
E
uroCG2

22
0

38th European Workshop
on Computational Geometry

https://eurocg2022.unipg.it/
March 14-16, 2022, Perugia, Italy

Booklet of abstracts

2

Preface

The 38th European Workshop on Computational Geometry (EuroCG 2022) was held on March
14-16 in Perugia, Italy. EuroCG is an annual, informal workshop whose goal is to provide
a forum for scientists to meet, present their work, interact, and establish collaborations,
in order to promote research in the field of Computational Geometry, within Europe and
beyond.

After two on-line only editions due to the COVID pandemic, this year it was again
possible to have an in-person meeting, although we kept the possibility, for people who
could not travel, to attend the workshop and to give talks on-line. We had 91 registered
participants for the in-person workshop and 104 for the on-line event.

Concerning the scientific program, we received 76 submissions, which underwent a limited
refereeing process by the program committee in order to ensure some minimal standards
and to check for plausibility. We selected 68 submissions for presentation at the workshop.
EuroCG does not have formally published proceedings; therefore, we expect most of the
results outlined here to be also submitted to peer-reviewed conferences and/or journals. This
book of abstracts, available through the EuroCG 2022 web site, should be regarded as a
collection of preprints. In addition to the 68 contributed talks, this book contains abstracts
of the invited lectures. The invited speakers were originally Leila De Floriani, Michael
Hoffmann, and Maurizio Patrignani. Unfortunately, shortly before the workshop Leila had
to cancel her participation. Thus we asked Stefan Felsner and he kindly accepted to replace
Leila. We thank Stefan for having accepted to give an invited talk even with a very short
notice.

Many thanks to all authors and to the members of the program committee and all external
reviewers for their insightful comments. We also thank the organizing committee members:
Carla Binucci, Luca Grilli, Giacomo Ortali, Alessandra Tappini and Tommaso Piselli. Finally,
we are very grateful for the generous support of our sponsors: ITS Umbria Smart Academy,
Slope, Ordine degli Ingegneri Provincia di Perugia, Bazuel. We would like to thank also
the Algorithms journal, which sponsored the Best Student Presentation Award. The prize
was voted by the EuroCG 2022 attendees to recognize the effort of young researchers to
present their work clearly and elegantly. The ex aequo winners were Paul Jungeblut, for the
presentation of paper “The Complexity of the Hausdorff Distance” and Soeren Nickel for the
presentation of paper “Removing Popular Faces in Curve Arrangements by Inserting one
more Curve”. Congratulations to Paul and Soeren!

During the business meeting Rodrigo Silveira presented the 2023 edition of EuroCG,
which will take place in Barcelona, Spain. A single bid was presented for 2024 by Michael
Bekos and Charis Papadopoulos and, as a consequence, EuroCG 2024 will take place in
Ioannina, Greece.

Looking forward to seeing you all in Barcelona!

March 2022,

Emilio Di Giacomo and Fabrizio Montecchiani

3

Program Committee

Peyman Afshani, Aarhus University, DK
Dominique Attali, Université Grenoble Alpes, FR
Martin Balko, Charles University, CZ
Michael Bekos, Universität Tübingen, DE
Sergio Cabello, University of Ljubljana, SI
Éric Colin de Verdière, CNRS, LIGM, Marne-la-Vallée, FR
Sabine Cornelsen, Universität Konstanz, DE
Giordano Da Lozzo, Università degli Studi di Roma Tre, IT
Emilio Di Giacomo, CO-CHAIR, University of Perugia, IT
Stephane Durocher, University of Manitoba, CA
William Evans, The University of British Columbia, CA
Sándor Fekete, TU Braunschweig, DE
Silvia Fernández-Merchant, California State University Northridge, US
Joachim Gudmundsson, The University of Sydney, AU
Philipp Kindermann, Universität Trier, DE
Irina Kostitsyna, TU Eindhoven, NL
Stefan Langerman, Université Libre de Bruxelles, BE
Maarten Löffler, Utrecht University, NL
Fabrizio Montecchiani, CO-CHAIR, University of Perugia, IT
Dömötör Pálvölgyi, Eötvös Loránd University, HU
Chrysanthi Raftopoulou, National Technical University of Athens, GR
Christiane Schmidt, Linköping University, SE
Monique Teillaud, INRIA, Loria, FR
Torsten Ueckerdt, Karlsruhe Institute of Technology, DE
Ryuhei Uehara, Japan Advanced Institute of Science and Technology, JP
Meirav Zehavi, Ben-Gurion University, IL

Organizing Committee

Carla Binucci, University of Perugia, IT
Emilio Di Giacomo, CO-CHAIR, University of Perugia, IT
Luca Grilli, University of Perugia, IT
Fabrizio Montecchiani, CO-CHAIR, University of Perugia, IT
Giacomo Ortali, University of Perugia, IT
Alessandra Tappini, University of Perugia, IT

EuroCG’22

4

Table of Contents

Invited talks

Arc diagrams, flip distances, and Hamiltonian triangulations. .A:1
Michael Hoffmann

Contact Representations of Planar Graphs - Combinatorial Structure and Algorithm X B:1
Stefan Felsner

Visual Analysis of Large Networks - Strategies and Challenges . C:1
Maurizio Patrignani

Contributed papers

The Complexity of the Hausdorff Distance . 1:1
Paul Jungeblut, Linda Kleist and Till Miltzow.

APX-Hardness of the Minimum Vision Points Problem. 2:1
Mayank Chaturvedi and Bengt J. Nilsson.

Reflection Helps Guarding an Art Gallery . 3:1
Arash Vaezi, Bodhayan Roy and Mohammad Ghodsi.

On Rectilinear Planarity Testing of Independent-Parallel SP-Graphs 4:1
Walter Didimo, Michael Kaufmann, Giuseppe Liotta and Giacomo Ortali.

Euclidean Bipartite Edge Cover in Subcubic Time . 5:1
Rodrigo Castro, José-Miguel Díaz-Báñez, Marco A. Heredia, Jorge Urrutia,
Inmaculada Ventura and Francisco J. Zaragoza.

Ruler Wrapping. 6:1
Travis Gagie, Mozhgan Saeidi and Allan Sapucaia.

Approximating the discrete center line segment in linear time . 7:1
Yuan Sha and Joachim Gudmundsson.

Efficiently Enumerating Scaled Copies of Point Set Patterns . 8:1
Aya Bernstine and Yehonatan Mizrahi.

Blocking Delaunay Triangulations from Exterior . 9:1
Oswin Aichholzer, Thomas Hackl, Maarten Löffler, Alexander Pilz, Irene Parada,
Manfred Scheucher and Birgit Vogtenhuber.

The Computational Complexity of the ChordLink Model . 10:1
Philipp Kindermann, Jan Sauer and Alexander Wolff.

Unfolding the Simplex and Orthoplex . 11:1
Satyan Devadoss and Matthew Harvey.

Explicit Dynamic Schnyder Woods Require Linear (Amortized) Update Time 12:1
Aleksander B. G. Christiansen, Jacob Holm, Eva Rotenberg and Carsten Thomassen.

Well-Separation and Hyperplane Transversals in High Dimensions . 13:1
Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer and Patrick
Schnider.

5

Planarizing Graphs and their Drawings by Vertex Splitting. .14:1
Soeren Nickel, Martin Nöllenburg, Manuel Sorge, Anaïs Villedieu, Hsiang-Yun Wu
and Jules Wulms.

A new discrete theory of pseudoconvexity . 15:1
Balázs Keszegh.

The complexity of geodesic spanners . 16:1
Sarita de Berg, Frank Staals and Marc van Kreveld.

Extendability of higher dimensional signotopes . 17:1
Helena Bergold, Stefan Felsner and Manfred Scheucher.

Polyline Simplification under the Local Fréchet Distance has Subcubic Complexity 18:1
Sabine Storandt and Johannes Zink.

Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares.19:1
Hugo Akitaya, Erik Demaine, Matias Korman, Irina Kostitsyna, Irene Parada,
Willem Sonke, Bettina Speckmann, Ryuhei Uehara and Jules Wulms.

The k-outlier Fréchet distance. .20:1
Maike Buchin and Lukas Plätz.

Continuous mean distance of a weighted graph . 21:1
Delia Garijo, Alberto Marquez and Rodrigo Silveira.

Approximation of Minimum Convex Partition . 22:1
Nicolas Grelier.

Curvature variation based adaptive sampling for Delaunay triangulations of
Riemannian manifolds . 23:1

Hana Dal Poz Kourimska and Mathijs Wintraecken.

Arrangements of Pseudocircles: On Digons and Triangles. .24:1
Stefan Felsner, Sandro Roch and Manfred Scheucher.

Unweighted Shortest Path in Disk Graphs. .25:1
Katharina Klost.

An Insertion Strategy for Motorcycle Graphs. .26:1
Franz Aurenhammer and Michael Steinkogler.

k-Transmitter Watchman Routes .27:1
Bengt J. Nilsson and Christiane Schmidt.

An algorithm for the convex hull computation of rational plane curves.28:1
Christina Katsamaki, Fabrice Rouillier and Elias Tsigaridas.

Properties for Voronoi Diagrams of Arbitrary Order in the Sphere . 29:1
Andrea de Las Heras Parrilla, Mercè Claverol and Clemens Huemer.

The Mixed Page Number of Graphs . 30:1
Md. Jawaherul Alam, Michael Bekos, Martin Gronemann, Michael Kaufmann and
Sergey Pupyrev.

EuroCG’22

6

Gioan’s Theorem for complete bipartite graphs . 31:1
Oswin Aichholzer, Man-Kwun Chiu, Hung Hoang, Michael Hoffmann, Yannic Maus,
Birgit Vogtenhuber and Alexandra Weinberger.

A Note on Rectilinear Crossing number of Hypergraphs . 32:1
Rahul Gangopadhyay and Gaiane Panina.

Experimental analysis of Delaunay flip algorithms on genus two hyperbolic surfaces . . . 33:1
Vincent Despré, Loïc Dubois, Benedikt Kolbe and Monique Teillaud.

Unique Sink Orientations of Grids is in Unique End of Potential Line 34:1
Michaela Borzechowski and Wolfgang Mulzer.

On the Number of Optimal Paths in Multicriteria Route Planning . 35:1
Florian Barth, Stefan Funke and Claudius Proissl.

Ray Shooting amid Tetrahedra in Four Dimensions. .36:1
Esther Ezra, Micha Sharir and Tslil Tsabari.

On Stable Range Assignments in S1 . 37:1
Mark de Berg, Arpan Sadhukhan and Frits Spieksma.

Removing Popular Faces in Curve Arrangements by Inserting one more Curve 38:1
Phoebe de Nooijer, Soeren Nickel, Alexandra Weinberger, Zuzana Masárová, Tamara
Mchedlidze, Maarten Löffler and Günter Rote.

Transitions in Dynamic Map Labeling. .39:1
Thomas Depian, Guangping Li, Martin Nöllenburg and Jules Wulms.

Preprocessing Imprecise Points for Furthest Distance Queries. .40:1
Vahideh Keikha, Sepehr Moradi and Ali Mohades.

Augmenting Graphs with Maximal Matchings . 41:1
Maike Buchin, Antonia Kalb and Bernd Zey.

Small Area Drawings of Cactus-Graphs . 42:1
Leonhard Löffler-Dauth.

Towards the Minimization of Global Measures of Congestion Potential for Moving Points43:1
Will Evans, Ivor van der Hoog, David Kirkpatrick and Maarten Löffler.

Lions and Contamination: Monotone Clearings. .44:1
Daniel Bertschinger, Meghana M. Reddy and Enrico Mann.

A Conditional Lower Bound for the Discrete Fréchet Distance in a Graph 45:1
Anne Driemel, David Göckede, Ivor van der Hoog and Eva Rotenberg.

Segment Visibility Counting Queries in Polygons . 46:1
Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov,
Marcel Roeloffzen and Frank Staals.

Kinetic Group Density in 1D. .47:1
Kevin Buchin, Max van Mulken, Bettina Speckmann and Kevin Verbeek.

Finding a Battleship of Uncertain Shape . 48:1
Eva-Maria Hainzl, Maarten Löffler, Daniel Perz, Josef Tkadlec and Markus Wallinger.

7

Linear size universal point sets for classes of planar graphs . 49:1
Stefan Felsner, Hendrik Schrezenmaier, Felix Schröder and Raphael Steiner.

Fast Reconfiguration for Programmable Matter . 50:1
Irina Kostitsyna, Tom Peters and Bettina Speckmann.

Short topological decompositions of non-orientable surfaces. .51:1
Niloufar Fuladi, Alfredo Hubard and Arnaud De Mesmay.

Time and Space Efficient Collinearity Indexing . 52:1
Boris Aronov, Esther Ezra, Micha Sharir and Guy Zigdon.

Universal Lower Bounds on the Segment Number of Some Classes of Planar Graphs . . . 53:1
Jonathan Klawitter, Boris Klemz, Felix Klesen, Stephen Kobourov, Myroslav
Kryven, Alexander Wolff and Johannes Zink.

Outside-Obstacle Representations with All Vertices on the Outer Face.54:1
Oksana Firman, Philipp Kindermann, Jonathan Klawitter, Boris Klemz, Felix
Klesen and Alexander Wolff.

Linear Time Point Location in Delaunay Simplex Enumeration over all Contiguous
Subsequences . 55:1

Felix Weitbrecht.

Approximating Multiplicatively Weighted Voronoi Diagrams: Efficient Construction
with Linear Size . 56:1

Joachim Gudmundsson, Martin Seybold and Sampson Wong.

An Optimal Algorithm for Weighted Center Problem on Cycle Graphs 57:1
Taekang Eom and Hee-Kap Ahn.

Intersections of Double-Wedge Arrangements. .58:1
Daniel Bertschinger, Henry Förster and Birgit Vogtenhuber.

Realizability of Free Space Diagrams for 1D Curves . 59:1
Hugo Akitaya, Maike Buchin, Majid Mirzanezhad, Leonie Ryvkin and Carola Wenk.

Querying the Hausdorff Distance of a Line Segment . 60:1
Frank Staals, Jérôme Urhausen and Jordi L. Vermeulen.

Watchman Route on Line Segments . 61:1
Shahin John J S, Remi Raman, R Subashini and Subhasree Methirumangalath.

Orientation type of convex sets . 62:1
Péter Ágoston, Gábor Damásdi, Balázs Keszegh and Dömötör Pálvölgyi.

A quality measure for Reeb graph drawings . 63:1
Erin Chambers, Elizabeth Munch and Tim Ophelders.

The Shortest Path with Increasing Chords in a Simple Polygon. .64:1
Mart Hagedoorn and Irina Kostitsyna.

Spanning ratio of shortest paths in weighted square tessellations. .65:1
Guillermo Esteban, Prosenjit Bose, David Orden and Rodrigo Silveira.

EuroCG’22

8

Flipping Plane Spanning Paths . 66:1
Oswin Aichholzer, Kristin Knorr, Maarten Löffler, Zuzana Masárová, Wolfgang
Mulzer, Johannes Obenaus, Rosna Paul and Birgit Vogtenhuber.

Complexity Results on Untangling Planar Rectilinear Red-Blue Matchings 67:1
Arun Kumar Das, Sandip Das, Guilherme D. da Fonseca, Yan Gerard and Bastien
Rivier.

On Some Relations Between Optimal TSP Solutions and Proximity Graphs in the Plane68:1
Sam van der Poel, Gaurish Telang, Joseph Mitchell and Logan Graham.

EuroCG’22

Arc diagrams, flip distances, and Hamiltonian
triangulations.
Michael Hoffmann

ETH Zurich

Abstract
How many edge flips are needed to transform one combinatorial triangulation into another? How
many spine crossings are needed in a topological book embedding of a planar graph? Under what
conditions can a given planar graph be transformed into a Hamiltonian planar graph? In this talk
I will discuss connections between these three questions along with some partial answers and open
problems concerning specific variations of them.

Contact Representations of Planar Graphs -
Combinatorial Structure and Algorithm X
Stefan Felsner

Technische Universität Berlin

Abstract
The main player in this talk is algorithm X. In its various disguises this algorithm can be used
to compute contact representations of planar graphs with squares, homothetic triangles, pentagons
and other shapes. To this end the algorithm exploits combinatorial structures such as transversal
structures, Schnyder woods, and five-color forests. We survey what is known about algorithm X
and what remains mysterious.

Visual Analysis of Large Networks - Strategies
and Challenges
Maurizio Patrignani

Roma Tre University

Abstract
The visual analysis of large networks plays a critical role in today’s applications and its relevance
is doomed to grow in the next future. The incredibly-vast amount of networked data produced by
real-world applications poses unprecedented challenges that standard graph-visualization paradigms
seem unprepared to address. Indeed, although several approaches have been proposed, an effective
solution appears still elusive. In this talk we will discuss the requirements of such an analysis and
we will review the most promising techniques and tools that have been proposed so far to cope
with such new challenges. It will be apparent that, in addition to efficiency, visual analytics tools
must also be based on a combination of abstraction and modeling. Further, the goal of producing
readable representations of the inner structure of large networks has lead to formalizing several
combinatorial problems that need to be addressed. Therefore, this domain has both a deep impact
on applications and an intriguing theoretical appeal. We will review recent results and highlight
the main open questions in this domain.

The Complexity of the Hausdorff Distance
Paul Jungeblut1, Linda Kleist2, and Tillmann Miltzow3

1 Karlsruhe Institute of Technology, Germany
paul.jungeblut@kit.edu

2 Technische Universität Braunschweig, Germany
kleist@ibr.cs.tu-bs.de

3 Utrecht University, The Netherlands
t.miltzow@uu.nl

Abstract
We determine the computational complexity of computing the Hausdorff distance. Specifically, we
show that the decision problem of whether the Hausdorff distance of two semi-algebraic sets is
bounded by a given threshold is complete for the complexity class ∀∃<R. This implies that the
problem is NP-, co-NP-, ∃R- and ∀R-hard.

Related Version Full version available on arXiv: 2112.04343.

1 Introduction

The question of ‘how similar are two given objects’ occurs in numerous settings. A typical
tool to quantify their similarity is the Hausdorff distance. Two sets have a small Hausdorff
distance if every point of one set is close to some point of the other set and vice versa. The
Hausdorff distance appears in many branches of science. To illustrate the range of use cases,
we consider two examples. For illustrations consider Figure 1. In mathematics, the Hausdorff
distance provides a metric on sets and henceforth also a topology. This topology can be
used to discuss continuous transformations of one set to another [7]. In computer vision and
geographical information science, the Hausdorff distance is used to measure the similarity
between spacial objects [17, 18], for example the quality of quadrangulations of complex 3D
models [20]. In this paper, we study the computational complexity of the Hausdorff distance
from a theoretical perspective.

Figure 1 Left: Continuous deformation of a cup into a doughnut [10]. Right: Quadrangulation of
a smooth surface used for rendering [20].

Definition. The directed Hausdorff distance between a non-empty set A ⊆ Rn and a
non-empty set B ⊆ Rn is defined as

~dH(A, B) := sup
a∈A

inf
b∈B
‖a− b‖.

The directed Hausdorff distance between A and B can be interpreted as the smallest value
ε ≥ 0 such that the (closed) ε-neighborhood of B contains A. Hence, it nicely captures the
intuition of how much B has to be blown up to contain A. Note that ~dH(A, B) and ~dH(B, A)
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

1:2 The Complexity of the Hausdorff Distance

A1
B1

B2
A2

A3

B3

Figure 2 How similar are these sets?

must not be equal. For an example, consider Fig. 2; while A1 ⊂ B1 and thus ~dH(A1, B1) = 0,
it holds that ~dH(B1, A1) > 0. The (undirected) Hausdorff distance is symmetric and defined
as dH(A, B) := max

{
~dH(A, B), ~dH(B, A)

}
. In this paper, we investigate the computational

complexity of deciding whether the Hausdorff distance of two sets is at most a given threshold.

Semi-Algebraic Sets. The algorithmic complexity of the Hausdorff distance clearly depends
on the type of the considered sets. If we are given the sets in a way that we cannot even
decide if they are empty, it seems near impossible to compute their Hausdorff distance.
However, if the sets consists of finitely many points, their Hausdorff distance can be easily
computed by checking all pairs of points. In practice, we are often somewhere between those
two extreme situations. For instance, the sets could be a collection of disks in the plane or
cubic splines, describing a surface in three dimensions, see also Fig. 3.

Figure 3 The Hausdorff distance can appear in simpler or more complicated settings. Left: Two
finite point sets (black and white) in the plane. Middle: Two sets of blue and red disks in the plane.
Right: Two surfaces in 3-space with different meshes, image taken from [20].

In this paper, we focus on semi-algebraic sets, i.e., sets that can be described by polynomial
inequalities. Formally, a semi-algebraic set is the finite union of basic semi-algebraic sets. A
basic semi-algebraic set S is specified by two families of polynomials P and Q such that

S =
{

x∈Rn
∣∣ ∧

P∈P
P (x) ≤ 0 ∧

∧

Q∈Q
Q(x) < 0

}
.

Semi-algebraic sets cover clearly the vast majority of practical cases and finding efficient
algorithms for this problem would be a tremendous contribution. Simultaneously, when
considering smooth sets, one is quickly in the situation that one needs to deal with polynomials
anyway. So the step to general semi-algebraic sets is not a very big one.

General Decision Algorithm. We consider a situation where we are given two semi-algebraic
sets A and B as well as a threshold t; for simplicity, we assume here (only in this paragraph)
that A and B are closed. The statement ~dH(A, B) ≤ t can be encoded into a logical sentence

∀a∈A .∃b∈B : ‖a− b‖2 ≤ t2,

P. Jungeblut, L. Kleist and T. Miltzow 1:3

where ‖x‖ denotes the Euclidean norm of the vector x. We can decide the truth of this
sentence by employing sophisticated algorithms from real algebraic geometry that can deal
with two blocks of quantifiers [5, Chapter 14]. These algorithms are impractical for all
non-trivial instances. Our main result roughly states that in general there is little hope for
an improvement. To state this formally, we continue by defining suitable complexity classes.

Algorithmic Complexity. Let ϕ be a quantifier-free formula in the first-order theory of the
reals, i.e., a formula formed over the alphabet Σ = {0, 1, +, ·, =,≤, <,∨,∧,¬} together with
symbols for the variables. The Universal Existential Theory of the Reals (UETR)
asks to decide the truth value of a sentence

Φ := ∀X ∈Rn .∃Y ∈Rm : ϕ(X, Y).

An instance of UETR belongs to Strict-UETR if the corresponding formula ϕ is over
the alphabet Σ = {0, 1, +, ·, <,∨,∧}, i.e., if every atom is a strict inequality and there
are no negations. The complexity classes ∀∃R and ∀∃<R contain all decision problems for
which there exists a polynomial-time many-one reduction to UETR and Strict-UETR,
respectively. We propose to pronounce the complexity classe ∀∃R as ‘UER’ or ‘forall exists
R’ and ∀∃<R as ‘Strict-UER’ or ‘strict forall exists R’. To the best of our knowledge, ∀∃R
was first introduced by Bürgisser and Cucker [9, Section 9] under the name BP0(∀∃) (in the
constant-free Blum-Shub-Smale-model [6]). The notation ∀∃R arised later in [13] extending
the notation from Schaefer and Števankovič [19]. The sister class co-∀∃<R = ∃∀≤R was first
studied by D’Costa, Lefaucheux, Neumann, Ouaknine and Worrel [12].

Problem and Results. We now have all ingredients to state our problem and main results.
Let ΦA(X) and ΦB(X) be two quantifier-free formulas defining the semi-algebraic sets
A = {x∈Rn | ΦA(x)} and B = {x∈Rn | ΦB(x)}, and let t ∈ Q be a rational number. The
Hausdorff problem asks whether dH(A, B) ≤ t. Here the dimension n of the ambient space
of A and B is part of the input (there is a polynomial-time algorithm for every fixed n, see
the related work in Section 2). The computational complexity of this problem was posed as
an open question by Dobbins, Kleist, Miltzow and Rzążewski [13].

I Theorem 1.1. The Hausdorff problem is ∀∃<R-complete.

Note that prior to our result, it was not even known if computing the Hausdorff distance
was NP-hard. As ∀∃<R contains, NP, co-NP, ∃R and ∀R, we also get hardness for all of
these complexity classes. In the proof of ∀∃<R-hardness for Theorem 1.1, we create instances
with some additional properties. In particular, we can guarantee a gap, i.e., the Hausdorff
distance is either below the threshold t or at least t · 22Ω(d) , where d denotes the number of
variables of ΦA and ΦB . Thus our result also rules out approximation algorithms.

I Corollary 1.2. Let A and B be two semi-algebraic sets in Rd and f(d) = 22o(d) . Then there
is no polynomial time f(d)-approximation algorithm to compute dH(A, B), unless P = ∀∃<R.

2 Related Work

This section reviews previous work concerning two directions. First, we discuss the complexity
of computing the Hausdorff distance for special sets. Afterwards, we investigate previous
work on the complexity class ∀∃R.

EuroCG’22

1:4 The Complexity of the Hausdorff Distance

Computing the Hausdorff Distance. The notion of the Hausdorff distance was introduced
by Felix Hausdorff in 1914 [16]. Most of the early works focused on the Hausdorff distance
for finite point sets. For a set of n points and a set of m points in any fixed dimension, the
Hausdorff distance can be easily computed by checking all pairs, i.e., in time O(mn). In the
plane, this can be improved to O((n + m) log(m + n)) by using Voronoi diagrams [1]. In fact,
this method can be extended to sets consisting of pairwise non-crossing line segments in the
plane, e.g., simple polygons and polygonal chains fulfill this property. If the polygons are
additionally convex, their Hausdorff distance can even be computed in linear time [4].

More generally, the Hausdorff distance can be computed in polynomial time whenever
the two sets can be described by a simplicial complex of fixed dimension. Based on the
PhD thesis of Godau [15], Alt et al. [2, Theorem 3.3] show how to compute the directed
Hausdorff distance between two sets in Rd consisting of n and m k-dimensional simplices in
time O(nmk+2) (assuming d is constant). Using a Las Vegas algorithm for computing the
vertices of the lower envelope, similar ideas yield an approach with randomized expected
time in O(nmk+ε) for k > 1 and every ε > 0 [2, Theorem 3.4]. They additionally present
algorithms with better randomized expected running times for sets of triangles in R3 and
point sets in Rd.

Given two semi-algebraic sets A, B ⊆ Rn, the Hausdorff problem can be encoded
as a sentence of the form ∀X ∈ Rn .∃Y ∈ Rn : ϕ(X, Y) with Θ(n) variables, where ϕ is
quantifier-free. Such a sentence can be decided in time roughly equal to (sd)O(n2) [5, Theorem
14.14] where d denotes the maximum degree of any polynomial in ϕ and s denotes the number
of atoms.

In other contexts the two sets are allowed to undergo certain transformations (e.g.
translations) such that the Hausdorff distance is minimized [8]. See Alt [3] for a survey.

Universal Existential Theory of the Reals. As mentioned above, the complexity class ∀∃R
was first studied by Bürgisser and Cucker who prove complexity results for many decision
problems involving circuits [9]. Dobbins, Kleist, Miltzow, and Rzążewski [14, 13] consider
∀∃R in the context of area-universality of graphs. A plane graph is area-universal if for
every assignment of reals to the inner faces of a plane graph, there exists a straight-line
drawing such that the area of each inner face equals the assigned number. Dobbins et
al. conjecture that the decision problem whether a given plane graph is area-universal is
complete for ∀∃R. They support this conjecture by proving hardness for several related
notions [13]. Additionally, for future research directions, they present a number of candidates
for potentially ∀∃R-hard problems. Among them, they stated a question motivating this
paper as an open problem, namely whether the Hausdorff problem is ∀∃R-complete. The
other candidates exhibit intrinsic connections to imprecision, robustness and extendability.

The sister class ∃∀R was recently investigated by D’Costa et al. [12]. They show that it
is ∃∀≤R-complete to decide for a given rational matrix A and a compact semi-algebraic set
K ⊆ Rn, whether there exists a starting point x ∈ K such that xn := Anx is contained in K

for all n ∈ N .

3 Techniques and Proof Overview

In this section, we present the general idea behind the hardness reduction for the Hausdorff
problem. The goal is to convey the intuition and to motivate the technical intermediate steps
needed. The sketched reduction is oversimplified and thus neither in polynomial time nor
fully correct. We point out both of these issues and give first ideas on how to solve them.

P. Jungeblut, L. Kleist and T. Miltzow 1:5

x

y

x

y(a) (b)

Figure 4 Consider the formula ∀X ∈R .∃Y ∈R : XY > 1. (a) Each point (x, y)∈R2 in the blue
open region satisfies xy > 1. Only for x = 0 (in red) no suitable y∈R exists. (b) Restricting the
range of Y to [−1, 1], then for all x∈ [−1, 1] (in red) no y with xy > 1 exists.

Let Φ := ∀X ∈Rn .∃Y ∈Rm : ϕ(X, Y) be a Strict-UETR instance. We define two sets

A := {x∈Rn | ∃Y ∈Rm : ϕ(x, Y)} and
B := Rn

and ask whether dH(A, B) = 0. If Φ is true, then A = Rn and we have dH(A, B) = 0 because
both sets are equal. Otherwise, if Φ is false, then there exists some x∈Rn for which there
is no y∈Rm satisfying ϕ(x, y) and we conclude that A 6= Rn. In general we call the set of
all x∈Rn for which there is no y ∈Rm satisfying ϕ(x, y) the counterexamples ⊥(Φ) of Φ.
One might hope that ⊥(Φ) 6= ∅ is enough to obtain dH(A, B) > 0, but this is not the case.
To this end, consider the formula Ψ := ∀X ∈ R .∃Y ∈ R : XY > 0, which is false. The
set ⊥(Ψ) = {0} contains only a single element, so we have A = R \ {0} and B = R. However,
their Hausdorff distance also evaluates to dH(A, B) = 0. We conclude that above reduction
does not (yet completely) work, because it maps a yes- and a no-instances of Strict-UETR
to a yes-instance of Hausdorff.

We solve this issue by blowing up the set of counterexamples. Specifically, Theorem 12
(in the full version) establishes a polynomial time algorithm to transform a Strict-UETR
instance Φ into an equivalent formula Φ′ such that the set of counterexamples is either empty
(if Φ′ is true) or contains an open ball of positive radius (if Φ′ is false). The radius of the
ball serves as a lower bound on the Hausdorff distance dH(A, B). Thus a reduction starting
with Φ′ is correct. As a key tool for this step, we restrict the variable ranges from Rn and Rm

to small and compact intervals. Fig. 4 presents an an example on how such a range restriction
may enlarge the set of counterexamples from a single point to an interval. We think that the
special property of blown up counterexamples can prove useful in future reductions to show
∀∃<R-hardness of other problems because it makes handling the no-instances easier.

A further challenge is given by the definition of the sets A and B. While the description
complexity of B depends only on n, the definition of A contains an existential quantifier.
This is troublesome because our definition of the Hausdorff problem requires quantifier-
free formulas as its input, and in general there is no equivalent quantifier-free formula of
polynomial length which describes the set A [11]. We overcome this issue by taking the
existentially quantified variables as additional dimensions into account. We cannot know
their precise values for each possible choice of the universally quantified variables. But by
scaling them to a tiny range, their influence on the Hausdorff distance becomes negligible.
Therefore instead of the above we work with sets similar to

A := {(x, y)∈ [−1, 1]n × [−ε, ε]m | ϕ(x, y)} and
B := [−1, 1]n × {0}m

EuroCG’22

1:6 The Complexity of the Hausdorff Distance

for some tiny value ε depending on the radius r (of the ball contained in the counterexamples).
This definition of A and B introduces the new issue that even if Φ is true, the Hausdorff
distance dH(A, B) might be strictly positive. However, we manage to identify a threshold t,
such that dH(A, B) ≤ t if and only if Φ is true. This completes the proof of ∀∃<R-hardness.
∀∃<R-membership is shown by formulating the Hausdorff problems as an equivalent

Strict-UETR instance (see Section 6 of the full version).

References
1 Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate Matching of Polygonal

Shapes. Annals of Mathematics and Artificial Intelligence, 13(3):251–265, 1995. doi:10.
1007/BF01530830.

2 Helmut Alt, Peter Braß, Michael Godau, Christian Knauer, and Carola Wenk. Computing
the Hausdorff Distance of Geometric Patterns and Shapes. In Boris Aronov, Saugata
Basu, János Pach, and Micha Sharir, editors, Discrete and Computational Geometry: The
Goodman-Pollack Festschrift, volume 25 of Algorithms and Combinatorics, pages 65–76.
Springer, 2003. doi:10.1007/978-3-642-55566-4_4.

3 Helmut Alt and Leonidas J. Guibas. Discrete Geometric Shapes: Matching, Interpolation,
and Approximation. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Com-
putational Geometry, pages 121–153. Elsevier, 2000. doi:B978-044482537-7/50004-8.

4 Mikhail J. Atallah. A Linear Time Algorithm for the Hausdorff Distance Between
Convex Polygons. Information Processing Letters, 17(4):207–209, 1983. doi:10.1016/
0020-0190(83)90042-X.

5 Sauguta Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic
Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer, 2006.
doi:10.1007/3-540-33099-2.

6 Lenore Blum, Mike Shub, and Steve Smale. On a Theory of Computation and Complex-
ity over the Real Numbers: NP-Completeness, Recursive Functions and Universal Ma-
chines. Bulletin of the American Mathematical Society, 21:1–46, 1989. doi:10.1090/
S0273-0979-1989-15750-9.

7 Glen E. Bredon. Topology and Geometry, volume 139 of Graduate Texts in Mathematics.
Springer Science & Business Media, 1st edition, 2013. doi:10.1007/978-1-4757-6848-0.

8 Karl Bringmann and André Nusser. Translating Hausdorff Is Hard: Fine-Grained Lower
Bounds for Hausdorff Distance Under Translation. arXiv preprint, 2021. arXiv:2101.
07696.

9 Peter Bürgisser and Felipe Cucker. Exotic Quantifiers, Complexity Classes, and Complete
Problems. Foundations of Computational Mathematics, 9:135–170, April 2009. doi:10.
1007/s10208-007-9006-9.

10 Wiki Community. Homotopy. accessed 2021 November. URL: https://en.wikipedia.
org/wiki/Homotopy.

11 James H. Davenport and Joos Heintz. Real Quantifier Elimination is Doubly Exponen-
tial. Journal of Symbolic Computation, 5(1–2):29–35, 1988. doi:10.1016/S0747-7171(88)
80004-X.

12 Julian D’Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrel.
On the Complexity of the Escape Problem for Linear Dynamical Systems over Com-
pact Semialgebraic Sets. In Filippo Bonchi and Simon J. Puglisi, editors, Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS), volume
202 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:21, 2021.
doi:10.4230/LIPIcs.MFCS.2021.33.

P. Jungeblut, L. Kleist and T. Miltzow 1:7

13 Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. ∀∃R-
Completeness and Area-Universality. In Andreas Brandstädt, Ekkehard Köhler, and
Klaus Meer, editors, Graph-Theoretic Concepts in Computer Science (WG), volume 11159
of Lecture Notes in Computer Science, pages 164–175. Springer, 2018. doi:10.1007/
978-3-030-00256-5_14.

14 Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. Completeness
for the Complexity Class ∀∃R and Area-Universality. ArXiv preprint, 2021. arXiv:1712.
05142v3.

15 Michael Godau. On the complexity of measuring the similarity between geometric ob-
jects in higher dimensions. PhD thesis, Freie Universtät Berlin, 1999. doi:10.17169/
refubium-7780.

16 Felix Hausdorff. Grundzüge der Mengenlehre. Von Veit & Company, 1914.
17 Deng Min, Li Zhilin, and Chen Xiaoyong. Extended Hausdorff distance for spatial objects

in GIS. International Journal of Geographical Information Science, 21(4):459–475, 2007.
doi:10.1080/13658810601073315.

18 William Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance, volume 1173
of Lecture Notes in Computer Science. Springer, 1996. doi:10.1007/BFb0015091.

19 Marcus Schaefer and Daniel Štefankovič. Fixed Points, Nash Equilibria, and the Existential
Theory of the Reals. Theory of Computing Systems, 60:172–193, 2017. doi:10.1007/
s00224-015-9662-0.

20 Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung. Dev2PQ:
Planar Quadrilateral Strip Remeshing of Developable Surfaces. arXiv preprint, 2021. arXiv:
2103.00239.

EuroCG’22

APX-Hardness of the Minimum Vision Points
Problem
Mayank Chaturvedi1 and Bengt J. Nilsson2

1 Birla Institute of Technology and Science Pilani, Goa Campus, India
f20170548@goa.bits-pilani.ac.in

2 Department of Computer Science and Media Technology, Malmö University,
Sweden
bengt.nilsson.TS@mau.se

Abstract
Placing a minimum number of guards on a given watchman route in a polygonal domain is called
the minimum vision points problem. We prove that finding the minimum number of vision points on
a shortest watchman route in a simple polygon is APX-Hard. We then extend the proof to the class
of rectilinear polygons having at most three dent orientations.

1 Introduction

The problem of guarding polygonal domains is known as the Art Gallery Problem. A guard
is a point in the domain and the visibility of the guard is defined to be those points that can
be reached from the guard by line segments that do not intersect the exterior of the domain.
When the domain is a simple polygon, Aggarwal [2] and Lee and Lin [13] independently
prove that finding the minimum number of guards is NP-hard; see also O’Rourke [16], this is
later strengthened to APX-hardness and ∃R-hardness [1, 5, 10].

Computing the watchman route is another way to solve the guarding problem. A
watchman route is a closed tour traced by a moving guard who sees the complete polygon
while tracing the tour. There exist polynomial time algorithms that compute the shortest
watchman route for simple polygons [9, 17, 18].

Surveillance devices that trace the watchman route to guard a polygonal domain may be
unable to accurately engage their vision systems continuously and could potentially only do
so at discrete points along the tour. Such points are called vision points. The optimization
problem of finding a minimum number of vision points on a shortest watchman route is
denoted the minimum vision points problem (mvpp) and is the focus of our current results.

Carlsson et al. [7] prove the NP-hardness of finding a minimum number of vision points
on a shortest watchman route in a simple polygon. Algorithmic results for special classes of
polygons for which the watchman route is a shortest path between two points have also been
developed [6, 7]; see also Ghosh and Burdick [11] for results for polygons with holes.

We show that mvpp is APX-hard for simple polygons and extend the result to also hold
for rectilinear polygons having three dent orientations [8, 14, 15].

2 A Reduction for Simple Polygons

We make a gap preserving reduction [3] from max2sat(3) to mvpp in simple polygons,
where max2sat(3) is the following problem.

max2sat(3)
Instance: a set of n boolean variables u1, . . . , un and a set of m clauses c1, . . . , cm,

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

2:2 APX-Hardness of the Minimum Vision Points Problem

u3

q1

(u1 ∨ ū2) (u2 ∨ ū3)

ū2u1 ū1 u2

q2

ū3

x

Figure 1 The corresponding mvpp instance for the max2sat(3) instance (u1 ∨ ū2), (u2 ∨ ū3).

each consisting of a disjunction of exactly two distinct literals formed from the n
variables such that each variable occurs at most three times in the clauses.
Solution: an assignment to the variables that satisfies the largest number of clauses.

We can assume that no variable occurs only non-negated or negated in the clauses, otherwise
we simply assign it the appropriate truth value to satisfy those clauses it is contained in. Since
a variable then occurs two or three times in the clauses, there is one version, non-negated or
negated, that occurs exactly once. We call this the lone literal of the variable. We also assume
that at least one variable occurs three times in the clauses and without loss of generality
that u1 is such a variable with ū1 as the lone literal in clause c1. This will be used later to
argue the structure of a canonical set of vision points.

I Lemma 2.1. For an instance of max2sat(3) having n variables and m clauses, such that
M of them are satisfiable, it holds that: 1. n ≤ m, 2. M ≥ 3m/4, and 3. there is a solution
of size at least M such that any unsatisfied clause consists only of lone literals.

Proof. Claim 1. holds since each variable appears as at least two literals in the clauses.
For Claim 2., a random assignment will satisfy each clause with probability 3/4 so in

total 3m/4 clauses are satisfied in expectation. Therefore, least one assignment must exist
having at least 3m/4 clauses satisfied.

For Claim 3., any unsatisfied clause that contains a non-lone literal can be satisfied by
reversing the assignment of that variable. Only the clause containing the lone literal can
become unsatisfied by this so the number of satisfied clauses does not decrease. J

We call a solution to a max2sat(3) instance that obeys Claims 1., 2., and 3. in Lemma 2.1,
locally maximal.

We modify the NP-hardness proof by Aggarwal [2] and Lee and Lin [13] in the same way
as Carlsson et al. [7]; see Figure 1. The original NP-hardness proof constructs a reduction
polygon for a max2sat(3) instance consisting of a base rectangle with clause gadgets along
the upper segment and variable gadgets along the lower segment. Each clause gadget ck is a
structure with two chimneys corresponding to the literals in the clause having a designated
point qk that is seen using two guards if and only if the clause is satisfied. Each variable
gadget consists of two wells, visible from the point x, one corresponding to the literal ui

and the other corresponding to the literal ūi. Each variable gadget has a spike t, the only
vertices seeing t being its adjacent vertices along the polygon boundary and the two vertices
vi and v′i marked red in Figure 2. Each literal chimney in a clause ck has two red vertices

Mayank Chaturvedi and Bengt J. Nilsson 2:3

(b)
sik

v′
i

ui
ūi

r′
ik

rik

qk

x

yik

li = ūi

s′
ik

vi

t

(a)

li = ui

ui
ūi

x

vi

v′
i

r′
ik

sik
s′

ik

rik

yik

qk

t

Figure 2 Connecting variables and clauses in the construction.

rik and r′ik that see it and they are connected to the corresponding variable gadget of ui.
For the clause ck = (li ∨ lj) the literal chimney of li is connected to variable gadget ui by
adding spikes sik and s′ik depending on whether li is ui or ūi as illustrated in Figures 2(a)
and (b). At least one guard in the clause gadget ck must be placed at the lower vertex r′ik or
r′jk to see both the chimney and the point qk, the rightmost point of the clause gadget. The
chimney is made thin enough so that no point sees the top yik of more than one chimney;
see Figures 1 and 2.

To adapt the construction for mvpp, we extend it by adding two caves (thin corridors
each with a 90◦ bend) to each clause structure, one at the top of each chimney, one cave is
added at the bottom of each well structure, and three extra caves, on the top right sides of
the well structures and one at x, are also added. This gives us 2n+ 2m+ 3 caves. To guard
the polygon using vision points, the shortest watchman route must enter each of the caves
and thus has a vision point in each cave, these are marked green in Figures 1 and 2. The
caves tie down the shortest watchman route to ensure that the route passes the critical guard
points that are used in the constructions of Aggarwal [2] and Lee and Lin [13]. These critical
guard points are marked red in Figures 1 and 2. The polygon and shortest watchman route
have polynomial sized descriptions in the size of the max2sat(3) instance.

Disregarding the vision points in the caves, each clause gadget requires at least two more
vision points (and at most three) and each variable gadget requires at least one vision point
given a vision point at x. Thus, if an assignment to the max2sat(3) instance satisfies M
clauses, we can guard the polygon using V = 2n + 2m + 3 + n + 2M + 3(m −M) + 1 =
3n+ 5m−M + 4 vision points by placing one in each cave, one at x, one on the critical guard
point corresponding to the assigned truth value in the variable gadget, one on the matching
critical guard point of each literal chimney and, if the clause ck is not satisfied, one extra
vision point at the rightmost of the critical guard points r′ik in the clause structure to see qk.
We call such a placement a canonical vision point set and prove that we can assume that any
vision point set is canonical. (A canonical vision point set is given in Figure 1 consisting of
the cave guards in green, the point x and the subset of red points that have white centers.)

Given a set of vision points, we modify it to be canonical without increasing its size as
follows. Clearly each green point must be a vision point otherwise not all caves are seen. We
can also assume that point x is a vision point, otherwise each variable gadget must have
two further vision points and, since each clause gadget must also have two further vision
points, we obtain at least 4n+ 4m+ 3 vision points. Without loss of generality, these are the
critical guard points vi and v′i in the variable gadgets and r′ik and r′jk in each clause gadget
ck = (li ∨ lj), giving exactly 4n+ 4m+ 3 vision points guarding the polygon. Since u1 occurs
in three clauses and has ū1 as lone literal in clause c1, we remove the vision point at v′1,

EuroCG’22

2:4 APX-Hardness of the Minimum Vision Points Problem

place it at x, and move the vision point at r′1,1 to r1,1 if necessary, thus neither decreasing
coverage nor increasing the size of the vision point set.

The top point yik of a clause gadget chimney of li in clause ck sees two connected
components of the watchman route that we denote w and w′, w containing yik. The
component w contains the chimney’s two critical guard points rik and r′ik, r′ik seeing qk. If w′
contains vision points, we move them to r′ik, if the path from yik to rik of w contains vision
points, we move them to rik, and if the path from yik to r′ik of w contains vision points, we
move them to r′ik. If r′ik has a vision point after these moves, we remove all other vision
points that see yik (except the green cave one), otherwise we keep one at rik. Together with
x, this vision point will guard at least as much as the original vision points on w and w′
(except for a disregardable portion of the other literal chimney in the clause gadget).

The apex of the spike t in a variable gadget ui sees three connected components of the
watchman route. We denote these by w1, w2, and w3 in increasing order of distance to t and
note that w2 contains critical guard point vi and w3 contains v′i. If w1 or w2 have vision
points, we move them to vi and if w3 has vision points, we move them to v′i and remove any
duplicates from vi and v′i. Together with x, these points will guard at least as much as the
original vision points on w1, w2, and w3. If both vi and v′i have vision points, we remove the
one that corresponds to the lone literal in the clause gadget of some clause ck and place one
at r′ik unless point qk is already seen by the other vision points in the clause gadget. The
process described above never adds vision points so the size of a canonical vision point set is
no larger than the original set. We state this as a lemma.

I Lemma 2.2. Any vision point set on a shortest watchman route in a reduction polygon
can be transformed to a canonical vision point set of no larger size than the original set.

Berman and Karpinski [4] show that it is NP-hard to approximate max2sat(3) by a
factor 2012/2011 − ε, for any ε > 0. Assume from the discussion above that we have a
polynomial time approximation algorithm for mvpp that produces V = 3n+ 5m−M + 4
canonical vision points for some value M . We can assume that M corresponds to some
locally maximal solution of the max2sat(3) instance for which the optimum is Mopt. Given
an optimal solution to the max2sat(3) instance, we construct a canonical vision point set
in the reduction polygon by assigning vision points according to the truth values in the
max2sat(3) solution. Let V ′ = 3n+ 5m−Mopt + 4 be the number of vision points placed
in this way in the reduction polygon and let Vopt be the minimum number of vision points in
the reduction polygon. Since V ′ ≥ Vopt, Mopt/M ≥ 2012/2011− ε, and m ≥ 4, we have by
Lemmata 2.1 and 2.2 the ratio

V

Vopt
≥ V

V ′
= 3n+ 5m−M + 4

3n+ 5m−Mopt + 4 ≥
9m−M

9m−M(2012/2011− ε) ≥
22121
22120 − δ, (1)

for any δ > 0 dependent on ε, which proves the APX-hardness of mvpp in simple polygons.

3 The mvpp in Rectilinear Polygons with Three Dents

The concept of dents in rectilinear polygons was introduced by Culberson and Reckhow [8]
and Motwani et al. [14, 15] and they develop algorithms for orthogonal covering problems
in rectilinear polygons with restricted number of dent orientations. A dent in a rectilinear
polygon is simply a boundary edge where both endpoints are reflex. Thus, we identify dents
with four different orientations, north, south, east, and west; see Figure 3(a).

Monotone rectilinear polygons have dents of one or two (opposite) orientations and
for these, optimal linear time algorithms for mvpp exist [6, 7]. We settle the complexity

Mayank Chaturvedi and Bengt J. Nilsson 2:5

north

south

eastwest

(a)

interior

(b)

Figure 3 Illustrating the concepts of dents and the rectilinear spike emulator.

vi

v′
i

li = ui

t

t

ui ūi

s′
ik

ck = (li ∨ lj)

qk

lj = ūj

rik

r′
ik

ūjuj

sik

Figure 4 Illustrating the variable and clause gadgets in the rectilinear construction. Spikes at
sik, s′

ik, and qk are replaced by small rectilinear spike emulators.

status for polygons with three dent orientations here but for rectilinear polygons having
two (non-opposite) dent orientations the complexity status remains unknown. This should
be contrasted with the classical art gallery problem, where linear time algorithms for
computing the minimum number of point guards exist only for rectilinear polygons having
one dent orientation (histograms) [7], for rectilinear polygons having two non-opposite dent
orientations, the art gallery problem can be shown to be APX-hard by modifying the proof
by Brodén et al. [5]. For the classical art gallery problem, the complexity is unknown for
rectilinear monotone polygons having two opposite dent orientations.

We modify the reduction introduced in the previous section to be rectilinear and further-
more to only contain dents of three different orientations. To this end, we introduce the
rectilinear spike emulator, also used by Katz and Roisman [12]. A spike as used in Section 2
is a thin corridor that can only be seen along a thin visibility cone. We can emulate the
effect with a rectilinear gadget as shown in Figure 3(b) using one extra guard (green in the
figure) and, as long as the original spike has reflex vertices with larger x-coordinates than its
convex vertices, the rectilinear spike gadget never introduces an east dent.

As in Section 2, each variable gadget consists of two rectilinear wells, corresponding to the
literals ui and ūi. The point x is not necessary, since each well is covered by a green guard
at the bottom. Each variable gadget has a rectilinear spike t seen by the two critical guard
points vi and v′i marked red in Figure 4. As before, each clause gadget has two rectilinear
chimneys corresponding to the literals in the clause and each chimney in a clause ck has two
critical guard points rik and r′ik that see it and they are connected to the corresponding
variable gadget of ui by adding rectilinear spike emulators sik and s′ik as illustrated in
Figure 4. Again, we note that at least one guard in a clause gadget ck = (li ∨ lj) must be

EuroCG’22

2:6 APX-Hardness of the Minimum Vision Points Problem

q1

u1

q2

u2 ū2 u3 ū3

(u2 ∨ ū3)

ū1

(u1 ∨ ū2)

x

Figure 5 A rectilinear mvpp instance for the max2sat(3) instance (u1 ∨ ū2), (u2 ∨ ū3).

placed at the lower vertex r′ik or r′jk to see both the chimney and the point qk, placed in
rectilinear spike emulator at the top edge of the clause gadget; see Figure 4.

We add caves at the top of the chimneys, at the bottom of the variable gadgets, on
the right side of the base rectangle and two caves, ensuring that these do not introduce
east dents. These tie down the shortest watchman route to make it pass all the critical
guard points. The convex vertices of the shortest watchman route each require a vision
point, giving us 2n + 8m + 2 such green vision points. In the same way as in Section 2,
we can argue that any algorithm produces a canonical vision point set consisting of V =
2n+ 8m+ 2 +n+ 2M + 3(m−M) = 3n+ 11m−M + 2 vision points, choosing the remaining
ones from the set of critical guard points; see Figure 5 for a full example of a canonical vision
point set consisting of the green points and the subset of the red points that have white
centers in a rectilinear polygon with three dent orientations.

Using the result by Berman and Karpinski [4], that it is NP-hard to approximate
max2sat(3) by a factor 2012/2011− ε, for any ε > 0, we obtain as before the ratio

V

Vopt
≥ 3n+ 11m−M + 2

3n+ 11m−Mopt + 2 ≥
15m−M

15m−M(2012/2011− ε) ≥
38209
38208 − δ, (2)

for any δ > 0 dependent on ε, proving the APX-hardness of mvpp in rectilinear polygons
having three dent orientations.

References
1 M. Abrahamsen, A. Adamaszek, and T. Miltzow. The art gallery problem is ∃R-complete.

Journal of the ACM, 69(1):1–70, 2021.
2 A. Aggarwal. The Art Gallery Theorem: It’s Variations, Applications and Algorithmic Aspects.

PhD thesis, Department of Electrical Engineering and Computer Science, Johns Hopkins
University, 1984.

3 G. Ausiello, A. Marchetti-Spaccamela, P. Crescenzi, G. Gambosi, M. Protasi, and V. Kann.
Complexity and Approximation — Combinatorial Optimization Problems and Their Approx-
imability Properties. Springer, 1999.

4 P. Berman and M. Karpinski. On some tighter inapproximability results. In Proc. 26th

International Colloquium on Automata, Languages and Programming, ICALP’99, pages 200–
209, 1999.

5 B. Brodén, M. Hammar, and B.J. Nilsson. Guarding lines and 2-link polygons is APX-hard. In
Proc. 13th Canadian Conference on Computational Geometry, CCCG’01, pages 45–48, 2001.

6 S. Carlsson and B.J. Nilsson. Computing vision points in polygons. Algorithmica, 24(1):50–75,
1999.

Mayank Chaturvedi and Bengt J. Nilsson 2:7

7 S. Carlsson, B.J. Nilsson, and S. Ntafos. Optimum guard covers and m-watchmen routes
for restricted polygons. International Journal of Computational Geometry and Applications,
3(1):85–105, 1993.

8 J.C. Culberson and R.A. Reckhow. Orthogonally convex coverings of orthogonal polygons
without holes. Journal of Computer and System Sciences, 39:166–204, 1989.

9 M. Dror, A. Efrat, A. Lubiw, and J.S.B. Mitchell. Touring a sequence of polygons. In
Proc. 35th ACM Symposium on Theory of Computing, STOC’03, pages 473–482, 2003.

10 S. Eidenbenz. Inapproximability results for guarding polygons without holes. In Proc. 9th

International Symposium on Algorithms and Computation, ISAAC’98, volume LNCS 1533,
pages 427–437. Springer, 1998.

11 S.K. Ghosh and J.W. Burdick. An on-line algorithm for exploring an unknown polygonal
environment by a point robot. In Proc. 9th Canadian Conference on Computational Geometry,
CCCG’97, pages 100–106, 1997.

12 M.J. Katz and G.S. Roisman. On guarding the vertices of rectilinear domains. Computational
Geometry, 39(3):219–228, 2008.

13 D.T. Lee and A.K. Lin. Computational complexity of art gallery problems. IEEE Transactions
on Information Theory, IT-32:276–282, 1986.

14 R. Motwani, A. Raghunathan, and H. Saran. Covering orthogonal polygons with star polygons:
The perfect graph approach. Journal of Computer and System Sciences, 40:19–48, 1989.

15 R. Motwani, A. Raghunathan, and H. Saran. Perfect graphs and orthogonally convex covers.
SIAM Journal on Algebraic Discrete Methods, 2:371–392, 1989.

16 J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
17 X.-H. Tan. Fast computation of shortest watchman routes in simple polygons. Information

Processing Letters, 77(1):27–33, 2001.
18 X.-H. Tan, T. Hirata, and Y. Inagaki. Corrigendum to “an incremental algorithm for con-

structing shortest watchman routes”. International Journal of Computational Geometry and
Applications, 9(3):319–324, 1999.

EuroCG’22

Reflection Helps Guarding an Art Gallery
Arash Vaezi1, Bodhayan Roy2, and Mohammad Ghodsi3

1 Sharif University of Technology
avaezi@ce.sharif.edu

2 Indian Institute of Technology Kharagpur
broy@maths.iitkgp.ac.in

3 Sharif University of Technology,
ghodsi@sharif.edu

Abstract
This paper studies a variant of the Art Gallery problem in which the “walls" can be replaced by
reflecting edges, which allows the guard to see further and thereby see a larger portion of the gallery.

Chao Xu proved that although reflection helps the visibility of guards to be expanded, similar to
the normal guarding problem, even considering r specular reflections we may need ⌊ n

3 ⌋ guards to
cover the polygon, where r is the number of times the visibility ray from a guard may reflect on edges.
In this article, we prove that considering r diffuse reflections the minimum number of vertex or
boundary guards required to cover a given simple polygon P decreases to ⌈ α

1+⌊ r
4 ⌋ ⌉, where α indicates

the minimum number of guards required to cover the polygon without reflection. Furthermore, we
generalize the O(log n)-approximation ratio algorithm of the vertex guarding problem to work in
the presence of reflection. For a bounded r, the generalization gives a polynomial-time algorithm
with O(log n)-approximation ratio for several special cases of the generalized problem.

1 Introduction

Consider a simple polygon P with n vertices. Suppose int(P) denotes P’s interior. Two
points x and y are visible to each other, if and only if the relatively open line segment xy lies
completely in int(P). The visibility polygon of a point q in P , denoted as VP(q), consists of
all points of P visible to q. Many problems concerning visibility polygons have been studied
so far. There are linear time algorithms to compute VP(q) ([9], [15]). Edges of VP(q) that
are not edges of P are called window.

If some of the edges of P are made into mirrors, then VP(q) may enlarge. Klee first
introduced visibility in the presence of mirrors in 1969 [13]. He asked whether every polygon
whose edges are all mirrors is illuminable from every interior point. In 1995 Tokarsky
constructed an all-mirror polygon inside which there exists a dark point [18]. Visibility with
reflecting edges subject to different types of reflections has been studied earlier [5]:
1. Specular-reflection in which the direction light is reflected is defined by the law-of-reflection.

Since we are working in the plane, this law states that the angle of incidence and the
angle of reflection of the visibility rays with the normal through the polygonal edge are
the same.

2. Diffuse-reflection that is to reflect light with all possible angles from a given surface.
The diffuse type is where the angle between the incident and reflected ray may assume
all possible values between 0 and π. So, a segment’s endpoints that reflect light with
diffuse-type defined here will not reflect light behind that segment.

We may count on a single reflection or multiple reflections per visibility ray in each type
of reflection. Some papers have specified the maximum number of allowed reflections via
reflectors in between [4]. In multiple reflections, we restrict the path of a ray coming from
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

03:2 Reflection Helps Regular Visibility

the viewer to turn at the polygon boundary more than one time. We denote the allowed
number of reflections by r. Each time this ray will reflect based on the type of reflection
specified in a problem (specular or diffuse).

Every edge of P can potentially become a reflector. We can assume that all edges are
reflecting edges. However, the viewer can only see some edges of P . When we talk about an
edge, and we want to consider it as a reflector, we call it a reflecting edge (or a mirror-edge
considering specular reflections). We use the words “reflecting edge" and “reflected" in general,
but the word “mirror" is used only when we deal with specular reflections.

Two points x and y inside P can see each other through a reflecting edge e, if and
only if they are reflected-visible with a specified type of reflection. We call these points
reflected-visible (or mirror-visible).

The Art Gallery problem is to determine the minimum number of guards that are sufficient
to see every point in the interior of an art gallery room. The art gallery can be viewed as
a polygon P of n vertices, and the guards are stationary points in P. If guards are placed
at vertices of P, they are called vertex guards. If guards are placed at any point of P, they
are called point guards. If guards are allowed to be placed along the boundary of P, they
are called boundary guards (on the perimeter). To know more details on the history of this
problem see [19]. For guarding simple polygons, the problem was proved to be NP-complete
for vertex guards by [16]. This proof was generalized to work for point guards by [1]. Ghosh [7]
provided an O(log n)-approximation algorithm for guarding polygons with or without holes
with vertex guards. King and Kirkpatrick obtained an approximation factor of O(log(OPT))
for vertex guarding simple polygons [12]. They presented an O(log log(OPT))-approximation
algorithm for guarding simple polygons, using either vertex guards or perimeter guards.

1.1 Our Settings
Every guard can see a point if it is directly visible to it or if it is reflected-visible. This is a
natural and non-trivial extension of the classical art gallery setting. The problem of visibility
via reflection has many applications in wireless networks. Also, reflection is a natural issue
in computer graphics, where a common rendering technique is to trace the path of light
arriving on each pixel of the screen, backwards through multiple reflections [6]. There is
a large literature on geometric optics (such as [3], [17]), and on the chaotic behavior of a
reflecting ray of light or a bouncing billiard ball (see, e.g., [2], [10], [11], [14]). Particularly,
regarding the art gallery problem, reflection helps in decreasing the number of guards (see
Figure 1). A special case of the this problem is described by Chao Xu in 2011 [23]. Since
we want to generalize the notion of guarding a simple polygon, if the edges become mirrors
instead of walls, the light loses intensity every time it gets reflected on the mirror. Therefore
after r reflections, it becomes undetectable to a guard. Chao Xu proved that regarding r

specular reflections, for any n there exist polygons with n vertices that need ⌊ n
3 ⌋ guards. For

more information on combining reflection with the art gallery problem see [22], [20], [21], [4],
and [5].

2 Regular Visibility vs Reflection

Under some settings, visibility with reflections can be seen as a general case of regular
visibility. For example, consider guarding a polygon P with vertex guards, where all the
edges of the polygons are diffuse reflecting edges, and r reflections are allowed for each
ray. Let S be the set of guards in an optimal solution, if we do not consider reflection.
Consider any guard v ∈ S. The visibility polygon VP(v) of v must have at least one window.

A. Vaezi and B. Roy 03:3

Figure 1 This figure illustrates a situation where a single guard is required if we use reflection-
edges; Θ(n) guards are required if we do not consider reflection. Red segments illustrate the
reflected-edges.

Otherwise, v is the only guard of P. Consider such a window, say, w. Then there must be
another guard u ∈ S such that w lies in both VP(u) and VP(v). Then an edge e of VP(v)
adjacent to w must see u. This edge (e) must be a polygonal edge since w is a window. So, v

can see u by diffuse reflection through this edge. If u is a reflex-vertex, then through another
diffuse reflection by any of the two edges of the polygon incident on u, v can see the whole
of VP(u).

▶ Theorem 2.1. If P (a given polygon possibly with holes) can be guarded by α vertex-guards
without reflections, then P can be guarded by at most ⌈ α

1+⌊ r
4 ⌋ ⌉ guards when r diffuse reflections

are permitted.

To prove this theorem see the following lemmas first:

▶ Lemma 2.2. If there is no single guard that sees the whole (boundary and interior) of a
polygon P, then for every optimum vertex guard set S guarding P, if u ∈ S, then there is a
y(̸= u) ∈ S such that u and y can see each other through one diffuse reflection. Furthermore,
u and y can fully see each other’s visibility polygons with four diffuse reflections.

Proof. Consider any vertex u of P. Since, by our assumption, u cannot see the whole of P,
VP(u) must have a window. This window must intersect the boundary of P to describe a
vertex (say, x) of VP(u) (see Figure 2). Since, by definition, visibility polygons are closed
regions, the visibility polygon of some other vertex guard (say, y) of P must contain x and a
non-zero region around x. So, making a polygonal edge of P containing x a reflecting edge
result in a diffuse reflection through which u can see y.

Two edges contain the vertex guard y. Since y sees a small region around x, x must see a
non-zero portion of the interior of at least one of these two edges. If x sees a non-zero portion
of both edges’ interiors, then through diffuse reflections on both edges, u sees VP(y). Now
suppose that x sees a non-zero portion of the interiors of only one edge (say, yc) containing
y. Call the other edge yd, considering a vertex d of P as its other endpoint. Extend the ray−→
dy. Suppose that −→

dy hits the boundary of P at a point q (see Figure 2). Then an interior
point of the edge containing q, very near to q, is visible from the interior of yc. So, by a
diffuse reflection through a polygonal edge containing c, yd is visible from u via three diffuse
reflections. Hence, by turning yd into a reflecting edge, VP(y) becomes visible to u via four
diffuse reflections.

Consider a special case where x, y, and a reflex-vertex of the polygon are collinear. In
such a case, y does not see an open neighborhood of x. Consider a point p on yx, where p

is closer to x. As there is a reflex-vertex on yx which is closer to y, y cannot see an open

EuroCG’22

03:4 Reflection Helps Regular Visibility

neighborhood of p, so this neighborhood must be covered by another guard that we can call
it u. Although an open neighborhood of x is not visible to y, one side of x is visible to y. If
we consider p close enough to x, the ray from u to p will hit the polygon boundary on that
same side that y sees. So, we can use this edge on the boundary, and u can see y with only
one diffuse reflection. So, again only four diffuse reflections are enough. ◀

u
y

x

q

d c

V P (y)

V P (u)

Figure 2 VP(y) is visible from u via four diffuse reflections. The reflecting edges are drawn in
red.

Now we build a graph G as follows. We consider the vertex guards in S as the vertices of
G, and add an edge between two vertices of G if and only if the two corresponding vertex
guards in S can see each other directly or through at most one reflection. We have the
following Lemma.

▶ Lemma 2.3. The graph G is connected.

Proof. Consider any two guards gi and gj of S. Draw a polygonal path π from gi to gj . The
path begins in VP(gi) and ends in VP(gj). Since S sees the whole of P, π always travels
through the visibility polygon of some or the other guard in S. Then π can travel through
two neighboring visibility polygons if and only if it travels through their intersection. This
means, by Lemma 2.2 and the definition of G, that if π travels consecutively through the
visibility polygons of two guards in S, then the corresponding vertices are adjacent in V .
Thus, there is a path between every pair of vertices in G. So, G is connected. ◀

Consider any optimum solution S of the Art Gallery problem on the polygon P, where
| S |= α. Build a graph G with the vertex guards in S as its vertices, and add an edge
between two vertices of G if and only if the two corresponding vertex guards in S can see
each other directly or through at most one reflection. Due to Lemma 2.3, G is connected.
Find a spanning tree T of G and root it at any vertex. Denote the ith level of vertices of
T by Li. Given a value of r, divide the levels of T into 1 + ⌊ r

4 ⌋ classes, such that the class
Ci contains all the vertices of all levels of T of the form Li+x(1+⌊ r

4 ⌋), where x ∈ Z+
0 . By

the pigeonhole principle, one of these classes will have at most ⌈ α
1+⌊ r

4 ⌋ ⌉ vertices. Again, by
Lemma 2.2, given any vertex class C of T , all of P can be seen by the vertices of C when x

diffuse reflections are allowed. The theorem follows.

▶ Corollary 2.4. The above bound (mentioned in Theorem 2.1) holds even if the guards are
allowed to be placed anywhere on the boundary of the polygon.

Proof. The proof follows directly from the proof of Theorem 2.1 since Lemmas 2.2 and 2.3
are valid for boundary guards as well. ◀

A. Vaezi and B. Roy 03:5

▶ Observation 2.5. The above bound (mentioned in Theorem 2.1) does not hold in the case
of point guards.

Proof. See Figure 3. The two guards, colored red, see the whole of the polygons. Clearly, if
we seek to replace them with one guard and allow one reflection, then the new guard must
lie somewhere near the polygon’s lowest vertex. From there, it can see both the red guards.
On the left and right sides of the red guards are two funnels whose apices are visible only
from certain edges of their respective opposite funnels. These edges are not visible to any
point near the lowest vertex of the polygon. So, it is impossible for only one guard to see the
whole polygon through one reflection. For any given k, the funnels can be made narrower so
that even k reflections are not enough to see the whole polygon.

Figure 3 Two point guards cannot be replaced by one despite allowing reflections.

◀

To find an approximate solution to the vertex guard problem with r diffuse reflections,
we have a straight-forward generalization of Ghosh’s discretization algorithm in [8].

▶ Theorem 2.6. For vertex guards, the art gallery problem considering r reflections, for both
the diffuse and specular reflection are solvable in O(n4r+1+2) time giving an approximation
ratio of O(log n).

Proof. We begin by drawing all possible windows and decomposing the polygon into convex
polygons, as it is mentioned in [8]. Denote the set of these convex polygons by R0. Denote
the set of vertices of these convex polygons of R0, that lie on the boundary of P by Q0.
Note that in the initial step, zero diffuse reflections are considered. In the next step, allow a
single diffuse reflection for each ray. Each vertex’s visibility polygons are extended and have
new points on the boundary of P as their vertices. Join all such pairs of vertices, whenever
possible, by drawing windows, to get a new larger set of convex polygons. Denote the set of
convex polygons so obtained by R1, and the set of all their vertices lying on the boundary of
P by Q1. Analogously, we associate with i diffuse reflections the sets Ri and Qi.

For r diffuse reflections, as before, draw all possible windows from Qr−1 and compute the
minimal convex polygons formed as a result. Start by Updating Rr−1 to Rr and then update
Qr−1 to Qr by updating their constituent convex polygons and their vertices lying on the
boundary of P, respectively. The lines in Rr are formed by joining together the end-points
of the lines of Rr−1. So, the cardinality of Rr is at most 4|Rr−1|2. The cardinality of Qr is
at most |Rr|2, due to being formed by the intersections of the lines of Rr.

EuroCG’22

03:6 Reflection Helps Regular Visibility

Hence, by the argument in Theorem 2.1 of [8], the algorithm takes a total time of
O(n4r+1+2). The extra factor of 2 comes due to traversal following the method of [8] again.
Our algorithm also gives an approximation ratio of O(log n) due to being reduced from the
greedy algorithm of Set Cover.

◀

3 Conclusion

This paper addresses a variant of the art gallery guarding problem in which walls are assumed
to support diffuse reflections. It was previously established that mirrored walls (supporting
specular reflections) do not reduce the number of guards needed in the worst case, even
though in some cases, the number of guards required can be decreased substantially. The
number of boundary guards (or vertex guards) needed is reduced even in the worst case by
a factor proportional to the length r of diffuse reflection sequences permitted. For point
guards, it is shown that in some cases no reduction in the guarding number is possible using
diffuse reflections.

Various articles worked on approximating the art gallery problem. Accordingly, the
generalized version of the art gallery regarding either specular or diffuse reflection has to be
approximated by a suitable factor. In this article, we presented a O(log n)-approximation
factor considering both types of reflection that runs in O(n4r+1+2) time if at most r reflection
is allowed.

References
1 A. Aggarwal. The art gallery theorem: its variations, applications and algorithmic aspects.

Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 1984.
2 C. Boldrighini, M. Keane, , and F. Marchetti. Billiards in polygons. Ann.Probab., (6):532—

-540, 1978.
3 M. Born and E. Wolf. Principles of optics. 6th edn. Pergamon Press, Oxford, 1980.
4 B. Aronovand A. R. Davis, T. K. Dey, S. P. Pal, and D. Prasad. Visibility with multiple

specular reflections. Discrete & computational Geometry., (20):62–78, 1998.
5 B. Aronovand A. R. Davis, T. K. Dey, S. P. Pal, and D. Prasad. Visibility with one reflection.

Discrete & computational Geometry., (19):553–574, 1998.
6 J. Foley, A. van Dam, S. Feiner, J. Hughes, and R. Phillips. Introduction to computer

graphics. Addison-Wesley, Reading, MA, 1994.
7 S. K. Ghosh. Approximation algorithms for art gallery problems. Proc. Canadian Information

Processing Society Congress, pages 429–436, 1987.
8 S. K. Ghosh. Approximation algorithms for art gallery problems in polygons. Discrete

Applied Mathematics, (158(6)):718–722, 2010.
9 L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms

for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
(2):209–233, 1987.

10 E. Gutkin. Billiards in polygons. Phys. D, 19:311—-333, 1986.
11 S. Kerckhoff, H. Masur, and J. Smillie. Ergodicity of billiard flows and quadratic differentials.

. Ann. of Math., 124:293–311, 1986.
12 J. King and D. Kirkpatrick. Improved approximation for guarding simple galleries

from the perimeter. Discrete Computer Geometry, (46):252–269, 2011. doi:10.1007/
s00454-011-9352-x.

13 V. Klee. Is every polygonal region illuminable from some point? Computational Geometry:
Amer.Math. Monthly, 76:180, 1969.

A. Vaezi and B. Roy 03:7

14 V. V. Kozlov and D. V. Treshchev. Billiards: A genetic introduction to the dynamics of
systems with impacts. Translations of Mathematical Monographs, American Mathematical
Society, Providence, RI, 89:62–78, 1991.

15 D. T. Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing,
(22):207—-221, 1983.

16 D. T. Lee and A.K. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, (32):276–282, 1986.

17 I. Newton. Opticks, or a treatise of the reflections, refractions, inflections and colours of
light,. 4th edn. London, 1730.

18 G. T. Tokarsky. Polygonal rooms not illuminable from every point. American Mathematical
Monthly., 102:867–879, 1995.

19 J. Urrutia. Handbook of Computational Geometry. 2000. doi:10.1016/B978-044482537-7/
50023-1.

20 A. Vaezi and M. Ghodsi. How to extend visibility polygons by mirrors to cover invisible
segments.

21 A. Vaezi and M. Ghodsi. Extending visibility polygons by mirrors to cover specific targets.
EuroCG, pages 13–16, 2013.

22 A. Vaezi and M. Ghodsi. Visibility extension via reflection-edges to cover invisible segments.
Theoretical Computer Science, 2019. doi:10.1016/j.tcs.2019.02.011.

23 Chao Xu. A generalization of the art gallery theorem with reflection and a cool prob-
lem. https://chaoxuprime.com/posts/2011-06-06-a-generalization-of-the-art-gallery-theorem-
with-reflection-and-a-cool-problem.html, 2011.

EuroCG’22

Rectilinear Planarity Testing of
Independent-Parallel SP-Graphs
Walter Didimo1, Michael Kaufmann2, Giuseppe Liotta1, and
Giacomo Ortali1

1 University of Perugia, Italy
{walter.didimo,giuseppe.liotta}@unipg.it, giacomo.ortali@gmail.com

2 University of Tübingen, Germany
mk@informatik.uni-tuebingen.de

Abstract
We shed new light on the long-standing open problem of efficiently testing rectilinear planarity of
series-parallel graphs (SP-graphs). Namely, we establish new results for a subfamily of such graphs,
called independent-parallel, where no two parallel components share a pole. When the maximum
degree of a vertex is three, a key ingredient behind the design of the known linear-time testing
algorithm for general SP-graphs is that one can restrict the attention to a constant number of
“rectilinear shapes” for each series or parallel component. To formally describe these shapes the
notion of spirality can be used. This key ingredient no longer holds for SP-graphs with vertices of
degree four, as we prove a logarithmic lower bound on the spirality of their components. Although
this bound holds even for independent-parallel SP-graphs, for this graph family we are able to design
a linear-time rectilinear planarity testing algorithm by carefully analyzing their spirality properties.

1 Introduction

Rectilinear planarity testing asks whether a planar 4-graph (i.e., with vertex-degree at most
four) admits a planar orthogonal drawing without edge bends. It is a classical subject of
study, at the heart of algorithms that compute bend-minimum orthogonal drawings, which
find applications in several domains (see, e.g. [4, 7, 11, 16, 17, 18]).

Rectilinear planarity testing in the variable embedding setting is NP-complete [14], it
belongs to the XP-class when parameterized by treewidth [6], and it is FPT tractable when
parameterized by the number of degree-4 vertices [9]. In the fixed-embedding setting (i.e.,
when the algorithm must preserve a given planar embedding), the problem can be solved in
subquadratic time for general graphs [2, 13], and in linear time for planar 3-graphs [20] and
for biconnected SP-graphs [8]. In the variable-embedding setting, linear-time solutions exist
only for planar 3-graphs [10, 15, 19, 21] and for outerplanar graphs [12]. A polynomial-time
solution for SP-graphs has been known for a long time [5], but establishing whether there is
a linear-time algorithm for this graph family remains a long-standing open problem [1]; to
date, the most efficient algorithm for n-vertex SP-graphs has complexity O(n3 log n) [6].

This paper sheds new light on this long-standing open problem, studying it along the lines
that led to linear-time testing algorithms for degree-3 SP-graphs [21] and for general planar
3-graphs [10]. We highlight some of the difficulties that stem from the degree-4 vertices
and show how to overcome them to design a linear-time algorithm for a class of degree-4
SP-graphs that properly includes all biconnected degree-3 SP-graphs. To better describe our
contribution, we briefly recall some fundamental aspects of these previous approaches.

In a nutshell, the linear-time algorithms of [10, 21] are based on recursive approaches
that, at each step, determine if a (series or parallel) component of the graph is rectilinear
planar by suitably combining rectilinear representations of its sub-components. For both
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

4:2 A Contribution to EuroCG 2022

u

v

u

v

u

v

0 1 2

(a)

u

0 4

v u
v

(b)

Figure 1 (a) Three orthogonal representations of the same component having spiralities 0, 1, 2,
respectively. In bold, an arbitrary path from the pole u to the pole v. A bend, depicted as a cross,
is needed for spirality 1. (b) A component that is rectilinear planar only for spiralities 0 and 4.

algorithms, a key ingredient to achieve linear-time complexity is that it is enough to consider
a constant number of rectilinear planar representations at each composition step. Another
key ingredient is that the “shapes” of these representations can be succinctly described in
O(1) space. In [10] the shape is described through the concept of spirality, a number that
specifies how much a rectilinear planar representation is “rolled up”. Roughly, the spirality
of a representation is the number of right minus left turns in any oriented path between the
poles of its corresponding component (see Fig. 1 for an example). Also the shapes considered
in [21] can be described in terms of spirality. Hence, the possible representations for each
component are succinctly described by a set of spirality values of constant size.

A first difficulty in extending the above approaches to degree-4 SP-graphs is that we
lose one of the key ingredients: As stated in Theorem 3.1, there exist n-vertex SP-graphs
whose rectilinear planar representations require components with Ω(log n) spirality. For these
instances a testing algorithm may need to consider Ω(log n) rectilinear planar representations
per component. To complicate matters even further, it is not obvious how to use the spirality
to construct a succinct description of these Ω(log n) representations. For example, the
component of Fig. 1a is rectilinear planar for spirality 0 and for spirality 2, but not for
spirality 1. As another example, the component of Fig. 1b is rectilinear planar for spirality 0
and 4, but not for any intermediate value of spirality. The absence of regularity is an obstacle
to the design of a succinct description based on whether a component is rectilinear planar
for consecutive spirality values.

We study SP-graphs of vertex-degree four where no two parallel components share a
pole, which we call independent-parallel SP-graphs; see Fig. 2a. The component in Fig. 1a
and the graphs used to prove the Ω(log n) spirality lower bound are independent-parallel.
By carefully analyzing the spirality properties of independent-parallel SP-graphs, we can
overcome the previously described difficulties and design a linear-time rectilinear planarity
testing for this graph family. The algorithm uses a set of composition techniques to compute
in constant time a succinct description of the rectilinear representations of each component.

2 Preliminaries

We assume familiarity with orthogonal drawings and representations, and with the concepts
of SP-graphs and SPQ-trees (see [4]). Testing whether a simple cycle is rectilinear planar is
trivial. Hence, we shall assume that G is a biconnected SP-graph different from a simple
cycle and we use a variant of the SPQ-tree called SPQ∗-tree (refer to Fig. 2).

In an SPQ∗-tree, each degree-1 node of T is a Q∗-node, and represents a maximal chain
of edges of G (possibly a single edge) starting and ending at vertices of degree larger than

W. Didimo, M. Kaufmann, G. Liotta, and G. Ortali 4:3

0

1
2

3

4

5

6

7

8

9
10

1112

13

14
15

16

17

18
19

20

21

22

23

24

25

26

Gν,ρ

Gµ,ρGϕ,ρ

(a) G

01

23

4 5

6

7 8

21 22

2324

25

17 19

18 20

9
10

11 12

1314

1516

26

Hν,ρ

Hµ,ρ

Hϕ,ρ

(b) H

[0,1] [8,26]

[1,2,3,4,5,8] [1,8][1,6,7,8]

P

S

P P
[0,9] [12,13] [16,26]

[9,10,11,12] [9,12] [13,14,16] [13,15,16]

P

[17,18,20] [17,19,20]

[0,17] [20,25,26]

[0,21,22,23,24,26]

Pν

1

8

S

0

17

20
26

µ

ρ

S ϕ

0
9

12

26

13

16

skel(ν)

skel(ϕ)

skel(µ)

(c) Tρ

Figure 2 (a) An (independent-parallel) SP-graph G. (b) A rectilinear representation H of G.
(c) The SPQ∗-tree Tρ of G, where ρ represents the thick chain; Q∗-nodes are small squares; the
left-to-right order of the children of each P-node reflects the embedding of H. The components and
skeletons of nodes ν, µ, ϕ are shown: virtual edges are dashed and the reference is thicker.

two and passing through a sequence of degree-2 vertices only (possibly none). If ν is an S-
or a P-node, an edge of skel(ν) corresponding to a Q∗-node µ is virtual if µ is a chain of at
least two edges, else it is a real edge.

For any given Q∗-node ρ of T , denote by Tρ the tree T rooted at ρ. The chain of edges
represented by ρ is the reference chain of G with respect to Tρ. If ν is an S- or a P-node
distinct from the root child of Tρ, then skel(ν) contains a virtual edge that has a counterpart
in the skeleton of its parent; this edge is the reference edge of skel(ν). If ν is the root child,
the reference edge of skel(ν) is the edge corresponding to ρ. For any S- or P-node ν of Tρ,
the end-vertices of the reference edge of skel(ν) are the poles of ν and of skel(ν). We remark
that skel(ν) does not change if we change ρ. However, if ν is an S-node, its poles depend
on ρ; namely, if ρ′ is a Q∗-node in the subtree of Tρ rooted at ν, the poles of ν in Tρ′ are
different from those in Tρ. Conversely, the poles of a P-node stay the same independent of
the root of T . For a Q∗-node ν of Tρ (including ρ), the poles of ν are the end-vertices of the
corresponding chain, and do not change when the root of T changes. For any S- or P-node ν

of Tρ, the pertinent graph Gν,ρ of ν is the subgraph of G formed by the union of the chains
represented by the leaves in the subtree of Tρ rooted at ν. The poles of Gν,ρ are the poles
of ν. The pertinent graph of a Q∗-node ν (including the root) is the chain represented by
ν, and its poles are the poles of ν. Any graph Gν,ρ is also called a component of G (with
respect to ρ). If µ is a child of ν, we call Gµ,ρ a child component of ν. If H is a rectilinear

EuroCG’22

4:4 A Contribution to EuroCG 2022

representation of G, for any node ν of Tρ, the restriction Hν,ρ of H to Gν,ρ is a component
of H (with respect to ρ). Tree Tρ is used to describe all planar embeddings of G having the
reference chain on the external face. These embeddings are obtained by permuting in all
possible ways the non-reference edges of the skeletons of the P-nodes. For each P-node ν,
each permutation of the edges in skel(ν) corresponds to a different left-to-right order of the
children of ν in Tρ and of their associated components.
Independent-parallel SP-graphs. Let G be an SP-graph and let T be its SPQ∗-tree.
We say that G is independent-parallel if no two P-nodes of T have a pole in common (see,
e.g., Fig. 2a). Let ρ be a Q∗-node of T . For a pole w of a node ν of Tρ, let indegν(w) and
outdegν(w) be the degree of w inside and outside Gν,ρ, respectively. If G is independent-
parallel, each pole w of a P-node ν of Tρ is such that outdegν(w) = 1; if ν is an S-node,
either indegν(w) = 1 or outdegν(w) = 1. In all cases, outdegν(w) = 1 when indegν(w) > 1.

3 Results

Spirality of Independent-Parallel SP-graphs. Let G be a degree-4 SP-graph and let H

be a rectilinear planar representation of G. Let Tρ be a rooted SPQ∗-tree of G, let Hν,ρ be a
component of H, and let {u, v} be the poles of ν, conventionally ordered according to an
st-numbering of G, where s and t are the poles of ρ. Since we deal with independent-parallel
SP-graphs, outdegν(w) = 1 when indegν(w) > 1. Define the alias vertex w′ of w as follows:
If indegν(w) = 1, then w′ = w; else w′ is a dummy vertex that subdivides the edge incident
to w outside Hν,ρ. Let P uv be any simple path from u to v inside Hν,ρ and let u′ (resp. v′)
be the alias vertex of u (resp. of v). The path Su′v′ obtained concatenating (u′, u), P uv, and
(v, v′) is a spine of Hν,ρ. The spirality σ(Hν,ρ) of Hν,ρ in H is the number of right turns
minus the number of left turns along Su′v′ while moving from u′ to v′.

N + 2

G1

(a)

Gk−1 Gk−1 Gk−1

Gk

(b)

GL−1 GL−1 GL−1

GL

GL−1 GL−1 GL−1

GLp1

p2

G

(c)

(d)

Figure 3 (a)–(c) The graph family of Theorem 3.1, where L = N
2 + 1. (d) A rectilinear planar

representation of GL (computed by the GDToolkit library [3]), for N = 4; the two G0 components
with blue vertices have spirality N + 2 = 6 (left) and −(N + 2) = −6 (right), respectively.

W. Didimo, M. Kaufmann, G. Liotta, and G. Ortali 4:5

See, e.g., Fig. 1. Di Battista et al. [5] show that the spirality of Hν,ρ does not depend
on the choice of P uv; also any component of H can be replaced by another component
with the same spirality. In Fig. 2b, the spiralities of Hν,ρ, Hµ,ρ, and Hϕ,ρ are 2, -2, and 0,
respectively. For brevity, we shall denote by σν the spirality of a rectilinear representation
of Gν,ρ. We say that Gν,ρ admits spirality σν or, equivalently, that ν admits spirality σν ,
if there exists a rectilinear planar representation Hν,ρ with spirality σν in some rectilinear
planar representation H of G.

The proof of the lower bound of Theorem 3.1 uses an infinite family of graphs that
have components whose spirality is not bounded by a constant in any rectilinear planar
representation. The graph family is schematically illustrated in Fig. 3: For any even integer
N ≥ 2, we construct an independent-parallel SP-graph G with n = O(3N) vertices whose
rectilinear planar representations require a component with spirality larger than N . Namely,
let L = N

2 + 1. For k ∈ {0, . . . , L}, let Gk be the SP-graph inductively defined as follows:
(i) G0 is a chain of N + 4 vertices; (ii) G1 is a parallel of three copies of G0, with coincident
poles (Fig. 3a); (iii) for k ≥ 2, Gk is a parallel composition of three series, each starting
and ending with an edge, and having Gk−1 in the middle (Fig. 3b). Graph G is obtained by
composing in a cycle two chains p1 and p2 of length three, with two copies of GL (Fig. 3c). In
any representation of G, at least one of the G0 components requires spirality larger than N .

▶ Theorem 3.1. For infinitely many integer values of n, there exists an n-vertex independent-
parallel SP-graph for which every rectilinear planar representation has a component with
spirality Ω(log n).

Rectilinear Planarity Testing. Let G be a rectilinear planar SP-graph, Tρ be a rooted
SPQ∗-tree of G, and ν ̸= ρ be a node of Tρ. The rectilinear spirality set Σν,ρ of ν in
Tρ (and of Gν,ρ) is the set of spirality values for which Gν,ρ admits a rectilinear planar
representation. We are able to prove that there is some regularity in the rectilinear spirality
sets of independent-parallel SP-graphs. Denote by Σ+

ν,ρ (resp. Σ−
ν,ρ) the subset of non-negative

(resp. non-positive) values of Σν,ρ. Clearly, Σν,ρ = Σ+
ν,ρ ∪ Σ−

ν,ρ. Note that, for any value
σν ∈ Σν,ρ, we also have that −σν ∈ Σν,ρ. Indeed, if Gν,ρ admits a rectilinear representation
with spirality σν for some embedding, by flipping this embedding around the poles of Gν,ρ,
we can obtain a rectilinear representation of Gν,ρ with spirality −σν . Hence, σν ∈ Σ+

ν,ρ if
and only if −σν ∈ Σ−

ν,ρ, and we can restrict the study of the properties of Σν,ρ to Σ+
ν,ρ, which

we call the non-negative rectilinear spirality set of ν in Tρ (or of Gν,ρ).
We prove that if G is an independent-parallel SP-graph, there is a limited number of

possible structures for the sets Σ+
ν,ρ. Let m < M be two non-negative integers: (i) [M] is a

trivial interval and denotes the singleton {M}; (ii) [m, M]1 is a jump-1 interval and denotes
the set of all integers in the interval [m, M]; (iii) If m and M have the same parity, [m, M]2
is a jump-2 interval and denotes the set of values {m, m + 2, . . . , M − 2, M}.

▶ Theorem 3.2. Let G be a rectilinear planar independent-parallel SP-graph and let Gν,ρ

be a component of G. The non-negative rectilinear spirality set Σ+
ν,ρ of Gν,ρ has one the

following six structures: [0], [1], [1, 2]1, [0, M]1, [0, M]2, [1, M]2.

Let G be a biconnected independent-parallel SP-graph that is not a simple cycle, T be its
SPQ∗-tree, and {ρ1, . . . , ρh} be the Q∗-nodes of T . Based on Theorem 3.2, for each possible
choice of the root ρ ∈ {ρ1, . . . , ρh}, the algorithm visits Tρ bottom-up in post-order and
computes, for each visited node ν, the non-negative spirality set Σ+

ν,ρ, based on the sets
of the children of ν. This computation is done in O(1) time. Σ+

ν,ρ is representative of all

EuroCG’22

4:6 A Contribution to EuroCG 2022

u

u

u

u

u u

v v

v

v

v

σν = 0 σν = 1 σν = 2

σν = 3 σν = 4 σν = 5

bend

Figure 4 Component that admits spiralities 0,1,3,4,5. Spirality 2 needs a bend (×).

“shapes” that Gν,ρ can take in a rectilinear planar representation of G with the reference
chain on the external face. At the level of the root the test consists of verifying whether ν

and ρ admit spirality values σν ∈ Σ+
ν,ρ and σρ ∈ Σ+

ρ,ρ, respectively, such that σν + σρ = 4.
An O(n)-time testing algorithm over all choices of the root ρ is achieved by exploiting a
re-usability principle similar to the one in [10].

▶ Theorem 3.3. Let G be an independent-parallel SP-graph with n vertices. There exists an
O(n)-time algorithm that tests whether G is rectilinear planar.

It is not difficult to see that if the testing is positive, a rectilinear planar representation
of G can also be constructed in linear time by a variant of the technique described in [8]:
Visit Tρ top-down and for each node ν compute a target value of spirality in Σ+

ν,ρ, based on
whether ν is an S-node, a P-node, or a Q∗-node.

4 Final Remarks

The problem about whether the result of Theorem 3.3 can be extended to every SP-graph
remains open. We just observe here that the spirality set of a component of an SP-graph that
is not independent-parallel may not exhibit a behavior like the one described in Theorem 3.2.
For example, the component shown in Fig. 4 is rectilinear planar for all spirality values from
0 to 5 except 2.

W. Didimo, M. Kaufmann, G. Liotta, and G. Ortali 4:7

References
1 Franz-Josef Brandenburg, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov,

Giuseppe Liotta, and Petra Mutzel. Selected open problems in graph drawing. In Giuseppe
Liotta, editor, Graph Drawing, 11th International Symposium, GD 2003, Perugia, Italy,
September 21-24, 2003, Revised Papers, volume 2912 of Lecture Notes in Computer Science,
pages 515–539. Springer, 2003. doi:10.1007/978-3-540-24595-7_55.

2 Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. J. Graph
Algorithms Appl., 16(3):635–650, 2012. doi:10.7155/jgaa.00265.

3 Giuseppe Di Battista and Walter Didimo. Gdtoolkit. In Handbook of Graph Drawing and
Visualization, pages 571–597. Chapman and Hall/CRC, 2013.

4 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

5 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and opti-
mal orthogonal drawings. SIAM J. Comput., 27(6):1764–1811, 1998. doi:10.1137/
S0097539794262847.

6 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Sketched representations
and orthogonal planarity of bounded treewidth graphs. In Graph Drawing, volume 11904
of Lecture Notes in Computer Science, pages 379–392. Springer, 2019.

7 W. Didimo and G. Liotta. Mining graph data. In Diane J. Cook and Lawrence B. Holder,
editors, Graph Visualization and Data Mining, pages 35–64. Wiley, 2007.

8 Walter Didimo, Michael Kaufmann, Giuseppe Liotta, and Giacomo Ortali. Rectilinear
planarity testing of plane series-parallel graphs in linear time. In Graph Drawing, volume
12590 of Lecture Notes in Computer Science, pages 436–449. Springer, 2020.

9 Walter Didimo and Giuseppe Liotta. Computing orthogonal drawings in a variable embed-
ding setting. In ISAAC, volume 1533 of Lecture Notes in Computer Science, pages 79–88.
Springer, 1998.

10 Walter Didimo, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani. Optimal or-
thogonal drawings of planar 3-graphs in linear time. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 806–825. SIAM, 2020. doi:10.1137/1.9781611975994.
49.

11 Christian A. Duncan and Michael T. Goodrich. Planar orthogonal and polyline drawing
algorithms. In Roberto Tamassia, editor, Handbook on Graph Drawing and Visualiza-
tion., pages 223–246. Chapman and Hall/CRC, 2013. URL: https://www.crcpress.com/
Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125.

12 Fabrizio Frati. Planar rectilinear drawings of outerplanar graphs in linear time. In Graph
Drawing, volume 12590 of Lecture Notes in Computer Science, pages 423–435. Springer,
2020.

13 Ashim Garg and Roberto Tamassia. A new minimum cost flow algorithm with ap-
plications to graph drawing. In Stephen C. North, editor, Graph Drawing, Sympo-
sium on Graph Drawing, GD ’96, Berkeley, California, USA, September 18-20, Proceed-
ings, volume 1190 of Lecture Notes in Computer Science, pages 201–216. Springer, 1996.
doi:10.1007/3-540-62495-3_49.

14 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

15 Md. Manzurul Hasan and Md. Saidur Rahman. No-bend orthogonal drawings and no-
bend orthogonally convex drawings of planar graphs (extended abstract). In Ding-Zhu
Du, Zhenhua Duan, and Cong Tian, editors, Computing and Combinatorics - 25th In-
ternational Conference, COCOON 2019, Xi’an, China, July 29-31, 2019, Proceedings,

EuroCG’22

4:8 A Contribution to EuroCG 2022

volume 11653 of Lecture Notes in Computer Science, pages 254–265. Springer, 2019.
doi:10.1007/978-3-030-26176-4_21.

16 Michael Jünger and Petra Mutzel, editors. Graph Drawing Software. Springer, 2004. doi:
10.1007/978-3-642-18638-7.

17 Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs, Methods and Models
(the book grow out of a Dagstuhl Seminar, April 1999), volume 2025 of Lecture Notes in
Computer Science. Springer, 2001. doi:10.1007/3-540-44969-8.

18 Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture
Notes Series on Computing. World Scientific, 2004.

19 Md. Saidur Rahman, Noritsugu Egi, and Takao Nishizeki. No-bend orthogonal drawings of
subdivisions of planar triconnected cubic graphs. IEICE Trans. Inf. Syst., 88-D(1):23–30,
2005. URL: http://search.ieice.org/bin/summary.php?id=e88-d_1_23&category=D&
year=2005&lang=E&abst=.

20 Md. Saidur Rahman, Takao Nishizeki, and Mahmuda Naznin. Orthogonal drawings of
plane graphs without bends. J. Graph Algorithms Appl., 7(4):335–362, 2003. URL: http:
//jgaa.info/accepted/2003/Rahman+2003.7.4.pdf.

21 Xiao Zhou and Takao Nishizeki. Orthogonal drawings of series-parallel graphs with mini-
mum bends. SIAM J. Discret. Math., 22(4):1570–1604, 2008. doi:10.1137/060667621.

Euclidean Bipartite Edge Cover in Subcubic Time∗

Rodrigo Castro1, José M. Díaz-Báñez2, Marco A. Heredia1, Jorge
Urrutia3, Inmaculada Ventura2, and Francisco J. Zaragoza1

1 Departamento de Sistemas, Universidad Autónoma Metropolitana Azcapotzalco
racc,hvma,franz@azc.uam.mx

2 Departamento de Matemática Aplicada II, Universidad de Sevilla
dbanez,iventura@us.es

3 Instituto de Matemáticas, Universidad Nacional Autónoma de México
urrutia@matem.unam.mx

Abstract
Given a graph G = (V, E) with costs on its edges, the minimum-cost edge cover problem consists of
finding a subset of E covering all vertices in V at minimum cost. If G is bipartite, this problem can
be solved in time O(|V |3) via a well-known reduction to a maximum-cost matching problem on G.
If in addition V is a set of points on the Euclidean line, Collanino et al. showed that the problem
can be solved in time O(|V | log |V |) and asked whether it can be solved in time o(|V |3) if V is a
set of points on the Euclidean plane. We answer this in the affirmative, giving an O(|V |2.5 log |V |)
algorithm based on the Hungarian method using weighted Voronoi diagrams.

1 Introduction

Let G = (V, E) be a simple graph with no isolated vertices and with cost duv ≥ 0 for each
uv ∈ E. The minimum-cost edge cover problem consists of finding a subset C ⊆ E covering
all vertices in V at minimum cost d(C) =

∑
{u,v}∈C duv. We direct the interested reader to

a recent survey on exact and approximation algorithms for this and related problems [10].
Let C ⊆ E be a minimum-cost edge cover of G. To each v ∈ V , assign an edge e ∈ C

which covers v. Note that some edges will be assigned to two vertices, while the rest will be
assigned to exactly one vertex. Note further that the former constitute a matching M of G,
while each of the latter must be a minimum-cost edge incident to its assigned vertex. For
each v ∈ V , define dv to be the minimum cost among the edges incident to v and, for each
{u, v} ∈ E, define the reduced cost cuv = du + dv − duv. It follows that the cost d(C) of C

equals
∑

v∈V dv −
∑
{u,v}∈M cuv. Since the first term is constant, the cost d(C) is minimized

when the reduced cost c(M) of M is maximized. This O(|V |+ |E|) time transformation due
to Geelen (see [3, page 165]) implies that one can solve the minimum-cost edge cover problem
on general graphs in time O(|V |2|E|) using the blossom algorithm [5], and on bipartite graphs
in time O(|V ||E|) using a well-known improvement of the Hungarian method [6].

When G is bipartite, the minimum-cost edge cover problem has sometimes been studied
under the name many-to-many matching. In particular, Collanino et al. studied this problem

∗ R. Castro, M.A. Heredia, and F.J. Zaragoza are partially supported by Sistema Nacional de Inves-
tigadores, Consejo Nacional de Ciencia y Tecnología, México. J.M. Díaz-Báñez and I. Ventura are
partially supported by Ministerio de Ciencia e Innovación CIN/AEI/10.13039/501100011033/ (PID2020-
114154RB-I00). J. Urrutia is partially supported by PAPIIT IN105221 Programa de Apoyo a la
Investigación e Innovación Tecnológica, UNAM, Mexico.

J.M. Díaz-Báñez, J. Urrutia and I. Ventura were also supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 734922.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

5:2 Euclidean Bipartite Edge Cover in Subcubic Time

when V is a set of points on the Euclidean line, that is, when the cost of edges between
points in different partitions are implicitly given by the Euclidean lengths of the respective
segments [2]. They showed that the problem can be solved in time O(|V | log |V |) and asked
whether it can be solved in time o(|V |3) if V is a set of points on the Euclidean plane.

Our main result is an affirmative answer to this question. The rest of this work is
structured as follows. In Section 2 we setup the Hungarian method and show that the use
of reduced costs implies that the dual variables are nicely bounded above. In Section 3 we
show how to modify the Hungarian method with reduced costs to avoid many dual updates.
In Section 4 we present our O(|V |2.5 log |V |) algorithm using weighted Voronoi diagrams.

2 The Hungarian Method with Reduced Costs

Let G be a complete bipartite graph with partition R = {r1, . . . , rn} and B = {b1, . . . , bm}
(n ≥ m). For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, let c(ri, bj) be the cost of edge {ri, bj}. The
maximum-cost bipartite matching problem with cost c has a well-known formulation as a
pair of primal and dual linear programs with primal variables xi,j for each 1 ≤ i ≤ n and
1 ≤ j ≤ m and dual variables αi for each 1 ≤ i ≤ n and βj for each 1 ≤ j ≤ m. Any integral
solution of the primal corresponds to a matching M = {{ri, bj} : xi,j = 1}. Given a matching
M , we say that it covers the ends of its edges. We say that the vertices not covered by M

are exposed. An edge {ri, bj} such that αi + βj = c(ri, bj) is called an equality edge. In these
terms, we can write the complementary slackness conditions at primal-dual optimality as:
First condition Each edge {ri, bj} ∈M is an equality edge.
Second condition For each 1 ≤ i ≤ n, αi > 0 implies ri is covered.
Third condition For each 1 ≤ j ≤ m, βj > 0 implies bj is covered.
We say that vertex bj is bad if it fails the last condition, that is, if βj > 0 but it is exposed.

We follow the well-known Hungarian method for maximum-cost bipartite matching [8, 9],
that is, we construct a series of integral primal solutions and dual solutions satisfying the
first two complementary slackness conditions and, at the end, also the third complementary
slackness condition (no bad vertices). Our starting primal solution is xi,j ← 0 for all
1 ≤ i ≤ n, 1 ≤ j ≤ m (the empty matching M), and our starting dual solution is αi ← 0 for
all 1 ≤ i ≤ n and βj ← max{c(ri, bj) : 1 ≤ i ≤ n} for all 1 ≤ j ≤ m (if βj < 0, then βj ← 0).

A path is alternating if it consists of edges that are alternately in M and not in M .
An alternating path P is augmenting if it starts and ends in two distinct exposed vertices.
Observe that augmenting paths must start and end on distinct partitions. They are called
augmenting since M ′ = P△M is a matching larger than M . An alternating tree is a tree
rooted at an exposed vertex in B, such that all its paths from the root to its leaves are
alternating and consist of equality edges. If any such path P is augmenting, then M ′ = P△M

also satisfies the first two complementary slackness conditions.
Each iteration of the Hungarian method consists of growing a forest of alternating trees,

rooted at bad vertices and formed of equality edges, until the amount of bad vertices decreases.
The method stops when no bad vertices remain. There are at most m iterations. At the
start of each iteration, let S ̸= ∅ be the set of bad vertices of B, let F ← R, let T ← ∅, let
bs ∈ S be such that βs ≤ βj for all bj ∈ S, and let ϵ← βs > 0. As long as F is non-empty,
let {ri, bj} be an edge that achieves the minimum dual slack as

δ ← min{αi + βj − c(ri, bj) : ri ∈ F, bj ∈ S} (1)

Four mutually exclusive cases may occur:

R. Castro, J.M. Díaz-Báñez, M.A. Heredia, J. Urrutia, I. Ventura, F.J. Zaragoza 5:3

Case 1 (δ = 0 and ri is exposed): Edge {ri, bj} is an equality edge which is added to the
alternating forest. Furthermore, the path P from ri to the root bt of its alternating tree
is an augmenting path. Let M ←M△P . Now bt is not bad. Stop the iteration.

Case 2 (δ = 0 and ri is covered): In this case ri is matched in M to bk /∈ S. Edges
{bk, ri} ∈ M and {ri, bj} are equality edges which are added to the alternating forest.
Let F ← F \{ri}, T ← T ∪{ri}, and S ← S∪{bk}. If βk < ϵ, then let s← k and ϵ← βk.
Continue with the iteration.

Case 3 (ϵ > δ): Let αi ← αi + δ for each ri ∈ T , βj ← βj− δ for each bj ∈ S, and ϵ← ϵ− δ.
This keeps all equality edges in the alternating forest and creates at least one equality
edge. Continue with the iteration.

Case 4 (δ ≥ ϵ): Let αi ← αi + ϵ for each ri ∈ T , βj ← βj − ϵ for each bj ∈ S, and ϵ ← 0.
This keeps all equality edges in the alternating forest. Let P be the path from bs to the
root bt of its alternating tree. Let M ←M△P . Now bt is not bad. Stop the iteration.

In our case, we start with an instance of the minimum-cost edge cover problem where,
for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, the original cost of edge {ri, bj} is given by d(ri, bj) ≥ 0.
Following the reduction, we compute the minimum cost of the edges incident to each vertex
of G. That is, for each 1 ≤ i ≤ n, let d(ri) = min{d(ri, bj) : 1 ≤ j ≤ m} and, for each
1 ≤ j ≤ m, let d(bj) = min{d(ri, bj) : 1 ≤ i ≤ n}. Finally, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m,
the reduced cost of edge {ri, bj} is given by c(ri, bj) = d(ri) + d(bj)− d(ri, bj).

It turns out that, under these special conditions, the dual variables remain within certain
nice bounds during the execution of the Hungarian method. In particular, βj < 0 cannot
occur during its initialization, even though some reduced costs might be negative.

▶ Lemma 2.1. During an execution of the Hungarian method with reduced costs, the dual
variables satisfy 0 ≤ αi ≤ d(ri) for all 1 ≤ i ≤ n and 0 ≤ βj ≤ d(bj) for all 1 ≤ j ≤ m.

Proof. Recall that 0 ≤ d(ri) ≤ d(ri, bj) and 0 ≤ d(bj) ≤ d(ri, bj) for all 1 ≤ i ≤ n and all
1 ≤ j ≤ m. At the start of the method βj = max{c(ri, bj) : 1 ≤ i ≤ n}. Since c(ri, bj) =
d(bj) − [d(ri, bj) − d(ri)] ≤ d(bj) for all 1 ≤ i ≤ n, it follows that βj ≤ d(bj). Moreover,
if rk ∈ R is closest to bj , then d(bj) = d(rk, bj) and βj ≥ c(rk, bj) = d(rk) − [d(rk, bj) −
d(bj)] = d(rk) ≥ 0. Since βj never grows and never becomes negative, 0 ≤ βj ≤ d(bj)
remains true during the execution of the algorithm. At the start of the method αi = 0.
Note that αi can increase only when we consider an equality edge {ri, bj}. In this case
αi = c(ri, bj) − βj = d(ri) − [d(ri, bj) − d(bj)] − βj ≤ d(ri). Since αi never decreases,
0 ≤ αi ≤ d(ri) remains true during the execution of the algorithm. ◀

3 Avoiding Dual Updates

In order to accelerate Case 3, we want to avoid updating αi and βj more than once during
an iteration of the Hungarian method. To this end, we introduce weights w(ri)← d(ri)− αi

for each ri ∈ R and w(bj) ← d(bj)− βj for each bj ∈ B. We also introduce the total dual
change ∆← 0, used at the end of an iteration to update αi and βj . Consider the following
adaptation to the Hungarian method: As long as F is non-empty, let {ri, bj} be an edge that
achieves the minimum dual slack as

δ ← min{d(ri, bj)− w(ri)− w(bj) : ri ∈ F, bj ∈ S} −∆ (2)

Four mutually exclusive cases may occur:

EuroCG’22

5:4 Euclidean Bipartite Edge Cover in Subcubic Time

Case 1 (δ = 0 and ri is exposed): Edge {ri, bj} is an equality edge which is added to the
alternating forest. Let F ← F \{ri}, T ← T ∪{ri}, and w(ri)← w(ri)+∆. Furthermore,
the path P from ri to the root bt of its alternating tree is an augmenting path. Let
M ← M△P . Now bt is not bad. Let αi ← d(ri) − w(ri) + ∆ for each ri ∈ T and
βj ← d(bj)− w(bj)−∆ for each bj ∈ S. Stop the iteration.

Case 2 (δ = 0 and ri is covered): In this case ri is matched in M to bk /∈ S. Edges
{bk, ri} ∈M and {ri, bj} are equality edges which are added to the alternating forest. Let
F ← F \{ri}, T ← T ∪{ri}, S ← S∪{bk}. Let w(ri)← w(ri)+∆ and w(bk)← w(bk)−∆.
If βk < ϵ, then let s← k and ϵ← βk. Continue with the iteration.

Case 3 (ϵ > δ): Let ∆ ← ∆ + δ and ϵ ← ϵ − δ. This keeps all equality edges in the
alternating forest and creates at least one equality edge. Continue with the iteration.

Case 4 (δ ≥ ϵ): Let ∆← ∆ + ϵ and ϵ← 0. This keeps all equality edges in the alternating
forest. Let P be the path from bs to the root bt of its alternating tree. Let M ←M△P .
Now bt is not bad. Let αi ← d(ri)−w(ri)+∆ for each ri ∈ T and βj ← d(bj)−w(bj)−∆
for each bj ∈ S. Stop the iteration.

Note that, by Lemma 2.1, the weights w(ri) and w(bj) remain non-negative. Also note
that each time we evaluate (2), its right-hand side is identical to the right-hand side of (1),
that is, αi + βj − c(ri, bj) = d(ri, bj)− w(ri)− w(bj)−∆ for all ri ∈ F and bj ∈ S.

4 Weighted Voronoi Diagrams and a Subcubic Algorithm

In this section, we assume that R and B are sets of points in the plane and that d is
given by the Euclidean distances between pairs of points. We shall closely adapt Vaidya’s
O(|V |5/2 log |V |) algorithm for the minimum-cost bipartite perfect matching problem with
Euclidean costs [11]. This algorithm has also been adapted to solve the transportation
problem with Euclidean costs [1]. Recall that our problem of interest is a maximum-cost
bipartite, non-necessarily perfect matching problem with non-Euclidean costs (in fact, some
costs are positive and some others are negative). However, the original Euclidean costs
together with Lemma 2.1 will allow us to compute δ using the same data structures as in [11].

It turns out that the computation of the minimum slack δ is equivalent to the computation
of the minimum distance between pairs of circles with disjoint interiors, one centered at
ri ∈ F with radius w(ri), the other centered at bj ∈ S with radius w(bj).

Let P be a set of points in the plane with weights w(p) ≥ 0 for each p ∈ P . A weighted
Voronoi diagram divides the plane into |P | possibly empty regions Vp for each p ∈ P , given
by Vp = {q : d(q, p)− w(p) ≤ d(q, p′)− w(p′) for all p′ ∈ P}. A weighted Voronoi diagram
can be constructed and preprocessed in time O(|P | log |P |) so that, given any point q, it is
possible to find p ∈ P such that q ∈ Vp in time O(log |P |) [4, 7]. In this case, we denote the
point p by nearest(q, P) and the edge {q, p} by shortest(q, P). Similarly, for P1, P2 ⊆ P , we
denote by shortest(P1, P2) the edge arg min{d(p1, p2)− w(p1)− w(p2) : p1 ∈ P1, p2 ∈ P2}.

Let h = ⌈√n⌉ and consider an iteration of the Hungarian method with reduced costs.
After computing the set S of bad vertices, we partition it into S1 and S2, ensuring that
|S2| ≤ h. We also partition F into F1, . . . , Fh, ensuring that each part has cardinality ≤ h.
We compute the following data structures:

1. A weighted Voronoi diagram for S1 with weights w in time O(m log m).
2. A minimum heap H1 containing the edge {r, b} = shortest(r, S1) for each r ∈ F with

priority d(r, b)−w(r)−w(b). Each of the n = |F | edges can be computed in time O(log m)
using the weighted Voronoi diagram for S1. The total time is O(n log m)

R. Castro, J.M. Díaz-Báñez, M.A. Heredia, J. Urrutia, I. Ventura, F.J. Zaragoza 5:5

3. A weighted Voronoi diagram for each F1, . . . , Fh with weights w. Since |Fi| ≤ h, this
takes time O(h2 log h) = O(n log n)

4. A minimum heap H2 containing the edge {r, b} = shortest(b, Fi) for each b ∈ S2 and each
Fi with priority d(r, b)− w(r)− w(b). Each of the h|S2| ≤ h2 edges can be computed in
time O(log h) using the weighted Voronoi diagram for Fi. The corresponding heap can
be constructed in time O(h2) = O(n). The total time is O(h2 log h) = O(n log n).

We can compute δ and a corresponding edge {r, b} by examining H1 and H2 in time
O(log n). The previously computed data structures need to be updated as follows:
Delete r from F : Assume r ∈ Fi. The weighted Voronoi diagram for Fi needs to be

recomputed. This takes time O(
√

n log n). We also need to recompute shortest(b, Fi) for
each b ∈ S2 and update the minimum heap H2. This also takes time O(

√
n log n).

Insert b into S2: We need to compute shortest(b, Fi) for each 1 ≤ i ≤ h and insert it into
the minimum heap H2. This can be done in time O(

√
n log n).

Flush S2: If |S2| = h, then move all vertices from S2 into S1. Recompute shortest(r, S1) for
each r ∈ F . This is done in time O(n log m) using the weighted Voronoi diagram for S1.

Since an iteration of the Hungarian method with reduced costs has O(n) deletions and
insertions, the total time spent in the first two of these updates is O(n

√
n log n). Since S2

can reach size h at most h times during an iteration, the total time spent in the last update
is also O(n

√
n log m). Since there are at most m iterations, we obtain our main result.

▶ Theorem 4.1. The minimum-cost edge cover problem with Euclidean costs on a complete
bipartite graph G = (V, E) can be solved in time O(|V |2.5 log |V |).

5 Conclusions and Further Work

Our subcubic algorithm for the minimum-cost edge cover problem with Euclidean costs is
based on the linear programming result in Lemma 2.1, which allowed us to use the techniques
of [11]. We implemented four algorithms (Hungarian vs Voronoi and one bad vertex vs all).
The versions starting with one bad vertex were faster than those starting with all bad vertices.
Moreover, the Hungarian method seems to run in quadratic time on random instances.

References
1 D. S. Atkinson and P. M. Vaidya. Using geometry to solve the transportation problem in

the plane. Algorithmica, 13(5):442–461, May 1995. doi:10.1007/BF01190848.
2 Justin Colannino, Mirela Damian, Ferran Hurtado, Stefan Langerman, Henk Meijer, Suneeta

Ramaswami, Diane Souvaine, and Godfried Toussaint. Efficient many-to-many point
matching in one dimension. Graphs and Combinatorics, 23(1):169–178, 2007. doi:10.1007/
s00373-007-0714-3.

3 William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander Schri-
jver. Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and
Optimization. Wiley, 1997.

4 Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point location
in a monotone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986. doi:
10.1137/0215023.

5 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965. doi:10.4153/CJM-1965-045-4.

EuroCG’22

5:6 Euclidean Bipartite Edge Cover in Subcubic Time

6 Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM, 19(2):248–264, Apr 1972. doi:10.1145/
321694.321699.

7 Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1):153, Nov
1987. doi:10.1007/BF01840357.

8 H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955. doi:10.1002/nav.3800020109.

9 James Munkres. Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5(1):32–38, 1957. doi:10.1137/0105003.

10 Alex Pothen, S. M. Ferdous, and Fredrik Manne. Approximation algorithms in combinatorial
scientific computing. Acta Numerica, 28:541–633, 2019. doi:10.1017/S0962492919000035.

11 Pravin M. Vaidya. Geometry helps in matching. SIAM Journal on Computing, 18(6):1201–
1225, 1989. doi:10.1137/0218080.

Ruler Wrapping
Travis Gagie1, Mozhgan Saeidi1, and Allan Sapucaia2

1 Faculty of Computer Science, Dalhousie University, Canada
firstname.lastname@dal.ca

2 Institute of Computing, University of Campinas, Brazil
allansapucaia@gmail.com

Abstract
In 1985 Hopcroft, Joseph and Whitesides showed it is NP-complete to decide whether a carpenter’s
ruler with segments of given positive lengths can be folded into an interval of at most a given length,
such that the folded hinges alternate between 180 degrees clockwise and 180 degrees counter-clockwise.
At the open-problem session of 33rd Canadian Conference on Computational Geometry (CCCG ’21),
O’Rourke proposed a natural variation of this problem called ruler wrapping, in which all folded
hinges must be folded the same way. In this paper we show O’Rourke’s variation has a linear-time
solution.

1 Introduction

Problems about carpenters’ rulers are a staple of computational geometry. For example, in
1985 Hopcroft, Joseph and Whitesides [3] posed the following question: can a carpenter’s
ruler whose segments have given positive lengths be folded into an interval of at most a
given length, with folded hinges alternating between 180 degrees clockwise and 180 degrees
counter-clockwise (segments of the ruler having width 0 and folds being points)? They
showed this problem is NP-complete in the weak sense via a reduction from Partition,
illustrated in Figure 1; gave a pseudo-polynomial algorithm for it; and gave a linear-time
2-approximation algorithm. Călinescu and Dumitrescu [1] later gave an FPTAS for it.

, as illustrated in Figure 1
At the open-problem session of the 33rd Canadian Conference on Computational Geometry

(CCCG ’21), Professor Joseph O’Rourke proposed a natural variation of this problem, in
which all folded hinges must be folded the same way (either all 180 degrees clockwise or all
180 degrees counter-clockwise); he named this variation ruler wrapping and, as far as we
know, it had not been considered before.

2 A quadratic algorithm

Suppose the ruler has n segments and we lay it out flat, considering the hinges from left to
right and pretending (for convenience) that there is a hinge 0 at the left end and a hinge
n at the right end. For each hinge, we define the wrapping length at that hinge to be the
smallest length into which the segments to its left can be wrapped such that we can still fold
the hinge.

If we wrap the segments to the left of hinge i into its wrapping length and then fold it, the
wrapped segments trace an arc with apex (xi, yi), where xi is the position of the hinge (the
sum of the lengths of the segments to its left) and yi is its wrapping length. Figure 2 shows
the arcs for the first five hinges (including hinge 0) of the ruler with segments of lengths 5, 6,
3, 4, 8, 6, 2, 1, 8 and 5, with the red dots marking the apexes. Notice that if we fold hinge
2 in Figure 2 then we cannot fold hinge 3, because x2 + y2 = 17 > 14 = x3, and if we fold
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

6:2 Ruler Wrapping

Figure 1 Hopcroft et al. showed that a multiset M = {m1, . . . , mn} of positive positive numbers
can be partitioned into two subsets with equal sums, if and only a carpenter’s ruler with segments
of lengths (m1 + · · · + mn), (m1 + · · · + mn)/2, m1, . . . , mn, (m1 + · · · + mn)/2, (m1 + · · · + mn)
can be folded — with folded hinges alternating between 180 degrees clockwise and 180 degrees
counter-clockwise — into an interval of length (m1 + · · · + mn). For example, {5, 6, 3, 4, 8, 6, 2, 1, 8, 5}
can be partitioned into two subsets each summing to 24 if and only if a carpenter’s ruler with
segments of lengths 48, 24, 5, 6, 3, 4, 8, 6, 2, 1, 8, 5, 24, 48 can be folded into an interval of length 48.

(5, 5)
(11, 6)

(14, 9) (18, 7)

(0, 0)

5

y

x

3 4 8 6 2 1 8 56

Figure 2 Arcs for the first five hinges (including hinge 0) of the ruler with segments of lengths 5,
6, 3, 4, 8, 6, 2, 1, 8 and 5.

hinge 3 then we cannot fold hinge 4, because x3 + y3 = 23 > 18 = x4. When xh + yh ≤ xi,
on the other hand, we can fold the segments to the left of hinge h into its wrapping length
yh, fold hinge h, and then fold hinge i, so yi ≤ xi − xh.

▶ Observation 2.1. For i > 0, the wrapping length yi of hinge i is xi − xh, where hinge h is
the last previous hinge such that xh + yh ≤ xi.

Figure 2 suggests a simple quadratic-time dynamic program for computing the wrapping
lengths: set x0 = 0 and y0 = 0 (because hinge 0 at the left end of the ruler has no segments
to its left); for i from 1 to n, set xi to the position of hinge i and set yi to

xi − max{xh : h ≤ i, xh + yh ≤ xi}

It may seem at first that we can simply choose the last arc that ends before or at each hinge,
but Figure 3 shows we are sometimes better off choosing an arc that ends earlier: the blue
arc ends closer to the end of the ruler but the green arc has a later center and yields a smaller
wrapping length.

It may also seem at first that the wrapping length yn of hinge n should always be the
smallest length into which we can wrap the whole ruler, but Figure 4 shows this is guaranteed
only when we require the distance from the last folded hinge to the end of the ruler to be at
least the distance between the last two folded hinges. (We display the wrappings as triangular
spirals here to make it easier to show the segments’ lengths.) When we do not require this,
we can scan the hinges in linear time to find the one that minimizes the maximum of its

T. Gagie, M. Saeidi and A. Sapucaia 6:3

(5, 5)
(11, 6)

(14, 9) (18, 7) (26, 8)

(32, 14)

(35, 9)
(34, 8)

(0, 0)

(43, 9)

5

y

x

3 4 8 6 2 1 8 56

Figure 3 A case in which choosing the last arc (blue) that ends before or at hinge n yields a
larger wrapping length than choosing an arc (green) that ends earlier.

wrapping length and the distance to the end of the ruler; that maximum is the smallest
length into which we can wrap the ruler when that hinge is the last one folded. Summing up,
so far we have the following result:

▶ Theorem 2.2. Given the positive lengths of the n segments of a carpenter’s ruler, in O(n2)
time we can compute the shortest length into which it can be wrapped.

3 An O(n log n)-time algorithm

We can use a range-minimum data structure to reduce the running time in Theorem 2.2 to
O(n log n), but this complicates the implementation somewhat. Instead, recall the O(n log n)-
time array-based algorithm for finding a longest increasing subsequence of a list L[1..n] of
numbers, which Fredman [2] analyzed and attributed to Knuth [4]. That algorithm starts
with an array T [1..n] with T [1] set to L[1] and the other entries empty; for i > 1, it compares
L[i] against the rightmost non-empty value T [k] in T and, if L[i] > T [k], sets T [k + 1] = L[i];
otherwise, it performs a binary search in T [1..k] — which is always sorted — to find the
leftmost value T [h] > L[i] and sets T [h] = L[i]. By induction, this maintains the invariant
that each T [j] is always the smallest value that ends an increasing subsequence of L[1..i] of
length j.

A key idea behind Knuth’s algorithm is that if we find T [j] > L[i] then we need not keep
the current value of T [j] because any extension of a subsequence ending with T [j] is also
an extension of a subsequence ending with L[i]. We can apply a similar idea to obtain an
O(n log n)-time array-based algorithm for ruler wrapping: we start with an array P [0..n] of
pairs with P [0] = (x0, y0) = (0, 0) and the other entries empty; for i ≥ 1, we
1. add the length of the ith segment of the ruler to xi−1 to obtain xi,
2. perform a binary search in the non-empty prefix P [0..k] of P — which is always sorted

both by x-coordinate and by sum x + y — to find the rightmost pair (xh, yh) with
xh + yh ≤ xi (there always is such a pair, since x0 + y0 = 0),

3. set yi = xi − xh,
4. scan leftward from P [k] discarding pairs (xj , yj) with xj + yj ≥ xi + yi,
5. insert (xi, yi) immediately to the right of the rightmost undiscarded pair.

EuroCG’22

6:4 Ruler Wrapping

(5, 5)
(11, 6)

(14, 9) (18, 7) (26, 8)

(32, 14)

(35, 9)
(34, 8)

(0, 0)

(43, 9)

(48, 13)

5

y

x

3 4 8 6 2 1 8 56

5
65

34

8 1

2

6
8

8

1

65 2

6

34

85

Figure 4 A case in which the wrapping length of hinge n (orange) is more than the shortest
length into which we can wrap the whole ruler (magenta) when we do not require the distance
from the last folded hinge to the end of the ruler to be at least the distance between the last two
folded hinges.

To see why P [0..k] is always sorted both by x-coordinate and by sum x + y, suppose
it is sorted before we process the length of the ith segment of the ruler, and consider
that xi is larger than any previous x-coordinate and we discard all the pairs (xj , yj) with
xj + yj ≥ xi + yi. To see why we can discard any such pair (xj , yj), consider that we will
never choose the arc centered at xj < xi that ends at xj + yj ≥ xi + yi, when we can choose
the arc centered at xi. Finally, to see why processing the length of the ith segment of the
ruler takes us O(log n) amortized time, consider that the binary search takes O(log n) time,
we can stop discarding pairs as soon as we encounter one that sums to less than xi + yi, and
we can charge each pair we discard to the segment of the ruler for which we inserted it.

We wrote earlier that when we do not require the distance from the last folded hinge to
the end of the ruler to be at least the distance between the last two folded hinges, we can
scan the hinges in linear time to find the one that minimizes the maximum of its wrapping
length and the distance to the end of the ruler. We can no longer scan all of the hinges
easily if we discard some pairs, but we claim that we cannot discard the pair for what should
be the last folded hinge. To see why, consider that our algorithm works online (at each
hinge we compute the wrapping length of the prefix of the ruler ending at that hinge) and
let hinges g and h be the last folded hinges in a shortest wrapping; if a segment of length
(xh − xh) − (xn − xh) were appended to the ruler (which is allowed in the online setting)
then we would need to have (xh, yh) in the array in order to compute yn+1 = xn+1 − xh. If
a segment of length 3 were appended to the ruler in Figure 4, for example, then because
x9 + y9 = 43 + 9 ≤ x11 = 51, we would have y11 = x11 − x9 = 8 — so our algorithm cannot
discard (x9, y9).

▶ Theorem 3.1. Given the positive lengths of the n segments of a carpenter’s ruler, in
O(n log n) time we can compute the shortest length into which it can be wrapped.

T. Gagie, M. Saeidi and A. Sapucaia 6:5

Table 1 The contents of our array P while processing our running example.

step P [0] P [1] P [2] P [3] P [4] P [5] P [6] P [7] P [8] P [9] P [10]

0 (0, 0)
1 (0, 0) (5, 5)
2 (5, 5) (11, 6)
3 (5, 5) (11, 6) (14, 9)
4 (11, 6) (14, 9) (18, 7)
5 (18, 7) (26, 8)
6 (18, 7) (26, 8) (32, 14)
7 (26, 8) (34, 8)
8 (26, 8) (34, 8) (35, 9)
9 (34, 8) (35, 9) (43, 9)

10 (35, 9) (43, 9) (48, 13)

4 A linear algorithm

Fredman showed the number of comparisons Knuth’s algorithm performs is the best possible
for finding a longest increasing subsequence, to within a linear term. Rather surprisingly,
however, we can further reduce the running time in Theorem 3.1 to O(n). To see why,
consider that for ruler wrapping, because the segments’ lengths are positive, the xis are
themselves an increasing sequence. Therefore, if we are currently processing xi and we have
(xg, yg) and (xh, yh) in our array with xg < xh < xi and xh + yh ≤ xi, then not only will we
not choose the arc centered on xg to compute yi, we will never choose it to compute any
other y-coordinate in the future, either. It follows that instead of using binary search to find
the rightmost pair (xh, yh) in our array with xh + yh ≤ xi, we can scan rightward from the
first non-empty cell in our array, discarding pairs until we find that rightmost pair (xh, yh)
with xh + yh ≤ xi. Again, we charge each pair we discard to the segment of the ruler for
which we inserted it. Table 1 shows the contents of our array while we process our running
example. We note that the rightmost cell P [10] is always empty in this example, but its
presence guarantees we have space for all the pairs even if we never discard pairs on the
right.

Even when we do not require the distance from the last folded hinge to the end of the
ruler to be at least the distance between the last two folded hinges, during our rightward
scan we cannot accidentally discard a pair we might need later, this time because we discard
only pairs (xg, yg) with xg + yg ≤ xi — so the distance from hinge g to the end of the ruler
is at least hinge g’s wrapping length, which is the distance from the previous folded hinge if
g is the last folded one.

▶ Theorem 4.1. Given the positive lengths of the n segments of a carpenter’s ruler, in O(n)
time we can compute the shortest length into which it can be wrapped.

5 Acknowledgments

Many thanks to Joseph O’Rourke for proposing ruler wrapping; to Joseph Mitchell, David
Wagner and the other participants of the CCCG ’21 open-problem session for helpful
discussions; and to the reviewers for their constructive criticism. The first author thanks
NSERC for his Discovery Grant, RGPIN-2020-07185, which funded this research; his mother,

EuroCG’22

6:6 Ruler Wrapping

Meg Gagie, for proofreading; and his CSCI 3110 class, for trying so desperately to avoid
building range-minimum data structures that they implemented Knuth’s algorithm instead —
and thus inadvertently taught it to him.

References
1 Gruia Călinescu and Adrian Dumitrescu. The carpenter’s ruler folding problem. Combina-

torial and Computational Geometry, 52:155, 2005.
2 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete

Mathematics, 11(1):29–35, 1975.
3 John Hopcroft, Deborah Joseph, and Sue Whitesides. On the movement of robot arms in

2-dimensional bounded regions. SIAM Journal on Computing, 14(2):315–333, 1985.
4 Donald E. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 1973.

Approximating the discrete center line segment in
linear time
Joachim Gudmundsson1 and Yuan Sha2

1 The University of Sydney
joachim.gudmundsson@sydney.edu.au

2 The University of Sydney
ysha3185@sydney.edu.au

Abstract
Let P be a set of n points in the plane. The discrete center line segment of P is the line segment
bounded by two points in P such that the maximum distance from any point in P to it is minimized.
Previously, an O(n2) time O(n2) space algorithm is given [6]. In this paper, we give a (1 + ε)-
approximation algorithm for the discrete center line segment problem which runs in O(n + 1

ε4 log 1
ε
)

time and uses linear space.

1 Introduction

The general discrete p-center problem is a fundamental problem in clustering and facility
location. The problem is shown to be NP-complete by Fowler et al. in [8]. Approximation
hardness results are also known. Megiddo and Supowit [11] showed that the problem has no
polynomial time 1.154-approximation algorithm unless P=NP. By using a reduction from
the planar vertex cover problem, Feder and Greene [7] showed that there is no polynomial
time 1.822-approximation algorithm for the problem (which they referred to as the central
clustering problem) unless P=NP.

Due to the hardness of the general discrete p-center problem, the problem for constant p

where p = 1 or 2 is also considered in the literature. The discrete 1-center problem can be
solved easily in O(n log n) time by using farthest-neighbour Voronoi diagram. The discrete
2-center problem is first solved in near-quadratic time by Hershberger and Suri in [10]. Later
Aggarwal et al. [1] gave a much improved O(n4/3 log5 n) time algorithm for the discrete
2-center problem. They also noticed that the discrete 2-center problem is harder to solve
efficiently than the standard (continuous) 2-center problem. The discrete center line segment
problem is connected to the discrete 2-center problem in that the former searches for a center
segment which has a minimum maximum distance from a point to it while the latter searches
for two centers that minimize the maximum distance from a point to them.

In [9], Gudmundsson et al. gave a strong linear-time approximation scheme for the
geometric minimum diameter spanning tree problem and the discrete 2-center problem. A
strong linear-time approximation scheme is a (1 + ε) approximation scheme with a running
time of the form O∗(n + 1

εc) [4].
In this paper, we consider the following discrete center line segment problem: given a set

P of n points in R2, find a segment bounded by two points in P such that the maximum
distance from a point in P to the segment is minimized. This problem is proposed by Daescu
and Teo [6], who give an O(n2) time, O(n2) space exact algorithm. In this paper, we give a
(1 + ε)-approximation algorithm for the discrete center line segment problem that runs in
O(n + 1

ε4 log 1
ε) time and uses linear space.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

7:2 Approximating the discrete center line segment in linear time

1.1 Our Approach

The main idea of our approach is to compute an approximate point set of the input point set
P whose approximate center segment is easier to compute. This is done in two steps. We
first compute a (1 + ε)-approximate diametral point pair of P . Next an approximate convex
hull of P is computed. The approximate convex hull algorithm in [3] uses strips. We apply
the algorithm in [3] by requiring the orientation of the strips to be aligned with the line
through the approximate diametral point pair. The approximate point set is obtained from
P by shifting every point outside the approximate convex hull by a small enough distance
until it lies on the approximate convex hull. By the orientation requirement, we are assured
that we can get a (1 + ε)-approximate center segment of P from a (1 + ε)-approximate center
segment of the approximate point set.

The convex hull of the approximate point set has only O(1
ε) vertices. Combined with

other observations, one only need to consider a small number of candidate segments which
only depends on ε, in order to get a (1 + ε)-approximate center segment of the approximate
point set.

We further use techniques to reduce the number of candidate segments and search the
farthest point to a candidate segment efficiently.

2 Preliminaries

Let P be a set of n points in R2. A segment of P is a segment bounded by two points of P .
A center segment of P is a segment of P such that the maximum distance from a point in P

to this segment is minimized. For convenience, we call a segment bounded by two points in
P as a segment of P . For any two points a, b in P , let ab denote the line segment joining a

and b and let āb denote the line going through a and b. For any point p in R2, let d(p, ab)
denote the distance from p to segment ab and let d⊥(p, ab) denote the distance from p to
line āb. Let |ab| denote the length of segment ab.

The diameter of P is the maximum distance between two points of P . A diametral
point pair of P is a pair of points in P that realize the diameter. A pair of P is said to be
α-approximate diametral point pair of P if the distance between the pair is at least 1/α of
the diameter of P . The width of P along an orientation (direction) is the distance between
parallel lines that are support of P and perpendicular to the orientation. Let d∗ denote the
maximum distance from a point in P to a center segment of P . A segment of P is called an
α-approximate center segment if the maximum distance from a point in P to the segment is
at most αd∗.

The convex hull of a point set is the minimum convex set containing all the points. We
use CH(P) to denote the convex hull of P .

All the precision parameters ε′, ε1, . . . are constants between 0 and 1.

3 The algorithm

The algorithm consists of several parts. The first part concerns with computing an approx-
imate point set of the input point set and is presented in Section 3.1. The second part
concerns with computing a (1 + ε)-approximate center segment of the approximate point set
and is presented in Section 3.2. Details of the third part are omitted in this abstract.

J. Gudmundsson and Y. Sha 7:3

3.1 Compute an approximate point set of P

We start by finding an orientation for computing an approximate convex hull of P . The
width of P along a desirable orientation is some constant times d∗. We first give two facts.

▶ Fact 3.1. Let p, q be any two points in R2. ab is a segment in the plane. Then d(p, ab) ⩽
|pq| + d(q, ab) and d⊥(p, ab) ⩽ |pq| + d⊥(q, ab).

The following lemma is the main lemma of this section. The proof can be found in
Appendix ??.

▶ Lemma 3.2. The width of P along the orientation perpendicular to the line through a
(1+ε)-approximate diametral point pair of P is at most 10 times d∗, where d∗ is the maximum
distance from a point in P to a center segment of P .

We can use the approximate diameter algorithm of [3] to get an approximate diametral point
pair of P . Let (a, b) be the computed pair. Rotate P around the origin until segment ab is
parallel to the y-axis. Let P ′ be P after rotation. We compute an approximate convex hull
of P ′ in O(n + 1

ε′) time by using the algorithm in [3], where ε′ is the precision parameter.
The strips which the algorithm uses are parallel to the y-axis and have width ε′ times the
width of P ′ along the x-axis.

The computed approximate convex hull C̃H(P ′) has O(1
ε′) vertices [3]. We set the

precision parameter ε′ to ε1/10. By Lemma 3.2, the width of the strips is at most ε1 · d∗.
For any point in P ′ that lies outside C̃H(P ′), shift it along the positive or negative x-axis
direction by at most ε1d∗ until it lies on the boundary of C̃H(P ′). See Figure 1 for an
illustration. Let P̃ denote P ′ after the shifting. For any point in P̃ that is a shifted point,

x

y

ε1 · d∗

≤ 5 · d∗

a

b

Figure 1 The blue point is in P ′ and lies outside C̃H(P ′). We shift it along the positive x-axis
direction by at most ε1d∗ until it lies on the boundary of C̃H(P ′). The red point is the shifted blue
point.

we keep track of its original point in P ′. Thus each segment of P̃ corresponds to a segment
of P ′. Let c̃ẽ be a center segment of P̃ . Assume that the original points of c̃ and ẽ are c′

and e′, respectively. c′e′ is a (1 + 4ε1)-approximate center segment of P ′, as stated in the
following lemma.

EuroCG’22

7:4 Approximating the discrete center line segment in linear time

▶ Lemma 3.3. The maximum distance from a point in P ′ to c′e′ is at most (1 + 4ε1) · d∗.

Because of Lemma 3.3, we can compute a (1 + ε2)-approximate center segment of P̃ to
get a (1 + ε)-approximate center segment of P . Note that we can get P̃ from P ′ in O(n + 1

ε1
)

time by sweeping P ′ and C̃H(P ′) along the x-axis.

▶ Lemma 3.4. In O(n + 1
ε1

) time, we can compute an approximate point set P̃ of P ′. Let
ε1 = ε2 = ε

6 . The segment of P ′ that corresponds to a (1 + ε2)-approximate center segment
of P̃ is a (1 + ε)-approximate center segment of P ′.

3.2 Compute a (1 + ε)-approximate center segment of P̃

Let d̃ be the maximum distance from a point in P̃ to a center segment of P̃ . To compute a
(1 + ε)-approximate center segment of P̃ , we need a good estimation of d̃. We can get one
by examining the diagonals of CH(P̃). We call a diagonal of CH(P̃) with the minimum
maximum distance to a point in P̃ among all the diagonals a center diagonal of CH(P̃). The
following lemma shows that the maximum distance from a point in P̃ to a center diagonal is
at most 2d̃. The proof can be found in Appendix ??.

▶ Lemma 3.5. Let G be a center diagonal of CH(P̃). The maximum distance from a point
in P̃ to G is at most 2d̃.

There are O(1
ε2

1
) diagonals, but we only need to consider O(1

ε1
) diagonals to find the center

diagonal. We first show some monotone properties of the diagonals. Let m = |CH(P̃)| and
let ṽ1, ṽ2, . . . , ṽm be a counterclockwise ordering of the hull vertices along CH(P̃). Consider
all diagonals with vertex ṽi as one end. Let ṽj , i < j < i + m, be the other end of the
diagonal. Let ccw(i, j) denote the counterclockwise chain from ṽi to ṽj (with wrap around)
on the boundary of CH(P̃) and cw(i, j) denote the clockwise chain from ṽi to ṽj(with wrap
around) on the boundary. We can prove the following monotone properties.

▶ Lemma 3.6. Let f(i, j) be the maximum distance from a vertex on ccw(i, j) to diagonal
ṽiṽj and g(i, j) be the maximum distance from a vertex on cw(i, j) to ṽiṽj. Then1

(a) f(i, j) ⩽ f(i, j + 1).
(b) g(i, j) ⩾ g(i, j + 1).
(c) f(i + 1, j) ⩽ f(i, j).
(d) g(i + 1, j) ⩾ g(i, j)

Let f(i) be the minimum j such that f(i, j) is greater than g(i, j). Then

(e) f(i + 1) ⩾ f(i).

max{f(i, j), g(i, j)} is the maximum distance from a hull vertex to diagonal ṽiṽj . Fix
i, max{f(i, j), g(i, j)} is a unimodal function of j and its minimum takes place at either
j = f(i) or j = f(i) − 1. After we get f(i), we can search for f(i + 1) starting from j = f(i)
rather than from j = i + 2, by Lemma 3.6(e). In this way, we only consider O(1

ε1
) candidate

diagonals in search of a center diagonal.
We now discuss how to compute the farthest point and the maximum distance in P̃ to a

segment p̃q̃ of P̃ . We have the following lemma.

1 i + 1, j + 1 should take modulo m, we omit for brevity.

J. Gudmundsson and Y. Sha 7:5

▶ Lemma 3.7. The farthest point in P̃ to a segment p̃q̃ of P̃ is a vertex of CH(P̃).

Thus we only consider vertices of CH(P̃) in search of the farthest point in P̃ . By using
the data structure in [5], we can compute the farthest point to p̃q̃ in O(log2 1

ε1
) time.

Let d̄ denote the maximum distance from a point in P̃ to the center diagonal of CH(P̃).
For each of the O(1

ε1
) diagonals we consider, O(1

ε2
1
) time is spent on computing the maxi-

mum distance from a CH(P̃) vertex to it. We can compute the center diagonal and d̄ in
O(1

ε1
log2 1

ε1
) time.

By Lemma 3.5, d̄ is a 2-approximation of d̃. If we lay squares with side length 2d̄ such
that the square centers are at vertices of CH(P̃), the center segment of P̃ must have both
ends inside the squares, as suggested by the following lemma.

▶ Lemma 3.8. The center segment of P̃ must have both ends inside squares that have centers
at vertices of CH(P̃) and have radius d̄.

Proof. Let õp̃ be a center segment of P̃ . Assume the extension of õp̃ out of õ intersects edge
f̃ g̃ of CH(P̃) and the extension of õp̃ out of p̃ intersects edge h̃ĩ of CH(P̃). See Figure 2.

Either ∠f̃o′õ or ∠g̃o′õ is at least π/2. WLOG, assume ∠f̃o′õ ⩾ π/2. The distance from
f̃ to õp̃ equals |f̃ õ|. Thus |f̃ õ| ⩽ d̃ ⩽ d̄. õ lies within the square that has center at f̃ and has
radius d̄. In the same way, we can show that p̃ lies within either the square with center at ĩ

or the square with center at h̃. ◀

f̃

g̃ h̃

ĩ

o′ p′õ p̃

Figure 2 õ is within the square centered at f̃ and p̃ is within the square centered at h̃

Now we can find a (1 + ε2)-approximate center segment of P̃ .

▶ Lemma 3.9. A (1 + ε)-approximate center segment for P can be computed in O(n + 1
ε7)

time.

Proof. Lay a grid of cell side length ε2d̄
4

√
2 over the plane. Index all points in P̃ into cells of

the grid. A square with center at a vertex of CH(P̃) and with radius d̄ intersects O(1
ε2

2
) cells

of the grid. Call the square with center at a vertex the vertex’s d̄-square. Call the intersection
of the global grid and a vertex’s d̄-square the vertex’s grid. For each cell of a vertex’s grid,
maintain one point indexed into the cell (if any) and call the point the representative of
the cell. A vertex grid has O(1

ε2
2
) representatives. By Lemma 3.8, the center segment of

P̃ must have each end inside a cell of a vertex grid. Let these two cells be A and B. The
segment joining the representatives of A and B is a (1 + ε2)-approximate center segment
of P̃ . Since CH(P̃) has O(1

ε1
) vertices and each vertex has O(1

ε2
2
) cells in its grid, we can

consider O(1
ε2

1
) pairs of vertex grids and for each pair consider 1

ε4
2

candidate segments, to get
a (1 + ε2)-approximate center segment of P̃ . By Lemma 3.7, we can compute the maximum
distance from a point in P̃ to a candidate segment in O(1

ε1
) time. Thus given CH(P̃) and

EuroCG’22

7:6 Approximating the discrete center line segment in linear time

d̄, we can compute a (1 + ε2)-approximate center segment of P̃ in O(1
ε3

1
· 1

ε4
2
) time. With

Lemma 3.4, we have proved the lemma. ◀

We can further reduce the running time. First, we can consider O(1
ε3

2
) candidate segments

for a pair of vertex grids. Second, we only need to consider O(1
ε1

) pairs of vertex grids by
using monotone properties similar to Lemma 3.6. Third, we can compute the farthest point
to a segment in O(log 1

ε1
) time by using the data structure in [2]. We obtain the main result

of the paper.

▶ Theorem 3.10. A (1 + ε)-approximate discrete center line segment for n points in the
plane can be computed in O(n + 1

ε4 log 1
ε) time and linear space.

References
1 Pankaj K. Agarwal, Micha Sharir, and Emo Welzl. The discrete 2-center problem. Discret.

Comput. Geom., 20(3):287–305, 1998. doi:10.1007/PL00009387.
2 Boris Aronov, Prosenjit Bose, Erik D. Demaine, Joachim Gudmundsson, John Iacono,

Stefan Langerman, and Michiel H. M. Smid. Data structures for halfplane proximity
queries and incremental voronoi diagrams. Algorithmica, 80(11):3316–3334, 2018. doi:
10.1007/s00453-017-0389-y.

3 Jon Louis Bentley, Mark G. Faust, and Franco P. Preparata. Approximation algorithms for
convex hulls. Commun. ACM, 25(1):64–68, 1982. doi:10.1145/358315.358392.

4 Timothy M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. Int. J. Comput. Geom. Appl., 12(1-2):67–85, 2002. doi:10.1142/
S0218195902000748.

5 Ovidiu Daescu, Ningfang Mi, Chan-Su Shin, and Alexander Wolff. Farthest-point queries
with geometric and combinatorial constraints. Comput. Geom., 33(3):174–185, 2006. doi:
10.1016/j.comgeo.2005.07.002.

6 Ovidiu Daescu and Ka Yaw Teo. The discrete median and center line segment problems
in the plane. In Meng He and Don Sheehy, editors, Proceedings of the 33rd Canadian
Conference on Computational Geometry, CCCG 2021, August 10-12, 2021, Dalhousie
University, Halifax, Nova Scotia, Canada, pages 312–319, 2021.

7 Tomás Feder and Daniel H. Greene. Optimal algorithms for approximate clustering. In
Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 434–444. ACM, 1988. doi:
10.1145/62212.62255.

8 Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal packing and covering
in the plane are np-complete. Inf. Process. Lett., 12(3):133–137, 1981. doi:10.1016/
0020-0190(81)90111-3.

9 Joachim Gudmundsson, Herman J. Haverkort, Sang-Min Park, Chan-Su Shin, and Alexander
Wolff. Facility location and the geometric minimum-diameter spanning tree. Comput. Geom.,
27(1):87–106, 2004. doi:10.1016/j.comgeo.2003.07.007.

10 John Hershberger and Subhash Suri. Finding tailored partitions. J. Algorithms, 12(3):431–
463, 1991. doi:10.1016/0196-6774(91)90013-O.

11 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM J. Comput., 13(1):182–196, 1984. doi:10.1137/0213014.

Efficiently Enumerating Scaled Copies of Point Set
Patterns
Aya Bernstine1 and Yehonatan Mizrahi2

1 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel
aya.bernstine@mail.huji.ac.il

2 School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel
yehonatan.mizrahi@mail.huji.ac.il

Abstract
Problems on repeated geometric patterns in finite point sets in Euclidean space are extensively
studied in the literature of combinatorial and computational geometry. Such problems trace their
inspiration back to Erdős’ original work on this topic. In this paper, we investigate the problem
of finding scaled copies of any pattern within a set of n points, that is, the algorithmic task of
efficiently enumerating all such copies. We initially focus on one particularly simple pattern of
axis-parallel squares, and present an algorithm with an O(n

√
n) running time and O(n) space for

this task, involving various bucket-based and sweep-line techniques. Our algorithm’s running time is
worst-case optimal, as it matches the known lower bound of Ω(n

√
n) on the maximum number of

axis-parallel squares determined by n points in the plane, thereby solving an open question for more
than three decades of realizing that bound for this pattern. We extend our result to an algorithm
that enumerates all copies, up to scaling, of any full-dimensional fixed set of points in d-dimensional
Euclidean space, that runs in time O(n1+1/d) and space O(n), matching the more general lower
bound due to Elekes and Erdős.

Related Version arXiv:2112.14980

1 Introduction

The problems of geometric point pattern matching and the identification of repeated geometric
patterns are fundamental computational problems with a myriad of applications [11, 9, 1, 13,
10, 7]. Such problems were motivated in part by questions regarding the maximal number
of occurrences of a given pattern determined by a set of points, a field historically inspired
by Erdős’ well-known Unit Distance Problem (1946) regarding the maximal number of unit
distance pairs induced by such sets [6]. Our paper approaches the computational problems
of identifying patterns using computational geometric tools.

In this paper, we analyze the problem of identifying translated and scaled copies of any
point set pattern in Euclidean space, where the scaling is applied identically in all axes. We
begin with focusing on the problem of repeated patterns of squares having axis-parallel edges
in the plane. As articulated in 1990 by van Kreveld and de Berg [12], the maximum possible
number of axis-parallel squares determined by n points in the plane is Θ(n

√
n) (attained, for

example, in a regular
√

n × √
n grid), and those can be enumerated in time O(n

√
n log n)1

and space O(n).

1 The analysis given throughout this paper of time and space complexities is based on the conventional
word-RAM model of computation [8].

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

8:2 Efficiently Enumerating Scaled Copies of Point Set Patterns

They show an extension to full-dimensional axis-parallel d-dimensional hypercubes in
time O(n1+1/d log n), with a gap separating this computational result from the lower bound
of a maximum of Θ(n1+1/d) possible hypercubes. The latter combinatorial result was further
extended by Elekes and Erdős [5], establishing a bound of Θ(n1+1/d) on the maximum
number of copies of any full-dimensional pattern (i.e., a set of points that generates the
vector space) in Qd. The computational aspect of it occurs in [3], providing an algorithm
that works in time O(n1+1/d log n) for the task of enumerating all such copies, exhibiting
the same logarithmic-factor gap between the two results.

1.1 Our Results

Our main result of this paper is an efficient deterministic algorithm that enumerates all scaled
copies of any fixed d-dimensional pattern. The treatment of such general patterns appeared,
e.g., in [3], but [12] were the first to raise the question of whether it is computationally
feasible to realize the combinatorial bound of Θ(n

√
n) possible axis-parallel squares, thereby

improving their algorithmic result. Our algorithm fully answers this question which was open
for more than three decades. To this end, we use in our algorithm a reduction from arbitrary
input points to points having ”compressed” coordinates, allowing the use of linear sorting
methods. Second, we deploy a sweep-line sub-procedure that marks points forming a square,
instead of searching those in a set, avoiding the logarithmic cost. Third, we relabel the sum
and the difference of the input coordinates, in addition to the relabeling of the coordinates
themselves. We show why the last step is crucial for the algorithm to succeed in Section 2.

Theorem: Given a planar set P of points of size n, all axis-parallel squares defined by points
from P can be enumerated in time O(n

√
n) and O(n) space.

Our main result for general patterns relies on the ideas from the previous theorem.
Specifically, we relabel some affine transformations of the input coordinates, a relabeling that
creates a representation of the points for the purpose of sweep-line scanning them.

Theorem: Given a fixed set Q of points of full dimension in the d-dimensional Euclidean
space, and a set P of points of size n, all scaled copies of Q determined by subsets of P can
be enumerated in time O(n1+1/d) and O(n) space.

The running time in this theorem matches the corresponding lower bound of the same
magnitude, and improves the best known running time of O(n1+1/d log n) for the specific
case of d-dimensional hypercubes [12], extended later for general arbitrary patterns [3].
Note that although the improvement suggested is by a logarithmic factor, the upshot is
an asymptotically worst-case optimal algorithm2 in terms of running time analysis, even
for the most general case of arbitrary patterns. This can be compared with [4], where the
authors studied the problem of enumerating all rotated copies of a given pattern, improving
the running time of the trivial algorithm for this task by a logarithmic factor as well. An
excellent survey that covers this variant of our problem can be found in [2].

2 For the task of outputting an explicit representation of all copies of the pattern, rather than some other
representation of this set of copies, that later needs to be further parsed.

A. Bernstine and Y. Mizrahi 8:3

2 Axis-Parallel Squares

In this section, we present an efficient algorithm that reports all axis-parallel squares defined
by a planar set of n points. A relatively efficient algorithm, devised by van Kreveld and de
Berg [12], works as follows (Note that we refer, for any x0, to the set of all points whose x

coordinate is x0, as the ”column” corresponding to x0. Moreover, we refer to columns with
at most

√
n points as ”short columns”).

Squares-Listing(p1, . . . , pn):
1. Build a balanced search tree T and an array A on the input, sorted by the x coordinate.
2. For every pair of points p and q in A residing in a short column, search in T whether they

can be complemented to a square from the right or from the left. Report each square
found unless the other two vertices defining it are on a short column to the left of p and q.

3. Delete all short columns from T and A, and convert each remaining point (x, y) to (y, x).
4. Apply step 2 on the remaining converted points.

It operates correctly with a running time of O(n
√

n log n) and O(n) space, in essence,
since the total number of searched points defined in each of the two iterations of step 2 is

O

(∑

i

s2
i

)
≤ O

(∑

i

si

√
n

)
= O

(
√

n ·
∑

i

si

)
≤ O

(
n

√
n
)

where si denotes the length of the i’th column scanned. Every pair is scanned during its
course, since there are at most n√

n
original long columns (otherwise there are more than

n points), so the length of each column in step 4 is at most n√
n

=
√

n. We strive for an
algorithm with a running time of O(n

√
n) and space O(n). As shown in [12]:

▶ Theorem 2.1. (van Kreveld, de Berg) For a set P of n points in d-dimensional space,
the maximal number of 2d points that are subsets of P and that form the vertices of an
axis-parallel hypercube is Θ(n1+1/d).

This theorem induces a lower bound on the running time of the optimal relevant algorithm.
Our result bridges the gap between this bound, and the previously best known upper bound.

2.1 Main Ideas Towards an Improvement
Assume that all input points have coordinates in {1, . . . , n}. Instead of searching in a set
the two query pairs that complement the pair (x, y), (x, y + δ) to a square, i.e., the pair
(x+δ, y), (x+δ, y+δ) and the pair (x−δ, y), (x−δ, y+δ), we put all query points along with the
original points in an array, apply radix sort on it, treating each point as a two-digit number,
and then scan and mark all positive queries that define the appropriate squares. However,
we cannot generally assume that all coordinates are taken from {1, . . . , n}. We address this
issue by ”shrinking” the coordinates of all input points by relabeling their coordinates to
values in {1, . . . , n}. The main caveat, though, is that arithmetical considerations regarding
labels are invalid. So, we avoid using arithmetic considerations when defining a query pair of
points q1, q2 that complement the pair p1 = (x, y), p2 = (x, y + δ) to a square (from the right,
assuming δ > 0). Instead of using the invalid label x + δ as a coordinate, we define the pair
q1, q2 (with q2 above q1) using identical labels as those of p1, p2. So, the query point q2 is
defined having the same y label as p2 and the same x+y label as p1, with a similar treatment
(using subtraction) for q1. Another observation is that the linear transformation that rotates

EuroCG’22

8:4 Efficiently Enumerating Scaled Copies of Point Set Patterns

a vector (x, y) in the plane by 45o and stretches it by
√

2 yields the vector (x + y, y − x), as
illustrated in Figure 1. So, this process is in fact a labeling of the post-rotated points.

Figure 1 Illustrating the rotation by 45o and the stretch by a factor of
√

2 applied on four points
in the plane. Each point (x, y) was converted to the point (x + y, y − x) as a result.

2.2 The Efficient Solution
Having in mind the main ideas of the following algorithm’s correctness and complexity3, we
are ready to present it fully.

▶ Theorem 2.2. Given a planar set P of points of size n, all axis-parallel squares defined by
points from P can be enumerated in time O(n

√
n) and O(n) space.

Proof. The following algorithm is considered:

Amplified-Squares-Listing(p1, . . . , pn):
1. Change the representation of each point p = (x, y) to the representation (x, y, x+y, y−x).

Map each x coordinate in the input to a value in {1, . . . , n}. Perform a similar procedure
for the y coordinates, the x + y coordinates and the y − x coordinates.

2. Build an array A on the input points, sorted by the x coordinate.
3. For each pair of post-labeled points p1 = (x, y1, x+y1, y1−x) and p2 = (x, y2, x+y2, y2−x)

with y2 > y1, out of the first n pairs of points in A that reside in a short column – define
the query pair q1 = (∗, y1, x + y2, ∗), q2 = (∗, y2, ∗, y1 − x) that complements p1, p2 to a
square from the right, and the query pair q′

1 = (∗, y1, ∗, y2 − x), q′
2 = (∗, y2, x + y1, ∗) that

complements to a square from the left. The wildcards replace the unknown coordinates.
4. Place each query point defined by its y and x + y coordinates in an array B1 along with

all input points, and apply radix sort on B1 based on those two coordinates. Perform a
similar procedure for points of the form of q2 and q′

1 in another array B2.
5. Scan B1 and mark each query point adjacent to an input point sharing the same coordi-

nates, or to an already marked identical query point. Act similarly on B2. Report each
square found during this scanning, unless the other two vertices defining it are on a short
column and complement to a square from the left.

6. Perform steps 3-5 iteratively on each subsequent n pairs of points in A in a short column.
7. Delete all points that are on short columns from A. Convert each remaining point (x, y)

to (y, x). Apply steps 1-6 on the remaining converted points. ◀

3 Some further elaboration and an extended description of those appears in the full version of this paper.

A. Bernstine and Y. Mizrahi 8:5

3 The General Case

In this section, we describe an algorithm that enumerates all scaled copies of any fixed
arbitrary full-dimensional pattern in d-dimensions4. For general patterns, our algorithm
works in time O(n1+1/d) and O(n) space. This answers the open question of realizing the
lower bound of [5].

▶ Theorem 3.1. Given a fixed set Q of points of full dimension in the d-dimensional
Euclidean space, and a set P of points of size n, all scaled copies of Q determined by subsets
of P can be enumerated in time O(n1+1/d) and O(n) space.

Proof. Assume there are more than two pattern points, as the other case is easily handled.
Moreover, assume that no three points in Q are on the same line. Otherwise, perturb Q

and P appropriately so this condition is not met, and apply the inverse perturbation on the
result, to obtain the correct output. The following algorithm is used to prove the theorem:

Amplified-Patterns-Listing(p1, . . . , pn):
1. Rotate the input points and the pattern points simultaneously, such that two of the

pattern points, p and q, share afterwards all coordinates except the last one.
2. For each point r ̸= p, q in Q, define d − 1 hyperplanes of dimension d − 1 that include p

and r, and an additional hyperplane including q and r, altogether defining r uniquely.
Apply each of the d · |Q| transformations corresponding to those hyperplanes on each input
point, and label the resulting values – the augmented coordinates – using {1, . . . , n}.

3. Build an array A on the input points, sorted by all original coordinates by their order.
4. Scan A. For each pair r and t on an axis-parallel line that corresponds to step 1 that also

has at most n1/d points (”short” line), define the other |Q| − 2 points that complement
to a pattern using the labels obtained from step 2, until defining n such sets of queries.

5. Place all query points that are defined by the same augmented coordinates in an array
with all input points, forming several such arrays. Apply radix sort on each such array.

6. Scan each array from step 5, and mark each query point adjacent to an identical input
point or an already marked query point. Report all copies that were found, only after
applying on those the rotation which is inverse to that of step 1.

7. Perform steps 4-6 on each subsequent n pairs of points in A of the form of step 4.
8. Apply steps 2-7 for each pair among the pattern points that determines a line parallel

to that through p and q, excluding enumeration of duplicate copies (similarly to the
identification of duplicate squares). Delete all points on those ”short” lines from step 4.
Apply steps 1-7 on the remainder, for a different pattern pair. Perform d − 1 times.

Analysis: The main ideas already appeared in Section 2. Aside from those ideas, note
that step 2, in fact, defines each point as the intersection of a line and a (d − 1)-dimensional
hyperplane, and since no three points are on the same line, the points are uniquely defined in
that manner. As for the running time, note that steps involving only Q cost O(1). Moreover,
note that there is no remaining long line analyzed at the ultimate iteration. Otherwise,
all points on it are on another long line defined by a linearly independent vector. This
induces more points on a different long line, and so forth, yielding that there are more than(
n1/d

)d = n input points, a contradiction. Other than that, we did not need the lines to be
axis-parallel, but rather merely that the corresponding vectors form an independent set. ◀

4 We individually treat hypercubes in the full version of this paper, as their analysis motivates and
simplifies some of the ideas that lead to the general solution.

EuroCG’22

8:6 Efficiently Enumerating Scaled Copies of Point Set Patterns

4 Conclusion and Further Work

In this paper, we analyzed the problem of enumerating all scaled copies of a pattern in a
set of n points in time O(n1+1/d), answering open questions from [12] and [3] by realizing
the lower bound due to Elekes and Erdős [5]. We relied on some existing ideas, amplified
using bucket-based methods, sweep-line scanning and more. As far as we are aware of,
the combinations of these techniques this way was not noted in the literature so far for
similar tasks. One open question is whether these techniques can be adjusted for different
pattern matching problems. Other questions include whether the task of finding one copy of
a pattern is an easier task than enumerating all copies of it, and similarly for the task of
counting the number of copies instead of outputting them. In addition, the existence of an
output-sensitive algorithm for our problem, and the existence of an efficient enumeration
algorithm for patterns not of a constant size, form another two open questions for further
research.

References
1 M. Alzina, W. Szpankowski, and A. Grama. 2d-pattern matching image and video com-

pression: theory, algorithms, and experiments. IEEE Transactions on Image Processing,
11(3):318–331, 2002.

2 D. Avis, A. Hertz, and O. Marcotte. Graph theory and combinatorial optimization. Springer
Science & Business Media, 2005.

3 P. Braß. Combinatorial geometry problems in pattern recognition. Discrete & Computational
Geometry, 28:495–510, 2002.

4 P. de Rezende and D. Lee. Point set pattern matching in d-dimensions. Algorithmica,
13:387–404, 1995.

5 G. Elekes and P. Erdős. Similar configurations and pseudo grids. Intuitive geometry,
63:85–104, 1994.

6 P. Erdős. On sets of distances of n points. American Mathematical Monthly, 53:248–250,
1946.

7 P. Finn, L. Kavraki, J. Latombe, Rajeev Motwani, C. Shelton, S. Venkatasubramanian, and
A. Yao. Rapid: Randomized pharmacophore identification for drug design. Computational
Geometry: Theory and Applications, 10:324–333, 1997.

8 M. Fredman and D. Willard. Blasting through the information theoretic barrier with fusion
trees. In Proceedings of the twenty-second annual ACM symposium on Theory of Computing,
pages 1–7, 1990.

9 D. Mount, N. Netanyahu, and J. Le Moigne. Efficient algorithms for robust feature matching.
Pattern Recognition, 32(1):17–38, 1999.

10 R. Norel, D. Fischer, H. Wolfson, and R. Nussinov. Molecular surface-recognition by a
computer vision-based technique. Protein engineering, 7:39–46, 1994.

11 G. Schindler, P. Krishnamurthy, R. Lublinerman, Y. Liu, and F. Dellaert. Detecting and
matching repeated patterns for automatic geo-tagging in urban environments. In 2008
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–7, 2008.

12 M. van Kreveld and M. de Berg. Finding squares and rectangles in sets of points. In
Graph-Theoretic Concepts in Computer Science, 1990.

13 V. Zografos and B. Buxton. Affine invariant, model-based object recognition using robust
metrics and bayesian statistics. In Kamel M., Campilho A. (eds) Image Analysis and
Recognition. ICIAR 2005. Lecture Notes in Computer Science, volume 3656, 2005.

Blocking Delaunay Triangulations from the
Exterior∗

Oswin Aichholzer1, Thomas Hackl1, Maarten Löffler2, Alexander
Pilz1, Irene Parada3, Manfred Scheucher4, and Birgit Vogtenhuber1

1 Institute for Software Technology,
Graz University of Technology, Austria,
{oaich,thackl,apilz,bvogt}@ist.tugraz.at

2 Department of Information and Computing Sciences,
Utrecht University, Netherlands,
m.loffler@uu.nl

3 Department of Applied Mathematics and Computer Science,
Technical University of Denmark
irmde@dtu.dk

4 Institut für Mathematik,
Technische Universität Berlin, Germany,
scheucher@math.tu-berlin.de

Abstract
Given two distinct point sets P and Q in the plane, we say that Q blocks P if no two points of P
are adjacent in any Delaunay triangulation of P ∪ Q. Aichholzer et al. (2013) showed that (the
Delaunay triangulation of) any set P of n points in general position (that is, no three collinear and
no four cocircular) can be blocked by 3

2n points and that every set P of n points in convex position
can be blocked by 5

4n points. Moreover, they conjectured that, if P is in convex position, n blocking
points are sufficient and necessary. The necessity was recently shown by Biniaz (2021) who proved
that every point set in general position requires n blocking points.

Here we investigate the variant, where blocking points can only lie outside of the convex hull of
the given point set. We show that 5

4n−O(1) such exterior-blocking points are sometimes necessary,
even if the given point set is in convex position. As a consequence we obtain that, if the conjecture
of Aichholzer et al. for the original setting was true, then minimal blocking sets of some point
configurations P would have to contain points inside of the convex hull of P .

1 Introduction

Delaunay triangulations, Delaunay graphs, Voronoi diagrams (their dual structures), and
various generalizations have been intensively studied in the last century; see for example
the standard textbook in Computation Geometry [6]. A Delaunay triangulation DT (P) of
a given point set P in the plane is a triangulation of P in which for every edge between
two distinct points p1, p2 ∈ P there exists a circle through p1, p2 that contains no point of
P \ {p1, p2} in its interior. An edge spanned by P with this property is called Delaunay edge.
For a point set in general position, that is, no three points of P lie on a common line and no
four points of P lie on a common circle, the Delaunay triangulation is unique. Figure 1(a)

∗ We thank anonymous reviewers for valuable comments. Parada was supported by the Austrian Science
Fund (FWF): W1230 and by Independent Research Fund Denmark grant 2020-2023 (9131-00044B)
“Dynamic Network Analysis”. Scheucher, Parada, and Vogtenhuber were partially supported within the
collaborative D-A-CH project Arrangements and Drawings, by grants DFG: FE 340/12-1 and FWF:
I 3340-N35, respectively. Scheucher was supported by the DFG Grant SCHE 2214/1-1.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

9:2 Blocking Delaunay Triangulations from the Exterior

P

(a)

P
Q

(b)

P
Q

(c)

Figure 1 (a) A set P (blue) of five points in convex position, and its unique Delaunay
triangulation DT (P). (b) A set Q (red) of two points that blocks two of the edges of DT (P).
(c) A set Q of five points from the exterior of conv(P) that blocks P .

shows the unique Delaunay triangulation of a point set in convex position, that is, the points
are the vertices of a convex polygon.

In this article we continue the investigation of blocking points for Delaunay edges. For
two point sets P,Q, we say that Q blocks an edge p1p2 spanned by P if every circle through
p1, p2 contains at least one point of P ∪Q in its interior. Equivalently, p1p2 is not an edge of
any Delaunay triangulation of P ∪Q. We say that Q blocks P if Q blocks all edges spanned
by P . Equivalently, no two points of P are adjacent in any Delaunay triangulation of P ∪Q.
If moreover no point of Q lies in the interior of the convex hull of P , we say that Q blocks P
from the exterior. Figures 1(b) and 1(c) shows examples where Q blocks P .

Aronov et al. [3] showed that every set P of n points in general position can be blocked by
a set of 2n− 2 points, and that, if P is in convex position, 4

3n blocking points are sufficient.
Both of their bounds were improved by Aichholzer et al. [1], who showed that, for general
position, 3

2n blocking points are sufficient, and that, for convex position, 5
4n blocking points

are sufficient. They also showed that n− 1 blocking points are always needed and posed the
following conjecture.

I Conjecture 1.1 ([1]). If P is a set of n points in convex position in the plane, then n

blocking points are necessary and sufficient, that is, every blocking set of P contains at least
n points and this bound is tight.

Biniaz [5] recently strengthened the lower bound by showing that, for every set of n points
in general position, n blocking points are necessary and that there are sets of n points in
convex position which can be blocked by n points. While this confirms the necessity part
from Conjecture 1.1, the question about sufficiency remains open.

For many sets P of n points in convex position, a simple construction suffices to indeed
block all Delaunay edges with exactly n points: place a single point of Q close to the mid
point of each edge of the convex hull of P , on the outer side; see Figure 1(c). Placing the
points arbitrary close to the convex hull edges ensures that all those edges are blocked, and
indeed every convex hull edge requires at least one point somewhere outside the convex hull
to be blocked. Moreover, this simple construction often enough also blocks all interior edges
of DT (P). This may suggest that a similar approach could actually always work.

Inspired by these observations, we investigate the variant where blocking points have
to lie outside of the convex hull of the given n-point set P . We show that 5

4n−O(1) such
exterior-blocking points are sometimes necessary, even if P is in convex position.

I Theorem 1.2. For k ∈ N, there is a set P of 4k points in general position that requires at
least 5k − 5 exterior-blocking points.

Aichholzer, Hackl, Löffler, Pilz, Parada, Scheucher, and Vogtenhuber 9:3

As a direct consequence of Theorem 1.2 we obtain for the original setting that, if
Conjecture 1.1 was true, then minimal blocking sets of certain point sets P would have to
contain points inside of the convex hull of P .

Note that the construction of size b 5
4nc for convex position in [1] might contain interior

points. The reason is that in the induction blocking points placed for a subproblem in the
exterior of an edge (Case (a) in the proof of Theorem 3 in [1]) might end up to be interior
for the overall triangulation. Modifying their approach, a blocking set of size ≈ 4

3n can be
obtained by iteratively cutting ears ((n, 3, 4)-cuts in the terminology of [1]).

2 Proof of Theorem 1.2

To prove Theorem 1.2, we first give a configuration with collinear points in Section 2.1, which
we then perturb in Section 2.2 to obtain a configuration which is in general position.

2.1 Construction with Collinear Points
Our construction consists of k gadgets, each containing 4 points (a top point ti, a left point
`i, middle point mi, and a right point ri, where the latter three are called bottom points),
which gives us a set P0 of n = 4k points in total. We place all 3k bottom points on the
x-axis and all k top points on a line segment (above the x-axis) with negative slope.

. . .

t1

m1`1 r1

t2

m2`2 r2

t3

m3
`3 r3

G
(1)
1F

(1)
1

F
(1)
2 G

(1)
2

H(1)

G
(2)
1

F
(2)
1

F
(2)
2 G

(2)
2 H(2)

G
(3)
1F

(3)
1

F
(3)
2 G

(3)
2

H(3)

Figure 2 An illustration of the point set P0 of size 4k and the set of circles C0 where at least
5k − 3 exterior-blocking points are required. The red, blue, and yellow points and circles illustrate
the first, second, and third gadget of the construction, respectively.

Explicit coordinates for the points {`i,mi, ri, ti} in the i-th gadget are {(−2, 0), (0, 0),
(2, 0), (0, 3)}, scaled by 2−i, and with x-offset of 3 + 14

∑i
j=1 2−j = 3 + 14(1 − 2−i). By

construction, all points have positive x-coordinate, all top points lie on the x-axis, and all
bottom points lie on the line {(x, y) : 3x+ 14y = 51}.

Further, each gadget i with 1 ≤ i < k contains 5 circles and the k-th gadget contains 4
circles, which gives us a set C0 of 5k − 1 circles in total. They are defined as follows:

a circle F (i)
1 through ti and `i, which is tangent to the x-axis in `i;

a circle G(i)
1 through ti and ri, which is tangent to the x-axis in ri,

a circle F (i)
2 with the segment `imi as diameter,

a circle G(i)
2 with the segment miri as diameter; and

a circle H(i) with the segment ri`i+1 as diameter.

EuroCG’22

9:4 Blocking Delaunay Triangulations from the Exterior

See Figure 2 for an illustration of the construction. On each circle, there are exactly two
points of P0 and no circle contains points of P0 in its interior. Further, any two “neighboring”
bottom circles are tangent in their common point of P0, that is, F (i)

2 ∩ G(i)
2 = {mi},

G
(i)
2 ∩H

(i)
2 = {ri}, and H(i)

2 ∩ F
(i+1)
2 = {`i+1}.

It is necessary that each of the circles contains a blocking point of Q in its interior
as otherwise there is an edge in the Delaunay graph of P0 (and hence in any Delaunay
triangulation). For each circle C, we denote the region in the interior of C and in the
exterior of the convex hull of P0 as its blocking area. Note that the circles F (i)

1 and G(i)
1 are

both tangent the x-axis and thus only contain points above the x-axis in their interior, and
that the circles Hi can only be blocked from points below x-axis. Therefore no two circles
(except in the first and last gadget) have a common exterior-blocking area. Therefore, five
exterior-blocking points are required to block all circles of a gadget for 1 < i < k. For the
first and last gadget, 4 and 3 exterior-blocking points are required, respectively. As none of
these points can be used for two gadgets simultaneously, a total of 5k − 3 points is required
to block P0 from the exterior.

2.2 Transformation to General Position
We will slightly perturb the point set P0 such that all points are in convex position. We also
add two more circles for each gadget i with 1 < i < k to the set C0 and remove the circles
F

(i)
1 and G(i)

1 for i = 1, k. We denote the resulting set or circles by C′0. The new circles are
defined as follows; see Figures 3(b) and 3(c) for an illustration.

a circle F (i)
3 through ti and mi, which is tangent to the segment titi+1; and

a circle G(i)
3 through ti and mi, which is tangent to the segment `imi.

area to block

(tiny) area to block

F
(i)
1

ti

`i← ri−1

(a)

area to block

(tiny) area to block

F
(i)
3

ti

mi

(b)

area to block

(tiny) area to block

G
(i)
3

ti

`i mi

(c)

area to block

G
(i)
1

(tiny) area to block

ti

ri `i+1

(d)

Figure 3 The gadget for the general case construction. (a) – (d) show how to align circles (the
red circle is always tangent to the red line) and highlight the exterior blocking area using red arrows.

Note that a circle C through a point p cannot simultaneously be tangent to two line
segments at p with different slopes. Thus, the arguments from Section 2.1 will not apply

Aichholzer, Hackl, Löffler, Pilz, Parada, Scheucher, and Vogtenhuber 9:5

anymore after we perturb P0, because circles F (i)
1 and G(i)

1 will intersect other circles outside
the convex hull of P0. In the following we will deal with this issue.

Transformation. We define P (τ) as the continuous transformation of P0 = P (0) where
all bottom points are transformed as (x, y) 7→ (x, y + τx3) and
all top points are transformed as (x, y) 7→ (x, y − τx3).

The transformation is illustrated in Figure 4.

Figure 4 An illustration of the point set P0 = P (0) and the perturbed set P (τ) for sufficiently
small τ . Note that, if τ is not small enough, the resulting set might not be in convex position and
hence might not have the desired properties .

Analogously, we define C(τ) as the transformation of C′0, which preserves the defined
properties of the circles, where for 1 < i < k, we keep the tangency of F (i)

1 with ri−1`i and
the one of G(i)

1 with ri`i+1. See Figures 3(a) and 3(d). Since all circles in C′0 have finite radii,
we can choose τmax > 0 such that all points of P (τ) are in general position and lie on the
boundary of the convex hull and all circles of C(τ) have finite radii for 0 ≤ τ ≤ τmax. Details
are deferred to the full version; see [2] for a version with appendix.

In the following, we denote by c(C) the center of a circle C and by r(C) the radius of C,
and we define dC,p := ‖p− c(C)‖ − r(C) to indicate whether the point p lies

inside the circle C (dC,p < 0),
on the circle C (dC,p = 0), or
outside the circle C (dC,p > 0).

Since every circle C in C′0 contains exactly 2 points a, b of P0 (and no points of P0 in its
interior), we have dC,a = dC,b = 0 and dC,p > 0 for every other point p of P0. Analogously,
we define dC,p(τ) at time τ . As dC,p(τ) and P (τ) are both continuous functions, there exists
0 < εC,p ≤ τmax such that dC,p(τ) has the same sign for any 0 ≤ τ ≤ εC,p. We remark that
εC,p does not need to be maximal – we just need some εC,p > 0 for our purposes.

Note that in the i-th gadget (1 < i < k) the lower intersection point of the circles F (i)
1

and F (i)
3 (as depicted in Figure 5) lies inside the convex hull of P (τ) at time τ = 0. Moreover,

as this intersection point moves continuously on time, we can choose εi > 0 such that at any
time 0 ≤ τ ≤ εi this intersection point lies inside the convex hull. In an analogous manner,
we can choose ε′i > 0 for 1 < i < k such that at any time 0 ≤ τ ≤ ε′i the lower intersection
point of the circles G(i)

1 and G(i)
3 (as depicted in Figure 5) lies inside the convex hull.

Since we have a finite number of points and a finite number of circles, we can choose a
common ε > 0 small enough such that at any time 0 ≤ τ ≤ ε

every circle in C(τ) contains exactly 2 points of P (τ) (and no point in its interior), and
no two exterior blocking areas overlap for 1 < i < k, except for the blocking areas of F (i)

1
and F (i)

3 on top, and the blocking areas of G(i)
1 and G(i)

3 on top.

EuroCG’22

9:6 Blocking Delaunay Triangulations from the Exterior

G
(i)
1

F
(i)
1

F
(i)
2 G

(i)
2 H(i)

G
(i)
3

F
(i)
3

Figure 5 Analysis of a gadget and its corresponding circles. The colored arrows indicate the
regions of the disks, which can be blocked by exterior points after the perturbation.

Analysis. We first show that two points are required to block the circles F (i)
1 , F (i)

2 , and F (i)
3 .

If F (i)
1 is blocked from above then we need at least a second point to block F (i)

2 . Thus assume
there is no point blocking F (i)

1 from above. Since the above blocking area of F (i)
3 is fully

contained in F (i)
1 , the circle F (i)

3 is also not blocked from above. Since the bottom blocking
areas of F (i)

1 and F (i)
3 are disjoint, at least two blocking points have to be placed in F (i)

2 . As
a consequence, two points are required to block F (i)

1 , F (i)
3 , and F (i)

2 .
In an analogous manner one can show that two points are required to block the circles

G
(i)
1 , G(i)

3 , and G(i)
2 . It is easy to see, that

the union of blocking areas of F (i)
1 , F (i)

3 , and F (i)
2 ,

the union of blocking areas of G(i)
1 , G(i)

3 , and G(i)
2 , and

the blocking area of H(i)

are mutually disjoint. Consequently, at least five exterior blocking points are required for
the i-th gadget (1 < i < k). Further, the blocking areas of the bottom circles of the first and
last gadget (F (1)

2 , G(1)
2 , H(1), F (k)

2 , and G(k)
2) are all disjoint from all other blocking areas.

Hence, at least 5k− 5 points are required in total, which completes the proof of Theorem 1.2.

3 Discussion and Further Related Work.

The idea of blocking points can also be extended to other graph classes. For example, Biedl
et al. [4] investigated blocking sets of so-called Θ6-graphs, a structure related to Delaunay
graphs: In a Θ6-graph of a point set, every pair of points shares an edge if there is an empty
equilateral triangle (instead of an empty disks).

From an algorithmic point of view, we can ask how fast a minimal blocking set can be
computed. For the general problem, where blocking points can also be placed in the interior
of the convex hull of the Delaunay triangulation, this would help to identify cases where
many blocking points are needed. In fact, we tried several approaches to find a set of n
points which requires more than n points to be blocked, but without success. We therefore
would not be surprised if Conjecture 1.1 always holds. But even if Conjecture 1.1 is true,
then there is still the algorithmic question how fast a blocking set of n points can be found.

The anonymous reviewers pointed out that the degenerate construction from Section 2.1
can be improved as follows. By removing the "middle" point mi from gadget i and replacing
the circles F (i)

2 and G(i)
2 by a circle I(i)

2 with the segment `iri as diameter, the constructed set
of 3k points (depicted in Figure 7) requires 4k − 2 exterior-blocking points. However, when
making this construction non-degenerate via a perturbation as in Section 2.2, the number of

Aichholzer, Hackl, Löffler, Pilz, Parada, Scheucher, and Vogtenhuber 9:7

required exterior-blocking points also drops significantly.

I Theorem 3.1. For k ∈ N, there is a set P of 3k points that requires at least 4k − 2
exterior-blocking points.

. . .

t1

`1 r1

t2

`2 r2

t3

`3 r3

G
(1)
1F

(1)
1

I(1) H(1)

G
(2)
1

F
(2)
1

I(2) H(2)

G
(3)
1F

(3)
1

I(3) H(3)

Figure 6 A degenerate construction with 3k points where at least 4k − 2 exterior-blocking
points are required. The red, blue, and yellow points and circles illustrate the first, second, and
third gadget of the construction, respectively.

A reviewer also pointed out that the gadgets in the degenerate construction need not
to be scaled. Figure 7 gives an illustration of the alternative construction. However, when
making this construction non-degenerate via a perturbation as in Section 2.2, the number of
required exterior-blocking points significantly drops because, for 1 < i ≤ k, the circles G(i)

3
can be blocked by points that are to the left of ti and slightly above ti−1ti. Also note that,
in contrast to our construction from Section 2.1, here the four points mi, ti,mj , tj lie on a
common circle for every 1 ≤ i < j ≤ k.

t1

m1`1 r1 m2`2 r2

t2

m3`3 r3

t3

. . .

G
(1)
1F

(1)
1

F
(1)
2 G

(1)
2 H(1)

G
(2)
1F

(2)
1

F
(2)
2 G

(2)
2 H(2)

G
(3)
1F

(3)
1

F
(3)
2 G

(3)
2 H(3)

Figure 7 An alternative construction with isometric gadgets. The red, blue, and yellow points
and circles illustrate the first, second, and third gadget of the construction, respectively.

References
1 Oswin Aichholzer, Ruy Fabila-Monroy, Thomas Hackl, Marc van Kreveld, Alexander Pilz,

Pedro Ramos, and Birgit Vogtenhuber. Blocking Delaunay triangulations. Computational
Geometry: Theory and Applications, 46(2):154–159, 2013. doi:10.1016/j.comgeo.2012.
02.005.

2 Oswin Aichholzer, Thomas Hackl, Maarten Löffler, Alexander Pilz, Irene Parada, Man-
fred Scheucher, and Birgit Vogtenhuber. Blocking Delaunay Triangulations from the

EuroCG’22

9:8 Blocking Delaunay Triangulations from the Exterior

Exterior (with Appendix), 2022. http://page.math.tu-berlin.de/~scheuch/publ/
ahlppsv-bd-eurocg22.pdf.

3 Boris Aronov, Muriel Dulieu, and Ferran Hurtado. Witness (Delaunay) graphs. Computa-
tional Geometry, 44(6):329–344, 2011. doi:10.1016/j.comgeo.2011.01.001.

4 Therese Biedl, Ahmad Biniaz, Veronika Irvine, Kshitij Jain, Philipp Kindermann, and
Anna Lubiw. Maximum matchings and minimum blocking sets in Θ6-graphs. In Graph-
Theoretic Concepts in Computer Science, volume 11789 of LNCS, pages 258–270. Springer,
2019. doi:10.1007/978-3-030-30786-8_20.

5 Ahmad Biniaz. A short proof of the toughness of Delaunay triangulations. Journal of
Computational Geometry, 12:5, 2021. doi:10.20382/jocg.v12i1a2.

6 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications, Third Edition. Springer, third edition, 2008. doi:
10.1007/978-3-540-77974-2.

The Computational Complexity
of the ChordLink Model
Philipp Kindermann1, Jan Sauer2, and Alexander Wolff2

1 Universität Trier, Trier, Germany
kindermann@uni-trier.de

2 Universität Würzburg, Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

Abstract
In order to visualize well-clustered graphs with many intra-cluster but few inter-cluster edges, hybrid
approaches have been proposed. For example, ChordLink draws the clusters as chord diagrams and
embeds these into a node-link diagram that represents the overall structure of the clustered graph.
The ChordLink approach consists of four steps; node replication, node permutation, node merging,
and chord insertion. In this paper, we focus on the optimization problems defined by two of these
steps. We show that the decision version of the problem defined by node permutation is NP-complete
and present an efficient algorithm for a special case. For chord insertion, we show that it is NP-
complete to decide whether a crossing-free placement of the chords exists. Moreover, it is APX-hard
to minimize the number of crossings among the chords. Our results answer an open question posed
by Angori, Didimo, Montecchiani, Pagliuca, and Tappini, who introduced ChordLink [TVCG 2021].

1 Introduction

Node-link diagrams represent an intuitive tool for visualizing graphs. For dense graphs,
however, node-link diagrams tend to degenerate into unintelligible hairballs. Less intuitive,
but more robust visualization paradigms such as adjacency matrices can be a remedy. In
practice, however, large graphs are often “globally sparse” and just “locally dense” [3]. This
is the case, for example, in social networks such as collaboration and financial networks [4],
but also in biological networks [9]. For visualizing such graphs, hybrid representations have
been invented. In intersection-link representations, for example, each vertex is represented
by a geometric object and each each is either represented by a curve connecting the two
objects or, if it belongs to a dense subgraph, by a non-empty intersection of the two objects
[2, 1]. Another example of a hybrid representation is NodeTrix [7], which uses matrices for
dense subgraphs and links between the matrices for the global graph structure. ChordLink,
recently introduced by Angori, Didimo, Montecchiani, Pagliuca, and Tappini [3], combines
very effectively so-called chord diagrams [8] for dense subgraphs, again with links between
them for the overall graph structure. In a chord diagram, each vertex is represented by one
or several circular arcs, and each edge is a chord between any two arcs that represent the
endpoints of the edge. Turning a given node-link diagram into a ChordLink visualization
can, for example, be triggered by a user in an interactive system. We now formalize the
ChordLink model and the four steps that are performed in order to compute a ChordLink
visualization from a node-link diagram. To this end, for a graph G, let V (G) be its vertex
set and let E(G) be its edge set. For a positive integer k, let [k] = {1, 2, . . . , k}.

The ChordLink Model. Given a node-link diagram Γ of a graph G, a cluster C ⊆ V (G),
and a circle R that contains only the vertices in C (at their positions in Γ), a ChordLink
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

10:2 The Computational Complexity of the ChordLink Model

(a) Initial Drawing (b) NodeReplication

(c) NodePermutation (d) NodeMerging+ChordInsertion

Figure 1 The steps of the ChordLink approach (drawings from Angori et al. [3]).

visualization of G locally modifies Γ such that G[C] is drawn as a chord diagram with the
vertices of C on R. There are four steps; see Fig. 1, which treats two clusters simultaneously.

NodeReplication: For each node w ∈ C connected to a node u /∈ C, create a copy wu of w

on the intersection of the edge (w, u) with R, and add the edge (wu, u); see Fig. 1b.
NodePermutation: Copies vu and wu of different nodes v and w that are connected to the

same node u /∈ C can be exchanged in the order of the node copies on R. This step
naturally defines the optimization problem NodePermutation, where the aim is to
find a permutation of the node copies on R that exchanges only copies connected to the
same node outside of R and maximizes the total number of pairs of consecutive copies of
the same node; see Fig. 1c. (The number of such pairs increases by 3 when going from
Fig. 1b to Fig. 1c.)

NodeMerging: Replace each maximal subsequence of consecutive copies of a node w along R

by a circular arc cw; see Fig. 1d.
ChordInsertion: For each edge (v, w) ∈ G[C], select an arc cv representing v and an arc cw

representing w, and insert a chord that connects cw and cz in the interior of R; see
Fig. 1d. Angori et al. [3] suggest to minimize the total number of crossings among
the chords. (They also suggest maximizing the smallest angle formed by any pair of
crossing chords, but we do not consider this here.) This defines the optimization problem
CrossingMinimal ChordInsertion.

For NodePermutation, Angori et al. [3] describe a dynamic program that yields opti-
mal solutions if the node copies that are adjacent to the same external node form intervals
along R. If this condition does not hold, they simply split R into maximal pieces where the
condition does hold and treat each piece seperately, which yields a heuristic overall solution.

For CrossingMinimal ChordInsertion, Angori et al. suggest a greedy algorithm that
first draws the chords whose endpoints are both represented by unique arcs. Then it adds
the other chords one by one, making the currently best choice in terms of crossings (and,
with lower weight, in terms of crossing angles). It draws chords as Bézier curves; see Fig. 1d.

P. Kindermann, J. Sauer, and A. Wolff 10:3

Contribution. First, we prove that NodePermutation is NP-complete; see Section 2.
Then, we give an efficient algorithm for NodePermutation for the special case that the
neighborhood of C contains only two vertices; see Section 3. Finally, we show that (even a
rather special case of) CrossingMinimal ChordInsertion is APX-hard; see Section 4.

2 NP-Completeness of NodePermutation

Above, we have stated NodePermutation as an optimization problem. We now formally
define the corresponding decision problem. In the ChordLink model, for every vertex c in
the cluster C and each neighbor g ̸∈ C of c, a copy of c is placed on the circle R. Since G

is simple, each copy can be described as a unique pair (c, g). Abstracting from the original
problem, we call c the color and g the group of the pair (c, g). This leads to the following
formulation of the problem, where we associate every vertex of C with a distinct color.

Let C be a set of colors, let G be a set of groups, and let L = (L1, . . . , Ln, L1) be a circular
list of distinct pairs where, for i ∈ [n], Li = (ci, gi) ∈ C × G. Define G(L) = (g1, . . . , gn, g1),
C(L) = (c1, . . . , cn, c1), and let N(L) be the number of pairs of consecutive equal entries
of C(L). Given C, G, L, and an integer K > 0, find a permutation π of L such that
(i) G(π(L)) = G(L) and (ii) N(π(L)) ≥ K. Note that requirement (i) ensures that we can
permute only elements of L that belong to the same group.

▶ Theorem 1. NodePermutation is NP-complete.

Proof. The problem is in NP since we can verify a permutation easily.
To show hardness, we reduce from 3SetCover. This problem generalizes Vertex-

Cover in cubic graphs, which is NP-hard [5]. In the decision version of 3SetCover, given
a finite universe U (the edge set of the cubic graph), a family S of size-3 subsets of U (for
each vertex, its three incident edges), and an integer k > 0, the task is to find a subfamily S ′

(corresponding to a vertex cover) of S of size at most k that covers U . (In the special case
of VertexCover, each element of the universe appears in exactly two elements of S.)

Given an instance (U, S, k) of 3SetCover, we construct an instance (G, C, L, K) of
NodePermutation such that one is a yes-instance if and only if the other is a yes-instance.
Let U = {u1, . . . , un}, S = {S1, . . . , Sm}, and, for i ∈ [m], let Si = {ui1 , ui2 , ui3} with
i1, i2, i3 ∈ [n]. To construct an instance of NodePermutation, we use only a single color
c⋆ that appears in more than one entry; all other entries have a unique color. Furthermore,
we have one group for every ui ∈ U , and there is exactly one entry (c⋆, ui), and we have
one additional group z such that there is no entry (c⋆, z); the entries with group z basically
serve as blockers between the gadgets. The full reduction is as follows:

K = n − k,

G = U ∪ {z}, where z /∈ U , and
C = {c⋆} ∪ {c1, . . . , cn} ∪ ⋃m

i=1{ci,1, ci,2, ci,3, ci,4, ci,5}, and
L0 =

(
(c⋆, u1), (c1, z), (c⋆, u2), (c2, z), . . . , (c⋆, un), (cn, z)

)

Li =
(
(ci,1, ui1), (ci,2, ui2), (ci,3, ui3), (ci,4, ui1), (ci,5, z)

)
for each i ∈ [m]

L = L0 ⊕ L1 ⊕ · · · ⊕ Lm, where ⊕ concatenates lists.

Clearly, this reduction can be performed in polynomial time. Intuitively, every sublist Li

that contains a color-c⋆ entry corresponds to a set Si in a solution S ′ of S. If these sublists
contain K consecutive color-c⋆ entries, then there are 2K elements that are covered by K

sets in S ′, so |S ′| ≤ n − K = k.

EuroCG’22

10:4 The Computational Complexity of the ChordLink Model

L0 ︸︷︷︸

︸
︷︷

︸

L1

︸ ︷︷ ︸
L2

︸
︷︷

︸

L3

group z

color c?

colors
unique

U = {4,�,3,D}
S1 = {D,3,�}
S2 = {�,D,3}
S3 = {4,D,�}
k = 2

Figure 2 Here, the reduction from 3SetCover to NodePermutation yields the cover {S2, S3}.

First, we assume that (U, S, k) is a yes-instance of 3SetCover, that is, there is a size-k
subfamily S ′ of S that covers U . We need to construct a permutation π of L such that
(i) G(π(L)) = G(L) and (ii) N(π(L)) ≥ K.

For each j ∈ [n], let i be the index of an arbitrary set in S ′ that contains uj . Swap (c⋆, uj)
in L0 with an entry in Li with group uj . There is a choice only if uj = ui1 . If (ci,2, ui2)
has been or will be swapped with another entry, too, then swap (c⋆, uj) with (ci,1, ui1);
otherwise, swap (c⋆, uj) with (ci,4, ui1). This makes sure that all swapped entries in Li are
consecutive. In total, we make n swaps. In the resulting permutation of L, the elements of
color u form at most k groups of consecutive entries (as S ′ might contain “unnecessary” sets
in the decision version). Hence, the number of pairs of consecutive entries with the same
color c⋆ is at least n − k = K.

Now assume that (G, C, L, K) is a yes-instance of NodePermutation, that is, there is
a permutation π of L such that (i) G(π(L)) = G(L) and (ii) N(π(L)) ≥ K. We have to show
that then (U, S) admits a set cover of size k = n − K. Without loss of generality, we can
assume that π swaps each color-c⋆ element of L0 with a color-c⋆ element of L1 ⊕ · · · ⊕ Lm

(because such a swap does not decrease N(π(L))) and that π does not swap any other entries
of L (because swapping group-z elements does not change N(π(L))). Consider the family S ′

of those sets Si ∈ S such that π modifies Li. We claim that (i) S ′ covers U and (ii) |S ′| ≤ k.
Property (i) holds due to our assumption that π swaps all color-c⋆ entries of L0 with a

sublist Li with i ∈ [m]. Thus, every element of U is contained in an element of S ′. For
property (ii), note that the only pairs of consecutive entries with equal color in π(L) are
pairs of color-c⋆ entries in sublists Li. Among the n color-c⋆ entries, at least K pairs are
consecutive. Let K1, K2 and K3 be the number of sublists Li that contain one, two and three
color-c⋆ entries, respectively. Then we have K2 +2K3 ≥ K and K1 = n−2K2 −3K3. Hence,
the total number of sublists Li that contain at least one color-c⋆ entry is K1 + K2 + K3 =
n − K2 − 2K3 ≤ n − K = k, so |S ′| ≤ k. ◀

3 An Algorithm for a Special Case of NodePermutation

In this section, we describe a linear-time algorithm to solve the optimization version of
NodePermutation for the special case that there are only two groups (but an arbitrary
number of colors). In ChordLink, this means that the cluster C has a neighborhood of size 2.

▶ Theorem 2. NodePermutation can be solved in O(n) time for two groups.

P. Kindermann, J. Sauer, and A. Wolff 10:5

Proof. Let G = {x, y}. The goal is to find a permutation π of L that maximizes N(π(L)).
Recall that the elements of L are pairwise disjoint. Thus, cπ−1(i) = cπ−1(i+1) implies

that gi ̸= gi+1. Since there are only two groups, we have either gi+2 = gi or gi+2 = gi+1, so
cπ−1(i+2) ̸= cπ−1(i+1). Hence, we cannot have cπ−1(i) = cπ−1(i+1) = cπ−1(i+2).

For ◦ ∈ {x, y}, let C◦ be the set of colors ci such that there exists some list element
(ci, ◦), and let S = Cx ∩ Cy. We say that the color cj is assigned to index i if cπ−1(i) = cj .

We can formulate this problem as a maximum independent set problem on a graph G′.
The graph contains a vertex v′

i for every pair of consecutive indices i, i + 1 with gi ̸= gi+1,
and a vertex v′

n if gn ̸= g1. If v′
i, v′

i+1 ∈ V (G′), then E(G′) contains the edge (v′
i, v′

i+1).
Any assignment of colors to K pairs of consecutive indices (i1, i1 + 1), . . . , (iK , iK + 1) with
gi1 ̸= gi1+1, . . . , giK

̸= giK +1 induces an independent set v′
i1

, . . . , v′
iK

in G′.
Hence, if we find an independent set (v′

i1
, . . . , v′

ik
) of size k in G′, then we can find

an assignment of K = min{|S|, k} colors in S to consecutive pairs of indices (i1, i1 +
1), . . . , (iK , iK + 1). By construction, G′ is either a cycle or a linear forest, so we can
find a maximum independent set of G′ in linear time with a simple greedy algorithm. To
obtain a permutation π of L with N(π(L)) = K, we arbitrarily assign the remaining colors
of Cx and Cy to the remaining list elements of types (ci, x) and (ci, y), respectively. ◀

4 APX-Hardness of CrossingMinimal ChordInsertion

In this section, we focus on the optimization problem CrossingMinimal ChordInsertion:
Given a graph G with at least one copy of each of its vertices placed on a circle R, insert
every edge between a copy of each of its endvertices such that the total number of crossings
between the edges is minimized. Since the number of crossings only depends on the order
of the vertex copies along R, we can also assume them to be drawn as points (rather than
circular arcs) on R. We first prove that finding a crossing-free solution is NP-complete.

▶ Theorem 3. It is NP-complete to decide whether a given graph (with node copies on R)
admits a crossing-free solution for ChordInsertion.

Proof. Membership in NP is obvious since we can verify an assignment easily.
To show hardness, we reduce from SAT. Let (X , C) be a SAT instance with variables

X = X0, . . . , Xn and clauses C = C0, . . . , Cm. We create a graph G as follows. The vertex
set V (G) consists of (i) a vertex s; (ii) for every clause Ci a clause vertex ci; and (iii) for
every variable Xj two variable vertices xj and yj . The edge set E(G) consists of (i) for every
clause Ci a clause edge (s, ci); and (ii) for every variable Xj a variable edge (xj , yj). For
every variable Xj , let Tj be the set of clauses that contain the literal Xj , and let Fj be the
set of clauses that contain the literal ¬Xj .

To create an instance I of ChordInsertion, we place copies of the vertices of V (G)
along R as follows. We start with the vertex s, and then append for every variable Xj (i) one
copy yF

j of yj , (ii) for every clause Ci ∈ Tj a copy cj
i of ci, (iii) the vertex xj , (iv) for every

clause Ci ∈ Fj a copy cj
i of ci, (v) a second copy yT

j of yj ; see Fig. 3. Observe that, by the
placement of the vertices along R, the only crossings that can occur are between a clause
edge (s, ci) and a variable edge (xj , yj) such that clause Ci contains variable Xj .

Assume that I is a yes-instance, i.e., it admits a crossing-free drawing Γ. For every
variable Xi, Γ must contain either the chord (x, yF

i) or the chord (x, yT
i); see Fig. 4.

Consider a clause Ci. In Γ, there has to be one chord between s and one of the copies
of ci. Consider any literal Xj contained in Ci. Then, the edge (s, ci) can be drawn as
the chord (s, cj

i) only if Γ contains the chord (xi, yT
i); otherwise, there would be a crossing

EuroCG’22

10:6 The Computational Complexity of the ChordLink Model

Xj = false Xj = true

s

yTj

xjyFj
cjk

cji

s

yTj

cjk

xj
cjiyFj

s

yTj

xjyFj
cjk

cji

Figure 3 Illustration for the part corresponding to variable Xj in the reduction from SAT to
ChordInsertion for the formula ci ∧ ck ∧ · · · = (Xj ∨ . . .) ∧ (Xj ∨ . . .) ∧

s

yF3

yT3

yF4

x4

yT4yF5

x5

yT5

x3

yF1

yT1

x1

yF2

yT2

x2

c11

c12

c24 c21 c23

c31
c32

c34

c42

c43c53
c54

C1 = X1 ∨X2 ∨X3

C2 = X1 ∨X3 ∨X4

C3 = X2 ∨X4 ∨X5

C4 = X2 ∨X3 ∨X5

Figure 4 Example of the reduction from SAT to ChordInsertion

between (s, cj
i) and (xi, yF

i). Conversely, for any literal ¬Xj contained in Ci, the edge (s, ci)
can be drawn as the chord (s, cj

i) only if Γ contains the chord (xi, yF
i). Hence, for the edge

(s, ci) to be drawn in Γ, for at least one of its literals Xj there must be the chord (xj , yT
j),

or for at least one of its literals ¬Xj there must be the chord (xj , yF
j).

Thus, we can obtain a feasible solution for the SAT instance (X , C) as follows: if Γ
contains the chord (xj , yT

j), then set Xj = true, otherwise (Γ contains the chord (xj , yF
j)),

set Xj = false. Since every edge (s, ci) is drawn as a chord in Γ, at least one literal in
every clause Ci must be true, so the solution is feasible.

Conversely, if (X , C) is a yes-instance, then we can obtain a crossing-free drawing Γ for I

by using the chord (xj , yj)T for every true variable Xj , the chord (xj , yi)F for every false
variable Xj , and a chord (s, cj

i) for every clause Ci with satisfied literal Xj . ◀

In the above proof we reduced from SAT. If we instead reduce from Max-2-SAT, which
is APX-hard [6], we can show that our problem is even APX-hard.

▶ Theorem 4. CrossingMinimal ChordInsertion is APX-hard even if there are at most
two possible choices for every edge.

References

1 Patrizio Angelini and Giordano Da Lozzo. Beyond clustered planar graphs. In Seok-Hee
Hong and Takeshi Tokuyama, editors, Beyond Planar Graphs: Communications of NII
Shonan Meetings, pages 211–235. Springer, 2020. doi:10.1007/978-981-15-6533-5_12.

P. Kindermann, J. Sauer, and A. Wolff 10:7

2 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Intersection-link representations of graphs. J. Graph Algorithms
Appl., 21:731–755, 2017. doi:10.7155/jgaa.00437.

3 Lorenzo Angori, Walter Didimo, Fabrizio Montecchiani, Daniele Pagliuca, and Alessan-
dra Tappini. Hybrid graph visualizations with ChordLink: Algorithms, experiments,
and applications. IEEE Trans. Vis. Comput. Graphics, 28(2):1288–1300, 2020. URL:
https://arxiv.org/abs/1908.08412, doi:10.1109/TVCG.2020.3016055.

4 Punam Bedi and Chhavi Sharma. Community detection in social networks. Wiley Inter-
discip. Rev. Data Min. Knowl. Discov., 6(3):115–135, 2016. doi:10.1002/widm.1178.

5 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-
complete problems. In Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle, and
Michael A. Harrison, editors, Proc. 6th Ann. ACM Symp. Theory Comput. (STOC), pages
47–63, 1974. doi:10.1145/800119.803884.

6 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

7 Nathalie Henry Riche, Jean-Daniel Fekete, and Michael McGuffin. Nodetrix: A hybrid
visualization of social networks. IEEE Trans. Vis. Comput. Graphics, 13(6):1302–1309,
2007. doi:10.1109/TVCG.2007.70582.

8 Martin Krzywinski, Jacqueline Schein, Inanç Birol, Joseph Connors, Randy Gascoyne,
Doug Horsman, Steven J. Jones, and Marco A. Marra. Circos: An information aesthetic
for comparative genomics. Genome Res., 19(9):1639–1645, 2009. doi:10.1101/gr.092759.
109.

9 Hassan Mahmoud, Francesco Masulli, Stefano Rovetta, and Giuseppe Russo. Community
detection in protein-protein interaction networks using spectral and graph approaches. In
Enrico Formenti, Roberto Tagliaferri, and Ernst Wit, editors, Proc. 10th Int. Meeting
Comput. Intell. Methods for Bioinf. Biostat. (CIBB), volume 8452 of Lect. Notes Comput.
Sci., pages 62–75. Springer, 2013. doi:10.1007/978-3-319-09042-9_5.

EuroCG’22

Unfolding the Simplex and Orthoplex
Satyan L. Devadoss1 and Matthew Harvey2

1 University of San Diego
devadoss@sandiego.edu

2 The University of Virginia’s College at Wise
msh3e@uvawise.edu

Abstract
Over a decade ago, it was shown that every edge unfolding of the Platonic solids was without self-
overlap, yielding a valid net. We consider this property for regular polytopes in higher dimensions,
notably the simplex, the cube, and the orthoplex. It was recently proven that all unfoldings of the
n-cube yield nets. We show that this property holds for the n-simplex and the 4-orthoplex but fails
for any orthoplex of higher dimension.

Related Version arXiv:2111.01359

1 Introduction

The study of unfolding polyhedra was popularized by Albrecht Dürer in the early 16th century
who first recorded examples of polyhedral nets, connected edge unfoldings of polyhedra that
lay flat on the plane without overlap. Motivated by this, Shephard [7] conjectures that
every convex polyhedron can be cut along certain edges to admit a net. This claim remains
tantalizingly open and has resulted in numerous areas of exploration.

We consider this question for higher-dimensional polytopes: The codimension-one faces
of a polytope are facets and its codimension-two faces are ridges. The analog of an edge
unfolding of polyhedron is the ridge unfolding of an n-dimensional polytope: the process
of cutting the polytope along a collection of its ridges so that the resulting (connected)
arrangement of its facets develops isometrically into an Rn−1 hyperplane. In our work,
instead of trying to find one valid net for each convex polyhedron (as posed by Shephard),
we consider a more aggressive property:

I Definition. A polytope P is all-net if every ridge unfolding of P yields a valid net.1

A decade ago, Horiyama and Shoji [4] showed that the five Platonic solids are all-net. Figure 1
shows the 11 different unfoldings (up to symmetry) of the octahedron, all of which are nets.
The higher-dimensional analogs of the Platonic solids are the regular polytopes. Three classes
of regular polytopes exist for all dimensions: the n-simplex, n-cube, and n-orthoplex.2 It was
recently shown that the n-cube is all-net [2]. We prove that the n-simplex and 4-orthoplex
are as well. Surprisingly, for all n > 4, the n-orthoplex fails to be all-net.

I Remark. Sam Zhang [9] has built a lovely interactive software that creates every net of the
4-cube, 4-simplex, and 4-orthoplex by drawing spanning trees on its dual 1-skeleton.

1 This nomenclature comes from Joe O’Rourke: a basketball “all-net” shot scores by not touching the
rim, as all unfoldings become successful nets by facets not overlapping and touching each other.

2 The orthoplex is dual to the cube and is sometimes called the cross-polytope or the cocube.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

11:2 Unfolding the Simplex and Orthoplex

Figure 1 The 11 nets of the octahedron, also known as the 3-orthoplex.

2 Unfolding the Simplex

We explore ridge unfoldings of a convex polytope P by focusing on the combinatorics of the
arrangement of its facets in the unfolding. In particular, a ridge unfolding induces a spanning
tree in the 1-skeleton of the dual of P : a tree whose nodes are the facets of the polytope and
whose edges are the uncut ridges between the facets [6]. Our focus throughout this paper will
be on the n-simplex and the n-orthoplex, both of whose facets are (n− 1)-simplices. First,
we study paths in the 1-skeleton, corresponding to a chain of unfolded simplicial facets.

I Definition. A list L = 〈a1, a2, . . . , ak〉 is a sequence of numbers from {1, . . . , n} (possibly
with repeats) where no number is listed twice in a row.

Label the vertices of the (n− 1)-simplex S with the numbers 1, . . . , n. Given a list L with
k elements, we construct a chain C(L) of k + 1 simplices from the list as follows: Starting
with S = S1, attach a simplex S2 to S1 on the facet of S1 that is opposite vertex a1. Note
that all but one of the vertices of S2 will inherit a label from S1 and we label the remaining
one a1. Attach a third simplex S3 to S2 on the facet opposite vertex a2, and extend the
labeling from S2 to S3 as before, and continue in this matter until the list is exhausted.
Figure 2 shows this process in action for the list 〈3, 2, 3〉, creating a chain of four 2-simplices.

1

2

3

1

1

2

2

3

3

1

1

1

2

2

2

3

3

3

1

1

1 1

2

2

2 2

3

3

3 3

3 2 3

Figure 2 The chain of simplices assembled from the list 〈3, 2, 3〉.

We now introduce a coordinate system to capture the geometry. Begin by placing the
n vertices of the (n − 1)-simplex S at the standard basis vectors ei of Rn. Note that the
coordinates of its vertices are recorded as the column vectors of the n× n identity matrix.
The rest of the chain is then placed in the hyperplane x1 + · · ·+ xn = 1 by a sequence of
reflections. Let ρ denote the reflection of S across its facet opposite the vertex (say v) labeled
with number a1. Thus, ρ fixes all vertices except for v; see Figure 3.

S. Devadoss and M. Harvey 11:3

Figure 3 The reflection of the vertex across the opposite face.

To calculate the coordinate of ρ(v) in Rn, we first find the center σ of the facet opposite v,
given by σ = 1/(n− 1) · (1, . . . , 0, . . . , 1), where 0 occurs in the a1-th coordinate. Since σ
bisects the segment from v to ρ(v),

ρ(v) = v + 2
−−−→
v ρ(v) = (0, . . . , 1, . . . 0) + 2

(
1

n− 1 , . . . ,−1, . . . , 1
n− 1

)
,

where the −1 occurs in the a1-th coordinate. Hence the reflection ρ is given by a matrix
Ma1 , which is the identity except for ρ(v) in the a1-th column. Thus the coordinates of the
i-th vertex of S2 are recorded in the i-th column vi of N1 = Ma1 . By change of coordinates,
its image under the reflection from S2 to S3 is

N1Ma2N
−1
1 vi = N1Ma2ei ,

and thus, the coordinates of the i-th vertex of S3 are recorded in the i-th column of
N2 = N1Ma2 . Note that because Ma2 affects only the a2 column, N1 and N2 differ only in
the a2 column. Continuing in this way, the vertices of Sk+1 are recorded as the columns of
Nk = Nk−1Mak

.
An n-simplex has n+ 1 facets, and each is adjacent to every other. Thus, any listing of

the facets (without repeat) describes a chain. However, because the full symmetric group
acts transitively on the simplex, there is essentially only one chain, say 〈1, 2, . . . , n〉. Since
the first facet is exactly the portion of

∑
xi = 1 that lies in the first orthant, a subsequent

facet will only intersect the first if it contains a point that has all positive coordinates. This
never happens, and a detailed proof is given in [3, Section 2.3]. Hence:

I Theorem 1. Every unfolding of the n-simplex yields a net.

3 Orthoplex Combinatorics and Geometry

In contrast to the simplex, both the unfoldings of the n-orthoplex and the chains within these
unfoldings exhibit considerable variety. Unfoldings of the n-orthoplex are in bijection with
spanning trees of the 1-skeleton of the n-cube. Consider the following approach to record
paths on this skeletal structure: Position the n-cube with antipodal vertices at (0, . . . , 0)
and (1, . . . , 1). A path along the edges of this cube is encoded as a list of binary numbers
(sometimes called a Gray code) where exactly one digit changes from one entry to the next.
For our work, our list L simply records the digit entry that changes in moving from one
vertex to another. By duality, the ridges of the orthoplex inherit these labels and the process
of unfolding the chain corresponds to the construction of C(L).

EuroCG’22

11:4 Unfolding the Simplex and Orthoplex

I Example. Consider the Gray code 〈101, 100, 110, 111〉 associated to the list 〈3, 2, 3〉. Fig-
ure 4(a) shows the path on four vertices of the cube, (b) corresponding to four adjacent facets
of the octahedron, (c) resulting in a partial chain unfolding. Compare to Figure 2.

(a) (b) (c)

100

110 111

101

z

y

x

100

110

111
101

Figure 4 Path on the 3-cube and a partial unfolding of the octahedron.

I Remark. Up to symmetry, there are just three spanning paths on the 1-skeleton of the
3-cube: 〈1, 2, 1, 3, 1, 2, 1〉, 〈1, 2, 1, 3, 2, 1, 2〉, and 〈1, 2, 3, 2, 1, 2, 3〉, corresponding to the first
three highlighted nets shown in Figure 1. The situation escalates rapidly as n increases:
there are 238 spanning paths on the 4-cube and 48,828,036 on the 5-cube [5].

I Definition. A list of numbers from {1, . . . , n} is valid if it corresponds to a path on the
n-cube.

A list is valid as long as the route it describes on the cube does not cross itself, which can be
characterized as follows:

I Lemma 2. A list is valid if and only if it contains no sublist of consecutive entries in
which each entry occurs an even number of times.

I Remark. With this characterization, it is straightforward to create an algorithm to
build valid lists: recursively append numbers {1, . . . , n} and check whether any of the new
consecutive sublists have entries that occur an even number of times.

The question of whether two facets overlap depends on how close they are to each other,
which can be estimated by calculating the distance between their centroids. If the vertices
are vi = (ai1, . . . ain), the centroid is found by averaging their coordinates:

(
1
n

∑
a1j , . . . ,

1
n

∑
anj

)
.

It is straightforward to calculate the necessary distances:

I Lemma 3. Let d denote the distance between the centroids of two (n− 1)-simplex facets
of the n-orthoplex in an unfolding. If d < 2/

√
n(n− 1), the facets must intersect. If

d > 2
√

(n− 1)/n, the facets cannot intersect.

4 Orthoplex Unfolding

This section proves that the 4-orthoplex is all-net. We do this by extending paths on the
skeleton of the 4-cube. While any path along a 3-cube can always be extended to a spanning
path, this is not true for n ≥ 4. For example, Figure 5(a) shows the 1-skeleton of the 4-cube,
and the blue path shown in (b) cannot be extended further.

S. Devadoss and M. Harvey 11:5

(a) (b)

Figure 5 A path in the 4-cube that cannot be further extended.

Notice that a path can no longer be extended only when it has already crossed through
all vertices adjacent to its two endpoints. Each vertex of the 4-cube is adjacent to four others,
so roughly speaking, we might expect a path to pass through eight additional points before
reaching its end. It is not quite this simple, because some of these points may overlap, but
by considering the possible configurations, we arrive at a slightly weaker result.

I Lemma 4. A path on the skeleton of the 4-cube can be extended to connect at least nine
vertices.

Rephrasing Lemma 4, any valid list can be extended to a valid list with at least eight
entries. There are relatively few valid lists with eight entries, and by direct inspection it can
be seen that they all yield nets, so:

I Lemma 5. Every valid list containing exactly eight entries unfolds to form a partial net
of the 4-orthoplex.

Figure 6 The partial unfolding corresponding to a valid list with length eight.

In unfoldings corresponding to longer lists, individual facets may be separated by more
than eight facets. In these cases, we can calculate the distance between centroids. In every
case, the distance is large enough to guarantee that the facets do not intersect, so:

I Lemma 6. If two facets of the 4-orthoplex are separated by eight or more facets, they
cannot overlap.

EuroCG’22

11:6 Unfolding the Simplex and Orthoplex

Buekenhout and Parker [1] enumerate 110,912 ridge unfoldings of the 4-orthoplex. The
following guarantees that they are all valid nets.

I Theorem 7. The 4-orthoplex is all-net.

Proof. If there were an unfolding that did not yield a net, then there would be a path
between two of its overlapping facets. By Lemma 6, those facets must be separated by fewer
than eight intervening facets along the path, corresponding to a valid list L whose length is
at most eight. By Lemma 4, that list can be extended to one whose length is exactly eight.
As described in Lemma 5, none of the unfolds generated by these lists exhibit overlap. J

Moving to higher dimensions, although the n-cube is all-net [2], its dual is not:

I Theorem 8. For each n > 4, the n-orthoplex is not all-net.

Proof. In dimensions 5 – 9, specific lists demonstrate overlap using centroid arguments:

dim. 5 : 〈1, 2, 3, 4, 2, 1, 5, 4, 2, 4, 5, 4, 2, 1, 5, 4, 3, 1, 5〉
dim. 6 : 〈1, 2, 3, 1, 4, 5, 4, 3, 5, 4, 1, 3, 2, 1, 4〉
dim. 7, 8 : 〈1, 2, 3, 4, 1, 5, 3, 5, 4, 3, 2, 1〉
dim. 9 : 〈1, 2, 3, 4, 2, 4, 1, 2, 3〉.

It turns out that the dimension 9 example fails to unfold to a net for any n > 9. However,
in higher dimensions, the centroid measurements become less robust. Instead, we return to
the idea used in the simplex proof. It suffices to show that a point in the tenth facet has all
positive coordinates. The point v = 1/(n− 1)〈1, 0, 1, 1, . . . , 1〉 is the midpoint of the ridge of
the first facet. It can be shown that its image

M1 ·M2 ·M3 ·M4 ·M2 ·M4 ·M1 ·M2 ·M3 · v

in the tenth facet has all positive coordinates. Details are provided in [3, Section 4.3]. J

There are only three additional regular polytopes whose all-net property has not been
studied, all of which are four-dimensional: the 24-cell, 120-cell, and 600-cell. The number of
distinct unfoldings of these three polytopes are enumerated in [1]:

24-cell : 6 (219 · 5688888889 + 347)
120-cell : 27 · 52 · 73 (2114 · 378 · 520 · 733 + 247 · 318 · 52 · 712 · 535 · 23113 + 2392 · 39312)
600-cell : 2188 · 3102 · 520 · 736 · 1148 · 2348 · 2930

The unfolding enumerations for these three exceptional polytopes encourage us to conjecture
that all of them will fail to be all-net.
I Acknowledgments. We thank Nick Bail, Zihan Miao, Andy Nelson, and Joe O’Rourke for
helpful conversations. The first author was partially supported by an endowment from the
Fletcher Jones Foundation.

References

1 F. Buekenhout and M. Parker. The number of nets of the regular convex polytopes in
dimension ≤ 4, Discrete Mathematics 186 (1998) 69–94, doi:10.1016/S0012-365X(97)
00225-2.

S. Devadoss and M. Harvey 11:7

2 K. DeSplinter, S. Devadoss, J. Readyhough, B. Wimberly. Unfolding cubes: nets, packings,
partitions, chords, Electronic Journal of Combinatorics 27 (2020) 4–41, doi:10.37236/
9796.

3 S. Devadoss and M. Harvey. Unfoldings and nets of regular polytopes, arXiv:2111.01359.
4 T. Horiyama and W. Shoji. Edge unfoldings of Platonic solids never overlap, Canadian

Conference on Computational Geometry (2011).
5 Online Encyclopedia of Integer Sequences. https://oeis.org/A342631.
6 G. Shephard. Angle deficiencies of convex polytopes, Journal of the London Mathematical

Society 43 (1969) 325–336, doi:10.1112/jlms/s1-43.1.325.
7 G. Shephard. Convex polytopes with convex nets, Mathematical Proceedings of the Cam-

bridge Philosophical Society 78 (1975) 389–403, doi:10.1017/s0305004100051860.
8 Sympy: Open source Python library. https://www.sympy.org/.
9 S. Zhang. Unfolding software. https://sam.zhang.fyi/html/unfolding/index.html.

EuroCG’22

Explicit Dynamic Schnyder Woods Require Linear
(Amortized) Update Time ∗

Aleksander B. G. Christiansen1, Jacob Holm2, Eva Rotenberg1, and
Carsten Thomassen1

1 Technical University of Denmark, Lyngby, Denmark
{abgch,erot,ctho}@dtu.dk

2 University of Copenhagen (DIKU), Copenhagen, Denmark
jaho@di.ku.dk

Abstract
In the dynamic edge orientation problem, the usual goal is to orient edges in a way that bounds
the maximum out-degree as the graph is subject to insertions and deletions of edges. Brodal &
Fagerberg showed that explicitly maintaining an α-bounded out-degree orientation for dynamic
graphs of arboricity α requires amortized linear update time [8]. While all planar graphs have
arboricity ≤ 3, the construction in [8] is nonplanar. We show that the same lower bound holds for
dynamic planar graphs. This immediately implies that one cannot hope to explicitly maintain a
dynamic Schnyder wood of a graph with sub-linear amortized update time.

Related Version Partially based on the master’s thesis by Christiansen [9, Chapter 3].

1 Introduction

The study of Schnyder woods began with Schnyder’s result on realizers [24]; He showed that
every planar graph on at least 3 vertices admits a straight-line embedding in the (n − 2)
by (n − 2) grid, and that this embedding can be computed in linear time. Soon a plethora
of applications of Schnyder woods were established: From graph drawing and dimension
theory [3, 13, 14] to combinatorics and algorithmics [4, 22] and the list continues. See, for
instance, Bhore et al. [2] for a more in-depth overview. Schnyder showed that every plane
triangulation admits a decomposition of its inner edges, i.e. those not incident to the outer
face, into three forests. He called such a decomposition a realizer. The three forests have
since then commonly been referred to as Schnyder woods.

A 3-orientation of a plane graph is an orientation of the inner edges such that all vertices
have out-degree 3. A realizer (see Figure 1) of a plane graph is then a 3-orientation together
with a 3-edge colouring (with colours, say, ci, i ∈ Z/3) of all of the inner edges such that:

Every inner vertex has an out-edge coloured c0, c1 and c2.
The colours of the out-edges incident to an inner vertex v always appear in the same
counter-clockwise ordering (say c0, c1, c2).
In-edges of colour ci appear exactly between the out-edges of colour ci+1 and ci+2

Brehm [7], Mendez [21] and Bonichon et al. [5] studied different notions of flips that
move one Schnyder wood to another. One of the flips they studied is the diagonal flip, on
which there is a rich body of research on in its own - both in the combinatorial setting and
in the geometrical setting, where the graphs are embedded in the plane. A diagonal flip

∗ Partially supported by Independent Research Fund Denmark grant 2018-2021 (8021-00249B), “Algo-
Graph”, the VILLUM Foundation grant 16582, “BARC”, and the VILLUM Foundation grant 37507,
“Efficient Recomputations for Changeful Problems”.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

12:2 Explicit Dynamic Schnyder Woods Require Linear Update Time

Figure 1 The local structure at a vertex (left), and an example of a realizer (right).

in a triangulation is the action of removing an edge xy incident on faces xyz and vxy and
replacing it with the edge vz (see Figure 2, left). These flips also move one realizer to another.
Wagner [26] initiated this study by showing that one can go from any triangulation to another
using only diagonal flips. See, for example, [6] for a review of the literature on flips. Finally,

Figure 2 A diagonal flip (left). Coloured flips (right) w.r.t. the specified orientations [2].

Bhore et al. [2] studied certain diagonal flips called coloured flips (Figure 2, right). There
are two types of coloured flips in a plane triangulation G: 1) in a quadrilateral vyzx with
diagonal vz oriented from v to z and coloured, say, ci, yv oriented from y to v and coloured
ci+1 and yx /∈ G, we can remove vz and insert yx oriented from y towards x coloured ci+1
and reorient yv to be oriented from v towards y and colour it ci, 2) a symmetrical version if
xv is oriented from x towards v (see for example [2]). Bhore et al. [2] show that one can go
between any two plane triangulations using only coloured flips. They also give a dynamic
algorithm able to maintain a Schnyder wood over a sequence of coloured flips in O(log n)
time per flip. Note that there exist diagonal flips which are not coloured flips, and while
they can be simulated by a sequence of coloured flips [2], as we shall later see, this sequence
may have length Ω(n).

Dynamic planar graphs have been studied both in the incremental (edge-insertion only)
[10, 17, 23, 27] and fully-dynamic (insertion/deletion) setting [11, 12, 15, 16, 18]. The
existence of efficient algorithms for testing planarity of a fully-dynamic graph [12, 16]
motivate efforts to dynamically maintain well-known properties of planar graphs, such as e.g.
bounded out-degree orientations, colourings, and Schnyder woods.

A k-bounded out-degree orientation of a graph is an orientation of the edges s.t. every
vertex v has out-degree d+(v) ≤ k (here d+(v) denotes the out-degree of v). It is implicit
if querying an edge-orientation requires computation, and explicit otherwise. Maintaining
bounded out-degree orientations of dynamic graphs is well-studied [1, 8, 19, 20, 25]. Brodal
& Fagerberg showed [8] that it takes linear (even amortized) update time to maintain an
explicit α-bounded out-degree orientation of dynamic graphs with arboricity ≤ α. We show
that this explicit lower bound carries over to planar graphs: one cannot explicitly maintain a
3-bounded out-degree orientation of a fully-dynamic planar graph with sublinear update-time.

A. B. G. Christiansen, J. Holm, E. Rotenberg, C. Thomassen 12:3

This immediately implies that one cannot maintain explicit Schnyder woods of a dynamic
planar graph even if one gets to choose and change the embedding with respect to which the
Schnyder woods are computed.

2 Preliminaries

Fraissex & Mendez and Brehm studied 3-orientations [7, 21]. Brehm showed that a plane
triangulation has a unique 3-orientation if and only if it is stacked which is equivalent to
being 3-degenerate - the property that every subgraph contains a vertex of degree at most 3.
In fact this can be slightly generalised - and we will use this slight generalisation later on,
when dealing with graphs where no embedding is specified. The proof of the generalisation
is similar, so we only provide a sketch:

▶ Lemma 2.1. ([7]) Let G be a plane triangulation with a 3-bounded out-degree orientation
O. Let x, y, z form a triangle in G, and let H be a component of G − {x, y, z}, such that
d+

G(v) = 3 for all v ∈ H. Then the restriction of any 3-bounded out-degree orientation of G

to all edges incident to H is unique if and only if G[H ∪ {x, y, z}] is 3-degenerate.

Proof. (Sketch): A counting argument shows that all edges between H and x, y, z are oriented
away from H. Indeed, G[H ∪ {x, y, z}] is planar and so contains at most 3(|H| + 3) − 6 edges.
3 of these go between x, y, z, so the remaining 3|H| edges must be out-edges of vertices in H.

Next, we show that the restriction of any 3-bounded out-degree orientation O to H

is unique iff it is acyclic. Indeed, suppose it is not acyclic. Then it has a directed cycle.
Flipping the orientation along this cycle creates a new 3-bounded out-degree orientation
with a different restriction. The other direction is as follows: suppose that there exists
an orientation for which the restriction to H is acyclic, but that this restriction is not
unique. Comparing two such restrictions gives an edge which is oriented differently in the
two orientations. Now, since every point has out-degree 3 an endpoint cannot be incident to
only one such edge, so there is a new edge - oriented differently by the two orientations -
that one can follow. Continuing like this eventually gives you a directed cycle in H as, by
above, one never reaches x, y, z. This is a contradiction.

The Lemma then follows by noting that having an acyclic 3-bounded out-degree orientation
is equivalent to being 3-degenerate. Indeed, beginning at an arbitrary vertex in H and
following incoming edges backwards ensures that one ends up in a source in H. This source
has degree at most 3. We can remove this vertex and apply induction to see that any
subgraph not containing this vertex also has a vertex of degree at most 3. The other direction
follows, since the 3-degeneracy implies that in any non-empty subgraph S ⊂ H one can
always find a v ∈ S of degree 3 in G[S ∪ {x, y, z}]. Beginning from H one can remove such a
vertex and orient its incident edges so that it becomes a source. Continuing like this never
creates cycles and therefore yields an acyclic 3-bounded out-degree orientation. ◀

3 Explicit lower bounds

Since Schnyder woods are defined with respect to particular embeddings, we shall give a
more general explicit lower bound on maintaning 3-bounded out-degree orientations in planar
graphs. Since any Schnyder wood trivially gives a 3-bounded out-degree orientation (the
outer edges can be oriented arbitrarily), this implies that we cannot maintain a dynamic
Schnyder wood - even if the embedding is allowed to change. We give this lower bound by
first considering explicit 3-orientations in plane graphs. We have the following Lemma:

EuroCG’22

12:4 Explicit Dynamic Schnyder Woods Require Linear Update Time

▶ Lemma 3.1. Let A be an algorithm explicitly maintaining a 3-orientation of an n-vertex
plane triangulation under diagonal flips. Then the flip operation can be forced to spend Ω(n)
update time, even when considering amortized complexity.

Proof. Consider the following plane triangulation (see Figure 3) containing a path s1, s2, · · · , sk

of length k = n − 5 = Ω(n). The plane triangulation is 3-degenerate, and hence by Lemma
2.1, it has a unique 3-orientation: By diagonal flipping the edge uv and subsequently the

Figure 3 The plane triangulation along with its unique 3-orientation.

edge s1x, one gets a new plane triangulation. It is again 3-degenerate, and hence by Lemma
2.1 it has a unique 3-orientation. (see Figure 4). By diagonally flipping the same edges in

Figure 4 Going between two unique 3-orientations.

the opposite order, one reclaims the original graph. The new 3-orientation has Ω(n) edges
oriented differently compared to the original 3-orientation, but it only requires a constant
number of diagonal flips to go between the two graphs. Hence, a constant number of flips
forces A to change Ω(n) edges, and thus, the update time for the diagonal flip operation must
be Ω(n), even amortized, as one can force this update sequence as many times as desired. ◀

As every Schnyder wood is in bijection with the underlying 3-orientation [21], an easy
Corollary of this is that one also cannot hope to explicitly and dynamically maintain a

A. B. G. Christiansen, J. Holm, E. Rotenberg, C. Thomassen 12:5

Schnyder wood of a plane triangulation under diagonal flipping in sublinear time.

▶ Corollary 3.2. Let A be an algorithm explicitly maintaining a Schnyder wood of an n-vertex
plane triangulation under inner edge flips. Then the flip operation can be forced to spend
Ω(n) update time, even when considering amortized complexity.

The goal now is to extend this lower bound to 3-bounded out-degree orientations of planar
graphs under insertion/deletion of edges. There are only three things to consider before
doing such an extension. Firstly, now we support the operations insertion/deletion of edges
and not the diagonal flip. This is however a non-issue since a diagonal flip can be simulated
by first deleting the edge and then inserting the other diagonal. Secondly, we now consider
3-bounded out-degree orientations and so outer vertices also have out-edges, and not all inner
vertices are required to have out-degree 3. Lastly, the lower bound should apply not only to
plane graphs where an embedding is chosen, but also to planar graphs. We deal with the
last two points by using at least 13 copies of the graph from above. Then, in at least one of
the copies, all inner vertices must have out-degree 3 - both before and after a sequence of
updates. Hence, we can do the aforementioned updates in all 13 copies, and this will then
ensure that at least one copy has to behave as in Lemma 3.1. Formally, we show:

▶ Theorem 3.3. Let A be an algorithm explicitly maintaining a 3-bounded out-degree
orientation of an n-vertex planar graph under insertion and deletion of edges. Then the
insert or the delete operation can be forced to spend Ω(n) update time, even when considering
amortized complexity.

Proof. Create a planar graph G by placing 13 copies of the graph P from the proof of
Lemma 3.1 in the plane, and triangulating arbitrarily. Let n = |V (G)|. For each copy Pi

of P , we let the set Ii resp. Oi be the set of vertices that are inner resp. outer vertices of
Pi, if Pi is embedded as in Lemma 3.1. In particular, for a specific copy of P , say Pi, the
corresponding set Ii has size |Ii| = 2 + n−5·13

13 = Ω(n). Since G is a plane triangulation, it
follows from Euler’s Theorem that |E(G)| = 3n − 6. This implies that at most 6 vertices
of G can have out-degree strictly less than 3. Hence, in at least 7 of the 13 copies of P ,
every vertex in I has out-degree 3. Since the O vertices of each of these specific copies of P

form a triangle, it follows from Lemma 2.1 that the edges incident to I must have the same
orientation as in the plane embedding in Lemma 3.1 and that this orientation is unique.

Now, we simulate the flip sequence used in Lemma 3.1 in each copy. Doing this in all
13 copies only requires 26 insertions and 26 deletions in total. After these alterations, it
is still the case that in at least 7 of the 13 copies of P every vertex in I has out-degree
3. Furthermore, since the O vertices of each of these specific copies of P form a triangle,
it follows from Lemma 2.1 that the edges incident to I must have the same orientation
as in the altered plane embedding in Lemma 3.1 and that this orientation is unique. At
least one copy Pi of P has out-degree 3 at every vertex in Ii in both the orientation before
and in the orientation after the update sequence. Consequentially, A must have flipped at
least |Ii| − 3 = Ω(n) edge-orientations during the update sequence. The update sequence
consists of only a constant number of updates, and it can be reversed by first deleting uv and
re-inserting it across the opposite diagonal in each copy, and then doing the same for sky in
every copy of P . Each reversal of the update sequence, requires only a constant number of
updates, but forces A to change at least Ω(n) edge-orientations. Hence, it follows that either
delete or insert must incur an update cost of at least Ω(n), even when considering amortized
cost. ◀

Since any Schnyder wood can be extended to a 3-bounded out-degree orientation, we get:

EuroCG’22

12:6 Explicit Dynamic Schnyder Woods Require Linear Update Time

▶ Corollary 3.4. Let G be a fully-dynamic graph with n vertices subject to edge insertions
and deletions, and let A be an algorithm explicitly maintaining a Schnyder wood of a plane
embedding of a plane triangulation of G. Then delete or insert can be forced to spend Ω(n)
update time, even when considering amortized complexity.

In [8], Brodal & Fagerberg showed that one cannot explicitly maintain an α-bounded out-
degree orientation in a dynamic graph with arboricity α with sub-linear update time for
either deletetion or insertion. For α = 3, the dynamic graph they use is not planar, however,
Theorem 3.3 shows that the same is the case for planar graphs.

Acknowledgments. We thank Irene Parada for helpful discussions, and for pointing us to
the work of Bhore et al [2].

References
1 Edvin Berglin and Gerth Stolting Brodal. A Simple Greedy Algorithm for Dynamic

Graph Orientation. In 28th International Symposium on Algorithms and Computation
(ISAAC 2017), volume 92 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 12:1–12:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. URL: http://drops.dagstuhl.de/opus/volltexte/2017/8263, doi:10.4230/
LIPIcs.ISAAC.2017.12.

2 Sujoy Bhore, Prosenjit Bose, Pilar Cano, Jean Cardinal, and John Iacono. Dynamic
schnyder woods. CoRR, abs/2106.14451, 2021. URL: https://arxiv.org/abs/2106.14451,
arXiv:2106.14451.

3 Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. Convex drawings of 3-connected
plane graphs. Algorithmica, 47(4):399–420, 2007. doi:10.1007/s00453-006-0177-6.

4 Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perkovic. Plane spanners
of maximum degree six. In Automata, Languages and Programming, 37th International
Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I, volume
6198 of Lecture Notes in Computer Science, pages 19–30. Springer, 2010. doi:10.1007/
978-3-642-14165-2_3.

5 Nicolas Bonichon, Bertrand Le Saëc, and Mohamed Mosbah. Wagner’s theorem on realizers.
In Automata, Languages and Programming, 29th International Colloquium, ICALP 2002,
Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture Notes in Computer
Science, pages 1043–1053. Springer, 2002. doi:10.1007/3-540-45465-9_89.

6 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geome-
try, 42(1):60–80, 2009. URL: https://www.sciencedirect.com/science/article/pii/
S0925772108000370, doi:https://doi.org/10.1016/j.comgeo.2008.04.001.

7 Enno Brehm. 3-orientations and schnyder 3-tree-decompositions. Diploma Thesis. FB
Mathematik und Informatik, Freie Universität Berlin, 2000.

8 Gerth Stolting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In
In Proc. 6th International Workshop on Algorithms and Data Structures (WADS), pages
342–351. Springer-Verlag, 1999.

9 Aleksander B. G. Christiansen. Dynamic algorithms for implicit vertex-colouring of graphs
with bounded arboricity. Master’s thesis, Technical University of Denmark, Kgs. Lyngby,
Denmark, October 2021.

10 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing (extended
abstract). In 30th Annual Symposium on Foundations of Computer Science, Research
Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 436–441, 1989.
doi:10.1109/SFCS.1989.63515.

A. B. G. Christiansen, J. Holm, E. Rotenberg, C. Thomassen 12:7

11 David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003,
Baltimore, Maryland, USA., pages 599–608, 2003. URL: http://dl.acm.org/citation.
cfm?id=644108.644208.

12 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification: I. planarity testing and minimum spanning trees. Journal of Computer and
Systems Sciences, 52(1):3–27, February 1996. doi:10.1006/jcss.1996.0002.

13 Stefan Felsner. The order dimension of planar maps revisited. SIAM J. Discret. Math.,
28(3):1093–1101, 2014. doi:10.1137/130945284.

14 Stefan Felsner and Johan Nilsson. On the order dimension of outerplanar maps. Order,
28(3):415–435, 2011. doi:10.1007/s11083-010-9181-1.

15 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. Journal of the ACM, 46(1):28–91, 1999. doi:10.1145/300515.300517.

16 Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time.
In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 167–180. ACM, 2020. doi:
10.1145/3357713.3384249.

17 Jacob Holm and Eva Rotenberg. Worst-case polylog incremental spqr-trees: Embeddings,
planarity, and triconnectivity. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 2378–2397. SIAM, 2020. Full version: arXiv.org/1910.09005. doi:
10.1137/1.9781611975994.146.

18 Giuseppe F. Italiano, Johannes A. La Poutré, and Monika Rauch. Fully dynamic planarity
testing in planar embedded graphs (extended abstract). In Algorithms - ESA ’93, First
Annual European Symposium, Bad Honnef, Germany, September 30 - October 2, 1993,
Proceedings, pages 212–223, 1993. doi:10.1007/3-540-57273-2_57.

19 Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting fully
dynamic graphs with worst-case time bounds. In Automata, Languages, and Programming
- 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014,
Proceedings, Part II, volume 8573 of Lecture Notes in Computer Science, pages 532–543.
Springer, 2014. doi:10.1007/978-3-662-43951-7_45.

20 Łukasz Kowalik. Adjacency queries in dynamic sparse graphs. Inf. Process. Lett.,
102(5):191–195, May 2007. doi:10.1016/j.ipl.2006.12.006.

21 Patrice Ossona de Mendez. Orientations bipolaires. PhD thesis, 1994. Thašse de doctorat
dirigae par Rosenstiehl, Pierre Mathamatiques et informatique appliquaes aux sciences
sociales Paris, EHESS 1994. URL: http://www.theses.fr/1994EHES0025.

22 Dominique Poulalhon and Gilles Schaeffer. Optimal coding and sampling of triangulations. In
Automata, Languages and Programming, 30th International Colloquium, ICALP 2003, Eind-
hoven, The Netherlands, June 30 - July 4, 2003. Proceedings, volume 2719 of Lecture Notes
in Computer Science, pages 1080–1094. Springer, 2003. doi:10.1007/3-540-45061-0_83.

23 Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of
Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 706–715, 1994. doi:
10.1145/195058.195439.

24 Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, page 138–148, USA, 1990.
Society for Industrial and Applied Mathematics.

25 Shay Solomon and Nicole Wein. Improved dynamic graph coloring. ACM Trans. Algorithms,
16(3), June 2020. doi:10.1145/3392724.

EuroCG’22

12:8 Explicit Dynamic Schnyder Woods Require Linear Update Time

26 Klaus Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 46:26–32, 1936. URL: http://eudml.org/doc/146109.

27 Jeffery Westbrook. Fast incremental planarity testing. In Automata, Languages and
Programming, 19th International Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992,
Proceedings, pages 342–353, 1992. doi:10.1007/3-540-55719-9_86.

Well-Separation and Hyperplane Transversals in
High Dimensions∗

Helena Bergold†1, Daniel Bertschinger2, Nicolas Grelier3, Wolfgang
Mulzer‡4, and Patrick Schnider5

1 Institut für Informatik, Freie Universität Berlin
helena.bergold@fu-berlin.de

2 Department of Computer Science, ETH Zürich
daniel.bertschinger@inf.ethz.ch

3 Department of Computer Science, ETH Zürich
nicolas.grelier@inf.ethz.ch

4 Institut für Informatik, Freie Universität Berlin
mulzer@inf.fu-berlin.de

5 Department of Mathematical Sciences, University of Copenhagen
ps@math.ku.dk

Abstract
A family of k point sets in d dimensions is well-separated if the convex hulls of any two disjoint
subfamilies can be separated by a hyperplane. This notion is instrumental in showing that certain
generalized ham-sandwich cuts exist. But how hard is it to check whether a given family of high-
dimensional point sets has this property? Starting from this question, we study several algorithmic
aspects of the existence of high-dimensional transversals and separations.

1 Introduction

Given a family of k sets S1, . . . , Sk in Rd, we say that the family is well-separated if for
any proper index set I ⊂ [k], with I 6= ∅ and I 6= [k], the convex hulls of SI and S[k]\I
can be separated by a hyperplane, where we define SJ = ∪j∈JSj , for any proper index
set J ⊂ [k]. Well-separation is equivalent to the fact that for any proper index set I, the
convex hulls of SI and S[k]\I do not intersect. A hyperplane h is a transversal if Si ∩ h 6= ∅
for all i ∈ [k]. More generally, an m-flat (i.e., an affine subspace of dimension m) is an
m-transversal if it intersects all the sets of the family. It turns out that well-separation is
intimately related to transversals: a family of sets S1, . . . , Sk is well-separated if and only
if there is no (k − 2)-transversal of the convex hulls of S1, . . . , Sk. Observe that for any
family of k ≤ d sets, there always exists a (k − 1)-transversal. Indeed choose a point from
each of the k sets, and consider a (k − 1)-flat that contains these k points. Furthermore
due to Radon’s theorem a family of d + 2 sets in dimension d cannot be well-separated.
Radon’s theorem states that any set of d+ 2 points in dimension d can be partitioned into
two sets with intersecting convex hulls. Questions related to transversals have been studied
extensively, mostly from a combinatorial, but also from a computational perspective. For
more background, we refer the interested readers to the relevant surveys [2, 10,11].

∗ This work was initiated at the 5th DACH Workshop on Arrangements and Drawings, that took place in
March 2021 (online) and was funded by Deutsche Forschungsgemeinschaft (DFG), the Austrian Science
Fund (FWF) and the Swiss National Science Foundation (SNSF).

† Supported by DFG within the Research Training Group GRK 2434 Facets of Complexity.
‡ Supported in part by ERC StG 757609.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

13:2 Well-Separation and Hyperplane Transversals in High Dimensions

Well-separation is a strong assumption on set-families, and it should not be a surprise
that for many problems, it leads to stronger results and faster algorithms compared to the
general case. One such example concerns Ham-Sandwich cuts. Given d point sets P1, . . . , Pd

in Rd, a Ham-Sandwich cut is a hyperplane that simultaneously bisects each point set. While
Ham-Sandwich cuts exist for any family of d point sets [16], computing a Ham-Sandwich cut
is PPA-complete when the dimension is not fixed [9], meaning that it is unlikely to allow an
algorithm that runs in polynomial time in the dimension d. On the other hand, if P1, . . . , Pd

are well-separated, not only do there exist bisecting hyperplanes, but the Ham-Sandwich
theorem can be generalized to hyperplanes cutting off arbitrary given fractions from each
point set [5,15]. Moreover, the problem of finding such hyperplanes lies in the complexity class
UEOPL [8], a subclass of PPA which is believed to allow for significantly faster algorithms.

From an algorithmic perspective, the main focus of work has been on line transversals in
dimensions 2 and 3, see, e.g., [1, 4, 14]. To the authors’ knowledge, in higher dimensions only
hyperplane transversals have been studied, where the best known algorithm for deciding
whether a set of n polyhedra with m edges has a hyperplane transversal, runs in time
O(nmd−1) [3]. In particular, there is an exponential dependence in the dimension d. This
curse of dimensionality appears in many geometric problems. For several problems, it has
been shown that there is probably no hope to get rid of the exponential dependence in the
dimension. As an example, we mention a result for Ham-sandwich cuts, due to Knauer,
Tiwary and Werner [12]: Given d point sets P1, . . . , Pd in Rd and a point p ∈ Rd, where
d is part of the input, it is W [1]-hard (and thus NP-hard) to decide whether there is a
Ham-sandwich cut passing through p.

Our Results. A family of k sets in Rd is well-separated, if and only if their convex hulls
have no (k − 2)-transversal. This fact seems to be well-known, but we could only find some
references without proofs, and some proofs of only one direction, for similar definitions of
well-separation [6, 7]. Therefore, we present a short proof for sake of completeness in the full
version. This immediately implies that testing well-separation is in coNP.

In [8], the authors ask what is the complexity of determining whether a family of point
sets is well-separated, when d is not fixed. We present several hardness results for finding
(k − 2)-transversals in a family of k sets in Rd. We consider two cases: a) the sets are finite
point sets, and b) the sets are convex.
I Theorem 1.1. Given a family of k > d point sets in Rd, each consisting of at most two
points, it is strongly NP-hard to check whether there is a (d − 1)-transversal, even in the
special case k = d+ 1.

Note that this problem is trivial if k ≤ d, as the answer is always yes. Our result shows
that the problem becomes NP-hard for the first value of k for which the problem is non-trivial.
We use Theorem 1.1 to show the following:
I Theorem 1.2. Given a set of k > d line segments in Rd, it is strongly NP-hard to check
whether there is a (d− 1)-transversal, even in the special case k = d+ 1.

Theorem 1.2 implies that testing well-separation is coNP-complete even in the case of
d+ 1 segments in Rd, answering the question from [8].

As a positive result, we can show the existence of the following approximation algorithm.
This can be seen as the special case where each point set consists of a single point.
I Theorem 1.3. Given a set P of k points in Rd, it is possible to compute in polynomial
time in d and k a hyperplane that contains Ω(OPT log k

k log log k) points of P , where OPT denotes the
maximum number of points in P that a hyperplane can contain.

H. Bergold, D. Bertschinger, N.Grelier, W. Mulzer, P. Schnider 13:3

In Section 3, we study the problem through the lens of parametrized complexity. We
show a significant difference depending on whether we consider convex sets or finite point
sets.

I Theorem 1.4. Checking whether a family of k ≤ d+ 1 convex hulls of point sets in Rd

has a (k − 2)-transversal (or equivalently, whether the point sets are well-separated) is FPT
with respect to d.

I Theorem 1.5. Given a set of k > d point sets in Rd, it is W[1]-hard with respect to d to
check whether there is a (d− 1)-transversal, even in the special case k = d+ 1.

Observe that for finite point sets (and more generally for any sets that are not convex),
having no (k − 2)-transversal does not a priori imply well-separation.

2 Hyperplane Transversals in High Dimensions

Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions, where d is not fixed. Note that we do not
assume the sets to be convex. In particular, the sets can even be finite. We consider the
decision problem HypTrans: Given sets S1, . . . , Sk, decide if there is a (d− 1)-transversal
for them. We consider the finite case and the case of line segments. We also consider the
optimisation formulation of HypTrans, that we name MaxHyp: Given the sets S1, . . . , Sk,
find a hyperplane that intersects as many of these sets as possible.

We begin with the case that all Si are finite point sets. We first assume that every Si

contains a single point, for i = 1, . . . , k. Note that in this situation, HypTrans can be solved
greedily. We denote by P the point set that is the union of all Si. Let us denote by OPT
the maximum number of points in P that a hyperplane may contain.

I Theorem 1.3. Given a set P of k points in Rd, it is possible to compute in polynomial
time in d and k a hyperplane that contains Ω(OPT log k

k log log k) points of P , where OPT denotes the
maximum number of points in P that a hyperplane can contain.

Proof. If k ≤ d, we just output a hyperplane that contains all points of P . Otherwise, let
f(k) = log k/ log log k. If f(k) < d, we pick d points from P , and we output a hyperplane
through these points. If f(k) ≥ d, we partition P into disjoint groups of size f(k). In each
group, we compute all hyperplanes that go through some d points from the group. Among
all hyperplanes for all groups, we output the hyperplane that contains the most points in P .
For each group, we have O(f(k)d) = O(f(k)f(k)) = O(k) hyperplanes to consider. Thus, the
algorithm runs in polynomial time in d and k.

We now analyze the approximation guarantee. If f(k) < d, then we output a hyperplane
with at least d > f(k) ≥ f(k)OPT/k points, since OPT ≤ k. If f(k) ≥ d, we let h be an
optimal hyperplane. If h contains at least d points in a single group, then we output an
optimal solution. Otherwise, h contains less than d points in each group, so OPT ≤ d(k/f(k)).
This means that d ≥ f(k)OPT/k, and the claim follows from the fact that our solution
contains at least d points. J

We now restrict ourselves to the situation that every Si contains at most two points, for
i = 1, . . . , k. We will prove that already in this case HypTrans is strongly NP-hard, by
reducing from BinPacking. Our reduction will pass through two intermediate problems
EqualBinPacking and FlatTrans. We start by defining all the involved problems.

In BinPacking, we are given as input a set of items I = {I1, . . . , In} with weights
w(Ii) := w(i) ∈ Z+, and a set B = {B1, . . . , Bk} of bins, all with the same capacity b ∈ Z+.

EuroCG’22

13:4 Well-Separation and Hyperplane Transversals in High Dimensions

The goal is to decide whether there is a partition of the items into the bins such that in each
bin the total weight of the items does not exceed the capacity. In EqualBinPacking, we
are given the same input, but now the goal is to decide whether there exists a partition of
the items into the bins such that in each bin the total weight of the items equals exactly the
capacity. Note that BinPacking can easily be reduced to EqualBinPacking by adding
the appropriate number of elements of weight 1, so EqualBinPacking is strongly NP-hard
as well.

Finally, in FlatTrans, we are given m sets S0, . . . , Sm−1 in Rd, where m and d are
both part of the input, and the goal is to decide whether there is an (m− 2)-transversal. In
other words, the question is whether there exists an (m− 2)-dimensional affine subspace h
such that for each i ∈ {0, . . . ,m− 1} we have that Si ∩ h 6= ∅. Note that HypTrans with
k = d+ 1 is the same as FlatTrans with m = d+ 1.

I Theorem 2.1. FlatTrans is strongly NP-hard even when S0 = {0} and any other Si

consists of at most two points.

Sketch of proof. We reduce from EqualBinPacking. Given an input I,B,w, b, where
|I| = n and |B| = k, to EqualBinPacking, we construct an instance of FlatTrans as
follows: First, we set the dimension d = k + n+ kn and the number of sets m = kn+ 2. For
any (i, j) ∈ [n]× [k] define the vectors

vi,j(x) :=

w(i), if x = j,

1, if x = k + i,

1, if x = k + n+ (i− 1)k + j,

0, else,

and ui,j(x) :=

0, if x = j,

0, if x = k + i,

1, if x = k + n+ (i− 1)k + j,

0, else.

Note that by x ∈ {1, . . . k + n + kn} we describe the entries of the vector. For example
the first entry of vi,j is described by vi,j(1). Further, define the vector c(x) whose entries
are −b for 1 ≤ x ≤ k and −1 everywhere else. Now set S0 = {0}, Sl = {vi,j , ui,j} for each
l = (i− 1)k + j (note that this choice of l just gives that the order of the l’s corresponds to
the lexicographic order of the (i, j)’s) and Skn+1 = {c}. Note that all of this can be done in
polynomial time.

In the full version, we show that there is a kn-transversal of the sets S0, . . . , Skn+1, if
and only if there is a valid partition for the EqualBinPacking instance. J

Now, there is only one reduction remaining:

I Theorem 2.2. Let S0 = {0} and let Si ⊂ Rd be finite for i = 1, . . . ,m − 1. Then we
can construct in polynomial time sets S′0, S′1, . . . , S′d+2 ⊂ Rd+2 which can be transversed by a
hyperplane if and only if S0, S1, . . . , Sm−1 ⊂ Rd have an (m− 2)-transversal.

Sketch of proof. We only show the construction of the sets here. For the complete proof, we
refer to the full version. First, for each point p in some set Si we define the point p′ = (p, 0, 0)
and place it in the set S′i. For m ≤ i ≤ d+ 2, define S′i as the set consisting only of the point
s′i = (0, . . . , 0, 1, i). Additionally, let S′0 := {0}. J

Theorem 1.1 now follows from combining Theorems 2.1 and 2.2.
Further, we can now show that deciding whether there is a hyperplane transversal for d

line segments and the origin in Rd, where d is not fixed, is NP-hard. We will reduce this to
the restricted version of HypTrans where the sets Si contain at most two points. This is

H. Bergold, D. Bertschinger, N.Grelier, W. Mulzer, P. Schnider 13:5

s1 s2

s3

Figure 1 Every hyperplane transversal through s1, s2, s3 must choose an endpoint of s1 (and of
s2).

done with the help of a gadget that enforces that every hyperplane transversal must use one
of the two endpoints of a given line segment. The gadget is shown in Figure 1.

Given a collection of sets of size at most two, for each set we take the line segment formed
by its points as s1, the origin as point s3, and we construct the corresponding new segment
s2 using the gadget presented in Figure 1. This gives a family S of 2k line segments that all
lie in a k-dimensional space. In order to prove Theorem 1.2, we need to lift our construction
to R2k. This lifting is described in the full version.

3 From the viewpoint of parametrized complexity

Recall that our original motivation comes from determining whether d point sets in Rd are
well-separated. Let us consider those d sets, and let us denote by n the total number of
extreme vertices on their respective convex hulls. We say that n is the convex hull complexity
of the set family. We assume that we are given the extreme points of the convex hull of every
set and hence have a finite number of points for every set.

I Theorem 1.4. Checking whether a family of k ≤ d+ 1 convex hulls of point sets in Rd

has a (k − 2)-transversal (or equivalently, whether the point sets are well-separated) is FPT
with respect to d.

Sketch of proof. For the O(2d) choices of index sets I ⊂ [k], we check with an LP whether
the convex hulls of SI and S[k]\I intersect. J

On the other hand, using a framework similar to the one introduced by Marx [13], we
show in the full version that

I Theorem 3.1. FlatTrans is W [1]-hard with respect to the dimension.

Combining this with Theorem 2.2, we deduce Theorem 1.5.

References
1 Pankaj K. Agarwal. On stabbling lines for convex polyhedra in 3d. Computational Geometry,

4(4):177–189, 1994.
2 Nina Amenta, Jesús A De Loera, and Pablo Soberón. Helly’s theorem: new variations and

applications. arXiv preprint arXiv:1508.07606, 2015.
3 David Avis and Mike Doskas. Algorithms for high dimensional stabbing problems. Discrete

applied mathematics, 27(1-2):39–48, 1990.
4 David Avis and Rephael Wenger. Algorithms for line transversals in space. In Proceedings

of the third annual symposium on Computational geometry, pages 300–307, 1987.
5 Imre Bárány, Alfredo Hubard, and Jesús Jerónimo. Slicing convex sets and measures by a

hyperplane. Discrete & Computational Geometry, 39(1-3):67–75, 2008.

EuroCG’22

13:6 Well-Separation and Hyperplane Transversals in High Dimensions

6 Ted Bisztriczky. On separated families of convex bodies. Archiv der Mathematik, 54(2):193–
199, 1990.

7 Federico Castillo, Joseph Doolittle, and Jose Alejandro Samper. Common tangents to
polytopes. arXiv preprint arXiv:2108.13569, 2021.

8 Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational complexity of
the α-ham-sandwich problem. In Proc. 47th Internat. Colloq. Automata Lang. Program.
(ICALP), pages 31:1–31:18, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.
31.

9 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and
bisecting ham sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 638–649, 2019.

10 Jacob E. Goodman, Richard Pollack, and Rephael Wenger. Geometric transversal theory.
In New trends in discrete and computational geometry, pages 163–198. Springer, 1993.

11 Andreas Holmsen and Rephael Wenger. 4 Helly-type theorems and geometric transversals.
Handbook of Discrete and Computational Geometry, 2017.

12 Christian Knauer, Hans Raj Tiwary, and Daniel Werner. On the computational complexity
of ham-sandwich cuts, helly sets, and related problems. In Symposium on Theoretical
Aspects of Computer Science (STACS2011), volume 9, pages 649–660, 2011.

13 Dániel Marx. Parameterized complexity of independence and domination on geometric
graphs. In International Workshop on Parameterized and Exact Computation, pages 154–165.
Springer, 2006.

14 Marco Pellegrini and Peter W. Shor. Finding stabbing lines in 3-space. Discrete &
Computational Geometry, 8(2):191–208, 1992.

15 William Steiger and Jihui Zhao. Generalized ham-sandwich cuts. Discrete & Computational
Geometry, 44(3):535–545, 2010.

16 Arthur H. Stone and John W. Tukey. Generalized “sandwich” theorems. Duke Math. J.,
9(2):356–359, 06 1942.

Planarizing Graphs and their Drawings by
Vertex Splitting∗

Soeren Nickel1, Martin Nöllenburg1, Manuel Sorge1,
Anaïs Villedieu1, Hsiang-Yun Wu2, and Jules Wulms1

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{soeren.nickel|noellenburg|manuel.sorge|avilledieu|jwulms}@ac.tuwien.ac.at

2 St. Pölten University of Applied Sciences, St. Pölten, Austria and
Research Unit of Computer Graphics, TU Wien, Vienna, Austria
hsiang.yun.wu@acm.org

Abstract
The splitting number of a graph G = (V, E) is the minimum number of vertex splits required to
turn G into a planar graph, where a vertex split removes a vertex v ∈ V , introduces two new
vertices v1, v2, and distributes the edges formerly incident to v among its two split copies v1, v2.
The splitting number problem is known to be NP-complete. In this paper we shift focus to the
splitting number of graph drawings in R2, where the new vertices resulting from vertex splits must
be re-embedded into the existing drawing of the remaining graph. We show the NP-completeness
of the splitting number problem for graph drawings, even for its two subproblems of (1) selecting
a minimum subset of vertices to split and (2) for re-embedding a minimum number of copies of a
given set of vertices, which does not need to be a solution to (1). We present an FPT algorithm for
the latter subproblem, parameterized by the number of vertex splits, which reduces the instance to
bounded outerplanarity and then uses dynamic programming on its sphere-cut decomposition.

Related Version arXiv:2202.12293

1 Introduction

Visualizing dense graphs is a challenging task due to the potentially large number of edge
crossings, which make tracing of individual edges harder and create clutter that negatively
impacts readability [31]. Several approaches have been proposed to mitigate this issue [20],
many aim to achieve readability properties similar to those of crossing-free drawings of
planar graphs [30, 32, 34]. One such technique is to apply a sequence of vertex splitting op-
erations. This approach has been studied from a theoretical perspective [8, 11, 23, 26], and
is used in practice, e.g., by biologists and social scientists [18, 19, 29, 35, 36]. For a given
graph G = (V,E) and a vertex v ∈ V , a vertex split of v replaces v by two non-adjacent
copies v1, v2 and distributes the edges formerly incident to v to v1 and v2. The minimum
number of splits needed to obtain planarity is known as the splitting number of a graph and
computing it is NP-hard [13]. The splitting numbers of complete graphs, complete bipartite
graphs and the 4-cube [12, 16, 17, 22] are known. Similarly, the planar split thickness of a
graph G is the minimum k such that G can be turned into a planar graph by applying a
k-split (which creates k copies v1, . . . , vk) to each vertex v of G. Deciding whether a graph
has split thickness k is NP-complete [11].

∗ Manuel Sorge acknowledges funding by the Alexander von Humboldt Foundation, Anaïs Villedieu
acknowledges funding by the Austrian Science Fund (FWF) under grant P31119 and Jules Wulms
acknowledges funding partially by the Austrian Science Fund (FWF) under grant P31119 and partially
by the Vienna Science and Technology Fund (WWTF) under grant ICT19-035.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

14:2 Planarizing Graphs and their Drawings by Vertex Splitting

Contributions. Our focus in this paper is on vertex splitting for topological graph drawings
in the plane R2, where the subgraph induced by the non-split vertices retains its drawing.
Similarities can be found with simultaneous embedding problems [5, 14, 15], and planar
drawing extension problems [1, 2, 6, 7, 9, 10]. The underlying algorithmic problem for vertex
splitting in drawings of graphs is two-fold: firstly, a suitable (minimum) subset of vertices
to be split must be selected, and secondly the newly created copies of these vertices must
be re-embedded in a crossing-free way together with a partition of the original edges of each
split vertex into a subset for each copy. We show that both problems are NP-complete, and
present an FPT algorithm for the re-embedding subproblem of the splitting number problem
for graph drawings parameterized by the number of splits. We note that the smallest set of
vertices as computed for the first subproblem is not necessarily the correct set of vertices to
split when solving the complete problem.

Preliminaries. Let G = (V,E) be a graph. We write G[V ′] to denote the subgraph of G
induced by V ′ ⊆ V and NG(v) to denote the neighborhood of a vertex v in G.

Let Γ be a topological drawing (for simplicity, from now on called a drawing) of G, which
maps each vertex to a point in R2 and each edge to a simple curve (a Jordan arc) connecting
the points corresponding to the incident vertices of that edge. We still refer to the points
and curves as vertices and edges, respectively, in such a drawing. We assume Γ is a simple
drawing, meaning no two edges intersect more than once, no three edges intersect in one
point (except common endpoints), and adjacent edges do not cross. A split operation of a
vertex v ∈ V into two copies v̇(1), v̇(2) results in a drawing of the graph G′ = (V ′, E′) where
V ′ = V \ {v}∪{v̇(1), v̇(2)} and E′ is obtained from E by distributing the edges incident to v
among v̇(1), v̇(2) such that NG(v) = NG′(v̇(1))∪NG′(v̇(2)). It assigns new coordinates Γ(v̇(i))
to v̇(1), v̇(2) as well as new curves Γ(e) to all edges e incident to any of the split vertices. If
a copy v̇ of a vertex v is split again, then any copy of v̇ is also called a copy of the original
vertex v and we use the notation v̇(i) for i = 1, 2, . . . to denote the different copies of v.
I Problem 1 (Embedded Splitting Number). Given a graph G = (V,E), a drawing Γ of
G and an integer k, can G be transformed into a graph G′ by applying at most k splits to G
such that G′ has a planar drawing that coincides with Γ when restricted to G′[V (G)∩V (G′)]?

Problem 1 includes two interesting subproblems, namely the candidate selection prob-
lem and the re-embedding problem. The candidate selection problem is related to the NP-
complete problem of deleting at most k vertices from a non-embedded graph to make it
planar [25,28]. However, here we deal with a given drawing of a graph (with crossings).
I Problem 2 (Candidate Selection). Given a graph G = (V,E), a drawing Γ of G
and an integer k, can we find a candidate set Scdt ⊂ V of at most k vertices such that the
drawing Γ restricted to G[V \ Scdt] is planar?

The vertices split in a solution of Problem 1 necessarily form such a candidate set,
however, a minimum cardinality candidate set might not be the set that requires the least
amount of splits to solve Problem 1, as vertices can be split multiple times and we might
have to additionally split vertices whose incident edges are not involved in crossings.

Once a candidate set has been obtained we want to solve the second subproblem:
I Problem 3 (Split Set Re-Embedding). Given a graph G = (V,E), a candidate set
Scdt ⊂ V , a drawing Γ of the subgraph G[V \ Scdt], and an integer k ≥ |Scdt|, can we
perform at most k splits, splitting only vertices in Scdt and splitting each vertex in Scdt at
least once, such that the resulting graph G′ has a planar drawing that coincides with Γ when
restricted to G[V \ Scdt]?

S. Nickel, M. Nöllenburg, M. Sorge, A. Villedieu, H.-Y. Wu, J. Wulms 14:3

Γ Γ∗
re

(a) (b) (c)

Figure 1 (a) An example graph G, (b) a planar drawing Γ of G where Scdt has been removed,
and (c) a solution drawing Γ?. Pistils are squares, copies are circles and vertices in Scdt are disks.

While we find that Split Set Re-Embedding is FPT, the parameterized complexity of
Candidate Selection remains open.

2 Embedded Splitting Number Subproblems are NP-Complete

The reduction showing Splitting Number to be NP-complete [13] does not seem to extend
to Embedded Splitting Number. Here we show that Candidate Selection is NP-
complete using a reduction from planar 3-SAT inspired by Hummel et al. [21].1

I Theorem 2.1. Candidate Selection is NP-complete.

We then show that Split Set Re-Embedding also is NP-complete. We reduce from
Face Cover [4], where we are given a planar graph and a vertex subset S and we ask for the
smallest set of faces F such that each vertex in S is incident to a face in F . We construct an
instance of Split Set Re-Embedding with the same graph and an extra vertex v, where
the candidate set is the vertex v and its neighborhood is N(v) = S. A re-embedding of k
copies of v uses faces that induce a face cover and vice-versa, a face cover of size k gives the
faces in which we can re-embed k copies of v.

I Theorem 2.2. Split Set Re-Embedding is NP-complete.

3 Split Set Re-Embedding is Fixed-Parameter Tractable

In this section we propose an FPT algorithm for Problem 3 (Split Set Re-Embedding)
and prove the following theorem.

I Theorem 3.1. Split Set Re-Embedding can be solved in 2O(k2) · nO(1) time, where k
is the number of allowed splits and n is the number of vertices in the input graph G.

Algorithm outline. We aim to re-embed copies of our candidate vertices with the following
setup (Fig. 1). First, from the given set Scdt of candidate vertices (disks in Fig. 1a) we
choose how many copies of each vertex we will make. We initialize a set Sf with one copy of
every candidate vertex, then loop over every possibility of splitting vertices in Scdt k−|Scdt|
times. Note that |Scdt| ≤ k, and thus every computed set Sf is obtained from k split
operations. This creates 2O(k2) different sets. For each such computed set Sf of copies we
determine the connections among them. Next, we transform our input to be able to compute

1 Alternatively, one can reduce from Independent Set on segment intersection graphs [24] as suggested
by a reviewer.

EuroCG’22

14:4 Planarizing Graphs and their Drawings by Vertex Splitting

(a) (b)

e8

e9

e9

e4

e4

e6

e6

e11 e7

e7

e5

e10

e12

e12

e10
e11

e5

e8

e12

e3
e2

e1

e3

e1

e2

Figure 2 (a) A graph and (b) its sphere-cut decomposition. Each labeled leaf corresponds to
the same labeled edge of the graph. The middle set of each colored edge in the tree corresponds to
the vertices of the corresponding colored dashed noose in the graph.

a sphere-cut decomposition of the new drawing, as explained in Section 3.1. We then use
dynamic programming on the tree defined by this decomposition as sketched in Section 3.2.
If this algorithm finds that our instance is a yes instance then a solution exists (see Fig. 1c).

We introduce the following terminology. Any vertex v that has a neighbor in Scdt is
called a pistil. Each face that is incident to a pistil is called a petal. Let p be a pistil in the
input graph G with neighbors N(p). Let v̇ be a copy of some v ∈ Scdt, where v ∈ N(p).
Given a drawing Γ̃ of a subgraph of G, we say v̇ covers p if v̇ is adjacent to p in Γ̃.

3.1 Finding a Sphere-Cut Decomposition
Given an instance of Split Set Re-Embedding (SSRE), we transform the induced graph
G[V \Scdt] in the following manner: any vertex v ∈ V \Scdt that is not incident to a petal is
removed. Then, any bridge in that new drawing is transformed into a multi-edge to obtain
G′ and its drawing Γ′. We can show that the instance obtained is a yes-instance if and
only if the original instance is a yes-instance and the graph G′ is 6k-outerplanar. A graph
is `-outerplanar if after ` times removing all vertices on the outer face the graph becomes
empty. This can be exploited algorithmically in the following..

A branch decomposition of a (multi-)graph G is a pair (T, λ) where T is an unrooted
binary tree, and λ is a bijection between the leaves of T and E(G). Every edge e ∈ E(T)
defines a bipartition of E(G) into Ae and Be corresponding to the leaves in the two connected
components of T − e. We define the middle set mid(e) of an edge e ∈ E(T) to be the set of
vertices incident to an edge in both sets Ae and Be. The width of a branch decomposition
is the size of the biggest middle set in that decomposition. The branchwidth of G is the
minimum width over all branch decompositions of G.

A sphere-cut decomposition of a planar (multi-)graph G with a planar embedding Γ on
a sphere Σ is a branch decomposition (T, λ) of G such that for each edge e ∈ E(T) there is
a noose η(e): a closed curve on Σ such that its intersection with Γ is exactly the vertex set
mid(e) (i.e., the curve does not intersect any edge of Γ) and such that the curve visits each
face of Γ at most once (see Fig. 2). The removal of e from E(T) partitions T into two subtrees
T1, T2 whose leaves correspond, respectively, to the noose’s partition of Γ into two embedded
subgraphsG1, G2. Sphere-cut decompositions were introduced by Seymour and Thomas [33],
more details can also be found in [27, Section 4.6]. The length of the noose η(e) for an edge
e ∈ E(T) is the number of vertices on the noose (or the size of mid(e)) and it is at most
the branchwidth of the decomposition. We defined drawings in the plane, whereas we need

S. Nickel, M. Nöllenburg, M. Sorge, A. Villedieu, H.-Y. Wu, J. Wulms 14:5

drawings on the sphere for sphere-cut decompositions. However, if we treat the outer face of a
planar drawing just as any other face, then spherical and planar drawings are homeomorphic.

An `-outerplanar graph has branchwidth at most 2` [3] and a connected bridgeless planar
graph of branchwidth at most b has a sphere-cut decomposition of width at most b that can
be computed in O(n3) time (see [27, Section 4.6]). Since G′ is 6k-outerplanar and bridgeless,
we obtain a sphere-cut decomposition of G′ of branchwidth 12k.

3.2 Dynamic Programming on a Sphere-Cut Decomposition Tree
Initialization. The dynamic program works bottom-up in the sphere-cut decomposition
tree T from the leaves to an arbitrarily chosen root, considering iteratively larger subgraphs
of G′. The algorithm determines how partial solutions look like on the interface between
subgraphs and the rest of G′. We first transform T by defining a root vertex and move the
information of the middle set from each edge to the child vertex (according to the new parent-
child relations). For each vertex t of T , its noose η(t) splits the graph into two subgraphs. We
define the subgraph whose edges correspond to the leaves of the subtree of T rooted at t to be
the graph inside the noose. A partial solution on a subgraph G′

t inside noose η(t) is a planar
drawing of that subgraph, with a subset S′

f ⊆ Sf of copies embedded in it together with
edges to the copies’ neighborhood in G′

t such that all pistils not on the noose are covered. To
describe those partial solutions we build tuples called signatures for each possible solution for
each noose. A signature holds the following information (see Fig. 3): (i) the set of copies Sin
used in faces entirely inside η(t) to cover pistils, (ii) the set Nη of sets Xv of neighbors of
each vertex v ∈ η(t) that do not cover v, (iii) graphs that represent embeddings of copies for
all the faces traversed by the noose, and (iv) for each such graph a pair of pointers ps, pe that
describe which vertices of that embedding are used to cover pistils in G′

t. We find that the
number of signatures is upper bounded by 2O(k2). The embeddings from (iii) are described
by a set Cout of graphs called nesting graphs (see Fig. 4), which are planar graphs Cf ,
where a set of copies are embedded inside a cycle and each vertex of the cycle has exactly
one neighbor that is a copy. The intuition behind a nesting graph is that, when embedded
inside a face f , one can simultaneously traverse the cycle of Cf and the face f in the same
direction, and draw an edge between each cycle vertex and a corresponding pistil. Then,
after removing the cycle edges, and contracting the cycle vertices to pistils edges, we obtain a
planar embedding for f , where some pistils strictly inside η(t) are covered by the copies in Cf .

Figure 3 The information stored in a signature of the partial solution inside the orange noose:
(grey) copies used in these faces are stored in Sin, (blue) noose vertices, for which missing neighbors
(outgoing edges outside the noose) are stored in Nη, (red) an example of a nesting graph for a face
traversed by the noose, with four (dotted) edges connecting to the cycle, (green) ps and pe pointers.

EuroCG’22

14:6 Planarizing Graphs and their Drawings by Vertex Splitting

pe

ps

f
Cf

(a) (b)

Figure 4 (a) A face f and the copies inside the orange noose. (b) The corresponding nesting
graph Cf with its ps and pe vertices in orange. The two light blue vertices represent different copies
of the same removed vertex.

Traversing the Sphere-Cut Decomposition Tree. To find a solution we perform bottom-
up dynamic programming on T . For each node t ∈ V (T) we compute a table of all signatures
with a corresponding partial solution. For a leaf t ∈ V (T), graph Gt is an edge (u1, u2), and
we can go over all possible signatures and check whether we can cover all neighbors of u1 and
u2 not in Nη = {Xu1 , Xu2}, using for each incident face f the subgraph of Cf ∈ Cout that
lies between ps, pe. For internal nodes we merge some pairs of child signatures corresponding
to two nooses η(t1) and η(t2). We merge when (1) faces not shared between the nooses do
not have copies in common, (2) shared faces use identical nesting graphs and (3) use disjoint
subgraphs of those nesting graphs to cover pistils, and (4) noose vertices in mid(t1) and
mid(t2) do not have remaining missing neighbors. Thus we can find valid signatures for all
nodes of T and notably for its root. If we find a valid signature for the root, we also have a
partial solution. In Γ′ all pistils are covered and it is planar, as the nesting graphs are planar
and they represent a combinatorial embedding that allowed to cover pistils. We verify that
the remaining pistils in Sf \ S′

f form a planar graph which allows us to embed them in a
face of Γ′ to obtain a solution Γ?.

References
1 Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Mau-

rizio Patrignani, and Ignaz Rutter. Testing planarity of partially embedded graphs. ACM
Transactions on Algorithms, 11(4):32:1–32:42, 2015. doi:10.1145/2629341.

2 Alan Arroyo, Fabian Klute, Irene Parada, Raimund Seidel, Birgit Vogtenhuber, and
Tilo Wiedera. Inserting one edge into a simple drawing is hard. In Isolde Adler and
Haiko Müller, editors, Proc. 46th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), volume 12301 of LNCS, pages 325–338. Springer, 2020.
doi:10.1007/978-3-030-60440-0_26.

3 Therese Biedl. On triangulating k-outerplanar graphs. Discrete Applied Mathematics,
181:275–279, 2015. doi:10.1016/j.dam.2014.10.017.

4 Daniel Bienstock and Clyde L. Monma. On the complexity of covering vertices by faces in
a planar graph. SIAM Journal on Computing, 17(1):53–76, 1988. doi:10.1137/0217004.

5 Peter Braß, Eowyn Cenek, Christian A. Duncan, Alon Efrat, Cesim Erten, Dan Ismailescu,
Stephen G. Kobourov, Anna Lubiw, and Joseph S. B. Mitchell. On simultaneous planar

S. Nickel, M. Nöllenburg, M. Sorge, A. Villedieu, H.-Y. Wu, J. Wulms 14:7

graph embeddings. Computational Geometry: Theory and Applications, 36(2):117–130,
2007. doi:10.1016/j.comgeo.2006.05.006.

6 Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf. Inserting a ver-
tex into a planar graph. In Claire Mathieu, editor, Proc. 20th Symposium on Discrete
Algorithms (SODA), pages 375–383. SIAM, 2009. doi:10.1137/1.9781611973068.42.

7 Markus Chimani and Petr Hlinený. Inserting multiple edges into a planar graph. In
Sándor P. Fekete and Anna Lubiw, editors, Proc. 32nd International Symposium on
Computational Geometry (SoCG), volume 51 of LIPIcs, pages 30:1–30:15, 2016. doi:
10.4230/LIPIcs.SoCG.2016.30.

8 Peter Eades and Candido F. X. de Mendonça N. Vertex splitting and tension-free layout.
In Franz-Josef Brandenburg, editor, Proc. 3rd International Symposium on Graph Drawing
(GD), volume 1027 of LNCS, pages 202–211. Springer, 1995. doi:10.1007/BFb0021804.

9 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Ex-
tending nearly complete 1-planar drawings in polynomial time. In Javier Esparza and
Daniel Král’, editors, Proc. 45th International Symposium on Mathematical Foundations
of Computer Science (MFCS), volume 170 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.31.

10 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Ex-
tending partial 1-planar drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, Proc. 47th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 168 of LIPIcs, pages 43:1–43:19. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.43.

11 David Eppstein, Philipp Kindermann, Stephen G. Kobourov, Giuseppe Liotta, Anna Lu-
biw, Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue Whitesides, and
Stephen K. Wismath. On the planar split thickness of graphs. Algorithmica, 80(3):977–994,
2018. doi:10.1007/s00453-017-0328-y.

12 Luérbio Faria, Celina M. H. de Figueiredo, and Candido F. X. de Mendonça N. The
splitting number of the 4-cube. In Claudio L. Lucchesi and Arnaldo V. Moura, editors,
Proc. 3rd Latin American Symposium on Theoretical Informatics (LATIN), volume 1380
of LNCS, pages 141–150. Springer, 1998. doi:10.1007/BFb0054317.

13 Luérbio Faria, Celina M. H. de Figueiredo, and Candido F. X. de Mendonça N. Splitting
number is NP-complete. Discrete Applied Mathematics, 108(1):65–83, 2001. doi:10.1016/
S0166-218X(00)00220-1.

14 Fabrizio Frati, Michael Kaufmann, and Stephen G. Kobourov. Constrained simultane-
ous and near-simultaneous embeddings. Journal of Graph Algorithms and Applications,
13(3):447–465, 2009. doi:10.7155/jgaa.00194.

15 Emilio Di Giacomo, Walter Didimo, Marc J. van Kreveld, Giuseppe Liotta, and Bettina
Speckmann. Matched drawings of planar graphs. Journal of Graph Algorithms and Appli-
cations, 13(3):423–445, 2009. doi:10.7155/jgaa.00193.

16 Nora Hartsfield. The toroidal splitting number of the complete graph kn. Discrete Mathe-
matics, 62(1):35–47, 1986. doi:10.1016/0012-365X(86)90039-7.

17 Nora Hartsfield, Brad Jackson, and Gerhard Ringel. The splitting number of the complete
graph. Graphs and Combinatorics, 1(1):311–329, 1985. doi:10.1007/BF02582960.

18 Nathalie Henry, Anastasia Bezerianos, and Jean-Daniel Fekete. Improving the readability
of clustered social networks using node duplication. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1317–1324, 2008. doi:10.1109/TVCG.2008.141.

19 Nathalie Henry Riche and Tim Dwyer. Untangling euler diagrams. IEEE Transactions on
Visualization and Computer Graphics, 16(6):1090–1099, 2010. doi:10.1109/TVCG.2010.
210.

EuroCG’22

14:8 Planarizing Graphs and their Drawings by Vertex Splitting

20 Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, 2000. doi:10.1109/2945.841119.

21 Matthias Hummel, Fabian Klute, Soeren Nickel, and Martin Nöllenburg. Maximizing
ink in partial edge drawings of k-plane graphs. In Daniel Archambault and Csaba D.
Tóth, editors, Proc. 27th International Symposium on Graph Drawing and Network Vi-
sualization (GD), volume 11904 of LNCS, pages 323–336. Springer, 2019. doi:10.1007/
978-3-030-35802-0_25.

22 Brad Jackson and Gerhard Ringel. The splitting number of complete bipartite graphs.
Archiv der Mathematik, 42(2):178–184, 1984. doi:10.1007/BF01772941.

23 Kolja Knauer and Torsten Ueckerdt. Three ways to cover a graph. Discrete Mathematics,
339(2):745–758, 2016. doi:10.1016/j.disc.2015.10.023.

24 Jan Kratochvíl and Jaroslav Nešetřil. Independent set and clique problems in intersection-
defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae, 31(1):85–
93, 1990.

25 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary prop-
erties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.
doi:10.1016/0022-0000(80)90060-4.

26 Annegret Liebers. Planarizing graphs - A survey and annotated bibliography. Journal of
Graph Algorithms and Applications, 5(1):1–74, 2001. doi:10.7155/jgaa.00032.

27 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. CoRR, abs/1504.05476, 2015. arXiv:1504.
05476.

28 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorith-
mica, 62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

29 Sune S. Nielsen, Marek Ostaszewski, Fintan McGee, David Hoksza, and Simone Zorzan.
Machine learning to support the presentation of complex pathway graphs. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 18(3):1130–1141, 2019. doi:
10.1109/TCBB.2019.2938501.

30 Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture
Notes Series on Computing. World Scientific, 2004. doi:10.1142/5648.

31 Helen C. Purchase. Which aesthetic has the greatest effect on human understanding? In
Giuseppe Di Battista, editor, Proc. 5th International Symposium on Graph Drawing (GD),
volume 1353 of LNCS, pages 248–261. Springer, 1997. doi:10.1007/3-540-63938-1_67.

32 Helen C. Purchase, Christopher Pilcher, and Beryl Plimmer. Graph drawing aesthet-
ics—created by users, not algorithms. IEEE Transactions on Visualization and Computer
Graphics, 18(1):81–92, 2012. doi:10.1109/TVCG.2010.269.

33 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994. doi:10.1007/BF01215352.

34 Luca Vismara. Planar straight-line drawing algorithms. In Roberto Tamassia, editor,
Handbook on Graph Drawing and Visualization, pages 193–222. Chapman and Hall/CRC,
2013. doi:10.1007/3-540-62495-3_42.

35 Hsiang-Yun Wu, Martin Nöllenburg, Filipa L. Sousa, and Ivan Viola. Metabopolis: Scalable
network layout for biological pathway diagrams in urban map style. BMC Bioinformatics,
20(1):1–20, 2019. doi:10.1186/s12859-019-2779-4.

36 Hsiang-Yun Wu, Martin Nöllenburg, and Ivan Viola. Multi-level area balancing of clustered
graphs. IEEE Transactions on Visualization and Computer Graphics, pages 1–15, 2020.
doi:10.1109/TVCG.2020.3038154.

A new discrete theory of pseudoconvexity∗

Balázs Keszegh1

1 Alfréd Rényi Institute of Mathematics and ELTE Eötvös Loránd University,
MTA-ELTE Lendület Combinatorial Geometry Research Group, Budapest,
Hungary.
keszegh@renyi.hu

Abstract
Recently geometric hypergraphs that can be defined by intersections of pseudohalfplanes with a
finite point set were defined in a purely combinatorial way. This led to extensions of earlier results
about points and halfplanes to pseudohalfplanes, including polychromatic colorings and discrete
Helly-type theorems about pseudohalfplanes.

Here we continue this line of research and introduce the notion of convex sets of such pseudohalf-
plane hypergraphs. In this context we prove several results corresponding to classical results about
convexity, namely Helly Theorem, Carathéodory’s Theorem, Kirchberger’s Theorem, Separation
Theorem, Radon’s Theorem and the Cup-Cap Theorem. These results imply the respective results
about pseudoconvex sets in the plane defined using pseudohalfplanes.

It turns out that most of our results can be also proved using oriented matroids and topological
affine planes (TAPs) but our approach is different from both of them. Compared to oriented matroids,
our theory is based on a linear ordering of the vertex set which makes our definitions and proofs
quite different and perhaps more elementary. Compared to TAPs, which are continuous objects, our
proofs are purely combinatorial and again quite different in flavor. Altogether, we believe that our
new approach can further our understanding of these fundamental convexity results.

Related Version arXiv:2202.07697

1 Introduction

Given a (finite) point set P and a family of regions R (e.g., the family of all halfplanes) in
the plane (or in higher dimensions), let H be the hypergraph with vertex set P and for each
region of R having a hyperedge containing exactly the same points of P as this region. There
are many interesting problems that can be phrased as a problem about hypergraphs defined
this way, which are usually referred to as geometric hypergraphs. This topic has a wide
literature, researchers considered problems where R is a family of halfplanes, axis-parallel
rectangles, translates or homothets of disks, squares, convex polygons, pseudo-disks and so
on. There are many results and open problems about the maximum number of hyperedges
of such a hypergraph, coloring questions and other properties. For a survey of some of the
most resent results see the introduction of [2] and of [4], for an up-to-date database of such
results with references see the webpage [1].1

One of the most basic families is the family of halfplanes, about which already many
problems are non-trivial. Among others one such problem was considered in [9] where they

∗ Research supported by the Lendület program of the Hungarian Academy of Sciences (MTA), under the
grant LP2017-19/2017, by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences,
by the National Research, Development and Innovation Office – NKFIH under the grant K 132696 and
FK 132060 and by the ÚNKP-20-5 New National Excellence Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and Innovation Fund.

1 As this paper is in many ways a continuation of [6] by the same author, the first three paragraphs of
the introduction rely heavily on its introduction.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

15:2 A new discrete theory of pseudoconvexity

prove that the vertices of every hypergraph defined by halfplanes on a set of points can be
k-colored such that every hyperedge of size at least 2k + 1 contains all colors. In [7] they
considered generalizing this result by replacing halfplanes with the family of translates of
an unbounded convex region (e.g., an upwards parabola). It turned out that this is true
even when halfplanes are replaced by pseudohalfplanes. The main tool of proving this was
an equivalent combinatorial definition of so-called pseudohalfplane hypergraphs that can be
defined on points with pseudohalfplanes.2 This formulation had the promise that many other
statements about halfplane hypergraphs can be generalized to pseudohalfplane hypergraphs
in the future. While this combinatorial formulation has the disadvantage of being less visual
and thus somehow less intuitive than the geometric setting, it has many advantages, among
others covering a much wider range of hypergraphs, also, being purely combinatorial, it might
have algorithmic applications as well. One recent application is a similar polychromatic
coloring result about disks all containing the origin [4] where after observing that in every
quadrant of the plane the disks form a family of pseudohalfplanes they can apply the results
from [7].

In [7] the equivalent of the convex hull vertices in the plane (more precisely, the points
on the boundary of the convex hull) was defined for pseudohalfplane hypergraphs and called
unskippable vertices and this made it possible to generalize the proof idea of [9] from halfplanes
to pseudohalfplane hypergraphs. To make it more intuitive, we call unskippable vertices as
extremal vertices from here on. Exact definitions of these notions are postponed to Section
1.1.

We define convex sets of a pseudohalfplane hypergraph H as sets that are intersections
of some hyperedges of H and we refer to these sets as pseudoconvex sets. Notice that this
is again in parallel with the geometric definition of convex sets (or more precisely, of the
subsets of a base point set P that we get by intersecting P with convex sets). We have seen
that already with halfplanes one can phrase many interesting problems, but using the notion
of convex sets we can finally phrase many of the formative problems of discrete geometry,
like the classical Helly Theorem, Carathéodory’s Theorem, Radon’s Theorem, Erdős-Szekeres
problem and the list goes on. While all of these problems are about discrete point sets, there
are two essentially different types among them, in one type the whole statement is about
some fixed point set P while in the other type there is a point outside of P that plays a
role. E.g., in Carathéodory’s theorem the whole statement is about a fix point set, while
the classical Helly theorem guarantees the existence of a new point in the plane with some
property. The first type of these problems translates immediately to a statement about
pseudoconvex sets and it is interesting to see if it remains true in this more general setting.
For the second type we can also pose a corresponding problem about pseudoconvex sets,
where we want to extend the vertex set of the hypergraph H with one or more vertices
(we can extend the original hyperedges on the new vertices as we like) so that it remains a
pseudohalfplane hypergraph and has the required property. Observe that for the first type a
result about pseudoconvex sets implies the corresponding geometric result but for the second
type such an implication does not immediately follow, although it still implies with a bit of
additional work, as we will see later.

Following this approach, we prove results about pseudoconvex sets that correspond to
the planar case of some of the most important results of discrete geometry, namely Helly

2 The definition of pseudohalfplanes can be found in the full version of the paper [8]. The definition of
pseudohalfplane hypergraphs can be found in Section 1.1 and its connection to the geometric setting is
detailed in the full version [8].

B. Keszegh 15:3

Theorem, Carathéodory Theorem, Radon’s Theorem and the Cup-Cap Theorem.
Finally, we discuss the relation of our definitions and results to previous similar results.

A careful analysis reveals that we have mostly rediscovered things that were known for a long
time about oriented matroids (in particular about rank 3 acyclic oriented matroids) or not
so long about topological affine planes (TAPs, in short). As said in [3], in the past several
people rediscovered what amounts to an axiom system for oriented matroids (or some special
case thereof), without realizing that their work overlapped with already published papers.
Our contribution can be regarded as an extension of this sequence of axiom systems by a
new and interesting axiomatization of acyclic oriented matroids of rank 3. However, we think
that our methods are interesting on their own as they give a completely different approach
based on hypergraphs on vertices that have a linear ordering on them. Also, while at the
end our particular results are not stronger, formally our approach handles a bigger family of
hypergraphs compared to what comes from oriented rank 3 matroids. Overall, the following
sentence quoted from I.M. Gel’fand in [3] in relation to rediscoveries of the above mentioned
axiom systems certainly applies to our case as well: "If you are not too ambitious, it can
be a pleasure to realize that you have rediscovered something previously known, because at
least then you know that you were on the right track."

Due to space constraints we state only our Helly theorem result about pseudoconvex
sets. The generalizations of Carathéodory’s Theorem, Kirchberger’s Theorem, Separation
Theorem, Radon’s Theorem and the Cup-Cap Theorem are stated in the full version [8],
along with all the proofs and the connection to geometry and to other abstract notions of
convexity.

1.1 Basic definitions
▶ Definition 1.1. Given a hypergraph H on vertex set S and a subset S′ of S, the sub-
hypergraph of H induced by S′ is the hypergraph on vertex set S′ with hyperedge set
{H ∩ S′ : H ∈ H} and it is denoted by H[S′].

We recall the definition of an ABA-free hypergraph and its unskippable vertices from [7].

▶ Definition 1.2. A hypergraph H on an ordered vertex set is called ABA-free if H does
not contain two hyperedges A and B for which there are three vertices x < y < z such that
x, z ∈ A \ B and y ∈ B \ A.3

▶ Definition 1.3. In a hypergraph F on an ordered vertex set, a vertex a is skippable if
there exists an A ∈ F such that min(A) < a < max(A) and a /∈ A. In this case we say that
A skips a. A vertex a is unskippable if there is no such A.

▶ Lemma 1.4. [7] If F is ABA-free, then every A ∈ F contains an unskippable vertex.

Now we recall the definition of pseudohalfplane hypergraphs from [7].

▶ Definition 1.5. A hypergraph H on an ordered vertex set is a pseudohalfplane hypergraph
if there exists an ABA-free F on the same ordered vertex set4 such that H ⊆ F ∪ F̄ .
Call T = H ∩ F the topsets and B = H ∩ F̄ the bottomsets, observe that both T and

3 We imagine the vertices on a horizontal line, and thus if x < y then we may say that x is to the left
from y and so on.

4 Let F̄ denote the family of the complements of the hyperedges of F . It is easy to see and was shown in
[7] that if F is ABA-free then F̄ is also ABA-free.

EuroCG’22

15:4 A new discrete theory of pseudoconvexity

B are ABA-free. The unskippable vertices of F (resp. F̄) are called topvertices (resp.
bottomvertices).5

Now we can proceed by defining the extremal vertices of a pseudohalfplane hypergraph:

▶ Definition 1.6. Given a pseudohalfplane hypergraph H, the union of the topvertices and
bottomvertices is called the extremal vertices of H and is denoted by E(H) (or simply E

when the underlying hypergraph is clear from the context).

In light of the geometric setting the following is a natural way to define convex sets which
turns out to be also very fruitful:

▶ Definition 1.7. Given a hypergraph H on an ordered set S of vertices, the family of those
subsets which are intersections of hyperedges of H are called the convex sets of H. The convex
hull of a subset S′ ⊆ S of the vertices is the convex set Conv(S′) = ∩{H : H ∈ H, S′ ⊆ H}
(where we define ∩∅ := S).

Clearly, given a point set P in the plane, the subsets of P which are defined by (geometric)
convex sets are convex sets of the respective (pseudo)halfplane hypergraph.

To state many of our results, we need the slightly technical definition of an extension of a
pseudohalfplane hypergraph by new hyperedges or vertices, the definition can be found in
the full version [8].

1.2 Helly theorems for pseudohalfplanes
In [7] already some discrete Helly-type theorems were proved about pseudohalfplane hyper-
graphs:

▶ Lemma 1.8 (Primal Discrete Helly theorem for pseudohalfplanes, 3 → +1). [7] Given a
pseudohalfplane hypergraph H such that every triple of hyperedges has a common vertex, then
we can extend H to a pseudohalfplane hypergraph by a vertex contained in every hyperedge of
the extension.

Considering if Lemma 1.8 has a dual, dual Helly theorems are meaninglessly true for
pseudohalfplane hypergraphs as we can always add a new hyperedge containing all vertices
and the hypergraph remains to be a pseudohalfplane hypergraph.

Recently Jensen, Joshi, Ray [5] proved discrete Helly-type theorems which can be for-
mulated in terms of halfplane hypergraphs, their results were extended by the author to
pseudohalfplane hypergraphs [6]. In these results while we cannot hit all hyperedges with
one vertex, on the other hand we can choose the vertex from the original vertex set.6 Instead
of listing all these results, we mention just one which is closest to Lemma 1.8:

▶ Theorem 1.9 (Primal Strong Discrete Helly theorem for pseudohalfplanes, 3 → 2). [6] Given
a pseudohalfplane hypergraph H such that every triple of hyperedges has a common vertex,
there exists a set of at most 2 vertices that hits every hyperedge of H.

5 Notice that the top- and bottomvertices depend only on F and not on H itself. For a given H = T ∪ B
multiple F ’s can witness that it is a pseudohalfplane hypergraph which can lead to different set of top
and bottomvertices. The smallest valid family is T ∪ B̄, which in particular gives the largest set of top
and bottomvertices. For these reasons, when given a pseudohalfplane hypergraph H, even when not
said explicitly, there is an ABA-free F corresponding to it.

6 To distinguish from the rest of the discrete Helly theorems, we will use the word strong to refer to
the fact that the vertex found is in the original vertex set. This is somewhat similar to the difference
between (strong) ϵ-nets and weak ϵ-nets

B. Keszegh 15:5

We are able to generalize Helly Theorem for pseudoconvex sets:

▶ Theorem 1.10 (Discrete Helly theorem for pseudoconvex sets, 3 → +1). Given a pseudo-
halfplane hypergraph H and a C subfamily of its convex sets such that every triple of convex
sets from C has a common vertex, then we can extend H to a pseudohalfplane hypergraph by
a vertex contained in every convex set which is an extension of a set from C.

This generalizes Lemma 1.8 from [7] in two ways. As a first step, instead of H we can
consider a subfamily of H (similar to Theorem ??, where we considered a subset S′ of S

instead of the whole S). As a second step, this family is actually not required to be a
subfamily of H, instead it has to be only a subfamily C of the convex sets of H.

2 Discussion

We have presented a method to generalize statements about discrete point sets, halfplanes
and convex sets to statements on discrete points sets, pseudohalfplanes and pseudoconvex
sets. Our setting is purely combinatorial and built using elementary parts, starting with
the notion of a hypergraph being ABA-free everything else is built up step-by-step. This
offers a very simple axiomatization of planar (pseudo)convexity. We managed to generalize
this way many classical results about planar convexity. This discrete relaxation of planar
geometry is significantly more general than the planar setting yet still allows us to prove
statements that are exactly like their geometric counterparts. Also, many natural families
of regions are pseudohalfplane families, thus our generalizations have immediate geometric
consequences (e.g., about translates of an unbounded convex region). We compared our
results to other similar results about TAPs, oriented matroids and p-convex hulls, pinpointing
the connections and differences between them.

There are many further important results about convex sets, yet it falls beyond the scope
of this paper to consider all of them for pseudoconvex sets. We list a few of these possibilities:
colorful Carathéodory’s Theorem, colorful Helly Theorem, Tverberg’s Theorem, colorful
Tverberg’s Theorem, fractional versions, results about the existence of empty k-holes; are
these true for pseudoconvex sets? Further, it is interesting to see if problems open about
convex sets can be improved in the context of pseudoconvex sets, in particular finding a
maximal subset of points in a convex position, bounding the size of weak epsilon-nets for
convex sets or the number of k-sets.

Finally, it would be interesting to develop a similar framework of higher dimensional
discrete pseudoconvexity.

Acknowledgement
The author is grateful to D. Pálvölgyi for the many discussions about these results and to
A. Holmsen for the several insightful comments (primarily but not exclusively) about the
connections to earlier results, especially to oriented matroids.

References
1 Geometric hypergraph zoo. URL: http://coge.elte.hu/cogezoo.html.
2 Eyal Ackerman, Balázs Keszegh, and Dömötör Pálvölgyi. Coloring hypergraphs defined by

stabbed pseudo-disks and ABAB-free hypergraphs. SIAM Journal on Discrete Mathematics,
34(4):2250–2269, 2020.

EuroCG’22

15:6 A new discrete theory of pseudoconvexity

3 Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler.
Oriented Matroids. Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2nd edition, 1999. doi:10.1017/CBO9780511586507.

4 Gábor Damásdi and Dömötör Pálvölgyi. Realizing an m-uniform four-chromatic hypergraph
with disks. 2020. arXiv:2011.12187.

5 Frederik Brinck Jensen, Aadi Joshi, and Saurabh Ray. Discrete Helly type theorems. In
Proceedings of the 30th Annual Canadian Conference on Computational Geometry, CCCG
2020, August 5-7, 2020, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
pages 332–335, 2020.

6 Balázs Keszegh. Discrete Helly-type theorems for pseudohalfplanes. European Journal of
Combinatorics, 101:103469, 2022.

7 Balázs Keszegh and Dömötör Pálvölgyi. An abstract approach to polychromatic coloring:
shallow hitting sets in aba-free hypergraphs and pseudohalfplanes. J. Comput. Geom.,
10:1–26, 2019.

8 Balázs Keszegh. A new discrete theory of pseudoconvexity, 2022. arXiv:2202.07697.
9 Shakhar Smorodinsky and Yelena Yuditsky. Polychromatic coloring for half-planes. Journal

of Combinatorial Theory, Series A, 119(1):146–154, 2012.

The complexity of geodesic spanners
Sarita de Berg1, Marc van Kreveld1, and Frank Staals1

1 Department of Information and Computing Sciences, Utrecht University, the
Netherlands
S.deBerg@uu.nl, M.J.vanKreveld@uu.nl, F.Staals@uu.nl

Abstract
A geometric t-spanner for a set S of n point sites in R2 is an edge-weighted graph for which the
(weighted) distance between any two sites p, q ∈ S is at most t times the original distance between p
and q. We introduce a novel spanner property for spanners with non-constant complexity edges:
the spanner complexity, i.e. the total complexity of all edges in the spanner. Let S be a set of
n point sites in a simple polygon P with m vertices. We provide a general construction, for any
constant ε > 0 and fixed integer k ≥ 1, of a (2k+ ε)-spanner with complexity O((mn1/k + n) log2 n).
Additionally, for any constant ε > 0 and integer constant t ≥ 2, we show a lower bound for the
complexity of any (t− ε)-spanner of Ω(mn1/(t−1) + n).

1 Introduction

In the design of networks on a set of nodes, we often consider two criteria: few connections
between the nodes, and small distances. Spanners are geometric networks on point sites
that replace the small distance criterion by a small detour criterion. Formally, a geometric
t-spanner for a set S of n point sites in R2 is an edge-weighted graph G = (S,E) for which the
(weighted) distance dG(p, q) between any two sites p, q ∈ S is at most t · d(p, q), where d(p, q)
denotes the distance between p and q in the distance metric we consider. The smallest t for
which a graph G is a t-spanner is called the spanning ratio of G. The number of edges in the
spanner is called the size of the spanner.

For the Euclidean distance, for any fixed ε > 0, there is a (1+ε)-spanner of O(n) edges [8].
For the more general case, namely metric spaces of bounded doubling dimension, we can
also construct a (1 + ε)-spanner of size O(n) for any fixed ε > 0 [7, 5, 6]. This is no longer
the case when the sites lie in a simple polygon P and we measure the distance between two
points p, q by their geodesic distance: the length of the shortest path between p and q fully
contained within P . Abam et al. [1] show there is a set of n sites in a simple polygon P for
which any geodesic (2− ε)-spanner has Ω(n2) edges. Recently, Abam et al. [2] showed that
a geodesic (2 + ε)-spanner with O(n logn) edges exists for points on a polyhedral terrain,
thereby almost closing the gap between the upper and lower bound.

The spanning ratio and size of spanners are not the only properties of spanners that
can be optimized. Many different properties have been studied, such as total weight (or
lightness), maximum degree, (hop) diameter, and fault-tolerance [8, 4].

When we consider distance metrics for which the edges in the spanner—which are shortest
paths—no longer have constant complexity, another interesting property of spanners arises:
the spanner complexity, i.e. the total complexity of all edges in the spanner. In this paper,
we study this novel property in a setting where our sites lie in a simple polygon P with m
vertices, and we measure the distance between two sites by their geodesic distance. In this
setting, a single shortest path may have complexity Θ(m). We show that any (3− ε)-spanner
may have complexity Ω(nm), thus implying that the (2 + ε)-spanner of Abam et al. [2] may
also have complexity Ω(nm), despite having O(n logn) edges.
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

16:2 The complexity of geodesic spanners

c

q

p

S` Sr

O

Figure 1 Construction of the 1-dimensional additively weighted spanner.

To improve this complexity, we first introduce a simple 2-spanner with O(n logn) edges
for an additively weighted point set in a 1-dimensional Euclidean space; see Section 2. In
Section 3, we use this result to obtain a geodesic 2

√
2-spanner with O(n log2 n) edges for a

point set in a simple polygon. In Section 4, we focus on the complexity of geodesic spanners.
We provide a general construction, for any constant ε > 0 and fixed integer k ≥ 1, of a
(2k+ ε)-spanner with complexity O((mn1/k +n) log2 n). Additionally, for any constant ε > 0
and integer constant t ≥ 2, we show a lower bound for the complexity of any (t− ε)-spanner
of Ω(mn1/(t−1) + n). Some proofs are omitted due to the space constraints and will be
included in a future full version.

2 A 1-dimensional additively weighted 2-spanner

We consider an additively weighted spanner G in 1-dimensional Euclidean space, where each
site p ∈ S has a non-negative weight w(p). The distance dw(p, q) between two sites p, q ∈ S
is given by dw(p, q) = w(p) + |pq|+w(q), where |pq| denotes the Euclidean distance. Without
loss of generality, we can map R1 to the x-axis, and the weights to the y-axis, see Figure 1.
This allows us to speak of the sites left (or right) of some site p.

To construct our spanner G, we first partition the points into two sets S` and Sr of
roughly equal size by a point O with w(O) = 0. S` contains all points left of O, and Sr all
points right of O. When one or more points lie on the vertical line through O, we simply
assign them to Sr or S` arbitrarily in such a way that the resulting sets are of roughly equal
size. We then find a point c ∈ S for which dw(c,O) is minimal. For all p ∈ S, p 6= c, we add
the edge (p, c) to G. Finally, we handle the sets S` and Sr, excluding the site c, recursively.

I Lemma 1. The graph G is a 2-spanner of size O(n logn).

Proof. As we add O(n) edges in each level of the recursion, the total number of edges in G
is O(n logn). Consider two sites p, q ∈ S. Let c be the chosen center point at the level of the
recursion where p and q are assigned to different subsets S` and Sr. Assume w.l.o.g. that p ∈
S` and q ∈ Sr. Note that, because p ∈ S` and q ∈ Sr we have dw(p, q) = dw(p,O) + dw(q,O).
Furthermore, dw(c,O) ≤ dw(p,O) and dw(c,O) ≤ dw(q,O), by the choice of c. Because both
edges (p, c) and (q, c) are in G, we get for dG(p, q):

dG(p, q) ≤ dw(p,O) + 2dw(c,O) + dw(q,O) ≤ 2dw(p,O) + 2dw(q,O) = 2dw(p, q). J

3 A simple geodesic spanner

Just like Abam et al. [2], we use our 1-dimensional spanner to construct a geodesic spanner.
We are more interested in the simplicity of the spanner than its spanning ratio, as we base our

S. de Berg, M. van Kreveld, F. Staals 16:3

p

q

z

qλ

pλ

z′

r

λ

Figure 2 The shortest path π(p, q) crosses λ at r. The difference in length between the direct
path from z to r and the path through pλ can be bounded by considering the triangle T = (z, z′, r).

low complexity spanners, discussed in Section 4, on this simple geodesic spanner. We denote
by d(p, q) the geodesic distance between p, q ∈ P , and by π(p, q) the shortest (geodesic)
path from p to q. We analyze the simple construction with respect to any 1-dimensional
additively weighted t-spanner of size O(n logn). We show that restricting the domain to a
simple polygon improves the achieved spanning ratio from 3t to

√
2t. The construction can

be refined to achieve a spanning ratio of t+ ε [2].
As in [2] and [1], we first partition P into two subpolygons P` and Pr by a line segment

λ, such that each subpolygon contains at most two thirds of the sites in S [3]. We denote by
S` and Sr the sites in P` and Pr, respectively. For each site p ∈ S, we then find the point pλ
on λ geodesically closest to p. As λ is a line segment, the set Sλ, containing all projected
points, gives rise to a weighted 1-dimensional Euclidean space, where w(pλ) := d(p, pλ). We
compute a t-spanner Gλ = (Sλ, Eλ) of size O(n logn) for this set. For each pair (pλ, qλ) ∈ Eλ,
we add the edge (p, q) to our spanner G. Finally, we recursively compute spanners for S` and
Sr, and add their edges to G as well.

I Lemma 2. Given an algorithm to construct a 1-dimensional additively weighted t-spanner
Gλ of size O(n logn), the graph G is a geodesic t

√
2-spanner of size O(n log2 n).

Proof. As Gλ has O(n logn) edges, and these directly correspond to edges in G, we have
O(n log2 n) edges in total. Let p, q be two sites in S. If both are in S` (or Sr), then there is a
path of length t

√
2d(p, q) by induction. So, we assume w.l.o.g. that p ∈ S` and q ∈ Sr. Let r

be the intersection point of π(p, q) and λ. Observe that pλ and qλ must be on opposite sides
of r, otherwise r cannot be on the shortest path. We assume w.l.o.g. that λ is a vertical
line segment (and S` is left of λ), and that pλ is above r and qλ below r. Because Gλ is a
t-spanner, we know that there is a weighted path from pλ to qλ of length at most tdw(pλ, qλ).
As w(pλ) = d(p, pλ), this directly corresponds to a path in the polygon. So,

dG(p, q) ≤ dGλ
(pλ, qλ) ≤ tdw(pλ, qλ) = t(d(p, pλ) + |pλr|+ |rqλ|+ d(qλ, q)). (1)

Let z be the point where the shortest paths from p to pλ and r separate. See Figure 2
for an illustration. The shortest paths π(z, pλ) and π(z, r) form a funnel F(z, pλ, r) to the
line segment pλr. Consider the right triangle T = (z, z′, r), where z′ is the intersection point

EuroCG’22

16:4 The complexity of geodesic spanners

of the line perpendicular to λ through z and the line containing λ. Note that z′ does not
necessarily lie within P . For this triangle we have that

|zr| ≥
√

2
2 (|zz′|+ |z′r|). (2)

Next, we show that the path π(z, pλ) from z to pλ is a y-monotone convex polygonal
chain ending at or below z′. The path π(z, pλ) is bounded from below by π(z, r). These
paths do not overlap by definition of z, thus the path π(z, pλ) can never bend upwards. If
z sees z′, then pλ = z′, otherwise the chain must bend at one or more vertices of the part
of the polygon above π(z, pλ), and thus lie below z′. It follows that π(z, pλ) is a convex
y-monotone chain contained within T . Similarly, we conclude that π(z, r) is contained within
T . Additionally, this gives us that d(z, pλ) ≤ |zz′|+ |z′pλ|, and d(z, r) ≥ |zr|. Together with
Equation 2 this yields d(z, pλ) + |pλr| ≤ |zz′|+ |z′r| ≤

√
2|zr| ≤

√
2d(z, r). And thus

d(p, pλ) + |pλr| = d(p, z) + d(z, pλ) + |pλr| ≤ d(p, z) +
√

2d(z, r) ≤
√

2d(p, r).

Symmetrically, we find for q that d(q, qλ) + |qλr| ≤
√

2d(q, r). From this, together with
Equation 1, we conclude that dG(p, q) ≤ t

(√
2d(p, r) +

√
2d(r, q)

)
= t
√

2d(p, q). J

Applying Lemma 2 to the spanner of Section 2 yields a 2
√

2-spanner of size O(n log2 n).

4 Complexity of geodesic spanners

In general, a geodesic spanner G = (S,E) in a simple polygon P with m vertices may have
complexity O(m|E|). It is easy to see that the 2

√
2-spanner of Section 2 and 3 can have

complexity Ω(nm), just like the spanners in [2]. As one of the sites, c, is connected to all other
sites, the polygon in Figure 3 provides this lower bound. The construction in Figure 3 even
shows that the same lower bound holds for the worst-case complexity of any (3− ε)-spanner.
Additionally, the following theorem implies a trade-off between the spanning ratio and the
spanner complexity.

I Theorem 3. For any constant ε > 0 and integer constant t ≥ 2, there exists a set of n
points in a simple polygon P with m = Ω(n) vertices for which any geodesic (t− ε)-spanner
has complexity Ω(mn1/(t−1)).

The proofs of these lower bounds are omitted here. Next, we present a spanner that
almost matches this bound. We first present a 4

√
2-spanner of bounded complexity, and then

generalize the approach to obtain a (2k + ε)-spanner of complexity O((mn1/k + n) log2 n).

4.1 A 4
√

2-spanner of complexity O((m
√

n + n) log2 n)
To improve the complexity of the geodesic spanner, we adapt our construction for the
additively weighted spanner Gλ as follows. After finding the site c ∈ S for which dw(c,O) is
minimal, we do not add all edges (p, c), p ∈ S, to Gλ. Instead, we form groups of sites whose
original points (before projection to λ) are ‘close’ to each other in the polygon. For each
group Si, we add all edges (p, ci), p ∈ Si, to Gλ, where ci is the site in Si for which dw(ci, O)
is minimal. Finally, we add all edges (ci, c) to Gλ.

To make sure the complexity of our geodesic spanner does not become too large, we must
choose the groups in such a way that the edges (pλ, qλ) we add to the spanner Gλ—these are
included in G as shortest paths π(p, q)—do not cross ‘bad’ parts of the polygon too often.
To achieve this, we consider the shortest path tree SPT c of c: the union of all shortest paths

S. de Berg, M. van Kreveld, F. Staals 16:5

Θ(m)

`

h

hS` Sr

Figure 3 Any (3− ε)-spanner in a simple polygon with m vertices may have complexity Ω(nm).

c

c

λ

ppλ

p

Figure 4 The shortest path tree of c. Each group Si has an associated polygonal region Ri in P .

from c to the vertices of P . Note that here we associate each site pλ in the 1-dimensional
space with its original site p in the polygon, while constructing the 1-dimensional spanner.
We include each site p ∈ S \ {c} as a leaf in SPT c as the child of the last vertex on π(c, p).
This gives rise to an ordering of the sites, based on the in-order traversal of the tree. We
assign the first d√ne sites to S1, the second d√ne to S2, etc. See Figure 4.

We will prove the complexity of the edges in one level of the 1-dimensional spanner is
O(m

√
n+ n). This implies that the complexity of G is O((m

√
n+ n) log2 n).

Two types of edges are added to the spanner: 1) edges from some ci to c, and 2) edges
from some p ∈ Si to ci. There are O(

√
n) type 1 edges, that each have a complexity of O(m).

Thus the total complexity of these edges is O(m
√
n). Analyzing the complexity of the type 2

edges, the edges within each group, is more involved. For each group Si, consider the minimal
subtree Ti of SPT c containing all p ∈ Si. Ti defines a polygonal region Ri in P as follows.
Let vi be the root of Ti. Consider the shortest path π(vi, p`), where p` is the leftmost site of
Si in Ti by the ordering used before. Let π` be the path obtained from π(vi, p`) by extending
the last segment of π(vi, p`) to the boundary of P . Similarly, let πr be such a path for the
rightmost site of Si in Ti. We take Ri to be the region in P rooted at vi and bounded by π`,
πr, and some part of the boundary of P . In case vi is c, we split Ri into two regions Rj and
Rk, such that the angle of each of these regions at c is at most π. The set Si is then also
split into two sets Sj and Sk accordingly. See Figure 4. Note that only vertices of P that are
in Ti can occur in Ri. All shortest paths between sites in Si are contained within Ri. The

EuroCG’22

16:6 The complexity of geodesic spanners

following lemma bounds the number of Ti’s a vertex of P can occur in.

I Lemma 4. Any vertex v ∈ SPT c occurs in at most two trees Ti and Tj as a non-root node.

Note that the root r of Ti is never used in a shortest path between sites in Si, because r
cannot be a reflex vertex of Ri. Let mi be the number of non-root nodes in Ti. Lemma 4
implies that

∑
imi = O(m). The complexity of all type 2 edges is thus O(n)+

∑
imiO(

√
n) =

O(m
√
n+ n).

I Lemma 5. The graph G is a geodesic 4
√

2-spanner of size O(n log2 n).

Proof. We prove the 1-dimensional spanner Gλ is a 4-spanner with O(n logn) edges. Together
with Lemma 2, this directly implies G is a 4

√
2-spanner with O(n log2 n) edges.

In each level of the recursion, we still add only a single edge for each site. Thus, the total
number of edges is O(n logn). Again, consider two sites p, q ∈ S, and let c be the chosen
center point at the level where p and q are separated by O. Let Si be the group of p and Sj
the group of q. Both the edges (p, ci) and (ci, c) are in Gλ, similarly for q. We thus have a
path p → ci → c → cj → q in Gλ. Using that dw(p, ci) ≤ dw(p,O) + dw(ci, O), because of
the triangle inequality, and dw(ci, O) ≤ d(p,O), we find:

dGλ
(p, q) = dw(p, ci) + dw(ci, c) + dw(c, cj) + dw(cj , q)

≤ dw(p,O) + 2dw(ci, O) + 2dw(c,O) + 2dw(cj , O) + dw(q,O)
≤ 3dw(p,O) + 2dw(c,O) + 3dw(q,O)
≤ 4dw(p,O) + 4dw(q,O))
= 4dw(p, q) J

4.2 A (2k + ε)-spanner of complexity O((mn1/k + n) log2 n)
In this section we sketch how to generalize the approach of Section 4.1 to obtain a spanner
with a trade-off between the (constant) spanning ratio and complexity. Instead of O(

√
n)

groups, we create O(n1/k) groups, for some integer constant k ≥ 1. For each of these groups
we select a center and then again partition it into O(n1/k) groups, and so on. By connecting
each center to its parent center, we obtain a tree of height k. This results in a spanning ratio
of k2

√
2. Using the refinement mentioned in Section 3, we even obtain a (2k + ε)-spanner.

I Theorem 6. Let S be a set of n point sites in a simple polygon P with m vertices, and let
k ≥ 1 be any integer constant. Then there exists a geodesic (2k+ε)-spanner of size O(n log2 n)
and complexity O((cε,kmn1/k + n) log2 n), where cε,k is a constant depending on ε and k.

References
1 Mohammad Ali Abam, Marjan Adeli, Hamid Homapour, and Pooya Zafar Asadollahpoor.

Geometric spanners for points inside a polygonal domain. In 31st International Symposium
on Computational Geometry, SoCG, volume 34 of LIPIcs, pages 186–197, 2015.

2 Mohammad Ali Abam, Mark de Berg, and Mohammad Javad Rezaei Seraji. Geodesic
spanners for points on a polyhedral terrain. SIAM J. Comput., 48(6):1796–1810, 2019.

3 Prosenjit Bose, Jurek Czyzowicz, Evangelos Kranakis, Danny Krizanc, and Anil Mahesh-
wari. Polygon cutting: Revisited. In Discrete and Computational Geometry, Japanese
Conference, JCDCG, Revised Papers, volume 1763 of LNCS, pages 81–92, 1998.

4 Prosenjit Bose and Michiel H. M. Smid. On plane geometric spanners: A survey and open
problems. Comput. Geom., 46(7):818–830, 2013.

S. de Berg, M. van Kreveld, F. Staals 16:7

5 T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical
routing in doubling metrics. ACM Trans. Algorithms, 12(4):55:1–55:22, 2016.

6 Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces.
In 16th Annual European Symposium on Algorithms, ESA, volume 5193 of Lecture Notes
in Computer Science, pages 478–489, 2008.

7 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM J. Comput., 35(5):1148–1184, 2006.

8 Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge
University Press, 2007.

EuroCG’22

Extendability of higher dimensional signotopes∗

Helena Bergold1, Stefan Felsner2, and Manfred Scheucher2

1 Department of Computer Science,
Freie Universität Berlin, Germany,
firstname.lastname@fu-berlin.de

2 Institut für Mathematik,
Technische Universität Berlin, Germany,
lastname@math.tu-berlin.de

Abstract
In 1926, Levi showed that, for any pseudoline arrangement A and two points in the plane, A
can be extended by a pseudoline which contains the two prescribed points. Later extendability
was studied for arrangements of pseudohyperplanes in higher dimensions. While the extendability
with d prescribed points in an arrangement of proper hyperplanes in Rd is trivial, Richter-Gebert
(1993) found an arrangement of pseudoplanes in R3 which cannot be extended with two particular
prescribed points.

In this article, we investigate the extendability of signotopes, which are a rich subclass of oriented
matroids. Our main result is that signotopes of odd rank are extendable with two prescribed crossing
points. Moreover, we conjecture that for all even ranks r ≥ 4 there exist signotopes which are not
extendable for two prescribed points. Our conjecture is supported by examples for rank 4, 6, and 8.

1 Introduction

Given a family of hyperplanes H in Rd, any d points in Rd, not all on a common hyperplane
of H, define a hyperplane which is distinct from the hyperplanes in H. For dimension d = 2,
Levi [10] proved in his pioneering article on pseudoline arrangements that the fundamental
extendability of line arrangements also applies to the more general setting of pseudoline
arrangements. A pseudoline is a Jordan curve in the Euclidean plane such that its removal
from the plane results in two unbounded components, and a pseudoline arrangement is a
family of pseudolines such that each pair of pseudolines intersects in exactly one point, where
the two curves cross.

▶ Theorem 1.1 (Levi’s extension lemma for pseudoline arrangements [10]). Given an arrange-
ment A of pseudolines and two points in R2, not lying on a common pseudoline of A. Then A
can be extended by an additional pseudoline which passes through the two prescribed points.

Several proofs for Levi’s extension lemma are known today (besides [10], see also [1, 6, 14])
and generalizations to higher dimensions have been studied in the context of oriented
matroids, which are by the representation theorem of Folkman and Lawrence [7] projective
pseudohyperplane arrangements. For more about oriented matroids, see [5].

Goodman and Pollack [9] showed that there is an arrangement of 8 pseudoplanes in R3 such
that three particular prescribed points do not determine a pseudoplane which is compatible
with the arrangement. Richter-Gebert [13] then investigated a weaker version with only
two prescribed points such that the extending pseudohyperplane contains these two points.

∗ H. Bergold was funded by the DFG-Research Training Group ’Facets of Complexity’ (DFG-GRK 2434).
M. Scheucher was supported by the DFG Grant SCHE 2214/1-1.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

17:2 Extendability of higher dimensional signotopes

More specifically, he gave an example of a rank 4 oriented matroid on 8 elements such that
even the weaker version does not hold. However, the existence of an extension lemma or
counterexamples remains open in higher dimensions/ranks.

In this article, we present a proof of Levi’s extension lemma in a purely combinatorial
setting which generalizes to higher dimensions. Our proof uses the notion of r-signotopes
and applies to even dimensions d, that is, when the rank r = d + 1 is odd; see Theorem 1.2.
However, there are non-extendable examples for the ranks 4, 6, and 8, and we conjecture
that there is no extension lemma for any even rank r ≥ 4; see Conjecture 1.3.

Before we can formulate our extension lemma for r-signotopes, we have to introduce
some notation, discuss the relation between pseudoline arrangements and signotopes (in
Section 1.1), and find an appropriate reformulation of Levi’s extension lemma which can be
investigated in the context of signotopes (in Section 1.2).

1.1 Signotopes

Signotopes are a combinatorial structure generalizing permutations and simple pseudoline
arrangements (i.e., no three pseudolines cross in a common point). An r-signotope (r ≥ 1)
on n elements is a mapping σ from r-element subsets (r-subsets) of [n] to + or −, i.e.,
σ :

([n]
r

)
→ {+, −} such that for every (r + 1)-subset X = {x1, . . . , xr+1} of [n] with

x1 < x2 < . . . < xr+1 there is at most one sign change in the sequence

σ(X\{x1}), σ(X\{x2}), . . . , σ(X\{xr+1}).

Note that this sequence lists the signs of all induced r-subsets of X in reverse lexicographic
order. For 3-signotopes, the following 8 sign patterns on 4-subsets are allowed:

+ + ++, + + +−, + + −−, + − −−, − − −−, − − −+, − − ++, − + + + .

It is well-known that every arrangement of pseudolines is isomorphic to an arrangement
of x-monotone pseudolines [8]. If we label the pseudolines from top to bottom on the left
by 1, . . . , n, we can read its corresponding 3-signotope σ. The sign of σ(a, b, c) for a < b < c

indicates the orientation of the triangle formed by the pseudolines a, b, c (see Figure 1). If
σ(a, b, c) = + the crossing of a and c is below b and if σ(a, b, c) = − the crossing of a and c

is above b. Furthermore, σ gives information about the ordering of the crossings from left to
right along each pseudoline. If σ(a, b, c) = + it holds bc ≻ ac ≻ ab and if σ(a, b, c) = − it is
bc ≺ ac ≺ ab.

a

b

c

+
a

b

c
−

Figure 1 Connection between pseudoline arrangements and 3-signotopes.

Felsner and Weil [6] showed that rank 3 signotopes are in correspondence with simple
pseudoline arrangements in R2 with a special top cell related to the cyclic arrangement. For
r ≥ 4, r-signotopes correspond to special pseudohyperplane arrangements in Rr−1, i.e., they
are a subclass of oriented matroids of rank r. A geometric representation of r-signotopes in
the plane is presented in [11] (see also [3] for the rank 3 case).

H. Bergold, S. Felsner, and M. Scheucher 17:3

1.2 An extension lemma for signotopes
In Levi’s extension lemma for pseudoline arrangements, each of the two prescribed points
can either lie in a cell of the arrangement, on a pseudoline, or be the crossing point of
two pseudolines. To formulate an extension lemma in terms of 3-signotopes, which only
captures the combinatorics of an arrangement, we restrict ourselves to simple pseudoline
arrangements and to prescribed points, which are crossing points. Crossing points in a
pseudoline arrangement are subsets of cardinality 2 given by the two crossed elements. Since
the extending pseudoline passes through the two prescribed crossing points, the extension
yields a non-simple arrangement. However, by perturbing the extending pseudoline at the
non-simple crossing points, we end up with a simple arrangement, see Figure 2.

1

2

3

4

5

1

2

3

4

5

Figure 2 Perturbing an extending pseudoline at the two non-simple crossing points.

A perturbation at a prescribed crossing yields a triangular cell incident to the crossing.
This cell is bounded by the two pseudolines defining the crossing and the extending pseudoline.
Triangular cells play an important role in the study of pseudoline arrangements, since it is
possible to change the orientation of a triangle by moving one of its bounding pseudolines
over the crossing of the two others. Such a local perturbation is called triangle flip and
does not change the orientation of any other triangle in the arrangement. For 3-signotopes
triangular cells correspond to a 3-subset for which we can exchange the corresponding sign
and it remains a signotope. We call such a 3-subset a fliple. The notion of fliples generalizes
to higher ranks. In an r-signotope σ on [n], an r-subset X ⊆ [n] is a fliple if both assignments
+ and − to σ(X) result in a signotope.

When we apply Levi’s extension lemma to extend an arrangement of pseudolines, which
are ordered from top to bottom on the left, we do not know at which place of the order the
new pseudoline will be inserted. In particular, the label of all pseudolines which start below
the new one increases by one. To cope with this relabeling-issue in terms of signotopes, we
introduce the following notion. For k ∈ [n] and a subset X of [n], we define

X↓k = {x | x ∈ X, x < k} ∪ {x − 1 | x ∈ X, x > k}.

For an r-signotope σ on the elements [n], we define the k deletion σ↓k on [n − 1] by
σ↓k(X↓k) = σ(X) for all r-sets X ⊆ [n] with k /∈ X. This is an r-signotope on [n − 1].

An r-signotope σ on n elements is 2-extendable if for each pair of disjoint (r − 1)-subsets
I, J , there is an r-signotope σ∗ on [n + 1] with fliples I∗, J∗ and an extending element
k ∈ [n + 1] such that σ∗↓k = σ, I∗↓k = I, and J∗↓k = J .

Using this notion we are now ready to formulate an extension lemma for r-signotopes.

▶ Theorem 1.2 (Extension lemma for signotopes of odd rank). For every odd rank r ≥ 3,
every r-signotope is 2-extendable.

EuroCG’22

17:4 Extendability of higher dimensional signotopes

The statement of Theorem 1.2 only applies to signotopes of odd rank. In fact, for ranks
4, 6, and 8, we found signotopes on 8, 12, and 16 elements, respectively, which are not
2-extendable1. Based on these examples, we dare the following conjecture:

▶ Conjecture 1.3. For every even r ≥ 4, there are r-signotopes which are not 2-extendable.

Despite the restrictions to simple arrangements and crossing points as prescribed points,
Theorem 1.2 implies Levi’s extension lemma (Theorem 1.1). Details are deferred to the full
version; see [4] for a preliminary version.

1.3 Signotopes as a rich subclass of oriented matroids
It is well known that the number of oriented matroids on n elements of rank r is 2Θ(nr−1) [5,
Corollary 7.4.3]. As shown by Balko [2], r-signotopes are a rich subclass of oriented matroids
of rank r.

▶ Proposition 1.4. For r ≥ 3, the number of r-signotopes on n elements is 2Θ(nr−1).

In ranks 1 and 2 there are 2n and n! signotopes on [n], respectively. For rank r ≥ 3, the
precise number of r-signotopes on [n] has been computed for small values of r and n; see
A6245 (rank 3) and A60595 to A60601 (rank 4 to rank 10) on the OEIS [12].

2 Preliminaries

We now prepare for the proof of Theorem 1.2. In rank 3 the left to right order on each
pseudoline yields a partial order of the crossing points of the arrangement. We now define
the corresponding partial order on the (r − 1)-subsets associated with a r-signotope σ. For
every r-subset X = {x1, . . . , xr} define:

X\{x1} ≻ X\{x2} ≻ · · · ≻ X\{xr} if σ(x1, . . . , xr) = +, and
X\{x1} ≺ X\{x2} ≺ · · · ≺ X\{xr} if σ(x1, . . . , xr) = −.

By taking the transitive closure of all relations obtained from r-subsets, we obtain a partial
order on the (r − 1)-subsets corresponding to σ [6, Lemma 10].

If we rotate an arrangement of pseudolines, i.e., we choose another unbounded cell as
the top cell, we get an pseudoline arrangement with the same cell structure. If we only
rotate a single pseudoline, then the orientation of the triangle spanned by 3 pseudolines stays
the same if and only if the rotated pseudoline is not involved (see for example the triangle
spanned by 2,3,4 in the left, resp. 1,2,3 in the right arrangement in Figure 3). In terms of the
3-signotope σ the signs of the rotated signotope σrot are: σrot(a, b, c) = σ(a + 1, b + 1, c + 1)
if c ̸= n and σrot(a, b, n) = −σ(1, a + 1, b + 1).

In general, we define the clockwise rotated signotope σrot of a given r-signotope σ as:

σrot(x1, . . . , xr) =
{

−σ(1, x1 + 1, . . . , xr−1 + 1) if x1 < x2 < · · · < xr = n,

σ(x1 + 1, . . . , xr + 1) if x1 < x2 < · · · < xr < n.

Indeed, σrot is an r-signotope on n elements (see [4] for more details). To keep track of the
index shift caused by a clockwise rotation, we define

Xrot =
{

{x1 − 1, x2 − 1, . . . , xk − 1} if x1 ̸= 1;
{x2 − 1, . . . , xk − 1, n} if x1 = 1

1 The examples and the source code to verify their correctness are available on demand.

H. Bergold, S. Felsner, and M. Scheucher 17:5

1

2

3

4

5

rotate

1

2

3

4

5

1

2

3

4

5

Figure 3 An illustration of a clockwise rotation. The rotated pseudoline is highlighted red.

for any subset X = {x1, . . . , xk} of [n] with x1 < . . . < xk.

3 Proof of Theorem 1.2

Using these properties we can give a proof for Levi’s extension lemma using only the notation
of signotopes and the corresponding partial order as introduced in Section 2.

If incomparable elements in the corresponding order are chosen as prescribed points, an
arrangement is extendable by an element which we put in the last position, i.e., the (n + 1)st
element, see Figure 2. More abstractly we can extend the arrangement when the prescribed
points are maximal elements of a down-set of the partial order. A down-set of a partial order
(P, ≺) is a subset D ⊂ P such that for all p ∈ P and d ∈ D with p ⪯ d it holds p ∈ D.

▶ Proposition 3.1. Let (P, ≺) be the partial order on (r − 1)-sets corresponding to an
r-signotope σ on [n]. For every down-set D ⊆ P there is a signotope σ∗ on [n + 1] such that
all r-subsets of the form m ∪ {n + 1} for a maximal element m of D are fliples.

Proof. Define the extended r-signotope σ∗ on [n + 1] as follows:

σ∗(x1 . . . , xr) =

σ(x1, . . . , xr) if x1, . . . , xr ∈ [n];
+ if xr = n + 1 and {x1, . . . , xr−1} ∈ D;
− if xr = n + 1 and {x1, . . . , xr−1} ̸∈ D.

This is indeed an r-signotope and fulfills the conditions mentioned in the statement. Details
are deferred to the full version; see [4] for a preliminary version. ◀

Note that Proposition 3.1 holds for general rank. For odd rank we can always find a
rotation of the corresponding signotope such that the two prescribed (r − 1)-subsets are
incomparable and we can use Proposition 3.1 to define an extension.

▶ Lemma 3.2. Let r be an odd integer, let σ be an r-signotope on [n] and let X, Y be two
disjoint (r − 1)-subsets. After at most n clockwise rotations, σ, X, and Y are transformed
into σ′, X ′, and Y ′, resp., such that X ′ and Y ′ are incomparable in the partial order ≺′

corresponding to σ′.

Proof. Assume X and Y are comparable in the partial order ≺ corresponding to the r-
signotope σ with X ≺ Y . We show that after n clockwise rotations, all signs of σ are reversed.
Hence the partial order ≺rot is the reversed relation to ≺.

The sign of an r-subset {z1, . . . , zr} changes from + to − or vice versa if and only if the
rotated element is contained in {z1, . . . , zr}, i.e., if we rotate z1. Hence after rotating n times

EuroCG’22

17:6 Extendability of higher dimensional signotopes

in general every zi was rotated and thus the sign of an r-subset changes exactly r times.
Since r is odd, the sign after rotating n times is opposite. The obtained signotope is the
reverse of the original signotope σ and the corresponding partial order is also reversed.

Since we cannot reverse the order of two disjoint (r − 1)-sets in one rotation (details
are deferred to the full version [4]), there will be a moment where the two disjoint sets are
incomparable. ◀

Proposition 3.1 and Lemma 3.2 together imply Theorem 1.2, which completes the proof.
The outline is as follows. Using Lemma 3.2, we rotate until the required disjoint (r−1)-subsets
are incomparable. To extend the signotope we then use the down-set, which consists of all
elements smaller than one of the two incomparable (r − 1)-subsets. In this down-set the two
prescribed (r − 1)-subsets are the maximal elements. Hence we can apply Proposition 3.1
in order to add a new elements as required. Finally, we rotate back so that the original
signotope is contained in the new extended signotope. Details are deferred to the full version.

4 Conclusion

Using complete enumeration of small signotopes and a SAT based test of extendability, we
found a 4-signotope on 8 elements which is not 2-extendable. Since the number of signotopes
explodes as the ranks increases, the complete enumeration was impossible in higher ranks.
To still cope with higher ranks, we instead used a SAT based search for signotopes which
share structural properties with the rank 4 example. This allowed us to find the examples in
rank 6 and 8 which are not 2-extendable.

References
1 A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar. Levi’s lemma, pseudolinear

drawings of Kn, and empty triangles. Journal of Graph Theory, 87(4):443–459, 2018.
2 M. Balko. Ramsey numbers and monotone colorings. Journal of Combinatorial Theory,

Series A, 163:34–58, 2019.
3 M. Balko, R. Fulek, and J. Kynčl. Crossing numbers and combinatorial characterization of

monotone drawings of Kn. Discrete & Computational Geometry, 53(1):107–143, 2015.
4 H. Bergold, S. Felsner, and M. Scheucher. Extendability of higher dimensional sig-

notopes (with Appendix), 2022. http://page.math.tu-berlin.de/~scheuch/publ/
bfs-ehds-eurocg22.pdf.

5 A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegler. Oriented Matroids,
volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, second edition, 1999.

6 S. Felsner and H. Weil. Sweeps, Arrangements and Signotopes. Discrete Applied Mathematics,
109(1):67–94, 2001.

7 J. Folkman and J. Lawrence. Oriented matroids. Journal of Combinatorial Theory, Series
B, 25(2):199–236, 1978.

8 J. E. Goodman. Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete Mathematics,
32(1):27–35, 1980.

9 J. E. Goodman and R. Pollack. Three points do not determine a (pseudo-) plane. Journal
of Combinatorial Theory, Series A, 31(2):215–218, 1981.

10 F. Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte über
die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-
Physische Klasse, 78:256–267, 1926.

H. Bergold, S. Felsner, and M. Scheucher 17:7

11 H. Miyata. On combinatorial properties of points and polynomial curves. arXiv:1703.04963,
2021.

12 OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. Published electroni-
cally at http://oeis.org.

13 J. Richter-Gebert. Oriented matroids with few mutations. In Discrete & Computational
Geometry, volume 10, pages 251–269. Springer, 1993.

14 M. Schaefer. A proof of Levi’s extension lemma. arXiv:1910.05388, 2019.

EuroCG’22

Polyline Simplification under the Local Fréchet
Distance has Subcubic Complexity
Sabine Storandt1 and Johannes Zink2

1 University of Konstanz, Germany
sabine.storandt@uni-konstanz.de

2 University of Würzburg, Germany
zink@informatik.uni-wuerzburg.de

Abstract
Given a polyline on n vertices, the polyline simplification problem asks for a minimum size subsequence
of these vertices defining a new polyline whose distance to the original polyline is at most a given
threshold under some distance measure. We improve the running time bound for the simplification
of polylines under the local Fréchet distance. The best algorithm known so far in the literature
is using the local Fréchet distance within the Imai-Iri algorithm, which has a cubic running time.
We extend the algorithm of Melkman and O’Rourke [Comp. Morph. ’88], who consider polyline
simplification under the local Hausdorff distance, to be applicable to the local Fréchet distance. The
runtime of the algorithm is O(n2 log n) in the Euclidean norm. Moreover, we transfer this principle
to other Lp norms. In particular, we can improve the runtime to O(n2) in the L1 and L∞ norm.

Related Version arXiv:2201.01344

1 Introduction

Polyline simplification is an extensively studied topic due to its relevance to a variety of
applications, such as trajectory and shape analysis, data compression or map visualization.
The goal of polyline simplification is to replace a given polyline with n vertices with a simpler
one while ensuring that the input and the output polyline are sufficiently similar.

The similarity is governed by a given distance threshold ε. We consider only polyline
simplifications where the output polyline has to consist of a subsequence of the input polyline
vertices. Line segments between these vertices are then called shortcuts. The distance
measure is applied locally, i.e., the distance between each shortcut and the part of the input
polyline it bridges must not exceed ε. To determine the similarity of the input and output
polyline, the Hausdorff and the Fréchet distance are the most commonly used measures.

For the problem of polyline simplification under the local Hausdorff distance, the Imai-Iri
algorithm [6] from 1988 guarantees a running time of O(n3) by reducing the simplification
problem to a graph problem. Melkman and O’Rourke [7] showed in 1988 that the running
time of the Imai-Iri algorithm can be improved to O(n2 log n) by accelerating the graph
construction phase. They exploit the geometric properties using cone-shaped wedges and a
wave front, which they call frontier. We use both concepts and apply them also to the local
Fréchet distance. In 1996, Chan and Chin [3] improved the running once more to O(n2) by
getting rid of the frontier and, consequently, a log-factor. They only use the cone-shaped
wedges – but now in two directions because otherwise they would find false-positive shortcuts.

For the local Fréchet distance, Godau [4] showed in 1991 how to simplify a polyline inO(n3)
by a straight-forward adjustment of the Imai-Iri algorithm. Since then, no improvements
were made; see the article by van Kreveld, Löffler and Wiratma [9] for a recent overview.
But the Fréchet distance is often considered the superior distance measure as it takes the
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

18:2 Polyline Simplification under the Local Fréchet Distance

order of the vertices along the polyline into account, while the Hausdorff distance ignores
this aspect. This, however, makes the computation of the Fréchet distance more intricate.

We show that nevertheless near-quadratic running time bounds can be achieved by
adjusting and combining known techniques. Most notably, the concept of a wave front data
structure, which encodes, for a polyline vertex, the region in which the vertices that are
endpoints of shortcuts must lie. This answers an open question by Agarwal, Har-Peled,
Mustafa, and Wang [1] whether it is possible to compute an optimal simplification under
the local Fréchet distance in subcubic time. Moreover, we investigate the problem not only
in the (Euclidean) L2 norm, but in all Lp (p ∈ [1,∞]) norms. All of our results refer to the
two-dimensional problem, i.e., polyline simplification in the plane.

2 Preliminaries

Our algorithm heavily builds upon the Imai-Iri and the Melkman-O’Rourke algorithm, which
are briefly recapped below. In this description we also define our notation before we sketch
the main differences to our novel approach.

2.1 Imai-Iri Algorithm for the Local Hausdorff and Fréchet Distance
Given a polyline L with n vertices p1, . . . , pn ∈ R2, the polyline simplification algorithm by
Imai and Iri [6] proceeds in two phases. In the first phase, the shortcut graph is constructed.
This graph has a node for each vertex of L and it has an edge between two nodes if and only
if there is a valid shortcut between the corresponding two vertices of L. For the Hausdorff
and the Fréchet distance it can be checked in O(n) time [2] whether the distance between a
line segment and a polyline having O(n) vertices exceeds ε. Hence, the total running time of
the first phase amounts to O(n3). In the second phase, a shortest path from the first node p1
to the last node pn is computed in the shortcut graph, which can be accomplished in O(n2).

2.2 Melkman-O’Rourke Algorithm for the Local Hausdorff Distance
Since in the Imai-Iri algorithm the construction of the shortcut graph dominates the runtime,
accelerating this first phase also leads to an overall improvement. Melkman and O’Rourke [7]
introduced a faster technique to compute the shortcut graph for the local Hausdorff distance.
Starting once at each vertex pi for i ∈ {1, . . . , n}, they traverse the rest of the polyline vertex
by vertex in O(n log n) time to determine all valid shortcuts originating at pi.

To this end, they maintain a cone-shaped region called wedge in which all valid shortcuts
are required to lie. The wedge is an angular region having its origin at pi and being the
intersection of all angular regions (which we call local wedges) that define the areas where
valid shortcuts may lie for each intermediate vertex1. When traversing the polyline, the wedge
iteratively becomes narrower. Moreover, they maintain a wave front which is a sequence of
circular arcs coming from circles of radius ε, from now on called unit circles. The wave front
subdivides the wedge into two regions – all valid shortcuts starting at pi need to have the
other end point in the other region not containing pi. We call this region valid region2. The

1 W.l.o.g., we assume hereunder that pi+1 has distance at least ε to pi because otherwise, we could ignore
all vertices following pi and having distance ≤ ε to pi since they are in ε-distance to any shortcut (pi, pj).
Moreover, we assume w.l.o.g. that pi is below pi+1 and therefore at the bottom of a wedge.

2 Note that our notation follows Chan and Chin [3] – like them we call the whole cone-shaped region
wedge. Melkman and O’Rourke [7] only call the valid region wedge and they call the wave front frontier.

S. Storandt and J. Zink 18:3

wave front has size in O(n) and is stored in a balanced search tree such that querying and
updating operations can be made in O(log n) time.

When starting at pi and encountering pj during the traversal, we denote by Dij the local
wedge of pi and pj , which is the area between the two tangential rays of the unit circle around
pj emanating at pi. We denote by Wij the (global) wedge where Wij :=

⋂
k∈{i+1,i+2,...,j}Dik.

For pipj to be a valid shortcut, pj needs to lie within the valid region, i.e., pj lies within
Wi(j−1) and above the wave front. We can check containment in Wi(j−1) in constant time
and determine the position relative to the wave front in O(log n) time. As one can update
the wedge from Wi(j−1) to Wij in constant time and its wave front in O(log n) time, the
running time of this phase is O(n log n) per starting vertex pi and O(n2 log n) in total.

3 Novel Approach for the Local Fréchet Distance

In this section, we describe how to obtain an algorithm for polyline simplification running in
near-quadratic time by means of the wave front similar to Melkman and O’Rourke [7] and
within the framework of Imai and Iri [6]. We first consider the L2 norm and describe our
differences to Melkman and O’Rourke, and then generalize this approach to arbitrary Lp

norms (p ∈ [1,∞]) and exploit special properties of L1 and L∞ to obtain better runtimes.

3.1 Outline
Based on Imai and Iri, we build the shortcut graph by traversing the given polyline n times –
starting once from each vertex pi and determining all shortcuts starting at pi. For each pi,
we construct a wedge with a wave front. The shape of the wave front depends on the shape
of the unit circle in the Lp norm. Fig. 1 illustrates the wave front in the L1, L2, and L∞
norm. The properties of the wave front will be discussed in more detail later.

Let us describe the procedure how to determine, for each vertex pi of the polyline, the
set of subsequent vertices to which pi has a valid shortcut. We traverse the polyline in order
pi+1, pi+2, . . . , pn. During this traversal, we maintain the wedge in which all valid shortcuts
need to lie. This would, as in the algorithm by Chan and Chin [3] suffice to assures that the
Hausdorff distance threshold is not violated which is a lower bound for the Fréchet distance.
To also not exceed the Fréchet distance threshold, we use the wave front. As in the algorithm
by Melkman and O’Rourke, the invariant maintained is that for a valid shortcut from pi to
pj>i, the point pj has to be within the valid region of the wedge Wi(j−1). Hence, whenever a
point pj lies in the current valid region of pi, we add the edge (pi, pj) to the shortcut graph.

Then, regardless of whether (pi, pj) is a valid shortcut or not, we first update the
wedge Wi(j−1) to an intermediate wedge W ′

ij by computing the intersection between Wi(j−1)
and the local wedge Dij . Afterwards, we update the intermediate wedge W ′

ij and the wave
front by the following operations. This update process is illustrated for the L2 norm in Fig. 2
and for multiple steps and multiple norms in Fig. 1.

A valid shortcut (pipk>j) in the Fréchet distance needs to go through the intersection
region I between the current valid region (i.e., the wedge behind the wave front) and the
unit circle cj around pj . Otherwise, the vertices of the subpolyline from pi to pk would be
encountered in the wrong order contradicting the definition of the Fréchet distance. Hence,
we narrow the wedge a second time such that the rays Rl and Rr emanating at pi and
enclosing I constitute the wedge Wij ; see Fig 2a. Note that this latter step is different to
what Melkman and O’Rourke do because for the Hausdorff distance, it is irrelevant in which
order the intermediate points skipped by a shortcut are encountered by the shortcut segment.

EuroCG’22

18:4 Polyline Simplification under the Local Fréchet Distance

p1 p1 p1

p2

p3

p4

p2

p3

p4

p2

p3

p4

p5p5p5
W12 = D12 W12W13D13 W14 D14

(a) In the L1 norm, the unit circles are squares of side length
√

2ε whose boundary is rotated by 45 degrees
relative to the coordinate axes. The wave front consists of one or two line segments.

p1 p1 p1

p2

p3

p4

p2

p3

p4

p2

p3

p4

p5p5p5
W12 = D12 W13D13 W12 W14 D14

(b) In the L2 norm, the unit circles are circles of radius ε. The wave front consists of O(n) circular arcs.

p1 p1 p1

p2

p3

p4

p2

p3

p4

p2

p3

p4

p5p5p5
W12 = D12 W12D13

W13

W14 D14W13

(c) In the L∞ norm, the unit circles are squares of side length 2ε whose boundary is parallel to the
coordinate axes. The wave front consists of one or two line segments.

Figure 1 Iterative construction of the wedge in the L1, L2 and L∞ norm: From left to right,
the local wedges D12, D13, and D14 are visualized in pink. Here, the intersection of local wedges
defines the wedges W12, W13, and W14, respectively. Additionally, we use the wave front, which is a
sequence of unit circle arcs – here depicted in blue. Within the wedge and above the wave front,
there is the valid region (depicted in green). This is the area, where a subsequent vertex pj needs
to lie if there is a valid shortcut (p1, pj). For example, (p1, p5) is a valid shortcut in the L∞ norm,
whereas in the L1 and L2 norm it is not.

S. Storandt and J. Zink 18:5

pi

pj

I

Wij

Wi(j−1)

W ′ij

Rl
Rr

cj

(a) When encountering pj , we update the wedge
in two steps – even if pj lies outside the wedge.

pi

pj
Wij

Wi(j−1)

wt+
1

w
′
t+

1

w ′
t

wt

s

cj

(b) Vertex pj contributes an arc to the new wave
front. Here, (pi, pj) is also a valid shortcut.

Figure 2 Updating the wedge and its wave front in the L2 norm.

Guibas et al. [5] also apply this extra narrowing step, but in a different polyline simplification
setting than ours.

Then, we update the wave front as Melkman and O’Rourke do. The parts of the bottom
arc of the unit circle cj around pj within the local wedge Dij that are above the current wave
front are included to the new wave front. For an example see Fig 2b. There, we compute the
intersection point s between cj and the wave front and replace the arcs w′t and w′t+1 of the
wave front by the arcs wt (which is a part of w′t) and wt+1 (which is a part of cj). There can
be up to two intersection points between cj and the wave front. If the valid region becomes
empty by one of these update operations, we abort the search for further shortcuts from pi.

3.2 Correctness
To show correctness, we need to argue that any shortcut (pi, pj) found by our algorithm is
valid and that all valid shortcuts are identified.

For the former, we argue that we can always find an ordered mapping of the vertices
pi, pi+1, . . . , pj onto points on pipj that are also part of the wave front and hence at most at
distance ε by definition. These points are the intersection points of pipj with all wave fronts
of the previous steps, i.e., the wave fronts of the wedges Wi(i+1), Wi(i+2), . . . , Wi(j−1).

For the latter, we show that for each point pj not in the valid region of Wi(j−1), the
Fréchet distance of pipj to the subpolyline pi, pi+1, . . . , pj exceeds ε. If pj lies outside the
wedge Wi(j−1), then pipj does not intersect a unit circle of some vertex pk∈{i+1,...,j−1} or
encounters the vertices pi+1, . . . , pj−1 in the wrong order. If pj lies inside the wedge Wi(j−1)
but below the wave front, then there is some arc on the wave front that belongs to a unit
circle of some vertex pk that has distance greater than ε to all points of the line segment pipj .

3.3 L2 and Lp∈(1,∞) Norm
In L2, there are at most O(n) arcs on the wave front [7]. However, this means we cannot
iterate over all arcs in each step since this would again require cubic time in total. Similar to

EuroCG’22

18:6 Polyline Simplification under the Local Fréchet Distance

Melkman and O’Rourke, we use a balanced binary search tree to locate a point pj relative
to the wave front and to update the wave front. Note that we have an additional update
operation where we determine the intersection region I and potentially make the wedge
narrower. To this end, we need to determine whether there is two, one or zero intersection
points between the wave front and a unit circle and where they lie in logarithmic time. We
describe how to achieve this in our arXiv version [8]3 and we conclude the following theorem.

I Theorem 3.1. An n-vertex polyline can be simplified optimally under the local Fréchet
distance in the L2 norm in O(n2 log n) time.

We can generalize this approach to Lp∈(1,∞) under the assumption that we can find the
intersection between a line and a unit circle and between two unit circles in constant time.

3.4 L1 and L∞ Norm

In the L1 and the L∞ norm, the unit circles are squares. Thus, the wave front consists of a
sequence of orthogonal line segments. Here, we assume that all line segments are horizontal
and vertical as in the L∞ norm. In the L1 norm it is the same but rotated by 45 degrees.

We inductively show that the wave front consists of at most two line segments – a
horizontal and a vertical line segment. When we consider pi+1, the wave front is first
constructed as the bottom arc of the unit circle around pi+1 within the local wedge Di(i+1).
This is just one or two horizontal or vertical line segments. Now assume that the wave front
of Wi(j−1) is given and we now consider pj . To construct the wave front of Wij , we need to
compute the intersection between the wave front of Wi(j−1) and the bottom arc of the unit
circle around pj . Both is just one or two horizontal or vertical line segments and the valid
region of Wij is above both vertical and to the same side of both horizontal line segments.
Hence, the new wave front is determined by one of the horizontal and one of the vertical line
segments – again at most two line segments.

Since the wave front has size ≤ 2, we can check containment in the valid region in constant
time and we can update the wave front in constant time. This yields the following theorem.

I Theorem 3.2. An n-vertex polyline can be simplified optimally under the local Fréchet
distance in the L1 and L∞ norm in O(n2) time.

4 Conclusions and Future Work

We proposed a method how to simplify polylines under the local Fréchet distance optimally
based on the concept of wave fronts that matches the running time bounds under the
(conceptually simpler) local Hausdorff distance up to logarithmic factors. It would be
interesting to implement our algorithm and to evaluate its running time in practice. In the
L2 norm, the theoretical analysis implies that the wave front might have linear complexity.
However, for a large wave front to arise, the polyline vertices need to form a specific pattern.
Since it is unlikely that such patterns occur naturally, we actually expect the wave front to
have constant size in practice, resulting in O(n2) time also for L2.

3 Guibas et al. [5] also do this operation, but they do not specify how to accomplish a runtime of O(log n).

S. Storandt and J. Zink 18:7

References
1 Pankaj K. Agarwal, Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. Near-linear

time approximation algorithms for curve simplification. Algorithmica, 42(3):203–219, 2005.
doi:10.1007/s00453-005-1165-y.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry and Applications, 5:75–91, 1995.
doi:10.1142/S0218195995000064.

3 W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of
line segments or minimum error. International Journal of Computational Geometry and
Applications, 6(1):59–77, 1996. doi:10.1142/S0218195996000058.

4 Michael Godau. A natural metric for curves – computing the distance for polygonal chains
and approximation algorithms. In Proc. 8th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’91), pages 127–136, 1991. doi:10.1007/BFb0020793.

5 Leonidas J. Guibas, John Hershberger, Joseph S. B. Mitchell, and Jack Snoeyink. Ap-
proximating polygons and subdivisions with minimum link paths. International Jour-
nal of Computational Geometry and Applications, 3(4):383–415, 1993. doi:10.1142/
S0218195993000257.

6 Hiroshi Imai and Masao Iri. Polygonal approximations of a curve – formulations and
algorithms. In Godfried T. Toussaint, editor, Computational Morphology, volume 6 of
Machine Intelligence and Pattern Recognition, pages 71–86. North-Holland, 1988. doi:
10.1016/B978-0-444-70467-2.50011-4.

7 Avraham Melkman and Joseph O’Rourke. On polygonal chain approximation. In
Godfried T. Toussaint, editor, Computational Morphology, volume 6 of Machine In-
telligence and Pattern Recognition, pages 87–95. North-Holland, 1988. doi:10.1016/
B978-0-444-70467-2.50012-6.

8 Sabine Storandt and Johannes Zink. Polyline simplification under the local Fréchet distance
has subcubic complexity in 2D. arXiv preprint, 2022. URL: https://arxiv.org/abs/2201.
01344.

9 Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline simpli-
fication using the Hausdorff and Fréchet distance. Journal of Computational Geometry,
11(1):1–25, 2020. doi:10.20382/jocg.v11i1a1.

EuroCG’22

Compacting Squares: Input-Sensitive In-Place
Reconfiguration of Sliding Squares∗

Hugo A. Akitaya1, Erik D. Demaine2, Matias Korman3, Irina
Kostitsyna4, Irene Parada5, Willem Sonke4, Bettina Speckmann4,
Ryuhei Uehara6, and Jules Wulms7

1 University of Massachusetts Lowell, USA
hugo_akitaya@uml.edu

2 Massachusetts Institute of Technology, USA
edemaine@mit.edu

3 Siemens Electronic Design Automation, USA
matias_korman@mentor.com

4 TU Eindhoven, The Netherlands
[i.kostitsyna, w.m.sonke, b.speckmann]@tue.nl

5 Technical University of Denmark, Denmark
irmde@dtu.dk

6 JAIST, Japan
uehara@jaist.ac.jp

7 TU Wien, Austria
jwulms@ac.tuwien.ac.at

Abstract
Edge-connected configurations of square modules, which can reconfigure through so-called sliding
moves, are a well-established theoretical model for modular robots in two dimensions. Dumitrescu
and Pach [Graphs and Combinatorics, 2006] proved that it is always possible to reconfigure one such
configuration of n squares into any other using O(n2) sliding moves, while maintaining connectivity.

For certain pairs of configurations, reconfiguration may require Ω(n2) sliding moves. However,
significantly fewer moves may be sufficient. We present Gather&Compact, an input-sensitive in-place
algorithm that requires only O(P̄ n) sliding moves to transform one configuration into the other,
where P̄ is the maximum perimeter of the two bounding boxes. Our algorithm is built on the basic
principle that well-connected components of modular robots can be transformed efficiently. Hence
we iteratively increase the connectivity within a configuration, to finally make it xy-monotone.

We implemented Gather&Compact and compared it experimentally to the in-place modification
by Moreno and Sacristán [EuroCG 2020] of the Dumitrescu and Pach algorithm (MSDP). Our
experiments show that Gather&Compact consistently outperforms MSDP by a significant margin.

1 Introduction

Self-reconfigurable modular robots [13] promise adaptive, robust, scalable, and cheap solutions
in a wide range of technological areas, from aerospace engineering to medicine. Modular
robots are envisioned to consist of identical building blocks arranged in a lattice and are
intended to be highly versatile, due to their ability to reconfigure into arbitrary forms. An
actual realization of this vision depends on fast and reliable reconfiguration algorithms, which
hence have become an area of growing interest.

∗ JW was partially supported by the Austrian Science Fund (FWF) under grant P31119 and by the Vienna
Science and Technology Fund (WWTF) under grant ICT19-035. IP was supported by Independent
Research Fund Denmark grant 2020-2023 (9131-00044B) “Dynamic Network Analysis”.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

19:2 Compacting Squares

One of the best-studied paradigms of modular robots is the sliding cube model [6]. In
this model, a robot configuration is a face-connected set of cubic modules on the cubic grid.
The cubes can perform two types of moves, illustrated in two dimensions in Figure 1.

(a) (b)

Figure 1 Moves admitted by the sliding cube model: (a) slide, (b) convex transition.

First, a module can slide along two face-adjacent cubes to reach a face-adjacent empty grid
cell. Second, a module m can make a convex transition around a module m′ to end in
a vertex-adjacent empty grid cell. For this second move to be feasible, also the grid cell
(not occupied by m′) face-adjacent to both the starting and the ending positions must be
empty. There are several prototypes of modular robots that realize the sliding cube model
in 2D [3, 4, 7]. Units of multiple other prototypes, including expandable and contractible
units [11, 12] as well as large classes of modular robots [2, 10], can be arranged into cubic
meta-modules consisting of several units such that the meta-module can perform slide and
convex transition moves. Thus, algorithmic solutions in the sliding cube model can be applied
to modular robot systems realizing other models.

We study the reconfiguration problem for the 2D sliding cube model (the sliding square
model): given two configurations of n unlabeled squares (each describing the relative positions
of squares), compute a short sequence of moves that transforms one configuration into the
other, while preserving edge-connectivity at all times. In Section 3, we present an algorithm
for this problem, based on the “compact-and-deploy” approach. Using the basic principle that
well-connected components of modular robots can be transformed efficiently, our algorithm
iteratively increases the connectivity within a configuration, to arrive at a single solid xy-
monotone component, before deploying it into the target configuration. Hence, our algorithm
builds the target configuration in such a way that the lower left corner of the bounding
boxes of both configurations are aligned. Our algorithm is input-sensitive: it requires only
O(P̄ n) sliding moves to transform one configuration into the other, where P̄ is the maximum
perimeter of the two bounding boxes. Our algorithm is also in-place: only one square at a
time is allowed to move through cells edge-adjacent to the respective bounding box.

Comparison with existing algorithms. Dumitrescu and Pach [5] described an algorithm
which transforms any two configurations of n squares into each other using O(n2) moves.
This bound is worst-case optimal: there are pairs of configurations (a horizontal and a
vertical line) which require Ω(n2) moves for any transformation. The algorithm constructs a
canonical shape from both input configurations. In the original paper this canonical shape is
a strip that grows to the right of a right-most square and hence, necessarily, their algorithm
always requires Θ(n2) moves. Moreno and Sacristán [8, 9] modify Dumitrescu and Pach to
be in-place; their canonical shape is a rectangle within the bounding box of the input. The
in-place modification by Moreno and Sacristán of Dumitrescu and Pach (henceforth MSDP)
has the potential to use fewer than Θ(n2) moves in practice. Though, if configurations are
tree-like (such as the spiral illustrated in Figure 2 left), then each square moves along all
remaining squares, for a total of Ω(n2) moves (see Figure 2 bottom row). However, the width
and the height of this spiral configuration is O(

√
n). Our algorithm gathers Θ(

√
n) squares

from the end of the spiral and then compacts in a total of O(n
√

n) moves. In Section 4
we compare our Gather&Compact to MSDP experimentally; Gather&Compact consistently
outperforms MSDP by a significant margin, on all types of square configurations.

H. Akitaya et. al. 19:3

0

3.000 9.000 12.0005.642 15.441

20.000 60.000 80.00040.000 92.074

(a)

(b)

move

Figure 2 Spiral configuration in 40 × 40 bounding box. (a) Gather&Compact: gathering 5.642
moves; total 15.441 moves. (b) MSDP: 92.074 moves. Video: https://tinyurl.com/algaspiral

2 Preliminaries

To describe our reconfiguration algorithm, we first need to introduce the following definitions
and notations. Let C be an edge-adjacent configuration of squares on the square grid and let
G be the edge-adjacency graph of C. In G each node represents a square and two nodes are
connected by an edge, if the corresponding squares are edge-adjacent. With slight abuse of
notation we identify the squares and the nodes in the graph. A square s ∈ C is called a cut
square if C \ {s} is disconnected. Otherwise, s is called a stable square (see Figure 3a).

A chunk is any inclusion-maximal set of squares in C bounded by (and including) a simple
cycle in G (boundary cycle), including edge-adjacent squares of degree-1 in G (loose squares).

A link is a connected component of squares which are not in any chunk. A connector
is a chunk square edge-adjacent to a square in a link or in another chunk. By definition a
connector is a cut square. The size of a chunk C is the number of squares contained in C.

The component tree T of C has a vertex for each chunk or link and an edge (u, v) iff the
chunks / links represented by u and v have edge-adjacent squares or share a square. The
component tree is rooted at the component that contains the leftmost square in the bottom
row, the root square, of C. If a chunk is a leaf of T , we call it a leaf chunk (see Figure 3b).

A hole in C is a finite maximal vertex-connected set of empty grid cells. The infinite
vertex-connected set of empty grid cells is the outside. If a chunk C encloses a hole in C, we
say that C is fragile, otherwise C is solid. The boundary of a hole H is the set of squares
vertex-connected to any grid cell in H. The boundary of C is equal to the boundary of the
outside. Note that the boundary of a hole is edge-connected.

w

nw n

ssw se

e

ne

y

x

Consider now the bounding box B of C on the square grid. We
refer to the bottom-most left-most grid cell inside B as the origin. We
say that P is the perimeter of B, and hence any square in C can be
connected to the origin by an xy-monotone path of at most P/2 squares.

Let c = (x, y) be a grid cell. We use compass directions (n, ne, e,
etc.) to indicate neighbors of c. When we use grid coordinates, we
assume the usual directions (the x-axis increases towards e and the
y-axis increases towards n, so the n-neighbor of c is (x, y + 1)). Similarly, we indicate slide
moves using compass directions (‘a w-move’) and convex transitions using a sequence of two
compass directions (‘a ws-move’: a movement towards w followed by movement towards s).

EuroCG’22

19:4 Compacting Squares

(a) (b)

link square

chunk square

loose square

st
ab
le

cu
t

connector

Figure 3 (a) A configuration C. (b) The component tree T .

3 Input-sensitive in-place algorithm

In the first phase of our algorithm we ensure that the leaves of the component tree T are
sufficiently large and well-connected. Specifically, we gather squares from the leaves of T

until each leaf is a chunk of size at least P . To grow chunks, we use at most O(P) moves for
each square that was moved. During this process, the final position of each square is chosen
inside bounding box B, but squares can move through the layer of grid cells adjacent to B.

After gathering, all leaves are heavy chunks of size at least P . Our goal is now to make
each leaf chunk contain the origin, while ensuring that all squares remain part of their chunk
(and thus never decreasing connectivity). A heavy chunk C contains a sufficient number of
squares to be transformed into a chunk containing both the connector of C and the origin: we
can connect the connector with the origin by an xy-monotone path of at most P/2 squares;
two such paths, which are disjoint, form a new boundary cycle for C. We do not explicitly
construct these two paths, but instead we compact the configuration by filling holes and
using lexicographically monotone movement towards the origin for squares in heavy leaf
chunks. Moves in this phase are valid, if they ensure that squares do not leave a chunk, and
squares stay inside bounding box B (unless they are explicitly allowed to leave B).

During compacting each square in a leaf chunk makes primarily lexicographic monotone
(LM-)moves towards the origin while staying inside B: s- and w-moves (slides), as well as
sw-, ws-, nw-, and wn-moves (convex transitions). Figure 4 gives an overview of the types
of compacting moves. In some cases, a square in the leftmost column or bottom row can exit
B, and move along the bounding box to enter the same column/row closer to the origin. This
is the only time a non-lexicographic monotone move is used, and every square can perform it
at most O(P) times. Hence the total number of moves during compacting is O(Pn).

When compacting, every (heavy) leaf chunk will eventually contain a square at the
origin. This means that the whole configuration becomes a single chunk, as all leaves of the
component tree have merged into a single component. Therefore, once no valid moves can be
applied anymore, we arrive at an xy-monotone configuration that fits inside B. If at any

(a) (b) (c)

Figure 4 (a) An invalid default LM-move: this move splits a chunk. (b) A corner move: two
slides extending a concave corner diagonally, performed as one atomic unit. (c) A chain move:
sliding along the bounding box, possibly preceded by moving a single loose square.

H. Akitaya et. al. 19:5

(a) (b) (c)

Figure 5 Example input instances on a 10 × 10 grid: density (a) 50 %; (b) 70 %; (c) 85 %.

point during this process the configuration becomes xy-monotone, then we simply stop. In
particular, if the configuration is xy-monotone at the start, for example squares in only a
single row or column, then we do not have to gather or compact, even though there are no
heavy chunks. See the top row of Figure 2 for a visual impression of our algorithm.

In the special case that the input configuration C contains less than P squares, we first
ensure that C contains the origin and then execute the gathering and compaction steps as
before. The number of moves is trivially bounded by O(Pn) = O(P 2).

Finally, we can convert any xy-monotone configuration into a different xy-monotone
configuration with at most O(P̄ n) moves, where P̄ is the maximum perimeter of the bounding
boxes of source and target configurations. Thus, since all moves are reversible, we can
transform the source into the target configuration via this transformation.

▶ Theorem 3.1. Let C and C′ be two configurations of n squares each, let P and P ′ denote
the perimeters of their respective bounding boxes, and let P̄ = max{P, P ′}. We can transform
C into C′ using at most O(P̄ n) sliding moves while maintaining edge-connectivity at all times.

Due to space constraints, all omitted proofs and details can be found in [1], along with an
asymptotically tight lower bound and NP-completeness for minimizing the number of moves.

4 Experiments

We use square grids of sizes 10 × 10, 32 × 32, 55 × 55, 80 × 80, 100 × 100 for our experiments.
The data sets for MSDP were created by hand and are not available.1 We attempted to
create meaningful data sets of the same nature by starting with a fully filled square grid and
then removing varying percentages of squares while keeping the configuration connected. We
arrived at three densities, namely (50 %, 70 %, 85 %), which arguably capture the different
types of inputs for MSDP well [8, 9] (see Figure 5). For both algorithms we count moves

1 V. Sacristán, personal communication, April 2021.

Gather&Compact MSDP
D 50% 70% 85% 50% 70% 85%

10 237 31% 156 16% 95 8% 502 19% 427 21% 233 35%
32 5.395 4% 4.188 5% 2.529 8% 28.759 12% 18.447 13% 10.027 8%
55 25.916 2% 20.024 3% 12.124 4% 193.390 8% 116.431 12% 61.617 8%
80 77.745 2% 60.516 2% 36.395 3% 638.847 12% 344.529 9% 235.413 5%

100 150.666 1% 118.232 2% 69.488 3% 1.318.232 11% 743.133 17% 513.113 7%

Table 1 The number of moves for Gather&Compact and MSDP on various grid sizes (D × D,
such that P = 4D) and densities (in % of D × D). Averages and standard deviations (in % of
average) over 10 randomly generated instances are shown.

EuroCG’22

19:6 Compacting Squares

3840 229

gathering (229 moves) compaction (155 moves)

100 200 300move

(a)

(b)

6780 450150 300 600move

Figure 6 Execution of the two algorithms on one of the input instances for grid size 10 × 10,
density 50 %. (a) Gather&Compact; (b) MSDP. Video: https://tinyurl.com/alga10x10

until they reach their respective canonical configurations. Our online material2 contains our
code for Gather&Compact, the input instances, and the adapted version of MSDP.

Table 1 summarizes our results and Figure 6 shows snapshots for both algorithms on a
particular instance. We observe that Gather&Compact always uses significantly fewer moves
than MSDP, even on high density instances where most squares are already in place. This
is likely due to the fact that MSDP walks squares along the boundary of the configuration,
while Gather&Compact shifts squares locally into better position. Figure 6b shows this
behavior at move 600 where one can observe a square on its way along the bottom boundary.

References
1 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem

Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. CoRR, abs/2105.07997, 2021. URL:
https://arxiv.org/abs/2105.07997.

2 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Robin Flatland, John
Iacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots.
Computational Geometry: Theory and Applications, 46(8):917–928, 2013. doi:10.1016/j.
comgeo.2013.03.004.

3 Byoung Kwon An. EM-Cube: Cube-shaped, self-reconfigurable robots sliding on structure
surfaces. In Proc. 2008 IEEE International Conference on Robotics and Automation (ICRA),
pages 3149–3155, 2008. doi:10.1109/ROBOT.2008.4543690.

4 Chih-Jung Chiang and Gregory S. Chirikjian. Modular robot motion planning using
similarity metrics. Autonomous Robots, 10:91–106, 2001. doi:10.1023/A:1026552720914.

5 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006. doi:10.1007/s00373-005-0640-1.

6 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent
Robots and System, volume 3, pages 2460–2467, 2003. doi:10.1109/IROS.2003.1249239.

2 https://alga.win.tue.nl/software/compacting-squares/

H. Akitaya et. al. 19:7

7 Kazuo Hosokawa, Takehito Tsujimori, Teruo Fujii, Hayato Kaetsu, Hajime Asama, Yoji
Kuroda, and Isao Endo. Self-organizing collective robots with morphogenesis in a vertical
plane. In Proc. 1998 IEEE International Conference on Robotics and Automation (ICRA),
volume 4, pages 2858–2863, 1998. doi:10.1109/ROBOT.1998.680616.

8 Joel Moreno. In-place reconfiguration of lattice-based modular robots. Bachelor’s thesis,
Universitat Politècnica de Catalunya, 2019.

9 Joel Moreno and Vera Sacristán. Reconfiguring sliding squares in-place by flooding. In Proc.
36th European Workshop on Computational Geometry (EuroCG), pages 32:1–32:7, 2020.

10 Irene Parada, Vera Sacristán, and Rodrigo I. Silveira. A new meta-module design for
efficient reconfiguration of modular robots. Autonomous Robots, 45(4):457–472, 2021.
doi:10.1007/s10514-021-09977-6.

11 Daniela Rus and Marsette Vona. A physical implementation of the self-reconfiguring
crystalline robot. In Proc. 2000 IEEE International Conference on Robotics and Automation
(ICRA), volume 2, pages 1726–1733, 2000. doi:10.1109/ROBOT.2000.844845.

12 John W. Suh, Samuel B. Homans, and Mark Yim. Telecubes: mechanical design of a module
for self-reconfigurable robotics. In Proc. 2002 IEEE International Conference on Robotics and
Automation (ICRA), volume 4, pages 4095–4101, 2002. doi:10.1109/ROBOT.2002.1014385.

13 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory S. Chirikjian. Modular self-reconfigurable robot systems. IEEE
Robotics & Automation Magazine, 14(1):43–52, 2007. doi:10.1109/MRA.2007.339623.

EuroCG’22

The k-outlier Fréchet distance ∗

Maike Buchin1 and Lukas Plätz1

1 Faculty of Computer Science, Ruhr-Universität Bochum
{maike.buchin, lukas.plaetz}@rub.de

Abstract
The Fréchet distance is a popular metric for curves; however, its bottleneck character is a disadvantage
in many applications. Here we introduce two variants of the Fréchet distance to cope with this
problem and expand the work on shortcut Fréchet distances. We present an efficient algorithm for
computing the new distance measure.

1 Introduction

The analysis of curves is a growing field of study in computational geometry. The Fréchet
distance is a popular metric between two curves. However, working with real-life data brings
errors in measurement with it; and the Fréchet distance is quite sensitive to such outliers
as it is defined as the largest distance in a minimal correspondence between the two curves.
Hence outliers in the data may determine the Fréchet distance for the entire curves.

There are three different approaches to handle such error: the partially measured [5],
the averaged [6, 12] and the shortcut Fréchet distance [10]. In this paper, we want to focus
on the last one. Driemel and Har-Peled introduced the shortcut Fréchet distance. It allows
replacing parts of one curve through straight line segments, called shortcuts. Deciding the
shortcut Frechet distance between two curves was shown NP-hard by Buchin, Driemel and
Speckmann in [7]. In the vertex restricted case, these line segments must start and end at
vertexes. For this case Driemel and Har-Peled showed that the vertex restricted directed
k-shortcut Fréchet distance, k counting the number of shortcuts, can be approximated in
near-linear time. Buchin, Driemel and Speckmann gave an algorithm to decide the vertex
restricted shortcut distance exactly in O(n3 log n) time. An open problem is to extend the
shortcut distance to allow shortcuts on both curves without completely short-cutting both
curves. Avraham et al. considered the discrete problem [3] and faced the same problem for
the two-sided case. To resolve it, they forbid simultaneous movement on the curves. In [1]
Alt et al. discuss first how to define and compute the Fréchet distance between a curve and
a graph, and then between two graphs. It introduces a free space surface for these, which is
similar in spirit to the outlier free space we define here.

Some results on curve simplification are special cases of our problem in the sense that
the directed outlier distance of a curve to itself is considered here. In [11] Imai and Iri for
simplifying a curve introduce an associated graph to the curve. This is also called the shortcut
graph of a curve, which we will later use in our algorithm. Bringmann and Chaudhury
[4] considered curve simplification with vertex restricted shortcuts. They showed that this
simplification needs O(n3) time. They also showed that for Lp with p ̸= 2, ∞ this cannot
be done in O(n3−ε) for all ε > 0 unless the ∀∀∃−OV hypothesis fails. Kerkhof, Kostitsyna,
Löffler, Mirzanezhad and Wenk [13] achieved the same runtime for their simplification
algorithm.

∗ The work was supported by the PhD School "SecHuman - Security for Humans in Cyberspace" by the
federal state of NRW.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 The k-outlier Fréchet distance

one-sided shortcut k-outlier
discrete O((n + m)6/5+ϵ) [3] naive O(nmk log n) [8]

continuous NP-Hard [7] | vertex restricted O(n5 log n) [9] naive O((n2mk + nmk2) log n) [8]
two-sided shortcut k-outlier
discrete O((m2/3n2/3 + m + n) log3(m + n)) [3] naive O(nmk2 log n) [8]

continuous – O((n2mk + nmk3) log n) [Thm. 2.7]
Table 1 Computational complexity of the shortcut and outlier computation problem

We will address the two open problems of allowing shortcuts on both curves and taking
into account the length of the shortcuts. For this, we present the k-outlier distances. These
distances allow ignoring k outliers on one or both curves and computing the optimal Fréchet
distance given the number of vertices to leave out. Switching from counting shortcuts to
counting vertices makes it possible to compute a symmetrical shortcut distance. Further we
allow other starting and ending points, hence it can also be seen as a partial Fréchet distance.
Table 1 compares our result to previous results and naive algorithms (see our full paper [8]).

2 k-outlier Fréchet distance

2.1 Outlier free space cell
We start by defining curves, shortcuts and the Fréchet distance.

▶ Definition 2.1. Let X = ⟨p0, p1, . . . , pn⟩ be a polygonal curve. We consider X as a
continuous map X : [0, n] → Rd, where X(i) = pi for i ∈ N, and the i-th edge is linearly
parametrized as X(i + λ) = (1 − λ)pi + λpi+1. We denote the shortcut ⟨pi, pa⟩ for i < a as
the straight line segment connecting the points.

A reparametrisation (σ, θ) of two curves X and Y is a pair of continuous non-decreasing
surjective functions, where σ and θ map from [0, 1] to [0, n] and [0, m], respectively. The
Fréchet distance between two polygonal curves X and Y is the maximum distance
attained by optimal reparameterisations, i.e. dF (X, Y) := inf(σ,θ) maxt∥X(σ(t)) − Y (θ(t))∥.
A reparametrisation of maximum distance at most ε is called an ε-realization.

Now we can define our outlier distances.

▶ Definition 2.2 (Outlier distance). A curve X := ⟨p1, p2, . . . , pℓ⟩ is in the set of k-outlier
curves Ck(X) if and only if the points ⟨p1, p2, . . . , pℓ⟩ are a subsequence of ⟨p1, p2, . . . , pn⟩ and
n−ℓ ≤ k. The directed k-outlier Fréchet distance dO(k, X, Y) := minY ∈Ck(Y) dF (X, Y).

The set of k-outlier curve tuples Tk(X, Y) :=
⋃k

i=0 Ci(X) × Ck−i(Y) contains those
curves, where the number of outliers of both curves is at most k. The undirected k-outlier
Fréchet distance is dT (k, X, Y) := min(X,Y)∈Tk(X,Y) dF

(
X, Y

)
.

Note that we do not (necessarily) restrict to start or end X with the same vertices as X.
We will later see that allowing this does not increase the computation time and that the
directed case is a specialization of the undirected case. Hence in the remainder of the paper,
the k-outlier Fréchet distance will refer to the undirected case.
▶ Remark (Axioms of Metrics). The identity of indiscernibles does not hold for Fréchet curves
because with the k-outlier Fréchet distances we cannot distinguish between two curves with k

different points. The undirected case is symmetrical because the set of k-outlier curves tuples

M. Buchin and L. Plätz 20:3

is symmetrical. The triangle inequality is not satisfied, this can be shown a counter-example.
See figure 1. For this example even dT (k, X, Y)+dT (k, Y, Z) ≥ c dT (2k, X, Z) is not satisfied.

Figure 1 Example of Driemel and Har-Peled in [10]. X and Y are close under dS and dT for
k = 1. The same is true for Y and Z. For X and Z they are only close under dT for k ≥ 3.

With the shortcuts, we introduce new edges on our curves and with them, in turn, new
cells in our free space by allowing these shortcuts. To distinguish the terminology of the
classical and the outlier Fréchet distance, we add the word outlier to the new terms.

We present a dynamic program to decide the k-outlier Fréchet distance. We introduce the
height in the outlier free space to keep track of the number of outliers. We start by initialising
the outlier free space with the starting points. Here we also allow omitting vertices at the
beginning of both curves, with the number of omitted points defining the starting height.
Then we compute the reachable intervals for each outlier cell with the starting point and the
previously computed reachable outlier intervals. Here every cell defines how much height
has to be added to the result. After the computation of an outlier cell, we have the classical
reachable free space interval of that cell. But to compute the outlier interval we need all
adjacent cells. We combine then all reachable intervals into the reachable outlier intervals.
In the end, we check if any ending point is reachable. They are similar to the starting points
but allow to use less than k outliers, too.

▶ Definition 2.3 (Outlier Cell). An outlier cell C[(i, j), (a, b), h] is defined as the classical
free space cell of the edges ⟨pi, pa⟩ and ⟨pj , pb⟩ and with an added height h. See 2 for a
visualisation. With Rh(C) and Rv(C) we describe the horizontal and vertical reachable
interval of an outlier cell C. The length L of a shortcut ⟨pi, pa⟩ with a > i is defined as
a − i − 1. It counts the vertices skipped by the shortcut. For the special case a = i we set the
length to 0. See 3 for an example. The horizontal length Lh(C[(i, j), (a, b), h]) := L(⟨pi, pa⟩)
and the vertical length Lv(C[(i, j), (a, b), h]) := L(⟨pj , pb⟩). A starting point (i, j) of
an outlier curve tuple is the pair of its first vertices. The height of that point in the
outlier free space is simply the sum of both indices. An ending point (n − i, m − j) is
a pair of the last vertices of an outlier curve tuple. The height of this point has to be
below k − i − j to allow the last points to be left out. Furthermore a vertical and hori-
zontal reachable outlier interval I[(a, j), (a, b), h] :=

⋃
l∈[k+1] Rv(C[(a − l, j), (a, b), h])

and I[(i, b), (a, b), h] :=
⋃

l∈[k+1] Rh(C[(i, b − l), (a, b), h]). The horizontal free space
interval F [(i, b), (a, b)] := {p ∈ [i, a] × {b} | ∥X(xp) − Y (yp)∥ ≤ ε} only depends on the

EuroCG’22

20:4 The k-outlier Fréchet distance

edge ⟨pi, pa⟩ and the point pj . The similar is true for the vertical free space interval
F [(a, j), (a, b)] := {p ∈ {a} × [j, b] | ∥X(xp) − Y (yp)∥ ≤ ε} We indicate by using an index
twice that this is defined by a vertex rather than an edge. An outlier point in the free
space diagram is defined as P [(i, j), h] := I[(i, j), (a, j), h] ∩ I[(i, j), (i, b), h].

Figure 2 We visualise an outlier free space cell in 3-dimensional space. The four points of the cell
C[(i, j), (a, b), h] are (i, j, h), (i, b, h + Lv), (a, j, h + Lh) and (a, b, h + Lv + Lh). The lower left is at
the same height as the cell. The upper left is lifted by the vertical length Lv, the lower right by the
horizontal length Lh and the upper right by both lengths. The reachable free space is shown in red.

Figures 4 to 6 show examples of two classical and an outlier free space diagram.

2.2 Algorithm
For an easier description, we will introduce the term predecessor. Here and in the following
we use [n] := {0, . . . , n} for n ∈ N as a shorthand.

▶ Definition 2.4. The predecessors of a cell C[(i, j), (a, b), h] are the outlier intervals
I[(i, j), (a, j), h] and I[(i, j), (i, b), h]. The predecessors of an outlier interval I[(i, j), (i, b), h]
and I[(i, j), (a, j), h] are the cells C[(i − l − 1, j), (i, b), h − l] and C[(i, j − l − 1), (a, j), h − l]
for l ∈ [k] respectively. The predecessors of a point P [(i, j), h] are the outlier intervals
I[(i − l − 1, j), (i, j), h − l] and I[(i, j − l − 1), (i, j), h − l] for l ∈ [k].

M. Buchin and L. Plätz 20:5

Figure 3 Two curves with a possible shortcut (dashed) on the red curve of length 3.

In the following, we only consider curves with at least one edge and k ≥ 1. With the
terminology introduced in the previous section, we can decide the reachability of a point
with the predecessors of the point. To compute an outlier interval applying two times its
predecessors gives us a dependence only on O(k) intervals.

We start Algorithm 1 by initializing our reachable free space in the first loop and placing
the starting points in the second loop. Then we can enforce the correct ordering of cells with
a lexicographical ordering of the cells by their five identifying values. In this ordering, we
compute the reachable outlier intervals in the third loop. After computing all cells we have
to check in the last loop if any of the ending points are in the reachable free space below the
needed height. We test if an ending point is reachable by computing the reachable outlier
interval ending with that point and accounting for the length of that interval.

Algorithm 1: Algorithm(k, X, Y, ε)
// Initialize Free Space
foreach (i, j, l, h) ∈ [n] × [m] × [k + 1] × [k] do // Outlier Intervals

Compute F [(i, j), (i + l, j)] and F [(i, j), (i, j + l)]
Set I[(i, j), (i + l, j), h], I[(i, j), (i, j + l), h] and P [(i, j), h] as empty

// Adding Reachable Starting Points
for (i, j) ∈ [k]2 with i + j ≤ k do // Starting Points

if ∥X(xi) − Y (yj)∥ ≤ ε then Set (i, j) ∈ P [(i, j), i + j)]
// Computing the Reachable Space
foreach (i, j, s, t, h) ∈ [n] × [m] × [k + 1] × [k + 1] × [k] do // Cell C[(i, j), (a, b), h]

a = i + s, b = j + t and C = C[(i, j), (a, b), h]
Update I[(i, b), (a, b), h + Lv] and I[(a, j), (a, b), h + Lh] with Rh(C) and Rv(C)

// Testing Ending Points
for (i, j, h) ∈ [k]3 with i + j ≤ k, i + j + h ≤ k do // Ending Points

if (n − i, m − j) ∈ P [(n − i, m − j), h)] then return True
return False

▶ Remark. There are several possibilities to alter the algorithm to compute different distances.
The first would be to set k to 0. Then the algorithm is the same as algorithm one of Alt and
Godau in [2] and the runtime collapses to O(nm).

EuroCG’22

20:6 The k-outlier Fréchet distance

Figure 4 On the right side are the curves and on the left is the free space diagram for two values.

Figure 5 The outlier free space diagram for the same curves as in Figure 4. At the plane z = 0,
we can see the classical free space diagram. The reachable free space intervals are drawn in red. The
free space leading to an ending point of the curve is marked with a blue line.

Figure 6 On the right side are the curves realizing the 2-outlier Fréchet distance of the curves in
Figure 4. On the left is the classical free space of them.

M. Buchin and L. Plätz 20:7

The second would be to set a to i + 1 instead of iterating over it in the third loop. With
this, we forbid the omission of a vertex on the first curve. The runtime of the third loop
becomes O(nmk2). Setting also the i to 0 in the second and fourth loop we disallow any
changes to the first curve and hence we get the directed outlier Fréchet distance.

The third would be to also change the counting from points to shortcuts and only allow
the starting and ending points (0, 0, 0) and (n, m, h) for h ∈ [k]. Then the algorithm would
decide the directed vertex restricted k-shortcut Fréchet distance with runtime O(n2mk).
For the correctness of the algorithm, we first show that reachability decides the k-outlier
distance, see the full paper [8] for the proofs. The proof uses two ideas. The first idea is to
have for every pair of matched edges in the reparametrisation of an outlier curve tuple an
outlier cell representing the free space of it. The second idea is to only use cells below or
at the height k. With these outlier cells and the outlier free space diagram we embedded
the free space diagram of every outlier curve tuple in the outlier free space diagram and can
count the number of outliers.
▶ Lemma 2.5. The k-outlier distance is at most ε if and only if an ending point is reachable
in the outlier free space below or on height k.

▶ Theorem 2.6. Algorithm 1 decides correctly if the k-outlier Fréchet distance is at most ε.
The runtime of Algorithm 1 is in O(nmk3). The space usage is in O(nmk2).

2.3 Critical values
We assume that n ≥ m. The three types of critical values, Alt and Godau introduced, also
cover all cases of the outlier free space. The first case covers the different starting and ending
points in the outlier free space, of which there are O(k2) many. The second type describes the
opening of free space intervals. A vertex and an edge define these. There are O(nmk) critical
values of this type for the O(mk) edges and O(n) points. The last type is the monotonicity
event or the opening of a passage. Here two vertices and an edge are the defining features.
So we get O(n2) for the vertices, O(mk) for the edge and O(n2mk) in total of this type.

▶ Theorem 2.7. The k-outlier Fréchet distance can be computed in O((n2mk + nmk3) log n).

Proof. The argument is the same as in [2] by Alt and Godau. First, compute and sort the
O(n2mk) critical values and then use the decision algorithm with the runtime of O(nmk3)
in a binary search to find the k-outlier Fréchet distance. ◀

3 Conclusion

We introduced a new Fréchet variant to work with real-life data. We can decide the undirected
k-outlier Fréchet distance of two curves of complexity m, n in O(nmk3) time and the directed
distance in O(nmk2) time.

References
1 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal

of Algorithms, 49(2):262–283, 2003. doi:10.1016/S0196-6774(03)00085-3.
2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry & Applications, 05(01n02):75–91,
1995. doi:10.1142/S0218195995000064.

EuroCG’22

20:8 The k-outlier Fréchet distance

3 Rinat Ben Avraham, Omrit Filtser, Haim Kaplan, Matthew J. Katz, and Micha Sharir.
The discrete and semicontinuous Fréchet distance with shortcuts via approximate distance
counting and selection. ACM Trans. Algorithms, 11(4), apr 2015. doi:10.1145/2700222.

4 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline Simplification has Cubic Complexity.
In 35th International Symposium on Computational Geometry (SoCG 2019), volume 129
of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:16, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
SoCG.2019.18.

5 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’09, page 645–654, USA, 2009. Society for Industrial and
Applied Mathematics. URL: https://dl.acm.org/doi/abs/10.5555/1496770.1496841.

6 Maike Buchin. On the Computability of the Frechet Distance Between Triangulated Sur-
faces. PhD thesis, Freien Universität Berlin, 2007. URL: http://dx.doi.org/10.17169/
refubium-6111.

7 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance with
shortcuts is np-hard. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, SOCG’14, page 367–376, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2582112.2582144.

8 Maike Buchin and Lukas Plätz. The k-outlier Fréchet distance, 2022. arXiv:2202.12824.
9 A. Driemel. Realistic analysis for algorithmic problems on geographical data. PhD thesis,

Eindhoven University of Technology, Utrecht University, Netherlands, 2013.
10 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance

with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013. doi:10.1137/
120865112.

11 Hiroshi Imai and Masao Iri. Polygonal approximations of a curve — formulations and algo-
rithms. In Computational Morphology, volume 6 of Machine Intelligence and Pattern Recog-
nition, pages 71–86. North-Holland, 1988. doi:10.1016/B978-0-444-70467-2.50011-4.

12 Anil Maheshwari, Jörg-Rüdiger Sack, and Christian Scheffer. Approximating the integral
Fréchet distance. Computational Geometry, 70-71:13–30, 2018. doi:10.1016/j.comgeo.
2018.01.001.

13 Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola
Wenk. Global Curve Simplification. In 27th Annual European Symposium on Algorithms
(ESA 2019), volume 144 of Leibniz International Proceedings in Informatics (LIPIcs), pages
67:1–67:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ESA.2019.67.

Continuous mean distance of a weighted graph
(extended abstract)∗

Delia Garijo1, Alberto Márquez2, and Rodrigo I. Silveira3

1,2 Universidad de Sevilla, Spain
{dgarijo, almar}@us.es

3 Universitat Politécnica de Catalunya, Spain
rodrigo.silveira@upc.edu

Abstract
Motivated by the study of geometric graphs, we study the continuous mean distance of a weighted
graph, defined as the mean of the distances between all pairs of points on the edges of the graph.
Despite being a natural generalization of the well-studied notion of mean distance, which only
considers distances between vertices, this concept has been barely studied. We show that the
continuous mean distance can be computed in time quadratic in the number of edges, present
structural results allowing a faster computation for several classes of weighted graphs, and study the
relation between the (discrete) mean distance and its continuous counterpart.

Related Version arXiv:2103.11676v1

1 Introduction

The mean distance of a connected unweighted graph G = (V (G), E(G)) was first introduced
by March and Steadman [6, Chap.14] in the context of architecture to compare floor plans,
although interest in the concept dates back to the work of Wiener in chemistry [10] (after
whom the closely related Wiener index, the sum of all pairwise distances in the graph, is
named). The Wiener index has received extensive attention due to its many applications,
most notably in chemistry [7], but also in other areas (e.g., [8]).

The most usual way to define the mean distance µ(G) is as the arithmetic mean of all
nonzero distances between vertices, where distances are taken over all unordered pairs of
vertices in the graph. In the context of graph theory, Doyle and Graver [1] were the first to
propose the mean distance as a graph parameter. Since then, it has been intensively studied.

In a different direction, Doyle and Graver [2, 3] also introduced the mean distance of a
shape, defined for any weighted graph embedded in the plane. Each edge of the graph is
iteratively subdivided into shorter edges, so that the edge lengths approach zero. The mean
distance of the shape is then defined as the limit of the mean distance of such a sequence
of refinements. Doyle and Graver managed to compute its exact value for seven specific
types of simple graphs (i.e., a path, a Y-shape, an H-shape, a cross, and three more) and six
rather specific families of graphs; the most general ones being cycles and stars with k edges
of length 1/k. A summary of these formulas is given in [3].

In this paper we continue in this direction, studying in depth the mean distance of
weighted graphs in a continuous setting, with the focus on its computational aspects. Our
main motivation arises from geometric graphs. A geometric graph is an undirected graph
where each vertex is a two-dimensional point, and each edge is a straight line segment between

∗ This work was supported by grants PID2019-104129GB-I00/ AEI/ 10.13039/501100011033, Gen. Cat.
2017SGR1640, and PID2019-103900GB-I00.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

21:2 Continuous mean distance of a weighted graph

the corresponding two points. Unlike abstract graphs, in geometric graphs distances are not
only defined for pairs of vertices, but they exist for any two points on the graph, including
points on the interior of the edges. Therefore, the concept of mean distance generalizes
naturally to (weighted) geometric graphs, defined as the average distance between all pairs
of points on the edges of the graph. Our main contributions are:

We show that the continuous mean distance of a weighted graph with m edges can be
computed in O(m2) time; see Section 3.
We present structural results that allow a faster computation of the continuous mean
distance for several classes of weighted graphs, see also Section 3.
We study the relation between the discrete mean distance and the continuous counterpart,
especially in terms of convergence, to understand when iteratively subdividing edges and
computing the discrete mean distance converges to the continuous mean distance. See
Section 4.

While all of our results apply to geometric graphs, we present them in the following for
weighted graphs, making them slightly more general. Omitted proofs can be found in the
full version of the paper [4].

2 Preliminaries

Let G = (V (G), E(G)) be a connected graph with n vertices and m edges; when no confusion
may arise, we indistinctly write V or V (G) and E or E(G). Consider a function ω : E −→ R+

that assigns a positive weight ω(e) to each edge e ∈ E. The value ω(e) is called the length of
edge e, and is also denoted by |e|. In general, given a subset of edges E′ ⊆ E, its weight or
length is |E′| = ∑e∈E′ ω(e).

Graph G together with function ω is a weighted graph where every edge can be identified
with a segment of length ω(e) in the Euclidean plane. Every point p on an edge e = uv can
be expressed as p = λpv + (1 − λp)u for some λp ∈ [0, 1]. Let G` be the set of all points
that are on the edges on G. We point out that all the graphs considered in this work are
connected and weighted, although both terms will be in general omitted as it is understood
from the context. We also consider uniform graphs: graphs where all edges have the same
length; we write α-uniform to refer to a uniform graph where all edge lengths are α.

The distance d(p, q) between p and q on G` is the length of a shortest path connecting
the two points. In this work, we shall assume that the distance between the two endpoints of
any edge e is |e|. The set of points G` together with this distance function is a metric space,
and it will be treated indistinctly as a graph (with vertex set V (G`) = V (G) and edge set
E(G`) = E(G)) or as a closed point set. The distance between an edge e = uv and a point
p /∈ e is d(p, e) = min{d(p, u), d(p, v)}, and the distance between two edges e and e′ = ab is
d(e, e′) = min{d(a, e), d(b, e)}.

We begin by defining the variant of the discrete mean distance that we will consider in
the remainder of this work, which differs from the one mentioned in the Introduction in
two aspects: (i) it considers all pairs of distances, including those that are zero, and (ii) it
considers ordered pairs of vertices (thus it includes a multiplicative factor 2):

µd(G) =
2
∑

u,v∈V d(u, v)
n2 = 2W (G)

n2 ,

where W (G) denotes the Wiener index of G. Observe that µd(G) is the arithmetic mean of
the entries of the distance matrix of the graph. This alternative form of mean distance has
been considered before [9], and allows us to analyze its convergence to the continuous mean
distance when iteratively subdividing the edges of the graph.

D. Garijo, A. Márquez, and R. I. Silveira 21:3

To define formally the continuous mean distance of a weighted graph, we start by defining
it between two subsets of edges E′, E′′ ⊆ E(G`) as

µc(E′, E′′) = 1
|E′||E′′|

∫ ∫

p∈E′ q∈E′′
d(p, q) dp dq.

With some abuse of notation, we shall write µc(G′, G′′), where G′ and G′′ are the graphs
with edge sets E′ and E′′, respectively; when the edge sets are single edges e and e′, we use
µc(e, e′). In addition, |E′| shall also be called the edge weight of G′ (analogous for G′′).

The continuous mean distance of the graph G` can then be defined as

µc(G`) = µc(E(G`), E(G`))

An example: paths. The discrete mean distance of an α-uniform path P is known to be
µd(P) = α(n2 − 1)/3n, for n vertices [4, 9]. For non-uniform paths P , there is no closed
formula to compute µd(P). However, µc(P`) can be easily shown to be t

3 for any path, where
t is the total path length, using the fact that to compute µc any path can be considered as a
single edge of length t [4].

3 Computation of the continuous mean distance

The continuous nature of the continuous mean distance makes its computation nontrivial. In
this section we show that µc(G`) can be computed rather efficiently, in time quadratic in the
number of edges of G`. We have proved this result by two different methods, which apply
fundamental concepts in discrete algorithms and computational geometry: that of shortest
path trees and that of Voronoi diagrams for the L1 metric. We sketch here the latter and
only mention briefly the other method; the reader may consult the full version of this work
[4] for a precise description of both methods.

First we observe that µc(G`) can be obtained as a weighted sum of the continuous mean
distances of all ordered pairs of edges (this is simply a consequence of elementary properties
of integration):

µc(G`) = 1
|E|2

 ∑

e,e′∈E×E,e6=e′

µc(e, e′)|e||e′|+
∑

e∈E

|e|
3 |e|

2

 (1)

Our approach, which is based on well-known geometric tools, shows that the mean
distance between two edges and, therefore, of the whole graph can be computed using simple
geometric arguments. The lower envelope of a set of functions is the function resulting of
taking the point-wise minimum of all functions in the set. A first step is to prove that for any
two edges e, e′ ∈ E(G`), the distance between a point p ∈ e and a point q ∈ e′ can be seen
as the lower envelope of at most four planes in 3D. This already implies that µc(e, e′) can be
computed in constant time. However, we can give a direct way to compute it considering the
volume of a three-dimensional body with a rectangular base (one side with the length of e
and the other with the length of e′), four vertical faces from each of the four base edges, and
a roof that is the lower envelope mentioned above. This allows us to show that the function
µc(e, e′) can be expressed as a weighted volume of at most eight truncated rectangular prisms.
This proves the following result.

I Theorem 3.1. The continuous mean distance of a weighted graph G` with m edges can be
computed in O(m2) time.

EuroCG’22

21:4 Continuous mean distance of a weighted graph

In the full version of this work [4], we present an alternative proof of this theorem based
on shortest path trees. Very briefly, we define a continuous version of the shortest path tree
from one point, which can be computed within the same running time as the well-known
discrete shortest path tree. Using this, a careful case analysis allows us to derive expressions
for the mean distance between any two edges, which depend solely on distances stored in
continuous shortest path trees.

In addition to the general methods presented above, we can compute the continuous
mean distance faster for several special cases. This includes complete graphs and graphs that
have cut vertices. In particular, for graph families that have a cut vertex, the continuous
mean distance can be computed faster by solving each block recursively, and combining the
mean distance of each block with weights proportional to the relative edge weight of each
block with respect to the total edge weight of the graph.

I Proposition 3.2. The continuous mean distance can be computed in O(n) time for weighted
trees and weighted cactus graphs with n vertices.

Using the geometric method described earlier, we can give an exact expression for the
continuous mean distance of the α-uniform complete graph Kn. While it is easy to prove
µd(Kn) = (n− 1)/n, this is much harder in the continuous case.

I Proposition 3.3. The continuous mean distance of the α-uniform complete graph Kn is
given by

µc(Kn) = α(9n2 − 22n+ 12)
6 (n2 − n)

Finally, we can prove that a relation between the continuous mean distance of stars, trees,
and paths, known for the Wiener index [5] for the unweighted case (so, by definition, for the
discrete mean distance), also holds in the continuous case when the corresponding graphs
are uniform.

I Proposition 3.4. Let S` and P` be an α-uniform star and α-uniform path, respectively,
on n vertices. Then, µc(S`) ≤ µc(T`) ≤ µc(P`) for every α-uniform tree T` with n vertices.

4 Discrete versus continuous mean distances

There is no obvious relation between the discrete and the continuous mean distances, in the
sense that for different graphs, any of these two values can be larger. For instance, µc is
larger than µd for complete graphs (Proposition 3.3) and cycles1 but it is smaller for paths
(see the related example in Section 2). However, we can give bounds on the continuous mean
distance of two edges in terms of discrete distances (and these bounds are tight).

I Proposition 4.1. Let e and e′ be two distinct edges in a weighted graph G. Then,

d(e, e′) + |e|+ |e
′|

4 ≤ µc(e, e′) ≤ d(e, e′) + |e|+ |e
′|

2

By means of equation (1), the previous result leads to bounds for µc(G`) whenever G` is
uniform, in terms of the discrete mean distance of a weighted version of its line graph [4,
Corollary 5.1], but this method cannot be extrapolated to a graph in general. Thus, a natural

1 The continuous mean distance of a 1-uniform cycle Cn of n vertices is n/4 [3], as well as µd(Cn) for n
even; otherwise µd(Cn) = n

4 − 1
4n [9].

D. Garijo, A. Márquez, and R. I. Silveira 21:5

question is whether the discrete mean distance is convergent to its continuous counterpart
when iteratively subdividing the edges.

One may propose different subdivision schemes, but not all of them guarantee convergence.
By definition of continuous mean distance, the convergence happens for uniform graphs by
simply adding, at each step, a new vertex—anywhere—on each edge. With the same scheme,
we can show that the discrete mean distance is also convergent for nonuniform trees, although
not necessarily to the continuous counterpart. Further, the convergence of µd to µc can be
guaranteed for all graphs where the applied edge subdivision system satisfies that the ratio
between the longest and the shortest edge, at an arbitrary step k, tends to 1. For instance,
we may subdivide at each step k only the longest edges, say of length t, and those whose
length is larger than (1− 1/k)t. The problem is, however, that such a scheme completely
depends on the original structure of the graph.

Next we present an edge subdivision scheme that does not depend on the graph structure,
and allows us to obtain bounds on the discrete mean distance of its k-th edge subdivision,
and on its limit when k tends to infinity. For a graph G = (V,E) with n vertices and m
edges, let G1 = (V 1, E1) be the graph that results from subdividing each edge of G by
inserting a new vertex on its midpoint. Furthermore, we subdivide each edge of G1 into 2k−1

new edges of the same length by inserting 2k−1 − 1 equidistant vertices; the resulting graph
Gk = (V k, Ek) is called the k-th subdivision of G. See Figure 1 for a small example.

G G1 G2

Figure 1 Example of the first two steps of our subdivision scheme.

By definition,

µd(Gk) = 2W (Gk)
(n+m(2k − 1))2

where W (Gk) =
∑

u,v∈V k d(u, v). With some abuse of notation we write, for sets A,B ⊆ V k,
W (A;B) =

∑
u∈A,v∈B d(u, v) and W (A) = W (A;A). For this subdivision scheme we can

show the following relation.

I Theorem 4.2. Let G = (V,E) be a weighted graph with n vertices and m edges, and let
Gk = (V k, Ek) be its k-th subdivision. Let B be the set of vertices inserted in G to obtain
G1. For k > 1 it holds that:

2
[
Ω(G,G1)− ρ

(
3
(

m
2
)

+m(n− 2)
) (

2k−2 − 1
2
)]

(n+m(2k − 1))2 < µd(Gk) ≤ 2 Ω(G,G1)
(n+m(2k − 1))2

where ρ = max{|e| : e ∈ E}, and

Ω(G,G1) = W (V 1) + (2k − 2)
(
2kW (B) +W (B;V)

)
+ |E|

(
22k−1

3 − 2k−1 + 1
3

)

Moreover, the upper bound is tight.

By simply taking limits in Theorem 4.2, we obtain the following bounds.

EuroCG’22

21:6 Continuous mean distance of a weighted graph

I Corollary 4.3. Let G = (V,E) be a weighted graph with m edges, and let Gk = (V k, Ek)
be its k-th subdivision. Let B be the set of vertices inserted in G to obtain G1. Then,

lim
k→∞

µd(Gk) ≤ µd(B) + |E|
3m2

Moreover, if G is α-uniform then, limk→∞ µd(Gk) = µc(G`) ≤ µd(B) + α

3m .

We want to highlight that all trees attain the preceding upper bounds. However, for
nonuniform graphs it is easy to construct cases where the subdivision of edges does not
converge to the continuous counterpart. Consider, for example, a path P with 4 vertices and
edge lengths 2, 1, 1; we have µc(P`) = 4/3 ≈ 1.33, whilst limk→∞ µd(P k) = 5/8+4/27 ≈ 0.77.

Acknowledgments. We thank Julian Pfeifle for proposing the topic of this work, and for
stimulating discussions.

References
1 J. K. Doyle and J. E. Graver. Mean distance in a graph. Discrete Math., 17:147–154, 1977.
2 J. K. Doyle and J. E. Graver. Mean distance for shapes. J. Graph Theory, 6(4):453–471,

1982.
3 J. K. Doyle and J. E. Graver. A summary of results on mean distance in shapes. Environ-

ment and Planning B: Planning and Design, 9:177–179, 01 1982.
4 D. Garijo, A. Márquez, and R. I. Silveira. Continuous mean distance of a weighted graph,

2021. arXiv:2103.11676.
5 I. Gutman. A property of the Wiener number and its modifications. Indian J. Chem.,

36(A):128–132, 1997.
6 L. March and P. Steadman. The geometry of environment. Royal Institute of British

Architects, London, 1971.
7 S. Nikolić, N. Trinajstić, and Z. Mihalić. The Wiener index: Development and applications.

Croat. Chem. Acta, 68:105–129, 1995.
8 E. Otte and R. Rousseau. Social network analysis: A powerful strategy, also for the

information sciences. J. Inf. Sci., 28:441–453, 12 2002.
9 E. W. Weisstein. Mean distance. From MathWorld—AWolframWeb Resource. Last visited

on 16/11/2020. URL: https://mathworld.wolfram.com/MeanDistance.html.
10 H.Wiener. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 69(1):17–

20, 1947.

Approximation of Minimum Convex Partition
Nicolas Grelier1

1 Department of Computer Science, ETH Zürich, Switzerland
nicolas.grelier@inf.ethz.ch

Abstract
We consider the Minimum Convex Partition problem: Given a set P of n points in the plane, draw a
plane graph G on P , with positive minimum degree, such that G partitions the convex hull of P into
a minimum number of convex faces. We present an O(log OPT)-approximation algorithm running
in O(n8)-time, where OPT denotes the minimum number of convex faces needed. This result is
obtained by relating the problem to the Covering Points with Non-Crossing Segments problem.

Related Version arXiv:1911.07697

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

22:2 Approximation of Minimum Convex Partition

1 Introduction

The CG Challenge 2020 organised by Demaine, Fekete, Keldenich, Krupke and Mitchell [5],
was about solving instances of Minimum Convex Partition (MCP).

▶ Definition 1.1 (Demaine et al. [5]: Minimum Convex Partition problem). Given a set P of
n points in the plane. The objective is to compute a plane graph with vertex set P (with
each point in P having positive degree) that partitions the convex hull of P into the smallest
possible number of convex faces. Note that collinear points are allowed on face boundaries,
so all internal angles of a face are at most π.

As explained by Bose et al., this problem has applications in routing [3]. They showed
that a routing algorithm named Random-Compass that works for triangulations can be
extended to convex partitions. Having a convex partition with few faces reduces the amount
of data to store. From now on, we denote by P a set of n points in the plane.

In this paper, we present an approximation algorithm for MCP. We obtain this approxi-
mation algorithm by relating the MCP problem to the Covering Points with Non-Crossing
Segments (CPNCS) problem. First, we define what non-crossing segments are.

▶ Definition 1.2 (Non-Crossing Segments). We call a part of a (straight) line bounded by
two points a segment. The two points are referred to as endpoints of the segment. Note
that we do not force the endpoints to be distinct, therefore we consider a point p as being a
segment. The endpoint of p is p itself. Two segments are non-crossing if the intersection of
their relative interior is empty.

▶ Definition 1.3 (Covering Points with Non-Crossing Segments). Given a set P of n points,
find a minimum number of non-crossing segments whose endpoints are in P such that each
point of P is contained in at least one segment.

The condition that the endpoints of the segments must be in P has no effect on the
number of segments required. We add it as it simplifies some arguments. Note that CPNCS
is not a so-called set cover problem nor an exact cover problem. We believe that CPNCS is
interesting in itself. Even though it is a very natural problem, to the best of our knowledge
it had not been introduced before.

In the full version of the paper, we show that MCP is NP-hard [7]. This result was also
presented at EuroCG 2020. Under the assumptions that the points lie on the boundaries of a
fixed number h of nested convex hulls, and that no three points lie on a line, Fevens, Meijer
and Rappaport gave an algorithm for solving MCP in time O(n3h+3) [6]. Some integer linear
programming formulations of the problem have been recently introduced [2, 11, 4].

For the related problem Minimum Convex Partition of Polygons with Holes, Bandyapad-
hyay, Bhowmick and Varadarajan showed the existence of a (1 + ε)-approximation algorithm
running in time nO((log n/ε)4) [1]. Although they only consider holes with non empty interior,
one can observe that their proof extends to the case of point holes. This is an even more
general setting than MCP for point sets, so their algorithm also applies in our setting. This
implies that MCP is not APX-hard unless NP ⊆ DTIME(2polylog n).

Under the assumption that no three points are collinear, Knauer and Spillner have shown
a 30

11 -approximation algorithm [8] for MCP in 2006. As a lower bound on the number of
convex faces for one particular point set, they rely on the observation that each inner point
has degree at least 3. The inner points of P are the points not on the boundary of the convex
hull. This gives a lower bound on the number of edges, and therefore on the number of faces,
by Euler’s formula. Note that the restriction that no three points are on a line is necessary,

N. Grelier 22:3

as shown in Figure 1. There are only two faces in a minimum convex partition of this point
set, and all the inner points have degree 2.

•
•

•

•

•
•

•

• • • • •

Figure 1 The number of inner points can be arbitrarily much larger than the number of convex
faces required.

Additionally, Knauer and Spillner showed how to adapt any constructive upper bound on
the number of faces into an approximation algorithm. More explicitly, they showed that if
one can compute in polynomial time a convex partition with at most λn convex faces, then
there exists a 2λ-approximation algorithm running in polynomial time. The best result to
date is a proof by Sakai and Urrutia that one can partition a point set in quadratic time
using at most 4

3 n convex faces (the result was presented at the 7th JCCGG in 2009, the paper
appeared on arXiv in 2019) [10]. Although they do not mention it, combining this result
with the one by Knauer and Spillner gives a quadratic time 8

3 -approximation algorithm.
The lower bound used by Knauer and Spillner does not extend to our setting, where

we consider all point sets. They say that a constant-approximation algorithm would be
desirable for unrestricted point sets, but so far not even an O(n1−ε)-approximation is known.
In Section 3, we prove the following:

▶ Theorem 1.4. There exist O(log OPT)-approximation algorithms for MCP and CPNCS
running in O(n8)-time.

Allowing several points to be on a line does not simply create tedious technicalities to
deal with. The crux of the matter is to find, for a fixed point set, an exploitable lower bound
on the number of faces in a minimum convex partition. When no three points are on a line,
the number of inner points in P gives a linear lower bound on the number of faces in a
convex partition [8]. In this paper, we consider point sets with no restriction. We introduce
the CPNCS problem as it pinpoints where the difficulty of finding a constant-approximation
algorithm for MCP is and makes the problem easier to study. We show in Section 2 the
following:

▶ Theorem 1.5. Let P be a set of n points with at least one inner point, and let λ ≥ 1 be a
real number. Let fm denote the minimum number of faces in a convex partition of P . Let
sm denote the minimum number of non-crossing segments in a covering of the inner points
of P , denoted by Pi.
1. It holds that sm

6 ≤ fm ≤ 8sm.
2. Given a covering of Pi with at most λsm non-crossing segments, it is possible to compute

in O(n2)-time a convex partition of P with at most 24λfm convex faces.
3. Given a convex partition of P with at most λfm convex faces, it is possible to compute in

O(n)-time a covering of Pi with at most 44λsm non-crossing segments.

EuroCG’22

22:4 Approximation of Minimum Convex Partition

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

Figure 2 Illustration of Lemma 2.2. The green dashed edge and the triangle points are removed at
the beginning for the analysis, and added back at the end. The extreme points in P ′′ are represented
as square points. The edges in E′ are in red. The other edges from P ′′ to the boundary of the
convex hull are in blue.

2 The relation between MCP and CPNCS

Throughout this section, we denote by P a point set in the plane. We denote by Pi the set
of inner points of P . Let p be in P . If P and P \ {p} do not have the same convex hull, we
say that p is an extreme point. We denote by P ′ the extreme points in Pi. Note that a point
might lie on the boundary of the convex hull of a point set without being an extreme point.
We say that P is special if |P ′| ≤ 2. The proof of Lemma 2.1 can be found in the full version
of the paper [7].

▶ Lemma 2.1. Let P be a set of n points that is not special. Given a covering of Pi with s

non-crossing segments, one can compute in O(n2)-time a convex partition of P with at most
4s + 2|P ′| faces.

▶ Lemma 2.2. Let P be a set of n points. Given a convex partition of P with f faces, one
can compute in O(n)-time a covering of Pi with at most 6f − 2|P ′| non-crossing segments.

Proof. The proof is illustrated in Figure 2. Let us denote by G0 = (V0, E0) the plane graph
corresponding to the convex partition. Observe that the relative interior of an edge in E0
might overlap with points in P . We assume that G0 is given with a doubly connected edge
list (DCEL) structure. If there is an edge between two points on the boundary of the convex
hull of V0, but not consecutive, we remove this edge. Note that this decreases the number of
faces by 1, and does not break the convexity property. We denote by m the number of such
edges that we have removed. We also remove from P all points contained in the relative
interior of an edge between two points on the boundary of the convex hull. We denote by P ′′

the extreme points in Pi that we have not removed. As an edge contains at most two points
in P ′, we have |P ′′| ≥ |P ′| − 2m. Using the DCEL structure, this can be done in O(n)-time.
We have obtained a new graph G = (V, E), and there are f −m convex faces in G. We denote
by Q the set of inner points that are of degree at least 3 in G. We set k := |Q|. Now observe

N. Grelier 22:5

that for each point p in P ′′, there exists at least one edge e in E with one endpoint in Q, one
endpoint on the boundary of the convex hull, such that e overlaps with p. This is because if
we consider p and the two lines going through p and one of the two consecutive vertices in P ′′

(the one before p and the one after p when going around P ′′ in clockwise order), they define
a wedge in which one edge must lie because of convexity. The point p can be an endpoint
of e or in its relative interior. If for a point p ∈ P ′′ there are several edges that satisfy the
conditions, we choose one arbitrarily. We denote these edges by E′. An edge in E′ overlaps
with exactly one point in P ′′, thus |E′| = |P ′′|. We denote by Eb the edges not in E′ that
have a point on the boundary of the convex hull and the other in Q, and we denote |Eb| by
m′. The vertices on the boundary of the convex hull are adjacent to two other vertices on the
boundary of the convex hull. Moreover, those vertices are incident to |P ′′| + m′ additional
edges. We have 2|E| =

∑
v∈V deg(v) ≥ 3k + 2(n − k) + |P ′′| + m′ = k + 2n + |P ′′| + m′. By

Euler’s formula, we have f − m = |E| − n + 1 ≥ k+|P ′′|+m′

2 + 1.
Now, the solution consists of the union of all edges in E incident to two points in Q,

with the m edges in E0 that we have removed, and with the |P ′′| + m′ edges in E′ ∪ Eb.
We may need those edges as they might overlap with points in Pi. Note that there are at
most 3k edges in E incident to two points in Q as G is plane. Moreover, all points in Pi

are indeed covered by the edges in our solution. Thus, we obtain a covering of Pi with s

segments, where s ≤ 3k + m + m′ + |P ′′| ≤ 3(2(f − m) − |P ′′| − m′) + m + m′ + |P ′′| ≤
6f − 5m − 2|P ′′| ≤ 6f − 5m − 2(|P ′| − 2m) ≤ 6f − 2|P ′|. ◀

We combine Lemmas 2.1 and 2.2 to prove Theorem 1.5 in the full version of the paper [7].

3 Approximation algorithm for CPNCS

We present an O(log OPT)-approximation algorithm running in O(n8) for CPNCS, where
OPT denotes the minimum number of segments need to cover the points. The entire proof
can be found in the full version of the paper [7]. The existence of an algorithm with the
same approximation ratio and running time for MCP follows from Theorem 1.5.

Mitchell presented an algorithm for a related covering problem [9]. We adapt his algorithm
to our setting of CPNCS. Let P be a set of n points. By doing a rotation if necessary, we
can assume that no two points in P have the same x-coordinate. We say that a trapezoid is
constrained if 1) it has two disjoint vertical sides, each lying on a line that contains a point
in P , and 2) the two remaining sides are lying on lines that contain each at least two points
in P . Note that there are O(n6) constrained trapezoids.

We also allow for some degeneracies. Let us consider a triangle with vertices a, b and c,
not all three on a line. If a is in P , the segment with endpoints b, c is vertical and lies on a
line that contains a point in P , and the segments with endpoints a, b and a, c respectively
are contained in some lines ℓ and ℓ′ such that ℓ and ℓ′ contains at least two points in P , then
we say that the triangle is a constrained trapezoid. If a constrained trapezoid is split into
two halves by a vertical line ℓ going through its interior, with ℓ containing a point in P , we
obtain two constrained trapezoids. Likewise, if a segment s is in a constrained trapezoid τ ,
such that s lies on a line that contains at least two points in P , s intersects the interior of
τ , and the endpoints of s are contained in the vertical sides of τ , then s splits τ into two
constrained trapezoids.

Now we are ready to describe the algorithm. We give an exhaustive description of the
algorithm, along with the proof of correctness, in the full version of the paper [7]. The
algorithm uses dynamic programming. We first compute how to cover the points in the
thinnest constrained trapezoids, with respect to their width on the x-axis. Now, for some

EuroCG’22

22:6 Approximation of Minimum Convex Partition

larger constrained trapezoid, we consider the O(n2) ways of splitting it non-vertically to
obtain two new constrained trapezoids. We recurse on each of them, and store the splitting
that minimises the number of segments needed. Likewise, we consider the O(n) ways of
splitting vertically, recurse on the two new constrained trapezoids, and store the best solution.
Finally, we take the best solution between splitting non-vertically and splitting vertically. As
we spend quadratic time for each constrained trapezoid, the total running time is in O(n8).

Acknowledgments. Research supported by the Swiss National Science Foundation within
the collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-
171681. The author thanks Michael Hoffmann for his helpful advice.

References
1 Sayan Bandyapadhyay, Santanu Bhowmick, and Kasturi Varadarajan. Approximation

schemes for partitioning: Convex decomposition and surface approximation. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1457–
1470. SIAM, 2014. doi:10.1137/1.9781611973730.96.

2 Allan S. Barboza, Cid C. de Souza, and Pedro J. de Rezende. Minimum convex partition of
point sets. In Proceedings of International Conference on Algorithms and Complexity, pages
25–37. Springer, 2019. doi:/10.1007/978-3-030-17402-6_3.

3 Prosenjit Bose, Andrej Brodnik, Svante Carlsson, Erik D Demaine, Rudolf Fleischer,
Alejandro López-Ortiz, Pat Morin, and J Ian Munro. Online routing in convex subdivisions.
International Journal of Computational Geometry & Applications, 12(04):283–295, 2002.
doi:10.1142/S021819590200089X.

4 Hadrien Cambazard and Nicolas Catusse. An integer programming formulation using
convex polygons for the convex partition problem. In 37th International Symposium on
Computational Geometry (SoCG 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.SoCG.2021.20.

5 Erik Demaine, Sándor Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell.
CG:SHOP 2020. https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2020. Ac-
cessed: 12/02/2020.

6 Thomas Fevens, Henk Meijer, and David Rappaport. Minimum convex partition of a
constrained point set. Discrete Applied Mathematics, 109(1-2):95–107, 2001. doi:10.1016/
S0166-218X(00)00237-7.

7 Nicolas Grelier. Hardness and approximation of minimum convex partition. arXiv preprint
arXiv:1911.07697, 2019.

8 Christian Knauer and Andreas Spillner. Approximation algorithms for the minimum convex
partition problem. In Proceedings of Scandinavian Workshop on Algorithm Theory, pages
232–241. Springer, 2006. doi:10.1007/11785293_23.

9 Joseph S. B. Mitchell. Approximation algorithms for geometric separation problems.
Technical report, Dept. of Applied Math. and Statistics, State U. of New York at Stony
Brook, 1993. Available at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.50.7089&rep=rep1&type=pdf.

10 Toshinori Sakai and Jorge Urrutia. Convex decompositions of point sets in the plane. arXiv
preprint arXiv:1909.06105, 2019.

11 Allan Sapucaia, Pedro J. de Rezende, and Cid C. de Souza. Solving the minimum convex
partition of point sets with integer programming. Computational Geometry, page 101794,
2021. doi:10.1016/j.comgeo.2021.101794.

Curvature variation based adaptive sampling for
Delaunay triangulations of Riemannian manifolds
Hana Dal Poz Kouřimská1 and Mathijs Wintraecken2

1 IST Austria
hana.kourimska@ist.ac.at

2 IST Austria
m.h.m.j.wintraecken@gmail.com

Abstract
In recent years there has been an increase of interest in developing algorithms that triangulate
Riemannian manifolds. One of the popular methods to tackle this task is to construct a Delaunay
triangulation from a point sample on the manifold. Algorithms based on this method are guaranteed
to succeed if certain global geometric assumptions on the point sample are fulfilled: besides being
sufficiently dense and sparse, the point sample needs to be Delaunay protected, meaning that there
are no foreign vertices near a Delaunay ball. Recent results show that if the protection of the point
sample is large compared to the density and bounds on the absolute value of the sectional curvature,
the Delaunay triangulation arising from this point sample is homeomorphic to the manifold.
However, it is well known that we need no protection to construct Delaunay triangulations in spaces
of constant curvature. A bound on the variability of the sectional curvature would thus be a more
natural choice for the protection than its absolute value. This paper addresses this issue and shows
that the protection of a point sample only needs to be large compared to how far the manifold
is (locally) from a space of constant curvature. This makes a far better adaptive sampling on
Riemannian manifolds possible.

1 Introduction

Adaptive sampling for Delaunay triangulations has always been an important part of the
work on the triangulations of manifolds. Its goal is to Delaunay triangulate a given manifold
using as little vertices as possible. Triangulating manifolds with this method significantly
improves the efficiency of algorithms running on these manifolds, since both their runtime
and space complexities are tied to the number of vertices of the triangulation.
Computational geometers strive to define bounds on a point sample of a manifold such that
the manifold can be Delaunay triangulated using these points as vertices.
The majority of work on triangulations of submanifolds of the Euclidean space formulates
these bounds in terms of the local feature size (see Figure 1). In dimensions two and three
see for example [1, 12]; for higher dimensional submanifolds we cite [11, 7].
The work on Delaunay triangulations of Riemannian manifolds [14, 5, 8, 6], on the other
hand, assumes bounds on the geometry of the manifold. More precisely, the triangulation
criteria demand that the density and protection (see Figure 2 on the right) of the point
sample is large compared to the absolute value of the sectional curvatures and the injectivity
radius (illustrated in Figure 2 on the left) on the manifold.
However, the bound on the absolute value of the sectional curvatures is from a certain
perspective unnatural. Indeed, to Delaunay triangulate a space of any constant curvature
it is sufficient to take a point sample that is generic; no extra protection is required. One
therefore expects that the quality bounds are formulated in terms of how far a space is from
having constant curvature, as supposed to its absolute value.
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

23:2 Adaptive sampling for Delaunay triangulations of Riemannian manifolds

Figure 1 A manifold (in black) and its medial axis (in red). The local feature size of any point
in the manifold is its distance (in green) to the medial axis.

Figure 2 On the left: the injectivity radius is the largest radius such that no disc on the manifold
with this radius self-intersects. On the right: the triangle with the green circumcircle is protected,
since no other points lie in a green belt around it. The triangle with the red circumcircle is not
protected, since its red belt contains two points.

This paper is the second to address this disparity. In [15] we discussed non-degeneracy
criteria for simplices on spaces of nearly constant curvature. In this paper we use these results
to derive quality bounds that guarantee a successful construction of Delaunay triangulations
in spaces of nearly constant curvature. In contrast to Boissonnat, Dyer, and Ghosh [4], who
focus in their work on Delaunay balls, we focus on the Voronoi diagram. Our investigation
leads to surprising connections with quadrics, which we believe are of independent interest.

H. Dal Poz Kouřimská and M. Wintraecken 23:3

2 Background

Simplices in space forms A space form is a complete, simply connected Riemannian man-
ifold with constant sectional curvature K. We denote n-dimensional space forms by Hn(K),
or H(K). In short: If K < 0, H(K) is a hyperbolic space, if K = 0, H(K) is the Euclidean
space, and if K > 0, H(K) is a sphere. An n-dimensional simplex σ in Hn(K) is a convex
hull of a set of n + 1 points v0, . . . , vn ∈ Hn(K). We recall that a convex hull of a set
of points is the smallest convex set containing these points. If σ is non-degenerate, there
exists a unique1 n-sphere in Hn(K) containing the vertices of σ. We call this sphere the
circumsphere of σ, and its centre the circumcentre of σ.
In this paper we study how the positions of circumcentres of simplices are influenced by
small perturbations of the metric. To this end we recall that the circumcentre of σ is the
intersection of bisectors of pairs of its vertices vi and vj , where a bisector of vi and vj is
an n− 1-dimensional space form in which all points are equidistant to vi and vj .
The quality of a simplex quantifies how far a simplex is from being degenerate. The standard
measures in Euclidean space are the thickness (the height2 divided by the longest edge
length) and the fatness (a normalized volume). In [15], the notion of quality has been
extended to spaces of constant curvature to be able to formulate non-degeneracy bounds on
Riemannian simplices on spaces of almost constant curvature.

Riemannian simplices
Throughout this paper, M denotes a Riemannian manifold with sectional curvatures K
bounded by Λ` ≤ K ≤ Λu.

We call a set A ⊆M convex if for any two distinct points a, b ∈ A there exists a minimizing
geodesic inM connecting a and b, this geodesic is unique, it is contained in A, and no other
geodesic between a and b is contained in A. We denote the injectivity radius ofM by ιM.
Due to [10, Theorem IX.6.1] we then know that any closed ball of radius r inM with

r < rC = min
{
ιM
2 ,

π

2
√

Λu

}
,

is convex. (If Λu ≤ 0, we define 1/
√

Λu =∞.) The radius rC is called the convexity radius.
The construction of a Riemannian simplex from a set of points inM is more involved than
taking the convex full ifM is not a space form. This is because the convex hull of 3 points
in a generic manifold of dimension at least 3 is generally full dimensional [2, Section 6.1.3].
We rely on the Riemannian centre of mass construction (an example of the Fréchet means),
defined by Karcher [16].

Metric distortion and the associated simplex In order to assess the quality of triangu-
lations of Riemannian manifolds we develop means of comparing Riemannian simplices to
‘similar’ simplices in space forms. We use the concatenation Eq,K of exponential maps (il-
lustrated in Figure 3) to map a simplex σ from the manifold to the space form H(K), and
work with its metric distortion. We recall [13] that the exponential map expq,M at a point
q ∈ M maps tangent vectors v ∈ TqM to points onM. Intuitively, it tells you what point

1 The uniqueness follows from the reduction to the Euclidean case using stereographic projection or e.g.
the Poincaré model.

2 The height is the minimal altitude, where the altitude is defined as the distance from a vertex to the
affine hull of the opposite face.

EuroCG’22

23:4 Adaptive sampling for Delaunay triangulations of Riemannian manifolds

inM you would reach if you were to walk from q for a distance ‖v‖ in the direction of v
‖v‖ .

For a small enough neighbourhood of 0 ∈ TqM, the exponential map is a homeomorphism
onto its image Uq. IfM = H(K), expq,M=H(K) is independent of the base point q, and we
denote it by expH(K) for simplicity.

Figure 3 An illustration of the map Eq,K .

The associated simplex σK(q) of σ is then the convex hull of the vertices of Eq,K(σ) in H(K),
as illustrated in Figure 4. It is the key object in assessing non-degeneracy of simplices.

Figure 4 A Riemannian simplex (in blue) and its associated simplex (in red).

From a point sample to the Delaunay triangulation Next, we patch non-degenerate sim-
plices together to form a triangulation. To derive the necessary sampling conditions we
borrow techniques from [5, 6, 8, 14]. First, we need a point sample that covers our manifold
well enough. We use the notion of an (ε, µ)-net, where ε and µ are the covering and the
packing radius, respectively. An (ε, µ)-net of a planar region is illustrated in Figure 5.
The triangulation of the manifoldM is built from its (ε, µ)-net P by the Voronoi-Delaunay
construction. Recall that a (full-dimensional) Voronoi cell VorM(p) of a point p ∈ P is
the locus of all points in M as close or closer to p than any other point in P . Lower-
dimensional Voronoi cells are the intersections of the full-dimensional cells. The Delaunay

H. Dal Poz Kouřimská and M. Wintraecken 23:5

Figure 5 The point sample (in black) is an (ε, µ)-net of the planar region M since M is covered
by balls of radius ε centred at the points of the point sample (on the left), and no two balls of
radius µ centred at the points of the point sample intersect (on the right).

complex Del(P) of M is the nerve of the Voronoi diagram. That is, points p0, . . . , pj ∈ P
form a simplex σ in Del(P) if and only if the intersection of their Voronoi cells is non-empty.
This implies that for every σ ∈ Del(P) there exists a point inM that is equidistant to all
points in σ. Let v ∈ ⋂ji=0 Vor(pi) be such that the distance d(v, p0) = · · · = d(v, pj) =: r is
minimal. We call the ball with centre v and radius r a Delaunay ball of σ.
The set Del(P) is always a simplicial complex, but its dimension can be arbitrarily high.
Next to conditions on ε and µ we thus need to impose an additional condition on P to ensure
that Del(P) is of the right dimension — the so-called δ-protection. In our paper we assume
δ-protection not on the manifold, but on the space form. As in [5, 7, 3], protection on the
manifold can be achieved using the Lovász Local Lemma [17]. The perturbation algorithm
for our manifolds of almost constant curvature would be essentially the same as in [7] and
we refer to that paper for details.

Whitney’s lemma The core of this paper consists of showing that if the (ε, µ)-net P is
sufficiently protected, we can construct parts of the Riemannian Delaunay complex by con-
structing non-degenerate Riemannian Delaunay simplices using the combinatorial structure
from Del(P) and the results from previous sections. These local Delaunay complexes then
combine to give a triangulation of the whole manifold thanks to Whitney’s Lemma [18] (see
also [9]). To apply this lemma simplices need to be glued together properly along their
facets, and there must exist a ‘safe’ point in each simplex that is not covered by any other
simplex.

3 Our results

The main theorem Our paper provides conditions on an (ε, µ)-net P of our manifoldM
that assure that the Delaunay complex DelM(P) is a piecewise smooth triangulation ofM,
geometrically realized by Riemannian simplices on M. We do not state these conditions
explicitly in this extract, since they contain many technical constants. We note however,
that these conditions are satisfied if |Λ` − Λu| is small enough compared to ε, µ, and the
protection.

EuroCG’22

23:6 Adaptive sampling for Delaunay triangulations of Riemannian manifolds

The Delaunay complex of a generic sample in a space form is always homeomorphic to
the space form. We show that this homeomorphism is preserved under small distortions of
the metric. We first bound the geometry of these distorted Voronoi cells, and study how
protection ensures the quality of Delaunay simplices. Combined, these quality bounds yield
Hausdorff stability of the Voronoi vertices. We also show that protection can be used to
bound non-adjacent faces away from each other. We then generalize these results to spaces
of almost constant curvature. Our bounds on the metric distortion yield conditions under
which we can guarantee both the combinatorial stability and the existence of a so-called safe
point, which together with Whitney’s lemma yields the final result.

3.1 Results in space forms
Geometric interpretation of thickened bisectors Let ν ≥ 0. The thickened bisector of two
distinct points p, q ∈ Hn(K = ±1) is the setBν(p, q) = {x ∈ Hn(±1) | |d(x, p)− d(x, q)| ≤ 2ν}.
One such thickened bisector is illustrated in Figure 6.

Figure 6 The thickened bisector of p and q.

We discovered that thickened bisectors have a straightforward geometric interpretation.
They are the intersection ofHn(±1) with a rigid body in Rn+1. This body can be constructed
as a Cartesian product of the orthogonal complement of span{p, q} and the union of ellipses
(if K = 1) or hyperbolas (if K = −1) depicted in Figure 7.

Distortion of circumcentres Recall that a circumcentre of a simplex is the intersection of
the bisectors of its vertices. After a small distortion, controlled by a factor ν, the circumcen-
tre lies in the intersection of the thickened bisectors of pairs of vertices of the simplex. We
bound the distance between the circumcentre C and its distorted image C̃. More precisely,

d
(
C, C̃

)
≤

(n+1) sin(√
Kν)

K height(σ) if K > 0,
(n+1) sinh

(√
|K|ν

)
|K| height(σ) if K < 0,

where height(σ) denotes the height of the convex hull in Rn+1 of the vertices of the considered
simplex. Assuming further that the simplex forms a part of the Delaunay triangulation of

H. Dal Poz Kouřimská and M. Wintraecken 23:7

Figure 7 Ellipses and hyperbolas used in the construction of thickened bisectors.

a δ-protected (ε, µ)-net we lower bound height(σ) to obtain an upper bound for d
(
C, C̃

)

expressed only in terms of the curvature K, and the parameters δ, µ, and ε.

Voronoi objects lie in union of the Delaunay balls of their vertices For a generic point
sample P in Hn(K), we consider a face F of the Voronoi diagram of P , F =

⋂k
j=0 Vor(pj).

We denote the vertices of F by wi. Each vertex wi is a centre of a Delaunay ball, which we
denote by B(wi, ri) (see Figure 8). Then for each x ∈ F and each j,

B(x, d(x, pj)) ⊆
⋃

i

B(wi, d(wi, pj)) =
⋃

i

B(wi, ri).

Figure 8 On the left: The Delaunay (in gray) and Voronoi (in red) cell decomposition. In blue
the Delaunay balls. On the right: Illustration of our first result.

Furthermore: A Voronoi cell is called foreign to F if the two sets are disjoint. If P is δ-
protected, then the minimal distance between any Voronoi face and any foreign Voronoi cell
is lower bounded by δ/2.

EuroCG’22

23:8 Adaptive sampling for Delaunay triangulations of Riemannian manifolds

3.2 Results in spaces of almost constant curvature
For any small enough simplex inM we establish a lower bound on the height of the associated
simplex in the space form H(Λmid), with Λ` ≤ Λmid ≤ Λu, as in [15].
We use this result to upper bound the parameter ν that controls how far the bisectors get
distorted. This bound, in turn, allows us to control the images of the Voronoi faces under
the map Ep,Λmid .
Combining these results we finally show that under certain conditions on the three parame-
ters δ, µ, and ε the star of any vertex q in the Delaunay triangulation of P ⊆M is combina-
torially equivalent to the star of Ep,Λmid(q) of the Delaunay triangulation of Ep,Λmid(P). In
addition, we prove the existence of a safe point for each simplex of the triangulation. This
proof is based on a distortion bound between the image of the Riemannian simplex under
the map Ep,Λmid(q) and the associated simplex (where points with the same barycentric
coordinates are identified).

Acknowledgments We are greatly indebted to Jean-Daniel Boissonnat, Ramsay Dyer, and
Mael Rouxel-Labbé for discussion. We thank all members of the Edelsbrunner group for the
atmosphere in which this research was conducted.

References
1 Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering. Discrete &

Computational Geometry, 22(4):481–504, 1999. doi:10.1007/PL00009475.
2 Marcel Berger. A panoramic view of Riemannian geometry. Springer-Verlag, Berlin, 2003.

doi:10.1007/978-3-642-18245-7.
3 Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and topolog-

ical inference. Cambridge Texts in Applied Mathematics. Cambridge University Press,
Cambridge, 2018. doi:10.1017/9781108297806.

4 Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. Delaunay stability via perturba-
tions. International Journal of Computational Geometry & Applications, 24(02):125–152,
2013. doi:10.1142/S021819591450006X.

5 Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. Delaunay triangulation of man-
ifolds. Found. Comput. Math., 18(2):399–431, 2018. doi:10.1007/s10208-017-9344-1.

6 Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, and Mathijs Wintraecken. Local
criteria for triangulation of manifolds. In 34th International Symposium on Computational
Geometry (SoCG 2018), volume 99, pages 9:1–9:14, 2018. doi:10.4230/LIPIcs.SoCG.
2018.9.

7 Jean-Daniel Boissonnat and Arijit Ghosh. Manifold reconstruction using tangential De-
launay complexes. Discrete & Computational Geometry, 51(1):221–267, 2014. doi:
10.1007/s00454-013-9557-2.

8 Jean-Daniel Boissonnat, Mael Rouxel-Labbé, and Mathijs Wintraecken. Anisotropic tri-
angulations via discrete Riemannian Voronoi diagrams. SIAM Journal on Computing,
48(3):1046–1097, 2019. doi:10.1137/17M1152292.

9 Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic geometry. Cambridge University
Press, Cambridge, 1998. Translated from the 1995 French original by Hervé Brönnimann.
doi:10.1017/CBO9781139172998.

10 Isaac Chavel. Riemannian geometry—a modern introduction, volume 108 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. doi:10.1017/
CBO9780511616822.

H. Dal Poz Kouřimská and M. Wintraecken 23:9

11 Siu-Wing Cheng, Tamal Dey, and Edgar Ramos. Manifold reconstruction from point sam-
ples. pages 1018–1027, 01 2005. doi:10.1145/1070432.1070579.

12 Siu-Wing Cheng, Tamal Krishna Dey, and Jonathan Richard Shewchuk. Delaunay mesh
generation. Chapman & Hall/CRC Computer and Information Science Series. Chapman
& Hall/CRC, Boca Raton, FL, 2013. doi:10.1201/b12987.

13 Manfredo Perdigão do Carmo. Riemannian geometry. Mathematics: Theory & Applica-
tions. Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese
edition by Francis Flaherty. doi:10.1007/978-1-4757-2201-7.

14 Ramsay Dyer, Gert Vegter, and Mathijs Wintraecken. Riemannian simplices and triangu-
lations. Geometriae Dedicata, 2015. doi:10.1007/s10711-015-0069-5.

15 Ramsay Dyer, Gert Vegter, and Mathijs Wintraecken. Simplices modelled on spaces of
constant curvature. Journal of Computational Geometry, 10(1):223–256, Jul. 2019. doi:
10.20382/jocg.v10i1a9.

16 H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure
and Applied Mathematics, 30(5):509–541, 1977. doi:10.1002/cpa.3160300502.

17 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):Art. 11, 15, 2010. doi:10.1145/1667053.1667060.

18 H. Whitney. Geometric Integration Theory. Princeton University Press, 1957. doi:10.
1515/9781400877577.

EuroCG’22

Arrangements of Pseudocircles:
On Digons and Triangles∗

Stefan Felsner1, Sandro Roch1, and Manfred Scheucher1

1 Institut für Mathematik,
Technische Universität Berlin, Germany,
lastname@math.tu-berlin.de

Abstract
The investigation of arrangements of pseudolines and their cell structure goes back to Levi in the
1920’s. In Grünbaum’s monograph from the 1970’s, he started the investigation of arrangements of
pseudocircles and posed several interesting problems and conjectures, some of which are still open.
Here we discuss the cell-structure of arrangements of pairwise intersecting pseudocircles.

First, we discuss the maximum number of digons or touching points. Grünbaum conjectured that
every arrangement of n pairwise intersecting pseudocircles has at most 2n − 2 digons or equivalently
at most 2n − 2 touchings. Using a result from Agarwal et al. (2004), who proved the conjecture
for cylindrical arrangements, we show that the conjecture holds for any arrangement, where a
triple of pseudocircles is pairwise touching. Even though the general conjecture remains open, this
substantially narrows the options for potential counter-examples.

Second, we discuss the minimum number of triangular cells (triangles) in an arrangement of n

pairwise intersecting pseudocircles without digons and touchings. While Snoeyink and Hershberger
(1991) showed that there are at least p3 ≥ 4

3 n triangles, Felsner and Scheucher (2017) showed
that there exist arrangements on n ≥ 6 pseudocircles with p3 < ⌈ 16

11 n⌉ triangles, which disproved
a long-standing conjecture of Grünbaum. Here we provide a construction for n ≥ 6 with only
p3 = ⌈ 4

3 n⌉ triangles, showing that the lower bound of Snoeyink and Hershberger is tight.

1 Introduction

An intersecting arrangement of pseudocircles is a collection of simple closed curves on the
sphere or plane such that any two of the curves either touch in a single point or intersect in
exactly two points where they cross. Throughout this article, we consider all arrangements
to be simple, that is, no three pseudocircles meet in a common point. An arrangement A
partitions the plane into cells. Cells which have k crossings on their boundary are k-cells
and we denote their number by pk(A). We also call 2-cells digons and 3-cells triangles.

The investigation of cells in arrangements started about 100 years ago with the study
of arrangements of (pairwise intersecting) pseudolines by Levi [8], who showed that in the
projective plane every pseudoline is incident to at least 3 triangles and proved the famous
extension lemma. In the 1970’s, Grünbaum [7] intensively investigated arrangements of
pseudolines and initiated the study of arrangements of pseudocircles.

∗ A part of this work was initiated at a workshop of the collaborative DACH project Arrangements and
Drawings in Gathertown. We thank the organizers and all the participants for the inspiring atmosphere.
S. Roch was funded by the DFG-Research Training Group ’Facets of Complexity’ (DFG-GRK 2434).
M. Scheucher was supported by the DFG Grant SCHE 2214/1-1.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

24:2 Arrangements of Pseudocircles: On Digons and Triangles

1.1 Digons and touchings
Concerning digons in intersecting arrangements of pseudocircles, Grünbaum [7, Conjec-
ture 3.6]1 posed the following conjecture:

▶ Conjecture 1.1 (Grünbaum’s digon conjecture [7]). Every intersecting arrangement of
n pseudocircles has at most 2n − 2 digons.

An intersecting arrangement of pseudocircles is called cylindrical, if there is a pair of cells
which are separated by each pseudocircle of the arrangement. It was shown by Agarwal et al.
[1, Corollary 2.12] that Conjecture 1.1 holds for simple cylindrical arrangements.

Moreover, Agarwal et al. show for intersecting arrangements of pseudocircles that the
number of digons is at most linear in n. The proof of this linear bound is based on the fact that
every arrangement of intersecting pseudocircles can be stabbed by constantly many points.
That is, there exists an absolute constant k, called the stabbing number, such that, for every
arrangement of n pseudocircles in the plane, there exists a set of k points with the property
that each pseudocircle contains at least one such point in its interior. In the literature, the
stabbing number is also often referred to as piercing number or transversal number. Hence
the arrangement can be decomposed into constantly many cylindrical subarrangements. The
multiplicative constant of the linear term however remains unknown. In [6] we verified the
conjecture for up to n = 7 pseudocircles.

Here we show that Grünbaum’s digon conjecture (Conjecture 1.1) holds for simple
arrangements with three pseudocircles that pairwise form a digon; see Section 2. Before
we state the result, let us introduce some notation which will be used extensively. Any
arrangement A of pseudocircles can be perturbed so that any selection of its digons become
touching points. Figure 1 gives an illustration. It is therefore sufficient to find an upper
bound on the number of touchings. The touching graph T (A) consists of the pseudocircles
as vertices, and two of them share an edge if they have a touching.

Figure 1 Contracting some of the digons to touchings.

▶ Theorem 1.2. Let A be an arrangement of n pairwise intersecting pseudocircles. If the
touching graph T (A) contains a triangle, then there are at most 2n − 2 touchings.

1.2 Triangles in digon- and touching-free arrangements
The study of triangles in arrangements goes back to Levi [8], who showed that every
arrangement of n pseudolines in the projective plane contains at least n triangles. Since
pseudoline arrangements are in correspondence with arrangements of great-pseudocircles (see

1 Originally the conjecture extends to non-simple arrangements which are non-trivial, i.e., arrangements
with at least 3 crossing points.

S. Felsner, S. Roch, and M. Scheucher 24:3

e.g. [5, Section 4]), it directly follows that an arrangement of n great-pseudocircles contains
at least p3 ≥ 2n triangles.

Grünbaum conjectured that every digon- and touching-free intersecting arrangement
on n pseudocircles contains at least p3 ≥ 2n − 4 triangles [7, Conjecture 3.7]. Snoeyink and
Hershberger [10] proved a sweeping lemma for arrangements of pseudocircles. Using this
powerful tool, they concluded that in every digon- and touching-free intersecting arrangement
every pseudocircle has two triangles on each of its two sides (interior and exterior) and
derived the lower bound p3(A) ≥ 4n/3; see Section 4.2 in [10].

In [6] we constructed an infinite family of arrangements with p3 < 16
11 n which shows that

Grünbaum’s conjecture is wrong and verified that the lower bound p3 ≥ 4n/3 by Snoeyink
and Hershberger is tight for 6 ≤ n ≤ 14. We now have:

▶ Theorem 1.3. For every n ≥ 6, there exists a digon- and touching-free arrangement An

of n pairwise intersecting pseudocircles with p3 = ⌈ 4
3 n⌉ triangles.

All arrangements constructed in Section 3 contain A6 (depicted on the left of Figure 7)
as a subarrangement. This remarkable arrangement has been studied as the arrangement
N ∆

6 in [5] where it was shown that N ∆
6 is non-circularizable, i.e., N ∆

6 cannot be represented
by an arrangement of proper circles. As a consequence, all arrangements constructed in
Section 3 are as well non-circularizable. In fact, all known counter-examples to Grünbaum’s
triangle conjecture contain N ∆

6 and are therefore non-circularizable. Hence, Grünbaum’s
conjecture may still be true when restricted to arrangements of proper circles.

▶ Conjecture 1.4 (Weak Grünbaum triangle conjecture, [6, Conjecture 2.2]). Every intersecting
digon- and touching-free arrangement of n circles has at least 2n − 4 triangles.

1.3 Discussion
For intersecting arrangements of unit-circles, Pinchasi showed an upper bound of p2 ≤ n + 3
[9, Lemma 3.4 and Corollary 3.10]. For arrangements of unit circles there is a classical con-
struction of Erdős [3] with n not necessarily pairwise intersecting circles and Ω(n1+c/ log log n)
touchings. An upper bound of O(n3/2+ϵ) on the number of digons in circle arrangements
was shown by Aronov and Sharir [2]. We are not aware of upper bounds on the number of
digons in the case of not necessarily intersecting pseudocircles.

Concerning intersecting arrangements with digons, the number of triangles behaves
slightly different. While our best lower bound so far is p3 ≥ 2n/3, we have used computer
assistance to verify that p3 ≥ n − 1 is a tight lower bound for 3 ≤ n ≤ 7 [6]. It remains
open, whether p3 ≥ n − 1 is a tight lower bound for every n ≥ 3 [6, Conjecture 2.10]. For the
maximum number of triangles in intersecting arrangements in [6], we have shown an upper
bound p3 ≤ 4

3
(

n
2
)

+ O(n) which is optimal up to a linear error term.

2 Sketch of the proof of Theorem 1.2

We outline the proof of Theorem 1.2. A complete proof is deferred to the full version; see [4]
for a preliminary version.

Since the touching graph T (A) contains a triangle, there are three pseudocircles in A
that pairwise touch. Let K be the subarrangement induced by these three pseudocircles and
let △ and △′ denote the two triangle cells in K. We label the three touching points, which
are also the corners of △ and △′, as a, b, c. Furthermore, we label the three boundary arcs
of △ (resp. △′) as α, β, γ (resp. α′, β′, γ′), as shown in Figure 2(a).

EuroCG’22

24:4 Arrangements of Pseudocircles: On Digons and Triangles

c

a

b

α′
α

ββ′

γγ′

4

4′

(a)

c

a

b

(b)

c

a

b

(c)

Figure 2 (a) An illustration of the subarrangement K. (b) and (c) illustrate an additional
pseudocircle C (red). The pc-arcs inside both △ and △′ are highlighted.

Assume that all digons in A are contracted to touchings.
The intersection of a pseudocircle C ∈ A \ K with △ ∪ △′ results in three connected

segments, which we denote as the three pc-arcs of C, see Figures 2(b) and 2(c). Note that
each pc-arc in △ connects two of α, β or γ while a pc-arc in △′ connects two of α′, β′ and γ′.
Depending on the boundary arcs on which they start and end, they belong to one of the
types αβ, βγ, αγ, α′β′, β′γ′ or α′γ′.

▶ Claim 2.1. If two pc-arcs inside △ or △′ have a touching or cross twice, then they are of
the same type.

Proof of Claim 2.1. Suppose towards a contradiction that two distinct pseudocircles C, C ′

from A\K contain pc-arcs A ⊂ C ∩△ and A′ ⊂ C ′ ∩△ of different types that have a touching
or cross twice. One needs to check the four cases depicted in Figure 3. In none of these cases,
pc-arc A′ can be completed to a pseudocircle extending the intersecting arrangement of the
four given pseudocircles. This is a contradiction. △

c

a

b

γ
α

β

α′

γ′

β′ c

a

b

γ
α

β

α′

γ′

β′

c

a

b

γ
α

β

α′

γ′

β′ c

a

b

γ
α

β

α′

γ′

β′

Figure 3 An illustration of the proof of Claim 2.1. The pseudocircles C and C′ are highlighted
blue and red, respectively. The pc-arcs A and A′ are emphasized.

S. Felsner, S. Roch, and M. Scheucher 24:5

Next we explain how to transform A into another intersecting arrangement A′ by changing
the intersection pattern of pc-arcs within △ and △′. This transformation will ensure that
the touching graphs of A and A′ are identical and the arrangement A′ \ K will turn out to
be cylindrical.

In both triangles, △ and △′, we concentrate all crossings and touchings of each arc type
in a narrow region as depicted in Figure 4. For example, all the crossings of αβ pc-arcs are
in a region close to c and none of the crossings or touchings of these arcs is separated from c

by an arc of type αγ or βγ. This is done in a way such that for each type of pc-arcs the
arrangement of these arcs stays the same and all the endpoints of all pc-arcs stay at their
original position.

By applying Claim 2.1, one can check that this transformation preserves the crossing
and touching relations between any pair of pseudocircles. Hence we obtain again a valid
intersecting pseudocircle arrangement A′ with the same number of touchings.

c

a

b

β

α

γ

c

a

b

β

α

γ

Figure 4 Concentrate all crossings and touchings of one arc type in a narrow region. The
narrow regions are indicated by dashed rectangles.

Moreover, one can verify that A′ can always be drawn as in Figure 5 on a cylinder, so
that all pseudocircles except the three pseudocircles of K wrap around the cylinder. This
means that the following claim holds:

▶ Claim 2.2. The arrangement induced by A′ \ K is cylindrical.

Next we replace the three pseudocircles of K by six pseudocircles as illustrated in Figure 6,
so that the resulting arrangement A′′ is cylindrical. Each of the three touching points a, b, c in
K is replaced by two new touching points and altogether we obtain touchings a′, a′′, b′, b′′, c′, c′′.
Hence, when transforming A into A′′, the number of pseudocircles is increased by 3 and the
number of touchings is also increased by 3.

An intersecting arrangement of pseudoparabolas is a collection of infinite x-monotone
curves, called pseudoparabolas, where each two of them either have a single touching or
intersect in exactly two points where they cross. As every cylindrical pseudocircle arrangement
can be represented as an arrangement of pseudoparabolas and vice versa, Agarwal et al. [1]
proved the p2(A) ≤ 2n − 2 upper bound on the number of touchings in arrangements of
cylindrical intersecting arrangements by bounding the number of touchings in an intersecting
arrangement of pseudoparabolas. They show that their touching graph is planar and
bipartite [1, Theorem 2.4]. In fact, the drawing of A′′ in Figure 6 can be seen as an

EuroCG’22

24:6 Arrangements of Pseudocircles: On Digons and Triangles

a b c

Figure 5 A cylindrical drawing of A′ \ K.

a′

a′′

b′

b′′

c′

c′′

Figure 6 Replace each of the three pseudocircles of K by two new pseudocircles so that the
entire arrangement is now cylindrical. On the left: the touching graph T (A′′) of the arrangement.

intersecting arrangement of pseudoparabolas. We review their proof to prove the following
claim.

▶ Claim 2.3. T (A′′) remains planar and bipartite after adding a certain edge.

Since T (A′′) remains planar and bipartite after adding an edge, and since planar bipartite
n-vertex graphs have at most 2n − 4 edges, we obtain

p2(A) + 3 = p2(A′′) ≤ 2(n + 3) − 5 =⇒ p2(A) ≤ 2n − 2.

This completes the sketch of the proof of Theorem 1.2.

3 Proof of Theorem 1.3

We denote by A6, A7, and A8 the three arrangements shown in Figure 7. These three
arrangements on 6, 7, and 8 pseudocircles, respectively, are digon- and touching-free and
contain 8, 10, and 11 triangles, respectively. In each of the three arrangements, there is a
pseudocircle C and four incident triangles which are alternatingly inside and outside of C in
the cyclic order around C. In fact, this alternation property holds for all pseudocircles of
these three arrangements.

S. Felsner, S. Roch, and M. Scheucher 24:7

Figure 7 Digon- and touching-free intersecting arrangements of n = 6, 7, 8 pseudocircles with 8,
10, 11 triangles, respectively. Triangular cells are highlighted gray. [6, Fig. 2]

4 4

4 4

(a) (b)

Figure 8 Replacing one pseudocircle with the alternation property (i.e., four triangles on
alternating sides) by a particular arrangement of four pseudocircles.

To recursively construct An for n ≥ 9, we replace a pseudocircle C with the alternation
property from An−3 by a particular arrangement of four pseudocircles as depicted in Figure 8.

With this replacement we destroy 4 triangles incident to C in the original arrangement,
and in total the four new pseudocircles are incident to eight new triangles. Hence, we have
p3(An) = p3(An−3) + 4 = ⌈ 4

3 (n − 3)⌉ + 4 = ⌈ 4
3 n⌉.

Moreover, for each of the four new pseudocircles, there are four new triangles (among the
eight new triangles) that lie on alternating sides. This allow us to recurse by using one of
the four new pseudocircles in the role of C for the next iteration. This completes the proof.

It is worth noting that A6 can be created as illustrated in Figure 9 by extending the
Krupp arrangement of three pseudocircles, in which all cells are triangles.

Figure 9 Extending the Krupp arrangement (left) to the arrangement A6 (right).

EuroCG’22

24:8 Arrangements of Pseudocircles: On Digons and Triangles

References
1 P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky. Lenses in

Arrangements of Pseudo-circles and Their Applications. Journal of the ACM, 51(2):139–186,
2004.

2 B. Aronov and M. Sharir. Cutting circles into pseudo-segments and improved bounds for
incidences. Discrete & Computational Geometry, 28(4):475–490, 2002.

3 P. Erdős. On sets of distances of n points. The American Mathematical Monthly, 53(5):248–
250, 1946.

4 S. Felsner, S. Roch, and M. Scheucher. Arrangements of Pseudocircles: On Digons and Tri-
angles (with Appendix), 2022. http://page.math.tu-berlin.de/~roch/publ/eurocg22_
full.pdf.

5 S. Felsner and M. Scheucher. Arrangements of Pseudocircles: On Circularizability. Discrete
& Computational Geometry, Ricky Pollack Memorial Issue, 64:776–813, 2020.

6 S. Felsner and M. Scheucher. Arrangements of Pseudocircles: Triangles and Drawings.
Discrete & Computational Geometry, 65:261–278, 2021.

7 B. Grünbaum. Arrangements and Spreads, volume 10 of CBMS Regional Conference Series
in Mathematics. AMS, 1972.

8 F. Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte über
die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-
Physische Klasse, 78:256–267, 1926.

9 R. Pinchasi. Gallai—Sylvester theorem for pairwise intersecting unit circles. Discrete &
Computational Geometry, 28(4):607–624, 2002.

10 J. Snoeyink and J. Hershberger. Sweeping arrangements of curves. In Discrete & Compu-
tational Geometry: Papers from the DIMACS Special Year, volume 6 of DIMACS, pages
309–349. AMS, 1991.

Unweighted Shortest Path in Disk Graphs
Katharina Klost1

1 Institut für Informatik, Freie Universität Berlin, Germany
kathklost@inf.fu-berlin.de

Abstract
Shortest path problems are among the fundamental problems in graph theory. The unweighted
single source shortest path problem (SSSP) in general graphs can be solved optimally with breadth
first search (BFS) in O(m + n) time. A disk graph D(S) is a graph that is defined on a set S of
sites, where each site s ∈ S has an associated radius rs. The vertex set of D(S) is S and two sites
s, t are connected by an edge st in D(S) if and only if ∥st∥ ≤ rs + rt, or equivalently, if the disks
induced by s and t intersect. In this paper, we use a proxy graph defined by Kaplan et al. to solve
the unweighted SSSP problem in disk graphs in O(n log2 n) time. This significantly improves the
previous best bound of O(n log7 nλ6(log n))[8, 9].

1 Introduction

The unweighted single source shortest path problem (SSSP) is a fundamental graph theoretic
problem. To be precise the problem is Given an unweighted graph G and a starting vertex v,
find the shortest path distances from s to all other vertices, together with a shortest path tree.
For a general graph with n vertices and m edges it is widely known that it can be optimally
solved by using BFS in O(m + n) time.

Given a set S of n point sites, where each site s ∈ S has an associated radius rs, the
disk graph is the intersection graph of the disks induced by these sites. To be precise, the
disk graph D(S) has a vertex for each site and an edge between two sites, if and only if
the associated disks intersect. While the input size for a general graph is m + n, the input
for problems on disk graphs consist of the sites and the associated radii and has size O(n).
Furthermore, as every complete graph can be realized as a disk graph, such a graph can have
Θ(n2) edges. Thus, explicitly constructing D(S) and running BFS on the resulting graph,
could lead to a O(n2) running time. This stands in contrast to the Ω(n log n) lower bound
for SSSP in disk graphs [1].

For unit disk graph, that is disk graphs where all sites have the same radius, there are
multiple algorithms that achieve the optimal O(n log n) running time by using the underlying
geometry [1, 2, 4]. On a very high level, these three algorithms all use a BFS in multiple
rounds, where in round i all sites with distance i + 1 to the starting vertex are discovered.
One should also mention the weighted case, where an edge uv is weighted with the Euclidean
distance ∥uv∥ between the sites. Here the currently best know algorithm by Wang and
Xue [11] achieves a running time of O(n log2 n) leaving an O(log n) gap to the lower bound.
Where the optimal algorithms in the unweighted case can be seen as variants of BFS, the
algorithm by Wang and Xue is based on Dijkstra’s algorithm. They use (semi-dynamic)
additively weighted nearest neighbor structures to identify a batch of edges that can be
relaxed.

For unit disk graphs, there also is a variety of related problems that was studied. When
considering the L1 metric, the unweighted algorithms can be easily adapted, while for the
weighted case there is a specialized optimal algorithm [12]. There is also the reverse version
of the problem, where the input is the length of a shortest path between two vertices, and one
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

25:2 Unweighted Shortest Path in Disk Graphs

asks for the minimal radius of the disks, such that the shortest path has at least this length.
The problem was considered for the L1 and L2 metrics in the weighted and unweighted case.
In the L1 metric both variants can be solved in O(n log3 n) time, where in the L2 metric the
currently best know algorithm for the unweighted case takes O(n5/4 log7/4 n) time, where as
the weighted case can be solved in O(n5/4 log5/2 n) time [13].

For unweighted general disk graphs, the best known SSSP algorithm so far takes
O(n log7 nλ6(log n)) time [8, 9], where λ6 is the length of a Davenport-Schinzel sequence.
This algorithm directly implements a BFS by using repeated queries and deletions to a
dynamic additively weighted nearest neighbor data structures to discover new edges.

In this paper, we use a proxy graph developed in the context of dynamic connectivity
by Kaplan et al.[6] to perform a batched BFS on general disk graphs. We first compute
the proxy graph of Kaplan et al. and use it to batch together sites on which we perform
additively weighted nearest neighbor queries. By the choice of these batches, static additively
weighted nearest neighbor data structures suffices to find the relevant edges of the SSSP tree,
leading to the improved running time of O(n log2 n).

2 The Proxy Graph

We briefly describe the proxy graph as defined by Kaplan et al.[6]. This proxy graph will be
the base for our algorithm. We will focus our description on the parts of the proxy graph that
are relevant for the purposes of this paper. For the remaining details, refer to the original
paper. The proxy graph H is a bipartite graph on O(n) vertices and O(n log n) edges that
accurately represents the connectivity of a given disk graph. The vertex set consists of O(n)
region vertices in addition to one vertex for each site. Region vertices are used to represent
cliques and sites connected to these cliques in a sparse fashion.

The regions are defined on subsets of cells of an extended compressed quadtree Q on S.
The quadtree is extended to contain for each site s ∈ S the special cell σs with s ∈ σs and
|σs| ≤ rs ≤ 2|σs| and a constant sized neighborhood of σs of cells with the same size.

On the cells of Q, Kaplan et al. define a set of O(n) canonical paths, such that every path
starting at the root of Q can be uniquely represented by O(log n) disjoint canonical paths.1
Each canonical path can be interpreted as the union of cells from the hierarchical grid that
underlies the compressed quadtree.

For each canonical path with smallest cell σ and largest cell τ , a set of O(1) disjoint
regions is defined. One of these regions is a disk centered at the center of σ with radius |σ|.
For the remaining regions, let c1, c2 be constants and let Cc1 and Cc2 be two sets of c1 or c2
respectively cones that partition the plane and have their apex at the center of σ. Then
there are c2 regions that are the intersection of the cones in Cc2 with an annulus of inner
radius |σ| and outer radius 5

2 |σ| centered at the center of σ. Furthermore there are c1 regions
that are the intersection of the cones in Cc1 with an annulus of inner radius 5

2 |σ| and outer
radius 5

2 |σ|+ 2|τ |, see Figure 1.
To define the edges of the proxy graph, there are two sets S1(A) and S2(A) for each of

these regions defined as follows. A site t is in S1(A), if t ∈ A, |σ| ≤ rt ≤ 2|τ | and if the
distance from t to the center of σ is at most rt + 5

2 |σ|. Kaplan et al. show that when c1 and
c2 are chosen appropriately the induced disk graph on S1(A) forms a clique.

1 In the arXiv version of their paper[6], Kaplan et al. claim O(log2 n) canonical paths. They recently
improved this to O(log n), but the better bound is not published yet[7].

K. Klost 25:3

σ

|σ|

5
2 |σ|+ 2|τ |

5
2 |σ|

Figure 1 The regions in the plane

For s to lie in S2(A) for a region A, the region has to have been defined by a canonical
path that is part of the unique representation of the path from the root of the quadtree to
the special cell σs of s as defined above. Furthermore s has to intersect at least one site in
S1(A).

A region A is connected to a site s with an edge in the proxy graph, if and only if
s ∈ S1(A) ∪ S2(A). The set of all regions, together with the sets S1(A) and S2(A) can be
found in O(n log2 n) time (implied by Lemma 7.6 [6] and the improvement mentioned above).

We will need the following two properties of the proxy graph that Kaplan et al. did not
explicitly state. In the following, we assume the starting vertex s for the SSSP problem to
be fixed, and we denote by du the unweighted shortest path distance from s to a vertex u.

▶ Lemma 2.1. If u and v are connected to the same region vertex A in the proxy graph H,
then |du − dv| ≤ 3.

Proof. The proof is an extension of the proof of Kaplan et al. (Lemma 6.3, Lemma 7.3 [6])
which shows that u and v are connected in D(S), if they are connected to the same region
vertex. Similar to their argument, this proof is based on the fact, that all sites that lie in
the same set S1(A) form a clique (Lemma 6.2, Lemma 7.2 [6]). We consider three cases, see
Figure 2 for an illustration.

1. u, v ∈ S1(A) If both sites lie in S1(A), they are part of the same clique. Thus
|du − dv| ≤ 1.

2. u ∈ S1(A) and v ∈ S2(A), or u ∈ S2(A) and v ∈ S1(A) Without loss of generality,
let v ∈ S2(A). This implies by the definition of S2(A), that there is a site w ∈ S1(A) such
that v intersects w. Thus |dw−dv| ≤ 1. Furthermore w lies in the same clique as u, implying
that |du − dv| ≤ 2. The other case is symmetric.

3. u, v ∈ S2(A) Again by the definition of S2(A), we have sites w1, w2 ∈ S1(A) such that
u intersects w1 and v intersects w2. As w1 and w2 lie in the same clique, the path u, w1, w2, v

exists in D(S) and thus |du − dv| ≤ 3. ◀

EuroCG’22

25:4 Unweighted Shortest Path in Disk Graphs

u

v

(a) Case 1: u, v ∈ S1(A)

u

v

w

(b) Case 2: v ∈ S1(A), u ∈ S2(A)

u

w2

w1

v

(c) Case 3: u, v ∈ S2(A)

Figure 2 Illustration of Lemma 2.1. The dashed lines correspond to the paths connecting u and
v in D(S)

K. Klost 25:5

▶ Observation 2.2 (Follows from Lemma 7.3 in Kaplan et al.[6]). For every edge st ∈ D(S)
there is a region A such that sA ∈ H and At ∈ H.

3 Batched BFS

We efficiently implement a batched BFS on the proxy graph described in section 2. The
batched BFS follows a similar idea to that in the unweighted shortest paths algorithm for
unit disk graphs by Efrat et al.[4]. We first describe the algorithm and argue its correctness,
then we analyze the running time.

The algorithm works on the proxy graph H in up to n rounds. In round i it identifies
all sites with unweighted distance exactly i + 1 to the starting vertex s. During the
algorithm, we fill out a table dist[] for all v ∈ S and later show that dist[v] = dv. Let
Wi = {u ∈ S | dist[u] = i} be the set of all sites discovered in the previous round. We build
a static additively weighted nearest neighbor data structure (AWNN) on the sites in Wi,
where each site has weight −rs. Let Ai be the set of regions that are adjacent to at least
one site in Wi and let Ti be the set of all sites v adjacent to at least one region in Ai that
have dist[v] =∞. Then we query the AWNN one by one with the sites v ∈ Ti. Let u′ be the
result of the nearest neighbor query for a site v ∈ Ti. If ∥u′v∥ ≤ rv, we set dist[v] = i + 1
and add v to Wi+1. See Algorithm 1 for a pseudocode of the algorithm.

Algorithm 1 The batched BFS algorithm for general disk graphs (with starting vertex s)
1: Compute the proxy graph H

2: dist[v] =∞ ∀v ∈ S

3: dist[s] = 0
4: i = 0
5: W0 = {s}
6: while Wi ̸= ∅ do
7: Wi+1 ← ∅
8: Build AWNN on Wi with weights −rs

9: Ai ← {R | uR ∈ EH and u ∈Wi}
10: Ti ← {v | vR ∈ EH , R ∈ Ai and dist[v] =∞}
11: for v ∈ Ti do
12: u′ ← result of query of AWNN with v

13: if u′v is an edge in D(S) then
14: dist[v]← i + 1
15: Wi+1 ←Wi+1 ∪ {v}
16: i← i + 1

Before we analyze the running time of the algorithm, we argue it’s correctness.

▶ Lemma 3.1. Algorithm 1 correctly computes the unweighted single source shortest path
distances in a disk graph.

Proof. To be precise, we show that at the end of the algorithm, dist[v] = i if and only if
dv = i. First note, that once dist[v] is changed from ∞ for a site v ∈ S, it will never change
its value again. Now we can show the statement by induction. For i = 0 the statement holds
by the preprocessing step.

For arbitrary i we first show, that if dist[v] = i then dv = i. Assume for the sake of
contradiction that dist[v] = i but dv ̸= i. If dist[v] is set to i, this was done in iteration i− 1

EuroCG’22

25:6 Unweighted Shortest Path in Disk Graphs

and only after a site u with dist[u] = i − 1 and uv ∈ D(S) was discovered. By induction
hypothesis, this implies that du = i − 1 and thus dv ≤ i. Now if dv = j < i, by induction
hypothesis, we would have already set dist[v] = j, a contradiction.

For the other direction, let π be a shortest s to v path in D(S) and let u be the predecessor
of v on this path. Then du = i− 1 and by induction hypothesis, dist[u] = du. This implies
that u ∈Wi−1 and thus u is contained in the AWNN in iteration i− 1.

At the beginning of iteration i−1 we have dist[v] =∞, as by the induction hypothesis only
the dist values of sites with dv ≤ i− 1 are set. As uv is an edge in D(S), by Observation 2.2
there is a region A such that vA and uA are edges in H. As u is incident to A, A ∈ Ai and
v ∈ Ti. Let u′ be the weighted nearest neighbor returned by the query with v. As uv is an
edge in D(S), we have ∥uv∥ ≤ ru + rv. Furthermore, as the query returned u′ it holds that
∥u′v∥− ru′ ≤ ∥uv∥− ru. Combining these two inequalities we get ∥u′v∥ ≤ ru′ + rv, implying
that u′v is also an edge in D(S). Thus dist[v] is set to i when the AWNN containing u is
considered, finishing the proof. ◀

▶ Lemma 3.2. Algorithm 1 has a running time of O(n log2 n).

Proof. The proxy graph can be build in O(n log2 n) time [6, 7]. Now we consider the running
time needed to preprocess the AWNN. As each site can only be in an AWNN in the iteration
after its dist[] value was set, each site is in at most one AWNN. An AWNN on m sites that
allows a query time of O(log m) can be build in O(m log m) time [3, 5, 10], summing up over
all AWNN gives a time of O(n log n) to build all AWNN.

Now consider the queries. By Lemma 2.1, the shortest path distances of sites that are
adjacent to the same region differ by at most 3. Thus each site can be contained in the set
Ti in at most 3 rounds. In each of these rounds, on query with a running time of O(log n)
is performed, for an overall O(n log n) query time. As the preprocessing time for the proxy
graph dominates, the lemma follows. ◀

▶ Theorem 3.3. Algorithm 1 correctly finds all unweighted single source shortest paths
distances in a disk graph in O(n log2 n) time.

Proof. The claim follows from Lemma 3.1 and Lemma 3.2. ◀

▶ Remark. The algorithm and all proofs can be straightforwardly extended to also produce
the SSSP tree, by setting appropriate pointers in line 14 of the pseudocode.

4 Conclusion

By using an approach that is more tailored towards disk graphs, we are able to significantly
improve the running time for solving the unweighted SSSP in general disk graphs. We
conjecture that our result carries over to the case of the L1-metric by slightly adapting the
definition of the regions and using a matching additively weighted nearest neighbor data
structure.

As the O(n log2 n) time bound is confided to the construction of the proxy graph, finding
a proxy graph that can be constructed in O(n log n) time and that satisfies Lemma 2.1 with
an arbitrary constant d and some variant of Observation 2.2 would give an optimal algorithm.

Acknowledgements: I would like to thank Wolfgang Mulzer for proofreading a first draft.
Special thanks goes to Günter Rote for pointing out how to confine the log n-factor to the
construction of the proxy graph.

K. Klost 25:7

References
1 Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Compu-

tational Geometry, 48(4):360–367, 2015.
2 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs

in slightly subquadratic time. In Seok-Hee Hong, editor, 27th International Symposium
on Algorithms and Computation (ISAAC 2016), volume 64 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 24:1–24:13, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ISAAC.2016.24.

3 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008. doi:
10.1007/978-3-540-77974-2.

4 A. Efrat, A. Itai, and M. J. Katz. Geometry Helps in Bottleneck Matching and Related
Problems. Algorithmica, 31(1):1–28, September 2001. doi:10.1007/s00453-001-0016-8.

5 Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1):153,
November 1987. doi:10.1007/BF01840357.

6 Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam
Roditty, and Paul Seiferth. Dynamic Connectivity in Disk Graphs. arXiv:2106.14935 [cs],
June 2021. arXiv:2106.14935.

7 Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam
Roditty, and Paul Seiferth. Personal communication, 2021.

8 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dy-
namic Planar Voronoi Diagrams for General Distance Functions and Their Algorith-
mic Applications. Discrete & Computational Geometry, 64(3):838–904, October 2020.
doi:10.1007/s00454-020-00243-7.

9 Chih-Hung Liu. Nearly Optimal Planar k Nearest Neighbors Queries under General Distance
Functions. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
(SODA), Proceedings, pages 2842–2859. Society for Industrial and Applied Mathematics,
December 2019. doi:10.1137/1.9781611975994.173.

10 Micha Sharir. Intersection and Closest-Pair Problems for a Set of Planar Discs. SIAM
Journal on Computing, 14(2):448–468, May 1985. doi:10.1137/0214034.

11 Haitao Wang and Jie Xue. Near-Optimal Algorithms for Shortest Paths in Weighted
Unit-Disk Graphs. Discrete & Computational Geometry, 64(4):1141–1166, December 2020.
doi:10.1007/s00454-020-00219-7.

12 Haitao Wang and Yiming Zhao. An Optimal Algorithm for L1 Shortest Paths in Unit-Disk
Graphs. In Meng He and Don Sheehy, editors, Proceedings of the 33rd Canadian Conference
on Computational Geometry, CCCG 2021, August 10-12, 2021, Dalhousie University,
Halifax, Nova Scotia, Canada, pages 211–218, 2021.

13 Haitao Wang and Yiming Zhao. Reverse Shortest Path Problem for Unit-Disk Graphs.
arXiv:2104.14476 [cs], April 2021. arXiv:2104.14476.

EuroCG’22

An Insertion Strategy for Motorcycle Graphs∗

Franz Aurenhammer1 and Michael Steinkogler2

1 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, auren@igi.tugraz.at

2 Institute for Theoretical Computer Science, University of Technology, Graz,
Austria, michael_steinkogler@gmx.net

Abstract
An insertion method is proposed that leads to a simple and experimentally fast algorithm for
constructing the motorcycle graph of a planar polygon.

1 Introduction

In [1] the straight skeleton was introduced to computational geometry as a new skeletal
structure for polygons. In fact, the concept was already discussed as early as 1877 [11],
as an alternative to the medial axis of a polygon. Unlike the medial axis, the straight
skeleton is not (and cannot be, in a certain sense) defined via distances from the polygon
boundary, but rather results from moving inwards the polygon edges in a self-parallel way.
Thereby, the polygon undergoes certain combinatorial and topological changes: Edges might
shrink to length zero, and the polygon might even split multiple times. The vertices of the
shrinking polygon trace out a skeletal structure in the interior of the polygon that consists of
straight-line segments and is therefore called its straight skeleton.

The complexity of computing the straight skeleton mainly stems from the interaction of
the reflex vertices, which move at individual speeds during the shrinking process (depending
on the interior polygon angles), and are responsible for possible polygon splits. Eppstein et
al. abstracted this interaction into a separate problem and called it the motorcycle graph
problem in [6]. See Figure 1 and Figure 2 for examples. In its general form, n ’motorcycles’
start from n given points in the plane, at individual but constant velocities and in different
directions. Each motorcycle leaves a trace where other motorcycles, when happening to run
into it, crash and stop their travel. The union of the traces of all motorcycles constitutes the
so-called motorcycle graph.

Over the years, various methods for computing both the straight skeleton and the
motorcycle graph have been proposed; see e.g. [3, 4, 6, 10]. Notably, most known fast
(i.e., subquadratic) straight skeleton algorithms build upon precomputing the motorcycle
graph. They typically simulate the behaviour of the motorcycles over time, handling all
motorcycles simultaneously and in chronological order—the simplest algorithm just computing
all intersections between traces and placing them in a priority queue ordered by time.

In the present note we deviate from this pattern and apply randomized insertion to the
motorcycles. A simple and practical algorithm is obtained, and our empirical results indicate
competitiveness to other implemented algorithms like in [8].

∗ Supported by Project I 5270-N, Austrian Science Fund (FWF).

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

26:2 An Insertion Strategy for Motorcycle Graphs

Figure 1 Straight skeleton of a polygon.
The dashed polygon offsets indicate its shrink-
ing process.

w1

w2m1

m2

Figure 2 The corresponding motorcycle
graph is defined by two motorcycles m1 and
m2 that start at the reflex vertices w1 and
w2, respectively.

2 Motorcycle Insertion

Let P be a simple polygon with n vertices, and denote with W = {w1, . . . , wr} the set of its
r < n reflex vertices, in an arbitrary but fixed order. During the shrinking process, where
each edge of P is assumed to move inwards at unit speed, a reflex vertex wi ∈ W moves
at speed 1

sinα/2 , where α is the interior angle of P at wi. Note that wi moves along the
angle bisector of α and thus has a straight trajectory. We associate with wi a motorcycle mi,
which starts at wi and drives with its speed and direction, leaving behind a straight trace.
We say that a motorcycle mi crashes when it runs into the trace of another motorcycle or
when it hits the boundary of P. Our interest is in the resulting motorcycle graph for P.

For a subset Wk = {w1, . . . wk} of reflex vertices of P, let us denote with M(Wk) the
resulting partial motorcycle graph, where only the motorcycles associated with vertices in
Wk move. We now investigate what happens when we ‘insert’ the next motorcycle, mk+1,
and howM(Wk) has to be updated to obtainM(Wk+1).

In the simplest case we haveM(Wk) ⊂M(Wk+1), that is, the structure ofM(Wk) does
not change, because mk+1 either crashes at the boundary of P, or at some edge ofM(Wk)
whose associated motorcycle mj , j ≤ k, has reached the crossing point first. If, however,
mk+1 is the motorcycle which reaches there first (let us denote the respective point with q),
then there are potentially significant structural changes fromM(Wk) toM(Wk+1) that need
to be incorporated.

In the latter case, up to the time t when mk+1 reaches the point q, all crashes that happen
inM(Wk) obviously also happen inM(Wk+1). Thus, up to that time the graphsM(Wk)
andM(Wk+1) are structurally identical, apart from the trace of mk+1.

Let us assume thatM(Wk) has already been constructed. To compute the changes from
M(Wk) toM(Wk+1), we adapt the motorcycle graph algorithm introduced by Cheng and
Vigneron in [4]. They use a certain partition of the plane to keep track of the motorcycles
over time, and search for crashes of motorcycles only within the cells of the partition. Their
algorithm has three kinds of events: boundary events where a motorcycle crashes into the
boundary of P , collision events when a motorcycle runs into the trace of another motorcycle,
and switch events when a motorcycle crosses over some cell boundary into the next cell.

In contrast to [4], we simply use the already available partial motorcycle graphM(Wk)
as the underlying partition of P, and limit the events to those needed to compute the
changes from M(Wk) to M(Wk+1). This simplifies the algorithm and gives hope for a

F. Aurenhammer and M. Steinkogler 26:3

speed-up. We keep the necessary events in a time-ordered queue Q. Also, for each cell C of
M(Wk) we maintain a set A(C) of active motorcycles, i.e., those that are currently passing,
or have already passed, through C. Finally, for each motorcycle m we keep its current
death time d(m), that is, the time when m crashes in the motorcycle graph constructed so
far. Note that the edges ofM(Wk) act as both cell boundaries and motorcycle traces, so
collision and switch events can happen at the same time. In such a case the collision event is
processed first.

We start our event handling algorithm with only one moving motorcycle, mk+1. We
initialize Q with a switch event for mk+1 at time 0, set d(mk+1) =∞, and put A(C) = ∅ for
all cells C ofM(Wk). As long as Q contains events, we remove the next event and process
it as is described below.

2.1 Event handling
Boundary event of motorcycle m at time t. If m is alive at time t, that is, if d(m) ≥ t, then

we report the motorcycle edge wq, where w is the reflex vertex that m started from, and
q is the point where m hits the polygon boundary. In addition, we put d(m) = t. If m
was already dead at time t there is nothing to do.

Collision event of motorcycle m at time t, with the trace of motorcycle m′ at point q. Let m′

reach q at time t′, and observe that t′ < t has to hold, because the collision event would
not affect m otherwise. If d(m) < t or d(m′) < t′, then there is nothing to do: Either
both motorcycles crashed already, or m can just drive on. If both motorcycles are alive
when they reach q, then m crashes at q, and we report the (now shortened) motorcycle
edge wq and set d(m) = t. If m 6= mk+1 (that is, if m ∈Wk), then we additionally need
to activate all motorcycles m̃ that got blocked by m (after m passed q) and that have
d(m̃) > t. See Figures 3 and 4 for illustrations. For all such motorcycles m̃ we do the
following: Put d(m̃) =∞, and insert into Q a switch event of m̃ crossing the edge defined
by m to reach the next cell, say C ′. (This switch event will then add m̃ to A(C ′).)

Switch event of motorcycle m at time t, from cell C to cell C ′ at q. Let e be the edge of
C that q lies on. This edge e stems from some motorcycle mj for some j ≤ k. If m
has crashed already then there is nothing to do, so let us suppose d(m) > t. Then m
drives on to C ′ (the collision event with mj was already handled and would have caused
d(m) ≤ t, otherwise), so we add m to A(C ′), compute collision events of m with all other
motorcycles in A(C ′) (in a straight-forward manner), and determine the next switch
event in case m leaves C ′. All these events are inserted into Q.

2.2 Correctness
Correctness of our approach mainly follows from the correctness of the Cheng-Vigneron
algorithm [4]. The only difference is that our algorithm avoids creating and processing certain
events becauseM(Wk) is used as the underlying polygon partition.

Consider all collision events for the motorcycle graphM(Wk), as well as all the switch
events for the motorcycles m1. . . . ,mk+1. These events are precomputed in [4], as opposed to
our on-demand approach. Our algorithm processes the same events, except that we need not
process the collision events forM(Wk) because we already know the result of these events
(namely,M(Wk) itself)—if these events are relevant at all (motorcycles may crash earlier in
M(Wk+1)). Also, computing switch events on demand—when a motorcycle enters a new

EuroCG’22

26:4 An Insertion Strategy for Motorcycle Graphs

w1

w2

w3

w4

Figure 3 Partial motorcycle graph before
the insertion of motorcycle m4.

w1

w2

w3

w4

Figure 4 Insertion of m4 makes m1 crash.
This activates m3 which is now blocking m2.

cell—for mk+1 and for the unblocked motorcycles ofM(Wk) changes neither the events nor
their processing. Thus, our algorithm and the algorithm of [4] produce the same result.

2.3 Partition representation

After processing all the events caused by the insertion of the motorcycle mk+1, we have to
update the polygonal partition given by M(Wk). When a new motorcycle graph edge is
reported (in a boundary event or in a collision event) then the respective cell of the partition
needs to be split into two cells. Also, when a motorcycle gets blocked and its motorcycle
graph edge gets shortened (in a collision event) then the respective two cells per motorcycle
have to be merged into one cell. Figure 5 gives an illustration. In addition, in order to
determine switch events and boundary events, ray shooting queries in the interior of cells
have to be performed. Finally, to get started at all, we need to locate the cell that mk+1
starts from.

If we aim for a theoretically efficient algorithm, the data structure of Goodrich and
Tamassia [7] is the right choice. They organize a polygonal partition of the plane into an
O(n)-space dynamic data structure that supports insertion and deletion of edges, as well as
point location and ray shooting queries, in O(log2 n) time. From the practical point of view,
assuming that cell sizes will decrease quickly with progressing motorcycle insertion, it may
suffice to storeM(Wk) in a doubly-connected edge list data structure, and to simply scan
cell boundaries to perform the necessary operations.

w1

w2C2

C1

(a) Before inserting m2.

w1

w2Ĉ2

Ĉ1

Ĉ3

Ĉ4

(b) C1 and C2 are split.

w1

w2C̃2

C̃1
C̃3

(c) Ĉ3 and Ĉ4 are merged.

Figure 5 Updating the cell structure of the motorcycle graph.

F. Aurenhammer and M. Steinkogler 26:5

Figure 6 The insertion of one motorcycle
can block all the others.

Figure 7 Polygon with Θ(n2) motorcycle
intersections.

Figure 8 Polygon angles can be adjusted such that removal of any of the Θ(n) blue motorcycles
unblocks its associated red motorcycle, which in turn blocks the Θ(n) green motorcycles.

3 Complexity Considerations

Insertion strategies commonly suffer from the fact that a single insertion step can be costly.
So does ours, where the insertion of a single motorcycle mk+1 can cause Θ(k) structural
changes in the graphM(Wk). The polygon in Figure 6 is an example, when we insert the
motorcycle starting from the bottommost reflex vertex in the end. Even worse, there are
n-vertex polygons where the insertion of any motorcycle out of a set of size Θ(n) leads to a
structural change of complexity Θ(n); see the construction in Figure 8. This buries the hope
of proving a randomized insertion strategy efficient by means of backwards analysis [9]. On
the other hand, experiments indicate that randomized insertion is efficient in our case when
summing up over all insertion steps, and leads to a favorable runtime.

To test the performance of our algorithm in practice, we counted the total number of
structural changes in the motorcycle graph during the randomized incremental construction.
Both generic random polygons (provided by the Salzburg Database of Geometric Inputs [5])
and specifically designed polygons were used. Interestingly, the number of structural changes
per insertion step can on average be bounded by a very small constant. For example, none of
the tested polygons from the Salzburg dataset with up to 50.000 reflex vertices caused more
than 3 structural changes per motorcycle insertion on average. See Figures 9 and 10. Among
our many specifically designed polygons are the types as shown in Figures 7 and 8. The
latter exhibited the worst behavior, but still with less than 7 structural changes on average;
see Figure 11.

In summary, the insertion strategy enables a quick and simple construction of motorcycle
graphs in practice. Together with the simple motorcycle-graph-based skeleton merging
algorithm in [2], we obtain a new practical method for computing straight skeletons.

EuroCG’22

26:6 An Insertion Strategy for Motorcycle Graphs

Figure 9 Average number of motorcycle graph edges that changed per insertion step. (For
polygons from [5] with up to 7000 reflex vertices).

Figure 10 Average number of changing motorcycle graph edges per insertion step, for larger
polygons from [5].

F. Aurenhammer and M. Steinkogler 26:7

Figure 11 Average number of changing motorcycle graph edges per insertion step, for specifically
constructed polygons.

References
1 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A novel type

of skeleton for polygons. Journal of Universal Computer Science, 1:752–761, 1996.
2 Franz Aurenhammer and Michael Steinkogler. On merging straight skeletons. In Proc. 34th

European Workshop on Computational Geometry, 2018.
3 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron. A faster algorithm for computing

straight skeletons. ACM Transactions on Algorithms, 12(3):44:1–44:21, 2016.
4 Siu-Wing Cheng and Antoine Vigneron. Motorcycle graphs and straight skeletons. Algo-

rithmica, 47(2):159–182, 2007.
5 Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader.

Salzburg Database of Polygonal Data: Polygons and Their Generators. Data in Brief,
31:105984, August 2020. doi:10.1016/j.dib.2020.105984.

6 David Eppstein and Jeff Erickson. Raising roofs, crashing cycles, and playing pool: Ap-
plications of a data structure for finding pairwise interactions. Discrete & Computational
Geometry, 22(4):569–592, 1999.

7 Michael Goodrich and Roberto Tamassia. Dynamic ray shooting and shortest paths in
planar subdivisions via balanced geodesic triangulations. Journal of Algorithms, 23:51–73,
1997.

8 Stefan Huber and Martin Held. Motorcycle graphs: stochastic properties motivate an
efficient yet simple implementation. Journal of Experimental Algorithmics, 16:1–1, 2011.

9 Raimund Seidel. Backwards analysis of randomized geometric algorithms. In J.Pach (ed.)
New Trends in Discrete and Computational Geometry, Algorithms and Combinatorics, pages
37–67. Springer, 1993.

EuroCG’22

26:8 An Insertion Strategy for Motorcycle Graphs

10 Antoine Vigneron and Lie Yan. A faster algorithm for computing motorcycle graphs.
Discrete & Computational Geometry, 52(3):492–514, 2014.

11 Gustav von Peschka. Kotirte Ebenen und deren Anwendung. Buschak & Irrgang, 1877.

An algorithm for the convex hull computation of
rational plane curves∗

Christina Katsamaki1, Fabrice Rouillier2, and Elias Tsigaridas3

1 INRIA Paris, Sorbonne Université and Paris Université, Paris, France
christina.katsamaki@inria.fr

2 INRIA Paris, Sorbonne Université, Paris Université and CNRS, Paris, France
fabrice.rouillier@inria.fr

3 INRIA Paris, Sorbonne Université and Paris Université, Paris, France
elias.tsigaridas@inria.fr

Abstract
We consider the problem of the convex hull computation of a plane parametric curve on a given
interval, over which the image of the parametrization is a compact subset of R2. We design an exact
and complete algorithm that computes a boundary description of the convex hull, as a sequence of
line segments connecting two points on the curve and parametric arcs, all of them described by the
parameters of their endpoints. When the parametrization involves polynomials of degree at most d
and maximum bitsize of coefficients τ , we employ randomized algorithms for polynomial system
solving and we achieve an expected complexity of ÕB(d9 + d8τ).

1 Introduction

Convex hull computation is one of the fundamental problems of computational geometry;
given a set of geometric objects in Rd, one is interested in the minimal convex set that
includes all of them. Convex objects facilitate taking geometric decisions, such as intersection.
For example, interference tests among two non-convex objects can examine the relative
position of their convex hulls at a preprocessing step; when the convex hulls do not intersect,
the objects do not intersect. Thus, there exist direct applications in motion planning [20, 19],
computer vision [11] or in geometric modelling systems [5, 9].

Convex hulls of linear objects are well-studied in literature [4]. We focus on non-linear
convex hulls, and in particular on the convex hull of plane curves; there exist several
algorithms (e.g. [12, 10, 14, 7, 1, 16, 8]) that perform even an optimal number of arithmetic
operations. However, precise bit-complexity estimates lack from literature and the required
predicates involve expensive algebraic operations.

We design an algorithm that computes a boundary description of the convex hull of
a parametric curve in R2. Let φ(t) =

(
φ1(t), φ2(t)

)
=
(p1(t)
q1(t) ,

p2(t)
q2(t)

)
, where pi, qi ∈ Z[t] for

i = 1, 2, be a rational parametrization of a real algebraic curve C. We consider I ⊆ R, for
whom φ(I) is a compact subset of R2. We denote by conv(φ(I)) the convex hull of φ(I), i.e.,
the set

conv(φ(I)) = {p ∈ R2 | p =
k∑

i=1
λiφ(ti) for ti ∈ I, λi ∈ R+ with

k∑

i=1
λi = 1, k ∈ Z}.

∗ This project has received funding from the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement No 754362.
The third author is supported by ANR JCJC GALOP (ANR-17-CE40-000).

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

28:2 An algorithm for the convex hull computation of rational plane curves

The boundary of the convex hull consists of a combination of smooth curved arcs and
segments joining two points on the curve.

We follow closely the algorithm presented in [14]; it was designed for plane curves given in
implicit form by an irreducible polynomial. We adapt it to the parametric case. We assume
that the parametrization φ is proper, i.e., it is injective for almost all points on C [17, Ch. 4].
If it is not proper, reparametrization algorithms do exist, e.g. [15] (see [13] for an analysis of
its complexity). We assume also that it is in reduced form, i.e., gcd(pi(t), qi(t)) = 1, i = 1, 2.

Before introducing the theorem that summarizes our contribution, we fix the following
notation: For a polynomial f ∈ Z[x], we call bitsize the logarithm (of base 2) of its infinity
norm, that is equal to the logarithm of the maximum absolute value of its coefficients. A
univariate polynomial is of size (d, τ) when its degree is at most d and has bitsize τ . The
bitsize of a rational function is the maximum of the bitsizes of the numerator and the
denominator. We denote by O, resp. OB , the arithmetic, resp. bit, complexity and we use
Õ, resp. ÕB , to ignore (poly-)logarithmic factors.

I Theorem 1.1. Let C be a curve with a proper parametrization φ(t) ∈ Z2(t), of size (d, τ),
that is also in reduced form. Let I ⊂ R such that φ(I) is compact in R2. There exists a
Las-Vegas algorithm to compute the convex hull of φ(I) in ÕB(d9 + d8τ) expected complexity.
The output of the algorithm is an ordered list L of parameter intervals and the corresponding
parametrizations; the image of the interval over the parametrization is a parametric arc or a
segment on the boundary of conv(φ(I)) in a CCW traversal:

L = {{I1, ψ1}, . . . , {IN , ψN}}, (1)

where Ii are bounded intervals of R (except from at most one Ii which may be of the form
(−∞, a] ∪ [b,+∞)) and ψi : R 99K C2 is either the parametrization φ or the parametrization
of the segment with endpoints the image of the boundary points of Ii, and N ∈ O(d).

The parameters that correspond to the endpoints of the segments and the curve branches on
the boundary of the convex hull are algebraic numbers. We represent an algebraic number
α ∈ R by the isolating interval representation. When α ∈ R, it includes a square-free
polynomial which vanishes at α and a (rational) interval containing α and no other root
of this polynomial. We also note that for φ(I) to be compact, I has to be either a union
of closed intervals not containing any poles of φ (i.e., roots of q1(t), or q2(t)) or a union
of such closed intervals and intervals of the form (−∞, a], [a′,+∞), for a ≤ a′, a, a′ ∈ R,
where limt→−∞ φ(t) = limt→+∞ φ(t) < ∞. Throughout our manuscript, we assume that
the boundary of I, which we denote by bd(I), consists of a constant number of points
{a1, . . . , ak}, where k ∈ N is a small constant and all the ai’s are rationals of bitsize O(1).

2 Algorithm description

We sketch the different steps of our algorithm, which are also summarized in Fig.2.

I Definition 2.1 (Types of line segments). We distinguish the following types of line segments
(I-IV) on the boundary of conv(φ(I)) according to the ‘character’ of their endpoints:
I. tangent segments: segments on the common tangent line of two or more points of φ(I).
II. cusp-cusp segments: segments whose endpoints are both cusps.
III. cusp-curve segments: segments connecting a cusp and a point on the curve (not cusp),

lying on the latter point’s tangent line.

C. Katsamaki, F. Rouillier and E. Tsigaridas 28:3

(a) (b) (c)

Figure 1 Segments of type (a) I, (b) II and (c) IV (in blue).

IV. endpoint segments: segments connecting a point corresponding to a parameter on bd(I)
and a point on the curve that is a cusp, or it lies on the latter point’s tangent line, or its
corresponding parameter is also in bd(I).

The first step is to compute the set S of all segments of the types of Def. 2.1 (see Fig.1).
However, not all of them are on the boundary of conv(φ(I)). At the second step, we refine S
so that it contains only the segments that are on the boundary of the convex hull. Let S̃ be
this set of segments. The last step consists of computing a description of the convex hull’s
boundary through a “carrier polygon approach”; the carrier polygon is a convex polygon
contained in conv(φ(I)), whose edges are in 1− 1 correspondence with the segments or the
curved arcs on the boundary of the convex hull. Finding this polygon essentially allows to
describe the boundary of the convex hull through a sequence of segments and curved arcs.

Figure 2 Summary of the algorithm.

Step 1: Computation. Each segment is determined by two parameter values, say a and b,
such that φ(a) and φ(b) are the segment’s endpoints respectively. We find the parameters
that correspond to each type of segments by solving a polynomial system.

For tangent segments (type I) we consider the dual curve C∗ of C, which is in rational
parametric form φ∗ ∈ Z2(t) with polynomials of size (d, d + τ) [18, Sect.1.2.1], directly
computable from the input parametrization. We compute the parameters that correspond to
multiple points on C∗ and then identify the ones that correspond to the same point on C∗.
For any two such parameters s 6= t such that φ∗(s) = φ∗(t), the tangent line to C at φ(s)
and φ(t) coincides. To find the multiple points of C∗, given its parametrization φ∗, we solve
a bivariate polynomial system (see [13] for details).

For segments of type II, we consider the polynomials hi(t) = φ′i(t)q2
i (t) for i = 1, 2. A

parameter that gives a cusp of C is a root of h2
1(t) + h2

2(t) = 0 [13, Lem. 4.1].
For segments of type III, by vector orthogonality, the parameters s that give points on

C whose tangents pass from φ(t) satisfy the equation 〈φ(t)− φ(s), (−φ′2(s), φ′1(s))〉 = 0. We
denote by H(s, t) the polynomial that occurs after clearing denominators in the previous

EuroCG’22

28:4 An algorithm for the convex hull computation of rational plane curves

equation. The system that we need to solve is {h2
1(t) + h2

2(t) = H(s, t) = 0}. For a ∈ bd(I)
let Ha(s) = H(s, a).

We find the segments of type IV by solving Ha(s) = 0, for every a ∈ bd(I), and by
considering all the pairs of parameters in bd(I). It holds that |S| ∈ O(d2).

Step 2: Refinement. Among the segments that we found in Step 1, we keep the ones that
contribute to the boundary of the convex hull. Let (s, t) a pair of parameters corresponding
to a segment in S. We consider the implicit equation of the line that passes through φ(s), φ(t),
say `s,t(x, y) = 0 with `s,t ∈ (Q(s, t))[x, y]. The segment with endpoints φ(s), φ(t) is on the
boundary of conv(φ(I)) if and only if `s,t(φ(λ)) ≥ 0, for all λ ∈ I (see Fig.3). Let S̃ ⊂ S the
elements of S that satisfy this condition. We describe the general procedure of refining S:
the pairs of parameters corresponding to segments of a certain type (Def.2.1) are solutions
of a polynomial system of the form {F1(s, t) = F2(s, t) = 0}. Let L(s, t, λ) denote `s,t(φ(λ))
when considered as a polynomial in Q[s, t, λ] (after clearing denominators). We find the
isolated roots of the system {F1(s, t) = F2(s, t) = L(s, t, λ) = 0}. Then, for every pair (s0, t0)
corresponding to a segment (and so F1(s0, t0) = F2(s0, t0) = 0), we can determine the sign of
L(s0, t0, λ) over I. L(s0, t0, λ) being sign-invariant in I geometrically means that φ(I) does
not cross the line `s0,t0(x, y) = 0 and therefore the segment with endpoints φ(s0), φ(t0) is on
the boundary of conv(φ(I)). We can prove that |S̃| ∈ O(d), since, eventhough there exist
O(d2) tangent segments, only O(d) are on the boundary of the convex hull [8].

φ()

Figure 3 A candidate segment φ(s)φ(t) is on the boundary of conv(φ(I)) if and only if
`s,t(φ1(λ), φ2(λ)) ≥ 0 for all λ ∈ I.

Step 3: Description. We describe the boundary of conv(φ(I)) by means of an ordered
sequence of arcs of the curve and segments joining two points on the curve. The convex
hull of the segments in S̃, which are on the boundary of the convex hull of φ(I), defines a
polygon Pc, which we call carrier polygon, and is contained in conv(φ(I)) (see Fig.4). Every
segment of S̃ is an edge on the boundary of Pc. Every edge of Pc that is not a segment in
S̃ corresponds to an arc of the curve. To describe of the boundary of conv(φ(I)), first, we
order the vertices of Pc in a clockwise or counter-clockwise order. Then, for the edges of Pc
that correspond to an arc of C, we find the associated parameter interval J for whom φ(J)
gives the arc. This is a delicate algebraic operation whose implementation is described in
detail in the proof of Lem. 3.2 which can be found in the appendix.

Figure 4 A curve and its carrier polygon (in blue)

C. Katsamaki, F. Rouillier and E. Tsigaridas 28:5

(a) (b) (c) (d)

Figure 5 The graph of the curve
(−t2+1

t2+1 ,
−8t(t2−1)(t4−6t2+1)

t8+4t6+6t4+4t2+1

)
and the three steps of the algorithm.

3 Complexity Analysis: Sketch of the proof of Theorem 1.1

The first two steps of the algorithm dominate the complexity. As we demonstrated in
the previous section, these two steps amount to solving polynomial systems of the form
{F1(s, t) = F2(s, t) = L(s, t, λ) = 0}. The systems are not always zero-dimensional, which
means that they may have infinitely many solutions. Nevertheless, the solutions (s, t) of
{F1(s, t) = F2(s, t) = 0} that corresspond to a segment on the curve, extend to isolated
solutions of the system. For each type of segments, the specialization of the system {F1(s, t) =
F2(s, t) = L(s, t, λ) = 0} has a"special structure" that enables to extract the isolated roots
easily. We will employ the Las-Vegas algorithm of [3] for isolating the roots of the occuring
zero-dimensional systems in ÕB(d9 + d8τ) expected complexity.

We exploit the fact that when one of the endpoints corresponds to a smooth point on the
curve, the equation of the line containing the segment, coincides with the tangent line to
this point. Then, the polynomial that expresses the intersection of the line with the curve
depends only on two parameters s and λ. Therefore, the system corresponding to segments
of type I, is of the form {F1(s, t) = F2(s, t) = L(s, λ) = 0}. To find its isolated solutions,
we compute R(s) := rest(F1(s, t), F2(s, t)) and consider the system {R(s) = L(s, λ) = 0}.
The triangular structure of this system makes it then easy to extract its isolated solutions
through gcd computations: Let L(s, λ) = lD(s)λD + · · ·+ l1(s)λ+ l0(s), where D = O(d).
We compute the gcd of lD(s), . . . , l0(s), say g(s), in ÕB(d3 + d2τ) in worst case [13, Lem. 2].
Then we compute the gcd of R(s) and g(s) in ÕB(d5 + d4τ) [2, Lem. 4]. The gcd free part of
R, say R̃, has bitsize Õ(d2 + dτ) and is computed in the same complexity [2, Lem. 4]. The
system {R̃(s) = L(s, λ) = 0} is zero-dimensional and its solutions are the isolated solutions of
{R(s) = L(s, λ) = 0}. Isolating intervals for the roots of this system and the corresponding
multiplicities are computed in ÕB(d6 + d5τ) [6, Thm. 2].

For segments of type II we have the system {h2
1(s)+h2

2(s) = h2
1(t)+h2

2(t) = L(s, t, λ) = 0}.
To keep only the zero-dimensional part of the solutions, we work as follows: Let L(s, t, λ) =
lD(s, t)λD+· · ·+l1(s, t)λ+l0(s, t), where D = O(d). Then, let Ri(s) := rest(li(s, t), h2

1(t, t)+
h2

2(t, t)), i = 1, . . . , D. Since the polynomial L(s, t, λ) is symmetric with respect to s and t,
the polynomials li(s, t) are also symmetric and thus, ress(li(s, t), h2

1(s, s) + h2
2(s, s)) = Ri(t).

We compute the gcd of R0(s), . . . , RD(s) in ÕB(d7 + d6τ) [13, Lem. 2] and then the gcd
of the latter with h2

1(s, s) + h2
2(s, s) in ÕB(d3τ) [2, Lem. 4]. Let h̃(s) the gcd-free part of

h2
1(s, s) + h2

2(s, s). Then, the system {h̃(s) = h̃(t) = L(s, t, λ) = 0} is zero-dimensional and
gives the isolated solutions of the initial system. We isolate its roots using [3] in ÕB(d9 +d8τ).

Segments of type III can be treated similarly as segments of type I. For segments of type
IV, there is no computational difficulty. We arrive to the following:

EuroCG’22

28:6 An algorithm for the convex hull computation of rational plane curves

(a) (b)

Figure 6 Output of our implementation for the parametric curves
(a)
(−7t4+22t3−55t2−94t+87

−56t4−62t2+97t−73 , −4t4−83t3−10t2+62t−82
−56t4−62t2+97t−73

)
and (b)

(−3t2+1
(t2+1)2 ,

−3t2+1)t

(t2+1)2

)
.

I Lemma 3.1 (Bit-complexity of steps 1-2). We compute the set S̃ of the pairs of parameters
that give the segments on the boundary of the convex hull in ÕB(d9 +d8τ) expected complexity.

The computational requirement of the third step of the algorithm, is sorting of the
coordinates of the endpoints of the segments on the boundary of the convex hull and of the
parameters that give these points. We give more details in the Appendix.

I Lemma 3.2 (Bit-complexity of Step 3). Given the set of segments S̃ on the boundary of
the convex hull, Step 3 computes a description of it in ÕB(d6τ).

4 Conclusion: Future work and Implementation

In the full version of this manuscript (which will be available online soon), we give details
on our implementation of the algorithm (Fig.6) and we also compute the diameter of the
convex hull and approximate its area with no additional cost. We are currently working
on improving the complexity of solving a zero-dimensional polynomial system of the form
{F1(s) = F2(t) = L(s, t, λ)}, which is dominant, using amortized complexity bounds.

References
1 Chandrajit Bajaj and Myung-Soo Kim. Convex hulls of objects bounded by algebraic

curves. Algorithmica, 6:533–553, 06 1991. doi:10.1007/BF01759058.
2 Yacine Bouzidi, Sylvain Lazard, Guillaume Moroz, Marc Pouget, Fabrice Rouillier, and

Michael Sagraloff. Improved algorithms for solving bivariate systems via Rational Univari-
ate Representations. page 51.

3 Cornelius Brand and Michael Sagraloff. On the Complexity of Solving Zero-Dimensional
Polynomial Systems via Projection. In Proceedings of the ACM on International Sym-
posium on Symbolic and Algebraic Computation - ISSAC ’16, pages 151–158, Waterloo,
ON, Canada, 2016. ACM Press. URL: http://dl.acm.org/citation.cfm?doid=2930889.
2930934, doi:10.1145/2930889.2930934.

4 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Com-
putational geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL:
https://www.worldcat.org/oclc/227584184.

C. Katsamaki, F. Rouillier and E. Tsigaridas 28:7

5 Jiansong Deng. Algebraic geometry and geometric modeling. 2013.
6 Daouda Niang Diatta, Sény Diatta, Fabrice Rouillier, Marie-Françoise Roy, and Michael

Sagraloff. Bounds for polynomials on algebraic numbers and application to curve topology.
working paper or preprint, October 2018. URL: https://hal.inria.fr/hal-01891417.

7 David P. Dobkin and Diane L. Souvaine. Computational geometry in a curved world.
Algorithmica, 5:421–457, 1990.

8 Gershon Elber, Myung-Soo Kim, and Hee-Seok Heo. The convex hull of rational plane
curves. Graphical Models, 63:151–162, 05 2001. doi:10.1006/gmod.2001.0546.

9 Laureano González-Vega, Ioana Necula, Sonia Pérez-Díaz, Juana Sendra, and Juan Sendra.
Algebraic methods in computer aided geometric design: Theoretical and practical applica-
tions. Geometric Computation, 11, 03 2004. doi:10.1142/9789812794833_0001.

10 Douglas Ierardi. Convexhull of curved objects via duality – a general framework and an
optimal 2-d algorithm. 02 1970.

11 Rui J. Defigueiredo and Hemant D. Tagare. Curves and surfaces in computer vision. 08
1990. doi:10.1117/12.19726.

12 J. K. Johnstone. Giftwrapping a curve with the convex hull. In Proceedings of the 42nd
Annual Southeast Regional Conference, ACM-SE 42, page 224–227, New York, NY, USA,
2004. Association for Computing Machinery. doi:10.1145/986537.986590.

13 Christina Katsamaki, Fabrice Rouillier, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos.
On the geometry and the topology of parametric curves. In Proceedings of the 45th In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC ’20, page 281–288,
New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3373207.
3404062.

14 David Kriegman, Erliang Yeh, and J Ponce. Convex hulls of algebraic curves. pages 118–
127, 11 1992. doi:10.1117/12.131738.

15 Sonia Pérez-Díaz. On the problem of proper reparametrization for rational curves and
surfaces. CAGD, 23(4):307–323, 2006.

16 Alejandro Schaffer and Christopher J Van Wyk. Convex hulls of piecewise-smooth jordan
curves. Journal of Algorithms, 8:66–94, 03 1987. doi:10.1016/0196-6774(87)90028-9.

17 J Rafael Sendra, Franz Winkler, and Sonia Pérez-Díaz. Rational algebraic curves. Algo-
rithms and Computation in Mathematics, 22, 2008.

18 E. A. Tevelev. Projective duality and homogeneous spaces. Number v. 133. 4 in Ency-
clopaedia of mathematical sciences, Invariant theory and algebraic transformation groups.
Springer, Berlin ; New York, 2005. OCLC: ocm57170635.

19 Y Yang, Y.-C Liu, M.-Y Liu, and M.-Y Fu. A path planning algorithm based on convex
hull for autonomous service robot. 31:54–58+63, 01 2011.

20 F Zhou, Baoye Song, and Guohui Tian. Bézier curve based smooth path planning for
mobile robot. Journal of Information and Computational Science, 8:2441–2450, 12 2011.

EuroCG’22

Properties for Voronoi Diagrams of Arbitrary Order
on the Sphere

Mercè Claverol1, Andrea de las Heras Parrilla1, and Clemens
Huemer1

1 Department of Mathematics, Universitat Politècnica de Catalunya
merce.claverol@upc.edu andrea.de.las.heras@estudiantat.upc.edu
clemens.huemer@upc.edu

Abstract

For a given set of points U on a sphere S, the order k spherical Voronoi diagram SVk(U) decomposes
the surface of S into regions whose points have the same k nearest points of U . We study properties
for SVk(U), using different tools: the geometry of the sphere, a labeling for the edges of SVk(U),
and the inversion transformation. Hyeon-Suk Na, Chung-Nim Lee, and Otfried Cheong (Comput.
Geom., 2002) applied inversions to construct SV1(U). We generalize their construction for spherical
Voronoi diagrams from order 1 to any order k. We use that construction to prove formulas for the
numbers of vertices, edges, and faces in SVk(U). Among the properties of SVk(U), we also show
that SVk(U) has a small orientable cycle double cover.

1 Introduction

Let U be a set of n points on a sphere S ⊂ R3 such that no three of them lie in the same
great circumference and no four of them are cocircular, i.e. U is in general position, and let
1 ≤ k ≤ n − 1 be an integer. The order k spherical Voronoi diagram SVk(U) decomposes
the surface of S into regions whose points have the same k nearest points of U . Then, each
of these regions is a face f(Pk) of SVk(U) associated with a subset Pk ⊂ U of size k: Each
point in the interior of f(Pk) has Pk as its k nearest neighbors from U .

Many researchers studied the nearest (k = 1) and the farthest (k = n − 1) spherical
Voronoi diagrams [2, 11, 10]. For these two diagrams it was seen that practically all algorithms
in the plane can be adapted to the sphere. Spherical Voronoi diagrams of order different from
k = 1 and k = n − 1 have barely been studied. In this work we deepen in these diagrams and
the properties and algorithms that we present are for Voronoi diagrams of arbitrary order k

on the sphere. This abstract summarizes our main results on SVk(U); we refer the reader to
the thesis of the second author [5] for more details and more properties. One of the most
important tools that we use in our proofs is an edge labeling. This labeling is an extension
to the sphere of the already defined edge labeling for Voronoi diagrams in the plane [4]. An
edge that delimits a face of SVk(U) is a spherical segment of the perpendicular bisector (on
the sphere) of two points i and j of U . This observation induces a natural labeling of the
edges of SVk(U) with the following rule:

• Edge rule: An edge of SVk(U) which belongs to the perpendicular bisector of points
i, j ∈ U has labels i and j, where we put the label i on the side (half-sphere) of the edge
that contains point i and we put label j on the other side. See Figure 1.
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

29:2 Voronoi Diagrams on the sphere

Also, from this rule, we deduce two more rules of the labeling of SVk(U): one rule for
the vertices and one rule for the faces. Vertices can be of type I, if they are centers of circles
on the sphere passing through three points of U and enclosing k − 1 points of U , or type II,
if they are centers of circles on the sphere passing through three points of U and enclosing
k − 2 points of U . In the literature, vertices of type I (type II) are also called new (old) [7].

• Vertex rule: Let v be a vertex of SVk(U) and let {i, j, ℓ} ⊂ U be the set of labels of
the edges incident to v. The cyclic order of the labels of the edges around v is i, i, j, j, ℓ, ℓ if
v is of type I, and it is i, j, ℓ, i, j, ℓ if v is of type II.

• Face rule: In each face of SVk(U), the edges that have the same label i are consecutive,
and these labels i are either all in the interior of the face, or are all in the exterior of the face.

7

7

7

7

7 7
7

1

1 1

1

1

1

1

11

1

1

9 9

9

9

999

4

4

4

4

4 0

0

0

0
0

05

5

5

5

5

9

5

1

0

7

4

Figure 1 The edge labeling of SV2(U) for a set U of ten points {0, 1, . . . , 9} in general position
(the visible ones are drawn in green color). Vertices of type I are drawn in blue, and vertices of type
II in red.

Note that when walking along the boundary of a face, in its interior (exterior), a change
in the labels of its edges appears whenever we reach a vertex of type II (type I), see Figure 1.

From this edge labeling, we observe that edges with same label i always form a cycle in
SVk(i); see Figure 2. These edges with the same label i enclose a region Rk(i) that consists
of all the points of the sphere that have point i ∈ U as one of their k nearest neighbors from
U . We observe that R1(i) is contained in the kernel of this star-shaped set Rk(i), and we
identify the reflex (convex) vertices on the boundary Bk(i) of Rk(i) as vertices of type II
(type I). See [4, 5] for details.

A cycle double cover [6] of a graph G is a collection of cycles C such that every edge of G

belongs to precisely two cycles of C. A double cover C is orientable if an orientation can be
assigned to each element of C such that for every edge e of G, the two cycles that cover e are
oriented in opposite directions.

Much research was done on finding small cycle double covers for several classes of graphs,
see for instance [1, 12]. We show that every higher-order Voronoi diagram on the sphere
admits an orientable double cover of its edges, using, precisely, the n cycles Bk(i) in for
i = 1, . . . , n. We refer to [4] for related results on double covers of the edges of higher order
Voronoi diagrams in the plane.

As one of our main results, we generalize to any order the construction of spherical

M. Claverol, A. de las Heras, and C. Huemer 29:3

7 7

1

1 1

1

1

1

1

11

1

1

9

9

4

4
0

0

5

5

R2(1)

17

01
14

19

49

47

07

05

59

15

6

Figure 2 SV2(U) for the point set U of Figure 1; in each face, its two nearest neighbors are
indicated. In yellow, the region R2(1) formed by all the faces of SV2(U) that have point 1 as one of
their two nearest neighbors. The boundary B2(1) of R2(1) is formed by all the edges which have the
label 1 and this label is always inside R2(1). The boundary vertices of R2(1) with an incident edge
lying in the interior of R2(1) are of type II in SV2(U) and the remaining boundary vertices are of
type I in SV2(U).

Voronoi diagrams defined by Hyeon-Suk Na, Chung-Nim Lee and Otfried Cheong [11], using
precisely the regions Rk(i) and the inversion transformation. Inversions for Voronoi diagrams
were already applied in the classical work of Brown [2, 3]. In [11], SV1(U) is computed from
two planar Voronoi diagrams after applying inversions to map U to the plane; two different
inversion centers are used. In [11] it is also shown that SV1(U) is homeomorphic to the union
of a nearest and a farthest Voronoi diagram, when glued together. We generalize this to
SVk(U) being homeomorphic to the union of a planar Voronoi diagram of order k, and one
planar Voronoi diagram of order n − k. Furthermore, these diagrams are linked via Rk(i) in
SVk(U ∪ {i}), with i the center of inversion, where the unbounded edges in the two planar
Voronoi diagrams correspond to edges of SVk(U) intersected by Bk(i). We further derive
formulas for the numbers of vertices, edges and faces of SVk(U). The proof is based on the
construction of SVk(U). Surprisingly, the obtained formulas seem to be new. We also obtain
formulas for the number of vertices of type I and for the number of vertices of type II in
SVk(U). The proof of Theorem 3.2 is omitted in this abstract, but also see [5].

2 Properties of SVk(U)

▶ Property 2.1. Let u∗ be the antipodal point of a point u on a sphere S. Then SVk(U) =
SVn−k(U∗), where U∗ = {u∗|u ∈ U}.

The proof of this property is essentially the same as the one for the case k = 1 given in [2, 11].

Proof. The spherical distance for points x, y ∈ S is d(x, y) = πr − d(x, y∗) where r is the
radius of the sphere. It follows that the k nearest neighbors of a point x must be the k farthest
neighbors of x∗. Therefore, x ∈ f(Pk) if and only x ∈ f(U∗ \ P ∗

k) where P ∗
k = {p∗|p ∈ Pk},

and the property follows. ◀

EuroCG’22

29:4 Voronoi Diagrams on the sphere

▶ Property 2.2. Let v be a vertex of type I of SVk(U). Then v∗ is a vertex of type II of
SVn−k(U). Similarly, if v is a vertex of type II of SVk(U) then v∗ is a vertex of type I of
SVn−k(U). See Figure 3.

Proof. If v is a vertex of type I of SVk(U), then it is the center of a disk D that passes
through three points of U and contains (k − 1) points of U . From this, by the geometry of
the sphere S, the remaining (n − k − 2) points are contained in the complementary disk S \ D

whose center is v∗. Therefore, v∗ must be a vertex of type II of SVn−k(U). The symmetric
argument works for v of type II. ◀

a a∗

b b∗
c c∗

d d∗

e e∗

f f∗
g g∗

h h∗

i i∗

j j∗

k k∗

l l∗

m m∗

n n∗
o∗o

p
p∗

q q∗

Figure 3 Two complementary Voronoi diagrams on an sphere SVk(U) and SVn−k(U), showing
the homothetic relation between them and their corresponding antipodal points types. Type I
vertices are blue and type II vertices are red.

▶ Property 2.3. Let f(Pk) be a face of SVk(U) and let f(U \ Pk) be its corresponding
antipodal face in SVn−k(U). f(Pk) and f(U \ Pk) use the same labels but in opposite sides,
i.e., if i is an interior label of an edge of f(Pk) then it is an exterior label for the corresponding
antipodal edge in SVn−k(U). See Figure 4.

Proof. It follows from Property 2.1 that f(Pk) and f(U \ Pk) are antipodal polygons. Then
we just need to observe that antipodal polygons are defined by the complementary half-
spheres defined by the same bisector, i.e, their edges are from the same bisectors but the
antipodal polygons lie in opposite sides of those bisectors, see Figure 4. Therefore, by the
edge rule, the statement is clear. ◀

▶ Theorem 2.4. SVk(U) has an orientable double cover consisting of |U | = n cycles.

Proof. It is not difficult to see that for every 1 ≤ i ≤ n, all the edges that have the label i

in SVk(U) form one cycle (also see Property 6.1 in [5]). Since each label i, corresponding
to a point i ∈ U , is inside the corresponding region Rk(i), we can orient all the edges of a
cycle with label i clockwise around point i; note that point i is also contained in Rk(i). This
shows that the cycle cover is orientable. Finally, as there is one cycle for each point of U , it
follows that SVk(U) has an orientable double cover of n cycles. ◀

M. Claverol, A. de las Heras, and C. Huemer 29:5

a

a

b

b
c

c

d

d

e
f

f
e

g

g

h

h

i

i

j

j

Figure 4 Two antipodal polygons, one has labels b, d, f, h, j in its interior, the other one has
these labels in its exterior.

3 Relations between Planar and Spherical Voronoi Diagrams

In this section we generalize to Voronoi diagrams of arbitrary order k the construction given
in [11] for the nearest and farthest Voronoi diagrams. We then prove some more properties
using this construction.

First, we need to define the inversion transformation, as it is the basis of the relation
between Voronoi diagrams on the sphere and on the plane.

▶ Definition 3.1. The inversion transformation is determined by two parameters: The center
of inversion O and the radius of inversion R. Two points P and P ′ in R3 are said to be
inverses of each other if:

1. The points P and P ′ lie in the same half-line with origin in O.
2. The Euclidean distances |OP | and |OP ′| in R3 satisfy R2 = |OP ||OP ′|.

Now, we can proceed in a similar way to [3] to prove the construction for Voronoi diagrams
on the sphere of arbitrary order, SVk(U). From now on, we denote by S′ the plane inverse
of the sphere S, by U ′ the set of points on the plane S′ that are inverses of the points of
U ⊂ S, and by Vk(U ′) the Voronoi diagram of order k in the plane for the set of points U ′.

▶ Theorem 3.2. Let i /∈ U be a point on the sphere S such that U ∪ {i} is in general position.
Let U ′ be the set of inverse points of U for a chosen inversion radius r and i the center
of inversion. Then SVk(U) is homeomorphic to the union of Vk(U ′) and Vn−k(U ′), joined
by the unbounded edges common to Vk(U ′) and Vn−k(U ′) (unbounded edges from the same
bisector are glued together). Moreover, Rk(i) in SVk(U ∪ {i}) partitions SVk(U) into two
subgraphs that are homeomorphic to Vk(U ′) and Vn−k(U ′). The vertices of type I (type II)
in Vk(U ′) correspond to the vertices of type I (type II) in SVk(U) and the vertices of type I
(type II) in Vn−k(U ′) correspond to the vertices of type II (type I) in SVk(U). See Figures 5
and 6.

EuroCG’22

29:6 Voronoi Diagrams on the sphere

V2(U
′)SV2(U) \R2(i)

(a) (b)

Figure 5 For a set U of ten points on the sphere (the visible ones are drawn in green color): The
picture shows the homeomorphism between: (a) The induced graph by SV2(U) at the exterior of
R2(i) in SV2(U ∪ {i}). (b) The planar Voronoi diagram of order 2 for the points of U ′ (black color).

B2(i)
V8(U

′)
SV2(U) ∩R2(i)

(a) (b)

Figure 6 For a set U of ten points on the sphere (the visible ones are drawn in green color): The
picture shows the homeomorphism between: (a) The induced graph by SV2(U) at the interior of
R2(i) in SV2(U ∪ {i}). (b) The planar Voronoi diagram of order 8 for the points of U ′ (black color).

Theorem 3.2 tells us how to construct SVk(U): we just have to invert the points of
U , compute planar Voronoi diagrams Vk(U ′) and Vn−k(U ′), and map them to the sphere
as follows: each vertex a′b′c′ of either Vk(U ′) or Vn−k(U ′) corresponds to a vertex abc of
SVk(U) (abc is center of the circle that passes through a, b and c on the sphere); vertices
in SVk(U) are adjacent whenever the corresponing vertices in Vk(U ′) or in Vn−k(U ′) are
adjacent. Finally, the vertices of SVk(U) corresponding to vertices incident to an unbounded

M. Claverol, A. de las Heras, and C. Huemer 29:7

edge from the same bisector in Vk(U ′) and Vn−k(U ′) get connected.

Let us shortly also comment on the computational complexity of constructing higher order
Voronoi diagrams on the sphere. The inversion is a linear time transformation and, once
we have the planar Voronoi diagrams, mapping them to the sphere also only requires linear
time. Therefore, the computational time for constructing the spherical Voronoi diagrams
is bounded by the computational time for the planar ones. See [8] for a discussion on the
several algorithms for higher order Voronoi diagrams.

Now, from these constructions, it is easy to see that properties proved for the plane [4]
must be true for the sphere. We can prove easily some properties on the sphere using results
from the plane, but also we can prove properties in the plane using the sphere. Next, we
show that the number of vertices of type I (type II) in SVk(U) only depends on the number
n of points of U , but not on their positions on the sphere.

▶ Theorem 3.3. For a set U of n points on the sphere, the number of vertices of type I in
SVk(U) is 2k(n − k − 1) and the number of vertices of type II is 2(k − 1)(n − k).

Proof. By Theorem 3.2, we can define an inversion transformation such that there is a
one-to-one correspondence between the vertices of SVk(U) and the vertices of Vk(U ′) and
Vn−k(U ′). Vertices of type I of SVk(U ′) and vertices of type II of Vn−k(U ′) correspond to
the vertices of type I in SVk(U). Then, the number of vertices of type I in SVk(U) is the
sum of type I vertices of Vk(U ′) and type II vertices of Vn−k(U ′) which correspond to the
circles enclosing k − 1 points of U ′ and circles enclosing n − k − 2 points of U ′, respectively.
We denote the number of such circles with ck−1 and cn−k−2. By Theorem 5.3 of [9], we have

ck−1 + cn−k−2 = 2(k − 1 + 1)(n − 2 − k + 1) = 2k(n − k − 1). (1)

Then, the number of vertices of type I in SVk(U) is 2k(n − k − 1). Similarly, we can
compute the number of vertices of type II as the sum of vertices of type II in Vk(U ′) and
type I in Vn−k(U ′), i.e., the number of the circles enclosing k − 2 points of U ′, ck−2, and
enclosing n − k − 1 points of U ′, cn−k−1. Again, using Theorem 5.3 of [9], we have

ck−2 + cn−k−1 = 2(k − 2 + 1)(n − 2 − k + 2) = 2(k − 1)(n − k). (2)

Then, the number of vertices of type II in SVk(U) is 2(k − 1)(n − k). ◀

▶ Theorem 3.4. For a set U of n points on the sphere, the order k Voronoi diagram SVk(U)
has 4kn − 4k2 − 2n vertices, 6kn − 6k2 − 3n edges and 2kn − 2k2 − n + 2 faces.

Proof. Vertices of spherical Voronoi diagrams are either of type I or type II, so the total
number of vertices is the sum of vertices of the two types. Then, by Theorem 3.3, the number
of vertices |V | is

|V | = 2k(n − k − 1) + 2(k − 1)(n − k) = 4kn − 4k2 − 2n. (3)

Now, as each vertex has degree three in SVk(U), we can count the total number of edges.
Since each edge is incident to two vertices, by double counting, the number of edges |E| is

|E| = 3
2

(
−4k2 + 4kn − 2n

)
= 6kn − 6k2 − 3n. (4)

EuroCG’22

29:8 Voronoi Diagrams on the sphere

Finally, as SVk(U) is a planar graph, we can apply Euler’s Formula to count the number of
faces |F |, and we have

|F | = 2 − (−4k2 + 4kn − 2n) + (−6k2 + 6kn − 3n) = 2kn − 2k2 − n + 2. (5)

◀

Acknowledgments. Research of C. Huemer and of M. Claverol was supported by project
PID2019-104129GB-I00/ MCIN/ AEI/ 10.13039/501100011033.

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 734922.

References
1 J. A. Bondy. Cycles and Rays. Nato Science Series C, 1990. ISBN 978-9401067195.
2 K. Q. Brown. Geometric Transforms To Fast Geometric Algorithms. Ph.D. Dissertation,

Carnegie-Mellon Univ., 1979. ISBN 9798607356866.
3 K. Q. Brown. Voronoi diagrams from convex hulls. Inform. Process. Lett., 9:223–228, 1979.

doi:10.1016/0020-0190(79)90074-7.
4 M. Claverol, A. de las Heras, C. Huemer, and A. Martínez-Moraian. The edge labeling of

higher order Voronoi diagrams. Proc. of Spanish meeting on Computational Geometry 2021,
pages 23–26. https://arxiv.org/abs/2109.13002.

5 A. de las Heras Parrilla. Properties for Voronoi diagrams of arbitrary order in the sphere.
Master Thesis. Universitat Politècnica de Catalunya, 2021. https://upcommons.upc.edu/
handle/2117/354664.

6 F. Jaeger. A survey on the cycle double cover conjecture. North-Holland, 1985. doi:
10.1016/S0304-0208(08)72993-1.

7 D. T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput.,
pages 478–487, 1982. doi:10.1109/TC.1982.1676031.

8 D.T. Lee, C.H. Liu, and E. Papadopoulou. The k-nearest-neighbor Voronoi diagram revisited.
Algorithmica, 71:429–449, 2015. doi:10.1007/s00453-013-9809-9.

9 R. C. Lindenbergh. A Voronoi poset. J. Geom. Graph., 7:41–52, 2003. ISSN 1433-8157.
10 R. E. Miles. Random points, sets and tessellations on the surface of a sphere. The Indian

Journal of Statistics Series A, 33(2):145–174, 1971. ISSN 0581572x.
11 H. Na, C.-N. Lee, and O. Cheong. Voronoi diagrams on the sphere. Computational Geometry,

23:183–194, 2002. doi:10.1016/S0925-7721(02)00077-9.
12 K. Seyffarth. Small cycle double covers of 4-connected planar graphs. Combinatorica,

13:477–482, 1993. doi:10.1016/0012-365X(92)90610-R.

The Mixed Page Number of Graphs
Jawaherul Md. Alam1, Michael A. Bekos2, Martin Gronemann3,
Michael Kaufmann4, and Sergey Pupyrev5

1 Amazon Inc., Tempe, AZ, USA
jawaherul@gmail.com

2 University of Ioannina, Ioannina, Greece
bekos@uoi.gr

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
mgronemann@ac.tuwien.ac.at

4 Institut für Informatik, Universität Tübingen, Tübingen, Germany
mk@informatik.uni-tuebingen.de

5 Facebook, Inc., Menlo Park, CA, USA
spupyrev@gmail.com

Abstract
A linear layout of a graph typically consists of a total vertex-order, and a partition of the edges
into sets of either non-crossing edges, called stacks, or non-nested edges, called queues. The stack
(queue) number of a graph is the minimum number of required stacks (queues). Mixed linear layouts
combine both by allowing each set of edges to form either a stack or a queue. Here we initiate the
study of the mixed page number of a graph which corresponds to the minimum number of such sets.

Related Version arXiv:2107.04993

1 Introduction

In this work, we focus on linear layouts of graphs in which the edges must be partitioned
into a minimum number of sets, called pages, such that each page has a certain property in
the underlying linear order of the vertices. The most prominent of such representatives are
the stack layouts (also known as book embeddings) and the queue layouts. The former do
not allow two edges in the same page (called stack) to cross [4], while in the latter no two
edges of the same page (called queue) are allowed to nest [12]; see Fig. 1. The stack (queue)
number of a graph is the minimum number of stacks (queues) over all its stack (queue)
layouts. Both graph parameters have been extensively studied; see [7, 11, 12, 17, 18].

(a) (b) (c)

Figure 1 Different layouts of K6: (a) 1-stack 1-queue, (b) 3-stack, and (c) 3-queue.

A natural generalization of stack and queue layouts was introduced back in 1992 by
Heath and Rosenberg [13], who proposed the study of s-stack q-queue layouts that consist
of s stacks and q queues; see also [2, 5, 9, 10, 15]. In this context, one expects a reduction
on the total number of pages (stacks or queues) required in a mixed layout with respect
to the corresponding ones required in pure stack or queue layouts, which, however, has not
been confirmed so far. In this work, we substantiate this expectation. To achieve this, we
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

30:2 The Mixed Page Number of Graphs

u1 u2 u3 v3 v2 v1

(a)
u1 v1 u2 v2 u3 v3

(b)

u1 u2 u3 v1 v2 v3

(c)

Figure 2 Illustration of: (a) a 3-rainbow, (b) a 3-necklace, and (c) a 3-twist.

introduce and study a new graph parameter, called mixed page number, which equals to the
minimum value of s+ q for which a graph admits an s-stack q-queue layout.

2 Preliminaries

A vertex order ≺ of a graph is a total order of its vertices; we write u ≺ v to denote that
vertex u precedes vertex v. A k-twist (k-rainbow) is a set of k independent edges that
pairwise cross (nest) in ≺, while a k-necklace is a set of k independent edges that pairwise
form neither a 2-twist nor a 2-rainbow; see Fig. 2. A stack (queue) is a set of pairwise non-
crossings (non-nested) edges in ≺. A mixed s-stack q-queue layout of a graph consists of a
vertex order ≺, called linear order, and a partition of its edges into s stacks and q queues.
Hence, an s-stack (q-queue) layout is a mixed s-stack 0-queue (0-stack q-queue) layout.

3 Basic Properties

We start with an upper bound on the mixed page number of a graph similar to the ones
in [14] and [8], which notably holds for every fixed linear order of its vertices.

I Theorem 3.1. The mixed page number of a graph G with m edges is at most b
√

2mc for
every fixed linear order of the vertices.

Proof. Consider the maximum rainbow r in a vertex order ≺ of G. If its size is at most
√

2m,
then all edges of G can be assigned to at most b

√
2mc queues [13]. Otherwise, we assign the

edges of r to a stack, and proceed recursively with G \ r. The total number T (m) of stacks
and queues is given by: T (m) ≤ T (m−d

√
2me) +1, if m > 1, and T (m) ≤ 1, otherwise. J

I Theorem 3.2. It is NP-hard to find the mixed page number of a graph with a given order.

Proof. Given a permutation π = 〈π1, . . . , πn〉, we construct a graph G on 2n vertices, whose
vertex order ≺ is 1, . . . , n, π1, . . . , πn, and whose edges are (1, π1), . . . , (n, πn). Finding a
mixed layout with k pages for G in ≺ is equivalent to deciding if π is k-coverable (i.e., it
can be partitioned in k monotone subsequences), which is NP-complete [16]. J

I Theorem 3.3. An n-vertex graph with mixed page number k has ≤ f(n, k) edges, where:

f(n, k) =
{

2kn− 2k2 + k − 2 if k ≤ n
4 + 2

n2

8 + (k + 1)n− 3k − 2 otherwise

Proof. Let L be a mixed layout of an n-vertex graph G with s stacks and q queues, such that
s+ q = k. W.l.o.g., we assume that the number of edges on each page in L is maximum. In
this regard, the first stack of L has 2n−3 edges, while each subsequent one has n−3 edges [4].
Similarly, for 1 ≤ i ≤ q, the i-th queue of L has at most 2n − 4i + 1 edges [8, Lemma 8].
Thus, the first stack is part of L. Since the sparsest queue contains 2n− 4(k− 1) + 1 edges,

J. Md. Alam, M. A. Bekos, M. Gronemann, M. Kaufmann, S. Pupyrev 30:3

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(a)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(b)
v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(c)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(d)
v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(e)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(f)

Figure 3 Illustration for the lower bound of 2nk− 2k2 + k− 2 of Note 1 with n = 25 and k = 6
which yields a 1-stack 5-queue layout with 232 edges in total.

while each of the remaining stacks contains n− 3 edges, it follows that, if k ≤ n
4 + 2, then L

is a 1-stack (k− 1)-queue layout. Otherwise, L contains k− n
4 − 1 stacks and n

4 + 1 queues.
First assume k ≤ n

4 + 2. Let v0, . . . , vn−1 be the vertices of G as ordered in L. We
assume w.l.o.g. that G contains edges {(vi, vi+1), 0 ≤ i ≤ n − 2} assigned to the first
stack in L. For 0 ≤ i < j ≤ n − 1, let the midpoint be 1

2 (i + j). Two edges with the
same midpoint cannot belong to the same queue, as they form a 2-rainbow [8]. For 1 ≤
i ≤ k − 1, at most i − 1 edges have a midpoint of i − 1, and at most i − 1 edges have
a midpoint of i − 1

2 . Also, for 1 ≤ i ≤ k − 1, at most i − 1 edges have a midpoint of
n − i, and at most i − 1 edges have a midpoint of n − i − 1

2 . Since n ≥ 2k, we avoid
double-counting. Hence, the number of edges of G, including those in the stack, is at most:
2n− 3 + 4

∑k−1
i=1 (i− 1) + (2n− 1− 4(k − 1))(k − 1) = 2kn− 2k2 + k − 2.

Assume now k > n
4 + 2, i.e., L contains k − n

4 − 1 stacks and n
4 + 1 queues. By our

discussion above, L contains at most 3n2

8 + 9n
4 − 8 edges in total in its first stack and in its

n
4 + 1 queues. L contains at most kn − 3k − n2

4 − 5n
4 + 6 edges in its remaining k − n

4 − 2
stacks, as each of them has at most n−3 edges. Hence, the number of edges in G is at most
n2

8 + (k + 1)n− 3k − 2. J

I Note 1. For every n and k with n ≥ 4k + 1, there is an n-vertex graph with mixed page
number k and 2kn− 2k2 + k − 2 edges.

Sketch of proof. For an illustration see Fig. 3; for details refer to [1]. J

EuroCG’22

30:4 The Mixed Page Number of Graphs

4 Complete Graphs

In this section, we give bounds on the mixed page number of the complete graph Kn. Note
that the stack and the queue number of Kn is dn

2 e and bn
2 c, respectively, see [4, 13].

I Theorem 4.1. The mixed page number of Kn is at least
⌈

3(n−4)
8

⌉
and at most 2

⌈
n
5
⌉
.

Proof. The lower bound follows from Theorem 3.3. For the upper bound, we prove that
Kn admits a n

5 -stack
n
5 -queue layout Ln for n being a multiple of 5. Let v0, . . . , vn−1 be

the order of the vertices of Kn in Ln. First, we assign edges to queues Q0, . . . ,Qn
5−1 of Ln,

such that Qi, 0 ≤ i ≤ n
5 − 1, contains the following 2n− 4i− 5 edges (see Figs. 4a to 4e):

– (vi, vj) i + 2 ≤ j ≤ 4n
5 − i− 2

– (vj , vn−1−i) n
5 + 2i ≤ j ≤ n− i− 3

– (v n
5 +2i, vj) 4n

5 − i− 1 ≤ j ≤ n− i− 2
– (vj , v 4n

5 −i−2) i + 1 ≤ j ≤ n
5 + 2i

Next, we assign edges to stacks S0, . . . ,Sn
5−1 of Ln, such that Si, 0 ≤ i ≤ n

5 − 1, contains
the following 4n

5 + i− 4 edges (see Figs. 4f to 4j):

(v n
5 +2i+1, vj) 4n

5 − i− 1 ≤ j ≤ n− i− 2, for (i, j) 6= (n
5 − 1, n− 1)

(vn−i−1, vj) n
5 − i ≤ j ≤ n

5 − 1
(v n

5 −i−1, vj) n− i− 1 ≤ j ≤ n− 1, for i 6= n
5 − 1

(v 4n
5 −i−1, vj) 3n

5 ≤ j ≤ 4n
5 − i− 3, for (i, j) 6= (n

5 − 1, n
5 − 1)

(v2i+j+1, v 2n
5 −j−1) n

5 ≤ j ≤ 2n
5 − i− 2

(v2i+j+2, v 2n
5 −j−1) n

5 ≤ j ≤ 2n
5 − i− 3, for (i, j) 6= (n

5 − 1, n
5 − 1)

(vj , v2i−j+1) n
5 ≤ j ≤ n

5 + i− 1
(vj , v2i−j) n

5 ≤ j ≤ n
5 + i− 1

By construction, no two edges in the same stack (queue) cross (nest), and no edge is assigned
to two distinct pages. In total, Ln has 1

2 (n2 − 3n) edges, i.e., the number of edges of Kn

neglecting the edges (v0, vn−1) and (vi, vi+1), i = 0, . . . , n−2, which have been skipped in the
above assignment scheme, since they can be accommodated to any of the stacks of Ln. J

5 Complete Bipartite Graphs

In this section, we study the mixed page number of Kn,n = {u0, . . . , un−1}×{v0, . . . , vn−1}.

5.1 The separated setting
In the separated setting, u0 ≺ . . . ≺ un−1 ≺ v0 ≺ . . . ≺ vn−1 holds; see, e.g., the work
by Da Lozzo et al. [3]. Here, two crossing (nesting) edges are nesting (crossing), when one
reverses the order of the vertices of one of the two parts of Kn,n, i.e., stacks and queues are
interchangeable; see Fig. 5. We map the edge (ui, vj) of Kn,n to the point (i, j) of the n×n
integer grid H = [0, n− 1]× [0, n− 1].

I Proposition 1. The edges assigned to the same queue (stack) of a mixed layout L of Kn,n

form a not necessarily strict monotonically increasing (decreasing) path in H.

Proof. Consider (by interchangeability) the edges assigned to the same queue of L in their
lexicographic order, i.e., (ui, vj) precedes (uk, v`) if i = k and j < ` holds, or i < k and j ≤ `
holds. In this order, for any edge (ui, vj) any subsequent edge (uk, v`) is mapped to a point
(k, `) in the upper-right quadrant of (i, j) in H (see Fig. 5), which proves the property. J

J. Md. Alam, M. A. Bekos, M. Gronemann, M. Kaufmann, S. Pupyrev 30:5

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(a)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(b)
v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(c)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(d)
v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(e)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(f)
v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(g)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(h)
v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(i)

v0
v1
v2
v3
v4
v5
v6

v7
v8 v9 v10 v11 v12 v13 v14

v15
v16

v17
v18
v19

v20

v21

v22

v23

v24

(j)

Figure 4 Illustration for the upper bound of Theorem 4.1 with n = 25, which yields a 5-stack
5-queue layout.

EuroCG’22

30:6 The Mixed Page Number of Graphs

u0

u5 v0

u1

v1

v5

u2
u3

u4
v2

v3

v4

(a)

u0

u5 v0

u1

v1

v5

u2
u3

u4
v2

v3

v4

(b)
u0

u5 v0

u1

v1

v5

u2
u3

u4
v2

v3

v4

(c)

u0

u5 v0

u1

v1

v5

u2
u3

u4
v2

v3

v4

(d)

v4

v3

v2

v1

v0

v5

u0 u1 u2 u3 u4 u5

(e)

Figure 5 (a)–(d) A 2-stack 2-queue layout of K6,6 in the separated setting, and (e) the grid
corresponding to this layout.

We call a monotonically decreasing (increasing) path of H a stack-path (queue-path).

I Proposition 2. A stack-path starting at (i, j) and ending at (k, `) covers at most k − i+
j − `+ 1 grid points; a corresponding queue-path at most k − i+ `− j + 1.

Proof. It holds since the Manhattan distance between (i, j) and (k, `) is |k− i|+ |`− j|. J

I Theorem 5.1. The mixed page number of Kn,n in the separated setting is at most d 2n
3 e.

Proof. By Proposition 1, Kn,n admits a n
3 -stack

n
3 -queue layout Ln with n being a multiple

of 3, if and only if, the n2 points of the integer grid H can be covered with a set of n
3

queue-paths and a set of n
3 stack-paths, which is possible to be done as in Fig. 6. J

Next, we focus on a lower bound for Kn,n. For this, we need two more properties given in
Propositions 3 and 4. The former is proved in [1]; the latter one is symmetric.

I Proposition 3. Let Q be a set of q queue-paths covering a largest set P (Q) of points of H.
Then, P (Q) can be covered by q queue-paths p0 . . . , pq−1, where pi has length 2n − 1 − 2i,
starts at (0, i) and ends at (n− 1− i, n− 1); i = 0, . . . , q − 1.

I Proposition 4. Let S be a set of s stack-paths covering a largest set P (S) of points of H.
Then, P (S) can be covered by s stack-paths p0 . . . , ps−1, where pi has length 2n − 1 − 2i,
starts at (0, n− 1− i) and ends at (n− 1, i); i = 0, . . . , s− 1.

The next lemma provides an estimation on the maximum number edges of an s-stack q-queue
layout of a subgraph of Kn,n in the separated setting.

I Lemma 5.2. Let S and Q be two sets of s stack-paths and q queue-paths covering a largest
set of points of H. Then, S ∪ Q covers

∑s−1
i=0 (2n − 1 − 2i) +

∑q−1
i=0 (2n − 1 − 2i) − sq grid

points of H.

Proof. W.l.o.g., we assume that S and Q are maximal, as otherwise we can extend them to
maximal. Then, the sets P (S) and P (Q) of the points of H that are covered by the paths in
S and Q can be covered by s stack-paths and q queue-paths that have the properties of the
last two propositions. Clearly, each such stack-path and each such queue-path have at least
one point of H in common. Therefore, |P (S)∩P (Q)| ≥ sq holds, and thus |P (S)∪P (Q)| ≤
|P (S)|+ |P (Q)| − |P (S) ∩ P (Q)| = ∑s−1

i=0 (2n− 1− 2i) +
∑q−1

i=0 (2n− 1− 2i)− sq holds. J

I Corollary 5.3. In a mixed layout of Kn,n in the separated case, any collection of s-stacks
and q-queues contains at most 2n(q + s)− q2 − s2 − sq edges.

J. Md. Alam, M. A. Bekos, M. Gronemann, M. Kaufmann, S. Pupyrev 30:7

n
3

2n
3

2n
3

n
3

Figure 6 Illustration for the proof of Theorem 5.1 in which every stack-path shares exactly one
point with every queue-path.

Next we prove that the upper bound of Theorem 5.1 is tight.

I Theorem 5.4. The mixed page number of Kn,n in the separated setting is d 2n
3 e.

Proof. The upper bound follows from Theorem 5.1. For the lower bound, denote by k the
total number of pages in an s-stack, q-queue layout Ln of Kn,n. By Theorem 5.3, we obtain
2n(q + s) − q2 − s2 − sq ≥ n2. Since k = s + q, it follows that 2nk − q2 − k2 + kq ≥ n2.
To determine the maximum for the left-hand side of the inequality with respect to q, we
compute the roots of its first derivative taken over q, which is ∂

∂q

(
2nk − q2 − k2 + kq

)
= 0.

This yields k = 2q, i.e., s = q = k
2 . Thus, 2nk − 3k2

4 − n2 ≥ 0 holds. Hence, k ≥ d 2n
3 e. J

5.2 Non-separated setting

We now study the mixed page number of Kn,n in the general (non-separated) setting. Here,
we are not able to provide an upper bound that is better than bn

2 c, i.e., the queue number
of Kn,n [13]. We conjecture that this bound is tight, but we do not have a proof for this.
However, we are able to provide a lower bound using the techniques of the previous section.

I Theorem 5.5. The mixed page number of Kn,n is at least dn
3 e.

Proof. By the pigeonhole principle, in any vertex order of Kn,n at least dn
2 e of the first n

vertices belong to one part. Then at least dn
2 e of the remaining n vertices belong to the

other part. In other words, every vertex order induces a Kdn
2 e,dn

2 e in the separated setting,
which by Theorem 5.4 requires at least dn

3 e pages. J

6 Conclusions

In this work, we shed some light on the mixed page number of some basic graph classes.
We want to emphasize the following open questions: (i) Can the gaps of the bounds on the
mixed page numbers of Kn and Kn,n be closed? We believe that space for improvement
is on the side of the lower bounds. (ii) Do graphs with bounded mixed page number have
bounded stack or queue number? By a recent result of Dujmović et al. [6], this question
can be answered affirmatively, only if queue number is bounded by stack number for every
graph. The question is interesting even for separated layouts. (iii) Finally, we suggest to
investigate the mixed page number of other classes of graphs such as k-planar graphs.

EuroCG’22

30:8 The Mixed Page Number of Graphs

References
1 Alam, J.M., Bekos, M.A., Gronemann, M., Kaufmann, M., Pupyrev, S.: The mixed page

number of graphs. CoRR abs/2107.04993 (2021), https://arxiv.org/abs/2107.04993
2 Angelini, P., Bekos, M.A., Kindermann, P., Mchedlidze, T.: On mixed linear layouts of

series-parallel graphs. In: Auber, D., Valtr, P. (eds.) Graph Drawing and Network Visu-
alization. LNCS, vol. 12590, pp. 151–159. Springer (2020), https://doi.org/10.1007/
978-3-030-68766-3_12

3 Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: 2-level quasi-planarity
or how caterpillars climb (spqr-)trees. In: Marx, D. (ed.) Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 -
13, 2021. pp. 2779–2798. SIAM (2021), https://doi.org/10.1137/1.9781611976465.165

4 Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory, Ser. B 27(3),
320–331 (1979), https://doi.org/10.1016/0095-8956(79)90021-2

5 de Col, P., Klute, F., Nöllenburg, M.: Mixed linear layouts: Complexity, heuristics, and
experiments. In: Archambault, D., Tóth, C.D. (eds.) Graph Drawing and Network Visu-
alization. LNCS, vol. 11904, pp. 460–467. Springer (2019), https://doi.org/10.1007/
978-3-030-35802-0_35

6 Dujmović, V., Eppstein, D., Hickingbotham, R., Morin, P., Wood, D.R.: Stack-number is
not bounded by queue-number. arXiv:2011.04195 (2020)

7 Dujmović, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar graphs
have bounded queue-number. J. ACM 67(4), 22:1–22:38 (2020), https://dl.acm.org/
doi/10.1145/3385731

8 Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Mathematics & Theoret-
ical Computer Science 6(2), 339–358 (2004), http://dmtcs.episciences.org/317

9 Dujmović, V., Wood, D.R.: Stacks, queues and tracks: Layouts of graph subdivi-
sions. Discrete Mathematics & Theoretical Computer Science 7(1), 155–202 (2005), http:
//dmtcs.episciences.org/346

10 Enomoto, H., Miyauchi, M.: Stack-queue mixed layouts of graph subdivisions. In: Forum
on Information Technology. pp. 47–56 (2014)

11 Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discrete Applied Mathemat-
ics 109(3), 215–221 (2001), https://doi.org/10.1016/S0166-218X(00)00178-5

12 Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms
for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992), https://doi.org/
10.1137/0405031

13 Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5),
927–958 (1992), https://doi.org/10.1137/0221055

14 Malitz, S.M.: Graphs with E edges have pagenumber O(
√
E). J. Algorithms 17(1), 71–84

(1994), https://doi.org/10.1006/jagm.1994.1027
15 Pupyrev, S.: Mixed linear layouts of planar graphs. In: Frati, F., Ma, K. (eds.) Graph

Drawing and Network Visualization. LNCS, vol. 10692, pp. 197–209. Springer (2017),
https://doi.org/10.1007/978-3-319-73915-1_17

16 Wagner, K.W.: Monotonic coverings of finite sets. J. Inf. Process. Cybern. 20(12), 633–639
(1984)

17 Wiechert, V.: On the queue-number of graphs with bounded tree-width. Electr. J. Comb.
24(1), P1.65 (2017), http://www.combinatorics.org/ojs/index.php/eljc/article/
view/v24i1p65

18 Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1),
36–67 (1989), https://doi.org/10.1016/0022-0000(89)90032-9

Gioan’s Theorem for complete bipartite graphs∗

Oswin Aichholzer1, Man-Kwun Chiu2, Hung P. Hoang3,
Michael Hoffmann3, Yannic Maus1, Birgit Vogtenhuber1, and
Alexandra Weinberger1

1 Institute of Software Technology, Graz University of Technology, Austria
[oaich,yannic.maus,bvogt,weinberger]@ist.tugraz.at

2 Institut für Informatik, Freie Universität Berlin, Germany
chiumk@zedat.fu-berlin.de

3 Department of Computer Science, ETH Zürich, Switzerland
[hung.hoang|hoffmann]@inf.ethz.ch

Abstract
For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident
edges, presented by the labels of their other endpoints. The extended rotation system of the drawing
is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of
edges has at most one common point. Gioan’s Theorem states that for any two simple drawings of
the complete graph Kn with the same crossing edge pairs, one drawing can be transformed into
the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). Intuitively, this
operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing
edges over the opposite vertex of the cell.

We investigate to what extent Gioan’s Theorem generalizes to other classes of graphs. On
the one hand, we show that it holds for complete bipartite graphs Km,n, provided that the two
drawings share the same extended rotation system. Note that the assumption is also implicit in
Gioan’s Theorem, because for simple drawings of the complete graph the crossing edge pairs uniquely
determine the extended rotation system; however, this is not the case for complete bipartite graphs.
Our proof uses a Carathéodory-type theorem for simple drawings of complete bipartite graphs, which
may be of independent interest. On the other hand, we show that the theorem does not hold if the
graph is slightly sparser: When removing two edges from Km,n, there exist two simple drawings with
the same extended rotation system that cannot be transformed into each other using triangle flips.

1 Introduction

Given a simple drawing of a graph G = (V,E) on the sphere S, an edge fragment is a maximal
connected part of an edge that does not contain any endpoint or crossing. The rotation of a
vertex is the clockwise circular order of incident edges. The rotation of a crossing χ is the
clockwise cyclic order of the four vertices of the crossing edge pair which is induced by the
cyclic order of edge fragments around χ. (In other words, the rotation of a crossing χ is the
rotation of an additional degree-4 vertex vχ obtained by splitting the crossing edge pair at χ
and replacing χ by vχ.) The extended rotation system (ERS) of a drawing is the collection of
rotations of all vertices and crossings.

∗ Research on this work was initiated during the 5th D-A-CH Workshop on Arrangements and Drawings in
March 2021. We thank all participants of this workshop for the great atmosphere and fruitful discussions.
O.A. and A.W. partially supported by the Austrian Science Fund (FWF), project W1230. M.C. partially
supported by ERC StG 757609. M.H. supported by the Swiss National Science Foundation within
the collaborative D-A-CH project Arrangements and Drawings as SNSF project 200021E-171681. B.V.
partially supported by the Austrian Science Fund within the collaborative D-A-CH project Arrangements
and Drawings as FWF project I 3340-N35.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

31:2 Gioan’s Theorem for complete bipartite graphs

A crossing triangle is a cell in the subdrawing of three pairwise crossing edges that is
bounded by three edge fragments. To define the orientation of a crossing triangle, we fix
an arbitrary orientation for each edge of G. The orientation of a crossing triangle ∆ is the
parity (odd or even) of the number of edges that bound ∆ and where ∆ lies to the left of the
edge. A crossing triangle ∆ is invertible if there exists another simple drawing of the same
graph and with the same extended rotation system (ERS) in which ∆ appears in the opposite
orientation. A triangle flip is the elementary operation of changing the orientation of an
unintersected crossing triangle by a local transformation of the given drawing; see Figure 1.

u

z v

x

w
y

c0

c1
c2

c2

c0

c1
u

z v

x

w
y

Figure 1 Two drawings of K3,3 that can be transformed into each other via one triangle flip.

Two simple drawings γ and η of G are strongly isomorphic, denoted by γ ∼= η, if there
exists an orientation-preserving homeomorphism of S that maps γ to η, that is, γv 7→ ηv, for
all v ∈ V , and γe 7→ ηe, for all e ∈ E. By Kynčl [5], the following combinatorial formulation
is equivalent for connected drawings: (1) the same pairs of edges cross (this is called weak
isomorphism); (2) the order of crossings along each edge is the same; and (3) the drawings
have the same ERS. In this work, strongly isomorphic drawings are considered the same.

Gioan’s Theorem [4] states that any two weakly isomorphic simple drawings of Kn can be
transformed into each other via a sequence of triangle flips. Gioan announced his theorem in
2005 [4]. The original presentation contained a proof sketch, but a full proof was published
only 10 years later by Arroyo, McQuillan, Richter, and Salazar [1], who also coined the
name “Gioan’s Theorem”. In 2021, Schaefer generalized Gioan’s Theorem to slightly sparser
graphs by proving that any two weakly isomorphic simple drawings of Kn \M , where M is
a non-perfect matching, can be transformed into each other using triangle flips [7]. His work
also includes an alternative proof for Gioan’s Theorem.

Our main result is that an analogue of Gioan’s Theorem also holds for simple drawings
of much sparser graphs, namely, for complete bipartite graphs. To show this, we rephrase
the statement to require both drawings to have the same ERS.

I Theorem 1.1. Let D1 and D2 be two simple drawings of Km,n, m,n ≥ 1, on the sphere
with the same ERS. Then there is a sequence of triangle flips that transforms D1 into D2.

Note that triangle flips only change the order of crossings along edges. Hence, having the
same ERS is a necessary requirement for any two drawings of any graph to be transformable
into each other via triangle flips. For the complete graph, the requirement that the drawings
have the same crossing edge pairs is equivalent to the requirement that they have the same
ERS because the crossing edge pairs of a drawing uniquely determine its ERS [5, 6]. However,
for complete bipartite graphs this is not the case, as two simple drawings of Km,n with the
same crossing edge pairs might have different ERSs; see Figure 2 for an example.

We also show that both Gioan’s Theorem and our Theorem 1.1 are almost tight.

I Theorem 1.2. For any m ≥ 2 and n ≥ 3 and Km,n minus two edges, there exist two
simple drawings with the same ERS that cannot be transformed into each other using triangle
flips. The same holds for any n ≥ 5 and Kn minus a four-cycle C4.

Aichholzer, Chiu, Hoang, Hoffmann, Maus, Vogtenhuber, Weinberger 31:3

b1

b2

r1

r2

r3b3

b1

b2

r1

r2

r3b3

Figure 2 Two simple drawings of K3,3 with the same crossing edge pairs but different ERSs.

In particular, the first part of Theorem 1.2 implies that an analogue to Schaefer’s
generalization of Gioan’s Theorem for Kn minus a non-perfect matching cannot be achieved
for complete bipartite graphs, as not even a generalization from Km,n to Km,n minus a
matching of size two holds. Moreover, note that Km,n with m ≥ 4 and n ≥ 1 is a subgraph of
Kn+m\C4. Hence the second part of Theorem 1.2 implies that—quite counterintuitively—the
set of graphs for which a Gioan-type statement holds is not closed under adding edges.

To prove Theorem 1.1, we use a similar approach as Arroyo et al. [1]. In their proof, they
iteratively transform one of the drawings so as to increase the parts of both drawings that are
strongly isomorphic. However, several ingredients that are necessary for this transformation
are known properties of drawings of complete graphs or follow directly, while it was unknown
whether analogous statements hold for drawings of complete bipartite graphs. Hence, for our
proof, we discover a number of useful, fundamental properties of simple drawings of complete
bipartite graphs. For example, we establish an analogue to Carathéodory’s Theorem for
simple drawings of Km,n.

The classic Carathéodory Theorem states that if a point p ∈ R2 lies in the convex hull
of a set A ⊂ R2 of n ≥ 3 points, then there exists a triangle spanned by points of A that
contains p. In the terminology of drawings, this means that if a point p lies in a bounded
cell of a straight-line drawing D of Kn in the plane, then there also exists a 3-cycle C of D
so that p lies in the bounded cell of C. This statement has been generalized to simple (not
necessarily straight-line) drawings of Kn [2, 3]. However, it clearly does not generalize to
arbitrary (non-complete) graphs. A natural question is, for which classes of graphs this
statement, or a variation of it, holds. We show that it holds for complete bipartite graphs if
we replace the (non-existing) 3-cycle by a 4-cycle, which is the shortest available cycle.

I Theorem 1.3 (Carathéodory’s Theorem for simple drawings of Km,n). Let D be a simple
drawing of Km,n in the plane, for m,n ≥ 2, and let p be a point in some bounded cell of D.
Then there exists a 4-cycle C of D such that p is contained in a bounded cell of C. This
statement is tight in the sense that it does not hold for Km,n minus one edge.

Outline. We prove Theorem 1.1 in Section 2. The proof relies on several lemmata, whose
proofs are deferred to the upcoming full version of this paper. A sketch of the proof of
Theorem 1.2 can be found in Section 3.

2 Proof of Gioan’s Theorem for simple drawings of Km,n

Denote the bipartition sets by B = {b1, b2, ..., bm} and R = {r1, r2, ..., rn}. Let D :∼= D1.
We will do triangle flips in D, by this changing D, until we obtain D ∼= D2. We iteratively
consider the vertices r1, . . . , rn. For each vertex ri, we iteratively consider the incident

EuroCG’22

31:4 Gioan’s Theorem for complete bipartite graphs

edges rib1 . . . , ribm. We denote by Km,i the subgraph of Km,n induced by B and the vertices
r1, r2, . . . , ri, and let Xi,j = Km,i−1 ∪ {ribk : 1 ≤ k ≤ j} for 0 ≤ k ≤ m, with Xi,0 = Km,i−1.

When considering an edge ribj , the goal is to establish D[Xi,j] ∼= D2[Xi,j], where D[Xi,j]
and D2[Xi,j] are the according subdrawings of D and D2, respectively.

For the base case i = 1 observe that D[Km,1] ∼= D2[Km,1] because there is only one
simple drawing of Km,1 (our graphs are labeled but the ERS is given).

For the general case 2 ≤ i ≤ n and 1 ≤ j ≤ m, assume that D[Xi,j−1] ∼= D2[Xi,j−1].
To handle the case j = 1, we first argue that the position of vertex ri is consistent be-
tween D[Km,i−1] and D2[Km,i−1]. To show this, we use the following lemma, whose proof
relies on Theorem 1.3 (Carathéodory’s Theorem for simple drawings of Km,n).

I Lemma 2.1. Let F be a simple drawing of Km,n, m,n ≥ 1, on the sphere. For any vertex v
in F , the ERS of F uniquely determines in which cell of F ′ := F \ {v} the vertex v lies.

Since D[Km,i−1] ∼= D2[Km,i−1], the two drawings topologically have the same cells. As
D and D2 have the same ERS, by Lemma 2.1 applied to F = D[Km,i] and to D2[Km,i], both
times with v = ri, we conclude that ri lies in the same cell in D[Km,i−1] and D2[Km,i−1].

Now consider the edge ribj . The aim is to use a sequence of triangle flips to transform D

such that D[Xi,j] ∼= D2[Xi,j]. Let e1 denote the curve that represents ribj in D. We imagine
to add another copy ẽ2 of ribj to D, which corresponds to the curve e2 that represents the
edge ribj in D2 and serves as a “target” curve which we aim to transform e1 into.

I Lemma 2.2. There exists a simple curve ẽ2 such that D[Xi,j−1] ∪ ẽ2 ∼= D2[Xi,j] and e1
and ẽ2 have finitely many intersections in D[Xi,j] ∪ ẽ2.

Now fix such a curve ẽ2. Then Γ = e1 ∪ ẽ2 forms a (not necessarily simple) closed curve.
With the next lemma, we show that there is a lens in Γ which we can use as a starting point
for transforming e1 to ẽ2. A lens in Γ is a cell whose boundary is formed by exactly two
edge fragments of Γ, one from e1 and one from ẽ2.

I Lemma 2.3. In Γ there is a lens that does not contain any vertex of Km,i.

Now consider a lens L as guaranteed by Lemma 2.3. While L does not contain any vertex
of D[Xi,j−1], it may contain crossings of D[Xi,j−1]. As a next step, we aim to transform D

using triangle flips such that L does not contain any crossings of D[Xi,j−1]. Let χ ∈ L be
a crossing of two edges a1, a2 in D[Xi,j−1]. As ri and bj are the only vertices on e1 ∪ ẽ2,
it follows that each of a1, a2 crosses ∂L twice; as both D and D2 are simple drawings,
one of these crossings is with e1 and the other is with ẽ2. Thus, a1, a2, and e1 form a
crossing triangle ∆e1 . Moreover, the corresponding crossing triangle in D2 has the opposite
orientation, and hence ∆e1 is invertible. By the following lemma, ∆e1 is empty of all vertices
of D (we already knew this for the vertices of Km,i, but not yet for ri+1, . . . , rn).

I Lemma 2.4 (Invertible triangles are empty). Let D be a simple drawing of Km,n and ∆ be
an invertible crossing triangle in D. Then all vertices of D lie outside ∆.

Since ∆e1 is empty of all vertices, all edges crossing ∆e1 can be “swept” outside ∆e1

using a finite sequence of triangle flips (analogous to topological sweeps). None of those flips
increases the number of crossings in L (while some of them might decrease this number) and
after them, ∆e1 is unintersected. Finally, we also flip ∆e1 so that χ 6∈ L.

Processing all remaining crossings inside L in the described fashion, we establish that
in the resulting drawing, the lens L does not contain any vertex or crossing of D[Xi,j−1].
In other words, locally around L, the edge e1 is topologically identical to ẽ2 with respect

Aichholzer, Chiu, Hoang, Hoffmann, Maus, Vogtenhuber, Weinberger 31:5

to D[Xi,j−1]. Thus, we can adapt ẽ2 by replacing its edge part on ∂L with a close copy of
the edge part of e1 on ∂L, effectively removing the lens L from Γ. As a result, the edges e1
and ẽ2 have fewer crossings than before in D, and the parameters D and Γ = e1 ∪ ẽ2 again
meet the conditions of Lemma 2.3. Repeatedly applying this procedure to the next cell
(which exists by Lemma 2.3), we eventually obtain a drawing D[Xi,j]∪ ẽ2 where e1 and ẽ2 do
not cross, and hence Γ is a simple closed curve. By Lemma 2.3, one of the two cells bounded
by Γ contains no vertices of D[Xi,j]. So after one last round of transformations as described
above, we obtain a drawing D[Xi,j] ∪ ẽ2 in which all vertices and crossings lie on one side
of Γ. Hence we have obtained D[Xi,j] ∼= D2[Xi,j]. Processing all vertices ri, for i = 2, . . . , n,
and in turn handling all edges incident to ri eventually yields a drawing D ∼= D2.

3 Sketch of the proof of Theorem 1.2

Figure 3 depicts the drawings we use in the proof of Theorem 1.2. The first row contains
drawings of Km,n minus two adjacent edges, the second one drawings of Km,n minus two
disjoint edges, and the third row is for Kn+m minus a C4. In each row, the (green) edge r1b1
crosses b2r2 and b2r3 in a different order and these three edges do not form any crossing
triangle. Thus, the drawings cannot be transformed into each other via triangle flips.

4 Conclusion & Open Questions

We have shown Gioan’s Theorem for complete bipartite graphs (Theorem 1.1) and that an
according statement does not hold for Km,n minus two edges or Kn minus a C4 (Theorem 1.2).
These results relevantly extend previous results [1, 4, 7] and show that the class of graphs for
which an according statement holds is also not closed under adding edges. We believe that
our result can be extended to complete k-partite graphs. But a complete characterization of
graphs for which an according statement holds remains open.

I Question 1. What is a complete characterization of all graphs for which Gioan’s Theorem
holds, that is, for which graphs is it true that any two drawings with the same ERS can be
transformed into each other?

Further, we have shown that an analogue of Caratheorody’s Theorem holds for simple
drawings of Km,n (Theorem 1.3). It would be interesting to know for which further graphs a
similar statement is true.

Finally, in our proof of Theorem 1.1, we did not address algorithmical questions, and
neither did the according proofs for Gioan’s Theorem for Kn. Naturally, the minimum flip
distance, that is, the minimum number of triangle flips that need to be done to transform
the drawings, is of interest.

I Question 2. What is the worst case minimum flip distance between two simple drawings
of Km,n with the same ERS? And what is the worst case minimum flip distance between two
simple drawings of Kn with the same rotation system?

References
1 Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Drawings of Kn with

the same rotation scheme are the same up to triangle-flips Gioan’s theorem). Australasian J.
Combinatorics, 67(2):131–144, 2017. URL: https://ajc.maths.uq.edu.au/pdf/67/ajc_
v67_p131.pdf.

EuroCG’22

31:6 Gioan’s Theorem for complete bipartite graphs

r1

r2

r3
b3 bmb...b2b1

rnr...r4

r2

r3

b3 bmb...b2b1

rnr...r4

r1

r1

r2

r3
b3 bmb...b2b1

rnr...r4

r2

r3

b3 bmb...b2b1

rnr...r4

r1

r1

r2

b1

b2

b3
b4, . . .r3, . . .

r1

r2

b1

b2

b3

b4, . . .r3, . . .

Figure 3 Constructions used in the proof of Theorem 1.2. Dashed arcs indicate omitted edges.

2 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing numbers and combinatorial
characterization of monotone drawings of Kn. Discrete Comput. Geom., 53:107–143, 2015.
doi:10.1007/s00454-014-9644-z.

3 Helena Bergold, Stefan Felsner, Manfred Scheucher, Felix Schröder, and Raphael Steiner.
Topological drawings meet classical theorems from convex geometry. In Proc. 28th Internat.
Sympos. Graph Drawing, volume 12590 of Lecture Notes Comput. Sci., pages 281–294.
Springer-Verlag, 2020. doi:10.1007/978-3-030-68766-3_22.

4 Emeric Gioan. Complete graph drawings up to triangle mutations. In Proc. 31st Internat.
Workshop Graph-Theoret. Concepts Comput. Sci., volume 3787 of Lecture Notes Comput.
Sci., pages 139–150. Springer, 2005. doi:10.1007/11604686_13.

5 Jan Kynčl. Enumeration of simple complete topological graphs. European J. Combinatorics,
30:1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.

6 Jan Kynčl. Simple realizability of complete abstract topological graphs in P. Discrete
Comput. Geom., 45:383–399, 2011. doi:10.1007/s00454-010-9320-x.

7 Marcus Schaefer. Taking a detour; or, Gioan’s theorem, and pseudolinear drawings of
complete graphs. Discrete & Computational Geometry, 66:12–31, 2021. doi:10.1007/
s00454-021-00296-2.

A Note on Rectilinear Crossing number of
Hypergraphs
Rahul Gangopadhyay1 and Gaiane Panina2

1 Department of Mathematics and Computer Science,Saint-Petersburg State
University, Saint Petersburg, Russia
rahulg@iiitd.ac.in

2 Steklov Institute of Mathematics at Saint Petersburg, Saint Petersburg, Russia
gaiane-panina@rambler.ru

Abstract
We improve the lower bound on the d-dimensional rectilinear crossing number of the complete

d-uniform hypergraph having 2d vertices to Ω
(

(4
√

2/33/4)d

d

)
from Ω(2dd). This result improves the

lower bound on the d-dimensional rectilinear crossing number of the complete d-uniform hypergraph

having n vertices to Ω
(

(4
√

2/33/4)d

d

) (
n

2d

)
which is approximately Ω

(
2.481d

d

)
.

Keywords: Geometric Hypergraph; Crossing Number ; Gale Transform; Upper Bound

Theorem.

1 Introduction

In a rectilinear drawing of a graph, its vertices are mapped to points in general position
(i.e., no three points are colinear) in R2 and its edges are drawn as straight line segments
connecting the corresponding vertices. In a rectilinear drawing of a graph, a pair of edges is
said to be crossing if they are vertex disjoint and contain a common point in their relative
interiors. The rectilinear crossing number of a graph G, denoted by cr(G), is the minimum
number of crossing pairs of edges among all rectilinear drawings of the graph. The study of
rectilinear crossing numbers of graphs is an active field of research, see [14].

A hypergraph is defined as an ordered pair (V, E) where V is the set of vertices and
E ⊆ 2V \{∅} is the set of hyperedges. A hypergraph is said to be d-uniform if each hyperedge
contains exactly d vertices. Let Kd

n denote the complete d-uniform hypergraph having n

vertices and
(

n

d

)
hyperedges. Dey and Edelsbrunner [6], and later Dey and Pach [7] extended

the idea of a rectilinear drawing of a graph to a rectilinear drawing of a uniform hypergraph.
Consider a set P of n ≥ d + 1 points in Rd. The points are said to be in general position if no
set of d+1 points of P lies on a (d−1)-dimensional hyperplane. In a d-dimensional rectilinear
drawing of a d-uniform hypergraph H, the vertices of H are placed in general position in
Rd and the hyperedges are drawn as the convex hulls of d corresponding vertices, i.e., as
(d − 1)-simplices. Let σ be a k-dimensional (k ≤ d − 1) simplex in Rd. We denote the set of
vertices of σ by V ert(σ). Let τ be an l-dimensional (l ≤ d − 1) simplex in Rd. We say that σ

crosses τ if they contain a common point in their relative interiors and V ert(σ)∩V ert(τ) = ∅,
see [7]. The d-dimensional rectilinear crossing number of a hypergraph H, denoted by crd(H),
is the minimum number of crossing pairs of hyperedges among all d-dimensional rectilinear
drawings of H, see [4]. Let us denote the d-dimensional rectilinear crossing number of Kd

2d

by cd, i.e., cd = crd(Kd
2d) . Note that we need at least 2d vertices to form a crossing pair of

hyperedges since they need to be vertex disjoint, and each set of 2d vertices creates distinct
crossing pairs of hyperedges. This implies that crd(Kd

n) ≥ cd

(
n
2d

)
.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

32:2 A Note on Rectilinear Crossing number of Hypergraphs

Dey and Edelsbrunner [6] showed that a 3-uniform hypergraph H having n vertices can

have at most 3n2

2 hyperedges if cr3(H) = 0. This result can be seen as a generalization of
Euler’s formula for planar graphs. In the same paper, they also proved a generalization of
crossing lemma [2]. Later, Dey and Pach [7] extended these results for d-uniform hypergraphs.
Though there was a lot of research on determining the crossing number of special graphs,
e.g. complete graph, complete bipartite graph etc., see [1, 5, 11], no significant progress was
made in case of structured uniform hypergraphs. Through a series of papers [3, 10], lower
bound on cd was improved to Ω(d2d) [9] from Ω(2d log d/

√
d) [4]. The best-known upper

bound on the d-dimensional rectilinear crossing number of Kd
2d is O(4d/

√
d) [3]. Though the

lower and upper bounds on the rectilinear crossing number of complete graph is fairly tight,
there is a significant gap between the lower and upper bounds on cd.
In this paper, we improve this lower bound on cd:

▶ Theorem 1.1. The d-dimensional rectilinear crossing number of Kd
2d is Ω

(
(4

√
2/33/4)d

d

)

which is approximately Ω
(

2.481d

d

)
.

▶ Corollary 1.2. The d-dimensional rectilinear crossing number of Kd
n is Ω

(
(4

√
2/33/4)d

d

) (
n

2d

)
.

2 Preliminaries

In order to prove Theorem 1.1, we use the following two lemmas and some properties of the
Gale transform.

▶ Lemma 2.1. [10, Proof of Theorem 1] Let C ′ be a set containing d + 4 points in general
position in Rd. There exist at least ⌊(d + 4)/2⌋ pairs of disjoint subsets {C ′

i1, C ′
i2} of C ′ for

each i satisfying 1 ≤ i ≤ ⌊(d + 4)/2⌋ such that the following properties hold.
1. C ′

i1 ∪ C ′
i2 = C ′ and |C ′

i1|, |C ′
i2| ≥ ⌊(d + 2)/2⌋

2. (|C ′
i1| − 1)-simplex Conv(C ′

i1) crosses the (|C ′
i2| − 1)-simplex Conv(C ′

i2) (i.e., C ′
i1 ∩C ′

i2 =
∅ and Conv(C ′

i1) ∩ Conv(C ′
i2) ̸= ∅).

3. There exist C ′′
i1 ⊆ C ′

i1 and C ′′
i2 ⊆ C ′

i2 such that |C ′′
i1|, |C ′′

i2| ≥ ⌊(d + 2)/2⌋ , |C ′′
i1| + |C ′′

i2| =
d + 2 and (|C ′′

i1| − 1)-simplex Conv(C ′′
i1) crosses the (|C ′′

i2| − 1)-simplex Conv(C ′′
i2).

▶ Lemma 2.2. [10] Let a set C contain 2d points in general position in Rd. Let C ′ ⊂ C

be a subset such that |C ′| = d + 4. Let C ′
1 and C ′

2 be two disjoint subsets of C ′ such that
|C ′

1| = c′
1, |C ′

2| = c′
2, C ′

1 ∪ C ′
2 = C ′ and c′

1, c′
2 ≥ ⌊(d + 2)/2⌋. If the (c′

1 − 1)-simplex formed
by C ′

1 crosses the (c′
2 − 1)-simplex formed by C ′

2, then the (d − 1)-simplex formed by some
point set B′

1 ⊃ C ′
1 and the (d − 1)-simplex formed by some point set B′

2 ⊃ C ′
2 satisfying

B′
1 ∩ B′

2 = ∅, |B′
1|, |B′

2| = d and B′
1 ∪ B′

2 = C also form a crossing pair.

2.1 Gale Transform
The Gale transform [8] turns a sequence of points P = ⟨v1, v2, . . . , vn⟩ into a sequence of
vectors G(P) = ⟨g1, g2, . . . , gn⟩. If the affine hull of the set P is Rd, the Gale transform
G(P) = ⟨g1, g2, . . . , gn⟩ is a sequence of n vectors in Rn−d−1. The Gale transform G(P) has
the following properties:

▶ Lemma 2.3. [12] A sequence of vectors G = ⟨g1, g2, . . . , gn⟩ in Rn−d−1 is a Gale transform
of some P ⊂ Rd if and only if G spans Rn−d−1 and

∑n
i=1 gi = 0⃗.

R. Gangopadhyay and G. Panina 32:3

▶ Definition 2.4 (Totally cyclic vector configuration:). A vector configuration A = {a1, a2, . . . , an}
⊂ Rd is said to be totally cyclic, if there exists a vector β = (β1, β2, . . . , βn) in Rn such that
each βi > 0 and β1a1 + β2a2 + . . . + βnan = 0⃗.

▶ Corollary 2.5. Each totally cyclic vector configuration having n vectors which span Rn−d−1

becomes the Gale transform of some P ⊂ Rd after an appropriate scaling.

▶ Lemma 2.6. [12] Points in P are in general position in Rd if and only if every n − d − 1
vectors in G(P) span Rn−d−1.

▶ Lemma 2.7. [12] For t ≤ d, consider a tuple (i1, i2, . . . , it), where 1 ≤ i1 < i2 < . . . < it ≤
n. A t-element subset P ′ = {vi1 , vi2 , . . . , vit

} ⊂ P forms a (t−1)-dimensional face of Conv(P)
if and only if the relative interior of the convex hull of the points in G(P) \ {gi1 , gi2 , . . . , git

}
contains the origin.

▶ Theorem 2.8 (Upper bound theorem). [13] Among all convex polytopes with a given
dimension and number of vertices, cyclic polytopes have the largest possible number of faces
of each dimension.

The following corollary can be deducted from Upper bound theorem, see [15].

▶ Corollary 2.9. [15] The convex hull of an n-point set in Rd has at most
(

n − ⌈d/2⌉
n − d

)
+

(
n − ⌊d/2⌋ − 1

n − d

)
facets.

3 Proof of Theorem 1.1

We start with the following lemma which is interesting for its own sake.

▶ Lemma 3.1. Let σ be a ⌊d/2⌋-simplex, and τ be a (d−1)-simplex such that all the d+⌊d/2⌋+
1 points of V ert(σ) ∪ V ert(τ) are in general position in Rd. At most O((33/4/

√
2)d/

√
d)

⌈d/2⌉-faces of τ cross σ.

Proof. Let us denote by σ̃ the affine hull of V ert(σ). Note that any ⌈d/2⌉-face of τ that
crosses σ, intersects σ̃. Also, note that no vertex of τ lies on σ̃ due to the general position of
the points in V ert(σ) ∪ V ert(τ). Let us consider the orthogonal complement space σ̃⊥ of
σ̃. Let {τ ′

1, τ ′
2, . . . , τ ′

l } be the set of all ⌈d/2⌉-faces of τ that intersects σ̃. Denote by V the
set of vertices ∪l

j=1V ert(τ ′
j). Let us assume that at least one ⌈d/2⌉-face of τ intersects σ̃.

Then, we can assume that |V| = ⌈d/2⌉ + 1 + k for some positive integer k. Let V be the
set V = {v1, v2, . . . , v⌈d/2⌉+1+k}. We project the points in V ert(σ) ∪ V onto σ̃⊥. The set
V ert(σ) maps to a single point in σ̃⊥. Without loss of generality, let us assume that this
point is the origin O. Denote by ṽi the projection of vi for each vi ∈ V . Let Ṽ denote the set
{ṽ2, ṽ2, . . . , ṽ⌈d/2⌉+1+k}.

For a tuple (i1, i2, . . . , i⌈d/2⌉+1), where 1 ≤ i1 < i2 < . . . < i⌈d/2⌉+1 ≤ ⌈d/2⌉ + 1 + k,
the convex hull of {ṽi1 , ṽi2 , . . . , ṽi⌈d/2⌉+1} contains the origin O if and only if ⌈d/2⌉-simplex
spanned by {vi1 , vi2 , . . . , vi⌈d/2⌉+1} intersects σ̃. Let us denote by v̂i the vector Oṽi. Consider
the vector configuration V̂ = {v̂1, v̂2, . . . , v̂⌈d/2⌉+1+k}. The following observations hold.

▶ Observation 1. No two points of V map to the same point in σ̃⊥, i.e., all the points in Ṽ
are distinct.

EuroCG’22

32:4 A Note on Rectilinear Crossing number of Hypergraphs

For the sake of contradiction, let us assume that ṽi1 , ṽi2 maps to a single point q. Then there
exist ⌊d/2⌋ + 3 points {vi1 , vi2} ∪ V ert(σ) that lie on a (⌊d/2⌋ + 1)-dimensional hyperplane.
This contradicts the general position assumption.

▶ Observation 2. Any subset of ⌈d/2⌉ vectors of V̂ spans R⌈d/2⌉.

For the sake of contradiction, let us assume that {v̂i1 , v̂i2 , . . . , v̂i⌈d/2⌉} spans some Rq where
q < ⌈d/2⌉. Then, d + 1 points {vi1 , vi2 , . . . , vi⌈d/2⌉} ∪ V ert(σ) lie in a subspace whose
dimension is less than ⌊d/2⌋ + q ≤ d − 1. This contradicts the fact that V ert(σ) ∪ V ert(τ)
are in general position in Rd.

▶ Observation 3. V̂ is a totally cyclic vector configuration.

For 1 ≤ i ≤ ⌈d/2⌉ + k + 1, each ṽi is a vertex of a convex hull of some ⌈d/2⌉ + 1 points of Ṽ
which contains the origin O.

These observations along with Lemma 2.3 imply that with proper scaling V̂ is a Gale
transformation of some point set Q = {q1, q2, . . . , q⌈d/2⌉+1+k} having ⌈d/2⌉ + 1 + k points
in Rk. Lemma 2.6 and Observation 2 imply that these ⌈d/2⌉ + 1 + k points of Q are in
general position in Rk. Since the points in Q are in general position in Rk, Lemma 2.7
implies that the convex hull of {ṽi1 , ṽi2 , . . . , ṽi⌈d/2⌉+1} contains the origin O if and only if the
k points in Q \ {qi1 , qi2 , . . . , qi⌈d/2⌉+1} span a k − 1 dimensional face of the convex hull of
Q. By Corollary 2.9, the maximum number of k − 1 dimensional faces of the convex hull
of Q is

(⌈d/2⌉ + 1 + k − ⌈k/2⌉
⌈d/2⌉ + 1 + k − k

)
+

(⌈d/2⌉ + 1 + k − ⌊k/2⌋ − 1
⌈d/2⌉ + 1 + k − k

)
=

(⌈d/2⌉ + 1 + ⌊k/2⌋
⌈d/2⌉ + 1

)
+

(⌈d/2⌉ + ⌈k/2⌉
⌈d/2⌉ + 1

)
. This quantity increases as k increases. The maximum value k can take is

⌊d/2⌋ − 1. By setting k = ⌊d/2⌋ − 1 and using Stirling’s approximation, we obtain the upper
bound O((33/4/

√
2)d/

√
d) on the number of ⌈d/2⌉-faces of τ that intersect σ. ◀

Proof of Theorem 1.1: Let V = {v1, v2, . . . , v2d} be the vertices of Kd
2d in its d-dimensional

rectilinear drawing. Note that the points in V are in general position in Rd. Let E be the
set of (d − 1)-simplices that correspond to hyperedges of the drawing. Choose a subset
of V ′ ⊂ V having d + 4 points. Lemma 2.1 implies that there exist ⌊(d + 4)/2⌋ pairs of
subsets {V ′

i1, V ′
i2} for each i satisfying 1 ≤ i ≤ ⌊(d + 4)/2⌋ such that all the three conditions

mentioned in Lemma 2.1 hold.
It follows from Lemma 2.2 that each such crossing pair of (|V ′

i1|−1)-simplex and (|V ′
i2|−1)-

simplex can be extended to at least
(

d − 4
d − ⌊(d + 2)/2⌋

)
= Ω

(
2d/

√
d
)

crossing pairs of (d−1)-
simplices corresponding to the crossing pairs of hyperedges in E. Therefore, the total number
of crossing pairs of hyperedges, originated from a particular choice of V ′, in a d-dimensional
rectilinear drawing of Kd

2d is at least ⌊(d + 4)/2⌋ Ω
(

2d/
√

d
)

= Ω
(

2d
√

d
)

.

We can choose V ′ in
(

2d

d + 4

)
= Θ

(
4d/

√
d
)

ways. On the one hand, there exist Ω
(

2d
√

d
)

crossing pairs of hyperedges in a d-dimensional rectilinear drawing of Kd
2d for each choice of

V ′. On the other hand, each crossing pair of hyperedges may originate from the different
choices of subsets having d + 4 points from V . Next, we estimate an upper bound on the
number of such choices.

Let ek, el ∈ E be a crossing pair of hyperedges. Let V (ek), V (el) respectively denote
the set of vertices of ek and el. Note that |V (ek)| = |V (el)| = d, V (ek) ∪ V (el) = V and
V (ek) ∩ V (el) = ∅.

R. Gangopadhyay and G. Panina 32:5

Lemma 3.1 implies that there can be at most 2
(

d

⌈d + 2/2⌉

)
O((33/4/

√
2)d/

√
d) = O((33/4√

2)d/d)

pairs of {V ′′
i1, V ′′

i2} such that following conditions hold.
1. V ′′

i1 ⊂ V (ek), V ′′
i2 ⊂ V (el) or V ′′

i1 ⊂ V (el), V ′′
i2 ⊂ V (ek)

2. |V ′′
i1|, |V ′′

i2| ≥ ⌊(d + 2)/2⌋ , |V ′′
i1| + |V ′′

i2| = d + 2.
3. Conv(V ′′

i1) crosses Conv(V ′′
i2).

Let us assume that the crossing pair of hyperedges ek, el ∈ E originates from a d + 4
sized subset V ′

i of V . Note that V ′
i contains two subsets V ′

i1 and V ′
i2 such that following

conditions hold.

1. |V ′
i1|, |V ′

i1| ≥ ⌊d + 2/2⌋, V ′
i1 ∪ V ′

i2 = V ′ and V ′
i1 ∩ V ′

i2 = ∅.
2. There exist either V ′′

i1 ⊆ V ′
i1 ⊂ V (ek), V ′′

i2 ⊆ V ′
i2 ⊂ V (el) or V ′′

i1 ⊆ V ′
i1 ⊂ V (el), V ′′

i2 ⊆
V ′

i2 ⊂ V (ek) such that |V ′′
i1|, |V ′′

i2| ≥ ⌊(d + 2)/2⌋ , |V ′′
i1|+|V ′′

i2| = d+2 and Conv(V ′′
i1) crosses

Conv(V ′′
i2).

Since each V ′
i contains a pair {V ′′

i1, V ′′
i2} and each pair {V ′′

i1, V ′′
i2} can be extended in O(d2)

ways to a set of size d + 4, a crossing pair of hyperedges can originate from O((33/4√
2)d/d) ×

O(d2) = O((33/4√
2)dd) distinct subsets V ′

i ⊂ V of size d + 4. This implies that there

exist at least
Ω

(
2d

√
d
)

Θ
(

4d/
√

d
)

O((33/4
√

2)dd)
= Ω

(
(4

√
2/33/4)d

d

)
crossing pairs of hyperedges in any

d-dimensional rectilinear drawing of Kd
2d.

4 Conclusion

In this paper we improved the lower bound on the d-dimensional rectilinear crossing number
of Kd

2d which in turn improves the d-dimensional rectilinear crossing number of Kd
n. In order

to prove this result, we also proved a non-trivial upper bound on the number of crossing
pairs of ⌊d/2⌋-simplex and ⌈d/2⌉-simplex when the (d − 1)-simplex containing one of them
crosses the (d − 1)-simplex containing the other one. There is still a significant gap between
the best-known upper and lower bounds on cd.

Acknowledgments. Rahul Gangopadhyay was supported by Ministry of Science and Higher
Education of the Russian Federation, agreement no. 075–15–2019–1619.

References
1 O. Aichholzer, F. Duque, R. Fabila-Monroy, C. Hidalgo-Toscano and O. E. García-Quintero.

An ongoing project to improve the rectilinear and the pseudolinear crossing constants. arXiv
preprint arXiv:1907.07796 (2019).

2 M. Ajtai, V. Chvátal, M. M. Newborn and E. Szemerédi. Crossing-free subgraphs. North-
Holland Mathematics Studies 60, 9-12 (1982).

3 A. Anshu, R. Gangopadhyay, S. Shannigrahi and S. Vusirikala. On the rectilinear cross-
ing number of complete uniform hypergraphs. Computational Geometry: Theory and
Applications 61, 38-47 (2017).

4 A. Anshu and S. Shannigrahi. A lower bound on the crossing number of uniform hypergraphs.
Discrete Applied Mathematics 209, 11-15 (2016).

5 B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños and G. Salazar. On (≤ k)-
edges, crossings, and halving lines of geometric drawings of Kn. Discrete and Computational
Geometry 48, 192-215 (2012).

EuroCG’22

32:6 A Note on Rectilinear Crossing number of Hypergraphs

6 T. K. Dey and H. Edelsbrunner. Counting triangle crossings and halving planes. Discrete
and Computational Geometry 12, 281-289 (1994).

7 T. K. Dey and J. Pach. Extremal problems for geometric hypergraphs. Algorithms and
Computation (Proc. ISAAC ’96, Osaka; T. Asano et al., eds.), Lecture Notes in Com-
puter Science 1178, Springer-Verlag, 105-114 (1996). Also in: Discrete and Computational
Geometry 19, 473-484 (1998).

8 D. Gale. Neighborly and cyclic polytopes. Proceedings of Symposia in Pure Mathematics,
225-232 (1963).

9 R. Gangopadhyay and S. A. Khan. Maximum Rectilinear Crossing Number of Uniform
Hypergraphs. EuroCG 2020.

10 R. Gangopadhyay and S. Shannigrahi. k-Sets and Rectilinear Crossings in Complete Uniform
Hypergraphs. Computational Geometry: Theory and Applications 86, 101578 (2020).

11 D. J. Kleitman. The crossing number of K5,n. Journal of Combinatorial Theory 9, 315-323
(1970).

12 J. Matoušek. Lectures in Discrete Geometry. Springer, 2002.
13 P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika 17,

179-184 (1970).
14 Marcus Schaefer. The graph crossing number and its variants: A survey. The Electronic

Journal of Combinatorics, DS21, (2012).
15 G. M. Ziegler. Lectures on Polytopes. Springer, 1995.

Experimental analysis of Delaunay flip algorithms
on genus two hyperbolic surfaces∗

Vincent Despré1, Loïc Dubois2, Benedikt Kolbe3, and Monique
Teillaud4

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
vincent.despre@loria.fr

2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
loic.dubois@ens-lyon.fr

3 Hausdorff Center for Mathematics, University of Bonn, Germany †

benedikt.kolbe@physik.hu-berlin.de
4 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

monique.teillaud@inria.fr

Abstract
We give experimental evidence that the only known upper bound on the diameter of the flip graph
of a hyperbolic surface recently proven by Despré, Schlenker, and Teillaud (SoCG’20), is largely
overestimated. To this aim, we develop an experimental framework for the storage of triangulations
of hyperbolic surfaces and modifications through twists. We show that the computations with
algebraic numbers can be overcome, and we propose ways to generate surfaces that are meaningful
for the experiments.

Related Version https://hal.inria.fr/hal-03462834

The source code is available at
https://members.loria.fr/Monique.Teillaud/Exp-hyperb-flips/

1 Introduction

It was recently proven that the geometric flip graph of a closed oriented hyperbolic surface is
connected [7]. A Delaunay flip algorithm can thus transform any input geometric triangula-
tion T , i.e., a triangulation whose edges are embedded as geodesic segments only intersecting
at common endpoints, into a Delaunay triangulation. This is particularly useful in practice
as a crucial preprocessing step to computing Delaunay triangulations on a surface: it trans-
forms a “bad” representation of a surface, e.g., by a very elongated fundamental domain,
to a “nice” representation by a Delaunay triangulation with only one vertex. Inserting a
lot of points would rather be done by Bowyer’s incremental algorithm [8, 6], inspired from
previous work in the flat case [11].

The authors prove an upper bound on the number of flips: Ch ·∆(T)6g−4 ·n2, where Ch

is a constant, ∆(T) is the diameter of T , g is the genus of the surface, and n is the number
of vertices [7]. The diameter ∆(T) is the smallest diameter of a fundamental domain that is
the union of lifts of the triangles of T in H. If T is a triangulation of a genus two surface with

∗ The authors were partially supported by the grant(s) ANR-17-CE40-0033 of the French National Re-
search Agency ANR (project SoS) and INTER/ANR/16/11554412/SoS of the Luxembourg National
Research fund FNR (https://members.loria.fr/Monique.Teillaud/collab/SoS/)

† This work was done while Benedikt Kolbe was working at Université de Lorraine, CNRS, Inria, LORIA,
F-54000 Nancy, France

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

33:2 Experimental analysis of Delaunay flips on hyperbolic surfaces

only one vertex then ∆(T) and the diameter of any other such domain differ by a constant
factor at most. In the experiments, we will thus use the domain that naturally appears.

In this paper, we experimentally study the dependence of the number of flips on ∆(T)
(Section 5), for surfaces of genus two. We suspect that the factor ∆(T)6g−4 is largely over-
estimated. We focus on triangulations having only one vertex, both because the dependence
on the number of vertices is clear, and because we are motivated by the abovementioned
preprocessing aspect of the algorithm.

Our setup for experiments relies on the representation of genus two surfaces by octagons
in H (Section 2.3). We obtain input triangulations with a large diameter by twisting the
abovementioned octagons (Section 4). The data structure we use offers a representation of
a triangulation that intrinsically lies on the surface (Section 3).

2 Background

2.1 Hyperbolic surfaces
Consider a closed oriented hyperbolic surface S (i.e., a connected compact oriented surface
without boundary) of genus 2 and the underlying topological surface S2. Given a hyperbolic
structure h on S, associated to a metric of constant curvature −1, the surface S = (S2, h)
is isometric to the quotient H/G, where H is the hyperbolic plane and G is a (non-Abelian)
discrete subgroup of the isometry group of H isomorphic to the fundamental group π1(S2).

The universal cover of S is isometric to H equipped with a projection ρ : H→ S that is
a local isometry. The group G acts on H, so that for any p ∈ S, ρ−1(p) is an orbit under
the action of G. A lift p̃ of a point p ∈ S is one of the elements of the orbit ρ−1(p).

We use the Poincaré disk model, in which H is represented as the open unit disk D ⊂ C.

2.2 Triangulations and flips on hyperbolic surfaces
We call triangulation T of a hyperbolic surface S any geodesic embedding of an undirected
graph with a finite number of vertices onto S such that each resulting face is homeomorphic
to an open disk and is bounded by exactly three distinct edge-embeddings. The lift T̃ of
T is the (infinite) triangulation of H whose vertices and edges are the lifts of the vertices
and the edges of T . A Delaunay triangulation T of S is a triangulation whose lift T̃ is a
Delaunay triangulation in H; for each face t of T and any of its lifts t̃, the open disk in D
circumscribing t̃ contains no vertex of T̃ .

Lifting an edge e of T to some ẽ, together with the two triangles incident to ẽ in the
lifted triangulation T̃ , we say that e is Delaunay-flippable if the open disks of these triangles
contain the fourth vertex of the quadrilateral they form. In this case, the geodesic segment
ẽ′ that is the other diagonal of the quadrilateral is contained in it. The Delaunay flip of e in
T consists in replacing ẽ by ẽ′ and projecting it back to S by ρ. A Delaunay flip algorithm
takes as input a triangulation of S and flips Delaunay-flippable edges (in any order) until
there is none left. Such an algorithm terminates and outputs a Delaunay triangulation [7].

2.3 Admissible loosely-symmetric octagons
We use a slight extension of a set of parameters introduced by Aigon-Dupuy, Buser et al. [1],
who proved that any closed hyperbolic surface of genus 2 has a fundamental domain that is
an octagon in D. This versatile representation allows us to easily construct and manipulate
surfaces in our experiments.

V. Despré, L. Dubois, B. Kolbe, M. Teillaud 33:3

We say that a hyperbolic octagon P is loosely-symmetric if the opposite sides of P are
isometric and the opposite interior angles of P are equal. If moreover the hyperbolic area of
P is 4π then P is admissible. Clearly, the symmetric octagons introduced by Aigon-Dupuy,
Buser et al. [1] are loosely-symmetric and the notions of admissibility coincide. Identifying
the opposite sides of an admissible loosely-symmetric octagon gives a closed hyperbolic
surface of genus 2 [3, Theorem 1.3.5]. Each such surface can be obtained this way [1]. We
refer to the full paper [5, Section 3.2] for details and computations.

3 Data structure

Though an ad hoc data structure was previously proposed for flipping triangulations [7], we
choose to use combinatorial maps [10, Section 3.3], which are commonly used to represent
graphs embedded on a surface. The data structure we use offers a representation of the trian-
gulation that intrinsically lies on the surface, while the earlier data structure [7, Section 4.1]
stuck to specific representatives of all vertices and faces of the lifted triangulation.

For our experiments, we use the flexible implementation of combinatorial maps that is
publicly available in cgal [4]. The dart (or flag) is the central object in a combinatorial
map: it gives access to all incidence relations of an edge of the graph (see Figure 1).

β1

β2

Figure 1 A dart in a combinatorial map (bold).

The geometric information for the triangulation is stored as a cross-ratio for each edge.
Recall that the cross-ratio of four pairwise-distinct points in H represented by z1, z2, z3, z4 ∈
D is the complex [z1, z2, z3, z4] = (z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2) [2]. Let Im [·] denote the imaginary
part of a complex. Cross-ratios are suitable for a flip algorithm, due to their well-known
property: assuming that z1, z2, z3, z4 are counterclockwise, Im [z1, z2, z3, z4] > 0 if and only
if z4 lies in the open disk circumscribing (z1, z2, z3).

Given an edge e of a triangulation T of S we consider a lift ẽ = (ũ1, ũ3) of e in D
and the other vertices ũ2 and ũ4 of the two faces incident to ẽ in T̃ , numbering vertices
counterclockwise. The cross-ratio RT (e) is defined as [ũ1, ũ2, ũ3, ũ4]; it is independent of the
choice of the lift of e, as the cross-ratio is invariant under orientation preserving isometries
of D. An edge e of T is Delaunay-flippable if and only if Im [RT (e)] > 0.

Note that in our experiments, the lifts in D are only used to initialize the cross-ratios of a
given input triangulation T ; they are ignored during the flips, thus preserving the property
that the data structure only considers the embedding of the triangulation on the surface.
However, in order to be able to recover a lift in D in the end, e.g., for drawing a representation
in D of the final Delaunay triangulation, we need to maintain an anchor during flips. The

EuroCG’22

33:4 Experimental analysis of Delaunay flips on hyperbolic surfaces

anchor A = (δ, a1, a2, a3) consists in some dart δ, chosen arbitrarily, together with a triple
(a1, a2, a3) of points in D that are the vertices of a lift of the face containing δ.

A triangulation T is thus represented by (M,F,A), where M is the combinatorial map,
F maps edges of M to their cross-ratios, and A is the anchor. We refer to the full paper [5,
Section 3.4] for details on how to update the data structure during a flip.

4 Generating input for the experiments

We generate input for the Delaunay flips algorithms by triangulating admissible loosely-
symmetric octagons. An algorithm [5, Appendix C.2] produces such octagons whose vertices
are represented in D by complex numbers with rational real and imaginary parts. We proved
a density result [5, Theorem 2] on such rational coordinates allowing us to run experiments
using rational numbers only. This is crucial as computing with algebraic numbers is prob-
lematic in practice [5, Section 4.1]. For the experiments in Section 5, we need to generate
surfaces with large diameter. Our attempts to directly compute such surfaces, taking the
diameter as a parameter, were not conclusive. An effective approach consists in starting
by generating octagons with a small diameter, then we twist them many times to obtain
octagons with a very large diameter. This way we will also study the dependency of the
number of flips on those twists.

4.1 Twisting admissible loosely-symmetric octagons
Given j ≥ 3 and z0, . . . , zj ∈ D in geodesically convex position, G[z0, . . . , zj] denotes the
hyperbolic polygon whose vertices are z1, . . . , zj . Let G[z0, . . . , z7] be an admissible loosely-
symmetric octagon. We will consider the Dehn twists [9] along the axes of its side-pairings, as
follows (see Figure 2). For every k ∈ {0, . . . , 7} let τk be the orientation preserving isometry
of D satisfying τk(zk+5) = zk and τk(zk+4) = zk+1. Let t ∈ {0, . . . , 7}. For k ∈ {0, . . . , 7}
we set

z′k =
{
τt(zk) if k − t ∈ {1, 2, 3, 4} mod 8,
zk otherwise.

The polygon G[z′0, . . . , z′7] is an admissible loosely-symmetric octagon defining a surface
isometric to the one defined by G[z0, . . . , z7] [5, Section 3.2]. We say that (z′0, . . . , z′7) is
obtained by t-twisting (z0, . . . , z7).

c

z′t = zt
zt

zt+1
z′t+1

zt+1

c c

Figure 2 (Left) A Dehn twist along the curve c modifies the blue curve as shown. (Right) A
t-twist on an admissible loosely-symmetric octagon.

For a word t = t1 . . . tm, we define the t-twist as the composition of the tk-twists, k =
1, . . . ,m, in this order. We pick t1, . . . , tm in {0, . . . , 3}m instead of {0, . . . , 7}m to consider
the generators without their inverses and quickly obtain large diameters. Indeed for k ∈ Z
we have τk+4 = τ−1

k so a (t+ 4)-twist is the inverse of a t-twist (the indices are modulo 8).

V. Despré, L. Dubois, B. Kolbe, M. Teillaud 33:5

4.2 Generating triangulations
We generate a large number of triangulations having a large diameter following three steps.
In the full paper [5, Section 5] a fourth step ([step 2]) enables to generate input triangula-
tions with more than one vertex. This step is omitted here as not used in this version.

[step 1] We construct an initial admissible symmetric octagon O.
[step 3] We choose m ≥ 0 and a sequence t = t1 . . . tm of twists.
[step 4] We construct an admissible loosely-symmetric octagon O′ by t-twisting O and build the

input triangulation T by first cutting O′ into 5 triangles and then identifying the edges
of the resulting triangulation that correspond to opposite sides of O′.

We refer to the full paper [5, Section 5] for details on these steps. The triangulation T of
the hyperbolic surface defined by O has 1 vertex, 9 edges and 5 faces.

We will study two kinds of twists sequences (step 3) in Section 5:
A power sequence is represented by a word um for some u ∈ {0, . . . , 3}.
In a random sequence, t1, . . . , tm are chosen uniformly and independently in {0, . . . , 3}.

Section 5 will refer to the above three steps. Before doing any experiment Step 1 was
applied a thousand times to construct octagons Q1, . . . , Q1,000; the experiments consider the
first nq octagons. We also constructed (for step 3) some 10,000 random sequences of twists
noted S1, . . . , S10,000, each of length 10, of which some of the experiments will use the first
ns sequences. The values of nq, ns will be specified in the description of each experiment.

5 Exploring the relationship between number of flips and diameter

As recalled in Section 2.2, a Delaunay flip algorithm can flip Delaunay-flippable edges in
any order. In the full paper [5, Section 6] we studied various orders, and observed that
the number of flips obtained by the naive strategy is close to the minimum: we choose
the first Delaunay-flippable edge given by the iterator DartRange::iterator of the cgal
combinatorial map. As it runs much faster than all other strategies, we stick to it.

Two sets of experiments will be carried out: experiments I and J use power sequences
while experiments K, L, and M use random sequences. We use the notations of Section 4.2.

Experiments I and J are parameterized by the number nq of octagons: nq = 1 in I and
nq = 1, 000 in J. We perform step 4 with O = Qk and t1 . . . tm = u3l for k ∈ {1, . . . , nq},
u ∈ {0, 1, 2, 3}, l ∈ {0, . . . , 50} and we compute the approximate hyperbolic diameter �k,l,u

of O′. We run the Delaunay flip algorithm, counting the number αk,l,u of flips that were
needed by the algorithm to terminate. Figure 3 shows the result.

For experiments K, L, and M the values of (nq, ns) are respectively (1, 10.000), (10, 1.000)
and (1.000, 100). We first construct the set X containing the 11 prefixes of Sk (including the
empty sequence) for every k ∈ {1, . . . , ns}. Then for every k ∈ {1, . . . , nq} and every s ∈ X,
we perform step 4 with O = Qk, and t1 . . . tm = s. We compute the approximate hyperbolic
diameter �k,s of O′. We run the Delaunay flip algorithm and count the number αk,s of
flips that were needed by the algorithm to terminate. Figure 4 shows αk,s as a function of
10 ln(�k,s) for k ∈ {1, . . . , nq}, s ∈ X.

Our experiments show that controlling the sequence of twists actually allows us to control
the number of flips needed by the flip algorithm. Indeed, in the case of power sequences, we
observe that the number of flips is linear in the diameter of the input triangulation: Delaunay
flips untwist the triangulation by performing a constant number of flips per iteration of the
twist. However, for random sequences, we observe that the number of flips is logarithmic in

EuroCG’22

33:6 Experimental analysis of Delaunay flips on hyperbolic surfaces

Figure 3 Experiments I and J: number of flips αk,l,u with respect to the (approximate) diameter
�k,l,u, k ∈ {1, . . . , nq}, l ∈ {0, . . . , 50}, u ∈ {0, 1, 2, 3}

Figure 4 Experiments K, L, and M: number of flips αk,s with respect to 10 ln(�k,s), k ∈
{1, . . . , nq}, s ∈ X; the maximum diameter is about 1500

V. Despré, L. Dubois, B. Kolbe, M. Teillaud 33:7

the diameter of the input triangulation. These results can be interpreted using insights on
the mapping class group [5, Section 7.4].

In light of our results, we conjecture that the complexity of the Delaunay flip algorithm
is worst-case linear in the diameter of the triangulation, and logarithmic on average.

Acknowledgments. The authors want to thank Vincent Delecroix, Matthijs Ebbens, Hugo
Parlier, Jean-Marc Schlenker, and Gert Vegter for helpful discussions over many years.

References
1 Aline Aigon-Dupuy, Peter Buser, Michel Cibils, Alfred F. Künzle, and Frank Steiner. Hy-

perbolic octagons and Teichmüller space in genus 2. Journal of mathematical physics,
46(3):033513, 2005. doi:10.1063/1.1850177.

2 M. Berger. Geometry (vols. 1-2). Springer-Verlag, 1987.
3 Peter Buser. Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston,

1992. doi:10.1007/978-0-8176-4992-0.
4 Guillaume Damiand. Combinatorial maps. In CGAL User and Reference Manual.

CGAL Editorial Board, 5.2.1 edition, 2021. URL: https://doc.cgal.org/5.2.1/Manual/
packages.html#PkgCombinatorialMaps.

5 Vincent Despré, Loïc Dubois, Benedikt Kolbe, and Monique Teillaud. Experimental analy-
sis of Delaunay flip algorithms on genus two hyperbolic surfaces. Research report, INRIA,
December 2021. URL: https://hal.inria.fr/hal-03462834.

6 Vincent Despré, Benedikt Kolbe, and Monique Teillaud. Representing infinite hyperbolic
periodic Delaunay triangulations using finitely many Dirichlet domains. Research report,
INRIA, July 2021. URL: https://hal.inria.fr/hal-03045921.

7 Vincent Despré, Jean-Marc Schlenker, and Monique Teillaud. Flipping geometric trian-
gulations on hyperbolic surfaces. In Proceedings of the 36th International Symposium on
Computational Geometry (SoCG’20), pages 35:1–35:16, 2020. doi:10.4230/LIPIcs.SoCG.
2020.35.

8 Iordan Iordanov and Monique Teillaud. Implementing Delaunay triangulations of the Bolza
surface. In Proceedings of the 33rd International Symposium on Computational Geometry
(SoCG’17), pages 44:1–44:15, 2017. doi:10.4230/LIPIcs.SoCG.2017.44.

9 Joseph Maher. Random walks on the mapping class group. Duke Mathematical Journal,
156(3):429–468, 2011. doi:10.1215/00127094-2010-216.

10 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins University
Press, Baltimore, 2001.

11 Georg Osang, Mael Rouxel-Labbé, and Monique Teillaud. Generalizing CGAL periodic
Delaunay triangulations. In Proceedings 28th European Symposium on Algorithms, pages
75:1–75:17, 2020. Best Paper Award (Track B: Engineering and Applications). doi:10.
4230/LIPIcs.ESA.2020.75.

EuroCG’22

Unique Sink Orientations of Grids is in Unique End
of Potential Line
Michaela Borzechowski∗1 and Wolfgang Mulzer†2

1 Institut für Informatik, Freie Universität Berlin
michaela.borzechowski@fu-berlin.de

2 Institut für Informatik, Freie Universität Berlin
mulzer@inf.fu-berlin.de

Abstract
The complexity classes Unique End of Potential Line (UEOPL) and its promise version PromiseUEOPL
were introduced in 2018 by Fearnly et al. [4]. PromiseUEOPL captures search problems where the
instances are promised to have a unique solution. UEOPL captures total search versions of these
promise problems. The promise problems can be made total by defining violations that are returned
as a short certificate of an unfulfilled promise.

Grid-USO is the problem of finding the sink in a grid with a unique sink orientation. It was
introduced by Gärtner et al. [7]. We describe a promise preserving reduction from Grid-USO to
Unique Forward EOPL, a UEOPL-complete problem. Thus, we show that Grid-USO is in UEOPL
and its promise version is in PromiseUEOPL.

Related Version www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Borzechowski21.pdf

1 Introduction

Many tasks in computer science are naturally formulated as search problems, where the goal
is to find a “solution” for a given instance. Promise problems, where it is guaranteed that we
see only instances that have a certain property, are also an intuitive approach to formulate
certain tasks. Nonetheless, standard complexity theory works with decision problems, and
it may happen that the computational complexity of the decision problem and the search
problem are not equivalent. In particular, this is the case for problems for which it is
guaranteed that a solution always exists. The complexity of such total search problems has
been studied since at least 1991, when Megiddo and Papadimitriou defined the class Total
Function NP (TFNP) [9]. Here, we consider a subclass of TFNP, namely the complexity
class Unique End of Potential Line (UEOPL). It contains some interesting problems from
computational geometry for which no polynomial time algorithm is known but which are
unlikely to be NP-hard, for example α-Ham-Sandwich [3] and Arrival [6]. Currently
UEOPL contains one complete problem: One-Permutation-Discrete-Contraction.
The problem Grid-USO is an abstraction of the simplex algorithm executed on a general
P-Matrix linear complementarity problem. Since UEOPL was introduced only recently, in
2018, by Fearnly et al. [4], the knowledge about this class is still very limited. We show that
the problem Grid-USO lies in UEOPL, making progress towards elucidating the nature of
this class and the problems in it. In particular, with more problems that are known to lie in
UEOPL, it becomes more likely that additional complete problems are found.

∗ Supported by DFG within the Research Training Group GRK 2434 Facets of Complexity.
† Supported in part by ERC StG 757609.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

34:2 Grid-USO is in UEOPL

2 Unique End of Potential Line

A Unique Forward EOPL instance is defined by two circuits S : {0, 1}d → {0, 1}d and
c : {0, 1}d → {0, 1}m. A circuit is a compact polynomial sized representation of information
which in a map would be exponentially large (for a more formal definition, see [1, Definition
6.1]). The circuits represent a directed graph G. The vertices of G are bit strings v ∈ {0, 1}d
with S(v) 6= v, and there is a directed edge from a node v to a node w if and only if S(v) = w

and c(w) > c(v) (where the result of c is interpreted as an m-bit positive integer). Thus, each
node in G has out-degree of at most 1, and the circuit S computes the candidate successor
of a node. The circuit c assigns a positive cost (also called potential) from {0, . . . , 2m − 1}
to every node, and all edges go in the direction of strictly increasing cost. Furthermore, we
define that the bit string 0d is a node of G, and that c(0d) = 0. These properties ensure
that G is a collection of directed paths, which we call lines, and that 0d is the start vertex
of a line. Our computational task is as follows: if the nodes of G form a single line (that
necessarily starts in 0d), then we should find the unique end node of this line — the sink.
Otherwise, we should find a violation certificate that shows that G does not consist of a
single line. Unique Forward EOPL is a total search problem. There always exists a valid
sink or a violation. Note that there might exist a valid sink and a violation simultaneously.
The promise version of Unique Forward EOPL is: under the promise that no violations
exist for the given instance, find the unique end of the line. The formal definition of the total
search problem Unique Forward EOPL is as follows:

I Definition 2.1. ([5, Definition 10]) Let d,m ∈ N+ with m ≥ d. Given Boolean circuits
S : {0, 1}d → {0, 1}d and c : {0, 1}d → {0, 1, . . . , 2m − 1} which must have the property that
S(0d) 6= 0d and c(0d) = 0, find one of the following:

(UF1) A bit string v ∈ {0, 1}d with S(v) 6= v and either S(S(v)) = S(v) or c(S(v)) ≤ c(v).
Then, S(v) is not a valid node and v is a sink node in G and thus a valid solution.

(UFV1) Two bit strings v, w ∈ {0, 1}d with v 6= w, S(v) 6= v , S(w) 6= w and either (a)
c(v) = c(w) or (b) c(v) < c(w) < c(S(v)). Then, v and w are two different nodes
that violate the promise of the strictly increasing potential.

(UFV2) Two nodes v, w ∈ {0, 1}d such that v is a solution of type (UF1), v 6= w, S(w) 6= w

and c(v) < c(w). This encodes a break in the line. The node v is the end of one
line, but there exists a different line with a node w that has higher cost than v.

Two examples of an instances with no violations are shown in Figure 1 and an instance with
all types of violations can be seen in Figure 2.

I Definition 2.2. ([5, Definition 7]) Let R be a search problem, and IR ⊆ {0, 1}∗ be the set
of all instances for R. For an instance I ∈ IR, let SR(I) be the set of candidate solutions of
I. A search problem R can be reduced by a promise preserving Karp reduction in polynomial
time to a search problem R′ if there exist two polynomial-time functions f : IR → IR′ and
g : IR × SR′(f(I))→ SR(I) such that if s′ is a violation of f(I), then g(I, s′) is a violation
of I and if s′ is a valid solution of f(I), then g(I, s′) is a valid solution or a violation of I.
We are given an instance of R from which we construct with f an instance of problem R′. If
we then solve R′, we can re-translate the solution from R′ to a solution of R with g. Promise
preserving reductions are transitive.

I Definition 2.3. ([4]) The search problem complexity class UEOPL contains all problems
that can be reduced in polynomial time to Unique Forward EOPL. Thus, the complexity

M. Borzechowski, W. Mulzer 34:3

Candidate solution space with d = 2.

00

c(00) = 0

11

c(11) = 1

01

c(01) = 2

10

c(10) = 3
S S S

S

00Start node 01 End of line — Solution of type (UF1)
because S(01) = S(S(01))

00

c(00) = 0

11

c(11) = 1

01

c(01) = 2

10

c(10) = 3
S S

S
S

00Start node 01 End of line — Solution of type (UF1)
because c(01) = 2 ≥ 0 = c(S(01))

Figure 1 Unique Forward EOPL instances that form a valid line without violations.

Candidate solution space: d = 3

000

c(000) = 0

011

c(011) = 1

001

c(001) = 1

100

c(100) = 5

010

c(010) = 1

111

c(111) = 3

101

c(101) = 4

110

c(110) = 0

100 010 101S S S S
S

SS

S
(UFV1) b)

(UFV1) a)

(UFV2)

Figure 2 A Unique Forward EOPL instance line with all types of violations.

class UEOPL captures all total search problems where the space of candidate solutions has
the structure of a unique line with increasing cost. The relationship of UEOPL to other
classes is shown in Figure 3.

PromiseUEOPL is the promise version of the search problem class UEOPL. When con-
tainment of a search problem R in UEOPL is shown via a promise preserving reduction, the
promise version of R is contained in PromiseUEOPL.

3 Unique Sink Orientations of Grids

I Definition 3.1. ([7, p. 206]) Let n, d ∈ N+. Let M = {1, . . . , n} be an ordered set of
integers called directions and K = (κ1, . . . , κd) be a partition ofM with κi being ordered and
|κi| ≥ 2 for all dimensions i = 1, . . . , d. The d-dimensional grid Γ is the undirected graph
derived from Γ = (M,K) with a set of vertices V := {v ⊆M | i = 1, . . . , d, |v ∩ κi| = 1} and
a set of edges E := {{p, q} | p, q ∈ V, |p⊕ q| = 2}, where ⊕ denotes the symmetric difference.

I Definition 3.2. ([7, p. 211]) The outmap function σ : V → Powerset(M) defines an
orientation of the edges of a grid Γ. For each point p ∈ V , the set σ(p) contains all directions
to which p has outgoing edges. The edges of p for all other directions are incoming. In
particular, we have σ(p) ∩ p = ∅. An outmap σ is called unique sink orientation of Γ if all
nonempty induced subgrids of Γ have a unique sink.

I Definition 3.3. ([7, Definition 2.13]) The refined index rσ of an outmap σ with rσ : V →
{0, . . . , |κ1| − 1} × · · · × {0, . . . , |κd| − 1} is defined as: rσ(p) := (|σ(p) ∩ κ1|, . . . , |σ(p) ∩ κd|).

EuroCG’22

34:4 Grid-USO is in UEOPL

TFNP

PPAD

PLS

EOPL = CLS = PPAD ∩ PLS

UEOPL

Figure 3 Relation of UEOPL to other search problem complexity classes according to [8].

The refined index assigns to each point a d-tuple containing at index i the number of outgoing
edges in dimension i.

I Theorem 3.4. ([7, Theorem 2.14]) If σ is a unique sink orientation, then rσ is a bijection.

κ1

κ3

κ2

1 2

5

6

7

3
4 135

136

137

145

146

147

235

236

237

245

246

247

Figure 4 Example grid Γ with M = {1, . . . , 7}, κ1 = {1, 2}, κ2 = {3, 4} and κ3 = {5, 6, 7}. The
orientation of the edges is a unique sink orientation. The unique sink is the point (147). The outmap
of point (246) is σ(246) = {5, 7} and its refined index is rσ(246) = (0, 0, 2).

I Definition 3.5. ([2, Definition 6.1.23]) The search problem Grid-USO is defined as follows:
Given a d-dimensional grid, represented implicitly by Γ = (M,K), and a circuit computing
an outmap function σ : V → Powerset(M), find one of the following:

M. Borzechowski, W. Mulzer 34:5

(GU1) A point p ∈ V with σ(p) = ∅. The point p is a sink.

(GUV1) A point p ∈ V with p ∩ σ(p) 6= ∅. The point p has a directed edge to itself, thus it
is a certificate of σ not being a valid unique sink orientation.

(GUV2) An induced subgrid Γ′ = (M′,K ′) with σ′(p) := σ(p)∩M′ and two points p, q ∈ V ′
with p 6= q and rσ′(p) = rσ′(q). The points p, q and the subgrid Γ′ are a polynomial time
verifiable certificate that rσ′ is not a bijection and thus, σ not a unique sink orientation.

Grid-USO is a total search problem. Under the promise that the outmap σ is a unique
sink orientation, the unique sink will be found and returned as solution (GU1). If σ is not a
unique sink orientation, there exists at least one of the violations (GUV1) or (GUV2). An
example instance can be seen in Figure 4. Unique sink orientations on grids were introduced
by Gärtner et al. [7] as a combinatorial abstraction of linear programming over products of
simplices and the generalized linear complementarity problems over P-matrices. There is no
polynomial time algorithm known to solve Grid-USO.

4 Grid-USO is in UEOPL

I Theorem 4.1. Grid-USO can be reduced via a promise preserving reduction to Unique
Forward EOPL.

Proof. Given an instance I = (Γ, σ) of Grid-USO, we construct one instance of Unique
Forward EOPL I ′ = (S, c) such that solutions and violations can be mapped accordingly.

Idea of the reduction. We construct a line following algorithm that finds for any given
grid its unique sink or a violation, such that each step can be calculated in polynomial time.
The vertices of I ′ are encodings of the states of this line following algorithm. The successor
function S calculates the next state. To do so, it is allowed to call the outmap function σ
from the Grid-USO instance.

I Lemma 4.2. ([2, Lemma 6.3.5]) Given an outmap σ on a grid Γ, two disjoint induced
subgrids Γ′ and Γ′′ of Γ whose union is again a valid subgrid, and their respective unique
sinks x and y, then (a) the unique sink of the grid (Γ′ ∪ Γ′′) is either x or y or (b) σ is not
a unique sink orientation and we found a violation of Grid-USO.

The line following algorithm starts at the bottom left point of the grid. It iterates over
all directions, in each step looking at the subgrid that is formed by the union of the previous
directions (e.g., the subgrid colored in blue in Figure 5) and its sink x. By adding the next
lexicographic direction, we add another subgrid (e.g., the yellow subgrid in Figure 5) for
which we can find the sink y recursively. The sink of the grid which is the union of the blue
and the yellow subgrids is either x or y. None of the other nodes in the subgrids is a sink of
the respective subgrid, and thus not a sink of the combined grid. If neither x nor y is a sink,
then it can be proven that there is a refined index violation of type (GUV2).

EuroCG’22

34:6 Grid-USO is in UEOPL

κ1

κ3

κ2

1 2

5

6

7

3
4 135

136

137

145

146

147

235

236

237

245

246

247147

245

Figure 5 Step of the line-following algorithm: either (245) or (147) is the sink of the whole grid.

Algorithm 1: find_sink(σ,M, κ1, . . . , κd)
1 x:= ((κ1)1, . . . , (κd)1);
2 for i ∈M do
3 if i /∈ σ(x) // x is also sink in i’th subgrid then
4 continue with next i;
5 Let j be the index such that i ∈ κj ;
6 M′ := (M\ κj) ∪ {i} ;
7 y:= find_sink(σ,M′, (κ1 ∩M′), . . . , (κd ∩M′)) // Search recursively for

sink in yellow subgrid ;
8 for k ∈ κj ∧ k ≤ i do
9 if k ∈ σ(y) // If y is not sink in i’th subgrid then

10 return Violation;
11 x:= y;
12 return x;

Construction of the vertices. Each node of I ′ is the bit-encoding of an (n+ 1)-tuple of
points of the grid. Let V ′ := (V ∪ {⊥})n+1. Its contents encode the state of Algorithm 1.
The points stored in the vertices are the unique sinks of the subgrids in which Algorithm 1
searches recursively. The position corresponds to the directions through which the algorithm
iterates. Thus, we can identify for each tuple which step of the algorithm it represents. Let
the start node be the (n + 1)-tuple consisting of the bottom left point of the grid and n

many ⊥’s: (((κ1)1, . . . , (κd)1),⊥, . . . ,⊥). We define the function isVertex which checks
in polynomial time, whether any given (n + 1)-tuple is a valid step of Algorithm 1, the
representation of a Grid-USO violation or not a proper encoding at all.

Construction of the successor function S. The successor function S checks for the given
node whether it encodes a valid step of Algorithm 1 and if so, calculates the next step in
polynomial time. Each step, including the steps of the recursive calls, is a separate node on
the resulting unique line. The line corresponds to traversing the tree of the call hierarchy.

M. Borzechowski, W. Mulzer 34:7

Let S : V ′ → V ′. Given a vertex v = (p1, . . . , pn, pn+1), let S(v) be:

1. If isVertex(v) says v is not a valid encoding, then set S(v) := v.
2. If isVertex(v) says v is a valid encoding and not a violation:

a. If the node has the form v = (⊥, . . . ,⊥, pn+1) it encodes the end of the for-loop in line
2 of Algorithm 1. Thus, the algorithm returns the sink pn+1. Thus, set S(v) := v to
indicate the end of the line.

b. If the node has the form v = (⊥, . . . ,⊥, pi, pi+1, pi+2, . . . , pn+1), then pi is the sink x
of the i’th iteration of the for-loop in line 2.
i. If the check in line 3 is true, we know that x is also the sink of the next bigger

subgrid. Thus, set S(v) := (⊥, . . . ,⊥,⊥, pi, pi+2, . . . , pn+1).
ii. If the check in line 3 is false, then we know that x is not the sink of the next

bigger subgrid. By Lemma 4.2, we must search recursively for the sink of the yellow
subgrid. But we want to remember x, so that we can identify a violation if one
exists. Thus, set S(v) := (s,⊥, . . . ,⊥, pi, pi+1, . . . , pn+1), where s is the start point
of the subgrid in the recursive call.

Construction of the cost function c. Let ω = n+ 2 and h : V ′ × {1, ..., n} × {1, . . . , d} →
{0, . . . , ω − 1} a help function with

h(v, i, j) :=

0 if pi = ⊥,
ω − 1 if σ(pi) ∩ {1, . . . , i} = ∅, i.e., step (2.b.i) holds,
(pi)j otherwise.

(1)

Because the grid works with ordered sets, lexicographically bigger points have a higher value
in h. Also, if two points are sink of their corresponding subgrid, they have the same value
in h. The help values of each point and every dimension are scaled and summed up. The
cost of a node then is the sum of these scaled values, where each summand is scaled again to
enforce that the value for a point at position i which is not ⊥ is always higher than the sum
of all values of points with indices smaller than i. Thus, we always give steps later on in the
algorithm higher cost.

c(v) :=

n∑

i=1

ωi−1 ·

d∑

j=1
ωjh(v, i, j)

 +

{
0 if pn+1 = ⊥,
ωnd+1 if pn+1 6= ⊥.

(2)

Correctness The successor function and the cost function can be constructed in polynomial
time. It can be proven that every solution of type (GU1) is only mapped to solutions of
type (UF1). Every violation of the created Unique Forward EOPL instance can be
mapped back to a violation of the Grid-USO instance. Therefore this reduction is promise
preserving. It follows that Grid-USO is in UEOPL and the promise version of Grid-USO
is in PromiseUEOPL. The full proof can be found in [2, Proof of Theorem 6.3.1]. J

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, USA, 1st edition, 2009.
2 Michaela Borzechowski. The complexity class unique end of potential line. Master’s the-

sis, 2021. URL: https://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/
Borzechowski21.pdf.

EuroCG’22

34:8 Grid-USO is in UEOPL

3 Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational complexity of
the α-ham-sandwich problem. arXiv preprint arXiv:2003.09266, 2020.

4 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential
line. CoRR, abs/1811.03841, 2018. URL: http://arxiv.org/abs/1811.03841.

5 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential
line. Journal of Computer and System Sciences, 114:1 – 35, 2020. doi:https://doi.org/
10.1016/j.jcss.2020.05.007.

6 Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubáček, Karel Král, Hagar Mosaad,
and Veronika Slívová. ARRIVAL: next stop in CLS. CoRR, abs/1802.07702, 2018. URL:
http://arxiv.org/abs/1802.07702.

7 Bernd Gärtner, D Walter Jr, Leo Rüst, et al. Unique sink orientations of grids. Algorithmica,
51(2):200–235, 2008. doi:https://doi.org/10.1007/s00453-007-9090-x.

8 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Further collapses in tfnp, 2022. arXiv:2202.07761.

9 Nimrod Megiddo and Christos H Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991. doi:
https://doi.org/10.1016/0304-3975(91)90200-L.

On the Number of Optimal Paths in Multicriteria
Route Planning

Florian Barth1, Stefan Funke2, and Claudius Proissl3

1 Universität Stuttgart
barth@fmi.uni-stuttgart.de

2 Universität Stuttgart
funke@fmi.uni-stuttgart.de

3 Universität Stuttgart
proissl@fmi.uni-stuttgart.de

Abstract
Graphs with multiple edge costs arise naturally in the route planning domain when apart from
travel time other criteria like fuel consumption or positive height difference are also objectives to be
minimized. In such a scenario, this paper investigates the number of ’optimal’ paths between a given
source-target pair s, t. We prove a substantial gap between the number of Pareto-optimal and the
number of unique shortest paths in a natural model of linear aggregation of the cost metrics. While
there are simple graph instances exhibiting an exponential number of Pareto-optimal paths even for
only 2 cost metrics, we show that the number of unique shortest st-paths is subexponential (for a
fixed number of cost metrics). We can create graphs, however, where the number of unique shortest
paths is exponential in the number of metrics. The underlying arguments are highly geometric in
that they rely, e.g., on the consideration of hyperplane arrangements in the parameter space.

1 Introduction

In this paper we consider the problem of counting ’optimal’ paths in multicriteria networks,
i.e., graphs with several scalar values as edge costs. More precisely, we are given a graph
G(V, E) and a function c : E → Rd

≥0 which assigns each edge d cost values which are to
be minimized. We refer to the value d as the dimension of G. A path π(s, t) = e1e2 . . . ek

from node s to node t in V (also called st-path) is a connected sequence of edges of E with
e1 = (s, ·) and ek = (·, t). We define its cost vector naturally as the sum

∑k
i=1 c(ei).

For the remainder of this paper, we fix two nodes s and t, and are interested in the
number of ’optimal’ paths between them. We use the notion of optimality that is common
in the context of personalized route planning [5, 4]. Here the idea is that every driver has
a weighting α ∈ [0, 1]d with

∑
αi = 1 which quantifies the importance of each one of the

d metrics. For a path π and preference vector α, the aggregated cost of π is then defined
as c(π, α) := c(π)T α. An st-path π is called optimal for preference α if π has smallest
aggregated cost from s to t with respect to α. Furthermore, we call a path π a shortest path
if it is optimal for at least one preference. Path π from s to t is called unique shortest path
if there exists an α such that c(π, α) has strictly smaller cost than any other st-path with
respect to α. [2] showed that in the cost space, the unique shortest paths correspond to the
extreme points of (the lower left part of) the convex hull of all Pareto-optimal paths (see
Figure 1). An st-path is Pareto-optimal if one cannot find any other st-path that is better in
at least one metric and not worse in all other metrics.
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

35:2 On the Number of Optimal Paths

cost1

cost2

1

1

5

5

Figure 1 Paths in cost space (black and red dots); Pareto-optimal paths (red); (lower left part of)
the boundary of the convex hull of all Pareto-optimal paths in green; unique shortest paths/extreme
points of the CH circled in blue.

Related Work
The fact that the number of Pareto-optimal paths can be exponential in the graph size can be
considered folklore. Both, Pareto-optimal paths as well as unique shortest paths have been
instrumented to create alternative route recommendations. The former approach, pursued
e.g. in [7, 3, 6], unfortunately only seems to be viable on rather small graphs due to the
too rapidly growing number of Pareto-optimal paths. Restricting to unique shortest paths,
though, as in [4], has been shown to be feasible in different practical applications [2, 1].

Our Contribution
In this paper we show that while there are graphs with an exponential number of Pareto-
optimal (and shortest) paths (even for dimension d = 2), the number of unique shortest paths
is in O(n2d

√
n+d+1) (n is number of nodes), which is subexponential for fixed d. On the other

hand we construct d-metric graphs with Ω(nd−1) unique shortest paths.

2 Preliminaries

In this section we introduce the notions used in Section 3 and show some basic properties.

▶ Definition 2.1. The set of all possible preferences

Pd := {(α1, α2, . . . , αd) ∈ Rd
+ |

d∑

i=1
αi = 1}

is called d-metric preference space. Note that Pd is a (d − 1)-dimensional simplex.

We simply write P instead of Pd if the dimension is unimportant.

F. Barth, S. Funke and C. Proissl 35:3

▶ Definition 2.2. Given a graph G(V, E) and a path π in G. The set A(π) := {α ∈
P | π is optimal for α} is called the preference polyhedron of π.

The following lemma justifies the chosen term preference polyhedron.

▶ Lemma 2.3. Given a graph G(V, E). For any path π in G the preference polyhedron A(π)
is convex and closed.

Proof. Closure follows from the continuity of the aggregated cost. Regarding convexity,
consider a path π that is optimal for k ∈ N preferences α(1), α(2), . . . , α(k) and any convex
combination β :=

∑k
i=1 γiα

(i) of the preferences induced by a vector γ ∈ [0, 1]k with
∑

γi = 1.
We claim that π is also optimal for preference choice β. The cost of π with preference β can
be written as

c(π, β) = γ1c(π, α(1)) + · · · + γkc(π, α(k))
Assume there is a path π′ with cost(π′, β) < cost(π, β). But then, since π is optimal for each
preference α(i), we know that for every summand we have γicost(π, α(i)) ≤ γicost(π′, α(i)),
which is a contradiction to our assumption cost(π′, β) < cost(π, β). Thus, π is also optimal
for any such β and A(π) is convex. ◀

▶ Definition 2.4. Given a graph G(V, E) and two nodes s and t in V . The set

A(s, t) := {A(π(s, t)) | π is unique shortest path}

is called the preference space subdivision from s to t (see Figure 2).

The following lemma says that counting the unique shortest paths between two nodes s

and t is equal to counting the cells in the preference space subdivision A(s, t) (see Figure 2
for an example).

▶ Lemma 2.5. Given a graph G(V, E). A path π in G is a unique shortest path if and only
if A(π) has non-zero volume.

Proof. Given a shortest path π(s, t). If π is a unique shortest path we find a preference α

such that c(π, α) is strictly less than the aggregated cost of all other st-paths. Since the
aggregated cost is continuous regarding the preference α we can find an ϵ > 0 such that the
sphere with radius ϵ and midpoint α is contained in A(π).

On the other hand, if A(π) has non zero volume, one can find a sphere within A(π) that
does not touch the boundary of A(π). Obviously, for any preference in this sphere π is the
unique shortest st-path. ◀

3 Bounds on the Number of Shortest Paths

In this section we investigate upper and lower bounds on the number of shortest paths and
unique shortest paths.

3.1 Multi-edge Path Graphs
▶ Definition 3.1. A multi-edge path graph is a directed graph G(V, E) with n vertices
V := {v1, v2, . . . , vn} and the property e := (vi, vj) ∈ E ⇒ j = i + 1. Multiple edges
between the same pair of nodes are allowed.

Figure 3 shows an example path graph. There are 2-metric path graphs with n nodes
and 2n − 2 edges that have Θ(2n) shortest paths between v1 and vn. The same statement
holds for Pareto-optimal paths. See Figure 4 for a sketch of the proof.

EuroCG’22

35:4 On the Number of Optimal Paths

Figure 2 Example preference space subdivision (with d = 3) from a real world street network for
bicyclists in Germany. Each cell is a preference polyhedron A(π) of a unique shortest path π.

Figure 3 Example path graph

tvus

(8,0)

(0,8)

(4,4)

(6,2)

(8,0)

(7,1)

4 8 12 16 20 24

4

8

12

16

Figure 4 Each path from s to t in the path graph corresponds to a distinct point on the line
y = 24 − x in the cost space on the right. They are all optimal for αT = (0.5, 0.5). Only (11, 13)
(e.g., for αT = (1, 0)) and (22, 2) are unique shortest.

F. Barth, S. Funke and C. Proissl 35:5

3.2 Preference Spaces of multi-edge Path Graphs
In the following we will show that unique shortest paths behave quite differently.

▶ Lemma 3.2. Given a path graph G(V, E) and a path π in G. Then for the preference
polyhedron A(π) we have

A(π) =
⋂

e∈π

A(e).

Lemma 3.2 implies that in a path graph G we obtain the preference space subdivision
A(v1, vn) by computing the overlay of A(v1, v2), A(v2, v3) and so forth until A(vn−1, vn)
as illustrated in Figure 5. This is the main ingredient of the proof of Lemma 3.3.

v3v2v1

(4/7/50)

(5/5/50)

(7/4/50)

(7/50/4)

(5/50/5)

(4/50/7)

Figure 5 Top: Example graph G with nine unique shortest paths. Bottom: (d − 1)-dimensional
Preference space subdivisions A(v1, v2), A(v2, v3) and A(v1, v3) of G (from left to right). The
preference space subdivision A(v1, v3) is the intersection of A(v1, v2) and A(v2, v3).

▶ Lemma 3.3. Given a d-metric path graph G(V, E). There are O
((

n∆2)d−1
)

unique
shortest paths between any two nodes in G, where ∆ is the maximum node (out)degree in G.

Proof. We first consider two consecutive nodes vi and vi+1 and their preference space
subdivision A(vi, vi+1). For each pair of edges e1, e2 from vi to vi+1 consider the hyperplane

H(e1, e2) := {α ∈ Pd | (c(e1) − c(e2))T
α = 0}.

All boundaries of preference polyhedra in A(vi, vi+1) are supported by such hyperplanes.
Since there are O(∆2) edge pairs from vi to vi+1, the preference polyhedra in A(vi, vi+1)
are separated by O(∆2) hyperplanes. From Lemma 3.2 it follows that the preference space
subdivision A(v1, vn) is the overlay of A(v1, v2), A(v2, v3), . . . , A(vn−1, vn). Therefore,
the preference polyhedra in A(v1, vn) are separated by O(n∆2) hyperplanes. Considering
A(v1, vn) as an arrangement with O(n∆2) hyperplanes it follows that there are O(

(
n∆2)d−1)

cells or preference polyhedra in A(v1, vn) (the preference space Pd is (d−1)-dimensional). ◀

EuroCG’22

35:6 On the Number of Optimal Paths

We show that the upper bound in Lemma 3.3 is tight up to the factor ∆2d−2 by
constructing an arbitrary arrangement of n hyperplanes within the preference space. The
following lemma says that we can in fact construct such arbitrary hyperplanes.

▶ Lemma 3.4. For any halfspace h ⊂ Rd−1 with h ∩ Pd ̸= ∅, there exist a path graph with
two nodes, two edges and respective edge cost vectors such that A(e1) ⊂ h and A(e2) ∩ h has
0 volume.

This can be shown by choosing c(e1), c(e2) appropriately. All that remains is to show that
having n hyperplanes there is an arrangement with Ω(nd−1) cells within the preference space.

▶ Theorem 3.5. There are d-metric path graphs with n nodes, 2n − 2 edges and Θ
(
nd−1)

unique shortest paths between two nodes.

Proof. We know that in general position (d − 1)-dimensional arrangements with n hyper-
planes have Θ

(
nd−1) cells. From Lemma 3.4 we know that we can translate any arrangement

within the preference space into a path graph with two outgoing edges per node. We need
one node and two edges per hyperplane (plus one end node). All that remains is to show that
there are arrangements with Θ

(
nd−1) cells within the preference space. Since the preference

space Pd is a (d − 1)-dimensional simplex we can place a (d − 1)-dimensional sphere in it
with positive volume. Having any arrangement with n hyperplanes and Θ

(
nd−1) vertices

we can scale it down such that all vertices of the arrangement fit into this sphere. Clearly,
with this new arrangement we still have n hyperplanes and Θ

(
nd−1) cells in the preference

space. ◀

3.3 Bounds for General Graphs
Let us now consider general graphs. Since most graphs do not contain multi-edges, we restrict
our considerations to this case. First, we introduce the family of layered graphs.

3.3.1 Layered Graphs
▶ Definition 3.6. A layered graph L(V, E, r, c) is a graph without multi-edges that is
partitioned into r disjoint node sets V1, V2, . . . , Vr with c nodes each such that any edge
(v, u) ∈ E connects nodes of consecutive node sets (also called layers of L), i.e., there is an
index i with v ∈ Vi and u ∈ Vi+1.

Figure 6 Example layered graph with c = 3 and r = 5.

F. Barth, S. Funke and C. Proissl 35:7

▶ Lemma 3.7. Given a d-metric layered graph L(V, E, r, c). There are O(rdc2d
√

r) unique
shortest paths between a node in the first and a node in the last layer of L.

Proof. Let T (r, c) be the maximum possible number of unique shortest paths between a
node v1 of the first layer and a node vr of the last layer of any layered graph L(V, E, r, c).
Our approach to find an upper bound for T is to decompose L into path graphs and to use
Lemma 3.3 for each of them. It is clear that for two numbers r1 < r2 and a fixed number c

it holds T (r1, c) ≤ T (r2, c). Let r0 = 1 < r1 < · · · < rk = r be k + 1 layers of graph L with
ri − ri−1 ≤ ⌈ r

k ⌉ for each 1 ≤ i ≤ k. Thus, from a node vri−1 in layer ri−1 to a node vri
in

layer ri there are at most T
(
⌈ r

k ⌉ + 1, c
)

unique shortest paths. We remove all layers that do
not belong to the k + 1 chosen layers and connect the k + 1 layers with the unique shortest
paths between consecutive layers. In that way, all unique shortest paths between the first
and the last layer are preserved. In the new graph there are ck−1 node sequences to reach
vr from v1. Each node sequence can be considered as a path graph with k + 1 nodes and
maximum node degree ∆ ≤ T

(
⌈ r

k ⌉ + 1, c
)
. Hence, with Lemma 3.3 we get

T (r, c) ∈ O

(
ck−1

(
k · T

(⌈ r

k

⌉
+ 1, c

)2
)d−1

)
.

Setting k = ⌈√
r⌉ we get

T (r, c) ∈ O

(
c⌈√

r⌉−1
(

⌈√
r⌉ · T

(
⌈√

r⌉ + 1, c
)2
)d−1

)

⇒ T (r, c) ∈ O
(

c
√

r · r
d−1

2 · T
(
⌈√

r⌉ + 1, c
)2(d−1)

)
.

A trivial upper bound for T (r, c) is cr−2 as this is the number of all possible paths. Thus,
with T (⌈√

r⌉ + 1, c) ≤ c
√

r it follows

T (r, c) ∈ O
(

c
√

r · r
d−1

2 · c2(d−1)
√

r
)

⇒ T (r, c) ∈ O
(

rdc2d
√

r
)

.

◀

3.3.2 Extending Upper Bounds to general Graphs
To be able to generalize our results from the previous section, we first show how to represent
any graph without multi-edges as layered graph without losing unique shortest paths in the
process. Then we use this representation to derive general bounds.

▶ Definition 3.8. Given any graph G(V, E) with n nodes, m edges and without multi-edges.
The layered graph L of G has n rows and n columns. Each row of L consists of one copy of
V and there is one copy of E between each two consecutive rows. Each edge points from one
row to the next while the end nodes are the same as in G.

See Figure 7 for an example. The following lemma allows us to focus on layered graphs
regarding general upper bounds.

▶ Lemma 3.9. Given a graph G(V, E) without multi-edges and its layered graph L. Then
for any two nodes vi, vj ∈ V it holds

|A(vi, vj)| ≤
n∑

r=1
|A(vi, 1, vj, r)|.

EuroCG’22

35:8 On the Number of Optimal Paths

v1v2

v3
v1,1 v2,1 v3,1

v1,2 v2,2 v3,2

v1,3 v2,3 v3,3

Figure 7 Graph G (left) is translated into a layered graph L (right).

Lemma 3.9 can be proved by showing that any unique shortest path in G can be mapped
injectively to an unique shortest path in L.

▶ Theorem 3.10. In any d-metric graph G(V, E) with n nodes there are O(n2d
√

n+d+1)
unique shortest paths between any two nodes.

Proof. Follows from Lemma 3.9 and Lemma 3.7 when choosing r = n and c = n. ◀

4 Conclusion

In this paper we gave upper and lower bounds on the maximum number of ’optimal’ paths
in multicriteria networks. In case of Pareto-optimality, it is well-known that an exponential
(in the number of nodes) many optimal paths exist. We show that for a commonly used
model of linear aggregation (very popular, e.g., for personalized route planning) the number
of optimal paths is subexponential in the graph size, yet possibly exponential in the number
of criteria.

References
1 Florian Barth, Stefan Funke, and Claudius Proissl. Preference-based trajectory clustering:

An application of geometric hitting sets. In 32nd International Symposium on Algorithms
and Computation (ISAAC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

2 Florian Barth, Stefan Funke, and Sabine Storandt. Alternative multicriteria routes. In 2019
Proceedings of the Meeting on Algorithm Engineering and Experiments (ALENEX), pages
66–80, 2019.

3 Daniel Delling and Dorothea Wagner. Pareto paths with SHARC. In Proc. 8th International
Symposium on Experimental Algorithms (SEA), volume 5526 of Lecture Notes in Computer
Science, pages 125–136. Springer, 2009.

4 Stefan Funke and Sabine Storandt. Personalized route planning in road networks. In Jie Bao,
Christian Sengstock, Mohammed Eunus Ali, Yan Huang, Michael Gertz, Matthias Renz,
and Jagan Sankaranarayanan, editors, Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, Bellevue, WA, USA, pages
45:1–45:10. ACM, 2015.

5 Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route planning with flexible
objective functions. In Workshop on Algorithms and Experimentation, ALENEX ’10, page
124–137, USA, 2010. Society for Industrial and Applied Mathematics.

6 Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline queries: A multi-
preference path planning approach. In 26th International Conference on Data Engineering
(ICDE), pages 261–272. IEEE Computer Society, 2010.

F. Barth, S. Funke and C. Proissl 35:9

7 Matthias Müller-Hannemann and Karsten Weihe. On the cardinality of the pareto set in
bicriteria shortest path problems. Annals of Operations Research, 147(1):269–286, 2006.

EuroCG’22

Ray Shooting amid Tetrahedra in Four Dimensions:
A Range Search Approach∗

Esther Ezra1, Micha Sharir2, and Tslil Tsabari3

1 School of Computer Science, Bar Ilan University, Ramat Gan, Israel
ezraest@cs.biu.ac.il

2 School of Computer Science, Tel Aviv University, Tel Aviv Israel
michas@tauex.tau.ac.il

3 School of Computer Science, Bar Ilan University, Ramat Gan, Israel
tslil.tsabari@live.biu.ac.il

Abstract
We present an algorithm that preprocesses a set of n tetrahedra (3-simplices) in R4 into a data
structure for answering ray shooting queries amid the given tetrahedra. Specifically, we show that
the classical approach to ray shooting amid triangles in R3, as described in Pellegrini [6], can be
extended in a nontrivial manner to solve the four-dimensional problem with O∗(s) storage and query
time O∗(n/s1/6), for any storage parameter s between n and n6 (where the O∗(·) notation hides
polylogarithmic factors or factors of the form O(nε), for any ε > 0). This problem arises as a basic
ingredient in collision detection in a collection of moving objects in three dimensions. As far as we
can tell, the problem has not been previously studied.

1 Introduction

In this paper we consider an extension to four dimensions of the classical ray shooting problem,
which has mostly been studied in two and three dimensions. In a general setting, we are
given a collection S of n simply-shaped objects, and the goal is to preprocess S into a data
structure that supports efficient ray shooting queries, where each query specifies a ray ρ and
asks for the first object of S hit by ρ, if such an object exists.

The main motivation for ray shooting comes from visibility and rendering problems in
computer graphics, modeling, and related topics. The input objects can have various shapes,
e.g., triangles in R3, disks or spheres, and so on. A recent summary of the state of the art in
ray shooting is given by Pellegrini [6].

In this work we extend the setup of 2D triangles in R3 to 3D tetrahedra in four dimensions.
Besides being an interesting problem in its own right, it arises, e.g., when we want to perform
ray shooting (that is, visibility) queries in a time-varying scene. Concretely, we can think of
a ray as the space-time trajectory of some particle that moves from some starting position at
constant velocity, and the query asks for the first (time-varying) object that the particle will
hit. In this example the ray direction is arbitrary, and the input objects are n (not necessarily
pairwise openly disjoint) tetrahedra in R4. As another application, one may think of a video
game, or a simulator, in which objects pop up, move on the screen, and then disappear. In
this application, though, the query rays are all ‘horizontal’, i.e., orthogonal to the fourth,
time axis.

∗ Work by Esther Ezra was partially supported by NSF CAREER under grant CCF:AF-1553354 and
by Grant 824/17 from the Israel Science Foundation. Work by Micha Sharir was partially supported
by ISF Grant 260/18, by grant 1367/2016 from the German-Israeli Science Foundation (GIF), and by
Blavatnik Research Fund in Computer Science at Tel Aviv University.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

36:2 Ray Shooting amid Tetrahedra in Four Dimensions

As far as we can tell, this problem has not been explicitly studied so far. We present a
solution in which the problem is reduced to a range searching problem in a suitable parametric
space, which, in the case of (lines supporting) rays in R4, is six-dimensional. By carefully
adapting and combining off-the-shelf techniques, we are able to solve the problem so that,
allowing s storage for the structure, a ray shooting query can be answered in O∗(n/s1/6)
time, for any n ≤ s ≤ n6.

2 A Detailed Description of the Algorithm

Let T be a set of n input tetrahedra in R4. Before presenting the algorithm, we note that
we use the parametric search technique of Agarwal and Matoušek [3], which reduces ray
shooting queries to segment intersection emptiness queries. That is, the query specifies a
segment e, and needs to determine whether e intersects any of the input tetrahedra.

To obtain a tradeoff between the storage of the structure and the query time, our algorithm
uses a primal-dual approach. However, both the primal and dual setups suffer from the
fact that segments and tetrahedra require too many parameters to specify. Specifically, a
segment requires eight parameters (e.g., by specifying its two endpoints), while a tetrahedron
requires 16 parameters (e.g., by specifying the coordinates of its four vertices). But if we
use a multi-level data structure, where each level caters to one aspect of the condition that
a segment crosses a tetrahedron, at each of these levels, the number of parameters that a
segment or a tetrahedron requires is at most six.

Specifically, the condition that a segment e, that lies on a line ℓ, intersects a tetrahedron
∆, supported by a hyperplane h∆, is the conjunction of the following conditions:

(i) The two endpoints of e lie on different sides of h∆.
(ii) With a suitable choice of a direction of ℓ and an orientation of ∆, ℓ has a positive

orientation with respect to each of the 2-planes that support the four 2-faces of ∆.

Concrete details concerning condition (ii) are given below. Conditions (i) and (ii) are
the conjunction of six sub-conditions, where each of the first two tests the position of some
endpoint of e with respect to the hyperplanes h∆, and each of the other four tests the
orientation of ℓ with respect to the planes supporting specific 2-faces of the tetrahedra.
Consequently, the dual structure has six levels, two for testing for the sub-conditions
comprising condition (i) and four for the sub-conditions comprising condition (ii).

More precisely, each but the last level collects all the tetrahedra ∆ in a canonical set
produced by the preceding levels that satisfy the corresponding sub-condition for the query
segment (that a specific endpoint of e lies in a specific side of h∆ for the first two levels, and
that the oriented 2-plane supporting a specific 2-face of ∆ is positively oriented with respect
to ℓ for the last four levels), as the disjoint union of precomputed canonical sets of tetrahedra.
The last level just tests whether the last sub-condition is satisfied for any tetrahedron in the
current canonical set.

We use the fact that lines in R4 require six real parameters to specify. The space of
lines in R4 is actually projective, but for simplicity of presentation we regard it as a real
space, and ignore the special cases in which the real representation fails. Handling these
cases follows the same approach, and is in fact simpler.

One simple way to represent a line ℓ in R4 is by the points u0
ℓ = (x0, y0, z0, 0) and

u1
ℓ = (x1, y1, z1, 1) at which ℓ crosses the hyperplanes w = 0 and w = 1, respectively

(ignoring lines that are orthogonal to the w-axis), so the line ℓ can be represented as the
point pℓ = (x0, y0, z0, x1, y1, z1) in R6, as desired.

E. Ezra, M. Sharir and T. Tsabari 36:3

Similarly, 2-planes in R4 also require six parameters to specify. This is simply because
the duality in R4 maps lines to 2-planes and vice versa, but a concrete way to represent
2-planes by six parameters is to specify three points on a 2-plane π that are intersections of
π with three fixed 2-planes, such as, say, x = y = 0, x = 0 and y = 1, and x = y = 1 (again
ignoring special directions of π). Each of the intersection points has two degrees of freedom
(as two of its coordinates are fixed), for a total of six. Denote these points as v

(00)
π , v

(01)
π , and

v
(11)
π , and put qπ =

(
v

(00)
π , v

(01)
π , v

(11)
π

)
, listing only the w- and z-coordinates of each point,

so qπ is a point in R6. (This is of course only one way to represent a 2-plane in R4, and there
are many other ways where the representation requires only six parameters. For example,
one can take the two projections of the 2-plane onto the xyz-space and the yzw-space, say.
Nevertheless, the above representation is useful for our analysis so we adopt it.)

These observations are meaningful only for the last four levels of the structure. The first
two levels are simpler, as they deal with points (the endpoints of e) and hyperplanes (those
supporting the tetrahedra of T) in R4. Thus each of the first two levels is a halfspace range
searching structure for points and halfspaces in R4. (Actually, this is the case when we pass
to the dual 4-space; in the primal we have a point-enclosure problem, where the query is
a point and the input consists of halfspaces (or hyperplanes).) Using standard techniques
(see, e.g., [1]), this can be done, for N halfspaces in the current canonical subset, and using
O∗(N) storage, so that a query costs O∗(N3/4) time.1 As we will shortly see, this cost will be
subsumed by the query time bounds for the last four levels. The cost of a query includes the
cost of reporting its output, as a list of canonical sets (but not of enumerating the elements
of these sets, which is not needed anyway).

We next consider the (more involved) situation in the last four levels of the structure.
Here the query segment is replaced by its supporting line ℓ, and each tetrahedron ∆ is
replaced by the 2-plane supporting a specific 2-face of ∆. In the primal setup, the line
ℓ is represented as a point in (projective) 6-space, in the manner just described, and a
tetrahedron ∆, represented by a suitable 2-plane π, is represented as a semi-algebraic region
Kπ, consisting of all points that represent (directed) lines that are positively oriented with
respect to π. In the dual setup, the 2-planes π are represented as points in R6, and the query
line ℓ is represented as a semi-algebraic region Qℓ that consists of all (oriented) 2-planes that
are positively oriented with respect to ℓ.

The orientation test of ℓ with respect to π amounts to computing the sign of the 5 × 5
determinant

∣∣∣∣∣∣∣∣∣∣∣

u0
ℓ 1

u1
ℓ 1

v
(00)
π 1

v
(01)
π 1

v
(11)
π 1

∣∣∣∣∣∣∣∣∣∣∣

, (1)

with a suitable orientation of the pair of points u0
ℓ , u1

ℓ on ℓ (dictating the direction of ℓ), and
of the triple of points v

(00)
π , v

(01)
π , v

(11)
π on π (dictating the orientation of π).

To compute these signs, at each of the four latter levels of the structure, we use a
primal-dual approach, where the top part of the structure is in the primal, and at each of its
leaf nodes we pass to the dual.

1 A tradeoff between storage and query time is also available, but we will not need it here.

EuroCG’22

36:4 Ray Shooting amid Tetrahedra in Four Dimensions

The dual setup. The dual setup is simpler, so we begin with its description. In the dual
setup, each tetrahedron ∆ of the current canonical subset of T is mapped to the point
qπ =

(
v

(00)
π , v

(01)
π , v

(11)
π

)
in R6, where π is the 2-plane supporting the 2-face of ∆ that

corresponds to the present level. The query line ℓ is mapped to a semi-algebraic region Qℓ in
R6, consisting of all points that represent (oriented) 2-planes that have positive orientation
with respect to ℓ; Qℓ is a semi-algebraic region of constant complexity, consisting of those
points qπ for which the determinant in (1) is positive (the corresponding polynomial is cubic
in qπ). As already mentioned, the task at hand, at each but the last level, is to collect the
points qπ that lie in Qℓ, as the disjoint union of a small number of precomputed canonical sets
of tetrahedra, and the task at the last level is to determine whether Qℓ contains any point
qπ, for π corresponding to tetrahedra ∆ in the present canonical subset of T . In other words,
we have, at each of these levels, a problem involving range searching with semi-algebraic sets
in R6. Using the algorithm of Matoušek and Patáková [5], which is a simplified version of
the algorithm of Agarwal et al. [4], this can be done, for N tetrahedra with O∗(N) storage,
so that a query takes O∗(N5/6) time (including the cost of reporting the output canonical
sets). See [1, Theorem 6.1] for more details.

The primal problem. With this tool as a black box, we go back to the primal structure, at
each of the last four levels. As noted, the problem that we face there is a point enclosure
problem, where the input consists of some N constant-complexity semi-algebraic regions in
R6 of the form Kπ, as defined earlier, the query is the point pℓ that represents ℓ, as defined
earlier, and the task is to collect all the regions Kπ that contain pℓ, as the disjoint union of
a small number of precomputed canonical sets, or, at the last level, to determine whether pℓ

is contained in any such region.
This problem has recently been studied in Agarwal et al. [2], using a multilevel polynomial

partitioning technique, but only for the case where we allow maximum storage for the structure
(that is, O∗(N6) in our case) and want the query time to be logarithmic. We next show that
the structure can be modified so that its preprocessing stops “prematurely” when its overall
storage attains some prescribed value, and each of the subproblems at the new leaves can be
handled via the dual algorithm presented above.

The crucial tool in [2], on which their approach is based, is the following result. We give
here a restricted specialized version that suffices for our purposes (where the set Ψ below
consists of the boundaries of the regions Kπ):

[A specialized version of Agarwal et al. [2, Corollary 4.8]] Given a set Ψ of N constant-
degree algebraic surfaces in R6, and a parameter 0 < δ < 1/6, there are finite collections
Ω0, . . . , Ω6 of semi-algebraic sets in R6 with the following properties.

For each index i, each cell ω ∈ Ωi is a connected semi-algebraic set of constant complexity.
For each index i and each ω ∈ Ωi, at most N

4|Ωi|1/6−δ surfaces from Ψ cross ω (intersect ω

without fully containing it).
The cells partition R6, in the sense that

R6 =
6⊔

i=0

⊔

ω∈Ωi

ω,

where
⊔

denotes disjoint union. The sets in Ω0, . . . , Ω6 can be computed in O(N) expected
time, where the constant of proportionality depends on δ, by a randomized algorithm. For
each i and for every set ω ∈ Ωi, the algorithm returns a semi-algebraic representation of ω, a
reference point inside ω, and the subset of surfaces of Ψ that cross ω.

E. Ezra, M. Sharir and T. Tsabari 36:5

Due to lack of space, we defer the rest of the details of the analysis to the full version of
this paper. This eventually leads to the following main result:

▶ Theorem 2.1. Given a collection T of n tetrahedra in R4, and any storage parameter s

between n and n6, we can preprocess T into a data structure of size O∗(s), in O∗(s) time, so
that we can answer any ray shooting query in T in O∗(n/s1/6) time.

▶ Remark. It seems that this technique can be extended to any dimension d. In that case
the structure has d + 2 levels. The first two levels ensure that the endpoints of the query
segment e lie on different sides of the hyperplane containing the input simplex ∆, and are
implemented by halfspace range searching structures in Rd. The last d levels ensure that the
line containing e has positive orientation with respect to each of the (d − 2)-flats containing
the facets of ∆, with suitable orientations of the line and the flats. Since lines and (d−2)-flats
in Rd have 2d − 2 degrees of freedom, these levels are implemented using semi-algebraic
range searching structures in R2d−2. Hence the cost of the query at each of the last d levels
dominates the overall cost, which is thus O∗(n/s1/(2d−2)).

References
1 P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through

Discrete Mathematics: A Tribute to Jiří Matoušek, pages 1–30. Springer Verlag, Berlin-
Heidelberg, 2017.

2 P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized poly-
nomial partitioning and its applications. SIAM J. Comput., 50:760–787, 2021. Also in Proc.
Sympos. on Computational Geometry (SoCG), 2019, 5:1–5:14. Also in arXiv:1812.10269.

3 P. K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM J. Comput.,
22:794–806, 1993.

4 P. K. Agarwal, J. Matoušek, and M. Sharir. On range searching with semialgebraic sets ii.
SIAM J. Comput., 42:2039–2062, 2013. Also in arXiv:1208.3384.

5 J. Matoušek and Z. Patáková. Multilevel polynomial partitions and simplified range searching.
Discrete Comput. Geom., 54:22–41, 2015.

6 M. Pellegrini. Ray shooting and lines in space. In Handbook on Discrete and Computational
Geometry, chapter 41, pages 1093–1112. CRC Press, Boca Raton, Florida, 3rd edition, 2017.

EuroCG’22

On Stable Range Assignments in S1

Mark de Berg1, Arpan Sadhukhan1, and Frits Spieksma1

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands. M.T.d.Berg@tue.nl, A.Sadhukhan@tue.nl, f.c.r.spieksma@tue.nl

Abstract
Let P be a set of points in a metric space, where each point p ∈ P has an associated transmission
range, denoted ρ(p). The range assignment ρ induces a directed communication graph Gρ(P) on P ,
which contains an edge (p, q) iff |pq| ⩽ ρ(p). In the broadcast range-assignment problem, the goal
is to assign the ranges such that Gρ(P) contains an arborescence rooted at a designated root node
and the cost

∑
p∈P

ρ(p)α of the assignment is minimized, where α > 1 is some constant. We
study the dynamic version of the problem, where points can be inserted into or deleted from P . In
particular, we study trade-offs between the stability of the solution—the number of ranges that are
modified when a point is inserted or deleted—and its approximation ratio. In the full version of
the paper [11], we study such trade-offs in R1, in S1, and in R2. In this short note we focus on the
problem in S1, where we show that a so-called stable approximation scheme does not exist.

Related Version arXiv:2112.05426

1 Introduction

The broadcast range-assignment problem. Let P be a set of points in Rd, representing
transmission devices in a wireless network. By assigning each point p ∈ P a transmission
range ρ(p), we obtain a communication graph Gρ(P). The nodes in Gρ(P) are the points
from P and there is a directed edge (p, q) iff |pq| ⩽ ρ(p), where |pq| denotes the Euclidean
distance between p and q. The energy consumption of a device depends on its transmission
range: the larger the range, the more energy it needs. More precisely, the energy needed
to obtain a transmission range ρ(p) is given by ρ(p)α, for some real constant α > 1 called
the distance-power gradient. In practice, α depends on the environment and ranges from 1
to 6 [13]. Thus the overall cost of a range assignment is costα(ρ(P)) :=

∑
p∈P ρ(p)α, where

we use ρ(P) to denote the set of ranges given to the points in P by the assignment ρ.
The goal of the range-assignment problem is to assign the ranges such that Gρ(P) has
certain connectivity properties while minimizing the total cost [3]. In the broadcast range-
assignment problem this property is that Gρ(P) contains a broadcast tree, i.e., an arborescence
rooted at a given source s ∈ P .

The static version of broadcast range-assignment problem has been studied extensively,
both in R1 and in R2 [1, 2, 4, 5, 6, 7, 8, 9, 12]. Our interest lies in the dynamic version,
where points can be inserted into and deleted from P (except the source, which should always
remain present). This corresponds to new sensors being deployed and existing sensors being
removed. The question we want to answer is: is it possible to maintain a close-to-optimal
range assignment that is relatively stable, that is, an assignment for which only few ranges
are modified when a point is inserted into or deleted from P? And which trade-offs can be
achieved between the quality of the solution and its stability?

To the best of our knowledge, the dynamic problem has not been studied so far. The
online problem, where the points from P arrive one by one (there are no deletions) and it
is not allowed to decrease ranges, is studied by De Berg et al. [10]. When ranges cannot
be decreased, a bounded approximation ratio cannot be achieved [11]. By allowing to also
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

37:2 On Stable Range Assignments in S1

decrease a few ranges, it turns out to be possible to maintain solutions whose cost is very
close to the static optimum.

Our contribution. Before we state our results, we first define the framework we use to
analyze our algorithms. Let P be a dynamic set of points in Rd, which includes a fixed
source point s that cannot be deleted.

An update algorithm alg for the dynamic broadcast range-assignment problem is an
algorithm that, given the current solution (the current ranges of the points in the current
set P) and the location of the new point to be inserted into or deleted from P , modifies
the range assignment so that the updated solution is a valid broadcast range assignment
for the updated set P . We call such an update algorithm k-stable if it modifies at most k

ranges when a point is inserted into or deleted from P . Here we define the range of a point
currently not in P to be zero. Thus, if a newly inserted point receives a positive range it will
be counted as receiving a modified range; similarly, if a point with positive range is deleted
then it will be counted as receiving a modified range.

We are not only interested in the stability of our update algorithms, but also in the
quality of the solutions they provide. We measure this in the usual way, by considering the
approximation ratio of the solution. Of particular interest are so-called stable approximation
schemes, defined as follows. (In the context of dynamic scheduling problems, a related
concept has been introduced under the name robust PTAS [14, 15].)

▶ Definition 1. A stable approximation scheme, or SAS for short, is an update algorithm
alg that, for any given yet fixed parameter ε > 0, is k(ε)-stable and that maintains a
solution with approximation ratio 1 + ε, where the stability parameter k(ε) only depends on
ε and not on the size of P .

Recall that costα(ρ(P)) :=
∑

p∈P ρ(p)α, is the cost of a range assignment ρ, where α > 1
is a constant. To make our results easier to interpret, we state them here only for α = 2.

We present a SAS for the broadcast range-assignment problem in R1, with k(ε) = O(1/ε),
and we prove that this is tight in the worst case.
Our SAS needs to know an optimal solution after each update. The fastest existing
algorithms to compute an optimal solution in R1 run in O(n2) time. We show how to
recompute an optimal solution in O(n log n) time after each update.
In R1 we also show that a 1-stable algorithm with bounded approximation ratio does
not exist when both insertions and deletions must be handled. For the insertion-only
case, however, we give a 1-stable (6+2

√
5)-approximation algorithm. We also give a very

simple 2-stable 2-approximation algorithm, and a 3-stable 1.97-approximation algorithm.
Next we study the problem in S1, that is, when the underlying 1-dimensional space is
circular. This version has, as far as we know, not been studied so far. We first prove
that in S1 an optimal solution for the static problem can always be obtained by cutting
the circle at an appropriate point and solving the resulting problem in R1. This leads to
an algorithm to solve the static problem optimally in O(n2 log n) time. We also prove
that, in spite of this, a SAS does not exist in S1.
Finally, we consider the problem in R2. Based on the no-SAS proof in S1, we show
that the 2-dimensional problem does not admit a SAS either. In addition, we present a
17-stable 12-approximation algorithm for the 2-dimensional version of the problem.

In this short note we only discuss the problem in S1, where we show that a SAS does not
exist. All other results can be found in the full version of the paper [11].

M. de Berg, A. Sadhukhan and F. Spieksma 37:3

δ

p1
p2p2n+1

q
s

xδ
xδ

2

1

(i) (ii)

δxδ
s

qxδ

δα = (2α + 1)n

xα = 1
4
+
(
1
2

)α+1

Figure 1 (i) The instance showing that there is no SAS in S1. (ii) The instance in R2.

2 Non-existence of a SAS in S1

Let P be a set of points in S1, that is, the points lie on a circle and distances are measured
along the circle. Let s ∈ P denote the (fixed) source point for which we want to maintain
a broadcast tree. The clockwise distance from a point p ∈ S1 to a point q ∈ S1 is denoted
by dcw(p, q), and the counterclockwise distance by dccw(p, q). The actual distance is then
d(p, q) := min(dcw(p, q), dccw(p, q)). In the full version we show that an optimal range
assignment for the set P can be obtained from an optimal solution in R1, if we cut S1 at
an appropriate point. We also present a SAS for the problem in R1. Here we show that,
despite of this, a SAS does not exist for the problem in S1.

▶ Theorem 2. The dynamic broadcast range-assignment problem in S1 with distance power
gradient α > 1 does not admit a SAS. In particular, there is a constant cα > 1 such that the
following holds: for any n large enough, there is a set P := {s, p1, . . . , p2n+1} and a point q

in S1 such that any update algorithm alg that maintains a cα-approximation must modify
more than 2n/3 − 1 ranges upon the insertion of q into P .

The rest of this section is dedicated to proving Theorem 2. We will prove the theorem for

cα := min
(

1 + 2α−4 − 1
8 , 1 + 2α−1 − 1

3 · 2α + 2 , 1 +
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)

4(2α + 1)

)
.

Note that each term is a constant strictly greater than 1 for any fixed constant α > 1. In
particular, for α = 2 we have cα = 1 + 1

14 .

Let P := {s, p1, . . . , p2n+1}, where dcw(pi, pi+1) = 2 for odd i and dcw(pi, pi+1) = 1 for
even i; see Fig. 1(i). Let dcw(s, p1) = δ, where δα = (2α + 1)n. Finally, let dcw(p2n+1, q) =
dcw(q, s) = xδ, where xα = 1

4 +
(1

2
)α+1. Note that (1/2)α < xα < 1/2 for any α > 1.

Let ρ(p) denote the range given to a point p by alg. A directed edge (p, p′) in the
communication graph induced by ρ is called a clockwise edge if ρ(p) ⩾ dcw(p, p′), and it is
called a counterclockwise edge if ρ(p) ⩾ dccw(p, p′). Observe that we may assume that no edge
(p, p′) is both clockwise and counterclockwise, because otherwise ρ(p) ⩾ (δ + 3n + 2xδ)/2,
which is much too expensive for an approximation ratio of at most cα. Define the range
ρ(p) of a point in P to be cw-minimal if ρ(p) equals the distance from p to its clockwise
neighbor in P . Similarly, ρ(p) is ccw-minimal if ρ(p) equals the distance from p to its
counterclockwise neighbor. The idea of the proof is to show that before the insertion of q,

EuroCG’22

37:4 On Stable Range Assignments in S1

most of the points s, p1, . . . , p2n+1 must have a cw-minimal range, while after the insertion
most points must have a ccw-minimal range. This will imply that many ranges must be
modified from being cw-minimal to being ccw-minimal.

Before the insertion of q, giving every point a cw-minimal range leads to a feasible
assignment of total cost δα + (2α + 1)n = 2δα. After the insertion of q, giving every point
a ccw-minimal range leads to a feasible assignment of total cost 2(xδ)α + (2α + 1)n =
(2xα + 1)δα. So if opt(·) denotes the cost of an optimal range assignment, then we have:

▶ Observation 3. opt(P) ⩽ 2δα and opt(P ∪ {q}) ⩽ (2xα + 1)δα < 2δα.

We first prove a lower bound on the total cost of the points p1, . . . , p2n+1. Intuitively, only
o(n) of those points can be reached from s or q (otherwise the range of s or q would be
too expensive) and the cheapest way to reach the remaining points will be to use only cw-
minimal or ccw-minimal ranges. A formal proof of the lemma is given in the full version of
the paper [11].

▶ Lemma 4.
∑2n+1

i=1 ρ(pi)α ⩾ (2α + 1)n − o(n), both before and after the insertion of q.

The following lemma gives a key property of the construction.

▶ Lemma 5. The point p2n+1 cannot have an incoming counterclockwise edge before q is
inserted, and the point p1 cannot have an incoming clockwise edge after q has been inserted.

Proof. The cheapest incoming counterclockwise edge for p2n+1 before the insertion of q is
from s, but this is too expensive for alg to achieve approximation ratio cα. Similarly, the
cheapest incoming clockwise edge for p1 is from s, but this is too expensive after the insertion
of q. The computations for both cases can be found in the full version of the paper [11]. ◀

We are now ready to prove that many edges must change from being cw-minimal to being
ccw-minimal when q is inserted.

▶ Lemma 6. Before the insertion of q, at least 4n/3 + 1 of the points from {s, p1, . . . , p2n}
have a cw-minimal range and after the insertion of q at least 4n/3 + 1 of the points from
{q, p1, . . . , p2n} have a ccw-minimal range.

Proof. We prove the lemma for the situation before q is inserted; the proof for the situation
after the insertion of q is similar. Observe that before and after the insertion of q, the
distance between any two points is either 1, 2 or at least 3. Hence, in what follows we may
assume that ρ(p) ∈ {0, 1, 2} ∪ [3, ∞) for any point p ∈ P ∪ {q}.

It will be convenient to define p0 := s (although we may still use s if we want to
stress that we are talking about the source). Recall that p2n+1 does not have an incoming
counterclockwise edge in the communication graph Gρ(P) before the insertion of q. Let π∗

be a minimum-hop path from s to p2n+1 in Gρ(P). Since p2n+1 does not have an incoming
counterclockwise edge and π∗ is a minimum-hop path, all edges in π are clockwise. We
assign each point pj with 1 ⩽ j ⩽ 2n + 1 to the edge (pi, pt) in π∗ such that i + 1 ⩽ j ⩽ t,
and we define A(pi, pt) := {pi+1, . . . , pt} to be the set of all points assigned to (pi, pt). We
define the excess of a point pj ∈ A(pi, pt) to be

excess(pj) := 1
|A(pi, pt)|

·

ρ(pi)α −

∑

pℓ∈A(pi,pt)

d(pℓ−1, pℓ)α

 .

We say that an edge (pi, pt) in π∗ is cw-minimal if pi has a cw-minimal range. Note
that if a point pj is assigned to a cw-minimal edge, then this is the edge (pj−1, pj) and

M. de Berg, A. Sadhukhan and F. Spieksma 37:5

excess(pj) = 0. Intuitively, excess(pj) denotes the additional cost we pay for reaching pj

compared to reaching it by a cw-minimal edge, if we distribute the additional cost of a non-
cw-minimal edge over the points assigned to it. Because each of the points p1, . . . , p2n+1 is
assigned to exactly one edge on the path π∗, we have

∑

pi∈π∗
ρ(p)α ⩾

2n+1∑

j=1
d(pj−1, pj)α +

2n+1∑

j=1
excess(pj) ⩾ opt(P) +

2n+1∑

j=1
excess(pj) (1)

where the second inequality follows from Observation 3 and because p0 = s. The following
claim is proved in the full version of the paper [11]. (Essentially, the smallest possible excess
is obtained when |A(pi, pt)| ∈ {1, 2, 3}; the three terms in the claim correspond to these
cases.)

Claim. If pj is not assigned to a cw-minimal edge then excess(pj) ⩾ c′
α, where c′

α =
min

(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)
.

Now suppose for a contradiction that less than 4n/3 + 1 points from {s, p1, . . . , p2n+1} have
a cw-minimal range. Then at least 2n/3 + 1 points pj have excess(pj) ⩾ c′

α by the claim
above. By Inequality (1) the total cost incurred by alg is therefore more than

opt(P) + c′
α · (2n/3) = opt(P) + c′

α

3(2α + 1) · 2(2α + 1)n (2)

>

(
1 +

min
(
2α − 1, 3α−2α−1

2 , 4α−2α−2
3

)

4(2α + 1)

)
· opt(P) (3)

⩾ cα · opt(P) (4)

which contradicts the approximation ratio achieved by alg. ◀

Lemma 6 implies that at least 4n/3 of the points p1, . . . , p2n+1 have a cw-minimal range
before q is inserted, and at least 4n/3 of those points have a ccw-minimal range after the
insertion. Hence, at least 2n + 1 − 2 · (2n/3 + 1) = 2n/3 − 1 points must change from being
cw-minimal to being ccw-minimal, thus finishing the proof of Theorem 2.

References
1 Christoph Ambühl. An optimal bound for the MST algorithm to compute energy efficient

broadcast trees in wireless networks. In Proc. 32nd International Colloquium on Automata,
Languages and Programming (ICALP 2005), volume 3580 of Lecture Notes in Computer
Science, pages 1139–1150, 2005.

2 Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. New results for
energy-efficient broadcasting in wireless networks. In Proc. 13th International Symposium
on Algorithms and Computation (ISAAC 2002), volume 2518 of Lecture Notes in Computer
Science, pages 332–343, 2002.

3 Andrea E. F. Clementi, Gurvan Huiban, Paolo Penna, Gianluca Rossi, and Yann C.
Verhoeven. Some recent theoretical advances and open questions on energy consumption
in ad-hoc wireless networks. In Proc. 3rd Workshop on Approximation and Randomization
Algorithms in Communication Networks (ARACNE 2002), 2002.

4 Andrea E. F. Clementi, Miriam Di Ianni, and Riccardo Silvestri. The minimum broadcast
range assignment problem on linear multi-hop wireless networks. Theor. Comput. Sci.,
299(1-3):751–761, 2003.

EuroCG’22

37:6 On Stable Range Assignments in S1

5 Andrea E. F. Clementi, Paolo Penna, Afonso Ferreira, Stephane Perennes, and Riccardo
Silvestri. The minimum range assignment problem on linear radio networks. Algorithmica,
35(2):95–110, 2003.

6 Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. Hardness results for the
power range assignment problem in packet radio networks. In Proc. 3rd International
Workshop on Randomization and Approximation Techniques in Computer Science, and
2nd International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (RANDOM-APPROX’99), volume 1671 of Lecture Notes in Computer Science,
pages 197–208, 1999.

7 Andrea E. F. Clementi, Paolo Penna, and Riccardo Silvestri. The power range assignment
problem in radio networks on the plane. In Proc. 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), volume 1770 of Lecture Notes in Computer Science,
pages 651–660, 2000.

8 Gautam K. Das, Sandip Das, and Subhas C. Nandy. Range assignment for energy efficient
broadcasting in linear radio networks. Theor. Comput. Sci., 352(1-3):332–341, 2006.

9 Gautam K. Das and Subhas C. Nandy. Weighted broadcast in linear radio networks. Inf.
Process. Lett., 106(4):136–143, 2008.

10 Mark de Berg, Aleksandar Markovic, and Seeun William Umboh. The online broadcast
range-assignment problem. In Proc. 31st International Symposium on Algorithms and
Computation (ISAAC), volume 181 of LIPIcs, pages 60:1–60:15, 2020.

11 Mark de Berg, Arpan Sadhukhan, and Frits C. R. Spieksma. Stable approximation
algorithms for the dynamic broadcast range-assignment problem. CoRR, abs/2112.05426,
2021.

12 Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Andrzej Pelc. Power
consumption in packet radio networks. Theor. Comput. Sci., 243(1-2):289–305, 2000.

13 Kaveh Pahlavan and Allen H. Levesque. Wireless information networks, Second Edition.
Wiley series in telecommunications and signal processing. Wiley-VCH, 2005.

14 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Math. Oper. Res., 34(2):481–498, 2009.

15 Martin Skutella and José Verschae. A robust PTAS for machine covering and packing.
In Proc. 18th Annual European Symposium (ESA 201), volume 6346 of Lecture Notes in
Computer Science, pages 36–47, 2010.

Removing Popular Faces in Curve Arrangements
by Inserting one more Curve∗

Phoebe de Nooijer1, Soeren Nickel2, Alexandra Weinberger3,
Zuzana Masárová4, Tamara Mchedlidze1, Maarten Löffler1, and
Günter Rote5

1 Utrecht University, the Netherlands
p.denooijer@students.uu.nl | t.mtsentlintze@uu.nl | m.loffler@uu.nl

2 TU Wien, Austria soeren.nickel@ac.tuwien.ac.at
3 TU Graz, Austria weinberger@ist.tugraz.at
4 IST Austria, Austria zuzana.masarova@ist.ac.at
5 Freie Universität Berlin, rote@inf.fu-berlin.de

Abstract
A face in a curve arrangement is called popular if it is bounded by the same curve multiple times.
Motivated by the automatic generation of curved nonogram puzzles, we investigate possibilities to
eliminate popular faces in an arrangement by inserting a single additional curve. This turns out to
be already NP-hard; however, we present a probabilistic FPT-approach in the number of such faces.

Related Version arXiv:2202.12175

1 Introduction

Let A be a set of curves which lie inside the area bounded by a closed curve F , called the
frame. All curves in A are either closed or they are open with a start and end point on F .
We refer to A as a curve arrangement, see Figure 1a. We consider only simple arrangements,
where no three curves meet in a point, and all intersections are crossings (no tangencies).

The arrangement A can be seen as an embedded multigraph whose vertices are crossings
between curves and whose edges are curve segments. A subdivides the region bounded by F
into faces. We call a face popular when it is incident to multiple curve segments belonging to
the same curve in A (see Figures 1b-c). We study the following problem: is it possible to
insert an additional curve ` into A, such that no faces of A∪{`} are popular (see Figure 1d)?

Nonograms. Our question is motivated by the problem of generating curved nonograms.
Nonograms, also known as Japanese puzzles, paint-by-numbers, or griddlers, are a popular

∗ A.W. is supported by the Austrian Science Fund (FWF): W1230. The authors are ordered by seniority.

(a) (b) (c) (d)

Figure 1 (a) An arrangement of curves inside a frame. (b) The red curve is incident to the
top right face in two disconnected segments, making the face popular. (c) All popular faces are
highlighted. (d) After inserting an additional curve, no more popular faces remain.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

38:2 Removing Popular Faces in Curve Arrangements

puzzle type where one is given an empty grid and a set of clues on which grid cells need to be
colored. A clue consists of a sequence of numbers specifying the numbers of consecutive filled
cells in a row or column. A solved nonogram typically results in a picture (see Figure 2 (a)).
There is quite some work in the literature on the difficulty of solving nonograms [1, 3, 5].

1 1

2 2

5

2 21 1

25

13

26

11 5

8

2 4

4

1

1

1

2

3

6 7

3

6

4

4

1

3 2

3

1 3

2

0

15

1

1 1 1

4

1
1
6
4

6
2

1
5

1
1

1
4

3

5

1
7

3 2
2

3
4

4 0
2
66

0

10

(a) (b)

Figure 2 Two nonogram puzzles in solved state. (a) A classic nonogram. (b) A curved nonogram.

Van de Kerkhof et al. introduced curved nonograms, a variant in which the puzzle is
no longer played on a grid but on any arrangement of curves [7] (see Figure 2b). In curved
nonograms, a clue specifies the numbers of filled faces of the arrangement in the sequence
of faces that are incident to a common curve on one side. Van de Kerkhof et al. focus on
heuristics to automatically generate such puzzles from a desired solution picture by extending
curve segments to a complete curve arrangement.

Nonogram complexity. Van de Kerkhof et al. observe that curved nonograms come in
different flavors of increasing complexity — not in terms of how hard it is to solve a puzzle,
but how hard it is to understand the rules (see Figure 3). They state that it would be of
interest to generate puzzles of a specific complexity level; their generators are currently not
able to do so other than by trial and error.

Basic nonograms are puzzles in which each clue corresponds to a sequence of unique faces.
The analogy with clues in classical nonograms is straightforward.
Advanced nonograms may have clues that correspond to a sequence of faces in which some
faces may appear multiple times because the face is incident to the same curve (on the
same side) multiple times. When such a face is filled, it is also counted multiple times; in
particular, it is no longer true that the sum of the numbers in a clue is equal to the total
number of filled faces incident to the curve. This makes the rules harder to understand,
and thus advanced nonograms are only suitable for more experienced puzzle freaks.
Expert nonograms may have clues in which a single face is incident to the same curve
on both sides. They are even more confusing than advanced nonograms.

It is not hard to see that expert puzzles correspond exactly to arrangements with self-
intersecting curves. The difference between basic and advanced puzzles is more subtle; it
corresponds exactly to the presence of popular faces in the arrangement.

P.de Nooijer, S.Nickel, A.Weinberger, Z.Masárová, T.Mchedlidze, M.Löffler, G.Rote 38:3

1 1

1 2

11

21

0

1
1

1

1 1

1 2

2 1 1

12

1 2

5

2 2

1
1

1

1
1
1

4
1
1
10 1

1
3
1
1

(a) (b) (c)

Figure 3 Three types of curved nonograms of increasing complexity [7], shown with solutions.
(a) Basic puzzles have no popular faces. (b) Advanced puzzles may have popular faces, but no
self-intersections. (c) Expert puzzles have self-intersecting curves. We can observe closed curves
(without clues) in (a) and (c).

Figure 4 Some examples of real puzzles (without the clues) with all popular faces highlighted.

One possibility to generate nonograms of a specific complexity would be to take an
existing generator and modify the output. In this paper, we explore what we can do by
inserting a single new curve into the output arrangement. Clearly, inserting more curves will
not get rid of self-intersections, so we focus on changing advanced puzzles into basic puzzles;
i.e., removing all popular faces.

Results. We show in Section 3 that deciding whether we can remove all popular faces from
a given curve arrangement by inserting a single curve – which we call the N1R problem – is
NP-complete. However, often the number of popular faces is small, see Figure 4. Hence, we
are also interested in the problem parametrized by the number of popular faces k; we show
in Section 4 that the problem can be solved by a randomized algorithm in FPT time.

2 Resolving one Popular Face by Adding a Single Curve

As a preparation, we analyze how a single bad face F can be resolved. If F is visited more
than twice by some curve, it is easy to see that it cannot be resolved with a single additional
curve `, and we can immediately abort. Otherwise, there are duplicate edges among the
edges of F , which belong to a curve that visits F twice. As a visual aid, we indicate each
such pair of edges by connecting them with a red curtain, see Figure 5a or 6d.

EuroCG’22

38:4 Removing Popular Faces in Curve Arrangements

A

Bc d

e

f

A

A

B

B

c d

e

f

g
h

i

j

k
A

A

B

B

c d

e

f

g

h
i

j

k

A

B
g

hi

j

k

(a) (c)(b)

Figure 5 Resolving a popular face F

I Lemma 1. To ensure that a popular face F becomes unpopular after insertion of a single
curve ` into the arrangement, it is necessary and sufficient that the curve `

1. visits the face F exactly once;
2. does not enter or exit through a duplicate edge;
3. separates each pair of duplicate edges. In other words, ` must cut all curtains. J

The blue segments in Figure 5b show the ways how ` may pass through a popular face.

3 Removing Popular Faces with a Single Curve is NP-Complete

We reduce the NP-hard problem of finding a non-intersecting Eulerian cycle in a plane
graph G, i.e., a cycle that visits every edge exactly once, such that consecutive edges belong
to a common face [2]. We represent every vertex v and edge (u, v) in G by a vertex gadget
G(v) and an edge gadget G(u, v), consisting of open curves starting and ending at the frame,
resulting in a curve arrangement A. For detailed constructions and analysis see Appendix A
in the full version [6].

Every vertex has even degree. Degree-2 vertices can be eliminated. For degree-4 vertices,
we use the simple construction of Figure 6a. For a vertex v of degree d ≥ 6, G(v) consists of
d− 1 curves (beakers, see Figure 6b) c1, . . . , cd−1 placed symmetrically around the location
of v, which extend outwards to form the incident edges. Each beaker intersects four adjacent
beakers (two on each side), except for cd/2−1 and cd/2+1 (lilac curves). We place an additional
circular beaker cd (the brown curve) to form the intersection pattern of Figure 6c.

All popular faces and the curtains in G(v) are shown in Figure 6d. To cut all curtains
(item 3 in Lemma 1), ` has to enter and exit the orange faces through the blue segments.
This forces ` to traverse these faces (and the degree 2 faces in between) in sequence according
to the central blue chain in Figure 6f. To cut the curtains in the open ends of the beakers `
also has to traverse them outward as shown by the outer blue parts.

Every curve traversing faces of a curve arrangement A corresponds to a path in the dual
graph of A. Since ` is a single curve, all endpoints in G(v) have to be matched up without
creating closed loops or having ` cross itself. Therefore, every endpoint in a beaker ci can only
be connected to the one in either ci+1 or ci−1, corresponding to a non-intersecting Eulerian
cycle connecting the i-th edge to its right or left neighboring edge. The inner endpoints also
have to be connected, and can only connect to the endpoint in cd/2 and one of cd/2±1. This
results in two possible connection pairs, one of which is shown in Figure 6g.

The edge gadget G(u, v) connects two beakers (one from G(u) and G(v)) by routing their
open ends close together, placing three curves over them and bending all curves to either

P.de Nooijer, S.Nickel, A.Weinberger, Z.Masárová, T.Mchedlidze, M.Löffler, G.Rote 38:5

c1

c2

c4

c3

(a) Simple gadget (b) Beakers

c1

c4

c2

c3

c7

c6

c5

c8

(c) Construction of G(v) (d) Curtains of G(v)

(e) Dual graph of G(v) (f) Forced paths in G(v) (g) Possible routings of `

Figure 6 (a) Vertex gadget for degree-4 vertices. (b) Basic beaker shapes. (c) Vertex gadget G(v)
for a degree-8 vertex, (d) its curtains and (e) the dual graph of G(v). (f) The highlighted orange
faces in (d) force the blue connections in the dual graph and restrict the dual graph. (g) One of two
symmetric possibilities for the splitting curve `. Light red shows an alternative routing of `.

side as shown in Figure 7 to form two bundles A and B of parallel curves. A and B have
different curves on the outside and therefore cannot create popular faces between them. As
a direct consequence, all popular faces are contained in either a vertex or an edge gadget.

This connects a popular face in G(u) to one in G(v) via a chain of consecutive popular
faces in G(u, v) and ` has to traverse G(u, v) along the thin blue axis. All bundles are routed
through the faces and beakers of other edges until they reach the frame (see Figure 8).

It is now obvious that a curve ` visiting all gadgets and splitting all popular faces of an
arrangement A gives rise to a non-intersecting Eulerian cycle in G, and vice versa. Since
A∪ ` can be represented as a plane graph, we can represent it in polynomial space and verify
in polynomial time if it contains any popular faces and we conclude that N1R is NP-complete.

4 Resolving an Arrangement with Few Popular Faces

In this section, we will show that N1R with k popular faces can be solved by a randomized
algorithm in O

(
2kpoly(n)

)
time, thus placing N1R in the class randomized FPT when

parameterized by the number k of popular faces.
We model the problem as a problem of finding a simple (i.e. vertex-disjoint) cycle in a

modified dual graph G, subject to a constraint that certain edges must be visited:
I Problem (Simple Cycle with Edge Set Constraints). Given an undirected graph G = (V,E)
and k subsets S1, S2, . . . , Sk ⊆ E of edges, find a simple cycle, if it exists, that contains
exactly one edge from each set Si.

EuroCG’22

38:6 Removing Popular Faces in Curve Arrangements

u v

Bundle A

Bundle B

G(u) G(v)

Figure 7 G(u, v) connects two beakers with three additional curves creating two bundles, which
lead into incident faces. Any number of other bundles (brown curves) can cross either beaker.

We have one edge set Si for each popular face Fi. To take care of the conditions of Lemma 1,
we use a modified dual graph in which we model the passage through Fi directly by an
edge instead of having a dual node for Fi, see Figure 5b. On each edge of Fi that is not a
double edge, we place a terminal node that represents the entrance or exit through that edge.
Inside Fi, we add an edge between all pairs of terminal nodes that satisfy the conditions of
Lemma 1. These edges form the special set of edges Si corresponding to the face Fi.

Outside Fi, we connect each terminal to the dual node corresponding to the incident face
(unless that face is also popular and does not have a dual node; in that case, the node plays
the role of terminal node in both faces).

I Lemma 2. The simple cycles in the modified dual graph defined above that use exactly one
edge from each set Si are in one-to-one correspondence with the curves that can be added to
the arrangement so that no popular faces remain.

If we want, we can force the curve ` to start and edge at the frame by defining an
additional set Si containing all edges incident to the dual vertex of the outer face.

Now we apply a randomized algorithm for the edge-set constrained simple cycle problem,
adapting an algorithm of Björklund, Husfeld, and Taslaman [4], which computes simple
paths through k specified vertices or (single) edges. Our focus on edges instead of vertices
actually makes the algorithm simpler: it avoids certain technicalities that are associated with
visiting the same edge twice in succession. The extension to sets of edges is straightforward.

I Theorem 3. The problem Simple Cycle with Edge Set Constraints with k edge sets in a
graph with n vertices can be solved with a randomized algorithm in O

(
2kpoly(n)

)
time.

The algorithm assigns a random weight w(e) from a sufficiently large finite field F of
characteristic 2 to every edge e. The weight of a (possibly nonsimple) walk c = (e1, . . . , em) of
length m is defined as the product γ(c) =

∏
e∈c w(e) ∈ F of the edge weights. The algorithm

then computes in a dynamic-programming fashion sums of weights of certain sets C of walks.
Each set C is characterized by the length of the walks, by their starting point and endpoint,
and by the subset of edge sets S that are visited. Eventually, the algorithms computes the
sequence Tm, m = 1, 2, . . . , n of sums of closed walks of length m which use exactly one edge
from each Si. (This condition is explicitly enforced by the dynamic-programming recursion,
leading to the factor 2k.) The condition that the walk should be simple is guaranteed by
the trickery of the field F of characteristic 2: If a walk c contains a cycle, it can be matched
with another walk c′ that uses the same set of edges, but visits the cycle in reverse order.
Therefore γ(c′) = γ(c), and γ(c) + γ(c′) = 0 in F . It is ensured that every nonsimple walk is

P.de Nooijer, S.Nickel, A.Weinberger, Z.Masárová, T.Mchedlidze, M.Löffler, G.Rote 38:7

G(v) G(w)

G(u, v) G(u,w)

G(v, w)
Frame

`

G(u)

Figure 8 Schematic representation of three vertex and edge gadgets. The bundles are routed
through beakers of other edges ending at the frame (partially shown at the bottom of the figure). A
possible routing of ` is shown in dark gray.

(a) (b) (c) (d)

Figure 9 Input (a,c) and resulting output (b,d) generated by the implementation; the green
curve is the curve with the smallest number of crossings that resolves the popular faces.

matched exactly once, and hence the nonsimple walks cancel in the sums Tm. If the shortest
simple walk has m edges, it follows that T1 = T2 = · · · = Tm−1 = 0, and it can be shown
that Tm is nonzero with high probability. In this case, such a simple walk can be constructed
in O

(
2kpoly(n)

)
time. See Appendix B in the full version [6] for details.

Connecting all terminals between two runs of consecutive edges in the dual graph incurs a
quadratic blowup in the number of edges. This blowup can be avoided: We cut off each run
of consecutive edges, like fghi, by an additional edge (shown dotted in Figure 5c) and place a
single terminal node there. Now, one has to take care that the cycle does not use two such
terminal edges in succession, like the edges crossing f and h, because such a cycle would not
correspond to a valid curve. This constraint must be added to the problem definition, and
the algorithm modified accordingly, see Appendix D in the full version [6].

Figure 9 shows initial results of an implementation of our algorithm on two small test
instances. More details are given in the full version [6].

EuroCG’22

38:8 Removing Popular Faces in Curve Arrangements

References
1 Kees Joost Batenburg and Walter A. Kosters. On the difficulty of nonograms. ICGA

Journal, 35(4):195–205, 2012. doi:10.3233/ICG-2012-35402.
2 Samuel W. Bent and Udi Manber. On non-intersecting Eulerian circuits. Discrete Applied

Mathematics, 18(1):87–94, 1987. doi:10.1016/0166-218X(87)90045-X.
3 Daniel Berend, Dolev Pomeranz, Ronen Rabani, and Ben Raziel. Nonograms: Combinatorial

questions and algorithms. Discrete Applied Mathematics, 169:30–42, 2014. doi:10.1016/j.
dam.2014.01.004.

4 Andreas Björklund, Thore Husfeld, and Nina Taslaman. Shortest cycle through specified
elements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 1747–1753, USA, 2012. Society for Industrial and Applied
Mathematics. doi:2095116.2095255.

5 Yen-Chi Chen and Shun-Shii Lin. A fast nonogram solver that won the TAAI 2017 and
ICGA 2018 tournaments. ICGA Journal, 41(1):2–14, 2019. doi:10.3233/ICG-190097.

6 Phoebe de Nooijer, Soeren Nickel, Alexandra Weinberger, Zuzana Masárová, Tamara
Mchedlidze, Maarten Löffler, and Günter Rote. Removing popular faces in curve arrange-
ments, 2022. arXiv:2202.12175.

7 Mees van de Kerkhof, Tim de Jong, Raphael Parment, Maarten Löffler, Amir Vaxman,
and Marc J. van Kreveld. Design and automated generation of Japanese picture puzzles.
Comput. Graph. Forum, 38(2):343–353, 2019. doi:10.1111/cgf.13642.

Transitions in Dynamic Map Labeling∗

Thomas Depian, Guangping Li, Martin Nöllenburg, and
Jules Wulms

Algorithms and Complexity Group, TU Wien, Vienna, Austria
thomas.depian@tuwien.ac.at,{guangping, noellenburg, jwulms}@ac.tuwien.ac.at

Abstract
The labeling of point features on a map is a well-studied topic. In a static setting, the goal is to
find a non-overlapping label placement for (a subset of) point features. In a dynamic setting, the
set of point features and their corresponding labels changes, and the labeling has to adapt to such
changes. To aid the user in tracking these changes, we can use morphs, here called transitions,
to indicate how a labeling changes. Such transitions have not gained much attention yet, and we
investigate different types of transitions for labelings of points, most notably consecutive transitions
and simultaneous transitions. We give (tight) bounds on the number of overlaps that can occur
during these transitions. When each label has a (non-negative) weight associated to it, and each
overlap imposes a penalty proportional to the weight of the overlapping labels, we show that it is
NP-complete to decide whether the penalty during a simultaneous transition has weight at most k.

Related Version arXiv:2202.11562

1 Introduction

Maps are ubiquitous in the modern world: from geographic to political maps, and from
detailed road networks to schematized metro maps, maps are used on a daily basis. Advances
in technology allow us to use digital maps on-the-fly and in a highly interactive fashion, by
means of panning, zooming, and searching for map features. Besides changes induced by the
user, maps can also change passively, for example automated panning during gps routing, or
changing points of interest when visualizing time-varying geospatial (point) data.

Important features on a map are often labeled. Examples of such features are areas
(such as countries and mountain ranges), curves (for example roads and rivers), and most
importantly points (of interest). The aforementioned interactions force map features and their
corresponding labels to change, by appearing, disappearing, or changing position. Instead of
swapping between the map before and after such changes, we can use morphs, here called
transitions, to allow the user to more easily follow changes in map features and labelings.
Figure 1 shows why such transitions are important: even for two very similar map labelings,
a lot of mental effort can be required to identify the differences.

#london

#madrid

#perugia

#salzburg

#vienna #rome

#porto

#paris#dublin

#graz #bern
#zagreb

#lyon

#oslo #prague

#nizza #athens

#denhaag

#brussels

#munich #london

#madrid

#perugia

#salzburg
#vienna #rome

#porto

#paris#dublin

#graz #zurich
#zagreb

#lyon

#oslo #prague

#athens
#denhaag

#brussels

#riga
#kiev

#milano

Figure 1 A visual scan of the individual labels is necessary to identify all changes [11].

∗ GL and JW are (partially) funded by the Austrian Science Fund (FWF) under grant P31119 and JW is
partially funded by the Vienna Science and Technology Fund (WWTF) under grant ICT19-035.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

39:2 Transitions in Dynamic Map Labeling

p p

(a) (b)

Figure 2 (a) The four candidate positions for label l of point p, with l placed in the top-right
position. (b) Labels continuously move between candidate positions using the sliding-position model.

While previous research focused mainly on (the complexity of) computing labelings, in
various static [1, 8, 12], interactive [3, 4, 9, 10], and dynamic [2, 5] settings, in this abstract
we study transitions on maps that show point features P and their labels L. Let P be a
finite point set in R2, where each point pi ∈ P has a label li ∈ L associated to it. Labels
are axis-aligned unit-sized squares in the frequently used four-position model, that is, each
point pi has four possible candidate positions to place label li [8] (see Figure 2a). While
labels are often modeled as arbitrary (axis-aligned) rectangles, we use squares with side
length σ = 1 for simplicity, and show in [7] how our results extend to arbitrary rectangles. A
labeling L ⊆ L of P consists of a set of pairwise non-overlapping labels, and can be drawn
on a map conflict-free, by drawing only the labels that are in L with their associated points.
If the label l ∈ L for a point p ∈ P is not contained in L, we do not draw p either.

Furthermore, we work in a dynamic setting, where points appear and disappear at different
moments in time, and hence the set P changes through additions and deletions. Every time
additions and deletions are made to P , a new overlap-free labeling must be computed, thus
resulting in a change from labeling L1, before the changes, to labeling L2, afterwards. In this
abstract we study different types of transitions from L1 to L2. During such a transition, the
individual labels are allowed to move in the sliding-position model [12] (see Figure 2b). Our
aim is to find transitions that achieve optimization criteria, such as minimizing the number
of overlaps during a transition, or minimizing the time required to perform a transition. To
our knowledge, this is the first time transitions have been studied in this way.

Problem description. Given two (overlap-free) labelings L1 and L2, we denote a transition
between them with L1 −→ L2. Such a transition consists of changes of the following types.

Additions If only label li of a feature point pi must be added, we denote this by L1
Ai−→ L2.

Removals If only label li of a feature point pi must be removed, we denote this by L1
Ri−→ L2.

Movements If only label li of a feature point pi must change from its position in L1 to a new
position in L2, we denote this by L1

Mi−−→ L2. Movements are unit speed and axis-aligned,
in the sliding-position model. Note that a diagonal movement, as in Figure 3a (left),
takes twice as long as a movement to an adjacent position.

A label is stationary if it remains unchanged during a transition. Applying multiple transitions
consecutively is indicated by chaining the corresponding transition symbols: L1

MiMj−−−→ L2

denotes that label li moves before label lj . Furthermore, L1
M−→ L2 is a shorthand for

applying all movement-transitions simultaneously. All these notions extend to additions and
removals, using A and R, respectively, instead of M . A transition has no effect if no point
must be transformed with the respective transition, e.g., even if there are no additions, the
transition L1

A−→ L2 is still applicable; it simply does not modify the labeling.

T. Depian, G. Li, M. Nöllenburg, J. Wulms 39:3

(a) (b)

Figure 3 (a) Minimizing overlaps by moving around the gray stationary label. (b) Minimizing
duration by using a single movement along the green arrow, instead of moving along the red arrows.

We aim to identify types of transitions that try to achieve the following goals.

G1– Minimize overlaps While the two labelings are overlap-free, overlaps can occur during
the transition from L1 to L2. Those overlaps should be avoided as much as possible, by,
for instance, adjusting the movement direction of labels, as shown in Figure 3a.

G2– Minimize transition duration The main goal is still to show a map in a (mostly) static
state. Hence, we want to perform the transitions as fast as possible. This can be achieved
by disallowing detours, as in Figure 3b, or by performing the changes simultaneously.

Optimizing both goals simultaneously is often impossible as there can be a trade-off: per-
forming the transition as fast as possible to achieve G2 often leads to unnecessary overlaps,
while preventing as many overlaps as possible to achieve G1 may require more time. However,
to work towards both G1 and G2, we can perform all additions simultaneously, as well as all
removals. Furthermore, if we perform removals before movements, and movements before the
additions, we create free space for the movements, to reduce the number of overlaps without
wasting time. Let X be an arbitrary way of performing all movements required to change
from L1 to L2 (consecutively and/or simultaneously), then we can observe the following.

▶ Observation 1. A transition of the form L1
RXA−−−→ L2 aids in achieving both G1 and G2.

In the following sections we introduce and analyze different transition styles, each a
variant of the style RXA, as prescribed by Observation 1, while filling in X in a unique way.

All omitted proofs and details can be found in the complete version [7].

2 Consecutive Transitions

Naive transitions. Before we can propose more elaborate transition styles, we first evaluate
the potential overlaps for a single label performing its movement. Figure 4a shows how only
a single stationary square label can interfere with the moving label.

▶ Lemma 2.1. In L1
RMiA−−−−→ L2, where only label li moves, at most one overlap can occur.

Next we consider an arbitrary order of all n moving labels in a transition. We define a
conflict graph, which has a vertex for each moving label, and an edge between overlapping
labels. With a packing argument we locally bound the degree of each of the n moving labels
to 14 by considering the start, intermediate, and end position of such a label (these overlaps
are achieved in Figure 4b). By the handshaking lemma this results in at most 7n overlaps.

▶ Lemma 2.2. In L1
RM1 ...MnA−−−−−−−→ L2 at most 7n overlaps can occur.

EuroCG’22

39:4 Transitions in Dynamic Map Labeling

(b)(a)

li

li

lj

Figure 4 (a) Since all labels are squares with side length σ, the moving blue label li can overlap
only a single gray stationary label lj . (b) The blue label li overlaps 14 other labels during the
movement transitions. The green labels move before li, red labels move after li.

DAG-based transitions. To refine the naive approach, we model dependencies between
movements in a movement graph, and use it to order movements and avoid certain overlaps.

▶ Definition 2.3 (Movement graph). Let M = {M1 , . . . , Mn} be a set of movements. Create
for each movement Mi ∈ M a vertex vi, and create a directed edge from vi to vj , vi → vj , if
some intermediate or end position of Mj overlaps with the start position of Mi , or the end
position of Mj overlaps with some intermediate position of Mi . If intermediate positions of
Mi and Mj overlap, create the edge vi → vj , i < j. This results in the movement graph GM.

An example for a movement graph is shown in Figure 5.

▶ Theorem 2.4. Movements in L1
RM1 ...MnA−−−−−−−→ L2 can be rearranged such that at most n + m

overlaps occur, if removing m edges transforms GM, with M = {M1 , . . . , Mn}, into a DAG.

Proof. By Lemma 2.1, we know that at most one overlap occurs when moving a single label
to a free end position. This leads to at most n overlaps for n consecutively moving labels, if
no label moves to (or through) a position occupied by a label, which starts moving later.

Let GM be a movement graph with M = {M1, . . . , Mn}. There are two cases:

Case (1) If GM is acyclic, then handling all movements according to any topological ordering
of the vertices of GM produces no additional overlaps.

Case (2) If GM contains cycles, then overlaps may be inevitable because each label in such
a cycle wants to move to or through a position that is occupied by another moving label.
Moreover, as the movements happen sequentially, one label in this cycle must move first
and therefore may cause an overlap. Let m be the smallest number of edges that must be
removed to break each cycle in GM, i.e., the size of a minimum feedback arc set S. As
GM is cycle-free after removing S, case (1) applies and m additional overlaps suffice. ◀

We can see in Figure 5 that this bound is tight. Furthermore, it is not always necessary to
perform all movements consecutively. We can observe that movements which are unrelated in
GM can be performed simultaneously: when no overlap is possible, there is no edge in GM.

T. Depian, G. Li, M. Nöllenburg, J. Wulms 39:5

p1

p2

p3
p4

p5

p6

p7

p8

p1 p2

p3

p4

p5p6

p7

p8

(b)(a)

Figure 5 (a) The blue label is added in this transition and forces n + m inevitable overlaps during
movement (n = 8 and m = 1). Gray labels are stationary. (b) The corresponding movement graph.

3 Simultaneous Transitions

Figure 6 shows three timelines of different transition styles, (1) a naive consecutive transition,
(2) a DAG-based transition, and (3) simultaneous movement. While (1) produces four overlaps
and takes four units of time, (2) and (3) produce no overlaps, and (3) only takes a single unit
of time. This shows that it is sometimes unnecessary to perform the movements consecutively
to minimize overlaps. In this section, we investigate how simultaneous movements influence
the number of overlaps, and the complexity of minimizing overlaps.

▶ Theorem 3.1. In L1
RMA−−−→ L2 at most 6n overlaps can occur, where n is the number of

labels that must be moved, and all movements are performed at unit speed.

Proof sketch. We again use a conflict graph, as for Lemma 2.2, with a more intricate packing
argument than before (see Figure 7). We consider a σ-wide area around the movement of
each label l, and argue where the start positions of labels overlapping l can be located inside
this area. We then bound the degree of each of the n moving labels to 12 (and this degree is
achieved in Figure 7d), which by the handshaking lemma results in at most 6n overlaps. ◀

←
t

←
t

←
t

(1)

(2)

(3)

Figure 6 Comparison of possible movement orderings with respect to G1 and G2.

EuroCG’22

39:6 Transitions in Dynamic Map Labeling

l

σ

(a) (b)

l

σ

(c) (d)

Figure 7 Overlapping regions for (a) non-diagonal and (c) diagonal movement of the blue label l.
Label l has at most (b) eight overlaps, (d) twelve overlaps with moving (white) labels. Labels
starting in orange/red areas cannot overlap l, as l moves away, or they overlap the end position of l.

3.1 Complexity of Computing Simultaneous Transitions
In this section, we show that it is NP-complete to minimize the number of overlaps in a
weighted L1

RMA−−−→ L2-transition by choosing the direction of diagonal movements.

▶ Definition 3.2 (Weighted Transition). Let L1
Σ−→ L2 be a transition, where Σ denotes

an arbitrary transition style of additions, movements, and removals, and let w be a weight
function that assigns to each label l ∈ L a non-negative weight w(l) ∈ R+

0 . A weighted
transition L1

Σ−→
w

L2 performs L1
Σ−→ L2, but when two labels li and lj overlap, a penalty of

weight w(li) · w(lj) is introduced. The total penalty W is equal to the sum of penalty weights.

▶ Problem 1. Given a weighted transition L1
RMA−−−→

w
L2 and k ∈ R+

0 , can we assign a
movement direction to each diagonal movement such that the total penalty W is at most k?

▶ Theorem 3.3. It is NP-complete to decide whether W is at most k for L1
RMA−−−→

w
L2.

Proof sketch. Given a movement direction for each label, it is easy to check whether W is
at most k by considering each pair of labels and checking for overlaps. Hence Problem 1 is
contained in NP. For NP-hardness, we reduce from an instance F of Planar Monotone
Max 2-Sat [6]. Figure 8 gives an overview of the required gadgets. Clause and variable
gadgets consist of two opposing labels at their core, corresponding, respectively, to the
assignments of the two literals in a clause, or the binary choice for a variable. For an
unsatisfied clause, an overlap occurs inside the clause gadget, whenever both labels move
towards each other (inwards). The corresponding labels have weight one, and hence such

T. Depian, G. Li, M. Nöllenburg, J. Wulms 39:7

¬x ∨ ¬z

y z

x ∨ y x ∨ zy ∨ z

¬y ∨ ¬z

¬x
x ¬x

x

x

¬x ∨ ¬y

¬x

¬z

¬x

Figure 8 Reduced instance for the formula F = (¬x ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (x ∨ y) ∧
(y ∨ z) ∧ (x ∨ z). The weight of white and green labels is n + 1 and 1, respectively.

an overlap would incur a penalty of weight one. A variable gadget has two opposing labels
for setting the variable to true or false. Choosing a movement direction outward from the
variable gadget, for example on the “true”-side, will cause a domino effect, propagating
towards the gadgets of clauses with negative occurrences of this variable. There it results in
inward movement, and hence this corresponds to setting the variable to not be false (and thus
be true). Choosing the outward movement for both variable states is never beneficial: that
variable is neither true nor false. The movement directions chosen in the variable gadgets are
propagated to the appropriate clauses using the (planar) embedding of the incidence graph
of F . All labels outside of clause gadgets have weight n + 1 and hence producing an overlap
outside of a clause gadget will result in a large penalty of weight greater than n. As such, we
either have movement directions that produce a total penalty of at most k for some positive
k < n, and overlaps correspond to unsatisfied clauses, or we have a total penalty of at least n,
and no clauses can be satisfied (or the variable assignment is inconsistent). Thus, n − k

clauses are satisfiable in F , if and only if we have k overlaps in our reduced instance. ◀

4 Conclusion

In this abstract we performed a first investigation into the number of overlaps produced by
transitions on labelings of points, and started by proving tight upper bounds for various
transition styles. Finally, we showed that it is NP-complete to decide whether a weighted
simultaneous transition has a penalty of at most k. We see this abstract as a first step
towards understanding such transitions in map labeling. Therefore we have many open
questions for future work, such as:

Do transitions work well in practice? Can we verify our results with a prototype?

EuroCG’22

39:8 Transitions in Dynamic Map Labeling

Should we develop new transition styles or improve the existing ones? Can we utilize more
structured movement, like performing all movements in the same direction simultaneously?
Is choosing the direction of labels in simultaneous transitions still NP-hard in the unit
weight case?
Can we analyze transitions from the point of view of (algorithmic) stability?

References
1 Pankaj K. Agarwal, Marc J. van Kreveld, and Subhash Suri. Label placement by maximum

independent set in rectangles. Computational Geometry, 11(3-4):209–218, 1998. doi:
10.1016/S0925-7721(98)00028-5.

2 Lukas Barth, Benjamin Niedermann, Martin Nöllenburg, and Darren Strash. Temporal
map labeling: a new unified framework with experiments. In Proc. 24th ACM International
Conference on Advances in Geographic Information Systems (SIGSPATIAL), pages 1–10,
2016. doi:10.1145/2996913.2996957.

3 Ken Been, Eli Daiches, and Chee-Keng Yap. Dynamic map labeling. IEEE Transactions on
Visualization and Computer Graphics, 12(5):773–780, 2006. doi:10.1109/TVCG.2006.136.

4 Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff. Optimizing active
ranges for consistent dynamic map labeling. Computational Geometry, 43(3):312–328, 2010.
doi:10.1016/j.comgeo.2009.03.006.

5 Sujoy Bhore, Guangping Li, and Martin Nöllenburg. An Algorithmic Study of Fully Dynamic
Independent Sets for Map Labeling. In Proc. 28th European Symposium on Algorithms
(ESA), volume 173 of Leibniz International Proceedings in Informatics (LIPIcs), pages
19:1–19:24, 2020. doi:10.4230/LIPIcs.ESA.2020.19.

6 Kevin Buchin, Valentin Polishchuk, Leonid Sedov, and Roman Voronov. Geometric Secluded
Paths and Planar Satisfiability. In Proc. 36th International Symposium on Computational
Geometry (SoCG), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 24:1–24:15, 2020.

7 Thomas Depian, Guangping Li, Martin Nöllenburg, and Jules Wulms. Transitions in
Dynamic Map Labeling, 2022. doi:10.48550/arXiv.2202.11562.

8 Michael Formann and Frank Wagner. A packing problem with applications to lettering of
maps. In Proc. 7th International Symposium on Computational Geometry (SoCG), pages
281–288, 1991.

9 Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Consistent Labeling of Rotating Maps.
Journal of Computational Geometry, 7(1):308–331, 2016. doi:10.20382/jocg.v7i1a15.

10 Chung-Shou Liao, Chih-Wei Liang, and Sheung H. Poon. Approximation algorithms
on consistent dynamic map labeling. Theoretical Computer Science, 640:84–93, 2016.
doi:10.1016/j.tcs.2016.06.006.

11 Ronald A. Rensink, John K. O’Regan, and James J. Clark. To See or not to See: The Need
for Attention to Perceive Changes in Scenes. Psychological Science, 8(5):368–373, 1997.
doi:10.1111/j.1467-9280.1997.tb00427.x.

12 Marc J. van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding labels.
Computational Geometry, 13(1):21–47, 1999. doi:10.1016/S0925-7721(99)00005-X.

Preprocessing Imprecise Points for Furthest
Distance Queries
Vahideh Keikha1, Sepehr Moradi2, and Ali Mohades2

1 The Czech Academy of Sciences, Institute of Computer Science, Pod
Vodárenskou věží 2, 182 07 Prague, Czech Republic
keikha@cs.cas.cz

2 Department of Computer Science, Amirkabir University of Technology
(moradi,mohades)@aut.ac.ir

Abstract
Given is a set of regions in Rd, in the region-based uncertainty model. We show here how to
preprocess these regions so that if one point per region is specified with precise coordinates, in the
query phase, the diameter of the query points can be computed faster than the scratch. We discuss
a (1 + ϵ)-approximation algorithm with running time O(n

ϵd) for answering such queries, for a set of
pairwise disjoint unit balls, after spending O(n log n + n

ϵd) time for preprocessing.

1 Introduction

It is a common assumption in different areas of computational geometry that the input is a
set of points. However, we usually face the problems at which the input is not precise due to
several resources generated by bounded precision of measuring devices, rounding errors, etc.
In some cases, we already know in which region each particular point would lie, however,
the exact locations of the points are still unknown. One may assume such a region as an
imprecise point, that could be a disk, rectangle, line segment, etc. This uncertainty model is
called region-based by Löffler and van Kreveld [11].

There are numerous exact and approximation algorithms for processing uncertain data.
Designing an exact algorithm that works for all possible instances may produce a big data
structure and may need time-consuming calculations. As a result, these algorithms demand
much time and space as their inputs are indeed superset compared to the standard algorithm,
where the input is a set of points. There have been efforts to resolve this problem by careful
analysis of the worst- or the best-case behavior of the input, however, all cases are likely
to happen. Another standpoint is preprocessing uncertain data for speeding-up the further
computations on precise instances received later. We address the diameter problem in this
context.
▶ Problem 1 (Diameter Query). Let D = {d1, . . . , dn} be a set of balls in Rd. For a given
query point set Q = {p1, . . . , pn}, where pi ∈ di, our objective is to find the diameter of Q in
o(dn2) time, after preprocessing. We call the set Q a realization of D; see Figure 1.

Related work. The region-based model of imprecision was introduced and extensively
studied by Löffler and van Kreveld. Several models are already established for processing a
set of imprecise points for (possibly) speeding up the sorting problem [19], computing an
arbitrary triangulation [9, 20], the Delaunay triangulation [2, 12], and the convex hull of a
query set in R2 [4]. In particular, it is previously shown that for a set of imprecise points
modeled as convex polygons, with totally O(n) vertices, an arbitrary triangulation of a query
set with one point in each region can be computed in O(n) time after spending O(n log n) for
the preprocessing [20]. The same problem was also studied in [12] at which the same results
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

40:2 Preprocessing Imprecise Points for Furthest Distance Queries

(a) (b)

Figure 1 Problem definition: (a) A set D of 6 imprecise points modeled as unit balls, (b) and
the diameter of two different realizations of D.

also hold for computing a Delaunay triangulation. See also [2, 9]. For a set of imprecise
points in the plane modeled as lines, it is shown that the preprocessing does not speed up
the closest pair computation, the Delaunay triangulation, and the sorting problem on the
realizations received later [4], where they lie on given lines known in advance. However, in
the same paper, it is shown that preprocessing a set of lines, can speed up computing the
convex hull of the points (on those lines) received later.

The diameter of a set of points is the maximum pairwise distance between the points
in the set. Computing the diameter of a set of points has a long history. It is shown that
computing the diameter in Rd needs Ω(n log n) time in any algebraic decision tree, by a
reduction from the set disjointedness problem. But the best-known algorithm for computing
the diameter in Rd takes O(min{nd log n, n2 logs−2 n, n2ds−2}) time, where s ≈ 2.376 [5, 15].
However, this running time can be improved for specific values of d > 2 [5]. For d = 2, near
linear approximation algorithm exists for the diameter problem [8]. We refer the reader
to [5, 13] for a complete list of algorithms for the diameter problem in different dimensions.
We note that the diameter problem has extensively used as a black box in database queries.
See, e.g., [6].

Contribution. We show there exists a (1 + ϵ)-approximation for approximating the
diameter queries on pairwise disjoint unit disks, that takes O(n

ϵd) time, after spending
O(n log n + n

ϵd) time for preprocessing (Sec 3.2).

2 Preliminaries

For a set Q of points in Rd, let diam(S) denote the diameter of Q. In the following, we
recall the definitions we use from the literature.

Let G = (S, E) be a geometric graph on Q. Let dG(p, q) denote the geodesic distance
between any pair p, q ∈ Q, that is defined as the length of the shortest path between these
two points in G. The graph G is called a t-spanner for some t ≥ 1, if for any two points
p, q ∈ Q we have dG(p, q) ≤ t|pq|, where |pq| is the Euclidiean distance between p and q. The
parameter t is refereed to as the stretch factor.

2.1 Well Separated Pair Decomposition (WSPD)
Let Q be a set of points in Rd. Two sets Pi, Qi ⊆ Q of points are s-well separated if they
can be enclosed within balls of radius r such that the closest distance between these balls
is at least sr. An s-well separated pair decomposition (s-WSPD) of size m for a point
set Q is a set of s-well-separated pairs of subsets {(P1, Q1), . . . , (Pm, Qm)}, where each
(Pi, Qi) ⊂ 2Q × 2Q, and for any pair of points p, q ∈ Q (p ̸= q) there is a unique index i for

V.Keikha, S.Moradi, A.Mohades 40:3

(a) (b)

Pi

Qi

p

q

Figure 2 (a) Illustration of a point set and (b) a well-separated pair decomposition of it with 4
pairs (computed from the quadtree; see [16] for the definition and the algorithm).

which p ∈ Pi, q ∈ Qi. See Figure 2. Moreover, for any s-well separated pair (Pi, Qi), for a
sufficiently large separation parameter s, we have approximately equal distances between any
two points, where one lies in Pi and the other lies in Qi. Furthermore, each pair Pi, Qi has
two representatives pi ∈ Pi and qi ∈ Qi, where pi, qi gives an approximation for distances
between any two points from Pi to Qi. It has been shown that an s-WSPD of O(sdn) pairs
can be computed in O(n log n + sdn) [3].

We start stating our results with a related question: Given is a set D of imprecise points
modeled by disjoint unit balls. The question is determining whether there exists an spanner
G for an arbitrary realization Q of D such that for any other realization Q′ of D where
Q′ ̸= Q, the graph G remains an spanner for Q′ with the same stretch factor. Abam et
al. in [1] answered this question positively by introducing a method for computing the
WSPD with respect to a separation ratio s′ on the center of the balls. They proved that
the computed WSPD remains valid for any realization Q of D, where the separation ratio s

of the WSPD on instances is calculated according to s = s′−2
2 . Then they create a spanner

that is valid for any realization.
Let D be a set of n unit balls, and let s′ be the separation ratio, for which one make a

WSPD on the centers. The following result exist:

▶ Lemma 2.1 (Lemma 1 [1]). Let D be a set of disjoint unit balls, and let {(Pi, Qi)|1 ≤ i ≤ m}
be a WSPD for the set {c1, . . . , cn} as the centers of the balls in D, with respect to s′ = 2s+2.
Let Q = {p1, . . . , pn} be a set of points, where pj ∈ Dj, for 1 ≤ j ≤ n. For 1 ≤ i ≤ m, let
P ′

i = {pj |cj ∈ Pi} and Q′
i = {pj |cj ∈ Qi}. Then {(P ′

i , Q′
i)|1 ≤ i ≤ m} is a WSPD for Q

with respect to s.

2.2 Point Set Diameter Approximation
A (1 + ϵ)-approximation algorithm already exists for approximating the diameter of a
point set in Rd using WSPD [7] (Chapter 3, Lemma 3.14). Let Q be a set of n points
in Rd. For a given 0 ≤ ϵ ≤ 1, the objective is computing a pair pu, pv ∈ Q such that
diam(Q)

1+ϵ ≤ ∥pupv∥ ≤ diam(Q). In the following, we recall the algorithm.
Algorithm: Approximating the Diameter [7]. We first compute an s-WSPD for

a point set Q, where s = 4/ϵ. For each WSPD pair (Pi, Qi), associate a pair of points as
representative points pu ∈ Pi, pv ∈ Qi and compute the distance between them. See Figure 3.
We then remember the maximum distance among all representative points and return it in
the end. This would give a (1 + ϵ)-approximation for the diameter of Q [7]. It is shown that
the running time of this algorithm is O(n log n + sdn) as the WSPD needs to be computed.
Although, the number of candidate pairs realizing the diameter is only O(sdn).

Our method is in fact a combination of Abam et al. [1] technique in the preprocessing
phase for computing a persistent WSPD which is computed on the disk centers, and the

EuroCG’22

40:4 Preprocessing Imprecise Points for Furthest Distance Queries

≥ sr

2r

2r

pu

pv

y

x

Figure 3 Diameter approximation using WSPD. The points x, y determine the diameter, and
pu, pv approximate the diameter within a factor 1 + ϵ.

diameter approximation algorithm [7] in the query phase, using the computed WSPD.

3 Computing the Diameter after Preprocessing

Observe that for any set D of n imprecise points in R2, there is no preprocessing with running
time o(n log n) on D to speed-up answering the diameter queries on D to o(n log n) time.
That is because all such problems simulate the point set case, and it is known that there
is a lower bound Ω(n log n) for the diameter problem in any algebraic decision tree [13]. In
other words, if the preprocessing takes o(n log n) time, this would result in an o(n log n) time
algorithm for the diameter of a set of points in the plane. As another variant consider the
input regions as a set of parallel lines in the plane. If the 2D points are sorted in just a single
direction, one cannot compute their diameter in less than Ω(n log n) time [17]. Because, if
D is a set of parallel lines, e.g., along the x-axis, we can only anticipate the x-order of the
points (received later), from which the lower bound follows.

For a set of unit disks in R2, the diameter query problem can be solved in O(n) time
after spending O(n log n) time for preprocessing. Let D be a set of unit disks in the plane.
It is known that the Delaunay triangulation of a realization of D, as the query set, can
be computed in O(n) time after spending O(n log n) time for preprocessing. Hence, the
convex hull can be extracted in O(n) time. Having the convex hull, the diameter also can be
computed in O(n) time, as all the antipodal pairs of a convex polygon can be computed in
O(n) time and the diameter is among them [18].

In Rd, we focus on approximation algorithms. An f(d)-approximation algorithm for this
problem is the minimum enclosing ball (MEB) of a set of points that approximates the
diameter of the points. For clarity, in R3 consider the configuration at which four points on
the boundary of the MEB form a regular tetrahedron, and the side length of each triangular
face determines the diameter. If one translates any pair of these points on the boundary of the
MEB, to get closer, the diameter enlarges between at least one pair. The side length of the
tetrahedron inside a sphere of radius r equals

√
8
3 r. Hence, an (

√
3
8)-approximation of the

diameter of any set of points in R3 is achievable in O(n) time. In Rd, such an approximation
factor grows exponentially to d, however, if d is constant, MEB can still be computed in O(n)
time using Megiddo’s algorithm [14]. For general values of d, computation of MEB is more
complicated, if an f(d)-approximation factor suffices. An approximation of the MEB can be
computed in O(dnz/ϵO(1)) time by using the randomized (1 + ϵ)-approximation algorithm
in [10] for computing the MEB of a set of points in Rd, at which z is a parameter depending
on the input 1. Next, we discuss a (1 + ϵ)-approximation algorithm for general values of d.

1 To the best of our knowledge, this is the best-known algorithm for computing the MEB, that has a

V.Keikha, S.Moradi, A.Mohades 40:5

3.1 Preprocessing
In this section, our objective is to preprocess the regions, such that when the exact position
of points are given, one can compute and return an approximation of the diameter in
o(n log n) time. To solve the problem, in our algorithm we use the aforementioned technique
that returns a (1 + ϵ)-approximation of diameter using WSPD on the point set in O(n/ϵ2).
However, we need to compute the WSPD on the point set according to a specific separation
factor s = 4

ϵ , but it takes O(n log n + s2n) time and makes the algorithm useless. Therefore,
in the case where the input is a set of disks, we use Abam et al. [1] technique for computing
a WSPD on the center points of the disks with the separation parameter s′ = 2s + 2, which
has been proved that would be valid for any realization according to separation factor s.
Hence, we do not need to compute the WSPD on each instance, and the WSPD is computed
only once in the preprocessing phase.

▶ Lemma 3.1. Let {(Ai, Bi)|1 ≤ i ≤ m} be a WSPD on the set {c1, . . . , cn} of given disjoint
unit disks with respect to s′ = 8

ϵ + 2. Let Q = {p1, . . . , pn} be a set of points, where pj ∈ Dj ,
for 1 ≤ j ≤ n. For 1 ≤ i ≤ m, let A′

i = {pj |cj ∈ Ai} and B′
i = {pj |cj ∈ Bi}. Then

{(A′
i, B′

i)|1 ≤ i ≤ m} is a WSPD for Q with respect to s = 4
ϵ .

Proof. According to Lemma 2.1 the {(A′
i, B′

i)|1 ≤ i ≤ m} would be a valid WSPD for any
instance with respect to separate factor s = s′−2

2 . We assumed the separate factor of the
WSPD on the center points is s′ = 8

ϵ + 2, so we have: s = s′−2
2 = (8

ϵ +2)−2
2 =

8
ϵ

2 = 4
ϵ . ◀

3.2 Query Phase
Now, when we are given a realization of the balls, we wish to compute a (1+ϵ)-approximation
of the diameter in O(n/ϵd) time. It follows from Lemma 3.1 that we can do this by having a
WSPD on the center points with respect to separation factor s = 4

ϵ . In addition, our WSPD
is valid for any other realization.

▶ Theorem 3.2. For any given set D = {D1, . . . , Dn} of n imprecise points modeled as the
same size balls which are pairwise disjoint, a (1 + ϵ)-approximation of the diameter of a
realization Q of D can be computed in O(n

ϵd) time, after O(n log n + n
ϵd) preprocessing time.

Proof. Let s = 4
ϵ and s′ = 2s + 2 = 8

ϵ + 2 and Q = {p1, . . . , pn} be the set of precise points.
Let {(Ai, Bi)}i=1,...,m be an s′-WSPD for the center points, of size m = O(s′2n), and let
A′

i = {pj |cj ∈ Ai}, B′
i = {pj |cj ∈ Bi}. It follows from Lemma 2.1 that {(A′

i, B′
i)|1 ≤ i ≤ m}

is a WSPD for Q with respect to separation parameter s = 4
ϵ .

Then, we associate one point to each set as the representative point, let pa ∈ A′
i

and pb ∈ B′
i be the representative points of the sets A′

i and B′
i respectively. From the

presented approximation algorithm for the diameter in [7], by calculating the distance
between representative points of each pair and computing the maximum distance among all,
we have a (1 + ϵ)-approximation of the diameter of any realization in O(s′dn) time. ◀

Moreover, for the particular case d = 3, we consider the efficiency of our method by
considering the intersection point of the running time function of the query and the best
known existing algorithm for computing the diameter. See Figure 4. This clarifies that for
which values of n and ϵ the preprocessing is meaningful. Observe that for large values of n it
is always efficient to perform the preprocessing.

linear dependency on d for general values of d.

EuroCG’22

40:6 Preprocessing Imprecise Points for Furthest Distance Queries

Figure 4 For d = 3 and for different values of ϵ with worst behavior, we consider the optimal
values of n for which our algorithm is efficient. Whenever the red function is below the blue function
the preprocessing is meaningful.

V.Keikha, S.Moradi, A.Mohades 40:7

4 Discussion

The main open question is finding an algorithm for the general version, as our approach
cannot be extended to overlapping balls or balls of arbitrary size. We note that a (1 + ϵ)-
approximation for the nearest neighbour query or the shortest path tree query is also solvable
by a similar idea of using the WSPD in the preprocessing, in R2, as discussed in [2]. But,
the input disks must be disjoint and unit. These restrictions are in principal because of the
WSPD properties. Finding an approach that breaks this barrier generally, or for using the
WSPD for the overlapping balls in the preprocessing is an interesting open problem.

Acknowledgement The authors would like to thank an anonymous reviewer for pointing
out the exact algorithm for the problem in R2. V.K is Supported by the Czech Science
Foundation, grant number GJ19-06792Y, and by institutional support RVO: 67985807.

References
1 Mohammad Ali Abam, Paz Carmi, Mohammad Farshi, and Michiel Smid. On the power of

the semi-separated pair decomposition. Comput. Geom., 46(6):631–639, 2013.
2 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Delaunay triangulation

of imprecise points simplified and extended. In WADS, pages 131–143. Springer, 2009.
3 Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets with

applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.
4 Esther Ezra and Wolfgang Mulzer. Convex hull of points lying on lines in o(n log n) time

after preprocessing. Comput. Geom., 46(4):417–434, 2013.
5 Daniele V Finocchiaro and Marco Pellegrini. On computing the diameter of a point set in

high dimensional euclidean space. Theoretical Computer Science, 287(2):501–514, 2002.
6 Xi Guo, Xiaochun Yang, Danni Chen, and Changyu Chen. Diameter-aware extreme group

queries. IEEE Access, 6:58687–58701, 2018.
7 Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Mathematical

Soc., 2011.
8 Jieying Hong, Zhipeng Wang, and Wei Niu. A simple approximation algorithm for the

diameter of a set of points in an euclidean plane. Plos one, 14(2):e0211201, 2019.
9 Vahideh Keikha, Ali Mohades, and Mansoor Davoodi Monfared. On the triangulation of

non-fat imprecise points. In CCCG, pages 114–121, 2016.
10 Amer Krivošija. Probabilistic smallest enclosing ball in high dimensions. Technical report

for Collaborative Research Center SFB 876 Providing Information by Resource-Constrained
Data Analysis, page 13, 2019.

11 Maarten Löffler. Data imprecision in computational geometry. PhD thesis, University
Utrecht, 2009.

12 Maarten Löffler and Jack Snoeyink. Delaunay triangulation of imprecise points in linear
time after preprocessing. Comput. Geom., 43(3):234–242, 2010.

13 Grégoire Malandain and Jean-Daniel Boissonnat. Computing the diameter of a point set.
Internat. J. Comput. Geom. Appl., 12(06):489–509, 2002.

14 Nimrod Megiddo. Linear-time algorithms for linear programming in Rˆ3 and related
problems. SIAM J. on computing, 12(4):759–776, 1983.

15 Franco P Preparata and Michael Ian Shamos. Computational Geometry: an Introduction.
pages 95–149. Springer, 1985.

16 Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing
Surveys (CSUR), 16(2):187–260, 1984.

17 Raimund Seidel. A method for proving lower bounds for certain geometric problems. In
Machine Intelligence and Pattern Recognition, volume 2, pages 319–334. Elsevier, 1985.

EuroCG’22

40:8 Preprocessing Imprecise Points for Furthest Distance Queries

18 M. I. Shamos. Computational geometry. Ph.D. Thesis. 1978.
19 Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann. Preprocessing

ambiguous imprecise points. arXiv preprint arXiv:1903.08280, 2019.
20 Marc Van Kreveld, Maarten Löffler, and Joseph SB Mitchell. Preprocessing imprecise points

and splitting triangulations. SIAM J. Comput., 39(7):2990–3000, 2010.

Augmenting Graphs with Maximal Matchings
Maike Buchin1, Antonia Kalb2, and Bernd Zey2

1 Faculty of Computer Science, Ruhr University Bochum, Germany
maike.buchin@rub.de

2 Faculty of Computer Science, TU Dortmund University, Germany
antonia.kalb@tu-dortmund.de, bernd.zey@tu-dortmund.de

Abstract
We study the augmentation of planar straight-line geometric graphs with maximal compatible
matchings. We show a lower bound of n−4

18 for the size of a maximal compatible matching of
3-regular geometric graphs with n vertices and give an example that closely approaches this bound.

1 Introduction

Problem Setup A graph is a pair G = (V, E) of vertices V and edges E ⊆ {V ×V }\{(v, v) |
v ∈ V } (loops are not allowed). We assume that every graph G is assigned a fixed drawing
which gives the position of the vertices and edges in R2. A graph is drawn straight-line and
planar if the edges are noncrossing and drawn as straight lines. If no three points of such a
graph G are co-linear, we call G a geometric graph; throughout this work we solely consider
geometric graphs.

A matching in a graph is an edge set that is disjoint to the edges of the graph and
it is compatible if it preserves the planarity of its fixed straight-line drawing [1, 2, 8, 11].
The constraint on fixed drawings is common, as constraints on fixed positions are of-
ten considered in practice, for example in maps or networks depicting the real world. A
matching is maximal if it cannot be expanded to a larger compatible matching and the
size of the smallest maximal compatible matching of a graph G is denoted by mm(G) =
min{|M | | M is a maximal G-compatible matching}. For a graph class G we have mm(G) =
min{mm(G) | G ∈ G}. We are interested in a tight lower bound for mm(G), i.e., we search
for one graph G ∈ G with mm(G) = mm(G). Thereby, the matching size is always given in
relation to the number of vertices.

Our work continues the work of [11], who determine lower bounds on the size of maximal
compatible matchings for different graph classes, mainly focusing on 1- and 2-regular graphs;
a graph G = (V, E) is k-regular if every vertex v ∈ V has degree deg(v) = k. In this work, we
deduce a lower bound for 3-regular graphs via graph properties and investigate its tightness.
For this, Lemma 1 of [11] is very important to us. However, simply applying this lemma to
3-regular graphs does not give good bounds; instead, we evaluate the terms more carefully
and show how they influence each other to obtain a strong lower bound for these graphs.

Basic Definitions We call a drawing a deformation of another drawing if the positions of
the vertices differ, but not the faces with which they are incident (see Figure 1). A vertex v

is a reflex vertex if there is an angle > 180◦ between two incident edges.
The augmentation of a graph is the addition of vertices or edges; we consider only edge

augmentations. Here, the graph G + E′ = (V, E ∪ E′) denotes the augmentation of the graph
G = (V, E) with the edge set E′. The notation degG(v) or degG+E′(v) is used to distinguish
which degree the same vertex v ∈ V has in the graph G or G + E′, respectively. Here, we
augment fixed planar drawings of graphs and all inserted edges are straight-line as well.
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

41:2 Augmenting Graphs with Maximal Matchings

a

bc

d

ef

a b

c

d e

f

Figure 1 Different drawings can have different sized maximal compatible matchings (cyan)

Hence, the vertices in G + E′ have the same position in R2 as in G. An edge e is called
compatible with a graph G (is G-compatible), if e /∈ E(G) and e does not cross any edge in
G + {e}. A matching M with respect to G is maximal and compatible if there is no pair of
vertices u and v such that both vertices are unmatched and the edge (u, v) is compatible to
G + M . A face of G + M is called fully (un-)matched if every vertex incident to that face is
(un-)matched.

The size |M | of a G-compatible matching M always refers to its unique fixed drawing of
the graph G. Figure 1 shows that the size depends on the exact position of the vertices in R2.
Hence, even isomorphic graphs can have different sized maximal compatible matchings. For
a graph class G, we search for a lower bound over all graphs and all possible drawings, in G.

Related Results There are various problems in which graphs are augmented with a set
of edges. Some problems deal with augmenting edges such that certain graph properties
are achieved, e.g. regularity or connectivity. This may additionally require that existing
properties are preserved, e.g. planarity [3, 5, 6, 7, 10, 14]. Other augmentation problems
impose requirements on the set of edges, e.g. it is a matching [1, 2, 8, 11]. A famous example
is Christofides’ algorithm where a perfect matching between the vertices of odd degree is
determined [4]. As early as 1986, Rapport et al. [12, 13] studied the complexity of augmenting
a disjoint edge set to a simple cycle, i.e., augmenting an 1-regular graph with a perfect
compatible matching.

Lemma 1.1 [11] as well as general graph properties and properties of specific graph classes
are used in [9, 11] to give guarantees for minimal maximal compatible matchings for different
graph classes. These and other bounds are summarized in Table 1. Note that this paper is
based on the master thesis by Kalb [9]; hence, results marked with [9] are new results.

M. Buchin, A. Kalb, B. Zey 41:3

Graph class G Size of a maximal compatible
matching M

0-regular geometric graphs mm(G) = |V |−1
3 , [11, Theorem 2]

1-regular geometric graphs mm(G) = |V |−2
6 , [11, Theorem 2]

1-regular geometric graphs with |E| mod 2 = 0 mm(G) ≥ 2|V |−1
5 [1, Theorem 14]

2-regular geometric graphs mm(G = |V |−3
11 , [11, Theorem 2]

connected 2-regular geometric graphs with |V | ≥ 4 mm(G) = |V |
7 [11, Theorem 3]

3-regular geometric graphs mm(G) ≥ |V |−4
18 [9, Theorem 31]

4-regular geometric graphs mm(G) ≥ |V |−6
32 [9, Theorem 33]

outerplanar graphs mm(G) = 0 [9, Theorem 26]

geometric graphs with 2|V | − 3 ≤ |E| ≤ 3|V | − 6 mm(G) = 0 [9, 11]

geometric graphs with |E| ≤ |V | · d, 7
10 < d < 2 mm(G) = |V | · 2−d

13 [11, Lemma 2]

geometric graphs with bounded degree d < 4 same bound as d-regular graphs with
d < 4 [9, Theorem 36]

geometric graphs with bounded degree d ≥ 4 mm(G) = 0 [9, Theorem 36]

Table 1 Overview of lower bounds on the size of maximal compatible matchings

EuroCG’22

41:4 Augmenting Graphs with Maximal Matchings

v1

v2

v3 v4

v5

v6

v7

v9 v8

Figure 2 Geometric graph G and maximal G-compatible matching (cyan) with νGM = 2, σGM = 6,
ru

GM = 3, rm
GM = 4, Σ

u matched
degG(u) = 18 and ∆GM = 1

▶ Lemma 1.1. [11, Lemma 1] Let G = (V, E) be a geometric graph and M be a maximal
G-compatible matching. The matching size can bounded using the following parameters:

νGM : #(u, v) ∈ E where u unmatched, v matched, and u or v is reflex in G + M

σGM : # fully matched faces of G + M

ru
GM : # unmatched reflex vertices in G + M

rm
GM : # matched reflex vertices in G + M

∆GM : # fully unmatched triangular faces of G

It holds that

2|V | + νGM + 2 · σGM − ru
GM − 2 · rm

GM − Σ
u matched

degG(u) − ∆GM − 2 ≤ 2|M |.

Figure 2 gives an example of the values used in Lemma 1.1.

2 Lower Bound for 3-regular Graphs

▶ Lemma 2.1. The K4, the complete graph on four vertices, is the only 3-regular geometric
graph that does not allow for a compatible matching.

Proof. (Sketch) First, the K4 cannot be augmented since it is already complete. Second,
a graph has no compatible matching, if and only if it has a convex outer face and only
triangular inner faces. For a 3-regular graph it holds h = 3

2 n − 3 for the number of outer
edges (for details see [9, Lemma 32]). A 3-regular graph cannot be outerplanar, thus we have
the restriction h < n; combined with h = 3

2 n − 3 this leads to n < 6. Because n mod 2 = 0
and n ≥ 4 for 3-regular graphs, the statement follows. ◀

▶ Theorem 2.2. Let G be a 3-regular geometric graph. It holds mm(G) ≥ n−4
18 for the

minimal size of a maximal G-compatible matching.

Proof. Let G be a 3-regular geometric graph, then the following properties hold for the
values of Lemma 1.1. First, some values can be trivially bounded from below by 0, e.g.,
νGM ≥ 0 and σGM ≥ 0 always hold. For the number of (un-)matched reflex vertices in
G + M , we have ru

GM ≤ n − 2|M | and rm
GM ≤ 2 |M |, because it is possible that each of the

n − 2 |M | unmatched and 2 |M | matched vertices is a reflex vertex (see Figure 3). Moreover,
we have Σ

u matched
degG(u) = 3 · 2|M |, because degG(v) = 3 for all v ∈ V and there are 2|M |

matched vertices. Finally, for the number of fully unmatched triangular faces of G + M ,
∆GM ≤ n−2|M |

4 · 3 holds, because every four of the n − 2|M | unmatched vertices can be a

M. Buchin, A. Kalb, B. Zey 41:5

Figure 3 3-regular graph with maximal compatible Matching (cyan) where each vertex is reflex

K4, and a K4 is the only 3-regular graph with only triangular inner faces, cf. proof sketch of
Lemma 2.1. By inserting these values into Lemma 1.1 we obtain the bound

2n︸︷︷︸
=2|V |

+ 0︸︷︷︸
≤νGM

+ 2 · 0︸︷︷︸
≤2σGM

− (n − 2|M |)︸ ︷︷ ︸
≥ru

GM

− 2 · 2|M |︸ ︷︷ ︸
≥2rm

GM

− 6|M |︸ ︷︷ ︸
= Σ

matched
degG

− n − 2|M |
4 · 3

︸ ︷︷ ︸
≥∆GM

−2 ≤ 2|M |

⇐⇒ n − 8
34 ≤ mm(G).

This bound can be improved further, since for 3-regular graphs the following correlation of
the individual values can be observed: The number ∆GM of fully unmatched triangular faces
is maximized by K4, but the vertex within the K4 is always not a reflex vertex. Moreover,
the number ru

GM of unmatched reflex vertices is thus reduced by one per each K4. Since we
are upper bounding subtrahenders for a lower bound, the following holds

ru
GM + ∆GM ≤ n − 2|M | − n − 2|M |

4︸ ︷︷ ︸
≥ru

GM

+ n − 2|M |
4 · 3

︸ ︷︷ ︸
≥∆GM

= n − 2|M | + n − 2|M |
4 · 2.

With this addition the bound for 3-regular geometric graphs increases to

2n︸︷︷︸
=2|V |

+ 0︸︷︷︸
≤νGM

+2 · 0︸︷︷︸
≤σGM

−2 · 2|M |︸ ︷︷ ︸
≥rm

GM

− 6|M |︸ ︷︷ ︸
= Σ

matched
degG

−
(

n − 2|M | + n − 2|M |
2

)

︸ ︷︷ ︸
≥ru

GM
+∆GM

−2 ≤ 2|M |

⇐⇒ n − 4
18 ≤ mm(G) ◀

3 On the Tightness of the Bound of n−4
18

We use the following ideas to construct a graph with minimal maximal compatible matching.
Thereby, we use C to denote a connected component with mm(C) = 0, e.g. the K4.

i) Extending a fully matched face with C increases the number of vertices of the graph
G + M + C without increasing the matching.

ii) A fully matched face of G + M with n′ incident vertices can be augmented by ⌊n′
/2⌋

C-components without any new compatible edge. This is achieved by a “zigzag”-shaped
face, i.e. a face bounded by two “interleaving” chains of alternating acute and reflex
angles (see Figure 4). If done properly, the C-components can be placed such that they do
not “see” each other (connecting the C-components by compatible edges is not possible).

iii) If the outer face of G + M is convex, we again are able to insert C-components without
allowing new compatible edges between these. In case the outer face is fully matched, no
vertex of the C-components can be matched with any vertex of G.

EuroCG’22

41:6 Augmenting Graphs with Maximal Matchings

Figure 4 An inner “zigzag”-shaped face incident to 8 vertices that can be extended by ⌊8/2⌋
components (green) with no compatible edges between them

iv) The number of fully matched inner faces and the number of matched vertices incident
to the outer face can be maximized by augmenting a graph with a perfect compatible
matching. For this, the number of vertices must be even.

Hence, the goal is iv) to augment a graph G with a perfect matching M such that iii)
G + M has the largest possible convex outer face and ii) such that G + M consists of the
largest possible number of inner faces with an even number of vertices.

Then, i) each inner face of G + M as well as each outer edge is extended with copies of
C. Notice that, for 3-regular graphs, K4 is the only graph with mm(G) = 0 (Lemma 2.1).
Moreover, the bounds for 0-, 1- and 2-regular graphs proved by [11] are tight due to graphs
that correspond to these ideas.

For a graph constructed using this approach, we can specify the relative matching size
using the following formula:

▶ Formula 3.1. Let G be a graph with n vertices, M a perfect G-compatible matching, and
C be a graph with mm(C) = 0. If the augmented graph G + M is deformed such that each
inner face f ∈ Fin with |f | incident vertices is expanded by

⌊
|f |/2

⌋
copies of C, each of the h

outer edges is expanded with one copy of C, and there exist no compatible edges between
the C-copies, then the matching size is

n ·
perfect matching︷ ︸︸ ︷

|V (G)|/2

∑

f∈Fin

(⌊
|f |/2

⌋)

︸ ︷︷ ︸
inner face expansions

+ h︸︷︷︸
outer face expansions

· |V (C)|︸ ︷︷ ︸
vertices per expansion

+ |V (G)|︸ ︷︷ ︸
vertices

Now, we construct a graph that nearly achieves the bound of Theorem 2.2. The graph is
constructed in several steps, see Figure 5: First, we construct a graph of 20 vertices, which is
then augmented with a perfect matching. In the faces of the augmented graph, we place
30 K4, and then double this construction. Finally, we “deform” each face of the graph into
a “zigzag”-shape, such that the K4’s placed inside it cannot be connected to each other.

M. Buchin, A. Kalb, B. Zey 41:7

Overall, this leads to a matching size

n ·
perfect matching per graph︷︸︸︷

10 ·2
 30︸︷︷︸

K4 per graph

·2 + 14︸︷︷︸
K4 between graphs

+ 4︸︷︷︸
K4 outer edges

 · 4︸︷︷︸

|V (K4)|

+ 20︸︷︷︸
vertices per graph

·2

= n

17.6 .

Next, we aim to expand the constructed graph such that the matching size comes
arbitrarily close to the bound of Theorem 2.2.

Notice that, if the number of triangular faces is increased relative to the vertex count, the
matching size decreases. However, the graph in Figure 5 can be expanded arbitrarily without
increasing the number of triangular faces as shown by Figure 6. This leads to a larger number
of quadrilaterals that can be deformed into the described “zigzag”-shapes. We can do so
combinatorially, but we also need to show that the deformation of the graph in Figure 6b
is always possible. We assume it works, because every face is triangular or quadrangular.
Hence we just need to relocate one vertex per quadrangular inner face to make it concave (a
concave quadrilateral is “zigzag”-shaped). Until now, we miss an algorithm for every number
of vertices to deform our graph face by face without making already deformed faces convex
again. If the deformation of a graph with γ extensions of twelve vertices is possible, the
matching size decreases to

n ·
perfect matching per graph︷ ︸︸ ︷

(20 + 12 · γ) /2 ·2
(30 + 20 · γ)︸ ︷︷ ︸

K4 per graph

·2 + 14 + 8 · γ︸ ︷︷ ︸
K4 between graphs

+ 4︸︷︷︸
K4 outer edges

 · 4 + (20 + 12 · γ)︸ ︷︷ ︸

vertices per graph

·2

= n

18 − 2
3γ+5

.

Hence, for arbitrarily large γ this bound approaches n/18.

4 Conclusion and Future Research

In Theorem 2.2 we gave a lower bound of n−4
18 for the size of a maximal compatible matching

in a 3-regular graph. The graph in Figure 5 with maximal compatible matching of size
n

17.6 is the smallest we know so far. Assuming all inner faces can be “zigzag”-shaped, our
construction of Figure 6 for large n approaches the bound arbitrarily close.

Note that, when considering graphs with a bounded degree d ≤ 3, the obtained results
for d-regular graphs can be transferred directly (see Table 1). For example, for graphs with
maximum degree 3 we have the same mm(G)-bound as for 3-regular graphs.

For 4-regular graphs, the proof of Theorem 2.2 and the construction ideas from Section 3
can be adapted. In [9] we prove the bound mm(G) ≥ n−6

32 for any 4-regular geometric graph
G. Until now, smallest matching size we achieve is n

252/3 . For 5-regular graphs, however, our
approach of augmenting with a perfect matching cannot be applied, since no planar k-regular
graph with k > 5 exists.

In addition to regular graphs, we also consider other graph classes like outerplanar graphs.
This class of graphs also includes the maximal outerplanar graphs, which always have a
drawing to which no compatible matching exists. By restricting the maximum degree or the
size of the edge set, this class would become more interesting. For future research, trees are
another interesting graph class that has not yet been investigated.

EuroCG’22

41:8 Augmenting Graphs with Maximal Matchings

(a) (b)

30 × △

30 × △

(c) (d)

Figure 5 a) 3-regular graph with 20 vertices. b) The augmented graph (perfect compatible
matching (cyan)), the inner faces are expanded by 30 K4 (green). c) Augmented unified graph with
two copies of the graph of b), 14 additional K4 are added and 4 K4 for the outer edges. d) Deformed
graph with maximal compatible matching of size n

17.6 .

M. Buchin, A. Kalb, B. Zey 41:9

(a)

(30 + 20γ) × △

(30 + 20γ) × △

(b)

Figure 6 Construction of 3-regular graph with maximal compatible matching of size n

18− 2
3γ+5

.
a) Graph of Figure 5b) is extended arbitrarily often by 12 vertices (teal, dashed edges), 20 K4 are
inserted per extension. b) Augmented unified graph, between two graph copies of Figure 6a). 14 + 8γ

additional K4 are added and 4 K4 on the outer edges.

Acknowledgment We thank the reviewers for their helpful comments.

References
1 O. Aichholzer, S. Bereg, A. Dumitrescu, A. Olaverri, C. Huemer, F. Hurtado, M. Kano,

A. Márquez, D. Rappaport, S. Smorodinsky, D. Souvaine, J. Urrutia, and D. Wood.
Compatible geometric matchings. Computational Geometry, 42(6–7):617–626, 2009.

2 O. Aichholzer, A. Olaverri, F. Hurtado, and J. Tejel. Compatible matchings in geometric
graphs. XIV Spanish Meeting on Computational Geometry, pages 27–30, 2011.

3 M. Al-Jubeh, G. Barequet, M. Ishaque, D. Souvaine, C. Tóth, and A. Winslow. Constrained
tri-connected planar straight line graphs. In Thirty Essays on Geometric Graph Theory,
pages 49–70. Springer, 2013.

4 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
1976.

5 T. Hartmann, J. Rollin, and I. Rutter. Regular augmentation of planar graphs. Algorithmica,
73(2):306–370, 2015.

6 M. Hoffmann and C. Tóth. Segment endpoint visibility graphs are hamiltonian. Computa-
tional Geometry, 26(1):47–68, 2003.

7 F. Hurtado and C. Tóth. Plane Geometric Graph Augmentation: A Generic Perspective,
pages 327–354. Springer, 2013.

8 M. Ishaque, D. Souvaine, and C. Tóth. Disjoint compatible geometric matchings. Discrete
and Computational Geometry, 49(1):89–131, 2013.

9 A. Kalb. Graph-Augmentierung mit maximalen Matchings, December 2021. Master thesis
(in German), TU Dortmund University.

10 A. Mirzaian. Hamiltonian triangulations and circumscribing polygons of disjoint line
segments. Computational Geometry, 2:15–30, 1992.

11 A. Pilz, J. Rollin, L. Schlipf, and A. Schulz. Augmenting geometric graphs with matchings.
In Graph Drawing and Network Visualization, pages 490–504. Springer, 2020.

EuroCG’22

41:10 Augmenting Graphs with Maximal Matchings

12 D. Rappaport. Computing simple circuits from a set of line segments is NP-complete. SIAM
Journal on Computing, 18(6):1128–1139, 1989.

13 D. Rappaport, H. Imai, and G. Toussaint. On computing simple circuits on a set of line
segments. In Proceedings of the Second Annual Symposium on Computational Geometry,
SCG ’86, pages 52––60. ACM, 1986.

14 D. Souvaine and C. Tóth. A vertex-face assignment for plane graphs. Computational
Geometry, 42(5):388–394, 2009.

Small Area Drawings of Cactus-Graphs
Leonhard Löffler-Dauth1

1 Department of Mathematics and Computer Science, Freie Universität Berlin
l.loeffler@fu-berlin.de

Abstract
We introduce an algorithm for the straight-line drawing of any cactus-graph of size n in O(n log n)
area. This is an improvement on the area bound described by Frati, Patrignani and Roselli [1] in
2020 for a subclass of outerplanar graphs that has no restriction on the degrees of its nodes.

1 Introduction

An area bound for the straight-line drawing of trees in o(n log n) has been found by Chan [2]
in 2020. Di Battista and Frati [3] described a straight-line drawing for any outerplanar graph
in an area containing O(n1.48) grid points in 2009. In 2020 Frati, Patrignani and Roselli [1]
improved this result by introducing an algorithm for the straight-line outerplanar drawing of
any outerplanar graph in O

(
n · 2

√
2 log2 n√

log n
)

area. An overview on the topic of graph
drawings and a description of related open problems can be found in [4]. A cactus-graph
is a connected graph in which two cycles share at most one common vertex. Every tree
is a cactus-graph and every cactus-graph is an outerplanar graph. It is obvious, that the
complexity of the area bound for cactus-graphs is in between the complexity of the area
bounds for trees and outerplanar graphs. Frati [5] has shown in 2012 that restricting the
degrees of the nodes in an outerplanar graph to be bounded by a parameter d yields a
straight-line drawing in O(dn log n) area. We present an algorithm for the straight-line
drawing of any cactus-graph of size n in O(n log n) area and thereby improve on previously
found area bounds for a subclass of outerplanar graphs that has no restriction on the degrees
of its nodes. In general, the produced drawings are not outerplanar and adjusting the
algorithm to produce outerplanar drawings in O(n log n) area does not seem to be feasible.

2 Definitions and Notations

A straight-line drawing of a planar graph is an assignment of every vertex to a point in the
plane and of every edge to the line segment connecting its endpoints. The bounding box of a
drawing is the smallest rectangle with axis-parallel sides, such that the drawing is completely
contained in that rectangle. A drawing, where every vertex is placed at a point on the integer
grid is called a grid-drawing. We will only consider straight-line grid-drawings and thus, use
straight-line grid-drawing and drawing interchangeably. Define the area of a grid-drawing to
be the number of points on the integer grid contained in the bounding box of the drawing.
The width and height of a grid-drawing are then defined to be the number of integer grid
points contained in the horizontal and vertical side of its bounding box.

▶ Definition 2.1. Define a rooted graph to be a graph G = (V, E) with a distinguished vertex
called the root. The root provides a hierarchy similar to the parent-child hierarchy in a tree.
For a rooted graph G with root r and a vertex v ∈ G consider the subgraph induced by
V \ {v}. Let Cr be the unique connected component of that induced subgraph that contains
the root r. If r ̸= v we write G(v) to denote the subgraph that is induced by the vertices
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

42:2 Small Area Drawings of Cactus-Graphs

in V \ V (Cr). If r = v we set G(v) = G. As a reference consider Figure 1. With |G(v)| we
denote the number of vertices in G(v). Consider all neighbors of v in G(v) and all vertices
that lie on a common simple cycle with v in G(v) and call the union of them the extended
neighborhood of v. Denote the extended neighborhood of v with S(v). Note, that S(v) does
not contain any vertices in V \ V (G(v)) by construction. Define h(v) to be the “heaviest”
element in S(v), i.e. the vertex that maximizes the function |G(·)|. Furthermore:

• With v1, . . . , vs we denote the elements in the extended neighborhood of v that do not
lie on a common cycle with v. Assume without loss of generality that vs maximizes the
function |G(·)| for all elements in {v1, . . . , vs}.

• We use the notation C1, . . . , Ct for the cycles in G(v) that contain v. With vk
1 , . . . , vk

jk

we denote the vertices in V (Ck) \ {v}. Hereby, we assume without loss of generality that
vt

m ∈ Ct maximizes the function |G(·)| for all vertices in
⋃t

k=1 V (Ck) \ {v}.

r

v
v

→

h(v)

Figure 1 G(v) and the extended neighborhood S(v), that is represented by the red dots.

3 The Algorithm for the Drawing of Cactus-Graphs

▶ Theorem 3.1. Let G be a cactus-graph of size n ≥ 2 and root r. Then G has a straight-line
drawing with area 3n⌈log2 n⌉, where r is placed at the top left corner of the bounding box.

Place r at the point (1, −1). The drawing is obtained by recursion, where we denote a
recursive step with ext(v) for a given vertex v ∈ G that has previously been placed. Such a
recursive step extends the drawing from the placement of v to the drawing of the vertices in
S(v) and in some cases to the drawing of additional vertices. The following invariants are
maintained, when ext(v) is called. As a reference consider Figure 2 and Figure 3 and the
explanation of the coloring of the Figures in the figure legend of Figure 2.

• v is the only vertex in G(v) that has previously been placed. Furthermore, we have that
{w ∈ V | v ∈ G(w)} is a subset of the vertices that have been drawn in previous steps.

• v has been placed at the top left or the top right corner of a rectangle B with axis-parallel
sides that has width 3⌈log2 nv⌉ and height nv for |G(v)| = nv ≥ 2. Let D be the set of
points that are contained in the drawing of the edges that have been placed in previous
steps. The rectangle B has the property that D ∩ int(conv(B)) = ∅, where conv denotes
the convex hull. If D ∩ B contains only points with the same y-coordinate as v, i.e. points
on the top side of B we say that v is in good position. If D ∩ B contains points on the
left or right side of B other than the ones in the corners we say that v is in bad-position.

Leonhard Löffler-Dauth 42:3

• Depending on the position of v ext(v) is performed by the good-position algorithm or the
bad-position algorithm and places the vertex h(v) at a point in good position.

3.1 The Good-Position Algorithm
Both algorithms that we use as subroutines distinguish between two cases, where in the first
case h(v) is a neighbor of v and in the second case h(v) is not a neighbor of v. Call the
following algorithm the good-position algorithm. As a reference consider Figure 2. Let v be a
vertex in good position with the notation from Definition 2.1 for the elements in S(v).

Case 1.1 v and h(v) are neighbors and do not lie on a common cycle.

Stack the vertices in S(v) \ {h(v)} at points on the vertical line through v + (1, ·). The
distance between the drawing of a vertex w ∈ S(v) and the vertex that is placed below it
has to be large enough to fit the vertices in G(w) on grid points between them. This is
necessary to avoid edge-crossings in the later described recursive steps. Place h(v) = vs

at a point below v with a sufficiently large gap between them, i.e. such that the vertices
in G(v) \ G(h(v)) fit on grid points between them.

Case 1.2 v and h(v) are neighbors and lie on the common cycle Ct.

Stack the vertices in S(v)\V (Ct) vertically at points on the vertical line through v+(1, ·).
Stack the vertices in V (Ct) \ {vt

m} underneath the drawing of these vertices, such that
vt

1 is drawn on the uppermost point and v1
m−1 = vt

jt−1 is drawn on the lowermost point.
Place h(v) = vt

m at a point below v with a sufficiently large gap between them.

Case 2. v and h(v) are not neighbors. Note, that they lie on the common cycle Ct.

Since v and h(v) = vt
m are not neighbors we can deduce that there are at least two more

vertices vt
m−1, vt

jt
that are contained in Ct. We construct a drawing of Ct, such that its

vertices lie on a quadrangle with height n − nt
m and width 3⌈log2 n⌉, where nt

m = |G(vt
m)|.

1. Place h(v) = vt
m at the point v + (3⌈log2 n⌉ − 1, −(n − nt

m − 1)). Place vt
m−1 at the

point v + (0, −(n − nt
m − 1)). Place vt

jt
at the point v + (3⌈log2 n⌉ − 1, −1).

2. Stack the vertices vt
1, . . . , vt

m−2 on the vertical line segment between v and vt
m−1. Stack

the vertices vt
m+1, . . . , vt

jt−1 on the vertical line segment between vt
jt

and h(v).

3. Stack the vertices in S(v)\V (Ct) at points on the vertical line through v+(1, −1). Stack
the vertices in S(vt

jt
), . . . , S(vt

m+1) at points on the vertical line through h(v) + (−1, ·)
below the vertices in S(v) \ V (Ct). Stack the vertices in S(vt

1), . . . , S(vt
m−1) at points

on the vertical line through v + (1, ·) below the vertices in S(vt
m+1).

In Case 1.1 and Case 1.2 take the vertices in S(v) as the roots of the subgraphs at them for
the next recursive steps. In Case 2 take the vertices that were drawn inside the quadrangle
and h(v) as the roots for the next recursive steps. Mirror the drawing in the next step
horizontally, if a vertex that was placed on the right side of the quadrangle is taken as a root.

EuroCG’22

42:4 Small Area Drawings of Cactus-Graphs

h(v) = vs

v v

h(v) = v
t
m

C1

v1

vs−1

v

h(v) = v
t
m

v
t
jt

v
t
m+1

v
t
m−1

v
t
1

Ct

Ct

C1

v1

vs

Ct−1

Ct

3⌈log2 n⌉ − 1

S(v) \ V (Ct)

S(vtj)

S(vtm+1)

S(vt1)

S(vtm−1)

Figure 2 The good-position algorithm (from left to right Case 1.1, Case 1.2 and Case 2).
The green dots represent the vertices that are taken as the roots for the following recursive steps
that are in good position. The red line segments represent the areas on which the vertices in bad
position were placed. The orange line segments can represent the drawing of multiple cycles at
a vertex vt

k and its children. Thus, vertices that were drawn on the orange line segment are not
necessarily in good or necessarily in bad position.

3.2 The Bad-Position Algorithm
Call the following algorithm the bad-position algorithm. As a reference consider Figure 3.
Let v be a vertex in bad position with the notation from Definition 2.1 for the elements in
S(v). This algorithm does not draw a vertex in S(v) at a point with the same x-coordinate
as its “parent” v. In particular, it places the element h(v) at a point in good position for the
next recursive step.

Case 1. v is a neighbor of h(v).

Stack the vertices in S(v) at points on the vertical line through v + (1, ·).

Case 2. v is not a neighbor of h(v).

Since v and vt
m are not neighbors there are at least two other vertices vt

m−1, vt
jt

∈ Ct.

1. Place vt
m at the point v + (3⌈log2 nv⌉ − 1, −(nv − nt

m − 1)), where nv = |G(v)| and
nt

m = |G(vt
m)|. Place vt

jt
at the point v + (3⌈log2 nv⌉ − 1, −1). Place vt

m−1 at the point
v + (1, −(nv − nt

m − 1)).

2. Stack the vertices vt
1, . . . , vt

m−2 on the vertical line through v + (1, 0) and vt
m−1. Stack

the vertices vt
m+1, . . . , vt

jt−1 on the vertical line segment between vt
jt

and vt
m.

Leonhard Löffler-Dauth 42:5

3. Stack the vertices in S(v)\V (Ct) at points on the vertical line through v+(1, −1). Stack
the vertices in S(vt

jt
), . . . , S(vt

m+1) at points on the vertical line through vt
m + (−1, ·)

below the vertices in S(v) \ V (Ct). Stack the vertices in S(vt
1), . . . , S(vt

m−1) at points
on the vertical line through v + (2, ·) below the vertices in S(vt

m+1).

In Case 1 take the vertices in S(v) as the roots of the subgraphs at them for the next recursive
steps. In Case 2 take the vertices that were drawn inside Ct and vt

m as the roots for the next
recursive steps. Mirror the drawing in the next step horizontally, if a vertex that was placed
on the right side of the drawing of Ct is taken as a root.

v

h(v) = v
t
mv

t
m−1

v
t
jt

v
t
m+1

v
t
1

3⌈log2 nv⌉ − 2

v

C1

v1

vs

Ct

Ct

S(v) \ V (Ct)

S(vtjt)

S(vtm+1)

S(vt1)

S(vtm−1)

Figure 3 The bad-position algorithm (from left to right Case 1 and Case 2).

The drawing of the entire graph G can be obtained by applying either the good-position
algorithm or the bad-position algorithm in each recursive step.

4 Absence of Egde-Crossings and Size of the Drawing

We constructed the gaps on the y-axis between the drawing of the vertices of G large enough
to not cause an edge-crossing at the top- or bottommost side of the drawing of distinct
subgraphs. The application of Case 1.1 or Case 1.2 of the good-position algorithm or Case
1 of the bad-position algorithm can not cause edge-crossings with the previously drawn
subgraph. Consider a subgraph G(v) of size nv at a vertex v ∈ G, where S(v) was drawn
with Case 2 of the good-position algorithm, or Case 2 of the bad-position algorithm. Define
the polygon at v to be the polygon consisting of the drawing of the edges of Ct. Let w ̸= vt

m

EuroCG’22

42:6 Small Area Drawings of Cactus-Graphs

be a vertex that was drawn inside Ct in the recursive step in which v was the root. Assume
without loss of generality, that w was placed at a point on the left side of the polygon
at v and that v was placed at its right side. As a reference consider Figure 4, where an
example with such a configuration of vertices is depicted. Let xv denote the x-coordinate
of v. The polygon at v has its right vertical side at the x-coordinate xv − 1 and its left
vertical side at the x-coordinate xv − (3⌈log2 nv⌉ − 1), if the polygon was drawn with the
bad-position algorithm. If it was drawn with the good-position algorithm it has its right
vertical side at the x-coordinate xv. In either case we have that the x-coordinate of w is
given by xw = xv − (3⌈log2 nv⌉ − 1) + 1. We want to show that the polygon at w, i.e. the
smaller polygon that was drawn in the recursive step in which w was the root does not
intersect at its vertical sides with the larger polygon at v. The previous observation implies
that the distance between w and the right vertical side of the polygon at v is at least

(xv − 1) − xw = (xv − 1) − (xv − (3⌈log2 nv⌉ − 1) + 1) = 3⌈log2 nv⌉ − 3.

An application of the good-position algorithm or an application of the bad-position algorithm
places any vertex in G(w) at a point with x-coordinate of at most xw + 3⌈log2 nw⌉ − 1 ,
where nw = |G(w)|. By construction we have nw < nv/2, since w ̸= vt

m. Thus, in this step
any point in G(w) is placed at a point with x-coordinate at most

xw + 3⌈log2 nv/2⌉ − 1 = xw + 3⌈log2 nv⌉ − 4.

The difference of xw and the drawing of any point in G(w) in this step is less than the
difference of xw and the x-coordinate of the right side of the larger polygon at v. Thus, we
do not obtain an edge-crossing with the edges that were drawn at the polygon at v and the
edges that were drawn at the polygon at w.

We obtain the total height of at most n for the drawing of G, since the vertices are stacked
tightly. What is left to be shown, is that we obtain the total width of 3⌈log2 n⌉. Drawing
the subgraph G(h(r)) at h(r) does not exceed the width bound of 3⌈log2 n⌉ as can be seen
by applying a simple induction argument. Let v ∈ G, such that |G(v)| > 1. Consider any
vertex w ̸= h(v) that is drawn in the recursive step in which v is the root and that is taken
as the root for a next step. In each recursive step we may augment the number of vertical
lines in the plane that contain drawings of vertices in G. If the vertices in such a step are
drawn inside a polygon that has been drawn in a previous step we do not increase the total
width of the drawing of G but we may augment the number of vertical lines that contain
drawings of vertices. In Case 1.1 and Case 1.2 of the good-position algorithm and in Case 1
of the bad-position algorithm w is placed at a point with x-coordinate xv ± 1. In this step
we therefore obtain an increase of at most 1 to the number of vertical lines that contain
vertices. In Case 2 of the bad-position algorithm w is placed at a point with x-coordinate in
{xv ± 1, xv ± 2, xv ± (3⌈log2 nv⌉ − 2)}. An example is depicted in Figure 4. Previously, we
have shown, that the drawing of the edges in G(w) can not intersect with the vertical sides
of the polygon at v. In this step, we therefore obtain an increase of at most 3 to the number
of vertical lines that contain vertices. In Case 2 of the good-position algorithm w is placed
at a point with x-coordinate in {xv ± 1, xv ± (3⌈log2 nv⌉ − 2)}. With the same argument
that was used for Case 2 of the bad-position algorithm, we obtain an increase of at most 2
to the number of vertical lines that contain vertices.
In summary, we have that an application of each case yields an increase of at most 3 to the
number of vertical lines that contain vertices. Since w ̸= h(v), in each such recursive step we
halve the number of vertices that are left to be drawn. Thus, we obtain the width bound of
3⌈log2 n⌉ for the recursive drawing of G and thereby its total area bound of 3n⌈log2 n⌉.

Leonhard Löffler-Dauth 42:7

r

h(r)

h2(r)

h3(r)
h4(r)

→

< n/2

< n/4

< n/8

3⌈log
2
n⌉ − 4 21

2 1

h(v)

w

v

r

h(r)

r

h(r)

h2(r)

h3(r)

h4(r)

Figure 4 On the left side: an example for the recursive drawing and absence of edge-crossings.
In the middle and on the right side: an example of the drawing of a cactus-graph.

5 Open Problems

It seems to be feasible to find a drawing for any cactus-graph in o(n log n). This drawing
could possibly be constructed by employing a similar strategy as described in the algorithm by
Chan [2] for the drawing of trees in o(n log n). The algorithm for the drawing of cactus-graphs
in O(n log n) that is described in this paper could be used as a subroutine similar to the
use of the standard algorithm [2],[6] for trees in Chans algorithm. Considering the intricate
algorithm for the drawing of trees by Chan that takes many steps however, the attempt to
find such a drawing with that strategy would require a very elaborate case analysis.

Acknowledgments. I want to thank both Klaus Kriegel for his support and for introducing
this topic to me and the reviewers for their valuable hints concerning my first submission.

References
1 Frati, Fabrizio, Patrignani, Maurizio, Roselli, Vincenzo, LR-drawings of ordered rooted

binary trees and near-linear area drawings of outerplanar graphs, Journal of Computer and
System Sciences 107, 28-53, 2020.

2 Chan, Timothy M., Tree Drawings Revisited, Discrete & Computational Geometry 63,
799–820, 2020.

3 Di Battista, Giuseppe and Frati, Fabrizio, Small Area Drawings of Outerplanar Graphs,
Algorithmica 54, 25–53, 2009.

EuroCG’22

42:8 Small Area Drawings of Cactus-Graphs

4 Di Battista, Giuseppe and Frati, Fabrizio, A Survey on Small-Area Planar Graph Drawing,
University of Rome/ University of Sydney, 2014.

5 Frati, Fabrizio, Straight-line drawings of outerplanar graphs in O(dn log n) area, Computa-
tional Geometry: Theory and Applications 45, 524–533, 2012.

6 Shiloach, Yossi, Linear and Planar Arrangement of Graphs. PhD thesis, page 94, Weizmann
Institute of Science, 1976.

Towards the Minimization of Global Measures of
Congestion Potential for Moving Points∗

Will Evans1, Ivor v.d. Hoog2, David Kirkpatrick1, Maarten Löffler3

1 University of British Columbia
will@cs.ubc.ca | kirk@cs.ubc.ca

2 Technical University of Denmark
vanderhoog@gmail.com

3 Utrecht University
m.loffler@uu.nl

Abstract
Imagine a collection of entities moving unpredictably at some bounded speed. Information about
entity locations can be maintained by queries, at most one per unit of time, between which location
uncertainty grows. Our goal is to minimize global measures of potential congestion defined in terms
of the intersection graph of the entities’ associated uncertainty regions. As a step towards this larger
goal, we study the problem of minimizing the total degree (i.e., twice the number of edges) in the
graph when entities are static points in R1.

1 Introduction

Data in motion is increasingly becoming a topic of interest to researchers in fields such as
GIS, sensor networks, social networks, etc. [2, 9, 20, 23]. Although these applications are
very different, they share the property that the motion of entities is largely unpredictable.
In computational geometry there is an extensive history on data in motion: kinetic data
models [1, 4, 16, 15] can be used to study the complexity and structural changes of geometric
objects in motion. However, they were developed for moving data in a controlled environment
and rely on the possibility to predict, at least locally, the trajectory of a moving point. We
follow recent efforts that try to deal with less restricted models of motion as we assume the
motion of each entity to be unpredictable but to have an upper bound on speed [7, 8, 10, 14,
19, 22]. Following [6, 13] we assume that in this setting we can query one entity per unit
time for their exact location. A sequence of queries results in a set of possible locations for
each entity, which is a ball (called its uncertainty region) centred at the entity’s last observed
location, with diameter proportional to the time since the corresponding query.

Our goal is to devise query strategies to maintain potential congestion of the entities as
low as possible. We measure this potential congestion by how much the entities’ uncertainty
regions intersect. For example, this could be the maximum degree of their intersection
graph, or their ply [18] (the maximum number of regions that contain any given point in
Rd). In many applications involving imprecise numbers or points, low congestion implies
more efficient algorithms [5, 17, 21].

∗ This work has been partially supported by the Dutch Science Foundation (NWO) under grant number
614.001.504, and by NSERC of Canada.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

43:2 Minimization of Global Measures of Congestion Potential

Figure 1 The model at three successive time steps. In each step, one disk (green) is queried,
result in a point (red) at the next time step. All other disks grow in diameter by 1.

For any configuration of entities and any congestion measure (e.g. the max degree of their
associated intersection graph), the intrinsic congestion at any fixed time t∗ is the minimum
over all query strategies of the congestion at time t∗. Evans et al. [13] show a query strategy
that (up to a constant factor) realises the intrinsic ply (or max degree) at any specified target
time t∗. In this sense it is competitively optimal at time t∗. Later, Busto et al. [6] showed
that no single strategy can be competitively optimal in this strong sense on a continuous
basis. Instead they formulate a query strategy Γ that maintains low ply (or max degree) and
is competitive in every modest-sized time window T in the following weaker sense: if the
maximum congestion realized by Γ over T is τ∗ then, for any other (even clairvoyant) query
strategy Γ′, there is at least one time t∗ ∈ T for which the congestion realized by Γ′ is Ω(τ∗).
The result of Busto et al. [6] is based on a strategy that first assumes a target congestion τ .
This basic strategy then either realises a congestion of τ , or adapts the target value as entities
move. Surprisingly, much of the intuition behind these competitive strategies was derived
from an initial study of the case where entities are static (because even this restricted case
captures an important component of the problem of maintaining low potential congestion).

The ply and the max degree of the intersection graph are in a sense local measures: they are
values that are realised by a local configuration of the uncertainty regions. Global congestion
measures have been recently considered as more robust and fine-grained alternatives to
local congestion measures [21]. Optimizing for global measures can require different, non-
local, query strategies. Indeed, even when entities are static, minimizing max degree can
fail to provide a reasonable solution to the problem of minimizing the sum of all degrees
(Theorem 1.1), which we call the total degree. We study how to construct a query strategy
that maintains a target global measure (the total degree of the intersection graph). We
show, in the restricted setting involving static entities, a query strategy that is competitively
optimal in the weaker sense (Theorem 2.2).

Model of computation and problem statement. We study a model for analysis of unpre-
dictable data that was previously explored by Evans et al. [11, 12, 13] and Busto et al. [6]: let
E be a set {e1, e2, . . . , en} of point entities in Rd. Every entity ei has an associated (unknown)
trajectory fi : R→ Rd, which is a continuous function from time to position. Each entity ei
moves along fi with maximum speed of 1/2 per unit of time (i.e. ∀t, ‖fi(t)−fi(t+1)‖ ≤ 1/2).
We are allowed to query an entity for its current location, which takes unit time1. This query
returns, for a time t and entity ei, the entity’s true location fi(t).

1 Setting the speed and sampling rate does not restrict the problem’s generality. We chose 1/2 for ease.

W. Evans, I. van der Hoog, D. Kirkpatrick and M. Löffler 43:3

d3

d1
B1 B2 B3 B4 . . .A

C1 C2

Bk
d1 d1 d1 d1 d1

d2

x︷ ︸︸ ︷

x+1
2

{
x+1
2

}

d3

x︷ ︸︸ ︷
d3

x︷ ︸︸ ︷
d3

x︷ ︸︸ ︷
d3

x︷ ︸︸ ︷
d3

x︷ ︸︸ ︷

Figure 2 An example of a point set for which no good query strategy can maintain the maximum
degree, but for the total degree this is possible. Essentially, the construction consists of two parts:
part A with a single cluster of x+ 1 points, and part B with many clusters of x points.

A query strategy is a sequence Γ = (γ(1), γ(2), . . .) for some function γ : N→ {1, . . . , n}.
That is, Γ is a sequence of indices where at time t we query entity eγ(t) for its location. Given
a query strategy Γ, the possible locations of ei at time t form a ball BΓ

i (t) with center fi(ti)
(the location of ei at its most recent query time) and diameter BΓ

i (t) = t− ti. We refer to
BΓ
i (t) as an uncertainty region and denote by BΓ(t) the set {BΓ

i (t) | ei ∈ E}. (When Γ is
clear from context, we drop the superscript.) Figure 1 illustrates the model in R2.

Henceforth, we focus on the following problem: given E , devise a query strategy Γ that
continuously minimizes the total degree of the intersection graph of BΓ(t). To make progress
towards this goal, we first study this algorithmic problem in a more restricted setting:

We assume the entities reside in R1.
We assume that the entities are static (i.e, fi(·) is constant, for all i ∈ [n]).

We are now ready to state our first result, which motivates our focus on global congestion
measures (specifically the total degree of the intersection graph of the uncertainty regions):

I Theorem 1.1. There exists a static point set in R1 with the property that

(i) any strategy with query frequency 1 that maintains max degree less than x must experience
total degree more than (n− x− 1)(x− 1); and

(ii) there is a strategy with query frequency 1 that maintains total degree at most (x+ 1)x.

Proof. We construct a set of n = (k + 1)x+ 1 points, for an odd positive integer x and a
positive integer k. The construction is illustrated in Figure 2. Specifically, it consists of k+ 1
primary clusters A,B1, . . . , Bk separated by distance d1. The first of these clusters (A) is
made up of two sub-clusters (C1 and C2), separated by distance d2, each of which consists of
x+1

2 co-located points (that is, for each sub-cluster, the points have the same x-coordinate).
The remaining primary clusters Bi are all identical copies of a collection of x points separated
by distance d3. We set the values of d1, d2, d3 during the remainder of the proof.

For (i), observe that the points in cluster A must each be queried with frequency at
least 1/(2d2) (recall that the speed of a point is 1/2) to avoid degree x. If there is less than

EuroCG’22

43:4 Minimization of Global Measures of Congestion Potential

1
2d3(x−1) additional frequency available then, at some time, all other points, i.e., those in the
Bi clusters, must have uncertainty regions of size at least d3(x− 1), and hence uncertainty
degree at least x− 1, making the total degree, not even counting points in the A cluster, at
least (n− x− 1)(x− 1).

For (ii), observe that if all of the Bi cluster points are queried with frequency at least 1
d3

then their uncertainty regions are disjoint, so they contribute nothing to the total degree.
This requires total frequency at least n−x−1

d3
, so we need d3 ≥ n − x − 1. If we have even

a little excess frequency, it can be used to keep the uncertainty regions of points in the A
cluster from intersecting those of the points in the B clusters, provided we choose d1 large
enough. Hence total degree at most (x+ 1)x (associated with the points in the A cluster)
can be maintained. This can be realized by choosing d1, d2, and d3 as powers of 2 with
1− x+1

2d2
< 1

2d3(x−1) and n−x−1
d3

+ x+1
d1
≤ 1. J

The next section describes our second and main result (Theorem 2.2): in the restricted
setting described above, we obtain a query strategy Γ that maintains a total degree of at
most some τ∗, where any other strategy must realize total degree Ω(τ∗) at some point in
every time interval of length at least τ∗.

2 Minimizing the Total Degree for Static Entities in R1

We describe a query strategy that takes as input a collection of entities (points) E , located in
R1, and a target value τ for our total degree congestion measure. To formulate our strategy,
we find it helpful to locate entities of E within a hierarchical, quadtree-like decomposition
of R1 into cells (half-open intervals), where each cell C has two equal-sized children that
partition C. Formally we create levels l for all l ∈ Z. For each level we partition R1 into
cells (i.e. half-open intervals in R1):

a cell Ci (for i ∈ Z) at level l ∈ Z has the form Ci = [i · 2l, (i+ 1) · 2l).
a cell Ci at level l has neighbors [(i− 1) · 2l, i · 2l) and [(i+ 1) · 2l, (i+ 2) · 2l).
a cell Ci at level l has two children at level l − 1 that partition Ci.

We denote by Cl the set of all cells at level l. For any cell C we denote by π(C) the
population of C; that is, the number of points in E that are contained in C.

Active, critical and fringe cells. We say that a cell C ∈ Cl is τ -active if π(C) ≥ τ
|C| = τ

2l

(thus the smaller the cell, the larger its population must be before it is τ -active).
A cell is τ -critical if it is τ -active but neither of its children is τ -active. A cell is τ -fringe

if it is not τ -active itself, but its parent is τ -active and not critical (refer to Figure 3). We
denote by γl (respectively, φl) the number of critical (respectively, fringe) cells in Cl. It
is easy to confirm that critical and fringe cells provide a disjoint cover of E . We begin by
observing some other simple properties of active, critical and fringe cells:

I Observation 1. If a cell C is τ -active then all its ancestors are τ -active.

I Observation 2. If a cell C ∈ Cl is τ -critical then τ/2l ≤ π(C) < 4τ/2l.

I Observation 3. If a cell C ∈ Cl is τ -fringe then π(C) < τ/2l.

I Lemma 2.1. Let γl (φl) be the number of critical (fringe) cells at level l. It must be that:
∑

l

φl
1
2l < 2

∑

l

γl
1
2l and

∑

l

φl(
1
2l)

2 <
4
3

∑

l

γl(
1
2l)

2. (1)

W. Evans, I. van der Hoog, D. Kirkpatrick and M. Löffler 43:5

Proof. Consider for each fringe cell C ′ the subtree T ′ rooted at its parent and the nearest
critical cell C in T ′. We associate C ′ to C. Each critical cell C ∈ Cl may have several
associated fringe cells, but at most one associated fringe cell C ′ in each level l′ ≥ l (and no
associated fringe cells at level l′ < l). Indeed, since two fringe cells at level l′ cannot share the
same parent, their associated critical cells lie in different parent-rooted subtrees. By charging
to each critical cell l at most one fringe cell in each level l′ ≥ l we obtain the lemma. J

Satisfied entities and cells. Consider a sequence T of τ consecutive time steps. If an entity
ei is queried k times in T then its uncertainty interval Bi must have length at least τ/2k for
at least half of the time steps in T . We will say that an entity ei in a critical cell C ∈ Cl is
satisfied if it is queried more than 40τ/2l times within T . A critical cell C ∈ Cl is unsatisfied
if at least 1

2τ/2l entities in its population are not satisfied. To satisfy a critical cell, a query
strategy Γ needs to allocate at least (1

2τ/2l)
40τ
2l = 20(τ2l)2 queries to entities in π(C).

Given these definitions, we are ready to state our main result:

I Theorem 2.2. For any target value τ , either (i) any query strategy must give rise to
uncertainty intervals whose intersection graph has total degree Ω(τ) at some point in any
time interval of length τ , or (ii) there is a simple query strategy, in which points in τ -critical
or τ -fringe nodes at level l are assigned query frequency at most 2−l, that guarantees that the
total degree in the intersection graph of the uncertainty intervals is O(τ) at all times.

Proof strategy and supporting lemmas. Let T be any time interval of length τ . Given a
value τ we consider the sum

∑
t γt · (τ2l)2. We show that either:

Case (i): this sum is too large and there must at some time be many unsatisfied critical
cells, contributing to a large total degree, or
Case (ii): there exists a weighted round-robin query strategy Γ such that entities in all
τ -critical and τ -fringe cell at level l have uncertainty region size 2l at all times.

As a consequence of these respective cases:

I Lemma 2.3. Let C ∈ Cl be an unsatisfied cell. For more than a quarter of the time steps
in T , at least 1

6τ/2l entities in C have an uncertainty region of size at least K = 1
802l.

I Lemma 2.4. Suppose that
∑
t γt · (τ2l)2 ≤ τ/10, and let Γ be a query strategy where for all

times t ∈ T , entities in a (critical or fringe) cell C at level l have an uncertainty region of
size at most 2l. Then the total degree is O(τ).

Proving Theorem 2.2. With the above lemmas, we prove Theorem 2.2 in three steps:

I Lemma 2.5. Let Γ be a query strategy and suppose that Γ satisfies Sat(l) cells at level l.
It must be that:

∑
l Sat(l) · (τ2l)2 ≤ τ/20.

l = 2

l = 5
l = 4
l = 3

25

≥ 4?
τ = 16 ≥ 2?

25

≥ 1?
≥ 0.5?

Figure 3 Our hierarchical decomposition of R1 into levels l and cells. Each cell C has two
neighbors, two children and one parent. If the target value τ is 16, cells at level 3 are 16-active if
they contain two or more entities. We mark active cells white, critical cells green and fringe cells red.

EuroCG’22

43:6 Minimization of Global Measures of Congestion Potential

Proof. To satisfy a cell C ∈ Cl at least 20(τ2l)2 queries must be allocated to entities in π(C).
The sum of all queries over the time interval T is at most τ and so the inequality follows. J

I Lemma 2.6. Let Γ be a query strategy that fails to satisfy Unsat(l) cells at level l. Assume∑
l Unsat(l) · (τ2l)2 > τ/20. There exists a time t ∈ T when the total degree of Bi(t) is Ω(τ).

Proof. We prove the above lemma through a counting argument, where we count the total
degree over each time step. Let C ∈ Cl be an unsatisfied cell. By Lemma 2.3, for at least |T |4
time steps there is a set M ′ ⊂ π(C) of 1

6τ/2l entities that each have uncertainty intervals
of size at least 1

802l. For each of these 1
4 |T | time steps, the entities in M ′ contribute at

least 1
81 (1

6τ/2l)2 = 1
81·36 (τ/2l)2 to the total degree in the intersection graph. (This follows

immediately from the observation that every interval of M ′, shrunk to size exactly 2l/80,
with center in C must intersect exactly one of 81 equally-spaced spikes placed at separation
2l/80 within C. Thus the cliques in the intersection graph associated with the intervals
intersecting each of these spikes contribute a total degree of at least 81(1

6 · 1
81τ/2l)2.) If we

sum for each critical cell, for each of the |T |4 time steps, their contribution to the total degree
we obtain the following lower bound:

∑

t∈T
Totaldegree(Bi(t)) ≥

|T |
|4| ·

1
81 · 36 ·

∑

l

Unsat(l) · (τ/2l)2 >
|T | · τ

4 · 81 · 36 · 20 .

Where the last inequality follows from the lemma assumption. It immediately follows that
there is a time t ∈ |T | for which Totaldegree(Bi(t)) = Ω(τ). J

Proof of the two cases. Recall that for a given value of τ , we denote by γl the number of
critical cells at level l. We make a case distinction (case (i) or case (ii)) based on whether:

∑

l

γl · (
τ

2l)
2 =

∑

l

Sat(l) · (τ2l)
2 +

∑

l

Unsat(l) · (τ2l)
2 ≤ τ/10. (2)

Case (i): Suppose first that Equation 2 is not true. By Lemma 2.5, it must be that for any
query strategy Γ,

∑
l Sat(l) · (τ2l)2 ≤ τ/20 and thus

∑
l Unsat(l) · (τ2l)2 > τ/20. Thus, by

Lemma 2.6 there is at least one time t ∈ T for which the total degree is Ω(τ).

Case (ii): Suppose otherwise that Equation 2 is true. We claim that we can construct
a query strategy for which at all times t ∈ T , the total degree is O(τ). By Lemma 2.1,∑
l φl

τ
4l < 4/3

∑
l γl

τ
4l . Since we assumed that Equation 2 is true, it follows that:

∑

l

(γl + φi)
τ

4l−1 < 28/3
∑

l

γl
τ

4l < 28/30. (3)

By Anily et al. [3] (Lemma 6.2) a query frequency of τ/4l−1 can be allocated to each critical
(and fringe) cell on level l. Since critical and fringe cells contain at most 4τ/2l entities, for
all times t ∈ T , entities in a (critical or fringe) cell C at level l have an uncertainty region of
at most 2l. By Lemma 2.4, this obtains a total degree of at most O(τ). J

References
1 Pankaj K. Agarwal, Jeff Erickson, and Leonidas J. Guibas. Kinetic BSPs for intersecting

segments and disjoint triangles. In Proc. 9th ACM-SIAM Symp. Discrete Algorithms, pages
107–116, 1998.

W. Evans, I. van der Hoog, D. Kirkpatrick and M. Löffler 43:7

2 J. Almeida and R. Araujo. Tracking multiple moving objects in a dynamic environment for
autonomous navigation. In Advanced Motion Control, 2008. AMC’08. 10th IEEE Interna-
tional Workshop on, pages 21–26, 2008.

3 Shoshana Anily, Celia A. Glass, and Refael Hassin. The scheduling of maintenance service.
Discrete Applied Mathematics, 82:27–42, 1998.

4 J. Basch, L. J. Guibas, C. Silverstein, and L. Zhang. A practical evaluation of kinetic data
structures. In Proc. 13th ACM Symp. Comput. Geom., pages 388–390, 1997.

5 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Delaunay triangulation
of imprecise points simplified and extended. Algorithmica, 61(3):674–693, 2011.

6 Daniel Busto, William S. Evans, and David G. Kirkpatrick. Minimizing interference po-
tential among moving entities. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, Califor-
nia, USA, January 6-9, 2019, pages 2400–2418. SIAM, 2019.

7 Minkyoung Cho, David M. Mount, and Eunhui Park. Maintaining nets and net trees
under incremental motion. In Proc. 20th International Symposium on Algorithms and
Computation, ISAAC ’09, pages 1134–1143. Springer, 2009.

8 Mark de Berg, Marcel Roeloffzen, and Bettina Speckmann. Kinetic convex hulls and Delau-
nay triangulations in the black-box model. In Proc. 27th ACM Symp. on Comput. Geom.,
pages 244–253, 2011.

9 Shane Brophy Eisenman. People-centric mobile sensing networks. PhD thesis, Columbia
University, New York, NY, USA, 2008.

10 David Eppstein, Michael T. Goodrich, and Maarten Löffler. Tracking moving objects with
few handovers. In Proc. 12th Algorithms and Data Structures Symposium, pages 362–373,
2011.

11 William Evans, David Kirkpatrick, Maarten Löffler, and Frank Staals. Competitive query
strategies for minimising the ply of the potential locations of moving points. In Proceedings
of the Twenty-ninth Annual Symposium on Computational Geometry, SoCG ’13, pages
155–164, 2013.

12 William Evans, David Kirkpatrick, Maarten Löffler", and Frank Staals. Query strategies
for minimizing the ply of the potential locations of entities moving with different speeds.
In Abstr. 30th European Workshop on Computational Geometry (EuroCG), 2014.

13 William Evans, David Kirkpatrick, Maarten Löffler, and Frank Staals. Minimizing co-
location potential of moving entities. SIAM J. Comput., 45(5):1870–1893, 2016.

14 Jie Gao, Leonidas Guibas, and An Nguyen. Deformable spanners and their applications.
Computational Geometry: Theory and Applications, 35:2–19, 2006.

15 L. J. Guibas. Kinetic data structures — a state of the art report. In P. K. Agarwal,
L. E. Kavraki, and M. Mason, editors, Proc. Workshop Algorithmic Found. Robot., pages
191–209. A. K. Peters, Wellesley, MA, 1998.

16 Leonidas Guibas, John Hershberger, Subash Suri, and Li Zhang. Kinetic connectivity for
unit disks. In Proc. 16th ACM Symp. Comput. Geom., pages 331–340, 2000.

17 Maarten Löffler and Marc van Kreveld. Largest and smallest convex hulls for imprecise
points. Algorithmica, 56(2):235–269, 2010.

18 G.L. Miller, S.H. Teng, W.P. Thurston, and S.A. Vavasis. Separators for sphere-packings
and nearest neighbor graphs. Journal of the ACM, 44(1):1–29, 1997.

19 David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and An-
gela Y. Wu. A computational framework for incremental motion. In Proc. 20th ACM
Symp. on Comput. Geom., pages 200–209, 2004.

EuroCG’22

43:8 Minimization of Global Measures of Congestion Potential

20 M. Schneider. Moving Objects in Databases and GIS: State-of-the-Art and Open Problems.
Research Trends in Geographic Information Science, pages 169–187, 2009.

21 Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann. Prepro-
cessing ambiguous imprecise points. In 35th International Symposium on Computational
Geometry (SoCG 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

22 Ke Yi and Qin Zhang. Multi-dimensional online tracking. In Proc. 20th ACM-SIAM
Symposium on Discrete Algorithms, pages 1098–1107. SIAM, 2009.

23 C. Zhu, L. Shu, T. Hara, L. Wang, and S. Nishio. Research issues on mobile sensor networks.
In Communications and Networking in China (CHINACOM), 2010 5th International ICST
Conference on, pages 1–6. IEEE, 2010.

Lions and Contamination: Monotone Clearings
Daniel Bertschinger, Meghana M. Reddy∗†, and Enrico Mann

ETH Zürich, Department of Computer Science
{daniel.bertschinger, meghana.mreddy}@inf.ethz.ch, emann@student.ethz.ch

Abstract
We consider a special variant of a pursuit-evasion game called lions and contamination. In a graph
whose vertices are originally contaminated, a set of lions walk around the graph and clear the
contamination from every vertex they visit. The contamination, however, simultaneously spreads to
any adjacent vertex not occupied by a lion. We study the relationship between different types of
clearings of graphs, such as clearings which do not allow recontamination, clearings where at most
one lion moves at each time step and clearings where lions are forbidden to be stacked on the same
vertex. We answer several questions raised by Adams et al. [1] in last year’s edition of EuroCG.

1 Introduction

Pursuit-evasion problems have a long and rich history going back more than 50 years [8, 9].
Countless similar problems have been studied under very different names in the past. What
they all have in common is that there is a group of pursuers that try to catch an evader. The
typical question asked in a pursuit-evasion problem is whether the evader can escape the
pursuers, and if so, for how long. Naturally, the more pursuers there are, the harder it is for
the evader to escape. Some other objectives of the pursuers can be to catch the evader fast
(minimize the time taken) or with minimal effort (minimize the distance traveled).

There are different variations of the problem depending on the exact rules, among which
we study one. For detailed definitions of the various problems, see the surveys [4, 3, 6] and
the references therein. We study the problem of lions and contamination, which was first
mentioned in [7]. A group of lions tries to eradicate contamination from a graph while the
contamination spreads to all adjacent vertices that are not occupied by a lion.

More formally, suppose there is a graph G = (V, E). At the very beginning, every vertex
occupied by a lion is considered cleared of contamination, whereas the remaining vertices
are considered to be contaminated. In this particular problem, time is viewed as discrete;
and in every step, the lions and the contamination both move simultaneously. Every lion is
allowed to move along an edge that is incident to its current position. Contamination, on
the other hand, spreads along every incident edge to every adjacent vertex, unless the edge
is used by a lion or a lion occupies the adjacent vertex. Figure 1 illustrates an example. The
sequential variant of this problem, where the lions and contamination move one after the
other in alternating time steps, results in a setting where the lions are more powerful and
hence is a very different problem compared to the one we study.

Note that for some graphs, it is easy to see whether k lions can clear the graph of
contamination. However, finding the minimum number of lions required to clear a graph
seems to be a hard question. For example, the minimum number of lions required to clear the
n × n-grid is not known. Nevertheless, it is known that at least ⌊ n

2 ⌋ + 1 lions are needed [5].

∗ Supported by the Swiss National Science Foundation within the collaborative DACH project Arrange-
ments and Drawings as SNSF Project 200021E-171681.

† The second author’s full last name consists of two words and is Mallik Reddy. However, she consistently
refers to herself with the first word of her last name being abbreviated.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

44:2 Lions and Contamination: Monotone Clearings

Figure 1 A graph and two lions (indicated by blue crosses). One lion moves in the first time
step, however, contamination moves simultaneously and the vertex gets recontaminated. After the
second step, a vertex that is not occupied by a lion is cleared of contamination (indicated in green).

Since n lions can simply sweep the graph from left to right and clear the grid of contamination,
n is an upper bound on the number of lions needed for clearing the n × n-grid, and this
is the best upper bound currently known. Further, it is believed that n − 1 lions are not
sufficient. For higher-dimensional grids, it is known that Θ(nd−1/

√
d) lions are necessary

and sufficient [2]. In this paper, we study different types of clearings that were defined by
Adams et al. [1] and answer several questions raised in their paper.

We denote a clearing of a graph using k lions as a k-clearing and the graph itself is referred
to as k-clearable. We say a clearing is monotone if no vertex ever gets recontaminated. The
lions and the clearing are said to be polite if at most one lion moves in each time step and
non-stacked if no two lions occupy the same vertex at any point in time.

The paper is organized in the following way. In Section 2, we show that there exist
k-clearable graphs which require more than k lions for any monotone clearing. This implies
that monotone clearings are harder to achieve than non-monotone clearings. In Section 3,
we show that any monotone clearing can be paused at any time and no recontamination
occurs. This allows us to show that any monotone clearing can be converted into a monotone
and polite clearing. We also show that polite clearings can be transformed into non-stacked
clearings (see Theorem 3.4). Finally, in Section 4, we tackle the subgraph question raised
in [1]. Given a k-clearable graph G and some subgraph H ⊆ G, they ask whether H is
k-clearable. We answer this question in some settings.

2 Monotone Clearings

2.1 The n × n Grid
Let us consider the n × n grid. As already mentioned, at least ⌊ n

2 ⌋ + 1 lions are needed, while
n lions are sufficient to clear the grid. If restricted to monotone clearings we can improve
the lower bound and close the gap between the bounds.

Let V (t) be the set of cleared vertices at time t. We define a boundary vertex as a vertex
of V (t) that has a neighbor in V \ V (t). Before we state and prove our result, we first make
two simple observations and recall a lemma proved by Berger et al. [2].
▶ Observation 2.1. The number of cleared vertices in a k-clearing cannot increase by more
than k in one time step.
▶ Observation 2.2. If there are more than k boundary vertices at time t, then at least one
vertex gets recontaminated in the next time step.

▶ Lemma 2.3 (Lemma 5 of [2]). Any vertex set S that is a subset of the n × n grid and
satisfies n2

2 − n
2 ≤ |S| ≤ n2

2 + n
2 has at least n boundary vertices.

▶ Theorem 2.4. A monotone clearing of the n × n grid needs at least n lions.

D. Bertschinger, M. M. Reddy, E. Mann 44:3

Proof. Assume that the n × n grid has a monotone clearing with n − 1 lions. Initially, the
lions start with at most n − 1 < n2

2 + n
2 cleared vertices and eventually have to clear all n2

vertices. Further, Observation 2.1 implies that at most n − 1 vertices are cleared in each
time step. Thus, at some time t, the set of cleared vertices V (t) must satisfy the condition
n2

2 − n
2 ≤ |V (t)| ≤ n2

2 + n
2 . The number of boundary vertices at such a time t will be at

least n due to Lemma 2.3, and Observation 2.2 then implies that at least one vertex will get
recontaminated at t + 1. Hence, no monotone (n − 1)-clearing of the n × n grid exists. ◀

In hindsight, this might not be a very surprising result. However, this does not necessarily
improve the lower bound for non-monotone clearings as we will see in the next subsection.

2.2 Graphs with No Monotone Clearing
Unfortunately, not every graph with a k-clearing admits a monotone k-clearing. Indeed, we
can show that the set of monotone k-clearable graphs is a proper subset of the set of all
k-clearable graphs, which implies that monotonicity is a strong assumption on clearings.
Theorem 2.4 does not improve the general lower bound for grids due to this reason.

▶ Theorem 2.5. For any k ≥ 2 there exist k-clearable graphs with no monotone k-clearing.

Here, we construct a 2-clearable graph G that has no monotone 2-clearing. The arguments
can be extended for k > 2 lions. A formal proof can be found in the full version of the paper.

Proof Sketch. Consider the graph G in Figure 2. It can be cleared using two lions: they
first clear the left square, then walk over to the middle, where one lion guards the vertex u

to block contamination from entering the left square, and one lion goes to vertex v. Next,
they sweep the middle part from left to right and finally, they clear the right square.

v w

G

u

Figure 2 A graph G (i.e., a subgraph of the grid), and one particular situation in the clearing,
where both lions occupy vertex u, the left part already cleared, the right part still contaminated.

On the other hand, G admits no monotone 2-clearing. The main idea is that independent
of how the lions start, they always end up in a situation similar to the one illustrated
in Figure 2, where they cannot clear vertex v without allowing recontamination. ◀

This result however raises the following question.

▶ Open Question 1. Given a k-clearable graph G = (V, E), is it always monotonically
clearable with k + 1 lions? More formally, is there a non-trivial upper bound on the number
of lions required for a monotone clearing?

EuroCG’22

44:4 Lions and Contamination: Monotone Clearings

3 Transforming between Different Types of Clearings

3.1 Pausing Monotone Clearings
We now analyse some properties of monotone clearings. These will then allow us to show
that monotone clearings can always be adapted to monotone clearings with polite lions. We
start with an important observation.
▶ Proposition 3.1. Let C be any clearing of a graph G. Assume that all the lions are paused
indefinitely at time t, i.e., no lion moves from t + 1 onwards. If no vertex gets recontaminated
at time t + 1, then no vertex gets recontaminated at a later time either.
Proof. Recall that contamination spreads along every incident edge at each time step. If
no vertex gets recontaminated at t + 1, it implies that every cleared vertex neighboring a
contaminated vertex is occupied by a lion that blocks the contamination from spreading.
Then, no vertex can get recontaminated after t + 1 either, since the lions continue to block
the contamination from spreading. ◀

▶ Lemma 3.2. A monotone clearing can be paused at any time and no vertex gets recontam-
inated.

The proof uses Proposition 3.1 along with a simple contradiction argument, and can be
found in the full version of the paper. With a more careful analysis of pausing monotone
clearings, we can prove a much stronger result.
▶ Theorem 3.3. Let G be a graph and C be a monotone clearing of G with k lions. Then,
there exists another monotone clearing which uses k polite lions.

The idea of the proof is that whenever we pause the lions, there is an ordering of the
lions that move in the next time step such that the lions can be moved in this order to their
next vertices one after the other, without allowing any recontamination. A formal but rather
technical proof can be found in the full version of the paper. We would like to remark at this
point that this proof is algorithmic, i.e., given a monotone clearing, we can compute another
monotone clearing that uses polite lions without increasing the number of lions.

3.2 Polite and Non-Stacked Clearings
In this subsection, we study clearings which need not be monotone and consider other
restrictions on clearings. In particular, we study the relationship between clearings that use
polite lions and clearings that do not stack lions. We can show the following relation.
▶ Theorem 3.4. Let G be a graph and C be a polite clearing of G with k ≤ n lions. Then,
there exists another k-clearing that does not stack lions.

Instead of stacking lions, chains of consecutive lions are formed such that whenever a
stacked lion needs to move, lions move along this chain instead. The formal proof is deferred
to the full version of the paper. Note that this result implies that the set of graphs that are
clearable with polite lions is a subset of graphs that admit non-stacked clearings. Though we
were unable to prove it, we believe that the converse of Theorem 3.4 is false, because the
time taken by polite lions might be much higher when compared to clearings where multiple
lions can be moved simultaneously, even when stacking is not allowed.
▶ Open Question 2. Is the converse of Theorem 3.4 also true or are there graphs with a
non-stacked clearing but no polite clearing?

When the clearing C is monotone, the converse is indeed true (follows from Theorem 3.3).

D. Bertschinger, M. M. Reddy, E. Mann 44:5

4 Clearable Subgraphs

In the final section of this paper, we study clearings of subgraphs of a k-clearable graph.
More formally, let G = (V, E) be a k-clearable graph, and let H be a subgraph of G. It is
natural to ask if H also admits a k-clearing (see Question 6.1 in [1]). On one hand, the
contamination is restricted due to some missing edges; on the other hand, some edges or
paths in G \ H might be crucial for the lions to clear the graph.

We show that this question can be answered in the affirmative if the clearing on G is
monotone, and that surprisingly, this need not be possible in some other restricted settings.

▶ Theorem 4.1. Let G be a graph with a monotone k-clearing. Then any connected
subgraph H ⊂ G also admits a k-clearing.

Note that the clearing of the subgraph need not be monotone. Figure 3 illustrates a
graph G∗ that admits a monotone 2-clearing (sweeping from left to right). However, recall
Figure 2, which illustrates a subgraph of G∗ that has no monotone 2-clearing.

G∗

Figure 3 A supergraph of the graph illustrated in Figure 2. G∗ is monotone 2-clearable even in
the restricted setting of polite and non-stacked lions.

The main idea of the proof is to use a monotone polite clearing (that exists by Theorem 3.3),
and whenever a lion would need to use a non-existent edge or move to a non-existent vertex,
the lion is instead rerouted to its destination. A formal proof can be found in the full version
of the paper.

Finally, we illustrate a graph where one of its subgraphs does not admit a 2-clearing with
polite and non-stacked lions.
▶ Observation 4.2. The graph G illustrated in Figure 4 is 2-clearable with polite non-stacked
lions. However, its subgraph H is not 2-clearable with polite non-stacked lions.

Note that H is not only a subgraph but also an induced subgraph of G.

G H

Figure 4 Graph G is 2-clearable with polite and non-stacked lions, whereas subgraph H is not.

5 Conclusion

In the first part of the paper, we studied different types of clearings, namely monotone, polite
and non-stacked clearings and we showed some of the relations between them. This gives a
good overview over the different restrictions, though a few questions remain open.

EuroCG’22

44:6 Lions and Contamination: Monotone Clearings

In the second part, we focused on the subgraph question raised by Adams et al. [1]. We
were able to answer the question in some restricted settings. In the general setting, we
believe that there exist graphs with subgraphs that admit no k-clearing. Such a graph might
be rather large. A next step in this direction would be to design an algorithm that checks
whether a given graph is k-clearable. Such an algorithm, however, may not be easy to find.

References
1 H. Adams, L. Gibson, and J. Pfaffinger. Lions and contamination, triangular grids, and

cheeger constants. arXiv, 2020. URL: https://arxiv.org/abs/2012.06702.
2 F. Berger, A. Gilbers, A. Grüne, and R. Klein. How many lions are needed to clear a grid?

Algorithms, 2(3):1069–1086, 2009. URL: https://www.mdpi.com/1999-4893/2/3/1069,
doi:10.3390/a2031069.

3 A. Bonato and B. Yang. Graph searching and related problems. In P. M. Pardalos, D.-Z.
Du, and R. L. Graham, editors, Handbook of Combinatorial Optimization, pages 1511–1558,
2013. doi:10.1007/978-1-4419-7997-1_76.

4 R. Borie, S. Koenig, and C. Tovey. Section 9.5: Pursuit-evasion problems. In J. Yellen
J. Gross and P. Zhang, editors, Handbook of Graph Theory, pages 1145–1165. Chapman
and Hall/CRC, 2013.

5 P. Brass, K. D. Kim, H.-S. Na, and C.-S. Shin. Escaping off-line searchers and a discrete
isoperimetric theorem. In Algorithms and Computation, pages 65–74, 2007.

6 T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion in mobile robotics,
a survey, 2011. URL: https://calhoun.nps.edu/handle/10945/45474.

7 A. Dumitrescu, I. Suzuki, and P. Zylinski. Offline variants of the "lion and man" problem.
In Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, page
102–111. Association for Computing Machinery, 2007. URL: 10.1145/1247069.1247085.

8 R. Isaacs. Differential games: A mathematical theory with applications to warfare and
pursuit, control and optimization. 1965.

9 T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors, Theory and
Applications of Graphs, pages 426–441, 1978.

A Conditional Lower Bound for the Discrete
Fréchet Distance in a Graph∗

Anne Driemel1, David Göckede1, Ivor van der Hoog2, and Eva
Rotenberg2

1 Institut für Informatik, Universität Bonn, Germany
driemel@cs.uni-bonn.de

2 Department of Applied Mathematics and Computer Science, Technical
University of Denmark, Denmark
vanderhoog@gmail.com | erot@dtu.dk

Abstract
The Fréchet distance is a well-studied similarity measure between curves that is widely used
throughout computer science. Motivated by applications where curves stem from walks on an
underlying graph (such as a road network), we define and study the Fréchet distance for walks in
graphs. When provided with a distance oracle of G with O(1) query time, the classical quadratic-time
dynamic program can compute the Fréchet distance between two walks P and Q in a graph G

in (quadratic) O(|P | · |Q|) time. We show that, without additional assumptions on G, P , or Q,
quadratic running time is (likely) necessary. Specifically, we provide a conditional lower bound
showing that the Fréchet distance between arbitrary walks in a weighted planar graph cannot be
computed in O((|P | · |Q|)1−δ) time for any δ > 0 unless the Orthogonal Vector Hypothesis fails. Our
result holds even for walks in a constant-complexity graph.

Related Version ArXiv:2201.02121

1 Introduction

The Fréchet distance is a popular metric for measuring the similarity between (polygonal)
curves P and Q. The Fréchet distance is often intuitively defined through the following
metaphor: suppose that we have two curves that are traversed by a person and their dog.
Over all possible (monotone) traversals by both the person and the dog, what is the minimum
length of their connecting leash? This distance measure is similar to the Hausdorff distance,
which is defined for sets, except that it takes the ordering of points along the curve into
account. The Fréchet distance has many applications; in particular in the analysis and
visualization of movement data [7, 11, 17, 25]. It is a versatile distance measure that can be
used for a variety of objects, such as handwriting [22], coastlines [19], outlines of geometric
shapes in geographic information systems [13], trajectories of moving objects, such as vehicles,
animals or sports players [21, 23, 4, 11], air traffic [3] and also protein structures [16]. The
two most-studied variants of the Fréchet distance are the continuous and discrete Fréchet
distance (based on whether the entities traverse a polygonal curve in a continuous manner or
vertex-by-vertex).

∗ Anne Driemel is supported by the Hausdorff Center for Mathematics (DFG grant number EXC 2047).
Ivor van der Hoog and Eva Rotenberg are partially supported by Independent Research Fund Denmark
grant 2020-2023 (9131-00044B) “Dynamic Network Analysis”.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

45:2 A Conditional Lower Bound for the Discrete Fréchet Distance in a Graph

Alt and Godau [2] were the first to study the Fréchet distance from a computational
perspective. They studied how to compute the continuous Fréchet distance of n andm vertices
each in O(mn log(n + m)) time. Recently, this running time was improved by Buchin et
al. [8] to O(n2√logn(log logn)3/2) on a real-valued pointer machine and O(n2 log logn) on
a word RAM with word size Ω(logn). Eiter and Manila [15] showed how to compute the
discrete Fréchet distance DF (P,Q) between two polygonal curves in O(nm) time, which was
later improved to O(nm(log lognm)/ lognm) by Buchin et al. [8].

(a) (b)

Figure 1 The Fréchet distance may be derived from the Euclidean or the shortest path metric.

Conditional lower bounds for the Fréchet distance. The above (near-) quadratic algo-
rithms are accompanied by a series of conditional lower bounds for computing the Fréchet
distance. All these results assume the Orthogonal Vector Hypothesis (OVH) or, by extension,
the strong exponential time hypothesis (SETH) [24]. Bringmann [5] shows that there is
no O(n2−δ) algorithm, for any δ > 0, for computing the (discrete or continuous) Fréchet
distance between two polygonal curves of n vertices each. Bringmann’s original proof uses
self-intersecting curves in the plane. Later, Bringmann and Mulzer [6] showed the same
conditional lower bound for intersecting curves in R1. Bringmann [5] also showed the follow-
ing conditional lower bound tailored to the unbalanced setting where the two input curves
have different complexities: given two polygonal curves of n and m vertices each, there
is no O((nm)1−δ) time algorithm for computing the Fréchet distance. Recently, Buchin,
Ophelders and Speckmann [10] showed that (assuming OVH) there can be no O((nm)1−δ)
time algorithm that computes anything better than a 3-approximation of the Fréchet distance
for pairwise disjoint planar curves in R2 and intersecting curves in R1.

Fréchet distance variants. Variants of the Fréchet distance include those that model
partial similarity by allowing straight-line shortcuts along a curve [14], or by maximizing
the portions of the curves that are matched to each other within a fixed distance [9]. Other
variants constrain the class of mappings by applying speed constraints [18] or topological
constraints [12]. Even other variants extend the class of mappings, such as the weak Fréchet
distance, which was already studied by Alt and Godau [2]. Strikingly, the Fréchet distance has
not been studied for weighted graph metrics. Edge-weighted graphs with their shortest-path
metric are commonly used to model discrete metric spaces [20], and the Fréchet distance can
be derived from the underlying distance metric (Figure 1).

In this paper, we initiate a study of the computational complexity of the discrete Fréchet
distance between walks in a planar graph, where distances between nodes are measured
by their shortest path metric in this graph. This is a natural model when, for example,
measuring the similarity of two trajectories in the same street network (Figure 2). In this
setting, we show a conditional lower bound for computing the discrete Fréchet distance
DF (P,Q) between two walks P and Q in a graph. Specifically, assuming the Orthogonal
Vector Hypothesis (OVH), we show that if G is an integer-weighted planar graph, P and Q

A. Driemel, D. Göckede, I. van der Hoog, E. Rotenberg. 45:3

are walks in G and m = nγ for some constant γ > 0, then for every δ > 0 there can be no
algorithm that computes DF (P,Q) (or a 1.01-approximation) in O((nm)1−δ) time unless
OVH fails. In the full version, we extend this conditional lower bound to paths in a planar
weighted graph and we show algorithmic results for when P is a shortest path.

2 Preliminaries

Let G = (V,E) be an undirected weighted graph with N vertices, where every edge ei has
some corresponding integer weight ωi and all weights can be expressed in a word of Θ(logN)
bits. For any two vertices v1, v2 ∈ V their distance, denoted by d(v1, v2), is the length of
the shortest path from v1 to v2 in G. A walk in G is any sequence of vertices where every
subsequent pair of vertices is connected by an edge in E. A path in G is a walk where no
vertex appears twice in the sequence. Let P be any walk in G, represented by an ordered set
of vertices P = (p1, p2, . . . pn). We denote by |P | = n the number of vertices in P and by [n]
the set (1, 2, . . . , n). We denote the walk Q = (q1, q2, . . . qm), |Q| and [m] analogously.

Discrete Fréchet distance. Given two walks P and Q in G, we denote by [n]× [m] ⊂ N×N
the integer lattice of n by m integers. We say that an ordered sequence F of points in [n]× [m]
is a discrete walk if for every consecutive pair (i, j), (k, l) ∈ F , we have k ∈ {i− 1, i, i+ 1}
and l ∈ {j− 1, j, j+ 1}. It is furthermore xy-monotone when we restrict to k ∈ {i, i+ 1} and
l ∈ {j, j + 1}. Let F be a discrete walk from (1, 1) to (n,m). The cost of F is the maximum
over (i, j) ∈ F of d(pi, qj). The (strong) discrete Fréchet distance is the minimum over all
(xy-monotone) walks F from (1, 1) to (n,m) of its associated cost:

DF (P,Q) := min
F

cost(F) = min
F

max
(i,j)∈F

d(pi, qj).

Orthogonal Vectors Hypothesis. The Orthogonal Vectors problem can be stated as follows.
Given are sets A and B of d-dimensional Boolean vectors with |A| = n and |B| = m. The
goal is to identify whether there exist two vectors a = (a1, a2, . . . ad) and b = (b1, b2, . . . bd)
with a ∈ A and b ∈ B, such that a and b are orthogonal (i.e.

∑d
i=1 ai · bi = 0). In this paper,

we use the following variant of the Orthogonal Vectors hypothesis. It is implied by SETH,
see Abboud and Williams [1, Section 3], and it is equivalent to the standard variant of OHV
defined by Williams [24], see Bringmann [5].

I Definition 2.1. The Orthogonal Vectors Hypothesis states that for every δ > 0, there exists
constants ω > 0 and 1 > γ > 0 such that the Orthogonal Vectors problem for d-dimensional
vectors with d = ω logn and m = nγ , cannot be solved in O((nm)1−δ) time.

3 Hardness of walks in constant size graphs

We show a conditional lower bound for computing the Fréchet distance between two walks in
a constant size graph G. We show that there cannot be an algorithm that always correctly
computes DF (P,Q) for two walks P and Q in a graph G, in truly subquadratic time, unless
OVH fails, even if the graph G has unit weight. For any instance of Orthogonal Vectors A
and B with n′ and m′ vectors, we create a constant complexity graph G and two walks P
and Q with n = O(n′) and m = O(m′) vertices. We show that there exists a pair of vectors
(a, b) ∈ A×B that are orthogonal if and only if DF (P,Q) ≤ 1.9. Our construction closely
matches the original conditional lower bound for the Fréchet distance by Bringmann [5].

EuroCG’22

45:4 A Conditional Lower Bound for the Discrete Fréchet Distance in a Graph

(a) (b)

Figure 2 (a) A road network can be represented as a graph G. (b) Edges in G can be weighted,
e.g. depending on whether traffic flows fast (grey) or slow (black). Under the graph distance metric,
the Fréchet distance between blue and green may be smaller than the distance between red and
blue; even though under the Euclidean metric, the red-blue Fréchet distance is smaller.

Vector gadgets and walks. For all instances A = (a1, . . . an′) and B = (b1, . . . bm′), we
assume that the vectors are of even dimension (otherwise, we add one dummy coordinate of
0 to each vector). For any instance A and B of Orthogonal Vectors, we start by constructing
two constant complexity gadgets which we call the vector gadgets (Figure 3(a)).

We refer to the gadget that models vectors in A as the red gadget. The red gadget
contains vertices {α, α∗, γ, A{0}, A{1}, R, β∗, β} plus one additional ‘sink’ shown in white.
For all vectors a ∈ A, we create what we call a subwalk f(a) through this gadget as follows:
the subwalk starts at γ and continues to either A{0} if the first value in a is a 0, or to
A{1} otherwise. Then, the subwalk continues to A, and from there to either A{0} or A{1}
depending on the second value in a. We continue alternating between A and a vertex in
(A{0}, A{1}) until we reach the end of vector a. The walk f(A) is now constructed as follows:
it starts at α and moves to α∗. From there, it traverses the first subwalk f(a1). This subwalk
ends at A, at which point the walk traverses through A{0} to γ to start f(a2). The walk
ends at β∗ into β. Formally, we denote by ◦ the concatenation of two walks and say:

f(A) = {α}◦{α∗}◦f(a1)◦
{
A{0}

}
◦f(a2)◦

{
A{0}

}
◦f(a3)◦

{
A{0}

}
◦ . . . f(an′)◦{β∗}◦{β}.

Similarly, the blue gadget for vectors in B contains vertices {x, y,B{0}, B{1}, z} plus one
additional sink denoted by s. For all vectors b ∈ B we create a subwalk g(b) in a similar
fashion. The subwalk g(b) starts at y and then continues to either B{0} or B{1} depending
on the first value in b. Then, the subwalk alternates between B and a vertex in (B{0}, B{1})
based on the successive value in b. The subwalk g(b) ends at z. The walk f(B) is now
constructed as follows: the walk starts at x and proceeds with the subwalk g(b1). Then we
walk goes from B to z, and from z through s to x, and we repeat this process for every vector
in B. Formally we write:

g(B) = {x} ◦ g(b1) ◦ {z} ◦ {s} ◦ {x} ◦ g(b2) ◦ {z} ◦ {s} ◦ . . . {x} ◦ g(bm′) ◦ {z}

From gadgets to a graph. We connect the vector gadgets as shown in Figure 3(b). We say
that a pair of red and blue vertices is close whenever their distance is at most 1.9. Thus, the
Fréchet distance is at most 1.9 if and only if there exists a traversal, where at all times the
paired vertices are close. We observe the following distances between red and blue vertices:

A. Driemel, D. Göckede, I. van der Hoog, E. Rotenberg. 45:5

α
α∗ β∗

x y z

γ

1.8 0.8

0.2
DF (P,Q) ≤ 1.9

A

A{0}

B

β

B{0}

α
α∗ β∗

x y z

γ A

A{0}

B

β

B{0}

(a) (b)

s s

B{1}

A{1}

0.1

A{1}

B{1}

1.8 0.8

0.2
DF (P,Q) ≤ 1.9

0.1

Figure 3 (a) The gadget corresponding to vectors in A (red) and vectors in B (blue). (b) We
connect the two gadgets with weighted edges.

I Theorem 3.1. Let G be a planar, integer-weighted graph, P and Q be two walks in G with
n and m vertices and n = mγ for some constant 0 < γ ≤ 1. For all δ > 0, there can be no
algorithm that computes the Fréchet distance between P and Q in O((nm)1−δ) time.

Proof. We observe that for any given A and B of n′ and m′ vectors, we can construct these
two walks P = f(A) and Q = g(B) with n = O(n′) and m = O(m′) vertices respectively.
We prove this theorem through showing that there are two orthogonal vectors if and only if
DF (P,Q) ≤ 1.9.

Two orthogonal vectors imply DF (P,Q) ≤ 1.9. First, we show that if there exist two
vectors (a, b) ∈ A×B such that a and b are orthogonal, then DF (P,Q) ≤ 1.9. We construct
a traversal where at all times the red entity (Red) traversing P is close to the blue entity
(Blue) traversing Q. First, Red remains stationary at the vertex α, whilst the blue entity
traverses B until it reaches g(b). Since α is close to every blue vertex, they remain close.

Then, whilst Blue remains stationary at the vertex x, Red traverses P up to the start of
f(a) into the vertex γ. Every red vertex (except β∗) is close to x and thus they remain close.

At this point, Blue moves to y as Red remains stationary at γ. Then, both entities
simultaneously traverse their respective vector gadgets. Observe that during this traversal,
since a and b are orthogonal, the entities remain close. After this traversal, the Blue remains
stationary at z, whilst Red traverses the remainder of P . Every red vertex (except α∗) is
close to z and thus the entities remain close during this traversal. Finally, Red remains
stationary at β whilst Blue traverses the remainder of Q.

DF (P,Q) ≤ 1.9 implies two orthogonal vectors. We show that if the Fréchet distance
between P and Q is at most 1.9, then there exists a pair of vectors (a, b) ∈ A×B such that a
and b are orthogonal. Indeed, fix any traversal of P and Q that realises the Fréchet distance.
When Red is at α∗, Blue must be at x on some subwalk f(a).

EuroCG’22

45:6 A Conditional Lower Bound for the Discrete Fréchet Distance in a Graph

dist. α α∗ β β∗ γ A{0} A{1} A

x 1.8 1.8 1.8 3.6 1.9 1.9 1.9 1.9
y 1.9 3.6 1.9 3.7 1.8 2 2 2
z 1.8 3.6 1.8 1.8 1.9 1.9 1.9 1.9

B{0} 1.9 3.7 1.9 3.7 2 0.8 1.6 2
B{1} 1.9 3.7 1.9 3.7 2 1.6 2 2
B 1.9 3.7 1.9 3.6 2 2 2 1.8

Table 1 Pairwise distances, close pairs are marked orange.

Consider now the time when Blue oves from x to y (where y lies in a gadget corresponding
to some vector b ∈ B). At this time, Red cannot be at the vertex α because α precedes α∗.
Similarly, Red cannot be at the vertex β because β∗ precedes β and β∗ is not close to any
vertex between x and y. It follows, that Blue must be at y on some subwalk f(b)

Now let without loss of generality Red continue the traversal in the direction of {A{0}, A{1}}.
We can apply the same argument and conclude that Blue must also move to the unique
corresponding vertex in the traversal in the direction of {B{0}, B{1}} (where Blue must go
towards B{1} if Red goes to A{0}). We can continue to apply the same argument to show
that these vectors a and b must be orthogonal. This concludes the proof. J

A. Driemel, D. Göckede, I. van der Hoog, E. Rotenberg. 45:7

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pages 434–443. IEEE, 2014.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995.

3 Alessandro Bombelli, Lluis Soler, Eric Trumbauer, and Kenneth D Mease. Strategic air
traffic planning with Fréchet distance aggregation and rerouting. Journal of Guidance,
Control, and Dynamics, 40(5):1117–1129, 2017.

4 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Proceedings of the 31st international conference on Very large
data bases, pages 853–864, 2005.

5 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foun-
dations of Computer Science, pages 661–670. IEEE, 2014.

6 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2016.

7 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera Sac-
ristan, Rodrigo I Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for map
construction. In Proceedings of the 25th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages 1–10, 2017.

8 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017.

9 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the twentieth annual ACM-SIAM symposium
on Discrete algorithms, pages 645–654. SIAM, 2009.

10 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Seth says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2887–2901. SIAM, 2019.

11 Maike Buchin, Bernhard Kilgus, and Andrea Kölzsch. Group diagrams for representing
trajectories. International Journal of Geographical Information Science, 34(12):2401–2433,
2020.

12 Erin Wolf Chambers, Eric Colin De Verdiere, Jeff Erickson, Sylvain Lazard, Francis Lazarus,
and Shripad Thite. Homotopic Fréchet distance between curves or, walking your dog in
the woods in polynomial time. Computational Geometry, 43(3):295–311, 2010.

13 Thomas Devogele. A new merging process for data integration based on the discrete Fréchet
distance. In Advances in spatial data handling, pages 167–181. Springer, 2002.

14 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.

15 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria,
1994.

16 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with
discrete Fréchet distance. Journal of bioinformatics and computational biology, 6(01):51–
64, 2008.

17 Maximilian Konzack, Thomas McKetterick, Tim Ophelders, Maike Buchin, Luca Giuggioli,
Jed Long, Trisalyn Nelson, Michel A Westenberg, and Kevin Buchin. Visual analytics of de-

EuroCG’22

45:8 A Conditional Lower Bound for the Discrete Fréchet Distance in a Graph

lays and interaction in movement data. International Journal of Geographical Information
Science, 31(2):320–345, 2017.

18 Anil Maheshwari, Jörg-Rüdiger Sack, Kaveh Shahbaz, and Hamid Zarrabi-Zadeh. Fréchet
distance with speed limits. Computational Geometry, 44(2):110–120, 2011.

19 Ariane Mascret, Thomas Devogele, Iwan Le Berre, and Alain Hénaff. Coastline matching
process based on the discrete Fréchet distance. In Progress in Spatial Data Handling, pages
383–400. Springer, 2006.

20 Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science & Business
Media, 2013.

21 Roniel S. De Sousa, Azzedine Boukerche, and Antonio A. F. Loureiro. Vehicle trajectory
similarity: Models, methods, and applications. ACM Comput. Surv., 53(5), September
2020. doi:10.1145/3406096.

22 E Sriraghavendra, K Karthik, and Chiranjib Bhattacharyya. Fréchet distance based ap-
proach for searching online handwritten documents. In Ninth International Conference on
Document Analysis and Recognition (ICDAR 2007), volume 1, pages 461–465. IEEE, 2007.

23 Han Su, Shuncheng Liu, Bolong Zheng, Xiaofang Zhou, and Kai Zheng. A survey of
trajectory distance measures and performance evaluation. The VLDB Journal, 29(1):3–32,
2020.

24 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

25 Dong Xie, Feifei Li, and Jeff M Phillips. Distributed trajectory similarity search. Proceed-
ings of the VLDB Endowment, 10(11):1478–1489, 2017.

Segment Visibility Counting Queries in Polygons∗

Kevin Buchin1, Bram Custers†2, Ivor van der Hoog‡3, Maarten
Löffler§4, Aleksandr Popov¶2, Marcel Roeloffzen‖2, and Frank Staals4

1 Department of Computer Science, TU Dortmund, Germany
kevin.buchin@tu-dortmund.de

2 Department of Mathematics and Computer Science, TU Eindhoven, The
Netherlands
{b.a.custers, a.popov, m.j.m.roeloffzen}@tue.nl

3 Department of Applied Mathematics and Computer Science, TU Denmark,
Copenhagen, Denmark
vanderhoog@gmail.com

4 Department of Information and Computing Sciences, Utrecht University, The
Netherlands
{m.loffler, f.staals}@uu.nl

Abstract
Let P be a simple polygon with n vertices, and let A be a set of m points or line segments in P . We
develop data structures that efficiently count the objects in A that are visible to a query point or
segment. We obtain fast, O(polylog nm), query times, while using as little space as possible, for all
combinations of settings. In this abstract, we focus on the result where the query is a line segment
and A contains only points, obtaining O(log n log nm) query time using only O(nm2+ε + n2) space.

Related Version Full Version: https://arxiv.org/abs/2201.03490 [6]

1 Introduction

Let P be a simple polygon with n vertices, and let A be a set of m points or line segments
inside P . We develop efficient data structures for visibility counting queries in which we wish
to report the number of objects from A visible to some (constant-complexity) query object
Q. An object X in A sees Q if there is a line segment connecting X and Q contained in
P . We are mostly interested in the case when Q is a point or a line segment. Our aim is
to obtain fast, O(polylog nm), query times, using as little space as possible. Our work is
motivated by problems in movement analysis where we have sets of entities, for example, an
animal species and their predators, moving in an environment, and we wish to determine if
there is mutual visibility between the entities of different sets and quantify it by counting.

There is a lot of work on visibility in polygons [16, 17, 23, 24, 25, 26] (and even on
terrains [1, 14]); the data structure version has been considered, too, where the polygon is
given in advance [3, 10, 20, 22]. There are efficient data structures for querying visibility
between two points [22] and the visibility polygon of a point [3]. For weak visibility polygons,
i.e. visibility polygons of line segments, there is algorithmic work [20] and work on the data

∗ Research on the topic of this paper was initiated at the 5th Workshop on Applied Geometric Algorithms
(AGA 2020) in Langbroek, The Netherlands.

† Supported by the Dutch Research Council (NWO) under the project number 628.011.005.
‡ Supported by the Dutch Research Council (NWO) under the project number 614.001.504.
§ Partially supported by the Dutch Research Council (NWO) under the project numbers 614.001.504 and

628.011.005.
¶ Supported by the Dutch Research Council (NWO) under the project number 612.001.801.
‖ Supported by the Dutch Research Council (NWO) under the project number 628.011.005.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

46:2 Segment Visibility Counting Queries in Polygons

Table 1 Results in this paper and its full version [6]. • and / denote points and line segments,
respectively.

A Q
Data structure Section

Space Preprocessing Query

• • O(nm2) O(nm log n + nm2) O(log nm) 2
O(n+m2+ε log n) O(n + m log2 n + m2+ε log n) O(log n log nm) 2

/ • O(nm2) O(nm log n + nm2) O(log nm) 2
• / O(n2 + nm2+ε) O(n2 log m + nm log n + nm2+ε) O(log n log nm) 3
/ / O(n2 + nm2+ε) O(n2 log m + nm log n + nm2+ε) O(log n log nm) [6]

q

PL

D

Figure 1 The filled shape is the cone V (q, D, PL).

structure version [12]. Eades et al. [15] and Aronov et al. [3] present data structures for
visibility of moving points. Visibility counting queries have been studied before, as well, but
mostly for counting the visible edges of the simple polygon containing the query point [5] or
line segment [7]; there are also approximation algorithms [2, 18, 27]. In contrast, we count
other visible line segments with visibility obstructed by the simple polygon. Our setting is
closer to the problem of reporting all visible pairs of points in a simple polygon [4].

We discuss the following data structure question:1 given a set of objects (points or line
segments) A in a simple polygon P on n vertices, count the objects in A visible from a query
object Q in P . We can answer such queries efficiently, i.e. in polylogarithmic time in n and
|A| = m. In this abstract, we state the results, devoting extra attention to Section 3, as the
machinery developed there is most useful to understand. The interested reader should refer
the the full version [6] for details of the other settings. See Table 1 for an overview of the
results. Next, we review some tools we use to build our data structures.

1.1 Preliminaries
A cone is a subspace of the plane enclosed by two rays from some point p, called the apex.
Define the visibility cone of point p ∈ P through a line segment Q ⊂ P as the set of rays that
intersect Q before properly crossing the boundary of P for the first time. A visibility ray is
any ray in such a cone. Let D be a diagonal of P and let PL and PR be the two subpolygons
we obtain when splitting P with D. For convenience, denote the visibility cone of point
p ∈ PL through D by V (p, D, PL). It can be seen as the set of rays from p that intersect D

and only cross the boundary of PL at D (see Figure 1).

Cutting trees. We frequently use a cutting tree, a data structure based on recursively
subdividing the plane to support fast half-plane range queries [9, 11, 13]. A benefit of

1 The algorithmic version can be solved in optimal O(n + m log n) time (see the full version).

K. Buchin et al. 46:3

that data structure is the ability to nest levels to support simplex range searching without
increasing storage requirements or query time. Through the use of geometric dualisation, we
can use variants of this data structure to support intersection and containment queries.

▶ Lemma 1. Let L be a set of m lines. We can store L in a multilevel cutting tree, using
O(m2+ε) space and preprocessing time, so that given a query line segment pq, we can count
the number of lines in L intersected by pq in time O(log m).

Proof. Observe that a line from L is either above or below point p. If a line is below both
points p and q, then the line and pq do not intersect; same holds if it is above both points.
So, to check that it does intersect pq, it suffices to test, for lines above p, that they are also
below q; and the other way around. This can be done with two queries to a two-level cutting
tree in a standard way. In the first query, we find the canonical subsets representing lines
that lie above p and then select the subsets representing lines that also lie below q. The
second query handles the lines below p and above q. Summing up the counts from both
queries gives the answer in the time stated in the lemma. ◀

Polygon decomposition. For a simple polygon P on n vertices, Chazelle [8] shows that we
can construct a balanced hierarchical decomposition of P by recursively splitting the polygon
into two subpolygons of approximately equal size. The polygon is split on diagonals between
two vertices of the polygon. The recursion stops when reaching triangles. The decomposition
can be computed in O(n) time and stored using O(n) space in a balanced binary tree.

Hourglasses and the shortest path data structure. Let P be a simple polygon. An
hourglass for segments pq, rs in P is the union of geodesic shortest paths in P from a point
on pq to a point on rs [19]. There is a data structure to compute shortest paths in P [19, 21]
using O(n) space and preprocessing time, based on the polygon decomposition [8] and the
hourglasses between the diagonals of the decomposition. It can be queried in O(log n) time:
Shortest path query. Given points p, q ∈ P , return the geodesic shortest path between p

and q in P as a set of O(log n) nodes of the decomposition.
Segment location query. Given a segment pq, return the polygon cover of pq, i.e. the two

leaf triangles containing p and q in the decomposition and the O(log n) pairwise disjoint
open hourglasses, so that the leaf triangles and the hourglasses fully cover pq.

Cone query. Return the visibility cone from a point s through the line segment pq in P .

2 Point Queries

Suppose the query is a point q. There is a simple arrangement-based solution using the fact
that the desired count is the number of the (weak) visibility polygons of the objects in A

that contain the query point. We can precompute the arrangement of the visibility polygons
and preprocess it for point location; based on previous results on the complexity of such an
arrangement [5], we arrive at the result. See the full version [6].

If the objects in A are also points, we get much better bounds on space and preprocessing
time by employing the polygon decomposition by Chazelle [8] to hierarchically split the
polygon on diagonals. We associate a data structure with every node in the decomposition
tree. Assuming the data structure is associated with a split at diagonal D splitting P into PL

and PR, and assuming q ∈ PL, we can count the points in A ∩ PR using the data structure;
we store a symmetric data structure for q ∈ PR. The key insight is that any point a ∈ A ∩ PR

sees q in P if and only if q ∈ V (a, D, PR) and a ∈ V (q, D, PL). See Figure 2.

EuroCG’22

46:4 Segment Visibility Counting Queries in Polygons

PR

D

PL PL

PR

D

(a) (b)

Figure 2 Visibility cones (coloured regions) of (coloured) points w.r.t. some diagonal D. (a) Blue
and red are mutually visible. (b) Green and blue cannot see each other, nor can orange and blue.

p q

E(uv) SU

TL TR

E(uw)

H

SL

v

u

w

DL DR

Figure 3 Partitioning of the polygon based on the polygon cover of pq.

3 Segment Queries

Given a simple polygon P and a set A of points in P , we construct a data structure that
efficiently counts points in A that see a query segment pq. We use the data structure by
Guibas and Hershberger [19] (GHDS) on P as the foundation. For a given query pq, GHDS
partitions P into four types of regions (Figure 3): hourglasses (orange); triangles that contain
p or q, denoted by TL and TR (blue); regions that have as a border the upper or the lower
chain of an hourglass, called side polygons (green); and regions that have as a border an edge
of TL or TR, called end polygons (red). Each point of A belongs to only one region.

Given a segment pq at query time, we find its polygon cover. Counting the visible objects
inside the relevant hourglasses and triangles is easy—all of them are visible. For the end
polygons, we make a case distinction on the way the visibility cones of the objects cross the
adjacent triangles, and use inclusion–exclusion-style arguments to obtain the correct count
(see the full version [6]). For the side polygons, we check the conditions for an object not to
be visible, and we subtract that from the overall count of points in the relevant side polygons.

3.1 The Data Structure
We begin by introducing a helper data structure.

K. Buchin et al. 46:5

S

q

H

PL vL

(a)

. . .

T1T2

T2T1

(b)

.

(c)

vL

q

1

0

0

1

3

4

DL

p

Figure 4 (a) We count the blue rays intersecting the shortest path between q and vL. We store
(b) a multilevel cutting tree to query ray intersections with pq and qvL and (c) a shortest path map to
count the rays intersecting the shortest path from vL to p. In this case, we count 1/2 · (3 + 1 + 4) = 4.

▶ Lemma 2. Let H be an hourglass bounding a side polygon S. Denote the left diagonal of
H by DL, and the polygon bounded by DL by PL. Let R be an arbitrary given set of visibility
rays from objects in S into H that exit H through DL. Denote the leftmost vertex of the
convex chain separating H from S by vL. (See Figure 4.) Given a query point q ∈ PL left of
the supporting line of DL, whose shortest path to vL in PL forms an upwards convex chain,
we aim to count the rays in R that intersect this chain. In time O(|R|2+ε + |PL| log|R|),
we can compute a data structure of size O(|R|2+ε + |PL|) that answers such queries in time
O(log|R||PL|).

Proof sketch. Any edge of a shortest path between q and vL is left of the supporting line
of DL, so we can use the data structure of Lemma 1 on R to count the rays intersecting
an edge in O(|R|2+ε) space and time. We compute a shortest path map with root v in PL,
where we store the number of rays intersected on the path to vL for each edge. For a query,
we can do two intersection queries and combine the counts (see Figure 4). ◀

We now introduce our Segment Query Data Structure (SQDS), based on the GHDS and
augmented with extra data. It decomposes the polygon into hourglasses and triangles.

The data structure for hourglasses. Consider an hourglass H bounded by diagonals
DL = vLuL, DR = vRuR, and the upper and the lower chains π(vL, vR) and π(uL, uR) in
the GHDS. Let SU be the (possibly degenerate) side polygon of H that is incident to the
upper chain, and let CU be the visibility cones of entities in SU into H. Note that these
are cones through the appropriate diagonal that forms part of π(vL, vR); the cones can be
computed using a cone query to the full convex chain. For the hourglass H itself, we store
the number of objects in A that are contained in H. For ease of exposition, we refer to the
boundaries of a cone C ∈ CU as the left and the right boundary, when viewed from the apex
of the cone in the direction of the cone. For the upper chain of H, we store in SQDS:
H1. The number of non-empty visibility cones in CU .
H2. The right cone boundaries of cones in CU that exit H through DR in the Lemma 2 DS.
H3. The left cone boundaries of cones in CU that exit H through DL in the Lemma 2 DS.
We store symmetrical data structures for the bottom chain of H.

EuroCG’22

46:6 Segment Visibility Counting Queries in Polygons

SU

uL

vL

vR

uR

p q

SU

uL

vL

vR

uR

p q

(a) (b)

Figure 5 Cones entering from side polygon SU that (a) see or (b) do not see pq.

The data structure for triangles. We store data structures that let us count the visible
objects in the end polygons and inside the triangles. Refer to the full version [6] for details.

▶ Lemma 3. The SQDS requires O(nm2+ε + n2) space and can be constructed in time
O(nm2+ε + nm log n + n2 log m).

3.2 Counting Entities in Side Polygons
Let H be an hourglass that covers a part of query segment pq (see Figure 5).

▶ Lemma 4. Let H be an hourglass with diagonals DL = uLvL and DR = uRvR, let SU

be the (possible degenerate) side polygon bounded by the upper chain of H, and let pq be a
segment that intersects both DL and DR, with p to the left of DL and q to the right of DR.
Let a ∈ SU be a point with a non-empty visibility cone C into H. Then point a does not see
pq if and only if either the right boundary RR of C intersects π(vR, q), or the left boundary
RL of C intersects π(vL, p).

Proof. First, assume that a does not see pq. We argue that RR intersects π(vR, q) or RL

intersects π(vL, p). Assume for the sake of contradiction that neither condition holds. Let I

be the region bounded by vLvR, π(vR, q), pq, and π(p, vL). Since C can see points in H along
RR and RL, RR and RL enter the region I through vLvR, or a already lies inside I. Since
RR is a ray, it must also exit I, and by definition it cannot exit through vLvR. It cannot
exit I through pq, either, as that would mean a can see pq. Furthermore, by assumption,
RR does not intersect π(vR, q). Hence, RR intersects π(vL, p). Using a similar argument,
RL intersects π(vR, q). It now follows that the intersection point s = pq ∩ DL lies inside the
cone C, and must therefore be visible to a (i.e. nothing above H can intersect ap, and inside
H ap does not intersect any polygon vertices). Hence, a sees pq. Contradiction.

Now assume that RR intersects π(vR, q) (the case that RL intersects π(vL, p) is symmetric).
We now argue that a cannot see pq. Let IR be the region bounded by pq, DR, and π(vR, q).
A point s on pq is visible via a ray R, entering via DR, if it first exits the region IR via
pq. Since RR is not obstructed in H, it must enter IR via DR. In addition, by assumption,
it first exits via π(vR, q). If RR intersects π(vR, q) once, then by convexity of π(vR, q), it
follows that q is below RR and thus below any ray R in the cone C, thus it is not visible.
If RR intersects π(vR, q) twice, there is a subsegment of pq above RR. The ray RR now
partitions IR into three regions: one below RR, containing points that cannot be visible, and
two regions above RR. The right region contains the subsegment of pq that is still above RR.
Consider now any ray R that could be a visibility ray to a point x ∈ pq. This ray must be
above RR and must intersect pq at x. This means that it must traverse the region IR from

K. Buchin et al. 46:7

DR to x. But since R must be above RR, it follows that it must cross the two regions above
RR, which are separated by a polygon boundary. Thus, no x ∈ pq is visible from a. ◀

▶ Lemma 5. Using H1, H2, and H3 stored with each chain of hourglass H in our SQDS,
we can count the visible objects in the side polygons of H in time O(log nm).

Proof. By Lemma 4, we can count the number of visible objects from the upper side polygon
by taking the total number of objects with non-empty visibility cones from the upper side
polygon and subtracting those for which either RR intersects π(vR, q) or RL intersects
π(vL, p). Counting for the lower side polygon is symmetrical. We store the number of entities
with non-empty visibility cones from the side polygon in H1. Then, we query our H2 and H3
data structures to count the number of visibility cones that exit through DL and DR that
do not see pq. This requires O(log nm) time per chain, yielding the total query time. ◀

There are O(log n) hourglasses, so the query time is dominated by the side polygons.

▶ Theorem 6. Let P be a simple polygon with n vertices, and let A be a set of m points in P .
In time O(nm2+ε + nm log n + n2 log m), we can build a O(nm2+ε + n2)-size data structure
that can count the points from A that see a query segment pq in O(log n log nm) time.

References
1 Pankaj K. Agarwal and Jiří Matoušek. Ray shooting and parametric search. SIAM Journal

on Computing, 22(4):794–806, 1993. doi:10.1137/0222051.
2 Sharareh Alipour, Mohammad Ghodsi, Alireza Zarei, and Maryam Pourreza. Visibility

testing and counting. Information Processing Letters, 115(9):649–654, 2015. doi:10.1016/
j.ipl.2015.03.009.

3 Boris Aronov, Leonidas J. Guibas, Marek Teichmann, and Li Zhang. Visibility queries and
maintenance in simple polygons. Discrete & Computational Geometry, 27:461–483, 2002.
doi:10.1007/s00454-001-0089-9.

4 Boaz Ben-Moshe, Olaf Hall-Holt, Matthew J. Katz, and Joseph S. B. Mitchell. Computing the
visibility graph of points within a polygon. In Jack S. Snoeyink and Jean-Daniel Boissonnat,
editors, Proceedings of the 20th Annual Symposium on Computational Geometry (SoCG
2004), pages 27–35, New York, NY, USA, 2004. ACM. doi:10.1145/997817.997825.

5 Prosenjit Bose, Anna Lubiw, and James Ian Munro. Efficient visibility queries in simple
polygons. Computational Geometry: Theory & Applications, 23(3):313–335, 2002. doi:
10.1016/S0925-7721(01)00070-0.

6 Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov,
Marcel Roeloffzen, and Frank Staals. Segment visibility counting queries in polygons, 2022.
arXiv:2201.03490.

7 Mojtaba Nouri Bygi, Shervin Daneshpajouh, Sharareh Alipour, and Mohammad Ghodsi.
Weak visibility counting in simple polygons. Journal of Computational and Applied Math-
ematics, 288:215–222, 2015. doi:10.1016/j.cam.2015.04.018.

8 Bernard Chazelle. A theorem on polygon cutting with applications. In Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 1982), pages
339–349, Piscataway, NJ, USA, 1982. IEEE. doi:10.1109/SFCS.1982.58.

9 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9:145–158, 1993. doi:10.1007/BF02189314.

10 Bernard Chazelle and Leonidas J. Guibas. Visibility and intersection problems in plane
geometry. Discrete & Computational Geometry, 4:551–581, 1989. doi:10.1007/BF02187747.

EuroCG’22

46:8 Segment Visibility Counting Queries in Polygons

11 Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Algorithmica, 8:407–429, 1992. doi:10.1007/
BF01758854.

12 Danny Ziyi Chen and Haitao Wang. Weak visibility queries of line segments in simple
polygons. Computational Geometry: Theory & Applications, 48(6):443–452, 2015. doi:
10.1016/j.comgeo.2015.02.001.

13 Kenneth L. Clarkson. New applications of random sampling in computational geometry.
Discrete & Computational Geometry, 2:195–222, 1987. doi:10.1007/BF02187879.

14 Mark de Berg, Dan Halperin, Mark H. Overmars, Jack S. Snoeyink, and Marc J. van
Kreveld. Efficient ray shooting and hidden surface removal. Algorithmica, 12:30–53, 1994.
doi:10.1007/BF01377182.

15 Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals. Trajectory visibility.
In Susanne Albers, editor, Proceedings of the 17th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2020), number 162 in Leibniz International Proceedings
in Informatics (LIPIcs), pages 23:1–23:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SWAT.2020.23.

16 Hossam El Gindy and David Avis. A linear algorithm for computing the visibility polygon
from a point. Journal of Algorithms, 2(2):186–197, 1981. doi:10.1016/0196-6774(81)
90019-5.

17 Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge University Press,
Cambridge, UK, 2007. doi:10.1017/CBO9780511543340.

18 Joachim Gudmundsson and Pat Morin. Planar visibility: Testing and counting. In David G.
Kirkpatrick and Joseph S. B. Mitchell, editors, Proceedings of the 26th Annual Symposium
on Computational Geometry (SoCG 2010), pages 77–86, New York, NY, USA, 2010. ACM.
doi:10.1145/1810959.1810973.

19 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. Journal of Computer and System Sciences, 39(2):126–152, 1989. doi:10.1016/
0022-0000(89)90041-X.

20 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987. doi:10.1007/BF01840360.

21 John Hershberger. A new data structure for shortest path queries in a simple polygon. In-
formation Processing Letters, 38(5):231–235, 1991. doi:10.1016/0020-0190(91)90064-O.

22 John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. Journal of Algorithms, 18(3):403–431, 1995. doi:10.1006/jagm.1995.1017.

23 Barry Joe and Richard B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics, 27:458–473, 1987. doi:10.1007/BF01937271.

24 Der-Tsai Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing, 22(2):207–221, 1983. doi:10.1016/0734-189X(83)90065-8.

25 Joseph O’Rourke. Art Gallery Theorems and Algorithms, volume 3 of The Interna-
tional Series of Monographs on Computer Science. Oxford University Press, Oxford, UK,
1987. URL: http://www.science.smith.edu/~jorourke/books/ArtGalleryTheorems/
art.html.

26 Mark H. Overmars and Emo Welzl. New methods for computing visibility graphs. In Herbert
Edelsbrunner, editor, Proceedings of the 4th Annual Symposium on Computational Geometry
(SoCG 1988), pages 164–171, New York, NY, USA, 1988. ACM. doi:10.1145/73393.73410.

27 Subhash Suri and Joseph O’Rourke. Worst-case optimal algorithms for constructing visibility
polygons with holes. In Alok Aggarwal, editor, Proceedings of the 2nd Annual Symposium
on Computational Geometry (SoCG 1986), pages 14–23, New York, NY, USA, 1986. ACM.
doi:10.1145/10515.10517.

Kinetic Group Density in 1D
Kevin Buchin1, Max van Mulken2, Bettina Speckmann2, and
Kevin Verbeek2

1 Department of Computer Science, TU Dortmund, Germany
kevin.buchin@tu-dortmund.de

2 Department of Mathematics and Computer Science, TU Eindhoven,
the Netherlands
[m.j.m.v.mulken|b.speckmann|k.a.b.verbeek]@tue.nl

1 Introduction

Sets of moving entities can form groups that travel closely together for significant periods of
time. There is a large body of work which describes methods to determine when and where
groups are formed [3,6,7,8,10,14]. Analyzing the shape and the movement properties of such
groups allows us to infer the underlying movement behavior. In this abstract we study how
to characterize and kinetically maintain the density of a group. This density can capture, for
example, the response of herd animals to predators or human intrusion [5, 11].

Specifically, we focus on a set P of n points moving linearly in one dimension, that is, on a
line. We assume that the points in P continuously form a single group. To model the density
within this group we use the well-known concept of kernel density estimation (KDE). Given
the points in P , KDE constructs a function KDEP which estimates the density over the
whole domain. KDE uses kernels which are functions K : R → R+ that capture the influence
of a single point p ∈ P . The function KDEP is the sum of the individual kernels, normalized
to lie in the range [0, 1]. There are a variety of different kernels which are commonly used
by KDE. We use the triangular kernel function, which is defined as K∆(x) = 1 − |x|/σ if
|x| < σ, and K∆(x) = 0 otherwise (see Figure 1). Here σ denotes the kernel width, which
captures the influence of an individual point. We have [12,15]:

KDE∆
P (x) = 1

n

∑

p∈P

K∆(x − p) for x ∈ R.

The local minima and maxima of KDE∆
P characterize the dense and sparse areas of the

group P . In the remainder of this abstract we sketch how to maintain these critical points of
KDE∆

P with the help of a kinetic data structure (KDS) [2] as the points in P move linearly.

~

Figure 1 KDE∆
P (x): local maxima are indicated in red and local minima are indicated in blue.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

47:2 Kinetic Group Density in 1D

Results. In Section 2 we present a KDS that maintains the set of critical points C of KDE∆
P

of a set P of n linearly moving points in 1D. Our KDS is local, compact, responsive, and
weakly efficient. However, the total number of events can be Θ(n2). We hence show in
Section 3 how to maintain an approximation of the set of critical points C via a coreset [13]
of the 1D trajectories of the points in P . The coreset Q has size O(1

ε2 log 1
ε), for ε > 0. Q

does not change while the points move and hence requires no updates unless a point changes
its trajectory. Using Q we can maintain a set of critical points CQ, which approximate the
critical points C well in a topological sense: we prove that CQ contains all critical points
with persistence at least 2ε. Omitted proofs can be found in the full version of the paper.

2 Exact KDS

In this section we present a KDS that maintains the critical points C of KDE∆
P . We first

describe how to find the critical points of KDE∆
P for a static point set P without explicitly

computing KDE∆
P . To do so, we first introduce some notation.

Let P = {p1, . . . , pn} and let li = pi −σ and ri = pi +σ denote the left and right boundary
of the kernel of pi ∈ P . Since the kernel is triangular, the function KDE∆

P can have bends
only at pi, li, or ri for 1 ≤ i ≤ n; it must be linear in between. We refer to the bends in
KDE∆

P correspondingly as bpi, bli, and bri (see Figure 2). The slope of KDE∆
P increases by

1
σn at bends bli and bri, and decreases by 2

σn at bends bpi. We use these slopes to determine
the critical points. Note that critical points in KDE∆

P do not always consist of a single bend,
but may consist of a horizontal segment, even in non-degenerate settings. These horizontal
segments have three different types. If the slope of the function is increasing before and
decreasing after the horizontal segment, we call the segment a plateau (Figure 3 left); a
plateau is a type of maximum. Similarly, if the slope is decreasing before and increasing after
the horizontal segment, it forms a type of minimum called a valley (Figure 3 center). Any
other horizontal line segment is called a flat (Figure 3 right). The bends at the left and right
endpoints of a horizontal segment are called starting and ending h-bends, respectively. We
call a bend regular if it is neither a local maximum nor an h-bend.

For a coordinate x ∈ R, we define the left points Pℓ(x) and the right points Pr(x) as those
points of P that lie inside the open interval (x − σ, x) and (x, x + σ), respectively. If there is
no bend located at x, then the slope of KDE∆

P at x is |Pr(x)|−|Pℓ(x)|
σn . Hence, we can deduce

from the number of left and right points if a bend is a local maximum or a starting or ending
h-bend. Since the slope increases only by increments of 1

σn , a single bend can never be a
local minimum, unless the point set is degenerate (two points or boundaries coincide). In
the following we assume that the point set is non-degenerate.

▶ Lemma 1. A bend bpi with pi ∈ P is a local maximum in KDE∆
P iff |Pℓ(pi)| = |Pr(pi)|.

Proof. Let p−
i = pi − ε be a point just before pi and p+

i = pi + ε be a point just after pi, for
some arbitrarily small ε > 0. Assume that bpi is a local maximum. Then |Pr(p−

i)| > |Pℓ(p−
i)|

pi

rili

bpi

bribli

Figure 2 The triangular kernel.

Plateau Valley Flat

Figure 3 The three types of horizontal segments.

K. Buchin, M. van Mulken, B. Speckmann, and K. Verbeek 47:3

and |Pr(p+
i)| < |Pℓ(p+

i)|. Since Pr(p−
i) = Pr(pi) ∪ {pi} and Pℓ(p+

i) = Pℓ(pi) ∪ {pi} (and
Pℓ(p−

i) = Pℓ(pi) and Pr(p+
i) = Pr(pi)), we have |Pℓ(pi)| = |Pℓ(p−

i)| < |Pr(p−
i)| = |Pr(pi)| + 1

and |Pr(pi)| = |Pr(p+
i)| < |Pℓ(p+

i)| = |Pℓ(pi)| + 1. This implies that |Pℓ(pi)| = |Pr(pi)|.
Furthermore, if we assume that |Pℓ(pi)| = |Pr(pi)|, then we directly obtain that |Pr(p−

i)|−
|Pℓ(p−

i)| = 1 and |Pr(p+
i)| − |Pℓ(p+

i)| = −1, and hence bpi is a local maximum. ◀

We can determine starting and ending h-bends in a similar manner:

▶ Lemma 2. For every point pi ∈ P :
bpi is a starting h-bend if and only if |Pr(pi)| = |Pℓ(pi)| + 1
bpi is an ending h-bend if and only if |Pℓ(pi)| = |Pr(pi)| + 1
bli is a starting h-bend if and only if |Pℓ(li)| = |Pr(li)| + 1
bli is an ending h-bend if and only if |Pℓ(li)| = |Pr(li)|
bri is a starting h-bend if and only if |Pℓ(ri)| = |Pr(ri)|
bri is an ending h-bend if and only if |Pℓ(ri)| + 1 = |Pr(ri)|
We can determine the type of a horizontal segment based on its starting and ending

h-bends: bends bpi decrease the slope and hence bound a plateau or one side of a flat, and
bends bli and bri increase the slope and hence bound a valley or the other side of a flat.

Kinetic Data Structure. We can maintain the set C of critical points of KDE∆
P by keeping

track of the following information:

1. The number of left and right points for all points pi ∈ P and their boundaries li and ri,
2. The order of all points pi, li, and ri in 1D (to match up starting and ending h-bends).

The left and right points of points and boundaries can change only when two points or
boundaries coincide. Our KDS hence simply maintains the sorted order of all points and
boundaries, and updates the left and right points accordingly (along with the classifications
as critical points). In the following, let pi(t) (or li(t), ri(t)) be the position of point pi ∈ P

(or its boundaries) at time t. Let the time of an event be t0. The following events can occur:

Point-Point collision (pi(t0) = pj(t0)). Note that we also have that li(t0) = lj(t0) and
ri(t0) = rj(t0). Essentially, points pi and pj (and their boundaries) switch places, and the
critical points of KDE∆

P do not change. However, if pi was a local maximum or a starting
or ending h-bend before the event, then pj takes over this role after the event, and vice
versa. The same holds for the boundaries of pi and pj . We call this event a shift event.

Boundary-Boundary collision (ri(t0) = lj(t0)). Just before the event we have that the left
and right points of ri and lj are the same. WLOG assume that ri(t) > lj(t) for t > t0.
Hence Pr(ri) gains pj and Pℓ(lj) gains pi at t = t0. Lemma 2 implies that if ri is a
starting (ending) h-bend before the event, then lj becomes a starting (ending) h-bend
after the event, and vice versa. Hence, this is another shift event.

Boundary-Point collision (ri(t0) = pj(t0)). We also have that pi(t0) = lj(t0). WLOG
assume that ri(t) > pj(t) for t > t0. Both the left- and the right points change: (1)
Pℓ(pj) gains pi, (2) Pr(pi) gains pj , (3) pj is removed from Pr(ri) and added to Pℓ(ri),
and (4) pi is removed from Pr(lj) and added to Pℓ(lj). Based on these changes, the types
of bends and hence the set of critical points can change in various ways ; next to shift
events, it can also happen that local maxima or h-bends are eliminated (the bends become
regular). We call such events death events. Similarly, regular bends can become local
maxima or h-bends, which we refer to as birth events. These updates can be processed
using Lemma 1 and Lemma 2.

EuroCG’22

47:4 Kinetic Group Density in 1D

▶ Theorem 3. Let P be a set of n linearly moving points in one dimension. The KDS
described above maintains the set of critical points of KDE∆

P and is local, compact, responsive
and weakly efficient.

Proof sketch. The KDS requires certificates only for the order between the points pi ∈ P

and their boundaries li and ri. Since the set of critical points can change only when the
order changes, no separate certificates are needed. Hence, we need 6 certificates for each
point pi ∈ P (2 each for pi, li, and ri), and consequently the KDS is local and compact.
When processing an event we first update the order of the points and boundaries. Next,
since every event involves O(1) bends, we can efficiently update the left and right points
counts in O(1) time. Further, we can use Lemma 1 and Lemma 2 to efficiently update the
types of bends and the set C of critical points. Including the insertion of new events in the
event queue, every event can be handled in O(log n) time, and hence the KDS is responsive.
Finally, since we maintain the order of 3n elements, the total number of events is Θ(n2)
under linear motion. It is straightforward to construct an example where the number of
external events (where the set of critical points changes) is also Θ(n2): if σ is sufficiently
small, then every time two points collide, two local maxima are first merged and then split
again. Thus, the KDS is also weakly efficient. ◀

3 Approximation

The KDS we described in Section 2 is only weakly-efficient: there are examples where there
are Θ(n2) external events (when critical points change), but in general there might be much
fewer such changes. Our KDS however tracks the sorted order of the points and hence always
processes Θ(n2) events. Furthermore, there are also external events of low significance: small
“bumps” in the density function where critical points of low relevance appear and quickly
disappear again. Here, we use the concept of topological persistence to quantify the relevance
of critical points. We will briefly describe the concept of topological persistence for simple
one-dimensional functions f : R → R. This explanation is simplified; see e.g. [4] for a formal
treatment of the subject.

For a function f : R → R, let the sublevel set of f with respect to a value y be defined
as Lf (y) = {x | f(x) ≤ y}. Note that, for a “smooth” function, Lf (y) generally consists
of a number of intervals in the domain of f . Now consider Lf (y) as we increase the value
of y. If y is below the minimum of f , then Lf (y) is empty. When we encounter a local
minimum of f , say at x−, then x− is added to Lf (y) when y = f(x−), and it grows into
an interval of Lf (y) as y is increased further. We refer to the local minimum at x− as the
representative of the corresponding interval. We can say that the birth of this interval was
at y = f(x−). When we encounter a local maximum of f , say at x+, then two intervals of
Lf (y) are merged into one at y = f(x+). Let x−

1 and x−
2 be the representatives of the two

intervals, and assume WLOG that f(x−
1) < f(x−

2). Then x−
1 becomes the representative of

the merged interval (this is called the elder rule), and x−
2 and x+ will form a new persistence

pair between a local minimum and a local maximum. The difference f(x+) − f(x−
2) is called

the persistence of the persistence pair (x−
2 , x+). We also say that the death of the interval of

x−
2 was at y = f(x+).

We continue increasing y until Lf (y) contains all points in R. The persistence pairs
generated in this process describe a topological signature of the function f . The idea is that
persistence pairs with small persistence are mostly caused by noise, and persistence pairs
with large persistence describe the main behavior of the function. Thus, we can say that
critical points that are involved in a persistence pair with high persistence are more relevant

K. Buchin, M. van Mulken, B. Speckmann, and K. Verbeek 47:5

for the behavior of the function than critical points that are involved in a persistence pair
with low persistence. For simplicity we refer to the persistence of a critical point as the
persistence of the corresponding persistence pair in which the critical point is involved.

In the following, we describe how to use coresets to approximate the set of critical points
in such a way that (1) our KDS processes fewer events, and (2) the approximate critical
points represent those with high persistence. Specifically, we replace the point set P by a
smaller point set Q—the coreset. In our context, a coreset Q is an ε-approximation, for some
ε > 0, if the following holds:

max
x∈R

|KDE∆
P (x) − KDE∆

Q(x)| ≤ ε.

KDE∆
Q may not have the same critical points as KDE∆

P . However, Cohen-Steiner et al. [4]
show that it preserves the critical points with topological persistence at least 2ε. KDE∆

Q

might also preserve some critical points of KDE∆
P with low persistence, however, the total

number of critical points is bounded by O(|Q|).
In one dimension we can easily compute an ε-approximation Q of P of size O(1

ε) using
various methods. However, we also need to maintain this approximation as the points move,
while keeping the current performance levels of the KDS with respect to locality, compactness,
and responsiveness. Therefore we propose to use a coreset Q which remains fixed over the
entire linear motion of the points in P . We can then build the KDS directly on Q instead of
on P ; we only need to update the KDS if the flight plan of one of the points in P changes.

Consider now the set of linear functions that describe the linear motion of the points in
P , where the horizontal dimension is time, and the vertical dimension describes the position
in 1D. These functions form a linear arrangement where each moving point is represented
by a line. Every vertical slice represents the point set P at some time t and every vertical
segment corresponds to an interval in 1D at some time t. The pair (S, R), where S is the set
of lines, and R contains all subsets of lines in S intersected by a single vertical segment, forms
a range space. The following theorem by Agarwal et al. [1] gives us the tools to efficiently
compute and maintain an ε-approximation of this range space.

▶ Theorem 4 ([1, Theorem 4]). Given a range space X = (S, R) of VC-dimension d

and a parameter ε, one can (deterministically) maintain an ε-approximation of X of size
O(1

ε2 log(1
ε)), in O(log2d+3 n

ε2d+2 (log(log(n)/ε))2d+2) time per insertion and deletion.

The ε-approximation from Theorem 4 does not directly imply an ε-approximation for
our kernel density estimation, since it applies to a uniform kernel instead of a triangular
kernel. However, Joshi et al. [9] show that the ε-approximation of a range space is also an
ε-approximation for well-behaved kernel functions. It remains to determine the VC-dimension
of our range space. Using geometric point-line duality which replaces a line ax − b by a point
(a, b) and vice versa, our range space is equivalent to the range space on a set of points in 2D,
where each range is represented by an infinite strip (with arbitrary width and orientation).
The VC-dimension of this range space is 5.

We now build the KDS of Theorem 3 on the coreset Q obtained via Theorem 4. This
allows us to maintain the critical points of KDE∆

P that have persistence at least 2ε. The
number of points in the KDS is reduced from n to O(1

ε2 log(1
ε)); it follows directly that the

number of events is reduced from Θ(n2) to O(1
ε4 log2(1

ε)). If the flight plan of a point in
P changes, then we have to update coreset Q (and hence the KDS); this can be done in
O(log13 n

ε12 (log(log(n)/ε))12) time by Theorem 4.

EuroCG’22

47:6 Kinetic Group Density in 1D

Future work. Our approach cannot explicitly track function values at critical points.
Although this allows us to maintain the set of critical points, we cannot track relations
between critical points, like persistence or contour trees. We plan to extend our approach to
maintain such information efficiently. Furthermore, we intend to extend our approach to
higher dimensions, specifically to 2D, and to apply our algorithms to real-world data.

References
1 Pankaj Agarwal, Mark de Berg, Jie Gao, Leonidas Guibas, and Sariel Har-Peled. Staying in

the Middle: Exact and Approximate Medians in R1 and R2 for Moving Points. Proceedings
of the 17th Canadian Conference on Computational Geometry, pages 43–46, 01 2005.

2 Julien Basch, Leonidas Guibas, and John Hershberger. Data structures for mobile data.
Journal of Algorithms, 31(1):1–28, 1999.

3 Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and Frank Staals.
Trajectory grouping structure. Journal of Computational Geometry, 6(1):75–98, 2015.

4 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence
diagrams. Discrete & Computational Geometry - DCG, 37:263–271, 2005. doi:10.1007/
s00454-006-1276-5.

5 Jasper A.J. Eikelboom. Sentinel animals: Enriching artificial intelligence with wildlife
ecology to guard rhinos. PhD thesis, Wageningen University, 2021.

6 Joachim Gudmundsson, Marc J. van Kreveld, and Bettina Speckmann. Efficient detection
of patterns in 2D trajectories of moving points. GeoInformatica, 11(2):195–215, 2007.
doi:10.1007/s10707-006-0002-z.

7 Yan Huang, Cai Chen, and Pinliang Dong. Modeling herds and their evolvements from
trajectory data. Geographic Information Science, pages 90–105, 2008.

8 San-Yih Hwang, Ying-Han Liu, Jeng-Kuen Chiu, and Ee-Peng Lim. Mining mobile group
patterns: A trajectory-based approach. Advances in Knowledge Discovery and Data Mining,
pages 713–718, 2005.

9 Sarang Joshi, Raj Varma Kommaraji, Jeff M. Phillips, and Suresh Venkatasubramanian.
Comparing distributions and shapes using the kernel distance. Proceedings of the Twenty-
Seventh Annual Symposium on Computational Geometry, page 47–56, 2011.

10 Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters in
spatio-temporal data. Advances in Spatial and Temporal Databases, pages 364–381, 2005.

11 Anders Nilsson. Predator behaviour and prey density: evaluating density-dependent
intraspecific interactions on predator functional responses. Journal of Animal Ecology,
70(1):14–19, 2001.

12 Emanuel Parzen. On estimation of a probability density function and mode. The annals of
mathematical statistics, 33(3):1065–1076, 1962.

13 Jeff M. Phillips. ε-samples for kernels. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 1622–1632. SIAM, 2013.

14 Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
Proceedings of the 14th annual conference on Computer graphics and interactive techniques,
pages 25–34, 1987.

15 Murray Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function. The
Annals of Mathematical Statistics, 27(3):832 – 837, 1956. doi:10.1214/aoms/1177728190.

Finding a Battleship of Uncertain Shape∗

Eva-Maria Hainzl1, Maarten Löffler2, Daniel Perz3, Josef Tkadlec4,
and Markus Wallinger5

1 Institute of Discrete Mathematics and Geometry, TU Wien
eva-maria.hainzl@tuwien.ac.at

2 Department of Computing and Information Sciences, Utrecht University
m.loffler@uu.nl

3 Institute of Software Technology, TU Graz
daperz@ist.tugraz.at

4 Department of Mathematics, Harvard University
tkadlec@math.harvard.edu

5 Algorithms and Complexity Group, TU Wien
mwallinger@ac.tuwien.ac.at

Abstract
Motivated by a game of Battleship, we consider the problem of efficiently hitting a ship of an
uncertain shape within a large playing board. Formally, we fix a dimension d ∈ {1, 2}. A ship is a
subset of Zd. Given a family F of ships, we say that an infinite subset X ⊂ Zd of the cells pierces F ,
if it intersects each translate of each ship in F (by a vector in Zd). In this work, we study the lowest
possible (asymptotic) density π(F) of such a piercing subset. To our knowledge, this problem has
previously been studied only in the special case ∣F∣ = 1 (a single ship). As our main contribution,
we present a formula for π(F) when F consists of 2 ships of size 2 each, and we identify the toughest
families in several other cases. We also implement an algorithm for finding π(F) in 1D.

Related Version arXiv:2202.08747

∗ This work was initiated at the 2nd Austrian Computational Geometry Reunion Workshop in Strobl,
June 2021. E.-M. H. supported by the Austrian Science Foundation FWF, project F55-02. D.P. partially
supported by FWF within the collaborative DACH project Arrangements and Drawings as FWF project
I 3340-N35. M.L. partially supported by the Dutch Science Foundation (NWO) under grant number
614.001.504

(a) (b) (c)

Figure 1 (a) A game with two ships: a 3 × 1 rectangle and a 1 × 4 rectangle. Note that we do
not allow individual ships to be rotated. (b) A shooting pattern that is certain to hit both ships, no
matter where they are. (c) A sparser (in fact, optimal) shooting pattern.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

48:2 Finding a Battleship of Uncertain Shape

(a) (b) (c)

Figure 2 (a) An infinite playing board. (b) A single L-shaped ship. It may be translated, but
not rotated. (c) An optimal shooting pattern with density 1

3 hitting every possible translation.

1 Introduction

In a game Battleship, two players first secretly place a family F of ships (often rectangles)
on a domain (an integer grid), and then they aim to locate the opponent’s ships by querying
individual grid cells. Inspired by the game, we consider the problem of finding a sparse
shooting pattern: a subset of the grid cells that is guaranteed to hit at least one cell of each
ship, no matter how the ships are translated within the domain. See Figure 1 for an example
and Section 1.3 for a formal problem statement.

This problem is surprisingly intricate. In this note, we make two simplifying assumptions.

Infinite domains. First, in order to avoid boundary effects, we assume the domain is an
infinite grid Zd. Since any shooting pattern on an infinite domain is also infinite, we measure
its quality using the (asymptotic) density, refer to Figure 2. Note that the problem is subtle;
for instance, for two L-shaped triominoes as ships, the lowest possible density of a shooting
pattern depends on the relative orientation of the ships (see Figure 3).

▶ Lemma 1.1. Let F180 and F90 be families of two L-shaped triominoes from Fig. 3. Then
π(F180) = 1

3 and π(F90) = 1
2 .

Proof. The shooting patterns shown in Fig. 3 imply π(F180) ≤ 1
3 and π(F90) ≤ 1

2 . For F180
the matching lower bound is trivial, since π(F180) ≥ π(F) ≥ 1

3 , where F consists of a single
L-shaped triomino. It remains to prove π(F90) ≥ 1

2 . Split the plane into infinite vertical
slabs of width 2. We argue for each slab separately. Fix a row. If neither cell is shot, then in
the row just above it, both cells must be shot. Hence the overall density is at least 1

2 . ◀

One dimension. Second, for the remainder of this note we focus on the case d = 1, which
is far from trivial if we consider not only connected ships, but arbitrary finite subsets of
integers (see Section 1.3). In the full version, we describe how our results extend to higher
dimensions. Thus, our problem is: Given a family F = {S1, . . . , Sn} of n ships in Z, find the
minimum density π(F) of a shooting pattern that hits each translate of each ship Si ∈ F .

1.1 Related work
The game Battleship spawned research along several fronts [3, 5]. Here we review the 1D case.

We say that a family F of ships in Z is of type (k1, . . . , kn) if it consists of n ships with
sizes k1 ≤ ⋅ ⋅ ⋅ ≤ kn, respectively. Previous work has studied families consisting of a single

E.-M. Hainzl, M. Löffler, D. Perz, J. Tkadlec, M. Wallinger 48:3

(a) (b)

Figure 3 Two sets of two L-shaped ships of size 3. (a) Two ships, rotated 180◦. The same optimal
shooting pattern with density 1

3 as for a single ship still works. (b) Two ships, rotated 90◦. The
optimal shooting pattern has density 1

2 (see Lemma 1.1).

(not necessarily connected) ship, that is, families of type (k) for some k ∈ N. It is easy to
see that π(F) = 1/k for any (k)-family F with k ∈ {1, 2}. In 2008, Schmidt and Tuller
conjectured a formula for π(F) for any (3)-family F [7], but as of now its validity is still
open.

Given this difficulty, other works studied the toughest instances of a given type. Formally,
given a type t, let Mt = supF has type t{π(F)} be the smallest density that suffices to hit any
family of type t. Already in 1967, Newman [6] showed that M(3) =

2
5 (one toughest instance

is the ship in Fig. 4(a)) and that Mk = Θ(log k/k) as k →∞. Recently, it was shown that
M(4) =

1
3 [1]. Also, given a ship S, the density π({S}) can be found using a “sliding window”

algorithm [2]. The algorithm can be used to establish lower bounds such as M(5) ≥
3

11 .
To our knowledge, the problem for multiple ships has not been studied; however, we point

out the work [4] which addresses an analogous question for rectangles in two dimensions in
the continuous setting, and also explains the connection to covering density in the case of a
single ship (∣F∣ = 1).

1.2 Our contribution
We propose to study the problem for multiple ships or, equivalently, for a single ship of
uncertain shape. (Note that by considering suitable families, we can model mirrored or
reflected ships on top of translated ships, cf. Fig. 3.) Apart from Lemma 1.1 above, we
present results in 1D (see the full version for extensions to 2D). First, we note that the sliding
window algorithm of [2] can be adapted to families of multiple ships in a straightforward
way, see Theorem 1.3. We implement the algorithm and use it to obtain lower bounds such
as M(2,3) ≥

3
5 (due to e.g. F = {[0, 1], [0, 2, 4]}). As our main contribution, we present three

results for families of ships of small size k (k-ships). First, for any family F of two 2-ships,
we find an explicit formula for π(F), see Theorem 2.1. Second, we determine M(2,...,2),
that is, we identify the toughest instances for families consisting of any number of 2-ships,
see Theorem 2.2. Third, we determine the toughest instances for families consisting of any
3-ship together with its reflection, see Theorem 2.3. Finally, we present bounds for the
density of the toughest instances of n ships of size k each (with proofs in the full version).

1.3 Preliminaries
A ship of size k (a k-ship) is a k-tuple [a1, a2, . . . ak] with ai ∈ Z, i ≥ 1. A span of a ship S is
sp(S) = ak−a1+1. See Fig. 4 for an illustration. A finite family of ships F = {S1, S2, . . . Sn}

EuroCG’22

48:4 Finding a Battleship of Uncertain Shape

(a)

0 1 32

(b)

0 1 2 3 4 5 6 7

1 0 1 0 1 0 1 0

(c)

0 1 2 3 4 5 6 7

1 01 0 10 1 0

Figure 4 (a) A single disconnected 1-dimensional ship S = [0, 1, 3] of size k = 3 and span
sp(S) = 4. (b-c) Possible periodic shooting patterns for {S}, with densities 1

2 and 2
5 , respectively.

has a span sp(F) = maxS∈F sp(S). A shooting pattern is a 01-sequence X = (xi)i∈Z. We
say that a shooting pattern hits a k-ship S = [a1, a2, . . . ak] (or that X is a shooting pattern
for S) if ∑k

i=1 xn+ai
≥ 1, ∀n ∈ Z. The density of a shooting pattern X is defined as

π(X) = limN→∞
∑∣i∣≤N xi

2N+1 . The density of a ship S and of a family F of ships is then defined
as

π(S) = inf
X hits S

π(X) and π(F) = inf
X hits each S∈F

π(X).

Further, we define mn
k = inf{π({S1, . . . , Sn}) ∣ ∣Si∣ = k for i = 1, . . . , n} and M

n
k =

sup{π({S1, . . . , Sn}) ∣ ∣Si∣ = k for i = 1, . . . , n}. That is, mn
k is the required density for the

simplest instances, whereas Mn
k is the required density for the toughest instances, among

families that consist of n ships of size k each. Regarding mn
k , it is straightforward to prove

m
n
k =

1
k
(even when no two ships in the family are translates of each other). Regarding Mn

k ,
in the full version we establish non-trivial upper and lower bounds. Here, we just state those
results without proof, together with two other auxiliary results (whose proofs can be found
in the full version too).

▶ Theorem 1.2. Let n ≥ 1 and k ≥ 2 be integers. Then mn
k =

1
k
and

1 − e
k−1√n ≤M

n
k ≤ min { n

n + 1 ,
1 + log(kn)

k
} .

▶ Theorem 1.3 (Sliding window algorithm). Given a family F with span s = sp(F), the
density π(F) can be computed in time polynomial in 2s.

Finally, for an integer d and a ship S = [a1, . . . , ak] let dS = [da1, . . . , dak], and likewise
for a family F = {S1, . . . , Sn} let dF = [dS1, . . . , dSn].

▶ Lemma 1.4. Let d be a positive integer and F any family. Then π(F) = π(dF).

2 Families of 2-ships and 3-ships

Here we study families F that consist of n ships of small size k ≤ 3 each. Note that when k = 1,
we obviously have π(F) = 1 (for all n ≥ 1). Also, for a single 2-ship S it is straightforward
to show that π({S}) = 1/2. Our first non-trivial result is an explicit formula for π(F) when
F consists of two 2-ships.

▶ Theorem 2.1 (Formula for two 2-ships). Let F = {[0, da], [0, db]}, a, b coprime and d ≥ 1.

π(F) = {
1/2 if both a and b are odd,
a+b+1
2(a+b) otherwise.

Proof. Let F ′
= {[0, a], [0, b]}. By Lemma 1.4, it suffices to determine π(F ′). Clearly,

π(F ′) ≥ π({[0, a]} = 1/2. When both a and b are odd, a shooting pattern X defined by

E.-M. Hainzl, M. Löffler, D. Perz, J. Tkadlec, M. Wallinger 48:5

“xi = 1 if and only if i is even” provides a matching construction. From now on, assume that
precisely one of a, b is odd (that is, a + b is odd).

Split Z into blocks of a + b consecutive integers. Let S = {0, . . . , a + b − 1} be one such
block and let X ′ be a shooting pattern for F ′ on S (instead of on Z). We will argue that S
needs to be hit at least (a + b + 1)/2 times (that is, ∑i∈S x

′
i ≥ (a + b + 1)/2). Consider a

graph G = (S,E) with nodes S and directed edges E = {(u, v) ∣ v−u ∈ {a,−b}}. This graph
records the constraints on the shooting pattern: For every edge (u, v) ∈ E, we must have
xu+xv ≥ 1. Since ∣S∣ = a+b, each node in G has indegree 1 and outdegree 1. Moreover, since
a and b are coprime, the graph G is connected. Hence it is a directed cycle on an odd number
a + b of nodes. Its minimum vertex cover has size (a + b + 1)/2, thus π(F ′) ≥ (a + b + 1)/2.

To prove that this bound is tight, consider any vertex cover C ⊆ S of G of the minimum
size (a+ b+ 1)/2. Then the (a+ b)-periodic shooting pattern XC defined by “xC

i = 1 if and
only if i (mod (a + b)) ∈ C” hits F ′ on Z: Indeed, consider any translate (n, n + a) of the
ship [0, a]. Suppose n ≡ r (mod (a + b)) for some 0 ≤ r < a + b. If r < b then n and n + a
both belong to the same block, thus xn + xn+a ≥ 1, since C is a vertex cover. On the other
hand, if r ≥ b then by the (a + b)-periodicity of the shooting pattern we have xn+a = xn−b.
Since r ≥ b, both n − b and n belong to the same block, so we conclude as before. For
translates of the ship [0, b] we argue analogously. ◀

As a corollary, we have M2
2 = 2/3, as witnessed by families {[0, d], [0, 2d]} for any d ≥ 1.

Next, we study the toughest instances in two other cases, namely for any number of
2-ships, and for a 3-ship together with its reflection.

▶ Theorem 2.2 (Toughest families of 2-ships). For any n ≥ 1 we have Mn
2 = n/(n + 1).

Proof. For n = 1 the claim is trivial. For n = 2 it follows from Theorem 2.1. Assume n ≥ 3.
First, note that for a family Fn = {[0, 1], . . . , [0, n]} we have π(Fn) = n/(n+ 1): Indeed,

split Z into blocks of n + 1 consecutive integers. Then any shooting pattern Xn for Fn may
miss at most 1 number from each block. On the other hand, the pattern Xn defined by
“xi = 0 if and only if i is a multiple of n + 1” hits Fn.

To prove the upper bound, consider any n positive integers a1 < ⋅ ⋅ ⋅ < an, and the
corresponding family F = {[0, a1], . . . , [0, an]}. We construct a shooting pattern X for F
with density at most n/(n + 1). We proceed in steps. Initially, we set xt = 1 for all t with
∣t∣ ≤ an. Then, we process integers t > an in increasing order. Whenever xt is not yet set, we
set xt = 0 and xt+ai

= 1 for each i = 1, . . . , n. (Note that some of xt+ai
might have already

been set to 1, due to some t′ < t.) By construction, X hits all translates of F within the
interval [an + 1,∞). Moreover, since for every xt set to 0 there are at most n values newly
set to 1, in the limit t→∞ we obtain π(X[an + 1,∞)) ≤ n/(n + 1). Similarly, we process
integers t < −an in decreasing order and get π(X(−∞,−an−1]) ≤ n/(n+1). Together with
the finite initial segment X[−an, an] this gives π(X) = π(X(−∞,∞)) ≤ n/(n + 1). ◀

Given a ship S = [a1, . . . , ak], let S = [−ak, . . . ,−a1] be its reflection.

▶ Theorem 2.3 (Toughest 3-ship with its reflection). Let S be a 3-ship and let F = {S, S}.
Then π(F) ≤ 2

5 , with equality if and only if S ∈ {[0, 2d, 3d], [0, 3d, 4d]} (or their reflections)
for some d ≥ 1.

Proof. First, we argue that for a single 3-ship S, the toughest instance has a density of 2
5 ;

that is, M1
3 =

2
5 . This fact was first proven by Newman [6]. Here, we present a geometric

proof, which we then extend to the case of two symmetric 3-ships.

EuroCG’22

48:6 Finding a Battleship of Uncertain Shape

0

4

8

12

3 6 9

7 10

1

13

11 14 17

15 18 21

52-1-4

-8 -5 -2

(a)

0

4

8

12

3 6 9

7 10

1

13

11 14 17

15 18 21

52-1-4

-8 -5 -2

(b)

0

4

8

12

3 6 9

7 10

1

13

11 14 17

15 18 21

52-1-4

-8 -5 -2

(c)

0

4

8

12

3 6 9

7 10

1

13

11 14 17

15 18 21

52-1-4

-8 -5 -2

(d)

0

4

8

12

3 6 9

7 10

1

13

11 14 17

15 18 21

52-1-4

-8 -5 -2

(e)

Figure 5 Illustration of the solution for S = [0, 4, 7]. (a) A layout of the integers into an infinite
vertical slab of width 4. (b-c) Every translation of S corresponds to a triple of cells that form an
L-shape. (d) If the L-shape falls on the edge of the slab, the pieces “wrap around” but are shifted
vertically. (e) A valid shooting pattern.

Consider a 3-ship S = [0, a, a + b] for positive integers a and b with GCD(a, b) = 1 and
a ≥ b. We arrange the integers into a 2-dimensional grid {0, . . . , a − 1} × Z by the bijection
(i, j)↦ ib+ja. Refer to Figure 5(a). Most translations of S now correspond to an L-triomino
with the same orientation; therefore, we can hit all of them with a shooting pattern with
density 1

3 using the same solution as in Figure 2. However, this misses exactly the translations
by an amount that is congruent to −b mod a; those translations correspond to a triomino
that “wraps around” (Figure 5(d)). To hit these it is sufficient to increase the density of the
first column to 2

3 . This gives π({S}) ≤ (a+ 1)/(3a), which is strictly less than 2/5 for a ≥ 6.
For the remaining 10 cases with b < a ≤ 5, we find an optimal solution by Theorem 1.3. The
toughest instances, yielding π(S) = 2

5 , turn out to be S ∈ {[0, 2, 3], [0, 3, 4]} as claimed.
Now, fix S and consider a family F = {S, S}. We claim that π(F) ≤ 2/5 as well. Indeed,

as in Lemma 1.1, when a ≥ 6, the solution described above hits not only every translate
of S but also every translate of S. For the 10 cases with b < a ≤ 5, using Theorem 1.3
we again verify that all such families F = {S, S} satisfy π(F) ≤

2
5 , with equality for

S ∈ {[0, 2, 3], [0, 3, 4]}. ◀

We note that Theorems 2.1, 2.2 and 2.3 can be generalized to higher dimensions. Notes
on these extensions can be found in the full version.

≥ 1/4
.
= 0.25

ships, n

sh
ip

si
ze
,
k

1 2

1

2

3

= 1

= 1/2 = 0.5 = 2/3 = 3/4

= 2/5 = 0.4

4

5

= 1/3
.
= 0.33

≥ 3/11
.
= 0.27

[Thm 2.1]

≥ 1/4 = 0.256

≥ 1/2 = 0.5

≥ 2/5 = 0.4

≥ 1/3
.
= 0.33

= 1 = 1

Mn
k 3

[9]

[6]

[2]

[2]

[Thm 2.2]

≥ 5/9
.
= 0.56

≥ 3/11
.
= 0.27

≥ 4/9
.
= 0.44

≥ 1/3
.
= 0.33

≥ 3/11
.
= 0.27

Figure 6 Bounds on the density Mn
k of the toughest instances among the families with n ships of

size k each, found by running the algorithm in Theorem 1.3 for all families with span up to 11 − n.

E.-M. Hainzl, M. Löffler, D. Perz, J. Tkadlec, M. Wallinger 48:7

3 Conclusions

We introduced the problem of locating a battleship of an uncertain shape. Given the difficulty
of the problem in general, we focused on the simplest possible setting, namely ships of size 2
or 3 in 1D (see the full version for extensions to 2D). We also implemented an algorithm for
computing π(F) in 1D and used it to compute lower bounds on the minimum density Mn

k

required for the toughest families of n ≤ 3 ships of size k ≤ 6 each, see Fig. 6. Many open
problems arise, e.g.:
1. Which values in Fig. 6 are tight? For instance, is it true that M2

3 = 1/2?
2. What are the asymptotics of 1 −Mn

k for fixed small k ≥ 3?
3. In 2D, is there an algorithm for computing π(F)?

References
1 M Axenovich, J Goldwasser, B Lidicky, R Martin, D Offner, J Talbot, and M Young.

Polychromatic colorings on the integers. Integers: Electronic Journal of Combinatorial
Number Theory, 19(A18), 2019.

2 Béla Bollobás, Svante Janson, and Oliver Riordan. On covering by translates of a set.
Random Structures & Algorithms, 38(1-2):33–67, 2011.

3 Loïc Crombez, Guilherme D. da Fonseca, and Yan Gerard. Efficient Algorithms for Bat-
tleship. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th
International Conference on Fun with Algorithms (FUN 2021), volume 157 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 11:1–11:15, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/
opus/volltexte/2020/12772, doi:10.4230/LIPIcs.FUN.2021.11.

4 Adrian Dumitrescu and Josef Tkadlec. Piercing all translates of a set of axis-parallel
rectangles. arXiv preprint arXiv:2106.07459, 2021.

5 Amos Fiat and Adi Shamir. How to find a battleship. Networks, 19(3):361–371, 1989.
6 DJ Newman. Complements of finite sets of integers. Michigan Mathematical Journal,

14(4):481–486, 1967.
7 Wolfgang M Schmidt and David M Tuller. Covering and packing in zn and rn,(i). Monat-

shefte für Mathematik, 153(3):265–281, 2008.

EuroCG’22

Linear size universal point sets for classes of planar
graphs∗

Stefan Felsner1, Hendrik Schrezenmaier1, Felix Schröder1, and
Raphael Steiner2

1 Institut für Mathematik,
Technische Universität Berlin, Germany
{felsner,fschroed,schrezen}@math.tu-berlin.de

2 Institut für Theoretische Informatik,
Eidgenössische Technische Hochschule Zürich, Switzerland
raphaelmario.steiner@inf.ethz.ch

Abstract
A finite point set P ⊆ R2 is n-universal with respect to a class G of planar graphs if every n-vertex-
graph G ∈ G admits a crossing-free straight-line drawing with vertices being placed at points of P .
A widely studied problem in graph drawing is to identify small universal point sets.

For the class of all planar graphs the best known upper bound on the size of a universal point set
is quadratic and the best known lower bound is linear in n. One of the classical results in the area
is that every set of n points in general position (no three collinear) is n-universal for outerplanar
graphs. While some other classes are known to admit universal point sets of near linear size, we are
not aware of truly linear bounds for interesting classes beyond outerplanar graphs.

In this paper we study a specific ordered point set H (the exploding double chain) and show that
all planar graphs G on n ≥ 2 vertices which are subgraphs of a planar graph admitting a one-sided
Hamiltonian cycle have a straight-line drawing on the initial piece Hn of size 2n − 2 in H. Let
H′ be the class of all subgraphs of planar graphs admitting a one-sided Hamiltonian cycle. It had
been conjectured that all 4-connected triangulations belong to H′. While the conjecture has been
disproved, it is still true that Hn is n-universal for a large class H of planar graphs. We show that
all bipartite plane graphs and all cubic plane graphs belong to H′ ⊆ H. Remarkably, however, not
all 2-trees are in H′.

1 Introduction

Given a family G of planar graphs and a positive integer n, a point set P ⊆ R2 is called an
n-universal point set for the class G or simply n-universal for G if for every graph G ∈ G on n

vertices there exists a straight-line crossing-free drawing of G such that every vertex of G is
placed at a point of P . It is a widely studied and fundamental open problem in geometric
graph theory (compare also the entry [16] in the Open Problem Garden) to determine, given
a class of graphs G, (the asymptotics of) the minimum size fG(n) of an n-universal point set
for G. If G is the class of all planar graphs we simply write f(n) := fG(n).

Schnyder [20] showed that for n ≥ 3 the [n − 1] × [n − 1]-grid forms an n-universal point
set for planar graphs, even if the combinatorial embedding of the planar graph is prescribed.
This shows that f(n) < n2 = O(n2). Asymptotically, the quadratic upper bound on f(n)
remains the state of the art. However, the multiplicative constant in this bound has been
improved, see [4, 5]. The current upper bound is f(n) ≤ 1

4 n2 + O(n) by Bannister et al. [4].

∗ This research was supported by the German Research Foundation DFG Project FE 340/12-1. R. Steiner
was funded by DFG-GRK 2434 Facets of Complexity.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

49:2 Linear size universal point sets

For several subclasses G of planar graphs, better upper bounds are known: A classical result
by Pach et al. [18] is that every outerplanar n-vertex graph embeds straight-line on any
set of n points in general position, and hence fout-pl(n) = n. Near-linear upper bounds of
fG(n) = O(n polylog(n)) are known for 2-outerplanar graphs, simply nested graphs, and for
the classes of bounded pathwidth [3, 4]. Finally, for the class G of planar 3-trees (also known
as Apollonian networks or stacked triangulations), an upper bound of fG(n) = O(n3/2 log n)
has been proved by Fulek and Tóth [12].

As for lower bounds, the trivial bounds n ≤ fG(n) ≤ f(n) hold for all n ∈ N and all
planar graph classes G. The currently best lower bound f(n) ≥ 1.293n − o(n) from [19] has
been shown using planar 3-trees, we refer to [6, 14, 8, 9] for earlier work on lower bounds.

It seems that in order to improve the quadratic upper bound on f(n) to o(n2), the
considered point sets should be not too uniformly distributed. Indeed, Choi, Chrobak and
Costello [7] recently proved that point sets chosen uniformly at random from the unit square
must have size Ω(n2) in order to be universal for n-vertex planar graphs, with high probability.

In this paper we study a specific ordered point set H (the exploding double chain) and
let Hn be the initial piece of size 2n − 2 in H (for n ≥ 2). Throughout the paper, let H be
the class of all planar graphs G which have a plane straight line drawing on the point set Hn

where n = |V (G)|. That is, Hn forms an n-universal point set for H.
A graph is POSH (partial one-sided Hamiltonian) if it is a spanning subgraph of a

graph admitting a plane embedding with a one-sided Hamiltonian cycle1). Our main result
(Theorem 2.1) is that every POSH graph is in H. We let H′ := {G : G is POSH}.

Theorem 2.1 motivates the study of H′. This class of planar graphs seems to be quite
large, e.g., the smallest 4-connected triangulation which is known not to be POSH has 113
vertices [2]. On the positive side we show that every bipartite plane graph is POSH (proof
sketch in Section 3). In the full paper we use the construction for bipartite graphs to show
that cubic plane graphs are POSH; Section 4 gives an overview of the proof method. The
full paper also contains a negative result, namely that not all 2-trees are POSH. We conclude
with some conjectures and open problems in Section 5.

An exploding double chain was previously used by Löffler and Tóth [15]. They show
that every planar graph with n vertices has a 1-bend drawing on a subset Sn of H with
|Sn| = 6n − 10. Note that our result about bipartite graphs implies a better bound: The
dual of a plane triangulation has a perfect matching. Hence, subdividing at most n − 2 edges
is enough to make any planar graph on n vertices bipartite, therefore, a subset of H of size
2(n + n − 2) − 2 = 4n − 6 is large enough to accommodate 1-bend drawings of all planar
graphs with n vertices. Universality for 1-bend and 2-bend drawings has been studied by
Kaufmann and Wiese [13], they show that every n element point set is universal for 2-bend
drawings of planar graphs.

2 The point set and the embedding strategy

In this section we define an ordered point set H and a class H′ of planar graphs and show
that for every n ≥ 2 the initial part Hn of size 2n − 2 is n-universal for the class H′.

A sequence Y = (yi)i≥1 of real numbers satisfying y1 = 0, y2 = 0, and yi+1 > 2yi + yi−1
for all i ≥ 2 is called exploding. Note that if α > 1 +

√
2, then y1 = y2 = 0 and yi = αi−3

for i ≥ 3 is an exploding sequence. Given an exploding sequence Y let P (Y) = (pi)i≥1
be the set of points with pi = (i, yi) and let P̄ (Y) = (qi)i≥1 be the set of points with

1 The precise definition of a one-sided Hamilton cycle is given below Figure 1 on page 3.

S. Felsner et al. 49:3

qi = (i, −yi), i.e., the point set reflected at the x-axis, and note that p1 = q1 and p2 = q2. Let
H(Y) = P (Y) ∪ P̄ (Y) and Hn(Y) = {pi, qi|1 ≤ i ≤ n} so that |Hn(Y)| = 2n − 2. Figure 1
illustrates H6(Y).

Let H = H(Y) for some exploding sequence Y . For two points p and q let H(p, q) be the
set of points of H in the open right half-plane of the directed line −→pq. Note that2

H(pi, qj) =

(pk)k≤j ∪ (pk)k>i ∪ (qℓ)ℓ<j if i > j

(pk)k<i ∪ (qℓ)ℓ<i if i = j

(pk)k<i ∪ (qℓ)ℓ≤i ∪ (qℓ)ℓ>j if i < j

Moreover, if i < j then H(qi, qj) = H(pi, qj)\{qi} and if i > j then H(pi, pj) = H(pi, qj)\{pj}.
These sidedness conditions characterize the order type of H. A point set A = {pi, qi|i ≥ 1}
is an exploding double chain if it has the order type of H.

y

xq3p3

p2 q2

p1 q1

q4p4

q5

q6p6

p5

Figure 1 An example of a point set H6 in a rotated coordinate system (pi = qi for i = 1, 2).

A plane graph G has a one-sided Hamiltonian cycle with reverse edge vu if it has a
Hamiltonian cycle (v = v1, v2, . . . , vn = w) such that uv is incident to the outer face and
for every j = 2, . . . , n in the induced subgraph G[v1, . . . , vj , vj+1] of G the edges vj−1vj and
vj+1vj are consecutive in the rotation of vj . A more visual reformulation of the second
condition is that in the embedding of G for every j either all the back-edges vivj with i < j

are drawn inside the closed bounded region D whose boundary is the Hamiltonian cycle or
they are all drawn in the closed region outside of the cycle. We let VI be the set of vertices vj

which have a back-edge vivj with i < j − 1 drawn inside D and VO = V \ VI .
In the context of cartograms Alam et al. [1] conjectured that every plane 4-connected

triangulation has a one-sided Hamiltonian cycle. Later Alam and Kobourov [2] found a plane
4-connected triangulation on 113 vertices which has no one-sided Hamiltonian cycle.

Recall that H′ is the class of POSH graphs, i.e., of planar graphs which are spanning
subgraphs of plane graphs admitting a one-sided Hamiltonian cycle. Our interest in this
class is motivated by the following theorem.

▶ Theorem 2.1. Let G′ be POSH and let v1, . . . , vn be a one-sided Hamiltonian cycle of a
plane supergraph G of G′ on the same vertex set. Then there is a crossing-free embedding
of G′ on Hn with the property that vi is placed on either pi or qi.

Proof. It is sufficient to describe the embedding of the supergraph G on Hn. For the proof
we assume that in the plane drawing of G the sequence v1, . . . , vn traverses the boundary

2 In cases where i or j are in {1, 2} the following may list one of the two points defining the halfspace
with its second name as member of the halfspace. For correctness such listings have to be ignored.

EuroCG’22

49:4 Linear size universal point sets

of D in counter-clockwise direction. For each i vertex vi is embedded at v̄i = pi if vi ∈ VI

and at v̄i = qi if vi ∈ VO.
Let Gi = G[v1, . . . , vi] be the subgraph of G induced by {v1, . . . , vi}. The path Λi =

v1, . . . , vi separates Gi, the left part GLi consists of the intersection of Gi with D, the right
part GRi is Gi minus all edges which are interior to D. The intersection of GLi and GRi

is Λi and their union is Gi. The counter-clockwise boundary walk of Gi consists of a path
∂Ri from v1 to vi which is contained in GRi and a path from vi to v1 which is contained in
GLi, let ∂Li be the reverse of this path.

Let Ḡi be the straight line drawing of the plane graph Gi induced by placing each
vertex vj at the corresponding v̄j . A vertex v̄ of Ḡi is said to see a point p if there is no
crossing between the segment v̄p and an edge of Ḡi. By induction on i we show:

1. The drawing of Ḡi is plane, i.e., non-crossing.

2. Ḡi and Gi have the same outer boundary walks.

3. Every vertex of ∂Li in Ḡi sees all the points pj with j > i and every vertex of ∂Ri in Ḡi

sees all the points qj with j > i.

For i = 2 the graph Gi is just an edge and the three claims are immediate, for property 3
just recall that the line spanned by p1 and p2 separates the p-side and the q-side of Hn.

Now assume that i ∈ {3, . . . , n}, the properties are true for Ḡi−1 and suppose that vi ∈ VI

(the argument in the case vi ∈ VO works symmetrically). This implies that all the back-edges
of vi are in the interior of D whence all the neighbors of vi belong to ∂Li−1. Since vi ∈ VI

we have v̄i = pi and property 3 of Ḡi−1 implies that the edges connecting to v̄i can be added
to Ḡi−1 without introducing a crossing. This is property 1 of Ḡi.

Since Gi−1 and Ḡi−1 have the same boundary walks and vi respectively v̄i belong to the
outer faces of Gi and Ḡi and since vi has the same incident edges in Gi as v̄i in Ḡi, the outer
walks of Gi and Ḡi again equal each other, i.e., property 2.

Let j be minimal such that vjvi is an edge and note that ∂Li is obtained by taking the
prefix of ∂Li−1 whose last vertex is vj and append vi. The line spanned by v̄j and v̄i = pi

separates all the edges incident to v̄i in Ḡi from all the segments v̄ℓpk with ℓ < j and v̄ℓ ∈ ∂Li

and k > i. This shows that every vertex of ∂Li in Ḡi sees all the points pk with k > i. For
the proof of the second part of property 3 we refer to Figure 2, it shows that the new edges
v̄jpi do not obstruct the visibility between vertices of ∂Ri and any qk with k > i. Of course
this can also be derived formally by translating the condition for a crossing between two
segments into sidedness conditions and then compare with the sidedness conditions given for
the order type of H. This completes the proof of property 3 and thus the inductive step.

Finally, property 1 for Gn implies the theorem. ◀

qj

pi qk

qk

Figure 2 Vertices from ∂Ri see qk

S. Felsner et al. 49:5

3 Plane bipartite graphs

In this section we consider bipartite plane graphs and sketch a proof that they are POSH.

▶ Theorem 3.1. Every bipartite plane graph G = (V, E) is a spanning subgraph of a plane
graph G′ on the same vertex set V which has a one-sided Hamiltonian cycle, i.e., G is POSH.

Quadrangulations are the plane graphs with all faces of degree four. Equivalently they
are edge-maximal plane bipartite graphs. Every connected bipartite plane graph with at
least two vertices in each color class is a spanning subgraph of a plane quadrangulation.
Therefore it suffices to prove the theorem for plane quadrangulations.

A separating decomposition of a quadrangulation is an orientation and 2-coloring of the
edges, such that two vertices s and t which are diagonally opposite on the outer 4-face only
have incoming edges in red and blue respectively, while each other vertex has outgoing edges
in both colors as shown in Figure 3.

s

t

Figure 3 The local conditions at black and white vertices and at s and t.

Every quadrangulation admits a separating decomposition [11, 17]. The equatorial line
of the separating decomposition separates the red and blue edges which form trees rooted
in s and t respectively, see [10]. Figure 4 shows that the equatorial line yields a one-sided
Hamiltonian cycle with reverse edge ts: Along the equatorial line white vertices have red
and black vertices have blue backward edges. This shows that quadrangulations and hence
bipartite graphs are POSH.

t

s

t

s

Figure 4 A quadrangulation with a separating decomposition, the equatorial line (dotted), and
the induced drawing with a one-sided Hamiltonian cycle.

4 Plane cubic graphs

This section is devoted to a sketch of the proof of the following theorem:

EuroCG’22

49:6 Linear size universal point sets

▶ Theorem 4.1. Every plane cubic graph G is a spanning subgraph of a plane graph G′ on
the same vertex set V which has a one-sided Hamiltonian cycle, i.e., G is POSH.

To prove this, we use Theorem 3.1 and the following lemma:

▶ Lemma 4.2. Let G be a cubic graph. Then G admits a matching M such that contracting
all the edges of M results in in a bipartite multi-graph.

The technique used to prove the theorem using the lemma is to do vertex splits carefully.
We distinguish between local and far splits, some of which are illustrated in Figure 5 and
Figure 6.

v w u

e1
e4

e2

e3e3
e4
e1
e2

e1
e4

e2

e3v u
w

e2

e3

v u
w e2

e3

e4 e4

v
u

w

e2
e3

e1

e4
e1 e1

e4

e3
e2
e1

e4
e1

e3

e2

Figure 5 Four cases for the local split of a vertex v.

wv
v1 v2 u v4v1 v2 v3v4v3

Figure 6 Far split within the gray region of vertex v with edges to the left in the upper half-plane.

5 Concluding remarks

We have examined the exploding double chain as a special point set (order type) and shown
that the initial part Hn of size 2n − 2 is n-universal for graphs on n vertices which are POSH.

▶ Conjecture 1. Every triangle-free plane graph is POSH.

▶ Conjecture 2. Every 5-connected planar triangulation is POSH.

We have shown that 2-trees and their superclasses series-parallel and planar Laman
graphs are not contained in the class H′ of POSH graphs. The question whether these classes
admit universal point sets of linear size remains intriguing.

References
1 M. J. Alam, T. C. Biedl, S. Felsner, M. Kaufmann, S. G. Kobourov, and

T. Ueckerdt, Computing cartograms with optimal complexity, Discret. Comput. Geom.,
50 (2013), 784–810.

S. Felsner et al. 49:7

2 M. J. Alam and S. G. Kobourov, Proportional contact representations of 4-connected
planar graphs, in Graph Drawing, vol. 7704 of LNCS, Springer, 2012, pp. 211–223.

3 P. Angelini, T. Bruckdorfer, G. Di Battista, M. Kaufmann, T. Mchedlidze,
V. Roselli, and C. Squarcella, Small universal point sets for k-outerplanar graphs,
Discrete & Computational Geometry, (2018), 1–41.

4 M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein, Superpatterns and
Universal Point Sets, Journal of Graph Algorithms and Applications, 18 (2014), 177–209.

5 F. J. Brandenburg, Drawing planar graphs on 8
9 n2 area, Electronic Notes in Discrete

Mathematics, 31 (2008), 37–40.
6 J. Cardinal, M. Hoffmann, and V. Kusters, On Universal Point Sets for Planar

Graphs, Journal of Graph Algorithms and Applications, 19 (2015), 529–547.
7 A. Choi, M. Chrobak, and K. Costello, An Ω(n2) lower bound for random universal

sets for planar graphs, arXiv preprint, arXiv1908.07097, (2019).
8 M. Chrobak and H. J. Karloff, A Lower Bound on the Size of Universal Sets for

Planar Graphs, ACM SIGACT News, 20 (1989), 83–86.
9 H. De Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid,

Combinatorica, 10 (1990), 41–51.
10 S. Felsner, Éric. Fusy, M. Noy, and D. Orden, Bijections for Baxter families and

related objects, Journal of Combinatorial Theory, Series A, 118 (2011), 993–1020.
11 S. Felsner, C. Huemer, S. Kappes, and D. Orden, Binary labelings for plane quad-

rangulations and their relatives, Discrete Mathematics and Theoretical Computer Science,
12:3 (2010), 115–138.

12 R. Fulek and C. D. Tóth, Universal point sets for planar three-trees, Journal of Discrete
Algorithms, 30 (2015), 101–112.

13 M. Kaufmann and R. Wiese, Embedding vertices at points: Few bends suffice for planar
graphs, Journal of Graph Algorithms and Applications, 6 (2002), 115–129.

14 M. Kurowski, A 1.235n lower bound on the number of points needed to draw all n-vertex
planar graphs, Information Processing Letters, 92 (2004), 95–98.

15 M. Löffler and C. D. Tóth, Linear-size universal point sets for one-bend drawings, in
Graph Drawing, vol. 9411 of LNCS, Springer, 2015, pp. 423–429.

16 B. Mohar, Universal point sets for planar graphs, Open Problem Garden, 2007. http://
www.openproblemgarden.org/op/small_universal_point_sets_for_planar_graphs.

17 P. Ossona de Mendez and H. de Fraysseix, On topological aspects of orientations,
Discrete Mathematics, 229 (2001), 57–72.

18 J. Pach, P. Gritzmann, B. Mohar, and R. Pollack, Embedding a planar triangulation
with vertices at specified points, American Mathematical Monthly, 98 (1991), 165–166.

19 M. Scheucher, H. Schrezenmaier, and R. Steiner, A note on universal point sets
for planar graphs, Journal of Graph Algorithms and Applications, 24 (2020), 247–267.

20 W. Schnyder, Embedding Planar Graphs on the Grid, in Proceedings of the First An-
nual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, 1990, pp. 138–148.

EuroCG’22

Fast Reconfiguration for Programmable Matter
Irina Kostitsyna1, Tom Peters1, and Bettina Speckmann1

1 TU Eindhoven, the Netherlands
[i.kostitsyna|t.peters1|b.speckmann]@tue.nl

Related Version A full version of the paper is available at arxiv.org/abs/2202.11663.

1 Introduction

The concept of programmable matter envisions a very large number of tiny and simple robot
particles forming a smart material that can change its physical properties and shape based
on the outcome of computation and movement performed by the individual particles in a
concurrent manner. The ultimate goal is to have programmable matter that is indistinguish-
able from any other material. Thus, when modeling it, we assume a very small size of the
particles and greatly restrict their computation, communication, and movement capabilities.
Shape assembly and reconfiguration of particle systems have attracted a lot of interest in the
past decade and a variety of specific models have been proposed [1, 8, 11, 13, 7, 3, 10, 12].
Here we focus on the amoebot model which was introduced in [4] and refined in [2]. Refer
to [2] for additional details on the model description. For reconfiguration in the amoebot
model, the approach taken by existing solutions is to build the target shape from scratch,
ignoring any possible similarities between the initial shape and the target shape [5, 6]. How-
ever, in some scenarios (e.g. shape repair) where the initial and target shapes are similar,
this might not be the most efficient strategy. We focus on an approach for reconfiguration
that takes this similarity into account. In the worst case our algorithm works as well as the
existing solutions, but it is natural to expect our approach to be more advantageous in the
case where there are only small changes necessary in the system.

Amoebot model. Particles occupy nodes of a plane triangular grid G. A particle can
occupy one (contracted particle) or two (expanded particle) adjacent nodes of the grid, and
can communicate with its neighboring particles. The particles have constant memory space,
and thus have limited computational power. They have no common notion of orientation,
and no common notion of clockwise or counter-clockwise order. The particles are identical,
i.e., they have no IDs and execute the same algorithm, but they can locally distinguish
between neighbors using six (for contracted) or ten (for expanded particles) port identifiers
(see Figure 1 (left)). Ports are labeled in order (either cw or ccw) modulo six or ten,
respectively. Particles communicate by sending messages to the neighbors using the ports.

01
2
3 4

5 0
12

3
4
5

9
8

76

Figure 1 Left: particles with ports labeled, in contracted and expanded state. Right: handover
operation between two particles.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

50:2 Fast Reconfiguration for Programmable Matter

Particles can move in two different ways: a contracted particle can expand into an
adjacent empty node of the grid, and an expanded particle can contract into one of the
nodes it currently occupies. Each node of G can be occupied by at most one particle, and
we require that the particle system stays connected at all times. To preserve connectivity
more easily, we allow a handover variant of both move types, a simultaneous expansion and
contraction of two neighboring particles using the same node (see Figure 1 (right)). The
handover can be initiated by any of the two particles: an expanded particle can pull its
contracted neighbor, and a contracted particle can push its expanded neighbor.

Particles operate in activation cycles: when activated, they can read from the memory
of their immediate neighbors, compute, send constant size messages to their neighbors, and
perform a move operation. Particles are activated by an asynchronous adversarial but fair
scheduler (at any moment in time t, for any particle, it must be activated at some time in
the future t′ > t). If two particles are attempting at conflicting actions (e.g., expanding into
the same node), the conflict is resolved by the scheduler arbitrarily, and exactly one of these
actions succeeds. We perform running time analysis in terms of the number of rounds: the
time intervals in which all particles have been activated at least once.

We call the set of particles and their internal states a particle configuration P. Let GP
be the subgrid of G induced by the nodes occupied by particles in P. We say that P is
connected if there is a path in GP between any two particles in P. A hole in P is an interior
face of GP with more than three vertices. A particle configuration P is simply connected if
it is connected and has no holes.

Problem description. An instance of the reconfiguration problem consists of a pair of simply
connected shapes (I, T) embedded in the grid G. We assume that I and T have the same
number of nodes, and that I∩T , which we call the core, is non-empty and simply connected.
Initially, all particles in I are contracted. The problem is solved when every node of T
contains a contracted particle.

We call the particles in I \ T the supply particles (see Figure 2), and assume that every
connected component of I \T has a designated particle in the core I∩T adjacent to it, which
we call the root of that component. Similarly, we say that T \I are demand nodes. For every
connected component D of T \I, we designate one particle from the core I∩T adjacent to D
as the demand root of D. We assume that each demand root d stores a spanning tree of the
corresponding component D in its memory. The root d will pull supply particles through
the core I ∩ T to fill D.

Figure 2 Initial shape I (formed by the particles), target shape T (gray), supply particles (blue),
supply roots (dark blue). Demand roots (red) store a spanning tree of their demand component.

Irina Kostitsyna, Tom Peters, and Bettina Speckmann 50:3

Contribution and organization. We propose a new approach for fast shape reconfiguration
in the amoebot model, based on the symmetric difference between the initial and the target
shapes. Our goal is to design a reconfiguration algorithm, for the case when the initial and
target shapes are similar, that is faster and more natural than constructing the target shape
from scratch. To this extent, we propose a new primitive: a special case of the shortest path
tree (SP-tree) which we call a feather tree. We use feather trees to construct a graph, which
the particles can use to move along shortest paths and reconfigure the particle system.

2 Feather trees

To solve the particle reconfiguration problem, we need to coordinate the movement of the
particles. Among the previously proposed primitives for amoebot coordination is the shortest
path tree (SP-tree) primitive [9] which facilitates movement of particles between the root
and the leaves along shortest paths. Our approach to reconfiguration is to use multiple
overlapping trees to guide the particles between the supply and demand regions. To do so
we need trees with a more restricted shape than arbitrary SP-trees. In this section we hence
introduce feather trees which are a special case of SP-trees (Figure 3).

Feather trees largely follow the same construction as the SP-trees. A feather tree consists
of shafts and branches. Shafts are straight connections emanating from the root (and some-
times reflex nodes) that grow branches on either side. Branches are straight connections in
the tree that do not branch further. To grow a feather tree, the root particle chooses a max-
imal independent set of neighbors; this set contains at most three particles. The particles in
the independent set grow the shafts (in red) emanating from the root. All other neighbors
of the root are the beginning of a blue branch. If a particle p at the end of a shaft or branch
activates, it first extends the tree straight. Specifically, if i is the port from p to its parent, p
extends the tree into the direction i+3. Recall that all arithmetic on ports and directions is
modulo six. The particle q in direction i+ 3 becomes a child of p and p becomes the parent
of q. Next, if p lies on a shaft, it starts branches in the directions i+ 2 and i+ 4.

To reach all the particles of P with a feather tree, and not just those within one bend
from the root, we extend our construction around reflex vertices on the boundary of P. If
for a particle p, direction i is the direction to its parent, and the direction i + 1 (or i − 1)
does not contain a particle, while the direction i+ 2 (or i− 2) does, then p lies on a reflex
vertex of the boundary of P. If in addition p lies on a branch, p starts a new shaft in the
direction i+ 2 (or i− 2), see Figure 3 (right). We hence have the following lemma:

I Lemma 1. Given a simply connected particle configuration P with n particles and a

Figure 3 Two feather trees growing from the dark blue root. Shafts are red and branches are blue.
Left: every particle is reachable by the initial feathers; Right: additional feathers are necessary.

EuroCG’22

50:4 Fast Reconfiguration for Programmable Matter

particle r ∈ P, we can grow a feather tree from r in O(n) rounds.

Feather trees are unique, which helps with navigating the particles. Next we describe how
to navigate multiple overlapping feather trees. First we identify a useful property of shortest
paths in feather trees.

We say that a vertex v of GP is an inner vertex, if v and its six neighbors lie in the core
I ∩ T . All other vertices of the core are boundary vertices. A bend in a path is formed by
three consecutive vertices that form an angle of 120◦. We say that a bend is an inner bend
if the middle vertex is an inner vertex; otherwise the bend is a boundary bend.

I Definition 2 (Feather Path). A path in GP is a feather path if it does not contain two
consecutive inner bends.

We now argue that every path from the root to a leaf in a feather tree is a feather path.
A root-to-leaf path bends either on a shaft or on a branch; the path can transition from a
shaft to a branch or vice versa only at a bend. If the bend occurs on a shaft, then it can be
either an inner or a boundary bend; the path leaves the shaft and continues on a branch.
Branches grow straight with one exception: if they detect a reflex vertex on the boundary
of P. In this case a bend occurs on the branch. This bend is always a boundary bend; the
path leaves the branch and continues on the new shaft.

I Lemma 3. Every path from the root to a leaf in a feather tree is a feather path.

Navigating feather trees. Due to its limited memory, a particle cannot identify different
trees. However, particles can navigate feather trees by counting inner bends, even in presence
of multiple overlapping trees. Therefore, while moving down a specific tree, a particle always
knows if it is on a shaft or a branch and which directions belong to the tree. Starting from
the root of a feather tree, a particle can always reach one of its leaves. We cannot control
which leaf it reaches, but it will do so along a shortest path from the root. In particular, if
feasible, it is always a valid choice for the particle to continue straight ahead. A left or right
120◦ bend is a valid choice if the particle is on a shaft, or if this is a boundary bend.

When moving up from leaves, we cannot control which root of which feather tree a
particle will reach, but it will always travel along a shortest path. In particular, if the
particle is moving along a shaft, then its only valid choice is to continue straight ahead.
Otherwise, all three options (straight ahead or a 120◦ left or right turn) are valid.

3 Supply and demand

We now explain how to use feather trees to create a supply graph in the core I ∩ T of the
particle system that connects supply roots and demand roots along shortest paths. This
graph serves as a navigation network for the particles moving from supply to the demand.
Let GI∩T be the subset of G induced by the nodes of I ∩ T . We say a supply graph S is
a directed subgraph of GI∩T connecting every supply root s to every demand root d such
that the following three supply graph properties hold:
1. for every pair (d, s) a shortest path from d to s in S is also a shortest path in GI∩T ,
2. for every pair (d, s) there exists a shortest path from d to s in S that is a feather path,
3. every particle p in S lies on a shortest path for some pair (d, s).

We construct supply graph S from feather trees as follows. First, every demand root
initiates the growth of a feather tree. When a feather tree reaches a supply root s, a supply

Irina Kostitsyna, Tom Peters, and Bettina Speckmann 50:5

found token is sent back to the root of the tree. Note that if several feather trees overlap, a
node in charge of forwarding the token up the tree cannot determine which specific tree the
token belongs to. However, it can identify and forward the token to all valid parents that lie
on valid feather paths for this token. To count inner bends, the supply found token carries a
flag β which is updated at each bend. Specifically, a particle p that receives a supply found
token t does the following:

1. p marks itself as part of the supply graph S,
2. p stores the direction i that t came from as a valid child in S,
3. from all of its parents in all the feather trees, p computes the set U of valid parents by

checking the flag β of t,
4. p adds U to the set of its parents in S,
5. p forwards t to the particles in U , updating the flag β if necessary, and
6. p stores the complete information about t for the future.

Note that a particle p receives at most two supply found tokens from each direction, one
for each value of β. Hence p can store the corresponding information in its memory. When
a feather tree F reaches a particle p that is already marked as part of the supply graph S
then p first checks if F would have been included in U for at least one of the supply found
tokens t stored in p. If that is the case, p sends a copy of t towards the root of F , and sets
its parent in F to be a parent in S as well. Otherwise, p grows F as normal.

I Lemma 4. Given a simply connected particle configuration P with n particles, a set of
particles marked as supply roots, and a set of particles marked as demand roots, we can
create a supply graph using O(n) rounds.

Algorithm. We present a high level overview of our algorithm. A complete description and
analysis can be found in the full version.

In the first phase of the algorithm, the particles form the supply graph, by creating
feather trees starting from the demand roots, and sending tokens back up the trees if a
branch finds supply. Each supply root organizes the corresponding supply component into a
tree; these supply trees are connected to the supply graph S via the supply roots. After the
supply graph S has been formed, demand roots pull particles from S and fill the demand
components; the pulling of particles propagates through S to the supply components. Par-
ticles moving in S store the number of inner bends they take. An extended particle checks
the number of inner bends of its children in S to determine which of them are valid choices
to pull. Eventually, pulling propagates to the supply particles at the leaves of the corre-
sponding spanning trees. These particles simply contract, reducing the outstanding supply.
If a supply component becomes empty, some extended particles may need to revert and pull
back against the prescribed direction in S. Then the corresponding edges get removed from
S, thus rerouting the movement of extended particles towards supply that still exists.

Recall that the particles follow feather paths through S. This ensures that even if the
particles themselves do not know which supply component they are pulling from, they do so
via a shortest path. Moreover, even in the case where particles have to move back because a
supply component was already empty, the total path taken by each particle will be at most
linear in the size of the particle configuration.

I Theorem 5. The particle reconfiguration problem can be solved using O(n) rounds of
activation.

EuroCG’22

50:6 Fast Reconfiguration for Programmable Matter

4 Conclusion

We have presented a fast reconfiguration algorithm for a system of amoebot particles. Our
solution currently only works on simply-connected particle systems with a simply-connected
intersection of the initial and the target shapes. An interesting direction to explore is to
extend our results for a larger class of shapes. Furthermore, our worst-case running time
matches the efficiency bounds of existing solutions, however we expect our algorithm to be
more advantageous for the case when the initial and target shapes are similar. Thus it would
be interesting to evaluate our solution experimentally on realistic scenarios.

References
1 Kenneth C. Cheung, Erik D. Demaine, Jonathan R. Bachrach, and Saul Griffith. Pro-

grammable Assembly With Universally Foldable Strings (Moteins). IEEE Transactions on
Robotics, 27(4):718–729, 2011. doi:10.1109/TRO.2011.2132951.

2 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot
Model: Algorithms and Concurrency Control. In 35th International Symposium on Dis-
tributed Computing (DISC), volume 209 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 20:1–20:19, 2021. doi:10.4230/LIPIcs.DISC.2021.20.

3 Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers,
Nicolas Schabanel, Shinnosuke Seki, and Hadley Thomas. Know When to Fold ’Em: Self-
assembly of Shapes by Folding in Oritatami. In DNA Computing and Molecular Program-
ming, pages 19–36, 2018. doi:10.1007/978-3-030-00030-1_2.

4 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Schei-
deler, and Thim Strothmann. Brief announcement: Amoebot—A New Model for Pro-
grammable Matter. In Proc. 26th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 220–222, 2014. doi:10.1145/2612669.2612712.

5 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal Shape Formation for Programmable Matter. In Proc. 28th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 289–299,
2016. doi:10.1145/2935764.2935784.

6 Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, 33:69–101,
2020. doi:10.1007/s00446-019-00350-6.

7 Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science, 345(6198):799–804, 2014.
doi:10.1126/science.1253920.

8 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Chris-
tian Scheideler, and Thim Strothmann. Forming Tile Shapes with Simple Robots. In Proc.
International Conference on DNA Computing and Molecular Programming (DNA), pages
122–138, 2018. doi:10.1007/978-3-030-00030-1_8.

9 Irina Kostitsyna, Tom Peters, and Bettina Speckmann. Coordinating Programmable Mat-
ter via Shortest Path Trees. In Book of Abstracts, 37th European Workshop on Computa-
tional Geometry, pages 32:1–32:7, 2021.

10 Andre Naz, Benoit Piranda, Julien Bourgeois, and Seth Copen Goldstein. A distributed self-
reconfiguration algorithm for cylindrical lattice-based modular robots. In Proc. 2016 IEEE
15th International Symposium on Network Computing and Applications (NCA), pages 254–
263, 2016. doi:10.1109/NCA.2016.7778628.

11 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent
results. Natural Computing, 13(2):195–224, 2014. doi:10.1007/s11047-013-9379-4.

Irina Kostitsyna, Tom Peters, and Bettina Speckmann 50:7

12 Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge mod-
ular robot to create programmable matter. Autonomous Robots, 42(8):1619–1633, 2018.
doi:10.1007/s10514-018-9710-0.

13 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proc. 4th Conference on Innovations in Theoretical Computer Science (ITCS), pages 353–
354, 2013. doi:10.1145/2422436.2422476.

EuroCG’22

Short topological decompositions of
non-orientable surfaces
Niloufar Fuladi1, Alfredo Hubard1, and Arnaud de Mesmay1

1 Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France

Abstract
We provide a polynomial-time algorithm that for any graph embedded on a non-orientable surface
computes a canonical non-orientable system of loops so that any loop from the canonical system
intersects any edge of the graph in at most 30 points. The existence of such short canonical systems
of loops was known in the orientable case and an open problem in the non-orientable case. Our
techniques combine recent work of Schaefer-Štefankovič with ideas from computational biology.

1 Introduction

Lazarus, Pocchiola, Vegter and Verroust [7] (see also [6]) were the first to design an algorithm
that finds, for any graph G embedded in a closed orientable surface S a canonical system of
loops C such that no edge of C intersects1 any edge of G more than a constant number of
times. By a canonical system of loops we mean a one-vertex one-face embedded graph in
which the cyclic ordering of the edges around the vertex is a1b1a−1

1 b−1
1 . . . agbga−1

g b−1
g . This

system of loops has been widely used, both in applied and theoretical works, as it provides
a short and canonical way to cut a surface into a disk.

In the non-orientable case, no instance of such short decompositions seems to be known.
Even for the non-orientable canonical system of loops, that is, a system of one-sided loops
with the cyclic ordering a1a1a2a2 . . . agag around the vertex, the best known algorithm
requires O(g|E(G)|) crossings for each loop (see [6]). Non-orientable surfaces have been
often neglected in computational topology, but there are many reasons to want to correct
this: natural models of random surfaces yield non-orientable surfaces with large probability,
they appear as configuration spaces in diverse contexts [3, 11], and insights garnered from
non-orientable surfaces can sometimes be applied to the orientable ones; e.g. see [9].

In this article, we prove the following theorem providing, to the best of our knowledge, the
first known case of a short canonical topological decomposition for non-orientable surfaces.

I Theorem 1.1. There exists a polynomial time algorithm that, given a graph cellularly
embedded on a non-orientable surface, computes a non-orientable canonical system of loops
such that each loop in the system has multiplicity at most 30.

We first point out that the techniques used to prove the orientable version in [7] incur an
overhead of O(g) in the multiplicity of the resulting curves (see [6, Theorem 4.3.9]). Instead,
our proof of Theorem 1.1 builds on important recent work of Schaefer and Štefankovič [10],
who showed that any graph embedded on a non-orientable surface can be represented with
a cross-cap drawing so that each edge uses each cross-cap at most twice (see the second
picture of Figure 1 for an example). Our main technical contribution is to upgrade their

1 Throughout the article, we decompose surface-embedded graphs by cutting them along embedded
graphs which are transverse to the original graph, and count the number of intersections. This is
equivalent to the primal setting studied in Lazarus, Pocchiola, Vegter and Verroust [7] by graph duality.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

51:2 Short topological decompositions of non-orientable surfaces

construction so that the cross-caps can be connected to each other so as to yield a non-
orientable canonical system of loops, intersecting the edges of the one-vertex graph with
multiplicity at most 30 (see Figure 1).

Figure 1 From left to right: 1) The combinatorial information of a one-vertex graph. 2) A
cross-cap drawing of this graph, with cross-caps connected to a base-point. 3) A joint drawing of the
graph and a canonical system of loops. 4) A different representation: decomposing the graph along
the canonical system of loops.

Due to line limitations, the proofs are only sketched and can be found in the full version.

2 Preliminaries

An embedding of a graph G on a surface S is informally a crossing-free drawing of G on S.
We treat (G, S) as a cross-metric surface [2], i.e., the objects we define and work with will
be in general position with respect to G. The multiplicity of such a curve embedded on S is
the maximum number of times it intersects with an edge of the underlying graph G. As in
many similar works, in our proofs we first contract a spanning tree of the underlying graph,
reducing the problem to the setting of a one-vertex graph embedded on a non-orientable
surface. The combinatorics of a one-vertex embedded graph are completely described by an
embedding scheme, i.e., by the circular order of the edges around the vertex, and a signature
for each loop indicating whether it is one-sided or two-sided. We simply use scheme to refer
to a graph with an embedding scheme. A one-vertex scheme is orientable if all its loops
are two-sided and non-orientable otherwise. We denote by eg(G) the Euler genus of an
embedding scheme G, i.e., the Euler genus of the surface obtained by gluing a topological
disk on each face. A loop e in a scheme divides the half-edges around the vertex into two
parts, called wedges of e.

We represent an embedding of a graph on a non-orientable surface by drawing it on the
plane with a finite number of cross-caps. A family of edges entering a cross-cap emerges
on the other side with a reversed order, and a loop is one-sided (two-sided) if it enters odd
(even) number of cross-caps. See Figure 2 for an example of two cross-cap drawings of the
same scheme on a non-orientable surface of genus 3.

Short Orienting Curves. A simple but important object that we rely on extensively is an
orienting curve, i.e., a closed curve on a non-orientable surface such that cutting along it
produces an orientable surface with boundary. The following lemma is a restatement of [8,
Proposition 5.5].

N. Fuladi, A. Hubard and A. de Mesmay 51:3

Figure 2 Two cross-cap drawings for the same scheme.

I Lemma 2.1. Let N be a non-orientable surface without boundary and with genus g and
G be a graph embedded on N . Then there exists an orienting curve of multiplicity at most
2.

3 The Schaefer Štefankovič Algorithm

Schaefer and Štefankovič proved the following theorem.

I Theorem 3.1. [10, Lemma 9] If G is a one-vertex non-orientable (respectively orientable)
scheme, then it admits a cross-cap drawing with eg(G) (respectively eg(G) + 1) cross-caps
in which every edge passes through every cross-cap at most twice.

The proof of the theorem uses an inductive algorithm, which distinguishes cases depend-
ing on the topological type of the next loop to be drawn. This algorithm works by providing
a way to draw a loop at each inductive step, assuming that some simpler one-vertex graph
without that loop can be drawn. Here, we only elaborate on techniques to deal with two
special type of curves; we refer to the full version for complete description of the algorithm.

One-sided loop move. Let r be a one-sided loop in the scheme G. We remove r and
flip one of its wedges, i.e., we reverse the order of the edges within this wedge and change the
signature of the loops that alternate with r. The new scheme G

′ has Euler genus eg(G)− 1.
Let us assume inductively that we are given a drawing for G

′ . We add r to this drawing by
adding a cross-cap near the vertex and the flipped wedge and dragging r and every edge in
the flipped wedge in it; see Figure 3.

Dragging move. Let s be a separating loop in a scheme G, such that cutting along it
results in two subschemes G1 and G2 in which G2 is orientable. We add a one-sided loop
o with consecutive ends in G2 in the wedge where s used to be. Having a drawing for G1
and G2 + {o}, we can draw the loop s in the drawing for G2 + {o} as follows: we start
next to an end of o, follow o through all the cross-caps, except that after coming out of the
last cross-cap, we go back to the first one entered, and traverse all of the cross-caps again.
Finally we end up next to the other end of o; see Figure 4, left. Denote this drawing of
G2 + {o} + {s} by H

′
2 and the drawing we obtain for G1 by H1. By gluing H1 to H

′
2, we

get a drawing H
′ for G + {o} + {s} but the drawing is not using the minimum number of

cross-caps. However we can eliminate one cross-cap in H
′ by dragging some curves of G1

through the crosscaps of G2: this is pictured in Figure 4, right.

EuroCG’22

51:4 Short topological decompositions of non-orientable surfaces

Figure 3 The one-sided loop move on the loop r.

Figure 4 The dragging move.

4 From cross-cap drawings to canonical systems of loops

The complexity of the drawings provided by the proof of Schaefer and Štefankovič increases
too fast to directly yield a short non-orientable canonical system of loops. Therefore, we
modify their algorithm by enforcing more specific rules to simplify some of the steps and
provide additional structure to the inductive argument. First, we reduce the given embedded
graph to a scheme with an orienting loop.

I Lemma 4.1. Given a graph G embedded on a non-orientable surface N , there exists a one-
vertex scheme Ĝ such that Ĝ has an orienting loop, and if Ĝ has a non-orientable canonical
system of loops of multiplicity at most k, then G has a non-orientable canonical system of
loops of multiplicity at most 3k.

The idea of the proof is to add an orienting curve (Lemma 2.1) and contract a spanning
tree. Second, we impose a certain order to choose the one-sided and separating loops.

An order to choose one-sided loops. This order comes from a seemingly unrelated
problem in computational biology, precisely genome rearrangements. Given a word with
signatures (a bit assigned to each letter), a signed reversal consists in choosing a subword, and

N. Fuladi, A. Hubard and A. de Mesmay 51:5

Figure 5 Left: a representation of three signed reversals bringing the signed permutation on the
left to the one on the right. Right: Attaching the two permutations to a common basepoint yields a
one-vertex graph with an embedding scheme, for which signed reversals provide a cross-cap drawing.

reversing it as well as the signatures of its letters. The signed reversal distance between two
signed words is the minimum number of signed reversals needed to go from one signed word
to the other one. As we show in Figure 5, (see also [1, 5]), there is a strong similarity between
computing the signed reversal distance between two signed permutations and embedding a
one-vertex graph built from these two permutations with a minimum number of cross-caps.
Hannenhalli and Pevzner [4] provided a polynomial time algorithm to compute the signed
reversal distance between two signed permutations. In this algorithm they introduce an
optimal choice for choosing a subword to reverse, which in our setting, translates to an
order for choosing between the one-sided loops in the induction: we choose the one-sided
loop such that flipping its wedge maximizes the number of new one-sided loops.

Saturating the scheme and an order to choose separating loops. Then, we
saturate the scheme with auxiliary separating loops. That is, whenever possible, we add a
two-sided loop so that its ends interleave with no other loop in the scheme and that is not
homotopic to a loop that was already present. These loops do not interfere with the genus
and can be removed at the end. We choose a non-contractible separating loop that divides
an orientable scheme that does not contain a separating loop, from the rest of the scheme.

TheModified Algorithm. We are now ready to describe our algorithm. By Lemma 4.1,
we can reduce an embedded graph G to a scheme that contains an orienting loop, and we
saturate it. Then we apply the following steps inductively in the following order:

If there is a contractible loop, remove it and recurse on the new scheme. We can then
draw it in the obtained drawing without using any of the cross-caps.
If there is a non-contractible separating loop, choose one as described above, recurse
on the subschemes and apply a dragging move.
If there is a one-sided non-orienting loop, choose one as described above and apply
the one-sided loop move on this loop.
If all one-sided loops are orienting and there are two-sided loops, pick an orienting loop
o adjacent to a two-sided loop t, recurse on the scheme in which o is replaced by the
concatenation of o and t. Finally drag the concatenation of o and t back along t.
If all one-sided loops are orienting and there are no two-sided loops, one cross-cap is
sufficient to draw all the loops.

The following lemma guarantees that our algorithm provides a good cross-cap drawing.

EuroCG’22

51:6 Short topological decompositions of non-orientable surfaces

I Lemma 4.2. Applying the modified algorithm on a graph G embedded on a non-orientable
surface S yields a cross-cap drawing of G with eg(S) cross-caps such that each loop of G

enters each cross-cap at most 6 times.

The proof is similar to the original proof of Schaefer and Štefankovič algorithm but
heavily relies on the presence of the orienting loop to reduce the number of cases. Our main
technical result is then to show that the modified algorithm outputs a cross-cap drawing
where cross-caps are not too far from the vertex.

I Lemma 4.3. For any saturated one-vertex scheme G with an orienting loop o, in the
cross-cap drawing H output by the modified algorithm, there is a path from every cross-cap
to a face incident to the vertex with multiplicity at most two.

The tension in the proof of this lemma lies in the fact that long dual paths are added
to the cross-cap drawings when doing one-sided loop moves and dragging moves, making it
delicate to track the diameter of the graph dual to the cross-cap drawings throughout the
recursive calls. This is handled by tracking specific paths, whose lengths are controlled using
two different strategies. For these strategies to succeed, it is crucial that those moves do not
alternate during recursive calls, and that the separating curves are chosen in the appropriate
order. These properties are guaranteed by the specific orders in which we choose one-sided
loop and separating loops.With this lemma, we can finally sketch the proof of Theorem 1.1.

Sketch of proof of Theorem 1.1. The modified algorithm on G constructs a cross-cap draw-
ing in which, by Lemma 4.2, the number of cross-caps is minimal and the loops enter each
cross-cap at most twice. By Lemma 4.3, there exist paths {pj} of multiplicity two from a
face incident to each cross-cap to a face incident to the vertex in this cross-cap drawing.
We follow these paths to construct loops based at a common vertex surrounding each cross
cap, see Figure 1, third picture. It can be seen that the system of loops that we obtain is
canonical. Using Lemma 4.1 and adding different bounds on the multiplicity, we obtain a
canonical system of loops where each loop has multiplicity 30. J

Acknowledgments. We are grateful to Marcus Schaefer and Daniel Štefankovič for pro-
viding us the full version of [10], and to Francis Lazarus for helpful discussions. This work
was partially supported by the grant(s) ANR-17-CE40-0033 of the French National Re-
search Agency ANR (project SoS) and INTER/ANR/16/11554412/SoS of the Luxembourg
National Research fund FNR.

N. Fuladi, A. Hubard and A. de Mesmay 51:7

References
1 Andrei C Bura, Ricky XF Chen, and Christian M Reidys. On a lower bound for sorting

signed permutations by reversals. arXiv preprint arXiv:1602.00778, 2016.
2 Éric Colin De Verdière and Jeff Erickson. Tightening nonsimple paths and cycles on sur-

faces. SIAM Journal on Computing, 39(8):3784–3813, 2010.
3 Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Math-

ematical Society, 45(1):61–75, 2008.
4 Sridhar Hannenhalli and Pavel A Pevzner. Transforming cabbage into turnip: polynomial

algorithm for sorting signed permutations by reversals. Journal of the ACM (JACM),
46(1):1–27, 1999.

5 Fenix WD Huang and Christian M Reidys. A topological framework for signed permuta-
tions. Discrete Mathematics, 340(9):2161–2182, 2017.

6 Francis Lazarus. Combinatorial graphs and surfaces from the computational and topo-
logical viewpoint followed by some notes on the isometric embedding of the square flat
torus. Mémoire d’HDR, 2014. Available at http://www.gipsa-lab.grenoble-inp.fr/
~francis.lazarus/Documents/hdr-Lazarus.pdf.

7 Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Computing a canonical
polygonal schema of an orientable triangulated surface. In Proceedings of the seventeenth
annual symposium on Computational geometry, pages 80–89, 2001.

8 Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Untangling two systems
of noncrossing curves. In International Symposium on Graph Drawing, pages 472–483.
Springer, 2013.

9 Marcus Schaefer and Daniel Štefankovič. Block additivity of Z2-embeddings. In Interna-
tional Symposium on Graph Drawing, pages 185–195. Springer, 2013.

10 Marcus Schaefer and Daniel Štefankovič. The degenerate crossing number and higher-
genus embeddings. Journal of Graph Algorithms and Applications, 26(1):35–58, 2022. doi:
10.7155/jgaa.00580.

11 James P Sethna. Order parameters, broken symmetry, and topology. In 1991 Lectures in
Complex Systems. Addison-Wesley, 1992.

EuroCG’22

Time and Space Efficient Collinearity Indexing∗

Boris Aronov1, Esther Ezra2, Micha Sharir3, and Guy Zigdon4

1 Department of Computer Science and Engineering, Tandon School of
Engineering, New York University, Brooklyn, NY 11201, USA
boris.aronov@nyu.edu

2 School of Computer Science, Bar Ilan University, Ramat Gan, Israel
ezraest@cs.biu.ac.il

3 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@tauex.tau.ac.il

4 School of Computer Science, Bar Ilan University, Ramat Gan, Israel
guy.zigdon@live.biu.ac.il

Abstract
The collinearity testing problem is a basic problem in computational geometry, in which the task at
hand is the following: Given three sets of n planar points A, B and C, detect a collinear triple of
points in A × B × C or report there is no such triple. In this paper we consider a preprocessing
variant of collinearity testing, namely, the collinearity indexing problem, in which we are given two
sets A and B, each of n points in the plane, and our goal is to preprocess A and B into a data
structure, so that, for any query point q ∈ R2, we can determine whether q is collinear with a pair of
points (a, b) ∈ A×B. We provide a solution to the problem for the case where the points of A, B lie
on an integer grid, and the query points lie on a vertical line, with a data structure of subquadratic
storage and sublinear query time.

1 Introduction

Let A,B,C be three sets of points in the plane. The collinearity testing problem is to
determine whether there exists a collinear triple a ∈ A, b ∈ B, c ∈ C. This problem is
3SUM-hard [10],1 and recently several input-restricted variants of collinearity testing have
been studied in the decision tree model and also in the RAM model [3, 4, 6]. In this paper
we study a preprocessing variant of collinearity testing, referred to as collinearity indexing.

1.1 Collinearity Indexing
Let A and B be two sets, each of n points in the plane. The collinearity indexing problem
is to preprocess A and B into a data structure, so that, given any query point q ∈ R2, we
can determine whether there exists a pair (a, b) ∈ A×B such that a, b and q are collinear.
The goal is to come up with such a structure that uses subquadratic storage and answers
queries in sublinear time, but see a finer discussion of this issue shortly below. Notice that in

∗ Work by Boris Aronov was partially supported by NSF grants CCF-15-40656 and CCF-15-40656 and by
grant 2014/170 from the US-Israel Binational Science Foundation. Work by Esther Ezra was partially
supported by NSF CAREER under grant CCF:AF-1553354 and by Grant 824/17 from the Israel Science
Foundation. Work by Micha Sharir was partially supported by ISF Grant 260/18.

1 In fact, Gajentaan and Overmars [10], who introduced this concept, initially called this problem (as well
as other related geometric problems) “n2-hard,” as it was strongly believed that it cannot be solved in
subquadratic time (whereas it has a simple O(n2) time solution).

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

52:2 Time and Space Efficient Collinearity Indexing

this formulation we ignore the preprocessing time, which can be Ω(n2), but only care about
storage and query time.2

Near-linear query time is easy to obtain, with no auxiliary storage. To do so, one simply
sorts the points of A ∪ B in angular order around the query point q, and checks every
consecutive pair, in this order, of an A-point and a B-point, for collinearity with q. The cost
of the query is O(n logn).

We can improve the query time to O(n) if we are allowed to use quadratic storage. To do
so, we pass to the dual plane, and get a set A∗ of n lines dual to the points of A, and a set
B∗ of n lines dual to the points of B. We compute the arrangement A of A∗ ∪B∗, and store
its DCEL representation. Then, given a query point q, we take its dual line q∗ and trace the
faces of A that q∗ crosses, checking whether q∗ passes through a “bichromatic” vertex of A,
incident to a line of A∗ and a line of B∗, which is the dual interpretation of the property
that q is collinear with a point of A and a point of B. Using the DCEL representation and
the zone theorem (i.e., that the overall zone complexity of a line in a planar arrangement of
lines is linear in the number of lines), this takes O(n) time, see, e.g., [7].

We do not know whether the query cost can be made sublinear, still using quadratic
storage, nor whether the storage can be reduced to subquadratic, still allowing linear query
cost. These two problems are discussed below, and are left as challenging, seemingly hard,
open problems.

We can obtain sublinear query time with superquadratic storage. There are several
equivalent ways to describe such a procedure, but one of the simpler ways is to take the set
V of the O(n2) bichromatic vertices of A, and preprocess it for halfplane range searching
(see, e.g., [1, 2]). It is easy to adapt the resulting procedure so that it can detect whether
the query line q∗ passes through a vertex in V . With s storage, a query takes O∗(n2/

√
s)

time, which is sublinear when s is superquadratic. In the extreme case, when s = Θ(n4), the
query time becomes O(logn). Indeed, in this case, the above approach essentially constructs
the primal arrangement of the O(n2) bichromatic lines, each connecting an A-point with a
B-point, and preprocesses the arrangement for fast point location, using O(n4) storage and
O(logn) query time.

In view of this discussion, the following problems arise:
(i) Preprocess A and B into a data structure that requires O(n2) storage and can answer a

collinearity query in o(n) time.
(ii) Preprocess A and B into a data structure that requires o(n2) storage and can answer a

collinearity query in O(n) time.
(iii) Preprocess A and B into a data structure that requires o(n2) storage and can answer a

collinearity query in o(n) time.
Of course, a solution to Problem (iii) will automatically solve the other two problems, but it
is conceivable, and very likely, that the first two problems are easier to solve, although at the
moment the solution to any of problems (i)–(iii) seems to be elusive.

Our result. In general, A and B may contain arbitrary points in the plane, and the queries
are also arbitrary points. We can formulate special instances of these problems in which the
locations of either the points of A ∪B and / or of the query points are restricted. In this
paper we consider the case where the points of A, B lie on an integer grid, and the points of

2 We note that a related problem, referred to as “3POL-indexing”, was defined in [11] in a somewhat
different context.

B. Aronov, E. Ezra, M. Sharir and G. Zigdon 52:3

C lie anywhere on the y-axis. For this case we show (in what follows, O∗(·) hides a factor of
nε, for any ε > 0):

I Theorem 1.1. Let A, B be two sets of n planar points each, lying on an integer grid. For
any 0 < δ < 1 there exists a data structure of overall storage complexity O∗(n2−δ/3), which
answers collinearity-indexing queries in O∗(nδ) time. In particular, when δ = 1/4 the storage
and query bounds are O∗(n7/4) and O∗(n3/4). The overall preprocessing time of this data
structure is O∗(n2).

2 A Detailed Description of the Data Structure

A naive solution for the case where A and B are unrestricted. As discussed in the
introduction, our main result holds for the case where A, B lie on an integer grid, but we
first discuss a more general setup.

Let A and B be two sets, each of n (unrestricted) points in the plane, and let γ be a
vertical line containing the points of C. Without loss of generality, we assume that γ is the
y-axis. The collinearity indexing problem, restricted to γ, is to preprocess A and B into a
data structure, so that, given any query point q ∈ γ, we can determine whether there exists
a pair (a, b) ∈ A×B such that a, b and q are collinear.

The problem is easy to solve using O(n2 logn) preprocessing time, O(n2) storage, and
O(logn) query time, as follows. We pass to the dual plane, construct the arrangement of
A∗ ∪B∗, where A∗ (resp., B∗) is the set of lines dual to the points of A (resp., of B), collect
all the “bichromatic” vertices (those formed by a line of A∗ and a line of B∗), and sort them
by their y-coordinates. All this takes O(n2 logn) time. Given a query point q = (0, η) ∈ γ, we
need to determine whether the horizontal dual line q∗ : y = η passes through a bichromatic
vertex of the arrangement, and this takes O(logn) time, as is easily verified. At the other
extreme setup, as already described in the introduction, we can solve the problem with
no preprocessing, using O(n) storage, and then a query with a point c (not necessarily on
γ) is answered by sorting A ∪ B in the angular order around q, and then by checking all
consecutive bichromatic pairs in this ordering for collinearity with q. This takes O(n logn)
time. Our goal, however, is to obtain a data structure that uses subquadratic storage and
sublinear query time.

2.1 The case where A and B lie on an integer grid
We next present a more efficient solution to this problem, under the following further
restrictions. We assume that the points of A and of B lie on (some of the) vertices of
a k × k integer grid G, with integer coordinates (so n ≤ k2), where k is bounded by a
polynomial function of n. For concreteness, and without loss of generality, assume that
G = [t, k + t − 1] × [0, k − 1] (t is an integer parameter that indicates where the y-axis is
located with respect to G). We continue to denote by γ the y-axis, and assume the points of
C lie on γ.

Our solution is an adaptation of the technique of Golovnev et al. [11] (see also Kopelowitz
and Porat [12]), which solves the simpler 3SUM-indexing problem: That is, the goal is
preprocess two sets A, B of n real numbers each, such that given a real number c, one can
quickly determine whether there is a pair a ∈ A, b ∈ B such that a+ b+ c = 0 (see also [8] for
a related problem). As in [11, 12], our solution is based on the function inversion technique
of Fiat and Naor [9].

EuroCG’22

52:4 Time and Space Efficient Collinearity Indexing

We first assume, without loss of generality, that no point of A∪B lies on γ. If γ contains
a point of A and a point of B then every query has a positive outcome and the problem
becomes trivial. If γ contains points of only A, say, then these points can form collinear
triples only when q coincides with one of them, a situation that is easy to detect.

Our strategy is to consider all bichromatic lines that connect a point of A with a point of
B. Let a = (xa, ya) ∈ G and b = (xb, yb) ∈ G be two grid points. The line λa,b that passes
through a and b has the equation

y − ya
x− xa

= yb − ya
xb − xa

, or

(yb − ya)(x− xa)− (xb − xa)(y − ya) = 0, or
(yb − ya)x− (xb − xa)y = xayb − yaxb.

Since a and b belong to G, we have

yb−ya, xb−xa ∈ [−2(k−1), 2(k−1)], and xayb−yaxb ∈ [−2t(k−1)−2(k−1)2, 2t(k−1)+2(k−1)2].

Let Λ denote the set of the lines λa,b. Note that |Λ| = O(k4). A line λ ∈ Λ intersects the
y-axis at the point with y-coordinate

y = xayb − yaxb
xa − xb

,

which is a rational with denominator in [−2(k− 1), 2(k− 1)] and numerator in [−2t(k− 1)−
2(k − 1)2, 2t(k − 1) + 2(k − 1)2].

Set
U =

{(
0, i

4k2

)
| |i| ≤ 8tk3 + 8k4

}
.

It is easily checked that (i) each intercept of a line of Λ with the y-axis lies in an interval
delimited by two consecutive points of U , and (ii) each of these intervals contains at most
one such intercept. Indeed, (i) follows from the definition of U and the respective values of
the y-coordinates, and (ii) holds since the smallest difference between two such intercepts is
at least 1/(2k− 2)− 1/(2k− 1), which is larger than 1/(4k2). (An intercept can be shared by
many lines of Λ, but distinct intercepts lie in distinct intervals.) Let V denote the (multi)set
of these intercepts.

Preparing for the Fiat-Naor setup. Write A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}.
Following the considerations in [11, 12], we define a function g : [n] × [n] 7→ γ by setting
g(i, j) equal to the (unique) intersection point of γ with the line `i,j = λai,bj

. The image of
g is the multi-set V .

Let h : U 7→ [n]× [n] be a universal hashing function. That is, for each pair x 6= y ∈ U we
have Pr[h(x) = h(y)] ≤ 1

n2 , where probability is with respect of the random choice of h. One
can construct such a function by encoding U as a range of integers (using only the numerators
of its elements), and encoding [1, n]× [1, n] as [1, n2], using, e.g., the lexicographical order,
and use the class of functions of the form h(i) = (ci+ d (mod p)) (mod n2), where p > n2

is a prime number and c, d are random integers modulo p, with c 6= 0. Finally, define a
function f : [n]× [n] 7→ [n]× [n] by

f(i, j) = h(flrδ(g(i, j))),

for (i, j) ∈ [n]×[n], where δ = 1
4k2 is the separation parameter between any pair of consecutive

elements of U , and flrδ maps each point q ∈ γ to the largest element of U that is smaller
than or equal to q.

B. Aronov, E. Ezra, M. Sharir and G. Zigdon 52:5

Building the data structure. We now use the trade-off result of Fiat and Naor [9] for
inverting a function. It implies that, for any choice of values (S, T) that obey TS3 = n6, one
can preprocess f , by a randomized algorithm, in time O∗(n2) into a data structure that uses
O∗(S) storage, so that, for any (i, j) in the range of f , one can compute, in O∗(T) time, with
probability 1− 1

n2 , a pair in f−1(i, j). Since f may be many-to-one, f−1(i, j) may consist
of many elements; in this case, the Fiat-Naor procedure returns just one of them. This is
sufficient for our analysis as such a scenario implies that we may have several potential pairs
(a, b) ∈ A×B, which are collinear with the query point q—see below.

An element z of the range R ⊆ U of flrδ ◦ g is said to be an h-singleton if for any
z′ 6= z in R we have h(z) 6= h(z′). Standard properties of universal hash functions (see
once again [11, 12]) ensure that the expected number of singleton elements in R is at least
some constant fraction of |R|. Hence, if we repeat this scheme Θ(logn) times, drawing h
independently at each incarnation, the expected number of elements that are not singletons
in all the schemes becomes smaller than 1, and we can therefore assume that our structure
has the property that every element of R is singleton in at least one instance.

We query with a point q ∈ γ in each of these O(logn) structures, collect O(logn) potential
inverses of f at h(flrδ(q)), and claim, using the above reasoning, that if q ∈ R then at least
one of these candidates is a pair (i, j) such that ai, bj and q are collinear. We go over the
candidates and select the one that satisfies this property. If such a candidate exists then we
found a pair in (a, b) ∈ A×B with which q is collinear. Otherwise, if none of the candidates
satisfies the property, we conclude that q is not collinear with any pair in A×B.

In summary, we obtain O(logn) structures, whose overall space complexity is O∗(S), and
the total query time is O∗(T) (where TS3 = n6), as is easily verified. This implies that by
setting T = nδ, we obtain S = n2−δ/3, for any 0 < δ < 1. In particular, we can choose S and
T so that S is subquadratic and T is sublinear. For example, we can choose T = n3/4 and
S = n7/4. This at last completes the proof of Theorem 1.1.

Acknowledgments. We would like to thank Tsvi Kopelowitz for helpful discussions.

References
1 P. K. Agarwal, Simplex range searching and its variants: A review, in Journey through

Discrete Mathematics: A Tribute to Jiří Matoušek (M. Loebl, J. Nešetřil and R. Thomas,
editors), Springer Verlag, Berlin-Heidelberg, 2017, pages 1–3.

2 P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances
in Discrete and Computational Geometry (B. Chazelle, J. E. Goodman and R. Pollack,
editors), Contemp. Math. 223, AMS Press, Providence, RI, 1999, pages 1–56.

3 B. Aronov, E. Ezra, and M. Sharir. Testing polynomials for vanishing on Cartesian products
of planar point sets. Proc. 36th Sympos. on Computational Geometry (2020), 8:1–8:14. Also
in arXiv:2003.09533.

4 L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon, Subquadratic
algorithms for algebraic 3Sum, Discrete Comput. Geom. 61 (2019), 698–734. Also in Proc.
33rd Inter. Sympos. Comput. Geom. (2017), 13:1–13:15.

5 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic
Geometry (Algorithms and Computation in Mathematics). Springer-Verlag, Berlin, Heidel-
berg, 2006.

6 T. M. Chan, More logarithmic-factor speedups for 3Sum, (median,+)-convolution, and
some geometric 3Sum-hard problems, ACM Trans. Algorithms 16 (2020), 7:1–7:23.

7 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry,
Algorithms and Applications, 3rd edition, Springer Verlag, 2008.

EuroCG’22

52:6 Time and Space Efficient Collinearity Indexing

8 A. Dumitrescu and W. L. Steiger, Space-time trade-offs for some ranking and searching
queries. Inf. Process. Lett., 79(5):237-241 (2001).

9 Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In SIAM
Journal on Computing, pages 534–541. ACM, ACM Press, 2000.

10 A. Gajentaan and M. H. Overmars, On a class of O(n2) problems in computational geom-
etry, Comput. Geom. Theory Appl. 5 (1995), 165–185.

11 A. Golovnev, S. Guo, T. Horel, S. Park and V. Vaikuntanathan, Data structures meet
cryptography: 3SUM with preprocessing. Proc. 52nd Annu. ACM SIGACT Sympos. Theory
Comput., STOC, (2020) pp. 294–307. Also in arXiv:1907.08355.

12 Tsvi Kopelowitz and Ely Porat. The Strong 3SUM-INDEXING Conjecture is False. arXiv
e-prints, page arXiv:1907.11206, July 2019. arXiv:1907.11206.

13 Dumitrescu, A. & Steiger, W. Space-time trade-offs for some ranking and searching queries.
Information Processing Letters. 79, 237-241 (2001,9)

Universal Lower Bounds on the Segment Number
of Some Classes of Planar Graphs
Jonathan Klawitter1, Boris Klemz1, Felix Klesen1,
Stephen Kobourov2, Myroslav Kryven2, Alexander Wolff1, and
Johannes Zink1

1 Universität Würzburg
firstname.lastname@uni-wuerzburg.de

2 University of Arizona
firstname.lastname@email.arizona.edu

Abstract
The segment number of a planar graph G is the smallest number of line segments needed for a
planar straight-line drawing of G. Dujmović, Eppstein, Suderman, and Wood [Comp. Geom.,
2007] introduced this measure for the visual complexity of a graph. Several upper bounds on the
segment number have been established, e.g., Dujmović et al. gave an optimal algorithm for trees and
worst-case optimal algorithms for outerplanar graphs, 2-trees, and planar 3-trees. We prove the first
linear universal lower bounds for maximal outerpaths, maximal outerplanar graphs, and 2-trees. This
makes the corresponding algorithms of Dujmović et al. constant-factor approximation algorithms.
For maximal outerpaths, our bound is best possible and can be generalized to circular arcs.

1 Introduction

A drawing of a given graph can be evaluated by various quality measures depending on the
concrete purpose of the drawing. Classic examples of such measures include drawing area,
number of edge crossings, neighborhood preservation, and stress of the embedding. More
recently, Schulz [5] proposed the visual complexity of a drawing, determined by the number of
geometric objects (such as line segments or circular arcs) that the drawing consists of. It has
been experimentally verified that people without mathematical background tend to prefer
drawings with low visual complexity [4]. The visual complexity of a graph drawing depends
on the drawing style, as well as on the underlying graph properties. A well-studied measure
of the visual complexity of a graph is its segment number, introduced by Dujmović, Eppstein,
Suderman, and Wood [1]. It is defined as follows. Recall that a straight-line drawing of a
graph maps (i) the vertices of the graph injectively to points in the plane and (ii) the edges
of the graph to straight-line segments that connect the corresponding points. A segment in
such a drawing is a maximal set of edges that together form a line segment. For a given
straight-line drawing Γ of a graph, the set of segments it induces is unique. The cardinality
of that set is the segment number of Γ. The segment number, seg(G), of a planar graph G is
the smallest segment number over all crossing-free straight-line drawings of G.

Previous work. Dujmović et al. [1] pointed out two natural lower bounds for the segment
number: (i) η(G)/2, where η(G) is the number of odd-degree vertices of G, and (ii) the
slope number slope(G) of G, which is defined as follows. The slope number slope(Γ) of a
straight-line drawing Γ of G is the number of different slopes used by any of the straight-line
edges in Γ. Then slope(G) is the minimum of slope(Γ) over all straight-line drawings Γ
of G. Dujmović et al. also showed that any tree T admits a drawing with seg(T) = η(T)/2
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

53:2 Universal Lower Bounds on the Segment Number

segments and slope(T) = ∆(T)/2 slopes, where ∆(T) is the maximum degree of a vertex in T .
These drawings, however, use exponential area. Further, Dujmović et al. showed that every
maximal outerplanar graph G with n vertices admits an outerplanar straight-line drawing
with at most n segments. They showed that this is worst-case optimal. They also gave
(asymptotically) worst-case optimal algorithms for 2-trees and plane (where the combinatorial
embedding and outer face is fixed) 3-trees. Finally, they showed that every triconnected
planar graph with n vertices can be drawn using at most 5n/2− 3 segments. For the special
cases of triangulations and 4-connected triangulations, Durocher and Mondal [2] improved
the upper bound of Dujmović et al. to (7n− 10)/3 and (9n− 9)/4, respectively. The former
bound implies a bound of (16n− 3m− 28)/3 for arbitrary planar graphs with n vertices and
m edges. The arc number, arc(G), of a graph G is the smallest number of circular arcs in
any circular-arc drawings of G. It has been introduced by Schulz [5], who gave algorithms
for drawing series-parallel graphs, planar 3-trees, and triconnected planar graphs with few
circular arcs. For trees, he used the additional flexibility of circular arcs to trade an increase
in the visual complexity for a reduction in the size of the drawing area (from exponential to
a grid of size O(n2.81)).

Contribution and outline. We prove the first linear universal lower bound of bn/2c+ 2 for
the segment number of maximal outerpaths with n vertices; see Sec. 3. We obtain our results
by using more general pseudo k-arcs, that is, an arrangement of curves in the plane such
that each pair of curves intersects at most k times. For k = 1 these are pseudo segments
and for k = 2 these are pseudo (circular) arcs. This also yields a universal lower bound of
d2n/7e for the arc number of maximal outerpaths. We present infinite families of maximal
outerpaths using few segments, arcs, and pseudo arcs, which show that our bound on the
segment number is tight. Via considering maximal outerpaths, we also obtain a universal
lower bound of (n + 7)/5 for the segment number of 2-trees (which contain the maximal
outerplanar graphs); see Sec. 4. This makes the corresponding algorithms of Dujmović et al.
constant-factor approximation algorithms.

Results marked with a “?” are available in the full version [3].

2 Notation and Terminology

Let G be a planar and connected graph and let Γ be a planar drawing of G. The unique
unbounded face of Γ is called its outer face; the remaining faces are called internal. Vertices
(edges) belonging to the boundary of the outer face are called outer vertices (edges); the
remaining vertices (edges) are called internal. A plane graph is a planar graph equipped
with a combinatorial embedding and a distinguished outer face.

Let s be a segment in a straight-line drawing Γ, and let v be an endpoint of s. Geometrically
speaking, we could extend s at v into a face f . We say that s has a port at v in f . We call
v open if v has at least one port and closed otherwise. Let port(Γ) be the number of ports
in Γ, and let port(G) be the minimum number of ports over all straight-line drawings of G.
Observe that, for any planar graph G, it holds that seg(G) = port(G)/2.

An outerplanar graph is a plane graph with all vertices outer. The weak dual graph of an
outerplane graph is its dual graph without the vertex corresponding to the outer face; it is
known to be a tree. An outerplane graph whose weak dual is a path is called an outerpath.
A maximal outerplanar graph is an outerplanar graph with the maximum number of edges.
Similarly, we define a maximal outerpath. A 2-tree is a graph that can be constructed by
starting with a K3 and iteratively adding vertices that are adjacent to both endpoints of an

Klawitter et al. 53:3

existing edge of the current 2-tree. Clearly, all 2-trees are planar and all maximal outerplanar
graphs are 2-trees. We call the sequence of vertices v1, v2, . . . , vn of a 2-tree G its stacking
order if, for each i ∈ {3, . . . , n}, the graph Gi induced by the vertices v1, v2, . . . , vi is a 2-tree.
If G is a maximal outerpath, each Gi is a maximal outerpath.

3 Maximal Outerpaths

In this section, we generalize the concept of segments and arcs to pseudo k-arcs and give a
universal lower bound for the number of pseudo k-arcs in drawings of maximal outerpaths.
An arrangement of pseudo k-arcs is a set of curves in the plane such that any two of the curves
intersect at most k times. (If two curves share a tangent, this counts as two intersections.)
We forbid self-intersections, but for k ≥ 2 we allow a pseudo k-arc to be closed.

To show the bound, we present a charging scheme that assigns internal edges to pseudo
k-arcs. Any outerpath drawing has exactly n− 3 internal edges. A pseudo k-arc is long if
it contains at least k + 1 internal edges; otherwise it is short. Let arck denote the number
of pseudo k-arcs, and let arci

k denote the number of pseudo k-arcs with i internal edges.
The internal edges of a long arc α subdivide the outerpath into subgraphs H0, H1, . . . ,H`

called bays; see Fig. 1. Since an outerpath can be constructed by a sequence of (outer)
2-tree stacking operations, we have the partial drawings P3, P4, . . . , Pn. A pseudo k-arc α is
incident to a face f if α contains an edge incident to a vertex of f . We say that α is active
in Pi if α is incident to the last face that has been added.

e1

α

H5

H4

H0

H1

H2

H3

H6e2 e3

e4

e5

e6

Figure 1 An outerpath represented by a pseudo 2-arc arrangement. The internal edges e1, . . . , e6
of arc α subdivide the outerpath into bays H0, . . . , H6. For our charging, we count crossings of α
with other arcs (indicated by red crosses).

I Lemma 1 (?). For any i ∈ {3, . . . , n}, a partial outerpath drawing Pi contains at most
one active long pseudo k-arc.

We do a 2-round assignment to assign each internal edge to a pseudo k-arc. We start
with the round-1 assignment. Let I denote the set of internal edges of long pseudo k-arcs
starting at the (k + 1)-th internal edge (as for the first k internal edges an arc is still short).
We assign all n− 3 internal edges except for the edges in I to their own pseudo k-arcs:

(n− 3)− |I| = k arc≥k
k +(k − 1) arck−1

k + · · ·+ arc1
k = k arck −

k∑

i=0
(k − i) arci

k (1)

Now we describe the round-2 assignment. There, we charge internal edges to crossings,
which we can charge in turn to pseudo k-arcs. A crossing is a triplet (α, β, p) that consists of
two pseudo k-arcs α and β and a point p at which α and β intersect. If there is a tangential
point between α and β, we count two crossings at that tangential point.

Next we consider the number of crossings in an outerpath drawing that involve the long
arcs. In the round-2 assignment we charge the surplus internal edges of the long arcs to the

EuroCG’22

53:4 Universal Lower Bounds on the Segment Number

other pseudo k-arcs that are involved in the crossings we counted. Suppose α has ` internal
edges (` > k). For each bay H ∈ {H1, . . . ,H`−1}, there are ≥ 2 crossings of α with other
pseudo k-arcs – one at the first and one at the last vertex of H; see the red crosses in Fig. 1.

These vertices are individual for each pair of consecutive bays. Hence, the crossings must
all be different as well. Note that a tangential point may be shared by some Hj and Hj+2
(for j ∈ {1, . . . , `− 3}); see H2 and H4 in Fig. 1 for an example. However, we can still charge
a crossing to each of Hj and Hj+2 since a tangential point counts for two crossings. An
exception are H0 and H`. They may share a crossing with H1 and H`−1, respectively, as H6
and H5 do in Fig. 1. Hence, we count only one crossing for H0 and H`.

Therefore, for each internal edge e of I we have two individual crossings of the preceding
bay, e.g., in Fig. 1 H2 provides two crossings for e3. We denote the set of these crossings
by C. Note that the crossings of H0, H1, . . . ,Hk−1, and H` are not included in C since the
succeeding internal edges are not contained in I. Clearly, we know that 2|I| = |C|.

Next, we give an upper bound for |C| in terms of arck. The main argument we exploit
is that, by definition, each pseudo k-arc can participate in at most k crossings with the
(current) long arc. However, we need to be a bit careful for the case when one long pseudo
k-arc becomes inactive and a new pseudo k-arc becomes long, i.e., we consider the transition
between one long arc to a new long arc. For each long arc, we count the crossings in
Hk, Hk+1, . . . ,H` as described before. We may get additional crossings because potentially
any pseudo k-arc could intersect each long arc k times. To compensate for the double
counting at transitions, we introduce the transition loss tk. Moreover, we cannot count
crossings of the first long arc with (other) long arcs, and we do not count the crossings of
the very first bay and the very last bay. This yields the following.

2|I| = |C| ≤ k · (arck︸ ︷︷ ︸
each pseudo k-arc intersects the current

long pseudo k-arc at most k times

the first long pseudo k-arc does not provide
crossings with another long pseudo k-arc︷︸︸︷

−1) −(2k − 1)︸ ︷︷ ︸
the crossings of H0, H1, . . . , Hk−1 of the first

long pseudo k-arc are not counted

the crossing of H` of the last long
pseudo k-arc is not counted︷︸︸︷

−1 + tk︸︷︷︸
transition

loss
(2)

Plugging Eq. (2) into Eq. (1), we obtain the following general formula, which gives a
lower bound on the number of pseudo k-arcs for any outerpath relative to n and k.

(n− 3)− k(arck −1)− (2k − 1)− 1 + tk
2 ≤ k arck −

k∑

i=0
(k − i) arci

k

⇔ arck ≥
2n− 6 + 2

∑k
i=0(k − i) arci

k −tk
3k + 1 (3)

Since this formula still contains unresolved variables, we now resolve tk.

I Lemma 2 (?). There is a loss of at most one crossing per transition from one long pseudo k-
arc to another long pseudo k-arc in any outerpath drawing. Hence, tk ≤ max{0, arc>k

k −1} ≤
arc>k

k = arck −
∑k

i=0 arci
k where arc>k

k is the number of long pseudo k-arcs.

Applying this insight to Eq. (3), we get

arck ≥
2n+ 3k − 6 +

∑k
i=0(2k − 2i+ 1) arci

k

3k + 1 . (4)

Since this general formula is hard to grasp and still contains the unresolved variables arci
k,

we next investigate this formula for specific values of k and prove lower bounds on arci
k.

Let us start with k = 1, i.e, outerpath drawings on pseudo segments. We use the following
lemma to fill the unresolved values in Eq. (4).

Klawitter et al. 53:5

{

r

(a) Pr (b) Q6

(c) U2

Figure 2 Three families of maximal outerpaths with (a) n/2 + 2 segments (hence, matching the
lower bound from Thm. 1), (b) n/3 + 1 circular arcs, and (c) (5n+ 18)/16 < n/3 pseudo 2-arcs.

I Lemma 3 (?). For k = 1 and n ≥ 3, in any outerpath drawing either arc0
1 ≥ 3 or (arc0

1 ≥ 2
and arc1

1 ≥ 3).

Now we can use Lem. 3 to fill the gaps in Eq. (4) for k = 1:

I Theorem 1. For any maximal outerpath P with n vertices, seg(P) ≥ arc1(P) ≥ bn
2 c+ 2.

Proof. We plug the result from Lem. 2 into Eq. (4) for k = 1 and use Lem. 3 to observe
that 3 arc0

1 + arc1
1 ≥ 9:

arc1 ≥
2n− 3 + 3 arc0

1 + arc1
1

4 = n

2 + 3 arc0
1 + arc1

1−3
4 ≥ n+ 3

2

As we cannot have partial (pseudo) segments, we can round up to dn+3
2 e = bn

2 c+ 2. J

For k = 2, i.e, for (pseudo) circular arcs, Eq. (4) leads to the following lower bound.

I Theorem 2. For any maximal outerpath P with n vertices, arc(P) ≥ arc2(P) ≥ d 2n
7 e.

Proof. We plug the result from Lem. 2 into Eq. (4) for k = 2:

arc2 ≥
2n+ 5 arc0

2 +3 arc1
2 +1 arc2

2
7 ≥ 2n

7
J

For k > 2, it is not obvious how to generalize circular arcs. However, we can make a
similar statement for curve arrangements. This follows directly from Eq. (4).

I Proposition 1. Let P be a maximal outerpath with n vertices drawn on an arrangement
of curves in the plane where curves intersect pairwise at most k times, can be closed, but do
not self-intersect. Then, the number arck(P) of curves required is d 2n+3k−6

3k+1 e.

We show by three infinite families of examples in Fig. 2 that our bounds for segments and
arcs are tight. This implies, somewhat surprisingly, that, at least for worst-case instances,

EuroCG’22

53:6 Universal Lower Bounds on the Segment Number

using pseudo segments requires as many elements as using straight line segments. Whether
this also holds for pseudo circular arcs and circular arcs is an open question. With circular
arcs, we could not beat a bound of n/3, which we could do for pseudo circular arcs.

I Proposition 2 (?). For every r ∈ N, there exist maximal outerpaths Pr, Qr, and Ur

with (i) Pr has 2r + 6 vertices and seg(Pr) ≤ r + 5 = n
2 + 2, (ii) Qr has 3r vertices and

arc(Qr) ≤ r+1 = n
3 +1, (iii) Ur has 16r+6 vertices and arc2(Ur) ≤ 5r+3 = 5n+18

16 ≈ 0.3125n.

4 2-Trees

The main idea for a universal lower bound for 2-trees (and for its subclass of maximal
outerplanar graphs) is that a 2-tree G either has many degree-2 vertices and thus requires
many segments (recall that, in a 2-tree, we stack vertices onto edges and hence degree-2
vertices cannot be closed) or G can be obtained by “gluing” few maximal outerpaths for
which we know (tight) universal lower bounds on the segment number; see Thm. 1.

Unfortunately, for gluing maximal outerpaths, we cannot directly employ Thm. 1 because
it does not tell us how many ports we lose when gluing. Therefore, we first investigate the
distribution of ports within a straight-line drawing of a maximal outerpath. In particular, for
any straight-line drawing of any maximal outerpath, we can find an injective assignment of
ports to vertices such that every port is assigned to its own vertex or to a neighboring vertex.

Using this assignment, we can show that we lose at most seven (assigned) ports by gluing
an outerpath to a 2-tree. Consequently, one can see that any 2-tree drawing has at least
2(n+ 7)/5 ports, which yields the following result.

I Theorem 3 (?). Let G be a 2-tree with n vertices. Then seg(G) ≥ (n+ 7)/5.

5 Discussion

Circular-arc drawings are a natural generalization of straight-line drawings. What is the
maximum ratio between the segment number and the arc number of a graph? Note that
seg(K3)/ arc(K3) = 3, but it is open whether it can be larger. What is the complexity of
deciding whether the arc number of a given graph is strictly smaller than its segment number?

References
1 Vida Dujmović, David Eppstein, Matthew Suderman, and David R. Wood. Drawings of

planar graphs with few slopes and segments. Comput. Geom. Theory Appl., 38(3):194–212,
2007. doi:10.1016/j.comgeo.2006.09.002.

2 Stephane Durocher and Debajyoti Mondal. Drawing plane triangulations with few segments.
Comput. Geom. Theory Appl., 77:27–39, 2019. doi:10.1016/j.comgeo.2018.02.003.

3 Ina Goeßmann, Jonathan Klawitter, Boris Klemz, Felix Klesen, Stephen Kobourov, My-
roslav Kryven, Alexander Wolff, and Johannes Zink. The segment number: Algorithms
and universal lower bounds for some classes of planar graphs. arXiv preprint, 2022. URL:
https://arxiv.org/abs/2202.11604.

4 Philipp Kindermann, Wouter Meulemans, and André Schulz. Experimental analysis of
the accessibility of drawings with few segments. J. Graph Alg. Appl., 22(3):501–518, 2018.
doi:10.7155/jgaa.00474.

5 André Schulz. Drawing graphs with few arcs. J. Graph Alg. Appl., 19(1):393–412, 2015.
doi:10.7155/jgaa.00366.

Outside-Obstacle Representations
with All Vertices on the Outer Face
Oksana Firman1, Philipp Kindermann2, Jonathan Klawitter1,
Boris Klemz1, Felix Klesen1, and Alexander Wolff1

1 Universität Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

2 Universität Trier, Germany
kindermann@uni-trier.de

Abstract
An obstacle representation of a graph G consists of a set of polygonal obstacles and a drawing
of G as a visibility graph with respect to the obstacles: vertices are mapped to points and edges
to straight-line segments such that each edge avoids all obstacles whereas each non-edge intersects
at least one obstacle. Obstacle representations have been investigated quite intensely over the
last few years. Here we focus on outside-obstacle representations that use only one obstacle in the
outer face of the drawing. It is known that every outerplanar graph admits such a representation
[Alpert, Koch, Laison; DCG 2010]. We strengthen this result by showing that every partial 2-tree
has an outside-obstacle representation. We also consider a restricted version of outside-obstacle
representations where the vertices lie on a regular polygon. We construct such regular representations
for partial outerpaths, partial cactus graphs, and partial grids.

1 Introduction

Recognizing graphs that have a certain type of geometric representation is a well-established
field of research dealing with, for example, interval graphs, unit disk graphs, coin graphs, and
visibility graphs. Given a set C of obstacles (in our case: polygons) and a set P of points in
the plane, the visibility graph GC(P) has a vertex for each point in P and an edge pq for any
two points p and q in P that can see each other, that is, the line segment pq that connects p
and q does not intersect any obstacle in C. An obstacle representation of a graph G consists
of a set C of obstacles in the plane and a mapping of the vertices of G to a set P of points
such that G = GC(P). Drawing the edges of the visibility graph as straight-line segments
allows us to differentiate between two types of obstacles: outside obstacles lie in the outer
face of the drawing, and inside obstacles lie in the complement of the outer face; see Fig. 1.

Every graph trivially admits an obstacle representation: take an arbitrary drawing and
“fill” each face with an obstacle. However, this can lead to a large number of obstacles. Hence,
it makes sense to consider the optimization problem of finding an obstacle representation

Figure 1 Two representations of C6: with an inside obstacle (left) and an outside obstacle (right).

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

54:2 Outside-Obstacle Representations with All Vertices on the Outer Face

Figure 2 The wheel graph W6 admits an outside-obstacle representation – but not a convex one
(see full version [6]). Non-edges are dashed.

with the minimum number of obstacles. For a graph G, the obstacle number obs(G) is the
smallest number of obstacles that suffice to represent G as a visibility graph.

In this paper, we focus on outside-obstacle representations, that is, obstacle representations
with a single outside obstacle and without any inside obstacles. For such a representation,
it suffices to specify the position of the vertices. The outside obstacle is simply the whole
outer face of the straight-line drawing of the graph. We also consider three special types:
In a convex outside-obstacle representation, the vertices must be in convex position; in a
circular outside-obstacle representation, the vertices must lie on a circle; and in a regular
outside-obstacle representation, the vertices must form a regular n-gon.

In general, the class of graphs representable by outside obstacles is not closed under
taking subgraphs, but the situation is different for graphs admitting an outside-obstacle
representation that is reducible, meaning that all of its edges are incident to the outer face:

I Observation 1. If a graph G admits a reducible outside-obstacle representation, then every
subgraph of G also admits such a representation.

Previous Work. The notion of the obstacle number of a graph has been introduced by Alpert
et al. [1]. They also introduced inside-obstacle representations, i.e., representations without
an outside-obstacle. They characterized the class of graphs that have an inside-obstacle
representation with a single convex obstacle and showed that every outerplanar graph has
an outside-obstacle representation. They showed, for any m ≤ n, that obs(K∗m,n) ≤ 2, where
K∗m,n with m ≤ n is the complete bipartite graph minus a matching of size m. They also
proved that obs(K∗5,7) = 2. Pach and Sarıöz [10] showed that obs(K∗5,5) = 2. More recently,
Berman et al. [3] suggested some necessary conditions for a graph to have obstacle number 1,
which they used to find a planar 10-vertex graph that has no 1-obstacle representation.

Obviously, any n-vertex graph has obstacle number O(n2). Balko et al. [2] improved this
to O(n logn). For the lower bound, Dujmović and Morin [5] showed that there are n-vertex
graphs whose obstacle number is Ω(n/(log logn)2), improving on previous results [1, 8, 9].

Chaplick et al. [4] proved that the class of graphs with an inside-obstacle representation is
incomparable with the class of graphs with an outside-obstacle representation. They showed
that any graph with at most seven vertices has an outside-obstacle representation, which
does not hold for a specific graph with eight vertices.

Our Contribution. We first establish two combinatorial conditions for convex outside-
obstacle representations (see Section 2) that we later use to establish our main results. In
particular, we introduce a necessary condition that can be used to show that a given graph
does not admit a convex representation as, e.g., the graph in Fig. 2. We construct regular
reducible outside-obstacle representations for outerpaths, grids, and cacti; see Section 3.
Finally, we strengthen the result of Alpert et al. [1] about outside-obstacle representations of

O. Firman et al. 54:3

outerplanar graphs by showing that every (partial) 2-tree admits a reducible outside-obstacle
representation with all vertices on the outer face; see Section 4. We remark that outerplanar
graphs and series-parallel graphs are partial 2-trees.

2 Conditions for Convex Outside-Obstacle Representations

We start with a sufficient condition. Suppose that we have a convex outside-obstacle
representation of a graph G. Let σ be the clockwise circular order of the vertices of G along
the convex hull. If all neighbors of a vertex v of G are consecutive in σ, we say that v has
the consecutive-neighbors property, which implies that all non-edges incident to v trivially
intersect the outer face in the immediate vicinity of v; see Fig. 3a.

I Lemma 2 (Consecutive-neighbors property). For a graph G, a circular vertex order σ admits
a convex outside-obstacle representation if a subset of V (G) that covers all non-edges has the
consecutive-neighbors property.

v v′

x y

g(a) (b)
v

ē

[v′, y][x, v]

Figure 3 (a) Vertex v has the consecutive-neighbors property; (b) gap g is a candidate gap for ē.

Next, we derive a necessary condition. For any two consecutive vertices v and v′ on the
convex hull that are not adjacent in G, we say that the line segment g = vv′ is a gap. Then
the gap region of g is the inner face of G+ vv′ incident to g; see the gray region in Fig. 3b.
(We consider the gap region open, but add to it the relative interior of the line segment vv′,
so that the non-edge vv′ actually intersects its own gap region.) Observe that each non-edge
ē = xy that intersects the outer face has to intersect some gap region in an outside-obstacle
representation. For vertices a and b, the set [a, b] ⊆ V (G) consists of a and b and all vertices
that succeed a and precede b in σ. Suppose that g lies between x and y with respect to σ,
that is, [v, v′] ⊆ [x, y]. We say that g is a candidate gap for ē if there is no edge that connects
a vertex in [x, v] and a vertex in [v′, y]. (Otherwise ē cannot intersect the gap region of g.)

I Lemma 3 (Gap condition). For a graph G, a circular vertex order σ admits a convex
outside-obstacle representation only if there exists a candidate gap for each non-edge of G.

It remains an open problem whether the gap condition is also sufficient. We can use the
gap condition for no-certificates. To this end, we derived a SAT formula from the following
expression, which checks the gap condition for every non-edge of a graph G:

∧

xy /∈E(G)

 ∨

v∈[x,y)

 ∧

u∈[x,v],w∈(v,y]

uw /∈ E(G)

 ∨

∨

v∈[y,x)

 ∧

u∈[y,v],w∈(v,x]

uw /∈ E(G)

We have used this formula to test whether all small cubic graphs (with up to 16 vertices)
admit convex outside-obstacle representations. The only counterexample we found was the
Petersen graph. The so-called Blanusa snarks, the Pappus graph, the dodecahedron, and the
generalized Peterson graph G(11, 2) satisfy the gap condition. The latter three graphs do
admit convex outside-obstacle representations [7]. This motivates the following conjecture.

EuroCG’22

54:4 Outside-Obstacle Representations with All Vertices on the Outer Face

1
2

4

6

9

5

3

7

8

2

1

3

9

5

6

4

7
8

Figure 4 Constructing a reducible regular outside-obstacle representation of a cactus.

I Conjecture 4. Every connected cubic graph except the Peterson graph admits a convex
outside-obstacle representation.

The smallest graph (and only graph with six vertices) that does not satisfy the gap
condition is the wheel graph W6 with six vertices (see the full version [6]). Obviously, W6
does not admit a convex outside-obstacle representation, but it does admit a (non-convex)
outside-obstacle representation; see Fig. 2.

3 Regular Outside-Obstacle Representations

In this section, we show that some graph classes admit regular outside-obstacle representations.
A cactus is a connected graph where every edge is contained in at most one simple cycle. An
outerpath is an outerplanar graph that admits a drawing whose weak dual is a path. The
constructions for the following result are rather simple; see Figs. 4–6.

I Theorem 5. The following graphs have reducible regular outside-obstacle representations:
1. every cactus; 2. every grid; 3. every outerpath.

Proof sketch. We sketch our algorithms. For correctness and reducibility, see [6].
1. Let G be a cactus, and let T be the block-cut tree of G, which has a vertex for each

block (i.e., a biconnected component) and for each cut vertex. There is an edge in the
block-cut tree for each pair of a block and a cut vertex that belongs to it. We root T in
an arbitrary block vertex. We construct a drawing of G on a circle, starting with the root
block and then inserting the other blocks in the order of a BFS traversal of T ; see Fig. 4. We
insert the vertices of a block B as an interval between the cut vertex that connects B to its
parent in T and its clockwise successor in the circular order. The resulting drawing has the
consecutive-neighbors property. Hence, by Lemma 2, it is an outside-obstacle representation.

2. Given the graph Pk × P` of a square k × ` grid, we order the vertices of each copy of
the path Pk in a zig-zag mannar as shown in Fig. 5. We place the copies one after the other
around the circle such that the vertices of each copy form an interval.

3. Let G be an outerpath with n vertices. Since our representation will be reducible, we
can assume that G is a maximal outerpath, i.e., for any vertex pair {u, v}, G + uv is not
outerplanar. Let 〈v1, v2, . . . , vn〉 be a stacking order of G, that is, for each i ∈ {3, . . . , n}, the
graph Gi = G[v1, v2, . . . , vi] is a maximal outerpath. Vertex vj (3 < j < n) is incident to an
inner edge vivj . We place vj cyclically next to vi, avoiding the (empty) arc of the circle that
corresponds to the previous inner edge; see Fig. 6. J

O. Firman et al. 54:5

1 2 3 4 5

x

y

1

2

3

4

5

1

2

3

4

5 t

s

Figure 5 Constructing a reducible regular outside-obstacle representation of the grid P5�P3.

1

2

3

4 5

6 7

8

9

11

10

12

1
2

9

4

8

5

11

7

6

1210

3

Figure 6 A maximal outerpath and its reducible regular outside-obstacle representation with
inner edges (black), outer edges (blue), weak dual (green). Vertices are numbered in stacking order.

Our representations for cacti and outerpaths depend only on the vertex order rather than
the exact positions. Hence, for such graphs every cocircular point set is universal, i.e., every
set of n points on a circle can be used for the vertices of an outside-obstacle representation.

Every graph with up to six vertices – except for the graph in Fig. 2 – admits a regular
outside-obstacle representation [6]. The 8-vertex outerplanar graph in Fig. 7, however, does
not admit any regular outside-obstacle representation [6].

4 Outside-Obstacle Representations for Partial 2-Trees

The graph class of 2-trees is recursively defined as follows: K2 is a 2-tree. A graph obtained
from a 2-tree G by adding a new vertex x with exactly two neighbors u, v that are adjacent

wv

v
w

x

u

Figure 7 An outerplanar graph G′ and a circular outside-obstacle representation of G′. The
dashed red non-edge uv will stop intersecting the outer face of G′ if we move v towards the point x.

EuroCG’22

54:6 Outside-Obstacle Representations with All Vertices on the Outer Face

Figure 8 Step (1) in the proof of Theorem 6.

in G is a 2-tree. We say that x is stacked on the edge uv. The edges xu and xv are called
the parent edges of x. For the full proof of the following theorem, see [6].

I Theorem 6. Every 2-tree admits a reducible outside-obstacle representation with all vertices
on the outer face.

Proof sketch. Every 2-tree T can be constructed through the following iterative procedure:
(1) We start with one edge, called the base edge and mark its vertices as inactive. We stack
any number of vertices onto the base edge and mark them as active. During the entire
procedure, every present vertex is marked either as active or inactive. Moreover, once a
vertex is inactive, it remains inactive for the remainder of the construction. (2) We pick one
active vertex v and stack any number of vertices onto each of its two parent edges. All the
new vertices are marked as active and v is marked as inactive. (3) If there are active vertices
remaining, repeat step (2). We construct a drawing of T by geometrically implementing this
iterative procedure, so that after every step of the algorithm the present part of the graph is
realized as a straight-line drawing satisfying the following invariants:

(i) Each vertex v not incident to the base edge is associated with an open circular arc Cv

that lies completely in the outer face and whose endpoints belong to the two parent
edges of v. Moreover, v is located at the center of Cv and the parent edges of v are
below v.

(ii) Each non-edge passes through the circular arc of at least one of its incident vertices.
(iii) For each active vertex v, the region Rv enclosed by Cv and the two parent edges of v

is empty, meaning that Rv is not intersected by any edges, vertices, or circular arcs.
(iv) Every vertex is incident to the outer face.

It is easy to see that once the procedure terminates with a drawing that satisfies invariants
(i)–(iv), we have indeed obtained the desired representation (in particular, the combination
of invariants (i) and (ii) implies that each non-edge passes through the outer face).

Construction. To carry out step (1), we draw the base edge horizontally and place the
stacked vertices on a common horizontal line above the base edge, see Fig. 8. Circular arcs
that satisfy the invariants are now easy to define. Suppose we have obtained a drawing Γ of
the graph obtained after step (1) and some number of iterations of step (2) such that Γ is
equipped with a set of circular arcs satisfying the invariants (i)–(iv). We describe how to
carry out another iteration of step (2) while maintaining the invariants. Let v be an active
vertex. By invariant (i), both parent edges of v are below v. Let e` and er be the left and
right parent edge, respectively. Let `1, `2, . . . , `i and r1, r2, . . . , rj be the vertices stacked
onto e` and er, respectively. We refer to `1, `2, . . . , `i and r1, r2, . . . , rj as the new vertices;
the vertices of Γ are called old. We place all the new vertices on a common horizontal line h
that intersects Rv above v, see Fig. 9. The vertices `1, `2, . . . , `i are placed inside Rv, to the
right of the line e` extending e`. Symmetrically, r1, r2, . . . , rj are placed inside Rv, to the
left of the line er extending er. We place `1, `2, . . . , `i close enough to e` and r1, r2, . . . , rj

O. Firman et al. 54:7

Rv

Cv

h

e`

e`(α
∗)

er

x(α∗)`1 `2

v

r1 r2 r3

Figure 9 Step (2) in the proof of Theorem 6. The shaded areas do not contain any vertices.

close enough to er such that the following properties are satisfied: (a) None of the parent
edges of the new vertices intersect Cv. (b) For each new vertex, the unbounded open cone
obtained by extending its parent edges to the bottom does not contain any vertices.

Each of the old vertices retains its circular arc from Γ. By invariants (i) and (iii) for Γ, it
is easy to define circular arcs for the new vertices that satisfy invariant (i). Using invariants
(i)–(iv) for Γ and properties (a) and (b), it can be shown that all invariants are satisfied. J

5 Open Problems

(1) What is the complexity of deciding whether a given graph admits an outside-obstacle
representation? (2) Does every graph that admits a circular vertex order satisfying the gap
condition admit a convex outside-obstacle representation? (3) Does every graph that admits
a convex outside-obstacle representation also admit a circular outside-obstacle representation?
(4) Does every outerplanar graph admit a (reducible) convex outside-obstacle representation?
(5) Which other classes of graphs admit regular or circular outside-obstacle representations?

References
1 Hannah Alpert, Christina Koch, and Joshua D. Laison. Obstacle numbers of graphs. Discrete

Comput. Geom., 44(1):223–244, 2010. doi:10.1007/s00454-009-9233-8.
2 Martin Balko, Josef Cibulka, and Pavel Valtr. Drawing graphs using a small number of ob-

stacles. Discrete Comput. Geom., 59(1):143–164, 2018. doi:10.1007/s00454-017-9919-2.
3 Leah Wrenn Berman, Glenn G. Chappell, Jill R. Faudree, John Gimbel, Chris Hartman, and

Gordon I. Williams. Graphs with obstacle number greater than one. J. Graph Algorithms
Appl., 21(6):1107–1119, 2017. doi:10.7155/jgaa.00452.

4 Steven Chaplick, Fabian Lipp, Ji-won Park, and Alexander Wolff. Obstructing visibilities
with one obstacle. In Yifan Hu and Martin Nöllenburg, editors, Proc. 24th Int. Symp.
Graph Drawing & Network Vis. (GD), volume 9801 of Lect. Notes Comput. Sci., pages
295–308. Springer-Verlag, 2016. URL: http://arxiv.org/abs/1607.00278, doi:10.1007/
978-3-319-50106-2_23.

5 Vida Dujmović and Pat Morin. On obstacle numbers. Electr. J. Combin., 22(3):paper
#P3.1, 7 pages, 2015. See also arxiv.org/1308.4321. URL: http://www.combinatorics.org/
ojs/index.php/eljc/article/view/v22i3p1.

6 Oksana Firman, Philipp Kindermann, Jonathan Klawitter, Boris Klemz, Felix Klesen, and
Alexander Wolff. Outside-obstacle representations with all vertices on the outer face. Arxiv
report, 2022. URL: http://arxiv.org/abs/2202.13015.

EuroCG’22

54:8 Outside-Obstacle Representations with All Vertices on the Outer Face

7 Christian Goldschmied. 1-Hindernis-Sichtbarkeitsgraphen von kubischen Graphen. Bache-
lor’s thesis, Institut für Informatik, Universität Würzburg, 2021. URL: http://www1.pub.
informatik.uni-wuerzburg.de/pub/theses/2021-goldschmied-bachelor.pdf.

8 Padmini Mukkamala, János Pach, and Dömötör Pálvölgyi. Lower bounds on the obstacle
number of graphs. Electr. J. Combin., 19(2):paper #P32, 8 pages, 2012. URL: http:
//www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p32.

9 Padmini Mukkamala, János Pach, and Deniz Sarıöz. Graphs with large obstacle numbers.
In Dimitrios M. Thilikos, editor, Proc. Conf. Graph-Theoretic Concepts Comput. Sci.
(WG), volume 6410 of Lect. Notes Comput. Sci., pages 292–303. Springer-Verlag, 2010.
doi:10.1007/978-3-642-16926-7_27.

10 János Pach and Deniz Sarıöz. On the structure of graphs with low obstacle number. Graphs
& Combin., 27(3):465–473, 2011. doi:10.1007/s00373-011-1027-0.

Linear Time Point Location in Delaunay Simplex
Enumeration over all Contiguous Subsequences
Felix Weitbrecht

Universität Stuttgart, Germany
weitbrecht@fmi.uni-stuttgart.de

Abstract
Given a spatio-temporal point set P = {p1, p2, . . . , pn} ⊂ Rd with timestamps t1 < t2 < · · · < tn, we
want to compute T , the set of all distinct Delaunay d-simplices over all Delaunay triangulations of
contiguous subsequences {pi, pi+1, . . . , pj} of P . We extend the output-sensitive approach of [5] into
arbitrary dimensions, improve its runtime to O(|T |), and introduce various other improvements.

1 Introduction

The Delaunay triangulation and many of its subcomplexes, such as α-shapes [4], are valuable
tools to study point set data. If points are associated with timestamps t1 < t2 < · · · < tn,
considering points with contiguous subsequences of timestamps (ti, ti+1, . . . , tj) can provide
additional insight [2]. For example, one can visualize the shape of storm events within a
certain time window [3], or reconstruct animated meshes from a series of time-deforming
point clouds [1, 6]. For this we need not only the Delaunay d-simplices of the full point set,
but also those of all time windows within the point set. We call the set of these d-simplices T
and present an algorithm to compute T in optimal time O(|T |).

This result might be surprising since we implicitly compute the Delaunay triangulation
in linear time when |T | is O(n), but this can only happen in special cases. Intuitively, |T | can
only be O(n) if the spatial order and temporal order of the points are strongly correlated.

We extend the hole triangulation framework of [5], which computes T , into arbitrary
dimensions. For this purpose we maintain for every hole triangulation the star of the point
whose removal is represented by that hole triangulation. Together with a series of pointers,
this allows accomplishing faster point location, resulting in an overall output-sensitive linear
runtime of O(|T |). A sample implementation of our algorithm is available on GitHub [7].

We go over notation and prior work in Section 2, and we present new work in Section 3.

2 Preliminaries

We are given a point set P = {p1, p2, . . . , pn} ⊂ Rd in general position with timestamps
t1 < t2 < · · · < tn. We consider the d-dimensional Delaunay triangulation DT (P), i.e.
that (unique) subdivision of the convex hull of P which consists only of d-simplices whose
open circumhyperspheres contain no points from P in their interior. We will call the set
{pi, pi+1, . . . , pj} Pi,j , and we will say Ti,j for its Delaunay triangulation. The dimension d
is arbitrary but fixed, so we will use the term triangulation to refer to the d-dimensional
Delaunay triangulation. We refer to open circumhyperspheres as circumspheres, to Delaunay
d-simplices as simplices, and to (d − 1)-simplices as faces. We denote by T the set of all
Delaunay d-simplices occurring over all contiguous subsequences Pi,j . The set of simplices
incident to some point pi is called the star of pi. The faces of simplices in the star which
are not incident to pi are called the link of pi.
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

55:2 Delaunay Simplices in Contiguous Subsequences

p1 p1

p7 p7

p1

p7

Figure 1 The data structures in our algorithm. The link of p1 in T1,7 is highlighted in green.
The link faces are shared between the full triangulation T1,7, the hole triangulation H2,7, and the
star star1,7. Left: T1,7, the incremental construction of DT (P) after inserting p7. Middle: The
hole triangulation H2,7, which contains the simplices of T2,7 with p1 in their circumspheres. The
position of p1 is shown only for reference. The contribution set C2,7 is the triangle highlighted in
red. Right: The corresponding star star1,7, containing the simplices incident to p1 in T1,7.

The hole triangulation framework was introduced in [5] compute T without asymptotic
overhead for structural changes. The idea is to execute an incremental construction (IC)
for T1,n, one for T2,n, . . . , and one for Tn−d+1,n. This process encounters the Delaunay
triangulation of every time window as an intermediate state of one of these ICs, so it finds
every Delaunay simplex of T . To avoid the overhead of computing simplices multiple times
in multiple triangulations of similar time windows, all ICs but the one for T1,n use the hole
triangulation data structure: Hi,j maintains the simplices of Ti,j which contain pi−1 in their
circumsphere, see Figure 1, left and middle. So Hi,j represents the difference from Ti−1,j to
Ti,j . Arrange these data structures into a matrix for visual aid:

T1,d T1,d+1 T1,j T1,n

H2,d+1 H2,j H2,n

...
Hi,i+d−1 . . . Hi,j Hi,n

...
Hn−d,n−1 Hn−d,n

Hn−d+1,n

A hole triangulation Hi,j−1 is only changed by the insertion of pj if pj is adjacent to
pi−1 in Ti−1,j . So updates to hole triangulations can be triggered by the discovery of new
edges, which avoids Θ(n2) checks for whether a hole triangulation needs to be updated.
Conceptually, the matrix is computed left to right, going top to bottom within each column.
The contribution set Ci,j are the simplices which appear first in Ti,j by this order. So the
simplices created by the insertion of pj into T1,j−1 or Hi,j−1 are C1,j or Ci,j , respectively.
Since structural changes correspond exactly to contribution sets and contribution sets exactly
partition T , structural changes have O(|T |) overall cost. However, point location still causes
logarithmic overhead per simplex. We improve that in Section 3.

3 Efficient Point Location

An important difference to the original hole triangulation framework [5] is how hole trian-
gulation updates are triggered. Originally, the hole triangulation update from Hi+1,j−1 to
Hi+1,j could be executed immediately upon finding finding the edge {pi, pj}. In Section 3.1
we will see that now all simplices incident to both pi and pj in Ti,j are necessary for this

F. Weitbrecht 55:3

update because we maintain the star of pi as an auxiliary data structure for Hi+1,j .
So, upon finding the edge {pi, pj}, we wait for all new simplices of the star to be found and

then we update the star stari,j−1 to stari,j . We update the hole triangulation Hi+1,j−1 to
Hi+1,j immediately after this star update. This way, the star update provides all information
about how the link changes for the hole triangulation update.

The new star simplices can come from more than one contribution set, so the update
from Hi,j−1 to Hi,j depends on one or more contribution sets Ci′,j with i′ < i. These
dependencies impose a partial order on the order in which hole triangulations are updated
within each matrix column, implicitly forming a dependency graph. This graph is a directed
acyclic graph (DAG) since all its edges go towards higher indices. All updates (transitively)
depend on the insertion of pj into T1,j−1 and there are no cyclic dependencies, so the
algorithm can proceed as follows. We compute the incremental construction step by step
(T1,d, T1,d+1 . . . , T1,n). After every step, a cascade of star and hole triangulation updates
is triggered in which each update is computed once all its predecessors in the DAG have
been computed. Note that, depending on the structure of the DAG, there may actually be
multiple valid computation orders within a column.

3.1 Stars for Point Location in Hole Triangulations
Before inserting pj into Hi+1,j−1, we need to locate pj in Hi+1,j−1. For this purpose we
maintain the closed star of point pi w.r.t. Ti,j as stari,j . It is that subcomplex of Ti,j

which contains the simplices which are incident to pi, and their faces. Similar to how Hi+1,j

is the difference from Ti,j to Ti+1,j , stari,j is the difference from Ti+1,j to Ti,j . The link
of pi (w.r.t. Ti,j) exists in the hole triangulation Hi+1,j and in the star stari,j , as shown
by the green highlights in Figure 1. Since we do not maintain Ti,j explicitly for i > 1, the
simplices incident to pi in Ti,j are distributed across T1,j and H2,j , H3,j , . . . ,Hi,j . We store
a copy of these simplices in stari,j so they can be traversed efficiently. Every copy gets an
original-pointer to its original instance in the IC or in some hole triangulation.

Observe that every Delaunay face can be uniquely associated with the first Ti,j in which
it is a Delaunay face. For example, the link faces in the hole triangulation H2,7 in Figure 1,
middle, first exist in T1,7, and the interior faces first exist in T2,7. We can follow how faces
are propagated through the incremental construction, hole triangulations and stars:
I Lemma 3.1. Every instance of a face created from a d-subset of points F ⊆ P in the
algorithm is either the first time a face is created from F , or a copy of an existing instance
of f . This allows matching up simplices from different data structures which share a face.
Proof. Faces created in the incremental construction are always the first instance. Faces
in stars are copied from the IC and hole triangulations. Link faces in hole triangulations
are copied from the corresponding stars. Every other face in a hole triangulation Hi,j

triangulates the interior of the link of pi−1. Such a face f cannot exist in earlier triangulations
because any hypersphere passing through all points of f must contain pi−1, or the point
which forms the coface of f on the side of f opposite pi−1 in Hi,j , or both. So f is the first
instance of that face.

We create an attribute object O with every newly created face. Every time we create a
copy of that face, we store a reference to O with the new copy. Any two simplices created
in different data structures (for example the IC and a hole triangulation) that have a face
defined by the same d points can then be matched up by registering with that face’s O. J

When inserting point pj into stari,j−1, we wait for all new simplices (they originate in
T1,j and H2,j , H3,j , . . . ,Hi,j) to be available before executing the update. We can recognize

EuroCG’22

55:4 Delaunay Simplices in Contiguous Subsequences

that all new simplices have been found once both cofaces of all new faces incident to both
pi and pj are available. We then use Lemma 3.1 to sew copies of these new simplices into
the existing star. So stars can be updated in overall O(|T |) time simply by copying new
simplices and setting some pointers.

After the star stari,j−1 is updated to stari,j with the insertion of pj , we update its
corresponding hole triangulation Hi+1,j−1 to Hi+1,j . The star update reveals exactly how
the link changes. By exploring the old hole triangulation from where the link changes, we
can find all simplices of Hi+1,j−1 which need to be destroyed in overall O(|T |) time. We can
then compute the new simplices similar to how a regular IC would, and set link-pointers
between matching instances of link faces in stari,j and Hi+1,j . To ensure that the hole
triangulation stays restricted to the interior of the new link, we must pay special attention
when creating new simplices between pj and ex-link faces, i.e. those faces that were part of
the link until this update but are no longer part of the link after this update. If pi and pj

are on the same side of the supporting hyperplane of an ex-link face f , we must not create a
simplex between pj and f because f is now outside the link. We create a simplex between pj

and all other ex-link faces if their existing coface inside the link in Hi+1,j−1 is not destroyed.

s1

s3

s2
s4

s5
pi−1

pj

pi−1

pj

sb sc
sd

se

sf
sg

sa
1

2

link3

4

Figure 2 Point location process for the IC finding a simplex destroyed by pj in stari−1,j−1 (right),
based on a destroyed simplex in the corresponding hole triangulation Hi,j−1 (left). The link is
highlighted in green. The positions of pj , and pi−1 in the hole triangulation, are shown only
for reference. We proceed in four steps. 1: Given an initial simplex curr = s3 with pj in its
circumsphere, we explore simplices destroyed by pj in Hi,j−1; we find s3, s4 and s5. 2: We consider
all link faces which have one of these simplices as a coface. 3: For each such link face, we follow its
link-pointer into the star. 4: We test whether its coface contains pj in its circumsphere. Here, only
the link face of s4 leads to a destroyed star simplex, sf .

3.2 Point Location in the Incremental Construction
In Section 3.1 we presented stars to facilitate point location in hole triangulations in overall
O(|T |) time. Now we will explain how to use stars and the pointers introduced in Section 3.1
to also accomplish point location in the IC in overall O(|T |) time.

Accomplishing point location this fast using only the IC data structure seems unlikely
because |T | can be as small as O(n). Our approach exploits that pj is inserted not only into
T1,j−1, but also into some hole triangulations and stars. The order of these insertions follows
the DAG underlying the computation order. Before computing the updates in column j, we
will trace back a path to the root of the DAG of column j, T1,j−1 (i.e. the IC), locating
pj in every data structure we visit. To navigate between these data structures, we can use

F. Weitbrecht 55:5

original-pointers to get from star simplices to their original instances in hole triangulations
or in the IC, and we can use link-pointers to jump from the link of hole triangulations to
the link of their corresponding stars.

More specifically, given a simplex s with pj in its circumsphere in some star, we follow its
original-pointer to, say, curr. If curr is part of the IC, we have successfully found a simplex
with pj in its circumsphere in the IC. Otherwise, curr is part of some hole triangulation,
and we need to find another simplex s with pj in its circumsphere in the corresponding
star. Figure 2 shows how, given a simplex curr with pj in its circumsphere in some hole
triangulation, we are able to find a destroyed simplex in the corresponding star. We iterate
this process of finding a destroyed simplex s in the star and following its original-pointer
until that pointer goes into the IC.

By following only original-pointers of simplices with pj in their circumsphere, we ensure
that we only visit data structures pj will later be inserted into. We only explore simplices
that will be destroyed by pj , so the total cost of these explorations is bounded by the
structural changes of inserting pj , i.e. O(|T |) overall.

3.3 Putting it all together
In contrast to [5], our approach computes the IC in its natural order, so our algorithm can
actually be executed in an online manner if points arrive in their temporal order.

I Theorem 3.2. There exists an algorithm to compute the set T of all Delaunay d-simplices
over all contiguous subsequences of a set of timestamped points in Rd in output-sensitive
linear time O(|T |) for arbitrary fixed d. This algorithm can be executed in an online manner.

As a result of Lemma 3.1, we can also construct a simplicial complex representing any Ti,j

in linear time given the Delaunay simplices of the time window [i, j]. Any rectangle stabbing
data structure can identify these simplices using the lifetime attributes computed for every
simplex by the hole triangulation framework, as explained in Section 3.6 of [5].

3.4 Experimental Results
We benchmarked a prototypical Java implementation [7] of our enumeration algorithm in
one to six dimensions on an Intel® Xeon® E5-2650 v4 CPU, see Figure 3. The results

0 50 100 150 200 250

Triangles [millions]

0

200

400

600

800

T
im

e
[s

ec
on

d
s]

Unit Square

Parabola

0 50 100 150 200

Tetrahedrons [millions]

0

200

400

600

800

Unit Cube

Moment curve

0 50 100 150 200 250

Simplices [millions]

0

3000

6000

9000

12000 6D

5D

4D

3D

2D

1D

Figure 3 Benchmarking time per simplex creation. Left: 1 · 104, 2 · 104, . . . , 100 · 104 2D points
sampled u.a.r. from the unit square, and 1 ·103, 2 ·103, . . . , 60 ·103 2D points drawn from the normal
parabola y = x2. Middle: 5 · 103, 10 · 103, . . . , 200 · 103 3D points sampled u.a.r. from the unit
cube, and 1 · 102, 2 · 102, . . . , 80 · 102 3D points sampled from the moment curve x(t) = (t, t2, t3)T .
Right: Points drawn u.a.r. from the unit hypercube in one to six dimensions, enough to get 250
million simplices each.

EuroCG’22

55:6 Delaunay Simplices in Contiguous Subsequences

show that our algorithm is practical, and even our simple implementation creates well over
150,000 tetrahedrons per second. In the left and middle diagram, we draw points from the
unit square/cube and the moment curve, resulting in |T | ∈ O(n logn) and |T | ∈ Ω(n2),
respectively. Time per simplex creation is indeed constant. On the right, we can see the
runtime grow exponentially with increasing dimension, but it is still linear for fixed d.

4 Outlook

We have presented an algorithm to compute all Delaunay simplices over all contiguous
subsequences of a point set in arbitrary dimension in output-sensitive linear time. We
showed how to efficiently construct Delaunay triangulations of arbitrary time windows from
the algorithm output. Experimental results showed practicality and indeed linear runtime.

Our enumeration algorithm can serve as a basis for constructing data structures allowing
efficient retrieval of time-windowed Delaunay triangulations or their subcomplexes. We look
forward to seeing its uses for fast interactive visualization of spatio-temporal data. It would
also be interesting to see for which other subcomplexes of the Delaunay triangulation all
elements over all contiguous subsequences can be computed in an equally efficient manner.

References
1 Ehsan Aganj, Jean-Philippe Pons, Florent Ségonne, and Renaud Keriven. Spatio-temporal

shape from silhouette using four-dimensional Delaunay meshing. In 2007 IEEE 11th In-
ternational Conference on Computer Vision, pages 1–8. IEEE, 2007. doi:10.1109/ICCV.
2007.4409016.

2 Michael J. Bannister, William E. Devanny, Michael T. Goodrich, Joseph A. Simons, and
Lowell Trott. Windows into geometric events: Data structures for time-windowed querying
of temporal point sets. In Proceedings of the 26th Canadian Conference on Computational
Geometry (CCCG), pages 11–19, 2014. URL: https://www.cccg.ca/proceedings/2014/
papers/paper02.pdf.

3 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving α-shapes
and schematic polygonal approximations for sets of points within queried temporal ranges.
In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 249–258. ACM, 2019. doi:10.1145/3347146.
3359087.

4 Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set
of points in the plane. IEEE Transactions on Information Theory, 29(4):551–559, 1983.
doi:10.1109/TIT.1983.1056714.

5 Stefan Funke and Felix Weitbrecht. Efficiently computing all Delaunay triangles occurring
over all contiguous subsequences. In 31st International Symposium on Algorithms and
Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.28.

6 Jochen Süßmuth, Marco Winter, and Günther Greiner. Reconstructing animated meshes
from time-varying point clouds. In Computer Graphics Forum, volume 27, pages 1469–1476.
Wiley Online Library, 2008. doi:10.1111/j.1467-8659.2008.01287.x.

7 Felix Weitbrecht. DelaunayEnumerator, a GitHub repository. https://github.com/
felixweitbrecht/DelaunayEnumerator, 2021.

Approximating Multiplicatively Weighted Voronoi
Diagrams: Efficient Construction with Linear Size
Joachim Gudmundsson1, Martin P. Seybold2, and Sampson Wong3

1 University of Sydney, Australia
joachim.gudmundsson@gmail.com

2 University of Sydney, Australia
mpseybold@gmail.com

3 University of Sydney, Australia
swon7907@sydney.edu.au

Abstract
Given a set of n sites from Rd, each having some positive weight factor, the Multiplicative Weighted
Voronoi Diagram is a subdivision of space that associates each cell to the site whose weighted
Euclidean distance is minimal for its points.

We give an approximation algorithm that outputs a subdivision such that the weighted distance
of a point with respect to the associated site is at most (1+ε) times the minimum weighted distance,
for any fixed parameter ε ∈ (0, 1). The diagram size is O(n log(1/ε)/εd−1) and the construction
time is within a factor O(1/ε(d+1)d + log(n)/εd+2) of the output size. As a by-product, we obtain
O(log(n/ε)) point-location query time in the subdivision.

The key ingredients of the proposed method are the study of convex regions that we call cores,
an adaptive refinement algorithm to obtain small output size, and a combination of Semi-Separated
Pair Decomposition (SSPD) and conic space partitions to obtain efficient runtime.

Related Version https://arxiv.org/abs/2112.12350

1 Introduction

Let {s1, . . . , sn} be a set of n sites in Euclidean space Rd, where d is a constant. Let wi > 0
be the weight of si. The weighted Euclidean distance from any point p to si is given by the
formula di(p) = ‖p − si‖/wi. For a point q ∈ Rd, a site si that minimizes di(q) is called a
weighted nearest-neighbor of q. A Multiplicative Weighted Voronoi Diagram (MWVD) is a
subdivision of space that associates each cell to the site that is weighted nearest-neighbor
for all points in that cell. The Voronoi region of a site is the union of all cells that are
associated to the site. See also [2, Chapter 7.4.2].

We give an ε-approximation algorithm that computes a subdivision of Rd into cells. Each
cell is associated with one site that is a weighted nearest-neighbor for all points in it, up to a
factor of (1+ε), where ε ∈ (0, 1/26]. Each cell is a d-cube or the set difference of two d-cubes.
As a by-product of the construction, we get a d-dimensional compressed QuadTree that can
answer approximate nearest-neighbor queries using point-location in O(log(n/ε)) time1.

Our algorithm assembles the diagram based on cores – see Section 2. To guarantee small
output size, we propose an Adaptive Refinement algorithm that ε-approximates each core
with a set of d-cubes. Its runtime is proportional to the number of output cubes, multiplied
by a factor that is polynomial in the number of balls that define the core (see Section 3).
Our final bound improves on the state-of-the-art for ε-AVD size (see Table 1) and is within
a O(log 1/ε)-factor of the best known Ω(1/εd−1) lower bound [1].

1 We assume d is a small constant and the O-notation hides constant factors that are exponential in d.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

56:2 Approximating Multiplicatively Weighted Voronoi Diagrams

In Section 4, we show that it is possible to ε-approximate each core with O(1/ε)d+1

balls. Moreover, we give an efficient algorithm that computes the ε-approximations of all
cores in O(n log(n)/ε2d+1) time. The method uses a Semi-Separated Pair Decomposition of
the input sites and conic subdivisions of Rd.

Diagram Technique Size Runtime (factor over size)

ε-AVD Triangle ineq., PLEB [4] O
(

n
log n

εd
log n

ε

)
×O

(
log n

ε

)

ε-AVD Triangle ineq., ε-PLSB [7] O
(

n
1
εd

)
×O

(
log2 n

ε

)

ε-AVD Triangle ineq., 8-WSPD [1] O
(

n
1
εd

)
×O

(
log n

ε

)

ε-AMWVD Clustering, Sketches [6] O
(

n

(
logd+2(n)

ε2d+2 + 1
εd(d+1)

))

ε-AMWVD Cores, Adaptive Refinement,
(1 + 32

ε
)-SSPD, Cones O

(
n

log 1/ε

εd−1

)
×O

(
1

εd(d+1) + log n

εd+2
1

log 1/ε

)

Table 1 Overview of constructions of ε-AVDs and the proposed method for ε-AMWVDs. All
methods, including the proposed, have O(log n

ε
) point-location query time. Note that ε-AMWVDs

are more general than the unweighted ε-AVDs, that have size Ω(n/εd−1). The runtime for the
ε-AMWVD in [6] is O

(
n log2d+3(n)/ε2d+2 + n/εd(d+1)).

2 Preliminaries: Voronoi Maps, Apollonian Balls, and the Core

Mapping ` : Rd → {1, . . . , n} is called a Voronoi Map, if ‖p−s`(p)‖/w`(p) ≤ mini ‖p− si‖/wi,
for all points p ∈ Rd. The site with index `(p) is called a weighted nearest-neighbor of point p.
We call a subdivision of Rd a MWVD if every cell in the subdivision is associated to one of
the input sites, and mapping the points in a cell to the associated site is a Voronoi Map.

For the MWVD, the cell boundaries occur where the weighted distance to two or more
sites are equal. For d = 2, cell boundaries occur along an Apollonian circle. For general d, we
define the Apollonian sphere between si and sj to be {p ∈ Rd : ||p− si||/wi = ||p− sj ||/wj}.

A subdivision of Rd is an ε-AMWVD if every cell in the subdivision is associated to one
of the input sites, and ‖p− s`(p)‖/w`(p) ≤ (1 + ε) ·mini ‖p− si‖/wi, where `(p) is the index
of the input site associated to the region in the subdivision containing the point p.

Figure 1 The top shows an example of a MWVD of five sites. The bottom shows an εS-AMWVD
of the same instance obtained from cores with εS = 0.01.

Our approach is to use canonical cubes, or the set difference between two canonical cubes,
as the cells in our ε-AWMVD. A canonical cube in Rd has the form [2kx1, 2k(x1 + 1)]× . . .×
[2kxd, 2k(xd + 1)] for integers k, x1, . . . , xd. Recall that for the exact MWVD, the region
boundaries are Apollonian spheres. If wj = wi, the Apollonian sphere becomes a (d − 1)-
dimensional hyperplane. We introduce a constant εS ∈ (0, ε), and we εS-approximate the

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong 56:3

(d−1)-dimensional hyperplane with a sphere, to make it easier to approximate with canonical
cubes. Sort the sites by weight, so that w1 ≤ . . . ≤ wn. Then for all i < j, define

ball(i, j) = ball(si, sj , γi,j) =
{
p ∈ Rd : ‖p− si‖ ≤ γij · ‖p− sj‖

}
(1)

where γij = max(wj/wi, 1 + εS). Since γij ≥ 1 + εS , ball(i, j) is not a hyperplane. Note
that the arrangement of ball(i, j) for i < j forms an εS-AMWVD. Next, we define the core.
We denote the set of balls of site si with any other partner site sj of higher weight by Bi :={

(i, j) : i < j
}
. For a subset A ⊆ Bi, define the convex region core(A) := ∩(i,j)∈Aball(i, j).

We define t∗(si, sj , γij) to be the closest distance from si to a point on the surface of
ball(i, j), and t†(si, sj , γij) to be the furthest distance from si to a point on the surface of
ball(i, j). The formulas for each of these values are

t∗ij = t∗(si, sj , γij) = ‖sj − si‖/(γij + 1) (2)
t†ij = t†(si, sj , γij) = ‖sj − si‖/(γij − 1) . (3)

3 Basic AMWVD in Rd using
(

n
2

)
bisectors

For a convex region R, and point s in its interior, we define an εA-approximation of (R, s).
Intuitively, an εA-approximation of (R, s) is a set of canonical cubes whose union covers
R, but is not too much larger than R, where all distances are measured from the point s.
See Figure 2. Formally, we define a set of interior disjoint canonical cubes L to be an εA-
approximation of (R, s) if for any point p in Rd, p is in the union of L if and only if either p
is in R, or the canonical cube of L containing p intersects the boundary of R and has side
length at most εA times the distance between p and s.

R

s

p

Figure 2 A convex region R, a point in its interior s, and an εA-approximation of (R, s).

With this definition of an εA-approximation in mind, we now state a recursive, adaptive
refinement algorithm for computing the set of canonical cubes L. Our algorithm starts with
a canonical cube that completely contains our convex region R. We then recursively split the
canonical cube into 2d cubes, until it satisfies one of the three following halting conditions:

Halting condition 1: The canonical cube is entirely inside R.
Halting condition 2: The canonical cube is entirely outside R.
Halting condition 3: The canonical cube intersects the boundary of R, and has side
length at most εA times its distance to s.

If the canonical cube halts on condition 2, we discard the cube. Otherwise, if the canon-
ical cube halts on condition 1 or 3, we add the cube to L. This completes the construction.

EuroCG’22

56:4 Approximating Multiplicatively Weighted Voronoi Diagrams

I Theorem 1. Let R be a convex region that is the intersection of k balls in Rd. Let s be
a point in the interior of R. Then one can construct a set of canonical cubes L in time
O(|L| · kd) so that L is an εA-approximation of (R, s).

Next, we apply Theorem 1 to construct a cube-based εA-approximation of (core(Bi), si).
Recall from Section 2 that core(Bi) is the intersection of ball(i, j) for j > i.

I Theorem 2. One can construct an εA-approximation of (core(Bi), si) that has total size
O(log(1/εS)/εd−1

A). The construction time is O(|Bi|d) times the output size.

Finally, we combine the εA-approximations of each of the regions core(Bi) to construct
an ε-AMWVD, where ε = (1 + εS)(1 + εA) − 1. For each 1 ≤ i < n, we construct the
εA-approximate cubes for (core(Bi), si) using Theorem 2. Each cube in the εA-approxima-
tion of (core(Bi), si) is given the label i. We collect all cubes for labels 1 ≤ i < n in this
way. For i = n, we construct a canonical cube that contains all other canonical cubes for
1 ≤ i < n, and give this canonical cube the label n. We construct a compressed QuadTree
from this set of canonical cubes. Sort the canonical cubes by their z-order. Iterate over the
sorted list, and remove duplicate cubes by retaining only the cube with the minimum label.
Construct a compressed QuadTree from the set of canonical cubes, via Lemma 2.11 in [5].
The compressed QuadTree induces a subdivision of Rd, where each cell in the subdivision
is either a canonical cube, or the set difference between two canonical cubes. We label all
cells in the compressed QuadTree. Cubes in the sorted list have their initial label, and the
root has initial label n. Starting at the root, if a child is unlabeled, or the child has larger
label than its parent, then the child replaces its label with its parent’s label. We repeat this
process for all nodes in the compressed QuadTree, in a top-down fashion. This completes
the construction of the AMWVD.

I Theorem 3. Given εS , εA > 0 and a set of balls Bi for each i < n, one can compute an
ε-AMVWD, where ε = (1 + εS)(1 + εA)− 1, with total size O

(
n log 1/εS

εd−1
A

)
. The construction

time is O
(

1
n

∑
i |Bi|d + log n log 1/εS

εA

)
times the output size. The point-location query time

in the ε-AMWVD is O
(

log n log 1/εS

εA

)
.

The proofs of Theorems 1, 2 and 3 can be found in the full version of the paper [3].

4 Reducing the number of balls to O(1/εd+1)

Let α-ball(i, j) denote the enlarged ball obtained by setting the effective weight wj/αwi in
the Apollonian bisector, i.e. α-ball(i, j) = ball(si, sj , γij/α). For α ≥ 1, we define a relation
between every two subsets X,Y ⊆ Bi as

X ≺α Y ⇐⇒ ∀ (i, k) ∈ Y : core(X) ⊆ α-ball(i, k) ,

and say for such a pair that X is an α-cover of Y . Given a subset X ⊆ Bi, we call the
largest subset Y ⊆ Bi with X ≺α Y the set of balls that are α-covered by X. Moreover, X
is called an α-cover if it covers all balls in Bi, i.e. X ≺α Bi, and we have

core(Bi) ⊆ core(X) ⊆ α-core(Bi) :=
⋂

(i,j)∈Bi

α-ball(i, j) . (4)

The goal of our algorithm is to compute a subset Ai ⊆ Bi, so that Ai is an α-cover of
Bi, and Ai has constant size. Let parameters β, σ, and εC be constants. We show how to
choose these constants in the full version of the paper [3].

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong 56:5

si

jth cone

a

I0
I1

I2
. . .

Figure 3 The values t∗ij in [a, b] are partitioned by intervals I0, . . . , Im of length aεC/2.

Let P be a σ-Semi Separated Pair Decomposition (SSPD) of the input sites S. For a pair
(L,H) ∈ P, we call L the ‘light set’ and H the ‘heavy set’ if s` is the site with maximum
index in L, sh is the site with the maximum index in H, and ` < h.

A β-cone around si is an angular domain of the spherical coordinate system around si.
In each of the (d− 1)-dimensions in the spherical coordinate system, the angular domain is
partitioned into intervals of at most 2β radians. For each si, we assign each β-cone a unique
array index j, where j = O(1/βd−1). E.g. a rotation of at most β radians suffices to rotate
any site in the cone onto the cone’s central ray.

Our algorithm maintains the following data structure: for each site si ∈ S, and for each
β-cone around si with array index j, the data structure stores a set of partner sites Aij . Our
algorithm populates the data structure in three passes. In our first pass, for each (L,H) ∈ P,
we reduce the size of H to a subset H ′. In our second pass, we iterate over P to initialize
each of the sets Aij . Finally, the sets are populated in the third pass.

In our first pass, for each (L,H) ∈ P, we construct a subset H ′ of H. If the diameter
of H is at most the diameter L, we set H ′ := {}. If the diameter of H is larger than the
diameter of L, we construct H ′ as follows. Let s` ∈ L with ` maximal. For the jth cone
around s`, we let the sites of H contained in this cone be C`j . We use the following function:

SCAN -CONE -SITES(i, C, εC):
Let C′ := ∅, a = min{t∗ij : sj ∈ C}, and b = min{t†ij : sj ∈ C}
Let Ik = (xk, xk+1], with length aεC/2 and x1 = a, cover [a, b].
Every interval Ik holds one pointer .
FOR sj ∈ C DO

Compute the index k with t∗ij ∈ Ik .
If diameter (t∗ij + t†ij) is smaller than that of Ik ’s reference ,

then set Ik ’s pointer on sj .
FOR interval Ik DO

Add the kept disc to result set C′.
return C′

See Figure 3 for an illustration of the intervals Ik. We set, for the jth cone, C ′`j =
SCAN-CONE-SITES(`, C`j , εC) and let H ′ = ∪jC ′`j . This completes the construction of H ′.

In our second pass, we initialize each cone of each site in our data structure to store an
interval [a, b]. We iterate over all pairs (L,H) ∈ P and all si ∈ L∪H, and store for jth cone
of si, variables a and b equal to the minimum values of t∗ik and t†ik respectively, where the
minimum is taken over all sites sk ∈ H ′ ∪ {s`, sh} that are in the jth cone of si and have
k > i. This gives us the interval [a, b]. After the pass over P is completed, we iterate over
each cone of each site and partition the interval [a, b] into disjoint intervals Ik = (xk, xk+1]

EuroCG’22

56:6 Approximating Multiplicatively Weighted Voronoi Diagrams

(HH)
h i j

(HL)
`

i
j

(LH)
h

i
j

(LL)
`i

j

m

i < j < h

i < ` < j,m

≥ σ · r

Figure 4 Cases (HH), (LH), (HL), and (LL), for covering ball(i, j).

of length aεC/2 that cover [a, b], i.e. xk+1 − xk = aεC/2 and x1 = a.
In our third pass, we populate the sets Aij based on the intervals {Ik} of the jth cone

of si. We iterate over all pairs (L,H) ∈ P and maintain a reference from Ik to the site
that realized a minimum diameter. For si ∈ L ∪ H, and for the jth cone around si, we
let the sites sm ∈ H ′ ∪ {s`, sh} with m > i that are contained in this cone be Cij . For
each sm ∈ Cij , we locate the interval Ik of the cone that contains t∗im and compare the
diameter of ball(i,m) with the smallest diameter of Ik that we have encountered so far. If
the diameter of ball(i,m) is smaller, we set sm to be the site of Ik realizing the minimum
diameter. After the pass over all pairs is completed, for the jth cone of site si, and for all
intervals Ik, we add the site that realized the minimum diameter for Ik into the set Aij .
This completes our three passes that construct the cone sets. Finally, we set Ai = ∪jAij ,
and then apply Theorem 3 to the set of balls Ai. This gives us the following theorem.

I Theorem 4. Given n sites in Rd, each with a positive weight factor, one can compute an
ε-AMVWD with total size O

(
n log 1/ε
εd−1

)
. The construction time is O

(
1

εd(d+1) + logn
εd+2

1
log 1/ε

)

times the output size. The point location query time in the ε-AMWVD is O
(
log n

ε

)
.

To prove Theorem 4, we show that every (i, j) ∈ Bi \Ai is α-covered. The main idea is
to let (L,H) ∈ P be the separating pair for (i, j), and to consider the four possible cases of
(L,H) as shown in Figure 4. For the full proof see the full version of the paper [3].

Acknowledgement

This work was supported under the Australian Research Council Discovery Projects funding
scheme (project number DP180102870).

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong 56:7

References
1 Sunil Arya and Theocharis Malamatos. Linear-size approximate Voronoi diagrams. In Proc.

13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 147–155,
2002. URL: http://dl.acm.org/citation.cfm?id=545381.545400.

2 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay
Triangulations. World Scientific, 2013. doi:10.1142/8685.

3 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Approximating mul-
tiplicatively weighted voronoi diagrams: Efficient construction with linear size. CoRR,
abs/2112.12350, 2021. URL: https://arxiv.org/abs/2112.12350, arXiv:2112.12350.

4 Sariel Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd
Annual Symposium on Foundations of Computer Science (FOCS’01), pages 94–103, 2001.
doi:10.1109/SFCS.2001.959884.

5 Sariel Har-Peled. Geometric approximation algorithms. Number 173 in Mathematical
Surveys and Monographs. American Mathematical Society, 2011.

6 Sariel Har-Peled and Nirman Kumar. Approximating minimization diagrams and general-
ized proximity search. SIAM J. Comput., 44(4):944–974, 2015. doi:10.1137/140959067.

7 Yogish Sabharwal, Nishant Sharma, and Sandeep Sen. Nearest neighbors search using point
location in balls with applications to approximate Voronoi decompositions. J. Comput.
Syst. Sci., 72(6):955–977, 2006. doi:10.1016/j.jcss.2006.01.007.

EuroCG’22

An Optimal Algorithm for the Weighted Center
Problem on Cycle Graphs∗

Taekang Eom1 and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, Pohang University of
Science and Technology, Pohang, Korea
tkeom0114@postech.ac.kr

2 Department of Computer Science and Engineering, Graduate School of Artificial
Intelligence, Pohang University of Science and Technology, Pohang, Korea
heekap@postech.ac.kr

Abstract
We study the problem of computing the weighted center of cycle graphs whose vertices are weighted.
The distance from a vertex to a point of the graph is defined as the weight of the vertex times the
length of the shortest path between the vertex and the point. The weighted center of the graph is
a point of the graph such that the maximum distance of the vertices of the graph to the point is
minimum among all points of the graph. We present an O(n)-time algorithm for cycle graphs with
n vertices, which improves upon the best-known running time O(n log n).

1 Introduction

For a graph G = (V,E), the k centers of G consist of k points c1, . . . , ck of G lying on vertices
or edges such that the maximum distance of the vertices in V to their closest points in
{c1, . . . , ck} is minimum among all sets of k points of G.

Each edge e of G has length λ(e), and each vertex v of G is assigned a positive weight,
denoted by w(v). A graph is said to be unweighted if w(v) = 1 for all vertices, and it is
weighted otherwise. For any two points p and q of G, the length of the shortest path between
p and q is the sum of the lengths λ(e) of the edges e contained in the path. If p or q lies in
the interior of some edge e′, the portion of the path appearing in e′ has length proportional
to the ratio of the length of the portion to λ(e′). The (weighted) distance from a vertex
v ∈ V to a point p of G is defined as w(v) times the length of the shortest path between v
and p. For unweighted graphs where w(v) = 1 for all v ∈ V , the distance is simply the length
of the shortest path between v and p. There are two versions of the problem depending on
the locations of the centers. In the discrete version, the centers must be chosen from V , while
in the continuous version, the center can be placed anywhere in the graph, including edges.

There have been works on various types of graphs. Kariv and Hakimi [4] showed NP-
hardness of the continuous k-center problem for weighted graphs and gave anO(mknk lognα(n))-
time algorithm, where n and m are the numbers of vertices and edges, respectively, and
α(n) is the inverse Ackermann function. Frederickson [3] considered the k-center problem for
unweighted trees with n vertices, and gave an O(n)-time algorithm using O(n) space for both
discrete and continuous problems. The algorithm uses parametric search. For weighted trees
with n vertices, Wang and Zhang [8] gave an O(n logn)-time algorithm for both continuous

∗ This research was partly supported by the Institute of Information & communications Technology
Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2017-0-00905,
Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dynamic Geometric
Environment)) and (No. 2019-0-01906, Artificial Intelligence Graduate School Program(POSTECH)).

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

57:2 An Optimal Algorithm for Weighted Center Problem on Cycle Graphs

and discrete versions of the k-center problem. Bhattacharya et al. [2] gave an O(2k2
n)-time

algorithm for the continuous version of the problem. For weighted cactus graphs with n

vertices, Ben-Moshe et al. [1] gave an O(n log2 n)-time algorithm for the discrete version,
and an O(n2)-time algorithm for the continuous version.

For the case of computing one center for the discrete and continuous versions, Kariv and
Hakimi [4] gave an O(mn logn)-time algorithm on undirected weighted graphs, where n and
m are the numbers of vertices and edges of a graph, respectively. Megiddo [6] gave an O(n)-
time algorithm for weighted trees with n vertices. Lan et al. [5] gave an O(n)-time algorithm
on unweighted cactus graphs with n vertices. Ben-Moshe et al. [1] gave an O(n logn)-time
algorithm for weighted cactus graphs with n vertices. For weighted cycle graphs with n

vertices, the best known algorithm is given by Rayco et al. which runs in O(n logn) time [7].

(c)

v2

(b)

v4

v3

c∗

(d)

v1

c∗v2

(a)

v4

v3

v1

3

1 1
15

S

v2
v4

v3
v1

v2
v4

v3

v1

I2,1

I2

I2,3 I2,4

Figure 1 (a) A cycle graph with four vertices. (b) An embedding of the graph in (a) onto S.
The center of the graph is c∗ for w(vj) = 1 for all j = 1, . . . , 4. (c) The weighted center is c∗ when
w(v4) > w(vj) for all j = 1, 2, 3. (d) I2 = I2,1 ∩ I2,3 ∩ I2,4 for w(vj) = 1 for all j = 1, . . . , 4.

In this paper, we give an O(n)-time algorithm for the discrete and continuous weighted
center problem on cycle graphs with n vertices, which is optimal for the weighted center
problem of cycle graphs. Since the algorithm for the continuous version also works for the
discrete version with little modification, we focus on the algorithm for the continuous version.

2 Preliminaries

Observe that any cycle graph G can be embedded in a unit circle S ⊂ R2 such that each
vertex of G corresponds to a point in S, appearing in S in the order along G, and each
edge of G corresponds to a circular arc between two points of S corresponding to its end
vertices. The lengths of the circular arcs are proportional to the lengths of the edges in G.
See Figure 1 (a) and (b) for an illustration. For any three disjoint subsets S1, S2, S3 of S, we
use S1 ≺ S2 ≺ S3 if S1, S2, S3 appear in counterclockwise order along S.

We assume that the input graph G = (V,E) is embedded in a unit circle S. Let
v1, . . . , vn ∈ V be the vertices of G appearing in counterclockwise order on S. For any two
points x, y ∈ S, let `(x, y) denote the length of a shortest path between x and y in S. Let
wi = w(vi) denote the weight assigned to each vertex vi ∈ V . The distance of a vertex vi to
a point x ∈ S is defined as di(x) := wi · `(x, vi). Then, the weighted center problem finds
a point c∗ = arg minc∈S max1≤i≤n di(c) and a distance value r∗ = minc∈S max1≤i≤n di(c).
Figure 1 (b) and (c) show the weighted centers of a cycle graph.

Let Ii,j := {x | di(x) > dj(x)} ⊂ S. Clearly, Ii,i = ∅ and Ii,j is connected for any
i, j ∈ {1, . . . , n}. For a subset W ⊆ V , let IW

i := ∩vj∈W\{vi}Ii,j . We denote IV
i by Ii. See

Figure 1 (d) for an illustration.

I Lemma 2.1. The followings hold.
IW

i ⊆ IU
i if U ⊆W for any two subsets U and W of V .

T. Eom and H.-K. Ahn 57:3

IW
i and IW

j are disjoint for any two distinct indices i, j ∈W ⊆ V .
IW

i is connected for any subset W ⊆ V .

Proof. For two subsets U and W with U ⊆W , IW
i = ∩vj∈W\{vi}Ii,j ⊆ ∩vj∈U\{vi}Ii,j = IU

i .
For any two distinct indices i, j ∈ W ⊆ V , IW

i ⊆ Ii,j and IW
j ⊆ Ij,i. Since Ii,j and Ij,i

are disjoint, IW
i and IW

j are disjoint.
Let W be any subset of V . If IW

i = ∅, it is connected. Assume IW
i 6= ∅. Since Ii,j is

connected, S \ Ii,j is also connected for any vj ∈W \ {vi}. Since di(vi) = 0, vi ∈ S \ Ii,j for
every vj ∈ W \ {vi}. So, S \ IW

i = ∪vj∈W\{vi}(S \ Ii,j) is connected, implying that IW
i is

also connected. J

For any two points x, y ∈ S, we denote by (x, y) the open interval from x to y in
counterclockwise order. We say a vertex vi is active in W ⊂ V if vi ∈W and IW

i 6= ∅.

I Lemma 2.2. If vi, vj , vk are active in W ⊂ V and vi ≺ vj ≺ vk, then IW
i ≺ IW

j ≺ IW
k .

Proof. Let vi, vj , vk be three active vertices in W satisfying vi ≺ vj ≺ vk. By Lemma 2.1,
each of IW

i , IW
j , IW

k is connected, and they are disjoint. Assume to the contrary that
IW

i ≺ IW
k ≺ IW

j . Let Ij,i = (lj , rj) and Ik,i = (lk, rk). For the subset U = {vi, vj , vk} ⊆W ,
IU

i , I
U
j , I

U
k are disjoint, and IW

i ⊆ IU
i , I

W
j ⊆ IU

j , I
W
k ⊆ IU

k by Lemma 2.1. Thus, IU
i ≺ IU

k ≺
IU

j . Moreover, vi ∈ Ij,i ∩ Ik,i. Thus lk, lj , vi, rk, rj appear in counterclockwise order along S.
See Figure 2. Observe that vk, vj ∈ IU

i since vi ≺ vj ≺ vk, vk /∈ Ik,i and vj /∈ Ij,i. By the
same argument, vi, vk ∈ IU

j . This contradicts that IU
i and IU

j are disjoint. J

IUi

(a) (b)

vi

vjvk

IUk IUj

lk

Ik,i Ij,i
rk

lj

rj

vi

vjvk

Figure 2 (a) IU
i ≺ IU

k ≺ IU
j . (b) lk, lj , vi, rk, rj are in counterclockwise order along S.

3 Algorithm

We present an algorithm for computing the weighted center of a cycle graph G = (V,E)
embedded in a unit circle S. Our algorithm works as follows. In the first step, it finds
the index i∗ = arg max di(x) for any fixed position x ∈ S, sets vi∗ to v1, and relabels all
vertices in counterclockwise order along S. Then v1 is active in the relabeled list V . In the
second step, it iterates over the vertices one by one in order from v1, and updates the list of
active vertices, sorted in increasing order of indices, at each iteration. After the iteration
finishes, it has the final list of active vertices. In the third step, it computes the intervals
Ii for each active vertex vi in V in counterclockwise order using the list of active vertices.
Then it finds the minimum of di(x) among points x in the closure of Ii for each active
vertex vi in constant time. So, this step takes O(n) time. In the fourth step, it returns the
point c∗ = arg minc∈S max1≤i≤n di(c), achieving the minimum among the minimum distance
values r∗ = minc∈S max1≤i≤n di(c) as the weighted center of G.

EuroCG’22

57:4 An Optimal Algorithm for Weighted Center Problem on Cycle Graphs

We focus on the second step, the iteration part, of the algorithm for computing the list
of active vertices in O(n) time. Before describing the algorithm, we introduce some terms
and technical lemmas. We say a vertex vi is dominated by W ⊂ V if IW

i = ∅, and we denote
this by vi / W . If vi is not dominated by W , we denote this by vi 6W .

I Lemma 3.1. If vk, v` / {vi, vj} for i < k < ` < j, then vk / {vi, v`} or v` / {vk, vj}.

Proof. Assume to the contrary that (1) vk, v` / {vi, vj}, but (2) vk 6 {vi, v`} and (3)
v` 6 {vk, vj}. We first consider the case that (4) v` 6 {vi, vk}. Let U = {vi, vk, v`},W =
{vk, v`, vj} and X = {vi, vk, v`, vj}. Then all vertices in U are active in U : IU

i 6= ∅ because
vj ∈ IX

i by (1) and IX
i ⊂ IU

i by Lemma 2.1, IU
k 6= ∅ by (2), and IU

` 6= ∅ by (4). By
Lemma 2.2, IU

i ≺ IU
k ≺ IU

` .
Let x be the clockwise boundary point of Ik,` and y be the other boundary point of Ik,`.

Then, x ∈ (vk, v`) ⊂ (vk, vj). We have Ik,i ⊂ (vj , vk) because dk(vk) < di(vk) and dk(vj) ≤
di(vj) by (1). So, x ∈ (vk, vj) ⊂ Ii,k. Moreover, x ∈ Ii,` because di(x) > dk(x) = d`(x).
Thus x ∈ IU

i . Also y /∈ IU
i because IU

k 6= ∅ and IU
` 6= ∅. See Figure 3(a), (b) and (c).

Observe that y ∈ IW
j , IW

k ⊂ Ik,` and IW
` ⊂ I`,k. Thus, if all vertices in W are active in

W , the three intervals IW
k , IW

` , IW
j must appear in clockwise order along S. See Figure 3(d).

This contradicts Lemma 2.2, so k or ` is not active in W , i.e. vk / {v`, vj} or v` / {vk, vj}.
Since v` 6 {vk, vj} by (3), vk / {v`, vj}. Then, dk(vj) ≤ max{dj(vj), d`(vj)} = d`(vj)

and dk(vk) < d`(vk) i.e. Ik,` ⊂ (vk, vj). Also, Ik,i ⊂ (vj , vk) by the previous argument.
IU

k = Ik,i ∩ Ik,` ⊂ (vj , vk) ∩ (vk, vj) = ∅, it contradicts the assumption.
Now consider the case that v` / {vi, vk}, instead of (4). Observe that this is symmetric to

vk / {v`, vj}, and we can achieve a contradiction IW
` = ∅ similarly. J

Ik,`

Ij,i

(a) (b) (c) (d)

IWj

x

Ii,j IUi

xx

I`,k

IUk IU`

IWk IW`

y y y

Figure 3 (a) Intervals on S for vk and v`. (b) Intervals for vi and vj . (c) Intervals for vi, vk and
v`. (d) Intervals for vk, v` and vj .

We denote by Vi the sequence 〈v1, v2, . . . , vi〉 of vertices of V .

I Lemma 3.2. For any two vertices vi and vj that are consecutive in the (cyclic) list of
active vertices of Vm, the followings hold.

(1) vk / {vi, vj} if vi ≺ vk ≺ vj.
(2) For any subsequence V ′ of Vm, containing vi and vj, there are three vertices v, v′, v′′
consecutive in V ′ and vi ≺ v′ ≺ vj such that v′ / {v, v′′}.

Proof. For ease of description, assume that 1 ≤ i < j ≤ m. For Claim (1), assume to
the contrary that there exists an index k with i < k < j such that vk 6 {vi, vj}. Let
W = {vi, vk, vj}. Then IW

k 6= ∅. Moreover, IW
i 6= ∅ and IW

j 6= ∅ because IVm
i 6= ∅ and

IVm
j 6= ∅ (because vi and vj are active in Vm), and IVm

i ⊆ IW
i and IVm

j ⊆ IW
j (because

W ⊆ Vm) by Lemma 2.1. By Lemma 2.2, IW
i ≺ IW

k ≺ IW
j . However, IVm

` = ∅ for all ` with

T. Eom and H.-K. Ahn 57:5

i < ` < j, and thus IVm
j appears next to IVm

i consecutively in counterclockwise order along
S by Lemma 2.2. Since IVm

i ⊂ IW
i , IVm

j ⊂ IW
j , we obtain IW

k = ∅, a contradiction.
We prove Claim (2) by induction on j−i. When j−i = 2, the claim holds by Lemma 3.2(1).

When j − i = 3, the claim holds by Lemma 3.1 and Lemma 3.2(1). Assume to the contrary
that the claim holds for all j − i ≥ 2 values up to t for some integer t with 3 ≤ t < n, but it
does not hold for t+ 1. Then vk 6 {vk−1, vk+1} for all k with i < k < j for j − i = t+ 1.

Let V i+1 = 〈v1, . . . , vi, vi+2, . . . , vj , . . . , vm〉 be the list obtained by removing vi+1 from
Vm. Then, by the induction hypothesis, vi+2 / {vi, vi+3} or there exists an index ` with
i+ 2 < ` < j such that v` / {v`−1, v`+1}. Thus, assume vi+2 / {vi, vi+3}.
Similarly, let V i+2 be the list obtained by removing vi+2 from Vm. Then we can deduce
vi+1 / {vi, vi+3} or vi+3 / {vi+1, vi+4} by the same argument. If vi+1 / {vi, vi+3}, we have
vi+1/{vi, vi+2} or vi+2/{vi+1, vi+3} by Lemma 3.1, a contradiction. For vi+3/{vi+1, vi+4},
we can obtain vj−1 / {vj−3, vj} by applying the same argument repeatedly.
Similarly, let V j−1 be the list obtained by removing vj−1 from Vm. Then we can obtain
vj−2/{vj−3, vj}. From vj−1/{vj−3, vj} and vj−2/{vj−3, vj}, we obtain vj−2/{vj−3, vj−1}
or vj−1 / {vj−2, vj} by Lemma 3.1, a contradiction.

Thus, the claim also holds for t+ 1 = j − i. J

In the second step, the algorithm updates the active vertices incrementally as follows.
Given the list of all active vertices in Vi−1, it computes the list of all active vertices in Vi.
Let La be the list of the active vertices in counterclockwise order from v1 along S computed
so far. Thus, it is computed for Vi−1. The algorithm tests if vi is dominated by v1 and the
last vertex of La. If vi is dominated by both the vertices, La is the set of vertices active in
Vi by Lemma 3.2(2). So, the algorithm proceeds to the next vertex vi+1. Otherwise, the
algorithm does the followings. It appends vi to La since vi is active in Vi by Lemma 3.2(2).
Then it deletes La[−2] if |La| ≥ 3 and La[−2] / {La[−3], La[−1]}, where La[−j] is the j-th
last element in La for j > 0. It repeats this until |La| < 3 or La[−2] 6 {La[−3], La[−1]}.
At the end of the repetition, La is the list of active vertices in Vi by Lemma 3.2(2). Then
the algorithm proceeds to the next vertex vi+1. After vn is handled, La is the list of active
vertices in Vn.

Now we analyze the running time of the algorithm. At the iteration for Vi, vertex vi is
tested for its dominance once. If vi passes the test, it is appended to La. If it fails the test,
the algorithm proceeds to the next iteration for Vi+1. Observe that a vertex v contained in
La can be tested more than once. If it passes the test at the iteration for Vi, v remains in La

but the algorithm proceeds to the next iteration for Vi+1. If it fails the test, it is removed
from La and will never be inserted to La again. Since each test can be done in O(1) time and
the algorithm iterates n times, the final list of active vertices can be computed in O(n) time.

I Theorem 3.3. The weighted center problem on cycle graphs can be solved in O(n) times
using O(n) spaces.

References
1 Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi, and Arie Tamir. Efficient algorithms

for center problems in cactus networks. Theoretical Computer Science, 378(3):237–252,
2007.

2 Binay Bhattacharya, Sandip Das, and Subhadeep Ranjan Dev. The weighted k-center prob-
lem in trees for fixed k. In 30th International Symposium on Algorithms and Computation
(ISAAC 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

EuroCG’22

57:6 An Optimal Algorithm for Weighted Center Problem on Cycle Graphs

3 Greg N Frederickson. Parametric search and locating supply centers in trees. In Workshop
on Algorithms and Data Structures, pages 299–319. Springer, 1991.

4 Oded Kariv and S Louis Hakimi. An algorithmic approach to network location problems. I:
The p-centers. SIAM Journal on Applied Mathematics, 37(3):513–538, 1979.

5 Yu-Feng Lan, Yue-Li Wang, and Hitoshi Suzuki. A linear-time algorithm for solving the
center problem on weighted cactus graphs. Information Processing Letters, 71(5-6):205–212,
1999.

6 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
SIAM Journal on Computing, 12(4):759–776, 1983.

7 M Brenda Rayco, Richard L Francis, and Arie Tamir. A p-center grid-positioning aggregation
procedure. Computers & Operations Research, 26(10-11):1113–1124, 1999.

8 Haitao Wang and Jingru Zhang. An O(n logn)-time algorithm for the k-center problem in
trees. SIAM Journal on Computing, 50(2):602–635, 2021.

Intersections of Double-Wedge Arrangements
Daniel Bertschinger1, Henry Förster2, and Birgit Vogtenhuber3

1 ETH Zürich, Zürich, Switzerland
daniel.bertschinger@inf.ethz.ch

2 University of Tübingen, Tübingen, Germany
henry.foerster@uni-tuebingen.de

3 TU Graz, Graz, Austria
bvogt@ist.tugraz.at

Abstract
We study the common intersection of arrangements of double-wedges. In contrast to earlier studies
in the past, we consider arrangements where double-wedges may or may not include a vertical
line. This changes the setting drastically, in particular with respect to all arguments involving the
point-line duality. We show that in this setting, the intersection of n double-wedges may consist
of Ω(n2) interior-disjoint regions. Further, we provide algorithms for computing the intersection of
such arrangements with worst-case optimal running time.

(0, 0)

(a)

(0, 0)

(b)

Figure 1 (a) An arrangement of double-wedges and (b) its projective dual. A point contained in
every double-wedge dualizes to a line stabbing all segments corresponding to bow-ties and stabbing
all anti-segments corresponding to hour-glasses.

1 Introduction

Two non-parallel lines `1 and `2 subdivide the Euclidean plane into four different wedges.
The union of two opposite wedges forms a so-called double-wedge [4, 10]. In other words,
it is the closure of the symmetric difference of two half-planes delimited by `1 and `2. We
distinguish two different types of double-wedges, namely, those that do not contain any
vertical line, which we call bow-ties, and those that do contain a vertical line, which we call
hour-glasses. If neither `1 nor `2 are vertical, then the closure of the complement of the
bow-tie spanned by them is an hour-glass and vice versa. For the remainder of this work,
we assume w.l.o.g. that no bounding line of any double-wedge is vertical or horizontal.

It is noteworthy that bow-ties are the projective dual of a non-vertical line segment in
the Euclidean plane; see Figures 1 and 2a. Hence, each point in the common intersection of
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

58:2 Intersections of Double-Wedge Arrangements

`∗2 = (1, 1)

`∗1 = (4, 3)
(0, 0)

`2 : y = x− 1

`1 : y = 4x− 3

(a)

`∗2 = (1, 1)

`∗1 = (2, 3)

(0, 0)

`2 : y = x− 1

`1 : y = 2x− 3

(b)

Figure 2 (a) A bow-tie and its dual line segment. (b) An hour-glass and its dual anti-segment.
Left, right, upper and lower traces are colored red, blue, green and orange, respectively.

a family of bow-ties corresponds to a stabbing line of the dual family of line segments. This
duality has been used for the efficient stabbing of line segments by settling the computation
of the intersection of bow-tie arrangements in time O(n logn) [8]. Coming from this line of
reasoning, that is, about the stabbing of line segments, double-wedges are sometimes also
defined as what we call bow-ties [1, 7].

In this work however, we study more general arrangements of double-wedges, namely,
arrangements that can contain both bow-ties and hour-glasses. In contrast to bow-ties,
hour-glasses are the projective dual of anti-segments, that is, a straight line minus a seg-
ment contained in this line; see Figures 1 and 2b. Thus, the common intersection of a
general double-wedge arrangement corresponds to (i) the stabbing lines of an arrangement
of segments and anti-segments, or, equivalently, (ii) the lines that stab all segments corre-
sponding to the bow-ties while avoiding the segments dual to the inverse of each hour-glass,
see also Figure 1.

The remainder of this paper is structured as follows. First, we give formal definitions and
preliminary observations in Section 2. Then, we prove that the intersection of double-wedge
arrangements with both bow-ties and hour-glasses may consist of Ω(n2) interior-disjoint
regions in Section 3. Finally, in Section 4 we describe efficient algorithms for the computation
of the intersection before concluding the paper with open problems in Section 5.

2 Preliminaries

Let h1 and h2 be two half-planes in R2 that are bounded by non-parallel lines `1 and `2,
respectively. We denote the double-wedge formed by the closure of the symmetric difference
of h1 and h2 as 〈h1, h2〉 and the intersection point of `1 and `2 as the origin of 〈h1, h2〉.

For a double-wedge d = 〈h1, h2〉, let ` be the line with slope a` = (a1 + a2)/2 through
the origin od of d, where a1 and a2 are the slopes of the bounding lines `1 of h1 and `2 of
h2, respectively. We refer to the two rays of `1 and `2 emerging from od that are located
above ` as the upper trace of d and to the other two rays of `1 and `2 as the lower trace of d.
Similarly, we call the two rays of `1 and `2 emerging from the origin od of d that are located
to the left (and right) of the vertical line through od the left trace of d (and right trace of d,
respectively); see Figure 2.

Note that the upper and lower trace coincide with the upper and lower envelope of the
arrangement A of `1 and `2. In contrast, the left and right trace only coincide with the left
and right envelope of A if the slopes of `1 and `2 have different signs.

We say that a point x ∈ R2 is below the upper trace (or above the lower trace) if and
only if a vertical ray emerging from x in positive (or negative, respectively) y-direction

D. Bertschinger, H. Förster, and B. Vogtenhuber 58:3

(a) (b)

Figure 3 (a) A vertical grating consisting of k = 6 bow-ties. Their intersection consists of
k + 1 = 7 interior-disjoint regions (gray). (b) A combined grating consisting of a vertical grating
of k = 6 bow-ties and a horizontal grating consisting of k = 6 hour-glasses. Their intersection
consist of (k + 1)2 = 49 interior-disjoint regions (gray). (For convenience one bow-tie in (a) and
two double-wedges in (b) are drawn bold.)

hits the upper trace (or lower trace, respectively). Similarly, we say x is to the left of the
right trace (or to the right of the left trace) if and only if a ray orthogonal to ` emerging
from x in positive (or negative, respectively) x-direction hits the right trace (or left trace,
respectively).

With these definitions at hand, we can characterize the intersection of a double-wedge
arrangement A consisting of both bow-ties and hour-glasses in the following way:

I Observation 1. A point p ∈ R2 is part of the intersection of a double-wedge arrangement
A if and only if (i) p is below the upper trace but above the lower trace of each bow-tie in A,
and (ii) p is to the right of the left trace but to the left of the right trace of each hour-glass
in A.

In order to emphasize the connection to the stabbing of line arrangements discussed
before, we also mention the transformation T between straight lines and points used for
establishing the projective duality [2, 8]. Namely, the standard projective duality T trans-
forms the point p = (px, py) to the non-vertical line p∗ : y = px · x− py and, vice-versa, the
non-vertical line ` : y = mx+ b to the point `∗ = (m,−b); see again Figure 2.

3 Combinatorial complexity of double-wedge intersections

In this section we prove the following result concerning the complexity of the intersection of
a double-wedge arrangement:

I Theorem 3.1. For every k ∈ N, there exists a double-wedge arrangement An consisting of
n = 2k double-wedges, so that its intersection consists of (n/2 + 1)2 interior-disjoint regions.

Proof. We prove the statement by an explicit construction. We first take k bow-ties. Their
origins are located on a common horizontal line and their bounding lines are chosen to be
parallel, so that they create a vertical grating as shown in Figure 3a. The intersection of
the vertical grating consists of a 4-gon between each pair of consecutive (along the x-axis)

EuroCG’22

58:4 Intersections of Double-Wedge Arrangements

double-wedges plus the two unbounded regions at the left and right boundary. Thus, the
vertical grating defines an intersection consisting of k + 1 interior-disjoint regions.

The remaining k double-wedges are a copy of the vertical grating that is rotated by π/2,
yielding a horizontal grating of hour-glasses.

The entire arrangement An is a combined grating consisting of both a vertical and a
suitably stretched and translated horizontal grating. The origins of the latter are located in
the right unbounded region of the former. Further, the gratings overlap in such a way that
no origin of the vertical grating lies in the intersection of the horizontal grating and that
each region in the intersection of the vertical grating intersects each region in the intersection
of the horizontal grating; see Figure 3b. Hence, the intersection of An consists of (k + 1)2

interior-disjoint regions (all but k + 1 of which are pairwise disjoint entirely; indicated in
darker gray in Figure 3b), and the statement of the theorem follows. J

Note that this construction yields double-wedges in non-general position. However,
slightly wiggling everything allows to also get double-wedge arrangements in general position
with Ω(n2) many interior-disjoint intersection regions. Moreover, rotating the arrangement
of Figure 3b by π/4 yields an arrangement that only consists of hour-glasses.

We remark that in contrast to the intersection of general double-wedge arrangements
discussed in this paper, the intersection of a double-wedge arrangement consisting purely of
bow-ties consists only of O(n) regions [8]. This increase in complexity results in an increased
worst-case time complexity for the computation of general double-wedge arrangements.

4 Computing the intersection of double-wedges

In this section, we present two algorithms for computing the intersection of an arrangement
A of double-wedges. The first algorithm in Section 4.1 assumes that the double-wedges do
not cover all slopes in R ∪ {∞,−∞} and runs in time O(n logn). The second algorithm in
Section 4.2 requires time O(n2) but works for all double-wedge arrangements. We will also
discuss that both algorithms have worst-case optimal running time.

4.1 The double-wedges in A do not cover all slopes
As pointed out before, an O(n logn)-time algorithm [8] is known for the case where all
double-wedges are bow-ties. This algorithm can also be applied in the case where the
double-wedges do not cover all slopes in the plane. In order to achieve this, we identify a
slope a not covered by any double-wedge and rotate A such that lines with slope a become
vertical. It is noteworthy that if a exists, we may assume w.l.o.g. that a is rational under the
assumption that all lines bounding the double-wedges have rational slope. This procedure
results in a pure bow-tie arrangement.

It remains to argue that a can be computed in timeO(n logn). We first sort the bounding
lines of all double-wedges by slope in time O(n logn) and check for slope a∗ = −∞ in how
many double-wedges it lies. In fact, this number is equal to the number of hour-glasses and
it can be found in linear time by checking for every double-wedge individually whether it
is an hour-glass or not. If it is zero, then we can directly apply the algorithm from [8].
Otherwise, we iteratively increase a∗ and whenever a∗ becomes larger than the slope of a
line bounding a double-wedge d, we update the number of double-wedges a∗ is in. Note that
the number of double-wedges covering a slope only changes by ±1 on each such event (and
does not change between two neigbhoring slopes in the sorted slope list). Hence, going once
through the sorted list of slopes, each update can be done in constant time (by checking

D. Bertschinger, H. Förster, and B. Vogtenhuber 58:5

the double-wedge d). This procedure takes O(n) time and identifies two slopes of bounding
lines a1 and a2 so that no slope between a1 and a2 is covered by any double-wedge in A.
We choose any slope between a1 and a2 for a, e.g., a = (a1 + a2)/2.

In total, we can summarize as follows:

I Theorem 4.1. Let A be an arrangement of double-wedges so that A does not cover all
slopes in R ∪ {∞,−∞}. Then, the intersection of A can be computed in time O(n logn).

It is worth noting that Edelsbrunner et al. [8] also state that the computation of the
intersection of n bow-ties requires time Ω(n logn). Since a pure bow-tie arrangement is a
special case of the instances discussed in this section, the running time of the procedure
described above is worst case-optimal. We further emphasize that the algorithm for identi-
fying a can also be used to check whether A covers all slopes in time O(n logn). Namely, if
a1 and a2 do not exist, we can instead proceed with the algorithm in the next subsection.

4.2 The double-wedges in A cover all slopes
In this scenario, we first compute the line arrangement formed by the lines bounding the n
double-wedges inA and compute its dual (graph) G. This can be done in timeO(n2) [3, 7, 9].
The resulting dual graph G has O(n2) edges and nodes. Each edge of G corresponds to an
edge in the arrangement (and lies on a bounding line of some double-wedge). Each node
of G corresponds to one cell in the arrangement, which might be in the intersection of all
double-wedges.

We choose an arbitrary node f0 of G and compute the number of double-wedges of A
in which it is contained. This can be done in constant time per double-wedge and hence in
O(n) time in total.

Finally, we traverse G starting from f0 using breadth-first search. Note that traversing
an edge of G corresponds to either leaving or entering a single double-wedge of A as charac-
terized in Observation 1. Hence, whenever we visit a new node (corresponding to a cell in
the arrangement) during this traversal, we can determine the number of double-wedges in A
in which it lies in constant time. Thus we can perform this last step in which we determine
all cells in the intersection of A in O(n2) time.

We summarize this result as follows:

I Theorem 4.2. Let A be an arrangement of double-wedges. Then the intersection of A
can be computed in time O(n2).

By Theorem 3.1, the intersection of A can consist of Ω(n2) interior-disjoint regions. Thus
enumerating all those regions takes time Ω(n2) and our algorithm is worst-case optimal.

5 Conclusion and open problems

In this work, we considered the problem of determining the intersection of an arrangement
of double-wedges. We gave a tight bound on the worst-case combinatorial complexity of this
intersection and presented worst-case optimal algorithms for computing it. The considered
problem is the dual formulation of the problem of finding all lines that stab certain line
segments while keeping other line segments untouched. We conclude with an open problem
and further research directions.

I Open Problem 1. Given two sets of line segments in R2, how fast is it possible to compute
a line that stabs all segments of the one set while avoiding all segments of the other set or
conclude that no such line exists?

EuroCG’22

58:6 Intersections of Double-Wedge Arrangements

This question translates to asking, how fast it is possible to compute a single point in the
intersection of a double-wedge arrangement or decide that this intersection is empty. While
we showed that Ω(n2) time is required to compute the entire intersection, this lower bound
does not carry over to finding only one point. For the special case of all double-wedges
being hour-glasses, the intersection is always non-empty and a point in this intersection can
easily be found in linear time. However, for the mixed setting, a solution might not be so
straight-forward.

Further, it may be interesting to study more restricted double-wedge arrangements.
For instance, arrangements of only bow-ties, where each k-tuple of double-wedges have a
common intersection, display interesting properties. Namely, it is known [5, 6] that for any
such arrangement with k = 4, there always exist two points in the plane such that any
double-wedge contains at least one of them (while one single point is not always sufficient).
Similarly, for k = 3 there always exist four points such that any double-wedge contains at
least one of them (but it is unclear whether this bound is tight). Can the bound for k = 3
be reduced? And can these results for bow-tie arrangements be generalized to arrangements
containing both bow-ties and hour-glasses?

Finally, one may investigate generalizations of double-wedge arrangements to higher
dimensions and study their intersections.

Acknowledgements. This work was initiated at the 6th D-A-CH Workshop on Arrange-
ments and Drawings in Stels, Switzerland. We thank the organizers for making this workshop
possible, especially in these times, and the other participants for fruitful discussions. H.F. is
partially supported by DFG grant KA812-18/2. B.V. is partially supported by the Austrian
Science Fund within the collaborative D-A-CH project Arrangements and Drawings as FWF
project I 3340-N35.

References
1 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. 3rd edition, 2008.
2 K. Q. Brown. Geometric Transforms for Fast Geometric Algorithms. PhD thesis, USA,

1979. AAI8012772.
3 B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT Numerical

Mathematics, 25:76 – 90, 1985. doi:https://doi.org/10.1007/BF01934990.
4 M. Claverol, D. Garijo, C. I. Grima, A. Márquez, and C. Seara. Stabbers of line segments

in the plane. Computational Geometry, 44(5):303–318, 2011. doi:https://doi.org/10.
1016/j.comgeo.2010.12.004.

5 J. Eckhoff. Transversalenprobleme in der Ebene. Archiv der Mathematik, 24:195–202, 1973.
6 J. Eckhoff. A Gallai-type transversal problem in the plane. Discret. Comput. Geom.,

9:203–214, 1993. doi:10.1007/BF02189319.
7 H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10. 1st edition, 1987.
8 H. Edelsbrunner, H. A. Maurer, F. P. Preparata, A. L. Rosenberg, E. Welzl, and D. Wood.

Stabbing line segments. BIT, 22(3):274–281, 1982. doi:10.1007/BF01934440.
9 H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and

hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986. doi:10.1137/
0215024.

10 F. Hurtado, M. Mora, P. A. Ramos, and C. Seara. Separability by two lines and by nearly
straight polygonal chains. Discrete Applied Mathematics, 144(1):110–122, 2004. Discrete
Mathematics and Data Mining. doi:https://doi.org/10.1016/j.dam.2003.11.014.

Free Space Realizability for Curves in 1D
Hugo A. Akitaya1, Maike Buchin2, Majid Mirzanezhad3, Leonie
Ryvkin2, and Carola Wenk∗4

1 Department of Computer Science, University of Massachusetts Lowell
hugo_akitaya@uml.edu

2 Faculty of Computer Science, Ruhr University Bochum
maike.buchin|leonie.ryvkin@rub.de

3 Transportation Research Institute, College of Engineering, University of
Michigan – Ann Arbor
miirza@umich.edu

4 Department of Computer Science, Tulane University
cwenk@tulane.edu

Abstract
The Fréchet distance is a well-established distance measure for comparing curves, and the free space
diagram is the main tool to efficiently compute it. Inspired by [7], we consider the following inverse
problem: Given a diagram of size m × n, we ask whether it can be realized by a pair of curves on a
real line. We prove weak NP-completeness and present an FPT algorithm that runs in O(mn2k)
time where k is an implicit parameter that relates to the complexity of the diagram.

1 Introduction

Buchin, Ryvkin and Wenk [7] introduced the problem of realizing a given (free space) diagram
by polygonal curves in the plane. We build upon their results by focusing on curves in one
dimension. The main objective of studying the realizability problem is to gain a better
understanding of the Fréchet distance, which is a popular distance and similarity measure
used in various applications. The Fréchet distance of two curves P, Q : I → Rd, where
I ⊆ R, is given by δF(P, Q) = inf(σ,θ) maxt∈[0,1] ∥P (σ(t)) − Q(θ(t))∥, where the pair of
reparameterizations (σ, θ) are continuous non-decreasing functions. Intuitively, one can
picture a person walking their dog, each of them walking on one of the curves. The Fréchet
distance equals the length of the shortest leash allowing both to fully traverse their curves
continuously, choosing their speed independently.

The free space diagram Dε(P, Q) is the most important tool for efficiently computing the
Fréchet distance, see [1]. It is defined as the cross-product I × I of the parameter spaces of
the curves partitioned into free space and its complement. For a given ε > 0, the free space
is defined as Fε(P, Q) = {(r, t) : ∥P (r) − Q(t)∥ ≤ ε}. For given ε, it holds that δF(P, Q) ≤ ε

iff there exists a monotone path through the free space of Dε(P, Q) that connects bottom
left and top right corner of the diagram. For polygonal curves defined by segment endpoints
p0, p1, . . . , pn, q0, . . . , qm, respectively, the free space diagram can be subdivided into n × m

cells Cij , where the cell boundaries have the same lengths ∥pi − pi−1∥ and ∥qj − qj−1∥ as the
corresponding segments. It takes O(nm) time to compute a monotone path verifying that
δF(P, Q) ≤ ε, see [1], implying that the complexity of the free space diagram determines the
runtime of the standard algorithm for computing the Fréchet distance. For curves in 1D and
curves of ply k the Fréchet distance can be computed in O(nk log n) time [5].

∗ Partially supported by the National Science Foundation, grant CCF-2107434.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

59:2 Free Space Realizability for Curves in 1D

It is known that the Fréchet distance of curves in 2D cannot be computed in subquadratic
time unless SETH fails [4], but it is possible to exploit the decreased complexity of the free
space diagram to obtain faster algorithms for some curve classes [2, 9]. Some variants of
the Fréchet distance are even NP-hard to decide [6, 11], and the reductions build specific
instances of free space diagrams. To increase the understanding of these diagrams, we study
the following problem:

Realizability in 1D. Given a diagram Dε of size n × m and a parameter ε > 0, can we find
1-dimensional curves P and Q such that Dε = Dε(P, Q)?

Further notation. We define a polygonal curve P : I → R by vertices p0, . . . , pn ∈ R, and
call the line segment connecting consecutive vertices sP

i = pi−1pi. If two consecutive segments
sP

i , sP
i+1 have different orientations (the segments are placed on top of each other), we say

the curve folds at the common folding vertex pi. A cell Cij is called empty (or gray) if
Cij ∩ Fε = ∅, full (or white) if Cij ∩ Fε = Cij , and partially full if ∅ ̸= Cij ∩ Fε ≠ Cij . An
empty cell corresponds to a pair of non-overlapping segments whose endpoints have pairwise
distances > ε; a full cell stems from segments where any interval of length ε centered at
an arbitrary point of either segment fully contains the other segment. Partially full cells
correspond to segments where at least one endpoint has distance < ε to some point of the
other segment. The free space Fε(sP

i , sQ
j) in a cell is a slab, i.e., the space between two

diagonal lines tilted by ±45◦, cropped at cell boundaries, see Figure 1. The horizontal and
vertical lines bounding cells Cij in the diagram are denoted as grid lines.

Note that free space (diagram) is a term defined by the corresponding curves. Thus we
call the considered diagrams input or given diagrams Dε and ask whether there exist curves
P and Q such that Dε = Dε(P, Q), moreover white space in Dε equals free space in Dε(P, Q).

qj

qj

qj−1

qj−1

ε

pi−1

pi−1

pi

pi

−45◦

qj

qj

qj−1

qj−1

pi−1

pi−1 pi

pi
+45◦

2ε

2ε

Figure 1 Given a free space in white and its complement in grey, partially full cells Cij corre-
sponding to segment sQ

j , oriented in the same or in opposite direction as fixed segment sP
i .

Next, we prove NP-hardness in Section 2, and give our FPT-algorithm in Section 3.

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin and C. Wenk 59:3

2 Hardness of Realizability for general diagrams

We prove that realizability in 1D is weakly NP-hard by reducing from the Partition problem.

Partition problem. Given a set of positive integers A = {a1, . . . , an}, decide whether there
exist two sets A1, A2, such that

∑
ai∈A1

ai =
∑

aj∈A2

aj , where A1 ∩ A2 = ∅ and A1 ∪ A2 = A.

▶ Theorem 2.1. It is weakly NP-complete to decide whether a given diagram is realizable
through curves in 1D.

Proof. Given partition instance {a1, . . . , an}, we set S =
∑n

i=1 ai. We construct an input
diagram of size (n + 2) × 1, see Figure 2, and simplify our notation of cells Ci1 = Ci.
Realizing this constructed diagram through curves P , defined by endpoints p0, . . . pn+2, and
Q, consisting of a single segment sQ = q0q1, has to correspond to partitioning our integers
into two sets of equal “weight” S/2. The constructed diagram is a strip of height |sQ|, which
we set to 1. The total width of our diagram is set to 2(1+S)+S: Each cell width corresponds
to the length of a segment in P , and we choose the length of a segment sP

i to be |ai−1|, for
i = 2, . . . , n + 1. Segments sP

1 and sP
n+2 both have length 1 +

∑n
i=0 |ai|, and we set ε = 1.

0 1 + S

a1 a2 a3 a4

1 + 2S 2(1 + S) + S

0

1

Q

P

p1 p2

p3
p4

p5

ε

Figure 2 Reduction for partition instance {a1, . . . , a4} = {3, 2, 1, 2}. The corresponding segments
are scaled by factor 2 and placed parallel instead of on top of each other to increase readability.

Now, the first and last cell of our constructed diagram are set to be partially full, the
bottom left and top right corner being contained in white space. All intermediate cells
C2, . . . Cn+1 are empty. For fixed position of sQ, we construct the first and last cell such
that segments sP

1 and sP
n+2 need to be aligned with sQ; namely, we force q0 = p0 = pn+2.

Consequently, p1 = pn+1. For the remaining segments sP
2 , . . . , sP

n+1, we compare their
orientation with placing the corresponding integer in either of the two sets A1, A2. Starting
with sP

2 , we can decide to place it on top of its predecessor, such that ∥p2−p0∥ = ∥p1−p0∥−a1,
or facing the same direction, such that ∥p2 − p0∥ = ∥p1 − p0∥ + a1. If we choose the first
option, we say sQ

1 is oriented to the left, otherwise it is oriented to the right.
Assume we are given an instance of the partition problem. The constructed strip is

realizable if and only if we can place the curve P such that points p1 and pn+1 coincide. This
is the case if and only if the total length of segments oriented to the right equals the total
length of segments oriented to the left. Thus, the information on orientations of sP

2 , . . . sP
n+1

directly encodes a partition of integers a1, . . . , an into sets A1 and A2. We conclude

∑

ai∈A1

ai =
∑

aj∈A2

aj = S

2 ⇐⇒ p1 = pn+1.

EuroCG’22

59:4 Free Space Realizability for Curves in 1D

This proves NP-hardness. The problem lies in NP since the realization of a polygonal curve
with n segments can be described by a bit sequence of length n − 1, specifying for each vertex
whether the incident segments have the same orientation. ◀

3 Deciding realizability for 1-dimensional curves

Assume that we are given an input diagram where the lengths of cell boundaries as well as
intersection points of white space with grid lines are part of the input.

In comparison to curves in 2D [7], we observe that a free space diagram corresponding
to curves in 1D has limited “configurations”. We still face empty, full or partially full cells,
where white space is bounded by the cell boundaries and parallel line segments tilted by
±45◦, see [5, 10]. Additionally, we state the following:

▶ Lemma 3.1. For each partially full cell Cij corresponding to a pair of segments sP
i , sQ

j in
1D, there exists at least one point x on the intersection of the free space boundary and the
cell boundary. Its position fixes the distance of two endpoints (p, q) ⊂ {pi, pi+1} × {qj , qj+1},
and thus allows to fully determine the relative positions of sP

i and sQ
j .

d(x)

pi−1 pi

−45◦

d(x)

ε

qj−1
qxqj

x

2ε

ε

qj−1 qjpi−1 pi

+45◦

2ε

Figure 3 Placing sQ
j for fixed sP

i to realize a corresponding partially full cell.

Proof. As both segments are placed on the real line, at least one endpoint lies with ε distance
of a point of the other segment. W.l.o.g., we fix the position of sP

i such that pi−1 = 0,
pi = |sP

i |, where |sP
i | denotes the segment’s length. Let x lie on the left boundary of Cij ,

which corresponds to pi−1 × sQ
j , and we call d(x) the distance between x and the bottom

left corner pi−1 × qj−1, see Figure 3. For d(x) = 0, we have that ∥pi−1 − qj−1∥ = ε, for
d(x) = |sQ

j | it holds that ∥pi−1 − qj∥ = ε. In both cases, the orientation of sQ
j depends on

whether Cij contains a free space region. Iff this is the case both segments have the same
orientation. If 0 < d(x) < |sQ

j | there could be one such intersection point, or two at distance
2ε, see Figure 1. Assuming x denotes the lower one, i.e., the interval between bottom left
corner and x is not contained in free space, it holds that ∥pi−1 −qj−1∥ = d(x)+ε, because the

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin and C. Wenk 59:5

point qx ∈ sQ
j at distance d(x) from qj−1 has distance exactly ε to pi−1. The mirrored case

holds for x denoting the upper intersection point and endpoints pi−1, qj . The orientation of
sQ

j depends on the angle of the free space boundary within the cell; for +45◦, both segments
sP

i , sQ
j face in the same direction. ◀

▶ Observation 3.2. Free space diagrams of curves in 1D are in some sense symmetrical, as
described in [5]: Consider an endpoint pi ∈ P at which the curve folds, and some point q ∈ Q.
We choose points p ∈ sP

i , p′ ∈ sP
i+1 that are equidistant to pi, so p = p′ ∈ R. Now ∥p − q∥ ≤ ε

holds iff ∥p′ − q∥ ≤ ε. Thus, the strip to the right of the grid line pi × Q is a reflection of the
strip to the left of that line. For consecutive partially full cells, this implies that a curve folds
at the common endpoint pi iff the incident portions of free space have alternating slopes, see
Figure 4.

We borrow some definitions from computational origami, giving intuitive descriptions.
We refer to [8] for formal definitions. The crease pattern C(Dε) of a diagram Dε is the crease
pattern obtained by considering grid lines that correspond to folding vertices as creases.
The folded state of a crease pattern C(Dε) is a continuous function that maps each face
isometrically and reflects adjacent faces. From Observation 3.2, we conclude

▶ Corollary 3.3. A given diagram Dε is realizable iff there is an assignment of the grid lines
to {fold, straight}, such that overlapping white space aligns in the folded state C(Dε).

Algorithm. We use Corollary 3.3 to obtain an algorithm for the 1D realizability problem.
The algorithm runs in exponential time for general inputs; more precisely, it runs in O(mn2k)
time where k is the number of rows of Dε that do not intersect the boundary of the white
space, i.e., the number of vertical or horizontal strip “gaps” (completely gray or completely
white) in the diagram. Intuitively, gaps correspond to segments of one curve that are either
too far or too close to the other curve, and do not offer us direct information about the
placement of the curves. In particular, if there is a white gap in Dε (e.g. a row of only
full cells) then the diameter of one of the curves is smaller than 2ε. For inputs where
k ∈ O(log(mn)), the algorithm thus runs in polynomial time in the size of the diagram.

Our algorithm is inspired by the algorithm for simple-foldability in 1D [3] by Arkin
et al., which asks whether a 1D crease pattern can be folded through a sequence of simple
folds (±180◦ rotations of a portion of the paper). This paper provides a linear-time greedy
algorithm to constructively decide whether a given crease pattern admits a sequence of
simple folds. Although it is meant to be applied to crease pattern where each crease has
a mountain/valley assignment (whether the crease should be folded by +180◦ or −180◦),
for our problem this assignment is irrelevant. Without a mountain/valley assignment, every
crease pattern is simple-foldable. We use Arkin et al.’s algorithm for the properties that it
maintains during a linear-sized sequence of operations (simple folds). The algorithm identifies
one of two sufficient operations that can be greedily applied: (i) an end fold which is a
simple fold applied to either the first or last crease; and (ii) a crimp which folds through two
consecutive creases. They show that these operations are safe if

(⋆) the resulting folded state after each operation does not cause a portion of the paper
without creases to overlap with a not yet folded crease.

After applying the operation, they reduce the problem to a smaller crease pattern obtained
by “gluing” the overlapping layers. They show that if the crease pattern is not trivial (no
creases), there is always a safe operation, which they can find in O(1) time with O(n)-time
preprocessing. We call any operation (end fold or crimp) valid if the resulting folded state

EuroCG’22

59:6 Free Space Realizability for Curves in 1D

pipi+1pi−1

pi−1 pi pi+1

qi−1
qi

qi−1

qi

ε

ε

pi−1

qi−1
qi

pi
pi+1 pi+2

pi−1 pi pi+1
qi−1

qi

pi+2 pi−1 pipi+1 pi+2

pi−1 pipi+1

Figure 4 An end fold and a crimp of two diagrams along the grid lines of folding vertices.

aligns the white space patterns, see Figure 4. We use the above mentioned algorithm to
efficiently check if a given crease pattern induces a realizable input space diagram.

▶ Theorem 3.4. Given an m × n diagram Dε, we can find 1-dimensional curves P and Q

such that Dε = Dε(P, Q), if they exist, in O(mn2k) time, where k is the total number of
(vertical and horizontal) grid lines of Dε that do not intersect the white space.

Proof. We describe a constructive algorithm. The main idea is to test every possible
corresponding crease pattern that is compatible to Dε. Note that if a grid line intersects the
white space, we can determine if it corresponds to a folding vertex or not as follows. If two
adjacent cells align the white space after a reflection through the grid line, then the grid line
should be assigned to fold; otherwise, we assign it to straight. If there is an inconsistency
of the assignment given by different pairs of adjacent cells incident to a grid line, the instance
is not realizable, and we return “no”. For the remaining k grid lines that do not intersect the
white space, we try all possible assignments to {fold, straight}. We delete all grid lines
that are assigned straight, merging pairs of adjacent cells through the deleted line. That
defines a crease pattern and allows us to check realizability using Corollary 3.3.

It remains to show how we efficiently check whether a given crease pattern satisfies
Corollary 3.3. Note that we could also pay an extra linear factor using brute force to

H. A. Akitaya, M. Buchin, M. Mirzanezhad, L. Ryvkin and C. Wenk 59:7

check for every pair of overlapping cells of Dε whether their white space aligns, leading
to an O(m2n2) time algorithm. We use the simple-foldability algorithm [3] to obtain an
O(mn)-time algorithm as follows. We fold one dimension at a time. W.l.o.g., we focus on
the horizontal dimension, corresponding to P , which contains O(n) creases. Identify a safe
operation and apply the corresponding fold(s). Note that each operation causes at most
three layers to overlap. Recall that we merge these layers into a single layer by “gluing”, and
apply induction. It suffices to check the alignment of the white space in the overlapping
layers. By property (⋆), the number of cells in these layers is O(m), so the check can be
performed in O(m) time. In future operations, if the white space of a merged cell and the
white space of another cell align, the white space of all original overlapping cells align since
alignment is transitive. This proves the induction step. After O(m) operations, we obtain a
single segment in the horizontal dimension, and we can apply the same algorithm for the
vertical dimension. The runtime of the check step is then O(mn), proving our claim.

Finally we address the edge cases when the input diagram is completely empty or
completely full. These cases trivially satisfy Corollary 3.3. In case the diagram is completely
empty, we just place the curves sufficiently far apart from each other (farther than ε). In the
latter case, we can compute the intersection of the ε-neighborhoods of every segment of one
curve, and check whether we can place the other curve in this intersection. Recall that with
a fixed crease pattern, the diameters of the curves are deterministically defined. ◀

▶ Corollary 3.5. If all vertices are folding vertices then it takes O(mn) time to compute
respective curves in 1D and verify whether these curves correspond to the input diagram.

4 Conclusion

Buchin, Ryvkin and Wenk [7] give results for the realizability of free space diagrams for
curves in 2D. This paper proves NP-hardness and gives an FPT-algorithm for curves in 1D.
We note that there are no known results for curves in higher dimensions.

References
1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. Internat. J. Comput. Geom. Appl., 5(1-2):75–91, 1995.
2 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for

planar curves. Algorithmica, 38(1):45–58, 2004.
3 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine, Joseph S.B.

Mitchell, Saurabh Sethia, and Steven S. Skiena. When can you fold a map? Computational
Geometry, 29(1):23–46, 2004. Special Issue on the 10th Fall Workshop on Computational
Geometry, SUNY at Stony Brook. URL: https://www.sciencedirect.com/science/
article/pii/S0925772104000483.

4 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In 55th Annual Symposium on Foundations of
Computer Science, pages 661–670, 2014.

5 Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic, Wouter Meulemans,
Yoshio Okamoto, and Taichi Shiitada. Folding free-space diagrams: Computing the Fréchet
distance between 1-dimensional curves (multimedia contribution). In 33rd International
Symposium on Computational Geometry, (SoCG’17), volume 77 of LIPIcs, pages 64:1–64:5.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.
4230/LIPIcs.SoCG.2017.64.

EuroCG’22

59:8 Free Space Realizability for Curves in 1D

6 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance with
shortcuts is NP-hard. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, page 367–376, 2014.

7 Maike Buchin, Leonie Ryvkin, and Carola Wenk. On the realizability of free space diagrams.
In 37th European Workshop on Computational Geometry (EuroCG), pages 377–383, 2021.
URL: http://eurocg21.spbu.ru/wp-content/uploads/2021/04/proceedings.pdf.

8 Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, 2008.

9 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete Comput. Geom., 48(1):94–127, 2012.

10 Günter Rote. Lexicographic Fréchet matchings. In 30th European Workshop on Computa-
tional Geometry, 2014.

11 Leonie Ryvkin. On distance measures for polygonal curves bridging between Hausdorff and
Fréchet distance. doctoralthesis, Ruhr-Universität Bochum, Universitätsbibliothek, 2021.
doi:10.13154/294-8275.

Querying the Hausdorff Distance of a Line
Segment
Frank Staals1, Jérôme Urhausen1, and Jordi L. Vermeulen1

1 Utrecht University, the Netherlands
{F.Staals, J.E.Urhausen, J.L.Vermeulen}@uu.nl

Abstract
We consider the problem of preprocessing a set of points or segments R such that we can quickly
determine the Hausdorff distance between a query segment and R. For |R| = n and parameters
k ∈ [1 . . . n], δ ∈ (0, 1) and ε > 0, in expected O(nk1+ε + n1+δ) time we can store R in a data
structure of size O(nk1+ε + n1+δ) such that given a query line segment b we can compute the
Hausdorff distance D(b,R) in O((n/k) log k + log3 k + 21/δ logn) time.

1 Introduction

The Hausdorff distance is one of the most well-known distance measures between (sets of)
geometric objects. Given a set R of “red” objects, and a set B of “blue” objects, their
Hausdorff distance D(R,B) = max{−→D (B,R),−→D (R,B)} is the maximum of the two directed
Hausdorff distances defined as

−→D (B,R) = max
b∈

⋃
B

min
r∈

⋃
R
d(b, r),

where d(b, r) denotes the Euclidean distance between two points b and r. We are interested
in computing the Hausdorff distance efficiently, in particular for objects in the plane. In
case R and B are both sets of points in R2, of sizes n and m, respectively, it is easy to
compute the (directed) Hausdorff distance in O((n+m) log(n+m)) time. We simply build
the Voronoi diagram of one set, and query it with the other. In case R and B are sets of
disjoint line segments (in R2) the problem can be solved in the same time [1]. When R and
B are convex polygons, their Hausdorff distance can even be computed in linear time [2].

The above algorithms are very good if B and R have similar sizes. However, when we wish
to compute the Hausdorff distance between one “large” set, say R, and many much smaller
sets B1, . . . , Bk, we wish to avoid the costly linear dependence on n for every Bi. That is, we
wish to build a data structure on R that can be efficiently queried for the Hausdorff distance
between R and some query object B. This setting appears naturally in a range of applications,
for example when querying a shape database (e.g. find all hand written characters similar
to some low complexity “sketch” of a character), trajectory clustering (in which a cluster
is represented by a low complexity representative) [8], or polyline simplification (test if
some candidate shortcut segment is “good enough”) [4, 5, 10]. Furthermore, we are actually
interested in maintaining the Hausdorff distance between two sets of line segments that are
subject to updates. Efficiently computing the Hausdorff distance between subsets of varying
sizes is one of the (many) challenging subproblems that arise in this setting.

Problem Statement and Results. We focus on the cases where R is a set of n disjoint
line segments in R2, and B is a single line segment b. We develop a data structure storing
R that can efficiently be queried for the Hausdorff distance between b and R. Computing
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

60:2 Querying the Hausdorff Distance of a Line Segment

b

Figure 1 The directed Hausdorff distance −→D (b,R) is realized either at an endpoint of b, or at an
intersection of b with an edge of the Voronoi diagram of R.

−→D (R, b) turns out to be relatively straightforward, as the maximum distance from R to b is
realized by an endpoint of a segment in R. Using known results, e.g. furthest point Voronoi
diagrams this then yields an O(n1+δ) space O(21/δ logn) time solution, for some parameter
δ ∈ (0, 1). The hard part is in computing −→D (b, R). In Section 3, we first present an O(n2+ε)
size data structure that realizes O(log3 n) query time when R is a set of n points. Here, and
throughout the rest of the paper, ε > 0 is an arbitrarily small constant. We then generalize
this solution to the case of line segments in Section 4. This thus gives us an O(n2+ε) size data
structure to query the directed Hausdorff distance in O(log3 n) time. Finally, in Section 5
we show how, for any parameter k ∈ [1 . . . n], we can decrease the space usage to O(nk1+ε)
at the cost of increasing the query time to roughly O(n/k).

2 Preliminaries

For a set of points or segments R in R2, let VorR be their Voronoi Diagram. We consider
VorR as a set of edges. Each edge is either a segment or a parabolic arc. Each edge
e ∈ VorR is equally close to two objects pe and qe of R that induce e. For a line segment
b, the directed Hausdorff distance −→D (b, R) is realized either by an endpoint of b, or a point
on the intersection b ∩ e, for an edge e ∈ VorR [1], see Figure 1. That is, −→D (b, R) =
max{EndDi(b, R), IntDi(b, R)} with the following definitions: for b = b1b2, EndDi(b, R) =
maxi∈{1,2}

−→D (bi, R) = maxi∈{1,2}minr∈R d(bi, r) is the endpoint-distance and IntDi(b, R) =
maxe∈VorR

{d(u, pe) | {u} = b ∩ e} is the intersection-distance. We can easily compute the
endpoint-distance using two O(logn) time nearest neighbor queries on R. Hence, our main
task is to develop a data structure that allows us to efficiently compute IntDi(b, R).

For a point p = (px, py) ∈ R2, let p∗ ≡ y = pxx− py be the line dual to p. And for a line
` ≡ y = sx+ t, let `∗ = (s,−t). The set of lines dual to the points on a line ` all intersect
in `∗. For a segment b = uv, let b∗ be the wedge that is the set of points between the lines
u∗ and v∗, see Figure 2. For a set R of objects, we define R∗ = {r∗ | r ∈ R}. Note that for a
line `, a point p, and a segment b, we have p ∈ ` ⇐⇒ `∗ ∈ p∗ and ` ∩ b 6= ∅ ⇐⇒ `∗ ∈ b∗.

3 A Datastructure for Red Points

We first explore how to determine IntDi(b, R), when R is a set of points. We start with the
case where b is a line, and then extend to the case where b is a line segment.

F. Staals, J. Urhausen and J.L. Vermeulen 60:3

y = −x+ 2

(1, 1)

(−2, 4)

(−1,−2)

y = x− 1

(1/2,−1)

y = x/2 + 1
y = −2x− 4

dualprimal

e

e∗

Figure 2 The Voronoi edge between two red points and the corresponding dual wedge. The blue
line intersects the edge and therefore its dual point is within the wedge.

3.1 Querying with a Line
We want to store R so that we can efficiently compute IntDi(b, R) for a query line b. For
each edge e in the Voronoi Diagram VorR, we lift the wedge e∗ to the surface e# such
that a point `∗ ∈ e∗ is lifted to a height equal to the squared distance between the red
Voronoi site pe and the intersection of ` and e. See Figure 3. We square to simplify the
derivations. Formally, e# = {(s, t, d2(pe, ` ∩ e)) | `∗ := (s, t) ∈ e∗}. For a set E, we set
E# = {e# | e ∈ E}. As a result, for a wedge e∗ and a line p∗ through the center of the
wedge, all points `∗ on p∗ will be lifted to the same height, meaning e# is a ruled surface,
as shown in Figure 4. As we want to determine the Hausdorff distance, for each line `, we
are interested in max{z | ∃e ∈ VorR : (s, t) = `∗ ∧ (s, t, z) ∈ e#}, that is, we care about the
upper envelope of these surfaces. Using [9] to be able to quickly query the upper envelope,
we get:

I Lemma 3.1. Let R be a set of n points in R2. In O(n2+ε) time we can build an O(n2+ε)
size data structure that can compute IntDi(b, R) for a query line b in O(logn) time.

Lemma 3.1 is illustrated in Figure 5. We also state the following corollary:

I Corollary 3.2. Let E ⊆ VorR be a set of k Voronoi edges. In O(k2+ε) time we can build
an O(k2+ε) size data structure that can compute max{z | ∃e ∈ E : (s, t) = `∗ ∧ (s, t, z) ∈ e#}
for a query segment b intersecting all edges E with supporting line ` in O(log k) time.

3.2 Querying with a Line Segment
We now extend the data structure to support queries with a line segment, see Figure 6.

For a set of n hyperplanes H in Rd and r ∈ [1 . . . n], a 1/r-cutting of H is a partition of
Rd into cells with disjoint interiors, each of which is intersected by at most n/r hyperplanes
from H [6]. The conflict list of a cell ∇ is the set of the hyperplanes intersecting the interior
of ∇.

EuroCG’22

60:4 Querying the Hausdorff Distance of a Line Segment

t

s

z

e∗

e#

`∗

e

d

d2

`

Figure 3 The Voronoi edge e, its corresponding dual e∗ and its corresponding lifted surface e#.
For a line ` intersecting e, the squared distance between the intersection ` ∩ e and a corresponding
red point pe equals the height at which a vertical line above `∗ punctures e#.

t

s

z

e∗

e#

e

d

d2

Figure 4 The points dual to lines intersecting a Voronoi edge e in the same point, are aligned
and are lifted to the same height in e#.

Figure 5 The overview of Section 3.1. To query the intersection distance for a line `, we query
the upper envelope above the point `∗.

F. Staals, J. Urhausen and J.L. Vermeulen 60:5

∇

Figure 6 The overview of the datastructure of Section 3.2. Each cell of the cutting stores a
balanced binary search tree whose internal nodes store an upper envelope.

Let A be the arrangement induced by the wedges Vor∗R. We can cut the O(n2) faces of
A into O(r2) cells where each cell is intersected by at most n/r boundaries of wedges in
O(nr) time [6]. This also computes the conflict list for each cell. Let Eint

∇ = {e ∈ VorR | ∅ (
e∗ ∩∇ (∇} be the edges whose dual wedges have boundaries in the conflict list of ∇.

For each cell ∇, we compute the following: let Eelem
∇ ⊆ VorR be the set of edges e whose

dual wedges contain ∇, that is ∇ ⊆ e∗. We sort the edges Eelem
∇ by the order in which a line

` with `∗ ∈ ∇ intersects them, and build a balanced binary search tree T∇ on Eelem
∇ whose

leaves each contain one edge, and whose inner nodes each contain the edges contained in
their children. For each node with set of edges E we calculate the upper envelope of E#, as
stated in Corollary 3.2. The tree with the upper envelope at each node uses O(n2+ε) space
and can be constructed in O(n2+ε) time.

Then we recurse for each cell. That is, for each cell, if it is intersected by k > 0 lines, we
again cut it into O(r2) cells where each cell is intersected by at most k/r lines. We again
determine Eint

∇ for each cell ∇ using the conflict list. Also, for each cell ∇ with parent cell ∇′,
we have Eelem

∇ = {e ∈ Eint
∇′ | ∇ ⊆ e∗}. We compute the above mentioned balanced binary

search tree T∇ and upper envelope datastructure on the edges Eelem
∇ . In the end, the space

needed is S(n) = cr2(n2+ε +S(n/r)), for some constant c. For a sufficiently large constant r,
we get S(n) ∈ O(n2+ε). The same holds for the construction time.

When querying with a line segment b that has supporting line `, we proceed as follows.
Determine the cell ∇ containing `∗. Recurse within ∇ to find the set C of all cells containing
`∗. Within each tree T∇ with ∇ ∈ C, we compute the consecutive range of edges intersecting b.
This gives us a set of O(log2 n) nodes that together represent all edges from VorR intersected
by b. For each of those nodes we query the height of the upper envelope at (s, t) = `∗. The
result of the query is the maximum over those heights. This query takes O(log3 n) time and
returns the intersection distance IntDi(b, R). We finally make two point location queries in
the Voronoi Diagram — one for each of the endpoints of b — to determine EndDi(b, R).

I Theorem 3.3. Let R be a set of n points in R2. In O(n2+ε) time we can build an O(n2+ε)
size data structure that can compute −→D (b, R) for a query line segment b in O(log3 n) time.

4 A Datastructure for Red Segments

Now we consider the problem when R is a set of segments instead of a set of points
and we again query with a segment b. We create the same data structure as described
above in Section 3.2. The main difference is that the edges of the Voronoi Diagram VorR
may be parabolic arcs. In the following we explain the implication of this change on the
datastructure. The main question concerns the shape of the dual e∗ of a parabolic arc

EuroCG’22

60:6 Querying the Hausdorff Distance of a Line Segment

y = −x

(−1, 0)

(9, 5)

y = 9x− 5

dualprimal

pq

Figure 7 A Voronoi edge e and the corresponding dual pseudo-wedge e∗. A line ` intersecting e
once also intersects the segment pq between the endpoints of the parabolic arc and thus `∗ ∈ pq∗. A
line intersecting e twice has a dual point between the wedge and a conic.

e. Furthermore we are interested in the shape of the lifted surface e#. To be precise, we
define the pseudo-wedge e∗ as the set of all points `∗, where ` intersects the edge e, and
e# = {(s, t,maxa∈`∩e d2(a, pe)) | `∗ = (s, t) ∈ e∗}. See Figure 7 for an example. The
following two lemmata determine the shape of e∗.

I Lemma 4.1. The points dual to the tangents of a parabola form a nondegenerate conic.

A conic is a curve described by an equation of the form ax2 + bxy+ cy2 + dx+ ey+ f = 0,
for some a, b, c, d, e, f ∈ R. A conic is nondegenerate if it is a circle, ellipse, parabola, or
hyperbola, that is, if it contains at least two points and no three collinear points.

I Lemma 4.2. For an edge e, the pseudo-wedge e∗ is an area bounded by three algebraic
curves each of degree at most two.

Sketch. Intuitively, a line ` whose dual is on the boundary of e∗ is tangent to the convex
hull of the parabolic arc e. Thus, ` either intersects one of the two endpoints of e or ` is
tangent to e. The curve of the dual points of lines tangent to e∗ is a conic by Lemma 4.1.
Therefore, e∗ is bounded by two lines and a conic. J

From Lemma 4.2 we deduce that the arrangement of pseudo-wedges E∗R has complexity
O(n2). Furthermore, the (vertical decomposition of the) arrangement of a random sample of
O(r2 log2 r) such pseudo-wedges is expected to be an 1/r-cutting of E∗R [7]. It then follows
we can compute an 1/r-cutting of size O(r2) in expected O(nr) time [3]. We now use the
same approach as in Section 3.2; that is, we recursively build 1/r-cuttings (for some constant
r), each cell storing a binary search tree whose nodes store an upper envelope of e# functions.
As we show next, each e# is an algebraic terrain of constant degree, which means their upper
envelope can be stored for O(logn) point location queries using O(n2+ε) space [9]. As before,
we obtain an O(n2+ε) size data structure that can be queried in O(log3 n) time.

I Lemma 4.3. The surface e# is an algebraic terrain of degree at most eight or the maximum
over two algebraic terrains each of degree at most eight.

F. Staals, J. Urhausen and J.L. Vermeulen 60:7

I Theorem 4.4. Let R be a set of n disjoint line segments in R2. In expected O(n2+ε) time
we can store R in a data structure of size O(n2+ε) such that given a query line segment b we
can compute −→D (b, R) in O(log3 n) time.

5 A Space-Time Tradeoff

Let k ∈ [1 . . . n] be a parameter. We describe how to adapt our data structure to reduce the
space used to O(nk1+ε), at the cost of increasing the query time to O((n/k) polylog k). The
main idea is to partition R2 into O(n/k) cells, such that in each cell ∇, there are only O(k)
points or line segments from R that contribute to VorR. We then build our data structure
from Theorem 4.4 on each such set. Unfortunately, a query segment b may now intersect all
O(n/k) cells, which ultimately yields a query time of O((n/k) log k+ log3 k). We additionally
store R to also compute −→D (R, b) efficiently.

I Theorem 5.1. Let R be a set of n disjoint line segments in R2, and let k ∈ [1 . . . n] and
δ ∈ (0, 1) be two parameters. In expected O(nk1+ε + n1+δ) time we can store R in a data
structure of size O(nk1+ε + n1+δ) such that given a query line segment b we can compute
D(b, R) in O((n/k) log k + log3 k + 21/δ logn) time.

Acknowledgments. Jérôme Urhausen and Jordi L. Vermeulen were supported by the Dutch
Research Council (NWO) under project no. 612.001.651.

References
1 Helmut Alt, Peter Braß, Michael Godau, Christian Knauer, and Carola Wenk. Computing

the Hausdorff distance of geometric patterns and shapes. In Discrete & Computational
Geometry, pages 65–76. Springer, 2003.

2 Mikhail J. Atallah. A linear time algorithm for the Hausdorff distance between convex poly-
gons. Information Processing Letters, 17(4):207–209, 1983. doi:10.1016/0020-0190(83)
90042-X.

3 Mark de Berg and Otfried Schwarzkopf. Cuttings and applications. International Jour-
nal of Computational Geometry & Applications, 05(04):343–355, 1995. doi:10.1142/
S0218195995000210.

4 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline simplification has cubic complexity.
In 35th International Symposium on Computational Geometry (SoCG), volume 129, pages
18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
SoCG.2019.18.

5 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline simplification has cubic complexity.
Journal of Computational Geometry, 11(2):94–130, 2021.

6 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9(2):145–158, 1993.

7 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173. American Mathemat-
ical Society Boston, 2011.

8 Abhinandan Nath and Erin Taylor. k-median clustering under discrete Fréchet and Haus-
dorff distances. In 36th International Symposium on Computational Geometry (SoCG),
volume 164, pages 58:1–58:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SoCG.2020.58.

9 Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete
& Computational Geometry, 12:327–345, 1994. doi:10.1007/BF02574384.

EuroCG’22

60:8 Querying the Hausdorff Distance of a Line Segment

10 Marc van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline simpli-
fication using the Hausdorff and Fréchet distance. Journal of Computational Geometry,
11(1):1–25, 2020.

Watchman Routes on Line Segments
Shahin John J S1, Remi Raman1, Subashini R1, and Subhasree
Methirumangalath1

1 National Institute of Technology, Calicut
ivinjohn98@gmail.com,{remi_p170027cs,suba,subha}@nitc.ac.in

Abstract
In this paper, we focus on the parameterized complexity of Watchman Route problem on arrangement
of line Segments (WRS). We show that WRS is Fixed Parameter Tractable with respect to the
parameter k being the number of faces in the connected arrangement of line segments in a plane.
The proposed algorithm, which runs in time O∗(52k3k), transforms the connected arrangement of
line segments L into a plane straight-line graph G, performs a series of preprocessing steps and uses
a constraint propagation technique to find the optimal watchman route.

1 Introduction

The Watchman Route Problem (WRP) asks for a shortest closed path in the given polygon so
that every point in the polygon is visible from at least one point on the path. The WRP was
first introduced by Chin and Ntafos [2], as a variation of the art gallery problem. Dumitrescu
and Toth [6] proved that WRP is NP-hard if the polygon contains holes. The following
variants of WRP were considered in the literature [4, 5, 7, 8, 9, 10, 11]: for simple polygons,
for polygonal domains, and for arrangement of lines and line segments. The WRP on an
arrangement of line segments1 in a plane (WRS) is a special case of the WRP on polygonal
domains as one can consider a line segment as an alley or corridor of width zero. Xu [12]
showed that the WRS is NP-hard. Later, Dumitrescu, Mitchell and Zylinski [5] proposed a
simpler NP-hard proof for WRS. They added that the problem remains NP-hard even for
axis-aligned line segments, and they presented an O(log3(n))-approximation algorithm also.

Parameterized complexity offers a framework for solving NP-hard problems by measuring
their running time in terms of one or more parameters, in addition to the input size. A
problem with input size n, and a non-negative integer parameter k, is fixed-parameter
tractable (FPT), if it can be solved by an algorithm that runs in O(f(k)nc)-time or O∗(f(k))-
time, where f is a computable function depending only on k, and c is a constant independent
of k. We recommend interested readers to [3] for more details on the topic.

In this paper, we focus on the parameterized complexity of WRS, with the parameter k

being the number of faces. The parameterized version of the problem is as follows.

▶ Definition 1.1. k-WRS (k-Watchman route problem on line segments)
Input: A connected arrangement of line segments L with k faces.
Parameter: The integer k

Output: A minimum length closed walk contained in the union of the line segments in L
such that every line segment is visited (intersected) by the walk.

1 Consecutive coinciding line segments are considered as degenerate cases for L.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

61:2 Watchman Routes on Line Segments

2 k-WRS is Fixed Parameter Tractable

In this section, we present our parameterized result for k-WRS. Figure 1 shows an example
of an arrangement L of line segments in a plane and its corresponding optimal closed walk
intersecting all line segments in L.

2.1 Transforming L into a plane straight-line graph
To start with, we transform the instance L into an equivalent plane straight-line graph PSLG.

Input: L, a connected arrangement of line segments.
Output: G, a plane straight-line graph (PSLG) corresponding to L.

Figure 1 L and its corresponding optimal
walk (shown in bold lines)

1

23 4

56

7

8 9

10

11 12

131415

16

17

18

19 20

21 22

23

24

25

26

27

28

29

3031 32

33

34

35

3637

3839

40

41

Figure 2 PSLG G transformed from L
and Opt-W RG (shown in bold lines)

Each vertex vi ∈ V of G represents either an endpoint of a line segment or the intersection
point of two line segments. There exists an edge ei = (u, v) ∈ E between two vertices
u, v ∈ V , if the corresponding points of u and v have a line segment passing through them
without a vertex in between. The positions of vertices and edges in the plane are preserved
in order to fit the visibility and Euclidean distance criteria. We define visibility in PSLG as
follows.

▶ Definition 2.1. A vertex vj ∈ V or an edge ej ∈ E is visible to a vertex vi ∈ V if there
exists an alternating sequence of vertices and edges vi, ei+1, vi+1, ei+2, . . . , ej , vj , such that
slope(er) = slope(es) for every i < r, s ≤ j.

Alternatively, we say a walk covers a set of vertices or edges if the set of vertices or edges are
visible from at least one vertex in the walk. The k-WRS is translated into k-WRG, which
aims to find an optimal watchman route (Opt-WRG) in a PSLG G with k faces. An example
input and output with respect to PSLG is given in Figure 2. We denote Opt-Walk to be a
walk on G, which we intend to build through the subsequent sections.

2.2 Identification of required portion of Opt-WRG
In this section, we apply a preprocessing on G and then identify a few required portions of
Opt-WRG on the preprocessed G.

Leaf vertices for which the slope of the edge between the leaf and the parent vertex is the
same as the slope of some other edge incident with the parent vertex can be removed from

S. John, R Raman, Subashini R, Subhasree M 61:3

the graph, as these leaf-parent edges will always be covered when the edge with the same
slope incident with the parent is covered. Next, we use Lemma 2.2 and 2.3 for identifying a
few walks that are required portions of Opt-WRG.

▶ Observation 2.2. A cut-vertex is a required portion of Opt-WRG on G.

▶ Observation 2.3. An edge ei = (u, v), where u and v are cut-vertices and ei is a cut-edge
(bridge), is a required portion of any Opt-WRG on G and is to be traversed back and forth.

In the trivial case, if G is a tree, then a closed walk by a depth-first traversal, on the above
identified vertices (shown as boxes in Figure 3) and edges gives Opt-WRG. For G, when
|F | > 1, a collection of open walks can be created where each walk is a depth-first traversal
on these vertices and edges (Figure 3). Consequently, we remove all cut-edges (bridges) and
then the isolated vertices from G, which gives us a 2-connected PSLG G (Figure 4). Details
of this approach is omitted due to space limitations.

1

2 4

56

7

8 9

10

11 12

131415

16

17

18

19 20

21 22

23

24

25

26

27

28

30 32

33

34

35

37

3839

40

41

Figure 3 Collection of walks (Opt-W alk)

1

2 4

56

7

8 9

1415

16

19 20

21 22

23

24

25

26

27

28

30 32

33

34

35

41

Figure 4 Resultant 2-connected PSLG G

These collection of walks is then used to build Opt-Walk, which is discussed in the next
section.

2.3 Design of Opt-Walk on G

This section describes two structures that make up the 2-connected PSLG: cyclic strip and
path strip (collectively called strips).

▶ Definition 2.4. A cyclic strip is a cycle s = (v0, e1, v1, e2, . . . , vn−1, en, vn = v0) such that
for 1 ≤ i ≤ n− 1, degree(vi) = 2 in G.

▶ Definition 2.5. A path strip is a maximal path s = (v0, e1, v1, e2, . . . , vn−1, en, vn) such
that for 1 ≤ i ≤ n− 1, degree(vi) = 2 in G.

To denote a strip, we use the notation (vi, vj)-strip, where vertices vi, vj ∈ V denote
the end vertices of the sequence s. We call these end vertices strip-vertices (blue colored
vertices in Figure 4). For |F | > 2, strip-vertices have degree at least three (|F | = 2 is a
trivial case). In addition, let S denote a set of strips and SV denote a set of strip-vertices.
As with a graph G = (V, E), we define a strip graph SG = (SV, S) as a pair of sets SV and
S, where strip s ∈ S connects any two vi, vj ∈ SV . We use the notation SG \ si to represent
SG(SV, S \ {si}), and SG \ vi to represent SG(SV \ {vi}, S \ {(vi, vj)-strip ∈ S}).

EuroCG’22

61:4 Watchman Routes on Line Segments

In our approach, strips are crucial, since they are a part of the 2-connected PSLG,
along which watchman routes can interact only in a finite number of ways. A watchman is
positioned on a strip-vertex vi and he attempts to determine the optimal walk on the strip.
The four walks explained in the next two sections illustrate his choices.

Walk that traverses both ends of a strip. We present two archetypes for an open walk on
a (vi, vj)-strip under the constraint (C1) that the walk traverses both vertex vi and vertex
vj of the strip (for example: green vertices in Figure 5 are vertices to be traversed).

If walk from vi is to end at vj , then the optimal walk (walk1) is vivi+1 . . . vj−1vj

If walk from vi is to end at vi, then two walks vivi+1 . . . vp−2vp−1vp−2 . . . vi+1vi and
vjvj−1 . . . vp+2vp+1vp+2 . . . vj−1vj that avoid the longest visible sub-string vp−1vpvp+1
constitutes the optimal walk (walk2) (bold lines in Figure 5).

1
1

2

1.4
1

1.4

v1 v2

v3 v4

v5 v6

v7

(a) Maximal visible sub-string is v3, v4, v5.

1
1.4

3

1.4
1

1.4

v1 v2

v3 v4

v5 v6

v7

(b) Maximal visible sub-string is v3, v4.

Figure 5 Examples for walk2 on (v1, v7)-strip. In Figure 5b, since v3 and v4 are cut-vertices,
they have to be traversed by walk2.

Walk that avoids visiting an end of a strip. We present two archetypes for an open walk on
a (vi, vj)-strip with the constraint (C2) that the walk traverses vertex vi and avoids traversing
vertex vj (for example: Red colored vertices in figure 6b). Let S′ = S \ {(vi, vj)-strip}.

If no walks on neighbouring strips (S′) cover the edge of the (vi, vj)-strip incident with vi,
then the optimal walk (walk3) on the strip is vivi+1 . . . vj−1, vj−2 . . . vi+1vi (Figure 6a).
If a walk on neighbouring strips (S′) covers the edge of the (vi, vj)-strip incident with vi,
then the optimal walk (walk4) on the strip is vivi+1 . . . vj−2vj−3 . . . vi+1vi (Figure 6b).

v1 v2

v3 v4

v5 v6

v7

v8

v9 v10

(a) walk3 has to traverse v5 as no other walk will
cover edge (v5, v6)

v1 v2

v3 v4

v5 v6

v7

v8

v9 v10

(b) walk4 has to traverse only till v4 as edge
(v5, v6) will be covered by some other walk

Figure 6 Example for walk3 (6a) and walk4 (6b) on (v1, v6)-strip represented using bold lines.

Figure 7 shows an approach that limits the number of possible walks on a strip according
to the constraints imposed on its strip-vertices.

S. John, R Raman, Subashini R, Subhasree M 61:5

C1: s with vi and vj traversed

vi vj

Choices: walk1 or walk2

C2: s with vi traversed and vj avoided

vi vj

Choices: walk3 or walk4

Constraint: s with vi traversed

vi vj

Choices: walk1, walk2, walk3 or walk4

Figure 7 Determining walks based on constraints on the strip-vertices of a (vi, vj)-strip

2.4 FPT Algorithm for k-WRG
This section presents our FPT algorithm for k-WRG using the four walks (walk1, walk2,
walk3, walk4), along with the constraints used to design them. We first show how to compute
optimum walks on cyclic strips and then we propose an algorithm for calculating optimum
walks on path strips.

Assigning walks for cyclic strips. We observe that strip-vertex of a cyclic strip s is a
cut-vertex and is to be traversed. Hence, either walk1 or walk2, whichever is of minimum
walk length, is the optimal walk on s. Therefore, for each cyclic strip s ∈ S, we assign the
optimal walk and do the operations SG \ s and k ← k− 1 recursively. As a result, SG simply
contains path strips.

Assigning walks for path strips. Suppose walk1 or walk2 is chosen for a (vi, vj)-strip, then
this choice constraints vj to be traversed by Opt-Walk. Similarly, if walk3 or walk4 is chosen
for a (vi, vj)-strip, then it constraints vj to be avoided by Opt-Walk. In this way a choice
of a walk for a strip imposes constraints to be propagated to neighbouring strip-vertices of
strips. A Eulerian Path is a path in a graph that visits every edge exactly once. A Eulerian
Circuit is an Eulerian Path that starts and ends on the same vertex. Combining these ideas,
Algorithm 1 finds a minimum length closed walk starting from a strip-vertex vi which covers
G. Based on what we have discussed in previous sections, these are the rules we will follow
when constructing the walk from our algorithm:

1. Each assigned walk for a strip should comply with all constraints in the strip.
2. A walk constructed should attach with cut-vertices in a strip and should connect with

previously computed walks originating from these cut-vertices.

▶ Lemma 2.6. Algorithm 1 always returns an Opt-WRG on G given the strip-vertex vi is
traversed by Opt-WRG and runs in O∗(52|S|/33|S|/3)-time, where S is the set of strips.

Proof. Algorithm 1 recursively builds a collection of walks where each walk is assigned to a
strip in SG that starts from strip-vertex vi. There are five ways to traverse the strip: walk1,
walk2, walk3, walk4, and two walk1 for traversing to and fro. When a walk complies with
the constraints in the strip, it will be added to the collection Opt-Walk. Also, when a walk is
added to the collection, all the edges covered by the walk are removed from G. A collection
is finalized if all strips attached to traversed strip-vertices are exhausted. Each collection of
walks can be visualized as a directed graph. Each of the walks walk2,walk3,walk4 starts and
ends at the same strip-vertex vi, thus creating a self-loop edge. walk1 forms a single outgoing

EuroCG’22

61:6 Watchman Routes on Line Segments

Algorithm 1: Finding optimal k-WRG starting from a strip-vertex
Input : < SG, vi, Opt-Walk, G >, a preprocessed strip-graph SG, a strip-vertex vi,

a partially computed Opt-Walk, and preprocessed PSLG G whose edges
are not covered

Output : Opt-Walk′, a minimum length closed walk that covers the preprocessed
2-connected PSLG G.

Assumption: strip-vertex vi is traversed by Opt-WRG.
1 Procedure Opt-Walk-Recursive(SG, vi, Opt-Walk, G)
2 if Eulerian Circuit exists for Opt-Walk and G has no edges then
3 return a Eulerian Circuit on Opt-Walk;
4 else
5 Opt-Walk′ ← a walk of infinite length;
6 s← select a strip in S(SG) which is incident with strip-vertex vi;
7 for each walki which is either walk1,walk2,walk3,walk4, or the to and fro

walk1 that meets the constraints for strip s do
8 Set-Walks← Opt-Walk ∪ {walki};
9 next-vi ← Select a traversed strip-vertex that is attached to at least one

strip in SG;
10 Temp-Opt-Walki ← Opt-Walk-Recursive(SG \ s, next-vi, Set-Walks, G\

edges covered by walki);
11 if |Temp-Opt-Walki| < |Opt-Walk′| then
12 Opt-Walk′ ← Temp-Opt-Walk;
13 end
14 end
15 return Opt-Walk′;
16 end
17 end

edge from vi to an adjacent strip-vertex. In the base case, we check if the directed graph
formed by an Opt-Walk has an Eulerian circuit, and that the walks within the Opt-Walk

collection cover G. If the conditions are satisfied, we return an Eulerian circuit as a closed
connected walk covering G. By comparing the length of each walk, the algorithm returns
the shortest walk, thus returning Opt-WRG.

The algorithm essentially finds unique permutations of walks on the |S| number of strips.
With five choices per strip we have 5|S| possible permutations. Given an undirected graph,
Eulerian circuits can be found in O(|SV |+ |S|)-time.

Optimization using Constraint propagation. For each walk assigned to an s ∈ S, the
strip-vertices of s get constrained to be either traversed or avoided. The maximum number
of walk choices on a strip constrained by constraint C1 is three, and the maximum number
of walk choices on a strip constrained by constraint C2 is two. Let a face be circumscribed
by vertices and strips in the order v0, s1, v2, .., vm−1, sm−1, vm = v0. For any arrangement of
walks on m strips, at least one strip will have both its strip-vertices traversed or avoided.
In the m strip graph, adding a face can create at most three additional strips, which is the
result of connecting two non-strip-vertices from two different strips. Suppose we compute
the choices of walks in the resultant graph. There would be two strips with five walk choices
and one strip with three choices. Hence, the marginal increase in time complexity is at

S. John, R Raman, Subashini R, Subhasree M 61:7

most 52/331/3 and the Algorithm 1 runs in O∗(52|S|/33|S|/3) using the constraint propagation
technique. ◀

▶ Lemma 2.7. At least one strip-vertex in SG is to be traversed by Opt-WRG.

Proof. Assume none of the strip-vertices are traversed by an Opt-WRG, on SG having S ̸= ∅,
then the walk must traverse within the strips without traversing vi or vj of a (vi, vj)-strip
in SG. Since vi is connected to at least three strips, SG must have at least three strips. A
walk without visiting at least one strip-vertex cannot cover the other two strips. Thus, at
least one strip-vertex in SG is to be traversed by Opt-WRG. ◀

▶ Remark. For every vi ∈ SV , vi is of degree at least three, hence 2|S| ≥ 3|SV |. It is easy
to see that SG is also a planar graph. Thus, by extending Euler’s formula for SG, we get
|SV | − |S|+ |F | = 2 [1]. Therefore, the number of strips in SG is at most 3(|F | − 2).

To obtain the optimal watchman route, we invoke Algorithm 1 on every vertex vi ∈ SV ,
compare the walk lengths of Opt-Walk′ obtained from each function call, and choose the
shortest Opt-Walk′. Theorem 2.8 summarizes our result.

▶ Theorem 2.8. Opt-WRG for G is obtained in O∗(52k3k)-time.

Proof. From Lemma 2.6 and Lemma 2.7, it is clear that our final computation which iterates
through each strip-vertex in SV to find the minimum closed walk always return an Opt-WRG

for an SG. As the Algorithm 1 is invoked |SV | number of times, the total running time
becomes O∗(52k3k). ◀

The following corollary on k-WRS is a direct consequence of Theorem 2.8.

▶ Corollary 2.9. k-WRS is Fixed Parameter Tractable on the connected arrangement of line
segments L with the parameter k being the number of faces |F | and runs in O∗(52k3k)-time.

References
1 Martin Aigner and Günter Ziegler. Three applications of Euler’s formula, pages 75–80.

Springer, Berlin, Heidelberg, 01 2010. doi:10.1007/978-3-642-00856-6_12.
2 Wei-pang Chin and Simeon Ntafos. Optimum watchman routes. Information Processing

Letters, 28:39–44, 01 1986. doi:10.1016/0020-0190(88)90141-X.
3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer
Publishing Company, Incorporated, 1st edition, 2015.

4 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph Mitchell. Touring a sequence of polygons.
Conference Proceedings of the Annual ACM Symposium on Theory of Computing, 04 2003.
doi:10.1145/780542.780612.

5 Adrian Dumitrescu, Joseph S.B. Mitchell, and Paweł Żyliński. Watchman routes for lines and
line segments. Computational Geometry, 47(4):527 – 538, 2014. doi:10.1016/j.comgeo.
2013.11.008.

6 Adrian Dumitrescu and Csaba D. Tóth. Watchman tours for polygons with holes. In
Computational Geometry : Theory and Applications, volume 45, pages 326–333, 2012.
doi:10.1016/j.comgeo.2012.02.001.

7 Cristian S. Mata and Joseph S. B. Mitchell. Approximation algorithms for geometric tour
and network design problems. In SCG ’95, pages 360–369, 01 1995. doi:10.1145/220279.
220318.

EuroCG’22

61:8 Watchman Routes on Line Segments

8 Joseph S. B. Mitchell. Approximating watchman routes. In Sanjeev Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 844–855. SIAM, 2013.
doi:10.1137/1.9781611973105.60.

9 Xuehou Tan. Approximation algorithms for the watchman route and zookeeper’s problems.
Discrete Applied Mathematics, 136(2):363 – 376, 2004. The 1st Cologne-Twente Workshop
on Graphs and Combinatorial Optimization. doi:10.1016/S0166-218X(03)00451-7.

10 Xuehou Tan. A linear-time 2-approximation algorithm for the watchman route problem
for simple polygons. Theoretical Computer Science, 384(1):92 – 103, 2007. Theory and
Applications of Models of Computation. doi:10.1016/j.tcs.2007.05.021.

11 Xuehou Tan and Bo Jiang. An improved algorithm for computing a shortest watchman
route for lines. Information Processing Letters, 131:51–54, 2018. doi:https://doi.org/
10.1016/j.ipl.2017.11.011.

12 Ning Xu. Complexity of minimum corridor guarding problems. Information Processing
Letters, 112(17):691 – 696, 2012. doi:10.1016/j.ipl.2012.06.003.

Orientation type of convex sets∗

Péter Ágoston1, Gábor Damásdi1, Balázs Keszegh1,2, and Dömötör
Pálvölgyi1

1 ELTE Eötvös Loránd University, MTA-ELTE Lendület Combinatorial
Geometry Research Group, Budapest, Hungary
agostonp@cs.elte.hu,gabor.damasdi@gmail.com,domotorp@gmail.com

2 Alfréd Rényi Institute of Mathematics
keszegh.balazs@renyi.hu

Abstract
We introduce a definition of orientation for intersecting planar convex sets and study its properties.

1 Introduction

A family is intersecting if any two members of the family intersect, and it is 3-intersection-free
if no three members of the family have a common intersection. These were studied by Jobson
et al. [12] (see also Lehel and Tóth [14] and related recent results in extremal combinatorics
[16]) who showed that if three compact convex planar sets, A, B, C, form an intersecting
and 3-intersection-free family, then R2 \ (A ∪B ∪ C) has exactly one bounded component,
called the hollow of ABC, which we will denote as (ABC) (see Figure 1). They have also
shown that the convex hull of this hollow is a triangle with sides a, b, c, such that (apart
from its endpoints) side a is contained in A \ (B ∪ C), side b in B \ (A ∪ C), and side c in
C \ (A ∪B). We may refer to the vertices of this triangle as the vertices of the hollow, but
note that since the hollow is open, its vertices are not a part of it, only of its closure.

From now on whenever we refer to a convex set, it is always assumed to be compact.
The following lemma is a straightforward consequence of Lemma 1 in [12].

a b

c

A B

C

a c

b

A C

B

Figure 1 Three convex sets, A, B and C with negative (left) and positive (right) orientation and
their hollow, (ABC).

∗ Research supported by the Lendület program of the Hungarian Academy of Sciences (MTA), under
the grant LP2017-19/2017. Research of the 3rd author is also supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences, by the National Research, Development and
Innovation Office – NKFIH under the grant K 132696 and FK 132060 and by the ÚNKP-20-5 New
National Excellence Program of the Ministry for Innovation and Technology from the source of the
National Research, Development and Innovation Fund.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

62:2 Orientation type of intersecting convex sets

I Lemma 1.1 (Jobson-Kézdy-Lehel-Pervenecki-Tóth [12]). Three pairwise intersecting compact
convex sets, A, B, C, that do not have a common point, enclose a hollow (ABC), and the
following four properties hold.

(a) (ABC) is a simply connected region.
(b) The boundary of (ABC) has exactly one arc from each of the boundaries of A, B and

C.
(c) The closure of the convex hull of (ABC) is a triangle with sides a, b, c such that (apart

from its endpoints) side a is contained in A \ (B ∪ C), side b in B \ (A ∪ C), and side c

in C \ (A ∪B).
(d) For any x ∈ B ∩ C, y ∈ A ∩ C and z ∈ A ∩B the orientation of the xyz triangle is the

same and agrees with the orientation of abc.

Define the orientation of ABC as the orientation of the triangle with sides a, b, c: if the
sides along the boundary of the triangle follow each other in a counterclockwise direction
as abc, then we define the orientation of ABC as positive, otherwise as negative. We also
define the orientation of three convex sets with a common intersection as zero. This way
we can assign an orientation to any three members of an intersecting family of convex sets
in the plane. To simplify notation, we assign a value from {±1, 0} to each ordered triple
according to their orientation and write (omitting the function assigning the value in notation)
ABC = +1, ABC = −1, ABC = 0, respectively, for positive, negative, zero orientations.1
From the definitions, it follows that ABC = CAB = BCA = −ACB = −BAC = −CBA.
We will call {±1, 0} value assignments to all triples of some base set satisfying the previous
equalities cyclic partial orientations, and if the zero value is not allowed, cyclic orientations.
Different orientations of interest are compared later in Figure 5.

Helly’s theorem says that if for some n ≥ 3 planar convex sets A1, . . . , An we have
AiAjAk = 0 for any i < j < k, then ∩n

i=1Ai 6= ∅; we will abbreviate this condition as
A1 . . . An = 0. We will also apply this shorthand notation for orientations of points, so for
example abcd = +1 means that the points a, b, c, d are the vertices of a convex quadrangle, in
this counterclockwise order. With this notation, Lemma 1.1(d) states xyz = ABC. Lemma
1.1(d) also implies the following.

I Corollary 1.2. If convex sets A, B, C enclose a hollow and convex sets A′ ⊂ A, B′ ⊂
B, C ′ ⊂ C are pairwise intersecting, then A′B′C ′ = ABC.

I Remark. Our definition only allows us to define an orientation for pairwise intersecting
triples of convex sets. This is unlike the situation in the case of the (quite different) definition
in [3, 4, 5] by Bisztriczky and Fejes Tóth (later also investigated in [6, 7, 11, 17, 19, 20, 21])
which primarily focused on Erdős-Szekeres type theorems.2 In these papers the condition on
the family of convex sets is that they are pairwise disjoint, or in later papers that they are
non-crossing. Such a family is in convex position if no set is covered by the convex hull of the
rest. In this case the orientation of ABC is determined by any points a ∈ A, b ∈ B, c ∈ C

chosen from the boundary of conv(A ∪ B ∪ C). This definition appeared explicitly in [11]
and is implicitly in earlier works—we will refer to it as the Bisztriczky-Fejes Tóth type
orientation. Note that if A, B, C are in addition also intersecting but 3-intersection-free, then

1 It might seem counterintuitive that the intersecting case is assigned 0 but this is the natural choice in
some cases; see also [18, Section 4].

2 For intersecting families, an Erdős-Szekeres type theorem with our definition of orientation follows
directly from Ramsey’s theorem.

P. Ágoston, G. Damásdi, B. Keszegh, D. Pálvölgyi 62:3

the Bisztriczky-Fejes Tóth type definition gives the same orientation as the one used in this
paper. But such families can contain at most four connected sets, as K5 is non-planar.

a

b

c

d

Figure 2 The following triples have positive orientation: abc, abd, adc, bdc

If a family of convex sets in the plane is intersecting and 3-intersection-free, we call it
holey. For example, any collection of lines in general position is holey, and the orientation
of any triple is determined by their slopes (see Figure 2). This orientation for lines is not
to be confused with the much studied arrangement types of lines which were shown by
Goodman and Pollack [8] to be the duals of order types of points. However, they also made
the following simple observation about the orientations of triples of lines, which is relevant
for us.

I Observation 1.3 (Goodman-Pollack [9]). If a holey family consists of lines `1, . . . , `n,
ordered according to their slopes in clockwise circular order, then the orientation of their
triples is the same as the orientation of the triangles of n points p1, . . . , pn in convex position,
ordered in counterclockwise order.

Our main motivation to study holey families is that it can be the first step to improve
our understanding of the intersection structure of planar convex sets, which can potentially
lead to improved weak ε-nets [1] and (p, q)-theorems [2]. The question is, what abstract
properties of the underlying geometric 3-hypergraphs are useful to derive interesting results.

In the following, we will call an abstract system of orientations of triples that can be
derived from a holey family of planar convex sets a C-3OSET (Convex Triple Orientations)
and its superfamily where the sets are only required to be pairwise intersecting a C-3POSET
(Convex Triple Partial Orientations). So a C-3OSET is roughly like an order type of points
in general position (sometimes this is called simple order type), while a C-3POSET would
correspond to an order type where we allow more than two points to be collinear (sometimes
this is called order type)—we will refer to this latter notion as partial order type (see Figure
5). In Knuth [13] these are referred to as partial signings that can be completed to form
order types.

Our results. In Section 2 we show that C-3POSETs satisfy a natural interiority condition,
and compare them with other well-studied cyclic orientations.
Due to space restrictions, the following topics will appear in the full version of the paper.
We give an example for a holey family that cannot be extended by adding another convex
set to it.
We examine which small configurations are realizable as a C-3OSET, and we find that up to
five elements, the single condition that the configuration satisfies Lemma 2.1, is sufficient.
On the other hand, we show that there is a five element configuration that corresponds to a
five-point partial order type but cannot be realized as a C-3POSET.
Finally, we study what happens if a C-3POSET also has the (4,3) property, that is, among

EuroCG’22

62:4 Orientation type of intersecting convex sets

any four convex sets there are three that have a common point. We derive some new abstract
properties, however, we also show that on their own they are not yet sufficient to prove a
(p, q) theorem.

2 Interiority

I Lemma 2.1 (Interiority Lemma). If A, B, C, O is an intersecting family of convex sets and
ABO = BCO = CAO = 1, then ABC = 1.

Proof. For a contradiction, suppose first ABC = 0. Fix some w ∈ A ∩B ∩ C, and take any
a ∈ A ∩ O, b ∈ B ∩ O and c ∈ C ∩ O and check the orientations of the triples of w, a, b, c

using Lemma 1.1(d). It follows that w ∈ conv(a, b, c) ⊂ O, contradicting that ABO = 1.
Now suppose ABC = −1. Take any a ∈ A ∩ O, b ∈ B ∩ O, c ∈ C ∩ O, z ∈ A ∩ B,

x ∈ B ∩ C and y ∈ A ∩ C. We can assume that these six points are in general position,
otherwise we could slightly perturb them, along with the convex sets containing them, if
necessary, without introducing a triple intersection. The conditions and Lemma 1.1(d) imply
that abz = bcx = cay = −1 and xyz = −1. Also, as there is no triple intersection, we know
that x, y, z /∈ conv(abc), b, c, x /∈ conv(ayz), a, c, y /∈ conv(bxz), a, b, z /∈ conv(cxy). We will
deal with two cases, depending on the orientation of abc. The lines ab, bc, ca divide the plane
into seven regions: a bounded triangle conv(abc), three unbounded cones, which we denote
by Va, Vb, Vc, respectively, indexed by their apexes, and three unbounded regions sharing a
side each with the triangle conv(abc), which we denote by Uab, Ubc, Uac, respectively, indexed
by the adjacent side of the triangle.

VaVb

Vc

Uab

UacUbc

b a

c

z

x

y

Figure 3 Case 1 of the proof of Lemma 2.1. Beware that in the figure xyz = 1 while in the proof
xyz = −1 but we could find no better way to depict contradicting assumptions.

Case 1: abc = 1 (see Figure 3).
The orientation conditions and x, y, z /∈ conv(abc) imply that x ∈ Vb∪Ubc∪Vc, y ∈ Vc∪Uac∪Va,
z ∈ Va ∪ Uab ∪ Vb.
Since xyz = −1, two of x, y, z must fall in the same cone Vi. Without loss of generality,
assume that x, y ∈ Vc. As c /∈ conv(ayz), and a is to the right of the directed line yc, z must
either lie to the right of line yc or to the left of the line ac. Since z lies to right of the line

P. Ágoston, G. Damásdi, B. Keszegh, D. Pálvölgyi 62:5

ab, if it lies to the left of ac then it is in Va. Hence z must lie to the right of yc. Similarly z

must lie to the left of xc. But this implies z ∈ Uab and xyz = 1, a contradiction.
Case 2: abc = −1.

The orientation conditions and x, y, z /∈ conv(abc) imply that x ∈ Uab ∪ Va ∪ Uac, y ∈
Ubc ∪ Vb ∪ Uab, z ∈ Uac ∪ Vc ∪ Ubc.
If any of x, y, z fall in a cone Vi, e.g., x falls in Va then y, z ∈ Ua,c and we can finish with a
similar argument as in the previous case.
Otherwise, say that a has an opposite point, if y ∈ Ubc or z ∈ Ubc and, similarly, b has an
opposite point, if x ∈ Uac or y ∈ Uac and c has an opposite point, if x ∈ Uab or y ∈ Uab. If a

does not have an opposite point, then y ∈ Uab and z ∈ Uac, which implies that both b and c

have an opposite point. Therefore, at least two of a, b, c have an opposite point, say, b and c.
But then the segments connecting b and c to their opposite points intersect inside conv(abc),
which gives a triple intersection, contradicting our assumptions. J

If ABO = BCO = CAO = 1 or ABO = BCO = CAO = −1 for some intersecting
family of convex sets, then we will write O ∈ conv(ABC). Note that the order of A, B, C

is irrelevant in the notation. This, however, can be quite misleading, as this notion of
convexity does not have many natural properties, as we will see. We say that the containment
O ∈ conv(ABC) is regular if O∩∂ (ABC)∩A, O∩∂ (ABC)∩B and O∩∂ (ABC)∩C

are connected, and we say that the containment O ∈ conv(ABC) is irregular if one of them
has more than one connectivity component (see Figure 4). If O ∈ conv(ABC) is regular,
then O ∩ (ABC) ∩ ∂A, O ∩ (ABC) ∩ ∂B and O ∩ (ABC) ∩ ∂C are a connected
curves.

B A

C

O

B A

C

O

Figure 4 Regular and irregular containment O ∈ conv(ABC).

Knuth [13] studied cyclic orientations that satisfy Lemma 2.1 under the name interior
triple system, according to Knuth “for want of a better name.” We want a better name, so we
will refer to such an orientation as a 3OSET (Triple Orientations), while if zero-orientations
are also allowed, then we call such a system a 3POSET (Triple Partial Orientations). We
believe these names are better as they are similar to POSETs, which would be a 2POSET
(Pair Partial Order) in our language.

Lemma 2.1 implies that the orientation of the triples of any holey family is a 3OSET. To
the best of our knowledge, such systems have not been studied anywhere except [13, Chapter
3], where the main result is that there are 2Ω(n3) different 3OSETs over n elements.

If we add another property (the definition of which we omit here), then we get a much
better studied notion, known under the names of CC systems, pseudoline arrangements, rank
3 oriented matroids. For order types and for pseudoline arrangements, see [10, Chapter 5],
while for oriented matroids, see [10, Chapter 6]. That property, however, is not satisfied by
holey convex families. In fact, not even the following weaker condition, that we define below.

EuroCG’22

62:6 Orientation type of intersecting convex sets

3OSET (triple orientations)

C-3OSET (convex
triple orientations)

interior transitivity

CC systems
pseudoline
arrangements
rank 3 oriented
matroids

order types

C-3POSET (convex
triple partial orienta-
tions)

3POSET (triple partial orientations)
interior triple
systems

partial order
types

Figure 5 A diagram illustrating the relationship of some related notions. A 3POSET is any cyclic
partial orientation of triples satsifying ABC = −ACB and Lemma 2.1. A 3OSET is a 3POSET
such that no triple is zero-oriented. A C-3OSET (resp. C-3POSET) is a subset of these that is
realizable with planar convex sets. C-3POSETs do not contain all partial order types, but we could
not establish the respective statement for order types.3

Knuth [13, Chapter 2, (2.4)] defines the interior transitivity condition as follows: If
D ∈ conv(ABC) and E ∈ conv(ABD), then E ∈ conv(ABC). The interior transitivity
condition is satisfied by the earlier mentioned CC systems, but it is strictly weaker than them.
Indeed, the number of orientations of triples of n sets that satisfy the interior transitivity
condition is 2Ω(n2 log n), while the number of CC systems is 2Θ(n2), and the number of CC
systems that are representable by planar point sets, known as stretchable arrangements/order
types, is 2Θ(n log n). We will see below that there are holey families that do not satisfy the
interior transitivity condition. However, the following weaker statement is true.
I Claim 2.2. Suppose A, B, C, D and E are elements of a holey family. If D ∈ conv(ABC)
and E ∈ conv(ABD), then D ∩ E ⊂ (ABC).
For the proof we need the following simple observation.

I Observation 2.3. Suppose A, B, C and O are elements of a holey family.
Then O ∈ conv(ABC) if and only if (ABO), (BCO), (CAO) ⊂ (ABC)∪A∪B∪C.

Proof of Claim 2.2. Since D ∩E intersects ∂ (ABD) which is contained in (ABC) ∪
A ∪B ∪ C by Observation 2.3, and D ∩ E cannot intersect A ∪B ∪ C as there are no triple
intersections, we get that D ∩ E ⊂ (ABC), as required. J

3 For the Bisztriczky-Fejes Tóth type definition of order types of convex sets, any point order type is by
definition realizable by convex sets, while in the other direction a configuration of convex sets whose
order type is not realizable by points was given in [20] answering a question of Hubard and Montejano.

P. Ágoston, G. Damásdi, B. Keszegh, D. Pálvölgyi 62:7

3 Discussion

Our definition of orientation can be generalized to intersecting pseudo-disk arrangements
and to d + 1 convex sets in Rd dimensions. We leave these for future research, just like the
following two important questions left open in this paper.
Is there an order type of planar points that is not a C-3OSET, i.e., not realizable by holey
planar convex sets?
What further properties of C-3POSET’s (orientations of intersecting planar convex sets) are
needed to obtain efficient (p, q) theorems?

Acknowledgments. We would like to thank Márton Naszódi for discussions during the
entire project.

References
1 N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman. Point selections and weak ε-nets for

convex hulls. Combinatorics, Probability and Computing, 1(3):189–200, 1992.
2 N. Alon and D. J. Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p, q)-

problem. Advances in Mathematics, 96(1):103–112, 1992.
3 T. Bisztriczky and G. Fejes Tóth. A generalization of the Erdös-Szekeres convex n-gon

theorem. Journal für die Reine und Angewandte Mathematik, 395:167–170, 1989.
4 T. Bisztriczky and G. Fejes Tóth. Nine convex sets determine a pentagon with convex sets

as vertices. Geometriae Dedicata, 31(1):89–104, 1989.
5 T. Bisztriczky and G. Fejes Tóth. Convexly independent sets. Combinatorica, 10(2):195–

202, 1990.
6 M. G. Dobbins, A. Holmsen, and A. Hubard. The Erdös-Szekeres problem for non-crossing

convex sets. Mathematika, 60(2):463–484, 2014.
7 M. G. Dobbins, A. Holmsen, and A. Hubard. Regular systems of paths and families

of convex sets in convex position. Transactions of the American Mathematical Society,
368(5):3271–3303, 2016.

8 J. E. Goodman and R. Pollack. A theorem of ordered duality. Geometriae Dedicata, 12:63–
74, 1982.

9 J. E. Goodman and R. Pollack. Semispaces of configurations, cell complexes of arrange-
ments. Journal of Combinatorial Theory. Series A, 37:259–293, 1984.

10 Handbook of Discrete and Computational Geometry (edited by J. E. Goodman, J.
O’Rourke and C. D. Tóth), Third Edition, CRC Press LLC, Boca Raton, FL 2017.

11 A. Hubard, L. Montejano, E. Mora, and A. Suk. Order types of convex bodies. Order,
28(1):121–130, 2011.

12 A. S. Jobson, A. E. Kézdy, J. Lehel, T. J. Pervenecki, and G. Tóth. Petruska’s question
on planar convex sets. Discrete Mathematics, 343(9):1–13, 2020.

13 D. E. Knuth. Axioms and hulls. Springer-Verlag, Lecture Notes in Computer Science, 1992
14 J. Lehel and G. Tóth. On the hollow enclosed by convex sets. Geombinatorics, 30(3):113–

122, 2021.
15 D. McGinnis. A family of convex sets in the plane satisfying the (4,3)-property can be

pierced by nine points, https://arxiv.org/abs/2010.13195 2020.
16 D. Nagy and B. Patkós. Triangles in intersecting families, https://arxiv.org/abs/2201.

02452 2022.
17 J. Pach and G. Tóth. A generalisation of the Erdös-Szekeres theorem to disjoint convex

sets. Discrete & Computational Geometry, 19(3):437–445, 1998.

EuroCG’22

62:8 Orientation type of intersecting convex sets

18 J. Pach and G. Tardos. Forbidden paths and cycles in ordered graphs and matrices. Israel
Journal of Mathematics, 155:359–380, 2006.

19 J. Pach and G. Tóth. Erdös-Szekeres-type theorems for segments and noncrossing convex
sets. Geometriae Dedicata, 81(1-3):1–12, 2000.

20 J. Pach and G. Tóth. Families of convex sets not representable by points. Indian Statistical
Institute Platinum Jubilee Commemorative Volume–Architecture and Algorithms, 43–53,
2009.

21 A. Suk. On order types of systems of segments in the plane. Order, 27(1):63–68, 2010.

A quality measure for Reeb graph drawings
Erin Chambers1, Elizabeth Munch2, and Tim Ophelders3

1 Dept. Computer Science, Saint Louis University
erin.chambers@slu.edu

2 Dept. Computational Science, Mathematics, and Engineering, Michigan State
University
Dept. Mathematics, Michigan State University
muncheli@msu.edu

3 Dept. Information and Computing Science, Utrecht University, the Netherlands
Dept. Mathematics and Computer Science, TU Eindhoven, the Netherlands
t.a.e.ophelders@uu.nl

Abstract
Reeb graphs form a variant of level graphs that commonly arise in the field of topological data
analysis. The vertices of a Reeb graph are associated with a real-valued level. In the context of
topological data analysis, the level of a vertex usually corresponds to some imprecise measured
quantity. Due to this imprecision, nearby points in a Reeb graph may represent the same point in
the ground-truth.

We consider drawings of Reeb graphs in the plane, where the y-coordinate of a vertex is specified
by its level, and edges are drawn as y-monotone paths. We introduce the crossing radius as a quality
measure for Reeb graph drawings. Under this measure, level-planar drawings of Reeb graphs are
optimal if they exist. In this regard, our measure coincides with existing quality measures that
simply count the number of crossings. On the other hand, most Reeb graphs found in practice
do not admit level-planar drawings. In contrast to measures that count the number of crossings,
our measure associates a cost with each crossing, and returns the maximum cost over all crossings.
The cost of a crossing intuitively quantifies the likelihood that the necessity of a crossing can be
attributed to imprecise measurements. For this reason, crossing radius is a preferable measure in
the context of topological data analysis. We also show that for a given Reeb graph, computing a
drawing with optimal crossing radius is NP-hard.

1 Introduction

Reeb graphs have become an important tool in computational topology for the purpose
of visualizing continuous functions on complex spaces as a simplified discrete structure.
Essentially, Reeb graphs track for a given real-valued function on a topological space, how the
connectivity of its level sets changes as one continuously increases the function value. Each
connected component of a level set is represented as a point, which is either a vertex or a
point on an edge. As one increases the function value, level sets change and can create, merge,
split, or destroy components. Vertices correspond to such changes, and edges correspond
to components of level sets that do not change their connectivity for a given interval of
function values. (See Figure 1 for an illustration and Section 2 for a formal definition.)
Reeb graphs were originally introduced in [14], and recent work on computing Reeb graphs
efficiently [8, 13] has led to their increasing use in visualization and shape comparison [2, 15].

Despite their prevalence, surprisingly few tools from the graph drawing community are
used to draw or compare Reeb graphs. The only prior work that we are aware of considers
book embeddings of Reeb graphs [12]. Although of combinatorial interest, book embeddings
38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

63:2 Crossing radius, level planarity, and Reeb graphs

Figure 1 Left: A manifold with a function (given by height). Right: its Reeb graph.

seem less practical for visualizing larger Reeb graphs. Reeb graphs generalize level graphs,
which are commonly studied in the context of level planarity [10, 9]. Several variations
on level planarity are known to be NP-hard [11], and our main result is inspired by such
reductions. In contrast to level graphs, vertices of Reeb graphs generally have a real-valued
function value as opposed to an integer-valued one. Although the exact level of a vertex is
irrelevant for most existing quality measures of graph drawings, the level of vertices carries a
significant meaning in the context of topological data analysis.

Our work is motivated by tools from topological data analysis, which seek to quantify the
“persistent” cycles and other topological features, in order to classify which ones are more
important. Our work is particularly motivated by recent works on comparing Reeb graphs
using the interleaving distance [5, 3]. At a high level, however, the interleaving distance
disregards small cycles, as they are less persistent, and it disregards crossings entirely, as
the embedding is not important for these distances. In contrast, traditional embedding
algorithms for level planarity seek to minimize only crossings (see for example [1, 7]), which
while important in our setup does not at all take the persistence of the crossing into account.

In this paper, we introduce a new comparison measure for Reeb (and hence also for
level) graphs, which we call the crossing radius. This measure compares embeddings of Reeb
graphs, but (in line with interleavings and in contrast to most graph drawing measures) it
does not count crossings between “nearby” points, as they are more likely (in the context of
Reeb graph) to be due to simple noise from the input data.

2 Reeb graphs and level planarity

For a graph G, its geometric realization |G| is a topological space consisting of a distinct
point for each vertex, and an interval (homeomorphic to [0, 1]) for each edge (u, v), such that
the endpoints of the interval are identified with the points corresponding to vertices u and v
respectively, and the intervals corresponding to different edges are interior-disjoint.

Traditionally [14], Reeb graphs are constructed from a topological space Y with a real
valued function g : Y → R as follows. Define an equivalence relation on the points of Y by
setting y ∼ y′ if and only if for some value a ∈ R, y and y′ lie in the same path-connected
component of g−1(a). The Reeb graph of (Y, g) is the quotient space X = Y/∼. Notice that
g(y) = g(y′) whenever y ∼ y′, so the Reeb graph automatically inherits a function f : X → R
such that f([y]) = g(y), where [y] denotes the equivalence class of y.

When the starting space and function are well behaved (e.g. Morse functions on manifolds
and generalizations [6, 5]), the resulting space can be represented as the geometric realization
of a graph, and the inherited function value increases strictly along edges. The endpoints of
an edge therefore necessarily have different function values, and we may assume that the
function value increases linearly along edges. In this article, we consider such Reeb graphs as

Chambers, Munch, and Ophelders 63:3

v1

v2

v3
v4

v5

v6

Figure 2 A Reeb graph that is not level planar. The function is given by f(vi) = i.

our main object of study, rather than the spaces that give rise to Reeb graphs.

I Definition 2.1. A Reeb graph is a pair (G, f) consisting of a directed graph G = (V,E)
and a function f : |G| → R, such that f(u) < f(v) for any (u, v) ∈ E, and f interpolates
linearly along edges. Note that the function f is uniquely determined by its values on vertices.
Unless otherwise noted, we assume that G is connected.

A drawing of a graph G is a continuous map φ : |G| → R2 that maps its geometric
realization to the plane. Vertices are drawn at points in the plane, and each edge is drawn
as a path connecting its vertices. As we often want to study the coordinates separately, we
write φ =: (φx, φy). In the context of Reeb graphs, we are interested in drawings in which
one of the coordinates represents the associated function. Specifically, a level drawing of a
Reeb graph (G, f) is a drawing φ of G such that φy = f . Therefore, a level drawing φ of a
Reeb graph is uniquely determined by φx.

A drawing is plane if it is injective, and a Reeb graph is (level) planar if it admits a
plane (level) drawing. Although the underlying graph G of a level planar Reeb graph (G, f)
is necessarily planar, a Reeb graph (G, f) may not be level planar even if G is planar, see
Figure 2.

3 Crossing radius

We will now introduce crossing radius as a quality measure of level drawings of Reeb graphs
(G, f). Underlying this quality measure will be a family of metrics dy : f−1(y)× f−1(y)→ R.
For two points of |G| with the same function value y, their distance under dy is the minimum
value such that |G| contains a path from p to q whose function values deviates at most r
from the value y (at its endpoints), see Figure 3. Equivalently, for two points p, q ∈ |G| with

p q

dy(p, q)

y

Figure 3 The distance between p and q under dy is given by the length of the marked interval.

EuroCG’22

63:4 Crossing radius, level planarity, and Reeb graphs

f(p) = f(q) = y, we define dy(p, q) to be the minimum radius r such that p and q lie in the
same connected component of f−1([y − r, y + r]) ⊆ |G|.

For a given level drawing φ : |G| → R2 of (G, f), we define its crossing radius to be the
maximum value dy(p, q) over all crossings φ(p) = φ(q) =: (x, y) between distinct points p
and q. We define the crossing radius of a Reeb graph to be the minimum crossing radius
over all its level drawings.

4 NP-Hardness

We show by reduction from planar monotone 3-SAT that it is NP-hard to find a level drawing
with optimal crossing radius. The Planar monotone 3-SAT problem is NP-hard [4] and asks
whether a given formula ψ with the following properties is satisfiable. The formula ψ has
n Boolean variables x1, . . . , xn and is of the form

∧m
i=1 Ci, where each Ci is a clause. Each

clause has three variables, and is either positive (of the form xi ∨ xj ∨ xk) or negative (of
the form ¬xi ∨ ¬xj ∨ ¬xk). Additionally, there is a restriction in terms of the graph whose
vertices correspond to variables and clauses, and whose edges represent the containment of
variables in clauses. The formula has the property that this graph has a planar layout in
which all variables lie on a horizontal line, all positive clauses lie above that line, all negative
clauses lie below that line, and no edge crosses that horizontal line, see Figure 4 (left). For
our purposes, it will be more useful to derive a different layout of the same graph, in which
variables lie on a vertical segment, and all positive (resp. negative) clauses lie above and to
right (resp. left) of this segment, where again no edge crosses the vertical line through the
vertices, see Figure 4 (right). We may assume this layout to be part of the input. Call ψ a
YES instance if it is satisfiable, and a NO instance otherwise.

For brevity, we will call a level drawing of a Reeb graph cheap if it has crossing radius at
most r, and expensive otherwise. We show that deciding whether a Reeb graph has a cheap
drawing is NP-hard. For this, we construct, given Planar monotone 3-SAT formula ψ, a Reeb
graph (G, f) that has crossing radius at most r if and only if ψ is a YES instance. Figure 5
shows the Reeb graph corresponding to Figure 4. On a global level, our Reeb graph will
mimic the graph and layout accompanying the planar monotone 3-SAT instance. Vertices
are replaced by clause gadgets and variable gadgets, and edges by wires and split gadgets.

An important and reoccurring gadget in the construction is a switch gadget, see Figure 6(a).

x1 ∨ x4 ∨ x5

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

x1 x2 x3 x4 x5

¬x1 ∨ ¬x4 ∨ ¬x5

¬x1∨¬x2∨¬x3

x1 ∨ x4 ∨ x5

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

¬x5 ∨ ¬x4 ∨ ¬x1

¬x3∨¬x2∨¬x1

x1

x2

x3

x4

x5

Figure 4 (left) The planar graph corresponding to an example instance of planar monotone
3-SAT. Vertices (clauses and variables) are shaded. (right) A different layout of the same graph that
will be more useful for our purposes.

Chambers, Munch, and Ophelders 63:5

x1

x2

x3

x4

x5

y = 0
y = r

Figure 5 The reduction for a YES instance with satisfying assignment (x1,¬x2, x3,¬x4, x5).

A switch gadget S has two vertices at some level y and two vertices at level y + r. Both
vertices at level y have edges to both vertices at level y+ r. By itself, any drawing of a switch
gadget will have crossing radius at most r, and for any YES instance, the Reeb graph |G|
will admit a drawing in which every crossing pair of points lies on a switch gadget (such as
in Figure 5). A switch gadget has two drawings that may be desirable, which we call the up
and the down positions. In both positions, S has a vertical left and right edge, and the other
two edges have a crossing near level y + r (in the up position) or y (in the down position).

Roughly speaking, in the up position, there will be space for part of |G| to be drawn in
the bottom part of the switch gadget (between its left and right edges), whereas in the down
position, there will be space for part of |G| to be drawn in the top part. More formally, we

> r

≤ r

> r

(a) (b) (c) (d)

r

Figure 6 (a) A switch gadget with a cheap drawing (and the corresponding path of radius ≤ r
marked in red). (b) A drawing with an expensive crossing, as indicated by the red path of radius
greater than r. (c/d) a switch gadget drawn in the up/down position allows something to be drawn
inside it on the bottom/top.

EuroCG’22

63:6 Crossing radius, level planarity, and Reeb graphs

say that for some drawing, some subspace H of |G| with f(H) ⊆ [y, y + r] is drawn inside S
if all of H lies between the left and right envelopes1 of S.

We can now describe the behavior of S in detail. Let U and D be nonempty subspaces of
|G|, such that for any s ∈ S and any p in U or D at the same level, we have df(s)(p, s) > r, so
that no point of U or D may cross S in any cheap drawing. Assume that for each component
C of U , we have [y + r/2, y + r] ⊆ f(C) ⊆ (y, y + r], and for each component C of D, we
have [y, y + r/2] ⊆ f(C) ⊆ [y, y + r). There exist drawings of S ∪ U ∪D such that either
all of U lies inside S or all of D lies inside S, and there are no crossings between different
components, see Figure 6(c) and (d). However, there exists no cheap drawing in which U
and D simultaneously lie inside S, see Figure 6(b).

Before elaborating on the remainder of the construction, we remark that although the
existence of cheap drawings for YES instances will be fairly straightforward, establishing
the non-existence of cheap drawings for NO instances is quite involved. We will therefore
dedicate the remainder of this article to providing an intuition for the construction and the
non-existence of cheap drawings for NO instances.

We refer back to the visual overview of Figure 5 to describe the various components of
the construction. The variable, clause, and split gadgets in our construction always connect
to each other using switch gadgets. The bottom half of the construction consists entirely
of variable gadgets. The variable gadgets are labeled xi and lie on a vertical path which
we call the spine. The spine consists of 2n edges of length 2r. This ensures that edges
connected to the spine at different heights cannot cross each other in any cheap drawing.
Edges connected at the same height can cross, but only near the point where they attach
to the spine. Every variable gadget connects to two switch gadgets at y = 0. These switch
gadgets cannot cross each other and ensure that the edges connected to the spine at the
same height must essentially lie on different sides of the spine. From this, we can conclude
that any cheap drawing will place the two switch gadgets of xi between the switch gadgets of
xi+1. Every variable gadget xi connects to an isolated vertex at y = r/2, that must lie inside
one of the two attached switch gadgets, so nothing can enter that switch gadget from above.
The n vertices at y = r/2 encode a Boolean assignment to the variables. If a variable occurs
in k positive (resp. negative) clauses, then k− 1 split gadgets will propagate a negative (resp.
positive) assignment of that variable to those clauses by preventing anything from entering
the split gadgets from above. Each clause is attached from above to three split gadgets, and
in any cheap drawing of the clause, at least one of the split gadget must allow something to
be placed inside from above (see Figure 7).

Acknowledgments. The authors wish to thank the reviewers for their helpful comments.

1 For standard drawings such as the up and down position, these left and right envelopes will simply be
the left and right edges. However, to handle adversarial drawings, we define the inside using envelopes.

> 2r

(a) (b) (c) (d)

Figure 7 (a)-(c) Satisfying assignments of a clause gadget. (d) A high crossing radius in case of
an unsatisfying assignment.

Chambers, Munch, and Ophelders 63:7

References
1 Christian Bachmaier, Hedi Buchner, Michael Forster, and Seok-Hee Hong. Crossing mini-

mization in extended level drawings of graphs. Discrete Applied Mathematics, 158(3):159–
179, 2010. doi:10.1016/j.dam.2009.09.002.

2 S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis
and applications. Theoretical Computer Science: Computational Algebraic Geometry and
Applications, 392(13):5 – 22, 2008. doi:10.1016/j.tcs.2007.10.018.

3 Erin Wolf Chambers, Elizabeth Munch, and Tim Ophelders. A Family of Metrics from
the Truncated Smoothing of Reeb Graphs. In proc. 37th International Symposium on
Computational Geometry (SoCG), pages 22:1–22:17, 2021. doi:10.4230/LIPIcs.SoCG.
2021.22.

4 Mark de Berg and Amirali Khosravi. Optimal binary space partitions in the plane. In
Computing and Combinatorics, pages 216–225, 2010.

5 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete &
Computational Geometry, pages 1–53, 2016. doi:10.1007/s00454-016-9763-9.

6 Herbert Edelsbrunner, John Harer, and Amit K. Patel. Reeb spaces of piecewise linear
mappings. In proc. 24th Annual Symposium on Computational Geometry (SoCG), pages
242–250, 2008. doi:10.1145/1377676.1377720.

7 Graeme Gange, Peter J. Stuckey, and Kim Marriott. Optimal k-level planarization and
crossing minimization. In proc. 18th International Symposium on Graph Drawing (GD),
pages 238–249, 2010. doi:10.1007/978-3-642-18469-7_22.

8 William Harvey, Yusu Wang, and Rephael Wenger. A randomized O(m logm) time al-
gorithm for computing Reeb graphs of arbitrary simplicial complexes. In proc. 26th
annual Symposium on Computational Geometry (SoCG), pages 267–276, 2010. doi:
10.1145/1810959.1811005.

9 Michael Jünger and Sebastian Leipert. Level planar embedding in linear time. In proc. 7th
International Symposium on Graph Drawing (GD), pages 72–81, 1999.

10 Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level planarity testing in linear time.
In proc. 6th International Symposium on Graph Drawing (GD), pages 224–237, 1998.

11 Boris Klemz and Günter Rote. Ordered level planarity and its relationship to geodesic
planarity, bi-monotonicity, and variations of level planarity. ACM Trans. Algorithms, 15(4),
2019. doi:10.1145/3359587.

12 Vitaliy Kurlin. Book embeddings of Reeb graphs. Preprint, 2013. arXiv:1312.1725v1.
13 Salman Parsa. A deterministic O(m logm) time algorithm for the Reeb graph. In proc.

28th annual Symposium on Computational geometry (SoCG), 2012.
14 Georges Reeb. Sur les points singuliers d’une forme de Pfaff complèment intégrable ou

d’une fonction numérique. Comptes rendus de l’Académie des Sciences, 222:847–849, 1946.
15 Lin Yan, Talha Bin Masood, Raghavendra Sridharamurthy, Farhan Rasheed, Vijay Natara-

jan, Ingrid Hotz, and Bei Wang. Scalar field comparison with topological descriptors:
Properties and applications for scientific visualization. Preprint, 2021. arXiv:2106.00157.

EuroCG’22

The Shortest Path with Increasing Chords in a
Simple Polygon
Mart Hagedoorn1 and Irina Kostitsyna2

1 TU Dortmund, Germany
mart.hagedoorn@tu-dortmund.de

2 TU Eindhoven, The Netherlands
i.kostitsyna@tue.nl

Abstract
We study the problem of finding the shortest path with increasing chords in a simple polygon. A
path has increasing chords if and only if for any points a, b, c, and d that lie on the path in that
order, |ad| ≥ |bc|. In this paper we show that the shortest path with increasing chords is unique and
present an algorithm to construct it.

Related Version arXiv:2202.12131

1 Introduction

An s-t path σ has increasing chords if and only if σ is a directed path from some point s to t

and for any points a, b, c, and d that appear in that order on σ, the Euclidean distance between
a and d is greater or equal to the Euclidean distance between b and c [8]. Figure 1 shows an
example of a shortest s-t path with increasing chords in simple polygon P . Furthermore, a
path has increasing chords if and only if the path is self-approaching in both directions. A
path is self-approaching if, when traversing the path the Euclidean distance to any point on
the remainder of the path is not increasing.

Paths with increasing chords are closely related to beacon and greedy routing applications.
Path finding with beacon and greedy routing often results in paths that are directed curves
such that the distance to the destination is never increasing [2, 1, 4]. Paths with this property
are called radially monotone paths. If a path has increasing chords, then every subpath of
that path is radially monotone in both directions.

Furthermore, self-approaching paths and paths with increasing chords have the property
that the length of the path is bounded in comparison with the Euclidean distance between
the start and destination of the path. This bounding factor of paths with increasing chords

s
t

P

a

b

c

d

Figure 1 The shortest s-t path with increasing chords inside simple polygon P .

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

64:2 The Shortest Path with Increasing Chords in a Simple Polygon

p

hp

Figure 2 The normal hp of p, where p is a bend point.

s
t

P

a

cb

Figure 3 The shortest self-approaching s-t path inside simple polygon P .

is only 2π/3, whereas the bounding factor of self-approaching paths is approximately 5.3331
[9, 7].

The results of this paper are further discussed in the master’s thesis of Hagedoorn [6].

2 Preliminaries

An s-t path ζ is a directed curve that starts in point s and ends in point t. Moreover, path ζ

must lie entirely inside of polygon P , i.e. ζ ⊆ P . We define ζ(p, q) to be the subpath of ζ

that lies between points p and q. Paths in a Euclidean space can make smooth turns and
sharp turns. In order to differentiate between these types of turns, we use the standard
notation of a bend point (Fig. 2). A bend point b of a piecewise smooth curve ζ is a point
where the first derivative of ζ is discontinuous.

Furthermore, we define a normal hp to path ζ at point p to be the line through p ∈ ζ

such that hp is perpendicular to the tangent of ζ in p. If p is a bend point, then we use the
normal definition as proposed by Icking et al. [7]. This definition states that the normal to ζ

at p is the set of lines that are included in the double wedge between the perpendicular lines
to the tangents of the smooth pieces meeting at p (Fig. 2).

2.1 Self-approaching paths
Self-approaching paths were first described by Icking et al. [7]. A path π is self-approaching
if and only if for any points a, b, and c that appear on π in that order, the Euclidean distance
between a and c is greater or equal to the Euclidean distance between b and c (Fig. 3).
Furthermore, Icking et al. [7] showed the following normal property of self-approaching paths.

M. Hagedoorn and I. Kostitsyna 64:3

t

P

Figure 4 Dead region Dt (red) for some point t in simple polygon P .

▶ Lemma 1 ([7]). An s-t path π is self-approaching if and only if the normal to π at any
point p ∈ π does not intersect the subpath π(p, t).

Bose et al. [3] proposed an algorithm for finding the shortest self-approaching s-t path
in a simple polygon P (Fig. 3). Their algorithm uses the notion of dead regions. A dead
region Dt for point t is a set of points such that for any point s ∈ Dt, no self-approaching
s-t path exists (Fig. 4). They proved that the shortest self-approaching s-t path π is the
s-t geodesic in P \ Dt, i.e. the set difference of the polygon and the dead region for point
t. Therefore, the shortest self-approaching s-t path consists of straight line segments and
segments that are boundaries of Dt. Moreover, they showed that if v is a point on π and v

lies on a boundary of Dt, then the normal hv to π at v must touch the subpath π(v, t). A
line ℓ touches a curve γ if there exists some point p such that ℓ ∩ γ = {p} and for the normal
hp to γ at point p, ℓ ∈ hp or ℓ = hp when p is a bend point or not, respectively.

The equations that define boundaries of Dt are transcendental equations and likely cannot
be solved or evaluated analytically [3]. Therefore, the shortest self-approaching path can
only be found if we assume these equations can be solved or that an approximation of the
path will be calculated.

2.2 Paths with increasing chords
As mentioned before, a path σ has increasing chords if and only if σ is self-approaching
in both directions. Furthermore, for paths with increasing chords we can again define the
normal property:

▶ Lemma 2. An s-t path σ has increasing chords if and only if the normal to σ at any point
p ∈ σ does not intersect the subpaths σ(s, p) and σ(p, t).

Proof. A path σ with increasing chords is self-approaching from s to t and from t to s.
Therefore, at any point p ∈ σ the normal properties of the self-approaching s-t and t-s paths
state that σ(s, p) and σ(p, t) cannot cross the normal to σ at point p. ◀

This property above can be reformulated in terms of the negative and positive half-plane.
Using the definition from Bose et al. [3], the positive half-plane h+

p of path ζ at point p is
the closed half-plane that is defined by normal hp to ζ and contains points q ∈ R2 such that
vector p⃗q makes a non-negative dot product with the tangent vector at point p. Analogously,
the negative half-plane h−

p contains points q ∈ R2 such that vector p⃗q makes a non-positive
dot product with the tangent vector at point p.

EuroCG’22

64:4 The Shortest Path with Increasing Chords in a Simple Polygon

p

hph−p

h+p

Figure 5 Example figure showing the normal hp at point p and the corresponding half planes h−
p

and h+
p .

s t

σ1

σ2
γ

Figure 6 Geodesic γ (purple) that lies between paths σ1 (blue) and σ2 (red) with increasing
chords.

▶ Corollary 3. An s-t path σ has increasing chords if and only if, for any line h normal to
σ at point p ∈ σ, the subpath σ(s, p) lies completely in the negative half-plane h−

p and the
subpath σ(p, t) lies completely in the positive half-plane h+

p .

3 Shortest Path with Increasing Chords

In this section we first show that a shortest s-t path with increasing chords in a simple
polygon is unique. Therefore, we only need to search for one shortest s-t path with increasing
chords. The following two proofs are extensions from the analogous propositions about
self-approaching paths given by Bose et al. [3]. The proofs of Lemma 4 and Theorem 5 can
be found in [5].

▶ Lemma 4. A geodesic path γ between two distinct paths with increasing chords σ1 and σ2
also has increasing chords (Fig. 6).

Using Lemma 4 we can prove the following Theorem.

▶ Theorem 5. A shortest s-t path with increasing chords in a simple polygon is unique.

In the next theorem we show that if we subtract the union of dead regions Dt and Ds

from a simple polygon P , then the shortest s-t path in this space is also the shortest s-t path
with increasing chords. This theorem is proven by contradiction. In more detail, we show
that if there is a point where the normal property is violated, then no self-approaching path
can exist.

▶ Theorem 6. Let s and t be two points in a simple polygon P . The shortest path between s

and t in P \ (Dt ∪ Ds) is the shortest s-t path with increasing chords in simple polygon P .

Proof. Assume that σ does not have increasing chords, hence the normal property is violated
at some point of σ. Let point p ∈ σ be the last point on σ for which the normal property

M. Hagedoorn and I. Kostitsyna 64:5

p
q

p′

hp′

hp

s

t

σ

Figure 7 Shortest path σ (purple) where
the normal property does not hold in p′, nor-
mal hp touches point q that lies on subpath
ρ (blue) of σ.

q

h′′b

h′b
b

s

t

σ

Figure 8 Shortest path σ (purple) where
the normal property does not hold in p′, nor-
mal h′

b touches point q that lies on subpath
ρ (blue) of σ.

holds. Point p is not guaranteed to exist. However, if p exists, then there also exists point
p′ ∈ σ(p, t) such that p′ lies in the ϵ-neighborhood of p for arbitrary small ϵ and the normal
property does not hold in p′ (Fig. 7). Since in p′ the normal property does not hold, there is
some subpath ρ of σ(s, p′) or σ(p′, t) that lies in the positive or negative half-plane defined
by the normal through h′

p, respectively. Furthermore, the normal hp touches σ at some point
q ∈ ρ. However, if p does not exist, there exists a bend point b such that there are two lines
h′

b, h′′
b ∈ hb among the set of lines in the normal hb, such that h′

b touches σ at some point
q ∈ σ and h′′

b intersects σ (Fig. 8). All cases where p does not exist are simply analogous to
the cases where p exists. Therefore, we will only cover the cases where p exists.

We assume, without loss of generality, that line segment pq is horizontal, p lies to the
right of q, and σ(s, p) lies above hp. Let e be the segment of σ containing p and f be the
segment of σ containing q. We must consider the cases where q ∈ σ(s, p) and q ∈ σ(p, t).
Furthermore, since σ is a geodesic in P \ (Dt ∪ Ds) the segments e and f can be straight line
segments, or boundaries of a dead region of Dt or Ds. If f is a straight line segment, then
q must be an end point of f and thus be a vertex of polygon P . Here, we will only cover
the case where q ∈ σ(s, p), e is a boundary of Dt, and q is a vertex of P . For each possible
combination of the segment types of e and f and the location of q on the path σ we show
that these cases are not possible by contradiction. In this paper we prove that one of the
cases is not possible, the other possible cases follow similar ideas and can be found in [5].

Once we have shown that no point exists where the normal property is violated, σ indeed
has increasing chords by Lemma 1. Furthermore, σ must be the shortest path with increasing
chords. Any path that is shorter than σ must go through either of the dead regions Dt or
Ds. Therefore, any path shorter than σ cannot have increasing chords and σ must be the
shortest path with increasing chords.

Point q ∈ σ(s, p), e is a boundary of Dt, and q is a vertex of P (Fig. 9)

The center of curvature of σ at p must lie to the left of p. Otherwise the normal hp′ to σ

cannot intersect σ(s, p), as is depicted in Fig. 9a. Let πpt be the shortest self-approaching
path from p to t. Segment e is part of Dt, therefore there must be a point v ∈ πpt touched
by normal hp (Fig. 9b). Because πpt goes through v, hv is perpendicular to hp (if v is a
bend point, then there must be a line which is perpendicular hp in the set of normals hv).
Furthermore, πpt(v, t) lies completely in the positive half-plane h+

v by the half-plane property.
We will now show that in the region between pv and πpt(p, v) there are vertices of P . The
straight line segment pv concatenated to πpt(v, t) would be self-approaching. However, p′ lies
below hp, thus polygon P must intersect with vp. Therefore, the shortest self-approaching
v-s path πvs must first intersect or touch hp to the right of v at point w and later to the

EuroCG’22

64:6 The Shortest Path with Increasing Chords in a Simple Polygon

s
q

t

p
p′

σ

(a) The point of curvature of σ at point p lies
to the right of p.

s

q

t

pv

p′

σ

(b) The point of curvature v of σ at point p lies
to the left of p. The green path is the shortest
self-approaching p-t path.

s

q, w′

t

pv
w

σ

(c) The point of curvature v of σ at point p lies to the left of p.
The orange path is the shortest self-approaching v-s path, that
intersects with hp in w and w′.

Figure 9 Geodesic σ (purple) where point q ∈ σ(s, p), p lies on a boundary of Dt (red), and q is
a vertex of P .

left of v at point w′ (Fig. 9c). Thus, |vw′| < |ww′| which contradicts the self-approaching
property of πvs. Hence, this case is not possible if the geodesic between s and t exists. ◀

s

t

Figure 10 Polygon P with dead regions Ds (red) and Dt (blue), the geodesic (purple) of the
remaining area is the shortest path with increasing chords.

Using Theorem 6, the shortest s-t path with increasing chords in a polygon P can be
found by subtracting the dead regions Dt and Ds from polygon P (Fig. 10). Therefore, this
shortest path with increasing chords can be found in a similar manner to finding the shortest
self-approaching s-t path as described by Bose et al. [3]. As is the case for the algorithm
for the shortest self-approaching path, the shortest path with increasing chords can only be
found if we assume that transcendental equations can be solved or that an approximation of
the path will be calculated.

M. Hagedoorn and I. Kostitsyna 64:7

4 Conclusions

In this paper, we showed that the shortest s-t path with increasing chords in a simple
polygon is unique. Furthermore, we showed that the shortest s-t path in a polygon minus
the dead regions of s and t is the shortest path with increasing chords. Therefore, the
algorithm for finding the shortest path with increasing chords is similar to finding a shortest
self-approaching path.

A natural direction for future research is the question of whether an efficient algorithm
exists that can find a shortest s-t path with increasing chords in a polygon with holes. The
possibility remains open that this problem is NP-hard.

References
1 M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J.S.B. Mitchell. Beacon-based routing and

coverage. In 21st Fall Workshop on Computational Geometry (FWCG 2011), 2011.
2 M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J.S.B. Mitchell. Combinatorics of beacon-based

routing and coverage. In Proceedings of the 25th Canadian Conference on Computational
Geometry (CCCG), pages 1–6, 2013. URL: https://cs.uwaterloo.ca/conferences/
cccg2013/.

3 P. Bose, I. Kostitsyna, and S. Langerman. Self-approaching paths in simple polygons.
Computational Geometry, 87, 2020. doi:10.1016/j.comgeo.2019.101595.

4 J. Gao and L. Guibas. Geometric algorithms for sensor networks. Philosophical transactions.
Series A, Mathematical, physical, and engineering sciences, 370:27–51, 2012. doi:10.1098/
rsta.2011.0215.

5 Mart Hagedoorn and Irina Kostitsyna. The shortest path with increasing chords in a simple
polygon, 2022. arXiv:2202.12131.

6 M.H. Hagedoorn. Self-approaching paths and paths with increasing chords in polygonal
domains. Master’s thesis, TU Eindhoven, 2021.

7 C. Icking, R. Klein, and E. Langetepe. Self-approaching curves. Mathematical Proceedings
of the Cambridge Philosophical Society, 125, 05 2002. doi:10.1017/S0305004198003016.

8 D.G. Larman and P. McMullen. Arcs with increasing chords. Mathematical Proceedings of the
Cambridge Philosophical Society, 72(2):205–207, 1972. doi:10.1017/S0305004100047022.

9 G. Rote. Curves with increasing chords. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 115, pages 1–12. Cambridge University Press, 1994.

EuroCG’22

Spanning ratio of shortest paths in weighted
square tessellations∗

Prosenjit Bose1, Guillermo Esteban1,2, David Orden2, and Rodrigo
I. Silveira3

1 School of Computer Science, Carleton University, Canada
jit@scs.carleton.ca

2 Departamento de Física y Matemáticas, Universidad de Alcalá, Spain
{g.esteban, david.orden}@uah.es

3 Departament de Matemàtiques, Universitat Politècnica de Catalunya, Spain
rodrigo.silveira@upc.edu

Abstract
Continuous 2-dimensional space is often discretized by considering a grid of weighted square cells.
In this work we study how well a weighted tessellation approximates the space, with respect to
shortest paths. In particular, we consider a shortest path SPw(s, t), which is a shortest path from s

to t in the continuous weighted 2D-space, and a shortest grid path SGPw(s, t), which is a shortest
path in the tessellated weighted 2D-space. Our main result is that the ratio ‖SGPw(s,t)‖

‖SPw(s,t)‖ is at most
2√

2+
√

2
≈ 1.08, irrespective of the weight assignment.

1 Introduction

Geometric shortest path problems are a class of computational geometry problems where the
goal is to find an optimal path between two points s and t in a certain setting. Many variations
of shortest path problems exist, depending on the domain (e.g., discrete, continuous), the
objective function (e.g., Euclidean metric, link-distance, geodesic distance), or specific domain
constraints (e.g., obstacles in the plane, or holes in polygons).

An important shortest path problem is computing an optimal path in a geometric domain
when the cost of traversing the domain varies depending on the region. That is, the domain
consists of a weighted planar polygonal subdivision. Each region i of the subdivision has a
weight ωi, which represents the cost per unit of distance of traveling in that region. Thus,
the cost of traversing a region is typically given by the Euclidean distance traversed in the
region, multiplied by the corresponding weight. The resulting metric is often called the
weighted region metric, and the problem of computing a (weighted) shortest path between
two points under this metric is known as the weighted region problem (WRP) [19]. The WRP
is very general, since it allows to model many well-known variants of geometric shortest path
problems [6, 17].

Existing algorithms for the WRP are quite complex in design and implementation or have
very high time and space complexities [1, 2, 3]. They are sophisticated methods that usually
are based on variants of continuous Dijkstra, partitioning each edge of the subdivision in
parts for which crossing shortest paths have the same combinatorial structure (e.g., [19]),
or work by computing a discretization of the domain by carefully placing Steiner points

∗ P. B. is partially supported by NSERC. G. E., D. O. and R. I. S. are partially supported by
H2020-MSCA-RISE project 734922 - CONNECT and project PID2019-104129GB-I00 funded by
MCIN/AEI/10.13039/501100011033. G. E. and D. O. are also supported by PIUAH21/IA-062 and
CM/JIN/2021-004. G. E. is funded by an FPU of the Universidad de Alcalá.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

65:2 Spanning ratio of shortest paths in weighted square tessellations

v

(a)

v

(b)

Figure 1 Vertex v is connected to its neighbors in G4corner (left) and in G8corner (right).

(e.g., see [10]). The lack of exact algorithms for WRP is probably justified by algebraic
reasons: the problem has been recently proven to be impossible to solve in the Algebraic
Computation Model over the Rational Numbers [11]. Efficient algorithms for WRP only exist
for a few special cases, e.g., rectilinear subdivisions with L1 metric [9], or weights restricted
to {0, 1,∞} [14].

Real-time applications where the WRP arises, like robotics [13, 22, 23], gaming [16, 24]
or geographic information science [12], feature increasingly large amounts of information. All
these data are expected to be managed efficiently in terms of execution time and solution
quality. This emphasizes the need for high-quality approximate paths instead of optimal
paths, so, in practice, the problem is simplified in two ways. First, the domain is approximated
by considering a (weighted) tessellation, a subdivision with a simpler structure. Secondly,
optimal shortest paths in that simpler subdivision are approximated. The main technique
for decomposing the continuous space R2 into cells is by using navigation meshes [25],
subdivisions of the walkable space into polygonal regions that do not intersect. Regular grids,
convex polygons, or disks—of different sizes—are among the most frequently used region
shapes [25]. Navigation meshes allow efficient path planning in large environments as long as
the region weights are limited to {1,∞} (i.e., obstacles only). The simplest cell decomposition
technique to define and implement are regular grids since they are defined by the length of a
side of a cell and a reference coordinate. In a 2-dimensional space, only three types of regular
polygons can be used to tessellate continuous 2D environments, namely triangles, squares
and hexagons. The drawback with a grid is that it suffers from digitization bias [18], which
can be reduced by decreasing the size of the grid cells. However, this increases the number of
cells or regions. Still, even in the more general case where each region has an assigned weight,
regular grids are often used as navigation meshes, since they are easy to implement, are a
natural choice for environments that are grid-based by design (e.g., many game designs),
and popular shortest path algorithms such as A∗ can be optimized for grids [20]. Thus, in
practice, exact shortest paths are not computed: instead, an approximation is considered by
computing a shortest path on a weighted graph associated to the grid, called k-corner grid
graph (Gkcorner) [5].

In a k-corner grid graph the vertex set is the set of corners of the tessellation, and each
vertex is connected by an edge to a predefined set of k neighboring vertices, depending on
the tessellation and other design decisions. See Figures 1a and 1b for the 4-corner and the
8-corner grid graph in a square tessellation, respectively. (Analogous k-corner grid graphs
can be defined for triangular and hexagonal tessellations.) When the continuous space is
tessellated, each cell Si has a weight ωi ∈ R>0, and the cost of a segment πi traversing cell Si

is given by ωi‖πi‖, where ‖·‖ is the Euclidean norm. In the case where a segment π goes
along the boundary of two cells Sj and Sk, the cost is min{ωj , ωk}‖π‖.

P. Bose, G. Esteban, D. Orden, and R. I. Silveira 65:3

s

t

ω3 = 8
ω2 = 1

ω1 = 2

Figure 2 The cost of SPw(s, t) (blue) and a SGPw(s, t) (red) is 22.53, and 24, respectively, for a
cell side length of 2 in G4corner.

A shortest path in the continuous weighted space will be denoted SPw(s, t). A path in
Gkcorner is called a grid path; a shortest grid path between the two vertices s and t will be
denoted SGPw(s, t). See the blue path SPw(s, t), and the red path SGPw(s, t) in Figure 2
for a comparison between these two types of paths in G4corner. Note that in all figures in
this work, cells that are not depicted are considered to have infinite weight. Exact shortest
paths for regions with weights in {0, 1,∞} were studied in [17, 19]. Also, shortest grid paths
for the case of weights of the cells being 1 or ∞ have been previously studied in [4].

Since SGPw(s, t) is considered as an alternative to SPw(s, t), the aim of this work is to
quantify the relation between the weights of these two paths. In this paper we focus on
G8corner. In particular, we are interested in maximizing the ratio R = ‖SGPw(s,t)‖

‖SPw(s,t)‖ , since it
indicates the worst possible approximation factor of a shortest grid path.

2 Previous results

Almost all previous bounds for the ratio R consider a limited set of weights for the cells. Nash
[21] considered only weights in the set {1,∞} and proved that the weight of SGPw(s, t) in
hexagonal G6corner and G12corner, square G4corner and G8corner, triangle G6corner and G3corner
can be up to ≈ 1.15, ≈ 1.04, ≈ 1.41, ≈ 1.08, ≈ 1.15, and 2 times the weight of SPw(s, t),
respectively. When the weights of the cells are allowed to be in R>0, the only previous
results that we are aware of are a result by Jaklin [15] for square tessellations and another
type of shortest path (with vertices at the center of the cells) showing that R ≤ 2

√
2, and

our recent upper bound of R = 2√
3 when weighted triangular cells are considered [7]. The

main contribution of this paper is to apply a similar method as in [7] to a weighted square
tessellation. However, in a square tessellation, we need a more exhaustive analysis since now
we have more cases to analyze. Moreover, we have to consider other types of grid paths that
help us to improve the worst-case ratio.

3 ‖SGPw(s,t)‖
‖SPw(s,t)‖ ratio in G8corner for square cells

We are interested in maximizing the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ when each vertex of the graph is placed

at the corners of the square cells, and is connected to 8 neighboring vertices, i.e., in G8corner.
We will assume that SPw(s, t) is unique. Furthermore, we will consider from now on that
every cell has a positive real value associated to them. Due to space limitations, we defer to
the full version of the paper the full explanation of this section.

EuroCG’22

65:4 Spanning ratio of shortest paths in weighted square tessellations

s = a1 = u1

t = a7 = u5

S1 S2

S3 S4

S5

S6

a2 = u2

a3
a4

a5 = u3 a6 = u4

Figure 3 Shortest path SPw(s, t) (blue) and crossing path X(s, t) (orange) from s to t.

ai+1

ai

Si

w

x

ei2
ei1

(a)

ai+1ai

Si

v w
ei1

(b)

ai+1

ei1

ei2

ai

Si

w

x

(c)

ei2

aiei1

ai+1

Si

(d)

Figure 4 The sequence Xi of vertices that defines the crossing path X(s, t) in a square cell Si is
depicted in orange. The path SPw(s, t) is shown in blue; and X(s, t), in orange.

3.1 Crossing path and weakly simple polygons
SGPw(s, t) and SPw(s, t) can be very different in both shape and length. Thus, we need to
define a restricted class of grid paths, called crossing paths X(s, t)), whose behavior will be
easier to control. Since X(s, t) is a grid path, its length is an upper bound for the length of
the shortest grid path.

Let (S1, . . . , Sn) be the ordered sequence of consecutive cells intersected by SPw(s, t) in a
square tessellation S. Let ai and ai+1 be, respectively, the points where SPw(s, t) enters and
leaves Si, for i ∈ {1, . . . , n}, see Figure 3. Then, the crossing path X(s, t) from a vertex s
to a vertex t in S is defined by the sequence (X1, . . . , Xn), where Xi is a sequence of up to
three vertices of Si, determined by the pair (ai, ai+1). The key property of X(s, t) is that we
want it to traverse only the edges of the cells that SPw(s, t) traverses. In order to guarantee
that, the exact sequence of vertices depends on a number of cases that are determined in the
full version of the paper. Figure 4 depicts some of the sequences Xi.

Applying the mediant inequality to X(s, t) and SPw(s, t), we first observe that the ratio
‖X(s,t)‖
‖SPw(s,t)‖ of the whole path can be upper-bounded by the maximum among all the ratios
‖X(ui,ui+1)‖
‖SPw(ui,ui+1)‖ , where ui and ui+1 are two consecutive points where X(s, t) and SPw(s, t) co-
incide. In case X(s, t) and SPw(s, t) share one or more segments, we define the corresponding
points as the endpoints of each of these segments, see u3 and u4 in Figure 3.

Let (s=u1, u2, . . . , u` = t) be a sequence of consecutive points where X(s, t) and SPw(s, t)
coincide. The union of SPw(s, t) and X(s, t) between two points uj and uj+1, for 1≤j<`,
induces a weakly simple polygon (see [8] for a formal definition). We distinguish two types
of weakly simple polygons. In the first type, called P 1

k , the points uj and uj+1 belong to the
same cell, and X(uj , uj+1) and SPw(uj , uj+1) intersect k+1 different edges of the tessellation,

P. Bose, G. Esteban, D. Orden, and R. I. Silveira 65:5

P 1
0

P 1
1

Si

P 1
2

uj uj

uj+1

uj+1 uj

uj+1

ei1

Si Si

Figure 5 Weakly simple polygons P 1
k , for k = {0, 1, 2}, and the subpaths SPw(uj , uj+1) (blue)

and X(uj , uj+1) (orange) in a square tessellation.

Pm−i+1
1

uj

uj+1

Si

Si+1

Sm

Pm−i+1
2

uj

Si

Si+1

uj+1

Sm

Figure 6 Weakly simple polygons P m−i+1
1 and P m−i+1

2 , and the subpaths of SPw(s, t) (blue)
and X(s, t) (orange) between uj and uj+1 in a square tessellation.

for 0≤k≤2, see Figure 5. In a square tessellation, it is possible for two consecutive crossing
points to belong to cells that are not adjacent, see uj and uj+1 in Figure 6. Hence, we
need to define another type of weakly simple polygon, called Pm−i+1

k , where m−i+1 is the
number of cells intersected by SPw(uj , uj+1), and k+1 is the number of different edges of
Sm intersected by X(uj , uj+1) and SPw(uj , uj+1), for k ∈ {1, 2}, see Figure 6.

The full definition of the weakly simple polygons is deferred to the full version of the
paper. However, one can show that, by the definition of the crossing path X(s, t), these are
the only weakly simple polygons that can arise. Thus, our goal will be to maximize the ratio
‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ , for all j ∈ {1, . . . , `−1}, in each of the weakly simple polygons.

3.2 Bounding the ratio for weakly simple polygons
Before maximizing the ratio ‖X(uj ,uj+1)‖

‖SPw(uj ,uj+1)‖ in each of the weakly simple polygons, we will
reduce the number of polygons. In this way, we will reduce the number of calculations. First,
we can see that ‖X(uj ,uj+1)‖

‖SPw(uj ,uj+1)‖ =1 in P 1
0 . Also, P k

2 is a particular case of P k+1
1 . Analogously,

EuroCG’22

65:6 Spanning ratio of shortest paths in weighted square tessellations

t

s

ω1 = 1

Figure 7 The ratio between the weight of X(s, t) (orange) and the weight of SPw(s, t) (navy
blue) is

√
2. The ratio between the weight of the cyan grid path and SPw(s, t) is 1.

vi4=vi+1
1

ωi+1

uj+1

w
vi3=vi+1

2

vi2
vi1

vi+1
4vi+1

3

uj

Figure 8 Subpaths of SPw(s, t) (blue), X(s, t) (orange), Π1
i (s, t) (cyan), and Π2

i (s, t) (green). By
definition of the shortcut paths, X(s, vi

1) = Π1
i (s, vi

1) = Π2
i (s, vi

1), X(vi
3, t) = Π1

i (vi
3, t), X(vi+1

3 , t) =
Π2

i (vi+1
3).

after some calculations, we are able to prove that the ratio in a weakly simple polygon of
type P k

1 , for k ≥ 2, is maximized when k = 2. Thus, using this result, we get that the only
relevant spanning ratios are those in the polygons of type P 1

1 , and P 2
1 .

The edges of the crossing path X(s, t) are edges of the tessellation. However, a grid path
in G8corner can also use diagonals. Furthermore, X(s, t) is defined based on the points where
SPw(s, t) intersects the edges of the square cells, so it might not be a shortest grid path.
Hence, the ratio ‖X(uj ,uj+1)‖

‖SPw(uj ,uj+1)‖ could be larger than the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ , see Figure 7.

Thus, we define two additional classes of grid paths, called shortcut paths Π1
i (s, t)

and Π2
i (s, t), see Figure 8. These paths intersect almost all the edges intersected by X(s, t),

and imply a better fit in case SPw(s, t) intersects two parallel edges or is close to the diagonal
of a cell. Thus, they allow us to find a tighter upper bound for the ratio ‖SGPw(s,t)‖

‖SPw(s,t)‖ .
Π1

i (s, t) is defined when X(s, t) intersects a P 1
1 , or a P 2

1 , while Π2
i (s, t) is just defined

when X(s, t) intersects a P 2
1 . So, let (Sk, . . . , Sm) be the sequence of consecutive cells in S

for which there exists a shortcut path Π1
i (s, t), Π2

i (s, t), i ∈ {k, . . . ,m}. The key idea to
prove the upper bound in each of the weakly simple polygons, is to obtain a relation between
the weights of (Sk, . . . , Sm). So, we prove that if the weights of X(s, t), Π1

i (s, t) and Π2
i (s, t)

are not equal, then the weights of some cells can be modified so that the ratio between the
shortest grid path and the shortest path increases. Hence, the ratio ‖SGPw(s,t)‖

‖SPw(s,t)‖ is maximized
when ‖X(s, t)‖= ‖Π1

i (s, t)‖= ‖Π2
i (s, t)‖ in G8corner. Thus, using this fact, we proceed to

P. Bose, G. Esteban, D. Orden, and R. I. Silveira 65:7

calculate an upper bound on the ratio ‖X(uj ,uj+1)‖
‖SPw(uj ,uj+1)‖ in weakly simple polygons of type P 1

1
and P 2

1 when ‖X(s, t)‖=‖Π1
i (s, t)‖=‖Π2

i (s, t)‖. However, even with this simplification, we
need to split each ratio into different subcases to prove that ‖X(uj ,uj+1)‖

‖SPw(uj ,uj+1)‖≤ 2√
2+
√

2
. Finally,

since ‖SGPw(s, t)‖≤‖X(s, t)‖, and using the mediant inequality, we obtain our main result.

I Theorem 3.1. In G8corner, an upper bound on the ratio ‖SGPw(s,t)‖
‖SPw(s,t)‖ is 2√

2+
√

2
≈ 1.08.

4 Conclusions

We proved an upper bound for the ratio between the lengths of a shortest grid path in the
8-corner grid graph and a shortest path. Following an analogous procedure we can obtain an
upper bound for the ratio ‖SGPw(s,t)‖

‖SPw(s,t)‖ in G4corner, as well as for hexagonal tessellations. The
main differences lie in the number of weakly simple polygons to analyze. Also, we have to
take into account a different number of shortcut paths.

References
1 L. Aleksandrov, M. Lanthier, A. Maheshwari, and J. R. Sack. An ε-approximation algo-

rithm for weighted shortest paths on polyhedral surfaces. In Scandinavian Workshop on
Algorithm Theory, pages 11–22. Springer, 1998.

2 L. Aleksandrov, A. Maheshwari, and J. R. Sack. Approximation algorithms for geometric
shortest path problems. In Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 286–295, 2000.

3 L. Aleksandrov, A. Maheshwari, and J. R. Sack. Determining approximate shortest paths
on weighted polyhedral surfaces. Journal of the ACM (JACM), 52(1):25–53, 2005.

4 A. Ammar, H. Bennaceur, I. Chǎari, A. Koubǎa, and M. Alajlan. Relaxed Dijkstra and A∗
with linear complexity for robot path planning problems in large-scale grid environments.
Soft Computing, 20(10):4149–4171, 2016.

5 J. Bailey, C. Tovey, T. Uras, S. Koenig, and A. Nash. Path planning on grids: The effect
of vertex placement on path length. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, volume 11, 2015.

6 M. De Berg and M. van Kreveld. Trekking in the alps without freezing or getting tired.
Algorithmica, 18(3):306–323, 1997.

7 P. Bose, G. Esteban, D. Orden, and R. I. Silveira. On approximating shortest paths in
weighted triangular tessellations. arXiv preprint arXiv:2111.13912, 2021.

8 H. C. Chang, J. Erickson, and C. Xu. Detecting weakly simple polygons. In Proceedings of
the twenty-sixth annual ACM-SIAM Symposium on Discrete Algorithms, pages 1655–1670.
SIAM, 2014.

9 D. Z. Chen, K. S. Klenk, and H. Y. Tu. Shortest path queries among weighted obsta-
cles in the rectilinear plane. SIAM J. Comput., 29(4):1223–1246, 2000. doi:10.1137/
S0097539796307194.

10 S. W. Cheng, J. Jin, and A. Vigneron. Triangulation refinement and approximate shortest
paths in weighted regions. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 1626–1640. SIAM, 2015. doi:10.1137/1.9781611973730.108.

11 J. L. de Carufel, C. Grimm, A. Maheshwari, M. Owen, and M. Smid. A note on the unsolv-
ability of the weighted region shortest path problem. Computational Geometry, 47(7):724–
727, 2014.

12 L. de Floriani, P. Magillo, and E. Puppo. Applications of computational geometry to
geographic information systems. Handbook of computational geometry, 7:333–388, 2000.

EuroCG’22

65:8 Spanning ratio of shortest paths in weighted square tessellations

13 D. Gaw and A. Meystel. Minimum-time navigation of an unmanned mobile robot in a 2-
1/2D world with obstacles. In Proceedings. 1986 IEEE International Conference on Robotics
and Automation, volume 3, pages 1670–1677. IEEE, 1986.

14 L. Gewali, A. C. Meng, J. S. B. Mitchell, and S. C. Ntafos. Path planning in 0/1/∞
weighted regions with applications. INFORMS J. Comput., 2(3):253–272, 1990. doi:10.
1287/ijoc.2.3.253.

15 N. S. Jaklin. On Weighted Regions and Social Crowds: Autonomous-agent Navigation in
Virtual Worlds. PhD thesis, Utrecht University, 2016.

16 A. Kamphuis, M. Rook, and M. H. Overmars. Tactical path finding in urban environments.
In First International Workshop on Crowd Simulation. Citeseer, 2005.

17 J. Mitchell. Shortest paths among obstacles, zero-cost regions, and roads. Technical report,
Cornell University Operations Research and Industrial Engineering, 1987.

18 J. Mitchell and D. M. Keirsey. Planning strategic paths through variable terrain data. In
Applications of Artificial Intelligence I, volume 485, pages 172–179. SPIE, 1984.

19 J. Mitchell and C. Papadimitrou. The weighted region problem: Finding shortest paths
through a weighted planar subdivision. Journal of the ACM, 38(1):18–73, 1991.

20 B. N. Nagy. Shortest paths in triangular grids with neighbourhood sequences. Journal of
Computing and Information Technology, 11(2):111–122, 2003.

21 A. Nash. Any-Angle Path Planning. PhD thesis, University of Southern California, 2012.
22 N. C. Rowe and R. S. Ross. Optimal grid-free path planning across arbitrarily contoured

terrain with anisotropic friction and gravity effects. IEEE Transactions on Robotics and
Automation, 6(5):540–553, 1990.

23 M. Sharir and S. Sifrony. Coordinated motion planning for two independent robots. Annals
of Mathematics and Artificial Intelligence, 3(1):107–130, 1991.

24 N. R. Sturtevant, D. Sigurdson, B. Taylor, and T. Gibson. Pathfinding and abstraction with
dynamic terrain costs. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 15, pages 80–86, 2019.

25 W. van Toll, R. Triesscheijn, M. Kallmann, R. Oliva, N. Pelechano, J. Pettré, and R. Ger-
aerts. A comparative study of navigation meshes. In Proceedings of the 9th International
Conference on Motion in Games, pages 91–100, 2016.

Flipping Plane Spanning Paths∗

Oswin Aichholzer†1, Kristin Knorr‡2, Maarten Löffler3, Zuzana
Masárová4, Wolfgang Mulzer§2, Johannes Obenaus¶2, Rosna Paul‖1,
and Birgit Vogtenhuber∗∗1

1 Institute of Software Technology, Graz University of Technology, Austria
{oaich,ropaul,bvogt}@ist.tugraz.at

2 Department of Computer Science, Freie Universität Berlin, Germany
{first name}.{family name}@fu-berlin.de

3 Utrecht University, the Netherlands
m.loffler@uu.nl

4 Institute of Science and Technology Austria
zuzana.masarova@ist.ac.at

Abstract
Let S be a planar point set in general position, and let P(S) be the set of all plane (straight-line)
spanning paths for S. A flip in a path P ∈ P(S) is the operation of removing an edge e ∈ P and
replacing it with a new edge f on S such that the resulting graph is again a path in P(S). Towards
the question whether any two plane spanning paths of P(S) can be transformed into each other by
a sequence of flips, we give positive answers if S is a wheel set, an ice cream cone, or a double chain.
On the other hand, we show that in the general setting, it is sufficient to prove the statement for
plane spanning paths with fixed first edge.

Related Version A full version of this paper is available at https://arxiv.org/abs/2202.10831

1 Introduction

Let S be a set of n points in the plane such that no three points in S are collinear (this
property is called general position of S). Let P(S) be the set of all plane (i.e., crossing-free),
straight-line spanning paths for S. A flip on a path P ∈ P(S) is the operation of removing
one edge e ∈ P and replacing it with a new edge f on S such that the resulting graph is again
a plane spanning path form P(S) (note that e and f might cross). Unless stated otherwise,
all paths in this paper are plane, spanning, and straight-line.

The question we consider is the following. Given two paths Ps, Pt ∈ P(S), can we always
transform the starting path Ps into the target path Pt by a sequence of flips? Or, to phrase
it in a more graph-theoretic manner: the flip-graph (on P(S)) is defined to have vertex set
P(S) and two vertices form an edge if and only if the corresponding paths differ by a single
flip. Then, we are concerned with the question, whether the flip-graph is connected for any
point set S.

∗ This work was initiated at the 2nd Austrian Computational Geometry Reunion Workshop in Strobl,
June 2021. We thank all participants for fruitful discussions, especially Eva-Maria Hainzl, Guangping
Li, Irene Parada, Daniel Perz, Josef Tkadlec, and Alexandra Weinberger.

† Partially supported by the Austrian Science Fund (FWF): W1230 and the European Union H2020-
MSCA-RISE project 73499 - CONNECT.

‡ Supported by DFG within the Research Training Group GRK 2434 Facets of Complexity.
§ Supported in part by ERC StG 757609.
¶ Supported by ERC StG 757609.
‖ Supported by the Austrian Science Fund (FWF): W1230.
∗∗Partially supported by Austrian Science Fund within the collaborative DACH project Arrangements

and Drawings as FWF project I 3340-N35.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

66:2 Flipping Plane Spanning Paths

Type 1 Type 2 Type 3

Figure 1 For Type 1 flips, the two involved edges share a common endpoint. For Type 2, the
union of both paths is a plane spanning cycle (note that Type 2 flips can be simulated by a sequence
of Type 1 flips). For Type 3, the two involved flipping edges cross, while the rest of the cycle is
plane.

Flips in geometric graphs are a local but very powerful operation, see the survey of Bose
and Hurtado [3]. On page 71, Bose and Hurtado write: “We are unaware of any progress for
the same problem (obtaining a connected flip-graph for Hamiltonian crossing-free paths) on
generic point sets.”

Akl, Islam, and Meijer [2] showed that the flip graph is connected with diameter at most
2n− 5 for any n ≥ 3 points in convex position, and for any n ≤ 8 points in general position.
Slightly later, tight bounds were derived by Chang and Wu [4]: if S is in convex position,
then the diameter of the flip graph of P(S) is exactly 2n− 5, for n = 3, 4, and exactly 2n− 6,
for n ≥ 5.

There are different types of possible flips in a plane spanning path P ∈ P(S), but here we
will mostly focus on Type 1 flips (see Figure 1 for other types of flips): enumerate the vertices
of P as p1, . . . , pn. Then, a Type 1 flip consists of replacing an edge pi−1pi of P , i > 2, by
the edge p1pi. It results in the path pi−1, . . . , p1, pi, . . . , pn (of course, the flip is only valid if
the resulting path is still plane). In other words, a Type 1 flip inverts a contiguous chunk
from one of the two ends of P .1

Our Results. First, we verify by a computer assisted proof with the help of the order type
database [1] that the flip graph is connected for any set of n ≤ 10 points.

For the general setting, we pursue two directions. On the one hand, we extend the proof
of Akl et al. [2] to point sets in wheel, ice cream cone, and double chain configuration, the
result for the double chains being the main contribution (see Theorem 6 in Section 2).

On the other hand, we show that it is sufficient to consider the flip-graph for paths where
the first edge is fixed. More precisely: for distinct p, q ∈ S, let P(S, p) be the set of all plane
spanning paths for S that start at p, and let P(S, p, q) be the set of all plane spanning paths
for S that start at p and have pq as their first edge. We conjecture:

I Conjecture 1 ([2]). For any finite set S ⊂ R2 in general position and any two paths
Ps, Pt ∈ P(S), there is a sequence of flips transforming Ps into Pt.

I Conjecture 2. For any finite set S ⊂ R2 in general position, any p ∈ S, and any two
paths Ps, Pt ∈ P(S, p), there is a sequence of flips transforming Ps into Pt such that all
intermediate paths are in P(S, p).

1 The corresponding flip at the other end of the path replaces an edge of the form pjpj+1, j < n− 1 by
the edge pjpn, resulting in the path p1, . . . , pj , pn, . . . , pj+1.

Aichholzer, Knorr, Löffler, Masárová, Mulzer, Obenaus, Paul, Vogtenhuber 66:3

p1

p2

p3

Figure 2 Example where the flip graph is disconnected if the first three points of the paths are
fixed. The solid path cannot be flipped, but there is at least one other path (dotted) with the same
three starting points.

Figure 3 A double chain. Boundary edges are solid, bridge edges dashed, and chordal edges
dotted (not all edges are drawn).

I Conjecture 3. For any finite set S ⊂ R2 in general position, any distinct p, q ∈ S, and
any two paths Ps, Pt ∈ P(S, p, q), there is a sequence of flips transforming Ps into Pt such
that all intermediate paths are in P(S, p, q).

We show (Lemmas 8 and 9 in Section 3) that for any fixed n, a positive answer to
Conjecture 3 implies a positive answer to Conjecture 2, and similarly a positive answer to
Conjecture 2 implies a positive answer to Conjecture 1.

Given Conjectures 1–3, one might think that an analogous statement for paths with a
common starting sequence p1, p2, . . . , pk of k ≥ 3 points might also hold. Figure 2, however,
shows a counter-example with 7 points for k = 3.

2 Special classes of point sets

We prove the connectedness of the flip-graph for wheel sets, ice cream cones, and double
chains. Due to space constraints, however, we focus only on our main result, namely double
chains. Our strategy is always to transform some path to a canonical path (consisting only
of certain edges).

A double chain consists of two convex chains (each containing at least two points) with
opposed concavity such that (i) the convex hull forms a quadrilateral (where the left and
right endpoints of upper and lower chain form the extreme vertices) and (ii) no line through
two points of the same chain separates the other chain (see e.g. [5, 3]). We classify the edges
as follows: boundary edges are the edges between consecutive points on the upper and the
lower chain, as well as the two special boundary edges between the two left and between
the two right extreme points; bridge edges are the edges that connect the upper and the
lower chain (except for the leftmost and rightmost such edge); all the other edges are chordal
edges. A crucial property of double chains is the fact that boundary edges are uncrossed.
We denote the class of double chains by DC (see Figure 3 for an illustration).

We define a (combinatorial) distance on the boundary of S, the plane cycle formed by the

EuroCG’22

66:4 Flipping Plane Spanning Paths

p1

pi

pi−1

pn
p1

pi pi−1

pn
pi+1

Figure 4 Illustration of Observation 4 (left) and Observation 5 (right). Replacing the dashed
edge by the dotted forms a valid flip.

boundary edges2: let S ∈ DC, and let p, q ∈ S be two points on the boundary of S.3 Further,
let o ∈ {cw, ccw} be an orientation. We define the distance between p and q in direction o,
denoted by do(p, q), as the number of boundary edges along the boundary that lie between p

and q in direction o. Also, let the distance between p and q be

d(p, q) = min{dcw(p, q), dccw(p, q)}.

Note that neighboring vertices (along the boundary) have distance 1. Associating the pairs
of vertices with an edge, we may also speak of the distance of an edge, i.e., the distance of
an edge is just the distance between its endpoints. The total or overall distance (of a plane
spanning path) is just the sum of all distances of its edges.

Let S ∈ DC, and let P = p1, . . . , pn ∈ P(S). For i = 1, . . . , n− 1, we call the two vertices
pi, pi+1 consecutive along P , and we say that pi is the predecessor of pi+1 and that pi+1 is
the successor of pi. We emphasize that the terms consecutive, predecessor, and successor are
reserved for the order along paths, whereas the terms neighboring and neighbors always refer
to vertices that are incident to a common boundary edge of S.

The following observations will be useful to verify the validity of a flip (the first holds
because no boundary edge is crossed by another edge on S), see also Figure 4:

I Observation 4. Let S ∈ DC, and let P = p1, . . . , pn ∈ P(S) be a plane spanning path on S.
Let pi, i 6= 2, be a neighbor of p1. Then, the edge pi−1pi can be flipped to the edge p1pi, i.e.,
replacing pi−1pi by p1pi results in a valid plane spanning path for S.

I Observation 5. Let S ∈ DC, and let P = p1, . . . , pn ∈ P(S) be a plane spanning path on S.
Let p1, pi, i 6= n, be neighbors on the same chain. Then, the only edge of P that p1pi+1 may
cross is pi−1pi. In particular, if pi−1pi is a boundary edge, replacing pipi+1 by p1pi+1 forms
a valid flip.

The following theorem constitutes the main result of this section. We illustrate the main
ideas and structure of the proof, but postpone the most involved cases to the full version.

I Theorem 6. Let S ∈ DC, and let P, Q ∈ P(S) be two plane spanning paths on S. Then,
P can be transformed to Q in O(n2) flips.

Proof. Let P = p1, . . . , pn ∈ P(S), and consider the edge e = p1p2. Let pi, i 6= 2 be a
neighbor of p1 and whenever we have the choice, we pick pi to be a neighbor such that
p1pi does not form a special boundary edge (if both neighbors fulfill this property, pick one
arbitrary). We denote f = pi−1pi. We describe a process where in each iteration we either:

2 We emphasize that the boundary of S is distinct from the convex hull of S.
3 Note, in the setting of double chains, any vertex is on the boundary.

Aichholzer, Knorr, Löffler, Masárová, Mulzer, Obenaus, Paul, Vogtenhuber 66:5

p1 pi

pi−1pn

e f

(a) Case 1

p1

pi

pi−1
pn

e
f

pi+1

(b) Case 2.1

p1
pi

pi−1

pi+1

pn

pj

pj+1

pj−1

(c) Case 2.2

Figure 5 Illustration of the three cases of Theorem 6. The solid paths together with the dashed
edges form the initial path. Then, the dashed edges are replaced by the dotted (in (b), pay attention
to the order of the flips). (c) illustrates some of the intricacies, if the starting edge is a boundary
edge. None of the flips in the previous cases are valid here (no matter from which endpoint the path
is viewed).

(i) increase the number of boundary edges (while not increasing the overall distance of P), or
(ii) decrease the overall distance of P (while not decreasing the number of boundary edges).

We can assume, w.l.o.g., that the endpoints of P are not neighbors, since otherwise
we add the edge p1pn and remove an arbitrary (non-boundary) edge. We distinguish the
following cases:

Case 1 f is not a boundary edge.
Then, we can simply replace f by p1pi (forming a proper flip by Observation 4). This
increases the number of boundary edges and decreases the overall distance (recall that
boundary edges have distance one and all other edges distance at least two).

Case 2 f is a boundary edge.
Then, the edge pipi+1 is not a boundary edge, since pi already has the two neighbors p1
and pi−1.

Case 2.1 e is not a boundary edge.
Note that, since e is not a boundary edge, p1pi is not a special boundary edge.
We apply the following flips:

replace pipi+1 by p1pi+1 and
replace e by p1pi.

The first flip is valid by Observation 5 and the second flip by Observation 4. The first
flip may increase the overall distance by at most one, but the second flip decreases the
overall distance by at least one. Hence, the overall distance does not increase. On the
other hand, we increase the number of boundary edges.

Case 2.2 e is a boundary edge.
The case where e and f are both boundary edges is surprisingly intricate (especially
when p1 and pi lie on different chains). It is easy to see that either d(p1, pi+1) < d(pi, pi+1)
or d(pi−1, pi+1) < d(pi, pi+1) holds and our goal is to perform the corresponding flip
that decreases the distance. However, if p1 and pi lie on different chains, we need to be
very careful in order to preserve planarity (the details can be found in the full version
of this paper).

Recursively applying above process, we will eventually transform P to a canonical path
that consists only of boundary edges (the only paths with minimum overall distance). Doing
the same for Q and noting that any pair of canonical paths can be transformed into each
other by a single flip, the connectedness of the flip-graph follows.

EuroCG’22

66:6 Flipping Plane Spanning Paths

Concerning the required number of flips, note that any edge has distance at most n
2 − 1

and the path has n− 1 edges. Hence, the total number of iterations to transform P into a
canonical path is at most

(
(n− 1) ·

(n

2 − 2
)

+ (n− 1)
)
∈ O(n2)

Furthermore, any iteration requires at most two flips and hence, the total number of flips to
transform P into Q is still in O(n2). J

3 A sufficient condition

In this section, we prove the sufficient condition of considering only paths with a fixed starting
edge (recall that we consider point sets in general position now). We need one preliminary
lemma, whose proof can be found in the full version of this paper:

I Lemma 7. For any two points p1 and p2 of S there exists a path P ∈ P(S) which has p1
as starting and p2 as target point.

I Lemma 8. A positive answer to Conjecture 2 implies a positive answer to Conjecture 1.

Proof. Let Ps and Pt be the two paths of Conjecture 1. If they have a common endpoint, we
can directly use Conjecture 2 and the statement follows. So assume that Ps has the endpoints
pa and pb, and Pt has the endpoints pc and pd, which are all distinct. By Lemma 7 there
exists a path Pm having the two endpoints pa and pc. By Conjecture 2 there is a flip sequence
from Ps to Pm with the common endpoint pa, and again by Conjecture 2 there is a further
flip sequence from Pm to Pt with the common endpoint pc. This implies the statement. J

I Lemma 9. A positive answer to Conjecture 3 implies a positive answer to Conjecture 2.

The general strategy to prove Lemma 9 is similar to the one of Lemma 8, but of course
more involved as we also need to handle the position of the common starting point (again,
we defer the details to the full version).

4 Conclusion

In this paper, we made progress towards a positive answer of Conjecture 1, though it still
remains open. A natural way to prove Conjecture 1 would be to prove Conjecture 3 by
induction. We can assume all three conjectures to hold for all sets of size at most n− 1 and
only need to show that Conjecture 3 holds for n.

Concerning the approach of special classes of point sets, of course one can try to further
adapt the ideas to other classes.

Lastly, there are several other directions for further research conceivable, e.g. considering
simple drawings (or other types of drawings) instead of straight-line drawings.

References
1 Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types

for small point sets with applications. Order, 19:265–281, 2002. URL: https://link.
springer.com/article/10.1023/A:1021231927255, doi:https://doi.org/10.1023/A:
1021231927255.

Aichholzer, Knorr, Löffler, Masárová, Mulzer, Obenaus, Paul, Vogtenhuber 66:7

2 Selim G. Akl, Md. Kamrul Islam, and Henk Meijer. On planar path trans-
formation. Information Processing Letters, 104(2):59–64, 2007. URL: https:
//www.sciencedirect.com/science/article/pii/S0020019007001366, doi:https://
doi.org/10.1016/j.ipl.2007.05.009.

3 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geome-
try, 42(1):60–80, 2009. URL: https://www.sciencedirect.com/science/article/pii/
S0925772108000370, doi:https://doi.org/10.1016/j.comgeo.2008.04.001.

4 Jou-Ming Chang and Ro-Yu Wu. On the diameter of geometric path graphs of points in
convex position. Information Processing Letters, 109(8):409–413, 2009. URL: https:
//www.sciencedirect.com/science/article/pii/S0020019008003827, doi:https://
doi.org/10.1016/j.ipl.2008.12.017.

5 Alfredo García, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-free
subgraphs of Kn. Computational Geometry, 16(4):211–221, 2000.

EuroCG’22

Complexity Results on Untangling Planar
Rectilinear Red-Blue Matchings
Arun Kumar Das∗1, Sandip Das∗2, Guilherme D. da Fonseca†3, Yan
Gerard†4, and Bastien Rivier†5

1 Indian Statistical Institute, Kolkata, India
arund426@gmail.com

2 Indian Statistical Institute, Kolkata, India
sandipdas@isical.ac.in

3 Aix-Marseille Université and LIS, France
guilherme.fonseca@lis-lab.fr

4 Université Clermont Auvergne and LIMOS, France
yan.gerard@uca.fr

5 Université Clermont Auvergne and LIMOS, France
bastien.rivier@uca.fr

Abstract
Given a rectilinear matching between n red points and n blue points in the plane, we consider the
problem of obtaining a crossing-free matching through flip operations that replace two crossing
segments by two non-crossing ones. We first show that (i) it is NP-hard to α-approximate the
shortest flip sequence, for any constant α. Second, we show that when the red points are colinear,
(ii) given a matching, a flip sequence of length at most

(
n
2

)
always exists, and (iii) the number of

flips in any sequence never exceeds
(

n
2

)
n+4

6 . Finally, we present (iv) a lower bounding flip sequence
with roughly 1.5

(
n
2

)
flips, which disproves the conjecture that

(
n
2

)
, reached in the convex case, is the

maximum. The last three results, based on novel analyses, improve the constants of state-of-the-art
bounds.

Related Version arxiv.org/abs/2202.11857

1 Introduction

We consider the problem of untangling a planar rectilinear red-blue matching. We are given
a set of 2n points in the plane, partitioned into a set R of n red points, and a set B of n

blue points, in general position (no three colinear points, unless they have the same color).
A configuration is a set of n line segments where each point of R is matched to exactly one

point of B, i.e. a perfect rectilinear red-blue matching. A flip is a combinatorial operation
changing a configuration into another [7, 16]. In our case, a flip replaces two crossing segments
by two non-crossing ones (Figure 1).

The reconfiguration graph of R, B is the directed simple graph whose vertices V are the
configurations, and such that there is a directed edge from a configuration M1 to another one
M2 whenever a flip transforms M1 into M2. Note that the reconfiguration graph is acyclic [6].
Let S ⊆ V be the set of sinks, which corresponds to the crossing-free configurations. Given
two configurations u, v ∈ V, let P(u, v) be the set of directed paths from u to v. Given a
path P , let the length of P , denoted |P |, be the number of edges in P . The distance from u

∗ This work is partially supported by the IFCAM project “Applications of graph homomorphisms”
(MA/IFCAM/18/39).

† This work is supported by the French ANR PRC grant ADDS (ANR-19-CE48-0005).

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

67:2 Complexity Results on Untangling Planar Rectilinear Red-Blue Matchings

Figure 1 A flip. Red points are represented by solid squares and blue points by hollow circles.

to v, denoted d(u, v), is the minimum path length from u to v. The distance from u to S,
d(u, S), also abbreviated as d(u), is the minimum path length from u to a configuration in S.
We are interested in two parameters of this reconfiguration graph:

d(R, B) = max
u∈V

min
v∈S

min
P ∈P(u,v)

|P | and D(R, B) = max
u∈V

max
v∈S

max
P ∈P(u,v)

|P | .

This leads to the definitions of d(n) and D(n) respectively as the maximum of d(R, B)
and D(R, B) with |R| = |B| = n. An untangle sequence is a path in the reconfiguration
graph ending in S. Intuitively, d corresponds to the minimum length of an untangle sequence
in the worst case, while D corresponds to the longest untangle sequence.

We also consider a more specific version of the problem where the red points are colinear [4],
say, on the x-axis. As the flips on each half-plane defined by the x-axis are independent, we
additionally suppose all blue points to lie on the upper half-plane without loss of generality.
The matchings in this case are called red-on-a-line matchings.

Related work. The parameters d, D have been studied in several different contexts with
similar definitions of a flip, but considering other configurations.

In 1981, an O(n3) upper bound on D(n) was stated in the context of optimizing a TSP
tour [23] (the configurations are polygons). This upper bound should be compared to the
exponential lower bound on D(n) when the flips are not restricted to crossing segments, as
long as they decrease the Euclidean length of the tour [10]. The convex case (i.e. the case
where the points are in convex position) has been studied in [20, 25].

In the non-bipartite version of the rectilinear perfect matching problem, there are two
possible pairs of segments to replace a crossing pair. This additional choice yields an n2/2
upper bound on d(n) [6].

It is also possible to relax the flip definition to all operations that replace two segments
by two others with the same four endpoints, whether they cross or not, and generalize the
configurations to multigraphs with the same degree sequence [12, 13, 16]. In this context,
finding the shortest path from a given configuration to another in the reconfiguration graph
is NP-hard, yet 1.5-approximable [2, 3, 11, 24]. If we additionally require the configurations
to be connected graphs, the same problem is NP-hard and 2.5-approximable [8].

Reconfiguration problems in the context of triangulations are widely studied [19]. A
flip consists of removing one edge and adding another one while preserving a triangulation.
It is know that Θ(n2) flips are sufficient and sometimes necessary to obtain a Delaunay
triangulation [14, 17]. Determining the flip distance between two triangulations of a point
set [18, 21] and between two triangulations of a simple polygon [1] are both NP-hard.

Considering perfect matchings of an arbitrary graph (instead of the complete bipartite
graph on R, B), a flip amounts to exchanging the edges in an alternating cycle of length

A. K. Das, S. Das, G. D. da Fonseca, Y. Gerard, and B. Rivier 67:3

Table 1 Lower and upper bounds on d(n) and D(n) for red-blue matchings.

d(n) bounds D(n) bounds
lower upper lower upper

general 1.4n(a), Thm. 5.2
(

n
2

)
(n − 1), [6, 23] 3

2

(
n
2

)
− n

4
(b), Thm. 5.1

(
n
2

)
(n − 1), [6, 23]

convex 1.4n(a), Thm. 5.2 2n − 2, [4]
(

n
2

)
, [6]

(
n
2

)
, [4]

red-on-a-line n − 1, [6]
(

n
2

)
, Thm. 3.1 3

2

(
n
2

)
− n

4
(b), Thm. 5.1

(
n
2

)
n+4

6 , Thm. 4.1

(a) For n multiple of 20.
(b) For even n.

four. It is then PSPACE-complete to decide whether there exists a path from a configuration
to another [5]. There is, actually, a wide variety of reconfiguration contexts derived from
NP-complete problems where this same accessibility problem is PSPACE-complete [15].
Many other reconfiguration problems are presented in [22].

Getting back to our context of rectilinear red-blue matchings, the values of d and D have
been determined almost exactly in the convex case (see Table 1). Notice that the n − 1 lower
bound on d(n) carries to both the general and red-on-a-line cases [6]. It is notable that the
upper bound on D(n) is also the best known bound on d(n) and has not been improved
since 1981 [23].

Contributions. We show in Section 2 that it is NP-hard to α-approximate the shortest
untangle sequence starting at a given matching, for any fixed α ≥ 1.

The following results are summarized in Table 1. An improved lower bound on d(n)
in the convex case is presented in Section 5.2. The remainder of the paper considers the
red-on-a-line case. In Section 3, we slightly improve the former

(
n+1

2
)

upper bound on
d(n) [4], using a simpler algorithm and a novel analysis. In Section 4, we asymptotically
divide by 6 the historical

(
n
2
)
(n − 1) upper bound on D(n) [6, 23], using a different potential

argument.
In Section 5.1, we present a counter-example to the intuitive conjecture that the longest

untangle sequence is attained in the convex case (where the number of crossings is maximal).
We take advantage of points that are not in convex position to increase the lower bound by
a factor of 3

2 . This red-on-a-line lower bound on d(n) carries over to the general case (and
even to the case of general perfect matchings without color distinction among the points).
The weaker conjecture that D(n) is quadratic [6] still holds, though.

2 NP-Hardness

In this section, we sketch the reduction of a known NP-complete problem, called rectilinear
planar monotone (RPM) 3-SAT [9], to the following problem. The full proof is presented in
the ArXiv version.
▶ Problem 1. Let α ≥ 1 be a constant.
Input: M , a red-blue matching.
Output: An untangle sequence starting at M of length at most α times d(M).

▶ Theorem 2.1. Problem 1 is NP-hard for all α ≥ 1.

In RPM 3-SAT, the graph of a CNF formula is the bipartite graph with the variables and
clauses as vertices, and where there is an edge between a variable and a clause if and only if
the clause contains the variable. A CNF formula is monotone if each clause contains either

EuroCG’22

67:4 Complexity Results on Untangling Planar Rectilinear Red-Blue Matchings

only positive or only negative variables. An RPM 3-CNF formula is a monotone formula
whose graph can be drawn with no intersection, and with the three following conventions
(Figure 2). (i) The variables and the clauses are represented by axis-parallel rectangles. (ii)
The variable rectangles lie on the x-axis. (iii) The positive clause rectangles are above the
x-axis, the negative ones, below. We call such a drawing the planar embedding of Φ.

x1 x2 x3 x4 x5 x6

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x3 ∨ x5 ∨ x6

x2 ∨ x3 ∨ x4

Figure 2 A planar embedding of an RPM 3-CNF formula.

The idea of the reduction is that, given an RPM 3-CNF formula Φ, we draw a rectilinear
red-blue matching MΦ of polynomial size such that all the untangle sequences starting at
MΦ are of length at most k1 if Φ is satisfiable, and of length at least k2 if Φ is not satisfiable.

x = 0

x = 1

x

Figure 3 A variable gadget.

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

Figure 4 A clause gadget.

A. K. Das, S. Das, G. D. da Fonseca, Y. Gerard, and B. Rivier 67:5

The aforesaid matching MΦ is built upon the planar embedding of Φ. The variable
rectangles are replaced by variable gadgets (Figure 3). The clause rectangles together with
the corresponding edges are replaced with clause gadgets (Figure 4). A clause gadget consists
of two OR gadgets, working like OR gates, and is connected to a padding gadget (Figure 5).
If a clause is satisfied, then any untangle sequence of the two OR gadgets will end without
creating any crossing in the padding gadget. If a clause is not satisfied, then any untangle
sequence of the two OR gadgets will end creating a crossing in the padding gadget, which
will trigger an arbitrary long series of flips, thus ensuring an arbitrary gap k2 − k1.

...

.

.

x y z

b4

r4

r6 b6
b5

r5

r8 b8

b7

r7b9 r10 r11

b12

r9

r12

b13
r13

r15

r14

b14

b15

...

Figure 5 A clause gadget with padding connected to its variable gadgets, with branching on x.

3 Upper Bound on d(n)

In this section, we give some insight into the proof of the following upper bound.

▶ Theorem 3.1. In the red-on-a-line case, d(n) ≤
(

n
2
)
.

The proof consists of the analysis of the number of flips performed by the following
recursive algorithm. We assume general position (no two blue points at same height). Let
the top segment of a red-on-a-line matching be the segment with the topmost blue endpoint.

s1s2

M2

Figure 6 A red-on-a-line matching with s1 as the top segment. The top segment of M2 is s2.

EuroCG’22

67:6 Complexity Results on Untangling Planar Rectilinear Red-Blue Matchings

Algorithm 1:
Input : M , a red-on-a-line matching.
Output : An untangle sequence starting at M .

0 If R = B = ∅, then stop.
1 Let M2 be the set of segments crossing s1, the top segment of M (Figure 6). If M2 is

not empty, flip s1 and s2, the top segment of M2, and repeat Step 0.
2 Recursively call the algorithm on the sub-matchings on both sides of the updated top

segment of M .

X-state H-state T-state

Figure 7 The three different states of pairs of segments.

The idea behind Algorithm 1 stems from the following observations. We define three
states for a pair of segments: state X, when the segments are crossing, state H, when the
segments are not crossing and their endpoints are in convex position, and state T, when
the endpoints are not in convex position (Figure 7). In the convex case, a flip increases the
number of H-pairs of at least 1 unit, providing the

(
n
2
)

upper bound on D(n). However, the
number of H-pairs may not increase in the general case. Figure 8 shows two such situations
where there is one H-pair involving the segment s before the flip, and none after the flip.
Algorithm 1 avoids these situations by choosing to flip top segments. The full proof, presented
in the ArXiv version, involves state tracking, a novel approach to analyse flip sequences.

s
s1

s2
s′2

s′1 s

s1
s2

s′2

s′1

s s2

s1 H X
s X

s s′
2

s′
1 X H
s T

s s2

s1 H X
s T

s s′
2

s′
1 T H
s T

Figure 8 Two cases where the number of H-pairs does not increase. The flipped pair is s1, s2.

4 Upper Bound on D(n)

In this section, we sketch the proof of the following upper bound.

A. K. Das, S. Das, G. D. da Fonseca, Y. Gerard, and B. Rivier 67:7

▶ Theorem 4.1. In the red-on-a-line case, D(n) ≤
(

n
2
)

n+4
6 .

Let r1, . . . , rn be the red points, ordered from left to right. Theorem 4.1 is a corollary of
the following bound on the number of flips involving rk.

▶ Lemma 4.2. In the red-on-a-line case, the number of flips involving the red point rk is at
most (k − 1)(n − k) + n − 1.

r1 r2 r3 r4 r5 r6

Figure 9 The two crossing pairs that may undergo a 3-flip (k = 3) immediately are circled.

The upper bound of Theorem 4.1 is obtained by computing the sum
∑n

k=1(k − 1)(n −
k) + n − 1 of the number of flips involving each red point, and then dividing this sum by 2,
since each flip is counted twice (once for each red point).

The proof of Lemma 4.2 comes from a stronger lemma bounding the number of k-flips by
(k − 1)(n − k) + n − 1, where a k-flip is a flip of a pair of segments rib, rjb′, with i ≤ k ≤ j

(see Figure 9, where k = 3). The proof is fully presented in the ArXiv version.

5 Lower Bounds

In this section, we sketch the proof of the following lower bounds.

▶ Theorem 5.1. In the red-on-a-line case, for even n, D(n) ≥ 3
2
(

n
2
)

− n
4 .

▶ Theorem 5.2. In the convex case, for n multiple of 20, d(n) ≥ 1.4 · n.

5.1 Lower Bound on D(n)

In order to define the starting configurations of lower bounding untangle sequences, we first
provide some ad hoc definitions. We call a red-on-a-line convex matching an n-star when
the maximum crossing number is attained, i.e. all the

(
n
2
)

pairs of segments are crossing. For
convenience, we say that an n-star looks at a point p if its blue points are all on a common
line, and if p is the intersection of this line with the line on which the red points lie. We also
say that two red-blue point sets R, B and R′, B′ are fully crossing if all the pairs of segments
of the form rb, r′b′ are crossing, where (r, b, r′, b′) ∈ R × B × R′ × B′. Two matchings are
fully crossing if their underlying red-blue point sets are fully crossing.

An m-butterfly is a red-on-a-line matching consisting of two fully crossing m-stars both
looking at the same point p, where p is a median of the 2m red points (Figure 10). The
existence of an untangle sequence of length 3

2
(2m

2
)
− m

2 , starting at an m-butterfly is presented
in the ArXiv version.

EuroCG’22

67:8 Complexity Results on Untangling Planar Rectilinear Red-Blue Matchings

pr1 r2 r3 r4 r5 r6

Figure 10 The 3-butterfly used to lower bound D(6).

5.2 Lower Bound on d(n)
An improved lower bound on d(n) in the convex case comes from running a breadth-first
search on the 20-segment configuration in Figure 11 and finding a minimum untangle sequence
length of 24. Arranging multiple copies of this configuration, we get d(n) ≥ 1.4 · n for n

multiple of 20. The source code is available on github.com/gfonsecabr/untangling.

Figure 11 The convex configuration used to show that d(20) ≥ 28.

6 Concluding Remarks

Untangle sequences of TSP tours have been investigated since the 80s, when a cubic upper
bound on D(n) has been discovered [23]. This bound also holds for matchings and has not
been improved ever since. Except for the convex case, there are big gaps between the lower
and upper bounds, as can be seen in Table 1. Experiments on tours and matchings have
shown that, in all cases tested, the cubic upper bound is not tight and the lower bounds
seem to be asymptotically tight.

Untangle sequences have many unexpected properties which make the problem harder
than it seems at first sight. The following questions remain open.
1. If we add a new segment to a crossing-free matching, what is the maximum length of an

untangle sequence? Notice that an o(n2) bound would lead to an o(n3) bound for d(n).
2. Is it always possible to find an untangle sequence that does not flip the same pair of

segments twice? Using a balancing argument, we can show that the number of distinct
flips in any untangle sequence is O(n8/3).

3. What is the maximum number of flips involving a given point? The classic potential [23]
provides a quadratic bound which leads again to D(n) = O(n3).

4. Is there a potential that provides better bounds?

We proved the NP-hardness of computing the shortest untangle sequence for a red-blue
matching. What is the complexity of computing the shortest untangle sequence for a TSP

A. K. Das, S. Das, G. D. da Fonseca, Y. Gerard, and B. Rivier 67:9

tour, for a red-on-a-line matching, or even for a convex instance? What about the longest
untangle sequences?

References
1 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangula-

tions of a simple polygon is NP-complete. Discrete & Computational Geometry, 54(2):368–
389, 2015.

2 Sergey Bereg and Hiro Ito. Transforming graphs with the same degree sequence. In
Computational Geometry and Graph Theory, pages 25–32, 2008.

3 Sergey Bereg and Hiro Ito. Transforming graphs with the same graphic sequence. Journal
of Information Processing, 25:627–633, 2017.

4 Ahmad Biniaz, Anil Maheshwari, and Michiel Smid. Flip distance to some plane configura-
tions. Computational Geometry, 81:12–21, 2019.

5 Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Arnaud
Mary, Moritz Mühlenthaler, and Kunihiro Wasa. The perfect matching reconfiguration
problem. In 44th International Symposium on Mathematical Foundations of Computer
Science, volume 138 of LIPIcs, pages 80:1–80:14, 2019.

6 Édouard Bonnet and Tillmann Miltzow. Flip distance to a non-crossing perfect matching.
Computing Research Repository, abs/1601.05989, 2016.

7 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geometry,
42(1):60–80, 2009.

8 Nicolas Bousquet and Alice Joffard. Approximating shortest connected graph transformation
for trees. In Theory and Practice of Computer Science, pages 76–87, 2020.

9 Mark De Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. International Journal of Computational Geometry & Applications, 22(03):187–205,
2012.

10 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilistic analysis
of the 2-Opt algorithm for the TSP. Algorithmica, 68(1):190–264, 2014.

11 Péter L Erdős, Zoltán Király, and István Miklós. On the swap-distances of different
realizations of a graphical degree sequence. Combinatorics, Probability and Computing,
22(3):366–383, 2013.

12 Seifollah Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a
linear graph. i. Journal of the Society for Industrial and Applied Mathematics, 10(3):496–506,
1962.

13 Seifollah Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a
linear graph ii. uniqueness. Journal of the Society for Industrial and Applied Mathematics,
11(1):135–147, 1963.

14 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete &
Computational Geometry, 22(3):333–346, 1999.

15 Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12):1054–1065, 2011.

16 Alice Joffard. Graph domination and reconfiguration problems. PhD thesis, Université
Claude Bernard Lyon 1, 2020.

17 Charles L Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365–372, 1972.
18 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set

is NP-complete. Computational Geometry, 49:17–23, 2015.
19 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4), 2018.

EuroCG’22

67:10 Complexity Results on Untangling Planar Rectilinear Red-Blue Matchings

20 Yoshiaki Oda and Mamoru Watanabe. The number of flips required to obtain non-crossing
convex cycles. In Kyoto International Conference on Computational Geometry and Graph
Theory, pages 155–165, 2007.

21 Alexander Pilz. Flip distance between triangulations of a planar point set is apx-hard.
Computational Geometry, 47(5):589–604, 2014.

22 Jan van den Heuvel. The complexity of change. Surveys in Combinatorics, 409:127–160,
2013.

23 Jan van Leeuwen. Untangling a traveling salesman tour in the plane. In 7th Workshop on
Graph-Theoretic Concepts in Computer Science, 1981.

24 Todd G Will. Switching distance between graphs with the same degrees. SIAM Journal on
Discrete Mathematics, 12(3):298–306, 1999.

25 Ro-Yu Wu, Jou-Ming Chang, and Jia-Huei Lin. On the maximum switching number to
obtain non-crossing convex cycles. In 26th Workshop on Combinatorial Mathematics and
Computation Theory, pages 266–273, 2009.

On Some Relations Between Optimal TSP
Solutions and Proximity Graphs in the Plane∗

Logan D. Graham1, Joseph S. B. Mitchell1, Gaurish Telang1, and
Sam van der Poel1

1 Department of Applied Mathematics and Statistics, Stony Brook University
{logan.graham,joseph.mitchell,sam.vanderpoel}@stonybrook.edu,
gaurish108@gmail.com

Abstract
Relations between the Euclidean traveling salesman problem (TSP) and proximity graphs have
primarily been explored in the context of TSP heuristics. We present a set of theoretical results,
a computer-assisted proof, and extensive experimental findings that reveal a subtle relationship
between the TSP and proximity graphs. Carefully constructed examples show that the TSP does
not necessarily contain a nearest neighbor graph (NNG) edge. We show that the TSP must contain
an edge of the order-k Delaunay for constant k ∈ N. We devised and implemented an enumeration
algorithm that allows us to prove that the TSP tour on point sets of size n ≤ 9 necessarily contains
an NNG edge. Large-scale simulations and an application to geometric deep learning reinforce the
strong ties between the TSP and proximity graphs that are observed in practice.

1 Introduction

The Euclidean traveling salesman problem (TSP), seeking the shortest tour or path through
n points in the Euclidean plane, is NP-hard and one of the most intensively studied problems
in computer science.

The length-minimizing quality of the TSP suggests that the TSP may necessarily contain
edges of proximity graphs such as the (undirected) nearest neighbor graph (NNG), minimum
spanning tree (MST), k-Gabriel graphs, or k-Delaunay graphs. We refute some of this
intuition by providing examples of TSP solutions that “avoid” having edges of some proximity
graphs. The point sets in Section 2 serve to preclude certain claims concerning the intersection
of the TSP with proximity graphs, akin to those of Dillencourt [6, 7], who showed that the
Delaunay triangulation is not always Hamiltonian. We show, for instance, that the Euclidean
TSP does not necessarily contain a nearest neighbor graph edge.

A positive result in Section 2, along with extensive empirical findings in Section 4, and a
computer-assisted proof in Section 3 reaffirm the strong ties between the TSP and proximity
graphs. We show that, experimentally, close to 99% of TSP edges tend to be Delaunay edges
for large point sets sampled from distributions considered by Bentley [3], and an enumeration
algorithm shows that small TSP instances (n ≤ 9) necessarily contain NNG edges. These
results further support the use of TSP heuristics inspired by proximity graphs [16, 17, 22, 24].

∗ This work has been partially supported by NSF (CCF-2007275). The authors would like to thank Stony
Brook Research Computing and Cyberinfrastructure, and the Institute for Advanced Computational
Science at Stony Brook University for access to the high-performance SeaWulf computing cluster, which
was made possible by a $1.4M National Science Foundation grant (#1531492). The authors would also
like to acknowledge Omrit Filtser for insight regarding the structure of the point set in Fig. 1, Hugo
Mainguy for the initial idea that led to the point sets in Fig. 5, others who participated in Stony Brook’s
Computational Geometry Group research meetings, and the anonymous reviewers.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

68:2 On Some Relations Between Optimal TSP Solutions and Proximity Graphs

The code used to obtain the included results, the data used in the experiments, and a
GUI to study and visualize the TSP and proximity graphs are provided at https://github.
com/samvanderpoel/TSP-vs-Graphs, a code base that is user-friendly and easily extensible.

1.1 Proximity Graph Definitions
Fix a finite point set S in the Euclidean plane. We consider weighted graphs on S whose edge
weights are given by Euclidean distance. The k-nearest neighbor graph (k-NNG) contains
an (undirected) edge between two vertices u, v if and only if the distance between u and v is
among the k shortest distances either from u to any p ∈ S \{u} or from v to any p ∈ S \{v}.
References to the NNG are to be understood as those to the 1-NNG. The minimum spanning
tree (MST) is a connected graph on S with lowest aggregate edge weight. The k-Delaunay
contains an edge between two vertices u, v if and only if there exists a closed disk containing
u, v, and at most k points in S \ {u, v}. The k-Gabriel graph contains an edge between two
vertices u, v if and only if the closed disk with diametrical chord (u, v) contains at most
k points in S \ {u, v}. We write simply Delaunay and Gabriel to mean 0-Delaunay and
0-Gabriel, respectively. For points in general position, the Urquhart graph is that which
results from removing the longest edge from each triangle in the Delaunay triangulation.

2 Theoretical Results

In what follows, all graphs are considered to be undirected. All instances of the TSP
were verified with the Concorde TSP Solver [1]. The existence of the well-known nearest
neighbor TSP heuristic prompts the question of whether the Euclidean TSP tour and path
each necessarily contain an NNG edge. We answer this in the negative by presenting Figure
1, a point set whose (unique) Euclidean TSP tour and NNG are disjoint.

Figure 1 The Euclidean TSP tour (filled in blue) and NNG (purple) are disjoint.

There exists a similar point set, omitted here, demonstrating that the TSP tour and NNG
may be disjoint for Lp metrics, 2 ≤ p ≤ 100. The TSP path and NNG of the point set in
Figure 2 are disjoint for Lp metrics, 2 ≤ p ≤ 6.

Figure 2 The TSP path (blue) and NNG (purple) are disjoint for Lp metrics, 2 ≤ p ≤ 6.

L. Graham, J. Mitchell, G. Telang, and S. van der Poel 68:3

The NNG is one of a set of proximity graphs that we consider here; they form the
following inclusions with the k-Delaunay being the densest (having most edges) graph.

MST ⊆ Urquhart ⊆ Gabriel ⊆ Delaunay Triangulation ⊆ k-Delaunay (1)

Further, the inclusion NNG ⊆ MST holds for points in general position.
It is natural to conjecture that the TSP tour contains a constant fraction of edges of the

Gabriel graph or one of its subgraphs. This is refuted by the family (n ≥ 3) of point sets in
Figure 3 each of whose TSP tour and Gabriel graph share only two edges.

Figure 3 A family (n ≥ 3) whose TSP tours (filled in blue) contain only two Gabriel edges.

In the family of point sets in Figure 3, the MST coincides with the Gabriel graph, and
the MST has vertices of degree at most two. It is worth asking whether MST vertices of
degree three or more must be incident to a TSP edge that also belongs to the MST. The
example of Figure 4 shows that this is not the case: there are three MST vertices of degree
three, and none of the MST edges incident to these vertices belong to the TSP tour.

Figure 4 No MST edges (green) incident to degree-three MST vertices are TSP tour edges.

Optimality of the TSP tour implies that it forms a simple polygonal cycle in the Euclidean
plane. To show that a TSP tour necessarily includes a Delaunay edge (a conjecture we are

EuroCG’22

68:4 On Some Relations Between Optimal TSP Solutions and Proximity Graphs

actively pursuing), it is natural to consider whether any simple polygon on a set of points
necessarily uses at least one Delaunay edge. Figure 5 shows that this is not so: there exist
point sets that admit simple polygonalizations, none of whose edges belong to the Delaunay.

Another approach to showing that the TSP tour must contain an edge of the Delaunay
consists in arguing that at least one out of every k successive edges of a TSP tour must be
Delaunay. This argument, too, is cast in doubt by Figures 6, 7, and 8, showing point sets
whose TSP tours contain two, three, and four consecutive non-Delaunay edges, respectively.

Figure 5 Point sets with polygonalizations (light) edge-disjoint from Delaunay graphs (dark).

In constructing the point sets of Figures 6, 7, and 8, we noticed a strong sensitivity of
the TSP tour to the precise placement and density of points. Nevertheless, we believe that
the theme of these point sets can be generalized and applied for any given k ∈ N.

▶ Conjecture 1. For any k ∈ N there exists a point set S in the Euclidean plane such that
k consecutive edges of the TSP on S are non-Delaunay.

Figures 6, 7, and 8, show that despite the prevalence of Delaunay edges (>99%) in
the TSP tours on randomly generated point sets (Section 4), Delaunay edges are not “so”
prevalent as to ensure that one must exist among every k ≤ 4 consecutive edges of the TSP.

Figure 6 Two successive edges of the TSP, incident to the red vertices, are non-Delaunay.

L. Graham, J. Mitchell, G. Telang, and S. van der Poel 68:5

In addition, Figure 6 shows an example where both of the TSP cycle edges that are
incident on a convex hull vertex can be non-Delaunay.

Figure 7 Three successive edges of the TSP tour, incident to the red vertices, are non-Delaunay.

Figure 8 Four successive edges of the TSP tour, incident to the red vertices, are non-Delaunay.

It was shown in [12] that the 10-Gabriel graph – and hence also the 10-Delaunay – is
Hamiltonian. Theorem 2 supplements this result, showing that there does not exist an
integer k ≥ 0 such that the k-Gabriel graph or k-Delaunay always contains the Euclidean
TSP tour or path.

▶ Theorem 2. For every integer k ≥ 0, there exist point sets S1 and S2 in the Euclidean
plane such that the TSP tour of S1 and the TSP path of S2 are not subsets of the respective
k-Delaunay graphs of S1 and S2.

▶ Theorem 3. There exists a constant k such that, for every finite point set in R2, the
Euclidean k-Gabriel graph contains a shortest edge in an optimal Euclidean TSP.

EuroCG’22

68:6 On Some Relations Between Optimal TSP Solutions and Proximity Graphs

Figure 9 Proof of Theorem 3: only O(1) points can lie in the diametrical disk defined by ab.

Proof sketch. Fix a finite point set in the Euclidean plane. Denote by ab a shortest edge
in this point set’s TSP. Consider the bounding square of the diametrical disk defined by ab,
and partition it into 16 subsquares (four are shown in Fig. 9). Pick a subsquare and a point
p therein. Using extremality, we reason about p and its neighbors o and q along an optimal
TSP tour, invoking a geometric separator theorem from [5] (adapted from [13, 23]) to show
that there are O(1) points in each subsquare. Applying this reasoning to all subsquares, we
conclude that there are only O(1) points in the diametrical disk characterized by ab. ◀

3 TSP–NNG Intersection Algorithm

For small point sets, it is possible to directly search the set of all possible NNGs (under some
criteria) to determine whether a TSP tour or path necessarily uses an NNG edge. This is
made precise in the discussion below for the case of TSP tour, leading to an enumeration
algorithm, the output of which justifies the following theorem.

▶ Theorem 4. Let G be an undirected weighted graph on n ≤ 9 vertices. Suppose that H is
a Hamiltonian cycle on the complement of the NNG of G. Then the total weight of H can
be reduced, maintaining its Hamiltonicity, by a set of edge exchanges only with the NNG.

Fix an undirected weighted graph G = (V, E) on n vertices v0, . . . , vn−1 and suppose
there is a Hamiltonian cycle H = (vi0 , vi1 , . . . , vin−1 , vi0) that is disjoint from the NNG of G

(nearest neighbors may be non-unique). Let NN(vi) denote the set of nearest-neighbors of
vi. Define the set N(G) = NN(v0) × · · · × NN(vn−1), and call its elements representatives
of the NNG of G; fix a representative r = (r0, . . . , rn−1) ∈ N(G). For each ij , since rij is a
nearest neighbor of vij

, exchanging either of the edges (vij
, vi(j−1) mod n

) or (vij
, vi(j+1) mod n

)
in H for (vij , rij) shortens the total weight of H as a weighted graph. Depending on whether
(vij

, rij
) substitutes (vij

, vi(j−1) mod n
), (vij

, vi(j+1) mod n
), or neither, these exchanges can be

L. Graham, J. Mitchell, G. Telang, and S. van der Poel 68:7

encoded with the integers −1, 1, or 0, respectively. Applying this encoding of edge exchanges
to all ij = 0, . . . , n − 1, the set of all possible nontrivial edge exchanges between H and a
representative of the NNG is given by the set

E(n) =
{

(e0, . . . , en−1); ei ∈ {−1, 0, 1}
}

\ {(0, . . . , 0)}. (2)

If, after application of an edge exchange E ∈ E(n) to H, the resulting graph is still a
cycle, then we will have shortened the Hamiltonian cycle H via an edge exchange with
a representative of the NNG. By a direct search of E(n) it can be determined whether a
Hamiltonian cycle admits a shortening via an edge exchange with a given representative r.

Without reference to a specific graph G, and knowing only that H contains no NNG
edges, we may iterate over the set of all possible representatives of the NNG, given by

SNNG(n) =
{

(σ0, . . . , σn−1) : σi ∈ {0, . . . , n − 1} \ {j mod n : j = i − 1, i, i + 1}
}

. (3)

The meaning of s = (σ0, . . . , σn−1) ∈ SNNG(n) is that σi is the index of a nearest neighbor
of vi. The brute-force iteration over all of SNNG(n) and, for each s ∈ SNNG(n), over E(n),
checking whether any edge exchange yields a Hamiltonian cycle, comprises an algorithm
whose output proves that the TSP tour must contain an NNG edge for n ≤ 9, as verified by
our implementation on Stony Brook University’s high-performance computing cluster.

4 Empirical Findings

We now present experimental results concerning the intersection of the TSP and proximity
graphs. Table 1 shows edgewise comparisons between the TSP tour and proximity graphs
for several Euclidean TSPLIB [21] instances.

Table 1 Percentages of TSP tour edges in proximity graphs for Euclidean TSPLIB instances.

Instance 1-NNG 2-NNG MST Urquhart Gabriel Delaunay
rat575 58.96 85.57 74.43 86.09 96.17 99.48
p654 50.61 82.11 69.88 92.05 95.72 99.24
d657 58.75 81.89 75.19 81.89 92.69 99.09
u724 58.84 83.70 74.31 83.01 96.13 99.45
rat783 59.26 82.50 76.37 85.31 94.89 100.00

Extensive experiments were conducted on Stony Brook University’s high-performance
computing cluster using the Concorde TSP Solver [1] along with Python and its scientific
computing libraries. Point sets of cardinalities 10 to 1660 were sampled in 50-point intervals
from 7 probability distributions, with 50 point sets sampled at each cardinality. Six of the
7 distributions we consider were studied by Bentley [3]; we present results of 2 distributions
here and make the others available in the GitHub repository. For each point set sampled,
fractions of TSP edges belonging to different proximity graphs were calculated, the results
of which constitute the below plots. The error bands represent ± one standard deviation at
each point set size.

Concorde computes optimal tours; we used it to compute optimal TSP paths by adding
a dummy vertex that is equidistant from every point of the given point set.

EuroCG’22

68:8 On Some Relations Between Optimal TSP Solutions and Proximity Graphs

0 250 500 750 1000 1250 1500

Point set size

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

T
S

P
T

ou
r

E
d

ge
s

in
G

ra
p

h
Comparison of edges in TSP Tour and Proximity Graphs

Sampling Type: Uniform on Unit Square

Graphs

1-NNG

2-NNG

MST

Gabriel

Urquhart

Delaunay

TSP Path

Figure 10 Comparisons of the edges in the TSP tour versus those of proximity graphs when
point clouds were sampled uniformly from [0, 1] × [0, 1].

0 250 500 750 1000 1250 1500

Point set size

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

T
S

P
T

ou
r

E
d

ge
s

in
G

ra
p

h

Comparison of edges in TSP Tour and Proximity Graphs
Sampling Type: Clusters of Normal Distributions

Graphs

1-NNG

2-NNG

MST

Gabriel

Urquhart

Delaunay

TSP Path

Figure 11 Comparison when points are sampled from a set of 10 N(σ = 0.05) distributions, each
one centered at one of 10 points selected uniformly from the unit square.

L. Graham, J. Mitchell, G. Telang, and S. van der Poel 68:9

50 100 150 200
TSP Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Op

tim
al

ity
 G

ap
 (%

)
Sparsifiers

Complete Graph
2-Delaunay U 20%-NNG
1-Delaunay U 20%-NNG
Delaunay U 20%-NNG
20%-NNG
Delaunay
Insertion Heuristic

Figure 12 Optimality gaps for GNN approximators on spokes TSP instances.

The resemblance between Figures 10 and 11 is noteworthy, as the asymptotic intersection
of the TSP tour with proximity graphs seems to be the same despite the difference in
sampling method.

5 Applications to Geometric Deep Learning TSP Approximators

Recent work in the geometric deep learning community has emphasized end-to-end graph
neural network (GNN) approximators for the Euclidean TSP [2, 4, 9, 10, 11, 14, 15, 19, 20,
25]. In this setting, the objective is not to outperform TSP solvers (e.g., Concorde), but to
use the TSP as a difficult benchmark with which to evaluate competing GNN architectures
[8]. While state-of-the-art GNN approximators for the TSP achieve an optimality gap of
< 1% for instances smaller than 60 points, they struggle with larger instances [9, 18, 19, 20].

Researchers have primarily considered TSP instances whose point clouds are sampled
uniformly over [0, 1]2. Using our experimental pipeline, we investigate GNN performance
on point sets sampled from a richer set of distributions, endowing the TSP benchmark
problem with a healthier diversity of geometric structure. We observe that current state-of-
the-art GNN approximators perform well on Bentley’s spokes point clouds, maintaining an
optimality gap of less than 1% on instances with up to 100 points, as shown in Fig. 12.
These GNNs, trained on TSP instances with between 20 and 50 points, were able to
accurately generalize in a zero-shot fashion to larger spokes point sets. This level of effective
generalization has not yet been observed [9, 18, 19, 20], and it suggests that GNNs can learn
to identify and exploit the highly-structured geometric properties of spokes point sets.

As a pre-processing step, sparsifying the input yields improvements over un-sparsified
input (a weighted, complete graph). As GNNs, trained on Uniform [0, 1]2 point sets of sizes
varying from 20 to 50, are forced to generalize in a zero-shot fashion to point sets of sizes

EuroCG’22

68:10 On Some Relations Between Optimal TSP Solutions and Proximity Graphs

50 100 150 200
TSP Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Op

tim
al

ity
 G

ap
 (%

)
Sparsifiers

Complete Graph
2-Delaunay U 20%-NNG
1-Delaunay U 20%-NNG
Delaunay U 20%-NNG
20%-NNG
Delaunay
Insertion Heuristic

Figure 13 Optimality gaps for GNN approximators on Uniform [0, 1]2 TSP instances.

between 100 and 200, Delaunay-inspired sparsifiers indicate marginal improvements over
state-of-the-art 20%-NNG sparsifiers [9]. For Uniform [0, 1]2 point sets of size 150 or more,
the Θ(n)-space Delaunay sparsifier performs equally as well as the Θ(n2)-space 20%-NNG
sparsifier. For spokes point sets, the 20%-NNG sparsifier yields the strongest performance.

In future work, we will utilize the central theme of our empirical results – that various
proximity graphs are closely related to the TSP – to inform more powerful architectures for
GNN approximators. We will also further investigate the generalization capabilities afforded
by Delaunay-inspired sparsifiers, leveraging our experimental pipeline.

References
1 David L Applegate, Robert E Bixby, Vašek Chvátal, William Cook, Daniel G Espinoza,

Marcos Goycoolea, and Keld Helsgaun. Certification of an optimal TSP tour through
85,900 cities. Operations Research Letters, 37(1):11–15, 2009.

2 Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
2020.

3 Jon Louis Bentley. Fast algorithms for geometric Traveling Salesman Problems. ORSA
Journal on computing, 4(4):387–411, 1992.

4 Xavier Bresson and Thomas Laurent. The transformer network for the Traveling Salesman
Problem. arXiv preprint arXiv:2103.03012, 2021.

5 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, and Sudeshna Kolay. An ETH-
tight exact algorithm for Euclidean TSP. In IEEE 59th Annual Symposium on Foundations
of Computer Science, pages 450–461. IEEE, 2018.

6 Michael B Dillencourt. A non-Hamiltonian, nondegenerate Delaunay triangulation.
Information Processing Letters, 25(3):149–151, 1987.

L. Graham, J. Mitchell, G. Telang, and S. van der Poel 68:11

7 Michael B Dillencourt. Traveling salesman cycles are not always subgraphs of Delaunay
triangulations or of minimum weight triangulations. Information Processing Letters,
24(5):339–342, 1987.

8 Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

9 Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent.
Learning TSP requires rethinking generalization. In 27th International Conference on
Principles and Practice of Constraint Programming, 2021.

10 Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
network technique for the Travelling Salesman Problem. arXiv preprint arXiv:1906.01227,
2019.

11 Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. On learning paradigms for the
Travelling Salesman Problem. arXiv preprint arXiv:1910.07210, 2019.

12 Tomáš Kaiser, Maria Saumell, and Nico Van Cleemput. 10-Gabriel graphs are Hamiltonian.
Information Processing Letters, 115(11):877–881, 2015.

13 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis,
Royal Institute of Technology Stockholm, 1992.

14 Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing Systems,
30:6348–6358, 2017.

15 Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2018.

16 Natalio Krasnogor, Pablo Moscato, and Michael G Norman. A new hybrid heuristic for
large geometric Traveling Salesman Problems based on the Delaunay triangulation. In
Anales del XXVII Simposio Brasileiro de Pesquisa Operacional, pages 6–8. Citeseer, 1995.

17 Adam N Letchford and Nicholas A Pearson. Good triangulations yield good tours.
Computers & operations research, 35(2):638–647, 2008.

18 Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial
optimization by graph pointer networks and hierarchical reinforcement learning. arXiv
preprint arXiv:1911.04936, 2019.

19 Wenbin Ouyang, Yisen Wang, Shaochen Han, Zhejian Jin, and Paul Weng. Improving
generalization of deep reinforcement learning-based TSP solvers. arXiv preprint
arXiv:2110.02843, 2021.

20 Wenbin Ouyang, Yisen Wang, Paul Weng, and Shaochen Han. Generalization in deep
RL for TSP problems via equivariance and local search. arXiv preprint arXiv:2110.03595,
2021.

21 Gerhard Reinelt. TSPLIB-A Traveling Salesman Problem library. ORSA Journal on
Computing, 3(4):376–384, 1991.

22 Gerhard Reinelt. Fast heuristics for large geometric Traveling Salesman Problems. ORSA
Journal on computing, 4(2):206–217, 1992.

23 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems and
applications. In IEEE 39th Annual Symposium on Foundations of Computer Science, pages
232–243. IEEE, 1998.

24 WR Stewart. Euclidean Traveling Salesman Problems and Voronoi diagrams. School of
Business Administration, College of William and Mary, 1997.

25 Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in Neural
Information Processing Systems, 28:2692–2700, 2015.

EuroCG’22

SPONSORS

