect that there is a deterministic polynomial-
time algorithm for this problem.

The related problem of packing square objects has also been studied for a long time.
Already in 1967, Moon and Moser [16] proved that it is possible to pack a set of squares
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

http://packomania.com

49:2 Worst-Case Optimal Disks Packing into Disks

Figure 1 (1) An instance of critical density for packing squares into a square. (2) An example
packing produced by Moon and Moser’s shelf-packing. (3) An instance of critical density for packing
disks into a square. (4) An example packing produced by Morr’s Split Packing.

into the unit square in a shelf-like manner if their combined area, the sum of all squares’
areas, does not exceed 1

2 . At the same time, 1
2 is the largest upper area bound one can

hope for, because two squares larger than the quarter-squares shown in Fig. 1 cannot be
packed. We call the ratio between the largest combined object area that can always be
packed and the area of the container the problem’s critical density, or worst-case density.
The equivalent problem of establishing the critical packing density for disks in a square was
posed by Demaine, Fekete, and Lang [2] and resolved by Morr, Fekete and Scheffer [17, 4].
Making use of a recursive procedure for cutting the container into triangular pieces, they
proved that the critical packing density of disks in a square is π

3+2
√

2 ≈ 0.539. It is quite
natural to consider the analogous question of establishing the critical packing density for
disks in a disk. However, the shelf-packing approach of Moon and Moser [16] uses the fact
that rectangular shapes of the packed objects fit well into parallel shelves, which is not the
case for disks; on the other hand, the split packing method of Morr et al. [17, 4] relies on
recursively splitting triangular containers, so it does not work for a circular container that
cannot be partitioned into smaller circular pieces.

1.1 Results
We prove that the critical density for packing disks into a disk is 1/2: Any set of not
necessarily equal disks with a combined area of not more than half the area of a circular
container can be packed; this is best possibly, as for any ε > 0 there are instances of total
area 1/2 + ε that cannot be packed. See Fig. 2 for the critical configuration.

Our proofs are constructive, so they can also be used as a constant-factor approximation
algorithm for the smallest-area container of a given shape in which a given set of disks can
be packed. Due to the higher geometric difficulty of fitting together circular objects, the
involved methods are considerably more complex than those for square containers. We make
up for this difficulty by developing more intricate recursive arguments, including appropriate
and powerful tools based on interval arithmetic.

2 A Worst-Case Optimal Algorithm

I Theorem 1. Every set of disks with total area π
2 can be packed into the unit disk O with

radius 1. For any ε > 0, there is a set of disks with total area π
2 + ε that cannot be packed

into O. In other words, the worst-case packing density for packing disks into a disk is 1
2 .

The worst case consists of two disks D1, D2 with radius 1
2 , see Fig. 2. Increasing the area

of D1 by ε yields a set of disks which cannot be packed. The total area of these two disks is

S. P. Fekete and P. Keldenich and C. Scheffer 49:3

Figure 2 (1) A critical instance that allows a packing density no better than 1
2 . (2) An example

packing produced by our algorithm.

π
4 + π

4 = π
2 .

In the remainder of Section 2, we give a constructive proof for Theorem 1. Before we
proceed to describe our algorithm in Section 2.4, we give some definitions and describe Disk
Packing and Ring Packing as two subroutines of our algorithm.

2.1 Preliminaries for the Algorithm
We make use of the following definitions, see Fig. 3.

w

R
r

m

1

r
in

rout

Figure 3 A ring R ⊂ O with width w and a disk with its corresponding tangents.

For rout > rin ≥ 0 and a container disk C such that rout ≤ 2rin, we define a ring
R := R[rout, rin] of C as the closure of rout \ rin, see Fig. 3. If rin > 0, the boundary of R
consists of two connected components. The inner boundary is the component that lies closer
to the center m of C and the outer boundary is the other component. The inner radius and the
outer radius of R are the radius of the inner boundary and the radius of outer boundary. Each
ring considered by our algorithm has one of three states {open,closed, full}. Initially,
after its construction by the algorithm, each ring is open.

Let r be a disk inside a container disk C. The two tangents of r are the two rays starting

EuroCG’19

49:4 Worst-Case Optimal Disks Packing into Disks

in the center of C and touching the boundary of r. We say that a disk lies adjacent to rout
when the disk is touching the boundary of rout from the inside of rout.

2.2 Disk Packing: A Subroutine

C
2

C

α β

2T

Figure 4 Disk Packing places disks in decreasing order of radius into a container C adjacent to
the boundary of C.

Consider a container disk C, a set S of already packed disks that overlap with C, but are
not necessarily contained in it, and another disk ri to be packed; see Fig. 4. We pack ri into
C adjacently to the boundary of C as follows: Let α be the maximal polar angle realized by
the center of any disk from S. We choose the center of ri such that it realizes the smallest
possible polar angle β ≥ α such that ri touches the outer boundary of C from the interior of
C without overlapping another disk from S, see Fig. 4. If ri cannot be packed into C, we say
that ri does not fit into R.

Let 0 < T ≤ 1
4 , called threshold. Disk Packing considers the disks in decreasing order of

radius and packs each disk ri adjacent to the previous disk ri−1 and the boundary of C until
ri does not fit into C or ri < T .

Figure 5 Ring Packing packs disks into a ring R[rout, rin], alternating adjacent to the outer and
to the inner boundary of R.

S. P. Fekete and P. Keldenich and C. Scheffer 49:5

2.3 Ring Packing: A Subroutine
Consider a ring R := R[rout, rin] with inner radius rin and outer radius rout, a (possibly
empty) set S of already packed disks that overlap with R, and another disk ri to be packed,
see Fig. 5. We pack ri into R adjacent to the outer (inner) boundary of R as follows: Let α
be the maximal polar angle realized by a midpoint of a disk from S. We choose the midpoint
of ri realizing a smallest possible polar angle β ≥ α such that ri touches the outer (inner)
boundary of R from the interior of R without overlapping another disk from S. If ri cannot
be packed into R, we say that ri does not fit into R (adjacent to the outer (inner) boundary).

Ring Packing iteratively packs disks into R alternating adjacent to the inner and outer
boundary. If the current disk ri does not fit into R, Ring Packing stops and we declare R to
be full. If ri−1 and ri could pass each other in R, i.e., the sum of the diameters of ri−1 and
ri are smaller than the width of R, Ring Packing stops and we declare R to be closed.

2.4 Description of the Algorithm

C

r1

r2

(b)(a)

r3 r4

md

r

T ← r−d
4

C

Figure 6 (a): If r1, r2 ≥ 0.495C, Disk Packing packs r1, r2 into C. We update the current container
disk C as the largest disk that fits into C and recurse on C with r3, . . . , rn. (b): Determining the
threshold T for disks packed by Disk Packing.

Our algorithm creates rings. A ring only exists after it is created. We stop packing at
any point in time when all disks are packed. Furthermore, we store the current threshold T
for Disk Packing and the smallest inner radius rmin of a ring created during the entire run of
our algorithm. Initially, we set T ← 1, rmin ← 1. Our algorithm works in five phases:

Phase 1 - Recursion: If r1, r2 ≥ 0.495C, apply Disk Packing to r1, r2, update C as the
largest disk that fits into C and T as the radius of C, and recurse on C, see Fig. 6(a).
Phase 2 - Disk Packing: Let r be the radius of C. If the midpoint m of C lies inside a
packed disk ri, let d be the minimal distance of m to the boundary of ri, see Fig. 6(b).
Otherwise, we set d = 0.
We apply Disk Packing to the container disk C with the threshold T ← r−d

4 .
Phase 3 - Ring Packing: We apply Ring Packing to the ring R := R[rout, rin] deter-
mined as follows: Let ri be the largest disk not yet packed. If there is no open ring inside
C, we create a new open ring R[rout, rin] ← R[rmin, rmin − 2ri]. Else, let R[rout, rin] be
the open ring with the largest inner radius rin.
Phase 4 - Managing Rings: Let R[rout, rin] be the ring filled in Phase 3. We declare
R[rout, rin] to be closed and proceed as follows: Let ri be the largest disk not yet packed.

EuroCG’19

49:6 Worst-Case Optimal Disks Packing into Disks

If ri and ri+1 can pass one another inside R[rout, rin], i.e., if 2ri + 2ri+1 ≤ rout − rin, we
create two new open rings R[rout, rout − 2ri] and R[rout − 2ri, rin].
Phase 5 - Continue: If there is an open ring, we go to Phase 3. Otherwise, we set C as
the largest disk not covered by created rings, set T as the radius of C, and go to Phase 2.

3 Analysis of the Algorithm

The analysis uses an intricate combination of manual analysis and an automated analysis
based on interval arithmetic. For lack of space, details are omitted. See the appendix for full
details.

4 Hardness

It is straightforward to see that the hardness proof for packing disks into a square can be
adapted to packing disks into a disk, as follows.

I Theorem 2. It is NP-hard to decide whether a given set of disks fits into a circular
container.

The proof is completely analogous to the one by Demaine, Fekete, and Lang in 2010 [2],
who used a reduction from 3-Partition. Their proof constructs a disk instance which
first forces some symmetrical free “pockets” in the resulting disk packing. The instance’s
remaining disks can then be packed into these pockets if and only if the related 3-Partition
instance has a solution. Similar to their construction, we construct a symmetric triangular
pocket by using a set of three identical disks of radius

√
3

2+
√

3 that can only be packed into a
unit disk by touching each other. Analogous to [2], this is further subdivided into a sufficiently
large set of identical pockets. The remaining disks encode a 3-Partition instance that can
be solved if and only if the disks can be partitioned into triples of disks that fit into these
pockets.

c

pi1 pi2

pi3

Ci1
Ci2

Ci3

Figure 7 Elements of the hardness proof: (1) A symmetric triangular pocket from [2], allowing
three disks with centers pi1 , pi2 , pi3 to be packed if and only if the sum of the three corresponding
numbers from the 3-Partition instance is small enough. (2) Creating a symmetric triangular pocket
in the center by packing three disks of radius

√
3

2+
√

3 and the adapted argument from [2] for creating
a sufficiently large set of symmetric triangular pockets.

S. P. Fekete and P. Keldenich and C. Scheffer 49:7

5 Conclusions

We have established the critical density for packing disks into a disk, based on a number of
advanced techniques that are more involved than the ones used for packing squares into a
square or disks into a square. Numerous questions remain, in particular the critical density
for packing disks of bounded size into a disk or the critical density of packing squares into a
disk. These remain for future work; we are optimistic that some of our techniques will be
useful.

References
1 I. Castillo, F. J. Kampas, and J. D. Pintér. Solving circle packing problems by global opti-

mization: numerical results and industrial applications. European Journal of Operational
Research, 191(3):786–802, 2008.

2 E. D. Demaine, S. P. Fekete, and R. J. Lang. Circle packing for origami design is hard. In
Origami5: 5th International Conference on Origami in Science, Mathematics and Educa-
tion, AK Peters/CRC Press, pages 609–626, 2011.

3 S. P. Fekete, P. Keldenich, and C. Scheffer. Packing disks into disks with optimal worst-
case density. In Proceedings of the 35th Symposium on Computational Geometry, 2019. To
appear.

4 S. P. Fekete, S. Morr, and C. Scheffer. Split packing: Algorithms for packing circles with
optimal worst-case density. Discrete & Computational Geometry, 2018.

5 F. Fodor. The densest packing of 19 congruent circles in a circle. Geometriae Dedicata,
74:139–145, 1999.

6 F. Fodor. The densest packing of 12 congruent circles in a circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 41:401–409, 2000.

7 F. Fodor. The densest packing of 13 congruent circles in a circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 44:431–440, 2003.

8 H. J. Fraser and J. A. George. Integrated container loading software for pulp and paper
industry. European Journal of Operational Research, 77(3):466–474, 1994.

9 M. Goldberg. Packing of 14, 16, 17 and 20 circles in a circle. Mathematics Magazine,
44:134–139, 1971.

10 R. Graham, B. Lubachevsky, K. Nurmela, and P. Östergøard. Dense packings of congruent
circles in a circle. Discrete Mathematics, 181:139–154, 1998.

11 M. Hifi and R. M’hallah. A literature review on circle and sphere packing problems: models
and methodologies. Advances in Operations Research, 2009. Article ID 150624.

12 S. Kravitz. Packing cylinders into cylindrical containers. Mathematics Magazine, 40:65–71,
1967.

13 R. J. Lang. A computational algorithm for origami design. Proceedings of the Twelfth
Annual Symposium on Computational Geometry (SoCG), pages 98–105, 1996.

14 B. Lubachevsky and R. Graham. Curved hexagonal packings of equal disks in a circle.
Discrete & Computational Geometry, 18:179–194, 1997.

15 H. Melissen. Densest packing of eleven congruent circles in a circle. Geometriae Dedicata,
50:15–25, 1994.

16 J. W. Moon and L. Moser. Some packing and covering theorems. In Colloquium Mathe-
maticae, volume 17, pages 103–110. Institute of Mathematics, Polish Academy of Sciences,
1967.

17 S. Morr. Split packing: An algorithm for packing circles with optimal worst-case density. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 99–109, 2017.

EuroCG’19

49:8 Worst-Case Optimal Disks Packing into Disks

18 N. Oler. A finite packing problem. Canadian Mathematical Bulletin, 4:153–155, 1961.
19 R. Peikert, D. Würtz, M. Monagan, and C. de Groot. Packing circles in a square: A review

and new results. In Proceedings of the 15th IFIP Conference, pages 45–54, 1992.
20 G. Reis. Dense packing of equal circles within a circle. Mathematics Magazine, issue

48:33–37, 1975.
21 E. Specht. Packomania, 2015. http://www.packomania.com/.
22 K. Sugihara, M. Sawai, H. Sano, D.-S. Kim, and D. Kim. Disk packing for the estimation of

the size of a wire bundle. Japan Journal of Industrial and Applied Mathematics, 21(3):259–
278, 2004.

23 P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. García. New
Approaches to Circle Packing in a Square. Springer US, 2007.

24 H. Wang, W. Huang, Q. Zhang, and D. Xu. An improved algorithm for the packing of
unequal circles within a larger containing circle. European Journal of Operational Research,
141(2):440–453, sep 2002.

25 D. Würtz, M. Monagan, and R. Peikert. The history of packing circles in a square. Maple
Technical Newsletter, page 35–42, 1994.

Dynamic Disk Connectivity∗

Alexander Kauer1 and Wolfgang Mulzer1

1 Institut für Informatik, Freie Universität Berlin, Berlin, Germany
[akauer, mulzer]@inf.fu-berlin.de

Abstract
Let 0 < ϕ ≤ 1 be a parameter. We present a data structure for maintaining the connected
components of the intersection graph of a set of n disks with radii in [ϕ, 1]. The data structure
allows inserting or deleting a disk in O(1

ϕ2α(n) log10 n) amortized expected time and querying two
disks for connectivity in O(logn) amortized time, where α(n) is the inverse Ackermann function.
It requires O(1

ϕn log3 n) expected space.

1 Introduction

Determining the connectivity in graphs is a fundamental algorithmic problem. The dynamic
version where edges can be inserted or deleted is reasonably well understood [3–5, 9, 11],
with data structures that support updates and queries for the connectivity of two vertices
in polylogarithmic time. However, the case of vertex updates seems significantly harder,
as a single update can have a larger impact. Chan et al. [2, Theorem 1] presented a data
structure allowing vertex updates in Õ(m2/3) amortized time and queries in Õ(m1/3) time,
where m is the number of possible edges of the graph that need to be known in advance.

A special case is dynamic connectivity of geometric intersection graphs. The vertices of
such graphs are geometric objects of a certain type and two vertices share an edge if and
only if the respective objects intersect. Connectivity queries now model reachability queries
in sensor/IoT networks, road networks, and similar geometrically defined networks. Due to
the restricted nature of the possible graphs, faster solutions may now be within reach. On
the other hand, we must perform additional work to find the edges affected by an update.

Chan et al. [2, Theorem 5] also gave a general method for various geometric objects with
slightly sub-linear update times and sub-linear query times. For disks with radii in [ϕ, 1],
0 < ϕ ≤ 1, Kaplan et al. [7] described a faster data structure with O((1

ϕ)22α(n) log10 n)
amortized expected update time and O(logn

log logn) worst case query time; see Seiferth’s thesis
for details [10, Theorem 3.11]. Here, we show how to improve the dependence on 1

ϕ to linear.

2 Basic Composition of the Data Structure

The data structure by Kaplan et al. [7] relies on a dynamic graph connectivity structure for
edge updates combined with appropriate rebuilding for changing vertex counts.

I Theorem 2.1 (Holm et al. [5, Theorem 3]). Let G be a graph with n vertices. There is a
data structure such that inserting or deleting an edge in G take amortized time O(log2 n)
and a connectivity query takes worst case time O(logn

log logn). This data structure requires
O(m+ n logn) space, where m is the largest edge count at any given time.

To avoid too many edge updates in the data structure of Holm et al. and to allow faster
retrieval of intersecting disks, the intersection graph is not maintained explicitly, but is

∗ Partially supported by ERC STG 757609, GIF grant 1367/2015, and DFG grant MU 3501/2-2.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

50:2 Dynamic Disk Connectivity

represented by a grid with cell diameter ϕ. All disks with center in a single cell intersect, so
we can merge them for connectivity. We use the cells as vertices and insert an edge between
two of them if they contain intersecting disks. Every cell’s disks can intersect only disks of
O((1

ϕ)2) other cells, called the neighborhood. This limits the number of edge updates.
When inserting or deleting a disk, we must determine for which cells in the neighborhood

we need to insert or delete edges. For this, we maintain for each pair of neighboring cells a
maximal bichromatic matching (MBM) of intersecting disks between the cells using a data
structure by Kaplan et al. requiring O(2α(n) log10 n) expected amortized time for updates
and O(n log3 n) expected space [7, Lemma 9.9 in the full version]. Altogether, this results in
Kaplan et al.’s main result for dynamic disk connectivity:

I Theorem 2.2 (Data Structure for Disk Graphs [10, Theorem 3.11]). Let 0 < ϕ ≤ 1, and let
P be a set of disks with radius in [ϕ, 1]. There is a dynamic connectivity structure for the
intersection graph of P such that the insertion or deletion of a disk takes amortized expected
time O((1

ϕ)22α(n) log10 n) and a connectivity query takes worst case time O(logn
log logn), where

n is the maximum number of inserted disks at any time and α(n) is the inverse Ackermann
function. The data structure requires O((1

ϕ)2n log3 n) expected space.

A limitation of the approach behind Theorem 2.2 is that all disks are handled identically,
irrespective of their actual size. To address this, we will use a hierarchy of grids (Gi)0≤i≤dlog 1

ϕ e

instead of a single grid, where Gi has cells of diameter 1
2i , for i = 0, . . . , dlog 1

ϕe. Each grid
with cells of diameter d then stores all disks with radius in [d, 2d).

We represent the hierarchy of grids with quadtrees [1], where every cell G0 constitutes
the root of one quadtree. Each disks s is stored in the quadtree cell that contains s’s center
and whose diameter is comparable to the radius of s, as explained above. The quadtrees
have height at most dlog 1

ϕe and their nodes are created upon the first access.
As before, two intersecting disks must be contained in two neighboring cells. Each

neighboring cell σ of a given cell τ is either a child of a larger neighboring cell of τ , a child
of τ itself, or a cell in G0. See Figure 1 for an example. A cell has of at most 132 ∈ O(1)
neighbors on its own level and on each level above, whereas in the levels below the number
grows exponentially. Altogether, the size of a neighborhood is at most

O(1) ·
dlog 1

ϕ e∑
i=0

(2i)2 ∈ O
((1

ϕ

)2
)
. (1)

I Lemma 2.3. The data structure based on quadtrees has the same asymptotic update, query,
and space bounds as the one from Theorem 2.2.

Proof. When inserting or deleting a disk with radius r we need to obtain its cell σ ∈ Gi
with 1

2i ≤ r < 1
2i−1 and its neighborhood. We already observed that all neighboring cells are

either a child of another neighboring cell, a child of σ, or in G0. Thus, these can be obtained
via recursing down one or multiple quadtrees, requiring only constant time per neighbor. For
each of the O((1

ϕ)2) neighboring cells we then need to update the MBM and may need to
update the connectivity structure, as before. J

3 Different Handling of a Disk’s Boundary and Inner Area

3.1 Limit the Insertions into MBMs
The quadratic dependency on 1

ϕ during updates in Lemma 2.3 can be approached using two
observations: First, when a cell’s disks are contained completely in an inserted disk, we do

A. Kauer and W. Mulzer 50:3

G0

G1

G2

Figure 1 The neighborhood of the black colored cell in G1. The area of the neighboring cells in
one level beneath is colored in a darker shade. When representing the grids via quadtrees every
neighboring cell is either a child of another neighboring cell, a child of the black cell, or in G0.

not need to update the MBM. Instead, we can directly insert an edge into the underlying
connectivity structure.

I Definition 3.1. Let s be a disk and σ ∈ Gi a cell, for some i ≥ 0. Then, σ is fully contained
in s if and only if σ intersects s and cannot contain disks intersecting the boundary of s.

Second, we bound the number of cells that still require an MBM after considering the
fully contained cells.

I Lemma 3.2. Inserting or deleting a disk s of radius r into the data structure of Lemma 2.3
requires checking O(rϕ) cells that may contain disks intersecting the boundary of s. Those
can be found in O(rϕ) time.

These are exactly all cells within some distance of the updated disk’s boundary, where
the distance depends on the disk’s radius and the cell diameter. They must be either a cell of
G0 or a child of a cell of that type, allowing the retrieval in O(rϕ) time by a simple top-down
traversal. See Figure 2. Another look at the cells during the recursive retrieval yields the
following corollary.

I Corollary 3.3. Inserting or deleting a disk s of radius r into the data structure of Lemma 2.3
requires checking O((rϕ)2) cells fully contained in s. Those can be found in O((rϕ)2) time.

Among all paths in the quadtrees there are O(rϕ) topmost cells fully contained in s. These
can be found in O(rϕ) time. Their interiors are pairwise disjoint and their union is exactly
the union of all cells fully contained in s.

Using Corollary 3.3, we can save some time during updates: we do not update the MBM
to inner cells, but insert an edge directly into the underlying edge connectivity structure.

I Lemma 3.4. There is a data structure for dynamic disk connectivity with expected amortized
update time O((1

ϕ)2 log2 n+ 1
ϕ2α(n) log10 n) and worst case time O(logn

log logn) for connectivity
queries while requiring O((1

ϕ)n log3 n+ (1
ϕ)2n) expected space.

EuroCG’19

50:4 Dynamic Disk Connectivity

Gk

Gk+1

Gk+2

Figure 2 The types of cells which require checking when updating a disk in Lemma 2.3:
fully contained (topmost) fully contained may contain disks intersecting the boundary

Proof. We augment the data structure of Lemma 2.3. In addition to an MBM, we save a
counter for each neighboring pair of cells of different size. The counter describes how many
of the disks of the larger cell fully contain the smaller cell.

When updating a pair during insertion or deletion of a disk s, we now update either the
counter or the MBM. If s fully contains the other cell we update the counter, otherwise the
MBM. Both cells’ content intersect if and only if the counter is non-zero and the smaller cell
is non-empty or the MBM contains an edge. Depending on whether this condition changes
during the update, the edge connectivity data structure must be updated as well.

When updating a disk s, we encounter O(log 1
ϕ) neighboring cells until we reach the

level where s must be inserted or deleted. For each of these, an update to the MBM is
required. Afterwards, we recurse down according to Corollary 3.3 to retrieve all O((1

ϕ)2)
fully contained cells and the remaining O(1

ϕ) cells described in Lemma 3.2 and update the
MBMs, counters, and connectivity structure accordingly. J

3.2 Query for Replacements Instead
We were able to reduce the cost of the quadratic part, but didn’t eliminate it. As we can
have O((1

ϕ)2) edge changes during an update we cannot fully handle them in the update.
Thus, we move parts of the handling of fully contained cells into the query.

I Lemma 3.5. The result of a query into the data structure of Lemma 3.4 does not change
when we omit all edges introduced solely through fully contained cells (i.e. non-zero counters),
except those involving the cells containing at least one of the query disks.

See Figure 3 (a). By Lemma 3.5, we can ignore fully contained cells during updates,
except maintaining for each cell which disks fully contain them as topmost. Instead of
inserting the required edges during a query, we query for suitable representatives.

Fix a query for two disks s1, s2. Consider two other disks t1, t2, which contain s1 with
the radius of t1 not smaller than the radius of t2. If there is a path in the intersection graph
between s1 and s2, then there is a path from t1 to s2, even when s1 is removed. Additionally,
when s2 is not contained in t1, then the boundary of t1 must intersect the boundary of

A. Kauer and W. Mulzer 50:5

(a) (b)

t1

s2s1

Figure 3 (a) A path between the two red disks uses the black disks as intermediates. Note that
any non-red disk contained by a black disk is not required to form a path and can be safely ignored.
(b) Removing the dashed disks and querying for t1 instead of s1 still leads to a valid path to s2.

another disk of the path. Thus, all disks contained by t1 (except s2) can be removed without
changing connectivity between t1 and s2, possibly including t2; see Figure 3 (b). The removed
disks include all those of Lemma 3.5 whose edges we exempted from the removal.

Still, for a representative this would require obtaining the largest disk fully containing
a cell encountered on the path to a queried disk. Consider two different cells on the path
down to s1 and for each the largest disk which fully contains it but not its parent. The disk
obtained at the larger cell must also fully contain the other chosen cell, but not the other
way round. Thus, both disks intersect or the disk of the larger cell contains the other one.
Therefore, we only need to retrieve the largest disk of the topmost cell of the path which was
fully contained by some disk when replacing s1 and s2.

I Lemma 3.6. Fix an instance of the data structure of Lemma 3.4 and two disks s1, s2. Let
c1, c2 be the first cells on the paths to s1, s2 that are fully contained by a disk as topmost.
Let s′1, s′2 be the largest such disks. A query for s1, s2 has the same result as a query for s′1,
s′2 with all edges added solely through fully contained cells (i.e. non-zero counters) omitted.

The dynamic nested rectangle intersection data structure by Kaplan et al. [6, Section 5]
allows inserting or deleting nested or disjoint rectangles with a priority in amortized time
O(log2 n) and retrieving the highest priority rectangle containing a query point in amortized
time O(logn), while requiring O(n logn) space. We can use it to retrieve the representatives
without a dependency on 1

ϕ in the query time by storing all fully contained topmost cells.

I Theorem 3.7. Let 0 < ϕ ≤ 1, and let P be a set of disks with radius in [ϕ, 1]. There is
a dynamic connectivity structure for the intersection graph of P such that the insertion or
deletion of a disk takes amortized expected time O(1

ϕ2α(n) log10 n) and a connectivity query
takes amortized time O(logn), where n is the maximum number of sites at any time and
α(n) is the inverse Ackermann function. It requires O(1

ϕn log3 n) expected space.

Proof. We extend the data structure of Lemma 2.3 similar to Lemma 3.4. Instead of a
counter, we maintain for each cell an AVL tree [8] of all disks which fully contain this cell as
topmost, ordered by radius. Also, we maintain in each node the disks count in its subtree.

In addition, we maintain a rectangle intersection data structure as by Kaplan et al., such
that each cell with a non-empty AVL tree and a non-zero disk count in its subtree is inserted
into the data structure with its size as priority. Due to this and Corollary 3.3, we have at
most O(min(n2, 1

ϕn)) cells in the rectangular intersection data structure simultaneously.
During a disk update we have O(1

ϕ) updates to the rectangle structure via changes to
the topmost fully contained cells and along the path in the quadtrees O(log 1

ϕ) updates via

EuroCG’19

50:6 Dynamic Disk Connectivity

changes to counters. As each of these updates requires O(log(n2)) = O(logn) amortized
time and we maintain fewer MBMs, the overall update time is reduced by a factor of 1

ϕ .
Queries are done via finding the representatives described in Lemma 3.6 with the help of

the rectangle data structure and the AVL trees in O(log(n2) + logn) = O(logn) amortized
time and then querying the connectivity structure as before.

We needO(1
ϕn log(n2)) space for the rectangular intersection data structure andO(1

ϕn) for
the trees and counters, but maintain fewer MBMs. Thus, less expected space is required. J

References
1 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark H. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag, third edition, 2008.
2 Timothy M. Chan, Mihai Pǎtraşcu, and Liam Roditty. Dynamic connectivity: Connecting

to networks and geometry. SIAM J. Comput., 40(2):333–349, 2011.
3 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery

Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms, 13(1):33–54, 1992.

4 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46:502–516, 1999.

5 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001.

6 Haim Kaplan, Eyal Molad, and Robert E. Tarjan. Dynamic rectangular intersection with
priorities. In Proc. 35th Annu. ACM Sympos. Theory Comput. (STOC), pages 639–648,
2003.

7 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 2495–2504,
2017. Full version at arXiv:1604.03654.

8 Donald E. Knuth. The Art of Computer Programming. Vol. 3. Sorting and Searching.
Addison-Wesley, 2nd edition, 1998.

9 Mihai Pǎtraşcu and Mikkel Thorup. Planning for fast connectivity updates. In Proc. 48th
Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 263–271, 2007.

10 Paul Seiferth. Disk Intersection Graphs: Models, Data Structures, and Algorithms. PhD
thesis, Freie Universität Berlin, Germany, 2016.

11 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32nd Annu. ACM
Sympos. Theory Comput. (STOC), pages 343–350, 2000.

Terrain-Like and Non-Jumping Graphs∗

Stav Ashur1, Omrit Filtser2, and Rachel Sababn3

1 Department of Computer Science, Ben-Gurion University of the Negev
stavshe@post.bgu.ac.il

2 Department of Computer Science, Ben-Gurion University of the Negev
omritna@post.bgu.ac.il

3 Department of Computer Science, Ben-Gurion University of the Negev
rachelfr@post.bgu.ac.il

Abstract
Let G = (V,E) be a graph with n vertices. A labeling of (the vertices of) G is an injective
function π : V → [n]. We say that π is a terrain-like labeling of G if for any four vertices a, b, c, d
such that π[a] < π[b] < π[c] < π[d], if both {a, c} and {b, d} are in E, then so is {a, d}. The
graph G is terrain-like if it has a terrain-like labeling. Similarly, π is a non-jumping labeling of G
(Ahmed et al., 2017) if for any four vertices a, b, c, d such that π[a] < π[b] < π[c] < π[d], if both
{a, c} and {b, d} are in E, then so is {b, c}. The graph G is non-jumping if it has a non-jumping
labeling (see Figure 1). In this paper we compare terrain-like graphs and non-jumping graphs,
answering on the way a question raised by Ahmed et al. concerning the latter family.

1 Introduction

The family of terrain-like graphs was introduced by Ashur et al. [2], extending a manuscript
of Katz [5]. Ashur et al. adapt the PTAS of Gibson et al. [4] for vertex guarding the vertices
of x-monotone terrains, to obtain a PTAS for minimum dominating set (MDS) in terrain-like
graphs. Then, by showing that the visibility graphs of weakly-visible polygons and terrains are
terrain-like, they immediately obtain similar PTASs for guarding such polygons and terrains.

Ahmed et al. [1] defined the family of non-jumping graphs and proved that it is equivalent
to the family of monotone L-graphs and thus admits a PTAS for MDS [3]. They showed that
several well-known graph families, such as outerplanar graphs, convex bipartite graphs, and
complete graphs, are subfamilies of non-jumping graphs and are therefore also monotone
L-graphs. They also gave an example of a (non-planar) graph which is jumping (i.e. not
non-jumping), providing a long and involved proof for it, and raised the question whether all
planar graphs are non-jumping (and thus can be realized as monotone L-graphs).

Denote by FNJ and FT L the families of non-jumping and terrain-like graphs, respectively.
The resemblance between the definitions of FNJ and FT L, together with the fact that many
of the graph families that were found to be non-jumping in [1] (including those mentioned
above) are also terrain-like, raises the question what is the connection between them?

In this paper, we investigate the relation between these two graph families. First, we
present a natural infinite family of graphs that are in FT L but not in FNJ , and give a short
and simple proof for it. Moreover, the smallest member of this family is a planar graph,
implying that there exist planar graphs that cannot be realized as monotone L-graphs. Then,
we present some basic properties of the terrain-like labeling function, and use them to prove
that there exists an infinite family of graphs that are in FNJ but not in FT L. Finally, we
present a family of graphs which are not in FT L ∪ FNJ .

∗ Work by the authors was partially supported by the Lynn and William Frankel Center for Computer
Sciences.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

51:2 A Contribution to EuroCG 2019

v1 v2v3v4v5

π[v1] = 1

v1
v2

v3

v4v5

v1 v2v3v4 v5

π[v5] = 2 π[v4] = 3 π[v3] = 4 π[v2] = 5 π[v4] = 1 π[v3] = 2 π[v1] = 3 π[v5] = 4 π[v2] = 5

Figure 1 Left: The graph G. Center: A terrain-like (and jumping) labeling of G. Right: A
non-jumping (and not terrain-like) labeling of G.

2 FT L vs. FNJ

I Theorem 2.1. FT L 6⊆ FNJ

Proof. Let Kn = (V = {v1, v2, . . . , vn}, E) be the complete graph on n vertices. For n ≥ 6,
let K−3

n = (V,E \ {e1, e2, e3}), where e1, e2, e3 are any three pairwise-disjoint edges in E.
We show that for any n ≥ 6, K−3

n ∈ FT L \ FNJ . Assume w.l.o.g. that e1 = {v1, v2},
e2 = {v3, v4}, and e3 = {v5, v6}.
K−3

n ∈ FT L: Consider the labeling π[vi] = i. For any 4 vertices vi1 , vi2 , vi3 , vi4 such that
i1 < i2 < i3 < i4, we have {vi1 , vi4} ∈ E since i4 − i1 ≥ 3; thus π is a terrain-like labeling.
K−3

n /∈ FNJ : Assume by contradiction that K−3
n ∈ FNJ , then there exists a non-jumping

labeling π of K−3
n . Assume w.l.o.g. that π[v1] < π[v2]. We claim that either π[v1] = 1 or

π[v2] = n. Indeed, assume that π[vi] = 1 for some i 6= 1 and π[vj] = n for some j 6= 2. Notice
that {vi, v2} and {v1, vj} are edges of the graph, but {v1, v2} is not an edge of the graph,
so π is not a non-jumping labeling w.r.t. vi, v1, v2, vj — a contradiction. By symmetry, the
above claim holds also for v3, v4 and for v5, v6, but then π is not an injective function. J

As a corollary, we get that not all planar graphs are non-jumping, thus answering the
question raised by Ahmed et al. [1]. Indeed, it is easy to verify that K−3

6 is planar (see
Figure 2).

v1

v2

v3

v4
v5

v6

K−3
6

Figure 2 A planar embedding of K−3
6 .

2.1 Some properties of labeling functions
I Observation 2.2. Let G = (V,E) be a graph and let H = (V ′, E′) be an induced graph of G
(i.e., V ′ ⊆ V and E′ = {{u, v} | u, v ∈ V ′, {u, v} ∈ E}). Let π : V → [|V |] be a terrain-like

S. Ashur, O. Filtser and R. Saban 51:3

(resp., a non-jumping) labeling of G, and let π′ : V ′ → [|V ′|] be a labeling of H such that
π′[vi] < π′[vj] if and only if π[vi] < π[vj]. Then π′ is a terrain-like (resp., a non-jumping)
labeling of H.

Denote by Pn = (V,E) the path graph with n vertices, such that V = {v1, . . . , vn} and
E = {{vi, vi+1} | 1 ≤ i ≤ n− 1}.

I Lemma 2.3. Let π be a terrain-like labeling of Pn such that π[v1] = 1 and π[vn] = n, then
π[vi] = i for i = 1, . . . , n.

Proof. Let j be the largest index such that π[vi] = i for i = 1, . . . , j. If j = n then we
are done. Otherwise, j ≤ n − 3 and π[vj+1] = k, for some j + 1 < k < n. Let l be the
largest index such that π[vj] < π[vl] < π[vj+1], then π[vj+1] < π[vl+1]. But now π is not a
terrain-like labeling w.r.t. vj , vl, vj+1, vl+1, since {vj , vl+1} /∈ E, so j must be n. J

Denote by Cn = (V,E) the cycle graph with n vertices, such that V = {v1, v2, . . . , vn}
and E = {{vi, vi+1} | 1 ≤ i ≤ n− 1} ∪ {{v1, vn}}.

I Lemma 2.4. Let π be a terrain-like (alternatively, a non-jumping) labeling of Cn such
that π[v1] = 1, then either π[vn] = n or π[v2] = n.

Proof. Assume that π[v2] < π[vn]. If π[vn] = n then we are done. Otherwise, let j be the
smallest index such that π[vn] < π[vj], and notice that j ≥ 3. But now π is neither a terrain-
like nor a non-jumping labeling w.r.t. v1, vj−1, vn, vj , since both {v1, vj} and {vj−1, vn} are
not in E. The case π[vn] < π[v2] is symmetric. J

I Lemma 2.5. Let π be a terrain-like labeling of Cn. Assume w.l.o.g. that π[v1] = 1 and
π[v2] < π[vn], then either:

1. π[v1] < π[v2] < π[v3] < · · · < π[vn−1] < π[vn], or
2. π[v1] < π[vn−1] < π[vn−2] < · · · < π[v2] < π[vn].

Proof. By Lemma 2.4, π[vn] = n, and thus for any 1 < i < n we have π[v1] < π[vi] < π[vn].
First, we claim that if π[v2] < π[vi] for some 3 ≤ i ≤ n − 2, then π[v2] < π[vi+1]. Indeed,
if π[v1] < π[vi+1] < π[v2] < π[vi] then we have {v1, v2}, {vi, vi+1} ∈ E but {v1, vi} /∈ E.
Symmetrically, if π[vn−1] < π[vi] for some 2 ≤ i ≤ n− 3, then π[vn−1] < π[vi+1].

Secondly, we claim that if π[vi] < π[v2] for some 3 ≤ i ≤ n − 2, then π[vi+1] <
π[v2]. Indeed, if π[v1] < π[vi] < π[v2] < π[vi+1] then we have {v1, v2}, {vi, vi+1} ∈ E but
{v1, vi+1} /∈ E.

Therefore we can only have the following two cases:

1. If π[v2] < π[v3] < π[vn], then by the first claim we have π[v2] < π[vj] < π[vn] for
j = 3, . . . , n− 1. By Lemma 2.3 on the induced path v2, v3, . . . , vn we get that π[v1] <
π[v2] < π[v3] < · · · < π[vn−1] < π[vn].

2. If π[v1] < π[v3] < π[v2], then by the second claim we have π[v1] < π[vj] < π[v2] for
j = 3, . . . , n− 1, and, since π[vn−1] < π[2], by the first claim we have π[vn−1] < π[vj] for
j = 2, . . . , n− 2. Again by Lemma 2.3 on the induced path vn−1, . . . , v3, v2 we get that
π[v1] < π[vn−1] < π[vn−2] < · · · < π[v2] < π[vn].

J

I Theorem 2.6. FNJ 6⊆ FT L

EuroCG’19

51:4 A Contribution to EuroCG 2019

v1 v4 v3v2v6 v5u1 un

v1

v4

v3

v2v6

v5

u1

un

Figure 3 Left: The graph G. Right: A non-jumping labeling of G, i.e. π[v6] = 1, π[v2] =
2, π[v1] = 3, π[u1] = 4, . . . , π[un] = n+ 3, π[v4] = n+ 4, π[v3] = n+ 5, π[v5] = n+ 6.

Proof. Let C6 be the cycle graph with vertex set V = {v1, v2, . . . , v6}, and Pn the path
graph with vertex set U = {u1, u2, . . . , un}, n ≥ 2. Consider the graph G = (V ∪ U,E),
where E = E(C6) ∪ E(Pn) ∪ {{v1, u1}, {v4, un}}. In other words, G contains an induced
cycle on 6 vertices v1, v2, . . . , v6, and an induced path on n+ 2 vertices v1, u1, u2, . . . , un, v4;
see Figure 3 (left).

G ∈ FNJ

Figure 3 (right) shows a non-jumping labeling of G, so G is in FNJ .

G /∈ FT L

Assume by contradiction that G is in FT L, then there exists a terrain-like labeling π :
V ∪ U → [n + 6]. Let πV : V → [6] be a labeling such that πV [vi] < πV [vj] if and only
if π[vi] < π[vj]. Since C6 is an induced cycle, Lemmas 2.4 and 2.5 can be applied to πV .
By Lemma 2.4, there must be an edge between the first and last vertex in the labeling πV .
Formally, if πV [vi] = 1 and πV [vj] = 6, then {vi, vj} ∈ E. There are 6 edges in C6, so there
are 6 possible choices of e = {vi, vj}, but we observe that the graph is symmetric for all
the edges in {{v1, v6}, {v1, v2}, {v4, v5}, {v4, v3}}, and for all the edges in {{v5, v6}, {v2, v3}}.
Thus, w.l.o.g. we only consider the following two cases: either e = {v1, v6} or e = {v5, v6}.
By Lemma 2.5 we have four cases for the labeling of V :

1. π[v1] < π[v2] < π[v3] < π[v4] < π[v5] < π[v6]
2. π[v1] < π[v5] < π[v4] < π[v3] < π[v2] < π[v6]
3. π[v6] < π[v1] < π[v2] < π[v3] < π[v4] < π[v5]
4. π[v6] < π[v4] < π[v3] < π[v2] < π[v1] < π[v5]

Cases 1 and 3: It is not hard to verify that either π[v3] < π[un] < π[v4], or π[v4] <
π[un] < π[v5]. Thus either π[v3] < π[ui] < π[v4] for all 1 ≤ i ≤ n, or π[v4] < π[ui] < π[v5]
for all 1 ≤ i ≤ n. If π[v3] < π[u1] < π[v4], then the labeling π[v1] < π[v3] < π[u1] < π[v4]
contradicts the terrain-like property, and if π[v4] < π[u1] < π[v5], then the labeling π[v1] <
π[v4] < π[u1] < π[v5] is a contradiction.

Case 2: Again, we have either π[v4] < π[ui] < π[v3] for all 1 ≤ i ≤ n, or π[v5] < π[ui] <
π[v4] for all 1 ≤ i ≤ n. If π[v4] < π[u1] < π[v3], then the labeling π[v1] < π[v4] < π[u1] <
π[v3] contradicts the terrain-like property, and if π[v5] < π[u1] < π[v4], then the labeling
π[v1] < π[v5] < π[u1] < π[v4] is a contradiction.

Case 4: Notice that either π[v6] < π[un] < π[v4], or π[v4] < π[un] < π[v3]. Thus either
π[v6] < π[ui] < π[v4] for all 1 ≤ i ≤ n, or π[v4] < π[ui] < π[v3] for all 1 ≤ i ≤ n. If

S. Ashur, O. Filtser and R. Saban 51:5

π[v6] < π[u1] < π[v4], then the labeling π[u1] < π[v4] < π[v1] < π[v5] contradicts the terrain-
like property, and if π[v4] < π[u1] < π[v3], then the labeling π[v4] < π[u1] < π[v3] < π[v1] is
a contradiction. J

Finally, does every graph belong either to FT L or to FNJ? The answer is clearly no,
since, in general, minimum dominating set is NP-hard to approximate within a factor of
Ω(logn) [6]. Nevertheless, it would be nice to see a concrete and simple example. Below, we
present an infinite family of graphs which are neither in FT L nor in FNJ .

The Harary graphs Hn,k are k-connected graphs on n vertices, having the smallest
possible number of edges. When n is even and k is odd, Hn,k is defined as follows: Hn,k =
(V = {v0, ..., vn−1}, E1 ∪ E2), where E1 = {{vi, vi+j}|1 ≤ j ≤ bk

2 c, 0 ≤ i ≤ n − 1} and
E2 = {{vi, vi+ n

2
}|0 ≤ i ≤ n

2 − 1} (where the addition is modulo n), see Figure 4.

v0

v1

v2

v3

v4

v5

v6

v7

v0

v1

v2

v3

v4

v5

v6

v7

Figure 4 H8,3 (left) and H8,5 (right).

I Theorem 2.7. For any m ≥ 4, H2m,3 is neither in FT L nor in FNJ .

Since we are interested in a simple example, we prove the theorem here only for H8,3.

Proof. (For m = 4) Assume by contradiction that π is a non-jumping labeling of H8,3, and
assume w.l.o.g. that π[v0] = 1. Since C1 = (v0, v1, v2, v3, v4) and C2 = (v0, v4, v5, v6, v7) are
induced cycles, we can apply Lemma 2.4, and get 3 cases: (i) π[v4] = 8, (ii) π[v1] = 8, or (iii)
π[v7] = 8. Notice that (ii) and (iii) are symmetric cases, so we consider only cases (i) and
(ii). We denote the labeling of C1 by π1 and the labeling of C2 by π2.

(i) Assume w.l.o.g. that π[v0] < π[v1] < π[v7] < π[v4], then for any possible label-
ing of v5 we get that π is not a non-jumping labeling: if π[v7] < π[v5] then we
have {v0, v7}, {v1, v5} ∈ E but {v1, v7} /∈ E, and if π[v5] < π[v7] then we have
{v0, v7}, {v4, v5} ∈ E but {v5, v7} /∈ E.

(ii) Notice that π[v0] < π[v2] < π[v4] < π[v1] is not possible, so assume π[v0] < π[v4] <
π[v2] < π[v1]. We notice that either π2[v4] = 5 or π2[v7] = 5. If π2[v4] = 5 then
since π2[v6] < 5 we get that π[v6] < π[v4], but then we have {v0, v4}, {v6, v2} ∈ E but
{v4, v6} /∈ E. If π2[v7] = 5, then since π2[v5] < 5 we get that π[v5] < π[v7], but then
we have {v0, v7}, {v5, v1} ∈ E but {v5, v7} /∈ E.

Now assume by contradiction that π is a terrain-like labeling of H8,3, and assume w.l.o.g.
that π[v0] = 1. Again by applying Lemma 2.4 we have four cases: (i) 1 = π[v0] < π[v1] <
π[v2] < π[v3] < π[v4] = 8, (ii) 1 = π[v0] < π[v3] < π[v2] < π[v1] < π[v4] = 8, (iii) 1 = π[v0] <
π[v4] < π[v3] < π[v2] < π[v1] = 8, (iv) 1 = π[v0] < π[v2] < π[v3] < π[v4] < π[v1] = 8.

(i) We first get that π[v0] < π[v5] < π[v1] since any other labeling results in a contradiction,
and then any labeling of v6 given 1 = π[v0] < π[v5] < π[v1] < π[v2] < π[v3] < π[v4] = 8
is impossible.

EuroCG’19

51:6 A Contribution to EuroCG 2019

(ii) There are 2 possibilities for labeling v5: either π[v0] < π[v5] < π[v3] or π[v1] < π[v5] <
π[v4]. If π[v0] < π[v5] < π[v3] then we have π[v2] < π[v6] < π[v1] and no possible
labeling for v7. If π[v1] < π[v5] < π[v4] then there is no possible labeling for v6.

(iii) We first get that π[v0] < π[v5] < π[v4] since any other labeling results in a contradiction,
and then any labeling of v6 given 1 = π[v0] < π[v5] < π[v4] < π[v3] < π[v2] < π[v1] = 8
is impossible.

(iv) There are 2 possibilities for labeling v5: either π[v0] < π[v5] < π[v2] or π[v4] < π[v5] <
π[v1]. If π[v0] < π[v5] < π[v2] then we have π[v5] < π[v6] < π[v2] and no possible
labeling for v7. If π[v4] < π[v5] < π[v1] then there is no possible labeling for v6.

J

References
1 Abu Reyan Ahmed, Felice De Luca, Sabin Devkota, Alon Efrat, Md Iqbal Hossain, Stephen

Kobourov, Jixian Li, Sammi Abida Salma, and Eric Welch. L-graphs and monotone L-
graphs. arXiv:1703.01544, 2017.

2 Stav Ashur, Omrit Filtser, Matthew J. Katz, and Rachel Saban. Terrain-like graphs: PTASs
for guarding weakly-visible polygons and terrains. Manuscript, 2018.

3 Sayan Bandyapadhyay, Anil Maheshwari, Saeed Mehrabi, and Subhash Suri. Approximat-
ing dominating set on intersection graphs of rectangles and l-frames. In 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK, pages 37:1–37:15, 2018. URL: https://doi.org/10.4230/LIPIcs.
MFCS.2018.37, doi:10.4230/LIPIcs.MFCS.2018.37.

4 Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi Varadarajan. Guarding terrains
via local search. Journal of Computational Geometry, 5(1):168–178, 2014.

5 Matthew J. Katz. A PTAS for vertex guarding weakly-visible polygons — an extended
abstract. arXiv:1803.02160, 2018.

6 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the Twenty-
Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May
4-6, 1997, pages 475–484, 1997. URL: https://doi.org/10.1145/258533.258641, doi:
10.1145/258533.258641.

https://doi.org/10.4230/LIPIcs.MFCS.2018.37
https://doi.org/10.4230/LIPIcs.MFCS.2018.37
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.37
https://doi.org/10.1145/258533.258641
http://dx.doi.org/10.1145/258533.258641
http://dx.doi.org/10.1145/258533.258641

Recognizing Planar Laman Graphs
Jonathan Rollin1, Lena Schlipf1, and André Schulz1

1 FernUniversität in Hagen
{jonathan.rollin | lena.schlipf | andre.schulz}@fernuni-hagen.de

Abstract
Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for
recognizing planar Laman graphs. A simple algorithm with running time O(n3/2) and another one
with running time O(n log3 n) based on latest planar network flow algorithms. Both improve upon
the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica, 7(5-
6):465–497, 1992] with running time O(n

√
n logn).

1 Introduction

Let G = (V,E) be a graph with n vertices. The graph G is called a Laman graph if it has
2n− 3 edges and every subset V ′ ⊆ V induces a subgraph with no more than 2|V ′| − 3 edges.
A bar-joint framework is a physical structure made from fixed-length bars that are linked by
universal joints (allowing 360◦ rotations) at their endpoints. A bar-joint framework is flexible
if it has a motion other than a global rotation or translation. A nonflexible framework is
called rigid. Moreover it is called minimally rigid, if it is rigid, but it becomes flexible after
removing any bar. Interestingly, in 2d a bar-joint framework (in a generic configuration) is
minimally rigid, if and only if its underlying graph is a Laman graph.

Various characterizations of Laman graphs are known [9, 14, 15]. The class of plane
Laman graphs provides even more structure [8, 12]. Of particular interest for our result is
the following geometric characterization: A geometric graph is a pointed pseudotriangulation
(PPT) if each inner face contains exactly three angles less than π, called small, and every
vertex is incident to an angle larger than π, called big [19]. Streinu [20] proved that PPTs
are Laman graphs. Moreover, Haas et al. [8] showed that every planar Laman graph can be
realized as a PPT.

The concept of pointed pseudotriangulations can be transferred to plane (abstract) graphs.
In fact, this was an intermediate step in the proof by Haas et al. A combinatorial pointed
pseudotriangulation (CPPT) is a plane graph (with 2n − 3 edges) with an assignment of
the labels “small”/“big” to the angles satisfying the properties of a PPT. Not every CPPT
can be stretched to a PPT, but every plane Laman graph admits a CPPT assignment and

(a) (b) (c)

Figure 1 A CPPT with big angles drawn marked by solid circles (a), the derived directed graph
~G (b), the stretched pointed pseudotriangulation (c).

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

52:2 Recognizing Planar Laman Graphs

Figure 2 A CPPT that is not stretchable (a) and the derived directed graph ~G where the
highlighted vertices do not have 3 disjoint paths to the outer face (b).

each CPPT which is a Laman graph is stretchable. Haas et al. [8] provide an algorithm with
running time O(n3/2) that finds a CPPT assignment for a planar Laman graph.

In order to recognize plane Laman graphs it is sufficient to check whether a given
CPPT is stretchable. We provide such algorithms based on the following characterization of
stretchability by Haas et al. by means of connectivity.

I Lemma 1.1 ([8]). For a CPPT G a directed plane graph ~G, with V (~G) = V (G), can be
computed in linear time such that G is stretchable if and only if for each interior vertex u ∈ ~G

there are 3 vertex disjoint directed paths from u to distinct vertices on the boundary of ~G.

The condition of Lemma 1.1 seems to be an interesting property on its own, since it can be
understood as a form of “directed 3-connectivity”.

1.1 Our contribution

Consider a positive integer k, a directed graph G, and disjoint sets S, T ⊆ V (G). We call S
k-connected to T if for each vertex s ∈ S there are k directed paths from s to T pairwise
having only vertex s in common.

I Theorem 1.2. For each fixed k ≥ 1 there is an algorithm deciding for a directed planar
graph G and a partition V (G) = S ∪ T whether S is k-connected to T in O(n3/2) time.

We present the simple algorithm for Theorem 1.2 in Section 2. To check the Laman
property for a plane graph G we use the algorithms of Haas et al. [8] to find a CPPT
assignment and the directed plane graph ~G from Lemma 1.1, and then the algorithm from
Theorem 1.2 to decide whether the set of interior vertices of ~G is 3-connected to the set of
boundary vertices. This decides whether G is a plane Laman graph by Theorem 1.2 and
Lemma 1.1 and has running time O(n3/2).

A faster algorithm is obtained as follows. To search for a CPPT assignment we use
an algorithm of Borradaile et al. [3]. This algorithm computes a maximum flow between
multiple sources and sinks in O(n log3 n) time. To check the connectivity condition we first
use a construction similar to one of Kaplan and Nussbaum [11]. Then an algorithm due to
Ła̧cki et al. [13] is used that computes for a single source a maximum flow to each other
vertex in O(n log3 n) time. Details of this faster algorithm are presented in Section 3.

I Theorem 1.3. The recognition problem for planar Laman graphs can be solved in O(n log3 n).

J. Rollin, L. Schlipf, and A. Schulz 52:3

Checking the Laman condition for general graphs can be done in polynomial time. The
fastest (but very complicated) algorithm is due to Gabow and Westermann [6] (see also [4])
and needs O(n

√
n logn) time. Their algorithm is based on a characterization by means of

matroid sums. There is also a very easy pebble-game algorithm that runs in O(n2) time [15].
For planar graphs Haas et al. [8] give an algorithm that computes a PPT from a Laman graph
in time O(n3/2). Their algorithm can be turned into a recognition algorithm by checking
whether the derived realization is a PPT. If the original graph is not a Laman graph some
parts of the drawing collapse. Such a check however requires computations with exponentially
large numbers. So it depends on the model of computation if the overall algorithm runs in
O(n3/2) time. Our combinatorial algorithms avoid these subtleties.

2 Proof of Theorem 1.2

We first give some structural results. The following statement is similar to Menger’s theorem.

I Lemma 2.1. Let k ≥ 0, G be a directed (not necessarily planar) graph, and S, T ⊆ V (G)
be disjoint with |T | ≥ k. Then S is k-connected to T if and only if for each s ∈ S and
A ⊆ V (G) \ {s} with |A| = k − 1 there is a directed path from s to T not using the vertices
in A.

I Lemma 2.2. Let G be a directed graph and let S, T , T ′ ⊆ V (G) be disjoint. If S is
k-connected to T ∪ T ′ and T ′ is k-connected to T , then S is k-connected to T .

Proof. Let s ∈ S and fix a set A ⊆ V (G) \ {s} of size k− 1. There is a directed path from s

to some vertex u ∈ T ∪ T ′ not using vertices from A. If u ∈ T we are done. If u ∈ T ′, then
there is a directed path from u to T not using vertices from A. In each case there is a directed
path from s to T not using vertices from A. So S is k-connected to T by Lemma 2.1. J

For a single vertex we can decide in O(kn) time whether it is k-connected to T as follows.
A slight modification of a by now standard construction due to Ford and Fulkerson [5] gives
a directed graph G′ and vertices s′, t′ ∈ V (G′) such that s ∈ V (G) is k-connected to T in G
if and only if G′ admits an s′-t′-flow with value at least k. To check whether G′ admits such
a flow we use at most k steps of augmentation in Ford–Fulkerson’s algorithm. Since each
augmentation step needs only linear time we have the following result.

I Lemma 2.3. For each k ∈ N there is an algorithm deciding for any directed (not necessarily
planar) graph G, s ∈ V (G), and T ⊆ V (G) whether s is k-connected to T in linear time.

We call A ⊆ V (G) a separator if removing A splits G into two (not necessarily connected)
subgraphs G1 and G2, such that |V (G1)|, |V (G2)| ≤ 2

3 |V (G)|. For every planar graph G a
separator with size in O(

√
n) can be found in linear time [16].

Proof of Theorem 1.2. The algorithm works recursively as follows. Let A denote a separator
of G of size O(

√
n). Use Lemma 2.3 to check for each a ∈ A ∩ S whether a is k-connected to

T in G. Let G1 and G2 denote the two subgraphs of G separated by A (each including A).
For i = 1, 2 let Si = (S ∩ V (Gi)) \ A and let Ti = (T ∩ V (Gi)) ∪ A. Apply the algorithm
recursively to check whether Si is k-connected to Ti in Gi, for i = 1, 2.

The algorithm indeed checks whether S is k-connected to T in G since either it finds some
vertex in A ∩ S that is not k-connected to T in G, or it is sufficient to check whether S \A
is k-connected to A ∪ T by Lemma 2.2. Then it is sufficient to check G1 and G2 separately.

The separator can be found in linear time. Then the algorithm from Lemma 2.3 is called
O(
√
n) times for each vertex in the separator, each call with time in O(n). So the total time

for each step of the recursion and hence for the whole algorithm is O(n3/2). J

EuroCG’19

52:4 Recognizing Planar Laman Graphs

u
u

v v

e
ueve

G′ H ′

Figure 3 The modification applied to a planar directed graph G′. The modification of Kaplan
and Nussbaum does not include the original vertices inside of the new cycles. We need this since all
the original vertices except a fixed source are targets in our algorithm.

3 Proof of Theorem 1.3

Here we describe how to use flow algorithms for planar graphs to check whether a plane
graph G admits a CPPT assignment and whether a CPPT is stretchable.

The vertex-face incidence graph of a plane graph G = (V,E) with face set F is a planar
bipartite graph H = (V ∪ F,E′) where (v, f) ∈ E′ if and only if v ∈ V is incident to f ∈ F
in G. A plane graph G admits a CPPT assignment if and only if its vertex-face incidence
graph has a subgraph H ′ where each interior face of G has degree 3 in H ′, the outer face of
G has degree 0 in H ′, and each vertex of G has degree in H ′ equal to its degree in G minus
1 [8]. This means that edges of H ′ correspond to small angles in the CPPT assignment. Via
some standard techniques we can use the algorithm of Borradaile et al. [3] (which computes
an integer flow) to find such an assignment in O(n log3 n) time if it exists.

To check whether a CPPT is stretchable using the algorithm of Ła̧cki et al. [13] for
maximum flow we need the following result similar to Lemma 1.1.

I Lemma 3.1. For each CPPT G a directed planar graph ~G with |V (~G)| ≤ 7|V (G)| can
be computed in linear time together with some s ∈ V (~G) and T ⊆ V (~G) such that G is
stretchable if and only if in ~G for each t ∈ T the value of a maximum s-t-flow is at least 3.

Having this lemma our algorithm to recognize planar Laman graphs works as described
in the introduction. It remains to prove Lemma 3.1. To this end we modify a construction of
Kaplan and Nussbaum [11]. Consider a directed graph G and distinct s, t ∈ V (G). Kaplan
and Nussbaum construct a directed planar graph Gs,t obtained from G by replacing each
u ∈ V (G) \ {s, t} by a cycle Cu with vertices u1, . . . , ud, where d is the degree of u in G,
such that arcs incident to u are replaced by arcs not sharing endpoints while keeping their
orientation and the cyclic order around u. The edges of the cycle Cu are oriented in both
directions and receive (flow) capacity 1/2. See Figure 3.

I Lemma 3.2 ([11]). There are k internally vertex disjoint s-t-paths in G if and only if in
Gs,t the maximum s-t-flow has value at least k.

Proof of Lemma 3.1. Consider a CPPT G. Let G′ denote a directed planar graph given
by Lemma 1.1, that is, G is stretchable if and only if in G′ the set of interior vertices is
3-connected to the set of boundary vertices. Let H denote the directed planar graph obtained
by reversing the direction of each arc in G′ and by adding a new vertex s in the outer face
of G′ connected by arcs sv to all boundary vertices v of G′. Then in G′ the set of interior
vertices T is 3-connected to the set of boundary vertices if and only if in H there are 3
internally vertex disjoint s-t-paths for each t ∈ T .

J. Rollin, L. Schlipf, and A. Schulz 52:5

We obtain a directed planar graph H ′ by splitting each vertex in V (H) \ {s} into a cycle
as follows. Replace each arc e in H, directed from u 6= s to v, by arcs ueve and vev, where
ue, ve are new vertices (and distinct for all e). Replace each arc e in H, directed from s to v,
by arcs sve, and vev, where ve is a new vertex. Further for each vertex u in H connect the
new vertices ue by a cycle Cu in the cyclic order of the arcs e around u, where the edges are
directed in both directions. Finally a (flow) capacity function is defined where all arcs on
cycles Cu receive capacity 1/2 and all other arcs capacity 1. See Figure 3.

This construction corresponds to the graph Hs,t constructed by Kaplan and Nussbaum,
except that there is not a specific target t and, additionally the original vertices from H

are kept inside of the cycles together with their incoming arcs. In particular H ′ is planar
and V (H) ⊆ V (H ′). Consider some t ∈ V (H). Note that each s-t-flow in H ′ does not use
vertices from V (H) \ {s, t}, since these vertices do not have outgoing arcs. Hence for each
t ∈ V (H) any s-t-flow in H ′ corresponds to an s-t-flow in HE (by contracting t and Ct to
a single vertex). By Lemma 3.2 there are 3 internally vertex disjoint s-t-paths in H if and
only if in H ′ the value of a maximum s-t-flow is at least 3.

Clearly ~G can be constructed in linear time and |V (~G)| ≤ |V (G)|+2|E(G)|+1 ≤ 7|V (G)|.
This shows that ~G = H ′ together with the set T satisfies the desired conditions. J

4 Conclusions and further directions

An obvious direction for future research is to search for faster or simpler algorithms recognizing
(planar) Laman graphs.

Our algorithms do not provide any certificate for their correctness. This could be a
Henneberg sequence [9] or a decomposition into two acyclic subgraphs [4]. We do not know
how to compute either of these faster than using the algorithm of Gabow and Westermann [6].

Finally, it remains to improve the running time for nonplanar graphs. Notice that our
approach heavily depends on planarity. However, it is of independent interest to see if the
connectivity results for directed graphs can be extended. We can adapt the ideas presented
in the first algorithm when the graph has a small separator. The running time becomes
linear for graphs with separators of constant size and stays in O(n3/2) as long as there are
separators of size O(

√
n). Similar variants of connectivity were studied before, for instance

the all-pairs reachability [7, 10], all pairs minimum cut [2], or the vertex disjoint path or
Menger problem [18]. We are not aware of other related results.

Instead of asking if a graph has a representation as a pointed pseudotriangulation one can
ask for other representations such as general pseudotriangulations [17, 19] or straight-line
triangle representations [1]. For the latter no polynomial time algorithm is known.

References

1 Nieke Aerts and Stefan Felsner. Straight line triangle representations. Discrete Comput.
Geom., 57(2):257–280, 2017.

2 Glencora Borradaile, David Eppstein, Amir Nayyeri, and Christian Wulff-Nilsen. All-pairs
minimum cuts in near-linear time for surface-embedded graphs. In 32nd International
Symposium on Computational Geometry, volume 51 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Art. 22, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.

3 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM J. Comput., 46(4):1280–1303, 2017.

EuroCG’19

52:6 Recognizing Planar Laman Graphs

4 Ovidiu Daescu and Anastasia Kurdia. Towards an optimal algorithm for recognizing Laman
graphs. J. Graph Algorithms Appl., 13(2):219–232, 2009.

5 L. R. Ford, Jr. and D. R. Fulkerson. Flows in networks. Princeton University Press,
Princeton, N.J., 1962.

6 Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica, 7(5-6):465–497, 1992.

7 Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemysław
Uznański. All-pairs 2-reachability in O(nω logn) time. In 44th International Colloquium on
Automata, Languages, and Programming, volume 80 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Art. No. 74, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017.

8 Ruth Haas, David Orden, Günter Rote, Francisco Santos, Brigitte Servatius, Herman Ser-
vatius, Diane Souvaine, Ileana Streinu, and Walter Whiteley. Planar minimally rigid graphs
and pseudo-triangulations. Comput. Geom., 31(1-2):31–61, 2005.

9 Lebrecht Henneberg. Die Graphische Statik der Starren Körper. In Felix Klein and Conrad
Müller, editors, Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer An-
wendungen: Vierter Band: Mechanik, pages 345–434. Vieweg+Teubner Verlag, Wiesbaden,
1908.

10 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Planar reachability in linear space
and constant time. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science—FOCS 2015, pages 370–389. IEEE Computer Soc., Los Alamitos, CA, 2015.

11 Haim Kaplan and Yahav Nussbaum. Maximum flow in directed planar graphs with vertex
capacities. Algorithmica, 61(1):174–189, 2011.

12 Stephen Kobourov, Torsten Ueckerdt, and Kevin Verbeek. Combinatorial and geometric
properties of planar Laman graphs. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1668–1678. SIAM, Philadelphia, PA, 2012.

13 Jakub Ła̧cki, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Single source
– all sinks max flows in planar digraphs. 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science, pages 599–608, 2012.

14 Gerard Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math.,
4:331–340, 1970.

15 Audrey Lee and Ileana Streinu. Pebble game algorithms and sparse graphs. Discrete Math.,
308(8):1425–1437, 2008.

16 Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM J.
Appl. Math., 36(2):177–189, 1979.

17 David Orden, Francisco Santos, Brigitte Servatius, and Herman Servatius. Combinatorial
pseudo-triangulations. Discrete Math., 307(3-5):554–566, 2007.

18 Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. The vertex-disjoint Menger
problem in planar graphs. SIAM J. Comput., 26(2):331–349, 1997.

19 Günter Rote, Francisco Santos, and Ileana Streinu. Pseudo-triangulations—a survey. In
Surveys on discrete and computational geometry, volume 453 of Contemp. Math., pages
343–410. Amer. Math. Soc., Providence, RI, 2008.

20 Ileana Streinu. Pseudo-triangulations, rigidity and motion planning. Discrete Comput.
Geom., 34(4):587–635, 2005.

Maximum Matchings and Minimum Blocking Sets
in Θ6-Graphs
Therese Biedl1, Ahmad Biniaz1, Veronika Irvine1, Kshitij Jain2,
Philipp Kindermann3, and Anna Lubiw1

1 David R. Cheriton School of Computer Science, University of Waterloo,
Canada
{biedl,virvine,alubiw}@uwaterloo.ca, ahmad.biniaz@gmail.com

2 Borealis AI, Waterloo, Canada
kshitij.jain.1@uwaterloo.ca

3 Lehrstuhl für Informatik I, Universität Würzburg, Germany
philipp.kindermann@uni-wuerzburg.de

Abstract
Θ6-graphs are important geometric graphs that have many applications. They are equivalent to
Delaunay graphs where empty equilateral triangles with a horizontal edge take the place of empty
circles. We investigate lower bounds on the size of maximum matchings in these graphs. The best
known lower bound is (n−1)/3, where n is the number of vertices of the graph. Babu et al. (2014)
conjectured that any Θ6-graph has a perfect matching (as is true for standard Delaunay graphs).
Although this conjecture remains open, we improve the lower bound to (3n− 8)/7.

We also relate the size of maximum matchings in Θ6-graphs to the minimum size of a blocking
set. Every edge of a Θ6-graph on a point set P corresponds to an empty triangle that contains
the endpoints of the edge but no other point of P . A blocking set has at least one point in each
such triangle. We prove that the size of a maximum matching is at least β(n)/2 where β(n) is
the minimum, over all Θ6-graphs with n vertices, of the minimum size of a blocking set. In the
other direction, lower bounds on matchings allow us to show that β(n) ≥ 3n/4− 2.

1 Introduction

One of the many beautiful properties of Delaunay triangulations is that they always contain
a perfect matching, as proved by Dillencourt [10]. This is one example of a structural
property of a so-called proximity graph. A proximity graph is determined by a set S of
geometric objects in the plane, such as all discs, or all axis-aligned squares. Given such a
set S and a finite point set P , we construct a proximity graph with vertex set P and with
an edge (p, q) if there is an object from S that contains p and q, and no other point of P in
its interior. When S consists of all discs, then we get the Delaunay triangulation.

Our paper is about structural properties of Θ6-graphs, which are the proximity graphs
determined by equilateral triangles with a horizontal edge. More precisely, for any finite
point set P , define G4(P) to be the proximity graph of P with respect to upward equila-
teral triangles 4, define G5(P) to be the proximity graph of P with respect to downward
equilateral triangles 5, and define GC(P), the Θ6-graph of P , to be their union. In par-
ticular, for two points p and q in the plane, we denote by 4(p, q) (resp., by 5(p, q)) the
smallest upward (resp., downward) equilateral triangle that has p and q on its boundary.
We say that a triangle is empty if it has no points of P in its interior. With these definitions,
GC(P) has an edge between p and q if and only if 4(p, q) is empty or 5(p, q) is empty, in
which case we say that the edge (p, q) is introduced by 4(p, q) or by 5(p, q).

Θ6-graphs were first introduced by Clarkson [9] and Keil [11] as follows. Place 6 rays
emanating from every point p ∈ P at angles that are multiples of π/3 from the positive x-
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

biedl@uwaterloo.ca
virvine@uwaterloo.ca
alubiw@uwaterloo.ca

53:2 Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs

p

C1

C2

C3

C4

C5

C6

(a)

p

C1

C2

C3

C4

C5

C6

(b)

Figure 1 The construction of (a) the Θ6-graph, and (b) the odd half-Θ6-graph.

u

(a)

u

(b)

u

(c)

Figure 2 A Θ6-graph on n = 6 points with a perfect matching and a blocking set of size 5. (a) A
perfect matching. (b) A blocking set B of size n− 1. Edges have the same color as their blocking
point. (c) GC(P ∪B). All edges are incident to a point of B.

axis. These rays partition the plane into 6 cones with apex p, which we label C1, . . . , C6 in
counterclockwise order starting from the positive x-axis; see Figure 1a. Add an edge from p

to the closest point in each cone Ci, where the distance between the apex p and a point q
in Ci is measured by the Euclidean distance from p to the projection of q on the bisector
of Ci as depicted in Figure 1a. It is straight-forward to show both definitions of Θ6-graphs
are equivalent. The edges of G4(P) come from the odd cones, and the edges of G5(P) come
from the even cones, so the graphs G4(P) and G5(P) are known as “half-Θ6” graphs.

We explore two conjectures about Θ6-graphs; see Figure 2 for an example.

I Conjecture 1 (Babu et al. [3]). Every Θ6-graph has a perfect matching.

The best known bound is that every Θ6-graph on n points has a matching of size at least
d(n− 1)/3e; see Babu et al. [3]. Our main result is an improvement of this lower bound:

I Theorem 1. Every Θ6-graph has a matching of size at least (3n− 8)/7.

We prove Theorem 1 using a technique that has been used for matchings in planar proxi-
mity graphs, namely the Tutte-Berge theorem, which relates the size of a maximum matching
in a graph to the number of components of odd cardinality after removing some vertices. In
our case, this approach is more complicated because Θ6-graphs are not necessarily planar.

Our second main result relates the size of matchings to the size of blocking sets of prox-
imity graphs, which were introduced by Aronov et al. [1]. For a proximity graph G(P)

T. Biedl, A. Biniaz, V. Irvine, K. Jain, P. Kindermann, A. Lubiw 53:3

defined in terms of a set of objects S, a set B of points blocks G(P) if B has a point inside
any object from S that contains exactly two points of P , i.e., the set B destroys all the edges
of G(P), or equivalently, G(P ∪B) has no edges between vertices in P . Refer to Figure 2.

For a set of points P , let β(GC(P)) be the minimum size of a blocking set of GC(P).
Let β(n) be the minimum, over all point sets P of size n, of β(GC(P)). It is known that
β(n) ≥ d(n − 1)/2e since that already holds for G4-graphs [8]. Let µ(n) be the minimum,
over all point sets P of size n, of the size of a maximum matching in GC(P). Conjecture 1
can hence be restated as µ(n) ≥ d(n− 1)/2e. We relate the parameters µ and β as follows:

I Theorem 2. (a) Every Θ6-graph has a matching of size β(n)/2, i.e., µ(n) ≥ β(n)/2.
(b) If µ(n) ≥ cn+ d for some constants c, d, then β(n) ≥ (cn+ d)/(1− c).

Theorem 2 has two consequences. The first is that Theorem 1 implies the following.

I Corollary 3. β(n) ≥ 3n/4− 2.

The second consequence is that Conjecture 1 is equivalent to the following conjecture.

I Conjecture 2. β(n) ≥ n− 1.

Some proofs are sketched, the full proofs can be found in the full version of the paper [6].

2 Preliminaries

We assume that points are in general position and that no line passing through two points
of P makes an angle of 0◦, 60◦, or 120◦ with the horizontal.

I Lemma 4 (Babu et al. [3]). Let P be a set of points in the plane, and let p and q be any
two points in P . There is a path between p and q in G4(P) that lies entirely in 4(p, q).
Moreover, the triangles that introduce the edges of this path also lie entirely in 4(p, q).
Analogous statements hold for G5(P) and 5(p, q).

The next lemma has been proved in the general setting of convex-distance Delaunay
graphs. We state the result for our special case. For two points p and q in the plane, define
the weight function w4(p, q) to be the scaling factor, relative to the unit triangle, of 4(p, q).

I Lemma 5 (Aurenhammer and Paulini [2], Theorem 4). The minimum spanning tree of
points P with respect to the weight function w4(p, q) is contained in G4(P).

A consequence of Lemma 5 (as noted by Aurenhammer and Paulini in their more ge-
neral setting) is that the minimum spanning tree of points P with respect to the weight
function w4(p, q) is contained in both G4(P) and G5(P), because w4(p, q) = w5(p, q).
The Tutte-Berge Matching Theorem. Let G be a graph and let S be an arbitrary
subset of vertices of G. Removing S will split G into a number comp(G \ S) of connected
components. Let odd(G\S) be the number of odd components of G\S. In 1947, Tutte [12]
characterized graphs that have a perfect matching as exactly those graphs that have at
most |S| odd components for any subset S. In 1957, Berge [5] extended this result to
a formula (today known as Tutte-Berge formula) for the size of maximum matchings in
graphs. The following is an alternate way of stating this formula in terms of the number of
unmatched vertices, i.e., vertices that are not matched by the matching.

I Theorem 6 (Tutte-Berge formula; Berge [5]). The number of unmatched vertices of a
maximum matching in G is equal to the maximum over subsets S ⊆ V of odd(G \ S)− |S|.

EuroCG’19

53:4 Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs

=15d=6d=3d =6d

Figure 3 The notion of degree of a face.

We will use this formula in our proofs of Theorems 1 and 2. In fact, as in Dillencourt’s
proof [10] that Delaunay graphs have perfect matchings, we will find an upper bound on
comp(G \ S) − |S|, i.e., we establish a bound on the toughness of the graph [4]. We define
the degree of a face as the number of triangles in a triangulation of it plus 2; see Figure 3.

3 Bounding the Size of a Matching

Let P be a set of n points in the plane. We will prove Theorem 1—that GC(P) contains a
matching of size at least (3n−8)/7. It is known that all interior faces of G4(P) and G5(P)
are triangles [3], but their outer face might be non-convex, so we add a set A = {a1, . . . , a6}
of surrounding points near the corners of the smallest upward and downward equilateral
triangle T4 and T5, containing all points of P ; see Figure 4.

Fix a set S for which we want to bound comp(GC(P) \S)− |S|, and define SA = S ∪A.
Pick an arbitrary representative point from every connected component of GC(P) \ S, and
let Q be the set of these points, so |Q| = comp(GC(P) \ S).

Define G4A = G4(P ∪A) and consider its subgraph G4A [SA]. Note that the outer face of
both G4A and G4A [SA] is the hexagon formed by A; we add three graph edges to triangulate
the outer face, so every face of G4A is a triangle.

Let f4d be the number of faces of degree d in G4A [SA] that contain a point of Q. Let
f44+ =

∑
d≥4 f

4
d . As all faces of G4A are triangles, we know from Dillencourt [10, Lemma 3.4]

that every face of G4A [SA] contains at most one component, so at most one point of Q. Thus,

|Q| = f43 + f44+ and similarly |Q| = f53 + f54+, (1)

where f5d is defined in a symmetric manner on graph G5A [SA].
Let Fd be the set of faces of degree d in G4A and observe that, since no point of Q appears

in the four triangles outside the hexagon of A, we have f43 ≤ |F3| − 4. An easy counting

P

a1

a2

a3

a4

a5

a6

b

Figure 4 Augmentation of P : the shaded regions are T 4 and T 5, and A = {a1, . . . , a6}.

T. Biedl, A. Biniaz, V. Irvine, K. Jain, P. Kindermann, A. Lubiw 53:5

q

C1

C2

C3

C4

C5

C6

s

s1s3

s5

π1

π

π3

π5

Figure 5 Illustration for the proof of Lemma 7.

argument (also used by Biedl et al. [7]) shows that
∑

d≥3(d− 2)|Fd(G)| = 2|V | − 4. Thus,

f43 + 2f44+ ≤
∑
d≥3

(d− 2)f4d ≤
∑
d≥3

(d− 2)|Fd| − 4

≤ 2|V (G4A)| − 4− 4 = 2|S|+ 2|A| − 8 = 2|S|+ 4, (2)

and similarly f53 + 2f54+ ≤ 2|S| + 4. The crucial insight for getting an improved matching
bound is that no component can reside inside a face of degree 3 in both G4 and G5.

I Lemma 7. We have f43 ≤ f
5
4+ and f53 ≤ f

4
4+.

Proof sketch. Take any point q ∈ Q. Find the shortest path π in the minimum-weight
spanning tree T of P ∪A that connects q to some point s ∈ SA. Assume w.l.o.g. that s is in
cone C2; see Figure 5. Let π1, π3, π5 be the paths from q to the points s1, s3, s5 of SA that are
closest to q in cones C1, C3, C5 that lie fully in 4(q, si), respectively (exists by Lemma 4).
Then, no interior vertex of π, π1, π3, π5 is in SA. Hence, s, s1, s3, s5 belong to the boundary
of the same face F4 of G4[SA] that contains q, so F4 has degree at least 4. J

Now we have the tools to prove an upper bound on the toughness of a Θ6-graph.

I Lemma 8. For any S ⊆ P , we have comp(GC(P) \ S)− |S| ≤ (n+ 16)/7.

Proof. Recall that we fixed a set Q of points in P \ S with |Q| = comp(GC(P) \ S). So
n = |P | ≥ |S|+ |Q|. Combining this with the above inequalities, we get

7
(

comp(GC(P) \ S)− |S|
)
≤ 7|Q| − 7|S|+ (n− |Q| − |S|) = n+ 3|Q|+ 3|Q| − 8|S|

= n+ 3
(
f43 + f44+

)
+ 3

(
f53 + f54+

)
− 8|S| (by (1))

≤ n+ 2f43 + 4f44+ + 2f53 + 4f54+ − 8|S| (by Lemma 7)
≤ n+ (4|S|+ 8) + (4|S|+ 8)− 8|S| = n+ 16. (by (2)) J

Therefore, odd(GC(P)\S)−|S| ≤ comp(GC(P)\S)−|S| ≤ (n+ 16)/7. In consequence
of the Tutte-Berge formula, therefore any maximum matching M of GC(P) has at least
(6n−16)/7 matched vertices and |M | ≥ (3n−8)/7. This completes the proof of Theorem 1.

EuroCG’19

53:6 Maximum Matchings and Minimum Blocking Sets in Θ6-Graphs

4 The Relationship Between Blocking Sets and Matchings

In this section, we prove Theorem 2—that a lower bound on the blocking size function β(n)
implies a lower bound on the size µ(n) of a maximum matching, and vice versa.

I Lemma 9. For any n ≥ 1, we have β(n+ 1) ≤ β(n) + 1.

Proof sketch. Consider a set P with n points such that β(n) = β(GC(P)). Consider the
points a1 and b depicted in Figure 4. We can block GC(P ∪ {a1}) by using a minimum
blocking set B of GC(P) and adding b to it, so β(n+ 1) ≤ β(GC(P ∪{a1})) ≤ β(n) + 1. J

Since β(1) = 0, this lemma also shows that β(n) ≤ n− 1, i.e., that Conjecture 2 is tight.

I Theorem 2. (a) Every Θ6-graph has a matching of size β(n)/2, i.e., µ(n) ≥ β(n)/2.

Proof. Fix a point set P , an arbitrary set S ⊆ P , one representative point in each connected
component of GC(P) \ S, and let Q be the set of these points. Let (q1, q2) be an edge
in GC(Q) introduced by 4(q1, q2). By Lemma 4, there is a path π between q1 and q2
in G4(P) that is fully contained in4(q1, q2). Since q1 and q2 belong to different components
of GC(P)\S, at least one point of π belongs to S. Thus, S blocks GC(Q), and |S| ≥ β(|Q|).
Further, β(n) ≤ β(|Q|) + n− |Q| by Lemma 9 since |Q| ≤ n. By Theorem 6, it follows that

µ(GC(P)) ≥ n− (|Q| − |S|)
2 ≥ n− (|Q| − β(|Q|))

2 ≥ n− (n− β(n))
2 = β(n)

2 . J

In particular, if β(n) ≥ n − 1, then µ(n) ≥ β(n)/2 ≥ (n − 1)/2, so by integrality
µ(n) ≥ d(n− 1)/2e. In other words, Conjecture 2 implies Conjecture 1.

I Theorem 2. (b) If µ(n) ≥ cn+ d for some constants c, d, then β(n) ≥ (cn+ d)/(1− c).

Proof. Let P be a set of n points such that β(GC(P)) = β(n) = b, and let B be a minimum
blocking set of GC(P) of size b. Let M be a matching of size at least µ(b+n) ≥ cb+ cn+ d

in GC(P ∪ B). Since P is an independent set in GC(P ∪ B), it can contain at most one
endpoint of each edge in M , as well as all unmatched points, so

n = |P | ≤ |M |+ (n+ b− 2|M |) ≤ n+ b− (cb+ cn+ d).

Solving for b gives β(n) = b ≥ (cn+ d)/(1− c). J

In particular, if Conjecture 1 holds, then µ(n) ≥ (n − 1)/2. Hence, c = −d = 1/2, so
β(n) ≥ 2(n−1)/2 = n−1 and Conjecture 2 holds. So Conjecture 1 implies Conjecture 2. As
a second consequence, we know that (3n−8)/7 is a valid lower bound on µ(n) by Theorem 1,
therefore (with c = 3/7) we have β(n) ≥ 7/4 · (3n− 8)/7 = 3n/4− 2, proving Corollary 3.

Acknowledgements. This work was done by a University of Waterloo problem solving
group. We thank Alexi Turcotte and Anurag Murty Naredla, for helpful discussions.

References
1 B. Aronov, M. Dulieu, and F. Hurtado. Witness (Delaunay) graphs. Computational Geo-

metry, 44(6-7):329–344, 2011.
2 F. Aurenhammer and G. Paulini. On shape Delaunay tessellations. Information Processing

Letters, 114(10):535–541, 2014.

T. Biedl, A. Biniaz, V. Irvine, K. Jain, P. Kindermann, A. Lubiw 53:7

3 J. Babu, A. Biniaz, A. Maheshwari, and M. H. M. Smid. Fixed-orientation equilateral
triangle matching of point sets. Theoretical Computer Science, 555:55–70, 2014. Also in
WALCOM’13.

4 D. Bauer, H. Broersma, and E. Schmeichel. Toughness in graphs—a survey. Graphs and
Combinatorics, 22(1):1–35, 2006.

5 C. Berge. Sur le couplage maximum d’un graphe. Comptes Rendus de l’Académie des
Sciences, Paris, 247:258–259, 1958.

6 T. Biedl, A. Biniaz, V. Irvine, K. Jain, P. Kindermann, and A. Lubiw. Maximum matchings
and minimum blocking sets in θ6-graphs. arXiv:1901.01476, 2018.

7 T. Biedl, E. D. Demaine, C. A. Duncan, R. Fleischer, and S. G. Kobourov. Tight bounds
on maximal and maximum matchings. Discrete Mathematics, 285(1-3):7–15, 2004. Also in
ISAAC’01.

8 A. Biniaz, A. Maheshwari, and M. H. M. Smid. Higher-order triangular-distance Delaunay
graphs: Graph-theoretical properties. Computational Geometry: Theory and Applications,
48(9):646–660, 2015. Also in CALDAM’15.

9 K. L. Clarkson. Approximation algorithms for shortest path motion planning. In Procee-
dings of the 19th Annual ACM Symposium on Theory of Computing (STOC), pages 56–65,
1987.

10 M. B. Dillencourt. Toughness and Delaunay triangulations. Discrete and Computational
Geometry, 5:575–601, 1990.

11 J. M. Keil. Approximating the complete Euclidean graph. In Proceedings of the 1st Scan-
dinavian Workshop on Algorithm Theory (SWAT), pages 208–213, 1988.

12 W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 22:107–111, 1947.

EuroCG’19

Rigid Graphs that are Movable∗

Georg Grasegger1, Jan Legerský2, and Josef Schicho2

1 Johann Radon Institute for Computational and Applied Mathematics
(RICAM), Austrian Academy of Sciences
georg.grasegger@ricam.oeaw.ac.at

2 Research Institute for Symbolic Computation (RISC), Johannes Kepler
University Linz
jan.legersky@risc.jku.at, josef.schicho@risc.jku.at

Abstract
A graph is called movable if there exists a proper flexible labeling, i.e., an edge labeling such that
there are infinitely many injective realizations of the graph in the plane, counted modulo rigid
motions, such that the distances between adjacent vertices equal the labels. Of special interest is
the class of generically rigid graphs that are movable due to a non-generic proper flexible labeling.
We introduce two methods for investigating possible proper flexible labelings. The first one is
based on restrictions to 4-cycles and gives an easy classification of all but one non-bipartite 6
and 7-vertex graphs in the class. Using our second method, we prove that every proper flexible
labeling of this one graph forces the vertices in its only 3-cycle to be collinear.

1 Introduction

In Rigidity Theory, realizations of a graph in R2 are required to be such that the distances
of adjacent vertices are equal to a given labeling of edges by positive real numbers. Such a
labeling is called (proper) flexible if the number of (injective) realizations, counted modulo
rigid transformations, is infinite. Otherwise, the labeling is called rigid. We call a graph
movable if there is a proper flexible labeling.

A result of Pollaczek-Geiringer [6], rediscovered by Laman [5], shows that a graph is
generically rigid, i.e., a generic realization defines a rigid labeling, if and only if the graph
contains a Laman subgraph with the same set of vertices. A graph G = (VG, EG) is called
Laman if |EG| = 2|VG| − 3, and |EH | ≤ 2|VH | − 3 for all subgraphs H of G. Hence, every
graph that is not spanned by a Laman graph is movable.

A natural question is which generically rigid graphs are movable, due to a non-generic
proper flexible labeling. For instance, two ways of making the bipartite Laman graph K3,3
movable were given by Dixon more than one hundred years ago [2, 9, 7], and it was proven
much later in 2007 that these give all proper flexible labelings [8]. In [3], we provide a
combinatorial characterization of existence of a flexible labeling, not necessarily proper: it
exists if and only if the graph has a so called NAC-coloring (see Figure 1). In [4] we classified
all movable graphs up to 8 vertices.

The movable graphs up to 7 vertices with special properties are listed in Figure 2. They
do not have a degree two vertex, they are spanned by a Laman graph and they are maximal
with respect of being subgraph of a movable graph with the same number of vertices. These
are the interesting ones since a graph with a degree two vertex v is movable if and only if the
graph with v removed is movable; and a spanning subgraph of a movable graph is movable.

∗ This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 675789. The project was partially
supported by the Austrian Science Fund (FWF): P31061, P31888, W1214-N15 (project DK9).

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

54:2 Rigid Graphs that are Movable

1 2

3

4 5

6

1 23

4 56

1 23

4 56

1 23

4 56

1 23

4 56

Figure 1 Motion from a NAC-coloring.

K3,3 L1 L2 Q1 K3,4

Figure 2 Movable graphs with a spanning Laman subgraph and at most 7 vertices.

The classification of proper flexible labelings of K3,3 and K3,4 is known. In this paper,
we introduce methods allowing a step towards classification for the other graphs. The first
one is based on restriction to 4-cycles and gives an easy proof that L1 and L2 have only
one type of proper flexible labelings (Section 3). The proper flexible labeling provided in [4]
makes the vertices of the triangle in Q1 collinear. Our second method allows to show that
this is always the case (Section 4). The method uses leading coefficients of certain Laurent
series and is based on tropicalization ideas presented in [1].

2 Preliminaries

We recall the concept of a NAC-coloring, which is a basic object for our further considerations.

I Definition 2.1. Let G be a graph. A coloring of edges δ : EG → {blue, red} is called a
NAC-coloring, if it is surjective and for every cycle C in G, either all edges of C have the
same color, or C contains at least 2 edges in each color. If NAC-colorings δ, δ of G are such
that δ(e) = blue ⇐⇒ δ(e) = red for all e ∈ EG, then they are called conjugated.

We remark that NAC stands for “No Almost Cycle”, i.e., there is no cycle with all but one
edges having the same color. Next, we summarize the concepts from Rigidity Theory.

I Definition 2.2. Let G be a graph such that |EG| ≥ 1 and let λ : EG → R+ be an edge
labeling of G. A map ρ = (ρx, ρy) : VG → R2 is a realization of G compatible with λ if
‖ρ(u)− ρ(v)‖ = λ(uv) for all edges uv ∈ EG. The labeling λ is called (proper) flexible if the
number of (injective) realizations of G compatible with λ up to direct Euclidean isometries
is infinite. A graph is called movable if it has a proper flexible labeling.

We fix an edge ūv̄ by setting xū = yū = yv̄ = 0 and xv̄ = λūv̄ for removing rotations
and translations (reflection on x-axis is kept). Then the realizations are the solutions of the
system of equations for lengths λuv = λ(uv) and coordinates (xu, yu) for u ∈ VG given by

(xu − xv)2 + (yu − yv)2 = λ2
uv for all uv ∈ EG \ {ūv̄}. (1)

For working with function fields, we consider the irreducible components of the solution set.

G. Grasegger, J. Legerský and J. Schicho 54:3

I Definition 2.3. Let λ be a flexible labeling of G. We say that C is an algebraic motion
of (G,λ), if it is an irreducible algebraic curve of realizations compatible with λ, such that
ρ(ū) = (0, 0) and ρ(v̄) = (λūv̄, 0) for all ρ ∈ C.

In order to link an algebraic motion with a NAC-coloring, we define the following functions:

I Definition 2.4. Let λ be a flexible labeling of a graph G. Let F (C) be the complex function
field of an algebraic motion C of (G,λ). For every u, v ∈ VG such that uv ∈ EG, we define
Wu,v, Zu,v ∈ F (C) by Wu,v = (xv − xu) + i(yv − yu) and Zu,v = (xv − xu)− i(yv − yu).

Using (1), we have Wū,v̄ = λūv̄, Zū,v̄ = λūv̄ and Wu,vZu,v = λ2
uv for all uv ∈ EG.

Moreover, the following equations hold for every cycle (u0, u1, . . . , un, un+1 = u0) in G:

n∑
i=0

Wui,ui+1 = 0 and
n∑
i=0

Zui,ui+1 = 0 . (2)

I Definition 2.5. Let C be an algebraic motion of (G,λ). A NAC-coloring δ of G is called
active if there exists a valuation ν of F (C) and α ∈ Q such that δ(uv) = red if and only if
ν(Wu,v) > α for all uv ∈ EG. The set of all active NAC-colorings is denoted by NACG(C).

We remark that NACG(C) is closed under conjugation and independent of the fixed edge [4].

3 Restriction to 4-cycles

One way of investigating proper flexible labelings is to look at restrictions to 4-cycle subgraphs,
since the active NAC-colorings of an algebraic motion of (C4, λ) can be described:

I Lemma 3.1. Let C be an algebraic motion of a 4-cycle graph C4 with a labeling λ. Table 1
summarizes NACC4(C) depending on λ using the notation depicted on Figure 3.

Proof. Explicit computation — solving the system of equations for Wu,v and Zu,v and
determining valuations giving active NAC-colorings. J

Quadrilateral Motion active NAC-colorings Equations

Rhombus parallel O
{
λ12 = λ23 =

= λ34 = λ14

}
degenerate #1 resp. #2 resp. L resp. R

Parallelogram parallel O
{
λ12 = λ34,

λ23 = λ14

}
antiparallel L,R

Deltoid 1 nondegenerate O,R
{
λ12 = λ14,

λ23 = λ34

}
degenerate L

Deltoid 2 nondegenerate O,L
{
λ12 = λ23,

λ34 = λ14

}
degenerate R

General O,L,R otherwise

Table 1 Active NAC-colorings of possible motions of a (C4, λ).

EuroCG’19

54:4 Rigid Graphs that are Movable

λ12

λ23

λ34

λ14

v1 v2

v3
v4

L = O = R =

Figure 3 Labeling of the 4-cycle C4 and notation for conjugated NAC-colorings.

Assuming an algebraic motion C of a graph G, the active NAC-colorings of the projection
of C to a 4-cycle subgraph of G are precisely the restrictions of the active NAC-colorings
of C. It is well known that L1 and L2 are movable by making the vertical edges in Figure 2
parallel and same lengths. Looking at 4-cycles gives easily that this is the only option:

I Corollary 3.2. If λ is a proper flexible labeling of L1, resp. L2, then every 4-cycle that is
colored non-trivially by δ1, resp. δ2, (see Figure 4) is a parallelogram.

Proof. Since δi is the only NAC-coloring of Li modulo conjugation, it is the only active
NAC-coloring in every algebraic motion. The restriction of δi to each non-trivially colored
4-cycle is of type O (). According to Table 1 it must be in a parallel motion. J

δ1 δ2

Figure 4 The only NAC-colorings of L1 and L2 modulo conjugation.

4 Leading coefficients system

If a movable graph G is spanned by a Laman graph, the edge lengths λuv must be non-generic.
We introduce a method deriving some algebraic equation(s) for λuv, which must be satisfied
if a NAC-coloring δ is active due to a valuation ν under a certain assumption.

Let an edge ūv̄ be fixed. Then, ν(Wū,v̄) = 0. We can assume that δ(ūv̄) = blue,
otherwise we replace δ by its conjugated NAC-coloring. There must be a red edge ûv̂ with
ν(Wû,v̂) = α > 0. We assume that ν yields no other active NAC-coloring besides δ. This
assumption implies that {ν(Wu,v) : uv ∈ EG} = {0, α}. Notice that if ν yields another active
NAC-coloring δ′, then the set {(δ(e), δ′(e)) : e ∈ EQ1} has 3 elements.

There are Laurent series parametrizations ofWu,v and Zu,v such that ord(Wu,v) = ν(Wu,v)
and ord(Zu,v) = ν(Zu,v). Since ν(Wû,v̂) = α > 0, we can reparametrize so that Wû,v̂ = λûv̂t.
Hence, there is ε > 0 such that the parametrizations are

Wū,v̄ = λūv̄ , Zū,v̄ = λūv̄ , Wû,v̂ = λûv̂t , Zû,v̂ = λûv̂t
−1 ,

Wu,v = wuv +O(tε) , Zu,v = zuv +O(tε) for uv ∈ EG \ {ūv̄}, δ(uv) = blue ,
Wu,v = wuvt+O(t1+ε) , Zu,v = zuvt

−1 +O(t−1+ε) for uv ∈ EG \ {ûv̂}, δ(uv) = red .

The constraints from edge lengths give wuvzuv = λ2
uv for all uv ∈ EG \ {ūv̄, ûv̂}.

G. Grasegger, J. Legerský and J. Schicho 54:5

For every cycle C = (u0, u1, . . . , un, un+1 = u0) in G, the first equation in (2) gives∑
i∈{0,...,n}

δ(uiui+1)=red

(wuiui+1t+O(t1+ε)) +
∑

i∈{0,...,n}
δ(uiui+1)=blue

(wuiui+1 +O(tε)) = 0 .

Comparing leading coefficients gives
∑
wuiui+1 = 0, where the sum is over all i ∈ {0, . . . , n}

such that δ(uiui+1) = blue if there exists a blue edge, or over all edges in C otherwise.
Similarly, we obtain an equation in zuv’s from the second equation in (2).

From the obtained equations from all cycles and edge lengths, we eliminate wuv and
zuv for all uv ∈ EG \ {ūv̄, ûv̂} using Gröbner basis. If the graph G is spanned by a Laman
graph, we expect to get some algebraic equation(s) in λuv for uv ∈ EG. We use the described
procedure for the graph Q1. The NAC-colorings of Q1, modulo conjugation, are in Figure 5.

1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7

ε13 ε14 ε23 ε24 γ1 γ2

1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7 1 2

3 4

5 6

7

η ω1 ω2 ω3 ω4 ζ

Figure 5 NAC-colorings of the graph Q1.

I Lemma 4.1. Let C be an algebraic motion of (Q1, λ). If η ∈ NACQ1(C), resp. ε13 ∈
NACQ1(C), then the vertices of the triangle (5,6,7) are collinear, or λ24 = λ23 and λ14 = λ13,
resp. λ26 = λ67 and λ24 = λ47.

Proof. The procedure described at the beginning of this section can be used for η, since
for every other NAC-coloring δ of Q1, the set {(η(e), δ(e)) : e ∈ EQ1} has 4 elements.
The equation λ2

57r
2 + λ2

67s
2 +

(
λ2

56 − λ2
57 − λ2

67
)
rs = 0 is obtained, where r = λ2

24 − λ2
23

and s = λ2
14 − λ2

13. Considering the equation as a polynomial in r, the discriminant is
(λ56 + λ57 + λ67)(λ56 + λ57 − λ67)(λ56 − λ57 + λ67)(λ56 − λ57 − λ67)s2. But this is always
non-positive from the triangle inequality. Hence, the triangle must be degenerate, or s = 0.
If s = 0, then also r = 0 and the statement follows. The proof for ε13 is similar. J

We prove the following lemma by combining the previous one with the restrictions to 4-cycles.

I Lemma 4.2. Let C be an algebraic motion of (Q1, λ) such that λ is a proper flexible labeling
and the vertices 5,6,7 are not collinear. If ε13 ∈NACQ1(C), then ε14, γ1, γ2, ω1, ω2, ω4, ζ /∈
NACQ1(C), either ε23 ∈ NACQ1(C) or ε24 ∈ NACQ1(C), and η ∈ NACQ1(C).

Proof. By the assumption and Lemma 4.1, if ε13 ∈ NACQ1(C), then λ26 = λ67 and λ24 = λ47.
But then the 4-cycle (2,4,7,6) is a deltoid or rhombus. Hence, the restriction of any active
NAC-coloring to (2,4,7,6) cannot be of type R by Lemma 3.1, i.e., ε14, γ1, ω4, ζ /∈ NACQ1(C)
by Table 2. Since the 4-cycle (2,3,7,4) cannot be an antiparallelogram, there must be an active
NAC-coloring whose restriction is of type O, namely, ε23 ∈ NACQ1(C) or ε24 ∈ NACQ1(C).
Since ε13 excludes ε14 to be active, ε23 excludes ε24 by graph symmetry. Therefore, either

EuroCG’19

54:6 Rigid Graphs that are Movable

ε23 ∈ NACQ1(C) or ε24 ∈ NACQ1(C). By the symmetric approach to the fact that ε13
excludes γ1, we also get that both ε23 and ε24 prohibit γ2 to be active. Since the 4-cycle
(2,4,7,6), resp. (2,3,7,6), is not an antiparallelogram, there must be an active NAC-coloring
restricting to O, namely ε24 or η, resp. ε23 or η (γ2 is already excluded). In the combination
with the previous, we can conclude that η ∈ NACQ1(C). Therefore, λ24 = λ23 and λ14 = λ13
by Lemma 4.1. This shows that the 4-cycle (1,3,2,4) is a deltoid or rhombus which prohibits L.
Thus, ω1, ω2 /∈ NACQ1(C). J

4-cycle ε13 ε14 ε23 ε24 γ1 γ2 η ω1 ω2 ω3 ω4 ζ

(1, 3, 2, 4) O O O O L L S L L R R S
(1, 3, 7, 4) O O R R L S L L S R R S
(2, 3, 7, 4) R R O O S L L S L R R S
(1, 3, 7, 5) O L R S O R O L S R S R
(1, 4, 7, 5) L O S R O R O L S S R R
(2, 3, 7, 6) R S O L R O O S L R S R
(2, 4, 7, 6) S R L O R O O S L S R R

Table 2 Types of NAC-colorings of Q1 restricted to 4-cycles using the notation from Figure 3
and S meaning all edges have the same color.

We conclude that the triangle (5,6,7) in Q1 is always degenerate.

I Theorem 4.3. If C is an algebraic motion of Q1 with infinitely many injective realization,
then the vertices 5,6 and 7 are always collinear.

Proof. If no εij is active, then the 4-cycles (1,3,2,4), (1,3,7,4) and (2,3,7,4) are all antiparal-
lelograms. But this is not possible for injective realizations. Hence, by symmetry we can
assume w.l.o.g. that ε13 is active. Suppose by contradiction that the triangle (5,6,7) is not
degenerated. By Lemma 4.2 (and its symmetric version for ε24), the only possibilities for
NACQ1(C) are {ε13, ε23, η}, {ε13, ε23, η, ω3} and {ε13, ε24, η}. By careful determination of the
types of all 4-cycles for each of these sets of active NAC-colorings, the equality of lengths
always contradicts injective realizations. For instance for NACQ1(C) = {ε13, ε23, η}, all edges
among 1,2,3,4 and 7 would have to have the same lengths, which is not possible. J

References

1 J. Capco, M. Gallet, G. Grasegger, C. Koutschan, N. Lubbes, and J. Schicho. The number
of realizations of a laman graph. SIAM Journal on Applied Algebra and Geometry, 2(1):94–
125, 2018. doi:10.1137/17M1118312.

2 A.C. Dixon. On certain deformable frameworks. Messenger, 29(2):1–21, 1899.
3 G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings. Discrete &

Computational Geometry, 2018. doi:10.1007/s00454-018-0026-9.
4 G. Grasegger, J. Legerský, and J. Schicho. Graphs with flexible labelings allowing injective

realizations, 2018. https://arxiv.org/abs/1811.06709.
5 G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering

Mathematics, 4:331–340, 1970. doi:10.1007/BF01534980.
6 H. Pollaczek-Geiringer. Über die Gliederung ebener Fachwerke. Zeitschrift für Angewandte

Mathematik und Mechanik (ZAMM), 7:58–72, 1927. doi:10.1002/zamm.19270070107.

http://dx.doi.org/10.1137/17M1118312
http://dx.doi.org/10.1007/s00454-018-0026-9
https://arxiv.org/abs/1811.06709
http://dx.doi.org/10.1007/BF01534980
http://dx.doi.org/10.1002/zamm.19270070107

G. Grasegger, J. Legerský and J. Schicho 54:7

7 H. Stachel. On the flexibility and symmetry of overconstrained mechanisms. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 372, 2013. doi:10.1098/rsta.2012.0040.

8 D. Walter and M.L. Husty. On a nine-bar linkage, its possible configurations and conditions
for paradoxical mobility. In 12th World Congress on Mechanism and Machine Science,
IFToMM 2007, 2007.

9 W. Wunderlich. On deformable nine-bar linkages with six triple joints. Indagationes Math-
ematicae (Proceedings), 79(3):257–262, 1976.

EuroCG’19

http://dx.doi.org/10.1098/rsta.2012.0040

Reliable Geometric Spanners
Kevin Buchin1, Sariel Har-Peled2, and Dániel Oláh∗1

1 Department of Mathematics and Computing Science, TU Eindhoven
2 Department of Computer Science, University of Illinois

Abstract
We show how to construct a (1 + ε)-spanner over a set P of n points in Rd that is resilient to a
catastrophic failure of nodes. Specifically, for prescribed parameters ϑ, ε ∈ (0, 1), the computed
spanner G has O

(
ε−7d log7 ε−1 · ϑ−6n logn(log logn)6) edges. Furthermore, for any k, and any

deleted set B ⊆ P of k points, the residual graph G \B is a (1 + ε)-spanner for all the points of
P except for (1 + ϑ)k of them. No previous constructions, beyond the trivial clique with O(n2)
edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance preserving
connectivity.

1 Introduction

Spanners. A Euclidean graph is a graph whose vertices are points in Rd and the edges are
weighted by the Euclidean distance between their endpoints. Let G = (P,E) be a Euclidean
graph and p, q ∈ P be two vertices of G. For a parameter t ≥ 1, a path between p and q in
G is a t-path if the length of the path is at most t ‖p− q‖, where ‖p− q‖ is the Euclidean
distance between p and q. The graph G is a t-spanner of P if there is a t-path between
any pair of points p, q ∈ P . We denote the length of the shortest path between p, q ∈ P in
the graph G by d(p, q).

Spanners have been studied extensively. The main goal in spanner constructions is to
have small size, that is, to use as few edges as possible. Other desirable properties are low
degrees [1, 8, 15], low weight [5, 10], low diameter [2, 3] or to be resistant against failures
[6, 11, 12, 13]. The book by Narasimhan and Smid [14] gives a comprehensive overview.
Robustness. In this paper, our goal is to construct spanners that are robust according to
the notion introduced by Bose et al. [6]. Intuitively, a spanner is robust if the deletion of k
vertices only harms a few other vertices. Formally, a graph G is an f(k)-robust t-spanner,
for some positive monotone function f , if for any set B of k vertices deleted in the graph,
the remaining graph G\B is still a t-spanner for at least n−f(k) of the vertices. Note, that
the graph G \B has n− k vertices – namely, there are at most L(k) = f(k)− k additional
vertices that no longer have good connectivity to the remaining graph. The quantity L(k)
is the loss. We are interested in minimizing the loss.

The natural question is how many edges are needed to achieve a certain robustness (since
the clique has the desired property). That is, for a given parameter t and function f , what
is the minimal size that is needed to obtain an f(k)-robust t-spanner on any set of n points.

A priori it is not clear that such a sparse graph should exist (for t a constant) for a point
set in Rd, since the robustness property looks quite strong. Surprisingly, Bose et al. [6]
showed that one can construct a O(k2)-robust O(1)-spanner with O(n logn) edges. Bose
et al. [6] proved various other bounds in the same vein on the size for one-dimensional and
higher-dimensional point set. Their most closely related result is that for the one-dimensional

∗ Supported by the Netherlands Organisation for Scientific Research (NWO) through Gravitation-grant
NETWORKS-024.002.003.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

55:2 Reliable Geometric Spanners

point set P = {1, 2, . . . , n} and for any t ≥ 1 at least Ω(n logn) edges are needed to construct
an O(k)-robust t-spanner.
ϑ-reliable spanners. We are interested in building spanners where the loss is only frac-
tional. Specifically, given a parameter ϑ, we consider the function f(k) = (1 +ϑ)k. The loss
in this case is L(k) = f(k)−k = ϑk. A (1+ϑ)k-robust t-spanner is a ϑ-reliable t-spanner .
Exact reliable spanners. If the input point set is in one dimension, then one can easily
construct a 1-spanner for the points, which means that the exact distances between points
on the line are preserved by the spanner. This of course can be done easily by connecting
the points from left to right. It becomes significantly more challenging to construct such an
exact spanner that is reliable.

1.1 Our results
We investigate how to construct reliable spanners with very small loss – that is ϑ-reliable
spanners. To the best of our knowledge nothing was known on this case before this work.

(A) Exact reliable spanners in one dimension. We show how to construct an O(1)-
reliable exact spanner on any one-dimensional set of n points with O(n logn) edges.
The idea of the construction is to build a binary tree over the points, and to build
bipartite expanders between certain subsets of nodes in the same layer. One can think of
this construction as building different layers of expanders for different resolutions. The
construction is described in Section 3. See Theorem 3.3 for the result.
One can get added redundancy by systematically shifting the layers. Done carefully, this
results in a ϑ-reliable exact spanner. See Theorem 3.4 for the result.

(B) Reliable (1+ε)-spanners in higher dimensions. We next show a surprisingly simple
and elegant construction of ϑ-reliable spanners in two and higher dimensions, using a
recent result of Chan et al. [9], which show that one needs to maintain only a “few” linear
orders. This immediately reduces the d dimensional problem to maintaining a reliable
spanner for each of this orderings, which is the problem we already solved. See Section 4
for details.

Omitted proofs and more results can be found in the full version [7]. A very recent result of
Bose et al. [4] obtains similar bounds on the size of reliable spanners in higher dimensions.

2 Preliminaries

For a set X of vertices in a graph G = (V,E), let Γ(X) =
{
v ∈ V

∣∣ uv ∈ E for a u ∈ X
}
be

the neighbors of X in G. The following lemma, which is a standard expander construction,
provides the main building block of our one-dimensional construction.

I Lemma 2.1. Let L,R be two disjoint sets, with a total of n elements, and let ξ ∈ (0, 1) be
a parameter. One can build a bipartite graph G = (L∪R,E) with O(n/ξ2) edges, such that
(I) for any subset X ⊆ L, with |X| ≥ ξ|L|, we have that |Γ(X)| > (1− ξ)|R|, and

(II) for any subset Y ⊆ R, with |Y | ≥ ξ|R|, we have that |Γ(Y)| > (1− ξ)|L|.

Let [n] denote the set {1, 2, . . . , n} and let [i : j] = {i, i + 1, . . . , j}. Our purpose is to
build a reliable 1-spanner in one dimension. Intuitively, a point in [n] is in trouble, if many
of its close by neighbors belong to the failure set B. Such an element is in the shadow of B,
defined formally next.

K. Buchin, S. Har-Peled and D. Oláh 55:3

1 ni j

v

Figure 1 The binary tree built over [n]. The block of node v is the interval [i : j].

I Definition 2.2. Consider an arbitrary set B ⊆ [n] and a parameter α ∈ (0, 1). A number
i is in the left α-shadow of B, if and only if there exists an integer j ≥ i, such that∣∣[i : j] ∩B

∣∣ ≥ α
∣∣[i : j]

∣∣ . Similarly, i is in the right α-shadow of B, if and only if there
exists an integer i, such that h ≤ i and |[h : i] ∩B| ≥ α |[h : i]| . The left and right α-shadow
of B is denoted by S→(B) and S←(B), respectively. The combined shadow is denoted by
S(α,B) = S→(B) ∪ S←(B).

I Lemma 2.3. Fix a set B ⊆ [n] and let α ∈ (0, 1) be a parameter. Then, we have that
|S→(B)| ≤ (1 + d1/αe) |B|. In particular, the size of S(α,B) is at most 2(1 + d1/αe) |B|.

3 Reliable spanners in one dimension

3.1 Constructing the graph H

Assume n is a power of two, and consider building the natural full binary tree T with the
numbers of [n] as the leaves. Every node v of T corresponds to an interval of numbers of
the form [i : j] its canonical interval, which we refer to as the block of v, see Figure 1. Let I
be the resulting set of all blocks. In each level one can sort the blocks of the tree from left
to right. Two adjacent blocks of the same level are neighbors. For a block I ∈ I, let next(I)
and prev(I) be the blocks (in the same level) directly to the right and left of I, respectively.
We build the graph of Lemma 2.1 with ξ = 1/16 for any two neighboring blocks in I. Let
H be the resulting graph when taking the union over all the sets of edges generated by the
above.

3.2 Analysis
In the following we show that the resulting graph H is an O(1)-reliable 1-spanner on
O(n logn) edges. We start by verifying the size of the graph.

I Lemma 3.1. The graph H has O(n logn) edges.

Proof. Let h = logn be the depth of the tree T . In each level i = 1, 2, . . . , h of T there
are 2h−i nodes and the blocks of these nodes have size 2i. The number of pairs of adjacent
blocks in level i is 2h−i − 1 and each pair contributes O(2i) edges. Therefore, each level
of T contributes O(n) edges. We get O(n logn) for the overall size by summing up for all
levels. J

Given two numbers i and j, where i < j, consider the two blocks I, J ∈ I that correspond
to the two numbers at the bottom level. Set I0 = I, and J0 = J . We now describe a canonical
walk from I to J , where initially ` = 0. During the walk we have two active blocks I` and

EuroCG’19

55:4 Reliable Geometric Spanners

1 ni j

Figure 2 The canonical path between the vertices i and j. The blue blocks correspond to the
ascent part and the red blocks correspond to the descent part of the walk.

J`, that are both in the same level. For any block I ∈ I we denote its parent by p(I). At
every iteration we bring the two active blocks closer to each other by moving up in the tree.

Specifically, repeatedly do the following:
(A) If I` and J` are neighbors then the walk is done.
(B) If I` is the right child of p(I`), then set I`+1 = next(I`) and J`+1 = J`, and continue to

the next iteration.
(C) If J` is the left child of p(J`), then set I`+1 = I` and J`+1 = prev(J`), and continue to

the next iteration.
(D) Otherwise – the algorithm ascends. It sets I`+1 = p(I`), and I`+1 = p(J`), and it

continues to the next iteration.
It is easy to verify that this walk is well defined, and let

π(i, j) ≡ I0 → I1 → · · · → I`︸ ︷︷ ︸
ascent

→ J` → · · · → J0︸ ︷︷ ︸
descent

be the resulting walk on the blocks where we removed repeated blocks. Figure 2 illustrates
the path of blocks between two vertices i and j.

In the following, consider a fixed set B ⊆ [n] of faulty nodes. A block I ∈ I is α-
contaminated, for some α ∈ (0, 1), if |I ∩B| ≥ α |I|.

I Lemma 3.2. Consider two nodes i, j ∈ [n], with i < j, and let π(i, j) be the canonical
path between i and j. If any block of π = π(i, j) is α-contaminated, then i or j are in the
α/3-shadow of B.

I Theorem 3.3. The graph H constructed above on the set [n] is an O(1)-reliable exact
spanner and has O(n logn) edges.

3.3 ϑ-reliable exact spanners
We can extend Theorem 3.3, to build a one dimensional graph Hϑ, such that for any fixed
ϑ > 0 and any set B of k deleted vertices, at most (1+ϑ)k vertices are no longer connected by
a 1-path after the removal of B. The basic idea is to retrace the construction of Theorem 3.3,
and extend it to this more challenging case. The main new ingredient is a shifting scheme.

I Theorem 3.4 ([7]). For parameters n and ϑ > 0, the graph Hϑ constructed over [n], is a
ϑ-reliable exact spanner. Furthermore, Hϑ has O(ϑ−6n logn) edges.

4 Building a reliable spanner in Rd

In the following, we assume that P ⊆ [0, 1)d – this can be done by an appropriate scaling
and translation of space. For an ordering σ of [0, 1)d, and two points p, q ∈ [0, 1)d, such
that p ≺ q, let (p, q)σ =

{
z ∈ [0, 1)d

∣∣ p ≺ z ≺ q} be the set of points between p and q in the
order σ. We need the following minor variant of a result of Chan et al. [9].

K. Buchin, S. Har-Peled and D. Oláh 55:5

I Theorem 4.1 ([9]). For ς ∈ (0, 1), there is a set Π+(ς) of M(ς) = O(ς−d log ς−1) orderings
of [0, 1)d, such that for any two (distinct) points p, q ∈ [0, 1)d, with ` = ‖p− q‖, there is an
ordering σ ∈ Π+, and a point z ∈ [0, 1)d, such that
(i) p ≺σ q,

(ii) (p, z)σ ⊆ ball
(
p, ς`

)
,

(iii) (z, q)σ ⊆ ball
(
q, ς`

)
, and

(iv) z ∈ ball
(
p, ς`

)
or z ∈ ball

(
q, ς`

)
.

Furthermore, given such an ordering σ, and two points p, q, one can compute their ordering,
according to σ, using O(d log ς−1) arithmetic and bitwise-logical operations.

4.1 Construction
Given a set P of n points in [0, 1)d, and parameters ε, ϑ ∈ (0, 1), let ς = ε/(c logn),

M = 4M(ς) = O(ς−d log ς−1) = O
(
ε−d logd n log logn

ε

)
,

and c be some sufficiently large constant. Next, let ϑ′ = ϑ/M , and let Π+ = Π+(ς) be the
set of orderings of Theorem 4.1. For each ordering σ ∈ Π+, compute the ϑ′-reliable exact
spanner Gσ of P , see Theorem 3.4, according to σ. Let G be the resulting graph by taking
the union of Gσ for all σ ∈ Π+.

4.2 Analysis
I Theorem 4.2. The graph G constructed above is a ϑ-reliable (1 + ε)-spanner and has size
O
(
ε−7dϑ−6n log7d n log7 logn

ε

)
.

Proof. Given a (failure) set B ⊆ P , let B+ be the union of all the harmed sets resulting
from B in Gσ, for all σ ∈ Π+. We have that |B+| ≤ (1 +M · ϑ′) |B| = (1 + ϑ) |B|.

Consider any two points p, q ∈ P \ B+. By Theorem 4.1, for ` = ‖p− q‖, there exists
an ordering σ ∈ Π+, and a point z ∈ [0, 1)d, such that (p, z)σ ⊆ ball(p, ς`) and (z, q)σ ⊆
ball(q, ς`) (and z is in one of these balls).

By Theorem 3.4, the graph Gσ \B ⊆ G \B contains a monotone path π, according to σ,
with h = O(logn) hops, connecting p to q. Let p = p1, . . . , ph+1 = q be this path. Observe
that there is a unique index i, such that z ∈ (pi, pi+1). We have the following:

(A) ∀j 6= i ‖pj − pj+1‖ ≤ 2ς`. (B) ‖pi − pi+1‖ ≤ `+ 2ς`.
As such, the total length of π is

∑h
j=1 ‖pj − pj+1‖ = (1 + 2ςh)` ≤ (1 + ε)`, as desired, if c

is sufficiently large. Namely, G is the desired reliable spanner.
The number of edges of G is

M · O
(
(ϑ′)−6n logn

)
= O

(
M(M/ϑ)6n logn

)
= O

(
ε−7dϑ−6n log7d n log7 logn

ε

)
. J

4.3 Improved constructions
By setting ς = ε/c in the above construction and applying a more careful analysis we can
improve this result, which is stated in the following theorem.

I Theorem 4.3. One can construct a ϑ-reliable (1 + ε)-spanner with size

O
(
ε−7d log7 1

ε
· ϑ−6n logn(log logn)6

)
.

EuroCG’19

55:6 Reliable Geometric Spanners

Using another construction we are able to obtain a ϑ-reliable (1 + ε)-spanner with size
O
(
ε−dϑ−2n logn

)
if the underlying point set P has polynomially bounded spread, which is

optimal. For both of these results see the full version [7].

References
1 B. Aronov, M. de Berg, O. Cheong, J. Gudmundsson, H. J. Haverkort, M. H. M. Smid,

and A. Vigneron. Sparse geometric graphs with small dilation. Computational Geometry:
Theory and Applications, 40(3):207–219, 2008.

2 S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algorithms for geo-
metric spanners of small diameter. In Proc. 35th Annu. IEEE Sympos. Found. Comput.
Sci. (FOCS), pages 703–712, 1994.

3 S. Arya, D. M. Mount, and M. Smid. Dynamic algorithms for geometric spanners of
small diameter: Randomized solutions. Computational Geometry: Theory and Applications,
13(2):91–107, 1999.

4 P. Bose, P. Carmi, V. Dujmovic, and P. Morin. Near-optimal O(k)-robust geometric span-
ners. CoRR, abs/1812.09913, 2018.

5 P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. Smid. Computing the greedy spanner
in near-quadratic time. Algorithmica, 58(3):711–729, November 2010.

6 P. Bose, V. Dujmović, P. Morin, and M. Smid. Robust geometric spanners. SIAM Journal
on Computing, 42(4):1720–1736, 2013.

7 K. Buchin, S. Har-Peled, and D. Oláh. A spanner for the day after. CoRR, abs/1811.06898,
2018.

8 P. Carmi and L. Chaitman. Stable roommates and geometric spanners. In Proc. 22nd
Canad. Conf. Comput. Geom. (CCCG), pages 31–34, 2010.

9 T. M. Chan, S. Har-Peled, and M. Jones. On locality-sensitive orderings and their appli-
cations. CoRR, abs/1809.11147, 2018.

10 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy algorithms for con-
structing sparse geometric spanners. SIAM J. Comput., 31(5):1479–1500, May 2002.

11 C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms for constructing fault-
tolerant geometric spanners. In Proc. 30th Annu. ACM Sympos. Theory Comput. (STOC),
pages 186–195. ACM, 1998.

12 C. Levcopoulos, G. Narasimhan, and M. Smid. Improved algorithms for constructing fault-
tolerant spanners. Algorithmica, 32(1):144–156, 2002.

13 T. Lukovszki. New results of fault tolerant geometric spanners. In Proc. 6th Workshop
Algorithms Data Struct. (WADS), volume 1663 of LNCS, pages 193–204. Springer, 1999.

14 G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge University Press,
New York, NY, USA, 2007.

15 M. Smid. Geometric spanners with few edges and degree five. In Proc. 12th Australasian
Theo. Sym. (CATS), volume 51 of CRPIT, pages 7–9, 2006.

On the 2-Colored Crossing Number∗

Oswin Aichholzer1, Ruy Fabila-Monroy2, Adrian Fuchs1, Carlos
Hidalgo-Toscano2, Irene Parada1, Birgit Vogtenhuber1, and
Francisco Zaragoza3

1 Graz University of Technology, Graz, Austria
{oaich, iparada, bvogt}@ist.tugraz.at; adrian.fuchs@student.tugraz.at

2 Departamento de Matemáticas, Cinvestav, Ciudad de México, México
ruyfabila@math.cinvestav.edu.mx, cmhidalgo@math.cinvestav.mx

3 Universidad Autónoma Metropolitana, Ciudad de México, México
franz@correo.azc.uam.mx

Abstract
Let D be a straight-line drawing of a graph where every edge is colored with one of two possible
colors. The rectilinear 2-colored crossing number of D is the minimum number of crossings
between edges of the same color, taken over all possible colorings of D. We show lower and upper
bounds on the rectilinear 2-colored crossing number for the complete graph Kn. Moreover, for
fixed drawings of Kn we give bounds on the relation between its rectilinear 2-colored crossing
number and its rectilinear crossing number.

1 Introduction

In any drawing D of a non-planar graph G in the plane, two of its edges will cross. From
both a theoretical and practical point of view it is of interest to study the minimum number
of pairs of edges that cross in any drawing of G. This is known as the crossing number cr(G)
of G. There are many variants on crossing numbers. In this paper we focus on a variant
mixing two of them: the biplanar crossing number and the rectilinear crossing number.

The biplanar crossing number of a graph G, cr2(G), is the minimum of cr(G1) + cr(G2)
over all graphs G1 and G2 whose union is G. This parameter was introduced by Owens [12].
For a survey on biplanar crossing numbers of graphs see [9, 10].

A straight-line drawing of G is a drawing D of G in the plane in which the vertices are
drawn as points in general position and the edges are drawn as straight line segments. We
identify the vertices and edges of the underlying abstract graph with the corresponding ones
in the straight-line drawing. The rectilinear crossing number of G, cr(G), is the minimum
number of pairs of edges that cross in any straight-line drawing of G. Of special relevance is
cr(Kn), the rectilinear crossing number of the complete graph on n vertices. The current best
published bounds on cr(Kn) are 0.379972

(
n
4
)
< cr(Kn) < 0.380473

(
n
4
)

+ Θ(n3) [3, 11]. The
upper bound has been improved in an upcoming paper [4] to cr(Kn) < 0.3804493

(
n
4
)

+Θ(n3).
A 2-edge-coloring of a drawing D of a graph is an assignment of one of two possible colors

to every edge of D. The rectilinear 2-colored crossing number of a graph G, cr2(G), is the
minimum number of monochromatic crossings (pairs of edges of the same color that cross)

∗ O.A. and I.P. partially supported by the Austrian Science Fund (FWF) grant W1230. R.F. and C.H.
partially supported by CONACYT (Mexico), grant 253261. B.V. partially supported by the Austrian
Science Fund within the collaborative DACH project Arrangements and Drawings as FWF project
I 3340-N35.

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No
734922.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

56:2 On the 2-Colored Crossing Number

in a 2-edge-colored straight-line drawing of G. This parameter was introduced before and
called the geometric 2-planar crossing number [13]. We prefer our terminology because the
term k-planar is extensively used in graph drawing with a different meaning.

In this paper we focus on the case where G is the complete graph Kn, and we prove the
following lower and upper bounds on cr2(Kn):

1/33
(
n

4

)
+ Θ(n3) < cr2(Kn) < 0.11798016

(
n

4

)
+ Θ(n3).

Combining the lower bound on cr(Kn) and the upper bound on cr2(Kn) implies that
asymptotically, cr2(Kn)/cr(Kn) ≤ 0.31049652 + o(1).

Note that drawings with few crossings don’t necessarily admit a coloring with few
monochromatic crossings. This observation motivates the following question: Given a fixed
straight-line drawing D of Kn, what is the ratio between the number of monochromatic
crossings for the best 2-edge-coloring of D and the number of (uncolored) crossings in D?
A simple probabilistic argument shows that this ratio is at most 1/2. We show that for
sufficiently large n, it is less than 1/2− c for some positive constant c.

In a slight abuse of notation, we denote with cr(D) the number of pairs of edges in D that
cross and call it the rectilinear crossing number of D. The (rectilinear) 2-colored crossing
number of a straight-line drawing D, cr2(D), is then the minimum of cr(D1) + cr(D2), over
all straight-line drawings D1 and D2 whose union is D. For a given 2-edge-coloring χ of D,
we denote with cr2(D,χ) the number of monochromatic crossings in D. Thus, cr2(D) is the
minimum of cr2(D,χ) over all 2-edge-colorings χ of D.

2 Lower bounds on cr2(D)/cr(D)

In this section we study the extreme values that cr2(D)/cr(D) can attain for straight-line
drawings D of Kn. In the full version of this paper we explore certain classes of straight-line
drawings of Kn. Among others, we show that there exist classes of drawings D of Kn for
which cr2(D)/cr(D) ≤ 1/3 + o(1) and that for convex straight-line drawings of Kn it holds
that cr2(D)/cr(D) = 3/8− o(1).

Using a simple probabilistic argument it can be shown that cr2(D)/cr(D) ≤ 1/2 for every
straight-line drawing D of Kn. This lower bound can be improved for any such drawing.

I Theorem 2.1. There exists a positive integer n0 and a positive constant c such that for any
straight-line drawing D of the complete graph Kn on n ≥ n0 vertices, cr2(D)/cr(D) ≤ 1/2−c.

The proof, based on the positive Fraction Erdős-Szekeres theorem [7], can be found in
the full version of this paper.

3 Upper bounds on cr2(Kn)

For the rectilinear crossing number cr(Kn) the best upper bound [4] comes from finding
examples of straight-line drawings of Kn with few crossings (for a small value of n) which
are then used as a seed for the duplication process in [2, 3]. In this section, we prove that a
more involved but similar approach can be adopted for the two-colored case.

Throughout this section P is a set of m points in general position in the plane. Let p
be a point in P . Given a 2-edge-coloring χ of the edges of the straight-line drawing of Km

that P induces, we denote by L(p) and S(p) the edges incident to p of the larger and smaller
color class at p, respectively. An edge e incident to p is called a χ-halving edge of p if the

O. Aichholzer et al. 56:3

number of edges of L(p) to the right of the line `e spanned by e (and directed from q to
p) and the number of edges of L(p) to the left of `e differ by at most one. An assignment
between the points of P and its χ-halving edges is called a χ-halving matching of P .

I Theorem 3.1. Let P be a set of m points in general position with a two-coloring χ of the
edges of the straight-line drawing of Km it induces. If P has a χ-halving matching, then

cr2(Kn) ≤ 24A
m4

(
n

4

)
+ Θ(n3)

where A is a rational number that depends on P , χ, and the χ-halving matching of P .

Proof. First we describe a process to obtain from P a set Q of 2m points, a 2-edge-coloring
χ′ of the of the straight-line drawing of K2m that Q induces, and a χ′-halving matching for
Q. The set Q is constructed as follows. Let p be a point in P and e = (p, q) its χ-halving
edge in the matching. We add to Q two points p1, p2 placed along the line spanned by e and
in a small neighborhood of p such that: (i) if f is an edge different from e that is incident to
p, then p1 and p2 lie on different sides of the line spanned by f ; (ii) if f is an edge different
from e that is not incident to p, then p1 and p2 lie on the same side of the line spanned by f
as p; and (iii) the point p1 is farther away from q than p2. The set Q has 2m points and the
above conditions ensure that they are in general position.

Next, we define a coloring χ′ and a χ′-halving matching for Q. For every edge (p, q) of
P , color the four edges (pi, qj), i, j ∈ {1, 2} with the same color as (p, q). Hence the only
edges remaining to be colored are the edges (p1, p2) between the duplicates of a point p ∈ P .
Let `e be the line spanned by e and directed from q to p and let q1, q2 be the points that
originated from q, such that q1 lies to the left of `e and q2 lies to the right of `e. We assume
that the colors are red and blue and that the larger color class at p is blue.

p1

p2

q1
q2

p1

p2

q1
q2

2Ll

2Sl

2Lr + 1
2Sr + 1

2Lr + 1
2Sr

2Ll

2Sl + 1

p1

p2

q2q1

2Lr

2Sr

2Ll + 1

2Sl + 1

2Ll + 1
2Sl

2Lr

2Sr + 1

Ll > Lr Ll < Lr Ll > Lr Ll < Lr

p1

p2

q2q1

Ll = Lr

2Ll

2Sl

2Lr + 1

2Sr + 1

2Lr + 1

2Sr

2Ll

2Sl + 1

2Ll + 1
2Sl

2Lr + 1
2Sr

2Ll

2Sl + 1

2Lr + 1
2Sr

2Ll + 1

2Sl + 1
2Lr

2Sr

2Lr

2Sr + 1

2Ll + 1
2Sl

p1

p2

q1
q2

p1

p2

q1
q2

2Ll

2Sl + 1
2Lr

2Sr + 1

2Lr

2Sr + 1

2Ll

2Sl + 1

Ll = Lr

Case 1: Case 2: Case 3: Case 4: Case 5: Case 6:

Figure 1 The cases in the duplication process of Theorem 3.1 when the larger color class at p
is blue. The edge e of P has color red in the first 3 cases and color blue in the last 3 cases. The
dotted lines represent the lines spanned by the χ-halving edges for P . The thick edges represent the
χ′-halving edges for Q, where the arrow points to the point it is matched to. Ll and Lr (Sl and Sr)
represent the number of blue (red) edges at p to the left and right of le, respectively. The number of
colored edges on each side of the lines spanned by thick edges indicate the resulting numbers of red
and blue edges to the left and right of the χ′-halving edges for Q.

EuroCG’19

56:4 On the 2-Colored Crossing Number

There are six cases in which p can fall. They are all shown in Figure 1, which depicts
among others the color that the edge (p1, p2) receives and that the edges matched to p1 and
p2 are indeed χ′-halving edges in each case.

Note that no point in Q falls in Case 5. From now on, we assume that no point in P falls
in Case 5. Our goal is to iterate the duplication process and obtain a bound on cr2(Kn). Let
k ≥ 1 be an integer and let (Qk, χk) be the pair obtained by iterating the duplication process
k times. We claim the following on cr2(Qk, χk), the number of monochromatic crossings in
the straight-line 2-edge colored drawing of Kn induced by Qk and χk:

I Claim. After k iterations of the duplication process, the following holds

cr2(Qk, χk) = A · 24k +B · 23k + C · 22k +D · 2k

where A,B,C and D are rational numbers that depend on P and its χ-halving matching.

The proof of this claim can be found in the full version of this paper. Letting n = 2km:

cr2(Kn) ≤ cr2(Qk, χk) = 24A
m4

(
n

4

)
+ Θ(n3)

which proves the theorem when n is of the form 2km. The proof for 2km < n < 2k+1m

follows from showing that cr(Kn) is an increasing function. J

3.1 Small configurations
The previous section implies that for a large number of vertices we can obtain straight-line
drawings of the complete graph with a reasonable small 2-colored crossing number from good
sets of constant size. Thus, in this section we describe how to obtain those small good sets.

Similar as in [4] we combine different methods to obtain straight-line drawings of the
complete graph with low 2-colored crossing number. The overall approach is to apply three
different methods in alternating order: we start with a known set, apply the duplication
process from Theorem 3.2 to obtain a larger set, locally optimize it to get a better set, find
good subsets, locally optimize them, duplicate the resulting sets and so on.

The currently best (w.r.t. to the crossing constant, see below) straight-line drawing D
with 2-edges coloring χ we found1 has n = 135 vertices, a 2-colored crossing number of
cr2(D,χ) = 1470756, and contains a χ-halving matching.

3.2 Rectilinear 2-colored crossing constant
Let cr2 be the rectilinear 2-colored crossing constant, that is, the constant such that the best
straight-line drawing of Kn for large values of n has at most cr2

(
n
4
)
monochromatic crossings.

Its existence follows from showing that limn→∞ cr2(Kn)/
(

n
4
)
exits and is a positive number.

From the previous results in this section we can derive an upper bound for the 2-colored
crossing constant from a given set of constant size with a small 2-colored crossing number:

Plugging the values of the set of 135 points obtained in the last section into Theorem 3.2
(after duplicating once to get rid of Case 5) we get the upper bound of cr2 < 0.11798016.

I Theorem 3.2. The 2-colored crossing constant satisfies cr2 ≤ 182873519
1550036250 < 0.11798016.

1 The interested reader can get a file with the coordinates of the points, the colors of the edges, and a χ-
halving matching from http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php.

http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php

O. Aichholzer et al. 56:5

Figure 2 Left: a 2-colored rectilinear drawing of K8 without monochromatic crossings. Right: a
2-colored drawing of K9 with only one monochromatic (red) crossing.

In [3] a lower bound of cr ≥ 277
729 > 0.37997267 has been shown for the rectilinear crossing

constant. We can thus give an upper bound on the asymptotic ratio between the best 2-colored
straight-line drawing of Kn and the best straight-line drawing of Kn of cr2/cr ≤ 0.31049652.

4 Lower bounds on cr2(Kn) and cr2(Kn)

The following result shows that from the 2-colored rectilinear crossing number of small sets
we can obtain lower bounds for larger sets.

I Lemma 4.1. Let cr2(n̂) = ĉ for some n̂ ≥ 4. Then for n > n̂ we have cr2(Kn) ≥
24ĉ

n̂(n̂−1)(n̂−2)(n̂−3)
(

n
4
)
which implies cr2 ≥ 24ĉ

n̂(n̂−1)(n̂−2)(n̂−3)

Proof. Every subset of n̂ points of Kn induces a drawing with at least ĉ crossings, and thus
we have ĉ

(
n
n̂

)
crossings in total. In this way every crossing is counted

(
n−4
n̂−4

)
times. This

results in a total of 24ĉ
n̂(n̂−1)(n̂−2)(n̂−3)

(
n
4
)
crossings. J

With a strategy based on the intersection graph of a given straight-line drawing, we have
been able to determine all the 2-colored crossing numbers of all straight-line drawings of
K9 and prove that cr2(K9) = 2. More details about this strategy can be found in the full
version. Using Lemma 4.1 for n̂ = 9 and ĉ = 2 we get a bound of cr2 ≥ 1/63. Repeating the
process of computing lower bounds for sets of small cardinality we checked all order types of
size 11 [5]. We obtained cr2(K11) = 10 and by Lemma 4.1 this gives the even better bound
of cr2 ≥ 1/33.

4.1 Staight-line versus general drawings
The best straight-line drawings of Kn with n ≤ 8 have no monochromatic crossing, see
Figure 2 left for a straight-line 2-colored crossing-free drawing of K8. In [13], Section 3,
the authors claim that up to now no graph was known were the k-colored crossing number
was strictly smaller than the rectilinear k-colored crossing number for any k ≥ 2. From the
previous section we know that cr2(K9) = 2. Inspecting rotation systems for n = 9 [1] which
have the minimum number of 36 crossings, we have been able to construct a drawing of K9
which has only one monochromatic crossing, see Figure 2 right. As the graph thickness of

EuroCG’19

56:6 On the 2-Colored Crossing Number

K9 is 3 [8, 14], we can not draw K9 with just two colors without monochromatic crossings.
Thus, the biplanar crossing number for K9 is 1 and thus strictly smaller than cr2(K9) = 2.

5 Conclusion and open problems

In this paper we have shown lower and upper bounds on the rectilinear 2-colored crossing
number for Kn as well as its relation to the rectilinear crossing number for fixed drawings
of Kn. Besides improving the given bounds, some open problems arise from our work. The
first question is how fast we can compute the best edge-coloring of a given rectilinear drawing
of Kn. A second question is on the structure of 2-colored crossing minimal sets. For the
rectilinear crossing number it is known that optimal sets have a triangular convex hull [6].
For n = 8, 9 we have optimal sets with 3 and 4 extreme points, but so far all minimal sets
for n ≥ 10 have a triangular convex hull.

References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Thomas Hackl, Jürgen
Pammer, Alexander Pilz, Pedro Ramos, Gelasio Salazar, and Birgit Vogtenhuber. All good
drawings of small complete graphs. In Proc. 31st European Workshop on Computational
Geometry (EuroCG ’15), pages 57–60, 2015.

2 Bernardo M. Ábrego and Silvia Fernández-Merchant. Geometric drawings of Kn with
few crossings. Journal of Combinatorial Theory, Series A, 114(2):373–379, 2007. doi:
10.1016/j.jcta.2006.05.003.

3 Bernardo M. Ábrego, Silvia Fernández-Merchant, Jesús Leaños, and Gelasio Salazar. A
central approach to bound the number of crossings in a generalized configuration. Electronic
Notes in Discrete Mathematics, 30:273–278, 2008. doi:10.1016/j.endm.2008.01.047.

4 Oswin Aichholzer, Frank Duque, Óscar Eduardo García-Quintero, Ruy Fabila-Monroy, and
Carlos Hidalgo-Toscano. An ongoing project to improve the rectilinear and pseudolinear
crossing constants. Manuscript, 2018.

5 Oswin Aichholzer and Hannes Krasser. Abstract order type extension and new results on the
rectilinear crossing number. Computational Geometry: Theory and Applications, Special
Issue on the 21st European Workshop on Computational Geometry, 36(1):2–15, 2006.

6 Oswin Aichholzer, David Orden, and Pedro Ramos. On the structure of sets attaining the
rectilinear crossing number. In Proc. 22nd European Workshop on Computational Geometry
(EuroCG ’06), pages 43–46, Delphi, Greece, 2006.

7 Imre Bárány and Pavel Valtr. A positive fraction Erdős-Szekeres theorem. Discrete Comput.
Geom., 19(3, Special Issue):335–342, 1998. Dedicated to the memory of Paul Erdős. doi:
10.1007/PL00009350.

8 Joseph Battle, Frank Harary, and Yukihiro Kodama. Every planar graph with nine points
has a nonplanar complement. Bulletin of The American Mathematical Society, 68, 1962.
doi:10.1090/S0002-9904-1962-10850-7.

9 Éva Czabarka, Ondrej Sýkora, László A. Székely, and Imrich Vrt’o. Biplanar crossing
numbers I: a survey of results and problems, pages 57–77. Springer Berlin Heidelberg,
2006.

10 Éva Czabarka, Ondrej Sýkora, László A. Székely, and Imrich Vrt’o. Biplanar crossing num-
bers II. Comparing crossing numbers and biplanar crossing numbers using the probabilistic
method. Random Structures & Algorithms, 33(4):480–496, 2008. doi:10.1002/rsa.20221.

11 Ruy Fabila-Monroy and Jorge López. Computational search of small point sets with small
rectilinear crossing number. Journal of Graph Algorithms and Applications, 18(3):393–399,
2014. doi:10.7155/jgaa.00328.

http://dx.doi.org/10.1016/j.jcta.2006.05.003
http://dx.doi.org/10.1016/j.jcta.2006.05.003
http://dx.doi.org/10.1016/j.endm.2008.01.047
http://dx.doi.org/10.1007/PL00009350
http://dx.doi.org/10.1007/PL00009350
http://dx.doi.org/10.1090/S0002-9904-1962-10850-7
http://dx.doi.org/10.1002/rsa.20221
http://dx.doi.org/10.7155/jgaa.00328

O. Aichholzer et al. 56:7

12 Andrew Owens. On the biplanar crossing number. IEEE Transactions on Circuit Theory,
18(2):277–280, 1971. doi:10.1109/TCT.1971.1083266.

13 János Pach, László A. Székely, Csaba D. Tóth, and Géza Tóth. Note on k-planar crossing
numbers. Computational Geometry, 68:2–6, 2018. Special Issue in Memory of Ferran
Hurtado. doi:10.1016/j.comgeo.2017.06.015.

14 William T. Tutte. The non-biplanar character of the complete 9-graph. Canadian Mathe-
matical Bulletin, 6(3):319–330, 1963. doi:10.4153/CMB-1963-026-x.

EuroCG’19

http://dx.doi.org/10.1109/TCT.1971.1083266
http://dx.doi.org/10.1016/j.comgeo.2017.06.015
http://dx.doi.org/10.4153/CMB-1963-026-x

Bundled Crossings Revisited
Steven Chaplick∗1, Thomas C. van Dijk†1, Myroslav Kryven‡1,
Ji-won Park2, Alexander Ravsky§3, and Alexander Wolff¶1

1 University of Würzburg, Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

2 KAIST, Daejeon, Republic of Korea
wldnjs1727@kaist.ac.kr

3 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
Nat. Acad. Sciences of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

Abstract
An effective way to reduce clutter in a graph drawing that has (many) crossings is to group
edges into bundles when they travel in parallel. Each edge can participate in many such bundles.
Any crossing in this bundled graph occurs between two bundles, i.e., as a bundled crossing. We
minimize the number of bundled crossings in circular layouts, where vertices are placed on a
circle and edges are routed inside the circle.

For a given graph the goal is to find a bundled drawing with at most k crossings. We show
that the problem has an FPT algorithm (in k) when we require a simple circular layout.

1 Introduction

In traditional node–link diagrams, vertices are mapped to points in the plane and edges are
usually drawn as straight-line segments connecting the vertices. For large and somewhat
dense graphs, however, such layouts tend to be so cluttered that it is hard to see any
structure in the data. For this reason, Holten [14] introduced bundled drawings, where edges
that are close together and roughly go into the same direction are drawn using Bézier curves
such that the grouping becomes visible. Due to the practical effectiveness of this approach,
it has quickly been adopted by the information visualization community [9, 12, 15, 16, 19].
However, bundled drawings have only recently attracted study from a theoretical point of
view. Nevertheless, in his survey on crossing minimization, Schaefer already listed bundled
crossing minimization as an open problem [20, page 35].

Fink et al. [11] considered bundled crossings in the context of drawing metro maps. They
suggested replacing the classical objective of crossing minimization [3, 13, 17] by what they
called block crossing minimization. Given a set of x-monotone curves (the metro lines that
go through two neighboring stations), a block crossing is the exchange of two adjacent blocks
of curves. Fink et al. also introduced monotone block crossing minimization where each pair
of lines can intersect at most once. They considered various network topologies: single edge,
path, (upward) tree, planar graph, (bounded-degree) general graph.

Our research builds on recent work of Fink et al. [10] and Alam et al. [1] who extended
the notion of block crossings from sets of x-monotone curves to general drawings of graphs.

∗ Supported by DFG grant WO 758/11-1.
† Supported by DFG grant DI 2161/2-1.
‡ Supported by DAAD.
§ Supported by Erasmus+.
¶ Supported by DFG grant WO 758/9-1.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

57:2 Bundled Crossings Revisited

ẽ3

ẽ1

ẽ2 ẽ4

(a)

R(B)

ẽ3
ẽ1ẽ2

ẽ4

(b)

Figure 1 (a) A non-degenerate bundled crossing B and (b) a degenerate bundled crossing B′

where one bundle consists of just one edge piece ẽ1 (ẽ1 = ẽ3 = R(B′)) with endpoints ẽ2 and ẽ4.

It is common to define a drawing of a graph as a function that maps vertices to points
in the plane and edges to Jordan arcs that connect the corresponding points. Here we
will consider simple drawings, that is, any two edges intersect at most once and no edge
self-intersects. We will often identify vertices with their points and edges with their curves.

Let D be a drawing, and let I(D) be the set of intersection points among the edges
in D. We say that a bundling of D is a partition of I(D) into bundled crossings, where a set
B ⊆ I(D) is a bundled crossing if the following holds (see Fig. 1).

B is contained in a closed Jordan region R(B) whose boundary consists of four Jordan
arcs ẽ1, ẽ2, ẽ3, and ẽ4 that are pieces of edges e1, e2, e3, and e4 in D.

The pieces of the edges cut out by the region R(B) can be partitioned into two sets Ẽ1
and Ẽ2 such that ẽ1, ẽ3 ∈ Ẽ1, ẽ2, ẽ4 ∈ Ẽ2, and each pair of edge pieces in Ẽ1 × Ẽ2 has
exactly one intersection point in R(B), whereas no two edge pieces in Ẽ1 (respectively
Ẽ2) have a common point in R(B).

We call the sets of edges E1 and E2 corresponding to edge pieces Ẽ1 and Ẽ2 bundles. We
call the edges that bound the two bundles of a bundled crossing frame edges. We say that a
bundled crossing is degenerate if at least one of the bundles consists of only one edge piece;
see Fig. 1(b). In this case, the region of the plane associated with the crossing coincides with
that edge piece. In particular, any point in I(D) by itself is a degenerate bundled crossing.

We consider circular layouts, where vertices are on a circle and edges are inside the circle.
We denote by bc◦(G) the circular bundled crossing numbers of a graph G, i.e., the smallest
number of bundled crossings over all bundlings of all simple circular layouts of G.

For computing bc◦(G), Alam et al. [1] gave an algorithm whose approximation factor
depends on the density of the graph. They posed the existence of an FPT algorithm for
bc◦(G) as an open question, which we answer in the affirmative. In this note, we first show
how to decide whether bc◦(G) ≤ 1. Then, we generalize our result as follows.

I Theorem 1. There is a computable function f such that for any n-vertex graph G and
integer k, we can check, in O(f(k)n) time, if bc◦(G) ≤ k, i.e., if G admits a circular layout
with k bundled crossings. Within the same time bound, we can compute such a layout.

S. Chaplick et al. 57:3

(a) (b)

Figure 2 (a) A bundled drawing D with six bundled crossings (pink); parallel (blue) edges can
be inserted to avoid degenerate bundled crossings; (b) the corresponding surface of genus 6; the
components of the surface which are not regions are marked in green

2 An FPT Algorithm for Simple Circular Layouts

Our algorithm is inspired by works on circular layouts with at most k crossings [2] and
circular layouts where each edge is crossed at most k times [4]. Both first observed that the
graphs admitting such circular layouts have treewidth O(k), and then developed algorithms
using Courcelle’s theorem, which establishes that expressions in extended monadic second
order logic can be evaluated efficiently. We define treewidth and MSO2 in the full version [5].

I Theorem 2 (Courcelle [7,8]). For any integer t ≥ 0 and any MSO2 formula ψ of length `,
an algorithm can be constructed which takes a graph G with n vertices, m edges, and treewidth
at most t and decides in O(f(t, `) · (n+m)) time whether G |= ψ where the function f from
this time bound is a computable function of t and `.

We recall the observation of Alam et al. [1] that a drawing with k bundled crossings
can be lifted onto a surface of genus k; see Fig. 2. Then we examine the structure of such
a surface and present our algorithm for the case of one bundled crossing and finally for k
bundled crossings.

2.1 Constructing the surface determined by a bundled drawing
Consider a bundled circular drawing D, i.e., it is drawn on a disk D residing on a sphere,
where the boundary ofD is the circle ofD. Note that inserting parallel edges into the drawing
(i.e., making our graph a multi-graph) can be done without modifying the bundled drawing,
but allows us to assume that every bundled crossing has four distinct frame edges; see Fig. 2.
Each bundled crossing B defines a Jordan curve CB made up of the four Jordan arcs ẽ1, ẽ2,
ẽ3, ẽ4 in clockwise order taken from its four frame edges e1, . . . , e4 respectively (here (e1, e3)
and (e2, e4) frame the two bundles; ei = uivi). Let C ′B (see Fig. 3) denote a Jordan curve on
D outside of CB where every point on C ′B lies at a sufficiently small distance ε > 0 from CB
so that C ′B only contains the crossings in B and the distance from C ′B to the crossings
outside of C ′B is at least 2

3 of the distance from CB to these crossings. Note that C ′B consists
of eight Jordan arcs (in clockwise order) c′2,1, c′1,3, c′3,2, c′2,4, c′4,3, c′3,1, c′1,4, c′4,2, where c′i,j goes
from ei to ej . The surface D′ is constructed by creating a flat handle on top of D which
connects c′1,3 to c′3,1 (when we lift the drawing onto this surface the bundle containing e1 and
e3 will go over this handle), and doing so for each bundled crossing. We lift the drawing D

EuroCG’19

57:4 Bundled Crossings Revisited

v2 v4

u2 u4

u1

u3 v3

v1

C ′
B

v2 v4

u2 u4

u1

u3 v3

v1

r3 r4

r5r6

r2

r1

v2 v4

u2 u4

u1

u3 v3

v1

w3

w1

w

Figure 3 The curve C′
B ; the regions r1, . . . , r6; augmented graphs G′

r1 and G′
r3

onto D′ obtaining the lifted drawing D′. Clearly, D′ is crossing-free. Note that each Jordan
curve C ′B remains on our original disk. We will now cut D′ into components (maximal
connected subsets) using the frame edges and the Jordan curves C ′B for each B. Namely,
for each bundled crossing B, we first cut D′ along each of the frame edges e1, . . . , e4 of B.
We additionally cut D′ along the four corner Jordan curves c′2,1, c′3,2, c′4,3, and c′1,4 of C ′B .
This results in a subdivision of D′ which we call S. Here, we also use DS to denote the
sub-drawing of D′ on S, i.e., DS is missing the frame edges since these have been cut out.
Let us now consider the components of S. Notice that every edge of DS is contained in one
component of S. Furthermore, in order for a component s of S to contain an edge of DS,
s must have two endpoints on its boundary—to be precise, we consider the boundary of s
in D′ whenever we think of the boundary of such a component of S. With this in mind,
we focus on each component of S with a vertex of G on its boundary and call it a region.
Observe that a crossing in D which does not involve a frame edge corresponds, in DS, to a
pair of edges where one goes over a handle and the other goes underneath.

2.2 Recognizing a graph with k bundled crossings
Consider a bundled circular drawing D of G consisting of one bundled crossing. The bundled
crossing consists of two bundles, so we have up to four frame edges, whose set will be denoted
by F . By V (F), we denote the set of vertices incident to frame edges. Via the construction
above, we obtain the subdivided surface S; see Fig. 3. Let r1 and r2 be the regions each
bounded by the pair of frame edges corresponding to one of the bundles, and let r3, . . . , r6
be the regions each bounded by one edge from one pair and one from the other pair; see
Fig. 3. These are all the regions of S. Since, as mentioned before, each of the non-frame
edges of G (i.e., each e ∈ E(G) \ F) along with two endpoints are contained in exactly one
of these regions, each component of G\V (F) including the edges connecting it to vertices of
V (F) is drawn in DS in some region of S. In this sense, for each region r of S, we use Gr
to denote the subgraph of G induced by the components of G \ V (F) contained in r in DS

including the edges connecting them to elements of V (F). Additionally, each vertex of G is
incident to an edge in F (in which case it is on the boundary of at least two regions) or it
is on the boundary of exactly one region.

Notice that there are two types of regions: {r1, r2} and {r3, r4, r5, r6}. Consider a
region of the first type, for example r1, and note that it is a topological disk1, i.e., Gr1

is outerplanar. Moreover, it has a special drawing where the two frame edges e1 and e3
bounding the region r1 are on the outerface. Now, consider adding a new vertex wj , for
j = 1, 3 adjacent to both uj and vj so that wj is placed slightly outside of the region; see
Fig. 3. Denote the resulting augmented graph by G∗r1

and the corresponding drawing by

1 We slightly abuse this notion to also mean a simply connected set.

S. Chaplick et al. 57:5

D∗r1
– it is easy to see that D∗r1

is outerplanar. Moreover, in every outerplanar embedding
of G∗r1

, the vertices uj , wj , vj , j = 1, 3, occur consecutively on the outerface.
Similarly for a region of the second type, for example r3, the graph Gr3 is outerplanar also

with a special drawing where all the vertices must be on the arc u3u2 of the disk subtended
by the two frame edges e3 and e2 bounding the region r3. We construct the augmented
graph G∗r3

by adding to Gr3 an edge u3u2 and adding a vertex w adjacent to both u3 and
u2. Again, G∗r3

is outerplanar as r3 is a topological disk. Moreover, in every outerplanar
embedding of G∗r3

, the vertices u3, w, u2 occur consecutively on the outerface.
In other words, Gri

“fits” into ri because its augmented graph G∗ri
is outerplanar (?) –

note: that we do not require the specific outerplanar embedding of Gri
for this augmentation.

To sum up, G has a circular drawing D with at most one bundled crossing, because there
exist (i) a set of β ≤ 4 frame edges F = {e1, e2, . . . , eβ}, (ii) a particular circular drawing
DF of frame edges, (iii) the drawing of the one bundled crossing B, and (iv) corresponding
regions r1, . . . , rγ(γ ≤ 6) of the subdivided surface S such that the following properties hold:

1. The set of edges E(G) is partitioned into E0, E1, . . . , Eγ .
2. There is a bijection from E0 to F so that the subgraph of G formed by E0 is isomorphic

to the graph formed by F .
3. No vertex in V (G) \ V (E0) has incident edges e ∈ Ei, e′ ∈ Ej for i 6= j.
4. For each v ∈ V (E0), and each edge e incident to v, exactly one of the following is true:

(i) e ∈ E0 or (ii) e ∈ Ei and v is on the boundary of ri.
5. For each region ri, let Gi be the graph formed by Ei and vertices in V (E0) on the

boundary of ri (even if they are not incident to an edge in Ei), and let G∗i be the
corresponding augmented graph (i.e., as in ? above). Then, G∗i must be outerplanar.

To test for a drawing with one bundled crossing, we first enumerate drawings DF of
up to four lines in the circle. For each drawing DF that is valid for frame edges of one
bundled crossing, we define our surface and its regions (which will allow the augmentation
to be well-defined). Then, we will build an MSO2 formula to express Properties 1–5 above.
We have intentionally phrased these properties in a logical way so that it is clear that
they are expressible in MSO2. The only condition which is not obviously expressible is
the outerplanarity check. For this, we recall that outerplanarity is characterized by two
forbidden minors (i.e., K4 and K2,3) [6] and that, for every fixed graph H, there is an MSO2
formula minorH so that for all graphs G, G |= minorH if and only if G contains H as a
minor [8, Corollary 1.15]. Thus, Properties 1–5 can be expressed as an MSO2 formula ψ and,
by Courcelle’s theorem, there is a computable function f such that we can test if G |= ψ

in O(f(ψ, t)n) time for input graphs of treewidth at most t. Since outerplanar graphs have
treewidth at most two [18], the region graphs are outerplanar, and adding the (up to) 8
frame vertices raises the treewidth by at most 8, G must also have treewidth at most 10.

The key ingredient above was that every region was a topological disk. However, in
a subdivision S constructed from a bundled drawing with k bundled crossings this is not
trivial as regions can go over and under many handles; see Fig. 2. We state this result in
the following lemma, whose proof can be found in the full version [5].

I Lemma 3. Each region r of S is a topological disk.

Properties 1–5 and Lemma 3 allow us to construct an MSO2 formula ϕ to test whether
bc◦(G) ≤ k with pattern F of frame edges. The size of ϕ depends only on k. This lemma
further implies that the treewidth of a graph G with bc◦(G) ≤ k is at most 8k + 2 since
deleting a vertex from a graph lowers its treewidth by at most one and the treewidth of an

EuroCG’19

57:6 Bundled Crossings Revisited

outerplanar graph is at most two [18]. So, applying Courcelle’s Theorem (2) on ϕ of each
pattern F leads to an FPT algorithm to test whether bc◦(G) ≤ k. This proves Theorem 1.

References
1 M. Alam, M. Fink, and S. Pupyrev. The bundled crossing number. In Y. Hu and

M. Nöllenburg, editors, GD, volume 9801 of LNCS, pages 399–412. Springer, 2016. URL:
http://arxiv.org/abs/1608.08161, doi:10.1007/978-3-319-50106-2_31.

2 M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and 2-page drawings of
graphs with bounded treewidth. Journal of Graph Algorithms and Applications, 22(4):577–
606, 2018. doi:10.7155/jgaa.00479.

3 C. Buchheim, D. Ebner, M. Jünger, G. W. Klau, P. Mutzel, and R. Weiskircher. Exact
crossing minimization. In P. Healy and N. S. Nikolov, editors, GD, volume 3843 of LNCS,
pages 37–48. Springer, 2006. doi:10.1007/11618058_4.

4 S. Chaplick, M. Kryven, G. Liotta, A. Löffler, and A. Wolff. Beyond outerplanarity. In
F. Frati and K.-L. Ma, editors, GD, volume 10692 of LNCS, pages 546–559. Springer, 2018.
URL: http://arxiv.org/abs/1708.08723, doi:10.1007/978-3-319-73915-1_42.

5 S. Chaplick, T. C. van Dijk, M. Kryven, J. won Park, A. Ravsky, and A. Wolff. Bundled
crossings revisited. Arxiv report, 2018. URL: http://arxiv.org/abs/1812.04263.

6 G. Chartrand and F. Harary. Planar permutation graphs. Annales de l’I.H.P. Probabilités
et statistiques, 3(4):433–438, 1967. URL: http://eudml.org/doc/76875.

7 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inform. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

8 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge Univ. Press, 2012.

9 W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge clustering for
graph visualization. IEEE Trans. Vis. Comput. Graph., 14(6):1277–1284, 2008. doi:
10.1109/TVCG.2008.135.

10 M. Fink, J. Hershberger, S. Suri, and K. Verbeek. Bundled crossings in embedded graphs.
In E. Kranakis, G. Navarro, and E. Chávez, editors, LATIN, volume 9644 of LNCS, pages
454–468. Springer, 2016. doi:10.1007/978-3-662-49529-2_34.

11 M. Fink, S. Pupyrev, and A. Wolff. Ordering metro lines by block crossings. J. Graph
Algorithms Appl., 19(1):111–153, 2015. doi:10.7155/jgaa.00351.

12 E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglomerative edge bundling
for visualizing large graphs. In G. D. Battista, J.-D. Fekete, and H. Qu, editors, PACI-
FICVIS, pages 187–194. IEEE, 2011. doi:10.1109/PACIFICVIS.2011.5742389.

13 M. R. Garey and D. Johnson. Crossing number is NP-complete. SIAM J. Algebr. Discrete
Meth., 4:312–316, 1983. doi:10.1137/0604033.

14 D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical
data. IEEE Trans. Vis. Comput. Graph., 12(5):741–748, 2006. doi:10.1109/TVCG.2006.
147.

15 C. Hurter, O. Ersoy, S. I. Fabrikant, T. R. Klein, and A. C. Telea. Bundled visualization of
dynamicgraph and trail data. IEEE Trans. Vis. Comput. Graphics, 20(8):1141–1157, 2014.
doi:10.1109/TVCG.2013.246.

16 C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density estimation. Comput.
Graph. Forum, 31:865–874, 2012. doi:10.1111/j.1467-8659.2012.03079.x.

17 K. Kawarabayashi and B. Reed. Computing crossing number in linear time. In STOC,
pages 382–390. ACM, 2007. doi:10.1145/1250790.1250848.

18 S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs.
Inform. Process. Lett., 9(5):229–232, 1979. doi:10.1016/0020-0190(79)90075-9.

http://arxiv.org/abs/1608.08161
http://dx.doi.org/10.1007/978-3-319-50106-2_31
http://dx.doi.org/10.7155/jgaa.00479
http://dx.doi.org/10.1007/11618058_4
http://arxiv.org/abs/1708.08723
http://dx.doi.org/10.1007/978-3-319-73915-1_42
http://arxiv.org/abs/1812.04263
http://eudml.org/doc/76875
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1109/TVCG.2008.135
http://dx.doi.org/10.1109/TVCG.2008.135
http://dx.doi.org/10.1007/978-3-662-49529-2_34
http://dx.doi.org/10.7155/jgaa.00351
http://dx.doi.org/10.1109/PACIFICVIS.2011.5742389
http://dx.doi.org/10.1137/0604033
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2013.246
http://dx.doi.org/10.1111/j.1467-8659.2012.03079.x
http://dx.doi.org/10.1145/1250790.1250848
http://dx.doi.org/10.1016/0020-0190(79)90075-9

S. Chaplick et al. 57:7

19 S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd. Edge routing with ordered
bundles. In M. van Kreveld and B. Speckmann, editors, Proc. 19th Int. Symp. Graph
Drawing (GD’11), volume 7034 of LNCS, pages 136–147. Springer, 2012. doi:10.1007/
978-3-642-25878-7_14.

20 M. Schaefer. The graph crossing number and its variants: A survey. Electr. J. Combin.,
Dynamic Survey DS21, 2017. URL: http://www.combinatorics.org/ojs/index.php/
eljc/article/view/DS21.

EuroCG’19

http://dx.doi.org/10.1007/978-3-642-25878-7_14
http://dx.doi.org/10.1007/978-3-642-25878-7_14
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21

Simplification of Polyline Bundles
Joachim Spoerhase1, Sabine Storandt2, and Johannes Zink3

1 Aalto University, Finland
joachim.spoerhase@aalto.fi

2 AG Algorithmik, Universität Konstanz.
storandt@inf.uni-konstanz.de

3 Lehrstuhl für Informatik I, Universität Würzburg.
zink@informatik.uni-wuerzburg.de

Abstract
We propose a generalization to the well-known problem of polyline simplification in two variants.
We are given, instead of a single polyline, a set of polylines possibly sharing some edges and
vertices. We show that this more general problem is NP-hard by a reduction from Max-2-SAT.
On the positive side, we show fixed-parameter tractability in the number of shared vertices.

1 Introduction

Visualization of geographical information is a task of high practical relevance, e.g., for the
creation of online maps. Such maps are most helpful if the information is neatly displayed
and can be grasped quickly and unambiguously. This means that the full data often needs to
be filtered and abstracted. Many important elements in maps like borders, streets, rivers, or
trajectories are displayed as polylines (also known as polygonal chains). For such a polyline, a
simplification is supposed to be as sparse as possible and as close to the original as necessary.
A simplified polyline is constructed by a subset of vertices of the original polyline such that
the (local) distance to the original polyline does not exceed a specifiable value according to a
given distance measure, e.g., the Hausdorff distance [4] or the Fréchet distance [1]. The first
such algorithm, which is still of high practical importance, was proposed by Ramer [7] and
by Douglas and Peucker [3]. Hershberger and Snoeyink [5] proposed an implementation of
this algorithm that runs in O(n logn) time, where n is the number of vertices in the polyline.
It is a heuristic algorithm as it does not guarantee optimality (or something close to it) in
terms of retained vertices. An optimal algorithm in this sense was first proposed by Imai
and Iri [6]. Chan and Chin [2] improved the running time of this algorithm to O(n2).

From a Single Polyline to a Bundle of Polylines

On a map, there are usually multiple polylines to display. Such polylines may share vertices
and edges sectionwise. For example, when considering (GPS) trajectories like car-routes,
different trajectories may partially share edges and vertices when cars have been on the same
roads. Another example is a schematic map of a public transport network. Bus lines are the
polylines and the vertices are the stations. In the city center, there are many different bus
lines at the same stations that fan out when going to the outer districts, where they possibly
share stations with further different bus lines. One might consider simplifying the polylines
of a bundle independently. This has some drawbacks, though. On the one hand, the total
complexity might even increase when the shared parts are simplified in many different ways.
On the other hand, it might suggest a misleading picture when we remove common edges
and vertices of some polylines, but not of all. The viewer might get the wrong impression
that the one route has taken some street or passed through some area and the other has
not, while in reality both took the same route in this place. E.g., if there is only one way to
35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

58:2 Simplification of Polyline Bundles

(a) initial bundle of polylines (b) simplified bundle of polylines

Figure 1 Example of a bundle of three polylines before and after the simplification.

(a) initial bundle with shortcuts (b) optimal for Min-Edges (c) optimal for Min-Vertices

Figure 2 Example of three polylines, where the goals Min-Edges and Min-Vertices differ.

pass through some point, then the simplifications of all polylines going through this point
should still share the corresponding vertex or edge if it is kept. Therefore, we require that a
vertex in a simplification of a bundle of polylines is either kept for all polylines containing it
or discarded in all polylines. In Figure 1, we give an example of a simplification of a bundle
of polylines. Natural minimization goals are to minimize either the total number of vertices
(Min-Vertices) or the total number of line segments, i.e., edges (Min-Edges). Both goals
generalize the previously described minimization problem for a single polyline. However,
they may differ from each other like in Figure 2. In this extended abstract, we focus on
Polyline-Bundle-Simplification with the goal Min-Edges to be formalized next. With
small adaptions, our results also hold for the goal Min-Vertices.

2 Problem Definition

In an instance of the problem Polyline-Bundle-Simplification with goal Min-Edges,
we are given a set V = {v1, . . . , vn} of n points in the plane, and a set L = {L1, . . . , L`}
of ` polygonal chains Li = (si, . . . , ti) represented as lists of vertices from V , as well as a
distance parameter ε referring to a distance measure d (e.g., Hausdorff distance). The goal is
to obtain a subset V ∗ ⊆ V of the points, such that for each Li its induced simplification Si,
which is Li ∩ V ∗ while preserving the order of vertices,

contains the start and the end vertex of Li, i.e., si, ti ∈ Si, and
has at most a distance of ε to Li, i.e., for each line segment (a, b) of Si and the

J. Spoerhase, S. Storandt, and J. Zink 58:3

a b

c d

e

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
3ε 7ε4ε

2ε

︸︷︷︸

︸ ︷︷ ︸
3ε

ε

Figure 3 The literal-gadget depicted in black with valid (invalid) shortcuts in green (red).

corresponding sub-polyline of Li from a to b, abbreviated by Li[a, . . . , b], we have
d((a, b), Li[a, · · · , b]) ≤ ε,

and the total number of edges induced by V ∗ is minimized. Here an edge (v, w) is induced
by V ∗ if there exists at least one polyline Li with Li[v, . . . , w] ∩ V ∗ = {v, w}. Note that we
do not count the edge multiple times if there are multiple such polylines.

3 NP-Hardness

The problem Polyline-Bundle-Simplification with goal Min-Edges is NP-hard even for
only two polylines (hence not FPT in ` unless P = NP). We show this by a reduction from
Max-2-SAT, which is known to be NP-complete. In this reduction, we model a given 2-SAT
formula by an instance of Polyline-Bundle-Simplification with goal Min-Edges using
two polylines. Our reduction uses three types of gadgets, which allow some shortcuts inside
the gadgets: literal-gadgets, variable-synchronization-gadgets, and clause-synchronization-
gadgets. We obtain the first polyline by connecting all literal-gadgets such that no new
shortcuts are possible. The second polyline is the connection of all variable-synchronization-
gadgets and all clause-synchronization-gadgets such that no new shortcuts are possible. Next,
we specify the three gadgets of our reduction.

Literal-Gadget. We model each literal of each clause by a literal-gadget. In Figure 3, a
literal-gadget for modeling a positive literal x is depicted. For negative literals, it is the same
but mirrored horizontally. It consists of five serially connected vertices (drawn in black).
Valid shortcuts are dashed in green, invalid shortcuts in red. The vertices a and e cannot be
skipped and the inner vertices b, c, and d are shared with the second polyline. There are
three mutually exclusive shortcuts: skipping b and c, skipping c, and skipping d. Skipping c
(together with or without b) or d is always possible and corresponds to the truth assignment
of this clause. Since the number of edges is minimized, the shortcut that skips b and c will
be chosen whenever possible (in compliance with the variable-synchronization-gadget, with
which c and d are shared, and the clause-synchronization-gadget, with which b is shared).
The interpretation is as follows: if c is skipped, x is set to true; if d is skipped, x is set to
false; if b is skipped, this literal satisfies its clause. So b is the “critical” vertex indicating
that a clause is satisfied. In a literal-gadget for a negative literal, b is between d and e, and
not between a and c. Clearly, all vertices lie on a grid point of a grid with square length ε.

Variable-Synchronization-Gadget. For each variable, we use a variable-synchroniza-
tion-gadget to enforce a consistent truth assignment for a variable xi. In Figure 4, a
variable-synchronization-gadget for synchronizing six literal-gadgets is depicted. Shortcuts
are depicted as dashed segments in the color of its polyline. The number of vertices in the

EuroCG’19

58:4 Simplification of Polyline Bundles

ε

¬xi xi

ε

ε

(a) The gadget alone.

ε

¬xi xi

ε

ε

(b) The combination of a variable-synchronization-gadget (black) and
literal-gadgets (orange). Only 2 of 6 literal-gadgets are drawn here.

Figure 4 The variable-synchronization-gadget.

section going zigzag corresponds to the number of occurrences of this variable—regardless
of positive or negative. Except for the two vertices on the top and the two vertices on the
bottom of the gadget, all vertices are shared with the literal gadgets—each two vertices
with the same y-coordinate are part of the same literal gadget (the vertices c and d in
Figure 3). There are only two shortcuts: skipping all shared left vertices and skipping all
shared right vertices. The interpretation is as follows: if we skip the left vertices and keep
the right vertices, xi is set to true and the other way round xi is set to false. An inconsistent
assignment is not possible: we cannot take both shortcuts, since we cannot skip both lower
vertices in a literal gadget. Taking none of these shortcuts would violate the minimality,
since consistently skipping the same lower vertex in the literal gadgets is always possible
(otherwise we cannot take any shortcut of the concerned literal-gadgets). Again, all vertices
lie on a grid point of a grid with square length ε.

Clause-Synchronization-Gadget. We use a clause-synchronization-gadget for each clause
with two literals. Its purpose is to reward satisfied clauses uniformly, i.e., it prohibits “double”
satisfied clauses from being rewarded better than “once” satisfied clauses. In Figure 5, a
clause-synchronization-gadget is depicted in black. It consists of four serially connected
vertices, which connect two literal-gadgets (gray color) that correspond to two literals of
the same clause. The inner vertices b1 and b2 are shared with the two b-vertices of these
literal-gadgets (compare with Figure 3). Valid shortcuts are dashed in green, invalid shortcuts
in red. There are two mutually exclusive shortcuts: skipping b1 and skipping b2. If one
of them is used, then the b-vertex of one literal-gadget is skipped. This is only possible
when the assigned truth value satisfies the corresponding literal, which in turn satisfies the
corresponding clause. We can say: for each satisfied clause, we get the reward of reducing the
total number of edges by two when we skip such a b-vertex (the one edge in the literal-gadget,
the other edge in the clause-synchronization-gadget), which we cannot remove otherwise.
Since there is no shortcut from s to t, it is not possible to skip both b-vertices corresponding
to the same clause and, therefore, also not possible to get a greater reward if both literals
of the same clause are set to true. Since we minimize the number of remaining edges, as
many clauses as possible are satisfied this way because if at least one of the corresponding
literal-gadgets is set true, we clearly can also skip the b-vertex of this literal-gadget. Hence,
only if none of the two b-vertices is skipped, the corresponding clause remains unsatisfied.

J. Spoerhase, S. Storandt, and J. Zink 58:5

ε

s

b1

b2

t

l2

l1

Figure 5 The clause-synchronization-gadget.

We can construct this gadget such that its vertices are on grid points of a polynomial-size
grid with square length ε. The vertices b1 and b2 are already on the grid. Consider the grid
points l1, l2 to the left of them with distance ε. Our shortcuts s→ b2 and b1 → t will lie on
the lines defined by l1b2 and b1l2, respectively. Lengthen the line segments l1b2 and b1l2 at l1
and l2 by a factor of 2 (we use 1.5 in Figures 5 and 6 to keep it overseeable)—the endpoints
are the grid points that will be our s and t. Observe that the shortcut s→ t is always invalid
if we place all variable-synchronization-gadgets in a column above the other with sufficient
vertical spacing (constant in ε).

Complete Reduction

Given a Max-2-SAT instance, we can reduce it in polynomial time to a Polyline-Bundle-
Simplification instance with goal Min-Edges: set ε to 1 and create for each variable
a variable-synchronization-gadget with size equal to the number of occurrences of this
variable and place them one above the other onto an integer grid. This defines exact
positions for the literal-gadgets and then for the clause-synchronization-gadgets. Connect
all literal-gadgets (first polyline) and, separately, all variable-synchronization-gadgets and
clause-synchronization-gadgets (second polyline) in a shortcut-free way. This is possible on
a polynomial-size grid. From a solution minimizing the number of edges of this polyline
bundle simplification instance with two polylines, we can immediately obtain a solution of
the corresponding Max-2-SAT instance—the total number of removed b-vertices equals the
maximum number of satisfiable clauses. Thus, we conclude the following theorem:

I Theorem 3.1. Polyline-Bundle-Simplification with goal Min-Edges is NP-hard
even for two polylines. J

We give a small but full example to the presented reduction in Figure 6. We use the
2-SAT formula (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x3). Note that the last clause (¬x3) consists of
only one literal and, therefore, does not have a clause-synchronization-gadget.

EuroCG’19

58:6 Simplification of Polyline Bundles

ε

¬x1 x1

¬x2 x2

¬x3 x3

(a) first polyline (connecting literal-gadgets)

ε

¬x1 x1

¬x2 x2

¬x3 x3

(b) second polyline (connecting both types of
synchronization-gadgets)

ε

¬x1 x1

¬x2 x2

¬x3 x3

(c) both polylines

Figure 6 Full example of our NP-hardness reduction: (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x3)

J. Spoerhase, S. Storandt, and J. Zink 58:7

4 Fixed-Parameter Tractability

For both goals (Min-Edges or Min-Vertices) our problem is fixed-parameter tractable in
the number of shared vertices, that is, vertices contained in more than one polyline or multiple
times in the same polyline. We call the set of those vertices Vshared and let k := |Vshared|.

I Theorem 4.1. Polyline-Bundle-Simplification is fixed-parameter tractable in k.

Proof sketch. We sketch an algorithm that solves Polyline-Bundle-Simplification
in O(2k · `n3) time. The idea is to fix for each subset V ′ ⊆ Vshared the vertices in V ′ to be
contained in V ∗ and the vertices in Vshared \ V ′ to be excluded from V ∗. Then the optimal
simplification of the remaining parts, which are simple polylines, can be computed in the
classic way [6]. In the end, we take the best solution among all 2k subsets of Vshared. J

5 Conclusion

We have generalized the well-known problem of polyline simplification from a single polyline
to multiple interfering polylines. Unlike the special case of a single polyline, simplifying a
bundle of polylines turned out to be NP-hard. The problem is fixed-parameter tractable in
the number of shared vertices, but not in the number of polylines.

The NP-hardness result gives rise to the question of approximability. It can be shown that
the reduction from Max-2-SAT gives even APX -hardness. Therefore, it is an interesting
question if there is a constant-factor approximation algorithm for our problem.

References
1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two

polygonal curves. International Journal of Computational Geometry and Applications,
5:75–91, 1995. URL: https://doi.org/10.1142/S0218195995000064, doi:10.1142/
S0218195995000064.

2 W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of
line segments or minimum error. International Journal of Computational Geometry and
Applications, 6(1):59–77, 1996. URL: https://doi.org/10.1142/S0218195996000058,
doi:10.1142/S0218195996000058.

3 David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica, 10(2):112–122,
1973.

4 Felix Hausdorff. Grundzüge der Mengenlehre. Veit and Company, Leipzig, 1914. URL:
https://archive.org/details/grundzgedermen00hausuoft.

5 John Hershberger and Jack Snoeyink. Speeding up the douglas-peucker line-simplification
algorithm. In Proc. 5th Intl. Symp. Spatial Data Handling (SDH’92), pages 134–143. IGU
Commission on GIS, 1992.

6 Hiroshi Imai and Masao Iri. Polygonal approximations of a curve – formulations and
algorithms. In Godfried T. Toussaint, editor, Computational Morphology, volume 6
of Machine Intelligence and Pattern Recognition, pages 71 – 86. North-Holland, 1988.
URL: http://www.sciencedirect.com/science/article/pii/B9780444704672500114,
doi:https://doi.org/10.1016/B978-0-444-70467-2.50011-4.

7 Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-
puter Graphics and Image Processing, 1(3):244–256, 1972. URL: https://doi.org/10.
1016/S0146-664X(72)80017-0, doi:10.1016/S0146-664X(72)80017-0.

EuroCG’19

https://doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195996000058
http://dx.doi.org/10.1142/S0218195996000058
https://archive.org/details/grundzgedermen00hausuoft
http://www.sciencedirect.com/science/article/pii/B9780444704672500114
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
http://dx.doi.org/10.1016/S0146-664X(72)80017-0

Shooting Stars in Simple Drawings of Km,n
∗

Oswin Aichholzer1, Irene Parada1, Manfred Scheucher2, Birgit
Vogtenhuber1, and Alexandra Weinberger1

1 Graz University of Technology, Austria
[oaich|iparada|bvogt]@ist.tugraz.at, alexandra.weinberger@student.tugraz.at

2 Institut für Mathematik, Technische Universität Berlin, Germany
[scheucher]@math.tu-berlin.de

Abstract
In this work we study the existence of plane spanning trees in simple drawings of the complete
bipartite graph Km,n. We show that every simple drawing of K2,n and K3,n, n ≥ 1, as well as
every outer drawing of Km,n for any m,n ≥ 1, contains plane spanning trees. Moreover, for all
these cases we show the existence of special plane spanning trees, which we call shooting stars.
Shooting stars are spanning trees that contain the star of a vertex, i.e., all its incident edges.

1 Introduction

In a drawing of a graph in the Euclidean plane the vertices are drawn as distinct points and
the edges are drawn as continuous arcs connecting its two end points. Depending on which
properties of the graph are to be considered, there might be additional requirements on how
the graph is drawn. Typically the drawing of an edge has to be non-self-crossing and must
not pass through any point representing a vertex other than its two end points. In addition,
in a simple drawing of a graph any pair of edges crosses at most once, either in their interior
or at a common end point, no tangencies are allowed and no three edges pass through a
single crossing. These drawings are also called good drawings [1, 3] or (simple) topological
graphs [5, 6].

The probably most restricted version of drawings are straight-line drawings, also called
geometric graphs, where an edge is drawn as straight-line segment connecting its two end
points. Thus, the placement of the vertices in the plane entirely determines the full drawing.

Both classes of drawings are of special interest if we want to minimize the number of
crossings in a drawing of a given graph. If such a drawing does not contain any crossing at
all then it is called plane. In this work we are interested in plane spanning subdrawings of a
given drawing, that is, drawings without crossings that contain all the vertices of the given
drawing and a subset of its edges.

The existence of plane subdrawings of simple drawings of the complete graph Kn has
received quite a lot of attention. For example, Ruiz-Vargas [9] showed that every simple
drawing of Kn contains Ω(n1/2−ε) pairwise disjoint edges for any ε > 0, by this improving
over many previous bounds [6, 7, 10]. Fulek and Ruiz-Vargas [4] proved that given a simple
drawing of Kn, a plane cycle C in the drawing, and any vertex v that is not part of C, at
least two edges connecting v to C do not intersect C. Hence every simple drawing of Kn

contains a plane sub-drawing with at least 2n− 3 edges. Rafla [8] conjectured that every
simple drawing of Kn contains a plane Hamiltonian cycle, a statement that is known to be

∗ O.A., M.S., and B.V. partially supported by the ESF EUROCORES programme EuroGIGA – CRP
ComPoSe, Austrian Science Fund (FWF): I648-N18. I.P. supported by the Austrian Science Fund
(FWF): W1230. M.S. partially supported by the Austrian Science Fund (FWF): P23629-N18 and the
DFG Grant FE 340/12-1. B.V. and A.W. partially supported by the Austrian Science Fund within the
collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

59:2 Shooting Stars in Simple Drawings of Km,n

true for several classes of simple drawings (e.g., 2-page book drawings, monotone drawings,
cylindrical drawings), but is still open in the general case. Pach et al. [6] proved that every
simple drawing of Kn contains a plane drawing of any fixed tree with at most c log1/6 n

vertices.
In this paper we concentrate on the existence of plane spanning trees in simple drawings.

Obviously, any simple (or straight-line) drawing of the complete graph Kn contains some
plane spanning trees: choose any vertex v and all the edges incident to v. As these edges
cannot cross we obtain a plane spanning star.

For the complete bipartite graph Km,n, the situation is less obvious. As a warm up
exercise, let us first consider straight-line drawings of Km,n. Let V1 and V2 be the sides of the
bipartition of the vertex set of Km,n. Chose any vertex v0 ∈ V1 and draw the star consisting
of all edges v0v with v ∈ V2. This star induces a partition of the plane into wedges centered
at v0, where one wedge might have an opening angle larger than π. Draw a virtual angular
bisector within each wedge and connect the vertices of V1 which lie in each half of a wedge
to the corresponding end point v 6= v0 of the star edge. This results in a plane spanning tree
with root v0 and height 2 that includes all the edges incident to v0. In the following, we
call such a (not necessarily rectilinear) plane spanning tree a shooting star (rooted at v0).

For simple drawings, we are not aware of a similarly easy construction. Actually, it is
still an open problem whether every simple drawing of Km,n contains a plane spanning tree.
In this paper we solve that problem for the cases of K2,n and K3,n (see Section 2), as well
as for outer drawings of Km,n (see Section 3, where also a definition of these drawings can
be found). In all those cases, we show the existence of a shooting star rooted at any of the
vertices of one side of the bipartition (the smaller one in case of K2,n and K3,n and the one
lying on the outer boundary in the case of outer drawings).

2 Plane Spanning Trees in Simple Drawings of K2,n and K3,n

In this section we prove that every simple drawing of K2,n and K3,n contains plane spanning
trees of a certain structure. In order to do so, we introduce some notions and provide some
auxiliary results.

For a given simple drawing of Kn with vertex set V and two fixed vertices g 6= r ∈ V , we
define a relation →gr on the remaining vertices V \{g, r}, where a→gr b if and only if the
arc ra properly crosses gb. In the following, we simply write a→ b if the two vertices g and
r are clear from the context.

I Lemma 2.1. The relation → is asymmetric and acyclic, that is, there are no vertices
v1, v2, . . . , vk (k ∈ N) with v1 → v2 → . . .→ vk → v1.

Proof. We give a proof by induction on k.
Induction basis: The case k = 1 is trivial. The case k = 2 follows from the fact that
there is at most one proper crossing in every 4-tuple in a simple drawing – if ra crosses
gb then rb cannot cross ga. For the case k = 3 assume there are three vertices a, b, c with
a→ b→ c→ a. Let 4 denote the area bounded by the edges ga, gb, ra and not containing
the vertex r, as illustrated in Figure 1. We distinguish the following two cases:
Case 1: c 6∈ 4. Since c→ a holds, the arc rc crosses ga, and therefore the boundary of 4.

Since r 6∈ 4 and since rc cannot cross ra, rc must also cross gb. Thus we have c → b,
which is a contradiction to b→ c.

Case 2: c ∈ 4. Since a → b, the arc rb cannot cross ga. Moreover, since rb can neither
cross ra nor gb, it is therefore completely outside of 4. Since gc is completely contained
in 4, rb and gc cannot cross, and therefore, b 6→ c. Contradiction.

O. Aichholzer, I. Parada, M. Scheucher, B. Vogtenhuber, and A. Weinberger 59:3

a

b

rg

c

(a) Case 1

c

a

b

g r

(b) Case 2

Figure 1 An illustration of the two cases of base case k = 3 from Lemma 2.1. The area 4 is
colored light green.

Since c can neither be inside nor outside 4, the statement is proven.

Induction step: Suppose – towards a contradiction – that there exist v1, . . . , vk with k ≥ 4
and v1 → v2 → . . . → vk → v1. We write a = v1, b = v2, w = vk−1, and z = vk. Let 4
denote the area bounded by the edges ga,gb, and ra that does not contain the vertex r. We
distinguish the following two cases:
Case 1: z 6∈ 4. We continue analogously to Case 1 of base case k = 2. Since z → a holds,

rz crosses ga, and therefore the boundary of 4. Since r 6∈ 4 and since rz cannot cross
ra, rz must also cross gb. Thus we have z → b.

Case 2: z ∈ 4. Since w → z holds, rw crosses gz at some point inside 4. Since r 6∈ 4
and since rw cannot cross ra, it must cross ga or gb (or both). Thus we have w → a or
w → b.

In both cases, we can find v′1, . . . , v
′
l for some l < k with v′1 → . . . → v′l → v′1, which is a

contradiction. This completes the proof of the lemma. J

I Theorem 2.2. Let D be a simple drawing of the complete bipartite graph K2,n with sides
of the bipartition {g, r} and P . Then, for every k ∈ {0, . . . , n}, D contains a plane spanning
tree with k edges incident to g and n− k + 1 edges incident to r.

Proof. According to Lemma 2.1, we can find a labeling v1, . . . , vn of the vertices in P such
that vi →gr vj only holds if i < j. Let S1 be the star with center g and children {v1, . . . , vk}
and let S2 be the star with center r and children {vk, . . . , vn}. By definition of relation →gr,
the edges of S1 and S2 do not cross, and hence we have a plane spanning tree. J

I Corollary 2.3. Let D be a simple drawing of the complete bipartite graph K2,n with sides
of the bipartition {g, r} and P . Then for each c ∈ {g, r}, D contains a shooting star rooted
at c.

Proof. Consider again the proof of Theorem 2.2. With the according labeling of P , no edge
rvi can cross the edge gv1. Hence, the plane spanning tree consisting of all the edges incident
to r together with the edge gv1 gives the desired shooting star rooted at r. Similarly, the
tree with all edges incident to g and the edge rvn is a shooting star rooted at g. J

We also have an analogous result, showing shooting stars also exist for simple drawings
of K3,n. Due to lack of space, we only state the theorem. Its proof is deferred to the foll
version of this paper.

EuroCG’19

59:4 Shooting Stars in Simple Drawings of Km,n

I Theorem 2.4. Let D be a simple drawing of the complete bipartite graph K3,n with sides
of the bipartition {g, r, b} and P . Then for each c ∈ {g, r, b}, D contains a shooting star
rooted at c.

3 Shooting Stars in Outer Drawings of Km,n

In this section we will study the problem of finding plane spanning trees in a special kind of
simple drawings of bipartite graphs, namely outer drawings. The concept of outer drawings
was recently introduced in [2]. They are defined as follows:

I Definition 3.1. A simple drawing of a Km,n in which all the m vertices of one side of the
bipartition lie on the outer boundary of the drawing is called outer drawing.

We denote by P the side of the bipartition whose vertices must lie on the outer boundary
of the drawing. The other side of the bipartition is denoted by S. Note that points of S may
also lie on the outer boundary but don’t have to.

We now proceed to prove that there is a plane spanning tree in every outer drawing of a
Km,n with m,n ∈ N.

I Theorem 3.2. Let D be an outer drawing of the complete bipartite graph Km,n with sides
of the bipartition P and S where the vertices of P lie on the outer boundary. Let p be an
arbitrary vertex in P . Then D contains a shooting star rooted at p.

Proof. First, we label the vertices in P . We start in p1 := p and go clockwise along the
outer boundary and denote the vertices of P by p2 to pm following the order in which they
occur. Let T1 be the sub graph that is induced by all edges incident to p1. Notice that T1 is
a plane tree. We will add edges to T1 until it becomes a spanning tree. We do so inductively
by first adding an edge incident to p2, then an edge incident to p3 and so on until we add an
edge incident to the vertex pm. We denote by Ti the tree that we get by adding to Ti−1 the
selected edge incident to pi for 2 ≤ i ≤ m. We will show that it is possible to add edges such
that Ti is always plane. After adding the last edge the statement then follows.

In the first step, for T2, we need to find an edge that is incident to p2 and does not cross
any edge incident to p. We know from Theorem 2.2 that there is at least one such edge. We
add that edge to T1 and get a plane tree T2. For Ti we need to find an edge that is incident
to pi and does not cross any of the edges of Ti−1. We denote by ei−1 the edge in Ti−1 that
is incident to pi−1 and by si−1 the vertex in S that ei−1 is incident to. We also denote the
edge that is incident to si−1 and p by ep. See Figure 2 for an illustration. The part of the
boundary that goes from p clockwise until pi−1 together with the edges ei−1 and ep encloses
a region that we call R1. The vertices p2 to pi−1 all lie on that part of the boundary, because
of the way we labeled them. We call the rest of the area inside the outer boundary R2.
I Claim 1. All edges in Ti−1 that are not incident to p lie completely inside R1.

Proof. Since the boundary of R1 consists of edges in Ti−1 and the outer boundary, all edges
of Ti−1 that lie partly inside R2 have to lie completely inside it. The edges in Ti−1 that are
not incident to p are incident with the vertices p2 to pi−1. As they have to lie on the part
of the outer boundary that is also part of the boundary of R1, the edges incident to these
vertices have to lie partly inside R1. Thus these edges have to lie completely inside R1. J

Let us now consider the region R2. The sub graph induced by p, pi, and all vertices of S
that lie in R2 is a K2,n′ with n′ ∈ N. By Theorem 2.2 there is an edge incident to pi that
does not cross any edges incident to p. This edge can neither cross the outer boundary nor

O. Aichholzer, I. Parada, M. Scheucher, B. Vogtenhuber, and A. Weinberger 59:5

p

si−1

si−1

pi−1pi

ep

ei−1

R1

R2

Figure 2 The edges ep and ei−1 together with the outer boundary form two regions.

ep and it can only cross ei−1 once. Since the edge has both end points in R2, it follows that
the edge has to lie completely in R2. From Claim 1 it follows that it does not cross any of
the edges of Ti−1 that are not incident with p. As it doesn’t cross any edges incident with p
either, it follows that it doesn’t cross any of the edges of Ti−1. Thus, we can add that edge
and obtain a plane tree Ti. We continue to do so until we added an edge for every vertex
in P . The plane spanning tree Tm is a shooting star. J

4 Conclusion

We have shown that particular cases of simple drawings of the complete bipartite graph Km,n,
namely all simple drawings of K2,n and K3,n, n ≥ 1, as well as all outer drawings of Km,n

for any n,m ≥ 1, contain plane spanning trees that are shooting stars. As we showed in the
introduction, a similar result applies to straight-line drawings of Km,n. In the full version
of this paper we show that our results also extend to other classes of drawings of complete
bipartite graphs. It is still an interesting open question whether every simple drawing of
Km,n has a shooting star, or at least a plane spanning tree.

References
1 Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Levi’s lemma, pseu-

dolinear drawings of Kn, and empty triangles. Journal of Graph Theory, 87(4):443–459,
2018. doi:10.1002/jgt.22167.

2 Jean Cardinal and Stefan Felsner. Topological drawings of complete bipartite graphs. In
Proceedings of the 24th International Symposium on Graph Drawing and Network Visu-
alization (GD’16), volume 9801 of LNCS, pages 441–453. Springer, 2016. doi:10.1007/
978-3-319-50106-2_34.

3 Paul Erdős and Richard K. Guy. Crossing number problems. The American Mathematical
Monthly, 80(1):52–58, 1973. doi:10.2307/2319261.

4 Radoslav Fulek and Andres J. Ruiz-Vargas. Topological graphs: empty triangles and dis-
joint matchings. In Proceedings of the 29th Annual Symposium on Computational Geometry
(SoCG’13), pages 259–266, New York, 2013. ACM. doi:10.1145/2462356.2462394.

5 Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of
Combinatorics, 30:1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.

6 János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete
topological graphs. Discrete & Computational Geometry, 30(2):311–320, 2003. doi:10.
1007/s00454-003-0012-9.

EuroCG’19

http://dx.doi.org/10.1002/jgt.22167
http://dx.doi.org/10.1007/978-3-319-50106-2_34
http://dx.doi.org/10.1007/978-3-319-50106-2_34
http://dx.doi.org/10.2307/2319261
http://dx.doi.org/10.1145/2462356.2462394
http://dx.doi.org/10.1016/j.ejc.2009.03.005
http://dx.doi.org/10.1007/s00454-003-0012-9
http://dx.doi.org/10.1007/s00454-003-0012-9

59:6 Shooting Stars in Simple Drawings of Km,n

7 János Pach and Géza Tóth. Disjoint edges in topological graphs. In Proceedings of the
2003 Indonesia-Japan Joint Conference on Combinatorial Geometry and Graph Theory
(IJCCGGT’03), volume 3330 of LNCS, pages 133–140, Berlin, 2005. Springer. doi:10.
1007/978-3-540-30540-8_15.

8 Nabil H. Rafla. The good drawings Dn of the complete graph Kn. PhD thesis, McGill Uni-
versity, Montreal, 1988. URL: http://digitool.library.mcgill.ca/thesisfile75756.
pdf.

9 Andres J. Ruiz-Vargas. Many disjoint edges in topological graphs. In Proceedings of the 8th
Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS’15), volume 50,
pages 29–34, 2015. doi:10.1016/j.endm.2015.07.006.

10 Andrew Suk. Disjoint edges in complete topological graphs. Discrete & Computational
Geometry, 49(2):280–286, 2013. doi:10.1007/s00454-012-9481-x.

http://dx.doi.org/10.1007/978-3-540-30540-8_15
http://dx.doi.org/10.1007/978-3-540-30540-8_15
http://digitool.library.mcgill.ca/thesisfile75756.pdf
http://digitool.library.mcgill.ca/thesisfile75756.pdf
http://dx.doi.org/10.1016/j.endm.2015.07.006
http://dx.doi.org/10.1007/s00454-012-9481-x

Extending Simple Drawings∗

Alan Arroyo1, Martin Derka2, and Irene Parada3

1 IST Austria, Klosterneuburg, Austria
alanmarcelo.arroyoguevara@ist.ac.at

2 Carleton University, Ontario, Canada
mderka@uwaterloo.ca

3 Graz University of Technology, Graz, Austria
iparada@ist.tugraz.at

Abstract
Simple drawings are those in which (i) every pair of edges have at most one point in common,
and it is either an endpoint or a proper crossing; and (ii) no three edges cross in the same point.
In this paper we study the problem of extending a simple drawing D(G) of a graph G = (V, E),
by adding a set of edges (of the complete graph with vertex set V) such that the result is a
simple drawing with D(G) as a subdrawing. In the context of rectilinear drawings, the problem
is trivial. In contrast, we prove that finding the maximum amount of edges from a prescribed set
that extend a simple drawing is NP-hard.

1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topological graph in
the literature) is a drawing D(G) of G in the plane such that every pair of edges share at
most one point that is either a proper crossing (no tangent edges allowed) or an endpoint.
Moreover, no three edges intersect in the same point and edges must not contain other
vertices. In some contexts, such as the study of crossing numbers, simple drawings play a
central role. Despite them being widely studied, there are basic aspects that remain unknown.

The long-standing conjectures on the crossing numbers of Kn and Kn,m, known as the
Harary-Hill and Zarankiewicz’s conjectures, respectively, have drawn particular interest in
the study of simple drawings of complete and complete bipartite graphs. Although these
problems remain open, their intensive study has produced deep results about simple drawings
of Kn [6, 9] and Kn,m [2].

In contrast to what we know about Kn, little is known about simple drawings of general
graphs. In [8] it was observed that, when studying simple drawings of general graphs, it would
be natural to try extend them, by adding the missing edges between non-adjacent vertices,
to simple drawings of complete graphs. One of the main results in this paper suggests that
there is no hope on efficiently deciding when such closure operation can be performed.

Given a simple drawing D(G) of a graph G = (V, E), and a set M of edges of the complete
graph with vertex set V , an extension of D(G) with a set of edges M is a simple drawing
D′(H) of the graph H = (V, E ∪M) that contains D(G) as a subdrawing. If that extension
exists we say the the edge uv can be added to D(G). An extension with one given edge is
not always possible, as shown by Kynčl [7] (in Figure 1a the edge uv cannot be added). We
can extend this example to a simple drawing of K2,4 (Figure 1b) and we can use this to
construct larger drawings of Kn,m in which an edge uv cannot be added. Moreover, Kyncl’s
drawing can be extended to a simple drawing of K6 missing an edge that cannot be added

∗ This work was started at the Crossing Numbers Workshop 2016 in Strobl (Austria). M.D. was partially
supported by NSERC. I.P. is supported by the Austrian Science Fund (FWF): W1230.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 19–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

60:2 Extending Simple Drawings

u
v

(a) Example by Kynčl [7].

u
v

(b) Drawing of K2,4.

u
v

(c) Drawing of K6 \ uv.

Figure 1 Drawings that cannot be extended with the edge uv.

(Figure 1c), and again we can use this drawing to construct larger drawings of Kn missing
an edge that cannot be added.

Extensions have been previously considered in the context of saturated simple drawings,
that is, drawings where no edge can be added [8, 4]. In the context of saturated drawings,
the main interest is on finding the minimum number of edges that a saturated graph on n

vertices can have. This minimum was first shown to be at most 17.5n [8] and later 7n [4].
In this paper, we focus on extensions of simple drawings of general graphs. In Section 2

we show that given a simple drawing D(G) of a graph G = (V, E) and a set M of edges
of the complete graph with vertex set V and with M ∩ E = ∅, it is NP-hard to find the
maximum subset of edges from M that can be added to D(G). In the full version of the
paper we also study the case in which only one edge is to be added. In Section 3 we discuss
these results and present open questions.

2 Hardness of Extending Simple Drawings

In this section we prove the following result:

I Theorem 2.1. Given a simple drawing D(G) of a graph G = (V, E) and a set M of edges
of the complete graph with the vertex set V and with E ∩M = ∅, it is NP-hard to find a
maximum subset of edges M ′ ⊆M that extends D(G).

Our proof of Theorem 2.1 is based on a reduction from the maximum independent set
problem (MIS). An independent set of a graph G = (V, E) is a set of vertices S ⊆ V such
that no two vertices in S are incident to the same edge. The problem of determining the
maximum independent set (MIS) of a given graph is NP-hard in general, and it remains
NP-hard when the input is a planar graph with maximum degree 3 [3, Lemma 1]. We first
describe the construction of a simple drawing D′(G′) given an MIS instance. Then we argue
that for a well selected set of edges M that are not present in D′(G′), finding a maximum
subset M ′ ⊆M that can simultaneously extend D′(G′) is equivalent to finding a maximum
independent set in the input instance.

2.1 Constructing a drawing from a given graph
We begin by introducing our two basic gadgets D1 and D2 (shown in Figure 2). The vertex
gadget D1 consists of a cycle C on four vertices a, v, b, u drawn in the plane without any
crossings. We add two additional vertices x and y to its interior and connect them with an
edge that, starting in x crosses edge bu to the exterior of C, continues through ua to the
interior of C, crosses av to the exterior of C, and vb to the interior of C where it ends in y.

The drawing D1 has the property that the only way of adding edge uv is by following an
arc such as the dashed one depicted in Figure 2a (with maybe also crossing the edge xy, but

A. Arroyo, M. Derka, and I. Parada 60:3

a

b

x y

C

vu

(a) Vertex-gadget D1.

u v

a

b

y

C

d
c

i j

x

i

(b) Edge-gadget D2.

ue

uw

ve
vzvw uz

aw

bw

az

bz

je

ie

ye
xe

(c) Constructed drawing obtained by a reduction from the path graph on two vertices w and z.

Figure 2 Basic gadgets and drawings.

staying in the same region). Routing through the exterior of C would force either a double
crossing with edge xy, or a crossing with an edge incident to u or v.

The edge gadget D2 is obtained by adding additional vertices to the interior of D1.
Specifically, we add two vertices d and c and edges ud, vd and uc, vc that are drawn so that
udvc is a crossing-free cycle in the interior of C. Note that since it is crossing-free, the
vertices x and y are in the interior of cycle ubvd. We add two more vertices, called i and j,
in the interior of ucva and we connect them with an edge that after starting in i, crosses
edges uc, ud, vd, vc, and ends in j (without crossing any other edges). See also Figure 2b.

Similarly as in the case of D1, to extend D2 into a simple drawing with the edge uv,
the edge needs to be routed through the interior of C either in the interior of cycle ubvd or
of ucva as depicted in Figure 2b (with maybe also crossing the edge xy or the edge ij but
staying in the same region). Furthermore, it cannot be routed through the interior of udvc

as it would need to intersect either an edge incident to u or v, or cross the edge ij twice.
In Figure 2c we can see a combination of an edge gadget and two vertex gadgets: it

shows a copy De
2 of the gadget D2 (that we will say corresponds to an edge e := wz) over

two different copies, Dw
1 and Dz

1 , of the gadget D1 (that we will say correspond to vertices w

and z, respectively). Notice that we add the label of the vertex or edge corresponding to
the gadget (in this case either w or z or e) as a superindex. Since the region where both
vwuw and vzuz can be drawn is forced, adding both prevents veue from being added. Adding
either only edge vwuw or only edge vzuz leaves exactly one possible region for edge veue.

We have all the main ingredients for our construction. Suppose that we are given a
planar graph G = (V, E) with maximum degree at most 3. This graph admits a 2-page
book embedding D(G) [5, 1]. In a 2-page book embedding all the vertices are placed on a
(horizontal) line and the edges are arcs lying either in the upper half-plane on in the lower
one and there are no proper crossings. The following lemma shows that replacing each vertex

EuroCG’19

60:4 Extending Simple Drawings

D
1 1

D
2 1

D
3 1

D
4 1

Fi
gu

re
3

D
ra

w
in

g
ob

ta
in

ed
by

a
re

du
ct

io
n

fr
om

K
4
.

A. Arroyo, M. Derka, and I. Parada 60:5

w ∈ V in the drawing by a vertex gadget Dw
1 and each edge e ∈ E by an edge gadget De

2,
we construct a simple drawing D′(G′).

I Lemma 2.2. Given a 2-page book embedding D(G) of a graph G = (V, E), we can replace
every vertex by a vertex gadget and every edge by an edge gadget to obtain a simple drawing.

Proof. We will show that the copies {De
2 : e ∈ E} can be added to

⋃
w∈V Dw

1 such that for
every edge e ∈ E incident to w and z (w, z ∈ V), Dw

1 ∪Dz
1 ∪De

2 is as in Figure 2c (up to
interchanging the indices w and z), and the resulting drawing is a simple drawing.

First, for each vertex w ∈ V we place the gadget Dw
1 in its position, so all the copies of D1

lie (equidistant) in a horizontal line. For the edges of G, since the drawing in Figure 2c is not
symmetric, we choose an orientation. We orient all the edges in the 2-page book embedding
D(G) from left to right. We start adding the corresponding D2 gadgets from left to right and
from the shortest edges to the longest (where the length is the Euclidean distance between
the endpoints). For an edge wz the intersections of the gadget Dwz

2 (i) with the edges uwaw

and uwbw are placed to the left of all the previous intersections of other edge gadgets with
that edge; (ii) with the edge vwbw are placed to the right of all the previous intersections
with that edge; (iii) with the edge vwaw are placed to the right of previous intersections with
gadgets Dwt

2 and to the left of previous intersections with gadgets Dtw
2 ; (iv) with the edges

uzaz and uzbz are placed to the left of the previous intersections with gadgets Dtz
2 (v) with

the edge vzbz are placed to the left of all previous intersections; and (vi) with the edge vzaz

are placed to the left of all previous intersections with gadgets Dtz
2 . See Figure 3.

Moreover, the segments of some of the edges in the edge gadgets connecting from one
vertex gadget to another vertex gadget can be drawn as strips in either the upper or lower
half-plane with respect to the horizontal line. In those strips, segments of edges in the same
strip don’t cross and segments of edges in different strips cross at most once. See Figure 3.

Since neither of the gadgets of two incident edges cross, and edges between different
gadgets are vertex-disjoint, we only have to worry about edges from different gadgets crossing
more than once. By construction, no edge in an edge gadget intersects more than once with
an edge in a vertex gadget. Thus, it remains to show that any two edges e1 and e2 from two
distinct gadgets cross at most once. Such two edges are included in a subgraph H of G with
exactly four vertices. The drawing induced by the four vertex gadgets and the at most six
edge gadgets is homeomorphic to a subdrawing of the drawing in Figure 3. It is routine to
check that this drawing a simple drawing, and thus e1 and e2 cross at most once. J

2.2 Reduction from Maximum Independent Set
For the decision version of the problem, given a planar graph G = (V, E) with vertex degree
at most 3 and a constant k, we reduce the problem of deciding if G has an independent set
of size k to the problem of deciding if the simple drawing D′(G′) with a candidate set of
edges M (where M = {uwvw : w ∈ V } ∪ {ueve : e ∈ E}) can be extended with a set of edges
M ′ ⊆M with cardinality |M ′| = |E|+ k.

I Lemma 2.3. The construction exhibited in the previous subsection is a polynomial-time
reduction from independent set in planar maximum degree 3 graphs.

Proof. To show the correctness of the (polynomial) reduction we first show that if G has
an independent set I of size k then we can extend D′(G′) with a set M ′ of |E|+ k edges of
M . Clearly, the k edges {uwvw : w ∈ I} can be added to D′(G′) by the construction of the
gadgets. Since I is an independent set, each edge has at most one endpoint in I. Thus, in

EuroCG’19

60:6 Extending Simple Drawings

every edge gadget De
2 at most one of the two possibilities for adding the edge ueve is blocked

by the previous k added edges. We therefore can also add the |E| edges {ueve : e ∈ E}.
Conversely, assume that the set M ′ ⊂ M of |E| + k edges can be added to D′(G′). If

the set of vertices {w : uwvw ∈M ′} is an independent set of G, then we are done, since at
most |E| edges of the added ones can be from edge gadgets, so at least k are from vertex
gadgets. Otherwise, there are two edges uwvw and uzvz in M ′ such that the corresponding
vertices w, z ∈ V are connected by the edge wz ∈ E. This implies that the edge uwzvwz

belongs to M but it cannot be in M ′. By removing the edge uwvw and adding the edge
uwzvwz to D′(G′) we obtain another valid extension with the same cardinality but one less
edge belonging to a vertex gadget. Iteratively repeating this, we end with an extension N of
D′(G′) that has cardinality |E|+ k and such that the set of vertices {w : uwvw ∈ N} is an
independent set of G of size at least k. J

3 Conclusions

In this paper we showed that, given a simple drawing D(G) of a graph G = (V, E) and
a prescribed set M of edges of the complete graph with vertex set V , it is NP-hard to
find the maximum number of edges from M that can be added to D(G) such that the
resulting drawing is simple. Focusing on the case |M | = 1, in the full version of this
paper, on the one hand, we considered the problem in a dual setting and showed that this
slight generalization is NP-complete and, on the other hand, we found sufficient conditions
guaranteeing a polynomial-time decision. We hope that the work done in this direction paves
the way to show the following:

I Conjecture 1. Given a simple drawing D(G) of a graph G and a pair u, v of non-adjacent
edges, we can decide in polynomial time whether we can add uv to D(G).

Finally, modifying both the examples in Figure 1 and a previous example in [8, Figure
11] one can obtain arbitrarily large non-extensible drawings (where a given edge cannot be
added) of graphs including complete bipartite graphs, complete graphs missing one edge, and
matchings. Moreover, a modification of [8, Figure 1] shows that there are arbitrarily large
examples that cannot be extended with an edge but such that the removal of any vertex or
edge allows it to be extensible with any missing edge. So there is no hope of characterizing
non-extensible drawings in terms of subdrawings. It is also not true that any graph with no
isolated points has a non-extensible drawing, as any drawing of K1,m can be extended with
any missing edge. This motivates the following problem:

I Problem 1. Characterize all graphs that admit a non-extensible drawing.

References
1 Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-page book

embeddings of 4-planar graphs. Algorithmica, 75(1):158–185, 2016.
2 Jean Cardinal and Stefan Felsner. Topological drawings of complete bipartite graphs. In

Proc. 24th Int. Symp. on Graph Drawing and Network Visualization (GD’16), pages 441–
456, 2016.

3 Michael R. Garey and David S. Johnson. The rectilinear Steiner tree problem is NP-
complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

4 P. Hajnal, A. Igamberdiev, G. Rote, and A. Schulz. Saturated simple and 2-simple topo-
logical graphs with few edges. In Ernst W. Mayr, editor, Graph-Theoretic Concepts in
Computer Science, pages 391–405, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

A. Arroyo, M. Derka, and I. Parada 60:7

5 Lenwood Scott Heath. Algorithms for embedding graphs in books. PhD thesis, University
of North Carolina, 1985.

6 Jan Kynčl. Simple realizability of complete abstract topological graphs simplified. In Proc.
23rd Int. Symp. on Graph Drawing and Network Visualization (GD’15), pages 309–320,
2015.

7 Jan Kynčl. Improved enumeration of simple topological graphs. Discrete & Computational
Geometry, 50(3):727–770, 2013.

8 Jan Kynčl, János Pach, Radoš Radoičić, and Géza Tóth. Saturated simple and k-simple
topological graphs. Computational Geometry, 48(4):295–310, 2015.

9 János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete
topological graphs. Discrete & Computational Geometry, 30(2):311–320, 2003.

EuroCG’19

Computing Optimal Tangles Faster
Oksana Firman∗1, Philipp Kindermann1, Alexander Ravsky†2,
Alexander Wolff‡1, and Johannes Zink1

1 Institut für Informatik, Universität Würzburg
firstname.lastname@uni-wuerzburg.de

2 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

Abstract
We study the following combinatorial problem. Given a set of n y-monotone wires, a tangle
determines the order of the wires on a number of horizontal layers such that the orders of the
wires on any two consecutive layers differ only in swaps of neighboring wires. Given a multiset L
of swaps (that is, unordered pairs of numbers between 1 and n) and an initial order of the wires,
a tangle realizes L if each pair of wires changes its order exactly as many times as specified by L.
The aim is to find a tangle that realizes L using the smallest number of layers. We show that
this problem is NP-hard, and we give an algorithm that computes an optimal tangle for n wires
and a given list L of swaps in O((2|L|/n2 + 1)n2/2ϕnn) time, where ϕ ≈ 1.618 is the golden ratio.
We can treat lists where every swap occurs at most once in O(n!ϕn) time. We implemented the
algorithm for the general case and compared it to an existing algorithm.

1 Introduction

Our research is based on a recent paper of Olszewski et al. [4] who use tangles (which they
call templates) to visualize chaotic attractors, which occur in chaotic dynamic systems. Such
systems are considered in physics, celestial mechanics, electronics, fractals theory, chemistry,
biology, genetics, and population dynamics. In the framework of Olszewski et al., one is
given a set of wires that hang off a horizontal line in a fixed order, and a multiset of swaps
between the wires; a tangle then is a visualization of these swaps, i.e., an order in which
the swaps are performed, where only adjacent wires can be swapped and disjoint swaps can
be done simultaneously. Olszewski et al. gave an algorithm for minimizing the height of
a tangle. They didn’t analyze the asymptotic running time of their algorithm (which we
estimate below), but tested it on a set of benchmarks.

Wang [5] used the same optimization criterion for tangles, given only the final permutation.
She showed that, in an optimal tangle, no swap occurs more than once. She used odd-even
sort, a parallel variant of bubble sort, to compute tangles with at most one layer more than
the minimum. Bereg et al. [1, 2] showed, given a final permutation, how to minimize the
number of bends or moves (which are maximal “diagonal” segments of the wires).

Framework, Terminology, and Notation. We modify the terminology of Olszewski et al. [4]
in order to introduce a formal algebraic framework for the problem. Given a natural number n
of wires, a (swap) list L = (lij) of order n is a symmetric n× n matrix with non-negative

∗ Supported by DAAD.
† Supported by Erasmus+.
‡ Supported by DFG grant WO 758/9-1.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

61:2 Computing Optimal Tangles Faster

Ln =

0 1 1 . . . 1 0 2
1 0 1 . . . 1 2 0
1 1 0 . . . 1 0 2
...

...
...

. . .
...

...
...

1 1 1 . . . 0 0 2
0 2 0 . . . 0 0 n− 1
2 0 2 . . . 2 n− 1 0

(The bold zeros and twos must be swapped if n is even.)

πh−1

π2

πi

· · ·1 2 n − 2 n − 1 n

· · ·n − 2 1 n − 1 n2

idn

idnLn

π4

Figure 1 A list Ln for n wires (left) and the unique tangle of minimum height realizing Ln (right)
for the start permutation idn = 123 . . . n. Here, n = 7. The tangle is not simple because π2 = π4.

entries and zero diagonal. The length of L is defined as |L| =
∑

i<j lij . A list L′ = (l′ij) is a
sublist of L if l′ij ≤ lij for each i, j ∈ [n]. A list is simple if all its entries are zeroes or ones.

A permutation is a bijection of the set [n] = {1, . . . , n} onto itself. The set Sn of all
permutations of the set [n] is a group whose multiplication is a composition of maps (i.e.,
(πσ)(i) = π(σ(i)) for each pair of permutations π, σ ∈ Sn and each i ∈ [n]). The identity
of the group Sn is the identity permutation idn. We write a permutation π ∈ Sn as the
sequence of numbers π−1(1)π−1(2) . . . π−1(n). For instance, the permutation π of [4] with
π(1) = 3, π(2) = 4, π(3) = 2, and π(4) = 1 is written as 4312. We denote the set of all
permutations of order 2 in Sn by Sn,2, i.e., π ∈ Sn,2 if and only if ππ = idn, e.g., 2143 ∈ S4,2.

For i, j ∈ [n], the swap ij is the permutation that exchanges i and j, whereas the other
elements of [n] remain fixed. A set S of swaps is disjoint if each element of [n] participates
in at most one swap of S. Therefore, the product

∏
S of all elements of a disjoint set S

of swaps does not depend on the order of factors and belongs to Sn,2. Conversely, for each
permutation ε ∈ Sn,2 there exists a unique disjoint set S(ε) of swaps such that ε =

∏
S(ε).

A permutation π ∈ Sn supports a permutation ε ∈ Sn,2 if, for each swap ij ∈ S(ε), i
and j are neighbors in π. By induction, we can easily show that any permutation π ∈ Sn

supports exactly Fn+1 − 1 permutations of order 2 where Fn is the n-th Fibonacci number.
Permutations π and σ are adjacent if there exists a permutation ε ∈ Sn,2 such that π

supports ε and σ = πε. In this case, σε = πεε = π and σ supports ε, too. A tangle T

of height h is a sequence 〈π1, π2, . . . , πh〉 of permutations in which every two consecutive
permutations are adjacent. A subtangle of T is a sequence 〈πk, πk+1, . . . , πl〉 of consecutive
permutations of T . Let L(T) = (lij) be the symmetric n × n matrix with zero diagonal
where lij is the number of occurrences of swap ij in T . We say that T realizes L(T); see
Fig. 1. A list is π-feasible if it can be realized by a tangle starting from a permutation π. An
idn-feasible list is feasible; e.g., the list defined by the swaps 13 and 24 is not feasible.

A list L = (lij) also can be considered as a multiset of swaps, where lij is the multiplicity
of swap ij. In particular, the notation ij ∈ L means lij > 0. A tangle is simple if all its
permutations are distinct. In particular, the height of a simple tangle is at most n!.

O. Firman, P. Kindermann, A. Ravsky, A. Wolff, and J. Zink 61:3

For each permutation π ∈ Sn and a list L = (lij), we define a map πL : [n]→ Z,

i 7→ π(i) + |{j : π(i) < π(j) ≤ n and lij is odd}| − |{j : 1 ≤ π(j) < π(i) and lij is odd}|.

For each wire i ∈ [n], πL(i) is the position of the wire after all swaps in L have been
applied to π. A list L is called π-consistent if πL ∈ Sn, or, more rigorously, if πL induces a
permutation of [n]. An idn-consistent list is consistent. For example, the list {12, 23, 13} is
consistent, whereas the list {13} isn’t. If L is not consistent, then it is clearly not feasible.
For a list L = (lij), we define 1(L) = (lij mod 2). Since idn L = idn 1(L), the list L is
consistent if and only if 1(L) is consistent. We can compute 1(L) and check its consistency
in O(n+ |1(L)|) = O(n2) time. Hence, in the sequel we assume that all lists are consistent.

The height h(L) of a feasible list L is the minimum height of a tangle that realizes L. A
tangle T is optimal if h(T) = h(L(T)). In the Tangle-Height Minimization problem, we
are given a swap list L and the goal is to compute an optimal tangle T realizing L. As initial
wire order, we always assume the identity idn.

Our Contribution. We show that Tangle-Height Minimization is NP-hard (see Sec-
tion 2). We give an exact algorithm for simple lists running in O(n!ϕn) time and an exact
algorithm for general lists running in O((2|L|/n2 + 1)n2/2ϕnn) time, which is polynomial in
|L| for any fixed n ≥ 2 (see Section 3). We implemented the algorithm for general lists and
compared it to the algorithm of Olszewski et al. [4] using their benchmark set (see Section 4).

In order to be able to also compare the asymptotic runtime behaviors, we now analyze
the algorithm of Olszewski et al. [4]. Their algorithm constructs a search tree whose height
is bounded by the height h(L) of an optimal tangle for the given list L. The tree has
1 +d+d2 + · · ·+dh(L)−1 = (dh(L)−1)/(d−1) vertices, where d = Fn+1−1 is a bound on the
number of edges leaving a vertex, Fn = (ϕn − (−ϕ)−n)/

√
5 ∈ O(ϕn) is the n-th number in

the Fibonacci sequence, and ϕ =
√

5+1
2 ≈ 1.618 is the golden ratio. Since it takes O(n) time

to deal with each vertex, the total running time is O(ϕ(n+1)(h(L)−1)5−(h(L)−1)/2n). Since
2|L|/n ≤ h(L)− 1 ≤ |L|, this time is not better than O(ϕ2|L|5−|L|/nn), which is exponential
with respect to |L| for fixed n ≥ 2 and, hence, slower than our algorithm for the general case.

It is known (see, for instance, Wang [5]) that, for any simple list L, h(L) ≤ n+ 1. This
implies that, on simple lists, the algorithm of Olszewski et al. runs in O(ϕ(n+1)n5−nn) = eO(n2)

time, whereas our algorithm for simple lists runs in O(n!ϕn) = eO(n log n) time.

2 Complexity

I Theorem 1. Given a list L of swaps and an integer h > 0, it is NP-hard to decide whether
there is a tangle T of height h(T) ≤ h realizing L.

Proof sketch; for the full proof see [3]. From the given 3-Partition instance A, we con-
struct in polynomial time a list L that can be realized by a tangle of height at most
mMB +O(m2) if and only if A is a yes-instance. For an example instance, see Fig. 2.

In the list L we use two central wires ω and ω′ swapping 2m times. Two consecutive
swaps form a loop. We number the loops from top to bottom; depending on their index,
loops are even or odd. We use wires βi, β

′
i, γi, γ

′
i, δi, δ

′
i with i ∈ [m] to enforce the following.

For any tangle T realizing L, the height of the subtangle from the beginning of T to the end
of the i-th odd loop is at least (i− 1)MB and the height of the subtangle from the (i+ 1)-th
odd loop to the end of T is at least (m − i)MB, where M ∈ Θ(m3) is some large scaling
factor. For a tangle T to not exceed the maximum height, every even loop in T must have a

EuroCG’19

61:4 Computing Optimal Tangles Faster

Mn1

Mn5

Mn7

Mn2

Mn4

Mn9

Mn3

Mn6

Mn8

α1

α1

ω ω′

ω ω′

β1β3γ1 γ3γ2 δ1β2δ2δ3 β′
3

γ′
1

γ′
3

γ′
2

δ′
1

β′
2

δ′
2

δ′
3

β′
1

β3γ1 γ3γ2δ1 β2δ2 δ3β1 β′
1

β′
3

γ′
1

γ′
3

γ′
2

δ′
1

β′
2
δ′
2

δ′
3

α9 α1· · · α′
1

α′
9

α9 α1· · · α′
1

α′
9

· · ·

2
M
B

M
B

3
M
B

2
M
B

M
B

3
M
B

Figure 2 Example of our reduction from 3-Partition to Tangle-Height Minimization with
A1 = {n1, n5, n7}, A2 = {n2, n4, n9}, A3 = {n3, n6, n8}, m = 3, B =

∑3m

i=1 ni/m, and M = 2m3.

O. Firman, P. Kindermann, A. Ravsky, A. Wolff, and J. Zink 61:5

height of about MB. We encode the numbers in A by introducing, for each i ∈ [3m], two
wires αi and α′i that swap Mni times. All αi–α′i swaps must occur inside exactly one of the
even loops, but on different layers. The combination of these blocks of swaps inside the even
loops corresponds to a partition of the given 3-Partition instance A. All tangles of height
at most mMB +O(m2) correspond to a solution of A, and if there is a solution of A then
there also is a tangle of height at most mMB +O(m2) realizing this solution. J

3 Exact Algorithms

The two algorithms that we describe in this section test whether a given list is feasible and,
if yes, construct an optimal tangle realizing the list. For any permutation π ∈ Sn, we define
the simple list L(π) = (lij) such that, for 0 ≤ i < j ≤ n, lij = 0 if π(i) < π(j), and lij = 1
otherwise. We use the following two lemmas, which we prove in the full version [3].

I Lemma 2. For every permutation π ∈ Sn, L(π) is the unique simple list with idn L(π) = π.

I Lemma 3. For every tangle T = 〈π1, π2, . . . , πh〉, we have π1L(T) = πh.

Simple lists. Let L be a consistent simple list. Wang’s algorithm [5] creates a simple tangle
from idn L, so L is feasible. Let T = (idn =π1, π2, . . . , πh= idn L) be any tangle such that
L(T) is simple. Then, by Lemma 3, idn L(T) = πh. By Lemma 2, L(πh) is the unique simple
list with idn L(πh) = πh = idn L, so L(T) = L(πh) = L and thus T is a realization of L.

We compute an optimal tangle realizing L = (lij) as follows. Consider the graph GL

whose vertex set V (GL) consists of all permutations π ∈ Sn with L(π) ≤ L (componentwise).
A directed edge (π, σ) between vertices π, σ ∈ V (GL) exists if and only if π and σ are adjacent
as permutations and L(π) ∩ L(π−1σ) = ∅; the latter means that the set of (disjoint) swaps
whose product transforms π to σ cannot contain swaps from the set whose product transforms
idn to π. The graph GL has at most n! vertices and maximum degree Fn+1 − 1 = O(ϕn),
see Section 1. Furthermore, for each h ≥ 0, there is a natural bijection between tangles of
height h+ 1 realizing L and paths of length h in the graph GL from the initial permutation
idn to idn L. A shortest such path can be found by BFS in O(E(GL)) = O(n!ϕn) time.

I Theorem 4. For a simple list of order n, Tangle-Height Minimization can be solved
in O(n!ϕn) time.

General lists. We can assume that |L| ≥ n/2; otherwise, there is a wire k ∈ [n] that doesn’t
belong to any swap. This wire splits L into smaller lists with independent realizations. (If
there is a swap ij with i < k < j, then L is infeasible.)

Let L = (lij) be the given list. We compute an optimal tangle realizing L (if it exists) as
follows. Let λ be the number of distinct sublists of L. We consider them in order of increasing
length. Let L′ be the next list to consider. We first check its consistency by computing the
map idn L

′. If L′ is consistent, then we compute an optimal realization T (L′) of L′ (if it
exists), adding a permutation idn L

′ to the end of a shortest tangle T (L′′) = 〈π1, . . . , πh〉 with
πh adjacent to idn L

′ and L′′ + L(〈πh, idn L
′〉) = L′. This search also checks the feasibility

of L′ because such a tangle T (L′) exists if and only if the list L′ is feasible. Since there are
Fn+1− 1 permutations adjacent to idn L

′, we have to check at most Fn+1− 1 lists L′′. Hence,
in total we spend O(λ(Fn+1 − 1)n) time for L. Assuming that n ≥ 2, we bound λ as follows.

λ =
∏
i<j

(lij + 1) ≤
(∑

i<j(lij + 1)(
n
2
))(n

2)
=
(
|L|(
n
2
) + 1

)(n
2)
≤
(

2|L|
n2 + 1

)n2/2
≤ e|L|.

EuroCG’19

61:6 Computing Optimal Tangles Faster

|L|

Ti
m

e/
s

0.001

0.01

0.1

1

10

100

0 2 4 6 8

5 wires

0 5 10 15

6 wires

5 10 15 20

7 wires

Figure 3 Comparison of our algorithm (blue circles) with the algorithm of Olszewski et al. (red
triangles). The elapsed time is plotted on a log-scale.

We obtain the first inequality from the inequality between arithmetic and geometric
means, the second one from Bernoulli’s inequality, and the third one follows from 1 + x ≤ ex.

I Theorem 5. For a list L of order n, Tangle-Height Minimization can be solved in
O((2|L|/n2 + 1)n2/2ϕnn) time.

4 Experiments

We implemented the algorithm described in Theorem 5 and compared the running time of our
implementation with the one of Olszewski et al. [4]. Their code and a database of all possible
elementary linking matrices (most of them non-simple) of 5 wires (14 instances), 6 wires
(38 instances), and 7 wires (115 instances) are available at https://gitlab.uni.lu/PCOG.
Both their and our code is implemented in Python.

We ran our experiments on an Intel Core i7-4770K CPU with a clock speed of 3.50GHz
and 16GB RAM under Windows 10 64bit. We measured the time to create an optimal
tangle 5 times and took the arithmetic mean. The results are summarized in Fig. 3. For 8
of the instances with 7 wires, we stopped their algorithm after 2 hours without finding an
optimal solution. We removed these instances from the analysis (although our algorithm
found a solution all but of them in under four minutes, and the last one in 20 minutes).

On average, our algorithm was considerably faster; its running time was only 2.59% for 5
wires, 28.69% for 6 wires, and 72.85% for 7 wires of the running time of the algorithm by
Olszewski et al. Our algorithm is also more space efficient; the memory usage peaked at
1.2 GB, while Olszewski et al. reportedly used up to 1 TB of memory in their experiments.

https://gitlab.uni.lu/PCOG

O. Firman, P. Kindermann, A. Ravsky, A. Wolff, and J. Zink 61:7

5 Open Problems

Is it NP-hard to test the feasibility of a given (non-simple) list? Even if feasibility turns out
to be NP-hard, can we decide it faster than finding optimal tangles?

We call a list (lij) non-separable if, for any i<k<j, lik = lkj = 0 implies lij = 0. Clearly,
non-separability is necessary for a list to be feasible. For lists where all entries are even, we
conjecture that this is also sufficient (which we have computer-verified for n ≤ 8).

Acknowledgments. We thank Thomas C. van Dijk for stimulating discussions.

References
1 Sergey Bereg, Alexander Holroyd, Lev Nachmanson, and Sergey Pupyrev. Representing

permutations with few moves. SIAM J. Discrete Math., 30(4):1950–1977, 2016. URL:
http://arxiv.org/abs/1508.03674, doi:10.1137/15M1036105.

2 Sergey Bereg, Alexander E. Holroyd, Lev Nachmanson, and Sergey Pupyrev. Drawing
permutations with few corners. In Stephen Wismath and Alexander Wolff, editors, Proc.
Int. Symp. Graph Drawing (GD’13), volume 8242 of LNCS, pages 484–495. Springer, 2013.
URL: http://arxiv.org/abs/1306.4048, doi:10.1007/978-3-319-03841-4_42.

3 Oksana Firman, Philipp Kindermann, Alexander Ravsky, Alexander Wolff, and Johannes
Zink. Computing optimal tangles faster. ArXiv report, 2019. URL: http://arxiv.org/
abs/1901.06548.

4 Maya Olszewski, Jeff Meder, Emmanuel Kieffer, Raphaël Bleuse, Martin Rosalie, Grégoire
Danoy, and Pascal Bouvry. Visualizing the template of a chaotic attractor. In Therese
Biedl and Andreas Kerren, editors, Proc. 26th Int. Symp. Graph Drawing & Network Vis.
(GD’18), volume 11282 of LNCS, pages 106–119. Springer, 2018. URL: http://arxiv.
org/abs/1807.11853, doi:10.1007/978-3-030-04414-5_8.

5 Deborah C. Wang. Novel routing schemes for IC layout part I: Two-layer channel routing.
In Proc. 28th ACM/IEEE Design Automation Conf. (DAC’91), pages 49–53, 1991. doi:
10.1145/127601.127626.

EuroCG’19

http://arxiv.org/abs/1508.03674
http://dx.doi.org/10.1137/15M1036105
http://arxiv.org/abs/1306.4048
http://dx.doi.org/10.1007/978-3-319-03841-4_42
http://arxiv.org/abs/1901.06548
http://arxiv.org/abs/1901.06548
http://arxiv.org/abs/1807.11853
http://arxiv.org/abs/1807.11853
http://dx.doi.org/10.1007/978-3-030-04414-5_8
http://dx.doi.org/10.1145/127601.127626
http://dx.doi.org/10.1145/127601.127626

	Algorithmic Enumeration of Surrounding Polygons
	Introduction
	Preliminaries
	Family tree
	Enumeration algorithm

	A 1/4-Approximation Algorithm for the Maximum
	Introduction
	Preliminaries
	The polygon partition
	The algorithm
	Concluding remarks

	Skeleton-based decomposition of simple polygons
	Introduction
	Problem Statement and Solution
	Basic Definitions
	Related Results from the Literature

	Decomposition algorithms
	Decomposition based on linear skeletons
	General decomposition

	Conclusion

	Recognizing Visibility Graphs of Polygons with
	Introduction
	Preliminaries and Definitions
	Line arrangement and stretchability
	Visibility graph of a polygon with holes

	Complexity of Recognizing Visibility Graphs of Polygons with Holes
	Conclusion

	Approximating the Sweepwidth of Polygons with
	Introduction
	Algorithm
	Rasterization
	Polygon Compression

	Conclusion

	Probabilistic smallest enclosing ball in high
	Introduction
	Contributions and outline
	General notation

	A generalized median problem
	Applications
	Probabilistic smallest enclosing ball
	Probabilistic support vector data description (pSVDD)

	Practical volume estimation by a new annealing
	Introduction
	Volume algorithm
	Implementation and experiments

	On the Complexity of Nesting Polytopes
	Introduction
	Encoding ETR
	Building the polytopes
	Two geometric observations
	A basic outline of the construction
	The outer polytope
	Building the inner polytope: Enforcing vertices to segments
	Building the inner polytope: Encoding the linear equations
	Building the inner polytope: Encoding the quadratic equations

	Green-Wins Solitaire Revisited — Simultaneous
	Introduction
	Preliminaries
	Counting black edges: Proof of Theorem 1

	Triangles in the colored Euclidean plane∗
	Introduction
	Results

	Non-monochromatic triangles in the 6-colored plane
	Zebra colorings
	Hexagon colorings
	Summarizing bounds

	Non-monochromatic triangles with fewer colors
	Conclusion

	A Wavefront-Like Strategy for Computing
	Introduction
	Related Work
	Algorithm
	Analysis

	Linear-size farthest color Voronoi diagrams:
	Introduction
	Definitions and basic properties
	Conditions for linear-size diagrams
	Construction algorithms

	Unbounded Regions of Higher-Order Line and
	Introduction
	Preliminaries
	Order-k Voronoi diagrams
	Point-Hyperplane Duality
	Definition of the Gaussian Map

	Results
	Supporting hyperplane
	Combinatorial Properties of the Gaussian Map
	Algorithm
	Properties of the order-k Voronoi Diagram

	Lines and Combinations of Lines and Segments

	Hamiltonicity for convex shape Delaunay and
	Introduction
	Convex distances and the C-Gabriel graph
	Hamiltonicity for convex shapes
	General convex shapes
	Point-symmetric convex shapes

	Delaunay triangulations of symmetric hyperbolic
	Introduction
	Preliminaries
	Hyperbolic geometry
	Delaunay triangulations

	Systole of symmetric hyperbolic surfaces
	Representation of Delaunay triangulations
	Initialization

	Computing the Straight Skeleton of an
	Introduction
	Preliminaries

	Computing the Straight Skeleton of a Single Chain
	Merging S(Cl) and S(Cu) into S(P)
	Proofs

	Maximum Rectilinear Convex Subsets∗
	Introduction
	Rectilinear convex hull of maximum size
	Maximum size/area empty rectilinear convex hulls

	Routing in Histograms∗
	Introduction
	Preliminaries
	Visibility and Paths
	The Routing Scheme
	Conclusion

	Peeling Digital Potatoes
	Introduction
	Digital Potato Peeling
	Digital 2-Potato Peeling
	Disjoint Convex Polygons
	Intersecting Convex Polygons

	Conclusion and Open Problems

	Consistent Digital Curved Rays
	Introduction
	Consistent digital rays and their properties
	 CDR for linear rays revisited

	CDR for families of curves
	CDR for a family of parabolas
	Homogeneous polynomials
	Framework for a family of constant-multiplied curves
	Sigmoid curves and sine curves

	Experimental result and conclusion

	A Note on Universal Point Sets for Planar Graphs∗
	Introduction
	Results
	Proof of Theorem 2.1
	Proof of Theorem 2.2 and Corollary 2.3
	Enumeration of Order Types
	Enumeration of Planar Graphs
	Deciding Universality using a SAT Solver
	Finding Conflict Collections – A Quantitive Approach

	Discussion

	On Disjoint Holes in Point Sets∗†
	Introduction
	Two Disjoint Holes
	Three Disjoint Holes
	Encoding with Triple Orientations
	Triple Orientations
	An Abstraction of Point Sets
	Increasing Coordinates and Cyclic Order

	SAT Model
	Final Remarks

	Erdős-Szekeres-Type Games∗
	Introduction
	Uncolored variants
	Bichromatic variants
	Avoider–Avoider
	Maker–Maker
	Red–Green Maker–Breaker

	Approximating the Earth Mover’s Distance
	Introduction
	Related work
	Approximating the Earth Mover's Distance
	Analysis

	Balanced Covering Problem in Bicolored point
	Introduction
	NP-Hardness: BC problem with Unit Squares
	Points on a Line
	Exact Algorithms for Intervals

	Exact Algorithm for Unit Squares

	Testing Transmission Graphs for Acyclicity∗
	Introduction
	Range Queries
	Canonical Intervals, Paths, and Nodes
	The Query Procedure

	Testing for Acyclicity
	Conclusion

	Dynamic Maintenance of the Lower Envelope of
	Introduction
	Preliminaries
	Data structure and operations
	Finding the intersection point of two lower envelopes

	Computing α-Shapes for Temporal Range Queries
	Introduction
	On -Structures
	Memory Consumption
	Constructing and Querying -Structures
	Experimental Evaluation
	Conclusion and Outlook

	Simplicial Depth for Multiple Query Points
	Introduction
	Two query points
	Computing the depth of two query points
	Bounds for two query points

	More query points
	Upper bound for data points in convex position
	Algorithmic aspects

	Encoding 3SUM
	1 The Problem
	2 Motivation
	3 Results
	4 Representation by numbers
	5 Space-optimal representation
	6 Subquadratic space and constant query time

	3D Staged Tile Self-Assembly
	Introduction
	Our Contribution
	Related Work

	Definitions
	Two Dimensions
	Monotone, Three-Dimensional Shapes
	Conclusion and Future Work

	O-Hull Formation for Programmable Matter
	Introduction
	Single Particle Algorithm
	The Strong O-hull Algorithm
	Estimating the Strong O-Hull

	Characterization and Computation of the Feasible
	Introduction
	Solution approach
	Final configuration space
	Forbidden final configuration space
	Infeasible final configuration space
	Complexity and construction of the feasible trajectory space

	Improved Time-Space Bounds for Grid Graph
	Introduction
	Preliminaries
	Main Result
	Auxiliary Graph
	Properties of the Auxiliary Graph
	Constructing a pseudoseparator
	Sketch of an Algorithm to Solve Reachability in the Auxiliary Graph
	Complexity of the Algorithm

	Smoothed Analysis of the Art Gallery Problem
	Introduction
	Defintions
	Results

	Preliminaries
	Expected Number of Bits

	On Plane Subgraphs of Complete Topological
	Introduction
	Adding a single vertex
	Structure of maximal plane subgraphs

	Numerical Algorithm for the Topology of Singular
	Introduction
	Assumptions
	Regular sytems
	 Contributions
	Algorithmic aspects

	Kinetic Volume-Based Persistence for 1D Terrains
	Introduction
	A KDS for maintaining an area-persistent 1D terrain

	Stability analysis of kinetic oriented bounding
	Introduction
	Lipschitz stability of a state-aware algorithm
	Chasing the diametrical pair
	Lipschitz stability ratio

	A Poisson sample of a smooth surface is a good
	Introduction
	Notation, definitions, previous results
	Is a random sample a good sample?

	The k-Fréchet distance revisited and extended
	Introduction
	Definitions

	NP-hardness
	Construction
	Correctness

	Algorithmic approaches
	Earlier results
	Fixed-parameter tractability

	Coresets for(k, l)-Clustering under the Fréchet
	Introduction
	Preliminaries
	What is the Difference between Points and Curves?
	Coresets for the (k,l)-center Objective
	Coresets for the discrete k-median Objective

	On the hardness of ﬁnding an average curve
	Introduction
	Hardness of finding average curves
	Complexity of the average curve under the Fréchet distance
	Complexity of the average curve under the DTW distance

	(1+e)-approximation for (k,l)-center clustering for the discrete Frechet distance in R^d
	Exact algorithm for (k,l)-center for discrete Fréchet in 2D

	Maximum Physically Consistent Trajectories
	Introduction
	Definitions & Notation
	Output-sensitive algorithm for models with transitive consistency
	Subquadratic algorithm for the speed-bounded model
	Consistency data structure
	Insertion-only consistency data structure
	A BB[] tree for maximum subsequences
	Running-time analysis

	Acknowledgement

	Distance Measures for Embedded Graphs -
	Introduction
	Hardness Results
	Algorithms for Plane Graphs

	Approximate strong edge-colouring of unit disk
	Introduction
	Preliminaries
	Main results
	Further discussion
	A short proof for a 7-approximation

	Recognizing embedded caterpillars with weak unit
	Introduction
	NP-hardness Reduction
	Planar 3-SAT
	Rigidity – Allowing Exactly One Realization (up to Rotation)
	Variable Gadgets – Allowing Exactly Two Different Realizations
	Clause Gadgets
	Summary of the Reduction

	Simultaneous Representation of Proper and Unit
	Introduction
	Preliminaries
	Sunflower Proper Interval Graphs
	Sunflower Unit Interval Graphs

	Packing Disks into Disks with Optimal
	Introduction
	Results

	A Worst-Case Optimal Algorithm
	Preliminaries for the Algorithm
	Disk Packing: A Subroutine
	Ring Packing: A Subroutine
	Description of the Algorithm

	Analysis of the Algorithm
	Hardness
	Conclusions

	Dynamic Disk Connectivity∗
	Introduction
	Basic Composition of the Data Structure
	Different Handling of a Disk's Boundary and Inner Area
	Limit the Insertions into MBMs
	Query for Replacements Instead

	Terrain-Like and Non-Jumping Graphs∗
	Introduction
	FTL vs. FNJ
	Some properties of labeling functions

	Recognizing Planar Laman Graphs
	Introduction
	Our contribution

	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Conclusions and further directions

	Maximum Matchings and Minimum Blocking Sets
	Introduction
	Preliminaries
	Bounding the Size of a Matching
	The Relationship Between Blocking Sets and Matchings

	Rigid Graphs that are Movable∗
	Introduction
	Preliminaries
	Restriction to 4-cycles
	Leading coefficients system

	Reliable Geometric Spanners
	Introduction
	Our results

	Preliminaries
	Reliable spanners in one dimension
	Constructing the graph H
	Analysis
	theta-reliable exact spanners

	Building a reliable spanner in Rd
	Construction
	Analysis
	Improved constructions

	On the 2-Colored Crossing Number∗
	Introduction
	Lower bounds on cr2(D) / cr(D)
	Upper bounds on cr2(Kn)
	Small configurations
	Rectilinear 2-colored crossing constant

	Lower bounds on cr2(Kn) and cr2(Kn)
	Staight-line versus general drawings

	Conclusion and open problems

	Bundled Crossings Revisited
	Introduction
	An FPT Algorithm for Simple Circular Layouts
	Constructing the surface determined by a bundled drawing
	Recognizing a graph with k bundled crossings

	Simpliﬁcation of Polyline Bundles
	Introduction
	Problem Definition
	NP-Hardness
	Fixed-Parameter Tractability
	Conclusion

	Shooting Stars in Simple Drawings ofKm,n∗
	Introduction
	Plane Spanning Trees in Simple Drawings of K2,n and K3,n
	Shooting Stars in Outer Drawings of Km,n
	Conclusion

	Extending Simple Drawings∗
	Introduction
	Hardness of Extending Simple Drawings
	Constructing a drawing from a given graph
	Reduction from Maximum Independent Set

	Conclusions

	Computing Optimal Tangles Faster
	Introduction
	Complexity
	Exact Algorithms
	Experiments
	Open Problems

