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1 Introduction1

Following a long series of papers, Arya, da Fonseca, and Mount [2] recently presented a2

breakthrough result by showing that it is possible to answer approximate nearest-neighbor3

searching (ε-ANN) queries in time Od(log(n/ε)) with storage of only Od(n/εd/2), where d is4

assumed to be constant and Od hides multiplicative factors exponential in d. This roughly5

halves the exponent in the storage bound compared to the approximate Voronoi diagram6

(AVD) first introduced by Har-Peled. This result was enabled by an entirely new approach to7

polytope approximation based on a classical concept from convexity theory called Macbeath8

regions. In this abstract, we present an intrinsic approach based on covering space by9

hierarchies of ellipsoids which are sensitive to the distance function, successfully bypassing10

the explicit reduction to polytope approximation in Rd+1 through the lifting transform. Our11

approach applies to Bregman divergences defined by well-conditioned generator functions12

(which generalize the (squared) Euclidean distance), matching state-of-the-art results for13

this class of distances, and provides space-time trade-offs matching and extending state-of-14

the-art results for the Euclidean distance.15

I Theorem 1. Given a set P of n points in Rd, an approximation parameter 0 < ε ≤ 1,16

and m such that log 1
ε ≤ m ≤ 1/(εd/2 log 1

ε ), there is a data structure that can answer17

ε-approximate nearest neighbor queries under well-conditioned Bregman divergences with18

Query time: Od
(

logn+ 1
m · εd/2

)
and Space: Od(nm) .19

2 Distance-based Macbeath regions20

Given a σ-smooth µ-convex function F , the associated Bregman divergence is defined as21

DF (q, p) = F (q) − (F (p) + 〈∇F (p), q − p〉). We generalize the Delone sets approach for22

approximating convex bodies [1] (see Fig. 1(a)) to the approximation of (Bregman) Voronoi23

diagrams as follows. Define the δ-expanded (Bregman) Voronoi cell of p as Vδ(p) = {x ∈ Rd :24

DF (x, p) ≤ DF (x, p′) + δ2, ∀p′ ∈ P}, where δ ≥ 0 is the expansion factor (see Fig. 1(b)).25

Letting nn(x) denote the nearest neighbor of x in P , define the distance-based Macbeath27

region Mδ(x) = x + (Kδ − x) ∩ (x − Kδ) where Kδ is taken as the expanded Voronoi cell28

Vδ(nn(x)) (see Fig. 1(c)), and define Mλ
δ (x) to be a central scaling of Mδ(x) by a factor29

of λ ≥ 0. As in [1], define the distance-based Macbeath ellipsoid, denoted Eδ(x), to be the30

maximum volume ellipsoid contained withinMδ(x), and define its scaling Eλδ (x) analogously.31

Given a query region w, we select a maximal set of points whose suitably shrunken32

distance-based Macbeath ellipsoids are pairwise disjoint, and then show that a suitable33

constant-factor expansion of these ellipsoids cover w. To ensure accuracy for ε-ANN queries,34

the ratio between the expansion value δ and the nearest-neighbor distance must be suffi-35

ciently small relative to
√
ε. We obtain the following bound on the number of such ellipsoids.36
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Figure 1 (a) Cover Kδ by Macbeath ellipsoids. (b) Vδ(p). (c) Distance-based Macbeath regions.26

I Lemma 2. Consider a point set P , a query region w, and γ = O(1/ε) for some ε > 037

such that P and w are concentrically γ-separated, i.e., there exists a Euclidean ball B(c, r)38

of radius r centered at some c ∈ Rd such that either:39

(a) w ⊆ B(c, r), and P ∩B(c, γr) = ∅, or (b) P ⊆ B(c, r) and w ∩B(c, γr) = ∅.40

For any positive constant λ, let X be a maximal set of points lying within w such that the41

ellipsoids Eλδ (x) are pairwise disjoint, where δ = γ
√
ε · rb

√
µ/8. Then |X| = Od

(( 1
γε

)d/2).42

3 The Ellipsoidal Voronoi Diagram (EVD)43

The top level of our data structure is a balanced quadtree subdivision as in the AVD of [2].44

Each leaf cell w of this structure is associated with a data structure that answers ε-ANN45

queries for any point within the cell. We apply Lemma 2 to design a generic data structure,46

which we call the EVD, that can be applied whenever the query region w and data points47

P are concentrically 2-separated, as can be ensured for the leaf cells of the AVD.48

Intuitively, each successive level of the EVD from the root down involves an ellipsoid49

cover based on exponentially smaller expansions δi, implying that the representative of the50

ellipsoid containing the query point is a successively better approximation to its nearest51

neighbor. When the search procedure terminates, the representative of the last node visited52

will be an ε-ANN of the query point. The query time depends on the product of the53

number of levels ` (which is O(log(1/ε))) and the maximum out-degree of each node (which54

is Od(1)). The storage requirements are proportional to the total number of ellipsoids in55

all levels (which is Od(1/εd/2)). It follows that for each leaf of the AVD, the associated56

EVD data structure has space Od(1/εd/2) and can answer ε-ANN queries in O(log 1/ε) time57

through a simple descent of the structure. By attaching one of these data structures to each58

of the Od(n) leaves of the AVD, we can answer ε-ANN queries for Bregman divergences59

generated by well-conditioned functions in time Od(log(n/ε)) and space Od(n/εd/2).60
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Abstract
We present expected linear-time constructions for certain tree-like abstract Voronoi diagrams,
building upon the concept of a Voronoi-like diagram [7] for a boundary curve in an admissible
bisector system J . We prove that the Voronoi-like diagram of a boundary curve on J always exists.
Further, we compute the order-(k+1) subdivision within an order-k abstract Voronoi region in
expected time linear in the complexity of the region’s boundary.
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Extended abstract

For certain Voronoi diagrams with a tree structure linear-time algorithms have been well
known to exist, e.g., [1, 5, 10, 6]. The basic framework was designed by Aggarwal et al. [1] for
the Voronoi diagram of points in convex position, given their convex hull. It can be used to
derive linear-time algorithms for various problems such as: (1) updating a Voronoi diagram
of points after deletion of one site; (2) computing the order-(k+1) subdivision within an
order-k Voronoi region of points; (3) computing the farthest Voronoi diagram of point-sites
given their convex hull. A much simpler randomized approach for the same problems has
been introduced by Chew [5]. The medial axis of a simple polygon is also well known to
admit a linear-time construction [6] and uses the framework of [1].

Abstract Voronoi diagrams were introduced by Klein [9] as a unifying framework to
various concrete Voronoi instances. Instead of sites and distance measures, they are defined
in terms of bisecting curves that satisfy some simple combinatorial properties so that the
resulting bisector system is admissible [9, 2, 4]. In the abstract setting, Klein and Lingas [10]
adapted the linear-time framework, to compute a Hamiltonian abstract Voronoi diagram in
linear time, given the order of Voronoi regions along an unbounded simple curve (of constant
complexity), which visits each region exactly once.

A deterministic linear-time approach for problems (1)-(3) for generalized sites other than
points and for abstract Voronoi diagrams has been a long-standing open problem. A major
difficulty is that the diagrams involved in problems (1)-(3) in this case contain disconnected
Voronoi regions. Recently, we derived expected linear-time algorithms for problems (1)
and (3) in the framework of abstract Voronoi diagrams [7]. Our approach is based on a
relaxed version of a Voronoi construct, called the Voronoi-like diagram, which provides
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Figure 1 [7] (a) The envelope and (b) a p-
monotone path P in an arrangement of bisectors.
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Figure 2 [7] The Voronoi-like diagram Vl(P)
(red) of a boundary curve P (blue) for S ′ (black).

simplified intermediate structures. Related is also an expected linear-time algorithm for the
farthest-segment Voronoi diagram [8].

Let V(S) denote the abstract Voronoi diagram of a set of abstract sites S that define an
admissible bisector system J . Let VR(s, S) denote the Voronoi region of site s ∈ S.

To define a Voronoi-like diagram we first define a boundary curve P related to VR(s, S).
The definition is based on the notion of a p-monotone path, which is a path in the arrangement
of bisectors Jp that involve site p, such that any two consecutive edges α, β along this path
are pieces of bisectors J(p, sα) and J(p, sβ), respectively, corresponding to Voronoi edges of
∂VR(p, {p, sα, sβ}). In contrast, the p-envelope is ∂VR(p, S). Refer to Figure 1.

Let S = ∂VR(s, S) be the sequence of Voronoi edges bounding the region VR(s, S) and
let S ′ ⊆ S be a subset of these edges. For simplicity we consider a big closed Jordan curve Γ
that contains all intersections of J and that intersects all bisectors exactly twice. A boundary
curve P for S ′ is a closed s-monotone path in the arrangement of Js ∪ Γ that contains all
Voronoi edges in S ′. The boundary curve P encloses a domain DP and consists of boundary
arcs, which represent the related sites (solid arcs in Figure 2), and of Γ-arcs, which represent
infinity (dashed arc). The original sites in S may appear multiple times along P.

The Voronoi-like diagram of a boundary curve P, Vl(P), is a subdivision of DP into
regions such that each boundary arc α of P (α ⊆ J(s, sα)) has exactly one region R(α,P)
whose boundary is an sα-monotone path in the arrangement of Jsα

∪Γ (instead of an envelope
as in a real Voronoi diagram). The Voronoi-like diagram of S, Vl(S), equals the real Voronoi
diagram V(S \ {s}) ∩VR(s, S), which is the diagram computed to solve problem (1) [7].

In this paper we extend the Voronoi-like framework of [7] in various directions and give
an expected linear-time algorithm to solve problem (2) in abstract Voronoi diagrams. We
first establish that the Voronoi-like diagram of a boundary curve is always well defined by
proving the following theorem.

I Theorem 1. For any boundary curve P, its Voronoi-like diagram Vl(P) always exists.

We then extend the applicability of the randomized algorithm to construct Vl(S), beyond
problem (1), to any subset S ′ of the edges on ∂VR(s, S). Given S ′ ⊆ S, in expected linear
time we can compute Vl(Po), for some boundary curve Po of S ′, which still reveals Vl(S)∩D
in a subdomain D ⊆ VR(s, S). In particular, D = VR(s, S) \

⋃
α∈S\S′ R(α).

Let Vk(S) denote the order-k Voronoi diagram of S and VRk(H,S) denote the order-k
Voronoi region of H ⊆ S, |H| = k. We use the above extension to derive the following.

I Theorem 2. Given a face f of VRk(H,S), we can compute Vk+1(S)∩ f in expected O(m)
time, where m is the complexity of ∂f .

Finally, we extend the linear randomized approach to an admissible domain D enclosing
a tree-like Voronoi diagram, relaxing upon the restrictions on D of previous literature [10, 3].

In future research, we expect that Voronoi-like diagrams may lead to a deterministic
linear-time construction for problems (1)-(3).
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Introduction. The max-margin linear separator is a classic problem in machine learning [3],5

defined as follows. Given a point set P ⊂ Rd with labels {−1,+1} find a hyperplane h6

that separates the labels, which maximizes the margin γ = minp∈P ‖p− πh(p)‖, where πh(p)7

projects p onto h. This is equivalent to the two-polytope min-distance problem, and can be8

reduced to the one-polytope min-distance (polytope distance for short) problem [4]. Further,9

a (1− ε)-approximation of polytope distance can be used to obtain a (1− ε)-approximation10

for max-margin separating hyperplane. The former can be solved by finding an ε-coreset—the11

objective of this paper, defined formally below.12

In this paper we ask if these ε-coresets can be merged [1]. That is, given two ε-coresets13

S1 and S2, can they be combined into a single ε′-coreset while not increasing the space14

(hopefully with ε′ = ε). By creating coresets on batches of points in a streaming setting,15

if we can iteratively merge these coresets, this easily leads to streaming algorithms. This16

framework also implies small space and communication complexity in other big data settings.17

p|x

p
x∗

x

0

conv(P)

Figure 1 P in gray, and
conv(P ) in green. Point
x ∈ conv(P ) is an (1 −
ε)-approximation: the red
part has length ε‖x‖.

Concepts and Definitions. We follow the definition of ε-coreset18

for polytope distance problem used in Gärtner and Jaggi’s paper [4].19

Formally, we are given a point set P ∈ Rd, we want approximate20

x∗ = arg minv∈conv(P ) ‖v‖, the point in conv(P ) closest to the21

origin. Define p|x := 〈p,x〉
‖x‖ as the signed length of the projection of22

p onto the direction of the vector x. For any ε > 0, x ∈ conv(P )23

is called an ε-approximation, iff (1 − ε)‖x‖ ≤ p|x, ∀p ∈ P ; see24

Figure 1. This approximation is stronger than just requiring the25

distance ‖x‖ to be close to the optimal value, (1− ε)‖x‖ ≤ ‖x∗‖.26

In particular, if x is an (1 − ε)-approximation, it implies that27

(1 − ε)‖x‖ ≤ minp∈P p|x = minv∈conv(P ) v|x ≤ ‖x∗‖ ≤ ‖x‖. A28

subset S ⊆ P is an ε-coreset of P iff conv(S) contains an (1− ε)-29

approximation to the distance of conv(P ).30

To bound the ε-coreset size, we need some bound on the width of the data P . Gärtner and31

Jaggi [4] use the excentricity of a point set P , defined E = diam(conv(P ))2

‖x∗‖2 . An ε-coreset with32

size no more than 2d2Eε e always exists [4, 3], and can be found with a simple greedy (Frank-33

Wolfe) algorithm. In this paper we use the angular diameter θ instead of the excentricity34

E; it is defined as the maximum angle between any two vectors (points) from P . While35

incomparable to excentricity, this property allows us to provide upper and lower bounds on36

the mergeability of polytope distance coresets.37

Our results. We announce mainly negative results. First we show a constant-size (1−cos θ)-38

coreset for polytope distance is simple to find and maintain under merges (Theorem 1).39

However, increasing the size of the coreset cannot significantly improve the error bound40

(Theorems 2 and 3); we cannot maintain ε-coresets with arbitrarily small ε > 0 under merges.41

This hardness is not totally unexpected given the known hardness of streaming (1− ε)-42

approximate minimum enclosing ball [2], which would also imply a streaming coreset for43

max-margin linear separators. We show that even if we restrict P to have angular diameter44

at most π/2 (the margin is relatively large), polytope distance ε-coresets cannot be used to45

derive a (1− ε)-approximate margin algorithm for max-margin linear separators.46
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Maintaining a simple coreset. We first show that the closest point is an ε-coreset with47

ε = 1− cos θ. This is trivial to maintain under merges.48

I Theorem 1. Consider a point set P with angular diameter θ ≤ π
2 . Let x = arg minp∈P ‖p‖,49

then x is a (1− cos θ)-coreset of P .50

Proof. This follows almost directly from the definition. The assumption θ ≤ π
2 implies x 6= 051

and cos θ ≤ p|x/‖p‖,∀p ∈ P . Then cos θ‖x‖ ≤ p|x is immediate since ‖x‖ ≤ ‖p‖; see Figure 2.52

Thus x is a (cos θ)-approximation and also is a (1− cos θ)-coreset of P . J53

Hardness of merging. We next show this simple ε = 1−cos θ bound cannot be significantly54

improved. In particular, merging coresets with smaller error may obtain this error (Theorem55

2) and even merging 0-error coresets may result in nearly this much error (Theorem 3).56

I Theorem 2. Consider a point set P of angular diameter θ ≤ π
2 . Decompose P into P157

and P2. There exists such a setting where (1) S1 is a (1− cos θ2 )-coreset of P1, (2) S2 is a58

(1− cos θ2 )-coreset of P2, (3) S is a (1− cos θ2 )-coreset of S1 ∪ S2, but (4) S is no better than59

a (1− cos θ)-coreset of P .60

Proof. We prove this existence by an example. Let P include 3 points, p1, p2, and p3.61

Such that ‖p1‖ = ‖p2‖ = ‖p3‖, ∠(p1, p2) = ∠(p2, p3) = θ/2, and ∠(p1, p3) = θ; see Figure62

3. Then for P1 = {p2, p3}, S1 = {p2} is a valid
(
1− cos θ2

)
-coreset. For P2 = {p1} then63

clearly S1 = {p1} is a valid
(
1− cos θ2

)
-coreset. Now let S = {p1}, so that S is a valid64 (

1− cos θ2
)
-coreset of S1 ∪ S2 = {p2, p1}. However,

p3|p1
‖p1‖ = cos θ. Therefore S is not better65

than (1− cos θ)-coreset of P . J66

I Theorem 3. Consider a point set P of angular diameter θ ≤ π
2 . Decompose P into P167

and P2. There exists a setting where (1) S1 is a 0-coreset of P1, (2) S2 is a 0-coreset of P2,68

(3) S is a 0-coreset of S1 ∪ S2, but (4) S is no better than a
(

1−cos θ
1+cos θ

)
-coreset of P .69

Proof. The proof is similar with the one of Theorem 2. Let P include 3 points, p1, p2, and p3.70

Such that p2|p1 = ‖p1‖ and p3|p2 = ‖p2‖, also ∠(p1, p2) = ∠(p2, p3) = θ/2, and ∠(p1, p3) = θ;71

see Figure 4. Then S1 = {p2} is a 0-coreset of P1 = {p2, p3}, and S2 = P2 = {p1} is a72

0-coreset for P2. Then S = {p1} is a 0-coreset for S1 ∪ S2. However p3|p1
‖p1‖ = 1 − 1−cos θ

1+cos θ .73

Therefore S can be no better than a
(

1−cos θ
1+cos θ

)
-coreset of P . J74
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1 Problem Statement8

The Art Gallery Problem is to find the minimum number of guards such that every point of9

the domain P can be seen by at least one guard b. In our work, for a point p ∈ P , we are10

given the distance between p and the guards visible to p (obtained through measurements of11

wireless signals using Time-Of-Flight (TOF) or Time-Difference-Of-Arrival (TDOA) ranging),12

with which we hope to find out the location of p.13

If a point is only seen by one guard, we cannot decide its location uniquely. With three or14

more visible guards, a point can be uniquely localized. In between, with exactly two visible15

guards g1, g2, things are tricky. The two measurements provide two candidate locations16

p1 and p2. But we could eliminate the candidate location whose visible guards differ from17

{g1, g2}. Figure 1 provides a few examples when two guards do provide a unique solution.18

b1
b2

p

p'

b1
b2

p

p'

(a) (b) (c)
Figure 1 Examples of unique localization by two guards: (a) The candidate location p2 is outside

the domain and is not feasible; (b) The candidate location p2 is not visible to b2 and is not feasible;
(c) p2 is visible to b1, b2, b3 and therefore is not feasible.

We now formulate the Art Gallery problem for Indoor Localization. The domain is19

represented by P , a polygon with possibly holes. B is a set of m candidate guard locations20

inside P . The problem (continuous version) is to find a minimum set of guards D ⊆ B such21

that the entire domain P can be uniquely localized with guards located at D. The problem22

also has a discrete form, in which n target points in P need to be uniquely localized.23

Our problem is different and more complex than the Art Gallery problem, as we have a24

stronger requirement on coverage by collaboration. Our problem is also related yet different25

from the k-coverage problem, which ensures every point of P to be covered by at least k26

guards. In our problem, the points in P have to be uniquely localized, which can be achieved27

by 2 guards or 3 guards, depending on the geometry.28

2 Contribution29

We provide two approximation algorithms to solve the art gallery problem for indoor30

localization.31

Greedy Algorithm. The standard Art Gallery problem is a special case of the set cover32

problem, in which the visible regions of the guards are selected to collectively cover P . For33

∗ A longer version is available at http://www3.cs.stonybrook.edu/~haotwang/paper/Localization.pdf
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set cover type of problem, maximizing the marginal increase of coverage in each step gives34

an approximation algorithm when the coverage function is a submodular one [3].35

I Definition 1. (Submodular) Let N be a finite set and z be a real-valued defined on the36

set of subsets of N that satisfies z(S) + z(T ) ≥ z(S ∪ T ) + z(S ∩ T ) for all S, T ⊆ N . Such37

a function is called submodular.38

For our problem unfortunately the set of uniquely localizable points given a set of guards39

is not submodular. Hence, we design a new objective function which is submodular, which40

improves over previous work [4]. We use |V1(D)| and |V2(D)| to represent the area seen41

by at least one and two guards in D respectively. |U(D)| is the uniquely localized area by42

D. We are able to prove that the new objective F (D) = 3|V1(D)|+ 2|V2(D)|+ |U(D)| is a43

submodular function. The proof is highly non-trivial and is in the full version. For each44

iteration, we choose the guard that increases this function the most, until all points of P are45

uniquely localizable. With the results in [3], we can derive46

I Theorem 2. The number of guards selected by the improved greedy algorithm is an47

O(min{ln |P |∆ ,m})-approximation of the optimal solution, where |P | is the area of domain,48

∆ is the minimum increased area for the objective function F with a new guard, and m is49

the number of candidate guard locations. In the discrete problem setting, the area is replaced50

by the number of target points and the approximation ratio is O(lnn).51

Random Sampling Algorithm. We present another approximation algorithm using52

the random sampling technique, motivated by the ε-net based algorithm for geometric set53

cover [1, 2]. We first define some terms for our setting.54

I Definition 3. Every guard bi is given a weight w(bi). For a set of guards D, its weight is55

w(D) =
∑
b∈D w(b). The weight of a point p ∈ P is defined by the weight of the guards that56

can see p, w(p) = w(V (p)), where V (p) = {b ∈ D|b can see the point p}.57

I Definition 4. (ε-oracle): Given a domain P , a candidate guard location set B and the58

weight function w, a subset D ⊆ B is an ε-oracle for (P,B,w) if p is uniquely localized by59

D, for each p ∈ P with w(p) ≥ ε · w(B).60

When D is an ε-oracle, one can uniquely localize all the locations with weight higher than61

ε · w(B). Such an oracle can be obtained with probability 1− δ through random sampling62

– specifically, if we select a subset of max( 2
ε log2

1
2δ ,

4d+16
ε log2

4d+16
ε ) guards, where each63

guard is selected with probability proportional to its weight. Here d is bounded by the64

VC-dimension of the art gallery problem, which is known to be a constant [2].65

In our algorithm, we gradually increment k from 1. For each k, we initially set all weights66

of the guards to be 1. Perform the (weighted) random sampling procedure above to find k67

random guards. Then we check if the obtained guard set can uniquely localize all points in68

P . If yes, we stop and output the guard set. If not, we double the weights of the guards that69

see points that are not yet uniquely localizable and continue. This iterative procedure stops70

after 2k
δ log2

m
k iterations. Then we increment k and start over.71

I Theorem 5. If the optimal solution is k∗, then the above algorithm produces O(k∗ log k∗)72

guards.73

In simulation, we observe that our guard placement algorithm performs better than74

manual placement (obtained through crowdsourcing experiments). The proposed algorithm75

also places 5% fewer guards in real-world domain and 12% fewer guards on random polygon76

compared to prior work based on heuristics [4]. In addition, we have enhanced the random77

sampling algorithms by introducing a heuristic, based on Geometric Dilution of Precision to78

improve the accuracy performance.79
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Figure 1 (left) H(e1, e2) in orange with the shortest
paths between endpoints in dotted blue. The bitangents are
underlined in grey. (middle) We obtain each dotted path as
a collection of binary search trees, where only the bitangent
starts in clockwise and ends in counterclockwise rotation.
(right) Using the bitangents, we identify the endpoints of
the respective subsegments and obtain L(e1, e2) in grey.

14

15

1 Introduction16

Visibility is one of the most-studied topics in computational geometry. It has many ap-17

plications, also in adjacent fields such as computer graphics, geographic information science18

(GIS), and robotics. The visibility-blocking environment is typically modelled as a poly-19

gon. Often one is interested in preprocessing a polygon to retrieve visibility information20

during query time. A natural question to ask (with numerous applications) is the following:21

suppose you have two entities following different trajectories in a polygonal domain that22

blocks visibility. Can, at any time, the two entities see one another? Despite the amount of23

research on both trajectories and visibility almost no previous work in this direction exists.24

Problem Statement. Given a simple polygon P with n vertices, can we build a data25

structure that can answer queries of the type: for any two trajectories T1, T2 with τ vertices26

within P that represent the motion of two entities q(t) and r(t) for t ∈ [0,1], is there a27

time t∗ at which q and r can see each other? We propose a near-linear size data structure28

that can solve the problem in sub-linear time when T1 and T2 are line segments (of different29

length) denoted by e1 and e2. The original problem can therefore be solved in o(τn) time.30

2 Our approach31

Guibas and Hershberger [3] study shortest paths in a simple polygon P . They define the32

hourglass H(e1, e2) as the union of all shortest paths between points on two line segments33

e1 and e2. The hourglass H(e1, e2) is a polygon whose boundary consists of two semi-34

convex chains and e1 and e2 itself. They devise a linear-size data structure D that can35

return H(e1, e2) in an implicit representation (as a collection of at most logn trees where36

each node is a vertex of the bounding path). We define the visibility glass L(e1, e2) as the37

restricted hourglass in which all paths are segments. Chazelle and Guibas [2] show that38

L(e1, e2) is the hourglass of two segments e′1 ⊂ e1 and e′2 ⊂ e2. Using D, we obtain L(e1, e2)39

in logarithmic time: e′1 and e′2 end in the extension of the bitangents of H(e1, e2) (Figure 1).40

The visibility glass L(e1, e2) represents all non-obstructed line segments between q and r.41

Thus, to test if q and r see one another we can check if there is a time t∗ such that the segment42

q(t∗)r(t∗) is contained within L(e1, e2). We define the dual Λ(e1, e2) of L(e1, e2) as the dual43

of the lines in L(e1, e2), which forms a convex polygon of linear complexity [2]. Similarly,44

for any time t we can dualize the line through q(t) and r(t) to a point. This continuous45

© Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:patrick.eades@sydney.edu.au
mailto:i.d.vanderhoog@uu.nl
mailto:m.loffler@uu.nl
mailto:f.staals@uu.nl
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Trajectory Visibility in a Simple Polygon

dualization traces a hyperbolic curve γ(t) with eight degrees of freedom which we denote46

by a⃗ = (a1, a2, . . . , a8). There is a time t∗ where q(t∗) can see r(t∗) if and only if γ(t)47

intersects an edge of or is contained in Λ(e1, e2). At this point, we employ the linearization48

technique from Agarwal et al. [1]. Suppose you have n objects, each parametrised by a vector49

x⃗ and a query parametrised by a vector a⃗. Suppose that for any combination of x⃗ and a⃗,50

you can express the intersection between the object and the query as a predicate function51

F (x⃗, a⃗) ≤ C with F (x⃗, a⃗) = ∑k
i=0 fi(x⃗)gi(a⃗) where fi and gi are polynomial functions. Then52

the intersection query can be transformed into consecutive halfspace emptyness queries in53

Rk. Our objects are the edges of L(e1, e2) parametrized by the coordinates of their endpoints54

x⃗ = (x1, x2, x3, x4) and our query is the curve γ(t) parametrized by a⃗. We give a linearization55

which yields four halfspace emptyness queries in Rk with k ≤ 16000. These four queries can56

be solved with multi-level partition trees which use near-linear space and construction time57

and have O(n1− 1
16000+ε) query time (where ε is an arbitrarily small positive constant).58

Λ(q, r)

~x1 = (a, b, c, d)

~x2 = (c, d, e, f)

~x3 = (e, f, g, h)

~x4 = (g, h, i, j)

γ(t)

f(~x2)

f(~x3)

f(~x4)

f(~x1)

(1) (2) (3) (4)

Figure 2 (1) The base level of our data structure is a hierarchical triangulation. (2) Given q

and r, we compute the dualized visibility glass and the degree-2 query curve γ. (3) We store the
parameters of each edge. (4) Each parameter vector gets mapped to a point in R4 and the query
curve segment gets mapped to a 4-dimensional halfspace which is empty only if γ intersects no edge
from the dualized visibility glass.

Our final data structure (Figure 2) consists of two levels. The first level is a slight59

variation of the two-point shortest-path query data structure of Guibas and Hershberger [3].60

The data structure essentially stores a collection of hourglasses explicitly (unlike in the61

original data structure). For each pre-stored hourglass, its boundary vertices are in leaves62

of a binary search tree and internal nodes of these trees correspond to subchains. Each63

internal node v corresponds to a subchain Cv and stores an associated data structure ∆v.64

We dualize the supporting-lines of the edges in Cv to points. This essentially dualizes Cv65

into another polygonal chain in the dual. The associated structure ∆v stores not only the66

edges of this dual chain, but also for each edge a specific point in Rk. This allows ∆v to67

answer the intersection query using halfspace emptyness queries.68

When we get a query consisting of the line-segments e1, e2 representing the trajectories69

of q and r, we have to decide if there exists a time t∗ at which q and r can see each other.70

The main idea is to query our data structure for the visibility-glass L(e1, e2) and we obtain71

L(e1, e2) as a collection of O(log2 n) nodes. These nodes together store the dual visibility72

glass Λ(e1, e2). Given e1, e2, we can compute the dual query hyperbola γ(t) and its degrees73

of freedom a⃗ in constant time. We then for each node v, query its associate data structure74

∆v to detect an intersection between γ(t) and a part of Λ(e1, e2). It follows from our75

formulation of the predicate function (which specifies if there is an intersection between γ(t)76

and Λ(e1, e2)) that the total query time is O(n1− 1
16000+ε).77
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Abstract

Problem statement. An articulated probe is modeled as two line segments ab and bc connected
at point b (Figure 1(A)). Line segment ab can be infinitely long, while bc is of a given length r. The
input consists of a set P of n interior-disjoint triangular obstacles and a target point t in the free
space, all enclosed by a large sphere S centered at t. Initially, the probe is located outside S and
assumes an unarticulated configuration, in which line segments ab and bc are collinear and b ∈ ac.
The goal is to find a feasible (obstacle avoiding) probe trajectory to reach t, with the condition
that the probe is constrained by the following sequence of moves – a straight line insertion of the
unarticulated probe into S, possibly followed by a rotation of bc at b by at most 90°, so that c
coincides with t.

Figure 1 (A) After inserting line segment abc into sphere S, in order to reach target point t, line
segment bc may be rotated from its intermediate position (dashed line) to its final position (solid
line). (B) Example of an articulated probe (da Vinci EndoWrist by Intuitive Surgical).

Prior work. The motion of a linkage – that is, a sequence of fixed-length edges connected
consecutively through joints – has been formerly studied from various perspectives, ranging from
basic properties and questions (e.g., reachability, reconfiguration, and locked decision) with strong
geometric and topological aspects [2, 6] to application-driven problems related to linkage design
and motion planning [1, 7]. In contrast to those previous studies on polygonal linkages, which
are generally allowed to rotate unrestrictedly at their joints while moving from a start to a final
configuration, our work is concerned with finding a collision-free path of motion for a two-bar linkage
constrained to an ordered sequence of moves – namely, a straight insertion of the linkage followed
by a rotation at its joint. Furthermore, one of the links is considered to be unbounded in length.

Daescu, Fox, and Teo [4] originally proposed the aforementioned trajectory planning problem in
two dimensions, and they presented an O(n2 logn)-time, O(n logn)-space algorithm for finding a
feasible trajectory amidst n line segment obstacles. The algorithm was based on computing extremal
trajectories that are tangent to one or two obstacle vertices. This algorithmic approach was later

mailto:ovidiu.daescu@utdallas.edu
mailto:ka.teo@utdallas.edu


2 Computing feasible trajectories for an articulated probe in three dimensions

extended to finding a feasible trajectory of a given clearance δ from the obstacles, for any δ > 0, in
O(n2 logn) time using O(n2) space [3]. In addition, Daescu and Teo [5] showed that the feasible
solution space for the two-dimensional trajectory planning problem can be characterized by a simple-
curve arrangement of complexity O(k), and the arrangement can be constructed in O(n logn+ k)
time using O(n+ k) space, where k = O(n2) is the number of vertices in the arrangement.

Motivation. Besides its apparent relevance in robotics, the outlined problem arises particularly
from planning for minimally invasive surgeries. In fact, surgical instruments that can be modeled by
our simple articulated probe are already in clinical use (Figure 1(B)), given their enhanced capability
in reaching targets while circumventing surrounding critical structures. In our problem setting, a
human body cavity can be viewed as (a subset of) workspace S, and any critical organ/tissue can be
represented by using a triangle mesh. Despite its importance and relevance, the problem has never
been investigated in three dimensions from a theoretical viewpoint, and only a handful of results
in two dimensions have been reported [3, 4, 5]. Due to practicality, it may seem inevitable to use
heuristics and approximation (through voxelization) in real-life applications; nevertheless, analyzing
the problem using an exact solution approach allows us to fully explore its rich combinatorial and
geometric properties, which have often proven useful in seeking algorithmic improvement.

Our results. We prove that if there exists a feasible probe trajectory, then some extremal feasible
trajectories must be present. An extremal trajectory is characterized by its tangencies to a combina-
tion of obstacle edges and/or vertices. Through careful case analysis, we show that these extremal
trajectories can be represented by O(n4) combinatorial events. We present a solution approach that
enumerates and verifies these combinatorial events for feasibility, and our main result is summarized
in the following theorem.

I Theorem 1. One can determine if a feasible probe trajectory exists, and if so, report (at least)
one such trajectory by computing and checking O(n4) extremal trajectories for feasibility in O(n4+ε)
time using O(n4+ε) space, for any ε > 0.

As an alternative, an O(n5)-time algorithm with linear space usage is achievable by performing
a simple O(n)-check on each of the O(n4) events. The proposed enumeration algorithm is highly
parallel, considering that each combinatorial event can be generated and verified for feasibility
independent of the others. In the process of deriving our solution, we address a special instance
of the circular sector emptiness query problem in three dimensions, which we consider to be of
independent interest. Specifically, we obtain the following result.

I Theorem 2. For any ε > 0, a set P of n triangles in R3 can be preprocessed in O(n3+ε) time into
a data structure of size O(n3+ε) so that, for a query circular sector σ with a fixed radius r and an
endpoint of its arc located at fixed point t, one can determine if σ intersects P in O(log2 n) time.

The result above also implies a new data structure for the corresponding emptiness query problem
in two dimensions.

I Theorem 3. A set P of n line segments in R2 can be preprocessed in O(n logn) time into a data
structure of size O(nα(n)), where α(n) is the inverse Ackermann function, so that, for a query
circular sector σ with a fixed radius r and a fixed arc endpoint t, one can determine if σ intersects P
in O(logn) time.

It is worth mentioning that our new R2 query data structure simplifies the two-part approach
formerly proposed in [4] while maintaining the same time and space complexity.
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Abstract
We propose a general technique for speeding up closest-pair-based algorithms. In particular, this
allows us to speed up the multi-fragment algorithm for Euclidean TSP from O(n2) to O(n log n) in
any fixed dimension.
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1 New Applications of Nearest-Neighbor Chains

Consider closest-pair-based algorithms, which work by repeatedly finding the closest pair
among a set of geometric objects. Some prominent examples include:
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2 New Applications of Nearest-Neighbor Chains

Greedy Euclidean Matching: given a set of 2n points, repeatedly match and remove the
closest pair.
Agglomerative hierarchical clustering: given a set of points, initialize a singleton cluster
for each point. Then, repeatedly merge the two closest clusters into a super-cluster until
there is a single cluster left. The distance between clusters is defined as the minimum (or
maximum) distance between points inside each cluster.
Multi-fragment Euclidean TSP: Given a set of points, initialize a single-node path for
each point. Then, repeatedly connect the two closest paths into a bigger path, where
the distance between paths is defined as the minimum distance between their endpoints.
Once there is a single path left, connect its endpoints to form a closed cycle.
Geometric stable matching: given a set of n red points and a set of n blue points, the
goal is to find a stable matching between the sets, where each point ranks the points in
the other set by proximity (with closer being preferred). A stable matching can be found
by repeatedly matching and removing the closest pair of different colors.

A property of closest-pair-based algorithms. In a set of objects in space (points, clusters,
...), we say two objects are mutual nearest neighbors (MNN) if they are the nearest neighbor
of each other. Note that the closest pair in the set is a pair of MNN, but the converse is not
necessarily true. Now, consider a variation of a closest-pair-based algorithm where, instead
of finding and processing the closest pair at each step, it finds MNN and processes them in
the same way. In the four mentioned algorithms, this modification does not affect the result.
This is not the case for every closest-pair-based algorithm, but, as the examples above show,
it is a common feature. This is interesting because MNN are defined on local information
about the two objects, while the closest pair is a global property of the entire set.

An algorithmic technique to exploit it. In many settings, we can find MNN faster than
closest pairs using a technique called nearest-neighbor chain (NNC). We illustrate it for
Euclidean matching. We maintain a stack (called chain) of points. The first point is arbitrary.
We repeatedly extend the chain with the nearest neighbor of the current point at the top of
the chain. Note that the distance between points in the chain keeps decreasing, so, assuming
there are no ties, no repeated points occur, and the chain inevitably reaches a pair of MNN.
Then, the MNN are matched and removed from the chain. Crucially, after a match happens,
the rest of the chain is not discarded. Every point in the chain still points to its nearest
neighbor, so the chain is still valid. The process continues from the new top of the chain.

The algorithm is efficient because each point is added to the chain only once, since it
stays there until it is matched with another point. This bounds the number of iterations to
be linear on the input size. The runtime is O(nT (n)), where T (n) is the time per operation
of a dynamic nearest-neighbor structure.

Related work and contributions. The NNC algorithm was invented to speed up agglom-
erative hierarchical clustering in the 70’s [3]. Very recently, it found its first use outside
of clustering in geometric stable matching [1]. In the full preprint of this abstract [2], we
extend this technique to a number of problems: we speed up the multi-fragment algorithm
for Euclidean TSP from O(n2) to O(n log n) in any fixed dimension. This requires additional
techniques to use approximate near neighbors rather than exact nearest neighbors in the
NNC algorithm. We also use NNC to speed up algorithms for constructing straight skeletons,
a new stable matching problem, and a geometric coverage problem. The hope is to find new
problems where these ideas apply at SoCG’19.
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1. Introduction

Active learning is a subfield of machine learning, in which at any time, the learning algorithm
is able to query an oracle for the label of a particular data point. A popular model in active
learning is the membership query synthesis model [1]. Here, the learner wants to minimize
the number of oracle queries, as such queries are expensive—they usually correspond to
either consulting with a specialist, or performing an expensive computation. In this setting,
the learning algorithm is allowed to query the oracle for the label of any data point in the
instance space. See [7] for a more in-depth survey on active learning.

The problem. In this paper we consider a variation on the active learning problem in the
membership query synthesis model. The goal of the learner is to learn a convex body C in
Rd with access to a separation oracle. For a query q ∈ Rd, the oracle either reports that
q ∈ C, or returns a hyperplane separating q and C (as a proof that q 6∈ C). Note that if the
query is outside the body, the oracle answer is significantly more informative than just the
label of the point. The learner is provided with a set P of n unlabelled points in Rd and
access to a separation oracle for an unknown convex body C in Rd. The task is to label each
point as either inside or outside C while minimizing the number of separation oracle queries.

Hard and easy instances. We show that in the worst case, an algorithm may have to
query the oracle for all input points (see Lemma 1). As such, the purpose here is to develop
algorithms that are instance sensitive—if the given instance is easy, they work well. If the
given instance is hard, they might deteriorate to the naive algorithm that queries all points.

Additional motivation & some previous work.
(A) Separation oracles. The use of separation oracles is a common tool in optimization (e.g.,

solving exponentially large linear programs) and operations research. It is natural to ask
what other problems can be solved efficiently with access to this specific type of oracle.

(B) Other types of oracles. Various models of computation utilizing oracles has been previously
studied within the community. Examples of other models include nearest-neighbor oracles
(i.e., black-box access to nearest neighbor queries over a point set P ) [5], and proximity
probes (which given a convex polygon C and a query q, returns the distance from q to C)
[6]. Furthermore, other types of oracles (rather than just membership oracles) have also
been studied within the learning community, see [1].

(C) Active learning. As discussed, the problem at hand can be interpreted as active learning
a convex body in relation to a set of points P that need to be classified (as either inside
or outside the body), where the queries are via a separation oracle. We are unaware of
any work directly on this problem in the theory community, while there is some work
in the machine learning community that studies related active learning classification
problems [2, 3, 7]. However we emphasize that our model differs from most of the other
membership based query models in the machine learning community. Specifically, each
oracle query provides more information than just the label of a data point.
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XX:2 Active Learning a Convex Body in Low Dimensions

Figure 1.1 The separation price, for the same point set, is different depending on how “tight”
the body is in relation to the inner and outer point set.

Note that if some error in classification is allowed, then at first it appears that PAC
learning could work. However for learning arbitrary convex ranges, the PAC model fails
since the VC dimension of such ranges is infinite.

2. Our results

A lowerbound. Given a set P of points in the plane, and a convex body C, the outer
fence of P is a closed convex polygon Fout with minimum number of vertices, such that
C ⊆ Fout and C ∩ P = Fout ∩ P . Similarly, the inner fence is a closed convex polygon Fin
with minimum number of vertices, such that Fin ⊆ C and C ∩ P = Fin ∩ P . Intuitively, the
outer fence separates P \ C from the boundary of C, while the inner fence separates P ∩ C

from the boundary of C. The separation price of P and C is �(P, C) = |Fin|+ |Fout|, where
|F | denotes the number of vertices of a polygon F . We prove the following result.

I Lemma 1. Given a point set P and a convex body C in the plane, any algorithm that
classifies the points of P in relation to C, must perform at least �(P, C) oracle queries.

See Figure 1.1 for example instances, where the minimum number of queries required
changes depending on the position and size of the convex body in relation to the point set.

Algorithms. Each of the algorithms focuses on maintaining a current approximation of the
unknown convex body.

(A) We develop a greedy algorithm, for points in the plane, which solves the problem using
O(9P log n) oracle queries, where 9P is the largest subset of points of P in convex position.
Note that 9P can be larger than �(P, C), thus this result can be far from optimal.

The algorithm works by maintaining an approximation B of the body C, with B ⊆ C.
In each iteration, select the halfspace tangent to B containing the largest number of
unclassified points U ⊆ P . The algorithm computes the centerpoint c of U and queries
the oracle with c. The intuition is that by using a centerpoint c as the query, we can
either improve the approximation B (if c ∈ C) or classify many points (if c 6∈ C).

(B) The above algorithm naturally extends to three dimensions, also using O(9P log n) oracle
queries. While the proof idea is similar to that of the algorithm in 2D, we believe the
analysis in three dimensions is also technically interesting.

(C) We present an improved algorithm for the 2D case using O(�(P, C) log2 n) queries.
(D) We consider the extreme scenarios of the problem: Verifying that all points are either

inside or outside of C. For each problem we present a O(log n) approximation algorithm
to the optimal strategy.

It is currently open to improve any of the logarithmic factors in the above algorithms.
Finally, obtaining any results in dimensions greater than three is also an open problem.
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Abstract1

Data often comes in the form of an unstructured point cloud, that is a finite set of points2

equipped with a pairwise distance function. It is the task of data skeletonisation algorithms to3

appropriately represent such point clouds by a skeleton. This is an important step in interpreting the4

data by allowing the visualisation of topological and geometric features that are implicitly present.5

We compare three skeletonisation algorithms: the established Mapper and α-Reeb algorithms, and6

the more recent HoPeS algorithm, introduced by V. Kurlin [3]. We compare their abilities to capture7

topological and geometric features implicitly present in both synthetic and real data.8

1 The Problem and the Algorithms9

The problem skeletonisation algorithms attempt to solve is, when given a noisy point cloud10

C sampled from a graph G in a metric space, to produce a reconstruction G′ of G that is11

both topologically and geometrically similar to G. Topological similarity requires that the12

reconstructed graph G′ has the same first Betti number (i.e. the number of independent13

cycles) as G, and can be continuously deformed to the original graph G. Geometric similarity14

means that G and G′ are close to each other with respect to a distance. For example, G′
15

should be in a small offset of G and vice versa.16

The three skeletonisation algorithms chosen to be compared were selected because, not17

only do they share broadly similar input and output, but they also all have theoretical18

guarantees. For example, HoPeS’s Reconstruction Theorem [4, 6] gives conditions for a noisy19

sample of a graph such that HoPeS provides a reconstructed graph with the correct first20

Betti number and within a small offset of the sample.21

Figure 1 Left: A cloud generated from the wheel four pattern with uniform noise of 0.1. The
remaining three figures are the outputs of each algorithm: Middle-left: Mapper; Middle-right: The
α-Reeb algorithm; Right: A simplified HoPeS output.

22

23

24

The Mapper algorithm [5] uses a method of partial clustering to convert a point cloud25

into a network of interlinked clusters. The α-Reeb algorithm [1] discretises the classical26

1 The author thanks the Leverhulme Trust for funding this research via the Leverhulme Research Centre
for Functional Materials Design.
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2 Skeletonisation Algorithms for Unorganised Point Clouds with Theoretical Guarantees

Reeb graph and can be applied to discrete clouds at different scales α. Lastly, HoPeS [2, 3]27

– a Homologically Persistent Skeleton – uses persistent homology to extend the minimum28

spanning tree relative to a filtration of a point cloud by adding critical edges to form cycles.29

2 Comparing the Algorithms30

Having implemented the three algorithms, we compared them using both synthetic and real31

data [6]. The synthetic dataset consists of noisy point clouds that were generated from32

known graphs (which we refer to as patterns) by uniformly sampling points from a pattern33

(the number of points being proportional to the length of the pattern), and then perturbing34

each point according to a given type and magnitude of noise. A wide range of types of35

patterns were used, along with variations in magnitudes of two types of noise – uniform and36

Gaussian – to produce a large dataset (of more than 50000 clouds), which could be used by37

new algorithms in order to compare their capabilities too.38

When a cloud C produced from a pattern P is run through one of the algorithms, we39

analyse the output according to four criteria. Namely, does the output have the same first40

Betti number as P? Are the output and P homeomorphic? What is the output’s RMS error –41

the root-mean-square deviation of the cloud from the output? What is the runtime of the42

algorithm?43

For each type of cloud (same pattern, noise type and noise magnitude), we randomly44

produced 200 such clouds and asked the above questions for each of the 200 outputs, either45

taking the mean result or obtaining a success rate – the percentage of the 200 outputs that46

meet the criteria. A small sample of the results presented in [6] can be seen in Figure 2.47
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Figure 2 Along the x-axis of these graphs we have the first Betti number of the pattern that
produced the cloud, so here we are going from the wheel three to wheel nine pattern. Left: Betti
success rate; Middle-left: Homeomorphism success rate; Middle-right: RMS error; Right: Runtime.

48

49

50

3 Conclusion51

We conclude from the results that HoPeS generally outperforms the other two algorithms.52

HoPeS and Mapper are more likely to produce outputs with the correct first Betti number,53

with the HoPeS output more likely to be homeomorphic to the pattern than the other two.54

In addition, the HoPeS output is usually geometrically closer to the point cloud, as it has a55

lower RMS error, and it is also the faster algorithm. A key drawback of Mapper and the56

α-Reeb algorithm is that they require additional parameters, whereas HoPeS does not. We57

optimised the choice of parameters for these two algorithms by performing the experiments58

multiple times with different parameter configurations, only taking the best results.59

We also carried out experiments on real data, using images from the BSDS500 dataset.60

On this data it was again HoPeS that outperformed the other two algorithms. The synthetic61

dataset and C++ code are available on request from the authors.62
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Mapper is a popular new method of exploratory data analysis that leverages ideas of1

Algebraic Topology to construct a skeletonization of high dimensional data [5]. Given2

topological spaces X,Y , a function f : X → Y , and a cover U of Y , Mapper is defined as3

the nerve of the refined pullback cover f∗(U). The pullback cover is a cover constructed as4

the preimage of cover elements U , i.e. f−1(Ui) = {x ∈ X | f(x) ∈ Ui}. Refinement of this5

pullback cover is done by splitting each cover element into new cover elements representing6

path-connected components or clusters.7

When analyzing a Mapper construction, it is common to explore vertex memberships and8

relationships between vertices [4]. In this context, the size of intersections becomes important9

and can affect the robustness of an analysis. The standard Mapper construction computes10

the nerve of a cover which is blind to the size of the intersection, drawing an edge for both11

large and small overlap of cover elements.12

The multi-scale mapper implicitly quantifies the intersection sizes using a tower of covers13

to build sequence of mappers connected by simplicial mappers [3], but can be difficult to14

compute and interpret. The multi-nerve mapper finds a stable mapper with respect to15

the Reeb graph, but is restricted to 1-dimensional functions [1]. To facilitate meaningful16

interpretation of Mapper, we import ideas from Persistent Homology. We define a new17

nerve operator that incorporates intersection size, which in turn provides a filtration on any18

Mapper. Using this filtration, we explore stable features for Mapper analysis, specifically the19

stability of paths.20

Jaccard Nerve21

We begin with an extension of the Jaccard distance from an operator on a pair of elements to22

an operator on a set of elements of a cover. Let µ(·) be a measure on a set, using cardinality23

in the common context of discrete data, and
⋂

and
⋃

representing intersection and union of24

sets respectively.25

I Definition 1 (Generalized Jaccard Distance). Given a subsets Ω of X, Define the generalized26

Jaccard distance on {Ui} ⊂ Ω as dJ({Ui}) = 1− µ(
⋂
Ui)/µ(

⋃
Ui) .27

Using this generalized distance, we extend the definition of the nerve of a cover to a weighted28

nerve that includes information about intersection size. Recall that the nerve of a cover U29

is a simplicial complex with an n-simplex defined for each nonempty n-way intersection of30

elements of U .31

1 Funding: Laboratory Directed Research and Development Program at PNNL
2 Funding: NSF DBI-1661348 and NSF DMS-1819229

mailto:nathaniel.saul@wsu.edu
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I Definition 2 (Jaccard Nerve). The Jaccard Nerve of a cover U , denoted NrvJ (U), is defined32

as the nerve of U with each simplex assigned their generalized Jaccard distance as weight:33

wσ = dJ({Ui | i ∈ σ}) ∀σ ∈ Nrv(U).34

The Jaccard Nerve can be thought of as a weighted nerve, but conveniently, the weighting35

scheme satisfies the conditions of a monotonic filtration, i.e. Ki ⊂ Ki+1 for each i in the36

sequence of simplicial complexes. See Appendix A.1 for a proof.37

I Theorem 3. The Jaccard Nerve of a cover U is a filtered simplicial complex.38

The Jaccard Nerve could be applied to a cover of continuous elements, such as intervals.39

We conjecture that the Čech filtration on a finite set of points (i.e. the nerve of balls with40

radius r around each point and over a sequence of r) and the Jaccard Nerve constructed41

from the terminal cover of the Čech filtration are isomorphic, i.e. insertion order of simplices42

is equivalent and there exists a continuous bijection between insertion times of the Jaccard43

Nerve and insertion times of the Čech filtration. We prove the case when n = 1, i.e. X is44

drawn from the real line,and provide experimental results for the 1-skeleton equivalence in45

Appendix A.2.46

I Conjecture 4 (Čech equivalence). Given a finite data set X ⊂ Rn and some radius R >47

diam(X) the Čech filtration constructed from X is isomorphic to the the cover filtration on48

X constructed from the Čech complex of X constructed with radius R.49

Jaccard Mapper50

We now define a filtration on Mapper using the Jaccard Nerve construction rather than the51

traditional nerve. This construction allows us to explore persistent features within Mapper.52

We found in practice that using the persistence diagram to tune an intersection threshold53

of an over-connected Mapper is considerably easier than tuning cover parameters directly.54

Additionally, we define stable paths that provide a way of quantifying confidence that edges in55

a path do exist and are not due to noise in the data or an artifact of Mapper hyperparameter56

selection.57

I Definition 5 (Jaccard Mapper). Given data X, a function f : X → Y , and a cover U of58

Y , define the Jaccard Mapper as the Jaccard Nerve of the refined pullback cover of f(U):59

NrvJ(f∗(U)).60

I Definition 6 (ρ-Stable Path). Given a Jaccard distance ρ, a path P is defined to be ρ-stable61

if max{dJ(e) | e ∈ P} ≤ ρ .62

The most stable path between a pair of vertices is defined as a ρ-stable path with the63

smallest value of ρ. Computing the Pareto frontier between the most stable and shortest64

path provides a complete spectrum of paths for path analysis. The problem of finding the65

most stable s-t path can be efficiently solved as a minimax path problem on an undirected66

graph using range minimum queries [2]. An algorithm for computing the Pareto frontier of67

stable paths is given in Figure 2 of Appendix A.3.68

Discussion69

In future work, we intend to show that the persistence diagrams of Jaccard Mappers are stable70

with respect to changes in filter function, data, and cover parameters. An implementation of71

the Jaccard Mapper can be found in the Scikit-TDA packages kepler-mapper and cechmate.372

3 Found at scikit-tda.org, kepler-mapper.scikit-tda.org, and cechmate.scikit-tda.org

https://scikit-tda.org
https://kepler-mapper.scikit-tda.org
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A Proofs84

A.1 Monotonic Filtration of Jaccard Nerve85

The following is a proof for Theorem 3.86

Proof. This proof makes use of standard set theory results. Let U be an arbitrary cover of87

some set X and let NrvJ be its Jaccard nerve. We consider NrvJ as a filtration by assigning88

as the birth time of simplex σ ∈ NrvJ its weight wσ. To show this is indeed a filtration, we89

focus on a single simplex σ and a face τ � σ to show that the face always appears in the90

filtration before the simplex.91

Suppose σ is generated from cover elements {Ui}i∈I over some index set I. Let a face
τ � σ be generated by cover elements indexed by a subset J ⊂ I. The birth time of τ is

dJ({Ui}i∈J) = 1− | ∩i∈J Ui|
| ∪i∈J Ui|

and the birth time of σ is
dJ ({Ui}i∈I) = 1− | ∩i∈I Ui|

| ∪i∈I Ui|
.

Clearly, with {Ui}i∈J ⊂ {Ui}i∈I , we have that |∩i∈J Ui| ≥ |∩i∈IUi| and |∪i∈J Ui| ≤ |∪i∈IUi|.92

It follows then that dJ(τ) ≤ dJ(σ). With Kα denoting the subcomplex that includes all93

simplices in NrvJ with birth time at most α ∈ [0, 1), for any α, β ∈ [0, 1) with α < β, we94

have Kα ⊆ Kβ . Hence NrvJ(U) is a monotonic filtration. J95

A.2 Čech equivalence96

The following is a proof for Theorem 4 in the case of X sampled from the real-line.97

Proof. Let X be a set of points in R. For some subset {vi} ⊂ X, let Č({vi}) be the birth
radius of the simplex σ defined by the subset of points. In R, this can be computed as

Č({vi}) = maxi(vi)−mini(vi)
2 .

The Jaccard distance between intervals centered on {vi} with some large radius R is defined98

as99

dJ({vi}) = 1− min(vi +R)−max(vi −R)
max(vi +R)−min(vi −R)100

= 1− min(vi)−max(vi) + 2R
max(vi)−min(vi) + 2R .101
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We find the equivalence as

Č({vi}) = dJ({vi}) ·R
(2− dJ({vi}))

and
dJ({vi}) = 1− R− Č({vi})

R+ Č({vi})
.

J102

We now detail experimental results suggesting that the 1-skeleton of the Jaccard filtration103

and the 1-skeleton the Čech filtration are isomorphic (i.e. the Vietoris-Rips filtration).104

To estimate the area of intersection of 1-spheres, we use Monte Carlo integration with105

uniform sampling. The first plot shows the 50 landmark points along with 20,000 points106

uniformly sampled around the landmarks. The middle plot shows the persistence diagrams107

of dimension 0 and 1 for the Vietoris-Rips filtration on the landmarks. Finally, we show an108

approximated Jaccard filtration on the landmarks, using the balls with radii 0.5 as the covers.109

We approximate the Jaccard filtration similarly as the Vietoris-Rips approximates Čech110

filtration, i.e. by only computing the 1-skeleton of the nerve, and including any higher order111

simplices for which all faces are already contained in the filtration, taking the maximum112

birth time of all faces.113

Figure 1 Persistence diagrams for the Vietrois-Rips Filtration and the approximate Jaccard
filtration

114

115

The resulting diagrams are remarkably similar, hinting at some interesting relationship116

between the two constructions.117

A.3 Algorithm to compute Pareto frontier of stable paths118

In this algorithm, we repeatedly compute the shortest path while sweeping over the Jaccard120

Distance, akin to the process of computing persistent homology. This process results in a121

Pareto frontier, which balances the shortest paths with the stability of those paths. Figure 3122

shows each path along the Pareto frontier between two vertices of a graph. This graph123

is a triangulation of the plane with random weights drawn from an inverted exponential124

distribution.125
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Figure 2 Algorithm to identify the Pareto frontier between shortest and most stable paths.119

Input: 1-skeleton G of Jaccard filtration and vertices s, t

set LIST = [∅, ∅] // stores [P, ρ] pairs
while s, t are connected in G

compute shortest path P between s and t

find ρ = max{dJ (e) | e ∈ P}

if LIST has no pair [P ′, ρ′] with |P | = |P ′|
add [P, ρ] to LIST

else if ρ < ρ′ for [P ′, ρ′] ∈LIST with |P | = |P ′|
replace [P ′, ρ′] with [P, ρ] in LIST

remove all edges e from G with dJ (e) ≥ ρ

Return : LIST

Figure 3 Visualization of each path on the Pareto frontier computed from a triangulation of
the plane with random weights drawn from an inverted exponential distribution. Above each path
depiction shows the length of the path and the stability score.
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1 Introduction11

Topological descriptors are used to represent complex data by multiple fields [7–10]. Turner,12

Mukherjee, and Boyer [11] showed that an uncountably infinite set of persistence diagrams13

(PDs) (or Euler characteristic curves (ECCs)) of height filtrations yields a unique repre-14

sentation of a geometric simplicial complex. This unique representation is capable of re-15

constructing the shape leveraging only information from the topological descriptors. As a16

result, researchers utilized finite subsets of the descriptors to represent shapes [2, 11]. Only17

particular (non-unique) subsets of descriptors can reconstruct complexes leading to the de-18

velopment of multiple algorithms to identifying sufficient descriptor sets [1,3,6]. We analyze19

the size of the sets by the number of directions from which they are generated.20

Determining whether various descriptors require fewer directions than others remains an21

open question. Fasy et al. [5] observed that finding directions to reconstruct degree two22

vertices presents more difficulties with ECCs than PDs. In this work, we discuss differences23

between PDs, ECCs, and the effects of storing additional information in these descriptors.24

We offer first steps towards understanding the differences between the reconstructive ability25

of these descriptors and their effectiveness on particular classes of simplicial complexes.26

1.1 Descriptors and Background27

We assume the reader is knowledgeable on the PD and ECC, otherwise, we refer the reader28

to [11] for a description of the ECC and [4] for information on persistent homology. Ad-29

ditionally, we assume that descriptors are generated using the lower-star filtration from a30

direction in Sd, see [4] for background on the lower-star filtration. In this work, the PD refers31

to the computed persistence diagram, where points (b, d) in which b = d are stored on the32

diagonal, yielding geometric information about vertex locations and simplex births/deaths.33

We also consider an augmented version of the ECC which records the Betti number at the34

heights which vertices are encountered. We refer to this curve as the Betti Curve (BC).35

2 Counting Descriptors for Reconstruction36

In [3, 11] the ECC and PD are used interchangeably. We demonstrate that reconstructing37

particular shapes requires strictly fewer PDs than BCs and ECCs.38

1 SM is supported by NSF CCF 1618605.
2 DLM is supported by NSF ABI 1661530.
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Figure 1 Intuition behinds proof of Theorem 1. On the left, Ω(n) directions are necessary to
observe every vertex using the ECC. On the right, Ω(n) directions are necessary to observe every
simplicial complex using the BC. Only four directions are necessary for the PD to reconstruct both
examples.

I Theorem 1. Let C1 be the simplicial complex with n vertices in Figure 1a and C2 be the39

simplicial complex with m vertices in Figure 1b embedded in R2. The embedding of C1 and40

C2 can be reconstructed with O(1) PDs. However, C1 requires Ω(n) ECCs and C2 requires41

Ω(m) BCs or ECCs for reconstruction.42

First, we explain how C1 and C2 can be reconstructed with O(1) PDs. The vertices in C143

and C2 meet the general position assumptions for Theorem 5 in [1] which provides a method44

for finding three PDs for determining vertex locations. For the edges in C1, we generate45

constraints from direction (−1, 0) to infer that the shape is chain of degree two vertices and46

eliminate edges that can not exist, leaving us with only the edges in the complex. For C2, we47

can also infer connected components with the three directions for vertex reconstruction and48

(−1, 0), the vertices in each connected component, and the number of faces. We find that49

there are O(m) two-simplices and “fill in” the edges and faces. Thus, we can reconstruct50

C1 and C2 with four PDs. When reconstructing C1 with the ECC, each degree two vertex51

can only be observed from particular regions of S1 which can grow arbitrarily small [5].52

In the example found in Figure 1a, there are O(n) distinct non-overlapping regions on S1
53

which must be sampled to observe each degree two vertex and, as a result, Ω(n) ECCs.54

Finally, when reconstructing C2 using the BC, there exist multiple simplicial complexes55

that can generate the same BC from the same direction. Specifically, the BC requires that a56

direction observing each edge is sampled from S1 to determine if each connected component57

is a two-simplex or a chain of two edges. As such, Ω(m) BCs are required to reconstruct58

the complex. Since the BC contains strictly more information than the ECC, Ω(m) ECCs59

are necessary to reconstruct C2 as well.60

Theorem 1 is the first step towards identifying the differences in comparing the number of61

various descriptors necessary for simplicial complex reconstruction. We state the claim that62

Ω(n) ECCs are necesary for C1 even though showing that Ω(m) ECCs are necessary for C263

is sufficient for the theorem. However, we provide both constructions because we conjecture64

that C1 can be reconstructed using O(1) BCs. Future work includes: determining examples65

in which fewer BCs are necessary than ECCs, finding other types of subcomplexes (similar66

to the degree two vertex) that limit the ability of particular descriptors to reconstruct67

complexes, and experimentally comparing the distributions of regions that must be sampled68

from the sphere when using various descriptors for reconstruction.69
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Abstract9

All practically efficient algorithms for persistent homology are based on matrix reduction. While the10

worst case complexity is cubic, the experimental behavior tends to be linear. Our goal is to analyze11

the average time complexity of matrix reduction for standard models of random filtrations.12

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-13

tation → Computational geometry14

Keywords and phrases Persistent Homology, Matrix Reduction, Complexity analysis15

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2316

Funding Austrian Science Fund (FWF) grant number P 29984-N35.17

Persistent homology enables the analysis of evolving topological properties of general data18

sets through different scales. It found many applications (see, e.g. [2, 3]) and therefore19

developed a need for efficient computation. The most common and well-studied case is20

persistent homology of filtrations. A filtration F : K0 → ... → Km is a sequence of nested21

complexes K0 ⊆ ... ⊆ Km and its persistent homology is represented by a barcode consisting22

of the birth and death times of the different cycle classes evolving through the growing23

complex. Despite good improvements (e.g. [1]), all efficient algorithms used in practice have a24

cubic worst case complexity. The reason is that they are based on matrix reduction. However,25

practical experiments tend more to a linear behavior, which contributes to the popularity26

of the method. The aim of this ongoing work is to analyze the average complexity of the27

matrix reduction algorithm for particular but common randomized filtration types such as28

Erdős-Rényi or Rips filtrations over random point sets in low dimension.29

Reduction Algorithm. For a simplicial complex K, let nd be its number of d-simplices. The30

boundary matrix in dimension d of K is a nd×nd+1-matrix whose columns are the boundaries31

of K’s (d + 1)-simplices. Then, the algorithm to compute the barcode in dimension d of32

a filtration F : K0 → ... → Km consists of reducing the dth boundary matrix of Km with33

Z2-coefficients, whose columns and rows are ordered with respect to the order of appearance34

in F (see Algorithm 1). The barcode can then be read off the resulting reduced matrix.35

Therefore, in the worst case, the algorithm performs nd+1 ·O(nd) ·O(nd) bit additions, which36

leads to cubical complexity.37

Experimental results. We counted the number of matrix operations on different random38

filtrations of the 2-skeleton of a simplex. The instances went up to approximately half a39

million simplices. We focused on four models. For each, we created random instances, with40

n the number of simplices, increasing, and averaged the running time over ten repetitions for41

each n. We used linear regression to infer the empirical asymptotic behavior:42
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Algorithm 1: Reduction algorithm for the boundary matrixM.
1 The function pivot returns the index of the lowest non-zero entry of the given column.

for i = 1 . . . nd+1 do
2 while ∃ j ∈ {1, ..., i− 1} pivot(M[j]) == pivot(M[i]) do
3 M[i]←M[i] +M[j];

Lower star filtrations: the vertices are added in random order and a simplex is added as43

soon as all its facets are included. The number of bit operations are independent of the44

vertex order and can be expressed by a deterministic formula. It is in the order of n.45

Rips filtrations: for a fixed number of random points in the unit square in R2, the edges46

are inserted in the order of their length. The triangles are inserted as soon as their47

boundary is inserted. Experimentally, the complexity tends to approximately O(n1.3).48

Erdős-Rényi filtrations: for a fixed number of vertices, the edges are chosen in a ran-49

dom order. The triangles are inserted as soon as their boundary edges are inserted.50

Experimentally, the complexity tends to approximately O(n1.6).51

Shuffled filtrations: for a fixed number of vertices, both for edges and triangles, the order52

is randomly chosen. Experimentally, the complexity tends to approximately O(n2).53

A first theoretical result. We intend to analyze those precedent cases to verify the empirical54

observations. As an initial step, we look at a variant of the last case above.55

Define a 3-column in a matrix as a column with exactly three non-zero entries. We define56

M̃ as a m ×
(
m
3
)
-matrix over Z2 with m rows and all possible 3-columns arranged in a57

random order (every column order is equiprobable). M̃ can be interpreted as the boundary58

matrix of a cell complex consisting of one vertex v, m distinct self-loops attached to v, and59 (
m
3
)

2-cells bounded by three of the self-loops. Note that M̃ contains significantly more60

columns than the matrix of a shuffled filtration with the same number of edges.61

Algorithm 1 applied to M̃ takes O(m3) ·O(m) ·O(m) = O(m5) time in the worst case.62

We now slightly modify the algorithm as follows: If during the reduction, we encounter an63

input column c with the same pivot as a previously reduced column c′, we first reduce c64

and then replace c′ with the unreduced version of c. The idea is that c has initially only 365

non-zero entries, so subsequent reduction steps are less expensive. When enough reduced66

columns have been replaced, the reduction of the remaining columns becomes considerably67

cheaper than in the naive version. This idea leads to the following result:68

I Theorem 1. Let ε > 0 be any constant and m be the number of edges. The time complexity69

of the modified reduction algorithm for M̃ is O(m4+ε) in expectation.70
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We consider three classes of geodesic embeddings of graphs on the Euclidean flat torus: graphs
having a positive equilibrium stress, reciprocal graphs (for which there is an orthogonal
embedding of the dual graph), and weighted Delaunay complexes. The classical Maxwell-
Cremona correspondence and the well-known correspondence between convex hulls and
weighted Delaunay triangulations imply that these three concepts are essentially equivalent
for plane graphs; indeed, all three conditions are equivalent to G being the projection of the
1-skeleton of a convex polyhedron in R3. However, this three-way equivalence does not extend
directly to geodesic graphs on the torus. Reciprocal and Delaunay graphs are equivalent, and
every reciprocal graph is in positive equilibrium, but not every positive equilibrium graph is
reciprocal. We establish a weaker correspondence: Every positive equilibrium graph on any
flat torus is equivalent to a reciprocal/Delaunay graph on some flat torus.

Definitions

Fix a non-singular matrix M =
[
a b
c d

]
. The flat torus TM is the 2-manifold obtained by

identifying opposite sides of the parallelogram with vertices (0, 0), (a, c), (b, d), (a+ b, c+ d).
The unit square flat torus is T� = TI , where I is identity matrix

[1 0
0 1
]
. We consider graphs

embedded on flat tori in which edges are geodesics—projections of straight line segments in
the universal cover R2.

As usual, we regard each edge of an embedded graph as a pair of oppositely directed
darts, each directed from one endpoint, called its tail, to the other endpoint, called its head.
We write u�v to denote a dart with tail u and head v. We can specify any geodesic graph G
on the unit square flat torus T� by identifying each vertex with a coordinate vector in [0, 1]2
and assigning a homology signature [u�v] ∈ Z2 to each dart u�v. The homology signature
[u�v] records the number of times u�v crosses the vertical boundary of the unit square
from left to right, and the number of times u�v crosses the horizontal boundary upward.
Reversing any dart negates its homology signature. Exactly the same representation gives
us a geodesic embedding of G on any other flat torus TM , via the linear transformation
represented by the matrix M ; we consider these to be the same embedding on different tori.

Every dart u�v in G has an associated displacement vector ∆u�v = (∆xu�v,∆yu�v) =
v − u + [u�v]. Equivalently, ∆u�v = v̂ − û, where û�v̂ is an arbitrary lift of u�v to the
universal cover R2. Reversing a dart negates its displacement vector. When the choice of dart
doesn’t matter, we also write ∆e = (∆xe,∆ye) for the displacement vector of (an arbitrary
fixed dart of) edge e.

Fix a geodesic graph G on some flat torus TM . We consider three types of torus graphs.

We call G an equilibrium graph if we can assign a positive real value ωe to each edge
of G, so that

∑
uv ωuv ∆u�v = (0, 0) for every vertex v of G. The vector ω is called an

equilibrium stress.
We call G reciprocal if there is a geodesic embedding of the dual graph G∗ on the same
flat torus TM , such that each edge of G is orthogonal to its dual.
Finally, we consider intrinsic weighted Delaunay complexes (dual to power diagrams) [1,2].
We call G Delaunay if we can assign a weight r2

v to each vertex v, so that G becomes the
weighted Delaunay complex of its vertices.
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XX:2 A Toroidal Maxwell-Cremona-Delaunay Correspondence

Our definition of equilibrium restricts to positive stresses, unlike Borcea and Streinu [3]
who study equilibrium stresses of flat torus graphs G that define periodic liftings from the
(infinite planar) universal cover of G into R3: their stresses are necessarily not all positive.

Results

For planar graphs (with a fixed convex outer face), the Maxwell-Cremona correspondence
[8, 9, 11, 15, 16] and the well-known correspondence between convex liftings and weighted
Delaunay triangulations [1, 4, 12] imply equivalences between positive (interior) equilibrium
stresses, orthogonal embeddings of the dual graph, and Delaunay vertex weights. These
equivalences partially generalize to geodesic torus graphs.

I Lemma 1. Let G be a geodesic torus graph. If ω is an equilibrium stress for G on any flat
torus, then ω is an equilibrium stress for G on every flat torus.

I Lemma 2. Let G be a weighted Delaunay complex on some flat torus T, and let G∗ be the
corresponding weighted Voronoi diagram on T. Every edge e of G is orthogonal to its dual e∗.

I Lemma 3. Let G and G∗ be dual geodesic graphs on some flat torus TM , such that every
edge e of G is orthogonal to its dual e∗.
(a) G is a weighted Delaunay complex, and some translation of G∗ is the corresponding

weighted Voronoi diagram.
(b) The vector ω defined by ωe = |e∗|/|e| is a positive equilibrium stress for G.

Let G be a geodesic graph on some flat torus T. We call a positive equilibrium stress
vector ω for G a reciprocal stress if there is a geodesic embedding of the dual graph G∗ on T
such that for every edge e of G, e is orthogonal to its dual e∗, and |e∗| = ωe · |e|.

I Lemma 4. Not every positive equilibrium stress for G is a reciprocal stress. More generally,
not every equilibrium graph on T is reciprocal/Delaunay on T.

We characterize which equilibrium stresses are reciprocal as follows. Any equilibrium
stress ω for G defines three isotropy parameters, in terms of the displacement vectors of the
edges of G on T�.

α =
∑
e

ωe∆x2
e, β =

∑
e

ωe∆y2
e , γ =

∑
e

ωe∆xe∆ye.

I Lemma 5. ω is a reciprocal stress for G on T� if and only if (α, β, γ) = (1, 1, 0).

I Theorem 6. A positive equilibrium stress vector ω is reciprocal on some flat torus if and
only if αβ − γ2 = 1. In particular, if αβ − γ2 = 1, then ω is a reciprocal stress for G on the
flat torus TM if and only if M = R

[1 −γ
0 β

]
for some orthogonal matrix R.

Note that αβ − γ2 = 1 is merely a scaling condition; for any equilibrium stress vector ω,
the scaled stress vector ω/

√
αβ − γ2 meets the conditions of Theorem 6. We conclude that

every equilibrium graph on any flat torus is a weighted Delaunay complex on some flat torus.
Generalizations of Tutte’s spring-embedding theorem [18] imply that for every essentially

3-connected graph G on any flat torus T, and every positive stress vector ω, there is an
isotopic embedding of G on T for which ω is an equilibrium stress [6,13,14,17]. It follows that
every essentially 3-connected torus graph G is isotopic to a weighted Delaunay complex on
some flat torus. The existence of a single Delaunay embedding isotopic to G already follows
from results of Colin de Verdière on circle-packing representations of surface graphs [5, 7],
but our derivation characterizes the space of all Delaunay embeddings isotopic to G.
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Abstract
We discuss polyforms (lattice animals) on different lattices. We show a set of conditions which is
sufficient for a family of polyforms to have the following property: Inflating a set of minimal-perimeter
polyforms of a certain size yields all minimal-perimeter polyforms of a new, larger size.
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1 Introduction

A polyform is a shape composed of a finite number of copies of a tile, connected by their
edges. The best known examples of polyforms are polyominoes, polyhexes, and polyiamonds,
in which the tiles are squares, hexagons, and triangles, respectively. The study of polyforms
began independently in the 1950-60s in statistical physics [4] and in mathematics [5].

The perimeter of a polyform is the set of empty cells which share an edge with the
polyform. A minimal-perimeter polyform is a polyform with the smallest possible perimeter
for its size. Minimal-perimeter polyominoes were studied by Sieben [6] and Altshular et
al. [1], both providing a characterization of all minimal-perimeter polyominoes that have the
maximum size for a given perimeter size. The latter work was later generalized to polyhexes
and polyiamonds by Vainsencher and Bruckstien [7].

Recently, we provided some results on the number of minimal-perimeter polyominoes [2, 3].
In this paper, we generalize these results to any type of polyforms satisfying some properties,
and show that polyhexes and polyiamonds satisfy these conditions.

2 Preliminaries

Let Q be a polyform. The perimeter of Q, denoted as P(Q), is the set of all empty cells that
are neighbors of at least one cell of Q. Similarly, the border of Q, denoted by B(Q), is the
set of cells of Q that are neighbors of at least one empty cell.

The inflated polyform of Q is defined as I(Q) := Q ∪ P(Q). Similarly, the deflated
polyform of Q is defined as D(Q) := Q\B(Q), these concepts are demonstrated in Figure 1.
Let F be a family of polyforms on some lattice. Denote by εF (n) the minimum perimeter of
a polyform of type F and size n, and by MF

n the set of all minimal-perimeter polyforms of
type F and size n.

I Theorem 1. [2, Thm. 4] Let S be the family of all polyominoes (polyforms on the square
lattice). Then, for n ≥ 3, we have that

∣∣MS
n

∣∣ =
∣∣∣MS

n+εS (n)

∣∣∣.
This theorem is a corollary of another theorem, stating that the inflation operation

induces bijections between sets of minimal-perimeter polyominoes. The result is “chains”
of sizes for which the number of minimal-perimeter polyominoes is identical. In this work,
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(a) Q (b) I(Q) (c) D(Q)

Figure 1 A polyhex Q, its inflated polyhex, and its deflated polyhex. The gray cells are the
polyhex cells, while the white cells are the perimeter.

we generalize Theorem 1 from polyominoes to polyforms of any type, under a certain set of
conditions.

3 Minimal-Perimeter Polyforms

Our main result is identifying a set of conditions, which is sufficient for a family of minimal-
perimeter polyforms to satisfy a claim similar to that in Theorem 1.

I Theorem 2. Consider a polyform family F, and the following set of conditions:
The function εF (n) is weakly monotone increasing.
There exists some constant c, for which, for any minimal-perimeter polyform, we have
that P(Q) = B(Q) + c.
If Q is a minimal-perimeter polyform, then I(Q) does not contain holes.
Removing any single cell from a minimal-perimeter polyomino Q does not break the
polyform into pieces, and adding any single cell to Q does not create a hole in it.
If Q is a minimal-perimeter polyform, then D(Q) is a valid (connected) polyform.
If Q1, Q2 are two different minimal-perimeter polyforms, then I(Q1) and I(Q2) are
different as well.

If all the above conditions hold for F, then we have that
∣∣MF

n

∣∣ =
∣∣∣MF

n+εF (n)

∣∣∣.
If these conditions are not satisfied for only some finite amount of sizes of
polyforms, then the claim holds from some nominal size n0.

As in the case of polyominoes, this theorem is the result of a bijection between
minimal-perimeter polyforms, induced by the inflation operation. It can be shown
that the above set of conditions is satisfied for both hexagonal and triangular lattices, hence,
Theorem 2 holds in both cases. However, the second condition is not fulfilled in the cubical
lattice in three and higher dimensions, and, indeed, it seems that the main property, subject
of the theorem, does not hold in that case. Our next goal is to investigate the behavior of
the inflation and deflation operations in higher dimensions.
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A well known class of visibility problems are those related to hiding. Given a simple9

polygon, we say that two points in its interior are visible to each other if the straight line10

segment connecting the points does not intersect the exterior of the polygon. Conversely,11

the points are said to be hidden to each other if they are not mutually visible. In this paper12

we study the Maximum Hidden Vertex Set (MHVS) problem, where given a simple polygon13

P , the objective is to find the largest possible subset of vertices of P such that every pair14

of vertices are hidden to each other. The MHVS problem is known to be NP-Hard [6].15

In fact, it was shown to be APX-hard by Eidenbenz [3] even when the input polygon has16

no holes. Nevertheless, an exact solution can be computed in polynomial time for certain17

special classes of simple polygons. A simple polygon P is said to be weakly visible from an18

edge uv if every point q ∈ P is visible from some point on uv. A maximum hidden vertex19

set can be computed in O(n2) time in a polygon weakly visible from a convex edge [4] (i.e.20

an edge lying between two convex vertices), and in O(ne) time in so called convex fans,21

where e is the number of edges of its vertex visibility graph [5]. Metaheuristics have also22

been explored for obtaining approximate solutions for polygons without any holes [1]. In23

this paper, we present a 1
4 -approximation algorithm, which runs in O(n2) time, for finding24

the maximum hidden vertex set in an n-sided simple polygon containing no holes.25

Let P be a simple polygon containing no holes. Our algorithm is based on a link dis-26

tance based partitioning of P from Bhattacharya et al. [2] (which is itself adapted from the27

partitioning method used by Suri [7]) that partitions P into a collection of disjoint visibility28

windows. Given two points s and t inside P , the link distance between s and t is the min-29

imum number of line segments required to connect them using a link path, which is basically30

a polyline in the interior of P . The visibility window decomposition given by Bhattacharya31

et al. [2] is essentially a hierarchical partitioning of P into weakly visible subpolygons, where32

any two subpolygons on the same level are at the same link distance from a chosen vertex33

p. In Figure 1, the link distances of the points x and y from p are 5 and 2 respectively.34

As P is a simple polygon without any holes, the dual graph of this hierarchical par-35

titioning is a tree. Each node of this tree represents a visibility polygon of the partition,36

and the children of a node are the regions inside the pockets formed by constructed edges37

belonging to their parent’s visibility polygon. We classify these constructed edges as left or38

right constructed edges (indicated by the colours red and green respectively in Figure 1)39

based on whether a link path originating from p needs to take a left turn or a right turn to40

finally enter the weakly visible subpolygon created by it. Based on their level in the dual41
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tree and on what type of constructed edge created them, our algorithm separates the weakly42

visible subpolygons into four disjoint subsets, which are as follows:43

R1, containing subpolygons created by a left constructed edge at odd levels in the tree44

R2, containing subpolygons created by a right constructed edge at odd levels in the tree45

R3, containing subpolygons created by a left constructed edge at even levels in the tree46

R4, containing subpolygons created by a right constructed edge at even levels in the tree47

p

x
y

Figure 1 The partitioning of P into weakly visible subpolygons, where the colour of each sub-
polygon indicates whether it belongs to the set R1, R2, R3 or R4.

Observe that the vertices of P inside different regions of the same set are hidden from each48

other (see Figure 1), either because they belong to non-consecutive levels of the tree, or49

because both of them belong to the same level in the tree and are both created by a left50

(or right) constructed edge. Note that the separation process can be completed in O(n)51

time. Observe that each subpolygon in the hierarchical partitioning of P is weakly visible52

from the constructed edge (of its parent’s visibility polygon) that created it. So, within each53

subpolygon, we can compute the (exact) maximum hidden set of vertices using the algorithm54

by Ghosh et al. [4], which computes the maximum hidden set of a weak visibility polygon55

with n vertices in O(n2) time. Since the vertices of P inside two subpolygons belonging56

to the same set (from among R1, R2, R3, R4) are hidden from each other, the union of the57

maximum hidden sets of the subpolygons in each of these sets is a valid hidden set for58

P . Thus, we can clearly compute four valid hidden sets S1, S2, S3, S4, that correspond59

to the union of the maximum hidden sets computed for every subpolygon belonging to60

R1, R2, R3, R4 respectively, in O(n2) time. Out of these four valid hidden vertex sets of61

P , we choose the one containing the most number of vertices as our approximation of the62

actual maximum hidden set of P . If Smax denotes the actual maximum hidden vertex set of63

P , then clearly: max (|S1|, |S2|, |S3|, |S4|) ≥ (|S1|+ |S2|+ |S3|+ |S4|)/4 ≥ |Smax|
4 . Therefore,64

by choosing from among S1, . . . , S4 the set containing the maximum number of vertices, we65

obtain a 1
4 -approximation of Smax. Note that the overall algorithm runs in O(n2) time. This66

leads us to our main result, which we summarize below.67

I Theorem 1. Given a simple polygon P with n vertices, there exists a 1
4 -approximation68

algorithm for computing the maximum hidden vertex set in P , which runs in O(n2) time.69
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1 Introduction

We study the problem of Geometric Set Cover, where the goal is to find a minimum sized
cover for a given set X of n points in the plane by a family T of given objects. This is a
fundamental problem which has been studied for over 30 years. It has long been known to
be NP-hard and was shown to be APX-hard for a large class of geometric objects including
axis-aligned rectangles and triangles assuming P 6= NP by Chan and Grant in 2014 [2].
First, we study a version of Geometric Set Cover, where the given objects are axis-aligned
rectangles. This version of the problem was shown to be APX-hard, but no explicit lower
bound was known for it prior to this work. We present a specific constant c = (1537/1536)
and show that it is NP-hard to approximate within c factor of the optimum. This implies
also the first specific constant c factor of approximation for the general Geometric Set Cover
problem.

We also study Geometric Red-Blue Set Cover, where the points are given in two sets R

and B, red elements and blue elements respectively, and the goal is to select a subfamily T ′ of
given family T of geometric objects such that T ′ covers all the blue points while minimizing
the number of covered reds. Chan and Hu in [3] show that the problem is NP-hard even
when the objects are unit-squares. Finally, we consider the problem of Boxes Class Cover
(BCC): points are given in two sets R and B, red points and blue points respectively, and
the goal is to find the minimum number of axis-aligned rectangles T that cover all the blue
points but no reds. This problem is introduced in 2012 by Bereg et al., who showed the
problem is NP-hard [1]. Prior to this work, to the best of our knowledge, no hardness of
approximation result has been shown for Geometric Red-Blue Set Cover and BCC.

2 Results and the Sketch of the Techniques

We present hardness of approximation proofs for some geometric problems addressed in
Theorem 1. In the process of the proof, we also define a new version of MAX 3SAT problem
in Definition 2, and then prove a hardness of approximation for it.

I Theorem 1. The following problems are NP-hard to approximate within c factor of the
optimum, where c = (1537/1536): (i) Geometric Set Cover, even in the restricted case
where all the objects are axis-aligned rectangles and each rectangle contains at most 5 points.
(ii) Geometric Red-Blue Set Cover, even in the restricted case where all the objects are
axis-aligned rectangles and each rectangle contains only one red point and at most 5 blue
points. (iii) Boxes Class Cover

I Definition 2. Max Restricted Mixed 3SAT (MAX RM-3SAT ). This problem is a variant
of MAX 3SAT where all the clauses are of size 2 and 3 and have the following properties:

1. All the clauses of size 3 have a literal in negated form and a literal in non-negated form.

1 [Research funded by NSERC Discovery Grant RGPIN 2016-04234]

Sima@uvic.ca
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2. Any variable appears in exactly one clause of size 3, i.e., if vi is a variable in this formula,
only one of vi or v̄i can appear in any clause of size 3.

3. Any variable appears in exactly one of the clause of size 2 in negated form, and in exactly
one of the clauses of size 2 in non-negated form.

Sketch of the techniques: We show the hardness results in Theorem 1 by series of
reductions. In the first reduction, we transfer any instance of MAX E3SAT, the version of
the MAX 3SAT problem in which each clause is of length exactly three, to an instance of
Max RM-3SAT by renaming the variables and adding new clauses. Håstad [4] shows that it
is NP-hard to approximate MAX E3SAT within a factor greater than 7/8 even when the
problem is restricted to just satisfiable instances of the problem. We use this fact to and the
reduction to show that it is NP-hard to approximate MAX RM-3SAT within 255/256 factor
of the optimum.

In the second reduction for BCC, for any instance of MAX RM-3SAT we construct a point
structure with red and blue points in polynomial time. Then we show a relation between
the number of satisfied clauses in an optimal solution of MAX RM-3SAT and the size of the
optimum solution in the corresponding instance of BBC. By considering the hardness result
for MAX RM-3SAT, this relation implies the c-hardness result for BCC.

The third and forth reduction are modified version of the second one. For the reduction
from MAX RM-3SAT to Geometric Set Cover, we modify the second reduction in a way
that specific type of rectangles in BCC (called canonical), are considered as the family T of
candidate rectangles and all the blue points as members of X. Then, for the reduction from
MAX RM-3SAT to Geometric Red-Blue Set Cover, we will consider the same blue points in
BCC as blue points and the same family T of candidate rectangles T used in Geometric Set
Cover. For red points, we observe that there is a space in each of the candidate rectangles
to which we can add exactly one distinct red point. These modified reductions lead to
c-hardness result for both Geometric Set Cover and Geometric Red-Blue Set Cover.

Intuition of the structure used in MAX RM-3SAT → BCC: For Φ, an instance
of MAX RM-3SAT, we change the order of the clauses to have all the clauses of size 3 first
and then clauses of size 2. We rename the jth variable of the kth clause of this order to
X3(k−1)+j . Then, for each variable Xi, 1 ≤ i ≤ 3m, we add 4 blue points on (±7i,±7i)
coordinates and 16 red points on (±7i± 1,±7i± 1) coordinates.

The intuition of this structure is to locate the points in a way that an axis-aligned
rectangle cannot cover points corresponding to two different variables together without
covering a red point. We call an axis-aligned rectangle that covers two points with the same
x (resp. y)-coordinate a vertical (resp. horizontal rectangle). We show that, the BCC on this
arrangement of points has to have an optimal solution that covers blue points corresponding
to each variable by exactly two rectangles, either both vertical or both horizontal. The idea
of our reduction from MAX RM-3SAT to BCC is that the choice of vertical vs horizontal
corresponds to true vs false assignment. For each clause, we add some red and blue points to
force the choice of the covering blue-rectangles to be horizontal or vertical in the optimal
solution of BCC based on the structure of the clauses of Φ. The location of these points are
different in each type of clauses depending on the size of the clause and the number of negated
literals in the clause. Here we only provide the coordinates of the added points for one type
of the clauses to explain the idea more clearly. For each clause c = (Xj ∨ X̄j+1 ∨ X̄j+2), we
add three blue points on coordinates (−7j, 7(j + 1)), (7j, 7(j + 2)), and (−7j + 1, 7(j + 2)− 1).
Moreover, we add nine red point on coordinates (−7j−1, 7(j + 1)±1), (−7j−1, 7(j + 2)−1),
(−7j + 1, 7(j + 1)− 1), (−7j + 1, 7(j + 2) + 1), (7j + 1, 7(j + 2)± 1), (7j − 1, 7(j + 2) + 1),
and (−7j + 2, 7(j + 2)− 2).
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