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Abstract
In 1993, Csima and Sawyer [2] proved that in a non-pencil arrangement of n pseudolines, there
are at least 6

13 n simple points of intersection. Since pseudoline arrangements are the topological
representations of reorientation classes of oriented matroids of rank 3, in this paper, we will use this
result to prove by induction that an oriented paving matroid of rank r ≥ 3 on n elements, where
n ≥ 5 + r, has at least 12

13(r−1)

(
n

r−2

)
independent hyperplanes, yielding a new necessary condition

for a paving matroid to be orientable.
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1 Introduction

The well-known Sylvester-Gallai theorem states that given a set of non-collinear points in the
Euclidean plane, we can always find at least one line that has exactly two of the given points.
A generalization of this theorem to higher dimension is not always true, i.e. given a finite
set of points in a d-dimensional Euclidean space which is not contained in a hyperplane, we
cannot always find a hyperplane containing exactly d of the given points, which we call an
independent hyperplane. A counterexample was given by Hansen in [4](Figure 1).

In his counterexample the main issue lies in the 3-point lines, and we can forbid this by
considering a more specific type of point configuration.

•

•

•

•••

Figure 1 An illustration of Hansen’s construction [4]
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We consider oriented paving matroids which we will define later. In fact, realizable
simple oriented paving matroids of rank 4 are exactly the point configurations in 3-space
that have no 3-point lines. By considering this type of matroids we can not only prove the
existence of an independent hyperplane but also examine their number. To do so we will
have to go back to the 2-dimensional space. The dualization of Sylvester-Gallai’s theorem
to the projective plane states: For every finite set of lines, not all going through one point
(non-pencil arrangement), then among all the intersection points of these lines, at least one
is incident with exactly two of the lines. We call it a simple point. The proofs of most of
the results for line arrangements reveals that the straightening of the lines which form the
arrangements plays only a very limited role. This leads naturally to the idea of investigating
arrangements of more general types; arrangements of pseudolines.

I Definition 1. An arrangement of pseudolines is a finite collection of simple curves (no
self-intersection) in the real projective plane satisfying the following two properties: (a) any
two curves intersect in exactly one point, where they cross and (b) the intersection of all
curves is empty. As in line arrangements, a simple point in a pseudoline arrangement is the
point formed by the intersection of exactly 2 pseudolines (curves).

Now let’s see the main connection between oriented matroids and pseudoline arrangements.
We assume basic familiarity with matroid theory and oriented matroids. The standard
references are [8, 1]. As mentioned earlier, the main problem with Hansen’s counterexample
is that the 6 point configuration does not correspond to a paving matroid since we have three
points lying on the same line.

I Definition 2. A paving matroid is a matroid in which every circuit has size either r or
r + 1, where r is the rank of the matroid. In a point configuration, this means that no r − 1
points lie on a same flat of co-dimension 2.

Mayhew et al. [7] conjecture that almost all matroids are paving. This is mainly why we find
paving matroids to be interesting specially since in rank 3, all simple matroids are paving.
The following is immediate:

I Proposition 3. The class of paving matroid is closed under minors.

Oriented matroids and pseudoline arrangements are strongly connected by the topological
representation theorem.

I Theorem 4 (The Topological Representation Theorem [3, 5]). Any reorientation class of a
rank-3 oriented matroid has a representation as a pseudoline arrangement.

In this representation, the pseudolines are the elements of the oriented matroid. Their
intersection points are the hyperplanes of the matroid and their simple points of intersection
are exactly the independent hyperplanes in the oriented matroid. Therefore, counting
simple points in a pseudoline arrangement is actually counting independent hyperplanes
in the oriented matroid. The latest result on the lower bound of simple points in line
arrangement was in 1993, where Csima and Sawyer proved in [2] that except for the Kelly-
Moser configuration (Figure 2), an arrangement of n lines has at least 6n/13 simple points. In
the same paper, they indicated that their proof easily extends to arrangement of pseudolines.
This is why we were able to use their result to prove our main result.

I Theorem 5. An oriented paving matroid M of rank r ≥ 3, on n elements, where n ≥ 5 + r,
has at least f(n, r) = 12

13(r − 1)
(

n
r−2

)
independent hyperplanes.
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Figure 2 The Kelly-Moser configuration [6].

2 Proof of Theorem 5

We proceed by induction on r ≥ 3. By the Topological Representation Theorem 4, a
rank-3 oriented matroid has a representation as a pseudoline arrangement in the projective
plane. By Csima and Sawyer [2], except for the Kelly-Moser configuration, a pseudoline
arrangement has a least 6n/13 simple points. Since n ≥ 5 + r the Kelly-Moser configuration
is excluded. In matroid terms, this corresponds to 6n/13 independent hyperplanes in a rank
3 oriented matroid founding our induction. Now assume r > 3. We fix an element e ∈ E. By
Proposition 3, the contraction M/e is paving and has at least 5 + (r − 1) elements, so by
induction, M/e has at least f(n−1, r−1) = 12

13(r − 2)
(

n−1
r−3

)
independent hyperplanes. Now

any independent hyperplane in M/e can be extended by e to an independent hyperplane in
M . To prove this, we take an independent hyperplane H in M/e and prove that H ∪ e is an
independent hyperplane in M . We have that r(H) = r − 2, thus r(H ∪ e) = r − 1 = |H ∪ e|.
Therefore H ∪ e is independent. It is also a flat, because if it wasn’t i.e., if there exists an
element x ∈ cl(H ∪ e)\(H ∪ e) then x ∈ clM/e(H)\H contradicting, H being closed in M/e.
Therefore H ∪ e is an independent flat of rank r − 1, thus an independent hyperplane in
M . Since each of the f(n− 1, r − 1) independent hyperplanes in M/e can be extended by e

to obtain an independent hyperplane in M and since this is the case for any element e of
the matroid, each of these independent hyperplanes will be counted r − 1 times, and so M

has at least n
r−1 f(n− 1, r − 1) = 12

13(r − 1)
(

n
r−2

)
= f(n, r) independent hyperplanes. This

concludes the proof of Theorem 5.
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Abstract
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges
shares at most one point (a proper crossing or a common endpoint). We show that every simple
drawing of the complete graph with n vertices contains Ω(n 1

2 ) pairwise disjoint edges. This improves
the currently known best lower bound Ω(n 1

2 −ε) for any ε > 0 by Ruiz-Vargas [8].
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1 Introduction

Simple drawings are drawings of graphs in the plane such that vertices are distinct points in
the plane, edges are Jordan arcs connecting their endpoints, and edges intersect at most once
either in a proper crossing or in a shared endpoint. A tantalizing open question regarding
simple drawings is how many pairwise disjoint edges every simple drawing of the complete
graph with n vertices, Kn, contains. In other words, we ask for the maximal size of a plane
matching that can always be found in such a drawing. Ruiz-Vargas [8] showed in 2017 that
every simple drawing of Kn contains Ω(n 1

2 −ε) pairwise disjoint edges for any ε > 0, which

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1 A generalized twisted drawing of K5. All edges cross the (red) ray r.

improves several previous results (Ω((log n) 1
6 ) in 2003 [5], Ω( log n

log log n ) in 2005 [6], Ω((log n)1+ε)
in 2009 [1], and Ω(n 1

3 ) in 2013 and 2014 [2, 3, 9].) We further improve the bound by showing
that every simple drawing of Kn contains Ω(n 1

2 ) pairwise disjoint edges.
To prove this new bound, we will use some properties of a special kind of simple drawings

that we call generalized twisted drawings. (Classical twisted drawings as defined in [5] belong
to the family of generalized twisted drawings.)

▶ Definition 1. A simple drawing D is c-monotone (short for circularly monotone) if there
is a point O such that any ray emanating from O intersects any edge of D at most once.

A generalized twisted drawing is a c-monotone drawing D, in which there exists a
ray r emanating from O that intersects every edge of D.

For simplicity, we assume that in c-monotone drawings, the vertices lie on a circle with O

as the center. We label them v1, . . . , vn in counterclockwise order along the circle. Further,
for generalized twisted drawings, we assume that the ray r intersects the circle between v1
and vn. Figure 1 shows an example of a generalized twisted drawing of K5.

We prove in Section 2 that generalized twisted drawings of Kn always contain ⌊ n
2 ⌋ pairwise

disjoint edges (Theorem 2). We use this result to show that all simple drawings of Kn contain
Ω(

√
n) disjoint edges (Theorem 3). The proof of Theorem 3 is sketched in Section 3.

▶ Theorem 2. Every generalized twisted drawing of Kn contains ⌊ n
2 ⌋ pairwise disjoint edges.

▶ Theorem 3. Every simple drawing of Kn contains at least
⌊√

n
48

⌋
pairwise disjoint edges.

2 Proof of Theorem 2

To prove Theorem 2, we will use the following lemma.

▶ Lemma 4. Let D be a generalized twisted drawing of K4, with vertices {v1, v2, v3, v4}
labeled counterclockwise along the circle. Then the edges v1v3 and v2v4 do not cross.

Proof. Assume, for a contradiction, that the edge v1v3 crosses the edge v2v4. There are two
possibilities to draw the crossing edges v1v3 and v2v4, depending on whether v1v3 crosses
the (straight-line) segment from O to v4 or not; cf. Figure 2. In both cases, there is only
one way to draw v1v2 such that the drawing stays generalized twisted, yielding two regions

7
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Figure 2 The two possibilities to draw v1v3 and v2v4 crossing and generalized twisted.

bounded by all drawn edges. The vertices v3 and v4 lie in the same region. Since a simple
drawing of K4 has at most one crossing, the edge v3v4 cannot leave this region. However, it
is impossible to draw v3v4 without leaving the region such that it is c-monotone and crosses
the ray r (see the dotted arows in Figure 2 for necessary emanating directions of v3v4). ◀

With Lemma 4, we can find
⌊

n
2

⌋
pairwise disjoint edges in generalized twisted drawings.

Proof of Theorem 2. Let D be a generalized twisted drawing of Kn. Let S be the set of edges
v1v⌈ n

2 ⌉+1, v2v⌈ n
2 ⌉+2, . . . , v⌊ n

2 ⌋vn. Every pair of edges in S has the form viv⌈ n
2 +i⌉, vjv⌈ n

2 +j⌉,
where 0 < i, j <

⌊
n
2

⌋
. Thus, all edges in S are pairwise disjoint by Lemma 4. ◀

3 Proof Sketch of Theorem 3

The complete proof of Theorem 3 will appear in a future full version of this paper. We sketch
the proof here. We will use the following two theorems.

▶ Theorem 5 ([4]). Any maximal plane subgraph of a simple drawing of Kn is biconnected.

▶ Theorem 6 ([7]). Let D be a simple drawing of Kn with n ≥ 3. Let H be a connected
plane subdrawing of D containing at least two vertices, and let v be a vertex in D \ H. Then
D contains two edges incident to v that connect v with H and do not cross any edges of H.

Let D be a simple drawing of Kn, and let M be a maximal plane matching of D. If
|M | ≥

√
n
48 , then Theorem 3 holds. So assume that |M | <

√
n
48 . We show how to find

another plane matching, whose size is at least
√

n
48 , which is a contradiction.

We consider a maximal plane subdrawing H of D that contains M . It is biconnected by
Theorem 5, and thus partitions the plane into faces. By counting arguments and planarity,
we can show that there exists a face f in H such that the number of (unmatched) vertices of
D inside f is at least

√
48n
12 |f |, where |f | denotes the number of (matched) vertices on the

boundary of f .
From f and the set U(f) of vertices strictly inside f , we construct a plane subdrawing

H ′ as follows; see Figure 3. We add the vertices and edges on the boundary of f , and for
every vertex in U(f), we add the vertex and two edges of D incident to the vertex such that
the resulting drawing stays plane in every step. These two edges exist by Theorem 6. Since
M is maximal, no edge in H ′ can connect two vertices of U(f) (as they are unmatched).
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v
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f

Figure 3 The plane subgraph H ′ contains two (blue) edges for every (red) vertex in U(f).

O=̂v

w

r=̂vw

f

v

w

f
Uvw

vw

Figure 4 The vertices in Uvw induce a subdrawing that is weakly isomorphic to a generalized
twisted drawing. (On the right the edges in D′ incident to the leftmost vertex of Uvw are depicted).

By counting arguments and planarity, we can show that there are two vertices, v and
w, on the boundary of f , such that the cardinality of the set of vertices in U(f) that are
connected to both v and w in H ′ is at least

√
n
12 . We call this set Uvw; see Figure 4.

Finally, we can prove that the subdrawing D′ of D induced by the vertices in Uvw is
weakly isomorphic to a generalized twisted drawing, because every edge in D′ must cross the
edge vw, see Figure 4 (right). Therefore, by Theorem 2, there are

⌊√
n
48

⌋
pairwise disjoint

edges in D′ and thus in D.
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Abstract
A key result in computational 3-manifold topology is that any two triangulations of the same
3-manifold are connected by a finite sequence of bistellar flips, also known as Pachner moves. We
strengthen this result by showing that there must always be a sequence that satisfies a rigid property
that we call “semi-monotonicity”.
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For computational purposes, simplicial complexes are often prohibitively large; thus, it is

useful to work with a more flexible (and typically smaller) structure called a one-vertex
triangulation. Every 3-manifold1 admits a one-vertex triangulation [3].

I Notation 1. In the statements of Theorem 2, Conjecture 3 and Theorem 4, let T and U
be two one-vertex triangulations of the same 3-manifold, each with at least two tetrahedra.

How can we tell when two one-vertex triangulations represent the same 3-manifold? It is
clear that applying a 2-3 or 3-2 move (see Figure 1) preserves the underlying 3-manifold.2
Matveev [4, p. 29] and Piergallini [5] independently proved the following theorem.

I Theorem 2 (Matveev and Piergallini). T can always be transformed into U by a finite
sequence of 2-3 and 3-2 moves.

Unfortunately, the Matveev-Piergallini result says nothing about the structure of the
sequence of moves. Being able to guarantee some structure could be useful for theoretical
applications, such as proving new topological invariants for 3-manifolds. A natural way to
impose structure is to require our sequences to break up into two parts: first, a (monotonic)
ascent, where the moves only increase the number of tetrahedra; and second, a (monotonic)

∗ This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 For an introduction to 3-manifold topology that is written for a wide audience, see [6].
2 The 2-3 and 3-2 moves are two of the four moves known collectively as bistellar flips or Pachner moves.
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2-3

3-2

Figure 1 The 2-3 and 3-2 moves. The shaded triangles are the internal faces.

descent, where the moves only decrease the number of tetrahedra. Based on detailed
experiments, it seems reasonable to believe the following claim.

I Conjecture 3. T can always be transformed into U by a sequence consisting of: an ascent
via zero or more 2-3 moves, and then a descent via zero or more 3-2 moves.

We prove a variant of this conjecture where we allow the descent to begin with some 2-0
moves; Figure 2 illustrates the 2-0 move (as well as its inverse, the 0-2 move). It is important
to note that certain conditions are required for a 2-0 move to preserve the underlying
3-manifold of a triangulation; see [1, pp. 8–9] for a list of such conditions.

0-2

2-0

Figure 2 The 0-2 and 2-0 moves. The shaded triangles are the internal faces.

We call a sequence semi-monotonic if it consists of: an ascent via zero or more 2-3
moves, and then a descent via zero or more 2-0 moves followed by zero or more 3-2 moves.

I Theorem 4. T can always be transformed into U by a semi-monotonic sequence.

Proof outline. Given any sequence Σ of 2-3, 3-2 and 2-0 moves, let δΣ denote the last 2-3
move in Σ. We say that Σ is benign if all the 2-0 moves occur consecutively in a (possibly
empty) sequence appearing immediately after δΣ. Observe that a benign sequence Σ is
semi-monotonic if and only if all the 3-2 moves occur after the 2-3 move δΣ . In other words,

12



we can regard any 3-2 move that occurs before δΣ as a bad 3-2 move, and hence say that a
benign sequence is semi-monotonic if and only if it has no bad 3-2 moves.

With this in mind, our strategy is to start with a benign sequence that transforms T into
U , and to then reduce the number of bad 3-2 moves until we get a semi-monotonic sequence.
The Matveev-Piergallini theorem (Theorem 2) tells us that T can be transformed into U by
a sequence that uses only 2-3 and 3-2 moves; we use this as our benign starting sequence.

To reduce the number of bad 3-2 moves in a benign sequence Σ, let γ denote the last
such move in Σ. Consider the subsequence of moves starting with γ and ending with δΣ ; this
subsequence consists of: a single 3-2 move (namely γ), and then a series of 2-3 moves ending
with δΣ . We claim that this subsequence can be replaced by a new subsequence consisting of:
a series of 2-3 moves, and then a series of 2-0 moves. Observe that this “replacement step”
(if it is possible) yields a new benign sequence Σ′ that has one less bad 3-2 move than Σ.

It only remains to show that the “replacement step” is indeed always possible. The full
details can be found in [2]; here, we settle with giving a rough sketch.

Our argument is more easily described by converting the triangulations into their dual
special spines. In essence, the special spine dual to a triangulation is the 2-dimensional
complex P obtained by replacing each tetrahedron with a six-winged “butterfly”, as shown
in Figure 3; see [4, pp. 12–13] for a more rigorous description of this duality.

Figure 3 The dual butterflies inside two adjacent tetrahedra.

We can translate the 2-3 and 0-2 moves (as well as their inverses, the 3-2 and 2-0 moves)
into the setting of special spines; see Figures 4 to 7.

e 2-3

Figure 4 The 2-3 move along the red edge e.

A useful trick when working with special spines is using a 0-2 move to create an “arch-
with-membrane”, or “arch” for short; this is illustrated in Figures 8 and 9. At the very end,
we use this idea in reverse: we destroy an arch using a 2-0 move.

13



e 2-3

Figure 5 A simplified drawing of the 2-3 move.

α

C C ′

C ′′
0-2

Figure 6 The 0-2 move along the red dashed curve α.

α

C C ′

C ′′
0-2

Figure 7 A simplified drawing of the 0-2 move.

α
isotopy 0-2

Figure 8 We can create an arch by performing a 0-2 move along the curve α.

Figure 9 A simplified drawing of an arch.
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With this in mind, let P and Q be two special spines, and suppose we have a sequence
γ, δ1, . . . , δk transforming P into Q, such that γ is a 3-2 move and each δi is a 2-3 move.
Our “replacement step” begins by replacing the 3-2 move γ with two 2-3 moves, as shown in
Figure 10; this creates an arch in the special spine. We then perform each 2-3 move δi in
order, using additional 2-3 moves to shift the arch out of the way whenever necessary; this
idea is illustrated in Figure 11. To recover the special spine Q, we need to remove the arch
that we created; as shown in Figure 12, we can do this using a series of 2-3 moves followed
by a series of 2-0 moves. This completes the “replacement step”. J

2-3 2-3

γ

Figure 10 We replace the 3-2 move γ with two 2-3 moves, at the cost of creating an arch.

2-3 δi

Figure 11 To perform the move δi, we first need to shift the grey arch fragment out of the way.

References
1 Benjamin A. Burton. Computational topology with Regina: Algorithms, heuristics and

implementations. In Geometry and Topology Down Under, volume 597 of Contemporary
Mathematics, pages 195–224. American Mathematical Society, 2013.

2 Benjamin A. Burton and Alexander He. Connecting 3-manifold triangulations with monotonic
sequences of bistellar flips. arXiv:2012.02398, 2020.

3 William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. J. Differential
Geom., 65(1):61–168, 2003.

4 Sergei V. Matveev. Algorithmic Topology and Classification of 3-Manifolds, volume 9 of
Algorithms and Computation in Mathematics. Springer-Verlag, second edition, 2007.

5 Riccardo Piergallini. Standard moves for standard polyhedra and spines. In III Convegno
Nazionale Di Topologia: Trieste, 9-12 Giugno 1986 : Atti, number 18 in Rend. Circ. Mat.
Palermo (2) Suppl., pages 391–414, 1988.

6 Jeffrey R. Weeks. The Shape of Space. CRC Press, second edition, 2002.

15



remove

2-3

2-3, 3 times

2-0

2-0, 3 times

2-0 (destroy arch)

Figure 12 Removing an arch using 2-3 and 2-0 moves.
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Abstract
Given is a 1.5D terrain T , i.e., an x-monotone polygonal chain in R2. Our objective is to approximate
a largest perimeter convex polygon with at most k vertices inside T . We introduce a general algorithm
that efficiently approximates such polygons with a constant k > 0 within a factor (1 − ϵ).
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1 Introduction

Computing the largest-area triangle inside 1.5D terrains was studied in [2], by designing
a quadratic exact algorithm and sub-quadratic approximation algorithms. We study the
following problem: Let T be a 1.5D terrain of n vertices, and let k > 0 be a constant integer;
compute the largest-perimeter convex polygon with at most k vertices in T . See Figure 1(a)
for an illustration for k = 3. Table 1 gives a summary of the new and known results. We
refer the reader to [1] for recent results on polygon inclusion in simple polygons.

2 Largest Perimeter

Let T be a 1.5D terrain. We first define the diameter of T as the longest line segment within
T . Let l∗ denote the diameter of T .

▶ Lemma 1. l∗ is either (1) supported by two convex vertices, (2) supported by a reflex
vertex and a convex vertex, or (3) supported by two reflex vertices of the terrain.

See Figure 1(b). For computing l∗, the existence of an O(n2 log n) time algorithm by
considering any pair of vertices and ray shooting is obvious. However, it can be slightly
improved by careful analysis. Any arbitrary triangle which has the diameter of the terrain as
a side has at least 1

3 of the perimeter of the optimal solution. This gives a simple O(n2 log n)
time approximation algorithm which we use to design our FPTAS.

Let P ∗ and P denote the largest perimeter triangle and a 1
3 -approximation of the largest

perimeter triangle, respectively. Also let |P | denote the perimeter of P . Consider a grid of
big cells of side length 6|P |. Let the bottom left corner of a big cell in the grid lies at the
leftmost vertex of T (let (0, 0) denote its coordinates). Consider three copies of this big cell
with the bottom left corners at coordinates (3|P |, 0), (0, 3|P |) and (3|P |, 3|P |), respectively.

∗ This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Measure Time Apprx. In Object Ref.
Max A Triangle O(n log n) 1/4 Simple Polygon [4]
Max A δ-Fat Triangle O(n) 1 − ϵ Simple Polygon [4]
Max A Triangle O(n2) exact Terrain [2]
Max A Triangle O(n log n) 1/2 Terrain [2]
Max A Triangle O(ϵ−1n log2 n) 1 − ϵ Terrain [2]
Max P Triangle O(ϵ−6n log2 n) 1 − ϵ Terrain Thm. 3
Max P at most k-gon O(k10ϵ−2kn log2 n) 1 − ϵ Terrain Sec. 2.1

Table 1 New and known results; A stands for the area, and P stands for the perimeter. In a
δ-Fat triangle all three angles are at least δ.

(1)

(3)

(2)

(2)

l∗

(a) (b)

Figure 1 (a) The largest perimeter triangle in T . (b) Different candidates of l∗.

Since T is monotone with a horizontal base, the union of these 4 squares covers the terrain
entirely, and since a triangle has at most one obtuse angle, P ∗ is contained in one of the
big cells entirely. From the construction, each edge of T intersects at most 4 big cells. We
then decompose each big cell by O( 1

ϵ ) finer cells of side length ϵ|P |, for a given ϵ > 0. Let X

denote the set of finer cells. Observe that the total complexity of the intersection of X and T
is in O(n) since each edge of T is intersecting with at most 4 big cells. So computing the set
X ′ ⊆ X of finer cells that are intersecting with T takes O(n) time. We consider any of the
four big cells independently. Let ci, cj and ck be any triple of finer cells in X ′, all in a specific
big cell C. For two line segments si

p and sj
q, we consider the intersection of the visibility

polygons by assuming an edge guard at si
p and another one at sj

q. However, we do not need
to compute the visibility polygons explicitly. Let V ji

q denote the ranges on the corresponding
side of ci that are visible to sj

q. We are interested in determining whether there are three line
segments in T ∩ C whose endpoints lie at the intersection of the pairwise visibility ranges
of the segments si

p ⊂ ci, sj
q ⊂ cj and sk

r ⊂ ck. This happens when the intersection of the
pairwise visibility ranges of si

p, sj
q and sk

r have a non-empty intersection, i.e., V ij
p ∩ V kj

q ≠ ∅,
V ji

q ∩ V ki
r ̸= ∅ and V ik

p ∩ V jk
r ̸= ∅, as illustrated in Figure 2.

Let si
1, . . . , si

ni
and sj

1, . . . , sj
nj

denote the sequence of the intervals on ci and cj , respect-
ively, that lies within T . For each pair of si

p and sj
q, to efficiently determine whether there is

any segment which lies within T entirely, and with endpoints at these intervals, we use a
combination of two data structures.

For two points p ∈ si
p and q ∈ sj

q, the line segment pq must lie in the visibility range of
both si

p and sj
q. The visibility range of any of si

p and sj
q can be computed in O(log n) time

by performing shortest path queries on preprocessed connected components achieved in O(n)
time [3], and checking whether they can see each other or not can be done at the same time
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ci

cj

ck

p

q

sip

sjq

V ji
q

Figure 2 Computing the visibility ranges on a triple of finer cells that are introducing a triangle.
The visibility ranges are shown in green fat segments. This triple of segments have a non-empty
intersection for the pairwise visibility ranges of the segments.

by simple visibility queries inside simple polygons. We first make a 1D range tree at the
indices of the intervals in ci in O(ni log ni) time, and of the height O(log ni). Then we make
an interval tree at each node of the constructed range tree. Thus our data structure has a
size O(ni log ni) and takes O(ni log2 ni) time (spending O(ni log ni) time at each level of the
range tree). The queries are is there any interval si

p in ci which is visible from an interval sj
q

in cj . This can be answered in O(log ni) time. Performing nj queries like this gives us the
running time O((ni + nj) log2 ni) for each pair of cells in a big cell. There are O(ϵ−2) cells,
and we consider any triple of cells. For any triple of intervals that the intersection of the
pairwise visibility regions is non-empty, we compute the largest perimeter triangle.

Solution on a triple of segments Any triple si
p, sj

q, sk
r of segments that may contain

the vertices of P ∗ have a horizontal or vertical direction. Suppose the locations of two points
on their segments, say si

p, sj
q are fixed. The function that describes the longest perimeter

changes as a symmetric hyperbolic function with a unique minimum. Thus there will always
be at least one direction in which a point can be moved such that the size does not decrease.

▶ Lemma 2. For any triple si
p, sj

q and sk
r of segments, the largest perimeter triangle P ∗ with

one vertex at each segment has its vertices at the endpoints of the segments.

See Figure 3. Consequently, one can compute a (1 − ϵ)-approximation of the largest
perimeter triangle in a terrain in O(n2 log n + ϵ−6n log2 n) time. We note that there exists a
(1 − ϵ)-approximation with running time O(ϵ−4n log2 n) for the longest line segment inside a
simple polygon [4]. Using this algorithm for computing the diameter of the terrain, we have:

▶ Theorem 3. One can compute a (1 − ϵ)-approximation of the largest perimeter triangle in
a terrain T of n vertices in O(ϵ−6n log2 n) time.
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skr

sip

sjq
q

p

k

Eij

Figure 3 Eij is the constructed ellipse at P ∗ = △pqk. If there is at least one line segment sk
r

that does not contribute an endpoint to P ∗, at least one of the two ellipses which are constructed at
p, q and one of the endpoints of sk

r contains Eij (the two ellipses coincide if sk
r is parallel to pq).

2.1 Extension to polygons of k > 3 vertices
Extension of the triangle algorithm to convex polygons of k > 3 vertices and to the area
measure is straightforward. We consider any set of k intervals, as before, since we need to
compute the pairwise visibility conditions of the visibility ranges for all the selections of k

intervals. Note that the non-empty intersection condition is necessary again to find a largest
perimeter polygon of k vertices that lie inside T entirely, however, in the algorithm, we may
report a convex polygon of less than k vertices if it has a larger area/perimeter than any
convex k-gon with vertices at the selected k intervals.
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An exact optimal algorithm for the discrete median
line segment problem in the plane?∗
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Abstract
We present an exact algorithm for computing the discrete median line segment of a set P of n points
in the plane – that is, finding a line segment with both of its endpoints belonging to P such that the
sum of the distances from P to the line segment is minimized. Our algorithm runs in O(n2) time.
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1 Introduction

Given a set P of n points in R2, the objective of the discrete median line segment (DMLS)
problem is to locate a line segment bounded by two points of P such that the sum of the
Euclidean distances from P to the line segment is minimized.

The proposed problem is closely related to a class of “discrete” problems in facility
location theory, where the goal is to select one point (or several) from a given set of points P

so as to minimize an objective function that is distance-dependent with respect to P .
There are two types of problems in facility location theory depending on the objective

function used – i) center (minimax) and ii) median (minsum). The discrete center problem
asks to locate a point in P that minimizes the maximum of the distances between the points
of P and the located point. The discrete center problem can be solved in O(n log n) time
using the farthest-neighbor Voronoi diagram of P [2, Chapter 7]. The discrete median, which
is commonly known as the medoid, is a point in P that has the minimal sum of distances to
P . One can find the medoid of P by simply computing all O(n2) pairwise distances. It has
been argued that no exact algorithm exists for solving the medoid problem in o(n2) time [5].

2 Solution approaches

One can find the DMLS in O(n3) time by enumerating all O(n2) candidate line segments
and computing the corresponding sum of O(n) distances for each candidate.

An improved algorithm. We now describe an O(n2 log n)-time algorithm for the DMLS
problem. The idea is to preprocess P into some data structures of logarithmic query times
for use in computing the sum of distances for each candidate line segment. The required
data structures are derived from solving the following two subproblems (refer to Figure 1A).

∗ This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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An exact optimal algorithm for the discrete median line segment problem in the plane?

Figure 1 (A) Illustration for Subproblems 1 and 2. (B) Computing the distances from P to s.

▶ Subproblem 1. Given a set P of n points in the plane, let H be a query half-plane bounded
by a line L containing a point p ∈ P . Preprocess P so that, for a point p ∈ P and a half-plane
H given at query time, one can efficiently report the sum of the distances from P ∩ H to p.

▶ Subproblem 2. Given a set P of n points in the plane, let H be a query half-plane bounded
by a line L containing a point p ∈ P . Let ρ be the ray emanating from p, perpendicular to L,
and contained in H. Preprocess P so that, for a point p ∈ P and a half-plane H given at
query time, one can efficiently report the sum of the orthogonal distances from P ∩ H to ρ.

Here we give a brief description of the preprocessing procedure for solving the subproblems.
For each point p ∈ P , we i) sort the points of P \ {p} around p in O(n log n) time, ii) define
a sequence of O(n) intervals in the sorted order such that P ∩ H remains constant within
each interval, iii) enumerate the intervals in the sorted order so that it takes O(1) time to
evaluate the sum of distances in each interval, and iv) store the distance sums computed for
the intervals in an O(log n)-query time data structure. The results are summarized below.

▶ Lemma 1. In Subproblem 1 (resp. 2), a set P of n points can be preprocessed in O(n2 log n)
time into an O(n2)-size data structure so that, given a query point p ∈ P and a query half-
plane H, one can report the distance sum from P ∩ H to p (resp. ρ) in O(log n) time.

Let a and b denote the two endpoints of a candidate line segment s, where a, b ∈ P

(Figure 1B). Let La (resp. Lb) be the line passing through a (resp. b) and perpendicular
to s. Let Ha (resp. Hb) be the half-plane bounded by La (resp. Lb) and not containing s.
Define Hab = R2 \ (Ha ∪ Hb). Let D1 and D2 denote the query data structures derived from
Subproblems 1 and 2, respectively. We can compute the sum of the distances from P \ {a, b}
to s using D1 and D2 as follows.

We denote by Σα the sum of the distances from P ∩ Hα to s, where α ∈ {a, b, ab}. We
can determine Σa by querying D1 using a and Ha as the query inputs. Similarly, Σb can
be found using D1 with b and Hb as inputs for the query. To calculate Σab, we perform the
following queries. Define Ha

′ = R2 \ Ha. Let Υa be the distance sum reported by querying
D2 using a and Ha

′ as the query inputs. Likewise, let Υb be the distance sum reported from
a query of D2 with b and Hb as the query inputs. Then, Σab = Υa − Υb. Finally, the distance
sum from P \ {a, b} to s is given by Σa + Σb + Σab. Overall, we perform four O(log n)-time
queries for each of O(n2) candidate line segments. We hence reach the following conclusion.

▶ Theorem 2. The DMLS problem can be solved in O(n2 log n) time using O(n2) space.

A further improvement. We can reduce the running time of the algorithm above by an
O(log n) factor as follows. Using the point-line duality transform, point set P can be mapped
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into a set of n lines, whose arrangement can be constructed in O(n2) time using O(n2) space
[1, 3]. For any point p ∈ P , the point set P \ {p} can be obtained in sorted order around p

by simply traversing the vertices along the dual line of point p in O(n) time. These sorted
points correspond to the limit points of the sorted intervals in Subproblems 1 and 2.

In addition, we note that each query half-plane in our problem is associated with a line
containing a pair of points in P . Thus, we can compute in advance the set of all O(n) possible
query half-planes for each point p ∈ P . We can then index each of these half-planes, and use
the indices to create hash tables for look-up in place of the current logarithmic-time query
data structures D1 and D2. That is, in Subproblems 1 and 2, for each point p ∈ P , we create
a linear-size (perfect) hash table that maps each of the O(n) pre-computed query half-planes
to its corresponding sum of distances. As a result, we can perform each query in O(1) time.

▶ Theorem 3. The DMLS problem can be solved in O(n2) time using O(n2) space.

Our algorithm matches in time complexity the lower bound of the medoid problem, as
well as the fastest known algorithm for finding the median line in R2 (i.e., the line having the
minimal sum of distances from P ) [4]. Hence, we conjecture that our algorithm is optimal.
Notice that, by allowing each point of P to be associated with a positive weight, we can
generalize our problem to one of minimizing the sum of weighted distances. The algorithms
proposed herein can be directly extended to solve the weighted problem with the same time
and space bound. Finally, it is worth noting, for the sake of completeness, that we have also
derived an O(n2)-time algorithm for solving the discrete center line segment problem.
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Abstract
In this paper, we analyze the number of straight-line perfect matchings with k crossings on point
sets of size n = 2m in general position. We show that for every k ≤ 5n/8 − Θ(1), every n-point set
admits a perfect matching with exactly k crossings and that there exist n-point sets where every
perfect matching has fewer than 5n2/72 crossings. We also study the number of perfect matchings
with at most k crossings. Finally we show that convex point sets maximize the number of perfect
matchings with

(
n/2

2

)
crossings and

(
n/2

2

)
−1 crossings.
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1 Introduction

The question of how many different plane (crossing-free) straight-line perfect matchings can
be drawn on a point set P in general position has been extensively studied [4, 5, 7, 11, 12]. It
is known that point sets in convex position (for short, convex point sets) with n = 2m points
admit exactly Cm plane perfect matchings, where Cm = 1

m+1
(2m

m

)
∈ 2Θ(n) is the mth Catalan

number. Further, for general n-point sets, Cm is a lower bound. If we allow crossings, then we
can draw every possible perfect matching, and on n vertices there exist (n − 1)!! ∈ 2Θ(n log n)

of them. Additionaly, any such matching has at most
(

n/2
2

)
∈ O(n2) crossings. However,

not much is known about the number or existence of straight-line perfect matchings with k

crossings. For convex point sets, there are several results on the distribution of crossings
over all perfect matchings [6, 9, 10]. Considering general point sets, Pach and Solymosi [8]
characterize which point sets admit perfect matchings with

(
n/2

2
)

crossings.
In this work, we analyze the number of straight-line perfect matchings with exactly or at

most k crossings that a point set can admit. All point sets are in general position and have
an even number of points. Further, k-crossing matchings and ≤ k-crossing matchings refer
to perfect matchings with exactly k and at most k crossings, respectively. We denote by
pmk(P ) the number of k-crossing matchings on a point set P , by pmmax

k (n) the maximum
of pmk(P ), taken over all n-point sets P , and by pmmin

k (n) the minimum of pmk(P ), also
taken over all n-point sets P . Similarly, we denote with pm≤k(P ) the number of ≤ k-crossing
matchings on a point set P and let pmmax

≤k (n) and pmmin
≤k (n) be defined analogously as before.

Finally, pmconv
k (n) is the number of k-crossing matchings on a convex n-point set.

The complete proofs for all statements will appear in a future full version of this paper.

2 Exactly k crossings

Our first two theorems imply that for every n-point set P and every k ∈ {0, . . . , 5n
8 − Θ(1)},

P admits a k-crossing matching, while this is not the case for k ≥ 5n2

72 ; see also Figure 1.

▶ Theorem 1. For 0 ≤ k ≤ 5n
8 − Θ(1) crossings, it holds that pmmin

k (n) ≥ 1.

Proof sketch. The following statements can be shown by exhaustive computations:

(S1) For any k ≤ 2 every 8-point set admits a k-crossing matching.
(S2) For any k ≤ 3, every 10-point set admits a k-crossing matching.
(S3) Every 15-point set admits a matching with 4 edges and 6 crossings [3].

To prove Theorem 1, we process P from left to right in groups of 32 points. Using (S1)–
(S3), we find a perfect matching for each group with at least 20 crossings. We iterate this
step, as long as the total number of crossings is at most k, and need at most 32

20 k = 8
5 k < n

points. The remaining points are then used to fine tune the number of crossings. ◀

▶ Theorem 2. For k ≥ 5n2

72 crossings, it holds that pmmin
k (n) = 0.
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Figure 1 Illustration for the proof of Theorem 2: A point set P for which every perfect matching
has < 5n2

72 crossings (left). Interior (I1) and outgoing (O0, O1) matching edges for wing 1 of P (right).

3 At most k crossings

We next show that if k is super-linear in n, then the number of ≤ k-crossing matchings is
super-exponential for every n-point set.

▶ Theorem 3. For k ∈ ω(n) crossings, it holds that pmmin
≤k (n) ∈ 2Ω(n log( k

n )).

Proof sketch. We split the n points to n2

k disjoint groups of size k
n . Any combination of

perfect matchings on those groups has at most n2

k · k2

n2 = k crossings. The bound then follows
from a lower bound on the number of perfect matchings on k

n points. ◀

Note that for a ≤ k-crossing matching, at most 4k points can be incident to crossing
edges. Hence, the next theorem implies the upper bound on pmmax

≤k (n) stated in Corollary 5.

▶ Theorem 4. For an n-point set P and 0 ≤ x ≤ n, let pmx(n) be the number of perfect
matchings whose crossing edges are incident to at most x points. Then pmx(n) ∈ 2O(n+x log x).

Proof sketch. The bound is obtained by combining the upper bound on the number of
perfect matchings on x points, with an upper bound on the number of plane perfect matchings
on n − x points and with the number of possible subsets of P of size x. ◀

▶ Corollary 5. pmmax
≤k (n) ∈ 2O(n+k log k).

For k ∈ Ω(n), this bound is worse than the trivial upper bound from the number of all
perfect matchings. For k ∈ O( n

log n ) we get a bound of 2O(n), which is asymptotically tight.

4 Convex position

We have pmmin
k (n) ≤ pmconv

k (n) ≤ pmmax
k (n). It is well known that the convex sets minimize

the number of plane perfect matchings; see for example [2, 7]. Hence, we have pmmin
0 (n) =

pmconv
0 (n). On the other hand, considering the maximum number µ :=

(
n/2

2
)

of crossings,
we can show that for k ∈ {µ, µ −1}, convex sets maximize the number of different k-crossing
matchings, and that all n-point sets achieving these maximum numbers have exactly n

2
halving edges (edges that have n−2

2 points of the set on each side of their supporting line).
The result for k = µ is a direct consequence of Theorems 1 and 2 in [8].

▶ Proposition 6. For µ =
(

n/2
2

)
crossings, it holds that pmconv

µ (n) = pmmax
µ (n) = 1.

▶ Theorem 7. For n ≥ 6 and µ −1 =
(

n/2
2

)
− 1 crossings, it holds that

(1) pmconv
µ −1(n) = pmmax

µ −1(n) = n
2 , obtained by any n-point set with exactly n

2 halving edges.
(2) Any n-point set P with more than n

2 halving edges has pmµ −1(P ) ≤ 2.
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Proof sketch. Any matching with µ −1 crossings has exactly one pair of non-crossing edges.
The endpoints of these edges can be either in convex position (Case 1) or not (Case 2). It can
be shown that Cases 1 and 2 match statements (1) and (2) of the theorem, respectively. ◀

In ongoing work, we investigate for which values of k and n it holds that pmconv
k (n) ∈

{pmmin
k (n), pmmax

k (n)}; exhaustive computations for all point sets of small size indicate that
this might be true for more than just k ∈ {0, µ −1, µ}; Figure 2 shows the results for n = 10.
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Figure 2 Comparison of pmmin
k (n), pmmax

k (n), and pmconv
k (n) for n = 10 and 0 ≤ k ≤ 10.
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Abstract
Dimension 4 is the first dimension in which exotic smooth manifold pairs appear — manifolds
which are topologically the same but for which there is no smooth deformation of one into the
other. Despite there being numerous examples of exotic 4-manifolds in the smooth category, explicit
triangulations of these manifolds have been nearly non-existent. We present an implementation of
an algorithm to systematically generate triangulations of a particular class of 4-manifolds. Using
this implementation, we present new triangulations of four different exotic 4-manifold pairs.
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1 Introduction

A pair of smooth manifolds X1, X2 are exotic if they are homeomorphic but not diffeomorphic.
One of the great remaining open problems of classical topology is the smooth 4-dimensional

Poincaré conjecture, which asks whether or not there exist exotic 4-spheres.
Every smooth manifold can be triangulated (i.e. represented as a PL-manifold) [17, 4],

and the converse holds in dimensions ≤ 6 [12]. Consequently, there is hope that one can
study smooth structures on 4-manifolds via combinatorial and computational techniques.

For 0 ≤ i ≤ 4, a 4-dimensional i-handle is a copy of Di ×D4−i, attached to a smooth
4-manifold W via an embedding ϕ : Si−1 ×D4−i → ∂W . A 2-handlebody here refers to a
4-manifold obtained by attaching 2-handles to D4. The attaching map for a single 2-handle in
a 2-handlebody is of the form ϕ : S1×D2 → S3. The image of ϕ(S1×{0}) can be understood
as a knot K in S3. We then “thicken” this cell to be 4-dimensional by specifying a framing
of K (i.e. a trivialisation of the normal disk bundle νK in S3) which describes how the D2

factor of S1 ×D2 “twists” around K. The set of all possible framings on K is in bijection
with π1(SO(2)) ∼= Z [2, 11]. If there are multiple 2-handles, we can visualise a 2-handlebody
as a link L in S3, with an integer attached to each component of L specifying the framing.

I Theorem 1. The manifolds in Figures 1, 2, 3, and 4, are each respectively exotic pairs.

The manifolds which appear in the aforementioned figures are respectively exotic pairs of:
homotopy CP2

0 = CP2 − int(D4), originally due to Akbulut [1]; homotopy S2 ×D2 −D4,
originally due to Yasui [18]; the simplest example of the so-called “nuclei of elliptic surfaces”
due to Gompf [10]; and finally, a pair of homotopy CP2#2CP2 − int(D4) due to Naoe [13].
By a “homotopy X”, we mean a manifold which is homotopy equivalent to X.

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1 Akbulut Exotic Homotopy CP2
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Figure 2 Yasui Exotic Homotopy S2 ×D2 −D4.
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Figure 3 The simplest Gompf Exotic Nuclei.
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Figure 4 Naoe Exotic Homotopy CP2#2CP2 − int(D4).

2 Gems & Crystallisations

In what follows, the term graph is used to refer to finite multigraphs without loops. An edge
colouring of a graph Γ = (V,E) is a surjective map γ : E → ∆n, where ∆n = {0, . . . , n},
such that γ(e) 6= γ(f) whenever e and f share a common vertex.

An (n+1)-coloured graph (Γ, γ) can be used to visualise an n-dimensional pseudocomplex
K(Γ), which is constructed according to the following procedure [9]:

1. For each vertex v ∈ V , take an n-simplex σ(v), with its vertices labelled by 0, 1 . . . , n.

2. For each c-coloured edge between v and w (v, w ∈ V ), identify the (n− 1)-faces of σ(v)
and σ(w) opposite from the vertices labelled by c, so that equally labelled vertices of σ(v)
and σ(w) are identified.

This process is depicted for the three-dimensional case in Figure 5. If K(Γ) triangulates a
PL n-manifold M , then (Γ, γ) is called a gem (graph encoded manifold) representing M .
Figure 6 depicts a gem of the standard S4, and how the resulting triangulation is obtained
by identification of the facets of the two simplices x and y.

An (n+ 1)-coloured graph representing the n-manifold M is called a crystallisation of M
if the subgraph Γĵ = (V (Γ), γ−1(∆n − {j})) is connected for each j ∈ ∆n.

I Theorem 2. Every PL n-manifold admits a crystallisation representing it [14, 8].

0

1

3

2

c c

c

Figure 5 Constructing a triangulation from a coloured graph.
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Figure 6 Left: A gem of S4. Right: The coloured triangulation obtained from the gem.

3 The Algorithm

In [5, 6], Casali describes an algorithmic way to obtain a crystallisation of a 2-handlebody
M = ML directly from a framed link diagram L representing M . Though a theoretical
description and proof of the validity of the construction is given, to the best of the author’s
knowledge, there was until now, no available software implementation. We implement Casali’s
original algorithm for 2-handlebodies using C++: we take as input a combinatorial encoding
of a framed link diagram representing a 2-handlebody and, via the methodology of [5], return
a triangulation of the associated manifold.

4 Results

Our implementation was able to reproduce the results presented in [5] and [6] in the form of
the Poincaré Homology 3-sphere, obtained by +1-framed Dehn surgery along the trefoil knot
and of S2 × S2 −D4. Our software also implements a capping off procedure [7], through
which we were able to also reproduce (after simplifications in Regina [3]) specific pre-existing
triangulations of CP2 and S2 × S2 (cf. p. 16 of [15]).

Using our implementation of Casali’s algorithm and Regina, we obtain triangulations
of the manifold pairs (A1, A2), (Y1, Y2), (N1, N2), and (W1,W2), as depicted in Figures 1,
2, 3, and 4 respectively. Table 1 shows the combinatorial size information of the obtained
triangulations. The isomorphism signatures are available at https://raburke.github.io/.

Manifold Vertices Edges Triangles Tetrahedra Pentachora
A1 5 72 206 207 70
A2 5 156 458 459 154
Y1 5 440 1310 1311 438
Y2 5 508 1514 1515 506
N1 7 88 254 258 88
N2 7 144 422 426 144
W1 7 62 228 280 112
W2 7 64 236 290 116

Table 1 Size of (unsimplified) triangulations.

References
1 Selman Akbulut. An exotic 4-manifold. Journal of Differential Geometry, 33(2):357–361, 1991.
2 Selman Akbulut. 4-manifolds, volume 25. Oxford University Press, 2016.

31

https://raburke.github.io/


R.A. Burke

3 Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-
dimensional topology. http://regina-normal.github.io/, 1999–2019.

4 Stewart S. Cairns. A simple triangulation method for smooth manifolds. Bull. Amer. Math.
Soc., 67:389–390, 1961.

5 Maria Rita Casali. From framed links to crystallizations of bounded 4-manifolds. J. Knot
Theory Ramifications, 9(4):443–458, 2000.

6 Maria Rita Casali. Dotted links, Heegaard diagrams, and colored graphs for PL 4-manifolds.
Rev. Mat. Complut., 17(2):435–457, 2004.

7 Maria Rita Casali and Paola Cristofori. Kirby diagrams and 5-colored graphs representing
compact 4-manifolds, 2021.

8 Alberto Cavicchioli and Carlo Gagliardi. Crystallizations of pl-manifolds with connected
boundary. Bollettino della Unione Matematica Italiana. Series V. B, 01 1980.

9 M. Ferri, C. Gagliardi, and L. Grasselli. A graph-theoretical representation of PL-manifolds—a
survey on crystallizations. Aequationes Math., 31(2-3):121–141, 1986.

10 Robert E. Gompf. Nuclei of elliptic surfaces. Topology, 30(3):479–511, November 1991.
11 Robert E. Gompf and András I. Stipsicz. 4-manifolds and Kirby calculus, volume 20 of

Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999.
12 Morris W. Hirsch and Barry Mazur. Smoothings of piecewise linear manifolds. Princeton

University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of
Mathematics Studies, No. 80.

13 Hironobu Naoe. Corks with large shadow-complexity and exotic four-manifolds. Experimental
Mathematics, 0(0):1–15, 2019.

14 Mario Pezzana. Sulla struttura topologica delle varieta compatte. Atti Sem. Mat. Fis. Univ.
Modena, 23(1):269–277, 1974.

15 Jonathan Spreer and Stephan Tillmann. Determining the trisection genus of orientable and
non-orientable pl 4-manifolds through triangulations. Experimental Mathematics, 0(0):1–11,
2020.

16 The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.6), 2019.
https://www.sagemath.org.

17 J. H. C. Whitehead. On C1-complexes. Ann. of Math. (2), 41:809–824, 1940.
18 Kouichi Yasui. Corks, exotic 4-manifolds and knot concordance. arXiv preprint

arXiv:1505.02551, 2015.

32



Homotopical decompositions of simplicial and
Vietoris-Rips complexes
Wojciech Chachólski !

Mathematics, KTH, S-10044, Stockholm, Sweden

Alvin Jin !

Mathematics, KTH, S-10044, Stockholm, Sweden

Martina Scolamiero !

Mathematics, KTH, S-10044, Stockholm, Sweden

Francesca Tombari !

Mathematics, KTH, S-10044, Stockholm, Sweden

Abstract
Motivated by applications in topological data analysis, we consider decompositions of simplicial
complexes based on coverings of their vertices. We aim to study under what circumstances the
global homotopy type of a simplicial complex can be inferred from the local homotopy type of its
components. After addressing this problem in general, we specialise it to Vietoris-Rips complexes.
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1 Introduction

This note is based on the results presented in [6]. In topological data analysis the input
is commonly given by a pseudometric space. This spacial information is then converted
into geometrical information by constructing a filtered simplicial complex depending on the
underlying pseudometric. The geometrical information that they summarise leads to the
definition of global homology-based invariants describing the dataset, such as persistent
homology [4, 8, 9, 11, 12], barcodes [5], stable rank [7, 15] and persistence landscape [3].
Their global nature prohibits the computation of such invariants for large datasets. However,
decomposing the dataset might facilitate the step from local to global analysis, which would
allow parallelisation of computations [14] (see also [10, 13] for related work). The issue is that
this step is not always possible, since in general the homotopy type of a simplicial complex

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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and of its decomposition is different. Our work aims to study this difference and under what
circumstances it is possible to retrieve the homology of a simplicial complex from what we
called its data-driven decomposition. Although our techniques hold for generic simplicial
complexes, we also provide some results about Vietoris-Rips complexes arising from distance
spaces, pseudometric spaces and, in particular, metric gluings.

2 General case

Let K be a simplicial complex (also seen as a poset with the inclusion of simplices) and let
K0 be the collection of its vertices. If K0 = X ∪ Y , with A = X ∩ Y , then we can restrict K

to X and Y , obtaining the two subcomplexes KX and KY . Their union KX ∪ KY is still a
subcomplex of K, that we refer to as its data-driven decomposition. Furthermore, for every
simplex σ in K we define a collection St(σ, A) of non-empty subsets µ of A such that µ ∪ σ

forms a simplex in K. These St(σ, A) are simplicial complexes called obstruction complexes
(Figure 2 shows an example). In order to study the map KX ∪ KY ↪→ K we introduce two
subposets of K: the collection of simplices σ in K such that σ ⊂ X or σ ⊂ Y or σ ∩ A ̸= ∅,
denoted by P , and its complement K \ P , which is the collection of simplices σ in K such
that σ ∩ X ̸= ∅ and σ ∩ Y ≠ ∅ and σ ∩ A = ∅ (see Figure 1). It is possible to show that
KX ∪ KY ↪→ P ↪→ K, where the first poset functor is always a weak equivalence and the
second has fibers having the same homotopy type of certain obstruction complexes.

Figure 1 A representation of a data-driven decomposition is given here. The simplices on the
left, σ and ρ, are examples of elements in P . The simplex on the right, τ , lies in K \ P .

We can now state our main result and an immediate corollary:

▶ Theorem 1. Let C be a closed collection of simplicial sets. Assume that, for every σ in
K \ P , the obstruction complex St(σ, A) is in C. Then the homotopy fibers of the inclusion
KX ∪ KY ⊂ K are also in C.

In other words, our understanding of the inclusion map of a data-driven decomposition of
K into K itself depends only on certain properties of the obstruction complexes associated to
simplices in K \ P . The following are some particular cases of the above theorem specialised
to different closed collections of simplicial sets.

1. If, for every σ in K \P , St(σ, A) is contractible, then KX ∪KY ⊂ K is a weak equivalence.
2. If, for every σ in K\P , St(σ, A) is n-connected, then the homotopy fibers of KX ∪KY ⊂ K

are n-connected and this map induces an isomorphism on homotopy groups in degrees
0, . . . , n and a surjection in degree n + 1.

3. If, for every σ in K \ P , St(σ, A) is is connected and has p-torsion reduced integral
homology in degrees not exceeding n, for some p prime, then the homotopy fibers of
KX ∪KY ⊂ K are connected and have p-torsion reduced integral homology in degrees not
exceeding n. Thus in this case, for prime q ̸= p, KX ∪ KY ⊂ K induces an isomorphism
on H∗(−, Z/q) for ∗ ≤ n and a surjection on Hn+1(−, Z/q).
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Figure 2 The simplicial complex K has five vertices in total. Consider X = {v0, a0, a1, a2} and
Y = {v1, a0, a1, a2} subsets of K0. Then the set A = X ∩ Y = consists of three points {a0, a1, a2}.
The obstruction complex St(σ, A) contains only vertices a0 and a1, but not the edge {a0, a1} .

3 Vietoris-Rips complexes

Given a distance space (Z, d) (d(x, x) = 0 and d(x, y) = d(y, x)) and a non-negative real
number r, we can define the Vietoris-Rips complex at scale r, denoted by V Rr(Z), as the
simplicial complex whose simplices are subsets σ of Z, such that diam(σ) ≤ r (i.e. for every
x and y in Z, d(x, y) ≤ r). In this case V Rr(Z)X = V Rr(X), where X is a subspace of
Z. Hence, the inclusion seen in Section 2 assumes the form V Rr(X) ∪ V Rr(Y ) ↪→ V Rr(Z),
where Z = X ∪ Y and A = X ∩ Y . The following result contains two assumptions that
together guarantee contractibility and non-emptiness of obstruction complexes.

▶ Proposition 2. Assume that A is non-empty and for every x in X \ A, y in Y \ A, and v

in A, the following inequalities hold:
d(x, y) ≥ d(x, v) and d(x, y) ≥ d(y, v),
d(x, y) ≥ diam(A).

Then VRr(X) ∪ VRr(Y ) ↪→ VRr(Z) is a weak equivalence for all r in [0, ∞).

Consider now a pseudometric space (Z, dZ) (distance space with dZ(x, z) ≤ dZ(x, y) +
dZ(y, z)) obtained by gluing together two intersecting pseudometric spaces (X, dX) and
(Y, dY ). Here the pseudometric is given by

dZ(z, z′) =


dX(z, z′) if z, z′ ∈ X

dY (z, z′) if z, z′ ∈ Y

inf{d(z, a) + d(z′, a) | a ∈ A} if z ∈ X \ A and z′ ∈ Y \ A

A space obtained in this way in called a metric gluing (see [1, 2]). For this kind of spaces we
can state the following result, where the assumption ensures contractibility of all obstruction
complexes associated to simplices σ in VRr(Z)\P such that either |σ ∩X| = 1 or |σ ∩Y | = 1.

▶ Proposition 3. Let r be in [0, ∞). For any vertex v in an edge σ in VRr(Z) \ P , if a and
b are elements in A such that d(a, v) ≤ r and d(v, b) ≤ r, then 2d(a, b) ≤ d(a, v) + d(v, b).
Then the homotopy fibers of the inclusion VRr(X)∪VRr(Y ) ↪→ VRr(Z) are simply connected
and this map induces an isomorphism on π0 and π1 and a surjection on π2.
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Abstract
In this project, we built algorithms for maximum cut on unit interval graphs and laminar

interval graphs. We obtained an exact polynomial time algorithm for laminar interval graphs and a
near-linear time 0.66 approximation algorithm for unit interval graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Maximum cut, unit interval graphs, laminar interval graphs, approximation
algorithms

1 Introduction

In the maximum cut (a.k.a., max cut) problem, the input is an undirected graph G = (V, E)
where V is the set of vertices and E is the set of edges, and the goal is to partition V into
two disjoint sets such that the number of edges having their endpoints in different sets is
maximized. Max cut is an NP-hard problem. The celebrated Goemans and Williamson’s
SDP based approximation algorithm for the max cut problem gives an approximation ratio
of ≈ 0.878 [1].

In this project, we are interested in studying the max cut problem for interval graphs.
Formally, let I = {I1, . . . , In} be a set of n intervals on the real line. The interval graph
corresponding to I has a vertex corresponding to each interval in I and an edge is placed
between two vertices if and only if the corresponding intervals intersect.

At SoCG’21, Adhikary et al. [2] will be presenting a result which shows that max cut
is NP-complete even for interval graphs. Unit interval graphs are a special case of interval
graphs where each interval has unit length. An interesting open problem has been to resolve
the complexity status of max cut on unit interval graphs. Two previous results [3, 4] claimed
a polynomial time algorithm for unit interval graphs, but they were reported as flawed
later [5, 6].

Since we are dealing with interval graphs which have more structure than general
graphs, the following questions are of interest:
1. Are there special cases of interval graphs which can be solved exactly in polynomial time?
2. A simple linear-time randomized algorithm exists to solve max cut on general graphs

with an expected approximation factor of 0.5 (randomly throw each vertex in V into one
of the two sets). For interval graphs or its special cases, is it possible to design near-linear
time algorithms (in terms of n) with an approximation factor strictly greater than 0.5?

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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3. Can an approximation factor better than 0.878 be obtained for interval graphs?

In our on going project, we have made progress on the first two questions posed above:
1. For laminar intervals (which are defined later in Section 3) we obtain an exact solution in

polynomial time.
2. For unit intervals, we obtain an O(n log n) time algorithm with an approximation factor

of 0.66.

2 Unit interval graphs

In a unit interval graph all the intervals on the real-line are of unit length. We obtain an
O(n log n) time algorithm with an approximation factor of 0.66. Let I1, I2, . . . , In be the n

intervals in our input sorted in increasing order based on the coordinate value of the left
endpoints. We partition I into groups {S1, S2, .., Sm} as follows:

Let the intervals intersecting I1 be I2, . . . , It. Then S1 consists of {I1, I2, . . . , It}.
Recursively construct the remaining groups based on It+1, . . . , In; stop when all the
intervals have been assigned to some group.

Our grouping has the following two interesting properties: (i) the intervals belonging to the
the same group form a clique, and (ii) for all 1 ≤ i ≤ m, since our inputs are unit intervals,
any interval in Si can only intersect with intervals within its group and its adjacent groups
i.e., Si−1 and Si+1 (if they exist).

Based on this grouping we will partition the intersections among intervals in I into
intra group intersections and inter group intersections. For each intersection between two
intervals in I, if the two intervals belong to same group (resp., different groups), then the
intersection belongs to intra (resp., inter) group intersections.

In the interval graphs setting, max cut problem can be re-stated as follows: color each
interval in I either red or green, so that the number of intersections among intervals having
different colors is maximized. Our final algorithm will make use of one of the following two
subroutines to color the intervals:
1. Alternate interval coloring: For any 1 ≤ i ≤ m, let the intervals in group Si be sorted

in increasing order based on the coordinate value of their left endpoints. The intervals
in this sorted sequence are colored alternatively: either (red, green, red, green,. . . ) or
(green, red, green, red,. . . ).
As a base case, S1 can be colored using either of the two choices. Once group Si is colored,
to color Si+1 there are two choices. The choice which leads to more intersections between
intervals from Si and Si+1 with different colors is chosen.

2. Alternate group coloring: As the name suggests, all the intervals in an odd-indexed group
(such as S1, S3, . . .) are colored red, while the intervals in an even-indexed group (such as
S2, S4, . . .) are colored green.

The alternate interval coloring subroutine works well if the number of intra group intersections
are dominant, whereas the alternate group coloring subroutine works well if the number
of inter group intersections are dominant. Our final algorithm does the following: if the
number of inter group intersections is at most 2(

∑m
i=1⌊|Si|/2⌋ × ⌈|Si|/2⌉), then run the

alternate interval coloring subtroutine; otherwise, run the alternate group coloring subroutine.
Unfortunately, due to lack of space, we are omitting the analysis.
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3 Laminar interval graphs

A laminar interval graph is a subclass of interval graphs in which if two intervals intersect,
then one is completely contained in the other. We built an algorithm based on dynamic
programming to solve the problem exactly in O(n4) time. Currently, we are working on
building an O(n log n) time greedy algorithm to solve the problem exactly.

4 Future work

Immediate open problems which we are working on are the following: (a) Is there a polynomial
time algorithm which gives an exact answer for unit interval graphs?, (b) Is there an O(n log n)
time algorithm to compute an exact answer for laminar interval graphs? and (c) Can an
approximation algorithm better than 0.878 be obtained for (general) interval graphs? Broadly
speaking, maximum cut for geometric intersection graphs looks a fertile field to combine
modern techniques from approximation algorithms (such as SDPs) with geometric approaches.
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Abstract
We study the problem of realizing a feature in persistent homology by a subcomplex of minimal
persistent homological complexity.
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1 Introduction

In topological data analysis, one is typically interested in stable invariants associated to
diagrams of topological spaces arising from data. In our case, we will consider a continuous
function f : X → R on a topological space X. For simplicity, we will assume that X = |K|
is the geometric realization of some finite simplicial complex K, and that f is a piecewise
linear function obtained from linearly interpolating the values of f on the vertices of K. The
two diagrams we will be concerned with are the sublevel set filtration and the level set zigzag
diagram. Persistent homology captures the evolution of the homology of the sublevel sets.
More precisely, let Hp denote p-dimensional homology with coefficients in a fixed field k,
then the persistent homology of (X, f) is defined as the functor HpS↑f : R → Veck, where

S↑f : R → Top S↑f (t) = {x ∈ X | f(x) ≤ t}

It is well-known that, for every such functor, there exists a finite collection of half-open
intervals Bp

f = {[bi, di) : bi ≤ di ≤ ∞} such that HpS↑f ∼=
⊕

[bi,di)∈Bp
f
k[bi,di), where k[bi,di)

denotes the functor R → Veck which is equal to k on [bi, di) and which connects any two
non-trivial vector spaces by the identity map. The collection Bp

f is called the barcode of
HpS↑f , and completely determines HpS↑f up to (non-unique) isomorphism. We define a choice
of basis in persistent homology to be an isomorphism hK : HpS↑f

∼=−→
⊕

[bi,di)∈Bf
k[bi,di), and

we shall refer to h−1
K (k[bi,di)) as a basis element. A finer invariant can be obtained by means

of the p-dimensional levelset persistence barcode Lp
f which measures the evolution of the

homological features across fibers [1]; see Figure 1.

2 Topological Complexity of Features

The barcode Bp
f provides a succinct summary of the homological evolution of the sublevel

filtration of f . But what does a bar really represent? That is a problem which has received
a significant amount of interest within the community. As there is no canonical choice of
basis in homology, one needs to choose representatives which are optimal with respect to a

1 This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Reebh τh B(H0S↑(h)) B(H1S↑(h)) L0(h)

Figure 1 A continuous function h together with its Reeb graph, merge tree and barcodes.

user-defined complexity measure; see e.g. [2]. For instance, finding the representative cycle
of minimal length is a well-studied problem [3][6][5]. In this project we are interested in
representing persistent homology classes by subcomplexes that are topologically as simple as
possible. We measure the topological complexity by means of the persistent homology and
levelset homology across subcomplexes carrying (see below) the feature. In the following L
denotes a subcomplex of K, i : L ↪→ K the corresponding inclusion, and i∗ the induced map
in persistent homology i∗ : HpS↑f◦i → HpS↑f .
I Remark 1. For the sake of simplicity we shall assume that no barcode has an interval
appearing with multiplicity greater than 1.

I Definition 2.

1. The basis element h−1
K (k[bj ,dj)) is carried by the subcomplex L, if [bj , dj) ∈ Bp

f◦i and there
exists a choice of basis hL such that h−1

K (k[bj ,dj)) = i∗(h−1
L (k[bj ,dj))).

2. The bar [bj , dj) ∈ Bp
f is carried by the subcomplex L, if [bj , dj) ∈ Bp

f◦i, and there exist
choices of basis hK and hL such that h−1

K (k[bj ,dj)) = i∗(h−1
L (k[bj ,dj))).

The first definition can be thought of as fixing a persistent homology class and looking
for all boundaries bounding that specific class. The second definition allows for the choice
of any persistent homology class, as long as it defines a bar of the prescribed length. As
a means to visualizing a basis element (bar) in persistent homology, one can consider the
associated Merge tree or Reeb graph of a subcomplex L carrying the basis element (bar).
Such subcomplexes are decidedly non-unique and may have additional persistent homology
“unrelated” to the feature of interest. One thus seeks the carrying subcomplex with the
“simplest” merge tree or Reeb graph. Since meaningful geometrical properties of the two
graphs can be inferred by their associated barcodes in persistent homology and level set
homology in dimension 0, respectively, see Figure 1, we propose to measure ‘simplicity’ in
terms of their associated barcodes in dimension 0. More generally, we introduce the following:
restricting the lifetimes of the bars to the maximum value of f , the total persistence in
dimension p of f is TPp(f) =

∑
[bi,di)∈Bp

f
di − bi, and the total level set persistence in

dimension p of f is TLPp(f) =
∑
〈bi,di〉∈Lp

f
di − bi.

I Definition 3. The persistent homological complexity in dimension q of
a basis element h−1

K (k[bj ,dj)), [bj , dj) ∈ Bp
f , is given by

PHCq(h−1
K (k[bj ,dj))) = min

i : L↪→K
(TPq(f ◦ i)),

a bar [bj , dj) ∈ Bp
f is given by PHCq([bj , dj)) = mini : L↪→K(TPq(f ◦ i)),
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K1 B(H0S↑(K1)) K2 B(H0S↑(K2))

Figure 2 Two simplicial complexes filtered by height with their identical associated barcodes.

where the minima range over all L carrying the basis element and bar, respectively.

By substituting TP by TLP in the above definition one arrives at the level set homological
complexity in dimension q, LHCq. Note that p 6= q in general. The example in figure 2
motivates the above definition. A minimal representative for the blue bar on the left will
pick up all the other red bars in its barcode, whereas a minimal representative for the blue
bar on the right will only have the one other red bar in its barcode.
Using the particular structure of persistent homology in dimension 0, together with standard
shortest path algorithms, we show the following.

I Theorem 4. Let [b, d) ∈ B0
f . Then PHC0([b, d)) and LHC0([b, d)) can be computed in

O(V 2) where V is the total number of vertices in K.

Somewhat surprisingly, fixing a basis element turns out to be a harder problem in dimension
0: Given an instance of the Steiner tree problem in an undirected graph G, we construct from
G a filtered graph G′ such that finding finding a minimal subcomplex carrying a particular
basis element h−1

K (k[b,d)) in 0-dimensional homology amounts to finding a minimal Steiner
tree in G. This proves the following:

I Theorem 5. Let [b, d) ∈ B0
f . It is in general NP-hard to compute PHC0(h−1

K k[b,d))).

Adapting the construction of [4, Section 4], we show the following:

I Theorem 6. Let [b, d) ∈ B1
f . It is in general NP-hard to compute LHC1([b, d)).

We expect similar results to hold for different choices of p and q, for PHC as well as LHC.
Future work includes working out the corresponding results for manifolds, as well as the
hardness of approximation.
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Abstract
A 3-Prismatoid P is the convex hull of two convex polygons A and B which lie in parallel planes
HA, HB ⊂ R3. Let A′ be the orthogonal projection of A onto HB . Building on techniques introduced
by O’Rourke, we show that P can be edge-unfolded if A′ is properly contained in B and P is
sufficiently flat. 1
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1 Introduction

The question whether any 3-polytope has a net, that is, whether it is possible to cut it along
some spanning tree of its edge graph so that the resulting connected surface may be unfolded
flat into the plane without self-overlaps, can be dated back to the ‘Painter’s Manual’ by
Albrecht Dürer [5]. It is thus often referred to as Dürer’s Problem.

A polytope that has a net is called unfoldable. It was proved by Ghomi that every
polytope is unfoldable after an affine stretching, which implies that every combinatorial type
of polytope has an unfoldable realization [6]. O’Rourke recently established the unfoldability
of nearly flat, acutely triangulated convex caps [12, 11]. A convex cap is a polytope C which
has a designated facet F so that the orthogonal projection of C \ F to F is one-to-one. An
acute triangulation is a triangulation so that any interior angle of any triangle is smaller than
π/2. A recent negative result, which Barvinok and Ghomi distilled from a highly original
but flawed preprint of Tarasov [2, 13], concerns the existence of counterexamples to a more
general form of Dürer’s problem which considers cuts along so-called pseudo-edges, which
are geodesics in the intrinsic metric of a polytope. Another generalized form of Dürer’s
problem concerns unfoldability of non-convex polytopes which are combinatorially equivalent
to a convex 3-polytope. There are several ununfoldable families of such polytopes known, cf.
[7, 14, 4].

1.1 Unfolding Prismatoids
A prismatoid P is the convex hull of two (convex) polygons A and B that lie in parallel
planes, say HA and HB . There are two natural ways to unfold primatoids, the band unfolding,
and the petal unfolding [10], which are illustrated in Figure 1.

A band unfolding cuts one lateral edge and unrolls all lateral facets into the plane as one
connected patch, while A and B are left attached to this band along one suitable edge each.
Every prismatoid has a band that can be unfolded without self-overlap [1], but there exist
prismatoids which have no band that admits a non-overlapping placement of A and B [9].

1 This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

44

mailto:radons@math.tu-berlin.de
https://orcid.org/0000-0003-4272-2493


Figure 1 Petal and band unfolding of a prism over a triangle.

In a petal unfolding either A or B is a designated facet to which all lateral facets are left
attached. Assume that the designated facet is B. Then for each vertex v of B exactly one
lateral edge adjacent to v is cut. The so-resulting petals are unfolded into the plane while A

is left attached to this unit along a single suitable edge. A nonobtuse triangle is a triangle so
that all its interior angles are smaller than or equal to π/2. It is known that a prismatoid
has a petal unfolding if all its facets, except possibly its base B, are nonobtuse triangles
[10], or if it is a prismoid, that is, if all its lateral facets are trapezoids [8]. Further, so-called
smooth prismatoids, which are the convex hull of two smooth curves lying in parallel planes,
can be unfolded via a similar ansatz [3].

We say a prismatoid is in volcano constellation if the orthogonal projection of A onto
HB is properly contained in B, or vice versa. In the present work we apply a combination of
the petal and the band unfolding strategies to prismatoids in volcano constellation. That is,
we leave the band of lateral facets largely intact, but not entirely. Crucial in the selection
of the band-patches which are left intact is the notion of radially monotone curves, which
was exploited to great effect in [12]. Just as in the latter reference, we consider nearly flat
instances of the investigated polytopes.

2 Main result

▶ Theorem 1. Assume that H is the xy-plane embedded in R3. Let α > 0 and set Hα :=
R2 ×{α} ⊂ R3 . Further, let A, B ⊂ H be two convex polygons so that A is properly contained
in B or vice versa. Let Aα be the orthogonal projection of A onto Hα. Then there exists
an ε > 0 so that for all α ∈ (0, ε) the pismatoid conv(Aα, B) in volcano constellation is
unfoldable.

2.1 Methods of the proof
Assume that A = A0 is properly contained in B. We construct P 0 as a flat 3-polytope whose
lower facet is B and whose upper facets coincide with the subdivision of B induced by the
orthogonal projection of P onto B. We consider two cases: In the first case B has at least
one interior angle ≤ π

2 , say at a vertex v. In the second, it does not.
In the first case, P 0 can be mirrorored twice at the edges of B incident to v, as indicated

in Figure 2. Let Γ be a subpath of B in clockwise direction, starting at v and ending at
a vertex v′ which has the maximum length so that the sum of the angles spanned by the
outer normal cones at the interior vertices of Γ is ≤ π. Then the subpath of B starting at
v′ and ending at v has the same property. Cut two arbitrary edges e, e′ incident to v and
v′, respectively. At least one of the two so-induced subpaths of the top will also have the
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Figure 2 Reflections and removal of superfluous pieces

latter property. Say, this path is called Γ′. We call the band piece that this subpath bounds
M0 and the other one M1. Now remove the reflection of the top and the mirrored copy of
M0 from one of the reflections of P 0 and M1 from the other. Also, remove the top and the
bands from P 0 itself, and the reflections of the base from both mirrored copys.

Increasing the parameter α induces a continuous deformation of the so-defined unfolding
of P 0. We show that there always exists an edge of Γ′ to which the reflection of A can be
attached, so that for sufficiently small α the unfolding stays one-to-one.

If all interior angles of B are > π
2 , then there must exist edges e, e′ of B so that the angle

of the intersection of the lines through them which faces B is < π
2 . Thus the argumentation

devised for the first case can also be utilized in the second.
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Using Generalized Heegaard Splittings in
Computational 3-Manifold Topology∗
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Abstract
Introduced by Scharlemann and Thompson in 1992, generalized Heegaard splittings provide a powerful
framework for studying 3-dimensional manifolds. Recently they have also found applications in a
computational setting. Extending this line of research, here we outline how they can be used (in
combination with other topological tools) to upper-bound the pathwidth of a hyperbolic 3-manifold
in terms of its volume, improving upon earlier work by Maria and Purcell. To this end, we explain
what generalized Heegaard splittings are, and also discuss the algorithmic implications of our result.
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1 Context and Motivation

Algorithms in computational 3-manifold topology typically take a triangulation as input and
return topological information about the underlying manifold. The difficulty of extracting the
desired information, however, might greatly depend on the choice of the input triangulation.
In recent years, several computationally hard problems about triangulated 3-manifolds
were shown to admit algorithmic solutions that are fixed-parameter tractable (FPT) in the
treewidth1 of the dual graph of the input triangulation [3, 4, 5, 6, 7]. These algorithms still
require exponential time to terminate in the worst case. However, for triangulations with
dual graph of bounded treewidth they run in polynomial time.

In the light of these algorithms, it is compelling to consider the treewidth tw(M) of a
compact 3-manifoldM, defined as the smallest treewidth of the dual graph of any triangulation
thereof. Over the last few years, the quantitative relationship between the treewidth and
other properties of 3-manifolds has been studied in various settings. Together with Spreer
and Wagner we showed that, for certain families of 3-manifolds the Heegaard genus gives
a lower bound on the treewidth and it can be arbitrary large [12]. The proof of this result
rests on the theory of generalized Heegaard splittings, a structure we now briefly review.

∗ This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 The treewidth is a structural graph parameter measuring the “tree-likeness” of a graph. See, e.g., [1].
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2 Generalized Heegaard Splittings

We begin with classical Heegaard splittings, that have been central to the study of 3-manifolds
for over a century [8, 16]. Given a closed, orientable 3-manifoldM, a Heegaard splitting is a
decomposition ofM into a union of two homeomorphic handlebodies2 glued together along
their boundary surface called the splitting surface. The Heegaard genus g (M)—one of the
best known invariants for 3-manifolds—is the smallest genus of any splitting surface ofM.

This notion was refined in [18] (cf. [17]). In a generalized Heegaard splitting a 3-manifold
is presented as a union of several pairs of compression bodies, building blocks that generalize
handlebodies and allow one to capture the structure of 3-manifolds in more detail. To form
a generalized Heegaard splitting of a compact 3-manifoldM, start with a decomposition

D =
{
Mi : i ∈ I,

⋃
i∈IMi =M, and int(Mi) ∩ int(Mj) = ∅ for i 6= j

}
(1)

into finitely many connected 3-dimensional submanifolds with pairwise disjoint interiors,
intersecting along closed surfaces, and take an appropriate Heegaard splitting3 for eachMi.
Generalized Heegaard splittings can be manipulated in several ways, and optimal (i.e., thin)
splittings possess desirable properties, which make them particularly useful (cf. [9, 17]).

(i) (ii) (iii)

S2S1

S3 S4

M1
M2

M3 M4

S1 S2

S3 S4

Figure 1 (i)-(ii) Schematics of a decompositionD ofM into four submanifolds, and of a generalized
Heegaard splitting arising from D. (iii) The fork complex [17, Section 5.1] describing this splitting.

3 The Main Result

Maria and Purcell have recently shown that, in the realm of hyperbolic 3-manifolds another
important invariant, the volume, yields an upper bound on the treewidth [15]. They proved
the existence of a universal constant C > 0, such that, for every closed, orientable, hyperbolic
3-manifoldM with treewidth tw(M) and volume vol(M) the following inequality holds:

tw(M) ≤ C · vol(M). (2)

Here we show that the volume provides a linear upper bound even on the pathwidth of
M—a quantity closely related to, but potentially much larger than the treewidth. We prove

I Theorem 1 (Theorem 1.8 in [10]). There exists a universal constant C ′ > 0 such that, for
any closed, orientable, hyperbolic 3-manifoldM with pathwidth pw(M) and volume vol(M),

pw(M) ≤ C ′ · vol(M). (3)

2 Handlebodies are connected 3-manifolds with boundary, that can be thought of as thickened graphs.
3 Here ‘appropriate’ refers to a natural condition the splitting surfaces have to satisfy [10, Section 4.1.2].

Also, we might need to take Heegaard splittings of 3-manifolds with boundary, cf. [17, Theorem 2.1.11].

49



Outline of the proof. Our roadmap to establish Theorem 1 is similar to that in [15]. In
particular, our construction of a triangulation ofM with dual graph of pathwidth bounded
in terms of vol(M) also starts with a thick-thin decomposition D of M. The two proofs,
however, diverge at this point. Maria and Purcell proceed by triangulating the thick part of
D using the work of Jørgensen–Thurston [20, §5.11] and Kobayashi–Rieck [14]. This partial
triangulation is then simplified [2, 13] and completed into the desired triangulation ofM.

The novelty in our work is, that we proceed by first turning the decomposition D into a
generalized Heegaard splitting ofM, where we rely on the aforementioned results to control
the genera of the splitting surfaces. We then amalgamate [19] this generalized Heegaard
splitting into a classical one of genus O(vol(M)). Finally, using our earlier work [11], we turn
this Heegaard splitting into a triangulation ofM with dual graph of pathwidth O(vol(M)).

(i) (ii)

M2

M3

M4M5

M6

S1
S4

S3

S2
S6

S5

M1

Figure 2 (i) Schematic example of a thick-thin decomposition D of a hyperbolic 3-manifoldM.
(ii) The fork complex of a generalized Heegaard splitting associated with D.

N1 N2K1 K2S1 S2R N KS

 

R× [−1, 1]

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

Figure 3 Example of amalgamating a generalized Heegaard splitting into a Heegaard splitting.

Algorithmic implications. The proof of Theorem 1 gives a template for an algorithm4 to
triangulate any closed hyperbolic 3-manifoldM in such a way, that the dual graph of the
resulting triangulation has pathwidth O(vol(M)). Using such triangulations—that have a
dual graph not only of small treewidth, but also pathwidth—as input for FPT-algorithms may
significantly reduce their running time. This is because such triangulations lend themselves
to nice tree decompositions (the data structure underlying many algorithms FPT in the
treewidth) without join bags (those parts of a nice tree decomposition that often account for
the computational bottleneck, cf. [4]). By Theorem 1, in case of hyperbolic 3-manifolds with
bounded volume working with such triangulations is (in theory) always possible.

4 We refer to the discussion in [15, Section 5.1] for the description of a possible computational model.
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Abstract
Given an n-vertex outerplanar graph G, let δG be a straight-line drawing of G, where the vertices
lie on a circle and all crossings involve a single edge. We call such a drawing an almost outerplanar
drawing. An outerplanar drawing of G can be obtained from δG by untangling it, i.e., moving the
vertices on the circle in δG. Let fix◦(δG) denote the maximum number of vertices that can remain
fixed to untangle δG. We show fix◦(δG) ≥ ⌈(n + 2)/2⌉ and this bound is asymptotically tight.
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Keywords and phrases Graph drawing, straight-line drawing, planarity, moving vertices, untangling
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1 Introduction

A graph is an outerplanar graph if it has a planar drawing in which all vertices are on the
boundary of a single face, and such a drawing is known as an outerplanar drawing. Given an
n-vertex outerplanar graph G, let δG be a straight-line drawing of G, where the vertices lie
on a circle and all crossings involve a single edge. We call δG an almost outerplanar drawing.
Since G is outerplanar, an outerplanar drawing can be obtained from δG by moving the
vertices on the circle. We call such a sequence of vertex moving operations an untangling of
δG. We define the outerplanar fixing number fix◦(δG) of an almost outerplanar drawing δG

to be the maximum number of vertices that can remain fixed in an untangling of δG. The
notion of untangling is often used in the literature for a crossing elimination procedure that
makes a non-planar drawing of a planar graph crossing-free; see [1–8]. Here, we follow an
untangling procedure to obtain an outerplanar drawing from an almost outerplanar drawing.

2 Lower Bound for fix◦(δG)

In the following let G = (V, E) be an outerplanar graph, let δG be an almost outerplanar
drawing of G, let e = uv ∈ E be the edge that contains all the crossings in δG, and let
G′ = G − e and δG′ = δG − e. The edge e partitions the vertices in V \ {u, v} into the sets L

and R that lie left and right of the edge uv (in the direction from u to v). We claim that it is
possible to move vertices of L to the right side without modifying the order of R ∪ {u, v} to

∗ This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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(a) Case 1 (b) Case 2.2 (non-connecting component)

v

u

shift

C ∩ L
v′

v

u

C

w

x

C ′

Figure 1 Moving a left component, keeping/reversing the clockwise ordering of its vertices.

obtain an outerplanar drawing. By symmetry, it is also possible to just move vertices of R to
the left side. The claimed bound then follows from the fact that min{|L|, |R|} ≤ ⌊(n − 2)/2⌋.

We distinguish cases based on the connectivity of u and v in G′.
Case 1: u, v are not connected. Consider a connected component C of G′ that contains
vertices from L and from R. In this case, C contains at most one of u, v. W.l.o.g., assume
v /∈ C; see Figure 1a. Let v′ be the first clockwise vertex after v that lies in C. Let δ′

G be the
drawing obtained from δG by moving the vertices of C ∩ L clockwise just before v′ without
changing their clockwise ordering. Observe that this removes all crossings of e with C.
Case 2: u, v are connected. Now assume there exists a connected component in G′ that
contains both u and v. Note that if C ′ is a different connected component of G′, then it
must lie entirely to the left or entirely to the right of e. We ignore such components as they
never need to be moved. We hence assume that G′ is connected.
Case 2.1: u, v are 2-connected. Due to the outerplanarity of G, δG is already planar.
Case 2.2: u, v are connected but not 2-connected. G′ contains at least one cutvertex
that separates u and v. Notice here, each path from u to v visits all these cutvertices between
u and v in the same order. Let f and l be the first and the last cutvertex on any uv-path,
respectively. Additionally, add u to the set of L, R that contains f and likewise add v to the
set of L, R that contains l. Let X denote the set of edges of G′ that have one endpoint in L

and the other in R. Each connected component of G′ − X is either a subset of L or a subset
of R. we call these left and right components, respectively. We call a component of G′ − X

connecting if it either contains u or v, or removing it from G′ disconnects u and v. For a left
component CL and a right component CR, we denote by E(CL, CR) the edges of G′ that
connect a vertex from CL to a vertex in CR.

▶ Lemma 1. Every non-connecting component C is adjacent to exactly one component C ′

of G′ − X. Moreover, C ′ is connecting, there are at most two vertices in C ′ that are incident
to edges in E(C, C ′), and if there are two such vertices w, x ∈ C ′, then they are adjacent and
removing wx disconnects C ′.

▶ Theorem 2. Let C be a left (right) non-connecting component. It is always possible to
obtain a new almost outerplanar drawing δ′

G of G from δG by moving only the vertices of
C \ {u, v} to the right (left) side.
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Proof. If C is non-connecting, then by Lemma 1, it is adjacent to at most two vertices in
C ′ that are adjacent to C. If there are two such vertices, denote them by w and x. Note
that w and x are consecutive in the drawing δG, since G′ is connected and wx is a bridge by
Lemma 1. Otherwise let w be the only such vertex and let x be a vertex on the right side
that immediately precedes or succeeds x; see Figure 1b. We obtain δ′

G by moving all vertices
of C \ {u, v} between x and w, reversing their clockwise ordering. Observe that the choice of
w and x guarantees that δ′

G is almost outerplanar and all crossings lie on uv. ◀

▶ Lemma 3. The connecting component containing u or v is adjacent to at most one
connecting component. Every other connecting component is adjacent to exactly two connecting
components. Moreover, if C and C ′ are two adjacent connecting components, then there is a
vertex w that is shared by all edges in E(C, C ′).

▶ Theorem 4. Let C be a left (right) connecting component. It is always possible to obtain
a new almost outerplanar drawing δ′

G of G from δG by moving only the vertices of C \ {u, v}
to the right (left) side.

3 The Lower Bound is Tight

Let n ≥ 4 be an even number and let G be the cycle on vertices v1, . . . , vn, v1 (in this order)
and let δG be a drawing with the clockwise order v2, . . . , v2i . . . , vn, vn−1, . . . , v2i+1, . . . , v1;
see Figure 2. Clearly, the clockwise circular ordering of its vertices in a crossing-free
circle drawing is either v1, v2, . . . , vn or its reversal. Assume that we turn it to the clock-
wise ordering v1, v2, . . . , vn; the other case is symmetric. In δG, the n

2 odd-index vertices
v1, . . . , v2i+1 . . . , vn−1 and vn are ordered counterclockwise. To reach a clockwise ordering, at
most two of these vertices can be fixed. Thus, at most n/2 + 1 vertices in total can be fixed.

v6

vn−4

v1
v2

v3
v4

v5

vn
vn−1

vn−2

vn−5

vn−3

Figure 2 The drawing δG of the graph G defined in Section 3. It shows that fix◦(δG) ≤ n+2
2 .

Open problems for future work. (i) The complexity of computing the outerplanar fixing
number. (ii) Generalization of our result to non-outerplanar drawings of outerplanar graphs.
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Abstract
Papillae on the surface of the tongue are integral to food oral processing, sensing and transport.
Fungiform papillae contain taste buds responsible for taste perception, whereas filiform papillae are
crucial for friction and textural perception. We propose a novel computational pipeline to detect
papillae positions and classify fungiform and filiform papillae from a 3D mesh representation of a
tongue surface. The approach uses discrete differential geometry and intrinsic curvature profiles of
papillae, combined with machine learning techniques. The main goal of this work is to remove the
need for manual papillae identification and positioning, which are expensive and time-consuming.
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1 Introduction

The surface of the tongue contains numerous structures, called papillae. Figure 1 is a
representation of the rough human tongue surface with various papillae structures on it.
Fungiform and filiform papillae take the main role in food perception. The former are
essential to food processing and sensing, while the latter create friction between food particles
and the tongue.

Their characteristic shapes can be used for automatic detection. In Figure 2, we can
visually compare the two shapes - fungiform are generally described as round, mushroom-
shaped and elevated structures [8, 9, 10], while filiform appear cylinder shaped with some
spikes on top giving them a crown-like appearance.

Understanding the distribution of papillae can help us better understand oral health
and food processing. The main goal of this work is to remove the need for manual papillae
identification and positioning, which are expensive and time-consuming. The majority of
work done in the automated papillae detection has been based on 2D digital images. However,
due to the 3D nature of these structures, that information is lost in 2D representations.

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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A Geometric Approach to Papillae Identification in 3D Meshes

(a) View from top (b) Side view

Figure 1 3D mesh of tongue surface obtained from masks taken on real human tongue. The color
bar shows the z-coordinate of the points on the surface and it represents the altitude.

(a) Fungiform papilla (b) Filiform papillae

Figure 2 Regions of the tongue with (a) Single Fungiform papilla and (b) Multiple filiform
papillae. The color bar shows the z-coordinate of the points on the surface.

2 Algorithms

The pipeline for papillae identification works as follows. The data in the study comes from 3D
scans of masks of real human tongues [1]. In the first step of the pipeline, the Screened Poisson
reconstruction is used to generate the surface mesh [6]. We use Meshlab’s [3] implementation
of the algorithm. Next, we find segments of the mesh that are candidates for papillae. This is
done using curavture and other local geometric information. In the final step of the pipeline,
curvature profiles and other features are fed to a machine learning algorithm to classify
filiform and fungiform papillae. Curvature computation is to be used in multiple stages of
the pipeline. We thus discuss here two different approaches to curvature computation.
Algorithm 1: Smooth Curvature. A polynomial approximation of the discrete surface
can be used to compute two curvature measures – the mean (H) and Gaussian (K) curvature
[5, 4]. The signs of the mean and the Gaussian curvature provide information about the
local behavior of the surface [4]. By performing HK classification, introduced in [2], we can
describe the local shape characteristics.
Algorithm 2: Discrete curvature. Discrete curvature is a common tool in shape model-
ling, and can enable the application of many existing surface characterisation and registration
techniques. However, computation of discrete curvatures is sensitive to sampling. At a high
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(a) Fungiform papilla (b) Filiform papillae

Figure 3 Resulting cut pieces with (a) Single Fungiform papilla and (b) Single filiform papilla in
green.

sampling density, such as one produced by the Poisson reconstruction, local neighborhoods
of vertices are smaller, and the mesh appears almost flat in a neighborhood. We find that
this effect leads to situation where the very small positive or negative curvature may produce
a floating point error and snap it to zero. This effect leads to misidentification of the papillae
curvature signatures.

As seen in Figure 4, typical signatures of the papillae are distribution of positive and
negative curvatures. This signature can be destroyed if the curvatures snap to zero for large
number of points. Further, the surface reconstruction generates a non-uniform density of
vertices, resulting in irregularities of the curvature measure.

We resolve these issues by a uniform density sampling of the vertices followed by remeshing.
The downsampling is done by selecting a Delone point set: In every ball of radius r, there
is at least one selected vertex; and any two selections are separated by at distance at least
r. The remeshing is performed by creating a Voronoi V diagram of the samples H, and
deriving its dual Delaunay triangulation within the metric of the mesh M . Then, for x ∈ H,
we compute the discrete curvature as defined by Meyer et al. [7], via the vertex’s angular
deficit: kH(vi) = 2π −

∑
j∈N(i) θij , where N(i) are the triangles incident on vertex i and θij

is the angle at vertex i in triangle j.

2.1 Candidates for papillae locations
Given the mesh, we identify candidate locations for papillae. Papillae contain local maxima
and are within a certain range of width and height [1]. We thus base our identification
of initial candidate locations on two features – positive curvature created by the peaks
and the height of the peaks relative to surroundings, measured from a plane fitted to the
neighborhood. An illustration of the latter is presented in Figure 3, where the approach
successfully detects a fungiform papilla in Figure 3a and a filiform papilla in Figure 3b,
coloured in green.

2.2 Papillae Classification
The papillae classification in our approach will be performed by identifying geometric features,
and then applying machine learning to segments identified as candidates. As ground truth
we will use a set of segments that have manually been labelled as Filiform, Fungiform, or
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(a) Mean curvature (b) Gaussian curvature

(c) Mean curvature profile (d) Gaussian curvature profile

Figure 4 A synthetic surface. Fungiform are dome like shapes. Filiform are sharp peaks. The
color bar shows the curvature. Comparison of mean (a) vs. Gaussian curvature (b) for idealised
fungiform and filiform papillae, and their corresponding profiles in (c) and (d). Peaks and the dome
have maximum positive, and there are saddle points of negative curvature. Fungiform have constant
positive Gaussian curvature and negative mean curvature, while filiform have positive Gaussian
curvature at their peaks, and are surrounded by negative Gaussian curvature at their base.

None.
Curvature profiles. There is a substantially different curvature profile between the
fungiform and the filiform papilae, and can be used for classification. The fungiform have a
large region of positively curved area on top, while this is not the case for filiform as they
are sharper. We demonstrate curvature profiles with synthetic surfaces in Figure 4. However,
real world data is noisy and the curvature profiles will not be so well defined.
Machine learning. The training labels will be supplied by human experts on a dataset
of several hundred segments. We would use numerical features such as height, radius, the
number of local maximum points and curvature-based features (such as features based on
the proportion of points with negative Gaussian and negative mean curvature (hyperbolic
concave points) and positive Gaussian and negative mean curvature (elliptical concave points)
as well as the proportion of flat points) to determine if we can distinguish between the 3
classes. We will use Support Vector Machine (SVM) with RBF kernel as a classification
method, and additionally use decision trees to identify the most significant features. We
compute the accuracy against the ground truth, and investigate the failing cases in order to
improve on the suggested methods. We will further compare the results with deep learning
approaches from computer vision.
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Abstract
We present an algorithm that enumerates and classifies all edge-to-edge gluings of unit squares that
correspond to convex polyhedra. We show that the number of such gluings of n squares is polynomial
in n, and the algorithm runs in time polynomial in n (pseudopolynomial if n is considered the
only input). Our technique can be applied in several similar settings, including gluings of regular
hexagons and triangles.
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1 Introduction

Given a collection of 2D polygons, a gluing describes a closed surface by specifying how to
glue each edge of these polygons onto another edge. Alexandrov’s uniqueness theorem [1]
states that any valid gluing that is homeomorphic to a sphere and that does not yield a total
facial angle greater than 2π at any point, corresponds to the surface of a unique convex 3D
polyhedron. The polygons of the gluing may be folded in order to glue the polyhedron.

There is no known exact algorithm for reconstructing the 3D polyhedron [8, 9]. Enu-
merating all possible valid gluings is also not an easy task, as the number of gluings can be
exponential even for a single polygon [5]. Complete enumerations of gluings and the resulting
polyhedra are only known for very specific cases such as the Latin cross [6], a single regular
convex polygon [7], and a collection of regular pentagons [2].

The case when the polygons to be glued together are all identical regular k-gons, and the
gluing is edge-to-edge was studied recently for k ≥ 6 [3]. The aim of this paper is to study
the case of k = 4: namely, to enumerate all valid gluings of squares and classify them up to
isomorphism.

∗ This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Convex Polyhedra Glued from Squares

2 Chen—Han algorithm for gluings of squares

In [7] it is shown that polyhedra are isomorphic if the lengths of shortest geodesic paths
between their vertices of nonzero curvature coincide. Thus, the problem of finding out if two
gluings are isomorphic can be reduced to finding out the geodesic distances between vertices
of a gluing. Algorithm we are using for this is the Chen—Han algorithm [4].

The idea of the algorithm is to project a cone of all possible paths from the source
onto the surface of the gluing. For n faces, this algorithm runs in O(n2) time. To apply it
for arbitrary edge-to-edge gluings of squares, it has to be proven that the running time is
preserved. To do this, we prove the following Lemma.

▶ Lemma 1. If T is a square of the gluing and π is a geodesic shortest path between two
vertices of the gluing then the intersection between π and T is of at most 5 segments.

The lemma implies the following Theorem.

▶ Theorem 2. The isomorphism between two edge-to-edge gluings of at most n squares can
be tested in O(n2) time.

3 Bounds on the number of egde-to-edge gluings of squares

In this section, we prove that the number of edge-to-edge gluings of n squares is polynomial
in n. This result allows to develop a polynomial algorithm to list all the gluings.

▶ Theorem 3. There are O
(
n36)

edge-to-edge gluings of at most n squares that correspond
to convex polyhedra.

Proof. Triangulate the polyhedron corresponding to the gluing and draw its faces on the
square grid. By the Gauss-Bonnet theorem, the polyhedron has no more than 8 vertices,
and thus at most 18 edges. An edge shared by two faces must have the same lengths of x-
and y-projections on the drawings of these faces, see Figures 1a, 1b.

Count the number of sets of triangles satisfying this restriction and taking up at most n

squares. To do so, choose the lengths of projections (that do not exceed n in length) for each
of at most 18 edges. This yields the final formula. ◀

(a) (b) (c)

Figure 1 (a), (b) Highlighted edge has the same lengths of projections on the drawings of two
faces. (c) Two ways to place an edge with given projections that preserve convexity of the face.

▶ Theorem 4. There are Ω
(
n3)

edge-to-edge gluings of at most n squares that correspond
to convex polyhedra.
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Proof. To prove the theorem, we construct a series of such gluings. These gluings correspond
to doubly-covered octagons, the octagons being obtained by cutting edges of a rectangle with
sides no longer than

√
n

2 , one at least twice as long as the other, see Figure 2. The bound is
tight: there are O(n3) doubly covered convex polygons that can be glued from n squares. ◀

Figure 2 An example of an octagon produced by cutting angles of a rectangle

We implemented an algorithm that enumerates all the gluings of at most n squares for a
given graph structure of a convex polyhedron. It showed that one gluing can admit several
ways to cut itself into flat polygons, see Figure 3. Thus it can appear in the list several times.

0
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3 3
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(a)

0

1
2

3
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3

(b)

Figure 3 Doubly covered parallelogram can be cut into two flat quadrilaterals in two ways, the
latter consisting of its faces

4 Algorithm to classify edge-to-edge gluings of squares

The algorithm consists of the following steps:

1. Generate the list of all edge-to-edge gluings of at most n squares, denote it L(n). Due to
Theorem 3, this step takes polynomial time.

2. For each gluing in L(n), generate matrix of pairwise distances between its vertices. Due
to Theorem 2, this step takes O(n3) time per gluing.

3. Unicalize the list of matrices up to homothety and permutation of rows and columns,
leave only corresponding elements of L(n). Since the matrices are of at most 8 rows and
8 columns, it takes polynomial time to remove duplicates from the list.

The output of this algorithm is the list of all non-isomorphic edge-to-edge gluings of at
most n squares.

5 Discussion

The cornerstone of the technique we have been using is the possibility to draw a face of a
polyhedron glued from squares on a planar grid. It allows us to estimate the number of valid
gluings. The same technique can seemingly be applied for the cases of regular hexagons and
triangles, since these polygons also tile the plane.
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Abstract
We introduce the visibility center of a set of points inside a simple polygon—a point c such that the
maximum geodesic distance from c to see any point in the set is minimized. For a simple polygon of
n vertices and a set of m points inside it, we give an O((m + n) log (m + n)) algorithm to find the
visibility center. We find the visibility center of all points in the polygon in O(n log n) time.
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1 Introduction

Suppose you want to guard a polygon and you have many sensors but only one guard to
check on the sensors. The guard must be positioned at a point c in the polygon such that
when a sensor at any query point u sends an alarm, the guard travels from c on a shortest
path inside the polygon to see point u; the goal is to minimize the maximum distance the
guard must travel. The optimum guard position c is called the visibility center of the set U

of possible query points. See Figure 1.

cV

u1

u2

u3

u4

u5

r1
r2

r3

r4

u6

u1

u2

u3

u4

u5

H(u1,r2)

r1
r2

r3

r4

u6

H(u3,r3)

H(u5,r4)

H(u4,r4)

H(u6,r1)

cV

Figure 1 (left) Point cV is the visibility center of points U = {u1, . . . , u6}. Starting from cV , the
three points we need to travel (equally) farthest to see are u1, u3 and u5. The shortest paths (in
blue) to see these points must reach the half-polygons bounded by the chords (in red) emanating
from the points. (right) Equivalently, cV is the geodesic center of five half-polygons (each shown as
a red boundary chord shaded on one side).

∗ This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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We give an O((m + n) log (m + n)) time algorithm to find the visibility center of a set U

of size m in an n-vertex simple polygon. To find the visibility center of all points inside a
simple polygon, we can restrict our attention to the vertices of the polygon, which yields an
O(n log n) time algorithm.

To the best of our knowledge, the idea of visibility centers is new. There are many results
on the geodesic center of a polygon—the point c that minimizes the maximum distance
inside the polygon from c to any vertex of the polygon. Pollack et al. [14] gave an O(n log n)
time divide-and-conquer algorithm. Our algorithm builds on theirs. A more recent algorithm
finds the geodesic center in linear time [1]. There are efficient algorithms to construct the
whole geodesic farthest point Voronoi diagram (of which the geodesic center is a vertex) for
given points in a polygon [4, 5, 13, 17].

There are algorithms for the more basic “quickest visibility problem” in a polygon—to
find the shortest path from point s to see point q [3, 16] or for two points to travel until
they see each other [2], but we do not use these results. Also related is the watchman
problem [7, 8]—to find a tour that sees the whole polygon.

Basic Idea. Our algorithm for computing the visibility center has two main steps. We first
identify a linear sized set H of “essential” half-polygons that the guard must travel to, i.e.,
so that the visibility center of U is the geodesic center of H. Second, we find the geodesic
center of any set of half-polygons by extending the divide-and-conquer approach that Pollack
et al. [14] used to compute the geodesic center of the vertices of a simple polygon. These two
steps are described in Sections 2 and 3.

Notation and Definitions. For a point u in polygon P , PV (u) is the visibility polygon
of u—the set of all points in P visible from u. Any edge of PV (u) that is not part of the
boundary ∂P is a window that is determined by a reflex vertex r of P visible from u and is
formed by extending the ray −→ur from the base r until it hits ∂P at the tip. We use w(u, r) to
denote this window. The subpolygon cut off by w(u, r) that contains u and PV (u) is called
the half-polygon associated with u and r, and is denoted H(u, r). The complement, H(u, r)
is the pocket associated with u and r.

For points x, u ∈ P , the distance to visibility from x to u, denoted dV (x, u) is the geodesic
distance from x to PV (u). If x ∈ PV (u) then dV (x, u) = 0. Otherwise, x lies in some
pocket H(u, r) and dV (x, u) is the geodesic distance from x to the half-polygon H(u, r). The
visibility radius of point x with respect to point set U is rV (x, U) = max{dV (x, u) : u ∈ U}.
The visibility center of U is argmin{rV (x, U) : x ∈ P}.

2 Finding a linear number of essential half-polygons

The visibility center for a given set U of points is the geodesic center of all O(mn) half-
polygons of the form H(u, r) where u ∈ U and r is a reflex vertex of the polygon and u sees
r. But this set is too large. We find a set H of O(n) “essential” half polygons that suffice,
i.e., such that the visibility center of U is the geodesic center of the half polygons of H.

We find H in two steps. First make a subset H0 as follows. Construct R, the geodesic
convex hull of U in P in time O(n + m log(m + n)) [9, 15]. For each edge (u, r) of R where
u ∈ U and r is a reflex vertex of P , put H(u, r) into H0. Then H0 has linear size but, as
shown in Figure 2, H0 does not yet have the property we need.

Next, construct the geodesic center c0 of H0. Then repeat the above step for U ∪ {c0},
i.e., construct R′, the geodesic convex hull of U ∪ {c0} in P and for each edge (u, r) of R′

where u ∈ U and r is a reflex vertex of P , add H(u, r) to H0. This defines H. We apply
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Figure 2 The geodesic convex hull of U = {u1, . . . , u5} is shaded grey. H0 consists of the two
half-polygons H(u2, r2) and H(u3, r3) (with solid red windows). The second phase finds the third
half-polygon H(u1, r1) that determines the visibility center c.

an O(n log n) time ray shooting algorithm [10] to find, for each H(u, r) ∈ H, the tip of the
window w(u, r) so each half-polygon is specified by two points on ∂P .

▶ Theorem 1. The visibility center of U is the geodesic center of H. Furthermore H can be
found in time O((n + m) log(n + m)).

3 Finding the geodesic center of half-polygons

▶ Theorem 2. There is an O(n log n) time algorithm to find the geodesic center of a set of
O(n) half-polygons in a polygon of size n.

We follow the approach of Pollack et al. [14]. The main ingredient is an O(n) time chord
oracle that, given a chord K of the polygon, finds the relative geodesic center on K, i.e.,
argmin{rV (x, U) : x ∈ K}, and tells us which side of K contains the geodesic center c. After
triangulating the polygon, O(log n) applications of the chord oracle are used to locate the
triangle containing the geodesic center. This triangle is then refined to a region within
which the geodesic paths to the half-polygons are combinatorially the same, resulting in an
intersection radius problem [6], which is solved by Megiddo’s techniques [12, 11].

To implement the chord oracle for chord K = ab we first find shortest path trees from a

and from b to all the half-polygons. From these we get a set of O(n) overlapping intervals on
ab each with an easily-computable distance function to an associated half-polygon and with
the property that the upper envelope of these functions equals the geodesic radius function.
Megiddo’s techniques then find the relative geodesic center on K.
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collaborating heterogeneous agents
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Abstract
We consider the problem of transporting a package from point s to point t in the Euclidean plane
utilizing a fleet of n heterogeneous carrier agents who can hand off the package from one agent to
another. The agents are initially deployed at given points in the plane, and each has an associated
maximum speed, a fuel constraint, and possibly other constraints on its motion. The objective is to
compute a delivery plan that minimizes the time required to get the package to its destination t.
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1 Introduction

Given n agents, initially at points {ai}n
i=1 in the plane or a polygonal domain P , with different

maximum speeds {vi}n
i=1, and potentially different fuel bounds {bi}n

i=1 and subdomains
Qi ⊆ P of operation (ai can only move inside Qi), we seek to compute an efficient set of
trajectories for the agents to be able to transport the package from source s to target t in
the minimum total time. Since the agents have different speeds, a slower agent can hand off
the package to a faster agent to reduce the total makespan, and an agent running out of fuel
can hand off the package to an agent with fuel. The hand-off and pickup mechanism are
assumed to be instantaneous and the agents are not allowed to leave the package anywhere,
even temporarily.

This abstract is based on work in progress, which includes theoretical considerations as
well as experimental results, on a variety of package delivery problems in the plane.

2 Agents with unlimited fuel

We begin with the case in which there are no fuel bounds (bi = ∞). To determine an optimal
solution we need to determine the best subset and sequence of agents to use as well as the
locations of the handoff points. We know, in this case, that each handoff must be to a faster
agent; thus, once we determine which subset of agents to utilize, the sequence is determined.
Handoff locations in the Euclidean plane are potentially challenging to compute exactly; even
for the case of 2 agents involved in the transport, we show that one must solve a quartic
equation. Currently, the hardness of the problem is not yet known. If handoff locations
are given as inputs and restricted to a discrete set of point, e.g., at vertices of a graph G,
the problem can be solved exactly in polynomial time [1, 2]. The best known running time
is O(nv log nv + ne), for a graph G with v vertices and e edges. There is also a somewhat

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Package delivery using handoffs
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Figure 1 An example solution for the unlimited fuel case. This was computed on a discrete set
of handoff points. Blue dots are agents, each labeled with their speed.
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Figure 2 Example: Blue dots are agent initial locations, labeled with speeds. We color points (t)
so that points that are delivered by the same subset/sequence of agents share the same color. Each
tuple, for example < 3, 4, 6 >, shows the best subset/sequence of agents that are used for delivery to
points in the region. Left: There is a single source, s. Right: There are two sources, s1 and s2, each
with the same product to be delivered to t, so agents can transport from either source.

slower dynamic programming algorithm on graphs, taking O(n2e + nv2 + APSP) time, where
APSP is the time required for all-pairs shortest paths. Using an appropriately selected grid
resolution (δ = ϵvmin(|a0s|+|st|)

vmaxn
√

2 where a0 is location of first agent) of candidate handoff points
within a region containing segment st that is bounded based on an upper bound on optimal
makespan, we are able to give a PTAS for the single package handoff problem in the plane.
In a more careful analysis, we know that O(n3

ϵ2 ) candidate points are always enough for a
(1 + ϵ) approximation. For polygonal domains, these results also apply if we are to use a
discrete set of handoff points and construct a visibility graph from them.

We have implemented and experimented with the DP algorithm, applying it to geometric
instances based on a simple grid of candidate handoff points. Figure 1 shows an example
of optimal delivery plan. For each grid point, we can label (color code) them according to
the optimal combination of agents (and choice of source, if more than one source) utilized
in an optimal delivery. Figure 2 shows two such visualizations; the boundary between
regions consist of handoff locations. The resulting subdivision, the handoff map, is a form of
shortest path map or Voronoi diagram, decomposing the plane into regions according to the
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combinatorial type of the handoff strategy (and the choice of source) for optimal transport
from a source to each point t in the plane. We are actively investigating the combinatorial
complexity of handoff maps and hope to report upper/lower bounds at the YRF.

Without discretizing with a grid, we examine exact solutions involving the best use of
two agents (from among the n), leading to a quartic equation for the optimal handoff points.
We prove that this yields a 3-approximation.

We also give an O(n log n) time algorithm to compute an optimal use of the n agents to
transport the package from s to t under the constraint that the package moves on segment
st; we prove this yields a 2-approximation.

3 Multiple packages

If there are multiple packages at multiple sources {sj}p
j=1 which need to be delivered to

multiple corresponding targets {tj}p
j=1, then our problem is NP-hard (by a reduction from

the Euclidean Stacker Crane Path problem [5], with a single agent, assuming all
packages have the same weight and the agent can carry a single package). If we require
the agent to return to their original location and there is only one agent, then there is a
9/5-approximation based on the Euclidean Stacker Crane Tour problem [5].

4 Agents with bounded fuel

When agents have bounded fuel, i.e. agent ai can only travel a distance at most bi < ∞,
the problem becomes significantly harder. Even determining feasibility is challenging, not
to mention optimizing total delivery time. The problem is weakly NP-complete even in 1D
[4]. Even if all agents have the same fuel bound, b, the problem is NP-complete [3] in a
graph; we are investigating the complexity in the Euclidean plane. We obtain bounds on
the fuel bound, b, namely: 1

2 wmax < b ≤ (2 + 1
2n′ −1 )wmax, where wmax is the length of the

longest edge in the path connecting s to t in the minimum spanning tree of the agents and
s, t (unless st is an edge of the MST, in which case a (tight) upper bound on b is given by
d(as, s) + d(s, t) where as is the agent closest to s).
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Abstract
Considering triangulations whose triangles share a common adjacency structure to be isomorphic, we
characterize the set of all triangulations of finite point-sets in spaces homeomorphic to the Euclidean
plane. We achieve this by defining a new family of graphs and by proving necessary and sufficient
conditions for inclusion therein. Specifically, we characterize the set of all graphs weakly dual to
triangulated finite point-sets in the Euclidean plane.1
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1 Preliminaries

In a planar embedding of a graph, a face is strictly convex if its boundary is convex and no
three points along its boundary are collinear. Consider a planar embedding of a connected,
simple graph (i.e., that without duplicate edges or self-loops) in which all faces, except for at
most one – the infinite face f∞ – are strictly convex with boundaries formed by exactly three
edges. Suppose that the infinite face’s boundary ∂f∞ is a simple, non-degenerate, closed
curve. Such an embedding is a planar point-set triangulation.2,3 Therein, the degree-three
faces f such that f 6= f∞ are called triangles. A polygonal triangulation is a planar point-set
triangulation in which all vertices are included in the cycle embedded as the infinite face’s
boundary. Whereas planar point-set triangulations can feature vertices that are embedded
anywhere in R2 \ f∞, polygonal triangulations must have all vertices embedded in ∂f∞.
The former is a generalization of the latter, as ∂f∞ ⊆ {R2 \ f∞}. It is standard in the
graph-theoretic literature to define a triangulation as a graph that, when embedded in the
plane, has a 3-regular dual [4, 7, 11] (e.g., the left embedding in Figure 1). Crucially, see that

1 This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

2 A planar point-set triangulation is a strictly convex drawing in which (i) convexity is relaxed for the
infinite face f∞, and (ii) all faces, aside from f∞, are bounded by exactly three edges. See [1, 2, 3, 8, 9]
for a taste of the pertinent subset of the graph drawing literature.

3 Since all faces are convex, except for potentially f∞, every edge e in a planar point-set triangulation
such that e 6∈ ∂f∞ must be drawn as a line segment. W.l.o.g., we may assume that the edges that form
∂f∞ are drawn as line segments as well, thanks to the famous result by Fáry [5] (which he proved by
reasoning about triangulations, ironically). Some of our figures reflect this assumption.
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Figure 1 planar point-set triangluations (black, solid) and their weak duals (color, dashed).

our definition of a planar point-set triangulation generalizes the standard graph-theoretic
definition of a triangulation.

Fix an embedding G̃ of a planar graph G. Construct a new graph G∗ whose vertices
correspond to G̃’s faces. In G∗, include an edge uv for each edge shared by the faces reciprocal
to u and v in G̃. G∗ is G̃’s dual graph. Removing from G∗ the vertex v∞ corresponding to
G̃’s infinite face, along with each of v∞’s incident edges, yields G̃’s weak dual graph.4

2 Planar point-set triangulation weak dual graphs

A graph that can be embedded in the plane such that each of its vertices is incident to the
infinite face is called outerplanar. An outerplanar graph is said to be maximal outerplanar if
the addition of an edge joining two non-adjacent vertices yields a non-outerplanar graph. A
graph is maximal outerplanar if and only if it is a polygonal triangulation, and such graphs
can be recognized in linear time [6]. We now characterize this family’s weak dual graphs.

I Remark 1. There exists a polygonal triangulation T to which a tree T is weakly dual if
and only if ∆(T ) ≤ 3. The same result applies to T in which the infinite face is convex.5

It is clear that, by running breadth-first search in linear time, one may decide whether or
not an arbitrary graph is weakly dual to a (convex) polygonal triangulation.

Consider a planar embedding of a connected, simple graph. Suppose that every face
therein is bounded by exactly three edges, except for k ≥ 0 faces h1, . . . hk – called holes –
and the infinite face f∞, each bounded by at least three edges. For ease of exposition, we
distinguish the infinite face from the holes h1, . . . , hk, but it may be thought of as such, as its
properties are the same as those for holes. Furthermore, suppose that each of the boundaries
∂f∞, ∂h1, . . . ∂hk are pairwise-disjoint, simple, closed curves. Such an embedding is a planar
point-set triangulation with k holes. In the weak dual of a planar point-set triangulation
with holes, we omit the dual’s vertices corresponding to h1, . . . , hk and to f∞. See Figure 2.

I Lemma 2. There exists a planar point-set triangulation with holes to which a connected
graph G is weakly dual if and only if, for every connected subgraph G′ ⊆ G, there exists a
planar point-set triangulation with holes to which G′ is weakly dual.

4 The particular embedding G̃ of G is important. Two embeddings of the same graph may have non-
isomorphic dual graphs (or non-isomorphic weak dual graphs). See [4, 7, 11].

5 For G with at least one vertex, we denote the maximum of its vertices’ degrees by ∆(G), as in [11].
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Figure 2 a planar point-set triangulation with four holes (filled) and its weak dual (color, dashed).

Figure 3 there does not exist a planar point-set triangulation to which either of these graphs are
weakly dual. K2,3 (left) violates Theorem 4’s condition (iii); the diamond (right) violates (iv).

I Lemma 3. Let G be a graph that is weakly dual to a planar point-set triangulation T with
k holes. Then, a vertex of degree i in G corresponds to a triangle in T that shares exactly
3− i sides with either the infinite face’s boundary or a hole’s boundary. Moreover, if G has
order at least four, then it must contain at least 3(k + 1) vertices of degree less than three.

Weakening the notion of outerplanarity, a graph G is said to be degree k-or-less outerplanar
if it can be embedded in R2 such that each of its vertices of degree k or less are incident to
f∞. Dating back to at least Tutte [10], graph theorists have focused on understanding the set
of all triangulations with varying definitions of "triangulation" and "all." As far as adjacency
structure is concerned, we now characterize the set of all planar point-set triangulations.

I Theorem 4. There exists a planar point-set triangulation to which a graph G is weakly
dual if and only if (i) G is connected, (ii) ∆(G) ≤ 3, (iii) G is degree-two-or-less outerplanar,
and (iv) G does not contain an induced subgraph of order at least four with fewer than three
vertices of degree less than three.

I Corollary 5. The largest order-n graph that is weakly dual to a planar point-set triangulation
has n + n−3

2 edges. As n→∞, this is half the size of the largest order-n planar graphs.

In the full version of this work, we have extended our analyses to triangulations with holes,
quadrangulations, other polygon meshes in the plane, and tetrahedralizations. Among other
follow-up goals, we strive to specify a linear-time recognition algorithm based on Theorem 4.
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Figure 4 the largest order-n graph, referenced in Corollary 5, that satisfies Theorem 4’s conditions.

References
1 Imre Bárány and Günter Rote. Strictly convex drawings of planar graphs. Documenta

Mathematica, 11:369–391, 2006.
2 Norishige Chiba, Tadashi Yamanouchi, and Takao Nishizeki. Linear algorithms for convex

drawings of planar graphs. Progress in Graph Theory, 173:153–173, 1984.
3 Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a

grid. Combinatorica, 10(1):41–51, 1990.
4 Reinhard Diestel. Graph Theory. Springer, 2017.
5 István Fáry. On straight-line representation of planar graphs. Acta Scientiarum Mathemati-

carum, 11(229-233):2, 1948.
6 Sandra L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar

graphs. Information Processing Letters, 9(5), 1979.
7 U. S. R. Murty and Adrian Bondy. Graph Theory. Springer, 2008.
8 Günter Rote. Strictly convex drawings of planar graphs. In Proceedings of the Sixteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 728–734, 2005.
9 William T. Tutte. Convex representations of graphs. Proceedings of the London Mathematical

Society, 3(1):304–320, 1960.
10 William T. Tutte. A census of planar triangulations. Canadian Journal of Mathematics,

14:21–38, 1962.
11 Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2001.

75



Efficient two-parameter persistence computation
via cohomology
Ulrich Bauer
TU Munich, Germany
ulrich.bauer@tum.de

Fabian Lenzen
TU Munich, Germany
fabian.lenzen@tum.de

Michael Lesnick
SUNY Albany, US
mlesnick@albany.edu

Abstract
In one-parameter persistent homology computation, clearing has proven an effective optimisation
scheme. Our goal is to apply clearing also for two-parameter persistent homology. It involves the
computation of homology via cohomology, which is not straightforward for two and more parameters
since the cochain and cocycle modules are not generally free. We therefore develop a formula for
a free resolution of two-parameter cohomology that allows for a clearing scheme. We show how
matrices representing such a resolution also represent a free resolution of persistent homology.
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1 Introduction

Persistent homology [5, 10] is the study of the changes of homology H•(X∗) (with coefficients
in a field k) along a filtration · · · ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X of a topological space. It is
customarily assumed that X∗ is a filtration by finite simplicial subcomplexes of a complex
X =

⋃
z Xz. The arising functor H•(X∗) : Z → Vect, z 7→ H•(Xz) from the poset Z to

the category of k-vector spaces can equivalently be regarded as a finitely generated graded
k[x]-module. The classification of the latter asserts that there is an essentially unique
decomposition H•(X∗) ∼=

⊕
b∈Bf

(xb) ⊕
⊕

(b,d)∈Bt
(xb)/(xd) into indecomposable modules,

indexed by two multi-sets Bf ⊆ Z, Bt ⊆ Z2 that form the the barcode of H•(X∗).
Computation of persistent homology can be performed by the standard algorithm [10], a

Gaussian column reduction scheme of which efficient implementations abound [9, table 2].
Implementations featuring clearing are particularly efficient if the input is a Vietoris-Rips
complex VR∗(Y ) on a point cloud Y embedded in a metric space. It is a Z-filtered complex
with n-simplices VRn

rz
= {(y0, . . . , yn) ⊆ Y | ∀i, j : d(yi, yj) ≤ rz} for a fixed sequence

r ∈ RZ.
Filtering X along two or n directions yields a system of subcomplexes Xn ⊆ X for every

n ∈ Zn such that Xm ⊆ Xn for all m,n ∈ Zn with m ≤ n. Simplicial chains C•(X∗) form a

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1 Free resolution of the cochain module in VectZ2,op
on the right. Structure maps of

these modules go down and left; i. e., a submodule is a lower left corner and a quotient is an upper
right corner. The black dots correspond to basis elements of the three free VectZ2,op

-modules.

functor Zn → Vect, which can equivalently be regarded as a graded k[x1, . . . , xn]-module.
The category of the latter is of global dimension n, which complicates the computation of
the respective H•(X∗) [2], and is known to be representation infinite [6], which rules out the
possibility of an easy classification.

For n = 2, the module H•(X∗) ∈ VectZ2
can be computed using the algorithm [8]. Kernels

of maps of free modules are free; in particular the cycle module Z•(X∗) is. The algorithm
computes and minimises a matrix representing the free presentation Z•(X∗)→ C•(X∗)→
H•(X∗) → 0. This algorithm has been already subject to improvements [7]. However,
optimisation schemes that have led to significant improvements in the one parameter case
have yet be found analogues for in two parameters, notably clearing.

Clearing [1, 3] uses that a basis of Zn(X∗) can be obtained by extending a vector space
basis of the boundaries Bn(X), instead computing it from scratch. This requires that Bn(X)
be known before Zn(X∗) is computed, which is only feasible for cohomology instead of
homology. Since persistent cohomology and homology uniquely determine each other [4], this
poses no restriction.

The applicability of a column reduction scheme for homology computation requires that
the chain and cycle module C•(X∗), Z•(X∗) ∈ VectZ be free. Applicability for cohomology
computation requires the relative cochain and cocycle module C•(X,X∗), Z•(X,X∗) ∈
VectZop

be free as modules over the oppositely ordered poset Zop. For two and more
parameters, neither C•(X∗) nor C•(X,X∗) is free in general though.

To be able to apply a clearing scheme for two parameters nevertheless, we replace
C•(X∗) ∈ VectZ2,op

by a free resolution of modules over the extended grid Z̄2,op as in
Figure 1. We compute a free resolution of H•(X∗), employing the bi-graded kernel algorithm
[8]. The conversion to an injective resolution of H•(X∗), which then can be dualised to
obtain a free resolution of H•(X∗) ∈ VectZ2

, turns out not to involve any computation at all.

2 Results

We assume that X∗ is one-critically filtered; i. e., every σ ∈ X has a unique lowest filtration
value deg z ∈ Z2 at which it enters the filtration. A pullback E ×F G of free two-parameter
persistence modules is free since it can be written as a kernel of a map of free modules.

I Theorem 1. Let L f−→ M
g−→ N be maps of modules in VectZ̄2,op

with gf = 0. Let
f• : L• → M• and g• : M• → N• be lifts of these maps to free resolutions of the respective
modules. Then there are maps rendering

0 −→ L0 ×M0 M1 −→ L0 ⊕M1 ⊕N2 −→M0 ×N0 N1 −→ ker g/ im f −→ 0

a free resolution of ker g/ im f .
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↪→ → �

↪→ → �

Figure 2 The generator degrees in a minimal free resolution (top row) determine the degrees in
an injective resolution (bottom row) of the rectangle-supported module.

We have omitted the maps in the pullbacks in order to preserve readability. We make
explicit how we choose free resolutions of the cochain modules Ci(X∗) and lifts of the
coboundary operator; see Figure 1 for the idea. Applying Theorem 1 to Cn−1(X∗), Cn(X∗),
Cn+1(X∗) gives a resolution Hn

• of Hn(X∗). The maps occuring in Theorem 1 are particularly
easy to write down.

For a fixed basis of the resolution Hn
• , we assign to each rank-one summand G of Hn

• an
injective module G̃. The procedure extends to an assignment Fn

i 7→ F̃n
• of a based injective

module to each free module in the resolution as sketched in Figure 2.

I Theorem 2. If 0→ F2
f2−→ F1

f1−→ F0 →M → 0 is a free resolution and A2, A1 respectively
represent f2, f1 w. r. t. chosen bases of F•, then the same matrices represent an injective
resolution M → F̃2 → F̃1 → F̃0 → 0 w. r. t. certain bases. If one resolution is minimal, then
so is the other.

From the free resolution Hn
• of Hn(X∗) we obtain an injective resolution Hn(X∗) ↪→ H̃n

•
and thus a free resolution (Hn

• )∗ � Hn(X∗), obtained by the degree-wise dualisation
(−) : M 7→ Homk(M,k).
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Moving Robots One by One is Hard
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Abstract
In multi-robot motion planning (MRMP) the aim is to plan the motion of several robots operating in
a common workspace, while avoiding collisions with obstacles or with fellow robots. The problem is
known to be hard in various settings. We show that a restricted and natural version of the problem,
where each robot is allowed to move only once, which we call monotone MRMP, is NP-complete.
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1 Introduction

In multi-robot motion planning (MRMP) the aim is to plan the motion of several robots
operating in a common workspace, while avoiding collisions with obstacles or with each
other. We consider the labeled case, where each robot moves from its start to its own target
position. MRMP in two-dimensional continuous domains has been shown to be hard in
various settings [1,4,5,7,8]. In all the MRMP hardness results we are aware of the robots are
allowed to make multiple moves. For example, one robot A performs a single move consisting
of starting and then stopping along A’s path, then another robot moves, and then robot
A resumes its motion. Moreover, the number of moves made by robots in some hardness
constructions is exponential in the number of robots [4, 7]. We are therefore motivated to
consider the computational complexity of MRMP when the motion plans are simpler.

We study monotone MRMP, where we restrict robots to move only once, i.e., robots
must move one by one to their targets with no intermediate stops. We show that monotone
MRMP remains hard, namely NP-complete. Our hardness construction uses a rectangular
workspace with unit-square robots and obstacles. The construction applies to both continuous
and discrete domains, such as robots operating on a grid with holes. The applicability of
the hardness result to discrete domains stands in contrast to unrestricted (non-monotone)
graph-based MRMP, for which feasibility is decidable in polynomial time [6, 10, 11]. Our
result also establishes the hardness of optimal decoupling of multi-robot motion [9]. In the
full version we relate our result to decoupling, which is a standard approach to practically
addressing MRMP, and to reconfiguration problems [2, 3] that are analogous to MRMP.

This is an abstract of a presentation given at CG:YRF 2021. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Result

We prove the NP-completeness of the following decision problem. We are given a set R of n
unit square robots in a planar workspace, where each r ∈ R has a start and target position,
denoted by sr and tr, respectively. The goal is to decide whether there is a monotone motion
plan, i.e., a sequence of moves in which each robot r ∈ R moves once from sr to tr without
inducing collisions, while other robots are stationary. If such a motion plan exists we say
that the given instance is feasible.

To prove hardness we use a reduction from 3SAT, the problem of deciding satisfiability of
a formula in conjunctive normal form with 3 literals in each clause. Given a 3SAT formula φ,
we construct a corresponding monotone MRMP instance M that is feasible if and only if
φ has a satisfying assignment. The workspace in which the robots can move is a three-row
high rectangular portion of the unit grid in which some of the cells are immovable obstacles;
see Figure 1. All the start and target positions are cells on the grid. There is one robot for
each literal in φ, which together are called literal robots, and one assignment verifier robot
r∗. The literal robots’ start positions are located in assignment gadgets. Each assignment
gadget initially contains robots representing literals of a single variable of φ. The top and
bottom rows of the gadget contain robots representing only positive and negative literals,
respectively, while the middle row is composed of obstacle cells. The literal robots’ target
positions are located in clause gadgets, each of which is a column of three cells, one for each
literal in the clause. All the assignment gadgets are located to the left of the clause gadgets
(the order of gadgets of the same type is arbitrary). To the left of every gadget is a column
of empty cells to allow robots to enter the gadget at any of the three workspace rows. After
all the gadgets are placed, for each assignment gadget we determine the order of the sources
within each of its two non-obstacle rows. In each such row, the left to right order of the start
positions is set to match the left to right order of the corresponding targets, which we refer
to as the intra-literal order property. Finally, r∗ has to move across the workspace, from the
leftmost to the rightmost column.

r∗ r∗

a1 b1 b2

b1

c1

a1 b1 c1a2 c2 a1

c1

a1

b2

c2

a2

c1

b1

Figure 1 The monotone MRMP instance for the formula (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c).
The start and target positions are colored in green and red, respectively, and are labeled with their
respective literals. Literal labels have unique indices in order to distinguish between appearances of
the same literal. The path P (blue) is shown for the assignment a = T, b = F, c = T , for which the
corresponding motion plan has robots moving in the following order: c1, b1, a1, r∗, a2, a1, b2, c2, b1, c1.

We provide one direction of the full reduction proof. The other direction is similar and
can be found in the full version.

I Theorem 1. Let φ be a 3SAT formula with a satisfying assignment A. Then the corres-
ponding MRMP instance M is feasible.

Proof. Let R+ (resp. R−) be the set of robots corresponding to literals that evaluate to
true (resp. false) according to A. That is, for each assignment gadget, R+ contains robots
that are all initially either in the top or the bottom row of the gadget, according to A. We

81



T. Geft and D. Halperin

show that the robots can move in the rough order R−, r∗, R+, which is made more precise
below. Let P be a weakly x-monotone path from sr∗ to tr∗ that passes through the sources
of R− and targets of R+ (without passing through obstacles or other sources or targets);
see Figure 1. P exists because each clause gadget must contain a target of some robot in
R+, or else A does not satisfy φ. In the motion plan, each r ∈ R− follows the subpath of P
from sr (through which P passes) up to the empty column before the gadget containing tr,
from which r easily reaches tr. The order in which the robots in R− move is the right to left
order of their sources, which guarantees no collisions with another robot located at its source.
Since the robots in R− move before R+, the targets through which P passes are unoccupied
when the robots in R− move, guaranteeing no collisions in the clause gadgets. Next, r∗

moves using P , which consists of empty cells at this point. Finally, each r ∈ R+ connects
to P at the nearest empty column to its right, from which point it continues similarly to
R−. The order of motion of the robots in R+ is the right to left order of their targets,
which guarantees no collisions in the clause gadgets. Note that due to the intra-literal order
property we also have no collisions among R+ within assignment gadgets. J
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Abstract
The topic of this paper is related to the well-known notion of unit distance graphs. Take a graph
with its edges coloured red and blue such that for some d it can be mapped into the plane with all
vertices going to distinct points, the red edges to segments of length 1 and the blue edges to those of
length d. We define the range of this graph to be the set of such numbers d. It is easy to show that
the range of any edge-bicoloured graph is semialgebraic, and we now prove that any semialgebraic
set with a positive upper and lower bound is the range of a suitable graph.
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Keywords and phrases distance graph, combinatorial geometry, semialgebraic set

1 Introduction

Definition 1.1. We call a graph a unit distance graph (UDG), if it can be drawn to R2 so
that all vertices go to distinct points and all neighbouring pairs of vertices have Euclidean
distance 1. We call such a drawing a unit distance representation (UDR) of the graph.

From now on, we suppose that all graphs are finite and simple unless stated otherwise.

Definition 1.2. Call a graph an edge-bicoloured graph (EBG), if there is a fixed colouring
of its edges with two colours.

From now on, we will suppose that these colours are red and blue.

Definition 1.3. Call an EBG G a (1, d)-graph for some d ∈ R≥0, if the vertices of the graph
can be represented in the plane by distinct points so that those connected with a red edge
go to points with distance 1 and those connected with a blue edge go to points with distance
d. Call such a representation a (1, d)-representation of G.

Definition 1.4. For an EBG G, define its range ran(G) as the set of numbers for which G

is a (1, d)-graph. Let the range of a graph be the union of the ranges of its edge-bicolourings.

We call a graph with or without an edge-bicolouring a two-distance graph, if its range is
not empty. Two-distance graphs have been studied in the past in several papers. [3][4]

When speaking about a (1, d)-representation of a graph, we often do not differentiate
between vertices, edges and their images.

Lemma 1.5. For EBGs H ⊆ G (the colouring is inherited), ran(G) ⊆ ran(H).

Lemma 1.6. For EBGs G1 and G2, ran(G1∪̇G2) = ran(G1) ∩ ran(G2).

Deciding whether a number d is in the range of an EBG or not is R-complete, since
deciding whether a graph is a UDG or not is R-complete. [5]

χ
(
R2)

denotes the minimal number of colours needed to colour R2 without a monochro-
matic pair of distance 1. Finding χ

(
R2)

is a famous problem [2] and Bukh conjectured [1]
that by also forbidding a transcendental distance, we get the same number. If true, this
could make it interesting to find graphs whose range only contains a transcendental number.
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L0 U L0 U

Figure 1 A polynomial p(x) with S0 (p, L, U) (left) and S1 (p, L, U) (right) denoted by bold

Definition 1.7. Take the set of solutions (x1, ..., xd) to a finite sequence of polynomial
equations and inequalities of the form p(x1, ..., xd) = 0 and p(x1, ..., xd) > 0. If a set can be
generated as the union of such sets, it is called a semialgebraic set. S ⊆ R is semialgebraic
exactly if it can be generated as the union of finitely many intervals with algebraic endpoints.

Proposition 1.8. The range of an EBG G is always a semialgebraic set.

Our main result says this condition is tight if ran(G) has positive lower and upper bounds:

Theorem 1.9. For a set S ⊆ R>0 with a positive lower and upper bound (λ and υ), there
exists an EBG G with ran(G) = S if and only if S is semialgebraic.

2 Preliminary algebraic statements

Definition 2.1. Call a polynomial even, if all of its coefficients with odd index are 0. In
other words, a polynomial p is even, if it is an even function (p(x) = p(−x).)

Definition 2.2. Take a polynomial p, and L ≤ U , {L, U} ⊂ R≥0 ∪ {+∞}. Define:

S0(p, L, U) = {x ∈ R>0| (p(x) ≥ 0) ∨ (x ≤ L) ∨ (x ≥ U)} and
S1(p, L, U) = {x ∈ R>0| (p(x) > 0) ∨ (x ≤ L) ∨ (x ≥ U)} (Figure 1).

Proposition 2.3. Take a semialgebraic set σ ⊆ [λ, υ]. For some n ∈ N there exist even
polynomials p1, ..., pn+1 with integer coefficients and a negative leading coefficient, numbers
L1, ..., Ln, U1, ..., Un ∈ Q>0 and numbers ζ1, ..., ζn+1 ∈ {0, 1} so that

σ =
(

n⋂
i=1

Sζi (pi, Li, U,i)
)

∩ Sζn+1 (pn+1, 0, +∞).

3 Proof of Theorem 1.9

Proposition 3.1. For any even polynomial p ∈ Z[x] with integer coefficients and a negative
leading coefficient, there exists an EBG G (p), whose range is S0 (p, 0, +∞).

Sketch of the proof: We define partly virtual EBGs (PVEBG), in which we also allow
directed green edges, divided into groups. In a (1, d)-representation of a PVEBG, we require
green edges from the same group to have the same vector, besides the criteria for EBGs and
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Figure 2 The components of A: A1 (left), the only (1, d)-representations (up to isometry) of A1

(middle) and of Aj (2 ≤ j ≤ deg(p)) (right) (N is large enough and groups are denoted by numbers).

we define its range analogously to EBGs. In case some boundedness conditions apply, an
EBG with the same range can be created by connecting green edges by red grids.

The most crucial component of creating G(p) is graph A (Figure 2).
For small enough d, A has exactly one (1, d)-representation up to transformations which

are isometries on the components. If we draw the complex plane so that −−−−−→a1,0a1,1 = 1 and
−−−−−→a1,1a1,2 = ε, the members of the group marked by j will have vector εj and |N · (1 + ε)| = d.
This helps constructing points having distance of some even polynomial of d, and ultimately,
constructing G(p).

Proposition 3.2. For any even polynomial p ∈ Z[x] with a negative leading coefficient, there
exists an EBG G′ (p), whose range is S1(p, 0, +∞).

Proposition 3.3. For an EBG G, positive rational numbers La, Ua and arbitrary real
numbers Lb, Ub (Lb < La < Ua < Ub), if ran(G) ∩ (L, U ] ̸= ∅, then there exists an EBG
GUa,Ub

La,Lb
for which ran

(
GUa,Ub

La,Lb

)
∩ (Lb, Ub) = ((0, L] ∪ ran(G) ∪ [U, +∞)) ∩ (Lb, Ub).

Using the notations of Proposition 2.3, with the help of Proposition 3.3, we can construct
(1, d)-graphs G (pi)υ,Ui

λ,Li
for 1 ≤ i ≤ n and ζi = 0, while in case of ζi = 1, we construct

G′ (pi)υ,Ui

λ,Li
, whose range coincides with Sζi

(pi, Li, Ui) on the interval [λ, υ]. And finally, we
can take G′ (pn+1), whose range is empty outside of [λ, υ], thus the intersection of the ranges
of these graphs is σ because of Proposition 2.3. Thus, because of Lemma 1.6, their disjoint
union has σ as its range. So all semialgebraic sets from [λ, υ] are the range of some EBG. ◀

I thank D. Pálvölgyi for the problem and M. Laczkovich for proving Proposition 1.8.
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