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Persistent homology has proven to be a powerful tool to extract topological information
from data [3]. Therefore, understanding the complexity of its computation is an important
problem in topological data analysis. Persistent homology can be computed in matrix
multiplication time using a divide-and-conquer algorithm [7]. From the point of view of
classical complexity, improving upon the O(nω) complexity would need a major theoretical
advancement. In practice, the most efficient methods for persistence computation employ
special variations of the Gaussian elimination method, and its worst-case complexity is cubic
in the number of input simplices. In details, the Standard Persistence Algorithm (SPA) [4]
performs left-to-right column additions until the pivots (i.e. the row indices of the lowest
non-zero elements of the columns in the matrix) are pairwise distinct. It is conceivable that
matrix reduction methods that maintain sparsity would be computationally advantageous.
In this work, we investigate sparsity preserving methods for persistence computation with
the goal of understanding how the sparsification of the matrix can improve efficiency. In
general, we show that finding a sequence of column additions that maximally sparsify a
matrix is NP-hard. Moreover, even if in some cases sparsification is more efficient this is not
true in general. Indeed, we show with some experiments (see Figure 1) that algorithms that
(heavily) prioritize sparsification do not automatically perform better than those that do not.
Finally, we describe a novel variant of the persistence algorithm that keeps the matrix sparse
for well-behaved outputs – leading to output-sensitive complexity bounds for this variant.

Define Sparse-Z2 as: Given a vector W and n vectors U1, . . . , Un in Zm
2 , find a1, . . . , an

in Z2 such that W +a1U1 + · · ·+anUn has the minimum number of nonzero entries. MaxCut
is a classical NP-hard problem [6], and there is a straightforward reduction from MaxCut
to Sparse-Z2, which gives us the following proposition:

▶ Proposition 1. Sparse-Z2 is NP-hard.

In [5], the authors introduce the exhaustive reduction, based on the SPA, which
attempts to remove nonzero entries in a column even after the pivot has been established.
Typically, this increases the sparsity of the matrix. Another, less aggressive way to keep

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Sparsity and output-sensitivity in persistence computation

the matrix sparse is the swap reduction [8, p. 77], implemented in the PHAT library [1]
(see Algorithm 1). It reduces the matrix as in the SPA with the caveat that it exchanges
the column it is reducing with a previous, denser one if they have the same pivot. We test
both together with the retrospective algorithm (see below, Algorithm 2) over two random
filtrations against the SPA in cohomology with the clearing optimisation [2]. The random
filtrations are the Erdős–Rényi filtration, where the edges are ordered randomly and
the higher dimensional simplices are added as soon as possible, and the Vietoris–Rips
filtration, where, given a dimension d, we build the standard Vietoris-Rips over n points of
[0, 1]d drawn uniformly at random.

Algorithm 1 Swap reduction
Input: Boundary matrix ∂ Output: Column reduced boundary matrix R

R = ∂

for j = 1, . . . , m do
if low (R[j]) ̸= 0 then ▷ low is the index of the pivot

while there exists j′ < j with low (R[j′]) = low (R[j]) ̸= 0 do
if size (R[j]) < size (R[j′]) then ▷ size is the # of nonzero entries

swap column R[j] and R[j′]
add column R[j′] to column R[j]

A bitflip is the operation of changing a bit from 1 to 0 or vice-versa. Here, we use the
number of bitflips as a measure of complexity.

Figure 1 Empirical complexity for computing persistence for random filtrations.

Next, we introduce a new algorithm that tries to keep the matrix sparse during the
reduction: the retrospective algorithm. To provide a brief description of the algorithm, we
first introduce some notation. Let {σ1, σ2, . . . , σn} denote the simplices of a simplicial complex
K. Consider a simplexwise filtration of K, that is, a nested sequence of subcomplexes,
∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K. In other words, Ki = Ki−1 ∪ {σi}. Let di denote the
dimension of simplex σi. The symbol Hdi

(Ki) denotes the di-dimensional homology group of
Ki and βi its rank. Furthermore, for σi = Ki \Ki−1 and σj = Kj \Kj−1, we use βi,j to mean
βi,j

dj
since dj = dim(σj). We denote by P the collection of all pairs of indices (i, j) for which

the pair (σi, σj) forms a persistence pair, and by P ′ the collection of all pairs (i, n) for which
σi is an essential simplex. We set P = P ∪ P ′. Let R = ∂ denote the matrix that is reduced.
Let R[k] be the column being reduced. An entry in R[k] is negative (resp. positive) if
the corresponding simplex kills (resp. gives birth to) an homological class. Moreover, a
positive entry in R[k] is paired (resp. unpaired) if the corresponding simplex is (not) in a

2



Bauer, Bin Masood, Giunti, Houry, Kerber, Rathod 3

persistence pair (σi, σj) with j < k.
The exhaustive algorithm described in [5] zeros out all the unpaired entries in R[k]

using left-to-right additions. The retrospective algorithm is a modification of the exhaustive
algorithm, wherein right-to-left additions are used to zero out the nonzero entries in the row
of the newly found pivot of R[k]. See Algorithm 2 for a pseudocode of the retrospective
algorithm. Note that we obtain the exhaustive algorithm by removing its last two lines.

Algorithm 2 Retrospective algorithm for computing persistent homology

Procedure Main()
for k ← 1, . . . , n do

Reduce(k);

Procedure Reduce(k)
Remove the negative entries from column R[k];
while ∃ ℓ < k such that the entry Rℓ,k in column R[k] is paired do

Add R[P [ℓ]] to R[k];
if R[k] ̸= 0 then

j = Pivot(R[k]); P [j]← k;
for columns i such that the entry Rj,i in column R[i] is nonzero do

Add R[k] to R[i];

▶ Theorem 2. For Algorithm 2, we have the following bounds on the total number of bitflips:

#bitflips ≤
n∑

k=1
(βk)2 + (d + 1)

n∑

k=1
(βk + 1) , (1)

#bitflips ≤
∑

(i,j)∈P

j−1∑

ℓ=i+1
(βℓ,j + 1) + (d + 1)

n∑

k=1
(βk + 1) , (2)

#bitflips ≤
∑

(i,j)∈P

(j − i)2 + n(d + 1) . (3)

Sketch of proof. We call the addition of column R[j] to column R[k] backward addition if
k < j and forward addition if k > j. Clearly, bitflips arise from either forward additions or
backward additions. The bitflips from forward additions are bounded by (d+1)

∑n
k=1 (βk + 1),

giving the second summand of Eqs. (1)–(2). While the bound for (bitflips from) backward
additions in Eq. (1) is obtained by counting backward additions into a column, the bound in
Eq. (2) accounts for additions from a column. The third bound is established by counting
the number of bitflips in row i for every positive simplex σi. ◀
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Abstract
Multi-parameter persistence homology studies the shape of data with respect to two or more
parameters. A common technique is to consider a filtration on a simplicial complex. Unfortunately,
the combinatorial description of such a filtration, and its underlying simplicial complex, can be large,
so we are interested in removing some of its components while preserving its topological properties.
A particular type of filtrations, that are useful in practice, are flag filtrations, which are entirely
determined by a filtration on their 0- and 1-simplices, that is, their underlying graph. Recently,
Boissonnat and Pritam [SoCG’20] reduce single-parameter flag filtrations by looking at their graph
and removing certain edges. In this work, we consider flag bifiltrations (that is, flag filtrations that
depend on two parameters), by introducing an algorithm to remove what we call filtration-dominated
edges. We have implemented the algorithm and we report on preliminary experiments.
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1 Introduction

Our main object of study are bifiltered graphs, that is, we consider a finite graph G and a
function f that assigns to each grade p = (p1, p2) ∈ R2 a subgraph Gp of G such that, for
any other grade q = (q1, q2) ∈ R2 with p1 ≤ q1 and p2 ≤ q2 (which we write as p ≤ q), the
subgraph Gp is contained in Gq. See Figure 1 for an illustration. We will refer to both a
bifiltered graph and its underlying graph by G, dropping the function f from the notation.

Given a graph G, the flag complex Flag(G) of G is the simplicial complex whose
n-simplices are the n-cliques of G. A bifiltered graph G induces a filtration on Flag(G), that
we call a flag bifiltration, and that is the assignment of each grade p ∈ R2 to Flag(Gp).

It is common in multi-persistent homology to consider flag bifiltrations, like the density-
Rips and degree bifiltrations [2, 4], and study its topology. Unfortunately, the combinatorial
description of a flag filtration can be large, so we are interested in removing elements while
preserving its topology. Boissonnat and Pritam [1] do exactly that in the single-parameter
case, via the graph-theoretical concept of edge collapses (defined below). In our work, we

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Reducing Multi-Parameter Flag Filtrations
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Figure 1 An example of a bifiltered graph, with underlying graph the complete graph K5.

consider the multi-parameter case, by introducing an algorithm to remove what we call
filtration-dominated edges (see below) from a bifiltered graph.

2 Filtration-domination and collapses

We briefly introduce edge collapses, as in [1]. Let G be a graph. For each vertex v ∈ V (G),
we denote by NG[v] the neighborhood of v: the set of vertices that are incident to v, plus v

itself. For each edge e ∈ E(G), we define the neighborhood of e as NG[e] := NG[a] ∩ NG[b],
where a, b ∈ V (G) are the endpoints of e. An edge e is dominated by a vertex v ̸∈ e, if
NG[e] ⊆ NG[v], and, when we do not care about the vertex that dominates, we say that e is
dominated. We say that the removal of a dominated edge from G is an edge collapse.

The next definition introduces the concept of filtration-domination, which extends
edge domination in a graph G to take into account the structure of the bifiltered graph.

▶ Definition 1. Let G be a bifiltered graph. An edge e is filtration-dominated in G if for
every p ∈ R2 the edge e is dominated in Gp, or e is not in Gp.

The removal of a filtration-dominated edge from G does not change the multi-parameter
persistence of the associated flag bifiltration (cf. [1, Theorem 4]). Thus, we can traverse the
edges of G in an arbitrary order and remove edges that are filtration-dominated. In this
exposition, we focus on the 1-critical case (for every edge e there is a p ∈ R2 such that, for
any q ∈ R2, e ∈ Gq if and only if p ≤ q), but the ideas extend to the multi-critical case.

To check for filtration-domination it is enough to check for domination in the graphs Gp

where the neighborhood of e changes, that is, at those p ∈ R2 such that NGp
[e] ̸= NGq

[e] for
all q < p, since an edge e is dominated if there exists a vertex v such that NGp

[e] ⊆ NGp
[v],

and NGp
[v] ⊆ NGp′ [v] if p ≤ p′ for any two p, p′ ∈ R2. Still, the number of such grades is

greater than the number of neighbors of e in G. In fact, letting k be the maximum degree of a
vertex in G, the neighborhood of e may change at O(k2) grades, and checking for domination
at each of those grades is O(k2), resulting in a total complexity of O(k4).

6
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As an alternative approach, we consider checking for filtration-domination by a single
vertex, that is, for an edge e we check if there exists a vertex v (potentially different for each
edge e) such that for every p ∈ R2 the edge e is dominated in Gp by v, or e is not in Gp.
This is a relaxation of filtration-domination as in Theorem 1 leading to fewer edge removals,
but we show it can be computed in O(k2) time, where k is the maximum degree of a vertex
in G. In practice, we observed that the difference in the number of removals is marginal,
whereas the speed-up is substantial, so we used this approach for the experimental results.

3 Experimental results

The procedure has been carefully implemented. We now describe preliminary results.
The order in which we visit each edge can be arbitrary. In our experiments, we have

evaluated multiple orders, and we find that the reverse lexicographic order on the grades of
the edges (visiting first the edges that appear later in the filtration) works best, and is the
one we use. A paper by Glisse and Pritam [3], that deals with the single-parameter case and
is being presented at this conference, also uses a “backwards” order, in contrast to [1].

We have run the procedure on density-Rips bifiltrations (Gaussian kernel with the
bandwidth parameter set to the 20th percentile of all distances between distinct points)
constructed on the datasets eleg, senate, HIV, netw-sc, and dragon, as described in [5].
For the first four datasets we remove those edges of scale parameter greater than a given
threshold (the same threshold as in [1]), and we keep the dragon dataset as is. The results are
shown in Figure 2. The red bars represent the quantity of remaining edges after running our
algorithm. In all datasets, the algorithm removes more than 90% of the edges, which results in
a speed-up in the subsequent algorithmic steps of the pipeline of multi-parameter persistence
homology (more details on these experiments in the upcoming full paper). We have also run
the single-parameter algorithm of [1] on the single-parameter filtrations constructed on the
same datasets (by dropping the densities). We observe that our algorithm for bifiltrations
removes a comparable number of edges, despite taking the density parameter into account
and therefore being more selective for removing edges.

0.0%
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5.0%

7.5%

10.0%

dragon eleg hiv netwsc senate
Datset

R
em

ai
ni

ng
 e

dg
es

Algorithms

Our approach on bifiltrations

Single−parameter

Figure 2 Bar plot of the quantity of remaining edges, shown as a percentage with respect to
the initial number of edges, after running two algorithms: our algorithm on bifiltrations, and the
single-parameter algorithm of [1] on single-parameter filtrations.
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Abstract
We present an approximation scheme based on the fibered barcode for computing an approximate

decomposition of any general multiparameter persistence module, which has theorical guarantees
w.r.t. the bottleneck distance when the module is interval decomposable. Our algorithm has a trade
off between running time and precision, and works with an arbitrary number of filtrations.
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1 Introduction and Background

The main tool of Topological Data Analysis (TDA) [3, 7] is persistent homology (PH), which
tracks the topological changes in a nested family of subspaces, called a filtration. PH encodes
these changes in an algebraic structure called persistent module. Even though modules
arising from single filtrations are well understood [5], computing and even approximating
multiparameter persistent homology (MPH) is an important open question, which would
drastically improve the use of TDA in data science. Indeed, MPH is known to be much
richer than the single parameter case, taking into account, e.g., both geometry and outliers [1]
and/or several intrinsic filters [4]. Restricted to a filtration of dimension 2, this can be
achieved efficiently with, e.g., RIVET [10, 12]; but to our knowledge there is no implemented
algorithm for all dimensions.

Multi-parameter persistence modules An n-multiparameter persistence module (or n-
persistence module for short) is a family of vector spaces indexed over Rn with linear maps
Mx →My if x ≤ y ∈ Rn, called transition maps; where the partial order ≤ in Rn is defined
by x ≤ y ⇔ ∀i xi ≤ yi. In our case, these modules are obtained by applying the homology
functor on a multi-filtration, i.e., a family of subspaces Fx ⊆ F , for x ∈ Rn such that
Fx ⊆ Fy, if x ≤ y ∈ Rn. Multipersistence modules can be compared with the interleaving
distance, dI [9], and the bottleneck distance, db [2, Section 2.3], which relies on the uniqueness
of the decomposition into indecomposable modules [11, Azumaya’s Theorem], which is known
to be less stable but more discriminative than dI . A common yet important class of modules
are interval modules, defined below.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Approximation of Multiparameter Persistence

Interval modules A subset I of Rn is called an interval if it satisfies:
(convexity) if p, q ∈ I and p ≤ r ≤ q, then r ∈ I,
(connectivity) if p, q ∈ I, then there exist a finite sequence r1, r2, . . . , rm ∈ I, for some
m ∈ N, such that p ∼ r1 ∼ r2 ∼ · · · ∼ rm ∼ q, where ∼ can be either ≤ or ≥.

An n-multipersistence module M is an n-interval module if there exists a interval I ⊆ Rn,
called the support of M , and denoted by supp(M), such that:

∀x ∈ Rn, Mx =
{

k if x ∈ I

{0} otherwise
and ∀x, y ∈ Rn, φy

x =
{

idk→k if x ≤ y ∈ I

0 otherwise
.

Fibered barcodes and matching Let M be a multipersistence module. For any line l in
Rn, the multiset of bars B(Ml) :=

(
supp

(
Mi

∣∣
l

))
i∈I is called the barcode of M along l. If L

is a set of lines, the barcodes along the lines of L is called the fibered barcode [10] of M along
L. Now, if M =

⊕
i∈I Mi is an interval decomposable n-module, and l1, l2 are two positive

lines in Rn, we say that a map m : B(Ml1)→ B(Ml2) ∪ {∅} is an (interval) exact matching
between l1 and l2 if each matched bar correspond to the same underlying summand.

2 Algorithm and guarantees

In this section, we present our general approximation scheme. The code for the following
algorithm is publicly available at https://gitlab.inria.fr/dloiseau/multipers, and
written in C++, with Python bindings.

Algorithm 1 Pseudocode to compute an approximate decomposition.

Preliminary calculation. Compute the barcodes along a δ
2 -grid (for the norm

∥ · ∥∞) of lines L, and match them with an exact matching. This can be done with
e.g. the vineyard algorithm [6].

Input: For each module I identified by this matching, consider its barcodes BI
L

along the lines of L.
Outputs: A list B (resp. D) of birth corners in Rn (resp. death corners) defining
the indicator module having support

⋃

b∈B

⋃

d∈D

{x ∈ Rn : b ≤ x ≤ d} .

B, D ← []
for l ∈ L do

Consider the set of lines Ll :=
{

l + δ
∑

i∈j ei ∈ L : j ⊆ {1, . . . , n− 1}
}

and the
bars [bI

l , dI
l ] of I along it (when they exist).

Birthpoints : Add to B the birth corner
(

min
l′∈Ll

(
bI

l

)
1 , min

l′∈Ll

(
bI

l

)
2 , . . . , min

l′∈Ll

(
bI

l

)
n

)
.

Deathpoints : Same as birth corner but by replacing min by max.
end

Note that Algorithm 1 is a simplified version of our complete algorithm. The output of
Algorithm 1 can only be guaranteed in R2, although the extension of our algorithm to Rn is

10
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based on the same idea. An example of our method is given in Figure 1.
On modules that are decomposable into a direct sum of interval modules, we have the
following approximation error.

▶ Theorem 1. Consider an n-persistence module M and a compact set K ⊆ Rn. Assume
that the restriction M

∣∣
K

of M to K is decomposable into interval modules. Then for any
positive δ > 0, there exists an interval decomposable M̃δ, computable using Algorithm 1, s.t.

dI

(
M̃δ, M

∣∣
K

)
≤ db

(
M̃δ, M

∣∣
K

)
≤ δ,

with input set of diagonal lines L forming a δ
2 -grid over K along the canonical axes.

Furthermore, under more restrictive assumptions on M (that are always true if M is defined
from a finite dataset), there exists a δ > 0 small enough such that db

(
M̃δ, M

∣∣
K

)
= 0.

Figure 1 Example of reconstruction. (Left) A 2-interval module with 4 bars along 4 lines.
(Right) An idea on how to infer the module between the bars. Ours is in green. It turns out that
the structure of the boundary of an interval satisfies some kind of local stability [8]. One can thus
bound the interval boundary between neighbouring lines, and compute a module approximation.

Our strategy of proof consists of two points. (1) Find a class of interval decomposable
modules, constructible from the fibered (matched) barcodes, that is δ-close to the original
module w.r.t. db; and (2) choose a candidate module in that class that is simple enough, to
ensure that if the original module is also simple, then their bottleneck distance is 0.

3 Experiments

In this section, we present three experiments, displayed in Figure 2 3 and 4. We first look at
two very simple, but different modules. Even though they have the same rank invariant, we
can successfully recover their decomposition into interval modules with our algorithm. In
our second experiment, we present the output of an indecomposable module that is not an
interval. In our last experiment, we consider a noisy point cloud, with 20 000 points on an
annulus with 40% outliers. The usual persistence diagram obtained from an Alpha complex
cannot identify the 1-cycle of the annulus because of its sensitivity to outliers. With our
reconstruction however (computed with a δ = 10−3 precision, i.e., ∼3k lines), we can combine
both the Alpha and estimated density filtrations, in order to produce a decomposition where
the cycle clearly appears (the large orange summand) in a short amount of time.

11



4 Approximation of Multiparameter Persistence
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Figure 2 Bimodules with the same rank invariant. (Top) Modules definitions. (Bottom)
Output of our algorithm.
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Figure 3 A non-interval decomposable module. (Left) The simplicial chain complex bifiltration
used as an input. (Right) The 1-homology of this bifiltration. (Bottom) The output of our
algorithm.
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Figure 4 Noisy annulus bimodule. (Top) The dataset. The colours correspond to the estimated
log-density values. (Left) The usual persistence diagram. (Right) The output of our algorithm.
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Abstract
In topological data analysis, multipersistence has a provably more difficult theory and leads to
substantially bigger computational challenges than ordinary persistence does. Therefore, applica-
tions cannot be realized as easily as in the case of ordinary persistence. A main difficulty is the
incompleteness of invariants in multipersistence, such as the Hilbert function and the rank invariant.
Phrasing the incompleteness in a more data-scientific way, the invariants may not capture the aspects
of interest of given data. As a matter of fact, a clever design of useful invariants is important.
We contribute a new invariant, investigate its algebraic properties, give a fast algorithm for the
computation for interval modules in two parameters, and discuss its potential use in applications.
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1 Introduction

Establishing a useful pipeline of multipersistence, see Figure 1, is a recent task in topological
data analysis. It deserves and enjoys lots of attention from many perspectives: theoretically,
computationally, algorithmically, and towards implementations and applications. It is essential
to provide computationally feasible constructions to make the pipeline more practical for data-
scientific applications. One important aspect of the pipeline is the design of various insightful in-
variants. This stems from the fact that the persistence diagram from one-parameter persistence
does not generalize to a discrete complete invariant in the case of multipersistence [2].

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 The Shift-Dimension of Multipersistence Modules

data multi-
filtration

multi-
persistence

module
invariants

inter-
pretations

Figure 1 The pipeline of multipersistence.

2 Definition

We contribute a new invariant for multipersistence modules, the shift-dimension. For an
r-parameter multipersistence module M , which we view as Rr

≥0-graded module over the
graded monoid ring K[Rr

≥0], and v ∈ Rr
≥0, we define the shift dimension dimv(M) to be the

smallest number of elements m1, . . . , mk of M such that

v ∗ M ⊆ ⟨m1, . . . , mk⟩,

where left-multiplication by v denotes the standard shift in the grading along v.
Letting the direction of the vector v fixed but its length vary, the shift-dimension induces

a non-increasing map R → N, which is suitable for machine learning algorithms when viewed
as feature map. More generic approaches are possible as well, i.e., additionally letting the
direction of v vary in ℓ spatial directions yields a feature map Rℓ+1 → N.

Remarkably, the algebraic definition of the shift-dimension arises as the hierarchical
stabilization [4] of the minimal number of generators. The hierarchical stabilization adds a
geometric structure to (the) minimal generators, letting us cluster them to subsets, depending
on the choice of v. The clustering rule, however, is not unique and combinatorially complicated;
in fact, computing the shift-dimension is algorithmic, but in general NP-hard [4].

3 Computation

To understand the behavior and the computational complexity of the shift-dimension, we
introduce and investigate the notion of a v-basis of a module: it is a collection of elements
of the module satisfying the property of the shift-dimension. We give rules for exchanging
v-bases, but even for very simple examples of modules, the set of all of its v-bases do not form
a matroid. Therefore, the exchange properties of v-bases partly encode the combinatorial
difficulty and, hence, the computational complexity of the shift-dimension.

In the case of two-parameter interval modules, we give a linear-time algorithm for
the computation of the shift-dimension. Note that interval modules correspond to quotients
of monomial ideals, viewed as modules. We endow the minimal generators of an interval
module with a total order and cluster them by an explicit rule. Our clustering rule follows a
certain notion of degree-wise closeness induced by v. The algorithm computes that clustering
via elementary operations in Euclidean space; see Figure 3 for both an illustration and a
more explicit description of the algorithm. Even for infinitely presented interval modules,
the shift-dimension is finite and gets computed by our algorithm whenever v is nonzero
and neither horizontal nor vertical. Consequently, the shift-dimension may also serve as a
practical tool for a certain class of infinitely presented modules that arise from data [5].

16



Chachólski, Corbet, Sattelberger 3

Furthermore, we give toy examples for the behavior of the shift-dimension for direct sums
of interval modules. This class may arise directly as homology of certain multifiltrations [3],
or as approximation of arbitrary finitely presented modules in two parameters [1]. The shift-
dimension is not additive with respect to direct sums. In Figure 2, we give an example for this
phenomenon on a direct sum of four interval modules and explain the mathematical properties
that make the shift-dimension non-additive. A more rigorous study of these properties may
give rise for a deeper understanding of when additivity breaks. For experiments and data-
scientific applications, however, summing up the shift-dimension of the individual summands
serves as an alternative to the shift-dimension of the direct sum, as illustrated in Figure 2.
Using our algorithm, we can compute the additive version efficiently.
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Figure 2 Left: Illustration of a direct sum of four interval modules Mi, all of which are supported
by rectangular intervals. For v = 4 · (1, 1), we have dimv(⊕iMi) = 1, but

∑
i
dimv(Mi) = 4. A

v-basis of ⊕iMi is given by the all-one vector at degree (4, 5). This quite extremal difference stems
from the fact that (i) in the degrees of the v-shifted generators, the other summands are zero,
and (ii) in the greatest common divisor of the degrees of the v-shifted generators, all summands
are nonzero. Right: Comparison of the functions

∑
i
dimτv(Mi) (in lavender) and dimτv(⊕iMi)

(in blue) for v = (1, 1).

17



4 The Shift-Dimension of Multipersistence Modules
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Figure 3 Using our algorithm for the construction of a v-basis of an infinitely presented interval
module, with v = (1.5, 1.5). The gray-shaded region denotes the interval. The algorithm starts at the
degree of the top left generator (in this case, a limit), adds v, projects down to the generating curve
of the module, subtracts v, and projects right to the generating curve of the module. This procedure
repeats until one of the projections is not possible any more. The v-basis consists of those generators
obtained by the vertical projection. In this example, the minimal generators of the module get
clustered into subsets G1, G2, and G3. Hence, the shift-dimension of this module is 3 with respect to v.
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Abstract
We investigate the maximum subbarcode matching problem which arises from the study of persistent
homology. A barcode is a set of intervals which correspond to topological features in data and is the
main object of interest in a persistent homology computation. A barcode A is a subbarcode of B if
each interval in A corresponds to an interval in B which contains it. We present an algorithm which
takes two barcodes A and B and returns a maximum subset of A which is a subbarcode of B. Our
algorithm also works on multiset input. We use a sweepline approach to yield an algorithm that runs
in O(n log n) time and uses O(n) space where n is the number of distinct intervals in the barcodes.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases algorithms, matching, multisets, subbarcodes

1 Introduction

In persistent homology the main object of interest is the barcode, which is a multiset of
intervals encoding topological information about a given set of data. There is new interest in
the implications arising from having partial knowledge or an approximation of the barcode.
A barcode A is a subbarcode of B if there is a correspondence such that each interval in A

maps to an interval in B which contains it. Sheehy [6] introduces the theory of subbarcodes
and explores how one may falsify hypotheses about barcodes by computing subbarcodes.

A multiset A = (A, ωA) is a pair with a set A and multiplicity function ωA : A → Z+.
The weight of A is the sum of the multiplicity function over A, denoted |A| =

∑
a∈A ωA(a). A

matching M between multisets A = (A, ωA) and B = (B, ωB) is a multiset M = (M, ω) where
M ⊂ A × B with multiplicity function ω : M → Z+ such that

∑
b∈B ω(a, b) ≤ ωA(a) for all

a ∈ A, and
∑

a∈A ω(a, b) ≤ ωB(b) for all b ∈ B. A matching M is a maximum matching if it
has maximum weight over all valid matchings.

A barcode B = (B, ωB) is a multiset where B is a finite set of intervals. We represent a
barcode as points in R2 to exploit the geometry of the plane.

A subbarcode matching from S to B is a multiset matching M = (M, ωM ), of S and B
where (s, b) ∈ M implies s is contained in b as intervals. If s = (sL, sR) and b = (bL, bR)
then b contains s if bL ≤ sL ≤ sR ≤ bR. See Figure 2. The maximum subbarcode matching
problem is to find a subbarcode matching of maximum weight.

2 Related Work

We use a sweepline approach in our subbarcode matching algorithm. A sweepline algorithm
sorts the input by one coordinate and then sweeps through the plane in order, doing updates
as each element is reached [1]. Two related problems where this paradigm has been used
include the maximum matching problem for intersecting intervals [2] and maximum matching
in convex bipartite graphs [3, 7, 4]. The ability to reduce these matching problems to a

0 This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 A Maximum Subbarcode Matching Algorithm
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Figure 1 We may represent intervals as points in R2 by taking their endpoints as coordinates .
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Figure 2 Any point in the shaded region on the left contains p as an interval. Any point in the
shaded region on the right is contained in p as an interval.

sweepline problem yields a significant runtime benefit, most running in O(n log n) time,
whereas the traditional Hopcroft-Karp algorithm for maximum matching in bipartite graphs
runs in O(n 5

2 ) [5]. The strategy used in these algorithms is to avoid backtracking to keep
the total operations per element small.

3 Algorithm

As input, our algorithm takes two barcodes A = (A, ωA),B = (B, ωB) and returns a maximum
subbarcode matching M from A to B. Refer also to Figure 3.

Sort A ∪ B by the x-coordinate.
Initialize T to be an empty balanced binary search tree to store points from B ordered
by y-coordinate. Initialize the residual weights rb = ωB(b) for each b ∈ B and ra = ωA(a)
for each a ∈ A. Initialize (M, W) to store the matching and multiplicities.
For each p ∈ A ∪ B in sorted order, where p = (px, py), do the following:

If p ∈ B, move b into T.
Else

While rp > 0:
Search for a b ∈ T with minimum by such that by ≥ py.
If there is none, then break.
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Let r = min{rp, rb}. Add (p, b) to M and set W[(p, b)] = r, then update the
residual weights of p and b: rp = rp − r and rb = rb − r.
If rb = 0, then remove b from T.

Return M = (M, W).
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Figure 3 We find a maximum subbarcode matching from A to B (red circles and blue squares
respectively) labeled by their multiplicities. We iterate through A in order of x-coordinate and
match to the point in B with lowest y-coordinate. Each edge represents the match labeled with the
multiplicity, and the residual multiplicities are updated for A and B accordingly.

Our algorithm finds a maximum subbarcode matching in O(n log n) time, where n is the
number of distinct points. The space requirements are O(n) in the number of distinct points.
One may note that the maximum subbarcode matching may not be unique. In fact for
certain inputs, there exists a maximum subbarcode matching of size O(n2). However, this
algorithm will never consider these solutions. This algorithm will always return a matching
of linear size.

4 Conclusion

The algorithm given in Section 3 gives an efficient method for computing maximum subbarcode
matchings. By using a sweepline algorithm we avoid solving the maximum matching problem
for bipartite graphs, allowing us to acheive O(n log n) runtime and O(n) space. We present
this as a computationally efficient method of comparison for persistence diagrams, which
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4 A Maximum Subbarcode Matching Algorithm

was the original problem setting. This algorithm may also apply to other problems requiring
matchings of nested intervals.

In future work we will show how our algorithm can be extended to find the minimum shift
needed to yield a perfect subbarcode matching. In addition we will address the relationship
between subbarcodes and bottleneck distance, a metric commonly used to compare persistence
diagrams.
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Abstract
We study a novel property for spanners with non-constant complexity edges: the spanner complexity,
i.e. the total complexity of all edges. For n point sites in a simple polygon with m vertices, we
show a lower bound on the complexity of any geodesic (t − ε)-spanner of Ω(mn1/(t−1) + n), for
any constant ε > 0 and integer constant t ≥ 2, and provide a construction for a 4

√
2-spanner of

complexity O((m
√
n+ n) log2 n).

2012 ACM Subject Classification Theory of computation → Computational Geometry

Keywords and phrases spanner, simple polygon, geodesic distance, complexity

1 Introduction

In the design of networks on a set of nodes, we often consider two criteria: few connections
between the nodes, and small distances. Spanners are geometric networks on point sites
that replace the small distance criterion by a small detour criterion. Formally, a geometric
t-spanner for a set S of n point sites in R2 is an edge-weighted graph G = (S,E) for which
the distance dG(p, q) between any two sites p, q ∈ S is at most t ·d(p, q), where d(p, q) denotes
the distance between p and q in the distance metric we consider. The smallest t for which a
graph G is a t-spanner is called the spanning ratio of G. The number of edges in the spanner
is called the size of the spanner.

The spanning ratio and the size of spanners are not the only properties of spanners that
can be optimized. Many different properties have been studied, such as total weight (or
lightness), maximum degree, (hop) diameter, and fault-tolerance [4, 5].

When we consider distance metrics for which the edges in the spanner—which are shortest
paths—no longer have constant complexity, another interesting property of spanners arises:
the spanner complexity, i.e. the total complexity of all edges. We study this novel property
in a setting where our sites lie in a simple polygon P with m vertices, and we measure the
distance between two sites p, q by their geodesic distance: the length of the shortest path
between p and q fully contained within P . The complexity of an edge between p and q is
then the number of line segments in the shortest (geodesic) path between p and q. In this
setting, a single edge of a spanner may have complexity Θ(m). Recently, Abam et al. [2]
showed that a geodesic (2 + ε)-spanner with O(n logn) edges exists even for n points on a
polyhedral terrain. We show that any (3 − ε)-spanner may have complexity Ω(nm), thus
implying that the (2+ε)-spanner of Abam et al. [2] may also have complexity Ω(nm), despite
having O(n logn) edges.

To improve this complexity, we show that there exists a geodesic 4
√

2-spanner of complexity
O((m

√
n+ n) log2 n). Additionally, we show a lower bound for the complexity of any (t− ε)-

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1 Construction of the additively weighted 1-dimensional spanner.

spanner of Ω(mn1/(t−1) + n). Most proofs are omitted and will be included in a future full
version.

2 A 1-dimensional additively weighted 2-spanner

Abam et al. [2] show that we can use a 1-dimensional spanner to construct a geodesic
spanner in a simple polygon. Therefore, we first consider an additively weighted spanner G
in 1-dimensional Euclidean space, where each site p ∈ S has a weight w(p) ≥ 0. The distance
between two sites p, q ∈ S is given by dw(p, q) = w(p) + |pq|+ w(q), where |pq| denotes the
Euclidean distance. We can map R to the x-axis, and the weights to the y-axis, see Figure 1.

To construct our spanner G, we partition the points into two sets S` and Sr of roughly
equal size by a point O with w(O) = 0. S` contains all points left of O, and Sr := S \ S`.
We then find a point c ∈ S for which dw(c,O) is minimal. For all p ∈ S, p 6= c, we add the
edge (p, c) to G. Finally, we handle the sets S` and Sr, excluding the site c, recursively.

I Lemma 1. The graph G is a 2-spanner of size O(n logn).

3 A simple geodesic spanner

Just like Abam et al. [2], we use our 1-dimensional spanner to construct a geodesic spanner for
a set S of n points in a simple polygon P . We denote by d(p, q) the geodesic distance between
p, q, and by π(p, q) the shortest (geodesic) path from p to q. We analyze the construction
with respect to any 1-dimensional additively weighted t-spanner of size O(n logn).

As in [1, 2], we partition P into two subpolygons P` and Pr by a line segment λ, such that
each subpolygon contains at most two thirds of the sites [3]. We denote by S` and Sr the sites
in P` and Pr, respectively. For each p ∈ S, we then find the point pλ on λ closest to p. As λ
is a line segment, the set Sλ, containing all projected points, gives rise to a 1-dimensional
Euclidean space, where w(pλ) := d(p, pλ). We compute a t-spanner Gλ = (Sλ, Eλ) of size
O(n logn) for this set. For each pair (pλ, qλ) ∈ Eλ, we add the edge (p, q) to our spanner G.
Finally, we recursively compute spanners for S` and Sr, and add their edges to G as well.

I Lemma 2. The graph G is a geodesic t
√

2-spanner of size O(n log2 n).

Proof sketch. The main idea is to bound the difference between d(p, q) and the length of
the path p→ pλ → qλ → q by considering the triangle T = (z, z′, r) shown in Figure 2. J

4 Complexity of geodesic spanners

The construction in Figure 3 shows that any (3− ε)-spanner, so in particular the 2
√

2-spanner
from Section 2 and 3, has complexity Ω(nm). Additionally, the following theorem implies a
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p

q

z

qλ

pλ

z′

r

λ

Figure 2 The shortest path π(p, q) crosses λ at r. The difference in length between the direct
path from z to r and the path through pλ can be bounded by considering the triangle T = (z, z′, r).

Θ(m)

`

h

hS` Sr

Figure 3 Any (3− ε)-spanner in a simple polygon with m vertices may have complexity Ω(nm).

trade-off between the spanning ratio and the spanner complexity.

I Theorem 3. For any constant ε > 0 and integer constant t ≥ 2, there exists a set of n
points in a simple polygon P with m = Ω(n) vertices for which any geodesic (t− ε)-spanner
has complexity Ω(mn1/(t−1)).

Next, we present a 4
√

2-spanner of complexity O((m
√
n + n) log2 n). We adapt our

construction for the 1-dimensional spanner Gλ as follows. After finding the site c ∈ S closest
to O, we do not add all edges (p, c) to Gλ. Instead, we form groups of O(

√
n) sites whose

original points (before projection to λ) lie ‘close’ to each other in P . We choose these groups
based on the shortest path tree of c: the union of all shortest paths from c to the vertices
of P . See Figure 4. For each group Si, we add all edges (p, ci), p ∈ Si, to Gλ, where ci is the
site in Si for which dw(ci, O) is minimal. Finally, we add all edges (ci, c) to Gλ.

I Theorem 4. Let S be a set of n point sites in a simple polygon P with m vertices. There
exists a geodesic 4

√
2-spanner of size O(n log2 n) and complexity O((m

√
n+ n) log2 n).

Proof sketch. There are two types of edges in the spanner: 1) edges from some ci to c, and
2) edges from some p ∈ Si to ci. There are O(

√
n) type 1 edges, that each have a complexity
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c

c

λ

ppλ

p

Figure 4 The shortest path tree SPT c of c, where each p ∈ S \ {c} is included as a child of the
last vertex on π(c, p). Each colored group Si is chosen based on the in-order traversal of SPT c. The
first d√ne sites are assigned to S1, the second d√ne to S2, etc.

of O(m). To bound the complexity of all type 2 edges, we show that each group defines a
region in P that contains all edges within that group, see Figure 4. The interiors of these
regions are disjoint, and thus the total complexity of all type 2 edges is O(m

√
n+ n). J

Let k ≥ 1 be an integer constant. We can generalize this approach by recursively assigning
sites to groups to obtain a geodesic (2k + ε)-spanner of complexity O((mn1/k + n) log2 n).
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Abstract
A natural way to discretize continuous 2-dimensional space is by considering a weighted hexagonal
grid. In this work, we study how well a shortest path between two vertices s and t in the tessellated
space SGPw(s, t) approximates a shortest path SPw(s, t) from s to t in the continuous weighted space.
Our main result is that the ratio ∥SGPw(s,t)∥

∥SPw(s,t)∥ is at most 1.5, irrespective of the weight assignment.
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1 Introduction

Geometric shortest path problems are a class of computational geometry problems where the
goal is to find an optimal path between two points s and t in a certain setting. An important
shortest path problem is computing an optimal path in a geometric domain when the cost of
traversing the domain varies depending on the region. The resulting metric is often called the
weighted region metric, and the problem of computing a (weighted) shortest path between
two points under this metric is known as the weighted region problem (WRP) [8].

In real-time applications where the WRP arises, like robotics [5, 10], gaming [7] or GIS [4],
which usually require efficient and practical algorithms, the problem is simplified in two ways.
First, the domain is approximated by using a (weighted) hexagonal tessellation H. Secondly,
an approximation is considered by computing a shortest path on a weighted graph associated
to H, called 3-corner grid graph G3corner [9]. In G3corner, the vertex set is the set of corners
of the tessellation, and each vertex is connected by an edge to its 3 neighboring vertices in
the tessellation, see Figure 1.

The interior of a cell Hi has a weight ωi ∈ R≥0, so a segment π has cost ωi∥π∥ when
traversing Hi and min{ωi, ωj}∥π∥ when lying on the edge between Hi and Hj . A shortest
grid path SGPw(s, t) between two vertices s and t is defined as the shortest path in G3corner,

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 On approximating shortest paths in weighted hexagonal tessellations

v

Figure 1 Vertex v is connected to its neighbors in G3corner.

s=a1=u1

t=a5=u4

a2=u2 a3

a4=u3

H1

H2 H3

H4

Figure 2 Shortest path SPw(s, t) (blue) and crossing path X(s, t) (orange) from s to t.

which is considered as an alternative to a (standard) shortest path SPw(s, t) between s and t in
the continuous weighted space. The aim of this work is to quantify the ratio R = ∥SGPw(s,t)∥

∥SPw(s,t)∥ .

2 Previous results

Nash [9] considered only weights in the set {1, ∞} and obtained tight upper bounds in
hexagonal, square, and triangular tessellations. When the weights of the cells are allowed to
be in R>0, we are aware of some previous results. Jaklin [6] showed that R ≤ 2

√
2 for square

tessellations and another type of shortest path (with vertices at the center of the cells) . In
addition, we recently proved upper bounds of R = 2√

3 for weighted triangular cells [1], and
R = 2√

2+
√

2
for weighted square cells [2].

3 ∥SGPw(s,t)∥
∥SPw(s,t)∥ ratio in G3corner for hexagonal cells

SGPw(s, t) and SPw(s, t) can be very different in both shape and length. Thus, we need to
define a more convenient class of grid paths, called crossing paths X(s, t). The key property
of X(s, t) is that we want it to traverse only the edges of the cells that SPw(s, t) traverses.
Without loss of generality, we assume that SPw(s, t) is unique.

Let (H1, . . . , Hn) be the ordered sequence of consecutive cells intersected by SPw(s, t)
in H. Let ai and ai+1 be, respectively, the points where SPw(s, t) enters and leaves Hi,
i ∈ {1, . . . , n}, see Figure 2. The crossing path X(s, t) is a shortest path along some edges of
the cells intersected by SPw(s, t), ignoring weights. See Figure 3 for the subpath of X(s, t)
in Hi for different positions of ai and ai+1. The formal definition is deferred to the full
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ai+1
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ai+1
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Figure 3 Subpaths of X(s, t) (orange) and SPw(s, t) (blue) crossing Hi.

P 1
0 P 1

2P 1
1

Hi

uj uj

uj+1

uj+1

uj+1

P 1
3

uj+1uj

uj

Hi
Hi

Hi

Figure 4 Weakly simple polygons P 1
0 , P 1

1 , P 1
2 and P 1

3 , and the subpaths SPw(uj , uj+1) (blue)
and X(uj , uj+1) (orange) in a hexagonal tessellation.

version. Let (s=u1, . . . , uℓ = t) be a sequence of consecutive points where X(s, t) and SPw(s, t)
coincide. Applying the mediant inequality to X(s, t) and SPw(s, t), we observe that the ratio

∥X(s,t)∥
∥SPw(s,t)∥ can be upper-bounded by the maximum among all the ratios ∥X(uj ,uj+1)∥

∥SPw(uj ,uj+1)∥ , for
j ∈ {1, . . . , ℓ−1}.

The union of SPw(uj , uj+1) and X(uj , uj+1) induces a weakly simple polygon [3]. We
distinguish two types: in type P 1

k , 0 ≤ k ≤ 3, the points uj and uj+1 belong to the same
cell, and X(uj , uj+1) and SPw(uj , uj+1) intersect k +1 different edges, see Figure 4; in
type P b

k , k ∈ {1, 2, 3}, SPw(uj , uj+1) intersects the interior of b cells, and X(uj , uj+1) and
SPw(uj , uj+1) intersect k different edges of the last cell whose interior is intersected by
SPw(uj , uj+1), see Figure 5. These are the only weakly simple polygons that can arise. So,
our goal is to upper-bound the ratio ∥X(uj ,uj+1)∥

∥SPw(uj ,uj+1)∥ in each of the polygons.
We can see that ∥X(uj ,uj+1)∥

∥SPw(uj ,uj+1)∥ =1 in P 1
0 . Also, P b

3 is a special case of P b+1
1 . Analogously,

after some calculations, we are able to prove that the ratio in weakly simple polygons of
type P b

1 and P b
2 , for b ≥ 2, is maximized when b = 2. Thus, we get that the only relevant

spanning ratios are those in the polygons of type P 1
1 , P 1

2 , P 2
1 and P 2

2 .
X(s, t) is defined based on the points where SPw(s, t) intersects the edges of the cells, so

it might not be a shortest grid path. Hence, the ratio ∥X(uj ,uj+1)∥
∥SPw(uj ,uj+1)∥ could be larger than

the ratio ∥SGPw(s,t)∥
∥SPw(s,t)∥ , see Figure 6. Thus, we define an additional class of grid paths, called

shortcut paths Πi(s, t), see Figure 7. These paths intersect almost all the edges intersected by
X(s, t). So, by using Πi(s, t), we obtain a relation between the weights of the cells adjacent
to Hi. Thus, they imply a better fit in case SPw(s, t) intersects two parallel edges, and allow
us to find a tighter upper bound for the ratio ∥X(s,t)∥

∥SPw(s,t)∥ .
We prove that if ∥X(s, t)∥ ≠ ∥Πi(s, t)∥, then the weights of some cells can be modified so

that the ratio between the shortest grid path and the shortest path increases. Using this fact,
we proceed to calculate an upper bound on the ratio ∥X(uj ,uj+1)∥

∥SPw(uj ,uj+1)∥ in polygons of type P 1
1 ,

P 1
2 , and P 2

1 and P 2
2 when ∥X(s, t)∥=∥Πi(s, t)∥. Finally, since ∥X(s, t)∥ ≥ ∥SGPw(s, t)∥, we

obtain our main result. Moreover, this bound is tight, see Figure 8.

▶ Theorem 1. In G3corner, ∥SGPw(s,t)∥
∥SPw(s,t)∥ ≤ 1.5.
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Pm−i+1
1

uj

uj+1

Hi

Hi+1

Hm

Pm−i+1
3

uj

uj+1

Hi

Hi+1

Hm

Pm−i+1
2

uj

uj+1

Hi

Hi+1

Hm

Figure 5 Weakly simple polygons P m−i+1
1 , P m−i+1

2 and P m−i+1
3 , and the subpaths of SPw(s, t)

(blue) and X(s, t) (orange) between uj and uj+1 in a hexagonal tessellation.
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ω2 = 1

ω3 = 0.01

Figure 6 The ratio between the weight of X(s, t) (orange) and the weight of SPw(s, t) (blue) is
almost 1.44. The ratio between the weight of the cyan grid path and SPw(s, t) is ≈ 1.15.
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Figure 7 Subpaths of SPw(s, t) (blue), X(s, t) (orange), Πi(s, t) (cyan). By the definition of the
shortcut paths, X(s, vi

1) = Πi(s, vi
1), and X(vi

4, t) = Πi(vi
4, t).

ω = 1

s

t

Figure 8 The ratio ∥SGPw(s,t)∥
∥SPw(s,t)∥ is 1.5. SPw(s, t) is depicted in blue, and SGPw(s, t) in red.
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Abstract
We examine topological properties of spaces of paths and graphs mapped to Rd under the Fréchet
distance. We show that these spaces are path-connected if the map is either continuous or an
immersion. If the map is an embedding, we show that the space of paths is path-connected, while
the space of graphs only maintains this property in dimensions four or higher.
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1 Introduction

Motivated by the ubiquitous nature of one-dimensional data in a Euclidean ambient space
(road networks in R2, for example), we investigate spaces of paths and graphs in Rd. In
particular, we examine these spaces in relation to the Fréchet distance, which is widely
studied in the computational geometry literature [1–3,5–7]. We work with three classes of
paths: the set ΠC of all paths continuously mapped into Rd, the set ΠE of paths embedded
in Rd, and the set ΠI of paths immersed in Rd. In addition, we study three analogous
spaces of graphs: the set GC of all graphs continuously mapped into Rd, the set GE of graphs
embedded in Rd and the set GI of graphs immersed in Rd. See Figure 1 for examples of

0 This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Path-Connectivity of Fréchet Spaces of Graphs

Figure 1 The images of an element in ΠE , ΠI , and ΠC respectively, mapped in R2.

paths in R2. We then topologize these sets using the open ball topology under the Fréchet
distance, and study their path-connectedness property.

2 Background

We begin by defining the standard Fréchet distance for paths, adapting the definition from
Alt and Godau [1]. Let α0, α1 ∈ ΠC . The Fréchet distance between α0 and α1 is defined as:

dFP (α0, α1) := min
r : [0,1]→[0,1]

max
t∈[0,1]

|α0(t)− α1(r(t))|

Where r ranges over all reparameterizations of the unit interval (that is, homeomorphisms
such that r(0) = 0 and r(1) = 1), and | · | denotes the standard Euclidean norm.

We now define the Fréchet distance for graphs, inspired by the Fréchet distance among
paths. Let G be a one-dimensional simplicial complex, and let φ, ψ : G→ Rd be continuous,
rectifiable maps. Given any homeomorphism h : G→ G, we say that the induced L∞ distance
between the maps φ and ψ ◦h is ||φ−ψ ◦h||∞ = maxx∈G |φ(x)−ψ(h(x))|. With this distance
in hand, we define the Fréchet distance between (G,φ) and (G,ψ) by minimizing over all
homeomorphisms:1

dFG ((G,φ), (G,ψ)) := min
h
||φ− ψ ◦ h||∞

We now define and provide context for the underlying spaces that are studied in this
work. Recall from above that ΠC denotes the set of all continuous mappings α : [0, 1]→ Rd.
The set ΠE of embedded paths in Rd results from further specifying that α is injective, and
the set ΠI of immersed paths in Rd results from requiring only local injectivity of α. Note
that ΠE ( ΠI ( ΠC and elements of ΠC ,ΠE , and ΠI are deemed equivalent if the image of
their underlying map α is equivalent, giving a path-Fréchet distance (denoted dFP ) of zero.

We define the analogous spaces of graphs, letting G be a one-dimensional simplicial
complex and GC(G) denote the set of all continous mappings φ : G→ Rd. Similarly, we define
the set of embeddings GE(G) with the added requirement that φ be injective, and the set of

1 Other generalizations of the Fréchet distance minimize over all “orientation-preserving” homeomorphisms,
which can be defined in several ways for stratified spaces. We drop this requirement in our definition.
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φ0

φ1

(a) Interpolate

φt-ε δ

φt- ε(t )Lorem ipsum

*

(b) δ from crossing

φt-ε δ

φt- ε(t )
Lorem ipsum

*

*

(c) Inflate δ∗-nbhd

φt 2δ

φt(t )Lorem ipsum

*

(d) Self-cross by 2δ

Figure 2 The sequence of moves to continuously conduct self crossings in ΠI .

immersions GI with the requirement that φ need be only locally injective. Note that elements
of GC ,GI , and GE are equivalent (with graph Fréchet distance zero) if their underlying graphs
belong to the same homeomorphism class, and if the image of their accompanying map φ
is equivalent.

3 Results

I Theorem 1 (Continuous Mappings). The topological spaces of continuous mappings of
paths (ΠC , dFP ) and continuous mappings of graphs (GC(G), dFG) in Rd are path-connected.

Proof Sketch. Let φ0, φ1 ∈ ΠC. Naively, a path may be constructed from φ0 to φ1 by
interpolating φ0 to φ1 along the pointwise matchings (so-called leashes) defining dFP (φ0, φ1).
The same technique may be extended to demonstrate the path-connectivity of GC(G). J

I Theorem 2 (Immersions). The topological spaces of immersions of paths (ΠI , dFP ) and
immersions of graphs (GI(G), dFG) in Rd are path-connected.

Proof Sketch. Let φ0, φ1 ∈ ΠI , and construct a path Γ : [0, 1] → ΠI as in Theorem 1 by
interpolating φ0 to φ1 along the pointwise matchings defining dFP (φ0, φ1). We next show
that this is well defined. Suppose not, then, at some t ∈ [0, 1], φt = Γ(t) could create
an intersection not present in φ0. This may collapse an entire region of the image of φt,
rendering φt no longer an immersion. Then, there exists ε > 0 such that Γ(t − ε) = φt−ε
has t∗ ∈ [0, 1] where φt−ε(t∗) is δ > 0 away from a new self-intersection, and t∗ comes
sufficiently close to minimizing δ. At this time t− ε, suspend interpolation along all leashes,
and continuously inflate a small δ∗-neighborhood φt−ε|(t∗−δ∗,t∗+δ∗) about the point φt−ε(t∗)
in the image of φt−ε so that the leash lengths for every point in the δ∗-neighborhood equal
the leash length defined at φt−ε(t∗). Then directly perturb φt−ε(t∗) by 2δ along its unique
leash such that the crossing at φt−ε(t∗) occurs, and the crossing point defined by t∗ again
lies δ away from a self intersection, and 2δ away from its original position in the final image
of φt. See Figure 2. Repeat the process for any subsequent crossings in the interpolation.
An analogous path can be constructed for graphs. J

I Theorem 3 (Path Embeddings). The space (ΠE , dFP ) is path-connected.

Proof Sketch. Let φ0, φ1 ∈ ΠE . There exists a canonical path from φ0 to φ1 by condensing
each map toward its center until the images are "nearly straight", continuously mapping each
image to a straight segment, and then interpolating as in Theorem 1. J

I Theorem 4 (Graph Embeddings). The topological space of graphs (GE(G), dFG) embedded
in Rd is path-connected if d ≥ 4.
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4 Path-Connectivity of Fréchet Spaces of Graphs

Proof Sketch. Examining the path-connectivity of GE under the Fréchet distance reduces to
a knot theory problem for d ≤ 3. For d ≥ 4, there exists a sequence of Reidemeister moves
from any tame knot to another. Hence, if φ0, φ1 ∈ GE , we construct a path by interpolating
along the pointwise matchings between φ0 and φ1 as in Theorem 1. If a self intersection would
be created, we suspend interpolation elsewhere and conduct the corresponding Reidemeister
move. Repeat the process for all intersections thereafter, until attaining the image of φ1. J

I Corollary 5 (Path-Connectivity of Metric Balls). Metric balls in the space ΠC ,GC(G),ΠI ,
and GI(G) are path-connected.

Proof Sketch. Note that the techniques used in Theorem 1 and Theorem 2 never strictly
increase the Frechet distance among two images of corresponding maps, so metric balls in each
space are path-connected. For Theorem 2 this relies on the inflation step in Figure 2c, which
assures that the Fréchet distance is fixed during a crossing event. The paths constructed in
Theorem 3 and Theorem 4 do not necessarily maintain this property. J
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Abstract
We explore two closely related visibility problems: the maximum hidden set and the minimum
convex cover. It is known that the convex cover number for any simple polygon is greater than or
equal to the hidden set number. We present an explicit example where hs(P ) ̸= cc(P ) and provide
subclasses where hs(P ) = cc(P ) for all members. For histograms, we give a linear time algorithm
which finds both a hidden set and a convex cover of the same size, improving from a 2008 result
from Bajuelos et al. which finds the maximum hidden set when restricted to vertices and assuming
general position.
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1 Defining the problems

We consider the point visibility graphs (PVGs) of polygons. PVGs relate visibility problems
to analogous graph theory problems using an infinite graph, with nodes being points in the
plane and edges existing if two points see each other.

▶ Definition 1. [[4]] Given a polygon P , the point-visibility graph of P, PV G(P ) = (V, E)
where V = {p | p ∈ P} and E = {(x, y) | xy ⊂ P}.

▶ Definition 2. For a polygon P, the hidden set number of P, hs(P), is the independence
number of PVG(P).

▶ Definition 3. For a polygon P, the convex cover number of P, cc(P), is the minimum
number of convex pieces needed to cover P. It is also the clique covering number of PVG(P).

▶ Theorem 4 ([4]). For all polygons P with n vertices: 1 ≤ hs(P ) ≤ cc(P ) ≤ n − 2.

In this paper we introduce an explicit example where hs(P ) ̸= cc(P ) and show subclasses of
simple polygons for which hs(P ) = cc(P ) for all members. Polygons for which hs(P ) = cc(P ),
we refer to as homestead polygons. In personal communications with Joseph S.B. Mitchell
and the Stony Brook CG group, we had conjectured that all simple polygons were homestead
polygons, but our example disproves that claim.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Collapsing the Hidden-Set Convex-Cover Inequality

2 Existence of Non-Homesteads

We present a simple polygon, E (Figure 1), for which hs(E) ̸= cc(E). We also conjecture
that the same holds for polygons resulting from the NP-hardness reduction of Shermer.

Figure 1 A convex cover of size 4 and hidden set of size 3 for the example nonhomestead.

▶ Theorem 5. There exists a simple polygon that is not a homestead polygon.

First we show that hs(E) = 3 . We do so by finding that for every point, p, in E,
the regions outside the visibility region of p can be covered with at most 2 convex pieces.
Therefore, for every point in E, a hidden set including it can have at most 2 more points.
We show this exhaustively, first by eliminating the intersections in convex covers of size 4
(cover with the 2 that the point is not a part of). In Figure 2, we use 2 distinct covers to
eliminate points. For the remaining sections, we find the strongly visible regions and give 2
convex pieces which complete the cover, as demonstrated in Figure 3. Hence hs(E) = 3.

Figure 2 Two different convex covers of size 4. The regions covered only by one convex polygon
across both are outlined in purple, as these are not yet eliminated.

We show that cc(E) = 4. Gella and Artes[2] show that the minimum clique cover of any
induced subgraph of a graph G must be less than or equal to that of G. First we find an
induced subgraph G of PV G(E), points 1-7 in Figure 4. We then draw the complement of
this, G′ and determine its chromatic number, which is clearly 4 from the isomorphism. Since
χ(G′) = cc(G), we know that cc(E) ≥ cc(G) = 4. Therefore cc(E) = 4.

3 Subclasses that are Homestead polygons

▶ Theorem 6. For any spiral polygon S with r reflex vertices, hs(S) = cc(S) = r + 1.
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Figure 3 Strongly visible regions of subsections only need 2 convex pieces to cover E.

Figure 4 A subgraph G of PVG(E) with cc(G) = 4 (χ(G′) = 4, shown on right and bottom).

A spiral polygon is a simple polygon comprised of a reflex chain R and a convex chain C,
with the reflex chain having r reflex vertices and 2 convex vertices that connect it to the
convex chain. Shermer [4] showed r + 1 to be an upper bound for the convex cover and the
hidden set in general. Bajuleos et al. [1] showed spirals admit a hidden set of size r + 1 by
placing a hidden point at the midpoint of every edge in R. This means that the inequality
collapses and hs(S), cc(S) are both equal to r + 1. Shermer [5] provides a related result for
generalized "j-visibility" (where points are visible from link distance j) where the size of a
Lj-hidden vertex set in a spiral-like polygon is as a lowerbound on a Lj-convex cover.

▶ Theorem 7. For any histogram polygon P, hs(P ) = cc(P ).

A histogram polygon is a simple polygon formed by two chains whose x-coordinates
increase monotonically, one of which has only one edge, and where all angles between
edges of the polygon are orthogonal. Bajuelos et al.[1] presented a formula for a maximum
hidden vertex set of a histogram polygon in general position given the number of "bottom
sides". Counting these bottom sides takes O(n) time, implying a linear time algorithm. Our
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4 Collapsing the Hidden-Set Convex-Cover Inequality

Figure 5 Demonstrating our algorithm for histogram polygons.

algorithm improves upon that result by finding a maximum hidden set (no vertex or position
constraint) and a minimum convex cover in O(n). Also, Hoorfar and Bagheri[3] present an
O(n) time algorithm for the related problem of finding minimum hidden guards in histogram
polygons under orthogonal vision, meaning 3 of the 5 hiding problems presented by Shermer
[4] can be solved in O(n) time for histogram polygons.

We will consider the histogram polygon as an ordered list of “bars” from right to left.
Each bar is the rectangle formed under each horizontal edge until the base is reached (a
convex piece), paired with the midpoint of its top edge (a hidden point). We can decompose
the polygon into these bars, creating an overestimate on convex cover and hidden set. To
lower this, we merge bars of the same height without a boundary in between, which discards
the newer hidden point and combines the rectangles.

Moving right to left, keep track of a set and a stack. The set will be our answer and the
stack will keep track of all the bars which are candidates for merging. When considering a
bar, we compare its height to the bars on the stack. If the bar is higher than the top of the
stack or the stack is empty, we add it to the stack and the set. If the bar has equal height,
we merge it with the top bar of the stack. If the bar has a lower height, then we pop the
top bar off the stack and compare again. Continue until all bars have been considered and
return the set of merged bars. See Figure 5 for an example run of the algorithm.

The result is a linear time algorithm (using the same stack operations argument as
the Graham scan) which solves both maximum hidden set and minimum convex cover for
histogram polygons. Since the algorithm always returns a hidden set and convex cover of the
same size, histogram polygons must be homestead polygons.
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4 Conclusion

We presented an explicit example where hidden set number and convex cover number are
distinct and two classes of polygons for which they are always the same. Avenues for future
work include finding more polygon subclasses that are homesteads and determining how large
the gap can be. Currently, we suspect that monotone mountains in general are homesteads
and that hs(P ) = O(cc(P )) in simple polygons.
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Abstract
Let G be an unweighted and undirected graph of complexity n cellularly embedded on a torus. The
computation of the length of the shortest non-trivial cycle of G is well-studied in the literature. We
consider the more general problem of computing not only the length of the shortest non-trivial cycle,
but also of the second shortest, the third shortest, and so on. The increasing list of lengths of the
non-trivial cycles of G, where we only list the length of the shortest cycle in each free homotopy
class, is called the length spectrum of G. In this paper, we describe an algorithm which, given the
graph G and a positive integer k, computes the first k values of the length spectrum of G in time
O(nσ1(k +

√
knσ1)), where σ1 is the length of the shortest non-trivial cycle of G.
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1 Introduction

Combinatorial surfaces are a well-studied notion in computational topology and are usually
represented as graphs that are cellularly embedded on a topological surface. Given a
combinatorial surface, there exist several algorithms for computing the length of its shortest
non-trivial cycle [7, 5, 2, 1]. Here, the length of a cycle is the sum of the weights of its edges
if the edges are weighted, or the number of edges if not. However, relatively little is known
about how to compute the second shortest non-trivial cycle, the third shortest and so on. In
this paper we describe an algorithm to compute, for a given positive integer k, the lengths of
the first k shortest cycles in the case where the surface is a torus and the graph is unweighted.
After discussing some preliminaries in Section 2, we will state the main result in Section 3.

2 Preliminaries

Throughout this paper, T will denote a torus, i.e., a topological surface of genus 1 without
boundary. Let G be an unweighted and undirected graph embedded on T, where we allow G

to have loop edges and multiple edges. We denote the complexity of G, i.e., the total number
of its vertices and edges, by n. In this paper we assume that G is cellularly embedded on T,
which means that its faces are open disks. This embedding can be represented using one of
the standard representations, e.g., the incidence graph of flags [4] or rotation systems [6]. To

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Computing the length spectrum of combinatorial graphs on the torus

each homotopy class (free or with a fixed basepoint) we associate a length, which is given by
the length of the shortest cycle in that homotopy class. The length spectrum is defined as
the list containing in increasing order the lengths of the free homotopy classes of G.

3 Main result

▶ Theorem 1. Let G be a graph of complexity n cellularly embedded on a torus T and let k

be a positive integer. The first k values of the length spectrum of G can be computed in time
O(nσ1(k +

√
knσ1)), where σ1 = O(n) is the length of the shortest non-trivial cycle of G.

The idea of the algorithm is as follows. First, we compute a shortest non-trivial cycle ℓ1
of G using one of the algorithms from the literature [1]. Cutting along ℓ1 yields a cylinder
with two copies of ℓ1 as boundary components. For each vertex on one of the copies of ℓ1 we
compute a shortest path in the cylinder to the corresponding vertex on the other copy of ℓ1.
We denote the shortest of these shortest paths by ℓ2 and cut along it to obtain a so-called
polygonal schema of the torus (see Figure 1).

ℓ1

ℓ2

ℓ1 ℓ2

Figure 1 Constructing a polygonal schema of the torus.

By gluing infinitely many copies of this polygonal schema in a grid-like manner (see
Figure 2), we obtain the infinite periodic graph G̃ in the universal cover R2 of T. Let F̃0 be
a fixed copy of the polygonal schema in G̃. Consider the translation T1 mapping the bottom
side of F̃0 to its top side and the translation T2 mapping the left side of F̃0 to its right side.
Every copy of the polygonal schema in G̃ is the image of F̃0 under a translation consisting of
applying T1 and/or T2 (or their inverses) finitely many times.

T2
T1

F̃0

Figure 2 Tesselation of the universal cover R2 of T with copies of the polygonal schema.
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A loop passing through a given vertex v of G corresponds to a path in G̃ from the
representative ṽ0 of v contained in F̃0 to the representative of v contained in some translate
of F̃0. Therefore, to obtain the length spectrum of loops passing through a given vertex v of
G, we do a breadth-first search with the representative ṽ0 of v in F̃0 as source. Note that it is
not necessary (nor possible) to store the graph G̃ entirely; we can instead add new translates
of F̃0 as soon as they are discovered during the breadth-first search. In the following lemma
we state an upper bound for the number of translates of F̃0 that we need to visit in terms of
the distance from the source and the number of translates of the source that we find.

▶ Lemma 2. Let ṽ ∈ V (G̃) and let r be a positive integer. Let Nfind be the number of
translates of ṽ within distance r of ṽ and let Nsearch be the number of translates of F̃0
containing at least one vertex within distance r from ṽ. Then Nsearch ≤ Nfind + O(r).

In the proof we use the notion of horizontal, vertical and intermediate translates (see
Figure 3). In particular, we claim that if two horizontal or two vertical translates are within
distance r of ṽ, then all their intermediate translates are within distance r of ṽ. Then the
translates of F̃0 that we need to visit and whose translate of ṽ has distance larger than r

from ṽ are located either above a topmost translate, or left of a leftmost translate etc. and
we show that the number of these translates can be upper bounded by O(r).

ṽ2 ṽ3 ṽ4

ṽ5

ṽ6

ṽ7

ṽ1

Figure 3 In the figure, ṽ1 and ṽ4 are horizontal translates with intermediate translates ṽ2 and ṽ3.
Similarly, ṽ5 and ṽ7 are vertical translates with intermediate translates ṽ2 and ṽ6.

The next lemma provides an upper bound for the distance up to which we have to search.

▶ Lemma 3. The 2k closest translates of a representative ṽ ∈ V (G̃) of a vertex on ℓ1 have
distance O(

√
knσ1) from ṽ.

In the proof we show by an explicit construction that given a positive integer r, there
are Ω(r2σ−1

1 σ−1
2 ) translates of ṽ within distance r from ṽ, where σ2 is the length of ℓ2.

Combining Lemmas 2 and 3 we see that the number of copies of F̃0 that we have to visit to
find the 2k closest translates to a representative of a vertex on ℓ1 is O(k +

√
knσ1). This

yields the k shortest homotopy classes of loops, since for each loop that we find we also find
the loop with the opposite orientation. Because each copy of F̃0 has complexity n, this step
takes time O(n(k +

√
knσ1)). Observe that every cycle of G that does not intersect ℓ1 is

homotopic to a multiple of [ℓ1]. Since ℓ1 is the shortest cycle in its homotopy class, so are its
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4 Computing the length spectrum of combinatorial graphs on the torus

multiples [3, Proposition 2.5]. Therefore, it is sufficient to take the vertices of ℓ1 as sources
for the breadth-first search instead of all vertices of F̃0. Finally, the length spectrum of G is
obtained by ordering the length spectra of loops based at the different vertices.
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Abstract
The flip graph for a set P of points in the plane has a vertex for every triangulation of P , and an
edge when two triangulations differ by one flip that replaces one triangulation edge by another. The
flip graph is known to be connected even if some triangulation edges are constrained to be used. We
study connectivity of the flip graph when some triangulation edges are forbidden.

A set X of edges between points of P is a flip cut set if eliminating all triangulations that
contain edges of X results in a disconnected flip graph. If X is a single edge it is called a flip cut
edge. The flip cut number of P is the minimum size of a flip cut set. We give an algorithm to
test if an edge is a flip cut edge. For a set of n points in convex position (whose flip graph is the
1-skeleton of the associahedron) we prove that the flip cut number is n − 3.
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1 Introduction

Given a set P of n points in the plane, which may include collinear points, an edge of P is a
line segment pq that intersects P in exactly the two endpoints p and q. A triangulation
of P is maximal set of non-crossing edges. Triangulations have important applications in
graphics and mesh generation [2, 10] and are of significant mathematical interest [9].

A fundamental approach to understanding triangulations is by means of flips. A flip
operates on a triangulation by removing one edge pq and adding another edge uv to obtain a
new triangulation—of necessity, the edges pq and uv will cross and their four endpoints will
form a convex quadrilateral with no other points of P inside it. For example, in Figure 1,
edge a1b1 can be flipped to uv. In 1972, Lawson [12, 13] proved that any triangulation of
point set P can be reconfigured to any other triangulation of P by a sequence of flips. This
can be expressed as connectivity of the flip graph, which has a vertex for every triangulation
of P and an edge when two triangulations differ by a flip.

Although reconfiguring triangulations via flips is well studied [4], there are some very
interesting open questions, and many properties of flip graphs remain to be discovered.

The case of points in convex position is especially interesting because there is a bijection
between flips in triangulations of a convex point set and rotations in binary trees [18]. Finding
the rotation distance between two binary trees is of great interest in biology for phylogenetic
trees [8], and in data structures for splay trees [18]. Furthermore, the flip graph for n

points in convex position is the 1-skeleton of an (n − 3)-dimensional polytope called the
associahedron [14], or see [6]. See Figure 2. Although there is no geometric analogue of the

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Flip Cut Edges

a1 a2

b1b2

a1 a2

b1b2

u v u v

Figure 1 The smallest point set that has a flip cut edge. The edge e = uv is a flip cut edge since
forbidding e leaves two possible triangulations (as shown) and neither one allows a flip.

associahedron for the case of triangulations of a general point set, some of its properties
carry over to an abstract complex called the flip complex. For example, the 2-dimensional
faces of the flip complex, like those of the associahedron, have size 4 or 5 [15].

An open frontier in the study of flip graphs has to do with expander properties, which
would potentially lead to rapid mixing via random flips. For results on mixing in triangulations,
see [5, 16, 17]. More generally, researchers study connectivity properties of flip graphs.
Recently, Wagner and Welzl [19] showed that for n points in general position in the plane,
the flip graph is ⌈ n

2 − 2⌉-connected. For points in convex position, the flip graph is (n −
3)-connected, which follows from Balinski’s theorem [1] applied to the 1-skeleton of the
associahedron, see [19].

One intriguing thing about flip graphs of triangulations is that many properties carry over
when we restrict to triangulations containing some specified non-crossing edges—so-called
constrained triangulations. The subgraph of the flip graph consisting of triangulations that
contain all the constrained edges is connected [7].

Figure 2 The flip graph of points of a convex hexagon is the 1-skeleton of an associahedron. If
we forbid the two red edges, the resulting flip graph (with vertices circled in green) is connected.

Our Results. We study connectivity properties of the flip graph when—instead of constrain-
ing certain edges between points to be present—we forbid certain edges between points. To
be precise, if a set X of edges between points is forbidden, we eliminate all triangulations that
contain an edge of X, and examine whether the flip graph on the remaining triangulations is
connected. We say that X is a flip cut set if the resulting flip graph is disconnected; in the
special case where X is a single edge, we say that the edge is a flip cut edge. For example
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the edge uv in Figure 1 is a flip cut edge, but the two red edges in Figure 2 do not form a
flip cut set. Also see Figures 3, 4. We define the flip cut number of a set of points to be
the minimum size of a flip cut set. This is analogous to the connectivity of a graph—the
minimum number of vertices whose removal disconnects the graph.

Since the structure of the flip graph depends on the edges between the points, it seems
more natural to study connectivity of the flip graph after deleting some of these edges, rather
than deleting some vertices of the flip graph, as standard graph connectivity does, and as
the result of Wagner and Welzl [19] does.

As our main result, we characterize when an edge e is a flip cut edge in terms of connectivity
(in the usual graph sense) of the edges that cross e. We then use the characterization to give
an O(n log n) time algorithm to test if a given edge e in a point set of size n is a flip cut
edge. With that algorithm as preprocessing, we give a linear time algorithm to test if two
triangulations are still connected after we eliminate from the flip graph all triangulations
containing edge e.

For the case of n points in convex position, there are no flip cut edges and we show
that the flip cut number is n − 3. For example, in Figure 2 the leftmost and rightmost
triangulations become disconnected if we forbid one more edge, which yields a flip cut set of
size 3 for n = 6.

b1

b2
b3 b4

b5

t1
t2 t3

t4
t5

Figure 3 The “channel”, and a triangulation that becomes frozen (an isolated vertex in the flip
graph) if we forbid the edge b2, tn−1 (in red). In fact, every edge bitj , i, j /∈ {1, 5} is a flip cut edge.

We show that a point set of size n may have Θ(n2) flip cut edges (see Figure 3), and
we show that a flip cut edge may result in Θ(n) disconnected components in the flip graph.
We also examine various special point sets whose flip graphs have been previously studied,
such as points on an integer grid [5] and, more generally, point sets without empty convex
pentagons [11]. Our characterization of flip cut edges becomes simpler in the absence of
empty convex pentagons. Point sets without empty convex pentagons must have collinear
points; our results do not assume points in general position.

For further details see the arxiv version [3].

Figure 4 Some point sets and their flip cut edges (in red).

49



4 Flip Cut Edges

References
1 Michel L Balinski. On the graph structure of convex polyhedra in n-space. Pacific Journal of

Mathematics, 11(2):431–434, 1961. doi:10.2140/pjm.1961.11.431.
2 Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. Computing

in Euclidean Geometry, pages 47–123, 1995. doi:10.1142/9789814355858_0002.
3 Reza Bigdeli and Anna Lubiw. Disconnecting the triangulation flip graph of points in the

plane by forbidding edges, 2022. arxiv paper to appear.
4 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geometry,

42(1):60–80, 2009. doi:10.1016/j.comgeo.2008.04.001.
5 Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Random lattice

triangulations: Structure and algorithms. The Annals of Applied Probability, 25(3):1650–1685,
2015. doi:10.1214/14-aap1033.

6 Cesar Ceballos, Francisco Santos, and Günter M Ziegler. Many non-equivalent realizations of
the associahedron. Combinatorica, 35(5):513–551, 2015. doi:10.1007/s00493-014-2959-9.

7 L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–108, 1989. doi:
10.1145/41958.41981.

8 Bhaskar DasGupta, Xin He, Tao Jiang, Ming Li, John Tromp, and Louxin Zhang. On
distances between phylogenetic trees. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), volume 97, pages 427–436. SIAM, 1997. doi:10.5555/314161.314338.

9 Jesús De Loera, Jörg Rambau, and Francisco Santos. Triangulations: Structures for Algorithms
and Applications, volume 25. Springer Science & Business Media, 2010. doi:10.1007/
978-3-642-12971-1.

10 Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge University
Press, 2001. doi:10.1017/CBO9780511530067.

11 David Eppstein. Happy endings for flip graphs. Journal of Computational Geometry, 1(1):3–28,
2010. doi:10.48550/arXiv.cs/0610092.

12 C. L. Lawson. Generation of a triangular grid with application to contour plotting. Technical
report, Memo 299, Jet Propulsion Laboratory, 1972.

13 C. L. Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365–372, 1972.
doi:10.1016/0012-365X(72)90093-3.

14 Carl W. Lee. The associahedron and triangulations of the n-gon. European Journal of
Combinatorics, 10(6):551–560, 1989. doi:10.1016/S0195-6698(89)80072-1.

15 Anna Lubiw, Zuzana Masárová, and Uli Wagner. A proof of the orbit conjecture for flipping
edge-labelled triangulations. Discrete & Computational Geometry, 61(4):880–898, 2019. doi:
10.1007/s00454-018-0035-8.

16 Michael Molloy, Bruce Reed, and William Steiger. On the mixing rate of the triangulation
walk. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 43, 2001.
doi:10.1090/dimacs/043/11.

17 Dana Randall and Prasad Tetali. Analyzing Glauber dynamics by comparison of Markov
chains. Journal of Mathematical Physics, 41(3):1598–1615, 2000. doi:10.1063/1.533199.

18 Daniel D Sleator, Robert E Tarjan, and William P Thurston. Rotation distance, triangulations,
and hyperbolic geometry. Journal of the American Mathematical Society, 1(3):647–681, 1988.
doi:10.1145/12130.12143.

19 Uli Wagner and Emo Welzl. Connectivity of triangulation flip graphs in the plane (Part
I: Edge flips). In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2823–2841, 2020. doi:10.1137/1.9781611975994.172.

50



The tropical variety of antisymmetric matrices
Luis Crespo Ruiz !

Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005
Santander, Spain

Francisco Santos !

Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005
Santander, Spain

Abstract
The k-asociahedron is a simplicial complex whose facets correspond to k-triangulations of the n-gon,
known to be homeomorphic to a sphere of dimension k(n− 2k − 1)− 1. We show that it can be
obtained intersecting the tropical variety of Pfaffians with the orthant of “4-point positive” weights.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Multitriangulations, tropical geometry, matchings, Pfaffians, polytopes.

Related Version A full version of the paper is available at https://arxiv.org/abs/2203.04633.

Funding Supported by grant PID2019-106188GB-I00/AEI/10.13039/501100011033 of the Spanish
Research Agency and by project CLaPPo (21.SI03.64658) of Universidad de Cantabria and Banco
Santander

1 k-triangulations

I Definition 1 (See e.g. [3]). Let n > 2k be two positive integers. A subset T ⊆
([n]

2
)
of

diagonals of the n-gon is called (k + 1)-free if no (k + 1) diagonals in T mututally cross. The
maximal (k + 1)-free graphs are called k-triangulations or multi-triangulations.

• 0

•
1•

2

•
3

•4

•
5 •

6

•
7

Figure 1 A 2-triangulation of the 8-gon. As expected, it has 22 edges

We are interested in the abstract simplicial complex Assk(n) on the vertex set
([n]

2
)
whose

faces are (k + 1)-free graphs and whose facets are k-triangulations. All k-triangulations are
known to have cardinality k(2n−2k−1) [3, 5]. That is, Assk(n) is a pure simplicial complex.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 The tropical variety of antisymmetric matrices

If an edge {i, j} has |i − j| ≤ k (where indices are taken modulo n, and distance is
measured cyclically), then it lies in every k-triangulation. We call these edges irrelevant
and call the face of Assk(n) they span the irrelevant face. We can thus define the reduced
complex, Assk(n), the faces of which are the (k + 1)-free sets of relevant edges. The exact
relation between Assk(n) and Assk(n) is that the former is the join of the latter with the
irrelevant face, and hence the latter is the link of the former at the irrelevant face. Based on
the fact that Ass1(n) is the face poset of the polar of the standard associahedron we define:

I Definition 2. We call Assk(n) the k-associahedron of parameters n, k. We refer to Assk(n)
as the extended k-associahedron.

Jonsson [5] proved thatAssk(n) is a shellable simplicial sphere of dimension k(n−2k−1)−1,
and conjectured it to be polytopal. This conjecture is one of the motivations for this work.

2 Tropical varieties

Let f ∈ K[x1, . . . , xN ] be a polynomial. Each vector d ∈ RN , considered as giving weights
to the variables, defines an initial form ind(f), obtained neglecting in f the monomials of
non-maximum weight. If d is “generic” then ind(f) is a single monomial, but we are interested
in the opposite case. The tropical hypersurface of f , denoted trop(f), is the set of d’s for
which at least two monomials attain the maximum weight. Put differently, trop(f) ⊂ RN

equals the codimension-one skeleton of the normal fan of the Newton polytope of f [9].

I Definition 3. A tropical prevariety is any finite intersection of tropical hypersurfaces. The
tropical variety of an ideal I ⊂ K[x1, . . . , xN ] is trop(I) := ∩f∈I trop(f).

Although a tropical variety is defined as an infinite intersection of tropical hypersurfaces,
for each I a certain finite subset is enough; that is, every tropical variety is a prevariety [9,
Thm. 2.6.5]. But not every generating set of I is enough, not even a universal Gröbner basis.

3 The ideal of Pfaffians of degree k + 1

The determinant of an antisymmetric matrix of even size 2k with indeterminate entries is
the perfect square of a homogeneous polynomial of degree k, called the Pfaffian. It has
2k!! monomials, corresponding to the (perfect) matchings among the 2k labels for rows and
columns, all with coefficient ±1 depending on the parity of each matching [1, 8, 12]. For
example, for k = 2 we get

∣∣∣∣∣∣∣∣

0 x12 x13 x14
−x12 0 x23 x24
−x13 −x23 0 x34
−x14 −x24 −x34 0

∣∣∣∣∣∣∣∣
= (x12x34 − x13x24 + x14x23)2. (1)

The 3 terms inside the square correspond to the 3 matchings among 4 points, shown in Fig. 2.
For each n ≥ 2k + 2, let Ik(n) be the ideal in K[xi,j , {i, j} ∈

([n]
2

)
] generated by all the

principal Pfaffians of degree k + 1 of an antisymetric matrix M of size n. That is, for each
subset U ∈

( [n]
2k+2

)
we consider the Pfaffian of the principal minor of M labeled by U . Since

Pfaffians of degree two (see Eq. (1)) coincide with the quadratic Plücker relations, I1(n)
equals the Plücker ideal defining the Grassmannian Gr2(n) in K([n]

2 ). See, e.g., [11, Remark
3.22]. In this k = 1 case Speyer and Williams [13] have shown that the associahedron arises
as a subfan of the tropical variety of I1(n), as we now recall.
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1 2

34

1 2

34

1 2

34

Figure 2 The three matchings among four points, corresponding to the Pfaffian in Eq. (1)

I Definition 4. We say that a weight vector v ∈ R([n]
2 ) is four-point positive (abbreviated

fp-positive) if for all 1 ≤ a < a′ < b < b′ ≤ n we have that

va,b + va′,b′ ≥ max{va,a′ + vb,b′ , va,b′ + va′,b}. (2)

We denote by FPn the subset of R([n]
2 ) consisting of fp-positive vectors.

Observe that FPn equals the space of weights that select as initial term, in each Pfaffian
of four points, the matching that has a crossing. It can also be interpreted as the weights
that represent separation vectors among sides of the n-gon, or as weights that are monotone
with respect to crossing-increasing swaps among perfect matchings of each U . FPn is a cone
linearly isomorphic to an orthant plus a linear space. See details in [2, Sect. 3.1].

I Theorem 5 ([13, Section 5]). The intersection trop(I1(n)) ∩ FPn is a simplicial fan
isomorphic to (the cone over) the extended associahedron Ass1(n).

4 Our results

Our main result generalizes Theorem 5 to arbitrary k. The starting point is to show that
Pfaffians form a Gröbner basis of the ideal they generate, for any weight vector in FPn. This
generalizes the main result of [6], who prove it for a particular lexicographic weight vector:

I Theorem 6. With respect to any weight vector v ∈ FPn, Pfaffians are a Gröbner basis for
the ideal Ik(n). Moreover, if v lies in the interior of FPn then inv(Ik(n)) is the monomial
ideal generated by (k + 1)-crossings. That is, it is the Stanley-Reisner ideal [10] of Assk(n).

This implies that k-triangulations are bases of the algebraic matroid of Pfk(n), which in turn
coincides with the hyperconnectivity matroid [7]. See [2, Section 2.3] for more details.

We now denote Vk(n) ⊂ R([n]
2 ) the intersection of the tropical hypersurfaces of Pfaffians

of degree k. This is by definition a tropical prevariety containing trop(Ik(n)), but it may
not coincide with it. In the light of Theorem 6, it makes sense to look at the part of Vk(n)
defined by fp-positive vectors. That is, we define V+

k (n) := Vk(n) ∩ FPn .

We prove that for any v ∈ FPn, being in V+
k (n) is equivalent to the positivity equations (2)

being satisfied with equality except in a (k + 1)-free set [2, Theorem 4.3]. Moreover, when
this happens v can be proved to be in trop(Ik(n)) [2, Corollary 4.5]. Thus:

I Theorem 7. 1. V+
k (n) = trop(Ik(n)) ∩ FPn.

2. V+
k (n) is the union of the faces of the orthant FPn corresponding to (k + 1)-free graphs.

That is, V+
k (n) is embedded in FPn as (the cone over) the k-associahedron Assk(n). In

the full version of this abstract [2, Section 5] we argue that, once we have this result, in order
to realize the k-associahedron as a complete (and hopefully polytopal) fan it would suffice to
find a projection R([n]

2 ) → Rk(2n−2k−1) that is injective in V+
k (n). This idea works nicely for

the case k = 1, but we have not managed to implement it for higher k.
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4 The tropical variety of antisymmetric matrices

A projection that works for k = 1 consists in choosing a triangulation T0 and forgetting
the coordinates of edges that are not in T0. The resulting fan equals the g-vector fan in the
root system of type A, a realization of the associahedron constructed before by Hohlweg,
Pilaud and Stella in [4]. In this realization the vectors for the edges of T0 are projected
into basis vectors, the same edges rotated one position are projected into the negative basis
vectors, and the rest of edges are projected into {−1, 0, 1} combinations of them.
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We consider two classification problems of self-affine tiles: the classification of polyhedral tiles and
of two-digit tiles. This enables us to develop a theory of multivariate tile B-splines based on which
we construct subdivision schemes for generating surfaces and establish their remarkable properties.
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1 Introduction

Self-affine tiles are widely studied in the literature due to numerous applications in approxima-
tion theory, in construction of wavelets, crystallography, computer graphics [1, 2, 3, 4, 5].

Generally, a tiling of a set G ⊂ Rn is its partition of the form G = ∪m
i=1Si(T ), where

T is a compact set called tile, and Si are transforms from a certain class. The tiling is
called self-similar if the tile T is similar to G by means of orthogonal transformations and
homothety, and, more generally, self-affine if the tile is similar to G by means of some affine
operator. The set T is called a self-affine tile in this case.

A popular class of self-similar tilings are reptiles. In this case, the transforms Si consist
of translations and rotations, see, for example, fig. 1 (left). Reptiles have lots of application
in different fields including algorithms and data structures which use their replicating nature
(such as quadtrees), modeling of the cell division, etc. Most of fractals defined as iterated
function systems (IFS) are also reptiles.

2 Fundamental results

We restrict our analysis to translational self-affine tilings, i.e., all Si are translations. Such
tilings were studied in works on geometry, combinatorics, number theory, topology, numerical

Figure 1 Left: a reptile. Right: translational tilings.

55



2 Self-affine tilings, multivariate B-splines and subdivision schemes

Figure 2 Left: 1d disconnected self-similar tiling. Right: The example of MZ2.

Figure 3 The example of set G, its partition to three parts, and tiling of the plane.

analysis, see [1, 6, 7, 8, 9, 10, 11, 12, 13, 14] and references therein. Translational tilings
can also be very different. A simple example of a self-affine tile is a parallelepiped that is
the union of its binary contractions. However, this case is rather exceptional, and a typical
self-affine tile has a complicated structure and fractal-like properties (see the examples on fig.
1, right). A natural question arises if there exist simple tiles other than parallelepipeds.

▶ Problem 1. Classify all self-affine tiles that are polyhedral (polyhedra or finite unions of
polyhedra) up to an affine similarity.

The convex case is rather simple: only parallelepiped admits a self-affine tiling. The
general case (non-convex, disconnected sets) was studied in recent works [14, 15]. The
complete classification had been known only for the one-dimensional case [16], which is based
on [17], see also [15]. Even in this case the problem is highly non-trivial, see fig. 2 (left).

In [18] (a brief report, the full work is currently unpublished), we obtained a complete
classification for general polyhedral tilings in arbitrary dimension. Connected tiles can
only be parallelepipeds, but the disconnected case produces infinitely many non-equivalent
polyhedral tiles. They are unions of translates of unit cubes with a special structure. For
reptiles, the problem 1 is still open; even for simple polyhedra such as simplices there are
many open questions [19, 5, 20].

There is a particular case of our self-affine translational tilings which is a key ingredient
in construction of Haar wavelet systems used in signal processing [1, 2, 3]. Let M ⊂ Zn×n be
an integer expanding matrix (|λi| > 1 for all eigenvalues). The matrix M maps the lattice
Zn to the lattice of parallelepipeds MZn (see fig. 2 right). The volume of each parallelepiped
is m = | det M |, and all integer points are colored in m colours with respect to this lattice.
We choose one point di of each colour i and form the set of digits D ⊂ Zn = {d0, . . . dm−1}.

The compact set G = G(M, D) =
{∑∞

k=1 M−kdak
: ak ∈ {0, 1, . . . , m − 1}

}
satisfies the

self-similarity equation: G = M−1(G+d0)∪. . .∪M−1(G + dm−1) (see fig. 3). Thus, it admits
a self-affine translational tiling with a self-affine tile T = M−1G and Si(T ) = T + M−1di.
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Figure 4 Example of different self-affine tilings.

The set G can also be considered as a self-affine tile of the set MG: MG = (G + d0) ∪
. . . ∪ (G + dm−1), Si(G) = G + di. In [1, 9] it is proved that the Lebesgue measure |G| is a
positive integer and the translates {G + k}k∈Zn cover the entire space Rn in |G| layers. If
|G| = 1, then G + k1 and G + k2 with k1 ̸= k2 have intersection only of measure zero. The
translations of set G are said to form a tiling of Rn (fig. 3) that explains another meaning
why the set G is called a tile. The simplest example in R1 is a unit segment [0, 1] for M = 2,
D = {0, 1} (see fig. 4 left). On the plane, tilings can have different properties (see fig. 4).
The two-digital case, i.e., when m = 2, is the most convenient in applications. We call such
sets G 2-tiles.

▶ Problem 2. Classify all 2-tiles up to affine similarity.

It is known that in the two-dimensional case there are three 2-tiles, we call them a square,
a dragon, and a bear (in the literature they are also known as rectangle, twindragon and
tame twindragon), see fig. 5. 2-tiles were studied, for example, in [6, 7, 9, 11, 12, 21].

Square Dragon Bear

Figure 5 The partitions of the plane 2-tiles into two affinely-similar parts

Using algebraic tools, we obtained [21] the full classification of 2-tiles when the matrix
is isotropic (similar to an orthogonal matrix multiplied by a number). It turns out that in
odd dimensions they can be only parallelepipeds, and in every even dimension n = 2k, there
exist precisely three 2-tiles: the parallelepiped, the direct product of k (two-dimensional)
dragons, and the direct product of k (two-dimensional) bears. We reduced the non-isotropic
case to the problems on polynomials. In 3D, there are 7 non-similar types and only one of
them is isotropic (parallelepiped) [6]. In 4D there are 21 types, etc [21].

Surprisingly, on the plane there are six types of 2-reptiles (with two parts) with rational
angles of rotations [22]. Three of them coincide with 2-tiles and three are another dragons.
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4 Self-affine tilings, multivariate B-splines and subdivision schemes

3 Tile B-splines and their applications to surface modelling

Tiles allow to generalize the classical concept of B-splines to the multivariate setting. Namely,
we consider the tile B-spline Bn(G) = χG ∗ . . . ∗ χG︸ ︷︷ ︸

n+1

, where G is a tile, χG(x) = 1 if x ∈ G,

χG(x) = 0 if x /∈ G, and f ∗ g(x) =
∫

f(y)g(x − y)dy is a convolution. In the univariate case
G = [0, 1] (see fig. 6, left, see [23]).

Surprisingly enough, the B3 with G chosen as a Bear tile is three times continuously
differentiable while the classical B-spline of the same order is not (see B3 on fig. 6, right).

Figure 6 Left: 1d B-splines. Right: Tile B-spline B3 for Bear tile.

Tile B-splines generate efficient subdivision schemes which are linear iterative algorithms
extrapolating functions from their values on a regular grid (fig. 7). From our results it follows
that the B3-subdivision scheme produces C3 surfaces, which improves many well-known
schemes such as four-point scheme, butterfly scheme, etc. I currently work on this topic
investigating the behavior of Bk for k > 3 and how these subdivision schemes could be
generalized for irregular meshes.

Figure 7 After 0, 2 and 4 iterations of the subdivision scheme B3.
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Abstract
A set of geometric graphs is geometric-packable if it can be asymptotically packed into every sequence
of geometric drawings (Hn)n≥1 of complete graphs (Kn)n≥1. When G is a triangle, 4-cycle or 4-cycle
with a chord, we show that the set of plane drawings of G is geometric-packable. In contrast, the
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plane drawings of G can be asymptotically packed into the sequence of convex drawings of complete
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1 Introduction

A geometric graph G is a graph drawn in the Euclidean plane such that its vertices are points
in general position (no three points on the same line) and its edges are drawn as straight
line segments. In this paper, Hn is a geometric complete graph on n vertices. Generally,
a packing of Hn is a collection of geometric subgraphs of Hn which are edge-disjoint. An
important conjecture asks whether it is possible to pack bn

2 c plane spanning trees into Hn.
This is possible if the drawing of Hn is convex [1, 3], which means the vertices are in convex
position, but it was very recently shown that the general conjecture is false [5]. The current
best general construction shows that it is possible to pack bn

3 c plane spanning trees into
Hn [2]. In this paper, we relax the requirement that the graphs that are packed be large,
and we focus on packing small graphs into Hn.

For any abstract planar graph G, let P(G) denote the set of all plane geometric drawings
of G. A P(G)-packing of Hn is a collection of edge-disjoint subgraphs of Hn that are each a
member of P(G). Figure 1 shows examples of two distinct geometric graphs H6 and P(C4)-
packings, where C4 is the 4-cycle. The size of a P(G)-packing is the number of subgraphs
of Hn that are matched with a member in P(G). Let p(Hn,P(G)) be the maximum size of

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 On Asymptotic Packing of Geometric Graphs

x

y
(a) (b)

Figure 1 Packing of plane 4-cycles into geometric graphs H6. The drawing (b) is convex.

a P(G)-packing in Hn and e(G) the number of edges of G. Let {Hn}n≥1 be a sequence of
complete geometric graphs. Now {Hn}n≥1 can be asymptotically packed by P(G) if

lim
n→∞

p(Hn,P(G))e(G)
e(Hn) = 1.

Further, we say G is geometric-packable if any sequence {Hn}n≥1 can be asymptotically
packed by P(G).

2 Main results

I Theorem 1. If G is a planar Hamiltonian graph, then P(G) is not geometric-packable
unless G is the 3-cycle C3, the 4-cycle C4, or one of the four graphs Θ1, Θ2, Θ3, Θ4 shown in
Figure 2. Further, P(G) is geometric-packable if G is one of C3, C4, and Θ1.

Θ1 Θ2 Θ3 Θ4

Figure 2 Four plane triangulated cycles. The first, Θ1, is geometric-packable. For each of the
remaining three, the question of geometric-packability remains open.

In Section 3 we provide a construction which shows that Θ1 is geometric-packable. To
show that a graph is not geometric-packable, we show that it does not asymptotically pack
into some sequence {Hn}n≥1. The sequence we consider is the sequence of convex Hi’s.

A convex geometric graph (CGG for short) G is a geometric graph whose vertices are in
strictly convex position as in Figure 1 (b). We denote the vertices of G by v0, v1, . . . , vn−1
and assume these vertices appear in clockwise (cyclic) order on the boundary of their convex
hull (indexing is modulo n). Informally, two CGGs are convex-isomorphic if some graph
isomorphism between them preserves the cyclic order of all vertices. Let Kn be the complete
CGG on n vertices. Given a CGG G, a G-packing of Kn is a collection of edge-disjoint
subgraphs of Kn that are convex-isomorphic to G. For example, Figure 1 shows that there
are 3 edge disjoint copies of C4 in K6 (which is best possible since b

(6
2
)
/4c = 3.)

G is convex-packable if {Kn}n≥1 can be asymptotically packed by G. Note that the plane
C3 and C4 are convex-packable by Theorem 1; {Kn}n≥1 can be asymptotically packed by
P(C3),P(C4) and each plane subgraph Ci in Kn is the unique CGG of Ci. We naturally ask:
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Are all plane cycles convex-packable? The answer is No and it follows from an edge length
argument. The length of an edge in Kn is the distance between its vertices with respect to
the boundary cycle (of the convex hull). For example, the length of the edge xy in Figure 1
is two. In fact, for all k ≥ 5, the average length of the edges in a plane copy of Ck in Kn is
at most n/k. Hence, the average length of all edges covered by a plane Ck-packing of Kn

is also at most n/k. In contrast, the average length of all edges in Kn is (1 + o(1))n/4. So
when k ≥ 5, no plane Ck-packing can cover all but o(n2) edges of Kn. By extending this
average length argument, we find a necessary condition for a CGG to be convex-packable [4,
Lemma 5].

I Theorem 2. All plane Hamiltonian CGGs are not convex-packable, except for the two
plane cycles C3 and C4 and the four CGGs Θ1, Θ2, Θ3 and Θ4 shown in Figure 2, which are
all convex-packable.

The advantage of studying Hamiltonian graphs is that they have a unique embedding as plane
CGG’s (consecutive vertices along the Hamiltonian cycle are consecutive in the clockwise
order of the CGG). Hence, if a graph has a unique embedding as a plane CGG, convex-
packability follows directly from geometric-packability. While in this paper we consider plane
CGG’s G, it can be further asked which CGG’s that have a crossing are convex-packable.

3 Proof that Θ1 is geometric-packable.

We consider the set of plane 4-cycles with a chord, P(Θ1). Let Dn be an arbitrary geometric
drawing in the plane of Kn. Let f(n) = 2n log2 n. We prove by induction on n that there
exists a Θ1-packing of Dn that covers all but at most f(n) edges.

Let m = bn/4c. By the Ham Sandwich Theorem, there exist two straight lines partitioning
the plane into 4 parts, where each part contains at least m vertices. Ignoring up to 3 vertices,
we pick m vertices in each part and denote the resulting vertex sets in clockwise order by
P1, P2, P3, P4 and the vertices by vi,j , where i ∈ {1, . . . , 4} is the vertex set and j ∈ {1, . . . , m}.

Let D′n be the spanning subgraph of Dn whose edge set consists of all edges with endpoints
in distinct parts, except for those with one endpoint in each of P2 and P4. Let Fn be a
collection of copies of plane Θ1 whose vertex set is {v1,j , v2,k, v3,j+k, v4,k} and whose chord
is {v1,j , v3,j+k}, with j, k ∈ {1, . . . , m}; here each second index is modulo m. Figure 3
shows an example for n = 8 (and m = 2). It is easy to check that Fn is a Θ1-packing of
D′n that covers all but at most 3n edges. Note that Dn \ D′n consists of three complete

P1

P2

P3

P4

Figure 3 The vertices are partitioned into four equal parts P1, P2, P3, P4. The figure shows the
set F8 of edge disjoint Θ1’s, where chords are drawn as dashed lines.

components, one induced by P2 ∪ P4, and the others induced by P1 and P3. Thus, by
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4 On Asymptotic Packing of Geometric Graphs

induction, there exists a Θ1-packing of Dn such that the number of uncovered edges is at
most f(n/2) + 2f(n/4) + 3n ≤ f(n), as desired.
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We provide a naturally isomorphic description of the persistence map from merge trees to barcodes [3]
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1 Background on the Inverse Problem

Merge trees play a central role in topological data analysis (TDA). One can apply persistent
homology to a merge tree to obtain an “adjacency free” description of a merge tree in
terms of its barcode, we call this association of a barcode to a merge tree the persistence
map. Characterizing precisely how many merge trees map to the same barcode was studied
in [2, 3, 5] and has yielded significant connections to geometric group theory, combinatorics,
and statistics. Understanding the fiber of the persistence map is crucial for understanding
how noise in data propagates to noise in persistent homology.

In [3, 5] a combinatorial version of this inverse problem was considered; see Figure 1. A
combinatorial merge tree is a binary, rooted, combinatorial tree with birth-ordered labels
on the leaves {0, 1, . . . , n} and death-ordered labels on the internal nodes. Every barcode
with n finite-length bars whose left (birth) endpoints are distinct and whose right (death)
endpoints are distinct can be encoded by a combinatorial barcode B = {(i, j)} if the ith birth
endpoint is matched with the jth death endpoint. Equivalently, a combinatorial barcode is
the graph of a permutation σ of {1, . . . , n}.

In this abstract, we characterize the persistence map from combinatorial merge trees to
combinatorial barcodes in terms of monotone maps between two lattices: the subset lattice
and the partition lattice. We show that a maximal chain in the subset and partition lattices

∗ This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 A Lattice-Theoretic Perspective on the Persistence Map

Figure 1 Figure from [3], expressing the combinatorial inverse problem.

corresponds to a combinatorial barcode and combinatorial merge tree respectively, and that
one may incrementally construct solutions to the inverse problem using this correspondence.

2 A Lattice Version of the Inverse Problem

Let (P,4) be a poset. Recall that a lattice is a poset equipped with meets and joins. A
totally ordered subset C ⊆ P is called a chain. A chain is maximal if it is not a proper subset
of any other chain in P . A path γ is a chain C such that for any e ∈ P that lies between two
elements of C, then C ∪ {e} is not a chain. A path is based at x0 ∈ P if the lowest element
in γ is x0. If P has a unique lowest element 0̂ (e.g. a lattice), we write P̃ as the poset of
paths based at 0̂, which is a poset via containment of paths. There is a unique surjective
map πP : P̃ → P sending a path to its endpoint. Furthermore, if f : P → Q is a monotone
map of posets, there is a unique map f̃ : P̃ → Q̃ such that f ◦ πP = πQ ◦ f̃ . We call f̃ the
lift of f .

I Definition 1 (Subset Lattice). Let [n] = {1, . . . , n} and consider P = P([n]), the set of all
subsets of [n], including the empty set ∅, equipped with the partial order ⊆ of “being a subset
of”. This forms the subset lattice Πn of [n], with A∩B and A∪B being the meet and join
of A,B ∈ Πn, respectively. The poset of paths in Πn based at ∅ is Π̃n.

I Definition 2 (Partition Lattice). A partition of the set n := {0, 1, . . . , n} is a collection of
disjoint subsets U = {U1, . . . , Uk} of n whose union is n. A partition U refines a partition
U ′, written U � U ′, if every subset of U ′ is equal to a union of elements of U . We denote the
lattice of partitions of n by Pn. The poset of paths based at {{0}, . . . , {n}} is P̃n.
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We can filter a combinatorial barcode B with n bars into sets B1 ⊂ · · · ⊂ Bn := B where
Bk is the set of pairs {(i, j)}j≤k. We refer to Bk as a partial (combinatorial) barcode. The set
of all partial barcodes with at most n bars forms a poset by containment, which we denote
by PCBn. Similarly, a partial (combinatorial) merge tree is a filtration of a combinatorial
merge tree T with n+ 1 leaves by subgraphs T0 ⊂ T1 ⊂ · · · ⊂ Tn := T where Tk is the full
subgraph supported on the set of leaf nodes and all internal nodes with label less than or
equal to k. Partial merge trees also forms a poset by subgraph containment, denoted PCT n;
see Figure 2. The persistence map between combinatorial merge trees and barcodes extends
to a map from PCT n to PCBn, which we also call the persistence map.

I Theorem 3. The poset of partial merge trees PCT n and barcodes PCBn are isomorphic
to P̃n and Π̃n, respectively. Furthermore, there is a monotone map H : Pn → Πn whose lift
H̃ : P̃n → Π̃n is naturally isomorphic to the persistence map from PCT n → PCBn.

Proof. Every partial merge tree T0 ⊂ · · · ⊂ Tk defines a path U0 < · · · < Uk, where Ui is the
partition of the leaf node labels induced by connected components in the graph Ti. Each
partition of leaf labels can be identified with a partition of n. Hence we obtain an equivalence
between partial merge trees and paths of partitions U0 < · · · < Uk which give a sequence of
connected components indexed by the filtration parameter, see the bottom left graphic in
Figure 2. The maximal element (endpoint) of a path γ ∈ P̃n of length k corresponds to a
partition with k parts, indexing the leaf labels of the connected components of the k’th level
set of a patial merge tree Tk.

Similarly, every partial barcode B1 ⊂ · · · ⊂ Bk defines a path in the subset lattice
∅ := A0 ⊂ · · · ⊂ Ak. Each set Ak is the set of birth labels whose deaths occur by time k.
These specify the isomorphisms.

Define H : Pn → Πn as follows: Let (U1, U2, ..., Uk) be a partition of n. For each Ui, let
U ′i := Ui \ {min{x ∈ Ui}}. Let H((U1, U2, ..., Uk)) = ∪i∈[k]U

′
i ∈ Πn. This map is monotone,

since if (U1, U2, ..., Uk) ≤ (V1, V2, ..., Vl), then the latter partition is obtained by collapsing
parts of the first, which can only add elements to H((U1, U2, ..., Uk)). It is easy to see that
this map is also surjective. This lifts to a natural map H̃, defined on paths.

The map H maps each partition to the subset of n obtained by removing the eldest leaf
node in each component from n. This is in accordance with the Elder Rule [2] of persistent
homology, which asserts that when the rank of the persistence module decreases by e.g.
one, the youngest bar has been killed by the persistence algorithm. Hence we see that H
indicates which bars in the filtration persist upon a “merge event”; the image is the union
B = ∪i∈[k]Bi of leaf node labels that have been killed by stage k. Applying this computation
to each element in γ produces a path in B0 ⊂ B1... ⊂ Bk in Bn. The combinatorial barcode
is encoded by the successive differences between Bi and Bi+1.

J

3 Future Work

Theorem 3 is still in need of a full geometric description that accounts for actual positions
and lengths of bars in a barcode and edges in a merge tree. In [1] a novel coordinatization of
barcode space was given based on the relation with the symmetric group. However, a similar
picture for merge tree space that uses the connection with the partition lattice is unknown.
Additionally, the lattice structure on these “skeletonizations” of barcode and merge tree
space has not been fully explored. As noted in [4,6,7], Möbius inversion provides another
way of summarizing topological changes in a filtration, which suggests that inverse problems,
lattice theory, and Möbius inversion may occupy a rich intersection of ideas.
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Figure 2 Illustration of Theorem 3.
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Abstract
We expand the toolbox of (co)homological methods in computational topology by applying the
concept of persistence to sheaf cohomology. Since sheaves (of vector spaces) combine topological
information with algebraic information, they allow for variation along an algebraic dimension and
along a topological dimension. Consequently, we introduce two different constructions of sheaf
cohomology (co)persistence modules. One of them can be viewed as a natural generalization of
the construction of simplicial or singular cohomology copersistence modules. We discuss how both
constructions relate to each other and show that some classical results from persistence theory can
be generalized to sheaves.
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1 Introduction

In recent years, applied sheaf theory started to gain momentum in the computational topology
community. Sheaves [1, 11] are used, to describe information flows in networks [9, 10, 12],
for sensor integration and data fusion [14, 15], for stratification learning [2] and in various
other situations [4, 8, 13]. One of the main tools of sheaf theory and, in particular, applied
sheaf theory is sheaf cohomology. Sheaf cohomology can be used to investigate local to global
inference problems. For example, sheaf cohomology (or cosheaf homology) is used to compute
global persistent (co)homology from local persistent (co)homology [4, 5, 17, 19]. The goal
of this work is to apply the concept of persistence [6, 7, 18], one of the most prominent
tools of computational topology, to sheaf cohomology. Instead of tracking the evolution of
simplicial homology under the variation of simplicial complexes, we track the evolution of
sheaf cohomology under the variation of sheaves. Since sheaves (of vector spaces) combine
topological and algebraic information, they allow for variation along the algebraic and the
topological dimension. Consequently, we introduce the following two constructions of sheaf
cohomology (co)persistence modules.

2 Sheaf persistence modules of algebraic type

For our first construction, we use the well-known fact [11] that (k-dimensional) sheaf
cohomology assigns to a sheaf of F-vector spaces F on a topological space X a vector space
Hk(X,F ). Moreover, this assignment is functorial, that is, given a morphism of sheaves
φ : F → G, we obtain a linear map of the cohomology vector spaces Hk(X,φ) : Hk(X,F )→

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Persistent sheaf cohomology

Hk(X,G). Hence, as depicted in Figure 1, a linear diagram ~F of sheaves and sheaf morphisms
gives rise to a one-dimensional persistence module Hk(X, ~F ). Note that the algebraic

~F : F0 F1 F2 · · ·

Hk(X, ~F ) : Hk(X,F0) Hk(X,F1) Hk(X,F2) · · ·

φ0 φ1 φ2

Hk(X,φ0) Hk(X,φ1) Hk(X,φ2)

Figure 1 Construction of a sheaf persistence module of algebraic type.

information provided by the sheaves Fi is variable along ~F , whereas the topological space
X is fixed. Therefore, we call the obtained persistence module a sheaf persistence module
of algebraic type. If Hk(X,Fi) is finite-dimensional for all i ∈ N0, then Hk(X, ~F ) can be
decomposed into interval modules corresponding to persistent sheaf cohomology classes in ~F .

A classical result from persistence theory states that persistence modules (of finite type)
correspond to (finitely generated) graded F[t]-modules [3, 18]. For example, Hk(X, ~F )
corresponds to the graded F[t]-module

⊕
n∈N0

Hk(X,Fn) where t · x := Hk(X,φn)(x) for all
x ∈ Hk(X,Fn). In analogy to persistence modules of finite type, we define a diagram ~F to
be of finite type if it becomes "constant" at some point and Fi is a sheaf of finite-dimensional
vector spaces for all i ∈ N0. The following theorem extends the results above to linear
diagrams of sheaves and contains them as the special case of a one-point space.

I Theorem 1. A linear diagram of sheaves ~F (of finite type) on X corresponds to a sheaf
M~F of (finitely generated) graded F[t]-modules on X.

The next theorem states that we can relate the persistent cohomology of ~F with the ordinary
cohomology of the corresponding sheaf of graded modules M~F .

I Theorem 2. There is an isomorphism of graded F[t]-modules

Hk(X,M~F ) ∼=
⊕

n∈N0

Hk(X,Fn) .

The significance of this result is that it allows us to compute the interval decomposition
of Hk(X, ~F ) by computing the cohomology of the corresponding sheaf of graded modules.
Under certain conditions, the cohomology of M~F can be computed by (graded) matrix
reduction, a method familiar from standard persistent homology.

3 Sheaf copersistence modules of topological type

For our second construction we use the following: Given a continuous map f : X → Y and
a sheaf of vector spaces F on Y , we can pull back the sheaf F on Y along the map f to
obtain a sheaf f∗F on X called the inverse image sheaf with respect to f . Moreover, there
exists a linear map Hk(f) : Hk(Y, F ) → Hk(X, f∗F ) induced by f on cohomology vector
spaces [11]. We now consider a linear diagram of topological spaces and continuous maps ~X
indexed by N0 ∪ {∞} as depicted by the commutative diagram in the upper part of Figure 2
and a sheaf F on X∞. We define, for every i ∈ N0, the sheaf F i := g∗i F on Xi. Note that
F i = g∗i F = (gi+1 ◦ fi)∗F = f∗i g

∗
i+1F = f∗i F

i+1. Hence, as depicted in the middle row of
Figure 2, we can visualize the construction as iteratively pulling back the sheaves F i along
the maps fi−1. We now connect the sheaf cohomology vector spaces Hk(Xi, F

i) by the linear
maps Hk(fi) : Hk(Xi+1, F

i+1)→ Hk(Xi, f
∗
i F

i+1) = Hk(Xi, F
i) induced by the continuous
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X∞

~X : X0 X1 X2 · · ·

F 0 F 1 F 2 · · ·

Dk( ~X,F ) : Hk(X0, F
0) Hk(X1, F

1) Hk(X2, F
2) · · ·

f0

g0

f1

g1

f2

g2

f∗
0 f∗

1 f∗
2

Hk(f0) Hk(f1) Hk(f2)

Figure 2 Construction of a sheaf copersistence module of topological type.

maps fi to obtain the copersistence module Dk( ~X,F ) depicted in the bottom row of Figure 2.
In this case, the algebraic information is provided by a fixed sheaf F , whereas the topological
information is variable along the diagram ~X. Therefore, we call this copersistence module
a sheaf copersistence module of topological type. If Hk(Xi, F

i) is finite-dimensional for all
i ∈ N0, then Dk( ~X,F ) can be decomposed into interval modules corresponding to persistent
sheaf cohomology classes of the sheaves F i over ~X.

If the involved topological spaces are semi-locally contractible [16] or abstract simplicial
complexes equipped with the Alexandrov topology [4] and if F is the constant F-valued
sheaf, then this construction yields the singular or simplicial cohomology copersistence
module, respectively. Hence, our second construction can be viewed as a generalization of
the construction of singular or simplicial cohomology copersistence modules.

Under some conditions on the maps fi and gi, we can associate to the pair ( ~X,F ) a linear
diagram G( ~X,F ) of sheaves and sheaf morphisms on X∞ such that there is an isomorphism
of copersistence modules Hk

(
X∞, G( ~X,F )

) ∼= Dk( ~X,F ). Hence, in some cases, we can
reduce the second construction to the first one. This is possible, for example, if ~X is a
filtration of abstract simplicial complexes equipped with the Alexandrov topology.

It is also possible to consider a diagram of topological spaces ~X and a diagram of sheaves
~F on X∞ and combine both constructions to obtain a two-dimensional (co)persistence module
with a topological and an algebraic dimension.
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Abstract
We use tools from geometric group theory to produce a stratification of the space Bn of barcodes
with n bars. The top-dimensional strata are indexed by permutations associated to barcodes as
defined by Kanari, Garin and Hess. More generally, the strata correspond to marked double cosets
of parabolic subgroups of the symmetric group Symn. This subdivides Bn into regions that consist
of barcodes with the same averages and standard deviations of birth and death times and the same
permutation type.
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1 Introduction

Barcodes [7] are topological summaries of the persistent homology of a filtered space. The
barcode B associated to a filtration {Xt}t∈R is a multiset of points (b, d) ∈ R2. It summarises
the creation and destruction of homology classes while varying the parameter t, which is
often interpreted as “time”. A bar (b, d) ∈ B corresponds to a homology cycle appearing in
Xb and becoming a boundary in Xd. The first element of the pair (b, d) is called the birth
and the second one the death. A barcode is called strict if the births and deaths all take
different values [8, 6]. A strict barcode B can be associated with a permutation σB ∈ Symn

that tracks the order of the deaths with respect to the order of the births [8, 6].
Understanding the space of barcodes is crucial to be able to do statistics or comparison

between data using their barcodes. We use Coxeter complexes to develop a new description
of the set Bn of barcodes with n bars. We give coordinates for this set that have natural
interpretations when doing statistics with barcodes. These coordinates define a stratification
of Bn where the top-dimensional strata are indexed by the symmetric group Symn.

The advantages of these new coordinates are two-fold: Firstly, using points in Coxeter
complexes, one obtains coordinates that uniquely specify barcodes and are yet compatible
with the combinatorial structure of Bn given by permutation equivalence classes in [8, 6].
Secondly, one resolves the problem that permutation equivalence classes themselves carry no
notion of “size”: The decomposition of Bn into regions subdivides these equivalence classes

∗ This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Stratifying the space of barcodes using Coxeter complexes

by also taking into account the averages and standard deviations of births and deaths. This
makes these regions a finer invariant than the permutation type used in [8, 6] to compare
neurons’ barcodes and random barcodes. This work lays the theoretical basics to extend
these applications.

2 Background

The Coxeter complex Σ(Symn) [1, 3, 2] associated with Symn consists of a simplicial complex
where the top-dimensional simplices are in one-to-one correspondence with the elements
of Symn. Its geometric realization is a simplicial decomposition of the (n− 2)-sphere, see
Figure 1, and is the dual of the permutohedron [9]. The set of k-simplices in Σ(Symn) is
in one-to-one correspondence with the cosets of rank-(n − 1 − k) parabolic subgroups PT
of Symn, i.e., subgroups that are generated by sets of k adjacent transpositions of the type
(i, i+ 1). More formally, let S be the set of all adjacent transpositions, and for T ⊂ S, let
PT be the subgroup generated by T . Then

Σ(Symn) =
⋃

T⊆S
Symn /PT = {τPT | τ ∈ Symn, T ⊆ S},

where each simplex τPT has dimension dim(τPT ) = |S \ T | − 1 and the face relation is
defined by the partial order τPT ≤ τ ′PT ′ ⇔ τPT ⊇ τ ′PT ′ . The group Symn acts simplicially
on Σ(Symn) by left multiplication on the cosets, γ · (τP ) = γτP , and the action on the
geometric realisation of Σ(Symn) corresponds to hyperplanes reflections in Rn (see Figure 1).

A stratification [4] is a decomposition of a space into disjoint subsets (strata) with nice
properties. For this abstract, it is enough to know that a simplicial decomposition of a sphere
gives a stratification, where the strata are given by the simplices.

3 Contributions

Our main contributions can be summarised as follows (see [5] for more details).

I Theorem 1. Let Bn denote the set of barcodes with n bars.
1. Bn can in a natural way be seen as a subset of a quotient Symn \R2n.
2. Bn is stratified over a certain poset of double cosets of parabolic subgroups of Symn, see

[5] for a full statement.
3. Using this description, one obtains a decomposition of Bn into different regions. Each

region is characterised as the set of all barcodes having the same average birth and
death, the same standard deviation of births and deaths and the same permutation type
σB ∈ Symn, as defined in [8, 6].

4. This description gives rise to metrics on Bn that coincide with modified versions of the
bottleneck and Wasserstein metrics, see [5].

To obtain this description of Bn we proceed as follows. A barcode is an (unordered)
multiset of n pairs of real numbers (births and deaths). It can hence be seen as a point in
the quotient space Symn \(Rn × Rn), where the action of Symn permutes the coordinate
pairs. Since the birth is smaller than the death for every barcode, Bn is a proper subset of
this quotient of R2n.

The Coxeter complex Σ(Symn) associated to Symn is a simplicial complex whose geometric
realisation is homeomorphic to an (n− 2)-sphere (Figure 1). Hence, we can decompose Rn
as Rn ∼= cone(Σ(Symn))× R, where cone(Σ(Symn)) =

(
Σ(Symn)× [0,∞)

)
/(x, 0) ∼ (y, 0) ∼=
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Figure 1 The geometric realisation of the Coxeter complex Σ(Sym4). The permutation corre-
sponding to each triangle of the front of the sphere is indicated in black. The hyperplanes xi = xj

depicted in colours correspond to the transpositions (i, j) ∈ Sym4.

Rn−1. This decomposition allows to describe each point x ∈ Rn via coordinates xθ, x̄, ‖vx‖,
where xθ specifies a point on the Coxeter complex, ‖vx‖ is the “cone parameter” and x̄

parametrises the remaining R.
In summary, this describes Bn as a subset of

Bn ⊂ Symn \
(

cone(Σ(Symn))× R× cone(Σ(Symn))× R
)
.

We call the coordinates that we obtain from this description Coxeter coordinates. It turns
out that for each barcode, these coordinates are bθ, b̄, ‖vb‖ and dθ, d̄, ‖vd‖, where b̄ and d̄
are the averages of the births and deaths, ‖vb‖ and ‖vd‖ are their standard deviations and
the coordinates bθ and dθ describe the permutation equivalence class of the barcode of [8, 6].
The stratification one obtains is induced by the simplicial structure of Σ(Symn).
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Abstract
Given a training set P ⊂ Rd, the nearest-neighbor classifier assigns any query point q ∈ Rd to the
class of its closest point in P . The set of border points of P are those that define the boundaries
that separate points of different classes, and thus are relevant to correctly classify new query points.
Improving over a decades-long result by Clarkson (FOCS’94), a recent paper by Eppstein (SOSA’22)
proposes an output-sensitive algorithm to find the set of border points of P in O(n2 + nk2) time,
where k is the size of such set. In this paper, we further improve this algorithm to run in O(nk2) time
by proving that the first steps of the original algorithm, which require O(n2) time, are unnecessary.
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1 Introduction

In the context of non-parametric classification, we are given a training set P ⊂ Rd consisting
of n labeled points in d-dimensional Euclidean space, where the label of every point in P

indicates the class (or color) that the point belongs to. The nearest-neighbor classifier [3]
is a well-known classification technique that predicts the class of any unlabeled query point
q ∈ Rd with the class of its closest point in P . That is, it classifies q.

The set of border points (or relevant points1) of the training set P are those that define
the boundaries between points of different classes, and whose omission from the training set
would imply the misclassification of some query points in Rd. Formally, two points p, p̂ ∈ P

are border points of P if they belong to different classes, and there exist some point q ∈ Rd

such that q is equidistant to both p and p̂, and no other point of P is closer to q than these
two points (i.e., the empty ball property of Voronoi Diagrams). See Figure 1 for an example
of a training set P in R2 and its set of border points. Throughout, we let k denote the
total number of border points in the training set. By definition, if instead of building the
nearest-neighbor classifier with the entire training set P we use the set of border points of P ,
its dependency is reduced from n to k, while still obtaining the same classification for any
query point in Rd. This becomes particularly relevant for applications where k ≪ n.

Improving over a decades-long result by Clarkson [1], a recent paper by Eppstein [2]
proposes an output-sensitive algorithm to find the set of border points of P in O(n2 + nk2)
worst-case time, where k is the size of such set. In this paper, we further improve Eppstein’s
algorithm to have time complexity equal to O(nk2). We achieve this by proving that the
first steps of the original algorithm, which require O(n2) time, are unnecessary.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 While [2] uses the term relevant points, the term border points has been the standard in the literature of
this and other related problems [4, 6–8]. For this reason, we stick to the term border points.
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2 Improved Search of Relevant Points for Nearest-Neighbor Classification

(a) Original training set P (b) Border/Relevant points of P

Figure 1 On the left, a training set P with points of three classes: red, blue and yellow. There
the black lines highlight the boundaries of P between points of different classes. On the right, a
subset of these points corresponding to the set of border points of P . Note that by definition, the
boundaries between points of different classes remain the same for P and for its set of border points.

2 Sketching Our Approach

Eppstein’s algorithm. Eppstein’s approach is strikingly simple, yet full of interesting ideas.
The algorithm can be naturally split into two main phases or steps. The initialization step,
where it selects an initial set of border points, which is then used during the search step in
order to find all the remaining border points of P .

The initialization step involves finding an initial subset of all border points. In particular,
it finds at least one point for every class boundary of P . Eppstein observes that this can be
achieved by computing the Minimum Spanning Tree (MST) of P , identifying the edges of the
MST that connect points of different classes (denoted as bichromatic edges), and selecting
the endpoints of all such edges. This step takes O(n2) time, but we prove it is unnecessary.

The search step then finds every remaining border point of P . It iterates over every
selected border point p, and uses a series of subroutines that we jointly call the “inversion
method”. Basically, this method identifies a subset of border points that are “visible” from
p. After running this method on every selected point, the algorithm terminates with the
guarantee of having selected every border point of P .

Our Approach. We propose a simple modification to Eppstein’s algorithm, which avoids
the initialization step altogether. That is, avoiding to compute the MST of P , along with
the subsequent selection of bichromatic edges to produce the initial subset of border points.

Instead, we simply start the search process with any arbitrary point of P , while the rest
of the algorithm remains virtually unchanged. We show that this new algorithm is not only
correct, meaning that it only finds border points of P , but also complete, as all border points
of P are eventually found by our algorithm. Additionally, by avoiding the main bottleneck
of the original algorithm, our algorithm computes the same set of points in O(nk2) time.

To understand why this can be done, it is useful to explore why Eppstein’s algorithm
computes the MST of P in the first place. The reasons are twofold, as both the correctness
and completeness proofs of Eppstein’s paper rely on it. First, note that the original algorithm
only applies the inversion method on border points of P , as Eppstein’s correctness proof
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(i.e., their Lemma 6) guarantees that the resulting points of the inversion method are border
points, but only when the point p that it was applied to is also a border point. However, we
prove that this is the case whether p is a border point or not, generalizing their statement.

Moreover, these initial border points selected from the MST provide Eppstein’s algorithm
at least one starting point on every class boundary of P from where to start the search of the
remaining border points of P . Additionally, Eppstein’s completeness proof shows that the
search step can “move along” any given boundary and eventually select all its defining border
points. Therefore, from the perspective of their completeness proof, it becomes essential to
select at least one starting point from every boundary. However, we are able to prove that
the search process is far more powerful, and can even “jump” between nearby boundaries.

Altogether, this implies that regardless of where the search process starts, our algorithm
will eventually discover every boundary of P and select all their defining border points. Thus,
rendering the computation of the MST of P unnecessary.

Details. The contributions of this work have been sketched due to space constraints. See the
full paper [5] for further details on our algorithm, and its correctness and completeness proofs.
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We study k-Nearest Neighbor classifiers from a geometric viewpoint. We give data structures with
worst-case sublinear query times, even when k is large (i.e., k = Θ(n)).
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1 Introduction

One of the most popular approaches for classification problems is to use a k-Nearest-Neighbor
(k-NN) classifier [2, 4, 6, 7]. In a k-NN classifier the predicted class of a query item q is taken
to be the most frequently appearing class among the k items most similar to q. One can
model this as a geometric problem in which the input items are represented by a set P of n
colored points in Rd: the color of the points represents their class, and the distance between
points measures their similarity. The goal is then to store P so that one can efficiently find
the color (class) c∗ most frequently occurring among the k points in P closest to a query
point q. See Figure 1(left). We refer to such queries as chromatic k-NN queries. To answer
such queries, k-NN classifiers often store P in, e.g., a kd-tree and answer queries by explicitly

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

q

Figure 1 (left) A set of input points from three different classes (colors). The class of a query
point q is determined by the labels of its k nearest neighbors (with k = 7 as shown here q is classified
as red). (center) The color partition for k = 1. (right) The color partition for k = 3.
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2 Chromatic k-Nearest Neighbor Queries

reporting the k points closest to q, scanning through this set to compute the most frequently
occurring color [2]. Unfortunately, for many distance measures (including the Euclidean
distance) such an approach has no guarantees on the query time other than the trivial O(n)
time bound. Even assuming that the dependency on n during the query time is small (e.g.
when the points are nicely distributed [5]), the approach requires Θ(k) time to explicitly
process all k points closest to q, whereas the desired output is only a single value: the most
frequently appearing color. Hence, our main goal is to design a data structure to store P
that has sublinear query time in terms of both n and k, while still using only small space.

The only result on the theory of chromatic k-NN queries that we are aware of is that
of Mount et al. [8]. They study the problem in the case that we measure distance using
the Euclidean metric and that the number of colors c, as well as the parameter k, are small
constants. Mount et al. state that it is unclear how to obtain a query time independent
of k, and instead analyze the query times in terms of the chromatic density ρ of a query
q. Intuitively, this term models the idea that if many points near q have the same color,
queries should be easier to answer than when there are multiple colors with roughly the same
number of points. We aim for bounds only in terms of combinatorial properties (i.e. n, c,
and k) and allow the number of colors, as well as the parameter k, to depend on n. Our
results are particularly relevant when k and c are large compared to n.

2 Our approach

Our main idea is to answer a query in two steps. (1) We identify a region Dkm(q) that contains
exactly the set k-NNm(q) of the k sites closest to q according to distance metric Lm. In
fact, we search for the smallest disk under metric Lm, that is centered around q, such that
k-NNm(q) is contained in it. This disk uniquely identifies Dkm(q). (2) We then find the mode
color c∗; that is, the most frequently occurring color among the points in the region Dkm(q).
This way, we never have to explicitly enumerate the set k-NNm(q). We will design separate
data structures for these two steps, for m ∈ {1, 2,∞}, and in two-dimensional space.

2.1 Finding Dk
m(q)

The main idea for finding Dkm(q) is to identify an ordered set of candidate distances, such
that the distance r∗ between q and its kth nearest neighbor is contained in this set. We
then perform binary search over these candidate distances, constructing the metric disk
Dm(q, r) = {p ∈ R2 | Lm(p, q) ≤ r} for each considered distance r. By then counting the
number of points inside this disk, we can find out whether r∗ is greater than, smaller than,
or exactly equal to r. Once r∗ is found, we can report Dkm(q) as Dm(q, r∗).

Creating the candidate distances is simple when m =∞ (and by affine transformations
on R2, also when m = 1). Because the distance between q and a point p ∈ P is entirely
governed by either the x- or y-coordinates of the points, we can take the set of candidate
distances to be {|px − qx| | p ∈ P} ∪ {|py − qy| | p ∈ P}. Using balanced binary search trees
to store the x- and y-coordinates of P , built during preprocessing, we can search over these
candidate distances while only computing a small number (O(logn)) of them explicitly. This
approach gives the following result.

I Theorem 1. With O(n logn) preprocessing time and O(n) space, we can find Dk∞(q) in
O(nδ) time, for an arbitrarily small constant δ > 0.

When m = 2, we use the partition tree T of Agarwal et al. [1], built for circular range
searching, to generate candidate distances. Given a set Ω of open, connected regions in R2,
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called cells, such that there is a cell ω ∈ Ω containing the kth nearest neighbor of q, we let
the set of candidate distances be equal to the distances between q and arbitrary points inside
the regions in Ω. Using these distances, we can find two distances r− and r+, such that
r− ≤ r∗ ≤ r+, and such that at least one of D(q, r−) and D(q, r+) crosses ω.

We can then discard all cells in Ω that are not crossed by either of the disks, and construct
new candidate distances with the kept cells. Using the bounds of Agarwal et al. [1], we get
that the total number of candidate distances considered is O(n1/2 polylogn). This gives the
following result.

I Theorem 2. With O(n1+δ) expected preprocessing time and O(n) space, we can find Dk2 (q)
in O(n1/2 polylogn) time, for an arbitrarily small constant δ > 0.

2.2 Range mode queries
For range mode queries, we use the results of Chan et al. [3]. In the case where Dkm(q) is
an axis-aligned square (when m =∞), we can use their result for orthogonal range mode
queries. However, by moving to three dimensions, we can augment their data structure for
halfspace range mode queries, to obtain a faster query time complexity.

We summarize our results for chromatic k-nearest neighbor queries, which are dominated
by those of range mode queries, in the following theorem.

I Theorem 3. With O(n5/3) preprocessing time and O(n) space, we can answer chromatic
k-NN queries under the L∞ metric in O(n2/3+δ) time. With O(n5/3) expected preprocessing
time, we can answer queries under the L2 metric in O(n5/6 polylogn) time.
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Abstract
In multi-robot motion planning (MRMP), the goal is to plan collision-free motion of robots from
given start to target positions. Although MRMP has been known to be intractable for decades, it is
still not well-understood why that is, which motivates exploring the boundary between tractable
and intractable MRMP variants. To this end, we consider a restricted yet still NP-hard version
of MRMP, called monotone MRMP, in which robots must move one by one to their targets with
no intermediate stops. We show that two further simplified variants of monotone MRMP remain
NP-hard. These variants serve as tractability frontiers in the sense that they are slight deviations
from known tractable problems. All of our reductions are based on an NP-hard job scheduling
problem that we refer to as Pivot Scheduling. The connection to scheduling sheds light on the
hardness of monotone MRMP.
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1 Introduction

In the multi-robot motion planning (MRMP) problem, the aim is to plan the motion of several
robots operating in a common workspace, without incurring collisions with obstacles or with
fellow robots. MRMP has been shown to be hard in various planar settings [2,8,9,11,12].
Recently, we have shown that monotone MRMP, a natural variant in which robots move
one by one to their targets, is also NP-hard [7]. This variant is related to geometric
reconfiguration [4, 6] and robotic object rearrangement, where the problem has been recently
shown to be empirically challenging for as little as 10-30 objects [13]. These empirical
difficulties prompt the question of which ingredients are underlying the hardness of monotone
MRMP, motivating us to improve the theoretical understanding of the problem’s intractability.

Our first contribution is introducing Pivot Scheduling as the base problem for our
reductions. The problem is a useful scheduling-based abstraction layer between 3-SAT and
monotone MRMP. Next, we present two problem variants that serve as tractability frontiers,
i.e., tractable problems that become NP-hard with a slight formulation change.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Tractability Frontiers in Multi-Robot Coordination and Geometric Reconfiguration

2 Preliminaries

Monotone MRMP. We define an instance as a set R of n rectangular robots in a planar
workspace, where each robot r ∈ R has a start and a target position, denoted by s(r) and
t(r), respectively. The goal is to decide whether there is a monotone motion plan, i.e., a
sequence of moves in which each robot r ∈ R moves once from s(r) to t(r) without inducing
collisions, while the other robots remain stationary. If such a motion plan exists, we say that
the given instance is feasible.

Pivot Scheduling. An instance has the form (V, C), where V is a set of jobs that come
in pairs and C is a set of ordering constraints. Namely, let x1, . . . , xn and y1, . . . , yn be 2n

distinct jobs, where for each 1 ≤ i ≤ n, we view the jobs xi and yi as paired. Denote by
V the set of all jobs, i.e., V = {x1, y1, . . . , xn, yn}. Each ordering constraint C ∈ C is a set
C ⊆ V of three jobs. The task is to partition V into two subsets, a before set V1 and an after
set V2, such that the following hold:
1. Before constraints: For each pair xi, yi, we have either xi ∈ V1 or yi ∈ V1.
2. After constraints: For each C ∈ C, one of the jobs in C must be in V2, i.e., C ∩ V2 ̸= ∅.

Intuitively, the before/after constraints implicitly imply the existence of a distinguished
pivot job with respect to which the input jobs must be ordered. To be precise, the partition
into a before and after set, specifies which jobs come before and after the pivot job. Pivot
Scheduling can be seen as a special case of generalized AND/OR Scheduling, which is
NP-hard [10]. We show the following.

▶ Theorem 1. Pivot Scheduling is NP-hard.

3 Results

We present the two tractability frontiers.
Frontier 1: Nearly well-formed environments. To simplify MRMP, [5] introduce

the notion of a well-formed environment (WFE), in which a robot located at an endpoint,
i.e., a start or target position, cannot block other robots from reaching their target. That is,
the following assumption (*) must hold for each robot: there exists a path to the robot’s
target that does not intersect with any endpoint belonging to other robots. In a WFE,
robots can be moved to their target one by one in any order, and so any monotone MRMP
instance with this property is feasible. A natural question is whether we can relax the WFE
property and still solve the problem efficiently. We show that for a nearly WFE, in which
there exists exactly one robot for which assumption (*) does not hold, monotone MRMP
becomes NP-hard:

▶ Theorem 2. Monotone MRMP in a nearly well-formed environment is NP-hard.

Frontier 2: All but one robot have a fixed path. Another way to simplify MRMP
is to restrict the paths that the robots can take. Suppose that as part of the input, we also
get the path that each robot must take to its target. In this case, monotone MRMP can be
solved in polynomial time by means of a precedence graph [1,3]. However, even if we only
have one robot that is not given a specific path, while the rest of the robots must follow
given paths, then the problem becomes NP-hard:

▶ Theorem 3. Monotone MRMP in which each robot is constrained to follow a path, except
for one robot, is NP-hard even for unit square robots.
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r∗

a1 b1 c1a2 c2

b1 b2

a2

b1

a1a1

a1 b1 b2 c1 c1 c2 c1

r∗

Figure 1 The monotone MRMP instance corresponding the to Pivot Scheduling with V =
{a, a, b, b, c, c}, C = {{a, b, c}, {a, b, c}, {a, b, c}}. Obstacles are gray. The start and target positions
are the filled and unfilled colored rectangles, respectively. The robots corresponding to the xi’s and
yi’s (and their target positions) are colored green and red, respectively. Regular robots are labeled
with unique indices in order to distinguish between appearances of the same job in C. The path P

of r∗ in a motion plan corresponding to the partition V1 = {a, b, c}, V2 = {a, b, c} is shown (blue).

Figure 1 illustrates our construction for proving the hardness of the two aforementioned
problem variants.1 Complete proofs will appear in the full version of the paper and we
expect to present additional variants at the YRF. Here we provide high level intuition on
the hardness of monotone MRMP with nearly WFE. Given a Pivot Scheduling instance
S = (V, C), we construct a corresponding monotone MRMP instance I that is feasible if and
only if S has a valid job partition. For each job j ∈ V we have a corresponding set of robots
R(j) that contains a robot for each appearance of j in a constraint in C. We call all the
latter robots regular robots and they are unit squares. We have a special pivot robot r∗,
which is a 1 × 1.5 rectangle, that has to move across the workspace from left to right, which
is the only robot for which assumption (*) does not hold. The main idea is that since r∗

is a bit fatter, it serves as the pivot job that must be carefully sequenced with respect to
other robots in the motion plan. All the other robots can reach their targets regardless of
when they move in a monotone motion plan, since they are thin enough to use the paths at
the top and bottom of the construction. Start positions are placed such that for each xi, yi,
either all of R(xi) or all of R(yi) must move before r∗. Similarly, targets are placed so that
for each C ∈ C, one of the robots corresponding to C must move after r∗.
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Abstract
In this work, we study Reeb graphs under the smoothing functor, and prove that a Reeb graph

and its smoothing are ε apart in both interleaving distance and (combinatorial) graph edit distance.
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1 Introduction

Reeb graphs have become an important tool in computational topology for the purpose
of visualizing continuous functions on complex spaces as a simplified discrete structure.
Essentially, these graphs capture how level sets of a function evolve and behave in a topological
space; components of each level set become a vertex, and edges connect vertices on adjacent
level sets which are connected. We refer to recent surveys [4, 9] for a more exhaustive
overview of their uses. Given their utility in shape analysis, it is natural to ask how can
we measure the difference between Reeb graphs. There are many possible metrics studied;
again, we refer to a recent survey [5] for details of the options. In this paper, we focus on
two commonly studied such metrics, the interleaving distance dI [7] and the Reeb graph edit
distance dE [3]. It is known that dE ≤ 5dI [3, 2]; in this paper, we show that for a Reeb
graph and its smoothing, dI = dE .

2 Reeb Graphs and Smoothing

Formally, a Reeb graph is a pair (X, f) where X is topological space and f : X → R is
a continuous real-valued function. We assume that all Reeb graphs Rf are generic, so
that all vertices have degree 1 or 3 and occur at distinct heights. In this work, we will
study Reeb graph smoothings, first introduced in [7], defined as follows. For ε ≥ 0, let
(f+Id) : X× [−ε, ε] → R be defined as (x, t) 7→ f(x)+ t. We define the ε-smoothing Sε(X, f)
to be the Reeb graph of (X × [−ε, ε], f + Id), we often refer to this as a smoothing of the
Reeb graph. Recent work [1] completely characterizes the combinatorial effect of smoothing
on a graph. In general, we see up forks and maximums being shifted upwards by ε and down
forks and minimums being shifted downwards by ε. In addition, cycles disappear when the
length of the cycle is shorter than 2ε, where the length of a cycle is the difference in height
between the highest and the lowest vertices on the cycle. In the space X × [−ε, ε], fε is the
induced height function where fε(x, t) = f(x) + t. Throughout this paper we will abuse this
notation and also use fε to be the induced height function in Sε(X, f).

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 The Edit Distance for Smoothings of Reeb Graphs

Figure 1 The Reeb graph interleaving distance is the smallest ε such that the diagram commutes.
The map η is the composition of the inclusion of (G, f) into (G × [0, 1], fε) and the quotient map
from the thickening to Sε(G, f); see [7, 6] for more details.

We begin with a lemma that extends these ideas to study the effect of smoothing on
edges of the Reeb graph:

▶ Lemma 1. Let (X, f) be a generic Reeb graph with vertex set V (X, f) = {v1, v2, ..., vn}.
We denote the critical set S = {a1 < a2 < ... < an} and assume that the vertices are sorted
such that f(vi) = ai. We denote the set of edges as E(X, f). Let C be a constant equal to
half the minimum height difference between any connected down fork and up fork with the
down fork above the up fork. Let 0 < ε < C such that Sε(X, f) is still generic. Then there is
a bijection Φ : E(X, f) → E(Sε(X, f), fε).

▶ Corollary 2. For 0 < ε < C such that Sε(X, f) is still generic, there exists a graph
isomorphism Ψ : Rf → Sε(X, f) induced by Φ.

3 Reeb Graph Distances

This work focuses on showing the connections between common distance metrics on the space
of Reeb graphs. Specifically, we will study the interleaving distance and the Reeb graph edit
distance, both of which we briefly introduce in this section.

The idea of smoothing in fact originates from the interleaving distance [7]. An ε-
interleaving with respect to Sε is a pair of maps, φ : (G, f) → Sε(H,h) and ψ : (H,h) →
Sε(G, f) such that the diagram 1 commutes. The interleaving distance is defined to be
dI((G, f), (H,h)) = inf

ε
{there exists an ε-interleaving of (G, f) and (H,h)}

The Reeb graph edit distance [8] takes a combinatorial approach using a set of deformations
to create a sequence transforming one Reeb graph into another. We assign cost values to
each deformation and take the sum over the sequence to get a distance. The elementary
deformations are birth (B-type), death (D-type), relabel (R-type), K1-type, K2-type, and
K3-type. We see a few examples of such these types of deformations in Figure 2. The Ki-type
deformations are needed to change adjacencies, while R-type simply change the heights of
vertices. The cost of the R-type and Ki-type deformations is the maximum displacement of
any vertex moved during that edit; we emphasize that an R-type move may relabel many
vertices, but the end cost is only the maximum distance any vertex is moved. The R-type
deformation can be rather limiting as it does not allow for all adjacency changes that are
needed, for these adjacency changes we turn to Ki deformation. The cost of B-type and
D-type deformations is the absolute value of the difference of the function values of the
two vertices we see being born or dying. We define a edit sequence T of Rf to be any
finite ordered sequence T = (T1, T2, ..., Tn) such that T1 is an elementary deformation of
Rf , T2 is an elementary deformation of T1(Rf ), ..., and Tn is an elementary deformation of
Tn−1Tn−2...T2T1(Rf ). If the result of the deformations is Rg, then the edit sequence takes Rf

to Rg. The set of all such edit sequences is denoted T(Rf ,Rg). The cost of an edit sequence
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Figure 2 Examples of combinatorial edits to Reeb graphs.

is defined as c(T ) =
∑n

i=1 c(Ti), where T = (T1, T2, ..., Tn) and c(Ti) refers to the cost of the
elementary deformation as described above. The Reeb Graph edit distance, dE , between two
Reeb graphs Rf ,Rg is defined to be dE((Rf ), (Rg)) = inf

T ∈T((Rf ),(Rg))

∑n
i=1 c(Ti).

4 Edit distance of smoothed Reeb graphs

Since smoothing is limited in how it changes a Reeb graph, we can analyze precisely which
edits will transform a graph to its smoothing. When ε is chosen small enough (less than C

from lemma 1), we will only need relabeling deformations. For larger ε, we will break up our
edit sequence to focus on a single adjacency change at a time. We have 2 cases in which we
see adjacency changes; see Figure 2. Essentially, case 1 deals with eliminating small loops,
while case 2 deals with adjacent down forks above up forks (non loops) in which smoothing
causes the down fork and up fork to swap height ordering. Outside of a small neighborhood
of these changes, every other vertex is simply being relabeled by ε. We conclude with the
following result:

▶ Theorem 3. For any ε > 0 the interleaving distance between a Reeb graph and its
ε-smoothing is equal to the Reeb graph edit distance.

It remains to consider how to generalize this result to the universal Reeb graph edit
distance, as described in [3], as well as if we can adapt this proof technique to identify other
classes of Reeb graphs which attain equality in these two distance metrics.
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Abstract
Motivated by the algorithmic study of 3-manifolds, we explore the structural relationship between
the JSJ decomposition of a given 3-manifold and its triangulations. Building on work of Bachman,
Derby-Talbot and Sedgwick, we show that a “sufficiently complicated” JSJ decomposition of a
3-manifold enforces a “complicated structure” for all of its triangulations. More concretely, we
show that, under certain conditions, the treewidth (resp. pathwidth) of the graph that captures the
incidences between the pieces of the JSJ decomposition of a 3-manifold yields a linear lower bound
on the treewidth (resp. pathwidth) of the dual graph of any triangulation thereof.

Using these results, we give the first example of an infinite family of bounded-treewidth 3-mani-
folds with unbounded pathwidth. We also obtain Haken 3-manifolds with arbitrary large treewidth.
Previously the existence of such 3-manifolds was only known in the non-Haken case.
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1 Background and Motivation

For computational purposes, a compact 3-manifold is often presented as a triangulation: a
finite collection of abstract tetrahedra glued together along pairs of their triangular faces.
In this setting, recent years have seen an emergence of fixed-parameter tractable (FPT)
algorithms that efficiently solve computationally hard problems for triangulated 3-manifolds
as soon as the dual graph of the input triangulation has bounded treewidth1 [5, 6, 7, 8, 9].

To understand the scope of these algorithms, it is instructive to define the treewidth
tw(M) of a compact 3-manifoldM as the smallest possible treewidth of the dual graph of any
triangulation ofM. The relationship between the treewidth and other topological invariants
of 3-manifolds has recently been investigated in various contexts [11, 12, 13, 14, 19]. Together
with Wagner [14] we have shown, for instance, that the treewidth of a non-Haken2 3-manifold

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 The treewidth is a graph parameter that quantifies the “tree-likeness” of a given graph, cf. [3].
2 A compact, orientable 3-manifoldM is non-Haken if it is irreducible—i.e., every sphere embedded in
M bounds a ball—and does not contain two-sided, properly embedded incompressible surfaces.
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Figure 1 (i) Example of a triangulation T with two tetrahedra ∆1 and ∆2, and three face gluing
maps ϕ1, ϕ2 and ϕ3. The map ϕ1 is specified to be ∆1(123)←→ ∆2(103). (ii) The dual graph Γ(T )
of T that encodes the gluing maps between the tetrahedra. Reproduced from [12, Figure 1].

is always bounded below in terms of its Heegaard genus.3 Combined with earlier work of
Agol [1]—who constructed an infinite family of non-Haken 3-manifolds with arbitrary large
Heegaard genus—this implies the existence of 3-manifolds with arbitrary large treewidth. In
spite of the fact that, asymptotically, most triangulations of most 3-manifolds must have dual
graphs of large treewidth [14, Appendix A], this collection described by Agol has remained,
to this date, the only known family of 3-manifolds with arbitrary large treewidth.

In this project we unravel new structural connections between the triangulations of a given
3-manifold and its JSJ decomposition4 [15, 16, 17]. Employing the machinery of generalized
Heegaard splittings5 [22], and building on work of Bachman, Derby-Talbot and Sedgwick
[2], we show that, under suitable conditions, the dual graph of any triangulation of a given
3-manifoldM inherits structural properties from the decomposition graph that encodes the
incidences between the pieces of the JSJ decomposition ofM. This allows us to exhibit Haken
3-manifolds with arbitrary large treewidth, and to construct bounded-treewidth 3-manifolds
with unbounded pathwidth. In what follows, we elaborate on these results.

2 The Main Result and Its Applications

I Theorem 1 (Width inheritance). For any closed 3-manifoldM with sufficiently complicated6

torus gluings in its JSJ decomposition D, the treewidth and pathwidth ofM and those of the
decomposition graph Γ(D) of D satisfy

tw(Γ(D)) ≤ 18 · (tw(M) + 1) and pw(Γ(D)) ≤ 4 · (3 pw(M) + 1). (1)

Outline of the proof. We only sketch the proof of the first inequality, as they are analogous.
To prove that tw(Γ(D)) ≤ 18(tw(M) + 1), we start with any triangulation T ofM. By our
earlier work [14, Section 6], we can construct from T a generalized Heegaard splitting H

ofM, where the genera of all level surfaces is bounded above by 18 · (tw(Γ(T )) + 1). By

3 The Heegaard genus is one of the oldest invariants of 3-manifolds [10]. For a 3-manifoldM, it is the
smallest number g, such that M can be obtained as a Heegaard splitting of genus g, i.e., from two
handlebodies of genus g identified along their boundaries with a gluing homeomorphism, cf. [21].

4 A central result by Jaco–Shalen [15, 16] and Johannson [17] asserts that every closed, irreducible and
orientable 3-manifoldM admits a collection T of pairwise disjoint embedded tori, where each piece of
the complementM\T is either Seifert fibered or atoroidal. A minimal such collection of tori is unique
up to isotopy and gives rise to the so-called JSJ decomposition ofM. See [20] for a simplified proof.

5 Generalized Heegaard splittings provide very useful instruments to navigate between different kinds of
decompositions of 3-manifolds. They originate from [23]; see [22] for a comprehensive monograph.

6 This is made precise via the notion of c-distance developed in [2, Section 2], cf. Definition 2.13 therein.
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construction, H naturally admits a sweep-out S = {Sx : x ∈ H} along a tree H. If H is not
already strongly irreducible, we repeatedly perform weak reductions until we reach a strongly
irreducible splitting H′. Throughout this process we maintain the sweep-out to follow H.
Crucially, weak reductions do not increase the genera of level surfaces [22, Section 5.2], thus
18 · (tw(Γ(T )) + 1) is still an upper bound on those in H′. Now, by Corollary 4.5 of [2],
each JSJ torus ofM can be isotoped to coincide with a connected component of some thin
level of H′. This implies that, after a perturbation, the level set Sx is incident to at most
18 · (tw(Γ(T )) + 1) + 1 JSJ pieces ofM, for any x ∈ H. Sweeping along H, we can construct
a tree decomposition of Γ(D) where each bag contains at most 18 · (tw(Γ(T )) + 1) + 1 vertices,
from which tw(Γ(D)) ≤ 18 · (tw(Γ(T )) + 1) immediately follows.

Applications. With Theorem 1 at hand, the existence of bounded-treewidth 3-manifolds with
arbitrary large pathwidth follows by taking the complete binary tree Th as the decomposition
graph of a JSJ decomposition with sufficiently complicated (in the sense of [2]) torus gluings
between its constant-sized JSJ pieces, akin to a construction by Lackenby [18, Section 3].
The construction of Haken 3-manifolds with arbitrary large treewidth is similar, but instead
of Th we take the k × k grid as the decomposition graph. See Figures 2 and 3.

(ii) tw(k × k-grid) = k(i) tw(Th) = 1, pw(Th) = dh/2e

T3

Figure 2 (i) The complete binary tree Th of height h has pathwidth dh/2e, cf. [4, Theorem 67].
(ii) The k × k grid-graph has pathwidth and treewidth both equal to k.

MΓ(D) −→

Figure 3 Schematic example of the construction. The pieces ofM are described in [18, Sec. 3].
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A 3-Prismatoid is the convex hull of two convex polygons A and B which lie in parallel planes
HA, HB ⊂ R3. Let A′ be the orthogonal projection of A onto HB. A prismatoid is called nested
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1 Introduction

Dürer’s problem asks whether for every 3-polytope P there exists a spanning tree T of
its edge graph, so that if we cut P along T the resulting surface can be unfolded into
the plane without self-overlaps. We call a polytope for which such a spanning tree exists
edge-unfoldable, or, briefer, unfoldable. It is known that non-convex polytopes which are
combinatorially equivalent to a convex 3-polytope may be ununfoldable, cf. [2, 7, 1]. However,
the classical question for convex polytopes remains open.

In an extended abstract for last year’s YRF the author presented the outlines of a proof
that sufficiently flat nested prismatoids are unfoldable. A prismatoid is the convex hull of
two polygons A, B in parallel planes HA, HB . It is called nested if the orthogonal projection
of A onto HB is properly contained in B, or vice versa. We assume the former and then call
A the top of P and B its base. The set of lateral facets of the prismatoid is called the band.

A nested prismatoid is a special case of a polyhedral cap, that is, a polytope P which
possesses a designated facet F so that the orthogonal projection of P ′ := P \ F onto F is
one-to-one. A cap is nearly flat if the vertices of P ′ are “close” to F . The meaning of “close”
depends on the context. Last year’s near-flatness result was obtained in a manner similar to
O’Rourke’s result on unfoldability of nearly flat, acutely triangulated polyhedral caps [5, 4]:
Establish a cutting scheme for a flat polytope, then lift the latter into a nearly flat polytope,
and unfold. A different approach has now made it possible to remove the height constraint
and arrive at the new straightforward statement.

▶ Theorem 1. Every nested prismatoid is edge-unfoldable.

2 Outline of the proof

We will here outline the proof of Theorem 1. The full paper can be found on the arXiv, cf.
[6]. Also available under the link is the first version of the preprint, which contains, as an
intermediary step, a simple derivation of last year’s near-flatness result.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Edge-unfolding nested prismatoids

g wi

w∗

wj

Figure 1 Unfolding scheme for flat prismoid, second case (left) and unfolding of lateral facets
and top after flattening

The proof has two steps. In the first part we take a step back and prove unfoldability
of nested prismoids. A prismoid is a prismatoid whose facets are trapezoids. It is already
known that prismoids, nested or not, are unfoldable [3]. In this respect the first part is not
new. But it presents a very specific cutting scheme. In the second part, the cutting scheme
for prismoids acts as a catalyst. Instead of dealing with the full complexity of the prismatoid,
one merely has to deal with the differences between prismoids and prismatoids.

Part 1 A key property of prismoids is that top and base A, B have the same number
of vertices, say v1, . . . , vk and w1, . . . , wk, and corresponding edges (vi, vi+1), (wi, wi+1) are
parallel. We say the curvature at a vertex of A or B is the angle spanned by its outward
normal cone. The curvature of a connected segment of the boundary of A or B is the sum of
the curvatures at its interior vertices. We can always find indices i, j so that the curvatures
of the four polygonal paths (vi, vj) := [vi, . . . , vj ], (vj , vi), (wi, wj), (wj , wi) is smaller than π.
This induces a subdivision of the band into two pieces. These two pieces cannot self-overlap
when flattened into the plane.

Further, there exists an index ℓ so that the paths (vi, vℓ) and (vℓ+1, vj) either have length
0 or a curvature ≤ π

2 . These paths are radially monotone, that is, when traversing them, the
distance to the starting point monotonically increases. If we attach the top A to the edge
(vℓ, vℓ+1) and flatten the resulting polyhedral patch, the radial monotonicity of (vi, vℓ) and
(vℓ+1, vj) ensures that they peel off A without intersecting it, cf. Figure 1, right.

It then remains to show that the two band pieces, one with attached top, one without,
can be reattached to the base without causing intersections. Two cases are distinguished:
There exists a base vertex wi with curvature ≥ π

2 , or not, cf. Figure 1, left. For a detailed
explanation we refer to the preprint [6].

A quick and dirty argument for unfoldability of nearly flat prismatoids goes as follows:
Select wi, wj as before. Unlike in the prismoid case, there may be several lateral edges
incident to each of these vertices. At each vertex cut one arbitrary lateral edge. At least
one of the resulting top boundaries must have a curvature smaller π. This allows to attach
the top and prevents self-intersection when flattening. If we select the height of the top
sufficiently small, the other band piece will not self-intersect after flattening by a continuity
argument and the fact that the band piece is closed. By a similar continuity argument the
band pieces can be reattached to the base and will not cause intersections for small heights.

Part 2 The key to unfolding nested prismatoids of arbitrary height is to invest more work
into the selection of the edges incident to wi, wj which are cut. Three main components
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Figure 2 Shadow prismoid

enter into this work. The first is the observation that the curvature of convex polygonal
paths solely depends on the relative angles of their first and last edge. In the analysis of the
prismoid only the last and first edges of the top and base boundaries and their respective
parallelity come into play.

The shadow prismoid technique is based on this observation. A key difficulty of the
analysis of prismatoid bands is that they can contain triangles with an edge in the top or
in the base and trapezoids in an arbitrary order. The shadow prismoid consists of four
supporting lines to the top which are parallel to the four base edges incident to wi and wj ,
cf. Figure 2. Between the vertices where such a pair of lines meets the top, all lateral facets
are triangles with an edge contained in the top. This simplifies the analysis of the bands.

The third idea is to embed the end triangles of bands in trapezoids to simplify angle-
comparisons. If such an enhanced band unfolds overlap-free then so does the original.
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1 Introduction

Given a polytope P , its realization space is the set of all polytopes which are combinatorially
equivalent to P . Various parameterization exist depending on different ways of encoding a
polytope. For example, in [5] polytopes are given by vertices and facets normals, and in [3]
realization spaces are constructed based on slack matrices.

Yet all these realization spaces arise as real semialgebraic sets. Results of Mnëv [4] and
Richter-Gebert [6] show that the realization space of a polytope of dimension at least 4 can
be extremely topologically complicated. In contrast, realization spaces of 3-polytopes are
always contractible, and each 3-polytope admits a realization with rational coordinates; cf.
[8]. Our point of departure is the following strong version of Steinitz’ theorem, proved by
Springborn [7]: For every 3-connected planar graph there is a representation as the graph of a
3-polytope such that all edges are tangent to the unit sphere S2 ⊂ R3, and such that 0 is the
barycenter of the contact points, i.e., the tangency points of the edges. This representation
is unique up to rotations and reflections.

We introduce the following notions. A Koebe realization of a polytope P is a realization
of P with edges tangent to the unit sphere S2, and a Springborn realization is a Koebe
realization whose barycenter of the contact points is the origin. If we now look at the
set of Koebe realizations inside the realization space of P , we obtain an interesting real

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Algebraic Degrees of 3-Dimensional Polytopes

semialgebraic subset. The questions we address here are the following: Does P admit rational
Koebe and Springborn realizations? If not, what is the minimal algebraic degree of these
realizations?

These questions are related to computational aspects in geometric combinatorics. Bobenko
and Springborn [1] developed a variational method to compute Springborn realizations
numerically. Our work highlights that any exact computation is much more involved, since
the algebraic degrees are unbounded.

2 Main Results

Given a Koebe realization Q of a polytope P , the field extension Q[Q] is the extension of Q
given by the (vertex) coordinates. This turns out to be the same as the extension of Q given
by the contact points of Q. The Koebe degree κ(P ) is the minimum degree |Q[Q] : Q| among
all possible Koebe realizations Q.

▶ Theorem 1. Let P be a 3-polytope with n vertices and a triangular facet. Then its Koebe
degree is at most

κ(P ) ≤ 823n−9−1 · 2−(3n−9) < 223n

. (1)

Note that if P does not have a triangular facet, then its dual does; in that case the above
result bounds the Koebe degree in terms of the facets.

To prove Theorem 1, we first remark that given a triangular facet, there is a finite number
of Koebe realizations of P such that the three vertices of the facet have rational coordinates.
These realizations are cut out by rational polynomial equations and inequalities of degree
at most 4. We can then use bounds on the algebraic degree of their solutions coming from
cylindrical algebraic decomposition CAD [2].

Two Koebe realizations differ by a projective transformation preserving the sphere S2.
The action of these transformations on S2 is equivalent to the action of PGL2(C) on C∪ {∞}
through the stereographic projection and one obvious invariant of this last group is given by
the cross ratio of 4 points.

▶ Proposition 2. Let Q be a Koebe realization of P with contact points in K = Q[Q]. Then
the cross ratio of the stereographic projections of any four contact points lies in L = K[i],
and the degree of its real and imaginary part over Q is a lower bound for κ(P ).

In the paper we also focus on two classes of polytopes which give more insight concerning
the behavior of these degrees. Analyzing the class of bipyramids, we were able to show that
the Koebe degree is not uniformly bounded on the class of polytopes. We use ϕ to denote
the Euler’s totient function, so ϕ(k) counts the positive integers smaller than k and relatively
prime to k.

▶ Theorem 3. Let k ≥ 4 be an integer. Then the Koebe degree κ(Bk) is at least ϕ(k)/4. In
particular, the Koebe degree of a 3-polytope is not bounded by any constant.

Interestingly, we observed the opposite behavior for the class of stacked polytopes, that is
simplicial polytopes obtained by starting with a 3–simplex and successively adding vertices
beyond a facet. For stacked polytopes, we can always find a rational Koebe realization.

▶ Theorem 4. The Koebe degree of any stacked 3-polytope equals one.
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It is decidable whether a polytope admits a rational Koebe realization or not. If P is
a polytope which admits a rational Koebe realization Q and Q′ is a Koebe realization of
P with three rational contact points, then Q′ is rational. We can therefore solve a finite
semialgebraic system, e.g., by cylindrical algebraic decomposition CAD, to find a realization
of P with three rational contact points, and establish from the result if the Koebe degree of
P is one or not. However, often this is prohibitively expensive. More generally, the Koebe
degree is always computable, also via CAD.

The Springborn degree σ(P ) is the minimum degree |Q[Q] : Q| among all possible
Springborn realizations Q. Two Springborn realizations differ by the action of an element of
the orthogonal group O3(R), which in fact has a lot of nice invariants. The degree of the
extension given by the volume of the polytope or by the squared norm of a vertex provide
lower bounds for the Springborn degree, which gets easier to compute than the Koebe degree.

▶ Example 5. The six columns of the matrix



±
√

2 0 0
0 ±

√
2 0

0 0 ±
√

2




provide a degree two Springborn realization of the octahedron. We can conclude that the
Springborn degree is two because its volume equals 8

√
2

3 .

The following result connects the two notions of degree.

▶ Theorem 6. For a 3-polytope P with m edges we have

κ(P ) ≤ σ(P ) ≤ (2m + 2)7

4 · κ(P ) .
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1 Introduction

Triangulating manifolds is difficult mainly because of the occurrence of badly shaped simplices.
To battle this difficulty, quality criteria on point samples of a manifold have been established
that guarantee the Delaunay complex of the sample to be a triangulation, i.e., homeomorphic
to the manifold. These criteria demand that the density and protection (Figure 1 right)
of the point sample are large compared to how far the manifold is from being flat, and its
injectivity radius (Figure 1 left) [1, 2, 3, 5]. However, it is more natural to formulate these
criteria in terms of how far the manifold is from having constant sectional curvature, since
Delaunay triangulating sphere or hyperbolic spaces is as difficult as Delaunay triangulating
the Euclidean space.
In our ongoing work, we derive quality criteria that guarantee a successful construction
of Delaunay triangulations in manifolds of nearly constant curvature. These criteria can
be used in adaptive sampling based on the change of curvature. Algorithms dealing with
triangulations of hyperbolic spaces, for example, are often plagued by numerical imprecision [8,

∗ This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Stability of circumcentres for small metric perturbations of spaces of constant curvature

Remark 4.9 (i)]. Our work helps succumb this imprecision by interpreting it as a distortion
on the hyperbolic metric, thereby providing stability guarantees of the algorithms [4, 6].
In this note we present a key element of our work — we control the distortion of circumcentres
of simplices in spaces of constant curvature upon a small distortion of the metric.

Figure 1 On the left: the injectivity radius. On the right: the triangle with the green circumcircle
is protected; the triangle with the red circumcircle is not, since its red belt contains two points.

Space forms A space form is a sphere or a hyperbolic space. We denote n-dimensional
space forms by Hn(K) or H(K), and rescale the space such that |K| = 1. We model the space
forms on the n−dimensional sphere Sn (if K = 1) or the n−dimensional hyperboloid Hn

(if K = −1). We use d or dH(K) to denote the metric on either Sn or Hn, and denote the
orthogonal complement of a set S with respect to either the Euclidean or the Minkowski
product by S⊥.

Simplices in space forms An n-dimensional simplex σ in Hn(K) is a convex hull of a set
of n + 1 points v0, . . . , vn ∈ Hn(K). If σ is non-degenerate, there exists a unique n-sphere
in Hn(K) containing the vertices of σ. We call this sphere the circumsphere of σ, and its
centre the circumcentre of σ. The circumcentre of σ is the intersection of bisectors of pairs
of its vertices vi and vj , where a bisector of vi and vj is the set of all points in Hn(K) that
are equidistant to vi and vj . We further define the secant simplex σ as the convex hull of the
vertices v0, . . . , vn in Rn+1. The secant simplices are illustrated in Figure 2.

Riemannian simplices and metric distortion We study full-dimensional, non-degenerate
simplices1 on a Riemannian manifold M which is essentially a space form, with a slightly

1 Such a Riemannian simplex can be constructed by Karcher’s centre of mass construction [7].
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Figure 2 A two-dimensional simplex (in blue) and its secant simplex (in red).

distorted metric. Every such Riemannian simplex σM possesses one or multiple circumcen-
tre(s), that lie(s) in the intersection of the bisectors of its vertices. Our goal is to bound
these circumcentres in a small neighbourhood. We achieve this bound by comparing σM to a
‘similar’ simplex σ in a space form H(K) — we assume that there exists a (local) near-isometry
Ψ between M and H(K). That is, there exists a distortion parameter ν > 0 such that, for
all points x and y in a neighbourhood of σM,

∣∣dM(x, y) − dH(K)(Ψ(x), Ψ(y))
∣∣ < ν.

We adopt the notation of Figure 3, where CσM and C denote circumcentres of σM and σ,
respectively. Our goal is to upper-bound the distance dH(K)(C, Ψ(CσM)).

Figure 3 We compare the image of a Riemannian simplex with the convex hull of its vertices.

Let p, q be two vertices of σ. Since the point CσM lies at the bisector of Ψ−1(p) and Ψ−1(q),
its image satisfies

∣∣dH(K)(p, Ψ(CσM)) − dH(K)(q, Ψ(CσM))
∣∣ ≤ 2ν. We call the set of all points

in H(K) satisfying this bound the thickened bisector of p and q (see Figure 4), and denote it
by Bν(p, q) or Bhyp

ν (p, q) when K = 1 or K = −1, respectively.
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4 Stability of circumcentres for small metric perturbations of spaces of constant curvature

Figure 4 The thickened bisector of p and q.

2 Geometric interpretation of thickened bisectors

Let λ = d(p, q)/2 be half of the distance between p and q, and let ν ∈ [0, λ]. If H(K) = Sn

we denote the following union of ellipses related to p and q by Eν(p, q):

Eν(p, q) =
⋃

ρ∈[0,ν]

{
cos ρ cos t

2 cos2 λ
(p + q) + sin ρ sin t

2 sin2 λ
(p − q) | t ∈ [0, 2π]

}
⊆ Rn+1. (1)

If H(K) = Hn, we denote the following union of hyperbolas related to p and q by Hν(p, q):

Hν(p, q) =
⋃

ρ∈[0,ν]

{
cosh ρ cosh t

2 cosh2 λ
(p + q) + sinh ρ sinh t

2 sinh2 λ
(p − q) | t ∈ R

}
⊆ Rn+1. (2)

Figure 5 The sets Eν(p, q) resp. Hν(p, q).

The sets Eν=λ(p, q) and Hν=λ(p, q) are depicted in Figure 5.
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▶ Definition 1 (Elliptic and hyperbolic cylinder). 1. The elliptic cylinder Zν(p, q) is the carte-
sian product of Eν(p, q) and the (n − 1)-plane span{p, q}⊥ ⊆ Rn+1,

Zν(p, q) =
{

v + u | v ∈ Eν(p, q), u ∈ span{p, q}⊥}
.

2. The hyperbolic cylinder Zhyp
ν (p, q) is the cartesian product of Hν(p, q) and the (n − 1)-

plane span{p, q}⊥ ⊆ Rn+1,

Zhyp
ν (p, q) =

{
v + u | v ∈ Hν(p, q), u ∈ span{p, q}⊥}

.

The sets Zν(p, q) and Zhyp
ν (p, q) are unions of degenerate quadrics.

▶ Proposition 2 (Thickened bisectors are cylinders). The thickened bisector of p and q is the
intersection of Hn{±1} with the elliptic resp. hyperbolic cylinder:

Bν(p, q) = Sn ∩ Zν(p, q), (3)
Bhyp

ν (p, q) = Hn ∩ Zhyp
ν (p, q). (4)

Recall that the height of the simplex σ̄ is the minimum altitude of its vertices (see Figure 6).

Figure 6 An altitude alt(v) of σ and of the secant simplex σ̄.

▶ Proposition 3 (Intersection of cylinders). Let 0 < ν ≤ mini ̸=j d(vi, vj)/2. The distance
dH(K)(C, Ψ(CσM)) is bounded from above by ν, the radius r of the simplex σ, and the height
of the secant simplex σ.

dH(K)(C, Ψ(CσM)) ≤





arcsin
(

(n+1) sin ν
height(σ)

)
, if K = 1,

arctanh
(

(n+1) tanh ν
tanh2 r height(σ)

)
, if K = −1.
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Abstract
We present an integral transform of constructible functions, the Euler-Fourier transform, combining
Lebesgue integration and constructible pushforward — a topological dimensionality reduction.
Lebesgue integration gives access to regularity results while constructible pushforward conveys
topological information, making it strictly more discriminating than the classical Fourier transform.
This transform is an example of the more general notion of hybrid transform defined in [8]. In this
note, we adapt the exposition to this specific example and illustrate it in various ways. We also
show that it can be efficiently computed in practical scenarios.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases topological data analysis, Euler calculus, constructible functions, integral
transforms

Related Version A full version of the paper is available at https://arxiv.org/abs/2111.07829.

1 Introduction

Euler calculus – the integral calculus of constructible functions with respect to the Euler
characteristic – is of increasing interest in topological data analysis and computational
geometry. Already in [9], it was developed as an alternative definition of convolution for
polygonal tracings with multiplicities, a useful notion in robotics [5, 7]. In persistence
theory, Schapira’s result on Radon transform [11] positively answers an important question [2,
Thm. 4.11]: are two constructible subsets of Rn with the same persistent homology in all
degrees and for all height filtrations equal? More generally, the constructible functions
naturally associated to multiparameter persistent modules stand as simple and well-behaved,
albeit incomplete, invariants of these objects. For instance, the persistent magnitude [4] is
actually defined on the constructible functions associated to the persistence modules.

In [8], we introduced a general definition and conducted a systematic study of integral
transforms combining Lebesgue integration and Euler calculus for constructible functions.
Such transforms generalize the Bessel and Fourier transforms of Ghrist and Robinson [3],
as well as the Euler characteristic of barcodes of Bobrowski and Borman [1]. In this note,
we illustrate the theory on one example, the Euler-Fourier transform. We state some of its
characteristics and illustrate its differences from its classical analogue in various situations
(see Figure 1). More general results are proven in [8].

2 Definition

A function ϕ : Rn → Z is called constructible1 if it can be written as a finite sum ϕ =∑r
i=1 mi1Ki

, where the mi’s are integers and the Ki’s are compact subanalytic subsets of Rn.
We denote by CF(Rn) the group of constructible functions on Rn. We refer to [6, Sec. 8.2,
Sec. 9.7] for more details on subanalytic sets and constructible functions.

This is an abstract of a presentation given at CG:YRF 2022. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 In this note, we consider only compactly supported constructible functions.
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2 Euler-Fourier transform of constructible functions

Figure 1 Left: a piecewise-linear closed curve C in R2. Right: Euler-Fourier transform of 1C .

I Example 2.1. Any polytope of Rn — the convex hull of a finite set of points of Rn —
is subanalytic. If the subsets Ki in the decomposition of ϕ are polytopes, then ϕ is said
PL-constructible. We denote by CFPL(Rn) the group of PL-constructible functions on Rn.

I Definition 2.2. Let ξ ∈ Rn and ϕ =
∑r
i=1 mi1Ki

be a constructible function. The
pushforward of ϕ along ξ is the constructible function ξ∗ϕ over R defined for any t ∈ R by

ξ∗ϕ(t) =
r∑

i=1
mi · χ

(
ξ−1(t) ∩Ki

)
,

where2 ξ−1(t) = {x ∈ Rn ; 〈ξ;x〉 = t} and χ is the Euler characteristic, that is χ (Z) =∑
j∈Z(−1)j dimQHj(Z;Q) for any Z ⊆ Rn compact and subanalytic. See Figure 2.

The fact that this definition does not depend on the decomposition of ϕ and that ξ∗ϕ is a
constructible function on R is proven by Schapira [9, 10].

I Example 2.3. If P ⊆ Rn is a polytope, then ξ∗1P = 1[minP (ξ),maxP (ξ)], where minP (ξ) =
min{〈ξ;x〉 ; x ∈ P} and maxP (ξ) = max{〈ξ;x〉 ; x ∈ P}. In fact, there is a vertex p (resp. q)
of P , depending on ξ, such that minP (ξ) = 〈ξ; p〉 (resp. maxP (ξ) = 〈ξ; q〉).

K
ξ

χ
(
ξ−1(t) ∩K

)
= 3

1

2

3

R
ξ−1(t)

t

ξ∗1K

Figure 2 The pushforward along ξ ∈ R2 of 1K for the compact subanalytic K ⊆ R2.

2 For any two x, y ∈ Rn, we denote by 〈x; y〉 their canonical scalar product.
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P
ξ

ξ−1(t)

χ(ξ−1(t) ∩ P ) = 1

1

Rt

q

p

ξ∗1P

〈ξ; p〉 〈ξ; q〉

Figure 3 The pushforward along ξ ∈ R2 of ϕ = 1P for the polytope P ⊆ R2.

I Definition 2.4. The Euler-Fourier transform of ϕ ∈ CF(Rn) is defined for ξ ∈ Rn by:

EF [ϕ] (ξ) =
∫

R
e−itξ∗ϕ(t) dt.

Choosing any kernel κ ∈ L1
loc(R) instead of t 7→ e−it leads to the general definition of hybrid

transform, studied in [8]. We now turn to examples. The reader’s attention is drawn to the
effect of the successive application of topological pushforward and of classical integral.

I Example 2.5. Denote by Sr the sphere of radius r > 0 in Rn. For any ξ ∈ Rn,

EF [1Sr
] (ξ) = 2 · (1 + (−1)n) · sin (r‖ξ‖) .

I Example 2.6. Consider the constructible function ϕ = 1S − 1C , where S = [−1/2, 1/2]2
and C is the piecewise linear closed curve of R2 represented by the dotted line in Figure 4b.
Since C has zero volume, the (classical) Fourier transforms of 1S and of 1S − 1C are equal.
However, their Euler-Fourier transforms differ, as shown in Figure 4.

3 Properties

The Euler-Fourier transform enjoys a regularity result on PL-constructible functions.

I Proposition 3.1. Let ϕ ∈ CFPL(Rn). The function EF [ϕ] is continuous, bounded and
piecewise smooth on Rn.

The Euler-Fourier transform enjoys several invariance properties. We emphasize here
specific ones which are also satisfied by the classical Fourier transform.

I Proposition 3.2. Let ϕ ∈ CF(Rn) and A ∈ GLn(R). Denote by A∗ϕ the constructible
function on Rn given by A∗ϕ(x) = ϕ(A−1x), for any x ∈ Rn. For any ξ ∈ Rn, we have:

EF [A∗ϕ] (ξ) = EF [ϕ]
(
tAξ
)
.

I Proposition 3.3. Let ϕ ∈ CF(Rn) and x0 ∈ Rn. Denote by τx0∗ϕ the constructible function
on Rn given by τx0∗ϕ(x) = ϕ(x− x0), for any x ∈ Rn. For any ξ ∈ Rn, we have:

EF [τx0∗ϕ] (ξ) = e−i〈ξ;x0〉 · EF [ϕ] (ξ).

These operations are not the only operations available on constructible functions. In [8], we
study the compatibility of hybrid transforms with numerous operations.
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4 Euler-Fourier transform of constructible functions

(a) 1S (b) 1S − 1C

(c) EF [1S ] (d) EF [1S − 1C ]

Figure 4 Euler-Fourier transforms of the constructible functions 1S and 1S −1C in Example 2.6.

4 Computations

Let ϕ ∈ CFPL(Rn) be written as ϕ =
∑r
l=1 ml · 1Pl

where the subsets Pl are polytopes.
By Z-linearity of EF and Example 2.3, we have for any ξ ∈ Rn,

EF [ϕ] (ξ) =
r∑

l=1
ml

∫ maxPl
(ξ)

minPl
(ξ)

e−it dt = i
r∑

l=1
ml

(
e−imaxPl

(ξ) − e−iminPl
(ξ)
)
. (4.1)

The extrema minPl
(ξ) and maxPl

(ξ) being attained on vertices of Pl, computing the extrema
of 〈ξ; vl〉 for vl ranging over the set of vertices of Pl yields the value of EF [ϕ] (ξ) using (4.1).

Consider now a fixed finite collection of polytopes P = {Pl}rl=1 and denote by CFP(Rn)
the set of ϕ ∈ CF(Rn) that can be written as ϕ =

∑r
l=1 ml · 1Pl

. Precomputing the
extrema of ξ on the set of vertices of each polytope of P , the Euler-Fourier transform of any
ϕ ∈ CFP(Rn) is easily computed using (4.1). As an important example, greyscale images of
size n×m can naturally be seen as constructible functions on a fixed cubical complex of R2.
Each value of their transforms can thus be computed in O(nm) operations.
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